4|lli

IBM ILOG Views
Gadgets V5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Part |

Chapter 1

Table of Contents

About This Manual 17
What You Need to KNOW e 17
Manual Organization.t e 17
N ON. . e 18
Typographic CONVENLIONSttt e e e e 18
Naming ConNVENTIONSottt e e e e 19

Creating GUI Applications with IBM ILOG Views Studio 21

Introducing the Gadgets Extension of IBM ILOG Views Studio............. 23
Loading the GUI Application and GUI Generation Plug-In. 24
The Main WIiNdOW. e e 24
BUffer WINAOWSo 25
The MENU Bar 28
The ACtiON TOOIDAr.o e 30
The Editing Modes Toolbar e 30
The Palettes Panel 32
Gadgets Palette 33
MenUS Palette 35

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 3

MatriX Paletteo 35

Miscellaneous Palette 36
View Rectangles Palette i 38
Gadgets Extension Commands e 38
AdAPaNEl 39
EditAPPlICAtioNo 39
L= 0= = = 39
GenerateAll . .. 40
Generate AppliCation e 40
GenerateMakeFile 40
GeneratePanelClasso 41
GeneratePanelSubClass e 41
INSpeCtPaNEl 41
KillTeStPanels e 41
MakeDefaultApplication 42
NEeWAPPIICAtIONo 42
NewGadgetBuffer 42
NEeWPANEICIASS 43
OpPeNAPPIICAtION e e e e 43
RemoveAllAttachments 43
RemoveAttaChments 43
RemovePRanel 44
RemovePanelClass 44
SaveAPPlICAtION 44
SaVeAPPlICALIONAS e 44
SelectAttachmentsMode 45
SeleCtFOCUSMOOEo 45
SelectMatriXMOOeo 45
SelectMeNUMOOE 46
ShoWAIITeStPaNElSo e 46
ShowApPPlCatioNINSPECIOr 46

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Chapter 2

ShowClassPalette 47

ShowPanelClassINSpectort e 47
TestAPPlICAtiON 47
TestDOCUMENT 47
TeStPaANEl . 48
Gadgets Extension Panels e 48
ApPlICatioN INSPECIOT« ottt e e e 48
The Panel Class INSPECIOrt e e e e 50
The Panel Instance INSPeCLOr i e e 51
Editing Gadget Panels 53
Creating a New Panel. 54
Creating Gadget ObjeCtS.o 54
INSpecting an ObjJeCt 57
Testing a Panel e 58
Using ACtiVe MOo e e 58
Setting the Keyboard Focusin Panels 59
Using the Attachments Mode 60
Setting the GUIAESo 61
Attaching Objects to GUIES.o e 62
Attachment OpPerationsttt 63
Editing MeNUS. 65
MENU BaIS . . . 65
POp-UP MEBNUS 68
TO0IDArS . . o e 71
USING MatriCeS . . . oot e 74
Setting Up Matrix ems e e 74
Extracting Matrix [temsS. e 75
Inspecting Matrix [emMS 75
Editing SPin BOXeS . ..ot 77
INSErting @ SPIiN BOX.t o e e 78
Setting the Type of Spin BOX [tem 79

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 5

Chapter 3

Chapter 4

Editing Applications. 83
The Application Buffer. 83
Application Description File 87
Other Generated Files e 88
The Application INSPECTOr i e 88
The General Page e 89
The OptioNs Page e 920
The Header and SOUICE Pagesottt e e e 92
The SCHpt Page e 93
The Application Inspector BUHONSot e 94
Editing an Application 94
The Panel Class Palette. o e 95
Panel Classeso 96
The Panel Class INSPECIOrt e 97
Panel INStanCes 101
Testing an Application 110
Using the Generated Code. e 111
Building the Application 111
Setting Up the Application Classot e 112
Creating the First Panel Class e 113
Creating the Second Panel Class e 117
Generating the C++ Code 120
FirstPanelClass Header File e 120
FirstPanelClass Source File. 123
MyApplication Header File e 124
MyApplication Source File e 126
Testing the Generated Application 128
Extending the Generated Codet e 128
DefiningaDerived Classot 128
Using the Derived Classot e e e e e e 129
Defining Callbacks without Deriving Classestiiit .. 132

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Chapter 5

Chapter 6

Chapter 7

Customizing the Gadgets Extension of IBM ILOG Views Studio........... 135
Configuration Options for the Gadgets Extension........... 135
Extending IBM ILOG Views Studio e 141
Extending IBM ILOG Views Studio COmMpoNentscoiuiiitnnnannennns 141
Defininga New Command i e e 142
Defininga New Panel. 143
IBM ILOG Views Studio MESSAgESot vttt e e e e 143
Defining a New Buffer 144
Defining a New Editing Mode. e 145
The Class IIVStEXIENSIONt e e 146
Integrating your Own Graphic Objects it 150
Defininga New Commandto Addan Object. 150
Adding the Include File and Library File of a New Class to the Generated Code 151
Customizing the Palettes Panel. 152
Defining and Integrating an Inspector Panel 153
Extending IBM ILOG Views Studio: An Example i, 155
Defininga New Buffer Class i e e e e 155
Defininga New Command i e e e 157
Defininga New Panel. 158
Providing Container Information. 160
Registering Callbacks 161
Using Inspector ClassSest e 163
What IS @an INSPeCtOr? 163
Components of an Inspector Panel i 164
Preconditions and Validators 178
EIOrS . . oo 180
Defining a New Inspector Panel 181
EXample . . 181
Creating the Color Combo Box Inspector Panel 182

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 7

Part I

Chapter 8

Chapter 9

Chapter 10

IBM ILOG Views Gadgets 193

Introducing IBM ILOG Views Gadgets 195
Gadgets Main Features ot e e 195
Gadgets in aSnapshot 196
MBNUS .o o 196
CommON GaAQELSttt 196
= Lo = 197
Gadgets Libraries. 197
Code SamMPIe .o 199
Understanding Gadgets. 201
Gadget Holders e 201
List of Available Gadget Holders 202
Handling EVENtS.o e 203
FOocus Management 203
Gadgets Attachments. 205
Common Gadget Propertiest 207
Gadget APPEAIaANCE. ottt ittt 207
Associating a Callback witha Gadget i i i 209
Localizinga Gadgetot e 210
Associating a Mnemonic with a Gadget Label 211
Setting TOOIIPS . . . oot 211
Gadget RESOUICES it ittt e e e 212
Gadgets Look and Feel e 216
Using the Default Look and Feel e i 217
Using Several Look and Feel. 218
Dynamic Loading of Look and Feel 219
Changing the Look and Feel Dynamically e 220
Using the Windows XP Look and Feel. i 221
DIal0gS . . .ot 223

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Chapter 11

Predefined Dialog BOXES.ottt e 224

lIVIMessageDialogo e 224
IVIQUESHIONDIAIOGo e 225
IVIEIOrDIalog oot 225
VIV AINEE . e 226
liviinformationDialog oo 226
IVIFIESEIECIOr o 226
IVIPIOMPESIING . . .ot e e 227
IVFONESEIECION oo 228
IVCOIOrSEIECION . . . o 228
Creating Your Own Dialog BOX.ot 229
Showing and Hiding Dialog BOXES.ot e 230
Setting a Default BUtton e 230
Using Common Gadgetso 231
Using IIVAITOWBULION 232
Using IIVBULION. 232
Displaying a Bitmap in @ BUttON e 233
Displaying the Button Frame 233
Associating a Mnemonic with a Button 233
Event Handling and Callbacks. 233
Using llvComboBox and llvScrolledComboBox. 234
Setting a Combo Box as Noneditable i 234
Setting and Retrieving Items 234
Changing or Retrieving the Selection. 235
Using Large ListSo 235
Setting the Number of Visible [tems. 235
Localizing Combo BOXESo e 235
Event Handling and Callbacks. e 235
Using llvDateField 236
Formatting @ Date 236
Setting and Retrievinga Date Value 237

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 9

10

Year 2000 Management.o e 237

UsSiNg IIVErame e 238
Associating a MnemonicwithaFrame 238
Using llvMessagelabel 238
Associating a Bitmap with a Message Label 239
Making the Message Label Opaque e 240
Laying Outthe Message Label i e e 240
Localizing a Message Label. e 241
AsSSOCIating @ MNEMONICttt 241
Using IIVNOtEDOOKo 241
Customizing Notebook Tabs 241
Handling NotebooK Pagesot e e 243
Event Handling and Callbacks. 246
Using llVNumberField e e 246
Selectingan Editing Mode e 247
Choosing @ FOrMaL.o e 247
Defininga Range of Values 248
Setting and Retrieving a Value. 248
Specifying the Thousand Separator.t i e e 248
Specifying the Decimal Point Character. i 249
Event Handling and Callbacks. e 249
Using IVOPLIONMENUo e s 249
Setting and Retrieving Items 250
Changing and Retrieving the Selected Item. i 250
Localizing Option MENUSt e e e 250
Event Handling and Callbacks. 250
Using llvPasswordTextField e e 250
UsSiNg IIVSCrollBar 251
Setting the Scrollbar Values. 251
Setting the Scrollbar Orientation 251
Event Handling and Callbacks. 252

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Using IIVSHAer ... e 252

Setting the Slider Values e 253
Setting the Slider Orientation. 253
Setting the Thumb Orientation. e e 253
Event Handling and Callbacks 254
UsSiNg IIVSPINBOX . ..ot 254
Adding and Removing Fields to a Spin BOX. oot 255
Working with Text Fields e e e 256
Working with Numeric Fields e e 256
Event Handling and Callbacks 257
UsiNg IIVSEringLiSto 257
Manipulating String LiSt ltemMS e 257
Customizing the Appearance of String ListIltems i, 258
Displaying TOOIIPS.o 259
Localizing String List temMS 260
Handling Events and Callbacks 260
USING VT Xt o e e 261
Setting and Retrieving TeXtot e 262
Event Handling.o 262
Using IvVTextRield e e e e 263
AlIgNING TeXE . . e 264
Setting and Retrieving TexXt o e 264
Localizinga Text Field 264
Limiting the Number of Characters s 264
Event Handling and Callbacks. e 265
Keyboard ShortCUts e 266
Using IvToggle . ..o 266
Changing the State and Color ofa Toggle Button 267
Toggle and Radio Button Styles. 267
Displaying a Bitmap ona Toggle Button 268
Aligning and Positioningthe Label. 268

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 11

Chapter 12

12

Changing the Size of the State Marker et 268

Localizing a Toggle Button. 268
Associating a Mnemonic witha Toggle Button 268
Handling Events and Callbacks 269
Grouping Toggle Buttons in a Selector e 269
Using lIVTreeGadgetottt e e 270
Changing the Tree Hierarchy. i e e e i 271
Navigating Through a Tree Hierarchy e 272
Changing the Characteristicof anltem i 272
Expanding and Collapsinga Gadget ltem e 272
Changing the Look of the Tree Gadget Hierarchy 273
Event Handling and Callbacks 274
Gadget ItemS . .. 277
Introducing Gadget ltems e 277
Using Gadget ltems 278
Creating a Gadget [tem 279
Setting @ Label.o 279
Setting @ PiCtUre.o e 280
Specifying the Layout of a Gadget Item. 280
Nonsensitive Gadget ltemsS 281
DYNAMIC TYPES . o . ittt et 281
Using Palettes with Gadget ltems i e e e 282
Drawing a Gadget ltem 282
Gadget Item Holderso 282
Gadget [tem Features 283
Finding Gadget tems. 283
Redrawing Gadget tems e e 283
Creating Gadget HemMS. e e 284
Editing Gadget [temso e 284
Dragging and Dropping Gadget Items 285
List Gadget ltem Holders. 286

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Chapter 13

Chapter 14

Modifying @ List e e 286

ACCESSING HBMS . . . oo e 287
SOrtiNg @ LIStot 288
Menus, Menu Bars,and Toolbars i 289
Introducing Menus, Menu Bars, and Toolbars 289
Menus and Menu IteMS 290
Using IIVADSIraCtMENUo 290
Using IVMENUIEMo e e 291
POP-UD MENUS . 293
Aligning Item Labels ina Pop-Up MenU i e 294
Using Tear-Off MENUS oo e e 295
Using the Open Menu Callback s 295
Using Checked Menu ItemsS.ot 295
Using Stand-alone MENUSttt e 296
Using Tooltips ina Pop-Up MeNU e 296
Menu Bars and ToOoIbars 297
Using IIVADStractBar. 297
Using IlvMenuBar and IIVTOOIBar. o 299
MaEIICES . . .ot 301
INtroducing MatriCes ot 301
Using lIVADStractMatrixX.o 302
Subclassing IVAbstractMatrix 302
Drawing Items Over Multiple Cells. e 303
Setting Fixed Rows and ColumNS 303
Handling EVENTS. 304
USING IVMALIIX .« o e e e e e e e e e 304
Handling Columns and ROWS. it e e e e e e 305
Handling Matrix [tems e 306
Handling EVeNtS. e e 311
Using Gadget Itemsin a MatriX 314

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 13

Chapter 15

Chapter 16

14

Using IIVSheet e 315

Using llvHierarchicalSheet e e e 316
Changing the Tree Hierarchy. e e e i 316
Navigating through a Tree Hierarchy s 317
Changing the Characteristicof a Tree ltem e 317
Expanding and Collapsing a Gadget ltem 317
Changing the Look of the Tree Gadget Hierarchy 317
Event Handling and Callbacks. 318
PaNeS . . . 319
INtroducCing Panes e 319
Creating Paneso 322
Creating a Graphic Pane 322
Creating @a View Pane 322
Showing or Hiding a Pane e 323
Adding Panes to Paned Containers.ttt i 323
Creating aPaned Container.ttt e e e e e e 323
Modifying the Layout of a Paned Container.t 324
Retrieving Panes 324
Encapsulating a Paned Containerina View Pane. 324
RESIZING Panes. 325
Setting the Resize Mode and the Minimum SizeofaPane........................... 325
Resizing Panes With Sliders e 326
Docking Panes and Containers.t 329
Introducing Docking Panes and Dockable Containers 330
Creating Docking Panes 332
Creating Orthogonal Dockable Containers 334
Controlling Docking Operations.ot e 337
Connecting an Instance of the llvDockable ClasstoaPane.......................... 337
Docking and Undockinga Pane. i e 337
Filtering Docking Operationsottt e e 338

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Chapter 17

Chapter 18

Using DOCKING Bars.o e e 338

Using the llvAbstractBarPane Class e e 339
Customizing DOCKING Bars.ot e 340
Building a Standard Application With Docking Panes. 341
Defining a Standard Layout 341
Using the llvDockableMainWindow Classt e 344
VieW Frames e 349
Introducing View Frames e 349
Creating a Desktop with View Frames e 350
Creating @ DesKIOP v ot 350
Creating View Frameso 351
Managing View Frames 351
Creating @ Client VIeWo 352
Changingthe Title Bar. e e e e 352
Changing the View Frame Menu i e e e e e 352
Minimizing, Maximizing, and Restoring View Frames 353
Normal View Frameso 354
Minimized View Frames. 354
Maximized VIEW Frames 355
CloSINg VieW Framest e e e e e e e 355
Changing the Current View Frame. e e e 356
Customizing the Lookand Feel. i 357
Understanding the Architecture. i i 357
lIVLoOKFeelHandler 358
lIVObjectLFHaNdIEr 358
Class DIagramottt 359
Making a User-Defined Component Look-and-Feel Dependant 360
Creating @ New COMPONENT.t vttt ettt e e e e 361
Defining the Object Look-and-Feel Handler APl 361
Subclassing the Object Look-and-Feel Handler. 362

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 15

Appendix A

16

Installing the Object Look-and-Feel Handlers 363

Changing the Look and Feel of an Existing Component 363
Subclassing the Component Object Look-and-FeelHandler. 363
Replacing an Object Look-and-Feel Handler. i, 364
Creating a New Look-and-Feel Handler......... 365
Registering a New Look-and-Feel Handler i, 365
Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler 366
Editing States 367
Creating a Simple Application 367
Creating the First Panel e e e e 368
Creating the Second Panel 369
States Panels. 371
Editing the Show State 372
Chaining Statesot 374
Changing the Label and the Callback of the Show Button. 376
Creating a Substate:the Edit State i e 377
The State File. 381
... 383

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

About This Manual

This User’s Manual explains how to use IBM® ILOG® Views Controls. It explains three of
the packages that make up IBM ILOG Views Controls: IBM ILOG Views Studio,
IBM ILOG Views Gadgets, and IBM ILOG Views Application Framework.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization
This User’s Manual explains how to use the Gadgets package of IBM® ILOG® Views
Controls. It contains two separate parts and one Appendix:

Part |, Creating GUI Applicationswith IBM ILOG Views Studio describes how to use
IBM ILOG Views Studio with the Gadgets extension installed. It contains the following
chapters:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 17

® 6 6 6 6 o o

Chapter 1, Introducing the Gadgets Extension of IBM ILOG Views Sudio
Chapter 2, Editing Gadget Panels

Chapter 3, Editing Applications

Chapter 4, Using the Generated Code

Chapter 5, Customizing the Gadgets Extension of IBM ILOG Views Studio
Chapter 6, Extending IBM ILOG Views Sudio

Chapter 7, Using Inspector Classes

Part 11, IBM ILOG Views Gadgets provides information for devel oping applications that
incorporate IBM ILOG Views Gadgets. It contains the following chapters:

*
*
*
*
*
*
*
*
*
*

4

Chapter 8, Introducing IBM ILOG Views Gadgets
Chapter 9, Understanding Gadgets

Chapter 10, Dialogs

Chapter 11, Using Common Gadgets

Chapter 12, Gadget Items

Chapter 13, Menus, Menu Bars, and Toolbars
Chapter 14, Matrices

Chapter 15, Panes

Chapter 16, Docking Panes and Containers
Chapter 17, View Frames

Chapter 18, Customizing the Look and Feel

Appendix A, Editing States provides an example of how to use the state mechanism of
IBM ILOG Views Studio.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

*
L 4
L 4

18 IBM

Code extracts and file names are written in courier typeface.
Entries to be made by the user are writtenin courier.

Some words appear in italics when seen for the first time.

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

IBM

Naming Conventions
Throughout this manual, the following naming conventions apply to the API.
4 The names of types, classes, functions, and macros defined in the library begin with 11v.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class I1vDrawingView;

¢ Thenames of virtua and regular methods begin with alowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 19

20

IBM

ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

Part |

Creating? GUI AC\P(EIic_:ations with
BM IL Views Studio

This part describes how to use IBM® ILOG® Views Studio with the Gadgets extension
installed.

Introducing the Gadgets Extension of
IBM ILOG Views Studio

This chapter introduces you to the Gadgets extension of IBM® ILOG® Views Studio. You
can find information on the following topics:

& Loading the GUI Application and GUI Generation Plug-In
The Main Window

The Palettes Panel

Gadgets Extension Commands

Gadgets Extension Panels

* 6 o o

Note: The chapters concerning the use of the Gadgets extension of IBM ILOG Views Sudio
assume that you are familiar with the information in the IBM ILOG Views Sudio User’s
Manual.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 23

Loading the GUI Application and GUI Generation Plug-In

Once the Gadgets package of IBM® ILOG® Views has been installed, you can use the GUI
Application plug-in and the GUI Generation plug-in with IBM® ILOG® Views Studio.

Launch ivfstudio withthe -selectPlugIns command line parameter. When the
IBM ILOG Views Studio Plug-1ns dialog box appears, select the GUI Application
(smguiapp) and the GUI Generation (smguigen) check box and click OK.

You can a so execute the SelectPlugins command from the Studio Main window to display
the IBM ILOG Views Studio Plug-Ins dialog box. Then select the GUI Application
(smguiapp) and the GUI Generation (smguigen) check box and click OK.

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
asfollows:

24 IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Main Window

Wenu Bar | Fil= Edit View Draw Tools Application Window Help
Action Bar L EET a4t EER2 K EBELAFE Ja@ AR
sy [|0 D (@R A8 0
odes
. Application - testapp.iva
'_EE'I Gadgets - unnamed
Palettes Panel
Miscellaneous
= Miew Rectangles
Graphics
] Gauges
‘ More
~
Mezsagel abel]
apen
| Text Field | | Workspace
Buffer Wincow
| 5CComhbo |
| Maonday E |
item1 Teut
item2 multi lines
itemn3
[=) First R oot
Leaf 1
i Leaf 2 L
- Second Foot
Tab1|Tab2 2
- -
Inspector Area |..|..&\| v||—| v|"‘-]H"“
b3 ¥ w h Right Bakkam Mame Callback 15
I | | I . | I I |0
Message drea —f- | Gadgets | Selection

Figurel.1 IBM ILOG Views Studio Main Window with Gadgets Extension at Sart-up Time

The Main window appears much as it does when only the Foundations package is installed.
However, you will notice that with Gadgets package you have access to additional buffer

windows, additional palettesin the Palettes panel, and additional items in the menu bar and
toolbars of the interface.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

IBM ILOG VIEwWS GADGETS V5.3

USER'S MANUAL 25

With the Gadgets extension of IBM® ILOG® Views Studio, you can edit the following
types of buffers:

& Gadgets
& 2D Graphics
& Application

An empty Gadgets buffer and an empty Application buffer are displayed by default when
you launch IBM ILOG Views Studio.

When creating a new buffer window, you must specify its type (Gadgets, 2D Graphics, or
Application) using the File > New menu selection.

You will notice the following differences as you switch between the buffers currently loaded
in the Main window:

& Each buffer type hasits own set of editing modes. When you change the current buffer,
the editing modes available as icons in the toolbar change accordingly.

& The behavior of certain commands varies depending on the current buffer. For example,
the Test command tests just the panel if you are editing a Gadgets buffer, but it tests all
the panel instances in an application if you are editing an Application buffer.

The Gadgets Buffer Window

The Gadgets buffer window is used to edit panel classes. It lets you edit the contents of an
IlvGadgetContainer oObject. Gadgets can be dragged from the Pal ettes panel to the active
Gadgets buffer window.

To open a new Gadgets buffer window:
1. Choose New from the File menu.

2. Then choose Gadgets from the submenu that appears.

When you open a . i 1v file that was generated by an 11vGadgetContainer, a Gadgets
buffer window is automatically opened.

For more information on editing gadgets buffer windows, see Chapter 2, Editing Gadget
Panels.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundations package. It is still available with
the Gadgets extension of IBM ILOG Views Studio. It allows you to edit the contents of an
IlvManager OF an I1lvContainer. It Usesan I1vManager to load, edit, and save objects.

To create anew 2D Graphics buffer window:
1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

IBM

The Main Window

To open this window, you can also execute the NewGraphicBuf fer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an T11vManager, a 2D Graphics buffer
window is automatically opened.

The Application Buffer Window

The Application buffer lets you edit the contents and properties of an T1vapplication.

To create a new Application buffer window:
1. Choose New from the File menu.
2. Then choose Application from the submenu that appears.

You can also execute the NewApplication command from the Commands panel, which
you can display by choosing Commands from the Tools menu.

When you open a . iva file, the Application buffer discardsits contents and edits the newly
opened application.

Editing an Application

In1BM ILOG Views Studio, an application can be edited in the same way as other types of

buffers. Only one application may be open at atime. Opening a new application
automatically closes any open application.

When you launch IBM ILOG Views Studio, a default Application buffer window, called
testapp, is opened.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 27

Palettes
Clazs Panel

Application
Buffer
wiincloey

28 IBM

Fil= Edit Wiew Draw Tools Application Window Help

BAS 6P+ ERRS W EOAAE 0@ TEER
I EIE R

Pa - pa [App d 0 = app d a
[l e 7 |)
Palettes L]
o]
v
(0 [>
£ R R LR R RN R
~ |
Messagel abel :|
e O
[Text Field |
|SEEOmb0 v|
~|
[FAEERy V|| =— R i

| Application | Selection

Figure1.2 The Application Buffer Window

You edit an application by adding pand classinstances viathe Panel Class palette. The Panel
Class palette is a palette that you use to create, inspect, or remove panel classes. The panel

classes that are available in the Panel Class palette may be dragged directly into the
Application buffer window to create panel instances.

For more information on how to edit applications, see Chapter 3, Editing Applications.

The Menu Bar

When the Gadgets packageisinstalled, additional commands are available through the menu

bar in the Main window. Most notably, you will notice the addition of the Application menu,
which provides access to the commands for generating the C++ code of your application.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

IBM

The Main Window

File Edit Yew Draw Tools | Application |Windmw Help

FEEIY I
kD E 2E|=E

B2 W HERAZE 1@ AR
B & [H

Application Menu

Figure1.3 IBM ILOG Views Studio Gadgets Extension Menu Bar

The following tables summarize the additional commands that you can execute through the
menu bar. For details on these commands, see Gadgets Extension Commands on page 38,
where they are listed in alphabetical order.

File Menu Commands

Menu Item Command

New > Gadgets NewGadgetBuffer

New > Application NewApplication

New > Make Default Application | MakeDefaultApplication

Application Menu Commands

Menu Item Command

Test Panel TestPanel

New Panel Class NewPanelClass
Panel Class Palette ShowClassPalette

Panel Class Inspector

ShowPanelClassinspector

Generate Panel Subclass

GeneratePanelSubClass

Add Panel Instance

AddPanel

Panel Inspector

InspectPanel

Application Inspector

ShowApplicationinspector

Test Application

TestApplication

Generate

Generate

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 29

Menu ltem Command

Generate All GenerateAll
Generate Application GenerateApplication
Generate Panel Class GeneratePanelClass
Generate Make File GenerateMakeFile

Window Menu Commands

Menu ltem Command

Edit Application EditApplication

The Action Toolbar

The Action toolbar contains additional icons for you to quickly access the commands of the
Gadgets extension.

ERE e fEBERS H EERKIE 16 |TOAER

Gadgets Extension lcons

Figure1.4 IBM ILOG Views Studio Gadgets Extension Action Toolbar

- Test Teststhe application if the current buffer is the application or tests the panel
ﬁ dataif the current buffer is a panel buffer. See TestDocument on page 47.

- Panel Class Palette Shows or hides the Panel Class Paette in the Main window.
E See ShowClassPal ette on page 47.

= Edit Application Make the application buffer the active buffer and shows the
3 Panel Class Palette. See EditApplication on page 39.

= Application Inspector Opensthe Application Inspector panel. See
% ShowApplicationlnspector on page 46.

The Editing Modes Toolbar

The editing modes available for your use depend on the type of buffer you are editing. You
will see different iconsin displayed in the toolbar for each of the buffers avail able with the
Gadgets extension.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Main Window

Gadgets Buffer Editing Modes

The Editing M odes toolbar appears as follows when the Gadgets buffer is the active window
in the workspace.

kRO PE BEE&HE
Figure 1.5 Gadgets Buffer Editing Modes Toolbar
The Editing Modes toolbar of the Gadgets buffer contains the following icons:

Selection Mode Use the Selection mode for selecting, creating, deleting, moving,
resizing and performing other common editing operations. This mode is selected
when IBM ILOG Views Studio is launched.

kg

PolySelection Mode Use this mode to move or rotate the different points of your
IlvPolyline, I1vPolygon, IlvSpline, IlvFilledSpline, and
TI1vClosedSpline objects. To complete the operation, double-click the
workspace or select another mode.

Label Mode Usethis modeto create and edit an 11vLabel object. After selecting
fa thisinteractor, click the workspace to indicate the [abel position and type the string
you want. Press Enter to compl ete the operation.

To edit an existing T1vLabel object, select this mode and click the T1vLabel
object you want to edit.

Label List Mode Use this mode to create and edit a multiline label

i (11vListLabel) oObject. After selecting thisinteractor, click the workspace to
indicate the label position and type the string you want. You can go to anew line by
pressing Enter. Double-click the workspace (outside this object) to complete the
operation.

To edit an existing T1vListLabel, select thismode and click the T1vListLabel
you want to edit.

. Rotate Mode Use this mode to rotate an object in the buffer window. First, select
D the object you want to rotate in the buffer window. Click the Rotate Mode iconin
the Editing M odes toolbar. Then click the left mouse button in the buffer window.
An arrow appears in the buffer window. Drag the mouse to indicate the angle of
rotation. When you release the mouse button, the object will rotate the specified
amount.

El Active Mode Use the Active mode to test the behavior of your objects and edit

= some of their properties. In the Active mode, the objectsin the workspace can
respond to mouse and keyboard events. You can thus change text field labels, toggle

the state of atoggle button, and so on.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 31

Focus Mode Use this mode to specify the path of the keyboard focusin your
= panel. See Setting the Keyboard Focus in Panels on page 59.

E Attachments Mode Use this mode to set how the position and dimensions of the
objects in the panel change when the panel isresized. See Using the Attachments
Mode on page 60.

Menu Mode Use this mode to attach pop-up menus to menu bars or other pop-up
d menus. See Attaching Pop-up Menus to the Menu Bar on page 70.

Matrix Mode Use this mode to change the matrix items that appear in a matrix
i gadget. See Using Matrices on page 74.

i Spin Box Mode Use this mode to specify the items that appear in a spin box
_e object. See Editing Spin Boxes on page 77.

Application Buffer Editing Modes

The Editing Modes toolbar appears as follows when the Application buffer is the active
window in the workspace.

Figure1.6 Application Buffer Editing Modes Toolbar
The Editing Modes toolbar of the Gadgets buffer contains the following icons:

Generate Use this mode to generate the application and modified panels.

|Cx+

Graphics Buffer Editing Modes

When you use a Graphics buffer, you have access to the same editing modes that you use
with the Foundation Studio.

A 2E BN R

Figure 1.7 Graphics Buffer Editing Modes Toolbar

These editing modes are described in Chapter 3, “The IBM ILOG Views Sudio Interface,
of the IBM ILOG Views Sudio User’s Manual.

The Palettes Panel

When you use the Gadgets extension of IBM® ILOG® Views Studio, you have access to
additional predefined gadget objects through the Palettes panel. You will use the gadgetsin

32 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

The Palettes Panel

the Palettes panel just in the same as you do with the Foundations package of
IBM ILOG Views Studio. You create the objects in the workspace either using the drag-and-
drop operation or the creation mode operation.

You will notice the 5 additional palettes in the upper pane of the Palettes panel that are
provided with the Gadgets extension. Click the appropriate palette in the upper pane to
access the various gadget objects in the lower pane.

Palettes =

Gadgets Package _ |
Palettes

= Matrix
_H Miscellaneous
2 view Rectangles
=9 Graphics

H Icons

K| Gauges

’ More

M ezzagel abel

3 osse

Text Field
SCCombo v

bonday

4%

iterm1 Test
item2 multi lines
item3

=l First Root
Leaf 1
Leaf 2
Second Root

Tab1 |Tab 2

Frame

Figure1.8 IBM ILOG Views Sudio Gadgets Extension Palettes Panel

The following sections describe the objects provided with the Gadgets extension. For a

description of the objects provided with the Foundation package, see the IBM ILOG Views
Sudio User’s Manual.

Gadgets Palette

The Gadgets palette contains the following objects that can be created using the normal
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 33

Message Label

Creates an I1vMessageLabel
object.

Button

Button

Creates an I1vButton object.

Toggle

[] Toaggle

Creates an I1vToggle object.

Text Field

Text Field

Creates an I1vTextField
object.

SC Combo Box

SCCombo

=
(i}
w“a
w“
[aT}
[Im]
m
ol
[ul]
o
a

Creates an
IlvScrolledComboBox object.

Spin Box

b onday EL

Creates an I1vSpinBox oObject.

String List

Creates an T1vStringList
object.

Multiline Text

Creates an I1vText object.

Tree

=) First Roat

Creates an I1vTreeGadget
object.

34 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

The Palettes Panel

Type Icon Description
Notebook Creates an I1vNotebook object.
Tab1 |Tab 2
Frame Creates an I1vFrame oObject.
Frame
Relief Line Creates an I1vReliefLine
object.

Menus Palette

The Menus palette contains the following objects that can be created using the normal
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

Type Icon Description

Menu Bar Creates an I1vMenuBar
File Edit Help object.

Pop-up Menu Creates an I1vPopupMenu

object. If you want to attach a
pop-up menu to a menu bar or
another pop-up menu, you must
use the Menu editing mode.
Click the Menu icon in the
Editing Modes toolbar.

Toolbar Creates an I1vToolBar

;EI’/ @? s object.

Matrix Palette

The Matrix palette contains the following objects that can be created using the normal
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 35

Type Icon Description
Matrix Creates an I1vMatrix object.
Sheet Creates an I1vSheet object.
Y
w
£
Hierarchical Creates an
Sheet IlvHierarchicalSheet
M ame .
object.
= Firgt Root
Leaf 1
Leaf 2
Second Boat b
£

Miscellaneous Palette

The Miscellaneous palette contains the following objects that can be created using the
normal creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

36 IBM ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL

The Palettes Panel

Slider

Creates an I1vsSlider object.

014012000

object.

Password Field

™ .

9 You can choose either a
horizontal or a vertical
orientation for the slider.

Label Creates an I1vLabel object.
Label
Multilines Label Creates an IlvListLabel
Mulki lines object.
label
Scroll bar Creates an IlvScrollBar
Iél E'] B object. You can choose either a
- horizontal or a vertical
orientation for the scroll bar.
Option menu Creates an I1vOptionMenu
Combo Box Creates an I1vComboBox
object.
Number Field Creates an I1vNumberField
1234543.62 | | object.
Date Field _ Creates an IlvDateField

Creates an
IlvPasswordTextField
object.

Colored Toggle

[] colared

Creates an
IlvColoredToggle oObject.

IBM

ILOG VIEwWS GADGETS V5.3 —

USER’'S MANUAL 37

Type

Icon

Description

Arrow Button

Creates an I1vArrowButton
object.

Gadget

Creates an I1vGadget object.

View Rectangles Palette

The View Rectangles pal ette contains the following objects that can be created using the
normal creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

Type

Icon

Description

Gadget Container

|G adgetContainerR ectangle

Creates an
IlvGadgetContainerRectangle
object.

SC Gadget Container

|l+5CEadgetContainerR ectangle

Creates an
IlvSCGadgetContainerRectangle
object.

SC Manager

|l+SCh anagerR ectangle

Createsan I1vSCManagerRectangle
object.

Gadgets Extension Commands

38

This section presents an a phabetical listing of the additional predefined commands that are
available in the Gadgets extension of IBM® ILOG® Views Studio. (All of the

IBM ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL

Gadgets Extension Commands

IBM ILOG Views Studio Foundation commands are available as well.) For each command,
itindicatesits label, the category to which it belongs, how to accessit if it is accessible other
than through the Commands panel, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commandsicon [z in the Action toolbar.

AddPanel
Label Add Panel
Category application
Action Creates a panel instance of the selected panel class and adds it to the
application.

EditApplication

Label Edit Application

Path Main window: Tools menu and Edit application icon in the toolbar
Category application

Action Selects the application buffer and opens the Class Palette.

Generate

Label Generate

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the

application and its modified panel classes. If the application file name is the
default name, a File Selector panel is opened to let you enter a new file
name. If the Make toggle button in the Application Inspector is turned on, the
make file is also generated.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 39

40

GenerateAll

Label Generate All

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the

application and all its panel classes. If the application file name is the default
name, a File Selector panel is opened to let you enter a new file name. If the
Make toggle button in the Application Files inspector is turned on, the make
file is generated too.

GenerateApplication

Label Generate Application

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the

application. If the application file name is the default name, a File Selector
panel is opened to let you enter a new file name. If the Make toggle button in
the Application Inspector is turned on, the make file is also generated.

GenerateMakeFile

IBM

Label Generate Make File
Path Main window: Application menu
Category application
Action Generates the application make file, even if the Make toggle button in the
Application Inspector is not turned on.
ILOG VIEwWS GADGETS V5.3 — USER'S MANUAL

Gadgets Extension Commands

GeneratePanelClass

Label Generate Panel Class

Path Main window: Application menu

Category application

Action Generates the C++ code for the currently selected panel class. To select a
panel class, use the Classes palette.

GeneratePanelSubClass

Label Generate Panel Sub Class

Path Main window: Application menu

Category application

Action Generates a subclass skeleton for the current panel class. This command
activates a dialog box which lets you enter the class name, the file base
name and the directories where the header and source files will be
generated.

InspectPanel

Label Inspect Panel Class

Path Panel Class palette: toolbar

Category application, panel

Action Opens the Panel Class Inspector that lets you inspect the properties of the
selected panel class.

KillTestPanels

Label

Kill Test Panels

IBM

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 41

42

Category

application

Action

Kills all the panels that are created for testing the application or the current
buffer.

MakeDefaultApplication

Label Make Default Application

Path Main window: File menu > New

Category application

Action If the current buffer is a panel buffer, this command creates an application,
creates a panel class for the current buffer, and creates a panel instance of
that panel class.

NewApplication

Label Application

Path Main window: File menu > New

Category application

Action Discards the current application and edits a new one. Only one application
can be edited at a time.

NewGadgetBuffer

Label Gadgets

Path Main window: File menu > New

Category buffer

Action Creates a new gadget buffer. This buffer becomes the current buffer.

IBM ILOG VI

EWS GADGETS V5.3 — USER’'S MANUAL

Gadgets Extension Commands

NewPanelClass

Label New Panel Class

Path Panel Class palette

Category application

Action Creates a new panel class for the current buffer if this buffer is designed for a
container and if it is not already part of the application.

OpenApplication

Label Open...

Path Main window: File menu and Open icon in the toolbar

Category application

Action Discards the current application and loads an application previously saved by
IBM ILOG Views Studio. This command opens a File Selector panel that lets
you choose an application description file.

RemoveAllAttachments

Label Remove All Attachments

Category attachments

Action Removes all the attachments for the selected object. This command only
works if the current mode is the Attachments mode.

RemoveAttachments

Label Remove Attachments

Category attachments

Action Removes all the attachments of the current buffer. This command only works
if the current mode is the Attachments mode.

IBM

ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL 43

IBM

RemovePanel

Label Remove Panel

Path Panel instance window in the Application buffer window: the close (X) button
or the menu.

Category application

Action Removes the selected panel instance from the application.

RemovePanelClass

Label Remove Panel Class

Path Panel Class palette

Category application

Action Removes the selected panel class and all its panel instances.

SaveApplication

Label Save

Path Main window: File menu and Save icon in the toolbar

Category application

Action Saves the description of the current application to its data file. If the

application’s name is the default name, this command executes the
SaveApplicationAs command in order to let you enter an application file
name. Execute the SsaveApplicationAs command for saving a new
application for the first time or changing its file name.

SaveApplicationAs

Label

Save As...

Path

Main window: File menu and Save icon in the toolbar

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Gadgets Extension Commands

Category

application

Action

Opens a File Selector panel that lets you enter a new file name for your
application and save its description to that file. This command lets you
change your application’s file base name (therefore its generated C++ files)
as well as its location.

SelectAttachmentsMode

Label Attachments

Path Main window: Editing Modes toolbar (when editing Gadgets buffers)
Category mode, gadgets

State True if this mode is selected.

Action Selects the Attachments mode. See Using the Attachments Mode on

page 60.

SelectFocusMode

Label Focus

Path Main window: Editing Modes toolbar (when editing Gadgets buffers)
Category mode, gadgets

State True if this mode is selected.

Action Selects the Focus mode. See Setting the Keyboard Focus in Panels on

page 59.

SelectMatrixMode

Label Matrix
Path Main window: Editing Modes toolbar (when editing Gadgets buffers)
Category mode

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 45

State

True if this mode is selected.

Action

Selects the Matrix mode. See Using Matrices on page 74.

SelectMenuMode

Label Menu

Path Main window: Editing Modes toolbar (when editing Gadgets buffers)
Category mode

State True if this mode is selected.

Action Selects the Menu mode. See Editing Menus on page 65.

ShowAllTestPanels

Label Show All Test Panels
Category application, panel
Action Shows all the current panels in the application. Unlike the

TestApplication command that shows only visible panels, this command
shows every panel.

ShowApplicationinspector

Label Inspect Application

Path Main window: Tools menu and Inspect Application in the toolbar
Category application, panel

Action Opens the Application Inspector panel.

IBM

ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL

Gadgets Extension Commands

ShowClassPalette

Label Classes

Path Main window: Classes icon in the toolbar

Category application, panel

Action Opens the Class Palette that lets you create, inspect or remove panel classes
and creates panel instances.

ShowPanelClassInspector

Label Inspect Panel Class

Path Panel Class palette: toolbar

Category application, panel

Action Shows or hides the Panel Class Inspector of the selected object.

TestApplication

Label Test

Path Main window: toolbar

Category application

State True if the application is being tested.

Action If the application is not being tested, opens the panels that are visible and
lets you test them until you execute this command again. If the application is
being tested, this command kills the test panels and stops testing.

TestDocument

Label Test Application

Path Main window: toolbar

IBM

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 47

Category application

Action Tests the application if the current buffer is the application or tests the panel
data if the current buffer is a panel buffer.

TestPanel
Label Test
Path Main window: toolbar

Category buffer

Action Tests the current buffer.

Gadgets Extension Panels
The Gadgets extension provides several additional panels and dialog boxes for your use
when creating your own panels and applications.
¢ Application Inspector
& The Panel Class Inspector
& The Pandl Instance Inspector

Application Inspector

The Application inspector is used to edit the settings of the generated application. It letsyou
specify the location of the C++ files, the class declaration, and several options for the
generated code. This panel also lets you insert code in the generated application classfiles
(see The Header and Source Pages on page 92).

48 IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Gadgets Extension Panels

1Y Application: Testapp |Z| |E| fgl

General Options | Header | Source || Script

Class | Testapp |
Base Class | IlvApplication |
File Mame | testapp |

Directories

Data |

Header |

Source |

|
|
Header File Scope |
|
|

Objects |

Syskem | MsY? w |

[Help] [Reset] [Apply] [Close

Figure1.9 Application Inspector
Access to Panel
The panel is accessed by:

& Clicking the Application Inspector icon in the Action toolbar.

BRO CA DR dEDAEE e T@EER |

Application
Inspector lcon

or
4 Choosing Application Inspector from the Application menu.
or

4 Choosing Commands from the Tools menu, selecting the
ShowApplicationInspector command inthelist, and clicking Apply.

Application Inspector Elements

The Application inspector has five notebook pages. General, Options, Header, Source, and
Script; and four buttons: Apply, Reset, Close, and Help. For a compl ete description of each
notebook page and the fields contained on the page, see The Application Inspector on

page 88.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 49

The Panel Class Inspector

The Panel Classinspector is used to inspect the directories and options for generating the
panel class. This panel can also be used to insert your own code in the generated panel class
files (see The Header and Source Pages on page 92).

¥ Panel Class: Class1

m Options | Header | Source
Class |Classl |
Base Class | IlvGadgetContainer w |
File: Mamne | Class1 |
Directories
Data | E:ltemp) |
Header | |
Source | |
[Help] [Reset] [Apply] [Close

Figure1.10 Panel Class Inspector

Access to Panel
The panel is accessed by:
¢ Clicking the Panel Class Inspector icon in the Panel Class palette.

Panel Class Inspector loon

Panel Class Palette

| [&] &

ﬂ] testapp
Claz=

or

¢ Choosing Panel Class Inspector from the Application menu.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Gadgets Extension Panels

or

& Choosing Commands from the Tools menu, selecting the showPanelClassInspector
command in thelist, and clicking Apply.

Panel Class Inspector Elements

The Panel Class Inspector has four notebook pages. General, Options, Header, and Source;
and four buttons: Apply, Reset, Close, and Help. For a complete description of each
notebook page and the fields contained on the page, see The Panel Class Inspector on

page 97.

The Panel Instance Inspector
The Panel Instance inspector is used to edit the properties of the selected panel instance.

1¥ Panel Instance

General |Properties | Sizes | Hierarchy
Mame Class1
Class Class1
User Class
Title Class1
Transient A
Destroy Callback Mone w
Bitmap A
Wisible
[] Accelerators
[] bouble Buffering
[Help] [Reset] [Test] [Apply] [Close

Figure1.11 Panel Instance Inspector

Access to Panel
The panel is accessed by:

& Double-clicking the title bar of the panel instance in the Application buffer window.
or

& Choosing Panel Inspector from the panel pop-up menu accessible by clicking the box
located in the top-left corner of the panel instance.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 51

52

IBM

m Application - testapp.iva *

Restare
Minirize

Load Contents

Remave Panel

| £

or

& Choosing Panel Inspector from the Application menu.
or

& Choosing Commands from the Tools menu, selecting the InspectPanel command in
thelist, and clicking Apply.

Panel Class Instance Inspector Elements

The Panel Class Inspector has four notebook pages: General, Properties, Sizes, and
Hierarchy; and five buttons: Apply, Reset, Test, Close, and Help. For a complete description
of each notebook page and the fields contained on the page, see Inspecting a Panel Instance
on page 103.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

IBM

Editing Gadget Panels

This chapter introduces you to the basic commands, panels, and modes that you can use to
create gadget panels.

You will find information on the following topics:
Creating a New Panel

Creating Gadget Objects

Inspecting an Object

Testing a Panel

Using Active Mode

Setting the Keyboard Focusin Panels
Using the Attachments Mode

Editing Menus

Using Matrices

Editing Spin Boxes

® 6 6 6 6 6 O 0 0 o

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 53

Creating a New Panel

When IBM® ILOG® Views Studio islaunched, an empty Gadgets buffer window is open,
which is ready to be edited. You will create your panel in this Gadgets buffer window. If
required, to create a new Gadgets buffer window:

1. Choose New from the File menu.
2. Then choose Gadgets in the submenu that appears.

The new Gadgets buffer window becomes the current window and can be edited.

Creating Gadget Objects

The Gadgets palette in the Palettes panel provides the various predefined gadget objects
from which you will create the objects for your panels. You can use either a drag-and-drop
operation or the creation mode feature.

Using the Drag-and-Drop Operation

When you use the drag-and-drop operation for creating your objects, the object that is added
to the buffer window is an exact copy of the object asit is found in the Palettes panel. The
object has the same shape and dimensions of the object in the Palettes panel.

To create an object using the drag-and-drop operation:

1. Inthe upper pane of the Palettes panel, click the item in the tree corresponding to the
type of gadget you want to create.

The related palette appears in the lower pane.
2. Click the gadget you are interested in and drag it to the Gadgets buffer window.

When you rel ease the mouse button, you are in Selection mode. The object remains
selected in the buffer window and you can modify it as required.

For example, to create atext field:

1. Inthe upper pane of the Palettes panel, click Gadgets in the tree.
2. Inthelower pane of the Palettes panel, click the Text Field gadget.
3. Drag it to the Gadgets buffer window.

54 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

IBM

Creating Gadget Objects

1V livstudio - testapp |;||E|fg|
File Edit Yiew Draw Tools Application Window Help

EE ad B2 @ E@OAJE 1d@ TR
(k& FP2@A @A Em®
-

Gadgets - unnamed *

=2 Matrix

"B Miscellaneous

2 view Rectangles
= 0} Graphics

H Icons

E Gauges

@ Hore : . S

essage e AT i
] T Has S i
[Test Fiskd | R S RS

| 5CCamba 1 Wl 55555E5E55ac 55 aa 555 a0ana0000a0a06 000008000600 0:

Using the Creation Mode

When you use the creation mode, you are essentially drawing the object in the buffer
window. You determine for yourself the size and shape of the object. Creation mode also
alows you to create multiple objects once you have selected the kind of object you want to
create in the Palettes panel.

To create an object using the creation mode;

1.

3.

In the upper pane of the Palettes panel, click the item in the tree corresponding to the
kind of object you want to create.

The related palette appears in the lower pane.

In the lower pane of the Palettes panel, click the object you are interested in. A bounding
box appears around the object to indicate that creation mode is active.

If you want to add only one object to the buffer window, click the object in the Palettes
window once. (This putsyou in transient creation mode. After you have drawn the object
in the buffer window, you will leave creation mode automatically.)

If you want to add multiple objects of the same kind, hold down the Shift key and click
the object in the Palettes panel. (This puts you in permanent creation mode. You will
remain in creation mode and you can draw as many objects asyou like. To leave creation
mode, you must click the Selection mode icon in the Editing Modes toolbar.)

Move the pointer to the buffer window.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 55

56

4.

Click in the buffer window where you want your object positioned and drag the mouse
until the object is the size and shape you want.

For example, to create a string list box:

1.
2.

IBM

In the upper pane of Palettes panel, click Gadgets in the tree.

In the lower pane of the Palettes pandl, click the T11vstringList icon once. Notice the
bounding box that appears around the T1vstringList iconindicating you arein
creation mode.

Click in the Gadgets window at the position where you want to start drawing the string
list box.

Drag the mouse until the string list box is the size and shape you want.

Asyou drag the mouse, you see abounding box that shows the shape and size of your
object.

Rel ease the mouse button. The string list box appears with the dimensions of the
bounding box you have just drawn.

¥ livstudio - testapp

File Edit Yiew Draw Tools Application Window Help

EEE e +tREERL7 HEBELAJE AE S SAER
SEMEDE EEBEE

B

= Matrix
CH Misclaneous | WF oI

E%}ViewRectangles

=4 Graphics | oo A | Y

o eons W L . oD ciccccacacacaacacac

B oGauges W L o ccccoccooonaaae s

@ tore S SEEEEE IS SRS R

Messagelabel WD DIT

[] Toogle Do Clliiiiiiiiiiiiiiiiiin

| Tent Field |

[5CCambo v B A x

| I onday E |

iteml ﬂxt S Y
item2 U INEE | —————————————————————
itemn3

When you release the mouse button, you automatically leave creation mode and are put
into Selection mode. Notice that the 11vstringList iconin the Palettes panel is no

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Inspecting an Object

longer selected and that the Selection modeicon | isselected in the Editing Modes
toolbar.

You can reshape, resize, move, or modify the box as you want.

Inspecting an Object

To inspect the properties specific to an object, double-click the object. You can also click the
Inspect icon in the Action toolbar of the Main window.

1V

e IWStU IO - teStapp

File Edit Wiew Draw Tools Application Window Help

EEER Y IR T AP IE I e EIETE =T
kA F2E EH 1 Es

Inspect lcon

Figure2.1 Inspect Icon in the Main Window Toolbar

If the object class has an associated inspector panel, you can use it to edit the specific
properties of the object class. The contents of the inspector depend on the related object
class.

If you click astring list gadget, the following inspector panel appears:

Ivstengist _________________________®
General |Specific Scrollbars | ltems | Callbacks

Mame | |
Tooltip | |
Thickness | : B
Layer | Layer 1 V|
Interactor | Gadget e |
State [active v
Transparent F

Focusable

Shaw frame

Cloze

Figure2.2 Sring List Inspector Panel (General Page)

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 57

To validate the changes made to the object properties, click Apply. To close the panel, click
Close.

Only one object can be inspected at atime. If you select another object of the same type
while thefirst is being inspected, the properties of the newly selected object appear in the
inspector panel. If another type of object is selected, its associated inspector replaces the one
that is displayed.

Testing a Panel

To test the behavior of a panel, click the Test icon in the Main window toolbar.

i

2o IWStUdi0 - testapp

File Edit %iew Draw Tools Application Window Help

EEA|ad+EER 2 @ EETE jg@@%’%
k2 E ?E'Hiﬁjﬁi

Test lcon

Figure2.3 Test Iconin the Main Window Toolbar

A panel representing the current buffer is displayed and ready to be tested. To exit the test
mode, click the sameicon again.

Using Active Mode

In the Active mode, the objects in the workspace can respond to mouse and keyboard events.
Thislets you test the behavior of your objects and edit some of their properties. You can, for
example, change text field labels and toggle the state of atoggle button.

To select the Active mode, click the Active icon in the Editing Modes tool bar:

i

2o IWStUdi0 - testapp

File Edit %iew Draw Tools Application Window Help

ERF e L BRRS JEELATE Jd@ OAFER
Hsninlr_f%ﬁ@@réﬁ'um:@

Active lcon

Figure2.4 Active Mode Icon

58 IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Setting the Keyboard Focus in Panels

Setting the Keyboard Focus in Panels

By default, the keyboard focusis determined by the object bounding box positions. This
default focus logically moves between objects from left to right, and from top to bottom.
Since this default path is not always suitable, IBM® ILOG® Views Studio provides you
with a Focus editing mode that |ets you draw the path of the keyboard focus in your panel.

To select the Focus mode, click the Focusicon in the Editing M odes toolbar:

[(=1[Eq

¥ ivstudio - testapp

File Edit Yiew Draw Tools Application Window Help

EEF e ECR2 HEELAJIE T8 TAER
“J“’IIEF@EE‘E'H&:H

B

Focus Mode lcon

Figure2.5 FocusMode Icon
The keyboard focus path is shown by a series of arrows:
'Y livstudio - testapp |Z||E|E|

File Edit View Draw Tools Application ‘Window Help

SRS a4t BE2S @ ElERYE =R I
kRO 2E|EE EEE

Gadgets - E:\temp’Testpanelily

Figure2.6 Focus Path

IBM ILOG VIEwWS GADGETS V5.3 — USER’S MANUAL 59

Next Focus Object

For each focusabl e object (graphic object that can receive the keyboard events), you can
specify its next focus object. To do o, drag aline from that object and rel ease the mouse
button when the lineis on the object you want to be the next focus object. This operation
only works for focusable objects.

First Focus Object

When the panel is focused for the first time, the first focus object is the one that takes the
keyboard focus. To designate the first focus object, drag aline from anywherein the
workspace (but not from an object). Release the mouse button when the lineisin the object
you choose as the first focus object. A filled circle is then drawn in the center of that object.
A gadget container can have only one first focus graphic.

Last Focus Object

To designate a last focus graphic, drag aline from that object and rel ease the mouse button
when the line is anywhere in the workspace (but not in an object). When the keyboard focus
chain leaves alast focus graphic of agadget container, it goes back to thefirst focus graphic.
However, if the gadget container islinked to another container, it givesthe keyboard focusto
that container instead. A gadget container can have more than one last focus graphic.

Using the Attachments Mode

60

IBM® ILOG® Views Studio provides an Attachments mode that you can use to set how the
position and dimensions of the objectsin the panel change when the panel is resized. To
activate this mode, click the Attachmentsicon in the Editing Modes toolbar:

hd

s iWstudio - testapp

File Edit View Draw Tools Application Window Help
EHS a4+ RS H EBEIE T8 TEER
kRO PE BETEEE

Attachments lcon

Figure2.7 Attachmentslcon
Setting attachments involves two steps:

& Setting the Guides
& Attaching Objects to Guides

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Using the Attachments Mode

Setting the Guides

When you first click the Attachments icon, guides appear on the top and left borders with
numbers next to them. These numbers refer to the weight corresponding to the guides (see
below).

¥ ivstudio - testapp

EBX
File Edit Wiew Draw Tools Application Window Help

ERE e+t BERS HEEMIE L@ TEAER
b B DE BETEE

Gadgets - E:\temp' Testpanelily *

Attach objects to the
guides

Figure2.8 Attachment Guides
1. Select aguide by clicking on it or its weight number.
2. Create aguide by selecting one of the initial guides at the top or left borders and

dragging the new guide created—with the mouse button pressed—to any position you
want, then releasing the mouse button.

A guideis defined by four elements that can be edited in the Guide Inspector panel. To open
this panel, double-click the guide or its weight number:

Size 300

l Apply l I Close]

Figure2.9 Guide Inspector Panel

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 61

The Guide Inspector panel contains the following fields:

& Position For horizontal guides, the number of pixels from the top border. For vertical
guides, the number of pixels from the left border.

& Size For horizontal guides, the number of pixels to the next guide below. For vertical
guides, the number of pixels to the next guide to the right.

& Limit Theminimal size of the section set off by the guide when the window is resized
(see“Size”).

& Weight The amount of the window to be allocated to a section (delimited by a guide)
relative to other sections when the window is resized. The following formula appliesto

each section when awindow is resized, where Delta equals the new size of the window
lessitsinitial size:

Weight of Guide Delimiting the Section
New Section Size = Initial Section Size + Delta x

Sum of Weights of All Guides

Attaching Objects to Guides

Each object has an Attachments Inspector that provides added control to set fixed (double
lines) and elastic (single line) positions. By double-clicking the object, you open the
Attachments Inspector, in which you can only edit existing attachments. The numbersin the
text fields refer to the number of pixels from the edge of the object to the guide being used:

'V |Attachments Inspector g]

[Apply l [Close]

Figure2.10 Attachments Inspector
There are six locations for creating attachments, each of which can be one of two types:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Using the Attachments Mode

& Location An attachment can be made from any of the four sides of the object bounding
box to aguide parallel to that side. Attachments can also be defined within an object
(horizontally and vertically) to specify whether the object changes size when the panel is
resized.

& Type Two types of attachments are possible for each of the six locations: fixed or
elastic.

o Fixed (doubleline): The distance between the object and the guide stays the same as
the pandl is being resized. Fixed inside the object means that the object does not
change size when the panel isresized.

o Eladtic (singleline): The distance between the object and guide changes
proportionately asthe panel isbeing resized. Elastic inside the object means the object
changes sizes proportionally when the panel is resized.

Attachment Operations
Here are the types of operations you can perform while attaching objects:

& Creating Attachments Select the object you want to attach and drag aline (with the
mouse button pressed) from a middle handle of that object to aguide parallel to that side.
When the guide becomes highlighted, rel ease the mouse button. Default attachments are
made on the opposite side and inside the object. The specified attachments apply to al
the selected objects.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 63

¥ iystudio - testapp
File Edit Yiew Draw Tools Application Window Help
ERE e L EERS H HELKIE T @ TEER
w EOFPE BREH IS

Gadgets - E:\temp*, Testpanel.ily *

Figure2.11 Attaching an Object to a Guide

Note: When creating attachments between a guide and an object, you may have
problems if the object istoo close to the guide. In this case drag the mouse in the
opposite direction and then back to the guide.

& Removing Attachments Drag one of the attachment’s handles and release the mouse
button when the new line is not touching a guide.

& Changing an Attachment from One Guideto Another Drag alinefrom the
attachment handle to a new guide.

& Changing the Type of Attachment Click on the attachment line, which toggles
between fixed and elastic. This can also be carried out in the Attachments Inspector.

& Showing an Object’s Attachments Select the object in Attachments editing mode and
double-click the object to show the Attachments Inspector.

Defaults
The defaults selected depend on the handle used to begin the attachment:

64 IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing Menus

& Left and Top Handles The object enlarges with the panel (fixed, elastic, fixed).

& Right and Bottom Handles The object moves while remaining the same size (elastic,
fixed, fixed).

Testing the Attachments

You can test the attachments applied to the objects by clicking the Testicon #=% inthe
Main Window toolbar. Change the test window size by using the windowing system. You
will seethe object behavior as the panel changes size. If you need to make changes, you can
click the Testicon =7 again to close the test panel and make your changes in Attachments
mode.

Editing Menus
The Menus palette provides three types of menu gadgets that you can use in your panels.
This section gives you information on how to create these objects.
4 Menu Bars
& Pop-up Menus

& Toolbars

Menu Bars
To insert amenu bar (11vMenuBar) in your panel:
1. Inthetop pane of the Palettes panel, click Menus.
The Menus palette is displayed in the bottom pane of the Palettes panel.
2. Click the menu bar gadget and drag it to the active Gadgets buffer window.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 65

1Y ivstudio - testapp |Z||E|le
File Edit Wiew Draw Tools Application Window Help
ERT G tRLRS HEEAJE @ TAER
B

GEOFE D@ EE 14
Palettes & Gadgets - unnamed *
=2 Gadgets ;File Edit
= o £
= Matrix

B Miscellaneous

5 wiew Rectangles
=49 Graphics

Q Icons

K Gauges

’ More

File Edit Help

Qf’ Open...
Save

Exit

R ¥ B

The menu bar is automatically resized so it is as wide as the panel itself and default
horizontal attachments are set to reflect panel changes (fixed, elastic, fixed).

To inspect this menu bar, double-click it or click the Inspect icon from the Main window
toolbar. Itsinspector looks like this:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing Menus

General |Items Callbacks

Mame | |
Tooltip | |
Thickness | 28
Layer | Layer 1 V|
Interactor | Gadget e |
State [active v
Transparent F

Focusable

Shaw frame

Figure2.12 Menu Bar Inspector Panel (General page)

The optionsin the Items page let you insert, add, or remove items from the selected menu
bar. You can also add a separator between a set of menu items or append a pop-up menu.

The left side of the page displays the structure of the menu bar asatree. To apply changesto
the whole menu bar or to any one of theitems of which it is composed, select the appropriate
item in the tree and make the changes you want in the right side of the page. Click Apply to
validate the changes.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 67

Il¥MenuBar =

General| Items | Callbacks

Menu items Selected menu bar
= Direction Horizantal -
File
Edit [] Automatic resize
Help [] Snap Spacing

[Ttems width
[ttems height
Flush right

Inserts an tem —— o= = g Remaoves all
- =)
hefore the | the menu tems
selected tem Removes the
selected tem

Cloze

Adds an item after Adds 5 separator
the selected tem after the selected
tem

Attaches a pop-up
menu to the selected
tem

Figure2.13 Menu Bar Inspector Panel (Items Page)

Pop-up Menus

Before being attached to the menu bar, a pop-up menu must be inserted and edited in the
workspace.

To insert a pop-up menu (I1vPopupMenu) in the workspace:
1. Inthetop pane of the Palettes panel, click Menus.

The Menus palette is displayed in the bottom pane of the Palettes panel.
2. Click the pop-up menu gadget and drag it to the Gadgets buffer window.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

IBM

v

2 ivstudio - testapp

[k

Palettes

=2 Gadgets

|

= Matrix

B Miscellaneous

5 wiew Rectangles
=49 Graphics

Q Icons

K Gauges

’ More

File Edit

Qf’ Open...
Save

Exit

i |0 B

Help

File Edit Wiew Draw Tools Application Window Help

ERF et +RERS E EBEAMIRE e TEER
SR PE IBEEEEE

Gadgets - unnamed *

Double-click the pop-up menu to display itsinspector panel.

Il¥PopupMenu

General | Itemsz || Callbacks

Mame
Tooltip
Thickness
Layer
Interactar
State
Transparent
Focusable

Show frame

| 2%
| Layer 1 ¥ |
| Gadget w |
| Active hd |
O

Cloze

ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

Editing Menus

69

4. Toinsert, add, or remove items from the pop-up menu in the buffer window, use the
Items page of the PopupMenu inspector. You can also add a separator between a set of
menu items.

Il¥PopupMenu 5]

General | Items | Callbacks

Popup gadget items Selected popup menu
I=Fropup menu [] Tear off
gro
Open... } b
Save Aukomatic label alignment
Exit

Cloze

The left side of the page displays the structure of the pop-up menu as atree. To apply
changes to the whole pop-up menu or to each one of the items of which it is composed,
select the appropriate item in the tree and make the changes you want in the right side of
the page.

5. Click Apply to validate the changes.

Attaching Pop-up Menus to the Menu Bar
To attach pop-up menus to menu items:

1. Click the Menu mode icon in the Editing Modes toolbar:

1Y jvstudio - testapp |'-_||'E|E|
File Edit Yiew Draw Tools Application window Help

EAT 6 B0 7 HEEAJE JaR TEER

o B 1 2 (3 ?EMmfﬂ

fenu Mode [con

[

70 IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing Menus

2. Click the pop-up menu and drag the mouse to the menu bar item to which you want to
attach it.

¥ ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help
ERS A+t BERS H EEMIE L@ TEAFER
b = DE 2EHBEE

Palettes

£

Gadgets - unnamed *

=2 Gadgets

H

= Matrix

B Miscellaneous

5 wiew Rectangles
=49 Graphics

Q Icons

K Gauges

’ More

File Edit Help

Qf’ Open...
Save

Exit

R e

Asyou drag the mouse, a black line appears linking the two items. The pop-up menu
disappears when you rel ease the mouse button.

To edit a pop-up menu that has been attached to a menu bar or another pop-up menu item:
1. Go back to the Menu mode.
2. Double-click the menu item to which the pop-up menu is attached.

Its submenu tears off and can be selected and edited.

e To change a pop-up menu item, drag an object from the workspace and placeit on the
item to be changed. That object will then be removed from the workspace.

e To get acopy of the object used by amenu item, drag that item and placeit outside the
menu. You can then edit this copy and place it back in the menu item.

Toolbars

To insert atoolbar (T1vToolBar) in your panel:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 71

1. Inthetop pane of the Palettes panel, click Menus.
The Menus palette is displayed in the bottom pane of the Palettes panel.
2. Click the toolbar gadget and drag it to the Gadgets buffer window.

1Y ivstudio - testapp |:| |§| le

File Edit Wiew Draw Tools Application Window Help

%[HJ@ |+ BERS H EEHJE Ja @ TEER
[k R EDE BE TEE

Palettes 3]

EEXE

Gadgets - unnamed *

File Edit

=2 Gadgets

] erus |

= Matrix D S I I DI

B Miscellaneous Lol oLl BRI

3 yiewrectanges | 0 B
= Graphics | Foo

Q Icons

K Gauges

@ ore S s

File Edit Help — F - A

Qf’ Open...
Save

Exit

I S SR SR S

3. Double-click on the toolbar to display its inspector panel.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Il¥ToolBar 53]
General |@||M|

Marne | |
Tooltip | |
Thickness | 28
Layer | Layer 1 V|
Interactor | Gadget M |
State [active v
Transparent F

Focusable

Shaw frame

Cloze

Editing Menus

4. Toinsert, add, or remove items from the selected toolbar, use the Items page of the
Toolbar inspector. You can also add a separator between a set of toolbar items.

IBM

Il¥ToolBar

| General| Items |Eallbacks|

]

Toolbar gadget items

--- SEPARATOR, -
T

- SEPARATOR, -

OdL

T
e

Selected tool bar
Direction

[] Automatic resize
[] Snap Spacing
[Ttems width

[ttems height
Toaltip

[] Flush right

Cloze

ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

73

The left side of the page displays the structure of the toolbar as atree. To apply changes
to the whole toolbar or to any one of the items of which it is composed, select the
appropriate item in the tree and make the required changesin the right side of the page.

Toolbars can be oriented horizontally or vertically. In addition, toolbar items can display
tooltips and can be attached to pop-up menus.

Using Matrices

74

Use the Matrix mode to changeitemsinyour T1vMatrix Of T1vSheet objectsaswell asin
their respective inspector panels that et you edit their general properties.

hd

s iWstudio - testapp

File Edit View Draw Tools Application Window Help

Y I YA IE Y EIE E L)
s b D E ?E'u@:ﬁ

Matriz Mode lcan

Figure2.14 Matrix Mode Icon

Setting Up Matrix Items

You can set up amatrix item by dragging an object from the workspace and dropping it in
the desired item: a copy of the dragged object is made and put in the matrix item; the source
object remains available in the workspace.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Using Matrices

¥ ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help

ELEE Y A YAl I LY EIET R ek
- EEIEERTE

Palettes

£

Gaets - unnamed *

3 Gadgets
“H Menus
= Matrix
B Miscellaneous
5 wiew Rectangles
=49 Graphics
w
K Gauges

’ More

| ST

If the dragged object isan T1vLabel object, the new matrix item becomes an
IlvLabelMatrixItem. If the dragged object isanicon (of class I11vIcon or derived
classes), the new item becomes an 11vBitmapMatrixItem. The matrix and item classes
are documented in the IBM ILOG Views Reference Manual.

Extracting Matrix Items

You can extract the object from a matrix item by dragging that item and dropping it in the
workspace. The extracted object can then be edited and put back where it was or copied to
other items.

Inspecting Matrix Iltems

The Matrix mode provides you with an item inspector. To inspect a cell, double-click on it.
The following inspector panel appears:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 75

1Y Matrixltem Q@@

Itern State

Column v] Relisf

Raw 0 - [] Read anly

Type Sensitive
Bitmap w

Label
ivstudiodiconz/icico. png g Eenter b

Resources

rml |

[Background] | |

StockedDefaullGui | v

Figure2.15 Matrix Item Inspector Panel

Iltem References
The Matrix Item inspector panel lets you inspect:

¢ onecell

¢ all therowsinacolumn
¢ all the columnsin arow
& thewhole matrix

The Column and Row fields display the coordinates of the inspected cell(s). If you want to
inspect al the columns, enter “*” in the Column field. If you want to inspect al the rows,
enter “*” in the Row field.

Item Type

The Type option menu lets you choose the matrix item class for the inspected cells:

Option Matrix Item Class Matrix Item Class with Resources
Empty None. (Empty cells)

Label IlvLabelMatrixItem IlvFilledLabelMatrixItem
Int IlvIntMatrixItem IlvFilledIntMatrixItem
Float IlvFloatMatrixItem IlvFilledFloatMatrixItem

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing Spin Boxes

Option Matrix Item Class Matrix Item Class with Resources
Double IlvDoubleMatrixItem IlvFilledDoubleMatrixItem
Bitmap IlvBitmapMatrixItem

Graphic IlvGraphicMatrixItem

Gadget IlvGadgetMatrixItem

The last column of the above table shows the matrix item classes that are used if you choose
aforeground, a background or afont for your label or numeric items. For more information,
see the sectionsin the IBM I1LOG Views Reference Manual corresponding to the classesin
the above table.

Item Flags

Use the Sensitive, Read only, Relief and I nteractive toggle buttons to set the corresponding
flags for your items:

E?t%lrf See class get function set function
Sensitive IlvMatrix isItemSensitive |setItemSensitive
Read only IlvMatrix isItemReadOnly setItemReadOnly
Grayed IlvMatrix isItemGrayed setItemGrayed
Relief IlvMatrix isItemRelief setItemRelief
Interactive IlvGadgetMatrixItem |isInteractive setInteractive

Item Resources

Use the Foreground, Background, and Font fields to set the colors and fonts for the selected
items.

Validating

Click Apply to validate the characteristics you edit in the Matrix Item inspector panel.

Editing Spin Boxes

To include aspin box in your panel, you will need to insert the spin box and then specify the
type of item you want to appear in the spin box.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 7

Inserting a Spin Box
To insert aspin box (I1vspinBox) in your panel:
1. Inthetop pane of the Palettes panel, click Gadgets.
The Gadgets palette is displayed in the bottom pane of the Palettes panel.
2. Click the spin box gadget and drag it to the Gadgets buffer window.

- File Edit Wiew Draw Tools Application Window Help
ERT G tRLRS HEEAJE @ TAER
|k FEOFPE 2E BEE

Palettes

®

Gadgets - unnamed *

Tres (B
= Matrix
B Miscellaneous
3 view Rectangles
=49 Graphics
Q Icons
Ei] Gauges | o

& More 2o850cucsosenoaoonanssonansns

Meszagel abel

[Tosse

[Text Fisld |

| SCCombo -

| Monday E | B

itern Text

itema multi lines
itern3

3. Double-click the spin box gadget to display its inspector.
4. Usethe Spin Box inspector to edit the items that appear in the spin box.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

1Y ivstudio - testapp |Z| |E| rz|

Editing Spin Boxes

General | Specific | Calbacks

Mame

Tooltip

Thickness 2
Layer Layer 1 i~
Interactor Gadget e
State Active M
Transparent F

Focusable

Shaw frame

The Specific page of the inspector allows you to add fields to the spin box, specify the
values that appear in the fields and specify how the spin arrows appear in the spin box.

Setting the Type of Spin Box Iltem

The default item in the spin box gadget isan T1vTextField object. By using the Spin Box
editing mode, you can specify the type of gadget object that appears as a spin box item. For
example, you may want to have an I1vNumberField asthe spin box item rather than an
IlvTextField.

To set an T1vNumberField astheitem in aspin box, do the following:
1. Drag aspin box gadget from the Palettes panel to the Gadgets buffer window.
2. Double-click the spin box gadget to display the Spin Box inspector.
3. Click the Specific tab to display the Specific page.
4. Selectthe I11vTextField itemin the Fields box.
5. Click the Removeicon below the Fields box.
Theitem is removed along with its settings defined in the other fields of the inspector.
6. Inthe upper pane of the Palettes panel, click Miscellaneous.
The Miscellaneous palette is displayed in the bottom pane of the Palettes pandl.
7. Click the 11vNumberField gadget and drag it to the Gadgets buffer window.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 79

80

8. Click the Spin Box icon in the Editing Modes toolbar.

1V

e IWStU IO - teStapp

File Edit Wiew Draw Tools Application Window Help
EHG a4+ RrRS W AODAJE @ TAER
SR B D & ?E'um

[k

Spin Box lcon

9. Drag aline from the number field gadget to the spin box gadget.

1Y livstudio - testapp |-_||E|r>__<|
File Edit Wiew Draw Tools Application Window Help

EFE A %”Ezf?_dﬂ ElEENEI=ERTR el
kRO 9E | =2E EEE

Faloiies] Gadgets - unnamed *

=2 Gadgets N
“H Menus LolniiiIiiil LoLLniiiin LLlLiiil
= Matrix LolniiiIiiil Loliiil Loliiil
WElMiscellaneous LolniiiIiiil Loliiil Loliiil
1 viow Rectangles R R

=49 Graphics : LTI
K tcons

K Gauges

& Hore L

— g S

|
>

Label

Multi lines

label =
e D D D
< >
[item1 v ¥

10. The spin box now contains the number field and you can specify the settings for theitem
in the spin box inspector.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing Spin Boxes

Gadgets - unnamed *

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 81

82

IBM

ILOG VIEwWsS GADGETS V5.3

USER'S MANUAL

Editing Applications

This chapter describes how to work with application buffers. Application buffers contain
panel instances that are derived from panel classes. Panel classes and panel instances are
created and handled using a special palette called the Panel Class palette.

You will find information on the following topics:
& The Application Buffer

Application Description File

Other Generated Files

The Application Inspector

* & & o

Editing an Application

The Application Buffer

InIBM® ILOG® Views Studio, you edit an application via the Application buffer window.
When you launch IBM ILOG Views Studio, a default application called “testapp” is created.
To activate the Application buffer window, choose <Application> from the Window menu or
click in the Application buffer window (by default, an empty Application buffer window is
displayed at start-up). Only one application can be edited at atime.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 83

e ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help

BERO 6 +E2RS HEEAIE Hd @ OAFR
=

Palettes

] m Application - testapp.iva

R4 Cadgets
- F Menus
-2 Matrix
Miscellaneous
} Wiew Rectangles
- Graphics
! Icons

<] Gauges

Meszagel abel

[Tesse

| Text Fisld |

| SCCombo - |

| Monday E |

iternd Text

itema multi lines
itern3

= Fi

Foot
Leaf 1
Leaf 2
Second Root

Tab1 |Tab 2

Frame

Il B TN

vij=—0 ~R€ I~
Figure3.1 The Application Buffer Window in the Main Window

When the Application buffer window is activated, you will notice the following:

& Thetitle bar of the Main window changes to reflect the application file name, followed
by the word <application>.

& Thetype of the current buffer, Application, is displayed at the bottom right of the Main
window.

The Editing Modes toolbar that appears at the top of the Main window containsa single
icon, corresponding to the Generate command.

& The generic inspector disappears.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Application Buffer

When you edit an application, you will use the Application buffer window along with the
Panel Class palette. To activate the Application buffer window and the Panel Class palette,
click the Edit Application icon in the toolbar at the top of the Main window.

L

. IWStUdIO - testapp

File Edit Wiew Draw Tools Application Window Help

LY IR T YA I Y IETE Y0
|k EOF2E =H A

Eclit Application

Figure3.2 The Edit Application Icon
When you edit an Application buffer, the Main window should look something like this:

IBM ILOG VIEwWS GADGETS V5.3 — USER’S MANUAL 85

Panel Class
Palette

2 ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help

B a7 | EAEAIE 1@ TEER
=

Panel Class Palette
PR |
testapp

m Application - testapp.iva *

|Tf Testpanel

Category

®

Miscellaneous
Wiew Rectangles

Panel Instance

Application

Graphics

! Icons

Apply

Meszagel abel

[Tosse

[Text Fisld

| sCCambo

| Monday

Butfer Wincow:

Figure 3.3

item
itermnz2
itern3

Teut
muli lines

===y]

QETETERY)

HEX

o ¥ =0 VI €]~

| Application | Selection

Editing an Application Buffer

The Application buffer window contains any panel instances that have been added to it.

The Panel Class palette |ets you create new panel classes, aswell as remove and inspect
them. Theicons in the palette show the panel classes that have been created for the current

application.

86 IBM ILOG

VIEwWS GADGETS V5.3 USER’'S MANUAL

Application Description File

Application Description File

The properties of the application, and also panel classes and panel instances that make up the
application, are saved in adatafile that typically hasan . iva extension. Although thefile
format is easy to understand, it is better to use IBM® ILOG® Views Studio to edit the
application buffer.

Only one application can be edited at atime. If you are editing an application and want to
open anew one, save the current application and then create a new application or load a
previously saved application.

You can use the following commands in the File menu to work with application description
files.

New > Application

By default, IBM ILOG Views Studio reates an empty application when it is launched
(“testapp”). Choose <A pplication> from the Window menu to start editing “testapp”, or
click on itswindow to activate it.

If you are already editing an application, and want to create a new one, save your current
application and choose New from the File menu and then Application in the submenu that

appears.

Save As...

Before saving an application, make sure that the current buffer is the Application buffer
(using the Window menu, if necessary). To save a new application for the first time, choose
Save As... from the File menu. This command opens the File Chooser that lets you save the
application description file in adirectory. Application files are saved with the . iva file
extension.

Save

To save an application, choose Save from the File menu or click the Saveicon [El fromthe
toolbar. This command saves the application description in adatafile. See the Save As...
command above for saving a new application file.

Open...

To load an application previoudy saved bv IBM ILOG Views Studio, choose Open... from
the File menu, or click the Openicon [*= from the toolbar. This command opensaFile
Chooser that lets you choose an applicauon file. Tofilter the list of filesthat are displayed in
the File Chooser, select Application filesin the File type option menu.

This command discards the current application; so, if necessary, save the current application
first.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 87

Other Generated Files

In addition to the data files, IBM® ILOG® Views Studio generates the following for each
application:

& A header file and a source file for the generated C++ application class,
& A header file and a source file for the panel class corresponding to each buffer,
& A simplemake file.

The location of these files can be individualy specified and, in each C++ generated file, you
can insert your own code using special inspector panels.

The Application Inspector

88

The application properties can be displayed and edited using the Application inspector. To
display the inspector of the current application, choose Application Inspector from the
Application menu in the Main window or click the Application Inspector icon % inthe
Main window toolbar.

The Application inspector is opened for the current application. This may be the default
application if you have not already opened an application.

The Application inspector has five notebook pages: General, Options, Header, Source, and
Script and four buttons: Apply, Reset, Close, and Help.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Application Inspector

¥ Application: Testapp

General Options | Header | Source || Script
Class Testapp
Base Class IlvApplication
File: Mamne testapp
Directories
Data
Header
Header File Scope
Source
Objects
Syskem MsY? w
[Help] [Reset] [Apply] [Close]

Figure3.4 General Page of the Application Inspector

The General Page
The General page of the Application inspector contains the following fields:

Class The class name of the generated application can be specified in the Class field. By
default it is Testapp. The name that you specify in thisfield must be avalid C++ class
name.

Base Class The base class of the application can be specified in the Base Class field. By
default it is 11vapplication. The name that you specify in thisfield must be avalid C++
class name.

Instead of deriving the generated class from T1vapplication, you can specify your own
base class. In this case, the given class must be derived from I1vapplication and must
include compatible constructors. Of course, the declaration of your base class must be
known by the compiler when compiling the generated files; that is, it must be inserted or
included in the generated file. See The Header and Source Pages on page 92.

File Name Shows the name of the . iva file containing the application.

Directories

Data The Datafield displays the directory where the application datafile is saved. This
field cannot be edited. To change the location of the application datafile, activate the

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 89

90

Application buffer window, choose Save As... from the File menu of the Main window, and
save it in the directory of your choice.

Header Usethe Header field to specify where the application header file should be
generated. By default, the header file is generated in the directory where the application data
fileis saved. This directory is relative to the application datafile directory.

Header File Scope Thedirectory where header files are generated is obtained by appending
aheader file scope to the specified header directory. The option Header File Scopeis used to
specify a subdirectory that is generated in the #include Statements.

Assuming that the application file isin the directory /myappdir, the Header directory is
include, and the Header File Scope ismyapp, header files are generated in the directory /
myappdir/include/myapp. The generated #include statements corresponding to the
application header files are the following:

#include <myapp/filel.h>
#include <myapp/file2.h>

instead of

#include <filel.h>
#include <file2.h>

Source Usethe Source field to specify where the application source file should be
generated. By default, the source fileis generated in the directory where the application data
fileis saved. This directory is relative to the application datafile directory.

Objects Usethe Objectsfield to specify the location where the application make fileis
generated. By default, the make fileis generated in the directory where the application data
fileis saved. This directory is relative to the application datafile directory.

System Use this menu to specify the name of the platform for which you want to generate
themake file. The default platform is the one on which IBM ILOG Views Studio is running.

Motif Thistoggle buttonis only visibleif the platform you choose in the System option
menu is an X11 platform. If thistoggle button is selected, the generated make file chooses
the Motif version of the IBM ILOG Viewslibraries and linksthe 1ibxt and 1ibxm libraries
to your application.

The Options Page
The Options page of the Application inspector isillustrated below:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Application Inspector

¥ Application: Testapp

General | OPLoNs |Header | Source | Script
Generate

[Exit: Panel Accessors

maing)
Make

Bitmap Readers

[bmp 1 pbm [ipg
[dib [pam
[prg 1 ppm
[Help] [Reset] [Apply] [Close]

Figure3.5 Options Page of the Application Inspector
The Options page contains the following fields:

Generate

Exit An Exit button, in a separate panel, can be activated when you run the generated
application. This provides you with asimple way to quit the application. Select thistoggle
button if you want to set the Exit button.

main() Select thistoggle button if you want IBM ILOG Views Studio to generate asimple
main function in the application source file. If the generated application classis Testapp,
and the application file base name ismyappli, themain function looks like this:

main(int argc, char* argv[])
{
Testapp* appli = new Testapp ("myappli", 0, argc, argv);
if (lappli->getDisplay())
return -1;
appli->run() ;
return 0;

}

Make Select thistoggle button if you want a simplemake file to be generated.

Panel Accessors A panel accessor isamember function of the generated application that
lets you access a particular panel of your application. If you check the Panel Accessors
toggle button, IBM ILOG Views Studio generates a member function for each panel
instance. The member function has the following signature:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 91

92

IBM

MyPanelClass* getMyPanelInstance() const;

where MyPanelClass iSthetype of panel instance named MyPanelInstance. The names
of your panels must be valid C++ names.

Includein Header Inthe generated code of an application, the header files generated for
the panel classes of the application must be included. The necessary #include statements
can be generated in the application header file or in the application sourcefile. If you want to
generate the panel accessors (the Panel Accessors toggle button is checked), the headers of
the panel classes need to be included in the application header file. In this case, the Include
In Header toggle button is unavailable, since you have no choice. Otherwise, the #include
statements can be generated in the application source file instead of the application header
file. To minimize the compilation dependencies of your whole application, do not check this
toggle button.

Bitmap Readers

The bottom part of the Options page contains information on bitmap readers. The toggle
buttonsin this part of the inspector let you explicitly register predefined bitmap readersin
the generated code.

The Header and Source Pages

The Header and Source pages can be used to add code to the header and source files.

¥ Application: Testapp

General | Options Header | Source Scripk

Code for the header file

[Help] [Reset] [Apply] [Close

Figure3.6 Header Pagein the Application Inspector

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

The Application Inspector

Codefor the header file Thetext you enter in this pageisinserted as typed in the
Application header buffer, after the generated #include statements and before the
declaration of the generated class. If you want to subclass the generated class from a class
other than T1vapplication, you haveto insert the #include statement to includethefile
declaring your base class. Of course, instead of inserting code, you can use this feature to
comment your application.

Codefor the sourcefile The text you enter in this panel isinserted astyped in the
application sourcefile just before defining the generated member functions. You can usethis
text to comment the generated file or to insert any C++ code.

The Script Page
The Script page can be used to specify the use of IBM ILOG Script.

¥ Application: Testapp

General | Options | Header | Source | Script

[ausxiliary Library

[

Script File:

[Help] [Reset] [Apply] [Close

Figure3.7 Script Pagein the Application Inspector
The Script page contains the following fields:

Use IBM ILOG Script Select this toggle button if you want to use IBM ILOG Script.

Auxiliary Library Select thistoggle button if you want to use the auxiliary library of

IBM ILOG Script for IBM ILOG Views in your application through the scripting language.
Thislibrary lets you use additional features, such as the dial og boxes. For more information,
see the chapter “IBM ILOG Script Programming” inthe IBM ILOG Views Foundation
User’'s Manual.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 93

Script File Enter the name of afile containing script code or click the button next to the text
field to display a File Chooser to select afile.

The Application Inspector Buttons

These buttons appear at the bottom of the Application inspector.

Apply Applies the changes made to the application properties.

Reset Resets the application propertiesto their initial values.

Close Closesthe Application inspector.

Help Displays online help about the fields in the Application inspector.

Editing an Application

94

InIBM® ILOG® Views Studio, you edit an application using the Panel Class palette. Panel
classes can be added to the Panel Class palette and then dragged to the Application buffer
window to create panel instances. A panel instance appears as it will look in the final
application. The dimensions and the position of the panel can be directly edited within the
Application buffer window.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Panel Class
Palette

Panel Pop-up
henu

Panel Instance

Application

Editing an Application

2 ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help

SR e+t RS K EEAIE AR TEER

Panel Class Palette (X m Application - testapp.iva *
BlElF R |
testapp
1| Testpanel
Restare
Minirize
SB Panel Inspector
Palettes ® Load Contents
(Remave Panel

-2 Matrix
-H Miscellaneous
} view Rectangles

Graphics

! Icons

Meszagel abel

[Tosse

[Text Fisld | B

| SCCombo - |

| Monday E | =

Butfer Wincow:

itern Text
itema multi lines
itern3

===y

QETETERY)

vt

v||— 0

|. . &\ | | default

| Application | Selection

Figure3.8 Pand Class Palette

The following sections explain how to create panel classes and add instances of these panel
classes to your application.

The Panel Class Palette

The Panel Class paletteis used to create, inspect, or remove panel classes. This palette can
be accessed, whatever the current buffer, by clicking the Panel Class Paletteicon inthe
Main window toolbar or by selecting Panel Class Palette from the Code menu. It can aso be
opened together with the Application buffer by choosing the Edit Applicationicon =
from the toolbar of the Main window.

IBM

ILOG VIEwWS GADGETS V5.3 —

USER’'S MANUAL 95

The Panel Class palette consists of atoolbar containing the commands that can be used to
manipulate panel classes, and a panel class buffer that shows icons representing the existing
panel classes.

Mewy Panel Class

e i &2 Help

Panel Class Inspector

Remaove Panel Class

Figure3.9 Toolbar of the Panel Class Palette
You can do the following using the commands in the Panel Class palette toolbar:

¢ New Panel Class Createsanew panel class from the current buffer. The current buffer
must have already been saved.

¢ Remove Panel Class Removes the selected panel class from the palette.
& Panel Class | nspector Opens the inspector of the selected panel class.
¢ Help Letsyou access Online Help on the Panel Class palette.

When you double-click a panel classicon in the Panel Class palette, the file containing the
panel description is opened and set as the current buffer.

When you double-click the background of the Panel Class palette (without clicking a panel
classicon), the Application buffer is set as the current buffer.

Panel Classes

Panel classes can be created using the Panel Class palette. These classes can then be used to
add panel instances to the Application buffer.

For each Gadgets buffer that is part of the edited application, IBM ILOG Views Studio
generates a C++ class derived from I1vGadgetContainer. The generated class doesthe
following:

& Readsthe data used to create the panel objects.

¢ Generates callbacks as methods.

& Generates accessors for named objects.

Adding a Panel Class

To add anew panel classto the application:

1. Make sure that the required panel buffer is open, and is the current buffer.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing an Application

2. Click the Panel Class Paletteicon | Z7] in the Main window toolbar to open the Panel
Class palette.

3. Click the New Panel Classicon | inthe Panel Class palette toolbar.
The new panel classis added to the palette.

Removing a Panel Class
To remove apanel class from the application:

1. Inthe Panel Class palette, select the panel class you want to remove.

2. Click the Remove Panel Classicon [in the Panel Class palette tool bar.

The Panel Class Inspector

To inspect a Panel class, click the Panel Class Inspector icon ﬁ in the Panel Class palette
toolbar.

The Panel Class inspector appears.

'Y Panel Class: Testpanel

zeneral Options | Header | Source
Class | Testpanel |
Base Class | IlvGadgetContainer v |
File Mame | Testpanel |
Directaries
Data | E:itemp) |
Header | |
Source | |
[Help] [Reset] [Apply] [Close

Figure3.10 Panel Class Inspector

There are four notebook pages in the Panel Class inspector, each containing a set of
properties of the inspected panel class.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 97

98

The General Page

Class Usethisfield to name the C++ panel class. The class name must be avalid C++ class
name. By default, IBM ILOG Views Studio names this class by capitalizing thefirst letter of
the corresponding buffer name.

Base Class Usethisfield to specify the base class for the class generated. By default for

gadget buffers, IBM ILOG Views Studio derives the generated class from
IlvGadgetContainer.

Instead of deriving the generated panel class from r11vGadgetContainer, you can specify
your own base class. In this case, the given class must be derived from
IlvGadgetContainer and include compatible constructors. Of course, the compiler must
know the declaration of your base class when compiling the generated files, so it must be
inserted or included in the generated file. See The Header and Source Pages on page 100.

FileName Thisfield showsthe name of the file that contains the selected panel class. It
cannot be edited.

Data Thisfield displays the directory where the panel datafile (.i1v file) is saved.

Header Usethisfield to specify the directory where the panel class header file is generated.
If thisfield is empty, the header file is generated in the same directory as the application
header file.

Source Usethisfield to indicate the directory where the panel class source fileis generated.
If thisfield is empty, the sourcefile is generated in the same directory as the application
sourcefile.

The Options Page

The Options page of the Panel Class inspector isillustrated below.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing an Application

'Y Panel Class: Testpanel

General | OPHions |Header | Source

Generate

Mames
Callback Declarations
Callback Definitions

Optional Constructors
D Syskem View

[Syskem Yiew Child
[wiew Child

|:| Top Wiew

[Help] [Reset] [Apply] [Close

Figure3.11 Options Page of the Panel Class Inspector
The Generate section contains the following:

Data Select thistoggle button to have IBM ILOG Views Studio generate the data string in
the C++ panel class code so that its constructor does not need to read the datafile at runtime.
The code generated with datais used only on the UNIX® platforms. On Windows®
systems, the string data generated is not used.

Names Select this toggle button to have IBM ILOG Views Studio generate member
functions that return the named objectsin your panel. For example, if you have atext field
named MmyTextField inyour panel, the following member function is generated:

IlvTextField* getMyTextField() const
{ return (IlvTextField*)getObject ("MyTextField"); }

The generated member functions are always named following thisrule.

Callback Declarations IBM ILOG Views Studio provides you with a simple way to deal
with callbacks. When the Callback Declarations toggle button is selected, it generates an
I1vGraphicCallback function and declares a default virtual member function. The
generated T1vGraphicCallback invokes the corresponding virtual member function,
which has the same name as the callback you specified in IBM ILOG Views Studio.
Therefore, the names you use for callbacks must be valid C++ function names.

The Callback Declarations toggle button must be selected for the Callback Definitions
toggle button to have any effect.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 99

100

Callback Definitions The default definition code (the body function) for these callback
virtual member functions can be generated, letting you test your application before defining
thereal callbacks. When you select the Callbacks Definitions toggle button, you redefine
your own versions of the callbacks in your derived classes.

If you do not want these function definitions to be generated, do not select the Callback
Definitions toggle button. Thisis useful if you do not want to derive a class from the
generated class. In this case, you can write your own definition of these member functionsin
a separate file that will not be erased by future code generations.

The callback registering task is generated in the C++ code so that you only have to definethe
callback methods.

The Optiona Constructors section has two toggle buttons that let you generate your panel
class to use within the native system views.

System View Select this toggle button if you want to create a panel by using an existing
system view.

System View Child Select thistoggle button if you want to create your panel asachild
window of an existing system view.
The Header and Source Pages

To insert your own code in the generated panel class header or sourcefiles, click the Header
or Source page of the Panel Classinspector.

¥ Panel Class: Testpanel

General | Options | Header | Source

Code for the source file

[Help] [Reset] [Apply] [Close]

Figure3.12 Source Pagein the Panel Class Inspector

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing an Application

Codefor the header file Thetext you enter in thisfield isinserted as typed in the panel
class header file, after the generated #include statements and before the declaration of the
generated class. If you want to derive the generated class from a class other than
IlvGadgetContainer, you haveto insert the #include statement to include the file
declaring your base class. Of course, instead of inserting code, you can use this feature to
comment your panel class.

Codefor the sourcefile Thetext you enter inthisfield isinserted as typed in the panel
class source file just before defining the generated member functions. You can use this text
to comment the generated file or to insert any C++ code.

Panel Instances

Once the panel classes have been defined in the Panel Class palette, you can create and
inspect the instances of these classes.

Adding a Panel to an Application
To add a panel to your application:

1. Make surethat the Application buffer window is the current window, and that the Panel
Class palette is displayed.

To display the Panel Class palette, click the Panel Class Paletteicon || inthe Main
window toolbar.

2. Inthe Panel Class palette, select the panel classicon and drag it directly into the
Application buffer window.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 101

2 ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help

B a7 | EAEAIE 1@ TEER
=

Panel Class Palette
PR |
testapp

®

Palettes

==

Gadgets

B Miscellaneous
= Wiew Rectangles

E ! Icons

Meszagel abel

[Tosse

[Text Fisld |

| sCCambo

| Monday

item
itermnz2
itern3

Teut
muli lines

===y]

il B TS

m Application - testapp.iva *

|Tf Testpanel

Category

Apply

vt

[default vl | =0

| Application | Selection

An instance of the panel is created in the Application buffer window. Thisinstanceis
represented as awindow. The panel class name is the default name of your new panel.

Managing Panel Instances in the Application Buffer

Once panel instances have been added to your Application buffer window, you can manage
them in the same way that you manage windows in awindowing environment. Each panel
instance window has a pop-up menu that appears when you click on the top-l€eft corner of the
window. The menu has standard window options, such as Restore and Minimize.

102 IBM

ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

Editing an Application

ﬁ Application - testapp.iva *

Testpanel

Fiestare
tirirnize

6—5 Panel Inspector

Load Caontents

Femove Panel

Figure3.13 Panel Pop-up Menu

The Restore menu item enables you to restore aminimized panel instance to awindow with
itsoriginal size.

The Minimize menu item reduces the panel instance to itstitle bar.
A panel instance can be inspected by choosing Panel Inspector from this menu.

The Load Contents menu item lets you explicitly load the contents of your panel instance.
Thisisuseful when you usethe noranelcontents option. (See the description of the
noPanelContents option in the section “ Configuration Options for the Gadgets
Extension” in Chapter 5, Customizing the Gadgets Extension of IBM ILOG Views Sudio.

The Remove Panel option removes the panel instance from the Application buffer window.
Inspecting a Panel Instance
To inspect a panel instance:
1. Click the box in the top-left corner of the panel instance.
A pop-up menu appears.
2. From that menu, choose Panel Inspector.
You can also double-click thetitle bar of the panel instance window.

The Panel Instance inspector appears:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 103

¥ Panel Instance Q@@

General |Properties | Sizes | Hierarchy
Mame Testpanel
Class Testpanel
User Class
Title Testpanel
Transient A
Destroy Callback Mone w
Bitmap A
Wisible
[] Accelerators
[] bouble Buffering
[Help] [Reset] [Test] [Apply] [Close]

Figure3.14 The General Page of the Panel Instance Inspector

The four notebook pages of the Panel Instance inspector allow you to edit the properties of
your panel instances.

The General Page
Name Usethisfield to name your panel. This name must be avalid C++ nameif you want
IBM ILOG Views Studio to generate the panel accessors for your application.

Class Thistext field displays the name of the generated class of your panel. You cannot edit
thisfield.

User Class If you use aclassthat is derived from the generated class displayed in the Class
field, type its name in thisfield. In this case, the file declaring such a class must be included
in the generated application classfile (see The Header and Source Pages on page 92) and its
definition module must be linked to the final application.

Title Usethisfield to set thetitle of your panel.

Transient Use this option menu to set up arelationship between two panels. By selecting
an existing panel in thisfield, you are specifying that the current panel will aways be
displayed in front of the panel selected in the Transient field.

Destroy Callback Thisisthe callback invoked when the pandl is closed by the window
manager. Use the option menu to choose a default destroy callback for your panel.

Bitmap Enables you to specify a bitmap as the panel background.

104 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Editing an Application

Visible If you do not want the panel to be displayed when launching the application, do not
select the Visible toggle button. By default, the panel isvisible.

Accelerators If checked, the panel instance is created with the default container’s
accelerators. This means that the panel constructor is called with useacc parameter set to
IlvTrue.

Double Buffering If checked, the inspected panel uses the double-buffering mechanism.
This generates the following code:

cont ->setDoubleBuffering (IlvTrue)

The Properties Page

Thetoggle buttonsin the Properties page let you specify the window frame properties. Inthe
generated code, the selected options are combined to set the properties parameter in the
call to the panel constructor. Each option corresponds to a predefined property.

1¥ Panel Instance

General | Properties | Sizes | Hierarchy

[Mo Resize Border
[1 Mo Title Bar

|:| Mo System Menu
|:| Mo Min Box

|:| Mo Max Box

[1conified

[Maximized

] Mo1 child

[Help] [Reset] [Test] [Apply] [Close]

Figure3.15 The Properties Page of the Panel Instance Inspector

The following table shows the predefined properties that are linked to the toggle buttonsin
the Properties page of the Panel Instance inspector.

Toggle button Predefined Property

No Border IlvBorder

No Resize Border IIvNoResizeBorder

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 105

Toggle button

Predefined Property

No Title Bar IlvNoTitleBar
No System Menu IlvNoSysMenu
No Min Box I1lvNoMinBox
No Max Bars I1vNoMaxBox
Iconified IlvIconified
Maximized IlvMaximized
MDI child I1vMDIChild

The Sizes Page

The Sizes page of the Panel Instance inspector has three sections: Bounding Box, Minimum
Size, and Maximum Size.

1¥ Panel Instance

Bounding Box

General | Properties | SiZes | Hierarchy

% 3 ¥ 15
‘Wwidth 406 Height 95
Generate Size
Minimurn Size
width Height
Maxirmurn Size
width Height
[Help] [Reset] [Test] [Apply] [Close]

Figure3.16 The Szes Page of the Panel Instance I nspector

X, Yy, Width, Height Usethese fields to specify the initial position of the panel. The panel
size defaults to the size of the buffer. If you want to assign a new size to your panel, turn on
the toggle button Generate Size and enter desired valuesin the Width and Height fields.

Maximum and Minimum Size Use these fields to specify the Maximum or Minimum
field sizesfor the panel by entering the desired values in the Width and Height fields

106 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Editing an Application

Panel Instance Buttons
Apply Click to validate your panel options.

Reset Click to reset the Panel Instance inspector to the last validated values.

Test Click to test your panel. Unlike the global test for the application, only the inspected
panel is shown by this action. The options entered but not yet validated with the Apply
button are used to create the test panel. Even if the panel is configured to be not visible, it
can be tested.

Close Click to close the Panel Instance inspector.
Help Click to access Online Help.

Editing Subpanels

You can use the Application buffer window to create panel instances that are contained in an
IlvContainerRectangle Object or in an I1vNotebook object. In other words, container
rectangles and notebooks can hold subpanels.

To make a panel instance a subpanel of a container rectangle or of a notebook, proceed as
explained below:

1. Click View Rectanglesin the top pane of the Palettes panel to display the corresponding
palette.

2. Drag acontainer rectangle (an T1vGadgetContainerRectangle for example) to the
Gadgets buffer window.

3. Savethebuffer asmymainpanel .ilv.

4. Click the Panel Class Paletteicon |Z5] in the Main window toolbar to display the Panel
Class palette.

5. Click the New Panel Classicon 4 to add the Mymainpanel classto the Panel Class
palette.

6. From the File menu, choose New. In the submenu that appears, choose Gadgets.
A new Gadgets buffer window opens.

7. Click Gadgetsin the top pane of the Pal ettes panel.

8. Drag an T1vNotebook object to the current Gadgets buffer window.

9. Savethebuffer asnotebook.ilv.

10. Click the New Panel Classicon L2 to add the Notebook panel classto the Panel Class
palette.

11. Choose <Application> from the Window menu to activate the Application buffer
window.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 107

108

IBM

12. Drag the Mymainpanel classicon from the Panel Class palette to the Application buffer
window.

13. Drag the Notebook classicon from the Panel Class palette to the container rectangle
inside Mymainpanel.

The container rectangle is highlighted when you drop the subpanel onit.
14. Choose New from the File menu and then Gadgets in the submenu that appears.

A new Gadgets buffer window opens.

15. Drag any objects to the buffer window (text field and message labels, for example) and
saveit as firstpage.ilv.

16. Click the New Panel Classicon 2] to add the Firstpage pane classto the Panel
Class palette.

17. Choose <Application> from the Window menu to activate the Application buffer
window.

18. Drag the Firstpage classicon from the Panel Class palette and drop it onto the
notebook inside the Mymainpanel panel.

The following dialog box appears.

¥ New notebook page

Tab1l |Tab 2

(*) Add a new page
() Insert a new page at the selected page

() Replace the selected page

Tab Label Firstpage

I ol l [Cancel]

This dialog box lets you add the subpanel instance as a new notebook page or replace an
existing page with anew one. A sample of the notebook is displayed in the dialog box in
which you can select a page to indicate where the new page should be inserted. If you

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

IBM

Editing an Application

activate the “Add anew page” toggle button, the new page is inserted after the last
notebook page and the selected pageisignored.

Inspecting Subpanel Instances
To inspect a subpanel instance:

1. Click the box in the top-left corner of Mymainpanel inthe Application buffer window.
2. Choose Panel Inspector from the menu that appears.

The Panel Instance inspector is displayed.
3. Click the Hierarchy page.

In this page, the hierarchy of the panel is displayed as a tree gadget.

¥ Panel Instance E]@|g|
General || Properties | Sizes | Higrarchy
Hierarchy
E||ui Myrainpaned
= ﬂ] No.tebook
[Help] [Reset] [Test] [Apply] [Clase]

You can see that the Firstpage panel isasubpanel of the Notebook panel, whichisitself a
subpanel of Mymainpanel.

4. Double-click the subpanel you want to inspect in the tree gadget, or select the subpanel
and click Object Inspector.

The Panel Instance inspector for the subpanel appears.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 109

¥ Panel Instance |Z||E|r5__(|

General | Hisrarchy

MName | Firstpage |

Class | Firstpage |

User Class | |

Eitmap | | |
Wisible

[Accelerators

[] Double Buffering

[Help] [Reset] [Test] ’ apphy] ’ Close]

5. Toremove asubpanel, select it in the tree gadget in the Hierarchy page and click
Remove.

Testing an Application

The Testicon ©7 inthe Main window toolbar can be used to test the application when the
Application buffer isthe current buffer. When you click the Test icon, awindow is opened
for each of the visible panel instancesin the application. To close atest panel, click the Test
icon again.

If you wish to test a panel instance individually, use the Test button in the Panel Instance
inspector.

110 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using the Generated Code

This chapter uses an example to explain how to use the generated C++ code. You will find
information on the following topics:

& Building the Application
& Generating the C++ Code
& Extending the Generated Code

Building the Application

You are going to create an application composed of the following three panels:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 111

112

Walue |

Walue

|iTr Result

Result | 100

[Compute] [Guit]

Figure4.1 Example Panels
The steps to create the application are the following:

& Setting Up the Application Class
& Creating the First Panel Class
¢ Creating the Second Panel Class
& Generating the C++ Code

Setting Up the Application Class
Thefirst step isto edit and save the application properties.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Building the Application

L et us assume that you are going to edit the default application testapp.

1.

In the Main window, choose Application Inspector from the Application menu to open
the Application inspector.

Change the Class name to MyaApplication. Click Apply, then Close.

In the Application buffer window, choose Save As... from the File menu and save your
application asmyappli.iva in adirectory of your choice.

This operation sets the file base name and a default path for all your application files.
Check the application default directories by inspecting the panel again.

The header, source, and object directories default to the data directory. You can place
these generated files in different directories by specifying the directories of your choice
in the corresponding text fields of the Application inspector.

Creating the First Panel Class

The First and Second Panels (see Figure 4.1) are two instances of the same panel class (the
classFirstPanelClass). This meansthat they have the same contents, but their names,
titles, and positions are different.

You are now going to build the panel class for the two instances of this panel class.

Creating the Panel Data File

1.

IBM

If necessary, open a new Gadget buffer window. In the Main window, choose New from
the File menu and then Gadgets in the submenu that appears.

In the top pane of the Palettes panel, click Gadgets.

Drag the following gadgets from the bottom pane of the Palettes panel and drop them in
the Gadgets buffer window:

o Message label (class name: T1vMessageLabel)
e Textfield (classname: 11vTextField)

When agadget is selected, its class name appears in the message area at the bottom of the
Main window.

Double-click the message |abel to open itsinspector panel.
In the Specific page of the Message Label inspector:

o Delete the text in the Label field.

e Typevalue inthe Labd field.

Click Apply, then Close.

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 113

114

7. Double-click the text field to open its inspector panel.
8. Inthe Specific page of the Text Field inspector:

o Delete the text in the Label field.

¢ Select Right in the Alignment option menu.

e Turn off the Editable toggle button.
The Text Field inspector should look like this:

IlvTextField =
General| Specific | Calbacks
Label
Alignment Right w

Mo, Chars -1

Change focus on validation

[Apply] [Cloze

9. Click Apply, then Close.
10. In the top pane of the Palettes panel, click Miscellaneous.

11. From the bottom pane, drag the horizontal dider (classname: T1vslider) and dropitin
the Gadgets buffer window.

12. Move and resize the objects, then resize the panel so that it looks like in the figure bel ow.

Mame: Slicer
I1vSlider Callback: SliderCE

I InMess=gelabel IlvTextFisld

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Building the Application

13. Select the dlider.
14. Type s1ider in the Namefield of the generic inspector.
15. Type s1idercs in the Callback field of the generic inspector.

The generic inspector should look like this:

11+StT oolB ar b . . . &\ harmial ¥ | =—=|0 RYHE 4 _] S——

x y w h Right Battom Mame Callback 15
112 112 146 19 258 131 | | Slider SliderCE I:‘
Tivslider Gadgets | Selection

16. Select the text field.
17. Type TextField in the Name field of the generic inspector.

18. Choose Save As... from the File menu and save the panel asclassi1.ilv inthe
directory of your choice.

Setting Up the Panel Class
To set up the panel class:
1. Makesurethat class1 isthe current buffer.

2. Click the Panel Class Paletteicon |25 in the Main window tool bar to open the Panel
Class palette.

3. Createthe new panel class by clicking the New Panel Classicon 5] inthe Panel Class
palette.

An icon representing the new panel class, with thetitle class1, appearsin the palette.

4. Selecttheclass1 panel classand click the Panel Class Inspector icon 2] in the Panel
Class palette tool bar to open its inspector.

5. Onthe General page of theinspector, type FirstPanelClass inthe Classfield.
6. Click Apply, then Close.

Creating the First Panel
To create the first instance of theclassFirstPanelClass:

1. Choose the Edit Application icon 3 from the tool bar in the Main window to edit the
application.

The Application buffer window is activated and the Panel Class paletteis displayed (if it
isn't already displayed).

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 115

116

2. To create an instance of the first panel, drag the icon from the Panel Class palette to the

Application buffer window.
Aninstance of FirstPanelClass appearsin the Application buffer window.
3. Double-click the panel title bar to inspect the panel instance.
The Panel Instance inspector appears.
4. Inthe Panel Instance inspector, type FirstPanel inthe Name field.
Thisnameis used to retrieve this panel.

5. Inaddition, thetitle can be changed to First Panel and the position (x,y) can be
moved to (200, 200).

Specify thetitlein the General page.
Specify the position of the panel in the Sizes page.
The Panel Instance inspector should ook like this:

1¥ Panel Instance

General |Properties | Sizes | Hierarchy

Mame FirstPanel

Class FirstPanelClass

User Class

Title First Panel

Transient A

Destroy Callback Mone w

Bitmap A
Wisible
[] Accelerators
[] bouble Buffering

[Help] [Reset] [Test] [Apply] [Close]

6. Click Apply to validatethe FirstPanel options, then click Close.

Creating the Second Panel Instance

To create a second instance of the class FirstPanelClass:

IBM

1. Drag the FirstPanelClass icon again from the Panel Class palette to the Application
buffer window.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Building the Application

2. Inthe General page of the Panel Instance inspector of the second instance of
FirstPanelClass, changethe fields asfollows:

e Name: secondPanel
e Title: second Panel
3. Inthe Sizes page of the same inspector, change the fields as follows:
e X200
e Y:400
The Panel Instance inspector should look like this:

1¥ Panel Instance

General |Properties | Sizes | Hierarchy

Mame | SecondPanel |
Class | FirstPanelClass |
User Class | |
Title | Second Panel |
Transient | w |
Destroy Callback | Mone w |
Bitmap | A
visible

[] Accelerators

[] bouble Buffering

[Help] [Reset] [Test] [Apply] [Close

4. Click Apply, then Close.

Creating the Second Panel Class

You are how going to build the panel class for the instance of the Second Panel class
illustrated below. (Thisis the Results Panel in Figure 4.1.)

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 117

IIvMessagelsbel IInTestFi=ld

IlvEutton IlvEutton
name: Compute name: Gt
callback: ComputeCB callback: GuitCB

Creating the Panel Data File

1.

Open anew Gadgets buffer window. In the Main window, choose New from the File
menu and then Gadgets in the submenu that appears.

Edit the new buffer to create the panel illustrated above.

Choose Save As... fromthe Filemenu to saveit asclass2.ilv inthe directory of your
choice.

Setting Up the Panel Class

To set up the panel class:

1.
2.

5.
6.

Make sure that c1ass2 isthe current buffer.

Select Panel Class Palette in the Application menu to open the Panel Class palette (if it
isn't already open).

Click the New Panel Classicon & in the Panel Class palette tool bar to create the
panel class.

An icon representing the new panel class, with thetitle class2 appearsin the palette.

Select the c1ass2 panel classand click the Panel Class Inspector icon j in the Panel
Class palette to examineit.

The Panel inspector appears.
On the Genera page of the Panel inspector, type secondpanelClass inthe Classfield.
Click Apply, then Close.

Creating the Second Panel

1.

118 IBM

Click the Edit Application icon =1 in the Main window toolbar to edit the application.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Building the Application

The current Application buffer window is opened and the Panel Class paletteis displayed
(if itisn't already open).

2. To create an instance of the second panel, drag the secondpanelclass icon from the
Panel Class Palette to the Application buffer window.

Aninstance of secondPanelClass appearsin the Application buffer window.
3. Double-click the secondPanelcClass title bar.
The Panel Instance inspector appears.
4. Inthe General page of the Panel Instance inspector, type Result in the Namefield.
This name can be used to retrieve this panel.
5. Change the other fieldsin the appropriate inspector page as follows:
e Title: Result Panel
o Destroy Callback: Exit
e X200
e Y650
The inspector should look like this:

1¥ Panel Instance

General |Properties | Sizes | Hierarchy

Mame | Result |
Class | SecondPanelClass |
User Class | |
Title | Resul: Panel |

Transient

Destroy Callback

Bitmap
Wisible
[] Accelerators
[] bouble Buffering
[Help] [Reset] [Test] [Apply] [Close]

6. Click Apply to validate the options, then click Close to close the inspector.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 119

Generating the C++ Code

To generate the C++ code for thefirst time, choose Generate All from the Application menu.
For our application, IBM® ILOG® Views Studio generates the following files:

€ FirstPanelClass

classl.ilv Containsthe datafor the FirstPanelClass panels.
classl.h Header fileforthe FirstPanelClass.

classl.cc SourcefilefortheFirstpPanelclass (if the C++ sourcefile
extension is . cc on your platform).

€ SecondPanelClass

class2.ilv Containsthe datafor the secondpanelClass panel.
class2.h Header filefor the secondpPanelClass.

class2.cc Sourcefilefor the secondPanelClass.

€ MyApplication

myappli.iva Containsthe description of the application.
myappli.h Header filefor the application class.
myappli.cc Sourcefilefor the application, which also includes the main function.

myappli.mak Simplemake filefor compiling and testing the application.

Thefollowing sectionsdescribethe class1.h, classl.cc, myappli.h, andmyappli.cc

files.

FirstPanelClass Header File

The class1.h header fileis generated as follows:

/==

// File: /tmp/test/classl.h
// IlogViews 4.0 generated header file
// File generated Wed May 03 16:56:53 2000

//

by IBM ILOG Views Studio

#ifndef __classl__header_
#define _ classl_header_

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/textfd.h>
#include <ilviews/gadgets/msglabel.h>
#include <ilviews/gadgets/slider.h>

/==

class FirstPanelClass

120 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Generating the C++ Code

: public IlvGadgetContainer {
public:
FirstPanelClass (IlvDisplay* display,
const char* name,
const char* title,
IlvRect* size =0,
I1Boolean useAccelerators = IlFalse,
I1lBoolean visible IlFalse,
I1UInt properties =0,
IlvSystemView transientFor 0)
IlvGadgetContainer (display,
name,
title,
size ? *size : IlvRect(0, 0, 219, 58),
properties,
useAccelerators,
visible,
transientFor)

{ initialize(); }
FirstPanelClass (IlvAbstractView* parent,
IlvRect* size = 0,
IlBoolean useacc = IlFalse,
I1lBoolean visible = IlTrue)
IlvGadgetContainer (parent,
size ? *size : IlvRect(0O, 0, 219, 58),
useacc,
visible)
{ initialize(); }
!/
virtual void SliderCB(IlvGraphic*) ;
IlvSlider* getSlider () const

{ return (IlvSlider*)getObject(“Slider”); 1}
IlvTextField* getTextField() const
{ return (IlvTextField*)getObject (“TextField”); }
protected:

void initialize();

}i
#endif /* !__classl__header__*/

Header

Thefirst lines of the c1ass1 .h panel class header file give the date and file location for the
generated file. It also tells you what IBM ILOG Views version you are using.

Included Header Files

The following lines show the necessary header files for the generated class:

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/textfd.h>
#include <ilviews/gadgets/msglabel.h>
#include <ilviews/gadgets/slider.h>

For each object contained in the generated panel, IBM ILOG Views Studio searches for its
associated header file. In our example, the class FirstPanelclass hasto include thefiles

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 121

I BM

<ilviews/gadgets/textfd.h>, <ilviews/gadgets/msglabel.h>, and <ilviews/
gadgets/slider.h> for itstext field, message label, and slider objects, respectively.

Base Class

Since we have not modified the base classnamefor FirstpPanelClass, the generated class
isderived from I1vGadgetContainer

Constructors
Two public constructors are generated:

FirstPanelClass (IlvDisplay* display,
const char* name,
const char* title,
IlvRect* size =0,
IlBoolean useAccelerators IlFalse,
IlBoolean visible IlFalse,
I1UInt properties 0,
IlvSystemView transientFor = 0)
: IlvGadgetContainer (display,
name,
title,
size ? *size : IlvRect(0, 0, 219, 58),
properties,
useAccelerators,
visible,
transientFor)

{ initialize(); }
FirstPanelClass (IlvAbstractView* parent,
IlvRect* size = 0,
I1Boolean useacc = IlFalse,
I1lBoolean visible = IlTrue)
: IlvGadgetContainer (parent,
size ? *size : IlvRect(0, 0, 219, 58),
useacc,
visible)
{ initialize(); }

The first constructor builds the panel as a main window. The second builds the panel asa
part of aparent view that isan T1vabstractview.

Callback

Becausethe callback s1idercrisassigned totheslider, IBM ILOG Views Studio generates
its related virtual member function:

virtual void SliderCB(IlvGraphic*) ;

Named Objects

Our two named objects, slider and TextField, can be accessed by the following
generated member functions:
IlvSlider* getSlider() const

{ return (IlvSlider*)getObject (“Slider”); }
IlvTextField* getTextField() const

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Generating the C++ Code

{ return (IlvTextField*)getObject (“TextField”); }

If you do not want IBM ILOG Views Studio to generate these functions, turn off the Names
toggle button in the Panel Class inspector (Options notebook page).

FirstPanelClass Source File

Header
The FirstPanelClass source file starts with following header lines:

/) e - - *— CH++ —*-
// File: /tmp/test/classl.cc

// IlogViews 4.0 generated source file

// File generated Wed May 03 16:56:53 2000

// by IBM ILOG Views Studio

/] mm T

Class Header File
The panel class header fileisthe first included file;

#include <classl.h>

Panel Data

The lines between the #include statement and the callback definition _s1idercs define
the way the panel dataisloaded when the panel class constructor is called. If the Datatoggle
button of the Panel Class inspector (Options notebook page) is turned on, the panel datais
generated in a constant character string. In this case, instead of 1oading the data from afile,
the panel can load its description from the generated string (through an istrstream),
unless there is acompiler limitation.

Callback

Because the callback name s1idercn isassigned to a panel object, IBM ILOG Views
Studio generates the following callback:
static void ILVCALLBACK
_SliderCB(IlvGraphic* g, IlvAny)
{
FirstPanelClass* o = (FirstPanelClass*)
g->GetCurrentCallbackHolder () ->getContainer() ;
if (o) o->SliderCB(g) ;
}

Thisfunction gets the panel class from the graphic object and callsthe related method that is
declared in the class declaration.

Callback Method Definition

Because the Callbacks Definitions toggle button of the Panel Class inspector (Options
notebook page) isturned on, the default definition of the callback method s1idercBis

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 123

generated in the source file. This lets you compile, link and test your application before
writing the real function definition.

The generated callback method looks like this:

void

FirstPanelClass::SliderCB(IlvGraphic* g)

{
const char* className = g->className() ;
IlvPrint (" %s : SliderCB method ...",className) ;

}

When called by a slider, this function prints the following message:

IlvSlider : SliderCB method ...

If you do not want IBM ILOG Views Studio to generate this callback method definition, turn
off the Callbacks Definitions toggle button of the Panel Class inspector (Options notebook
page). In this case, you must write your own version of FirstPanelClass: :SliderCBin
a separate file and link that file object to the application.

initialize Member Function

The generated constructors of the classFirstPanelClass cal the initialize member
function to initialize the panel.

The initialize function loadsthe panel contents from afileor an istrstream,
according to the platform you use to compile the application.

void

FirstPanelClass::initialize()

{

#1f defined (ILVNOSTATICDATA)
readFile (FILENAME) ;

#else /* ITILVNOSTATICDATA */
istrstream str((char*)_data);
read(str) ;

#endif /* !ILVNOSTATICDATA */
registerCallback (“SliderCB”, _SliderCB) ;

}

MyApplication Header File

Header

Like all the generated files, the first lines of the application header file, myappli . h, show
the date and directory path for the generated file, as well as providing the version of
IBM® ILOG® Views:

/) e - - *— CH++ —*-
// File: /tmp/test/myappli.h

// IlogViews 4.0 generated application header file

// File generated Wed May 03 16:56:53 2000

// by IBM ILOG Views Studio

124 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Generating the C++ Code

Included Header Files

The application header file includes the default base class header file and its panel classes
header files:
#include <ilviews/gadgets/appli.h>

#include <classl.h>
#include <class2.h>

MyApplication Class
IBM ILOG Views Studio generates the following application class:

class MyApplication: public IlvApplication {

public:

MyApplication (
const char* appName,
const char* displayName = 0,
int argc = 0,
char** argv = 0

)i

My2Application (
IlvDisplay* display,
const char* appName

)i

~MyApplication() ;

virtual void makePanels() ;
virtual void beforeRunning() ;
FirstPanelClass* getFirstPanelClass() const

{ return (FirstPanelClass*) getPanel (“FirstPanelClass”); }
FirstPanelClass* getSecondPanel () const
{ return (FirstPanelClass*) getPanel (“SecondPanel”); }
SecondPanelClass* getResult() const
{ return (SecondPanelClass*) getPanel (“Result”); 1}
}i
Base Class

The generated classis derived from T1vapplication. See I1vapplication inthe
IBM ILOG Views Reference Manual for a description of this class, which is part of the
IBM ILOG Views library.

Constructors
The generated constructors only call the related base class constructors.

makePanels Method

For each application, IBM ILOG Views Studio generates the makePanels method that is
called when the application isinitialized. This method handles the creation of the generated
application panels. Seetheclass 11vapplication inthe IBM ILOG Views Reference
Manual.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 125

Panel Accessors

For each panel in the application IBM ILOG Views Studio generates a panel accessor which
returns the panel.

MyApplication Source File

Header

Asusua, thefirst lines of the application sourcefile, myappli . cc, show file, date and path
directory for the generated file, as well as providing the version of IBM® ILOG® Views:

[/ mmmmmm - - e CH+ =*-
// File: /tmp/test/myappli.cc
// IlogViews 4.0 generated application source file
// File generated Wed May 03 16:56:53 2000
by IBM ILOG Views Studio

Class Header File

The application source file always includes the generated application class header file:
#include <myappli.h>

makePanels Function Definition

The generated makePanels member function looks like this:

void

MyApplication: :makePanels ()
{

// --- parameters ---

IlvDisplay* display = getDisplay();
IlvRect bbox;

IlvContainer* cont;

// --- FirstPanel ---

bbox.moveResize (200, 200, 500, 500);

cont = new FirstPanelClass (display,
“FirstPanel”,
“First Panel”,
&bbox,
IlFalse,
IlFalse, 0, 0);

addPanel (cont) ;

cont->show () ;

// --- SecondPanel ---

bbox.moveResize (200, 300, 500, 500);

cont = new FirstPanelClass(display,
“SecondPanel”,
“Second Panel”,
&bbox
IlFalse,
IlFalse, 0, 0);

addPanel (cont) ;

cont->show () ;

// --- Result ---

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

}

Generating the C++ Code

bbox.moveResize (200, 400, 500, 500);

cont = new SecondPanelClass (display,
“Result”,
“Result Panel”,
&bbox
IlFalse,
IlFalse, 0, 0);

addPanel (cont) ;

cont->setDestroyCallback (I1vAppExit, this);

cont->show () ;

// --- The Exit panel is not wanted ---

setUsingExitPanel (I1False) ;

This application contains three panels: FirstPanel and Secondpanel are part of the class
FirstPanelClass. Thefollowing points should be noted:

4

4

Each panel is created at the position specified in the x and y fields of the Panel Instance
inspector (Sizes notebook page).

The size of the rectangle passed to the panel constructor does not really affect the panel
sizes, since they are resized when their dataisloaded. If the Generate Size toggle button
of the Panel Instance inspector (Sizes notebook page) is turned on, the Bounding Box
Width and Height values specified in the Panel Instance inspector are used to resize the
panel after it is created.

Each panel is added to the application after being created:

addPanel (cont) ;

If the Visible toggle button in the Panel Instance inspector (General notebook page) is
turned on, that panel is shown by the show () member function:

cont->show () ;

The following code is generated because the destroy callback of the Result panel is set to
Exit in the Panel Instance inspector (General notebook page):

cont->setDestroyCallback (I1vAppExit, this);

Since the Exit panel is not wanted, the following code is generated:

setUsingExitPanel (I1False) ;

main Function

Because themain () toggle button is checked in the Options notebook page of the
Application Inspector, themain function is generated in the application sourcefile:

main(int argc, char* argv[])

{

IBM

// IlvSetCurrentCharSet (<YourCharSet>) ;

IlvSetLanguage() ;

MyApplication* appli = new MyApplication(“myappli”, 0, argc,
argv) ;

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 127

if (!appli->getDisplay())
return -1;

appli->run() ;

return 0;

}

This function creates an application of class MyaApplication. Before running the
application, the function checks whether the created application succeeded in creating a

display.
If you do not want the main function to be generated, turn off themain () toggle button.

Testing the Generated Application

To test the generated application, run themake utility in the application object directory
using the generated make file, then launch myapp1i. Following is an example of the
commands. If the object directory is /tmp/test:

cd /tmp/test

make -f myappli.mak
myappli

To end the application, close the Result panel with your window manager.

Extending the Generated Code

128

To add a member function and write an appropriate version of s1idercs, you will derive
theMyFirstPanelClass from FirstPanelClass.

Defining a Derived Class

Inthefilemyclassi.h, youwill declare MyFirstPanelClass likethis:

#include <classl.h>

class MyFirstPanelClass
: public FirstPanelClass {
public:
MyFirstPanelClass (IlvDisplay* display,
const char* name,
const char* title,
IlvRect™* size =0,
IlBoolean useAccelerators IlFalse,
IlBoolean visible IlFalse,
I1lvUInt properties 0,
IlvSystemView transientFor 0):
FirstPanelClass (display,
name,
title,
size,

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Extending the Generated Code

useAccelerators,
visible)
{}
virtual void SliderCB(IlvGraphic*) ;
IlvInt getValue() const { return getTextField()->getIntValue(); }
}i

Base Class

MyFirstPanelClass isderived from FirstPanelClass.

Constructor

You only need to define one constructor. This constructor builds the panel as a main window
and callsits base class constructor.

Callback Method

The s1idercs virtua member functionis redefined in the derived class to display the slider
valuein thetext field. Here is a possible definition of such afunction:

void
MyFirstPanelClass::S1liderCB(IlvGraphic*)

{
getTextField()->setValue (getSlider () ->getValue(), IlTrue);

}

getValue Member Function
To get the value displayed by the panel, you must define this inline member function:

IlvInt getValue() const { return getTextField()->getIntValue(); }

Using the Derived Class

TouseMyFirstPanelClass instead of FirstPanelClass, which is needed to create
FirstPanel:

& Set the User Classfield in the Panel Instance inspector.

& |nsert a#include statement in the generated application header file.

Setting Up the User Class
To set up the user class:

1. Inthe Application buffer window, double-click the first instance of FirstPanelClass.

2. Inthe Panel Instance inspector, type MyFirstPanelClass inthe User Classfield:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 129

130

1¥ Panel Instance |:||E|r>__<|

General |Properties | Sizes | Hierarchy

Mame | FirstPane! |
Class | FirstPanelClass |
User Class | ¥y FirstPane |
Title [First Panel |
Transient | v |
Destroy Callback | Mone w |
Bitmap | A
[] visible

[] Accelerators

[] bouble Buffering

[Help] [Reset] [Test] [Apply] [Close

3. Click Apply, then Close.

l Note: Seps 2 and 3 can be repeated for secondpanel.

Instead of generating the following code in themakePanels function:

cont = new FirstPanelClass (display,
“FirstPanel”,
“First Panel”,
&bbox,
IlFalse,
IlFalse, 0, 0);
)i

IBM ILOG Views Studio generates the code below in the application sourcefile
myappli.cc:

cont = new MyFirstPanelClass (display,
“FirstPanel”,
“First Panel”,
&bbox,
IlFalse,
IlFalse, 0, 0);
)

SinceMyFirstPanelClass isdeclared inmyclassl.h, you need to includethisfilein
myappli.h.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Extending the Generated Code

Inserting Code in the Generated Application Header File

1. Choose Application Inspector from the Code menu. The Application inspector is
displayed.

2. Inthe Application inspector, open the Header notebook page.

3. Inthe Header notebook page, type #include <myclassl.h>:

¥ Application: MyApplication

General | Options Header | Source Scripk

Code for the header file

#tinclude <myclassi.h>

[Help] [Reset] Apply] [Close

4. Click Apply, then Close.

When generating the application source file again, IBM ILOG Views Studio inserts the
following expression in the application header file:

/] s
// --- Inserted code

#include <myclassl.h>

// --- End of Inserted code

Linking Additional Object Files

The make file generated by IBM ILOG Views Studio takes care of compiling the generated
filesand linking the application. In addition, it can link your own object files to the
application through the make useroBJs variable. You are responsible for your own object
files. However, you can write your own make file to maintain the additional object files by
copying the make options generated by IBM ILOG Views Studio.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 131

132

For example, if the definition of theMyFirstPanelClass: : S1iderCB iSin your object
filemyclassi. o, you can use the generated make file myappli .mak likethis;

make -f myappli.mak USEROBJS=myclassl.o

Defining Callbacks without Deriving Classes

In the previous section, we derived a panel class and defined the callback methodsin the
derived class. For secondPanelClass, wewill now insert its callback methods in the
generated source file without deriving a subclass:

1. Inthe Panel Class palette, select secondpanelclass and click the Panel Class
Inspector icon in the Panel Class palette tool bar.

2. Inthe Panel Classinspector, go to the Options notebook page and turn off the Callback
Definitions toggle button.

1Y Panel Class: SecondPanelClass

General | Dptions | Header | Source

Generate

MNarnes
Callback Declarations
Callback Definitions

Optional Constructors
|:| Syskem View

[System view Child
[view Child

|:| Top View

[Help] [Reset] [Apply] [Close]

3. Open the Source notebook page and type the following code in the section “ Code for the
sourcefile’:

#include <ilviews/gadgets/appli.h>
#include <myclassl.h>

void
SecondPanelClass: :ComputeCB (IlvGraphic*)
{
IlvApplication* appli = IlvApplication::GetApplication(this);
MyFirstPanelClass* panl =
(MyFirstPanelClass*)appli->getPanel (“"FirstPanel”) ;

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Extending the Generated Code

MyFirstPanelClass* pan2 =
(MyFirstPanelClass*)appli->getPanel (“SecondPanel”) ;

getResult () ->setValue (panl->getValue() + pan2->getValue(), IlTrue);
}
void
SecondPanelClass: :QuitCB(IlvGraphic*)
{

delete IlvApplication: :GetApplication(this);

I1vExit (0) ;
}

4. Click Apply to validate the operation, and Close to quit the inspector.

5. Inthe Panel Class User Code panel, click Apply.
When generating again, IBM ILOG Views Studio inserts your two callback methods in the

class2.cc file

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 133

134 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Customizing the Gadgets Extension
of IBM ILOG Views Studio

This chapter provides alist of the configuration options for the Gadgets extension of
IBM® ILOG® Views Studio. You can use these options to customize Studio.

& Configuration Options for the Gadgets Extension

Configuration Options for the Gadgets Extension

IBM® ILOG® Views provides you with the following configuration options for the Gadgets
extension:

¢ additionallLibraries "<library list>" letsyou specify alist of
IBM ILOG Viewslibrariesto link into the generated application.
For example:

studio {
additionalLibraries "ilvadvgadmgr ilvgadmgr ilvmgr";

}

& applicationBaseClass <className> |letsyou specify the name of the base class of
the generated application class. The default valueis T11vapplication.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 135

€ applicationBufferBackground "<colorName>" |letsyou specify the background
color of the Application buffer window. The default valueis "cadet Blue".

€ applicationFileExtension "<extension>" letsyou specify the extension of the
application file. The default valueis . iva".

€ applicationHeaderFile "<header>" |letsyou specify the header fileto beincluded
in the generated application header file. The default valueis "<ilviews/appli.h>".

& defaultApplicationName <name> letsyou specify the name of anew application.
The default valueis testapp.

For example:

studio {
defaultApplicationName newappli;
}

& defaultCallbackLanguage <language> letsyou specify the callback language
used by default when a callback is attached to an object. This option only applies to
IBM ILOG Views Studio Script extension (3sstudio). Itsdefault valueisJvscript. If
you do not want callbacks writtenin jsstudio to default to gvscript, set thisoption
to none.

For example:

studio {
defaultCallbackLanguage none;
}

¢ defaultHeaderDir "<dir>" letsyou specify the header file directory set by default
for new applications. The specified directory is relative to the application directory.
Once the application is created, this directory can be modified viathe Application
inspector.

For example:

studio {
defaultHeaderDir "include";

}

& defaultHeaderFileScope "<dir>" letsyou specify asubdirectory whichis
generated in the #include statements. Once the application is created, the header file
scope can be modified via the Application inspector.

For example:

studio {
defaultHeaderFileScope "myinclude/";
}

& defaultObjDir "<dir>" letsyou specify the makefile directory that is set by default
for new applications. The specified directory isrelative to the application directory. Once
the application is created, it can be modified through the Application Inspector.

136 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

IBM

Configuration Options for the Gadgets Extension

For example:

studio {
defaultObjDir "obj";
}

defaultSrcDhir "<dir>" letsyou specify the source file directory that is set by
default for new applications. The specified directory is relative to the application
directory. Once the application is created, this directory can then be modified through the
Application Inspector.

For example:

studio {
defaultObjDir "obj";
}

defaultSystemName "<name>" |etsyou specify thetarget system for which you want
to generate the application makefile. Thisinformation is not specific to an application. It
concerns only the system you use to compile the generated application. By default, the
makefile is generated for the system on which IBM ILOG Views Studio is running. Use
this option if you want to modify the platform for which the makefile will be generated
by default.

For example:

studio {
defaultSystemName "sparc_5_4.0";
}

headerFileExtension "<extension>" letsyou specify the extension of the
generated header file. The default valueis " .h.

For example:

studio {

headerFileExtension ".hxx";

}

JvScriptApplication <true/false> letsyou specify whether the generated C++
application will use IBM ILOG Script for IBM ILOG Views. This option isonly
applicable when you use the GUI Application plug-in with the jsstudio extension.

For example:

studio {
JvScriptApplication false;
}

makeFileExtension "<extension>" letsyou specify the extension of the generated
makefile. The default valueis " .mak". For example:
studio {

makeFileExtension ".mk";

}

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 137

€ noPanelContents <true/false> letsyou specify whether the contents of the panel
instances must be loaded when you open an application file. This option defaults to
false. Usethisoption to reduce the loading timeif you often edit applications
containing alot of panels. Then, you can explicitly load the contents of a panel by
choosing Load Contents from the panel instance menu in the Application buffer window.

& panelBaseClass <className> letsyou specify the base class name that will be
automatically given to newly created panel classes, whatever the buffer type. If this
option is not specified, the base class name will depend on your buffer type.

For example:

studio {
panelBaseClass MyGadgetContainer;

}

® sourceFileExtension "<extension>" letsyou specify the extension of the
generated C++ source file regardless of the selected target platform. The default value
depends on the target platform that is selected in the Application inspector panel.

& system <systemDescription> declarestheinformation related to the target
platform, needed by the editor to generate your application files. This option can be
repeated. Itsformat is the following:

system "<system-name>" {
<option-1> <value-1>;

<option-n> <value-n>;

}

system-name iSthe IBM ILOG Views platform name, such asmsvc5 or
sparc_5_4.0. You should not have to modify these options since they are given for all
the platforms on which IBM ILOG Views is available. Following isthe list of the
possible options used in the system description:

e compiler "<command>" Specifiesthe command to run the compiler on this
platform.

e compilerOptions "<options>" Specifiesthe optionsto be passed to the compiler
for producing an object file.

e linker "<command>" specifiesthe command to run thelinker on this platform.

e linkerOptions "<options>" Specifiesthe optionsto be passed to the linker for
producing an executablefile.

e libraries "<libraries>" liststhe|BM ILOG Views librariesto link with for
producing an executablefile.

e systemLibraries "<libraries>" liststhe system librariesto link with for
producing an executablefile.

138 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

IBM

Configuration Options for the Gadgets Extension

e motif Either true or false toindicate whether the platform can use Motif.

€ toolBarItem <commandName> <toolBarName> [-before <refCommandName>]

lets you add a command <commandName> in the tool bar <tool1BarName>. This option
can be repeated. Optionally, you can specify acommand <re fCommandName> before
which you want to insert the new command by using the keyword -before.

For example:

studio {
toolBarItem SelectLabelMode IlvStGadgetBuffer -before
SelectFocusMode;

}

userSubClassPrefix "<prefix>" letsyou customize the prefix of the class name
for a generated panel subclass. By default, this prefix is "My .

userSubClassSuffix "<suffix>" letsyou specify the suffix of the class namefor a
generated panel subclass.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 139

140 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio

This chapter describes additional ways to extend IBM® ILOG® Views Studio when you
have installed the Gadgets extension. It contains the following sections:

& Extending IBM ILOG Views Sudio
& Integrating your Own Graphic Objects
& Extending IBM ILOG Views Sudio

Note: To extend IBM ILOG Views Sudio, you need the IBM ILOG Views Gadgets, and
IBM ILOG Views Manager packages.

Extending IBM ILOG Views Studio Components

This section describes the IBM® ILOG® Views Studio components that you can extend.
& Defining a New Command

& Defining a New Panel

¢ |IBM ILOG Views Studio Messages

& Defining a New Buffer

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 141

& Defining a New Editing Mode
& TheClass llvSExtension

Defining a New Command

A command is an action that the user can perform using the editor. A command isa C++
class, I1vstCommand, which is described in thefile <ivstudio/command.h>. Itis
defined by:

& A declaration that contains information to be displayed in a menu, an icon, or ahelp
message and alist of message namesto be sent when the command has been successfully
executed. Predefined commands are declared in the command description file
studio.cmd. For more information on thisfile, see the section “1BM ILOG Views
Studio Command File” inthe IBM ILOG Views Studio User’s Manual.

& An action that isdefined in the virtual member function doxt. It returns O when no error
occurs; otherwise it returns the corresponding error.

Command Errors

AnIBM ILOG Views Studio error is asubclass of the T11vstError class, which is declared
inthefile <ivstudio/error.h>. Anerror can be returned by the do1t member function
of acommand. An error is defined by a string message and atype. There are three types of
errors:

€ IlvStInformation

¢ IlvStWarning

€ IlvStFatal

To add a new command, do the following:

1. Define asubclass of 11vstCommand to define the virtual member function doxt.
2. Add adescriptor in acommand declaration file or directly in an option file.

3. If you use anew command declaration file, declare it in your option file using the
commandFile option.

4. Register the command in the editor using the member function
IlvStudio: : registerCommand, giving the command name and afunction to build an
instance of the command.

Predefined Command Classes
There are two subclasses for common needs:

€ T1lvStClickaddobject toadd anew object to the current buffer.

142 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio Components

& TIlvStShowPanel todisplay apanel onthe screen. The construction of theinstance uses
the panel to be displayed. If the panel is aready visible, this command just hides the
panel.

Executing a Command

If the editor is requested to execute acommand and it fails, the corresponding error is
returned by the command execution procedure and is managed by the editor. If it succeeds,
thelist of messages associated with the command are sent by the editor. It means that the
subscriptions attached to each message are executed.

Defining a New Panel

The IBM® ILOG® Views Studio interface is composed of several panels. Panels are
instances of asubclass of T11vstPanelHandler, Whichisdescribed inthefile<ivstudio/
panel.h>. Thisclassis not a gadget container class, but rather a handle to the actua
graphic panels that areinstances of 11vGadgetContainer. It allowsyou to keep the
graphic aspect of the panel completely separate from its behavior within IBM ILOG Views
Studio. Following are the virtual member functions that may be redefined:

& connect initializes the panel. This method is usually called after the panel has been
created. It is meant to separate the constructor from initialization.

& apply isassociated with the apply callback that you can attach to any object.
® cancel isassociated with the cancel callback that you can attach to any object.
& reset isassociated with the reset callback that you can attach to any object.

The show and hide methods of the panel handler must be used to show and hide an
IBM ILOG Views Studio panel. Never directly show or hide the handled gadget container.

The subclass T1vstbialog isahandle for aninstance of T1vDialog.

IBM ILOG Views Studio Messages

AnIBM® ILOG® Views Studio message contains information that describes an event that
took place. A message collects subscriptions. A subscription is an action that is performed
whenever a message is sent. Messages are never created by the user, but are accessed
through the editor using their names.

A subscription isasubclass of the T1vstSubscription class, whichisdeclared in thefile
<ivstudio/message.h>. It isassociated with areceiver and hasado1t virtual member
function. For example, when a panel wantsto react to the objectselected messagethat is
generated each time the object selection changesin the current buffer, it subscribesto this
message using a subscription instance. This can be done in the panel constructor by calling
the member function subscribe 0nthe message instance. The messageinstanceis given by

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 143

the editor through its name. Then, whenever the message objectSelected issent, the
doTt member function of this subscription isinvoked.

Defining a New Buffer

A buffer isadocument that is edited in IBM® ILOG® Views Studio. It uses an
IlvManager to display, edit, save, and read its contents. If you need to subclass the
manager to save more information concerning your objects, for example, you have to
subclass a corresponding buffer. The I11vstBuffer classis defined to encapsulate the
I1lvManager, and the T1vstGadgetBuf fer classisdefined to encapsulate an
IlvGadgetManager. Theseclasses aredeclared inthefile <ivstudio/stbuffer.h> and
<ivstudio/gadgets/gadbuf.h>. If you need to define a specialized manager classto
edit and save your graphic objects, you have to define a corresponding buffer class.

Registering Buffer Types

When loading a . 11v file, IBM ILOG Views Studio first reads the file creator class
information to determine the type of the buffer that must be created for editing this file. For
example, when reading afile saved by an T1vGadgetManager, IBM ILOG Views Studio
sees that the creator class of that . 11v fileis I1vGadgetManagerOutputFile and then
createsan r1vstGadgetBuf fer. Thisis made possible by the

IlvStBuffers: :registerType function that allowsyou to associate a buffer constructor
function with afile creator class. Use this function to register your own buffer types.

IBM ILOG Views Studio usesan T1vstBuf fers object to manage all the buffers. You can
obtain areference to this object by caling the T1vstudio: :buf fers function:

static IlvStBuffer*
MakeMyBuffer (IlvStudio* editor, const char* name, const char¥*)
{

// MyGadgetBuffer is a subtype of IlvStBuffer.

return new MyGadgetBuffer (editor, name) ;

editor->buffers () .registerType ("MyGadgetManagerOutput",
MakeMyBuffer) ;

Panel Classes

AnIlvstPanelClass objectisan IBM ILOG Views Studio object that describes the C++
panel class you wish to generate for a buffer. It contains all the information that

IBM ILOG Views Studio requires to generate a subclass of T1vContainer using the data
edited in your buffer.

An IlvstPanelClass Object contains the class name, the base class, the base name of the
file, the directories where the files are generated, and so on. Some of its properties are
related to the type of the corresponding buffer, for example, the base class: a Gadgets buffer

144 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio Components

(T1vstGadgetBuffer) isused to generate a subclass of T11vGadgetContainer, Whilea
2D huffer (11vstBuffer) isused to generate asubclass of T1vContainer.

L et us suppose that you have defined the class MyContainer, a subclass of
IlvGadgetContainer that can read additional information saved by your manager. You
will then want the generated class to derive from MmyContainer. You may specify the base
classin the Panel Class inspector each time you create a panel class using your buffer, but
the best way is to automatically set up the panel class so its base class defaults to
MyContainer.

You can do this by defining the setUppPanelClass virtual member function for your buffer.
Thisfunction iscalled when IBM ILOG Views Studio creates a panel class from your buffer.
void
MyBuffer: :setUpPanelClass (IlvStPanelClass* pclass) const
{

IlvStGadgetBuffer: :setUpPanelClass (pclass) ;

pclass->setBaseClass ("MyContainer") ;

}

Integrating Customized Container Classes

In many situations, IBM ILOG Views Studio creates instances of containers. For example,
when you test a panel or add it to the Application buffer window. To select the appropriate
classes IBM ILOG Views Studio uses a set of container information objects. An
IlvStContainerInfo object providesthe information that IBM ILOG Views Studio
needs about a container subclass, and creates instances of that subclass.

To integrate a class of containers, you have to define asubclass of T1vstContainerInfo
and add an instance of thisclassto the IBM ILOG Views Studio container information set as
follows:

studio->addContainerInfo (myContainerInfo) ;

Defining a New Editing Mode

An editing modeisan IBM® ILOG® Views Studio object that encapsulates an object of
type I1vManagerViewInteractor. TO ald a new editing mode:

1. Create an object of the class T1vstMode.

2. Add thisobject to the IBM ILOG Views Studio mode delegate 11vStModes.

3. Define acommand constructor that returns an instance of the T11vstsetMode class.
4. Register thiscommand constructor.

5. Declare the command descriptor in acommand declaration file.

Once the editing mode has been created, you can associate it with a bitmap and add it to the
tool bar to the left of the Main window.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 145

Adding an Object to the IBM ILOG Views Studio Mode Delegate

T1lvstudio hassevera “delegates’ that are dedicated to handling specific services.
T1vstudio hasamember of the class 11vstModes to manage the modes. Its reference can
be accessed by:

IlvStModes& IlvStudio::modes /() ;

You can use the following function to add your editing mode:

void IlvStModes::add(IlvStMode* mode)

Defining a Command Constructor that Returns an Instance of the llvStSet-
Mode Class

The command constructor to be defined can be a simple function. The Menu mode, for
example, can be coded as follows:

¢ Adding the new mode:

editor->modes () .add (new IlvStMode (editor,
"Menu",
"SelectMenuMode",
new IlvMakeMBLinkInteractor)) ;

¢ Command constructor function:

static IlvStCommand*
MkSelectMenuMode (I1vStudio*)
{

return new IlvStSetMode ("Menu") ;

}

The Class llvStExtension

Toinitialize anew extension and add it to IBM® ILOG® Views Studio, you have to derive a
classfrom r11vstExtension defining a set of methods that will be invoked in a predefined
sequence. The constructor of T1vStExtension takes the following two parameters:

name isthe name of the extension.
& editor istheinstance of the editor that is being extended.

The congtructor of the I1vstExtension class adds the new instance to the extension list of
the editor. You must create an instance of your extension before initializing the T1vstudio
instance. When the editor is deleted, thisinstance is also deleted. An extension must not be
explicitly deleted.

Hereisan example:
#include <ivstudio/studext.h>

class MyStudioExtension
: public IlvStExtension {

146 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio Components

public:
MyStudioExtension (IlvStudio* editor) ;
virtual IlBoolean preInitialize();
virtual IlBoolean initializePanels() ;
virtual IlBoolean initializeCommandDescriptors();
virtual IlBoolean initializeBuffers();
virtual IlBoolean initializeInspectors();
}i

int
main(int argc, char* argv(])

{

IlvSetLanguage() ;

// --- Display ---

IlvDisplay* display = new IlvDisplay("ivstudio", "", argc, argv);
if (display->isBad()) {

IlvFatalError ("Couldn't open display");
delete display;
return 1;

}

// ---- Create and initialize the editor ---
IlvStudio* editor = new IlvStudio (display, argc, argv);
if (editor->isBad()) {
IlvFatalError ("Could not initialize the editor");
delete display;
return 2;
}
new MyStudioExtension (editor); // added line
editor->initialize();
editor->parseArguments () ;
editor->mainLoop () ;
return 0;

}

First Initialization Step

ThepreInitialize method isthefirst oneto beinvoked when the editor isinitidized. At
this stage, configuration files have not yet been read.

What you should do in this method:

& Complete the display path so that it contains the directories where your configuration
and datafiles are located.

4 Add aconfiguration file.

& |f you define a buffer type and want it to be the default buffer when the editor is
initialized, you have to set the default constructor in this method.

For example:

// A buffer constructor.
static IlvStBuffer* ILVCALLBACK
MakeMyBuffer (IlvStudio* editor, const char* name, const char*)
{
return new MyGadgetBuffer (editor, name) ;

}

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 147

static const char* UserData = "../data";

I1Boolean

MyStudioExtension: :preInitialize()

{
IlvStudio* editor = getEditor();
// Add the path.
editor->getDisplay () ->prependToPath (UserData) ;
// Add an option file.
editor->addOptionFile ("mystudio.opt") ;
// Must be done here so
// the first default buffer will be a MyGadgetBuffer.
editor->buffers () .setDefaultConstructor (MakeMyBuffer) ;
return IlTrue;

}

Initializing Buffers

TheinitializeBuffers methodis called after the predefined buffers areinitialized. You
can complete the buffer initialization and the related initializations in this method.

For example:

I1Boolean

MyStudioExtension::initializeBuffers()

{
IlvStudio* editor = getEditor();
editor->buffers () .registerType ("MyGadgetManagerOutput", MakeMyBuffer) ;
return IlTrue;

}

Initializing Command Descriptors

The initializeCommandDescriptors method is called after the command descriptors
areread and after the predefined command constructors are registered. You can register your
command constructorsin this method.

For example:

static IlvStCommand*
MkMyShowPanel (I1lvStudio* editor)
{
return new IlvStShowPanel (editor->getPanel ("MyPanel"));

}

static IlvStCommand*
MkMyAddClass (I1lvStudio*)
{

return new MyAddClass;

}

static IlvStCommand*
MkMyNewBuffer (IlvStudio*)
{

return new MyNewBuffer;

}

148 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio Components

I1Boolean

MyStudioExtension::initializeCommandDescriptors ()

{
// Register my commands.
IlvStudio* editor = getEditor();
editor->registerCommand ("MyShowPanel", MkMyShowPanel) ;
editor->registerCommand ("AddMyClass", MkMyAddClass);
editor->registerCommand ("MyNewBuffer", MkMyNewBuffer) ;
return IlTrue;

}

Initializing Panels

When the initializePanels method iscalled, the panel properties are loaded and the
predefined panels are created, but the panel properties are not yet applied to the panels.
Create your own panelsin this method as follows:

I1Boolean
MyStudioExtension::initializePanels ()
{
IlvStudio* editor = getEditor();
// Create MyGadgetPalette.
MyGadgetPalette* pal = new MyGadgetPalette(editor) ;
pal->connect () ;
// Create MyPanel.
MyPanelHandler* pan = new MyPanelHandler (editor, "MyPanel");
pan->connect () ;
return IlTrue;

}

Registering Inspectors

To register an inspector panel, you have to map an object that is able to create the inspector
panel to the class name of the inspected object. The inspector panel builder must derive from
theclass11vstInspectorPanelBuilder. To declare aninspector panel builder class, you
must use the macro I1vStbefineInspectorPanelBuilder, asfollows:

IlvStDefineInspectorPanelBuilder (MyClassInspector, \
MyClassInspectorBuilder)

The mapping used to register an inspector panel is done inside the
initializeTInspectors method, whichis called after the predefined inspectors are
initialized.

Here is how you add an inspector panel builder:

I1Boolean
MyStudioExtension::initializeInspectors()
{
IlvStudio* editor = getEditor();
editor->inspector () .registerBuilder ("MyClass",
new MyClassInspectorBuilder) ;
return IlTrue;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 149

Initializing Editing Modes

The initializeModes method iscalled after the predefined editing modes are initialized.
If you provide an editing mode, you can initialize it here.

Last Initialization Step

ThepostInitialize method isthe last method to be called.

Integrating your Own Graphic Objects

This section explains how to integrate your own graphic object subclasses into
IBM® ILOG® Views Studio.

Follow these steps to integrate a new class:
1. Definethe command that will be used to add an instance of the class to the current buffer.

2. Declaretherequired #include statement to be generated in the panel classthat uses
your objects.

3. Put aninstance of your classin the existing Palettes panel or provide your own pal ette.

4. Provide an Inspector panel to edit the properties of your objects.

Defining a New Command to Add an Object

To add an instance of auser-defined classto IBM® ILOG® Views Studio, you have to write
anew command. Theclass 11vstclickaddobject definesacommand that can be used to
add an object at the position indicated by a mouse click. To create an instance of a user-
defined graphic class, you will have to redefine its virtual member function makeobject in
aderived class, as shown in the example below:

#include <ivstudio/edit.h>

class MyAddClass: public IlvStClickAddObject {

protected:
virtual IlvStError* makeObject (IlvGraphic*& obj, IlvStudio* ed, IlvAny) {
MyClass* mc = new MyClass (ed->getDisplay (), IlvRect (0, 0, 40, 40));
obj = mc;
return 0;

}i

The following command constructor creates and returns a new instance of the user-defined
class:
static IlvStCommand*

MkMyAddClass (I1lvStudio*)

{
return new MyAddClass;

150 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Integrating your Own Graphic Objects

}

You can then create a subclass of I1vstExtension and define the
initializeCommandDescriptors method to register the command constructor, as
follows:

I1Boolean

MyStudioExtension::initializeCommandDescriptors ()

{
getEditor () ->registerCommand ("AddMyClass", MkMyAddClass) ;
return IlTrue;

}

In an option file, you can write your command declaration like this:

studio {
VA
command AddMyClass {
label "MyClass";
prompt "Add an object of my class";
category add;
}
//
}

The name given to the command is the same as the one registered with the editor. In this
example, the command is displayed in the add category of the Commands panel.

If required, you can declare your option file using the TLVSTOPTIONFILE environment
variable.

Adding the Include File and Library File of a New Class to the Generated Code

The C++ code that defines a panel containing an instance of a new user-defined class must
contain the #include statement corresponding to the new class. To add thisinstruction,
insert the following code in an initialization method of your extension class.

For example:
#include <ivstudio/appcode.h>

IlBoolean

MyStudioExtension: :initializeBuffers ()

{
// If the IlvRegisterClass is not already done.
This macro must be called only once.
IlvRegisterClass (MyClass, TheSuperClass) ;
IlvRegisterClassCodeInformation (MyClass, "<myclass.h>", "mylib");
//
return IlTrue;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 151

Customizing the Palettes Panel

You can add your own palettes to the Palettes panel using the . opt file. To add a new
palette, define the node that corresponds to the new palette in the tree gadget, and provide
the data file containing the objectsin that palette. In the option file, you can specify the class
of the container that is used to read and display datafiles. You can also remove a predefined
palette and specify the pal ette that is selected by default.

The Palettes panel is split into two areas. The area at the top of the panel displaysatree
gadget, while the bottom area displays a scrolled view. The tree gadget represents the
hierarchy of available palettes from which you can choose. A container in the scrolled view
displays the contents of the selected palette. Each node in the tree corresponds to a palette
descriptor, which is defined by aname, adatafile, alabel, and the location of the nodein the
tree. The palette descriptor has its own container.

The container of a palette is created when the palette is selected for the first time. If the
container classis specified, IBM® ILOG® Views Studio uses the corresponding container
information (I1vstContainerInfo) to create an instance of the specified class. By
default, it uses an T1vGadgetContainer object. If the palette has a specified datafile, the
created container reads that data file. All the palette containers are hidden, except the one
that is attached to the selected palette.

Customize Options

You can use an option file to add new pal ettes to the Palettes panel, remove predefined
palettes, or designate the default pal ette:

To describe a new palette, use the dragbroppPalette option asfollows:

dragDropPalette "<palette name>" {
<option-1 <value-1>;

<option-n <value-n>;

}

To remove a predefined pal ette from the tree gadget in the Pal ettes panel, use the
removeDragDropPalette option like this:

removeDragDropPalette "<palette name>"

To specify the palette that is selected by default, use the defaultbDragbropPalette
option:

defaultDragDropPalette "<palette name>"

Broadcast Messages

Following are the messages that are broadcast when a palette container isinitialized or when
apaletteis selected:

152 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Integrating your Own Graphic Objects

€ PaletteContainerInitialized Theargument isthe descriptor of the selected
palette. When this message is broadcast, the container is created, its datafileisread and
the objects in the palette are initialized.

& PaletteSelected Theargument isthe descriptor of the selected palette.

Example

The following example shows how to use options related to the IBM ILOG Views Studio
palettes:

// mystudio.opt
studio {
dragDropPalette "MyRootPalette" {
dataFileName "myfilel.ilv";
path -before "Gadgets";
}
dragDropPalette "MyPalette" {
label "My Palette";
bitmap "myicon.gif";
dataFileName "myfile2.ilv";
path "Gadgets" "Miscellaneous";
}
removeDragDropPalette "ViewRectangles";
defaultDragDropPalette "MyRootPalette";

Defining and Integrating an Inspector Panel
To inspect the properties of a user-defined graphic object, do the following:
1. Define anew inspector panel classfor this object class.

2. Integrate thisinspector classinto IBM® ILOG® Views Studio.

Defining an Inspector Panel Class

The new inspector panel class must derive from the T1vst InspectorPanel class, whichis
declared in thefile $ILVHOME/studio/ivstudio/inspectors/insppnl.h. You could
aso derivethisclassfrom 11vstIGraphicInspectorPanel to automatically inherit from
the inspection features of propertiesthat are common to 11vGraphic objects. These
properties will be displayed in two notebook pages. General and Callbacks. This class can
befoundinthefile $ILVHOME/studio/ivstudio/inspectors/gadpnl.h. It definesan
inspector panel that edits a subclass of an 11vGraphic class.

To derive this class, define the following functions:

& The constructor cals the parent class constructor providing adisplay, the title of the
panel, a datafile name, and the update mode. The last two parameters are optional.

& initializeEditors iscalledto register the accessors and editorsin the inspector
panel. Do not forget to declare the notebook pages that should appear in the inspector
panel at the beginning of the method.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 153

& initFrom iscaled whenever the inspector panel isinitialized with anew object. It
initializes the panel according to the given object. For example, if you edit the x position
of the object in aline editor, you set the label of the line editor to the position of the x
object using this function. By default, this method initializes accessors and editors and
should not be overridden.

& applyChange iscalled when the user clicks the Apply button to apply changes to the
inspected object. By default, this method delegates his role to accessors and editors and
should not be overridden.

Thefollowing is an example of these function definitions:

class MyClassInspector
: public IlvStIGraphicInspectorPanel
{
public:
// Constructor
MyClassInspector (IlvDisplay* display,
const char* title,
const char* filename = 0,
IlvSystemView transientFor = 0,
I1lvStIAccessor: :UpdateMode mode
= IlvStIAccessor: :0nApply) :
IlvStIGraphicInspectorPanel (display, title, filename,
transientFor, mode) {}
virtual void initializeEditors() ;
}i

IlvStDefineInspectorPanelBuilder (MyClassInspector, \
MyClassInspectorPanel) ;

MyClassInspector: :MyClassInspector (IlvDisplay* display,
const char* title,
const char* filename,
IlvSystemView transientFor,
I1lvStIAccessor: :UpdateMode mode)
:IlvInspectorPanel (display, title, filename, transientFor, mode)

{3

void
MyClassInspector::initializeEditors ()
{
IlvStIGraphicInspectorPanel::initializeEditors();
// Add notebook pages.
addPage ("&Specific", "../data/myclinsp.ilv";
// Add editors.
link ("xfield", IlvGraphic::_xValue) ;
link ("yfield", IlvGraphic::_yValue) ;
}

Integrating the Inspector Panel into IBM ILOG Views Studio

To integrate the new inspector into the editor, modify your extension class to define the
initializeInspectors asfollows:

IlBoolean

154 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio: An Example

MyStudioExtension::initializeInspectors ()
{
IlvStudio* editor = getEditor();
editor->inspector () .registerBuilder ("MyClass",
new MyClassInspectorPanel) ;
return IlTrue;

Extending IBM ILOG Views Studio: An Example

The example in this section shows how to create an editor that associates predefined
callbacks with any graphic object. 10adilv isapredefined callback that takes the name of
thefile to be loaded as a parameter. This name is stored in graphic objects as a property.

Thefirst task isto derive aclassfrom 11vGadgetManager to redefine read and write for
storing and restoring the new property. This part is not described here. We assume that you
have a class MyManager that saves objects with the descriptor MyGadgetManagerOutput
and aclassMyContainer restoring objects saved by MyManager.

Follow these steps to extend the editor:
1. Defining a New Buffer associated with the new manager and container.
2. Defining a New Command to create a buffer of the new type.

3. Defining a New Panel to associate the file name with objects.

Defining a New Buffer Class

Define asubclass MyGadgetBuffer from I1vstGadgetBuffer. Below isaheader
example:

class MyGadgetBuffer
: public IlvStGadgetBuffer ({

public:
MyGadgetBuffer (IlvStudio*, const char* name, IlvManager* = 0);
virtual const char* getType () const;

virtual const char* getTypeLabel () const;

virtual void setUpPanelClass(IlvStPanelClass*) const;
}i
You provide:

& The constructor, which callsthe 11vstGadgetBuf fer constructor. |If the manager
parameter is not yet created, it creates a MyManager instance.

& Thevirtual member function getType, which returns the class name MyGadgetBuf fer.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 155

& Thevirtua member function getTypeLabel, which returns the class name label. This
label isused by IBM ILOG Views Studio to display the type of the buffer in the Main
window. It may be different from the label returned by the getType member function
that is used as the identifier of the buffer type.

& Thevirtua member function setUpPanelclass, which iscalled when an
IBM ILOG Views Studio panel classis made for your buffer.

The MyGadgetBuffer class can be defined like this:

#include <ivstudio/studio.h>
#include <ivstudio/stdesc.h>

#include <mybuf.h>
#include <myman.h>
#include <mycont.h>

MyGadgetBuffer: :MyGadgetBuffer (IlvStudio* editor,
const char* name,
IlvManager* mgr)
: IlvStGadgetBuffer (editor,
name,
mgr ? mgr : new MyManager (editor->getDisplay()))
{
}

const char*
MyGadgetBuffer::getType () const

{
return "MyGadgetBuffer";

}

const char*
MyGadgetBuffer: :getTypeLabel () const
{

return "Mine";

}

void
MyGadgetBuffer::setUpPanelClass (IlvStPanelClass* pclass) const
{
IlvStGadgetBuffer: :setUpPanelClass (pclass) ;
pclass->setBaseClass (“MyContainer”) ;

}

Once you have the new class, you have to integrate it into the editor; that is, tell the editor
that the file saved with the new descriptor needs to be loaded in the new buffer type.

To do so, add acall to registerType inyour initializeBuffers method of your
extension class. Thefollowing is an example:

#include <mybuf.h>
static IlvStBuffer*

MakeMyBuffer (IlvStudio* editor, const char* name, const char*)

{

156 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio: An Example

return new MyGadgetBuffer (editor, name) ;

}

IlBoolean
MyStudioExtension::initializeBuffers ()
{

IlvStudio* editor = getEditor();

/..

editor->buffers () .registerType ("MyGadgetManagerOutput",
MakeMyBuffer) ;

//

return IlTrue;

Defining a New Command

The editor now recognizes what MyManager has generated. But a new buffer instance must
be created.

To do so, provide a new command to create an instance of MyBuf fer. Make a subclass of
I1vStCommand, redefining the virtual member function do1t. Thefollowing isan example:

const char* NameNewBuffer = “MyNewBuffer”;

class MyNewBuffer: public IlvStCommand {
public:
virtual IlvStError* doIt (IlvStudio*, IlvAny);

}:

IlvStError*
MyNewBuffer::doIt (IlvStudio* editor, IlvAny arg)

{
if (arg) {
editor->buffers () .setCurrent ((IlvStBuffer*)arg);
return 0;

}

const char* name = editor->options() .getDefaultBufferName/() ;
IlvStBuffer* buffer = new MyGadgetBuffer (editor, name);

if (editor->buffers() .get (name))

buffer->newName (name) ; // unig name

return editor->execute (IlvNmNewBuffer, 0, 0, buffer);

}
Now the command must be integrated into the editor. To do so:

1. Addtheregistration of the new command to your initialize function, providing afunction
to build it.

2. Describe the new command in a new command declaration file named mystudio. cmd.
You have to specify this command declaration file in your option file using the
commandFile option.

The following is an example of the initialize function:

static IlvStCommand*
MkMyNewBuffer (IlvStudio*)

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 157

{

return new MyNewBuffer;

}

I1Boolean
MyStudioExtension::initializeCommandDescriptors ()
{

IlvStudio* editor = getEditor();

VA
editor->registerCommand ("MyNewBuffer", MkMyNewBuffer) ;
//
return IlTrue;

}

The following is a command declaration example:

command MyNewBuffer ({
label "MyBuffer";
prompt "Open my buffer";
category buffer;

Defining a New Panel
Now you have to create a new panel to get the new property. Below are the steps to follow:

1. Create apanel using IBM® ILOG® Views Studio with aline editor named file name
and two buttons with the callbacks Apply and Cancel.

2. Describe asubclass of 11vstbialog to provide the constructor with the member
functions Apply and Cancel.

3. Integrate the new panel into the editor.
Hereis a header example:

#include <ivstudio/panel.h>
class MyPanelHandler
: public IlvStDialog {
public:
MyPanelHandler (IlvStudio* ed, const char* name,
IlvDialog* dlg = 0);
virtual void apply();
virtual void reset();
}i

You provide:

& The constructor, which calls T1vstbialog constructor giving the data file you created.
It initializes the panel and subscribes to the message objectSelected by the member
function resetonMessage. The callback passed to the subscription calls the reset
member function for the panel.

& Thevirtual member function app1y, which reads the file name object contents and
associates it with the object property.

158 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Extending IBM ILOG Views Studio: An Example

& Thevirtual member function reset, which initializes the file name object contents for
the property of the currently selected object.

The following is a coding example:

#include <ivstudio/studio.h>

#include <mypan.h>

#include <myutil.h>

#define DATAFILE "../data/mypanel.ilv"

MyPanelHandler: :MyPanelHandler (I1lvStudio* ed, const char* name,
IlvDialog* dlg)
: IlvStDialog(ed, name, DATAFILE, IlvRect(0, 0, 254, 71))
{
IlvTextField* tf =
(IlvTextField*)getDialog () ->getObject (“filename”) ;
tf->setLabel ("", IlTrue);
resetOnMessage ("ObjectSelected") ;
}
void
MyPanelHandler: :apply ()
{
IlvGraphic* obj = getEditor()->getSelection();
if (obj) {
const char* name =
((IlvTextField*)getDialog ()->getObject (“filename”))->getLabel () ;
if (name && name[0]) {
MySetParameter (obj, IlvGetSymbol (name)) ;
obj->setCallbackName (I1vGetSymbol (“loadilv”)) ;

}
}

void
MyPanelHandler: :reset ()
{
IlvTextField* tf =
(IlvTextField*)getDialog () ->getObject (“filename”) ;
IlvGraphic* obj = getEditor()->getSelection();
IlvSymbol* fi = 0;

if (obj)
fi = MyGetParameter (obj) ;
tf->setLabel (fi ? fi->name() : ““, IlTrue);

}
Oncethe panel classis created, it must be integrated into the editor. To do so:
1. Add the building of the panel to the editor initialization function.

2. Provideitsdescriptionin thefilemystudio.pnl.

The following is a coding example with a command to display the panel.

static IlvStCommand*
MkMyShowPanel (I1lvStudio* editor)
{
return new IlvStShowPanel (editor->getPanel ("MyPanel"));

}

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 159

I1Boolean
MyStudioExtension: :initializePanels ()
{
/..
// Create MyPanel.
MyPanelHandler* pan = new MyPanelHandler (getEditor (), "MyPanel");
pan->connect () ;
//
return IlTrue;

Providing Container Information

To integrate your container class, you have to define asubclass of T11vstContainerInfo
and add it to the IBM® ILOG® Views Studio information set, as shown below:

class MyContainerInfo
: public IlvStContainerInfo {
public:
MyContainerInfo() : IlvStContainerInfo ("MyContainer") {}
IlvContainer* createContainer (IlvAbstractView* parent,
const IlvRecté& bbox,
I1lBoolean useacc,
I1Boolean visible) {
return new MyContainer (parent, bbox, useacc, visible);

}

IlvContainer* createContainer (IlvDisplay* display,
const char* name,
const char* title,
const IlvRect& bbox,
I1UInt properties,
I1Boolean useacc,
I1Boolean visible,
IlvSystemView transientFor) {
return new MyContainer (display,
name,
title,
bbox,
properties,
useacc,
visible,
transientFor) ;

}

const char* getFileCreatorClass() const {
return "MyGadgetManagerOutput";
}
}i

VA
editor->addContainerInfo (new MyContainerInfo()) ;

160 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

IBM

Extending IBM ILOG Views Studio: An Example

Registering Callbacks

IBM® ILOG® Views Studio lets you use your own callbacks when you test panels or
applications by calling the T1vstudio: : registercallback function:

static void ILVCALLBACK

MyCallback (IlvGraphic* obj, IlvAny)

{

IlvPrint (“MyCallback is called”);
}

IlvStudio* editor = ...

editor->registerCallback (“MyCallback”, MyCallback) ;
editor->registerCallback (“myCallback”, MyCallback) ;

ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 161

162 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using Inspector Classes

This chapter introduces you to the use of the I BM® ILOG® Views Studio inspector classes.
You can find information on the following topics:

& What Is an Inspector?

& Components of an Inspector Panel

& Defining a New Inspector Panel

For amore detailed description of the classes that are referred to in this chapter, see the
IBM ILOG Views Sudio Reference Manual.

Note: To use the inspector classes of IBM ILOG Views Sudio, you need the
IBM ILOG Views Gadgets and IBM ILOG Views Manager packages.

What Is an Inspector?

In IBM® ILOG® Views Studio, an inspector is an instance of the class 11vstInspector.
IBM ILOG Views Studio contains one instance of this class, which is used to inspect
selected graphic objectsin the active buffer. The role of an inspector is to display the
inspector panel that corresponds to the last sel ected graphic object.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 163

To display the appropriate inspector panel, the inspector maintains atable that maps graphic
object classesto inspector panel classes. If agraphic object class has no associated inspector
panel, the inspector attachesit to the inspector panel of the first superclassin the inheritance
path that has an associated inspector panel. Let us suppose that the object to be inspected is
of thetype I11vMyTextField, aclassderived from r1vTextField. If no inspector panel
has been defined for this class, the IBM ILOG Views Studio inspector displays the
IlvTextField inspector panel.

An inspector panel is made up of several components, which are described in the following
sections.

Components of an Inspector Panel

I nspecting an object boils down to examining its properties. In general, to inspect a property,
an inspector panel uses the following pair of components: an accessor and an editor.

The accessor interfaces with the inspected property while the editor interfaces with a gadget
that representsit graphically in the inspector panel (an T1vTextField, for example). Inthe
context where an accessor is paired with an editor, the accessor is responsible for fetching
the property value and displaying it viathe editor. The editor for its part notifies the accessor
whenever its content changes. In other words, inspecting a property means initializing the
accessor when theinspector isinitialized, and requesting the accessor to apply modifications
made to the editor’s content. In this context, only alist of accessorsisrequired to inspect an
object.

Certain editors, however, do not need to be linked with accessors to work. For example, a
combo box used to show or hide a set of gadgets does not need to access datato be
initialized. Similarly, changing the selected item in the combo box does not affect the data.
Because these stand-alone editors are not initialized by accessors, they must be initialized
explicitly.

To handle both the pairs accessorg/editors and stand-al one editors, an inspector panel makes
use of amain editor defined by the class 11vstIMainEditor. Actualy, inspection
operations, including managing the Apply button present in each inspector panel, which are
carried out by the inspector panel, are processed by the main editor.

The following figures illustrate respectively:

& The various components of an inspector panel and how they relate to one another.
& Theinitiaization steps of an inspector panel.

¢ What happens when a property is modified in ainspector panel.

¢ Thestepsinvolved in applying changes to properties made via an inspector panel.

164 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

| Show / hide pages

Field x

Accessor to X property

Text field editor

Text field editor

Page selector editor

Accessor to y property

Figure7.1 Components of an Inspector Panel

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 165

Inspected object

| Show / hide pages

/ Field editor
| Field editor
Vi et
\

\ —

1. The main editor is initialized.
2. The main editer initializes its accessors and its stand-alone editors.
3. Accessors get property values,

4. Accessors initialize editors according to retumed values.
5. Editors initialize gadgets.

Figure 7.2 Initialization Steps of an Inspector Panel

166 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Components of an Inspector Panel

Inspected object

Properties -
— ‘ Show / hide pages

. L1
I —
r .
5 H Apply

- ¥

,‘I Close |

\ Field editor

)\ ¥ toy property Field editor

Page selector editor

1. The user changes the value of the x text field.

2. Thetext field editor is notified about the user's modification and sets its associated accessor tothe newvalue.
3. The accessor tothe x property stores the new value and sets itself as modified.

4. The main editer is notified about the modification of one of its accessors and sets itself as modified.

5. The main editor changes the state of the Apply button when it is modified.

Figure 7.3 What Happens When Modifications are Made in the Inspector Panel

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 167

‘ Show/ hide pages

Pl

L

.Aocessor tox propérty. 3

Field editor

Accessor toy property

Page selector editor

Field editor

1. The user clicks the Apply button.

2. The apply() function of the main editer is called.

3. Themain editor asks that apply() be called only for modified accessors.

4. The medified accessor applies the new value to the inspected object.

5. Oneoe medifications have been applied, the accessoris no longer in the modify state.

Figure 7.4 Applying Modifications Made in an Inspector Panel

Accessors

An inspector panel handles accessors of the class 11vstIAccessor, which isthe base class
of all the accessor classes. It performs two actions on accessors by calling the methods
initialize and apply. Caling the first method initializes the calling accessors, while
apply bringsinto effect the modifications made to the inspected object.

Property Accessors

Most of the time, accessors are used to inspect object properties. In fact, if you take alook at
the accessor class hierarchy illustrated below, you'll seethat 11vstIPropertyAccessor, a
subclass of T1vstIaccessor, iSthe base classfor all types of accessorsin the library.

168 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Components of an Inspector Panel

|1 StlAccass or
F Y

ISt Property Accessor

F 3

WS ComposedAcoassor
F

ISt PropertyListAccessor

I EtProperty Treas ceassor

I StlGraphicContainerAccessor

IwStlinspectedObjectAccessor

Figure7.5 Accessor Hierarchy

Property accessors manipulate properties viathe class 11vstIProperty in which they are
encapsulated. For example, to manipulate aproperty of thetype r1vvalue, an accessor uses
an object of thetype 11vstIvalueProperty deriving fromtheclass11vstIProperty,in
which the T1vvalue object is encapsulated.

Accessors inspect properties using two different modes:

& An update mode, which specifies whether the property accessor should apply
modifications immediately or when the user clicks the Apply button.

& A building mode, which specifies whether a property should be created, if not found,
and/or copied.

Sincethe initialize and apply methods of the property accessor utilize these
parameters, you must not redefine them when subclassing 11vstIPropertyAccessor.
Instead redefine the methods getoriginalvalue and applyvalue, which areinvoked by
initialize and apply, respectively.

The following example shows how to subclass I11vstIPropertyAccessor t0 accessthe
label of agadget item:

class IlvLabelAccessor
: public IlvStIPropertyAccessor

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 169

170

{
public:
IlvLabelAccessor (IlvGadgetItem* gadgetItem,
const char* name = 0,
UpdateMode updateMode = NoUpdate,
BuildMode buildMode = None) :
IlvStIPropertyAccessor (name, updateMode, buildMode),
_gadgetItem(gadgetItem)
{}
protected:
IlvGadgetItem* _gadgetItem;
IlvGadgetItem* getGadgetItem()const;
virtual IlvStProperty* getOriginalValue() const;
virtual void applyValue(IlvStProperty* property) ;
}i

IlvGadgetItem*
IlvLabelAccessor: :getGadgetItem() const
{

return _gadgetItem;

}

I1lvStIProperty*
IlvLabelAccessor: :getOriginalvalue ()
{
IlvGadgetItem* gadgetItem = getGadgetItem() ;
return new IlvStIValueProperty (gadgetItem->getLabel (), “label”);
}
void
IlvLabelAccessor: :applyValue (IlvStIProperty* property)
{
IlvGadgetItem* gadgetItem = getGadgetItem() ;
IlvValue value;
property->getValue (value) ;
const char* label = (const char*)value;
gadgetItem->setLabel (label) ;
}

Dependent Accessors

Certain inspected properties directly depend on other inspected properties. For example, the
user should not be able to inspect the intermediate state of atoggle button if the intermediate
mode was not set for it. In other words, the accessor to the “intermediate state” property
should always be aware of the value set for the accessor to the “intermediate mode” property,
and its associated editor should appear gray or not depending on that value. This means that
if the accessor to the “intermediate mode” property isinitialized or is modified, the accessor
to the “intermediate state” must be reinitialized accordingly. For thisinitialization
precedence order to be achieved, the accessor to the “intermediate state” property should be
made dependent on the accessor to the “intermediate mode” property using the method
I1vStIAccessor: :addDependentAccessor.

This dependency mechanism is also used by combined accessors, which are described in the
next section.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

Combined Accessors

A combined accessor is an instance of the class T1vstICombinedaccessor, asubclass of
IlvStIPropertyAccessor, Whichisused to inspect the property of an object that is
returned by another accessor. For example, let us consider a name accessor used to inspect
the name of a gadget item. By combining this accessor with a gadget item accessor, you can
use it to inspect both an element selected in a gadget item list or a gadget item in amessage
label. Combined accessors are usually implemented as dependent accessors since they must
be reinitialized whenever the property they access through another accessor is itself
reinitialized. In our example, changing the current selection in agadget item list would cause
the name accessor to be reinitialized.

The example given in the section Accessors on page 168 has been rewritten below to
illustrate combined accessors. It shows how to subclass 11vstICombinedaAccessor to
access the label of agadget item:

class IlvLabelAccessor
: public IlvStICombinedAccessor
{
public:
protected:
IlvGadgetItem* getGadgetItem() const;
virtual IlvStProperty* getOriginalValue() ;
virtual void applyValue(IlvStProperty* property) ;
}i

IlvGadgetItem*
IlvLabelAccessor: :getGadgetItem ()
{

if (!getObjectAccessor ()

return 0;
I1lvStIProperty* property = getObjectAccessor ()->get();
return (property? (IlvGadgetItem*)property->getPointer() : 0);

}

// The implementation of the getOriginalValue and applyValue methods
// are the same as in previous the sample.

List Accessors

A list accessor is an instance of the class I11vStIPropertyListAccessor, which derives
from I1vstICombinedaccessor. A list accessor is used to inspect alist of properties. It
alows you to add, remove, or modify a property in alist. This type of accessor worksin
conjunction with instances of the class 11vstIPropertyListEditor. Editors of thiskind
handle gadgets that are used to edit lists, that is, list gadgets, and the following four buttons:
Add After, Add Before, Remove, and Clean.

The following code sample shows how to access alist of gadget itemsthat are contained in a
gadget item holder:

class IlvStIGadgetItemListAccessor
: public IlvStIPropertyListAccessor {

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 171

// Constructor / destructor
IlvStIGadgetItemListAccessor (I1lvStIPropertyAccessor* accessor = 0,
I1lvStIAccessor: :UpdateMode updateMode=

IlvStIAccessor: :Inherited,

const char* name = 0);
~IlvStIListGadgetItemAccessor () ;

IlvListGadgetItemHolder* getListGadgetItemHolder () const;

protected:
IlvGadgetItem* getGadgetItem(const IlvStIProperty*) const;
virtual IlvStIProperty** getInitialProperties(I1lUInt& count);
virtual IlvStIProperty* createDefaultProperty() const;
virtual IlvGadgetItem* createGadgetItem (

const IlvStIProperty* prop) const;

virtual void addProperty (IlvStIProperty* property, I1lUInt index) ;
virtual void replaceProperty (IlvStIProperty* origProperty,
I1lvStIProperty* newProperty,
I1UInt index) ;
virtual void deleteNewProperty (IlvStIProperty* property) ;

virtual void deleteProperty (I1lvStIProperty* property, I1lUInt index) ;

virtual void moveProperty (IlvStIProperty* property,
I1UInt previousIndex,
I1UInt newIndex) ;

}i

IlvStIGadgetItemListAccessor: :

IlvStIGadgetItemListAccessor (I1lvStIPropertyAccessor* accessor,
I1lvStIAccessor: :UpdateMode updateMode,

const char* name) :
IlvStICombinedAccessor (accessor, update, name)

IlvStIGadgetItemListAccessor: :~I1lvStIGadgetItemListAccessor ()
{
}
IlvListGadgetItemHolder*
IlvStIGadgetItemListAccessor: :getListGadgetItemHolder () const
{

if (!getObjectAccessor())

return 0;
IlvStIProperty* property = getObjectAccessor ()->get();
return (property? (IlvListGadgetItemHolder*)property->get() : 0);
}
I1lvStIProperty**

IlvStIListGadgetItemAccessor: :getInitialProperties (I1UInt& count)

{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)

return 0;
count = (IlUInt)listHolder->getCardinal();
if (!count)

return 0;

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

IlvStIProperty** properties = new IlvStIProperty* [count];
for (I1UInt i = 0; i < count; i++)
properties[i] = new IlvStIValueProperty (
(IlvAny) listHolder->getItem((I1lvUShort)i));
return properties;

IlvGadgetItem*
IlvStIListGadgetItemAccessor: :getGadgetItem (
const IlvStIProperty* property)const
{
return (property? (IlvGadgetItem*)property->getPointer() : 0);
}

I1lvStIProperty*
I1lvStIListGadgetItemAccessor: :createDefaul tProperty () const
{
return new IlvStIValueProperty (
(IlvAny)new IlvGadgetItem("&Item", (IlvBitmap*)0));

IlvGadgetItem*
IlvStIListGadgetItemAccessor: :createGadgetItem (
const IlvStIProperty* prop) const
{
const IlvStIGadgetItemValue* value =
ILVI_CONSTDOWNCAST (IlvStIGadgetItemValue, prop);
if (!value)

return 0;
IlvGadgetItem* newGadgetItem =
(value->getGadgetItem()? value->getGadgetItem()->copy () : 0);
if (!newGadgetItem)
return 0;

newGadgetItem->setSensitive (I1True) ;
newGadgetItem->showLabel (I1True) ;
newGadgetItem->showPicture (I1True) ;
newGadgetItem->setEditable(IlFalse) ;
return newGadgetItem;

}

void
IlvStIListGadgetItemAccessor: :addProperty (I1lvStIProperty* property,
I1UInt index)
{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (listHolder) {
listHolder->insertItem(getGadgetItem (property), (IlvShort)index);

}

void

IlvStIListGadgetItemAccessor: :replaceProperty (I1lvStIProperty* origProperty,
IlvStIProperty* newProperty,
I1UInt position)

IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;

if (!listHolder)
return;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 173

174

listHolder->removeItem((I1lvUShort)position) ;
listHolder->insertItem(getGadgetItem (newProperty), (IlvUShort)position);
}

void
IlvStIListGadgetItemAccessor: :deleteNewProperty (I1lvStIProperty* property)
{
delete getGadgetItem(property) ;
}

void
IlvStIListGadgetItemAccessor: :deleteProperty (I1lvStIProperty* property,
I1UInt index)
{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder
return;
listHolder->removeltem((IlvShort) (I1lvUShort) index) ;

}

void

IlvStIListGadgetItemAccessor: :moveProperty (I1lvStIProperty* property,
I1UInt previousIndex,
I1UInt newIndex)

IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)
return;
listHolder->removeltem ((I1lvUShort)previousIndex, IlFalse);
listHolder->insertItem(getGadgetItem (property),
(IlvShort) (IlvUShort) (newIndex -
(newIndex > previousIndex? 1 : 0)));

}

Tree Accessors

A tree accessor is an instance of the class 11vStIPropertyTreeAccessor, Which derives
from 11vstICombinedaccessor. A tree accessor is used to inspect atree of properties. It
alows you to add, remove, or modify a property in atree. Thistype of accessors worksin
conjunction with instances of the class 11vstIPropertyTreeEditor. Editors of thiskind
handle gadgets that are used to edit trees, that is, tree gadgets, and the following five buttons:
Add After, Add Before, Add Child, Remove, and Clean.

The following code sample shows how to access atree of gadget itemsthat are contained in
atree gadget:

class IlvStIGadgetItemTreeAccessor
: public IlvStIPropertyTreeAccessor {
public:
I1lvStIGadgetItemTreeAccessor (I1vStIPropertyAccessor* accessor = 0,
I1lvStIAccessor: :UpdateMode updateMode =
IlvStIAccessor: :Inherited,
const char* name = 0,
IlvStIAccessor: :BuildMode buildMode =
IlvStIAccessor: :Copy) ;
~I1lvStIGadgetItemTreeAccessor () ;

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

/] S e oo
IlvTreeGadgetItemHolder* getTreeGadgetItemHolder () const;

protected:

IlvTreeGadgetItem* getGadgetItem(const IlvStIProperty*) const;
I1lvTreeGadgetItem* getParentGadgetItem(const IlvStIProperty*) const;

// RApplying.

virtual I1UInt getChildPosition(const IlvStIProperty* parentProperty,
const IlvStIProperty* property) const;
virtual void addProperty (IlvStIProperty* property,
const IlvStIProperty* parent,
I1UInt childPosition) ;
virtual void replaceProperty(IlvStIProperty* origProperty,
I1lvStIProperty* newProperty,
const IlvStIProperty* parent,
I1UInt childPosition) ;
// Array of properties.
virtual IlvStIProperty** getInitialChildrenProperties (
I1UInt& count,
const IlvStIProperty* parent = 0) const;
// Insertion of properties.
virtual IlvStIProperty* createProperty(const IlvStIProperty* parent,
I1UInt childPosition,
IlvAny param = 0) const;

// Destruction of properties.
virtual void deleteNewProperty (IlvStIProperty* property) ;
virtual void deleteProperty (IlvStIProperty* property) ;
}i

IlvStIGadgetItemTreeAccessor: :I1vStIGadgetItemTreeAccessor (
IlvStIPropertyAccessor* accessor,
I1lvStIAccessor: :UpdateMode updateMode,
const char* name,
IlvStIAccessor: :BuildMode buildMode) :
I1lvStIPropertyTreeAccessor (accessor,

updateMode,

buildMode,

(name? name : "GadgetItemTreeAccessor"))

IlvStIGadgetItemTreeAccessor: :~IlvStIGadgetItemTreeAccessor ()

{
}

IlvTreeGadgetItemHolder*
IlvStIGadgetItemTreeAccessor: :getTreeGadgetItemHolder () const

{
I1lvStIProperty* property = (_accessor? _accessor->get() : 0);
return (property? (IlvTreeGadget*)property->getPointer() : 0);
}
/] T oo
IlvTreeGadgetItem*

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 175

IlvStIGadgetItemTreeAccessor: :getGadgetItem (
const IlvStIProperty* property) const

return (property? (IlvTreeGadgetItem*)property->getPointer() : 0);
IlvTreeGadgetItem*

IlvStIGadgetItemTreeAccessor: :getParentGadgetItem (
const IlvStIProperty* property) const

{
if (!property) {
// Returns root.
I1lvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder () ;
if(!holder)
return 0;
return holder->getRoot () ;
}
return (property? (IlvTreeGadgetItem*)property->getPointer() : 0);
}
I1UInt

IlvStIGadgetItemTreeAccessor: :getChildPosition (
const IlvStIProperty* parentProperty,
const IlvStIProperty* property)const

// Get parentItem.
I1lvTreeGadgetItem* parentItem = getParentGadgetItem(parentProperty) ;
if (!parentItem)

return (I1lUInt)-1;

IlvTreeGadgetItem* findItem = getGadgetItem(property) ;
I1UInt position = 0;
for (IlvTlreeGadgetItem* item = parentItem->getFirstChild();
item;
item = item->getNextSibling(), position++) {
if (item == findItem)
return position;
}
return (I1lUInt)-1;

void

IlvStIGadgetItemTreeAccessor: :addProperty (I1lvStIProperty* property,
const IlvStIProperty* parent,
I1UInt index)

{

IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder () ;

if (!holder)

return;
holder->addItem(getParentGadgetItem (parent),
getGadgetItem (property), (IlvInt)index);

}
void

IlvStIGadgetItemTreeAccessor: :replaceProperty (I1lvStIProperty* origProperty,
I1lvStIProperty* newProperty,
const IlvStIProperty* property,
I1UInt index)

176 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

{
IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder () ;
if (!holder)
return;

// Instead of removing the old gadget item and adding the new one, the
// following line copies the attributes of the new created gadget item
// to the old one.

* (getGadgetItem(origProperty)) = *getGadgetItem(newProperty) ;

// After this method is called, newProperty becomes the new

// original property and should therefore be updated.

// As we have copied attributes from the new created gadget item

// to the initial one, the inspected gadget item

// keeps being the one contained in origProperty.
newProperty->setPointer (origProperty->getPointer());

// Array of properties.
I1lvStIProperty**
IlvStIGadgetItemTreeAccessor: :getInitialChildrenProperties (
I1UInt& count,
const IlvStIProperty* parent) const

IlvTreeGadgetItem* parentItem = getParentGadgetItem(parent) ;
if (!parentItem)
return 0;
IlvArray properties;
for (IlvlreeGadgetItem* item = parentItem->getFirstChild();
item;
item = item->getNextSibling()) {
properties.add(new IlvStIValueProperty((IlvAny)item)) ;
}
count = properties.getLength() ;
if (!count)
return 0;
I1lvStIProperty** props = new IlvStIProperty*[count];
: :memcpy (props,
properties.getArray (),
(size_t) (sizeof (IlvStIProperty*) * (IlvInt)count));
return props;

// Inserting properties.

IlvStIProperty*

IlvStIGadgetItemTreeAccessor: :createProperty (const IlvStIProperty*,
I1UInt,
I1lvAny) const

{

return new IlvStIValueProperty ((IlvAny)new IlvTreeGadgetItem("&Item")) ;

// Destruction of properties.

void
IlvStIGadgetItemTreeAccessor: :deleteNewProperty (I1lvStIProperty* property)
{

IlvGadgetItem* gadgetItem = (IlvGadgetItem*)property->getPointer();

if (gadgetItem)
delete gadgetItem;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 177

void
IlvStIGadgetItemTreeAccessor: :deleteProperty (I1lvStIProperty* property)
{
I1lvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder () ;
if (!holder)
return;
holder->removeltem(getGadgetItem (property)) ;

Preconditions and Validators

Accessors use internally the classes 11vstIPrecondition and I1vStIvalidator, and
their derived classes, to perform anumber of verifications.

Preconditions

Preconditions are tests that accessors can run to determine whether they can access the
inspected property. These tests are performed by calling the method i saccessible of the
class T1vstIPrecondition. If the precondition test succeeds, accessis allowed.
Otherwise, it is denied and the associated editors are disabled.

Theclasses I11vsStIPreconditionvalue and I1vStICallbackPrecondition aretwo
classes derived from T11vstIPrecondition that are sufficient to run precondition testsin
most cases.

IlvStIPreconditionvalue Objects compare the value returned by an accessor with a
given value.

L et us consider an accessor to the scientific mode property of a number field. As shown
below, accessis permitted only if the float mode is set for the number field.

//This code extract is part of the code of an inspector panel.
IlvStIEditor* editor = link("NumFieldFloat", IlvNumberField::_floatModeValue) ;
IlvStIPropertyAccessor* floatAccessor = editor->getAccessor () ;
floatAccessor->setPreviewValueAccessor (previewAccessor,

IlvNumberField: :_floatModeValue) ;

// Scientific value.
IlvStIEditor* editor = link(“ScientificField”,
IlvNumberField::_scientificModeValue) ;
editor->getAccessor () ->setPrecondition (
new IlvStIPreconditionValue (floatAccessor,
(I1lBoolean)IlTrue,
(I1lBoolean)IlFalse));

The I1lvstICallbackPrecondition classisprovided for cases where the code of the
isAccessible function can beincluded in acallback. Using this class, you can avoid
deriving the T1vstIPrecondition class.

The following code sample implements a precondition that is used to avoid changing the
aignment of a gadget item label if it does not contain one or more “end-of-ling” characters.

I1Boolean

178 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Components of an Inspector Panel

IlvStIsMultiLineText (I1lvStIProperty* property,
I1vAny,
IlvStIProperty**,
I1lvStIPropertyAccessor: : PropertyStatus?*)

if (!property)

return IlFalse;
Ilvvalue value;
const char* label = (const char*)property->getValue(value) ;
if (!label)

return IlFalse;
while (*label)

if (*label++ == ‘\n’)

return IlTrue;

return IlFalse;

}

The callback precondition will be used as follows:

// Define an accessor to the label of the inspected gadget item.
I1lvStIPropertyAccessor* labelAcc;

// Define the accessor to the alignment of the
// the inspected gadget item label.
IlvStIPropertyAccessor* labelAlignAcc;

labelAlignAcc->setPrecondition (
new IlvStICallbackPrecondition (labelAcc,
IlvStIsMultiLineText)) ;

Validators

The IBM ILOG Views Studio Inspectors API includes avalidator class,
IlvStIvalidator, that you can useto test whether the values entered by the user are
correct. The test is performed with the i svalid method of the class. This methods tests the
value passed as its parameter and returns an error of thetype 11vstIError if thevalueis
not valid. You can define whether the test should be carried out when the user’s
modifications are entered or only when he/she clicks on Apply button in the inspector panel.

IlvstIValidator hasaderived class, I11vstIRangevalidator, that tests whether a
value is between aminimum and a maximum value. In addition to a value range, this class
takes a message string as a parameter. This message string specifies an error message that
can contain one or more %1, %2, and %3 substrings. These substrings are replaced by the
minimum value, the maximum value, and the tested value, respectively.

The following example shows how to use avalidator to check whether the month entered by
the user is between 1 and 12.

// Define an accessor to the month property, called monthAccessor.
IlvStIPropertyAccessor* monthAccessor;

// Add the month validator to the month accessor.
IlvStIRangeValidator* monthvValidator =

new IlvStIRangeValidator ((IlvInt)l, (IlvInt)1l2, "&MonthNotInRange") ;
monthAccessor->setValidator (monthvalidator) ;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 179

The message string "s&MonthNotInRange" istranslated as follows:

"You must specify a month between %1 and %2".

Editors

Editors are objects of thetype 11vstIEditor used to edit inspected values.

Editors Associated with Accessors

In most cases, the value to be inspected is directly retrieved by its accessor and is then

modified viathe associated editor graphically represented by a gadget.

Hereisalist of the gadget classes that can be associated with an editor:
IlvTextField

IlvNumberField

IlvToggle

IlvOptionMenu

€ IlvStringList
€ IlvScrolledComboBox

IlvSelector
¢ IlvSpinBox

Thereis one class of editor for each one of the gadget classes enumerated above. These
editor classes are encapsulated inthe class T11vstIDefaul tEditorBuilder, asubclass of
I1vStIEditor, and are therefore transparent for the user. If you want to create an editor
and associate it with a gadget, you have to build an instance of the class
IlvStIDefaultEditorBuilder and provideit with the name of the gadget that you want
to attach to it. When thisinstance isinitialized, it creates an editor that corresponds to the
type of the specified gadget. The created editor is managed as a child editor of the
IlvStIDefaultEditorBuilder instance.

In the following example, we have an accessor, represented by the f1oatAccessor
variable, that is used to inspect the float mode of a number field. Here is how you would
create an editor and associate it with this accessor to handle a toggle named
"floatToggle" inan inspector panel.

IlvStIEditor* editor =

new IlvStIDefaultEditorBuilder("floatToggle”, floatAccessor);
addEditor (editor) ;

Editors Not Associated with Accessors

In certain rare cases, inspected values can be so complex that they cannot be handled by an
I1lvStIPropertyAccessor object. It would be easier, for example, to fetch an array of

180 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Defining a New Inspector Panel

values directly from the inspected object and placeit in amatrix rather than going through
an I1vStIPropertyAccessor and trying to fit thevalue array in an 11vStIProperty
object. In this case, you have to derive a class from 11vstIEdi tor and redefine the
following virtual methods:

€ virtual IlBoolean initialize() = 0;
virtual IlBoolean apply() = 0;
virtual IlBoolean connectHolder (I1lvGraphicHolder* holder) ;

virtual IlBoolean isModified() const;

* & & o

virtual void setModified(IlBoolean = IlTrue);

For more information about these methods, see the IBM ILOG Views Sudio Reference
Manual.

Instances of these derived editors are added to an inspector panel like any other editors by
caling the method 11vstIEditorSet: :addEditor.

Defining a New Inspector Panel

The following sections explain how to define a new inspector panel. Defining a new
inspector panel involves two main steps that are detailed below. These are:

1. Create a new inspector class.

2. Incorporate the inspector class that was created to IBM® ILOG® Views Studio. This
step is not covered in this chapter. For instructions on how to incorporate an inspector to
IBM ILOG Views Studio, see Registering Inspectors on page 149.

The explanations in this section are based on an example, which we introduce in the next
section.

Example

The example consists of creating the inspector panel for a combo box that displays a set of
colorsfrom which the user can choose. Thisinspector panel will be used to define the colors
present in the combo box and configure the way these colors will be displayed.

Figure 7.6 shows the combo box and Figure 7.7 shows the associated inspector panel.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 181

black

black,

[l] s

£

Figure 7.6 Color Combo Boxes with Small Color Rectangle (left) and Full Color Rectangle (right)

Il¥ColorComboBox

General| Spesific |Items Callbacks

[¥] | Il¥ColorComboBox

General Specific| Items |Eallbacks

Color names offset Ttems
Harizontal margin of color rect z < # | Selected color
white
Wertical margin of color rect gray |
red
Show small rectangle | yellow
cyan
visible Ttems 4 s M blue]
- magenta
Enable large list W #s05080808080
M #&03000000000
B #&03080200000 v
SLE X @ ty s

182

IBM

Figure 7.7 Pages of the Color Combo Box Inspector Panel
The complete code for this example can be found in the following directory:

$ (ILVHOME) /samples/studio/colorbox

Creating the Color Combo Box Inspector Panel

Graphic object inspectors derive from the class T1vstInspectorPanel. Sincein our
example, the inspected graphic object is also a gadget, the inspector panel we are going to
create derives from I1vstIGadgetInspectorPanel, asubclass of
IlvStInspectorPanel.

class IlvColorComboBoxInspectorPanel
: public IlvStIGadgetInspectorPanel {
public:
IlvColorComboBoxInspectorPanel (I1lvManager* manager,
IlvSystemView transientFor
I1lvStIAccessor: :UpdateMode
I1lvStIAccessor: :OnApply) ;

0,

virtual void initializeEditors() ;
}i

ILOG VIEwWsS GADGETS V5.3 USER'S MANUAL

Defining a New Inspector Panel

Aswe said in the section Components of an Inspector Panel on page 164, inspector panels
are implemented with accessors and editors. These must be declared in the method
initializeEditors. Inour example, the definition of this method is divided in two parts,
corresponding each to the implementation of the two notebook pages that make up the
inspector panel (see Figure 7.7). These pages are described in the following two sections.

l Note: The General and Callback pages are created automatically.

Implementing the Specific Page
The Specific page has been designed to inspect the following properties:

& Color nameoffset Specifies the offset used to display the name of the color. This
property is defined by the following value:

IlvListGadgetItemHolder::_labelOffsetValue
& Color rectanglehorizontal margin Specifiesthe margin between the vertical border of

the color rectangle and the border of the gadget item. This property is defined by the
following value:

IlvColorDrawInfo: :_HColorRectMarginValue

& Color rectanglevertical margin Specifies the margin between the horizontal border of
the color rectangle and the border of the gadget item. This property is defined by the
following value:

IlvColorDrawInfo: :_VColorRectMarginValue
& Small rectangle Specifies whether the color rectangle in the gadget item should be

drawn in the margin specified by the color name offset property or occupy the whole
gadget item. The property is defined by the following value:

IlvColorDrawInfo::_SmallColorRectValue

& Rounded rectangleradius Specifiesthe radius applied to the rectangle corners. For the
purpose of this example, this property isignored if the small rectangle property has been
set. The property is defined by the following value:

IlvColorDrawInfo: :_ColorRoundRectRadius

& Visibleitems Specifies which items appear in the drop-down list of the combo box. The
property is defined by the following value:

IlvScrolledComboBox: :_nbVisibleItemsValue

& Enablelargelist option Specifiesthe “Enablelargelist” option for the combo box. For
details about thisoption, seetheclass 11vscrolledComboBox inthe IBM ILOG Views
Reference Manual. The property is defined by the following value:

IlvScrolledComboBox: :_largeListValue

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 183

To inspect the above properties, you must definethe initializeEditors member
function as follows:
void

IlvColorComboBoxInspectorPanel: :initializeEditors()

{

// Color name offset.
link("ColorNameOffset", IlvListGadgetItemHolder::_labelOffsetValue) ;

// Horizontal margin.
link ("XColorMargin", IlvColorDrawInfo::_HColorRectMarginValue) ;

// Vertical margin.
link("YColorMargin", IlvColorDrawInfo::_VColorRectMarginValue) ;

// Small rectangle editor.
link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue) ;

// Rounded rectangle editor.
link ("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius) ;

// Visible items.
link ("ComboVisibleItems", IlvScrolledComboBox::_nbVisibleItemsValue) ;
}

The 1ink method automatically builds an editor and associates it with the gadget whose
name is passed as its first parameter. It also creates an accessor to the property provided as
its second parameter. It then links the editor and the accessor, which will be used in
conjunction to inspect the property. For more information about this function, refer to the
class 11vstInspectorpanel in the reference manual.

Previewing Changes

The changes made to the color combo box properties via the inspector panel can be reflected
in apreview gadget. To achieve this, you have to create an accessor to the gadget that you
decide to use as the preview gadget. To create this accessor, we recommend that you use the
class I1vstIGraphicContainerAccessor. Once thisisdone, you register the accessor
as the preview accessor to the inspected property using the setPreviewAccessor Or
setPreviewValueAccessor member functions (11vstIEditor and
IlvStIPropertyAccessor). Hereiswhat you should do to implement a preview gadget
for the properties mentioned earlier in this section:

void

IlvColorComboBoxInspectorPanel: :initializeEditors ()

{

IlvStIPropertyAccessor* previewGadgetAcc =
new IlvStIGraphicContainerAccessor (getHolder (), "ColorItemsList");

IlvStIEditor* editor;
// Color name offset.
editor = link("ColorNameOffset",

IlvListGadgetItemHolder: :_labelOffsetValue) ;
editor->setPreviewValueAccessor (

184 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Defining a New Inspector Panel

previewGadgetAcc,
IlvListGadgetItemHolder: :_labelOffsetValue) ;

// Horizontal margin.
editor = link("XColorMargin", IlvColorDrawInfo::_HColorRectMarginValue) ;

editor->setPreviewValueAccessor (previewGadgetAcc,
IlvColorDrawInfo: :_HColorRectMarginValue) ;

// Vertical margin.
editor = link("YColorMargin", IlvColorDrawInfo::_VColorRectMarginValue) ;

editor->setPreviewValueAccessor (previewGadgetAcc,
IlvColorDrawInfo::_VColorRectMarginvValue) ;

// Small rectangle editor.
editor = link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue) ;

editor->setPreviewValueAccessor (previewGadgetAcc,
IlvColorDrawInfo::_SmallColorRectValue) ;

// Rounded rectangle editor.
editor = link("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius) ;

editor->setPreviewValueAccessor (previewGadgetAcc,
IlvColorDrawInfo: :_ColorRoundRectRadius) ;

}

Using Preconditions

Earlier in this section, we said that the Rounded rectangle radius property isignored when
the small rectangle property is set. The following code shows you how to implement this
condition:

// Small rectangle editor.
editor = link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue) ;

IlvStIPropertyAccessor* smallRectAcc =
(IlvStIPropertyAccessor*)editor->getAccessor() ;

// Rounded rectangle editor.
editor = link("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius) ;
editor->getAccessor () ->setPrecondition (
new IlvStIPreconditionValue (smallRectAcc,
IlFalse, (IlvInt)O0));

Implementing the Items Page

The Items page allows the user to edit the list of colors displayed in the combo box. To
handle the list of colors, we must first define alist accessor by deriving the class
IlvStIPropertyListAccessor, asillustrated below. List accessors are described in the

List Accessors on page 171.

class IlvColorItemsAccessor

: public IlvStIPropertyListAccessor {
public:

// Constructor / destructor

/] e
IlvListGadgetItemHolder* getListGadgetItemHolder () const;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 185

protected:
IlvGadgetItem* getGadgetItem(const IlvStIProperty* property) const;

virtual IlvStIProperty** getInitialProperties(I1lUInt& count);
virtual IlvStIProperty* createDefaultProperty() const;

virtual void addProperty (IlvStIProperty* property, I1lUInt index) ;
virtual void replaceProperty(IlvStIProperty* origProperty,
I1lvStIProperty* newProperty,
I1UInt index) ;
virtual void deleteNewProperty (IlvStIProperty* property) ;
virtual void deleteProperty (IlvStIProperty* property, I1lUInt index) ;
}i

The getListGadgetItemHolder method returns the gadget item holder that contains the
colorsto be displayed. Thisvalueisthe one returned by the T1vstIPropertyAccessor
passed to the constructor.

IlvListGadgetItemHolder*
IlvColorItemsAccessor: :getListGadgetItemHolder ()const
{
I1lvStIProperty* property = (_accessor? _accessor->get() : 0);
return (property? (IlvListGadgetItemHolder*)property->getPointer() : 0);
}

The getGadgetItem method returns the gadget item stored in the property provided asits
parameter.

IlvGadgetItem*
IlvColorItemsAccessor: :getGadgetItem(const IlvStIProperty* property)const

{
return (IlvGadgetItem*) (property? property->getPointer() : 0);

}

ThegetInitialProperties method returnsan array of propertieswhich corresponds to
theinitial colors contained in the combo box.

I1lvStIProperty**

IlvColorItemsAccessor: :getInitialProperties (I1UInt& count)

{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)

return 0;
count = (I1lUInt)listHolder->getCardinal () ;
if (!count)

return 0;

IlvStIProperty** properties = new IlvStIProperty*[count];
for(IlUInt 1 = 0; 1 < count; i++) {
properties[i] =
new IlvStIValueProperty (
(IlvAny)listHolder->getItem((I1lvUShort)i), "Item");
}

return properties;

186 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Defining a New Inspector Panel

The createbDefaul tProperty method is called when the user presses the Add button to
create anew color. By default, this color is black.

I1lvStIProperty*

IlvColorItemsAccessor: :createDefaultProperty () const

{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)

return 0;
Ilvvalue valueInfo(IlvColorDrawInfo::_ColorInfosValue->name()) ;
IlvColorDrawInfo* colorInfo = (IlvColorDrawInfo*) (I1lvAny)

listHolder->getGadget () ->queryValue (valueInfo) ;
return new IlvStIValueProperty (
new IlvColorGadgetItem(listHolder->getGadget()->
getDisplay () ->getColor ("Black"),
colorInfo),
"Item");
}

The addproperty method is called when changes are applied to add the gadget item
contained in the property given asits first parameter to the position specified by the index
parameter. The gadget item is added to the combo box.

void
IlvColorItemsAccessor: :addProperty (I1vStIProperty* property, I1lUInt index)
{

IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;

if (listHolder)

listHolder->insertItem(getGadgetItem(property) ,
(IlvShort) (I1vUShort) index) ;

}

The replaceProperty method is called when changes are applied to replace the gadget
item contained in the property given asitsfirst parameter by the gadget item contained in the
property given as its second parameter. The third parameter indicates the position of the
replaced gadget item in the combo box.

void

IlvColorItemsAccessor: :replaceProperty (IlvStIProperty* origProperty,

I1lvStIProperty* newProperty,
I1UInt)

IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)

return;
IlvGadgetItem* origGadgetItem = getGadgetItem(origProperty) ;
IlvGadgetItem* newGadgetItem = getGadgetItem (newProperty) ;
* (origGadgetItem) = *newGadgetItem;
newProperty->setPointer (origGadgetItem) ;

}

The deleteNewProperty method deletes the gadget item contained in the property passed
asits parameter. This method isinvoked when the changes made by the user are cancelled, to
destroy the gadget item created by pressing the Add button. Since this gadget item is not
actually added to the combo box, it does not have to be removed from it.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 187

void
IlvColorItemsAccessor: :deleteNewProperty (I1lvStIProperty* property)
{
IlvGadgetItem* gadgetItem = getGadgetItem (property) ;
if (gadgetItem)
delete gadgetItem;
}

The deleteProperty method is called when changes are applied to remove the gadget
item contained in the property given as the parameter from the color combo box.

void
IlvColorItemsAccessor: :deleteProperty (I1vStIProperty*, I1lUInt index)
{
IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder () ;
if (!listHolder)
return;
listHolder->removeltem((IlvShort) (I1lvUShort) index) ;
}

Reusing the Color List Accessor

As we have seen throughout the example, the list accessor does not access the combo box
directly but through its gadget item holder. The same list accessor can therefore be reused to
inspect acolor string list. To access the gadget item holder of the inspected combo box, we
just have to create a combined accessor, as shown in the following code sample. For a
description of combined accessors, see the section Combined Accessors on page 171. This
combined accessor will be provided as a parameter to the 11vColorItemsAccessor
constructor.

class IlvColorGadgetItemHolderAccessor
: public IlvStICombinedAccessor
{
public:
IlvColorGadgetItemHolderAccessor (I1lvStIPropertyAccessor* accessor = 0,
UpdateMode updateMode = NoUpdate,
BuildMode buildMode = None,
const char* name = 0);
/S oo
protected:
virtual IlvStIProperty* getOriginalValue();
}i

IlvStIProperty*
IlvColorGadgetItemHolderAccessor: :getOriginalValue ()
{

IlvStIProperty* property =

(getObjectAccessor () ? getObjectAccessor()->get() : 0);

if (!property)

return 0;
IlvColorComboBox* combo = (IlvColorComboBox*)property->getPointer () ;
if ((!combo) || (!combo->getStringList()))

return 0;
return new IlvStIValueProperty ((IlvListGadgetItemHolder*)combo,

"ColorHolder") ;

188 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Defining a New Inspector Panel

TheclassT1vColorItemsAccessor iSused in theinspector panel in the following way:

IlvColorItemsAccessor* lstAccessor =
new IlvColorItemsAccessor (
new IlvColorGadgetItemHolderAccessor (getInspectedGraphicAccessor()));

Modifying Colors in the List

In the previous section, we explained how to access alist of colors. We are now going to
modify acolor selected in thelist. To do so, we define a class that lets us inspect the color of
an I1lvColorGadgetItem gadget item. Since the color is defined by the gadget item |abel,
changing the label implies changing the color.

class IlvGadgetItemColorAccessor
: public IlvStICombinedAccessor

{
public:

/] ST e e oo
protected:
IlvGadgetItem* getGadgetItem() const;
virtual IlvStIProperty* getOriginalValue();
virtual void applyValue (I1lvStIProperty™*) ;
}i

IlvGadgetItem*
IlvGadgetItemColorAccessor: :getGadgetItem() const
{
IlvStIProperty* property =
(getObjectAccessor () ? getObjectAccessor()->get() : 0);
return (property? (IlvGadgetItem*)property->getPointer() : 0);
}

I1lvStIProperty*
IlvGadgetItemColorAccessor: :getOriginalValue ()
{

IlvGadgetItem* gadgetItem = getGadgetItem() ;

if (!gadgetItem

return 0;

return new IlvStIValueProperty (gadgetItem->getLabel(), "Color");

}

void
IlvGadgetItemColorAccessor: :applyValue (I1lvStIProperty* property)
{

IlvGadgetItem* gadgetItem = getGadgetItem() ;

if (!gadgetItem)

return;

Ilvvalue value;

gadgetItem->setLabel ((const char*)property->getValue (value)) ;
}

This classis used in the inspector panel code as follows:
editor = new IlvStIPropertyColorEditor ("EditColorItem",

new IlvGadgetItemColorAccessor (1lstAccessor->getSelectionAccessor()));
addEditor (editor) ;

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 189

Theclass I11vstIPropertyColorEditor interfaces with aselection field to makeit
possible to select acolor. The label that appearsin the selection field represents the name of
the selected color.

Creating the Color List Editor

Todisplay alist of items, it is common practiceto usean 11vstringList, whichis
handled by an 11vstIPropertyListEditor. However in the case of our example, we
want thelist to display color gadget itemsinstead of character strings. We have implemented
such list using the class T1vColorStringList, asubclass of T11vStringList. TO
interface this new class, we have defined the following editor class:

class IlvColorListEditor
: public IlvStIPropertyListEditor {
public:

// Constructor / destructor

/] S o
// Overridables.
virtual IlBoolean connectHolder (IlvGraphicHolder* holder) ;
protected:
virtual IlvGadgetItem* createGadgetItem (
const IlvStIProperty* property) const;
}i

I1Boolean
IlvColorListEditor: :connectHolder (I1lvGraphicHolder* holder)
{
// Replaces string list of colors by an IlvColorStringList.
IlvGraphicHolder* subHolder;
IlvGadget* oldList =
(IlvGadget*)IlvStIFindGraphic (holder, getName(), &subHolder) ;
if (!oldList)
return IlvStIPropertyListEditor::connectHolder (holder) ;
IlvRect bbox;
oldList->boundingBox (bbox) ;
IlvColorStringList* colorList =
new IlvColorStringList (oldList->getDisplay(),
bbox,
oldList->getThickness (),
oldList->getPalette());
colorList->useFullSelection (I1True, IlFalse);
colorList->setSelectionMode (I1lvStringListSingleSelection) ;
colorList->setExclusive (IlTrue) ;
colorList->scrollBarShowAsNeeded (I1True, IlTrue, IlFalse);
subHolder->getContainer () ->replace(oldList, colorList, IlTrue);

return IlvStIPropertyListEditor::connectHolder (holder) ;
}

IlvGadgetItem*
IlvColorListEditor: :createGadgetItem(const IlvStIProperty* property) const
{

IlvGadgetItem* gadgetItem = (IlvGadgetItem*)property->getPointer();
if (!gadgetItem)
return 0;

190 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Defining a New Inspector Panel

Ilvvalue valueInfo(IlvColorDrawInfo::_ColorInfosValue->name()) ;
IlvColorDrawInfo* colorInfo =

(IlvColorDrawInfo*) (I1vAny)getListGadget () ->queryValue (valueInfo) ;
TIlvGadgetItem* newGadgetItem =

new IlvColorGadgetItem(getDisplay ()->getColor (gadgetItem-

>getLabel ()),
colorInfo) ;

newGadgetItem->setEditable(IlFalse) ;
return newGadgetItem;

}

Declaring Accessors and Editors for Inspecting Color Items to the Inspector Panel
Accessors and editors for inspecting color items are declared inthe initializeEditors
method as follows:

IlvColorItemsAccessor* lstAccessor =
new IlvColorItemsAccessor (
new IlvColorGadgetItemHolderAccessor (getInspectedGraphicAccessor()));
addEditor (new IlvColorListEditor (lstAccessor, "ColorItemsList"));

IlvStIEditor* editor =
new IlvStIPropertyColorEditor ("EditColorItem",
new IlvGadgetItemColorAccessor (1lstAccessor->getSelectionAccessor()));
addEditor (editor) ;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 191

192 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Part Il

IBM ILOG Views Gadgets

This part provides information for devel oping applications that incorporate
IBM® ILOG® Views Gadgets.

Introducing IBM ILOG Views Gadgets

The IBM® ILOG® Views Gadgets package is a C++ class library for building interactive
graphical user interfaces. This package is built on top of the IBM ILOG Views Foundation
package and is composed of classes for creating special graphic objects, called gadgets,
which you can add to container objects to create graphic panels or interfaces. Buttons, tool
bars, and menus are some of the many interactive graphic objects you can create with

IBM ILOG Views Gadgets.

Thisintroductory chapter contains the following:
& Gadgets Main Features

& Gadgets Libraries

& Gadgetsin a Shapshot

Gadgets Main Features

The IBM® ILOG® Views Gadgets library provides:

& A large set of lightweight graphic objects, such as buttons, text fields, menus, and
toolbars.

¢ A large set of gadget containers, including several predefined dialog boxes.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 195

& Four predefined presentation styles: Motif®, Microsoft® Windows® 3.11, Microsoft
Windows 95, and Microsoft Windows XP.

& An easy way to create your own presentation style.
& A library that is portable to UNIX® workstations and PCs running Microsoft Windows.

& An easy way to combine applications written with a standard widget toolkit, such as
Motif and Microsoft Windows, with new applications using IBM ILOG Views gadgets.

Gadgets in a Snapshot

The base class for all the gadgetsis T1vGadget. Thisclass derivesfrom 11vGraphic, a
class of the I BM® ILOG® Views Foundation library.

The following illustrations show the various gadgets that the Gadgets library provides:

Menus
File Edi Help Al as (v Open.
Save
IlvMenuBar IlvToolBar
I1lvPopupMenu

Common Gadgets

tezzagel abel [] Toaggle

I1lvButton

IlvMessageLabel IlvToggle
Text Field SCComba v Monday)
IlvTextField I1lvComboBox and T1vSpinBox

IlvScrolledComboBox

196 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadgets Libraries

e Test = First Roat
:E:mg multi lines Leaf 1
Leaf 2
Second Roaot
IlvStringList IlvText IlvTreeGadget
Frarme: Tab1 |Tab 2
IlvFrame
IlvNotebook
Matrices
| | MName UE
r =l First oot ”~
Leaf 1
Leaf 2
v Second Root b
> < >
IlvMatrix IlvHierarchicalSheet
IlvSheet

Gadgets Libraries

IBM

For each gadget that you want to use in your application you have to include the appropriate
header file. Header files for gadgets can be found in the following directory:

ILVHOME/include/ilviews/gadgets

You must also link your application with the following gadget library:

& ilvgadgt.lib for Microsoft® Windows® platforms

& libilvgadgt for UNIX® platforms
If you are using advanced gadgets, you must link your application with the following gadget

library:

ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL 197

198

& ilvadvgdt.lib for Microsoft Windows platforms
& libilvadvgdt for UNIX platforms

To know whether agadget classislocated in the standard or advanced gadget library, refer to
the Reference Manual.

Note: The gadget libraries use resources that are located under the r.vHOME directory. If
you do not want to set TL.VHOME, or if IBM ILOG Miews is not installed on the target
computer, you must add those resources to your application.

You must also link your application with the look-and-feel gadgets libraries, depending on
thelook and feel your application will use. By default, an application ran on UNIX will use
the Motif® look, and an application ran on Windows will use one of the provided Windows
looks. See the section Gadgets Look and Feel on page 216 for details.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Code Sample

Code Sample

IBM

Hereisavery basic program that displays a container with a button. Clicking on the button

exits the program.

#include <ilviews/gadgets/button.h>
#include <ilviews/gadgets/gadcont.h>

void Quit (IlvGraphic*,
{

I1Any arg)

IlvDisplay* display
delete display;

I1vExit (0);

(IlvDisplay*)arg;

int main(int argc, char* argv[])
// Create the display.
IlvDisplay* display
if (!display)
return 0;
if (display->isBad()) {
delete display;
return 1;

}

// Create the container.

IlvGadgetContainer* cont
new IlvGadgetContainer (display,

cont->moveToScreen (IlvCenter) ;

"Hello",

// Add the button.

IlvButton* button new IlvButton (display,
button->addCallback (Quit, display);
cont->addObject (button) ;

new IlvDisplay("Hello",

won
'

argc, argv);

"Hello", IlvRect(0,0,100,100));

IlvPoint (30, 30), "Click Me !");

// Show the container and run the event loop.

cont->show() ;
IlvMainLoop () ;

return 0;

ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

199

200 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Understanding Gadgets

This chapter introduces you to properties that are common to all the gadgetsin the library. It
coversthe following topics:

& Gadget Holders
& Common Gadget Properties
¢ Gadgets Look and Feel

Gadget Holders

Gadget holders are objects for storing, displaying, and handling gadgets. The main class for
gadget holdersisthe T1vGadgetContainer class. Thisclass derivesfrom T1vContainer
and thusinherits from all the features this superclass provides, such as member functionsfor
adding or removing objects. It also provides basic features such as keyboard focus
management, attachments, and tooltips.

In this section, you will find information on the following topics:
& List of Available Gadget Holders
¢ Handling Events

& Focus Management

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 201

& Gadgets Attachments

List of Available Gadget Holders

The 11vGadgetContainer oObjects are not the only gadget holders that
IBM® ILOG® Views Gadgets provide. This section introduces you to other available
gadget holders:

Gadget Managers
Notebooks
Matrices

Toolbars

*® 6 6 o o

Paned Containers
You will find also information about:
¢ Limitationsin the use of gadget holders

Gadget Managers

The 11vGadgetManager classis asubclass of the T1vManager classthat deals with
gadgets. For details about managers, see the related User’s Manual. Unlike T1vManager
objects, instances of 11vGadgetManager have only one associated view because gadgets,
cannot appear in several views at the same time, whereas basic graphic objects can.

Asageneral rule, unless you want to save gadgetsto an . i1v file (the IBM ILOG Views
format), we recommend that you use gadget containers rather than gadget managersto store
gadgets.

Notebooks

You can display gadgets inside notebook pages. Actually, default notebook pages are
implemented using gadget containers. For more information, see Handling Notebook Pages
on page 243.

Matrices

A matrix isaspecia gadget made up of rows and columns. Each matrix item can contain a
gadget that has its own behavior inside the matrix. For details, see Using Gadgetsin a
Matrix on page 314.

Toolbars

Gadgets can be displayed inside a toolbar. For details, see Managing Gadgets in a Toolbar
on page 299.

202 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadget Holders

Paned Containers

The 11vPanedContainer classisasubclass of I1vGadgetContainer that dividesthe
container into panes. Each panes can encapsul ate a gadget. For details, see Creating a
Graphic Pane on page 322.

Limitations

We do not recommend that you use simple containers to store gadgets since these objects do
not implement features such as keyboard focus management. Adding gadgets to these
containers might produce unexpected results.

In addition, gadgets cannot be zoomed in or out. As a consequence, we do not recommend
that you modify the scaling factor of a gadget holder.

Handling Events

Gadget holders are responsible for dispatching events to the gadgets. The 11vGadget class
hasahandleEvent member function that processes user events, such as clicking the mouse
or using the keyboard. Unlike with other graphic objects, you do not have to set an interactor
to agadget to be ableto use it.

l Note: However, you can set an interactor to a gadget if you want to.

The handleEvent member function is virtual and can be redefined in subclasses to handle
additional events.

Gadget Holder Events

When the mouse enters or leaves an T1vGadget object, its associated gadget holder
generates the T1vMouseEnter and IlvMouseLeave events (These two events are defined
in the enum T1vEventType). These events are sent to the gadget, or to its associated
interactor, if any, and are processed by the handleEvent member function. Then, the
virtual member functions I1vGadget : : enterGadget Of IlvGadget : : leaveGadget are
called. By default, these member functions invoke the Enter Gadget and the L eave Gadget
callbacks, respectively. See Associating a Callback with a Gadget on page 209.

One consequence of thisisthat you cannot have the T1vMouseEnter and I1vMouseLeave
event trigger an accelerator because an accelerator is attached to an 11vview object. The
T1vview Object does not have knowledge of these events.

I Note: Thisonly appliesto the 11vGadgetContainer and IlvGadgetManager classes.

Focus Management

Gadget holders manage the keyboard focus. For a gadget, having the focus means that it can
receive a keyboard event. A gadget has the focus when the user clicks on it with the mouse.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 203

Pressing the Tab key moves the focus to the next gadget. Pressing Shift-Tab moves it to the
previous gadget. By default, the Tab key moves from one gadget to another first from left to
right, then from top to bottom. However, you can specify the order in which the gadgets are
given the focus when the Tab key is pressed by defining afocus chain.

This section explains the following:

& Defining a Focus Chain

& Setting a Focus Chain Between Gadget Holders
& Notifying a Change of Focus

Defining a Focus Chain

Only the gadgets stored in the same gadget holder can be linked by afocus chain. To define
afocus chain, use the following member functions of the T1vGraphic class:

€ IlvGraphic::setNextFocusGraphic

€ IlvGraphic::setPreviousFocusGraphic
€ IlvGraphic::setLastFocusGraphic

€ IlvGraphic::setFirstFocusGraphic

Thename parameter provided in the member functions setNextFocusGraphic and
setPreviousFocusGraphic isasymbolic name that must be created from the name of
the target gadget. For example, if you want the next object in the focus chain of gadget to
be the gadget named “Button”, call:

gadget->setNextFocusGraphic (I1lvGetSymbol ("Button")) ;

Setting a Focus Chain Between Gadget Holders

By default, the focusloops back to the first gadget in the chain when the user reaches the last
gadget in the focus chain. You can, however, force the focus to another gadget holder that
you specify using the following member functions:

€ IlvGraphicHolder::getNextFocusHolder
€ IlvGraphicHolder: :setNextFocusHolder
€ IlvGraphicHolder::getPreviousFocusHolder

Notifying a Change of Focus

When the keyboard focus enters or leaves an 11vGadget object, its associated gadget holder
generates the T1vKeyboardFocusIn and I1vKeyboardFocusOut events. These events
are sent to the gadget, or to its associated interactor, if any, and are processed by the
handleEvent member function. Then, the virtual member functions

IlvGadget: : focusIn and I1vGadget: : focusout are caled. By default these member

204 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadget Holders

functions invoke the Focus In and Focus Out callbacks, respectively. See Associating a
Callback with a Gadget on page 209.

Gadgets Attachments

The gadget holder provides an attachment model that manages the geometry of the gadgets
when the holder is resized. This attachment model is defined by the T1vGraphicHolder
interface.

You can get a pointer to the T1vGraphicHolder interface using the getHolder member
function.

To attach a gadget to its gadget holder, you have to define guides.
This section covers the following topics:

¢ Introducing Guides and Sections

& Attaching a Gadget to Guides

& Setting the Weight of a Gadget

Introducing Guides and Sections
Guides split gadget holders into several sections, either horizontally or verticaly:

section
| ‘ numbears

2

guide1 guides

Guides are not numbered, whereas the sections they delimit are. When a new guide is added,
sections are renumbered to include the resulting new sections.

By default, there are no guides, except those alongside the window borders.

When the holder is resized, each of its sections are resized according to their weight. The
weight of a section isthe portion of the window that is allocated to it (delimited by the
guide) relative to other sections, when the window is resized. The following formulais
applied to each section when the window is resized:

Weight of guide delimiting the section
Mew section size = Initial section size + Delta X

sum of weights of all guides

where Delta equal s the new size of the window minusitsinitial size.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 205

It is possible to manipulate guides using the T1vGraphicHolder member functions listed
below:

addGuide
removeGuide
getGuideCardinal
getGuidePosition
getGuideSize

getGuideWeight

® 6 6 6 O ¢ o

getGuideLimit

Attaching a Gadget to Guides

Once guides have been defined, it is possible to attach a gadget to them using the member
function 11vGraphicHolder: :attach:

holder->attach (object) ;

This code attaches gadgets to the guides as shown in the following diagram:

Elastic
fixed fixed

guide guide
In this example, we use the default guides located along the window borders. However, you
can use the last three parameters of the at tach member function to specify other guides.

holder->attach(objl, IlvHorizontal, 0, 1, 0, 1, 1);
holder->attach(obj2, IlvHorizontal, 0, 1, 0, 1, 2);

Thiswill produce the following result:

Setting the Weight of a Gadget

The third, fourth, and fifth parameters of the at tach member function define the weight
before the gadget, the gadget weight, and the weight after the gadget, respectively. These
weights are used in the same manner as the guides weight, using the same formula. For
example, the following call:

206 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Common Gadget Properties

holder->attach(object, IlvHorizontal, 1, 0, 0);

will result in the following attachments:

fixed
elastic fixed

guide guide

Common Gadget Properties

In this section, you will find information on the following topics:
& Gadget Appearance

Associating a Callback with a Gadget

Localizing a Gadget

Associating a Mnemonic with a Gadget Label

Setting Tooltips

* 6 6 o o

Gadget Resources

Gadget Appearance

You can define the appearance of a gadget by:
¢ Setting a Gadget as Sensitive

¢ Setting the Thickness of a Gadget

& Setting a Gadget as Transparent

& Showing or Hiding the Gadget Frame

Setting a Gadget as Sensitive

A gadget is said to be sensitive if it respondsto events, that is, if something happens when
the user clicks on it. The visual appearance of sensitive gadgetsis different from that of
nonsensitive ones, as shown in the illustration below:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 207

Figure9.1 Sensitive Gadget versus Nonsensitive Gadget
To change the sensitivity of a gadget, use the member function

I1lvGraphic: :setSensitive.

You can also use the member function T1vGadget: : setActive With I1False as
parameter to specify that a gadget should not respond to events.

The difference between this method and the set sensitivity member function isthat the
drawing of the gadget does not change and the handleEvent member function of the
gadget is not called.

Setting the Thickness of a Gadget

You can customize the appearance of a gadget by modifying its thickness. The thickness
defines the size of the shadow that is used to draw borders, decorations, and so on. To
change the thickness of a gadget, use the member function T1vGadget: : setThickness.

Note: Depending on the look and feel in use, modifying the thickness of a gadget may not
affect the way it appears. More specifically, on Microsoft® Wndows® and Microsoft
Windows 95, most of the gadgets do not take thickness into account.

The following illustration shows two buttons with different thicknesses in the Motif look:

Buttan Button

Figure9.2 Buttonswith Different Thickness Values

Setting a Gadget as Transparent

By default, all gadgets are opaque except for message labels, which are transparent. See
Using llvMessagel abel on page 238. You can make a gadget transparent by calling the
member function T1vGadget: : setTransparent With T1True asits parameter. All the
gadgets in the following illustration are transparent. The transparent setting allows for the
background texture to show through. The gadgets are shown here with the Windows 95 look-
and-fed:

208 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Common Gadget Properties

Figure 9.3 Transparent Gadgets

Note: The scrolling of scrollable gadgets may be slowed down when these gadgets are set
to transparent.

Showing or Hiding the Gadget Frame

Most of the gadgets use aframeto give arelief aspect. The frame of a gadget isthelast part
of the gadget to be drawn. It isdrawn by calling the T11vGadget : : drawFrame member
function. You can choose to change the frame visibility by calling the

IlvGadget: : showFrame member function. The following figure shows two gadgets, one
with aframe, and the other one without:

[=) Firgt Roat = First Root

- Leaft - Leaft
----- Leaf 2 o leaf2

- Gecond Foot ‘- Second Foat

Associating a Callback with a Gadget

You can associate a callback function with a gadget using the method

I1lvGraphic: :addcallback. A calback function is generaly invoked by the
handleEvent member function of its associated gadget when the user performs an action
on it. The prototype of the callback function is defined by the 11vGraphiccallback type.

A gadget can define several callback types, each one corresponding to a specific user action.
Each callback type stores alist of callback functions that will be invoked when the related
action is performed.

Predefined Callback Types
Gadgets have predefined callback types:

& Main—Thiscallback type defines the callbacks that carry out the main action attached to
agadget.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 209

210

& Focus In—This callback type defines callbacks that carry out actions performed when
the gadget is given the focus. The symbol corresponding to this callback type can be
retrieved by T1vGadget: : FocusInSymbol. See Focus Management on page 203.

& Focus Out—This callback type defines callbacks that carry out actions performed when
the gadget loses the focus. The symbol corresponding to this callback type can be
retrieved by 11vGadget : : FocusOutSymbol. See Focus Management on page 203.

& Enter Gadget—This callback type defines callbacks that carry out actions performed
when the mouse enters the gadget. The symbol corresponding to this callback type can
beretrieved by T1vGadget: : EnterGadgetSymbol. See Gadget Holder Events on
page 203.

& Leave Gadget—This callback type defines callbacks that carry out actions performed
when the mouse leaves the gadget. The symbol corresponding to this callback type can
beretrieved by T1vGadget: : LeaveGadgetSymbol. See Gadget Holder Events on
page 203.

For example, if you want to add a Focus In callback to a gadget, you can code:
gadget->addCallback (IlvGadget: :FocusInSymbol (), callback);

where callback has been declared asfollows:
void callback(IlvGraphic* g, IlAny arg) { ... }
In addition to these general predefined callback types, each gadget type has specific

predefined callback types attached. For more detail s, see the sections describing the
individual gadgets.

Localizing a Gadget

Gadgets containing text can be localized. Localizing a gadget means adapting its text to the
language used in the final application. This property allows you to create multilingual
applications whose current language can be changed dynamically very easily.

IBM® ILOG® Viewslets you create message databases as files where you can store all the
text that will be displayed in your final application with its translation to as many languages
as you want. The message database file have a . dom extension. See “1lvM essageDatabase”
in the chapter “Internationalization” of the IBM ILOG Views Foundation User’s Manual.

To have the text of agadget change dynamically depending on the language used in the final
application, you must provide a reference to the message database where the text is stored
instead of hard-coding it.

Let’s suppose that you have created the foll owing message database:

Message: &MenuPrinterSetup
en_US: Printer Setup
fr_Fr: Configuration imprimante

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Common Gadget Properties

You can assign a gadget label the string defined by aMenuPrintersetup like this:

gadget->setLabel ("&MenuPrinterSetup") ;

Calling the getLabel member function will return the string sMenuPrinterSetup and
invoking the getMessage member function will provide the translation to the current
language (for example, “Printer Setup” for English and “ Configuration imprimante” for
French).

Associating a Mnemonic with a Gadget Label

A gadget can be associated with a mnemonic. A mnemonic is an underlined letter in a
gadget label that you can use as a keyboard shortcut to activate the gadget.

To associate amnemonic with agadget label, type a caret (*) before the letter that you want
to use as a mnemonic:

gadget->setLabel (""File") ;
char mnemo = gadget->getMnemonic () ;

I Note: To type a caret (") inside a gadget label, use the Escape sequence: \~.

You can have a different mnemonic depending on the language you use. You could, for
example, have aspecial entry in your language database (. dom file) such as:
Message: &MenuPrinterSetup

en_US: Printer "“Setup
en_Fr: "Configuration imprimante

In French, the letter used as the mnemonicis“C” whereasitis“S’" in English.

Setting Tooltips

Gadgets can be associated with atooltip. A tooltip is short explanatory text that is displayed
when the user places the mouse pointer over a gadget. By default, tooltips are supported by
the gadget holders. If you want to use tooltips outside gadget holders, use the class
IlvToolTipHandler.

This section covers the following topics:
& Creating a Tooltip

& Attaching a Tooltip to a Gadget

& Enabling and Disabling Tooltips

& Specific Tooltips

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 211

Creating a Tooltip

A tooltip is an instance of the 11vToolTip class. To create atooltip, cal:
IlvToolTip* tooltip = new IlvToolTip(“This is a test”);
Attaching a Tooltip to a Gadget

You can attach a tooltip to a gadget with the member function
IlvGraphic: : setNamedProperty SINCe I1vToolTip IS asubclass of the
IlvNamedProperty class:

gadget->setNamedProperty (new IlvTooltip(“This is a test”));

Enabling and Disabling Tooltips

You can enable or disable tooltip management at the application level using the static
member function I1vToolTip: : Enable.

Specific Tooltips

Some gadgets have their own tooltip mechanism, including 11vToolBar, I1vTreeGadget,
IlvMatrix, IlvStringList, and I1vPopupMenu.

For more information, refer to the sections dedicated to these gadgets.

Gadget Resources

The system resource mechanism allows you to customize graphic objects at runtime. Object
resources are resolved when an object is added to a gadget holder using the member function
addObject.

One resource setting can be applicable to an individual object or to an object class. Its scope
can also be restricted to an individual storage object or to a storage class, where storage
standsfor I1vGadgetContainer OF I1lvGadgetManager.

Each graphic object class can define a set of significant parameters as resources.

Predefined Object Resources
I1vGraphic implements the following object resources:

Resource Name Description Value

x X position integer string
Yy y position integer string
w Or width horizontal size integer string
h or height vertical size integer string

212 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

IBM

IlvSimpleGraphic implements the following resources.

Common Gadget Properties

Resource Name Description Value
background palette background color color name
foreground palette foreground color color name
font palette font font name
pattern palette pattern pattern name
colorPattern palette color pattern pattern name
lineStyle palette line style line style name
linewidth palette line width integer string
fillstyle palette fill style FillPattern
FillMaskPattern
FillColorPattern
arcMode palette arc mode ArcPie
ArcChord
fillRule palette fill rule EvenOddRule
WindingRule
alpha palette alpha value Integer string
antialiasingMode palette antialiasing mode DefaultAntialiasing
UseAntialiasing
NoAntialiasing

Warning: T1vsimpleGraphic resources are only applied to graphic objects that have

the default palette.

Setting Object Resources

The user defines values for these resources in the same way as described in Display System
Resources. getResourcein Graphic Resources. Even though the syntax is system-dependent,
the global structure of aresource setting is the same. The structureiskey value. Theleft
part of the resource specification, key, is more complex than the resource specification
described in Display System Resources: getResource so that the objects affected by this
setting can be easily identified. The key specification is defined as follows:

Program. Storage.GraphicObject.Resource

Hereisthe description of these four fields:

& Program Can be either an application name or the string T1ogviews.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

213

& Storage can be either the name of agadget container or gadget manager, or the string
IlvGadgetContainer OF I1vGadgetManager.

& GraphicObject can bethe name of agraphic object (as returned by
IlvGraphic: :getName) OF the name of agraphic object class (as returned by
IlvGraphic: :className).

& Resource iSthe name of the object resource as it appears in the documentation of the
class defining this resource.

Thefields Program, Storage and GraphicObject can be replaced by thewild card * .

It isthe responsibility of the application developer to document the names of objects, gadget
containers, and gadget managers.

It isthe responsibility of the graphic object class designer to document the name of the
resources defined by this class.

Example: Specifying Object Resources

Hereis how to specify that all instances of the 11vPolygon class must be red and filled
using the even-odd rule:

& On X Window, add the following to your ~/ .xdefaults file:
e IlogViews*IlvPolygon.foreground: red
e TlogViews*IlvPolygon.fillRule: EvenOddRule

& On Microsoft Windows, add the following to any . N7 file:
Section [IlogViews] Of [<ApplicationName>] :

e *IlvPolygon.foreground=red

e *IlvPolygon.fillRule=EvenOddRule

Priorities and Conflicts

When several resource settings are applicable to the same target(s), IBM ILOG Views gives
priority to the most precise setting, which means that:

& any string has priority over * 1,
& an application name has priority over T1ogviews,

& agadget container or gadget manager name has priority over T1vGadgetContainer Or
IlvGadgetManager,

& an object name has priority over an object class.

If aconflict remains in spite of these priorities, the result is undefined.

214 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Common Gadget Properties

Example: Resource Priority
Using X Window syntax:

IlogViews. *.*.foreground: blue
myApp.*.*.foreground: green

. myApp.*.IlvButton.foreground: red
myApp.myPanel. * . foreground: yellow

. myApp.myPanel .myButton. foreground: cyan

U W N

Line 5 has priority over al the others.
Line 4 has priority over lines 1 and 2.

Thereis an unresolved conflict between lines 3 and 4. The color of an I1vButtonina
gadget container called myPanel isnot predictable.

Adding New Resources

If you want to add a new resource to a graphic object, you have to overload the virtual
member function T1vGraphic: :applyResources. This method loads object resources
and is called by the addobject member function of T1vGadgetContainer and
IlvGadgetManager.

When overloading this method, subclasses should call the applyResources method of the
superclass, then they should use the second T1vDisplay: : getResource member function
to fetch possible values for the new resources they define:

const char* getResource(const char* resourceName,
const char* objectName,
const char* objectClassName,
const char* storageName = 0,
const char* storageClassName = 0) const;

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 215

Example: Adding Resources

// Assuming class MyObjectClass: public MyObjectSuperClass
// definig a method setLabel.
// The following defines a resource called “labelString”.

void MyObjectClass::applyResources (const char* storageName,
const char* storageClassName,
const char* objectName,
const char* objectClassName,
IlvDisplay* display)

if (!display)
display = getDisplay();

MyObjectSuperClass: :applyResources (storageName,
storageClassName,
objectName,
objectClassName,
display) ;

const char* resource = display->getResource(“labelString”,

objectName,
objectClassName,
storageName,
storageClassName) ;
if (resource)
setLabel (resource) ;

Gadgets Look and Feel

The appearance and behavior of some gadgets can be modified to conform to the graphic
environment in which they are being used. Currently, IBM® ILOG® Views takes into
account four graphic environments: Motif®, Microsoft® Windows® 3.11, Microsoft
Windows 95, and Microsoft Windows XP. You can decide which look and feel is to be used
by your gadgets. You can also define a custom look and feel by inheriting an existing one, or
by completely redesigning your own look and feel.

In this section, you will find information on the following topics:
& Using the Default Look and Feel

Using Several Look and Feel

Dynamic Loading of Look and Feel

Changing the Look and Feel Dynamically

Using the Windows XP Look and Feel

* & & o

216 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadgets Look and Feel

Using the Default Look and Feel

By default, only one styleisused in agiven IBM® ILOG® Views program, which is the
standard style of the computer system:

Motif® style on UNIX®

¢ Microsoft® Windows 3®.11 style on Windows 3.x and Microsoft Windows NT 3.x
¢ Microsoft Windows 95 style on Windows 95 Windows NT 4, and Windows 2000
& Microsoft Windows XP style on Windows XP

4

Note: You can override this default setting by using the T.vL.00x environment variable, or
the LOOK resource. In this case, be sure to provide access to the specified look to your
application, or it will not be used. See the section Using Several Look and Feel on page 218
and Dynamic Loading of Look and Feel on page 219.

Note: The Microsoft Windows XP style is only available on computers running Microsoft
Windows XP. An IBM ILOG Views application built on a Microsoft Windows XP platform
may not run on a previous version of Microsoft Windows (Windows 2000, NT, and so on).
For more details, see the section Using the Windows XP Look and Feel on page 221.

Depending on the platform on which you are building your application, it must be linked
with the corresponding look-and-feel libraries. The following tables sum up the different
libraries available:

Table 9.1 Look Librariesfor Windows Platforms

Standard Gadgets Advanced Gadgets
Look) :
Library Library
Motif ilvmlook.lib ilvamlook.1lib
Windows 3.11 ilvwlook.lib ilvawlook.1lib
Windows 95 ilvw95look.1lib, ilvaw95look.1lib,
ilvwlook.1lib ilvawlook.1lib
Windows XP ilvwxplook.lib, ilvawxplook.lib,
ilvw95look.1lib, ilvaw95look.1lib,
ilvwlook.1lib, ilvawlook.1lib
uxtheme.1lib

IBM ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL

217

Note that the uxtheme . 1ib isaMicrosoft library. If thislibrary is not present on your
computer, it is available in the Microsoft Platform SDK. To get the SDK, goto http://
www.microsoft.com/downloads/details.aspx?FamilyId=A55B6B43-E24F—
4EA3-A93E-40COEC4F68E5&displaylang=en.

Table 9.2 Look Librariesfor UNIX Platforms

Standard Gadgets Advanced Gadgets
Look . .

Library Library
Motif libilvmlook libilvamlook
Windows 3.11 libilvwlook libilvawlook
Windows 95 1libilvw95100k, libilvaw951o0k,

libilvwlook libilvawlook

Note: Windows XP look is not mentioned in the above table, because thislook is available
only for platforms running the Microsoft Windows XP operating system. For more details,
see the section Using the Windows XP Look and Feel on page 221.

For example, if you are building a program using the IBM ILOG Views standard gadget
library (See the section Gadgets Libraries on page 197 for details) on Microsoft Windows
95, you will need to link with 1 1vw951o0k.1ib, ilvwlook.lib.

Similarly, if you are building aprogram using the IBM ILOG Views advanced gadget library
on UNIX, you will need to link with 1ibilvmlook and 1ibilvamlook.

However, if you are using shared libraries, you can avoid linking with look-and-feel
libraries. See the section Dynamic Loading of Look and Feel on page 219.

Note: On Windows platforms, linking with the look-and-feel librariesis not required, even
when using static libraries. The libraries needed by the application will be automatically
linked with it thanks to specific directives put in header files.

Using Several Look and Feel

If you want to use several stylesin your program, you must add a compiler option or an
include fileto indicate which of the additional styles you want to use:

& Inthe compiler flags, define the symbol names for the styles you want to use:

e ILVMOTIFLOOK for the Motif® look in Windows® applications.

218 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadgets Look and Feel

e ILVWINDOWSLOOK for the Microsoft® Windows® 3.11 look in X Window
applications.

e ILVWINDOWS95LOOK for the Microsoft Windows 95 look in X Window applications.
e ILVWINDOWSXPLOOK for the Microsoft Windows XP look in Windows applications.

& |nyour implementation file, and before any other #include directive, include the style
header file. Note that if a header file declaring a gadget class precedes one of these
header files, the corresponding virtual styleswill not be loaded in your program. This
may result in a crash when you change the style of your application.

Here are the files to include:
o <ilviews/motif.h>
to add an access to the Motif look for Microsoft Windows applications.
e <ilviews/windows.h>
to add an access to the Microsoft Windows 3.11 look for X Window applications.
o <ilviews/win95.h>
to add an access to the Microsoft Windows 95 look for X Window applications.

o <ilviews/winxp.h>

to add an access to the Microsoft Windows XP look. Thislook is only available for
Windows XP platforms.

You must also link your application with the look-and-feel gadget libraries corresponding to
the looks used by your application. See Table 9.1 on page 217 and Table 9.2 on page 218.

However, if you are using shared libraries, you can avoid linking with look-and-feel
libraries. See the section Dynamic Loading of Look and Feel on page 219.

Note: If you do not want the default ook and feel to be used, you must compile with the
ILVNODEFAULTLOOK flag. Compiling with this flag will prevent you from linking with the
default look-and-feel libraries.

Dynamic Loading of Look and Feel

When using the dynamic loading of look and feel, you do not have to care about which ook
and feel your application will use. Depending on what is needed by the application, thelooks
will be loaded at runtime. This means that you do not have to link your application with any
look-and-feel specific library.

How does it work?

& You must use shared libraries (or DLL for Microsoft® Windows®). Thisis the sine qua
none condition without which dynamic loading of modulesis not possible.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 219

& You must not include look specific header files, or you will have to link with the
corresponding libraries.

& You must compilewith the ILVNODEFAULTLOOK symbol defined, or you will have to
link with the default look libraries.

Note: Using the dynamic loading of ook and feel is strongly encouraged, asit allows the
application to be completely independent of the style used at runtime.

Changing the Look and Feel Dynamically
The appearance of a graphic object is managed at different levels:
¢ Object level

The method I1vGraphic: :getLookFeelHandler() isused to query an object about
its look-and-feel handler. The default implementation is to use the look-and-feel handler
defined by the object holder.

& Holder level

The method I1vGraphicHolder: : getLookFeelHandler() isused to query a holder
about its look-and-feel handler. The default implementation is to use the look-and-feel
handler defined by the holder display instance.

& Display level

The method I1vDisplay: : getLookFeelHandler() isused to query adisplay
instance about its look-and-feel handler. The default value is defined by the platform on
which the application has been built. See the section Using the Default Look and Feel on
page 217 for details.

It is possible to change the look of a single gadget, of awhole container, or of the whole
application by using respectively the methods 11vGadget : : setLookFeelHandler,
IlvGadgetContainer: :setLookFeelHandler, and

IlvDisplay: :setLookFeelHandler.

A look-and-feel handler isasubclass of the T1vLookFeelHandler class. Each handler has
aunique name that identifiesit. Here are the names for the four predefined look-and-feel

styles:

Motif motif
Windows 3.11 windows
Windows 95 win95
Windows XP winxp

220 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadgets Look and Feel

A look-and-feel handler is associated to a display instance. To obtain an instance of alook-
and-fedl handler, use the method 11vDisplay: : getLookFeelHandler that takes a name
as parameter:

IlvLookFeelHandler* 1fh = display->getLookFeelHandler (I1GetSymbol (“motif”)) ;

If the required look and feel has already been created for this display, it is returned,
otherwise anew one s created. If the look and feel cannot be created, the method returns o.

Changing the Look and Feel of the Whole Display

As seen above, the method 11vDisplay: : setLookFeelHandler should be used to
change the look and feel of the whole display. However, the ILOG Views 4.0 API used to
define an enum (11vLookStyle) to describe predefined looks. This enum can still be used
asfollow:

#include <ilviews/ilv.h>

typedef enum IlvLookStyle {
IlvOtherLook,
IlvMotifLook,
IlvWindowsLook,
I1lvWindows95Look,
IlviWindowsXPLook
}i

The following member functions of the 11vDisplay classlet you manipulate the setting of
the 1ook display resource using this enum:

& IlvDisplay::getCurrentLook returnsthe current style identifier used by this
display instance. If the current look and feel of the display is not one of the predefined
look-and-fedl styles, T1votherLook is returned.

® TlvDisplay::setCurrentLook Setsthe styleidentifier used by this display instance
tostyle.

You can be informed of a change in the look and feel of the display by using the following
methods:

€ TlvDisplay::addChangeLookCallback andletsyou add user-defined functionsthat
are called when the style is dynamically changed.

€ TlvDisplay::removeChangeLookCallback letsyou remove user-defined functions
that are called when the style is dynamically changed.

Using the Windows XP Look and Feel

Although the Microsof ®t Windows® 3.11, Microsoft Windows 95, and Motif styles are
independent of the platform, the Microsoft Windows XP style uses the system (Microsoft
Windows XP) to draw the components. This means that you can only use this style on a

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 221

platform running Microsoft Windows XP. Thisaso meansthat if anew themeisavailableto
Microsoft Windows XP, it will also be availableto IBM ILOG Views applications.

Note: You can build an application using the Microsoft Windows XP style on any other
Microsoft Windows platform. In this case, you may need to install the Microsoft Platform
SDK. To get the DK, gotohttp: //www.microsoft.com/downloads/
details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-
40COEC4F68E5&displaylang=en.

Using IBM ILOG Views Dynamic Link Libraries

When using the IBM ILOG Views DLLS(d11_md, or d11_mda), the Microsoft Windows
XP style can be dynamically loaded when needed. This means that you can built an

IBM ILOG Views application that can be run on any Microsoft Windows platform. The
application will load the Microsoft Windows XP style if it is needed. See Dynamic Loading
of Look and Feel on page 219 for more details.

Using IBM ILOG Views Static Libraries

When using the IBM ILOG Views static libraries (stat_st, stat_sta, stat_md,
stat_mda, stat_mt, OF stat_mta), you must be aware of the following issues:

¢ When building an IBM ILOG Views application using the default style on a Microsoft
Windows XP platform, the flag wINvER must be set to 0x501 when compiling your
application, otherwise only the Microsoft Windows 95 style will be registered. See Using
the Default Look and Feel on page 217.

¢ AnIBM ILOG Views application using the Microsoft Windows XP style and the
IBM ILOG Views static libraries can be run only on platforms running Microsoft
Windows XP. If you want to compile an IBM ILOG Views application on a Microsoft
Windows XP platform and you want this application to run on any Windows platform,
you can either not define the wINVER flag, or define the 1LVNODEFAULTLOOK flag. In
thislast case, you will need to link your application with look-and-feel libraries other
than XP libraries. See Using Several Look and Feel on page 218 for more details.

& Asthe dynamic loading of modules is disabled when using static libraries, your
application needs to be linked with the right libraries. See Look Libraries for Windows
Platforms on page 217.

222 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

10

Dialogs

The Gadgets library providesthe 11vbialog classthat you can use to create dialog boxes.
Since this classinherits from I1vGadgetContainer, itSinstances can contain gadgets.
IlvDialog has various subclasses that implement standard dialog boxes.

This chapter covers the following topics:
¢ Predefined Dialog Boxes

& Creating Your Own Dialog Box

& Showing and Hiding Dialog Boxes
& Setting a Default Button

The following illustration shows the dialog class hierarchy:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 223

IvColorselector
IvForteelector IlviErrorDialog

IIVGadgetOontainerHIIVDialog I“{IIVIMessageDialog ‘ IvlInformationDialog |

‘i IvIFileSelector I IIVIQuestionDiangI
| IvIPromptstring

Figure10.1 ClassHierarchy of Dialog Boxes

Predefined Dialog Boxes

The Gadgets library provides the following classes for defining standard dialog boxes:
IlvIMessageDialog

IlvIQuestionDialog

IIviErrorDialog

[viWarner

IlvlInformationDialog

I1vIFileSelector

IvIPromptString

[lvFontSel ector

® & 6 6 6 6 0 o o

IlvColor Selector

llviMessageDialog

A message dialog box (T1vIMessageDialog class) includes amessagetext field, a bitmap,
and two buttons.

224 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Predefined Dialog Boxes

'V Message

\:.:j Do vou want to quit ILOG Yiews Studio?

Figure10.2 A Message Dialog Box

I Note: By default, this dialog does not include a bitmap. Therefore, you have to provide
one.

llviQuestionDialog

A question dialog box (T1vIQuestionDialog class) displaysaquestion and expects ayes
Or No answer.

'V Message

\:.:j Do vou want to quit ILOG Yiews Studio?

Figure10.3 A Question Dialog Box
Here is a code example for a question dialog box:

{
IlvIQuestionDialog dlg(getDisplay (), msg, O,
IlvDialogOkCancel, transientFor) ;
dlg.setString("dialog message") ;
if (dlg.get())
}

This code creates adialog box named d1g that will be destroyed after its use. Thisdialog
box will be transient for the view specified by transientFor. It has two buttons, Ok and
Cancel. The method get opens the dialog box and waits for the result. This method returns
I1True if OKischosen, and T1False otherwise.

llviErrorDialog

An error dialog box (11vIErrorbialog class) displaysan error message.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 225

Message

@ Thiz iz an error meszage

Figure10.4 An Error Dialog Box

llviWarner

A warning dialog box (11vIwarner class) displays awarning message.

Message

1 E This is a warning
.

Figure10.5 A Warning Dialog Box

llviinformationDialog

Aninformation dialog box (I1vIInformationDialog class) displays aninformation
message.

Message

.
\‘l) Thiz iz an information meszage

Figure 10.6 An Information Dialog Box

llviFileSelector

A file selector (T1viFileSelector class) asksthe user to select afile name.

226 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Predefined Dialog Boxes

¥ File Chooser. E]@@

Filter

| E:twiews5 2vsturlindmsve7dl_mdah* |

Shortzut b ivistudio. exe A
cgeneric.dl
cgeneric.ib
cigeneric.dil
cigeneric. lib
dataccess.dl

moo:

Choice

E:hwiewsh, Zhetudiodmeyve7hdll_mdah

[Apply] [Filker] [Cancel

Figure10.7 AFile Selector
Hereis an example of using afile selector:

filesel = new IlvIFileSelector(display, 0, "*.cc");
filesel->setName ("File Chooser") ;

filename = filesel->get();

if (filename && filename[0] && IlvFileExists(filename))

Note: If you want to use the file selector specific to the platform you are working on, use
either the I11vFileSelector or the I1vFileBrowser class.

llvIPromptString

A prompt string (T1vIPromptString class) asks the user to select or to type a string.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 227

defaultGadget
It
IStToolTip
baldpal

1St et
IlvSthenu
11StT oolB ar

Palette Names
| |

[Apply] [Cancel]

Figure10.8 A Prompt String

llvFontSelector

A font selector (I1vFontSelector class) asksthe user to select afont.

¥ Font Chooser. :| |E| rz|

@évial Unicode |4 | [] Italic
Agency FB =
Algerian [Bold
ArborT ext :
i [] Underline
Avial Baltic
Avial Black [] Use paint size
Arial CE

Arial MR A
< | ¥

Figure10.9 A Font Selector

llvColorSelector

A color selector (I1vColorSelector class) asksthe user to select acolor.

228 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Creating Your Own Dialog Box

¥ | Color, chooser, sy ¥ Color, chooser,

| v| | Color Mames v| | RGE vl | Color Disk

LN Il ble2 - [LER
Ml biue 3 i
Bl biue 4
I bilue violet
I brown
B brown 1
G| b S
I brown 4
burly wood
burlpwood 1
T | burlywood 2 - |
burlwwood 3
B burlyeond 4

cadet blue
cadet blue 1 b
< >
Fdin Fdin
F G B F G B

Figure 10.10 Color Selectorswith Color Names (Left) and with a Color Wheel (Right)

Creating Your Own Dialog Box

To create your own dialog box, follow the steps below:
1. Design the visual representation of the panel.

This step includes several aspects such as choosing which gadgets to use, how the focus
is managed, or how gadgets will behave when the dialog is resized. This phase can be
achieved by using IBM® ILOG® Views Studio.

2. Display your panel in adialog box.

You can either use the generated code of IBM ILOG Views Studio (For details, see
Chapter 4, Using the Generated Code), or directly use the 11vDialog class. The
constructors of 11vDialog provide afacility to pass afile name as a parameter.

Theclass T1vbialog has already two registered callbacks:
& apply: Thiscalback invokesthe virtual T1vbialog: :apply method.
& cancel: This calback invokesthe virtual T1vbialog: : cancel method.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 229

You can, for example, have two buttonsin your dialog box, one with the callback set to
“apply” and the other set to “cancel”.

Showing and Hiding Dialog Boxes

The class T1vbialog provides methods for managing dialog boxes.

UsetheI1vbialog method wait to wait until the user clicks Ok or Cancel (which callsthe
Apply or Cancel callbacks). This method displays a modal dialog box. The method
wasCanceled tells you whether the user has clicked Cancel.

dialog.wait () ;
if (!dialog.wasCanceled()) {

}

You can also use the methods show and hide. Standard dialog boxes have their own special
methods that display them and wait until the valueis returned.

Setting a Default Button

A dialog box can have a default button. The default button is the one that is activated when
the user presses the Enter key when the dialog box has the keyboard focus.

The default button has a special appearance that distinguishesit from other buttons. To set a
default button, use the setbefaultButton member function.

Note that when a default button has been defined, pressing the Enter key only appliesto this
button. In certain cases you might want to override this behavior. For example, when editing
amatrix you might want to use the Enter key to validate changes. To modify this behavior,
you can use the member function T1vGadget : :usesDefaul tButtonKeys.

230 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

11

Using Common Gadgets

This chapter explains how to usethe large variety of gadgets provided in the Gadgets library.

It
*

® 6 6 6 6 6 O O O O 0 0

IBM

coversthe following topics:
Using IIvArrowButton
Using IIvButton
Using [IvComboBox and IlvScrolledComboBox
Using llvDateField
Using llvFrame
Using llvMessagel abel
Using IIvNotebook
Using [IvNumberField
Using IIvOptionMenu
Using llvPasswordTextField
Using llvScrollBar
Using llvSider
Using llvpinBox
Using lIv&rringList

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

231

Using llvText

Using lIvTextField
Using IlvToggle
Using lIvTreeGadget

Using llvArrowButton

The class T1varrowBut ton defines abutton displaying an arrow. The arrow can be
oriented up, down, right, or left. T1varrowButton isasubclass of T1vButton.

L] J &

Figure11.1 Arrow Buttons

You can specify the direction of an arrow using I1vArrowButton: : setDirection and
retrieve it with T1vArrowButton: :getDirection.

See Using |lvButton on page 232.

Using llvButton

The class T1vButton defines arectangular areathat the user can click. T1vButton isa
subclass of 11vMessageLabel around which it adds arelief rectangle.

Figure11.2 A Button

The label that appears inside a button can have various alignment settings and can be
localized. For details about these properties, see Using |lvMessagel abel on page 238.

This section covers the following topics:
¢ Displaying a Bitmap in a Button

¢ Displaying the Button Frame

¢ Associating a Mnemonic with a Button

& Event Handling and Callbacks

232 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvButton

Displaying a Bitmap in a Button

A button can display a bitmap. Four kinds of bitmaps can be displayed: sensitive,
nonsensitive, selected, and highlighted.

Sensitive bitmaps are described in Associating a Bitmap with a Message Label on page 239.

A selected bitmap is displayed when the button is clicked. To set a selected bitmap, use
IlvButton: :setSelectedBitmap.

A highlighted bitmap is displayed when the mouse is over the button. To set a highlighted
bitmap, use T1vButton: : setHighlightedBitmap.

Displaying the Button Frame

You can use the T1vButton: : showFrame member function to specify whether or not the
frame surrounding the button be displayed when it is highlighted. The following illustration
shows buttons in the Windows® 95 look and feel.

G{ Zoom In G{ Zoom In

Figure 11.3 Button with Frame Hidden (Left) and with Frame Displayed (Right)

Associating a Mnemonic with a Button

A button label can be associated with a mnemonic letter. When you press the key
corresponding to the mnemonic letter, the T1vButton: :activate member functionis
called. If the button does not have the keyboard focus, you must press the modifier key (Alt
on PCs and Meta on UNIX) with the | etter.

See Associating a Mnemonic with a Gadget Label on page 211.

Event Handling and Callbacks

When the user clicks a button or presses the mnemonic letter associated with it, or presses
the Enter key or the space bar, the T11vButton: :activate member functioniscalled. This
virtual member function calls the Main callback of the button.

See Handling Events on page 203 and Associating a Callback with a Gadget on page 209.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 233

Using llvComboBox and llvScrolledComboBox

The class T11vComboBox combines atext field with alist of predefined strings from which
the user can choose. 11vscrolledComboBox displays a scrollbar when the list exceeds a
certain number of choices. T1vComboBox classisasubclass of T1vTextField and
IlvListGadgetItemHolder, and I1vScrolledComboBox Classis asubclass of
I1lvComboBox.

ComboBox w

Figure11.4 A Combo Box
See Using lIvTextField on page 263.

This section covers the following topics:
Setting a Combo Box as Noneditable
Setting and Retrieving Items
Changing or Retrieving the Selection
Using Large Lists

Setting the Number of Visible Items

Localizing Combo Boxes

® 6 6 6 6 o o

Event Handling and Callbacks

Setting a Combo Box as Noneditable

By default, the text field part of the combo box can be edited, which means that you can
change its content either by typing new text in it or pasting text from the clipboard. The
member function T1vTextField: :setEditable alowsyouto switch to read-only mode.
In this mode, you can only choose a val ue from the menu.

The appearance of acombo box changeswhen it switchesto read-only mode. Therefore, you
must call the T1vGadget : : reDraw member function when changing the editing mode of a
combo box.

Setting and Retrieving Items

Because 11vComboBox iSasubclass of T1vListGadgetItemHolder, you must usethe
member functions of this class to modify the items of the combo box.

See IlvListGadgetItemHolder.

234 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvComboBox and llvScrolledComboBox

Changing or Retrieving the Selection

Because T1vComboBox isasubclass of T1vTextField, you can use the member functions
of this classto set the text in acombo box or retrieve it.

See Setting and Retrieving Text on page 264.

You can aso set the selected item in a combo box using an index number with
IlvComboBox: : setSelected and retrieve it with I1vComboBox: :whichSelected.

Using Large Lists

Unlike 11vComboBox, theitem list displayed by T1vScrolledComboBox hasafixed width
corresponding to the combo box width. If the list contains large items, they might not fit in
the text field and thusin the list. To modify this behavior, use the member function
IlvScrolledComboBox: :enablelLargeList.

ECCombo w
[tem ~
Large ligt enabled on the left
[tem

[tem w

Figure11.5 A Combo Box with Large List Enabled

Setting the Number of Visible Items

In ascrolled combo box, you can fix the number of visibleitemsin the list. If al items are
visible, thereis no scrollbar.

To set the number of visible items, use the member function
IlvScrolledComboBox: :setVisibleItems.

Localizing Combo Boxes

The text appearing in acombo box can be localized. Only noneditable combo boxes can be
localized.

See Localizing a Gadget on page 210.

Event Handling and Callbacks

When the user selects anew item with the mouse, uses the arrow keys, or enters new text and
presses the Enter key, the Main callback of the combo box isinvoked.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 235

When the user opens the combo box list, the Open List callback isinvoked. To set an Open
List callback method, use the callback symbol returned by
IlvComboBox: :OpenListSymbol().

See Associating a Callback with a Gadget on page 209.

Using llvDateField

Theclass T1vbateField defines aspecial text field gadget for editing dates with various
formats. T1vbateFieldisasubclass of T1vTextField.

01/01/2000
Figure11.6 ADateField
This section covers the following topics:
& Formatting a Date
& Setting and Retrieving a Date Value

Formatting a Date

The 11vDateField can display datesin many formats. To specify the date format, use the
member function I1vDateField: : setFormat.

A date is composed of three elements: the day, the month, and the year. These elements are
divided by separation characters. The setFormat member function allows you to specify
these elements and which separator to use.

The default valueis: 12/31/1995 (df_Month, df_Day, df_Year).
The formats are defined as follows:

enum format

{

df_day, // 1
df_Day, // 01
df_month, // 3
df_Month, // 03
df_month_text, // March

df_abbrev_month, // Mar

df_vyear, // 95

df_Year // 1995
}:

& Jdf day Writesthe day asanumber with no leading zero.

236 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvDateField

df_pay Writesthe day as a number with aleading zero, if necessary.
df_month Writesthe month as a number with no leading zero.

df_Month Writesthe month as a number with aleading zero, if necessary.

* & & o

df_month_text Writesthe month name. If the following month names appear in the
language database, the corresponding name is taken from it. Otherwise, the month name
is taken with the character ‘s’ removed.

Month names: &January, &February, &March, &April, &May, &June,
&July, &August, &September, &October, &November, &December.

& df_abbrev_month Writes the abbreviated month name. If the following abbreviated
month names appear in the language database, the corresponding nameis taken from it.
Otherwise, the abbreviated month name is taken with the character ‘&’ removed.

Abbreviated month names; sjanuary, &february, &march, &april, &may,
&june, &july, &august, &september, &october, &november, &december.

& df_year Writesthelast two digits of the year.

& df_vear Writesthe year.

If you change the format when the field contains a value, this value is applied the new
format.

Note: Only a single day, year, or month format can be passed to the set Format member
function. Otherwise, the function returns 11ralse and the format remains unchanged.
Formats are defined in an embedded enum declaration. They are set as follows:
obj->setFormat (IlvDateField: :df_day) ;

Examples of Formats
April,2,1995 (df_month_text, df_day, df_Year with separator ,)

2/4/95 (df_day, df_month, df_year with separator /)

02/04/1995 (df_pay, df_Month, df_Year with separator /)

Setting and Retrieving a Date Value

To set the date of an T1vbateField Or retrieveit, use the member functions
IlvDateField: :setValue and IlvDateField: :getValue.

Year 2000 Management

The right way to avoid problems linked to the new millenium is to use four digitsto
represent the year. This can be doneinthe 11vbateField class by using the setFormat
member function.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 237

However, if you must use atwo-digits value to represent the year part of the date, the
IlvDateField API offers several methods to solve the problem:

1. setBaseCentury letsyou specify the base century that will be used to recompute the
full year

2. GetBaseCentury returnsthe base century set by setBaseCentury. The default value
is1900

3. SetCenturyThreshold letsyou specify the threshold over which the base century
used will be the value returned by GetBaseCentury () plusl

4. GetCenturyThreshold returnsthevalue set by setCenturyThreshold. The default
valueis 30

For example, with a base century of 1900 and athreshold of 30, avalue of 10 is converted to
2010, and avalue of 40 is converted to 1940.

Using llvFrame

Theclass 11vFrame displays arectangle around alabel. It is used for grouping gadgets
together in a section of apanel. T11vFrame derives from the class T1vMessageLabel.

Frame

Figure11.7 AFrame
See Using lIvMessagel.abel on page 238.

Associating a Mnemonic with a Frame

Frame |abels can be associated with a mnemonic letter. When you press the key
corresponding to the mnemonic letter with the modifier key (Alt on PCs and Metaon
UNIX), the keyboard focus is given to the first gadget in the frame that can have the focus.

See Associating a Mnemonic with a Gadget Label on page 211 and Focus Management on
page 203.

Using llvMessagel abel
The class T1vMessageLabel displays a message, which can be accompanied by a bitmap.

Messages are recorded in a database that can be associated with the current instance of
IlvDisplay.

238 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llivMessageLabel

The alignment of the message relative to the bitmap can be set to any position. In addition, it
is possible to change the alignment of the whole block (message + bitmap) to T1vcenter,
IlvLeft, Of I1vRight inrelation to its bounding box.

Figure 11.8 shows an example of an T1vMessageLabel. The aignment of the message
relative to the picture is 11vBottom, and the global alignment of the T1vMessageLabel is
IlvCenter.

Ve d

Yiews Logo

Figure11.8 A Message Label

This section covers the following topics:

& Associating a Bitmap with a Message Label
& Making the Message Label Opaque
¢ Laying Out the Message Label

& Localizing a Message Label

L 2

Associating a Mnemonic

Associating a Bitmap with a Message Label

Bitmaps can be associated with a message label using the member functions
IlvMessageLlabel: : setBitmap and I1lvMessagelLabel: :setInsensitiveBitmap.

setBitmap associates a main bitmap with the message label. setInsensitiveBitmap
sets the bitmap that will be displayed when the message label is set to nonsensitive. If you do
not provide a nonsensitive bitmap, a default one is automatically computed from the
sensitive bitmap when setting the message label to nonsensitive.

Figure11.9 Message Label with Sensitive and Nonsensitive Bitmap

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 239

See Localizing a Gadget on page 210.

Making the Message Label Opaque

Unlike the other gadgets, the message label is transparent by default. To make it opaque, call
the member function T1vGadget: : setTransparent With T1False asits parameter. The
bounding box of an opaque message label isfilled with the background color that is set in
the object palette.

Vie

Figure11.10 An Opaque Message Label
See Setting a Gadget as Transparent on page 208.

Laying Out the Message Label

When amessage label displays both alabel and abitmap, you can change the position of the
label relative to the bitmap using the member function
IlvMessageLabel: :setLabelPosition.

For example, to have the label appear to the left of the bitmap, call:

message->setLabelPosition (IlvLeft) ;

To set the spacing between the label and the bitmap to 20 pixels, call:

message->setSpacing (20) ;

To center the grouped label and the bitmap inside the bounding box of the message label,
call:

message->setAlignment (IlvCenter) ;

Vie

Figure11.11 Label and Bitmap Aligned as One Block

240 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvNotebook

Localizing a Message Label
A message label can belocalized.
See Localizing a Gadget on page 210.

Associating a Mnemonic

M essage labels can include a mnemonic letter. When you press the key corresponding to the
mnemonic letter with the modifier key (Alt on PCs or Meta on UNIX), or click the message
label, the focus is given to the next gadget in the focus chain.

See Associating a Mnemonic with a Gadget Label on page 211.

Using llvNotebook

The class 11vNotebook sSimulates areal notebook. A notebook is composed of pages that
you can select and bring to the front by clicking their tab. These pages are implemented by
the class 11vNotebookPage.

Tab1 |Tab 2

Figure11.12 A Notebook with Pages
This section covers the following topics:

& Customizing Notebook Tabs
¢ Handling Notebook Pages
& Event Handling and Callbacks

Customizing Notebook Tabs

The tabs of anotebook can be customized in many different ways:
¢ Setting the Position of Tabs

¢ Setting the Orientation of Tabs

¢ Setting the Tabs Margins

& Setting the Page Margins

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 241

Setting the Position of Tabs

The tabs of anotebook can be displayed on any of its borders (top, bottom, left, or right).
You can change the position of the tabs with the member function

IlvNotebook: : setTabsPosition and retrieve this position with

IlvNotebook: :getTabsPosition.

Setting the Orientation of Tabs

Within the tab, the label can be drawn horizontally or vertically. You can change the
orientation of the labels with the member function 11vNotebook: : setLabelsVertical.
To know whether the label are horizontal or vertical, use

IlvNotebook: :arelLabelsVertical.

When the tab labels are oriented vertically, the label can be written from top to bottom, or
from bottom to top.

Optionz
b are

Figure11.13 A Notebook with Vertical Tabs

A label that is written from bottom to top is said to be flipped. To change the way vertical
labels are drawn, use these member functions T1vNotebook: :mustFlipLabels and
IlvNotebook: :flipLabels.

Setting the Tabs Margins

You can change the margin between the border of the tab and its label with these member
functions:; T1vNotebook: :getXMargin, IlvNotebook: : setXMargin,
IlvNotebook: :getYMargin, and IlvNotebook: : setYMargin.

e

Ophions Maore 1 margin

% margin

Figure11.13 Tab Margins(x andy)

242 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvNotebook

Setting the Page Margins

You can a so change the margins between the border of the notebook and its page view. The
value returned by the member function T1vNotebook: : get PageArea depends on the
values set for the page margins.

Following are the member functions for setting the page margins:

IlvNotebook: : setPageTopMargin, I1lvNotebook: : setPageBottomMargin,
IlvNotebook: : setPageLeftMargin, I1vNotebook: : setPageRightMargin. YOU
can retrieve the margins set with the corresponding get member functions.

Tab1 |Tab 2

Figure11.14 PageMargins

Handling Notebook Pages

The pages of a notebook are implemented by the class T1vNotebookPage, which you can
subclass to meet specific requirements. Instances of T1vNotebookPage Can encapsulate an
IlvGadgetContainer or any other type of view. See Displaying the Contents of a Page on
page 244.

This section covers the following topics:
Adding and Removing a Notebook Page
Displaying the Contents of a Page
Customizing a Notebook Page
Changing the Color of a Notebook Page
Setting the Content of Tabs

* & 6 o o

Adding and Removing a Notebook Page
When created, a notebook has no pages. A notebook must contain at least one page.

To add a page to a notebook, use one of the T1vNotebook: : addPage member functions:

IlvNotebookPage* addPage (IlvNotebookPage* page,
I1UShort idx = IlvNotebookLastPage) ;

IlvNotebookPage* addPage(const char* label,
IlvBitmap* bitmap = 0,
I1Boolean transparent = IlTrue,
const char* filename = 0,
IlUShort idx = IlvNotebookLastPage) ;

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 243

Thefirst addpage member function lets you add a subclass of 11vNotebookPage. The
second one creates a new instance of I11vNotebookPage. The idx parameter specifiesthe
position at which the page is to be added.

An I1lvNotebookPage isawaysrelated to a specific notebook, which means that you
cannot share an I1vNotebookPage between two notebooks. You can retrieve the notebook
related to apage using I1vNotebookPage: : getNotebook.

To know how many pages there are in a notebook, use
I1lvNotebook: :getPagesCardinal.

Toretrieve theinternal notebook page array, use T1vNotebook: : getPages. Toretrievethe
first page, call:

page = notebook->getPages () [0];
To remove a specific page, use I1vNotebook: : removePage.

Displaying the Contents of a Page

The member function I1vNotebookPage: : createView Creates aview of type
IlvGadgetContainer to display the contents of the page, which you can retrieve with
IlvNotebookPage: :getView.

You can load an . i1v fileinto anotebook page with the member function
IlvNotebookPage: : setFileName and retrieve thisfile with
IlvNotebookPage: :getFileName.

The member function setFileName assumesthat theview isan I11vGadgetContainer Or
one of its subclasses. You will have to override it if you use another type of view.

Customizing a Notebook Page

You can change the view held by an T1vNotebookPage using the member function
IlvNotebookPage: : setView. YOU can also redefine the member function
IlvNotebookPage: :createView in asubclass of T1vNotebookPage. See Displaying
the Contents of a Page on page 244.

This member function instantiates an invisible view with the size given as its parameter. It
asoloadsan .i1v file (result of getFileName) into the new view.

For example, to have notebook pages encapsulate 11vScrolledview instances, subclass
IlvNotebookPage asfollows:

class myNotebookPage : public IlvNotebookPage
{

public:
myNotebookPage (I1vNotebook* gadget,
const char* label,
Ilvbitmap* bitmap,
I1Boolean transparent,
const char* filename)

: IlvNotebookPage (gadget, label, bitmap, transparent, filename) {}

244 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using llvNotebook

virtual IlvView* createView(IlvAbstractView* parent,
const IlvRect& size);
}i

IlvView* myNotebookPage: :createView(IlvAbstractView* parent,
const IlvRect& size)
{
IlvScrolledview* scview = new IlvScrolledView(parent,size);
IlvGadgetContainer* child = new IlvGadgetContainer (scview->getClipView(),
IlvRect(0,0,100,100)) ;
if (_filename && _filename[0])
child->readFile(_filename) ;
child->fitToContents () ;
return scview;

}

Then create a new notebook page and add it to the notebook:

myNotebookPage* np5=
new myNotebookPage (nb, “Page5”,0,I1False,”../snbook.ilv") ;
nb->addPage (np5) ;

If your view can read an . i1v file, you can overload the member function
IlvNotebookPage: : setFileName.

If you need to add more drawings to your page, you can overload the draw method:

void draw(IlvPort* dst,
const IlvRect& pageRect,
const IlvTransformer* t,
const IlvRegion* clip) const;

You also need to create the following constructors for your page:

MyNotebookPage: :MyNotebookPage (I1vNotebook* notebook) ;
MyNotebookPage: : MyNotebookPage (I1vNotebook* notebook,

const char* label,

IlvBitmap* bitmap,

I1Boolean transparent,

const char* filename);
MyNotebookPage: :MyNotebookPage (const MyNotebookPage& source) ;
MyNotebookPage: :MyNotebookPage (I1vNotebook* notebook,

IlvInputFile&) ;

The member function T1vNotebookPage: :write and the constructor that takes an
IlvInputFile asaparameter let you extend the. i1v format of the page.
Changing the Color of a Notebook Page

Each page of the notebook can have a different background color. To change this color, use
the member function 11vNotebookPage: : setBackground. When you change the
background color of a notebook page, this color is applied to the background of its view.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 245

Setting the Content of Tabs

The notebook tab can contain alabel and/or a bitmap. To set the label that appearsin a
notebook tab, use the member function I1vNotebookPage: : setLabel. Use
IlvNotebookPage: : getLabel to retrieve thislabel.

Thislabel can have amnemonic. See Associating a Mnemonic with a Gadget Label on
page 211.

To set the bitmap that appears in a notebook tab, use the member function
IlvNotebookPage: : setBitmap. USe I1lvNotebookPage: : getBitmap tO retrieve this
bitmap.

Event Handling and Callbacks

When the user selects a notebook page by clicking it with the mouse, by pressing the arrow
keys, or by pressing the key corresponding to its associated mnemonic letter, the member
function I1vNotebook: : changeSelection iscaled. This member function invokes
IlvNotebook: :pageDeselected With the previous selected page as its parameter and
IlvNotebook: :pageSelected With the new selected page as its parameter.
IlvNotebook: :pageDeselected CallSI1vNotebookPage: :deSelect and triggersthe
Page Deselected callback. T1vNotebook: : pageSelected cals

IlvNotebookPage: : select and triggers the Page Selected callback. You can retrieve
their typeswith T1vNotebook: : PageSelectedCallbackType and

IlvNotebook: : PageDeselectedCallbackType. Resizing the notebook page invokes
the Page Resize callback. You can retrieve its type with

I1lvNotebook: : PageResizedCallbackType.

See Associating a Callback with a Gadget on page 209.

Using llvNumberField

The class 11vNumberField class defines a specialized text field for editing numbers with
various formats. I1vNumberField isasubclass of I1vTextField.

1234543 62

Figure11.15 A Number Field

See Using lIvTextField on page 263.
This section covers the following topics:
& Sdecting an Editing Mode

& Choosing a Format

246 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvNumberField

& Defining a Range of Values

& Setting and Retrieving a Value

& Specifying the Thousand Separator

& Specifying the Decimal Point Character
& Event Handling and Callbacks

Selecting an Editing Mode

The 11vNumberField class has two main editing modes, one for integers (11vint) and
one for floating-point numbers (T1pouble). The editing mode in effect depends on the
constructor used.

To create a number field for editing integers, use one of these two constructors:

IlvNumberField* field = new IlvNumberField(display,O,
IlvRect (10,10, 100, 30));
IlvNumberField* field = new IlvNumberField(display,

IlvPoint(10,10), 0);

To create a number field for editing floating point numbers, use one of these two

constructors.
I1lvNumberField* field = new IlvNumberField(display, 0.0,

IlvRect (10,10, 100, 30));
IlvNumberField* field = new IlvNumberField(display,

IlvPoint(10,10), 0.0);

Choosing a Format

A number field can be assigned aformat. You can change the current format at runtime with
IlvNumberField: :setFormat.

Formats are defined by this enum declaration:

enum { thousands = 1,
scientific = 2,
padright =4,
showpoint = 8,
floatmode = 16};

They are set asfollows:
obj->setFormat (IlvNumberField: : floatmode|IlvNumberField: :scientific) ;
Following is a description of these various date formats:

¢ floatmode—Usethis mode to edit float values. This mode is automatically set when
using a constructor with a value of type T1Double. See Selecting an Editing Mode on
page 247.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 247

& scientific—Usethismode to control the output of T1Double valuesinthe gadget. If
scientific isset, the valueis converted using scientific notation, where there is one
digit before the decimal point and the number of digits after it is equal to the specified
number (six by default). The letter e introduces the exponent. If scientific isnot set,
the value is converted to decimal notation with precision digits after the decimal point
(six digits by default). This only works when the f1oatmode is Set.

& padright—Use this mode to add the trailing zeros after the decimal point. Thisonly
works when the £1oatmode iS set.

€ showpoint—Usethis mode with the padright mode to keep the decimal point when
removing trailing zeros. This only works when the f1oatmode is Set.

& thousands—Usethis mode to display a“thousand” separator. The default “thousand”
separator isthe character ‘.. See Specifying the Thousand Separator on page 248.

Defining a Range of Values

You can specify the minimum and maximum numbers that can be edited in a number field.
There are two sets of member functions depending on whether you are editing an integer or
afloating-point value:

For integers, use T1vNumberField: : setMaxInt and I1vNumberField: : setMinInt.

For floating-point numbers, use T1vNumberField: : setMaxFloat and
IlvNumberField: :setMinFloat.

Setting and Retrieving a Value

The 11vNumberField provides two sets of member functions for setting and retrieving a
value.

If the valueis an integer, use:

IlInt getIntValue(IlBoolean& error) const;
I1Boolean setValue(IlInt, IlBoolean redraw = IlFalse);

If the value is a floating-point number:

IlDouble getFloatValue(IlBoolean& error) const;
I1Boolean setValue(IlDouble, IlBoolean redraw = IlFalse);

Specifying the Thousand Separator

When the number formats thousands and float are set, the thousand separator is
displayed. The default thousand separator is the comma character (,). You can change this
character using the member function I1vNumberField: : setThousandSeparator.
Calling this member functions does not directly change the text in the number field.

248 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvOptionMenu

Therefore, if the field already contains avalue, you must first retrieve that value, change the
separator, and then set the value again.

Specifying the Decimal Point Character

The default decimal point character for floating-point numbersis the period character (.).
You can change this character using the member function
IlvNumberField: :setDecimalPointChar.

Calling this member function does not directly change the text in the number field.
Therefore, if thefield already contains avalue, you must first retrieve that value, change the
decimal point character, and then set the value again.

Event Handling and Callbacks

When the user pressesthe Enter Key in anumber field, the T1vNumberField: :validate
member function is called. This virtual member function invokes the Main callback
associated with the number field and moves the keyboard focus to the next gadget in the
focus chain. This happens only if the field content can be converted to a number, and this
number iswithin the range specified by T1vNumberField: : setMaxFloat,
IlvNumberField: :setMinFloat, IlvNumberField: : setMaxInt, and
IlvNumberField: :setMinInt.

See Defining a Range of Values on page 248, Focus Management on page 203, and
Associating a Callback with a Gadget on page 209.

Using llvOptionMenu

The class T1voptionMenu defines adrop-drown list of items from which the user can
select.

ikeml i

iteml
ikemz
item3

Figure11.16 An Option Menu
Note: Because the Microsoft ® Wndows® look and feel does not provide an option menu,
the class T1voptionMenu is represented as a combo box when the stylein useis
Microsoft Windows.

This section covers the following topics:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 249

& Setting and Retrieving Items

¢ Changing and Retrieving the Selected Item
& Localizing Option Menus

L 2

Event Handling and Callbacks

Setting and Retrieving Items

Because T11voptionMenu isasubclass of T1vListGadgetItemHolder, you must use the
member functions of this class to modify the items of the option menu.

See IlvListGadgetItemHolder.

Changing and Retrieving the Selected Item

To modify the selected item in an option menu, use the member function
IlvOptionMenu: : setSelected. TO retrieve theindex of the selected item, use
IlvOptionMenu: :whichSelected.

Localizing Option Menus
Option menus can be localized.

See Localizing a Gadget on page 210.

Event Handling and Callbacks

When the user selects a new item in the menu, either by pointing on it with the mouse or by
using the arrow keys, the virtual member function T1voptionMenu: : doTt iscaled. It can
be overridden in a subclass of the option menu when necessary.

Its default implementation invokes the Main callback of the option menu.
See Associating a Callback with a Gadget on page 209.

Using llvPasswordTextField

The I1vpPasswordTextField classisaspecial text field for entering passwords. A specia
character replaces the characters that you type in the field so that the password remains
secret. T1vPasswordTextField isasubclassof T1vTextField.

To retrieve the text entered by the user, usethe T1vTextField: :getLabel member
function. To modify the character typed in place of the real text, call
IlvPasswordTextField: : setMaskChar.

250 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvScrollBar

Using llvScrollBar

Theclass 11vscrollBar defines arectangular areawith two arrows and a dider used for
scrolling through awindow. This rectangular areais called a scrollbar.

Figure11.17 A <crollbar
This section covers the following topics:

¢ Setting the Scrollbar Values
¢ Setting the Scrollbar Orientation
& Event Handling and Callbacks

Setting the Scrollbar Values

A scrollbar is defined by the following values:
¢ lItscurrent value.

¢ Itsminimum and maximum values.

¢ Thesdlider size.
L 2

The increment, that is, the value added to or removed from the scrollbar current value
when clicking the scrollbar arrows or when pressing the Left, Right, Up or Down keys.

& The pageincrement, that is, the value added to or removed from the current scrollbar
value when clicking the areas between the dlider and the arrows or when pressing the

Page-Up or Page-Down keys.
The current value of the scrollbar can change within the minimum value and the (maximum
- dlider size) vaue.

Usethe I1vscrollBar: : setValues method to set the current value of the scrollbar and
its minimum and maximum val ues.

Usethe I1vsScrollBar: :setIncrement and IlvScrollBar: : setPageIncrement
methods to set the increment and the page increment.

Setting the Scrollbar Orientation

A dider can have four types of orientation, which are specified in the constructor. You can
also changeits orientation using T1vScrollBar: : setOrientation. The orientation of
the slider can be:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 251

IlvLeft Horizontal slider with minimum value on the | eft.
I1vRight Horizonta slider with minimum value on the right.

I1lvTop Vertica dider with minimum value on the top.

* & & o

IlvBottom Vertical dider with minimum value on the bottom.

Event Handling and Callbacks

When the user drags the dider, thus causing the scrollbar value to change, the virtual
member function T1vScrollBar: :drag is called. This member function can be
overridden in subclasses. Its default implementation invokes the member function
IlvScrollBar: :valueChanged.

IlvScrollBar: :valueChanged isalso caled when the user clicksthe scrollbar arrows or
the arealocated between the slider and the arrows, or when the user presses the arrow keys
or the Home and End keys. Thisvirtual member function can be overridden in subclasses. Its
default implementation invokes the Main callback associated with the scrollbar.

When the user releases the dlider, after he dragged it, the virtual member function
IlvScrollBar: :dragged is caled. This member function can be overriddenin
subclasses. Its default implementation invokes the secondary callback associated with the
scrollbar.

See Associating a Callback with a Gadget on page 209.

Using llvSlider

252

Theclass 11vslider definesarectangular areathat contains aslider. When the user moves
the slider, its value changes.

Figure11.18 Horizontal and Vertical Siders
This section covers the following topics:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Using llvSlider

& Setting the Sider Values

& Setting the Sider Orientation
& Setting the Thumb Orientation
L 2

Event Handling and Callbacks

Setting the Slider Values

Theclass T1vslider provides an easy way to modify avalue between arange.
The dlider is defined by the following values:

¢ Itscurrent value.

¢ Itsminimum and maximum values.

¢ Thedlider size.

¢ The page increment, that is, the value added to or removed from the slider current value
when clicking the areas outside the dlider or when pressing the Page Up or Page Down
keys.

You can set the value and the range of the slider using the member function

TlvSlider: :setValues. YOU can set the page increment with
IlvSlider: :setPageIncrement.

Setting the Slider Orientation

A dider can have four types of orientation, which are specified in the constructor. You can
also changeits orientation using T1vslider: : setOrientation. The orientation of the
dlider can be:

& TlvLeft Horizontal slider with minimum value on the | eft.

& TlvRight Horizontal slider with minimum value on theright.
¢ TlvTop Vertica dider with minimum value on the top.
*

IlvBottom Vertical slider with minimum value on the bottom.

Setting the Thumb Orientation

The thumb orientation can be also be set usingthe T1vslider: : setThumbOrientation
method. However, this setting is not supported by all kinds of look-and-feel styles. For
example, setting the thumb orientation has no effect when using the Motif look and feel.

The following illustration shows two sliders with different thumb orientation:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 253

Figure11.19 The Thumb Orientation of the Siders

Event Handling and Callbacks

When the user drags the dlider, clicks outside it, or presses the arrow keys, the Home or End
keys, thus causing the dider value to change, the virtual member function

IlvSlider: :valueChanged iscaled. This member function can be overriddenin
subclassesto perform a specific action. Its default implementation invokes the Main callback
associated with the slider. Any changes made to the slider value call the dlider callback.

See Associating a Callback with a Gadget on page 209.

Using llvSpinBox
The class 11vspinBox defines a composite gadget made up of two buttons and several
fields of thetype I1vTextField Of I1vNumberField.

For text fields, you can define alist of predefined string values which the user can spin
through using the buttons. For number fields, you can define a set of numeric values, within
the specified value range, which the user can increment or decrement using the buttons.

You can aso add graphic objects to a spin box.

Monday ¥
Figure11.20 A Spin Box
See Using llvNumberField on page 246 and Using |IvTextField on page 263.
This section covers the following topics:
4 Adding and Removing Fields to a Spin Box
& \Working with Text Fields
& \Working with Numeric Fields
& Event Handling and Callbacks

254 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using llvSpinBox

Adding and Removing Fields to a Spin Box

When created, a spin box has no fields; it is composed only of two arrow buttons. You can
add one or more I1vTextField OF I1lvNumberField to aspin box. Note, however, that
you can use a spin box that has no fields to increment or decrement avalue in your
application.

Adding Fields

To add afield to a spin box, you can use either one of these two member functions,
depending on the type of values you want to display (character strings or numbers).

void addField(IlvTextField* field,
const char** values,

I1lUShort count,

I1lUShort pos,

I1Boolean loop,

I1UShort at =0,
I1Boolean redraw = IlFalse);

Thevalues parameter holds the string values that you will spin through. The count
parameter specifies the number of stringsin values.

void addField(IlvNumberField* field,

IlDouble value,

IlDouble increment,
I1Boolean loop,

I1lUShort at =0,
I1Boolean redraw = IlFalse);

When you add a numeric field to a spin box, the buttons allow you to change the value of the
numeric field within the value range specified by the numeric field itself (see Using
IlvNumberField on page 246).

Thevalue parameter istheinitial value of thefield. The increment parameter specifies
the value that is added to or removed from the value of the numeric field when the user
clicks the Increment or Decrement buttons.

If the 100op parameter is set to T1True, the spin box returns to the first value when the user
tries to increment the last value, and to the last value when the user tries to decrement the
first value.

The at parameter lets you insert thefield at a specific location in the spin box.

Hereisashort example (spinbox isapointer to an I1vSpinBox object):

const char* values[7] = {"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"};
spinbox->addField (new IlvTextField(display,"",IlvRect(0,0,10,10)),

values, 7, 0, IlTrue);

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 255

Note: Therectangle used for creating the 11vTextField hasno meaning here. Also, you
do not need to add the T1vTextField to a container because now it is managed by the
spin box.

Removing Fields

Toremoveafield froman 11vSpinBox, USe I1vSpinBox: : removeObject. This member
function also removes a graphic object added to the spin box as a decoration.

Adding Graphic Objects

You can add any graphic object to a spin box with the member function
IlvSpinBox: :addObject. Graphic objects appearing in a spin box serve as decorations
and do not have any specific behaviors.

Working with Text Fields

If thefield in aspin box isof type I1vTextField, you can retrieve its array of predefined
strings with T1vSpinBox: : getLabels and T1vSpinBox: : getLabelsCount.

You can add a predefined string to atext field with T1vspinBox: : addLabel and remove it
with I1vSpinBox: : removeLabel.

You can set or retrieve the contents of atext field with these member functions:

const char* getLabel (I1lvTextField*) const;
void setLabel (IlvTextField* field,
const char* label,

I1Boolean redraw = IlFalse);
void setLabel (IlvTextField* field,

I1UShort index,

I1Boolean redraw = IlFalse);

Working with Numeric Fields

If thefield in aspin box is of type 11vNumberField, you can set the increment specified
With I1vSpinBox: : set Increment and retrieveit with I1vspinBox: : getIncrement.

The increment is the value that is added to or retrieved from the field value when the user
clicks the spin box buttons.

You can set and retrieve the numeric value of afield with these member functions:
IlDouble getValue (IlvNumberField* field,
I1Boolean& error)const;

I1lBoolean setValue (IlvNumberField* field,
IlDouble value) ;

256 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvStringList

Event Handling and Callbacks

The class 11vspinBox defines two callback types, Increment and Decrement, which you
can access using the following:

static IlvSymbol* IncrementCallbackType () ;
static IlvSymbol* DecrementCallbackType() ;

These callbacks are invoked when the user clicks the Increment and Decrement buttons. The
activefield, if any, isincremented/decremented just before the callback isinvoked. The Main
calback is caled in both cases.

See Associating a Callback with a Gadget on page 209.

Using llvStringList

Theclasst1vstringList displaysalist of gadget items of the class 11vGadgetItem, OF
of asubclass. 11vstringList isasubclass of T1vScrolledGadget and
IlvListGadgetItemHolder.

String lists can store up to 32767 items and can be composed of 1abels, bitmaps, or graphic
objects (class T1vGraphic), and support scrollbars.

itermn 1 ~
itern 2
item 3 -

Figure11.21 A Sring List
This section covers the following topics:

& Manipulating String List Items

Customizing the Appearance of Sring List Items
Displaying Tooltips

Localizing String List Items

* & & o

Handling Events and Callbacks

Manipulating String List Items

Member functions for manipulating string list items are defined in the base class
IlvListGadgetItemHolder.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 257

Customizing the Appearance of String List Items

In addition to the graphic features of gadget items (seethe class T1vGadget Item), the class
I1lvsStringList offers several waysto customize the global display of itsitems:

Defining Item Height

Showing Label and Picture
Setting Label and Picture Position
Setting the Label Alignment

*® 6 6 o o

Choosing a Selection Mode

Defining Item Height

By default, itemsin astring list can have different heights. You can however choose to
display al the items with the same height using the member function
IlvStringList::setDefaultItemHeight.

Showing Label and Picture

Picturesin astring list can be shown or hidden with the member function
IlvStringList: :showPicture.

Similarly, labelsin astring list can be displayed or hidden with the member function
IlvStringList: :showLabel.

By default, a string list displays both labels and pictures.

Note: You can override this global setting for a specific item with
IlvGadgetItem: : showLabel and IlvGadgetItem: : showPicture.

Setting Label and Picture Position

You can change the position of the item labels relative to their pictures with
IlvStringList: :setLabelPosition.

By default, the label is placed to the right of the picture (11vRight).

Note: You can override this global setting for a specific item with
IlvGadgetItem: :setLabelPosition.

Setting the Label Alignment

When the label positionis T1vRight (the default value), and when only certain items are
using a picture and alabel, you may want al the labelsto be left-aligned, asillustrated in
Figure 11.21.

258 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvStringList

By default, item labels are automatically aligned. When an item is modified, the list
recomputes the new label alignment. Since this operation can be time-consuming, it is
possible to disable the automatic alignment of labels using the member function
IlvStringList::autoLabelAlignment.

You may also want to disable the automatic label aignment mode because you know the size
of al your pictures. Inthiscase, call 11vstringList: :setLabelOffset.

For example, the following call will ensure that each label item will be displayed with aleft
margin of 30 pixels:

slist->setLabelOffset (30) ;

Choosing a Selection Mode

When astring list item is selected, it ishighlighted. The 11vstringList classprovidestwo
different modes for displaying selected items:

& Full selection mode When this mode (the default) is set, the selection extends on the
whole width of the string list.

& Partial selection mode When this mode is set, the selection extends to the item labels
only.

These two modes are illustrated in the figure below:

@
iternz2 iternz2
itern3 itern3

Figure11.22 Full Selection Mode (Left) and Partial Selection Mode (Right)
You can switch from one mode to the other using T1vstringList: :useFullSelection.

Displaying Tooltips

String lists can display tooltips when the mouse pointer is over partially visible items,
provided that tooltips have been enabled with the member function
IlvStringList: :useToolTips.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 259

iternl
[Thiz item is very long and needs a tooltip]
iternd

Figure11.23 Tooltip Displayed

Note: Tooltipswork only if the partial selection mode is set. See Choosing a Selection
Mode on page 259.

Localizing String List Items
String list labels can be localized.
See Localizing a Gadget on page 210.

Handling Events and Callbacks

This section covers the following topics:

¢ Selection Modes

& Selecting and Double-clicking a String List Item
& Editing a Sring List Item

& Dragging and Dropping a String List Item
Selection Modes

There are two selection modes for string lists: single (or exclusive) selection and multiple
selection.

In single selection mode, only one item can be selected at atime. This mode has two
submodes:

€ IlvStringListSingleSelection—You can select only oneitem at atime.

€ IlvStringListSingleBrowseSelection—Thismodeissimilar tothe previousone
except that clicking the selected item cancels the selection.

In multiple selection mode, several items can be selected at the same time. This mode has
three submodes:

€ IlvStringListBrowseSelection—You can select severa items at the sametime
either by clicking them or dragging the mouse. Similarly, you can deselect several items
by clicking them or by dragging the mouse with the middle button.

€ TIlvStringListMultipleSelection—Clicking anitem selectsit or cancelsthe
selection.

260 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvText

€ IlvStringListExtendedSelection—You can extend the selection using the Shift
or the Control key.

To modify the selection mode in effect, use the member function

IlvStringList: :setExclusive. To change the submode, use

IlvStringList: :setSelectionMode. In multiple selection mode, you can set alimit to
the number of items that can be selected with the member function setSelectionLimit.

Selecting and Double-clicking a String List Item

When the user double-clicks on a string list item, the Main callback isinvoked. When the
user selects an item or cancel s the selection, the Select callback is called. To set this
callback, use the member function T1vStringList: :setSelectCallback.

See Associating a Callback with a Gadget on page 209.

To control selecting and double-clicking itemsin alist, you can redefine the following
member functionsin subclasses. T1vstringList: :select (for selecting an item),
IlvStringList::unSelect (for cancelling the selection), or T1vstringList: :doIt
(for double-clicking on an item).

If you want to change the selection by coding, you can use
IlvStringList: :setSelected.

Editing a String List Item
Itemsin astring list can be edited. See Finding Gadget Items on page 283.

Dragging and Dropping a String List Iltem

The 11vstringList class provides an easy-to-use drag-and-drop mechanism. See
Dragging and Dropping Gadget Items on page 285.

Using llvText

IBM

The class 11vText defines amultiline text editor. Since I11vText is asubclass of
IlvScrolledGadget, the text editor has scrollbars.

Text s
it lines

hd

Figure11.24 A Multiline Text Editor

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 261

The class 11vText provides alarge number of member functions for setting or retrieving
text, and for switching between the edit and read-only modes.

For details about handling scrollbars, see the base class T1vScrolledGadget.
This section covers the following topics:

& Setting and Retrieving Text

& Event Handling

Setting and Retrieving Text

You can specify the content of an T11vText object with the virtual member function
IlvText: :setText and retrieveit with T1vText: :getText.

You can aso set the text of a specific linewith T1vText : : setLine and retrieveit with
IlvText: :getLine.

You can add aline or remove aline with T1vText : :addLine and
IlvText: :removelLine.

The class 11vText has many other helpful methods to set or retrieve severa lines.

Event Handling

This section covers the following topics:
¢ The check Method

& Keyboard Shortcuts

The check Method

Each time the user types aregular ASCII character in atext gadget, the virtual member
function T11vText : : check is called. Its default implementation removes the selected text
and adds the character that the user enters at the current cursor location.

Keyboard Shortcuts

The following table lists the keyboard shortcuts that can be used with text fields:

Key Behavior

Home or Ctrl+A Moves the cursor to the beginning of the line.
Meta < Moves the cursor to the beginning of the text.
Meta > Moves the cursor to the end of the text.

End or Ctrl+E Moves the cursor to the end of the line.

262 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvTextField

Key

Behavior

Left arrow key or Ctrl+B

Moves the cursor left one character.

Right arrow key or Ctrl+F

Moves the cursor right one character.

Up key or Ctrl+P

Moves the cursor up one line.

Down key or Ctrl+N

Moves the cursor down one line.

Page Up Moves the cursor one page up.

Page Down Moves the cursor one page down.
Ctrl+K Removes the text after the cursor.

Del or Ctrl+D Removes the character after the cursor.

Back Space or Ctrl+H

Removes the character before the cursor.

Ctrl+X Cuts the selected text to the clipboard.
Ctrl+C Copies the selected text to the clipboard.
Ctrl+Vv Pastes text from the clipboard.

Ctri+Insert (Windows®)

Copies the selected text to the clipboard.

Shift+Insert (Windows)

Pastes text from the clipboard.

Ctrl+Left, Ctrl+Right

Moves the cursor one word backward or forward.

Shift+Left, Shift+Right
Shift+Up, Shift+Down

Extends the selection one character up, down, left or right.

Ctrl+Shift+Left,
Ctrl+Shift+Right

Extends the selection one word to the left or to the right.

Shift+Home, Shift+End

Extends the selection to the beginning or end of the line.

Ctrl+Shift+Home
Ctrl+Shift+End

Extends the selection to the beginning or end of the text.

Using llvTextField

Theclass 11vTextField defines aone-line text editor that is used to edit a short character
string.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 263

Text Field

Figure11.25 AText Field
This section covers the following topics:

& Aligning Text
Setting and Retrieving Text
Localizing a Text Field

Limiting the Number of Characters

* & & o

Event Handling and Callbacks

Aligning Text

Thetext of an T1vTextField can beleft-aligned (the default), right-aligned, or centered.
To change the text alignment, use T1vTextField: : setAlignment.

Setting and Retrieving Text

Use the member functions I1vTextField: :setLabel and I1lvTextField: :getLabel
to set and retrieve text. Theclass 11vTextField also contains a set of useful methods for
setting or retrieving formatted text such asinteger or float values:

& getIntValue () retrievesan integer value.

® getFloatValue () retrievesafloat value.

& setvalue(IlvInt) Setsaninteger value.

@ setvValue(IlvFloat,const char* format) Setsafloat value.
Subclasses of T1vTextField edit aninteger, afloat, a date, and a password.
See Using lIvDateField on page 236, Using |IvNumberField on page 246.

Localizing a Text Field
Text fieldsin read-only mode can be localized.
See Localizing a Gadget on page 210.

Limiting the Number of Characters

You can limit the number of characters that can be edited in atext field with
IlvTextField: : setMaxChar. When its parameter is set to -1, you can type as many
characters as you want. This member function limits the number of characters that you can

264 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvTextField

typein atext field, but not the number of characters you can specify with
IlvTextField: :setLabel. See Setting and Retrieving Text on page 264.

Event Handling and Callbacks

This section covers the following topics:

¢ The Validate Method and the Main Callback
¢ The Check Method

& ThelabelChanged Method

The Validate Method and the Main Callback

When the user pressesthe Enter key in atext field, the T11vTextField: :validate
member function is called. This virtual method invokes the Main callback of the text field
and moves the focus to the next gadget in the focus chain.

Setting the Main callback for atext field provides an easy way to validate it. You can set a
Focus Out callback to validate the text field instead of the Main callback. In this case, the
field is validated when it loses the focus.

See Associating a Callback with a Gadget on page 209 and Focus Management on page 203.

The Check Method

Each time the user types aregular ASCII character in atext field, the virtual
I1lvTextField: : check member functioniscalled. Itsdefault implementation removesthe
selected text and adds the characters that the user enters at the current cursor location.

This method checks the maximum number of characters allowed (see Limiting the Number
of Characters on page 264). As a consequence, when you redefine it, be sure to add atest
(similar to the one shown below) to allow this mechanism to work.

The labelChanged Method

When the user modifies the content of atext field, the member function
I1lvTextField: : labelChanged iscaled. Its default implementation invokes the Change
callback.

To set thiscallback, use T1vTextField: : setChangeCallback.

See Associating a Callback with a Gadget on page 209.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 265

Keyboard Shortcuts
The following table lists the keyboard shortcuts that can be used with text fields:

Key Behavior

Home or Ctrl+A Moves the cursor to the beginning of the text.

End or Ctrl+E Moves the cursor to the end of the text.

Left arrow key or Ctrl+B Moves cursor left one character.

Right arrow key or Ctrl+F Moves cursor right one character.

Ctrl+K Removes the text after the cursor.

Ctrl+U Removes the text before the cursor.

Del or Ctrl+D Removes the character after the cursor.

Back Space or Ctrl+H Removes the character before the cursor.

Ctrl+X Cuts the selected text to the clipboard.

Ctrl+C Copies the selected text to the clipboard.

Ctrl+Vv Pastes text from the clipboard.

Ctrl+Insert (Windows) Copies the selected text to the clipboard.

Shift+Insert (Windows) Pastes text from the clipboard.

Ctrl+Left, Ctrl+Right Moves the cursor one word backward or forward.

Shift+Left, Shift+Right Extends the selection one character to the left or to the
right.

Ctrl+Shift+Left, Extends the selection one word to the left or to the right.

Ctrl+Shift+Right

Shift+Home, Shift+End Extends the selection to the beginning or the end of the
text.

Using llvToggle

The class T1vToggle definestoggle and radio buttons. Toggle and radio buttons are made
up of alabel and amarker that shows a state. State markers can be represented as arectangle
or adiamond. The class 11vToggle hasasubclass, 11vColoredToggle, that implements
atoggle button whose marker can have a color.

266 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvToggle

[] Toagle

Figure11.26 A Toggle Button
This section covers the following topics:

Changing the State and Color of a Toggle Button
Toggle and Radio Button Styles

Displaying a Bitmap on a Toggle Button
Aligning and Positioning the Label

Changing the Size of the Sate Marker

Localizing a Toggle Button

Associating a Mnemonic with a Toggle Button

Handling Events and Callbacks

® & 6 6 6 6 0 o o

Grouping Toggle Buttons in a Selector

Changing the State and Color of a Toggle Button

The appearance of the state marker changes according to the state of the related toggle or
radio button (on or off). To set the state of atoggle button, use the member function
IlvToggle: :setState and IlvToggle: :getState to retrieveit.

To set the color of a colored toggle marker, use T1vColoredToggle: : setCheckColor
and IlvColoredToggle: : getCheckColor toretrieveit.

Toggle and Radio Button Styles

Theclass T1vToggle can have two different shapes. anormal toggle button or aradio

button.
Toggle —————— [Toagle
Radio Button —— ') Toggle

Figure11.27 Various Styles of Toggle Buttons
To set the style for atoggle button asradio, use T1vToggle: : setRadio.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 267

Displaying a Bitmap on a Toggle Button

I1vToggle instances aways display alabel, even when they are explicitly requested to
display abitmap. If the toggle button is set to draw a bitmap and if itslabel is not empty, the
I1lvToggle instanceis displayed with the label on top of the bitmap.

To display a bitmap on atoggle button, use the member function T1vToggle: : setBitmap.

Aligning and Positioning the Label

Thelabel of atoggle button can be placed to the right or to the left of the state marker. The
label can aso beleft, right, or center-aligned in the space:

state marker ——<: Label

\

Left Center Right

Figure11.28 Text Alignment in a Toggle Label
To set the position of the label, use the member function T1vToggle: : setPosition.

To set the alignment of the label, use the method T1vToggle: : setTextAlignment.

Changing the Size of the State Marker

You can change the size of the state marker (that is, the height and width of its bounding
box) with the member function T1vToggle: : setCheckSize.

Giving a state marker size of 0, sets the state marker size to a default size.

Note: When the Windows® look and feel is selected, changing the marker size has no
effect.

Localizing a Toggle Button
The label of toggle buttons can be localized.
See Localizing a Gadget on page 210.

Associating a Mnemonic with a Toggle Button
A toggle button can be associated with a mnemonic.

See Associating a Mnemonic with a Gadget Label on page 211.

268 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvToggle

Handling Events and Callbacks

When the user clicks on atoggle button, presses its associated mnemonic letter, or presses
the Enter key or the space bar, the state of the button changes and the member function
activate iscaled. Thisvirtual member function calls the Main callback of thetoggle
button.

See Associating a Callback with a Gadget on page 209.

Grouping Toggle Buttons in a Selector

To create radio boxes, you can group toggle buttons into an 11vselector. The
IlvSelector classisaspecia kind of graphic set (I1vGraphicsSet) that handlesaunique
selection among the objects it holds.

Two useful methods of the selector let you know what is selected:

IlvShort whichSelected() const;
IlvGraphic* whichGraphicSelected() const;

Note: Asthe class 11vselector isnot a subclass of T11vGadget you must explicitly set
the " Selector” interactor to have an interactive selector.

Source Program

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/toggle.h>
#include <ilviews/graphics/selector.h>

static void QuitCallback(IlvView* top, IlvAny)
{
IlvDisplay* display = top->getDisplay() ;
delete top;
delete display;
I1vExit (0) ;
}

int main(int argc , char* argv(])
{
IlvDisplay* display = new IlvDisplay("Demo", "", argc, argv);
if (!display || display->isBad()) {
IlvFatalError ("Couldn’t open display");
delete display;
I1vExit (-1);
}

IlvGadgetContainer* container =
new IlvGadgetContainer (display,
"Demo",
"Demo",
IlvRect (0, 0, 100, 150));

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 269

container->setDestroyCallback (QuitCallback) ;

IlvSelector* selector = new IlvSelector;
IlvToggle* toggle;

toggle = new IlvToggle(display, IlvPoint (10, 10), "Toggle 1");
selector->addObject (toggle) ;
toggle = new IlvToggle(display, IlvPoint (10, 50), "Toggle 2");
selector->addObject (toggle) ;
toggle = new IlvToggle(display, IlvPoint (10, 90), "Toggle 3");

selector->addObject (toggle) ;
container->addObject ("Selector", selector);
container->show() ;

IlvMainLoop () ;

return 0;

}

Creating the Selector
The selector is created by invoking its constructor:

IlvSelector* selector = new IlvSelector;

Then set the interactor:

selector->setInteractor (IlvInteractor: :Get ("Selector")) ;

Adding Toggle Buttons
Each toggle button is created and added to the selector with the addobject method:

IlvToggle* toggle;

toggle = new IlvToggle(display, IlvPoint (10, 10), "Toggle 1");
selector->addObject (toggle) ;
toggle = new IlvToggle(display, IlvPoint (10, 50), "Toggle 2");
selector->addObject (toggle) ;
toggle = new IlvToggle(display, IlvPoint (10, 90), "Toggle 3");

selector->addObject (toggle) ;

Adding the Selector to its Container

container->addObject ("Selector", selector);

Using llvTreeGadget
An IlvTreeGadget isagadget that displays ahierarchical list of items. Each itemisan

instance of the T1vTreeGadgetItem class, asubclass of T11vGadgetItem. The user may
expand or collapse an item to display or hide its subitems.

270 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using IlivTreeGadget

= "= Gadgets
H Menus
= Matrix
B
55 View Rectangles
—-#9 Graphics
H Icons
| Gauges

’ Mare

Figure11.29 A Tree Gadget

The 11vTreeGadget class handles scrollbars. For details about handling scrollbars, see the
base class I11vScrolledGadget.

scellaneous

This section covers the following topics:

& Changing the Tree Hierarchy
Navigating Through a Tree Hierarchy
Changing the Characteristic of an Item

Expanding and Collapsing a Gadget Item

* & & o

Changing the Look of the Tree Gadget Hierarchy

Changing the Tree Hierarchy

The tree gadget has an invisible root item which you can retrieve using the
IlvTreeGadgetItemHolder: :getRoot member function.
Creating a Hierarchy

To create ahierarchical list of items, you first haveto create theitemsthat will be part of that
list. Here are afew examples:

iteml = new IlvTreeGadgetItem("iteml"); // Creates an item with a label.

item2 = new IlvTreeGadgetItem("iteml", // Creates an item with a label
bitmap) ; // and a bitmap.

item3 = new IlvTreeGadgetItem (bitmap) ; // Creates an item with a bitmap.

item4 = new IlvTreeGadgetItem(graphic) ; // Creates an item with a graphic.

Once tree gadget items are created, you can arrange them as atree structure in the following
ways.

& Create tree gadget items as explained above and add them one by one to the tree gadget
using the member function T1vTreeGadget : :addItem.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 271

& Create acomplete new hierarchy and add it to the tree gadget in asingle operation. This
solution is far more efficient. To do so, create tree gadget items as explained above and
add them as children using I1vTreeGadgetItem: : insertChild. Then add the root
item with I1vTreeGadget : :addItem:

IlvTreeGadgetItem* item = new IlvTreeGadgetItem("New Item") ;
item->insertChild(new IlvTreeGadgetItem("Leaf 1"));

item->insertChild (new IlvTreeGadgetItem("Leaf2"));
tree->addItem(0 /* tree->getRoot() */, item);

Removing Tree Gadget Items
When you remove an item from atree gadget, al its children are also removed from the tree.

To remove an item without destroying it, use
IlvTreeGadgetItemHolder: :detachItem. TO remove adl theitemsat once, cal
IlvTreeGadget: :removeAllItems.

Moving Tree Gadget Items

You can move an item and all its children from its current parent item to a new parent item
with I1vTreeGadgetItemHolder: :moveIltemn.

Navigating Through a Tree Hierarchy

Once you have created atree hierarchy, you can navigate in the tree using the member
functions T1vTreeGadgetItem: : getParent,

IlvTreeGadgetItem: :getFirstChild, IlvTreeGadgetItem: :getNextSibling,
IlvTreeGadgetItem: :getPrevSibling.

Changing the Characteristic of an Item

To change the visible characteristic of an T1vTreeGadgetItem, such asitslabel and
bitmap, see the base class T1vGadgetItem.

You can specify whether the number of children of anitem is known with
IlvTreeGadgetItem: : setUnknownChildCount. Inthiscase, thetree gadget allowsyou
to expand the item with the Expand button. This lets you have an Expand callback which is
invoked even if the item does not have any subitems. You can then add itemsin the expand
callback.

Expanding and Collapsing a Gadget Item

You can expand or collapse a gadget item either by clicking its Expand button or by double-
clicking it. Expanding an item shows all its subitems; collapsing an item hides all its
subitems. You can also perform the same operations using the following member functions
IlvTreeGadget: :shrinkItem and IlvTreeGadget : : expandItem.

272 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using IlivTreeGadget

Changing the Look of the Tree Gadget Hierarchy

Theway in which the T1vTreeGadget hierarchy isdisplayed can be customized to meet
application requirements. To do o, use the following 11vTreeGadget member functions.

Thelinesthat link items to their parents can be displayed or hidden with the
IlvTreeGadget : : showLines member function.

- First Roat = Firzt Root
: Leaf 1 Leaf 1
_ b Leaf 2 Leaf 2
“ Second Foot Second Foot

Lines can be drawn to connect the root item to its children using the
IlvTreeGadget: : setLinesAtRoot member function.

- First Roat First Roat

i b Leafd i Leaf 1
S LEaf 2 LEaf 2
‘e Gecond Foot Second Foot

A line can be drawn to connect (or disconnect) the children of the root item using the
IlvTreeGadget: : lLinkRoots member function.

- First Roat] First Roat

i b Leafd i Leaf 1
S LEaf 2 LEaf 2
‘e Gecond Foot - Second Foot

The buttons for expanding/collapsing may be set as visible or invisible using the
IlvTreeGadget : : showButtons member function.

EF First Roat | | ¢ First Roat
i b Leafd i Leaf 1

..... LEaf 2 LEaf 2
----- Second Foot - Second Root

You can define the indentation between an item and its parent using the
IlvTreeGadget: : set Indent member function.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 273

Label and Picture Visibility
You can change the visibility of all the picturesin atree gadget by calling this method:

void showPicture(IlBoolean value = IlTrue,
IlBoolean redraw = IlTrue);

In the same way, you can change the visibility of all thelabelsin atree gadget by calling this
method:

void showLabel (I1Boolean value = IlTrue,
IlBoolean redraw = IlTrue);

By default, the tree gadget displays both labels and pictures.

Note: You can override these global settings for a specific item through the API of the
IlvGadgetItem class. For details, seethe methods 11vGadgetItem: : showLabel and
IlvGadgetItem: : showPicture.

Label and Picture Position

You may want to change the position of an item label relative to its picture. To do so, use the
method:

void setLabelPosition(IlvPosition position,
I1Boolean redraw = IlTrue);

By default, the label is placed to the right of the picture (T1vRight).

Note: You can override these global settings for a specific item through the API of the
IlvGadgetItem class. For details, seethe 11vGadgetItem: : setLabelPosition
method.

Event Handling and Callbacks

Thetree gadget has several predefined callbacks. Callbacks are aways related to a particular
item. To retrieve the item associated with the callback in your code, use the member function
IlvTreeGadget: :getCallbackItem.

Selection Modes
The tree gadget has two different selection modes:

274 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using IlivTreeGadget

& Singleselection mode You can select only oneitem at atime.
& Extended selection mode You can select several items and expand the selection.

The selection modes are defined by the following type:

enum IlvTreeSelectionMode
{
IlvTreeExtendedSelection
IlvTreeSingleSelection

}

To modify the selection mode, use the following 11vTreeGadget member functions:

IlvTreeSelectionMode getSelectionMode () const;
void setSelectionMode (IlvTreeSelectionMode mode) ;

The Select Callback

When the user selects anitem or cancelsthe selection, the Select callback isinvoked. Itstype
can beretrieved with the member function T1vTreeGadget : : SelectCallbackType. See
Associating a Callback with a Gadget on page 209.

The Expand Callback

When the user expands an item, the Expand callback isinvoked. Itstype can be retrieved
with the member function T1vTreeGadget : : ExpandCallbackType. See Associating a
Callback with a Gadget on page 209.

The Shrink Callback

When the user collapses an item, the Shrink callback isinvoked. Its type can be retrieved
with the member function T1vTreeGadget: : ShrinkCallbackType. See Associating a
Callback with a Gadget on page 209.

The Activate Callback

When the user double-clicks an item that has no subitems, the Activate callback is invoked.
Its type can be retrieved with T1vGadgetItemHolder: :ActivateCallbackType. See
Associating a Callback with a Gadget on page 209.

Editing Tree Gadget Items

You can edit tree gadget items. See Editing Gadget Items on page 284.

Dragging and Dropping an Item

The I1vTreeGadget class provides an easy-to-use, drag-and-drop mechanism. See
Dragging and Dropping Gadget Items on page 285.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 275

276 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

12

Gadget Items

Most of the gadgets are composed of items, which are defined by the T1vGadgetItem
class.

This chapter introduces you to gadget items and explains how to use them. It coversthe
following topics:

¢ Introducing Gadget Items
& Using Gadget Items

& Gadget Item Holders

& List Gadget Item Holders

Introducing Gadget Iltems

Gadget items are objects of the class T1vGadget Ttem. Gadget items are gadget elements
that can be represented by alabel, a picture, or both. They can be dragged and dropped and
be edited interactively. They can aso display atooltip and be localized. See Localizing a
Gadget on page 210.

A gadget item does not implement behavior. Behavior is controlled by the gadget that
managesiit.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 277

Gadget items are handled by the following gadget classes and their derived classes:
¢ IlvAbstractMenu
¢ IlvMatrix

€ IlvMessageLabel
€ IlvStringList

® IlvTreeGadget

¢ IlvNotebook

Figure 12.1 shows some of the gadgets that are composed of items. From I eft to right, you
can see a button, atree gadget, a string list, a pop-up menu, atool bar, and an option menu.

= IvSimpleGraphic

a / IlLing (I Folder -
() StartTimer Wl il:4 10wl ine) Folder2
=] Text file 1
Y Ihare 2] Testfile 2

= IvGadget It 3
I Toggle
o EEI
Save &l o [0 itemn1 -
= % 5t (13 item!
Enit =
ikermn3

Figure12.1 Gadgets Composed of Gadget Items

Using Gadget Items

This section covers the following topics:
Creating a Gadget Item

Setting a Label

Setting a Picture

Specifying the Layout of a Gadget Item
Nonsensitive Gadget Items

Dynamic Types

® & 6 6 6 0o o

Using Palettes with Gadget Items

278 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using Gadget Items

& Drawing a Gadget Item

Creating a Gadget Item

A gadget item can be represented by alabel, a picture, or both. The picture can be a bitmap
or agraphic object. See Setting a Label on page 279 and Setting a Picture on page 280.

You define the way a gadget item appears when you create it. Here are afew examples:

iteml = new IlvGadgetItem("Iteml"); // Creates an item with only a label.

item2 = new IlvGadgetItem("Item2", // Creates an item with a label
bitmap); // and a bitmap.

item3 = new IlvGadgetItem(bitmap); // Creates an item with a bitmap.

item4 = new IlvGadgetItem("Item 4", // Creates an item with a label

graphic); // and an IlvGraphic.
item5 = new IlvGadgetItem(graphic); // Creates an item with an IlvGraphic.

Setting a Label

A gadget item can be represented by alabel. To associate alabel with a gadget item, use the
member function I1vGadgetItem: : setLabel.

When a gadget item label extends over several lines, you can use
IlvGadgetItem: :setLabelAlignment to specify whether the text should be aigned
right, left, or be centered.

The label of The label of The label of
thiz gadget item thiz gadget item thiz gadget item
iz left aligned iz right aligned iz centerad

Figure12.2 Message Labelswith Various Alignments

Using the member function T1vGadgetItem: : setLabelOrientation, you can aso
specify whether a gadget item label should be drawnhorizontally (the default) or vertically.

[B0E| |E2IEA B SELY
|2ge| sfessal s |
This messace lahel
has a vertical label
that is flipped

Figure12.3 Message Labels Displayed Vertically

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 279

Setting a Picture

A gadget item can include either an 11vBitmap Or an I1vGraphic object. The following
sections explain how gadget items handle these objects.

IlvBitmap Used as a Picture

A gadget item manages an array of bitmaps. Each bitmap in the array can be accessed by
means of an index or asymbol name. You can retrieve the bitmap displayed by a gadget item
from itsbitmap array using I1vGadgetItem: :getCurrentBitmap. This member
function determines the displayed bitmap from the state of the gadget item. For example, if
the gadget item is selected, the bitmap corresponding to the “ selected” state is returned.

Below are the symbol names associated with the various gadget item states a bitmap can

represent:

IlvGadgetItem: :BitmapSymbol () ; Sensitive state
IlvGadgetItem: :SelectedBitmapSymbol () ; Selected state
IlvGadgetItem: : InsensitiveBitmapSymbol(); Nonsensitive state
IlvGadgetItem: :HighlightedBitmapSymbol(); Highlighted state

To know how many bitmaps are associated with a gadget item, call the method
IlvGadgetItem: :getBitmapCount.

To set the bitmap that will be displayed by the gadget item when it is selected, call:

item->setBitmap (IlvGadgetItem: :SelectedBitmapSymbol (), bitmap) ;

To retrieve the bitmap that is displayed when the gadget item is set to nonsensitive, call:

IlvBitmap* bitmap = item->getBitmap (IlvGadgetItem: :InsensitiveBitmapSymbol ()) ;

llvGraphic Used as a Picture

A gadget item can be represented by an T1vGraphic object. Use the member function
TlvGadgetItem: : setGraphic t0 associate a gadget item with a graphic object.

Specifying the Layout of a Gadget Item

You can define the position of agadget item label relative to its picture using the member
function 11vGadgetItem: : setLabelPosition. For example, to place the label under
the picture, call:

item->setLabelPosition (IlvBottom) ;

You can also fix the spacing between the label and the picture with
IlvGadgetItem: : setSpacing. FOr example, to set the spacing to 10 pixels, call:

item->setSpacing (10) ;

280 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using Gadget Items

A gadget item can be any size. Its dimensions are automatically computed from its label, its
picture, the label position, and the spacing between the label and the picture. To retrieve the
size of agadget item, use the following methods:

IlvDim width = item->getWidth() ;
IlvDim height = item->getHeight();

Note: Thewidth and height of a gadget item should not exceed 65535 pixels. The member
functions getwidth and getHeight return 0 if the itemis not managed by a gadget.

To know the position of alabel and a picture inside a gadget item, use the following member
functions:

item->labelRect (rect, itembbox);// Puts the label bounding box of the item
// in rect when the item is drawn in itembbox.
item->pictureRect (rect, itembbox); // Puts the picture bounding box of the item
//in rect when the item is drawn in itembbox.

You can show or hide either the label or the picture that makes up a gadget item. To hide a
gadget item label, use T1vGadgetItem: : showLabel With its parameter setto T1False.
If the gadget item contains no picture, it becomesinvisible.

To make the picture visible, usethe r1vGadgetItem: : showPicture method with its
parameter set to I1True.

Nonsensitive Gadget Items

By default, gadget items are sensitive, which means that they respond to user events. Calling
the member function T1vGadgetItem: : setSensitive With I1False as parameter lets
you set a gadget item to nonsensitive. In this case, the gadget item appears dimmed on the
screen and cannot be selected.

If only a sensitive bitmap is provided, the insensitive bitmap is computed automatically. If a
nonsensitive bitmap is provided, this bitmap is used.

Dynamic Types

Gadget items are dynamically typed and can therefore be subclassed, saved, and read easily.
The following code | ets you access class information:

IlvClassInfo* classInfo = item->getClassInfol();

To check the type of an item, use:

if (item->isSubtypeOf (IlvTreeGadgetItem: :ClassInfo())) {

// The item is an IlvTreeGadgetItem.
}

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 281

Using Palettes with Gadget Iltems
Several palettes are used to draw a gadget item:

¢ The palette returned by T1vGadgetItem: : getOpaquePalette iSused when theitem
is opague.

& Thepalettereturned by T1vGadgetTItem: :getSelectionPalette isusedtodraw the
background of a selected gadget item.

& The paettereturned by T1vGadgetItem: :getSelectionTextPalette iSused to
draw the text of a selected gadget item.

& The paettereturned by T1vGadgetItem: :getHighlightTextPalette iSused to
draw thetext of a highlighted gadget item.

¢ Thepaettereturned by T1vGadgetItem: :getInsensitivePalette iSused to draw
nonsensitive gadget items.

¢ Thepaette returned by T1vGadgetItem: : getNormalTextPalette iSused to draw
the text of a gadget item that is not selected.

By default, a gadget item uses the pal ettes of its holder. You can, however, modify the
pal ettes associated with a gadget item, thus making it possible to have gadget items with
different palettes inside the same gadget.

To change the pal ettes assigned to a given gadget item, use the following member functions:
€ TlvGadgetItem::setNormalTextPalette

€ TIlvGadgetItem::setSelectionTextPalette

€ IlvGadgetItem::setHighlightTextPalette
L 2

IlvGadgetItem: : setOpagquePalette

Drawing a Gadget Item

To draw a gadget item, the virtual member function T1vGadgetItem: : draw iscaled. You
can overrideit in asubclass to customize the way a gadget item is drawn.

Gadget Item Holders

Gadget item holders are objects of the class T1vGadgetItemHolder, an abstract class for
managing gadget items. A gadget item cannot compute its size and be drawn if it is not
linked to a gadget item holder. Usually, you do not haveto link a gadget item with its holder
since this operation is carried out by the managing gadget automatically.

282 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Gadget Item Holders

Gadget items are described in Using Gadget Items on page 278.
This section covers the following topics:

Gadget Item Features

Finding Gadget Items

Redrawing Gadget Items

Creating Gadget Items

Editing Gadget Items

® & 6 6 o o

Dragging and Dropping Gadget Items

Gadget Item Features

When global operations have to be performed on gadget items, it isalot more convenient to
call the corresponding functions on the holder than on the gadget items themselves. For
example, it might be tediousto call:

item->showPicture(IlFalse) ;
for eachitem in alist whose picture you want to hide.

For this reason the gadget item inherits from certain features of its holder. If a given feature
isnot redefined at the gadget item level, the gadget item will get it fromits holder. Thisisthe
case for the editable state, label and picture visibility, label position, and label orientation.

For example, if you want to hide all the pictures of atoolbar (11vToolBar isa subclass of
IlvGadgetItemHolder), just call:

toolbar->showPicture (I1lFalse) ;

Then if you want to override this choice for the 4" item in the tool bar and show its picture,
cal:

toolbar->getItem(3)->showPicture (I1lTrue) ;

Finding Gadget Iltems

The member function T1vGadgetTtemHolder: : get TtemByName letsyou find an item
from its name. This method is particularly useful when searching for an item that is part of a
tree structure (I1vabstractMenu Of IlvTreeGadget).

Redrawing Gadget Items

When you change the graphical representation of a gadget item using one of the
IlvGadgetItem member functions, the gadget item is automatically redrawn.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 283

284

In the following example, calling setLabel redraws the area of the list that was modified:

IlvStringList* list = ...
list->getItem(0)->setLabel ("First Item");

If you want to apply several graphical representation changes at the same time, you can use
the redraw mechanism of the gadget item holder, as shown below:

IlvStringList* list = ...
list->initReDrawltems () ;
list->getItem(0)->setLabel ("First Item");
list->getItem(1l)->setLabel ("Second Item") ;
list->reDrawItems () ;

The redraw operation is executed only when the T1vGadget TtemHolder: : reDrawItems
method is called.

Creating Gadget Iltems

The I1vGadgetItemHolder class contains a method for creating an item from a specified
label, bitmap, or T1vGraphic object:

virtual IlvGadgetItem* createltem(const char* label,
IlvGraphic* g = 0,
IlvBitmap* bitmap = 0,
IlvBitmap* sbitmap = 0,
I1Boolean copy = IlTrue)const;

This method creates an 11vGadgetItem Object using the label, graphic, or bitmap passed as
aparameter. It can be overridden in subclasses of T1vGadgetItemHolder toreturna
subclass of 11vGadgetItem. Thisisthe casefor the tree gadget, where createItem has
been redefined to return an instance of T1vTreeGadgetItem.

Editing Gadget Items

The 11vGadgetItemHolder class supports gadget item editing for the following gadgets
classes; IlvMatrix, IlvStringList, and IlvTreeGadget.

Enabling Editing

To make a gadget item editable, you must call the member function

TIlvGadgetItem: : setEditable With T1True asits parameter. You can also enable
editing at the level of the managing gadget with the either T1vMatrix: :allowEdit,
TlvStringList::setEditable, Of T1vTreeGadget: : setEditable depending on
which class the gadget item belongs to.

For example, the following code allows editing for all the gadget itemsin the string list
except the second item (specified by the index number 1).

slist->setEditable(I1lTrue) ;
slist->getItem(1l)->setEditable(IlFalse) ;

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Gadget Item Holders

I Note: You can also enable editing fromthe Start Edit callback. See Controlling Editing on
page 285.

Editing a Gadget Item

Once editing has been enabled, you can edit a gadget item interactively either by clicking it
or by pressing the F2 key after it has been selected. You can also edit an item by code using
the member function T1vGadgetItem: :edit.

Controlling Editing

When an item is being edited, two callbacks are invoked:

& Start Edit Itemis called at the beginning of the editing process. To set a Start Edit Item

callback, use the symbol returned by the member function
IlvGadgetItemHolder: :StartEditItemCallbackType.

You can cancel the operation by setting the item to noneditable inside this callback.

& End Edit Item is called at the end of the editing process. To set a End Edit Item callback,
use the symbol returned by the member function
IlvGadgetItemHolder: :EndEditItemCallbackType.

You can cancel the editing of an item by pressing the Escape key. In this case, the End
Edit Item callback is not invoked.

See“Callbacks’ in Graphic Objects".

Dragging and Dropping Gadget Items

The I1vGadgetItemHolder classimplements the drag-and-drop functionality. Only
instances of T1vMatrix, I1vStringList, and I1vTreeGadget support the drag-and-
drop feature for gadget items.

Enabling Drag-and-Drop

To enable the drag-and-drop functionality for gadget items, you must call one of the
following member functions with 11True as parameter: T1vMatrix: :allowDragDrop,
IlvStringList::allowDragDrop, Of I1lvTreeGadget: :allowDragDrop.

Controlling Drag-and-Drop

When the drag-and-drop functionality is enabled, you can drag a gadget item from its
current location and drop it anywhere. The following callbacks are invoked:

& Start Drag Item is called at the beginning of a drag-and-drop event. To set this callback,
use the symbol returned by
IlvGadgetItemHolder: :StartDragIltemCallbackType.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 285

You can cancel the operation by calling the member function
IlvGadgetItemHolder: : setDraggedItem With O as parameter from this callback.

& Drag Itemis called each time the mouse is moved. To set this callback, use the symbol
returned by T1vGadgetItemHolder: : DragItemCallbackType.

& End Drag Item is called when a dragged item is dropped anywhere in the workspace.
To set this callback, use the symbol returned by
IlvGadgetItemHolder: :EndDragItemCallbackType.

During a drag-and-drop operation, you can retrieve the dragged item using
IlvGadgetItemHolder: :getDraggedItem. YOU can aso change the ghost image of the
item that is being dragged. By default, the ghost image is the dragged item drawn in XOR
mode. To use a ghost image of your own, call

IlvGadgetItemHolder: : setDraggedImage from the Start Drag Item or the Drag Item
callback.

List Gadget Iltem Holders

List gadget item holders are specific types of gadget item holders for managing lists of
gadget items. The class T1vListGadgetItemHolder iSthe base class of all the gadgets
that handle gadget item lists, such as string lists and menus.

For information on gadget item holders, see Gadget Item Holders on page 282.
This section covers the following topics:

¢ Modifying a List

& Accessing ltems

& SortingaList

Modifying a List

All the member functions that modify alist redraw the modified area automatically. If you
want to make severa changesto alist without redrawing the area every time a modification
is made, you can use the redraw mechanism of the 11vGadgetItemHolder class.

For details, see Redrawing Gadget Items on page 283.

Adding an Item to a List

Several member functions for adding itemsto alist are available. The most important one
the I1vListGadgetItemHolder: : insertItem. Thismember function inserts an item
inside alist at the specified position. Other methods, such as addrLabel and insertLabel,
call the insertItem method after they have created the item using the

286 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

List Gadget Item Holders

IlvGadgetItemHolder: :createItem method. For details, see Creating Gadget Items
on page 284.

For example:

IlvStringList* list =
list->insertlLabel ("Label 1");

is equivalent to:
IlvStringList* list = ...

IlvGadgetItem* item = list->createltem("Label 1");
list->insertItem(item) ;

Changing All the Items in a List

You may want to change all theitemsin alist at once. To do this, use the
T1lvListGadgetItemHolder: : setItems Method. Using this method is more efficient
than adding items one by one.

Here is an example of how to use the method T1vListGadgetItemHolder: : setItems:

IlvUShort count = 3;
IlvGadgetItem** items = new IlvGadgetItem* [count];

items[0] = new IlvGadgetItem("itemQO");
items[1] = new IlvGadgetItem("iteml");
items[2] = new IlvGadgetItem("item2");

IlvStringList* list = ...
list->setItems(items, count);
delete [] items;

Note that the items are not copied and that the i tems array is not used by the holder, and
therefore needs to be del eted.

Other member functions, such asthe setLabels methods, can be used to change awhole
list. All these functions call the member function

IlvListGadgetItemHolder: :setItems.

Removing an Item From a List

Toremove an item from alist, usethe I1vListGadgetItemHolder: : removeIltem
member function.

Removing all Items

Toremove al itemsfrom alist, usethe I1vListGadgetItemHolder: : empty member
function.

Accessing Items

To know the number of items managed by a list gadget item holder, use the
IlvListGadgetItemHolder: :getCardinal member function.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 287

288

IBM

To retrieve an item using its position in the list, use the
IlvListGadgetItemHolder: :getItem member function.

To find the position of an item in its holder, use the
IlvListGadgetItemHolder: :getIndex member function.

You can aso find an item knowing its label using the
IlvListGadgetItemHolder: :getPosition member function.

Sorting a List

You can sort alist using the member function T1vListGadgetItemHolder: : sort, which
takes a comparison function as a parameter. If you do not provide your own comparison
function, the virtual member function I11vListGadgetItemHolder: : compareIltems iS
used. This method simply uses the strcmp function to compare two strings and returns the
result of the comparison.

If you want to use another function, you can either specify it in the call to sort or redefine
the compareItems member function in your subclass of T1vListGadgetItemHolder.
The following is an example of alist compare function that sorts itemsin descending order:
int MyCompareFunction(const char* stringl,

const char* string2,

I1vAny,

I1vAny)

return -strcmp(stringl, string2);

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

13

Menus, Menu Bars, and Toolbars

The IBM® ILOG® Views Gadgets library provides classes for creating menus and toolbars
and for handling menu items.

This chapter covers the following topics:

¢ Introducing Menus, Menu Bars, and Toolbars
¢ Menus and Menu Items

& Pop-up Menus
L 2

Menu Bars and Toolbars

Introducing Menus, Menu Bars, and Toolbars

Menus provide the user with a set of commands. When the user selects a menu or toolbar
entry, a specific action is performed immediately or adialog box is displayed in which the
user is required to supply additional information before the action can be carried out. Menus
can be attached to menu bars or toolbars or can be stand-alone.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 289

Eile Edit Help

Menu Bar

[Cpen...
Save Pop up Menu

E it

¥R b

Toalbar

Figure13.1 Menus

Menus and Menu Items
This section introduces the classes for defining menus and menu items. It covers the
following topics:
& Using llvAbstractMenu

& Using llvMenultem

Using IllvAbstractMenu

The class T1vabstractMenu, asubclass of T1vGadget, defines a common interface for
menu bars, toolbars, and pop-up menus. T1vabstractMenu aso inherits from the class
I1vListGadgetItemHolder, Which handleslists of gadget items. T1vabstractMenu
handles alist of T1vMenuTtem Objects, asubclass of T1vGadgetItem.

Manipulating Menu Items

Member functions for manipulating menu items are defined in the class
IlvListGadgetItemHolder.

Callbacks

When the user highlights a menu item, the Highlight callback isinvoked. This callback
allows actions to take place according to the user selection. For example, the Highlight
callback can be used to display asmall help message when the user highlightsan itemin a
pop-up menu.

You can set aHighlight callback with the symbol returned by the member function
IlvAbstractMenu: :HighlightCBSymbol.

Hereis an example of Highlight callback that simply writes the index of the highlighted
item:

static void

290 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Menus and Menu ltems

Highlight (I1lvGraphic* g, IlvAny any)
{
// Highlighted item position.
IlvShort pos = *(IlvShort*)any;

IlvAbstractMenu* menu = (IlvAbstractMenu*)g;
if (pos != -1)

IlvPrint ("Item %d highlighted", pos);
else

IlvPrint ("No item highlighted");

Note: Once it has been cast to T1vshort, the value of the any parameter is the position
of the highlighted menu item, or -1 if no itemis highlighted.

Handling Events

The class T1vabstractMenu includes the following virtual member functions that you can
redefine in subclasses:

& TlvAbstractMenu::isSelectable Specifies whether amenu item can be selected.

€ IlvAbstractMenu::selectNext and IlvAbstractMenu: :selectPrevious
return the next or previous sel ectable item when the user moves in the menu using the
arrow keys.

€ IlvAbstractMenu::select and IlvAbstractMenu: :unSelect are caled when
the specified item is selected or desel ected.

Using llvMenultem

Menu bars, toolbars, and pop-up menus are composed of several entries, called menu items.
Menus items are implemented by the T1vMenuItem class, asubclass of T11vGadgetItem.
They can display alabel, abitmap, or any 11vGraphic object. See Chapter 12, Gadget
Items.

Creating Menu Items

The following code sample creates three menu items: one with alabel, one with a bitmap,
and one with an T1vGraphic object.

iteml = new IlvMenutItem("iteml"); // Creates an item with a label.
item2 = new IlvMenuItem (bitmap) ; // Creates an item with a bitmap.
item3 = new IlvMenultem (graphic); // Creates an item with a graphic.

A menu item can also be used as a separator. A separator is aline that divides a group of
commands represented by menu items in a menu.

item4d = new IlvMenuItem() ; // Creates a separator.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 291

You can check whether an item is a separator or not using the T1vMenuItem: :getType
member function, as follows:

if (item->getType() == IlvSeparatorItem) {
}

Attaching a Submenu to a Menu Item

Any menu item that is not a separator can display a submenu. To attach a submenu to amenu
item, use the member function T1vMenuItem: : setMenu. When the menu item belongs to
apop-up menu, asmall arrow next to it indicates that it provides access to a submenu.

ﬁ Mew —1 Choosing the Mew commanc
opens a submenuy
Qq? Open...

Save

Enit

Figure13.2 New Menu Itemwith a Submenu

Associating a Callback with a Menu Item

When the user selects amenu item, its associated callback isinvoked to perform an action.
Each menu item can have a specific callback.

To attach a callback to amenu item, use one of the following member functions:
€ item->setCallback (myCallback) ;

wheremyCallback isafunction that might be described like this:

static void
myCallback (IlvGraphic* g, IlvAny data)
{

}

The g parameter isthe holder of the item that triggers the callback, that is, an instance of
asubclass of 11vabstractMenu. The data parameter isthe client data of the menu
item which you can install with the member function

IlvGadgetItem: :setClientData.

Of coursg, it isuseless to set a callback to a menu item separator or to a menu item that
has a submenu, as these callbacks will never be called.

® item->setCallbackName ("myCallback") ;

Inthis case, the callback name "myCallback" must be registered with the container that
holds the menu.

292 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Pop-up Menus

If amenu item does not have a callback, the Main callback associated with the menu, if any,
isinvoked. This alows you to perform the same action for each item of the menu. See
Associating a Callback with a Gadget on page 209.

Associating Mnemonics with Menu Items

You can associate a mnemonic letter with a menu item. Pressing the modifier key (Alt on
PCs, and Meta on UNIX) and the mnemonic letter associated with a menu or toolbar item
displays the attached pop-up menu. When a menu is open, pressing the mnemonic letter
selects the corresponding command in that menu, that is, triggers the Menu Item callback.

See Associating a Mnemonic with a Gadget Label on page 211.

Associating Accelerators with Menu Items

A pop-up menu item can be associated with an accelerator. An accelerator is a combination
of aletter key with amodifier key. When the user presses the key combination, the Menu
Item callback is directly accessed without the corresponding menu being opened.

An accelerator is composed of two parts: a key combination and the accelerator itself. The
key combination appears beside its associated menu item.

For example, if you want to assign the key combination Ctrl+A to a menu item, use the
following code:
item->setAcceleratorText ("Ctrl+A") ;

item->setAcceleratorModifiers (0) ;
item->setAcceleratorKey (IlvCtrlChar('A'));

Pop-up Menus
A pop-up menu consists of alist of menu itemslaid out vertically. Pop-up menus are

implemented with the class 11vPopupMenu, a subclass of T11vabstractMenu. See Using
IlvAbstractMenu on page 290 and Using llvMenultem on page 291.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 293

€A Undo Chil+Z
@ Redn ChlShift+Z

Bepeat Ctil+R
of Cut Ctrl+
'T?' Copy Chrl+C
[Paste Chrl+

2, Duplicate Cirl+D
A7 Delete Del
Select Al Chrl+ay

Fit to Contents...

Figure13.3 A Pop-up Menu
This section covers the following topics:

Aligning Item Labelsin a Pop-up Menu
Using Tear-Off Menus

Using the Open Menu Callback

Using Checked Menu Items

Using Sand-alone Menus

* 6 6 o o o

Using Tooltipsin a Pop-Up Menu

Aligning Item Labels in a Pop-up Menu

By default, the labels in a pop-up menu are automatically aligned as illustrated by the
leftmost popup-menu in Figure 13.4. However, you can specify your own label offset with
the member function I1vPopupMenu: : setLabelOffset.

The middle image represents a pop-up menu for which the default alignment mode has been
deactivated and no specific label offset has been defined. The rightmost image shows a pop-
up menu aligned with alabel offset of 40 pixels.

Qf’ Open... Qf’ Open... Qf’ Open...
Sawve Sawve Sawve
E =it E =it E =it
Default alignment Lahel offsetsetto 0 Lakel offzet zet to 40

Figure 13.4 Aligning Menu Items Labels

294 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Pop-up Menus

Using Tear-Off Menus

A pop-up menu can be torn off, which means that it can be detached from the menu bar and
placed into a floating window. A tear-off menu is represented by a dashed line across its top
border.

File Tear-0Off

Select the first tem of & E
tear-off menu to detach it m’fr Ope...

Save

E it

Figure13.5 A Tear-Off Menu

You can tear off a pop-up menu by selecting itsfirst item. Thefirst item of atear-off menu
must be of thetype 11vTearof fItem. TO Set @a menu item as a tear-off item, use the
IlvMenuItem: :setTearOff member function.

Using the Open Menu Callback

Each time the user opens a pop-up menu, the Open Menu callback is invoked. This callback
is particularly useful when you want items in the menu to change according to the state of
the application, for example from “ Save (Not Needed)” to “ Save (Needed)” when thereis
something to save. The easiest way to achieve thisisto set an Open Menu callback that
verifies the state of the application and changes the item label accordingly.

You can set an Open Menu callback with the member function
TI1vPopupMenu: : OpenMenuCallbackSymbol. See Associating a Callback with a Gadget
on page 209.

Using Checked Menu Items

Menu items in pop-up menus can have asmall check mark appear beside them (av” for the
Microsoft® Windows® style or asmall button for Motif®). Check marks are generally used
with menu items that represent “on/off” options.

Open...
v Save

E it

Figure 13.6 A Checked Menu Item

The best place to set acheck mark for amenu item is the Open Menu callback. That way the
check mark is always correct when the menu is opened. See Using the Open Menu Callback
on page 295.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 295

The check mark does not automatically disappear when you select a checked item, you must
uncheck the item when necessary. To set a check mark for a menu item, use the member
function I1vMenuItem: : setChecked. USe I1vMenuItem: : isChecked to know
whether a menu item has a check mark.

Using Stand-alone Menus

Pop-up menus can be used either as submenus or as stand-alone menus. Most stand-alone
menus are used as contextual menus, which appear when the user clicks in the workspace
(generally with the right mouse button).

File Edit He ™
, = Minimize b
o0& M awimize DLliiiiiiniiiin
U [NewPereTess
0 Open.. 73 SoLniiiiiiiion
& save v Serolbars SESEEEEERE SRS
Exi Dl CubFd oo
il
< >

Figure 13.7 A Contextual Menu

To use a pop-up menu as a stand-al one menu, use the T1vPopupMenu : : get Mmember
function.

When the user chooses an item from a contextual menu, the member function
IlvPopupMenu: :doIt iScaled.

I Note: A contextual menu cannot be a submenu.

Using Tooltips in a Pop-Up Menu

The menu items in a pop-up menu can be associated with atooltip. A tooltip is short
explanatory text that is displayed when the user places the mouse over its associated menu
item.

296 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Menu Bars and Toolbars

To set atooltip for amenu item, use T1vMenuItem: : setToolTip. TO disabletooltips, cal
IlvPopupMenu: : useToolTips With its parameter set to T1False.

Menu Bars and Toolbars

InIBM® ILOG® Views Gadgets, menu bars and toolbars are implemented by the classes
IlvMenuBar and IlvToolBar respectively. Both these classes derive from
IlvAbstractBar, asubclass of I1vabstractMenu.

This section covers the following topics:
¢ Using llvAbstractBar

¢ Using llvMenuBar and IIvTool Bar

Using llvAbstractBar

IlvAbstractBar iSan abstract class for managing the size and position of menu bar or
toolbar items. See Using IIvAbstractMenu on page 290 and Using llvMenultem on page 291.

This section covers these topics:

Setting the Bar Orientation

Constraining the Bar Geometry

Notifying the Bar About Geometry Changes
Setting the Default Item Size

Aligning Items Flush-right

® & 6 6 o o

Using Docking Features

Setting the Bar Orientation

You can specify the orientation of the bar with the member function
IlvAbstractBar: :setOrientation and retrieveit with
IlvAbstractBar: :getOrientation.

The bar can be vertical, in which case menu items are arranged from top to bottom, or it can
be horizontal, in which case items are arranged from left to right.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 297

W R ¥ B

Figure 13.8 Vertical and Horizontal Toolbars

Constraining the Bar Geometry

You can constrain the bar geometry so that all itsitems are visible whatever its size with the
member function T1vabstractBar: : setConstraintMode. When this member function
issetto T1True, the bar is automatically resized to accommodate al itsitems. Items can be
extended to several lines if necessary. To know whether the constraint modeis on, call
IlvAbstractBar: :useConstraintMode.

IR
By ¢
W R

Figure 13.9 Constrained (Top) and Nonconstrained Toolbars (Bottom)

Notifying the Bar About Geometry Changes

When the constraint mode is on, the virtual member function
IlvAbstractBar: :geometryChanged iscalled if:

& Modifying the height of avertical bar causes its width to change.
& Modifying the width of a horizontal bar causesits height to change.

Setting the Default Item Size

You can set adefault sizefor all theitemsin abar with the member function
IlvAbstractBar: :setDefaultItemSize and retrieveit with

IlvAbstractBar: :getDefaultItemSize. YOU can specify the spacing between two
itemsin abar with I1vabstractBar: : setSpacing and retrieve it with
IlvAbstractBar: :getSpacing.

298 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Menu Bars and Toolbars

Aligning Items Flush-right

You can dign the last item in a bar with its right border with the member function
IlvAbstractBar: :setFlushingRight. Help menus, for example, are flush-right most
of thetime.

File Edit Help

Figure 13.10 Help Menu Aligned Flush-right
Using Docking Features
You can dock and undock abstract bar objects. See Using Docking Bars on page 338.

Using llvMenuBar and llvToolBar

The classes I11vMenuBar and I1vToolBar define menu bars and toolbars.

File Edit ‘iews Craw Tools Application window Help

Figure13.11 A Menu Bar

W R ¥ B

Figure13.12 A Toolbar

These classes are very similar. The only differenceisthat 11vToolBar provides interactive
features that the 11vMenuBar does not support, such as tooltips and gadgets.

Managing Gadgets in a Toolbar

You can use gadgets as toolbar items using the member function
IlvGadgetItem: : setGraphic. These gadgets are active, which means that they react to
user events.

You can add a gadget to a toolbar with the member function
IlvListGadgetItemHolder: :insertGraphic.

Figure 13.13 shows atoolbar with a combo box.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 299

ﬁ m? B SCComba v

& s

E
C
D

Figure 13.13 A Toolbar with a Gadget

When the user clicks a gadget in a toolbar, the gadget is given the focus and all keyboard
events are directly sent to it. See Focus Management on page 203.

You can force the focus to be given to a specific item with T1vToolBar: : setFocusItem
and retrieve the gadget that has the focus with T11vToolBar: : getFocusItem.
Using Tooltips in a Toolbar

Menu itemsin atoolbar can be associated with atooltip. A tooltip is short explanatory text
that is displayed when the user places the mouse over its associated menu item.

To set atooltip for amenu item, use T1vMenuItem: : setToolTip. TO disabletooltips, cal
IlvToolBar: :useToolTips With its parameter set to I1False.

I
g

Figure 13.14 Tooltip Displayed

300 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

14

Matrices

The IBM® ILOG® Views Gadgets library provides classes for creating matrices.
This chapter covers the following topics:

¢ Introducing Matrices

Using IlvAbstractMatrix

Using llvMatrix

Using llvSheet

* & & o

Using IlvHierarchical Sheet

Introducing Matrices

A matrix is arectangular area made up of rows and columns that form a grid. The
intersection of arow and a column formsacell. A matrix can contain various matrix items,
such as labels, numbers, graphic objects, gadgets, or gadget items. A matrix can have
scrollbars.

The IBM® ILOG® Views Gadgets classes that implement matrices are
IlvAbstractMatrix, IlvMatrix, IlvSheet, and IlvHierarchicalSheet.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 301

Graphic Objects

Lines /

Splines / ><
L

IF':::I_I,Igu:uns "

[1| | 3

Figure14.1 A Matrix

M

Using llvAbstractMatrix

Theclass T1vabstractMatrix isan abstract class for drawing matrices. Several of its
member functions are virtual and must be redefined in subclasses. This class allows you to
specify whether items should extend over several rows or columns, and aso how many fixed
rows and columns amatrix should contain. It also manages scrolling.

This section covers the following topics:
& Subclassing llvAbstractMatrix

¢ Drawing Items Over Multiple Cells
¢ Setting Fixed Rows and Columns

¢ Handling Events

Subclassing llvAbstractMatrix

Theclass T1vabstractMatrix doesnot contain any values. It provides a set of pure
virtual member functions that must be implemented in subclasses:

@& IlvAbstractMatrix::rows and IlvAbstractMatrix: :columns must returnthe
number of rows and columnsin the matrix.

& IlvAbstractMatrix::rowSameHeight and
IlvAbstractMatrix: :columnSameWidth must return T1True if al the rowsand
columns should have the same height and width.

302 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using IllvAbstractMatrix

& IlvAbstractMatrix::getRowHeight and
IlvAbstractMatrix: :getColumnWidth must return the height of each row and the
width of each column. If rowSameHeight returns I1True, getRowHeight (0) returns
the height of the rows and getColumnwidth (0) returnsthe width of the columns.

€ IlvAbstractMatrix::drawItem drawsaniteminamatrix at the specified location
defined by arow and a column number. This member function also specifies the
bounding box of the matrix item and a clip rectangle.

Drawing Items Over Multiple Cells

You can have items extend to multiple rows and columns. To enable this feature, you must
set the Boolean member value _allowCellMode t0 I1True inthe IlvabstractMatrix
constructor. Also, you must redefine T1vAbstractMatrix: :cellInfo. This member
function specifies how many rows and columns the matrix item spans and the position of its
top-left cell.

In thefollowing example, the matrix item is defined to start at position (10,10) and to occupy
five rows and five columns:
if ((colno >= 10) && (colno < 15) &&

(rowno >= 10) && (rowno < 15))

{

startcol = 10;
startrow = 10;
nbcol =

= 5;
nbrow = 5;
}
else
IlvAbstractMatrix::cellInfo (colno, rowno,
startcol, startrow,
nbcol, nbrow) ;

l Note: Items extending over several rows and columns cannot overlap.

When this member function is redefined, only the top-left cell is drawn (see
TIlvAbstractMatrix: :drawItem). The rectangle passed to the drawItem member
function encompasses all the rows and columns that the matrix item covers.

Setting Fixed Rows and Columns

You can specify that anumber of rows and columnsin amatrix remain fixed. Fixed rows and
columns are always visible even when the user scrolls the matrix. Only the leftmost columns
and the topmost rows can be fixed.

To have fixed rows or columns, use I1vAbstractMatrix: : setNbFixedRow and
IlvAbstractMatrix: : setNbFixedColumn.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 303

Handling Events
Theclass T1vabstractMatrix does not define particular behaviors.

The member function T1vabstractMatrix: :handleEvent Simply handles events
related to scrollbars, if the matrix has scrollbars, and calls
IlvAbstractMatrix: :handleMatrixEvent.

If you want to implement a specific behavior for a matrix, you must redefine this member
function in a subclass.

The following methods can help you write the behavior for your class:

virtual IlBoolean pointToPosition(const IlvPoint& p,
I1UShort& colno,
I1UShort& rowno,
const IlvTransformer* t = 0) const;

This method returns, in colno and rowno, the location of the item which is under the point
p When the matrix is displayed using the transformer . The returned valueis 11True if
thereisan item at thislocation, or 11False if thereisnone.

I1Boolean rowBBox (I1lUShort rowno,
IlvRect& rect,
const IlvTransformer* t = 0) const;
I1Boolean columnBBox (I1lUShort colno,
IlvRect& rect,
const IlvTransformer* t = 0) const;
I1Boolean cellBBox(IlUShort colno,
I1lUShort rowno,
IlvRect& rect,
const IlvTransformer* t = 0) const;

The above methods compute in rect the bounding box of a column, arow, or acell when
the matrix is drawn with the transformer t . The method returns T1True if theitemisvisible
(even partially), or 11False if itisnot.

Toredraw acolumn, usethe T1vAbstractMatrix: : invalidateColumn method. To
redraw arow, usethe I1vAbstractMatrix: : invalidateRow method.

Using llvMatrix

A matrix isan instance of the T1vMatrix class, asubclass of 11vabstractMatrix. A
matrix is arectangular grid made up of rows and columns, which can contain many different
types of objects (Iabels, graphic objects, other gadgets, and so on). These objects, called
matrix items, are of the class T11vabstractMatrixItem.

This section covers the following topics:

304 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvMatrix

¢ Handling Columns and Rows
& Handling Matrix Items

¢ Handling Events

L 2

Using Gadget Itemsin a Matrix

Handling Columns and Rows

This section introduces the various operations you can perform on rows and columns:
¢ Adding Rows and Columns

¢ Resizing Rows and Columns

¢ Setting the Automatic Fit-to-Size Mode

Adding Rows and Columns

You can specify the number of rows or columns that a matrix will containinthe T1vMatrix
constructor.
IlvMatrix (IlvDisplay* display,

const IlvRect& rect,

I1UShort nbcol,

I1UShort nbrow,

IlvDim xgrid = IlvDefaultMatrixWidth,

IlvDim ygrid = IlvDefaultMatrixWidth,

I1lvDim thickness = IlvDefaultGadgetThickness,

IlvPalette* palette = 0);

l Note: A matrix must have at least one row and one column.

You can add new columns and rows to amatrix withthe I1vMatrix: : insertColumn and
IlvMatrix: : insertRow member functions and remove them with
IlvMatrix: :removeColumn OF I1lvMatrix: : removeRow.

You can modify the number of columns and rows in a matrix in one operation using the
member function I1vMatrix: :reinitialize.

Resizing Rows and Columns

Theinitial width of acolumn and height of arow are specified by the xgrid and ygrid
parameters provided to the 11vMatrix constructor. When amatrix is created, its rows and
columns al have the same dimensions that are indicated by these parameters. You can,
however, modify the original settingswiththe t11vMatrix: :setxgrid and

IlvMatrix: :setYgrid member functions, which let you set the width of each column and
the height of each row, respectively. Also, you can change the size of each individual column
or row with the member functions 11vMatrix: : resizeColumn and

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 305

IlvMatrix::resizeRow. Inthiscase, the global settings defined for the matrix are no
longer used, and modifying their values will have no effect on the dimensions of the other
rows and columns.

To revert to amatrix whose columns and rows are all of the same size, use
IlvMatrix::sameHeight and IlvMatrix: : sameWidth.

Setting the Automatic Fit-to-Size Mode

You can request that the dimensions of the columns and rows in amatrix be adjusted
automatically when the matrix is resized with the member function
IlvMatrix::autoFitToSize. Thisfeature does not apply when amatrix has scrollbars.
When the “auto fit to size” mode s set, you can specify that only the width of the last
column or the height of the last row be adjusted when the matrix is resized with
IlvMatrix::adjustlLast.

You can also recompute the size of al the columns and rows so that they fit into the matrix
bounding box with T1vMatrix: : fitToSize.

Handling Matrix Items

Matrix items are instances of subclasses of the class T1vabstractMatrixItem. Matrix
items can be selected and edited. Gadgets used as matrix items are active, meaning that they
react to user input.

This section covers the following topics:
Predefined Matrix Item Classes
Creating a New Subclass of Matrix Items
Adding and Removing Matrix Items
Redrawing Matrix items

Aligning Matrix Items

Creating a Relief Matrix Item

Setting Matrix Items Selection

® 6 6 6 6 O 0o o

Changing Matrix Items Sensitivity

Predefined Matrix Item Classes

Below isalist of subclasses of T1vabstractMatrixItem:
€ IlvLabelMatrixItem definesamatrix item asalabel.

€ IlvFilledLabelMatrixItem definesamatrix item asalabel with afilled
background.

¢ IlvBitmapMatrixItem definesamatrix item asabitmap.

306 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using llvMatrix

& IlvIntMatrixItem definesamatrix item asan integer.

€ IlvFilledIntMatrixItem definesamatrix item asan integer with afilled
background.

& IlvFloatMatrixItem definesamatrix item asafloating-point value.

& IlvFilledFloatMatrixItem definesamatrix item as afloating-point value with a
filled background.

& TIlvDoubleMatrixItem definesamatrix item asadouble-precision floating-point
value.

& IlvFilledDoubleMatrixItem definesamatrix item asa double-precision floating-
point value with afilled background.

€ TIlvGraphicMatrixItem definesamatrix item asagraphic object.

& IlvGadgetMatrixItem definesamatrix item asagadget. Thistype of matrix item
differsfrom 11vGraphicMatrixItem objectsinthat it can be active in amatrix.

€ TIlvGadgetItemMatrixItem definesamatrix item asagadget item.

Creating a New Subclass of Matrix Items

If the predefined subclasses of the T1vabstractMatrixItem class (see Predefined Matrix
Item Classes on page 306) do not fit your needs, you can create your own matrix item
subclass. This section describes how to properly register anew matrix item class. Typicaly,
thiswill enable your matrix item class to be persistent.

The code sample located below is taken from the sample edit. This sample can be found in
ILVHOME/samples/gadgets/table/src/edit .cpp, Where ILVHOME is the root
directory under which IBM ILOG Views has been installed.

The class described hereis a subclass of the I1vFloatMatrixItem class. It overridesthe
IlvFloatMatrixItem: :getFormat method to give an accessto the display format.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 307

However, the important point here is not the class itself, but the registration of the class
through the use of macros.

class FormattedFloatItem : public IlvFloatMatrixItem
{
public:
FormattedFloatItem(I1lFloat value, const I1lString& format)
IlvFloatMatrixItem(value),
_format (format)
{
}
void setFormat (const IlString& format)
{
_format = format;
}
virtual const char* getFormat () const
{
return (const char*)_format;
}
DeclareMatrixItemInfo() ;
DeclareMatrixItemIOConstructors (FormattedFloatItem) ;
protected:
IlString _format;
Yi

The macro peclareMatrixItemInfo declaresthe methods and members needed to
handle class information.

Themacro beclareMatrixItemIOConstructors declaresthei/o and copy constructors.
These constructors are defined in the following way:

FormattedFloatItem: :FormattedFloatItem(const FormattedFloatItem& source)
: IlvFloatMatrixItem(source),
_format (source._format)
{
}
FormattedFloatItem: :FormattedFloatItem(IlvDisplay* display,
IlvInputFile& is)
IlvFloatMatrixItem(display, is),
_format ()
{
_format.readQuoted(is.getStream()) ;

}

Thewrite method is needed because the macro beclareMatrixItemInfo wasusedin
the class declaration. It simply calls the superclass write method, and writesthe _format

308 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using llvMatrix

member into the stream. To create aread-only subclass of T1vabstractMatrixItem, USe
the macro beclareMatrixItemInfoRO.
void
FormattedFloatItem: :write(IlvOutputFile& os) const
{
IlvFloatMatrixItem: :write (os) ;
os.getStream() << " ";
_format.writeQuoted(os.getStream()) ;
os.getStream() << " ";

}
The implementation of the copy and readItem methods are defined using the following
macro:

IlvPredefinedMatrixItemIOMembers (FormattedFloatItem) ;

Finally, the classis registered asa subclass of T1vFloatMatrixItem.

IlvRegisterMatrixItemClass (FormattedFloatItem, IlvFloatMatrixItem) ;

Adding and Removing Matrix Items

You can add an item to amatrix at a specific location with the member function
IlvMatrix: :set and removeit with IlvMatrix: :remove. The IlvMatrix: :getItem
member function retrieves an item given its position in the matrix.

Redrawing Matrix items

After adding or removing an item, or modifying it in any way, you must call
TlvMatrix::reDrawItem to redraw it. You can also wait until all the modifications are
made and call T1vGadget: : reDraw at the very end to redraw the entire matrix.

Aligning Matrix Items

A matrix item can be centered within a cell or be aligned with the right or left border of the
cell.

Left Center Right

Figure14.2 Aligning Itemsin a Cell

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 309

You can change the alignment of a matrix item using the member function
IlvMatrix::setItemAlignment. You have to redraw the matrix item for the
modifications to take effect. See the section Redrawing Matrix items on page 309.

Note: TlvGadgetMatrixItem Objectsand I1vGraphicMatrixItem Objectsholding
nonzoomabl e graphics occupy the full rectangle of the cell and cannot be aligned. For
information on these classes, see Predefined Matrix Item Classes on page 306.

Creating a Relief Matrix Item

You can create a specia relief effect for amatrix item. Anitem in relief has the same
appearance as a button. When selected, arelief matrix item appears like a clicked button. To
have a button appear in relief, use T1vMatrix: :setItemRelief. You must call the
redrawItem member function for the modifications to take effect. See Redrawing Matrix
items on page 309.

Setting Matrix Items Selection
Matrix items can be selected. A selected matrix item is surrounded by afilled rectangle.

Selected tem |Nonselected ltem

Figure 14.3 Sdected and Nonselected Matrix Items

You can select a single matrix item with the member function
IlvMatrix::setItemSelected and an entirerow or column with
IlvMatrix::setColumnSelected and IlvMatrix: :setRowSelected. Insingle
selection mode setSelectedItem does not deselect the previously selected item. See
Selection Modes on page 311.

Once you have selected an item, you must redraw it. See Redrawing Matrix items on
page 309.

You can change the way the selection is drawn by overriding the member function
IlvMatrix: :drawSelection in subclasses.

Toretrieve the first item selected in amatrix, call I1vMatrix: :getFirstSelected.

310 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvMatrix

Changing Matrix Items Sensitivity

Matrix items can be sensitive or nonsensitive. Nonsensitive matrix items cannot be selected
nor edited and appear dimmed by default as shown below. You can use the member function
TlvMatrix::setItemGrayed With T1False asthe parameter to make them look like
sengitive items (that is, not grayed).

Sensitive Nonsensitive

Figure14.4 Sensitive and Nonsensitive Matrix Items

To change the sensitivity of an item, use the member function
IlvMatrix::setItemSensitive. You must redraw theitem for the modificationsto take
effect. See Redrawing Matrix items on page 309.

Note: If the matrix itemis a graphic object or a gadget, modifying the sensitivity does not
affect the drawing of the item.

You can also set amatrix item asread only with T1vMatrix: : set TtemReadoOnly. Read-
only matrix items cannot be edited but can be selected.

Handling Events

This section describes the standard matrix behavior implemented by the member function
TIlvMatrix::handleMatrixEvent. Thefollowing topics are covered:

Selection Modes

Editing a Matrix Item
Item Callback

Activate Callback

Using Gadgetsin a Matrix

® 6 6 o o o

Modifying handleEventMatrix

Selection Modes

There are two selection modes for matrices: single (or exclusive) selection and multiple
selection. To set the selection mode, use IT1vMatrix: : setExclusive With I1True asits

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 311

parameter if you want to specify the single selection mode or T1False to specify the
multiple selection mode.

In single selection mode, only one item can be selected at atime. This mode has two
submodes:

& Single selection—In this mode, you can select only one item at atime. When the
selection changes, the previous selected item is desel ected.

& Singlebrowse—Thismodeis similar to the previous one except that clicking the selected
item with the middle mouse button cancel s the selection.

In multiple selection mode, several items can be selected at the same time. This mode has
two submodes:

& Multiple browse—In thismode, you can select several items at the same time either by
clicking them or dragging the mouse. Similarly, you can deselect several items by
clicking them or by dragging the mouse with the middle button.

& Extended—In this mode, you can select several items at the same time either by clicking
them or by dragging the mouse. You can extend the selection by pressing the Shift and
CTRL keyswhile selecting items. You can a so specify the direction of the extended
selection by using T1vMatrix: : setExtendedSelectionOrientation

To specify the selection submode, use T1vMatrix: : setBrowseMode.

When the user selects amatrix item or cancels the selection, the Main callback of the matrix
iscaled.

l Note: You cannot select items that are not sensitive.

Editing a Matrix Item

If editing is allowed for the matrix (see T1vMatrix: :allowEdit), you can edit matrix
items. Nonsensitive or read-only matrix items cannot be edited. When an item is being
edited, an editor is displayed over it as shown in theillustration below. The base class for
matrix item editorsisthe I1vMatrixItemEditor class. It encapsulatesan 11vGraphic
object that will be used to display and edit the matrix item. The default editor class used by
an IlvMatrix isthe IlvDefaultMatrixItemEditor Class. It usesan I1vTextField
object to edit matrix items. You can change this behavior by using the
IlvMatrixItemEditorFactory Class.

312 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvMatrix

] b

Figure 14.5 Editing a Matrix Item

To edit an item, select it first with the mouse and click it, or press the F2 key to edit the last
selected item. To validate your modifications, press the Enter key in the text field or click in
another cell. The virtual member function T1vMatrix: :validate iscalled. Its default
implementation invokes the callback associated with theitem, if any. See “Item Callback”
below. If thereis none, it invokes the secondary callback of the matrix. See Associating a
Callback with a Gadget on page 209.

To edit anitem by code, call T1vMatrix: :editItem.

TlvMatrix: :getEditedItem returnsthe location of the matrix item being edited.

Item Callback

You can attach a callback to each matrix item. When the user validates the editing of anitem,
its associated callback isinvoked. This callback is defined by:

typedef void (*IlvMatrixItemCallback) (IlvMatrix* matrix,
I1UShort column,
IlUShort row,
I1vAny arg) ;

wherematrix specifiesthe matrix that contains the item, column and row the location of
theitem that invoked the callback, and arg an argument passed when installing the callback.

To attach a callback to anitem, use T1vMatrix: : set ItemCallback.

Activate Callback

When the user double-clicks an item or presses the Enter key, the member function
TIlvMatrix::activateMatrixItem iScalled. By default, this method invokesthe Active
Item callback. To set this callback, use
TlvMatrix::ActivateMatrixItemCallbackType. See Associating a Callback with a
Gadget on page 209.

Note: By default, when the user double-clicks a matrix item, thisitemisready for editing.
In this case, the member function T1vMatrix: :activateMatrixItemisnot called. If
you want to override this default behavior, call
TlvMatrix::allowEditOnDoubleClick With T1FalseTlFalse asthe parameter.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 313

Using Gadgets in a Matrix

Gadget matrix items do not have the same behavior as other items. They react to events by
using their handleEvent member function. This means that a gadget inside a matrix
behaves like a gadget outside a matrix. The matrix defines a specific gadget matrix item that
can have the keyboard focus. You can specify thisitem with T1vMatrix: : setFocus.

When navigating through the matrix using the arrow keys, you can reach acell that contains
agadget matrix item. You may want to either continue navigating, or send eventsto the
gadget matrix item. To continue navigating, use the arrow keys to leave the cell. To send
events to the gadget matrix item, you can either press a key that the gadget will catch (any
key except the arrow keys) or press CTRL +Enter. The gadget matrix item will receive all the
keyboard inputs until it receives another CTRL+Enter, or akey that it does not handle.

Modifying handleEventMatrix

You may need to modify the default behavior of amatrix in asubclass of T11vMatrix by
redefining the method T1vMatrix: : handleMatrixEvent. Some methods can help you as
those shown below.

This method returns the column and row to which the mouse points:

virtual IlBoolean pointToPosition(IlvPoint& p,
I1UShort& c,
IlUShort& r,
const IlvTransformer* t =0) const;

This method returns the matrix item to which the mouse points:

virtual IlvAbstractMatrixItem* pointToItem(IlvPoint& p,
I1UShort& c,
IlUShorté& r,
const IlvTransformer* t = 0) const;

Using Gadget Items in a Matrix

A matrix can hold gadget items viathe class 11vGadgetItemMatrixItem, asubclass of
IlvAbstractMatrixItem. Instances of this class encapsulate a gadget item and therefore
benefit from all its features. See Chapter 12, Gadget Items.

Picture and Label Visibility

You can specify whether all the pictures in amatrix should be displayed by calling the
method I1vMatrix: : showPicture. Likewise, you can use I1vMatrix: : showLabel
define the visibility of all its labels. By default, the matrix displays both labels and pictures.

Note: You can override these global settings for a specific item by using the API of the

IlvGadgetItem class. For details, seethe methods 11vGadgetItem: : showLabel and
IlvGadgetItem: : showPicture.

314 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using llvSheet

Label and Picture Position

You may want to change the position of the item labels relative to their pictures. To do so,
usethemethod I1vMatrix: : setLabelPosition. By default, the label isplaced to the
right of the picture (11vRight).

Note: You can override this global setting for a specific item by using the API of the
I1lvGadgetItem class. For details, see the method
IlvGadgetItem: :setLabelPosition.

Editing Items
You can edit gadget items located in a matrix. See Editing Gadget Items on page 284.

Dragging and Dropping Items

The T1vMatrix classprovides an easy-to-use drag-and-drop mechanism. See Dragging and
Dropping Gadget Items on page 285.

Tooltips
Matrices can display tooltips when the mouse pointer is over partialy visibleitems.

Using llvSheet

A sheet isa particular type of matrix implemented by the class T1vsheet. See Using
IlvMatrix on page 304. In a sheet, fixed rows and columns are delimited by arelief line.

| | | The first rowe and the first column are fixed

Figure14.6 A Sheet

Ilvsheet hasall the behavior of the class T1vMatrix. In addition, it allows the user to
dynamically resize the columns or rows. This can be donein two ways:

& By clicking in the fixed columns or rows on the grid line and dragging to resize the
column or row.

& By double-clicking in the fixed columns or rows on the grid line to give the column or
row the size of itslarger item.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 315

Using llvHierarchicalSheet

TheTlvHierarchicalSheet classisasubclassof 11vsheet that displaysatree structure
in one of its columns. It can be considered as a specia T1vTreeGadget oObject that handles
severa columns. Thetreeitemsare of thetype 11vTreeGadgetItem, which meansthat the
API used to handle atree hierarchy is very close to the I11vTreeGadget object. See Using

IlvTreeGadget on page 270.
Properties Walue]
B gadget.ilv Iv(adgetContainer 2
IviEcrolledGadget Ilw3tringldst
H no name v T extField
CHCEESOYE
B no name Ivlvessagelabel
'8 accessors
—x 10a
— ¥ 300 ~|

Figure14.7 AHierarchical Sheet
This section covers the following topics:

Changing the Tree Hierarchy

Navigating through a Tree Hierarchy

Changing the Characteristic of a Tree Item
Expanding and Collapsing a Gadget Item
Changing the Look of the Tree Gadget Hierarchy

® 6 6 o o o

Event Handling and Callbacks

Changing the Tree Hierarchy

The hierarchical sheet has an invisible root item that can be retrieved using the
IlvHierarchicalSheet: :getRoot member function.
Changing a Hierarchy

When you want to modify the tree hierarchy, you must not use 11vsSheet member
functions, such as set, removeRow, and S0 on. Instead, use the T1vHierarchicalSheet
methods described bel ow.

To create ahierarchical list of items, you can do the following:

& Createtree gadget items as explained in Creating a Hierarchy on page 271 and add them
one by oneto the hierarchical sheet with I1vHierarchicalSheet: : addItem member
function.

316 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Using llvHierarchicalSheet

& Create acomplete new hierarchy and add it to the tree gadget in asingle operation. To do
S0, create tree gadget items as explained above and add them as children using
IlvTreeGadgetItem: : insertChild. Thissolution is more efficient than the first
one.

Then you can add the root of your new hierarchy to the tree with
IlvHierarchicalSheet: :addItem asshown below:

IlvTreeGadgetItem* item = new IlvTreeGadgetItem("New Item") ;
item->insertChild(new IlvTreeGadgetItem("Leaf 1"));
item->insertChild (new IlvTreeGadgetItem("Leaf2"));
hsheet->addItem(0 /* hsheet->getRoot() */, item);

Removing Items

When you remove an item from the hierarchical sheet, al its children are also removed from
thetree. Use I1vHierarchicalSheet: : removeItem tO remove asingle item from atree
Or I1lvHierarchicalSheet: :removeAllItems toremoveall itsitemsat once.

Note: When you add a new item to the tree gadget, its corresponding row is created
automatically. Smilarly, when you remove an item, itsrow is del eted.

Navigating through a Tree Hierarchy

To move inside a hierarchical tree, use the member functions described in Navigating
Through a Tree Hierarchy on page 272. You can also use
IlvHierarchicalTree: :getTreeltemand IlvHierarchicalSheet: :getItemRow.

Changing the Characteristic of a Tree Item

See Changing the Characteristic of an Item on page 272.

Expanding and Collapsing a Gadget Item

You can expand or collapse a gadget item by clicking its Expand button. Expanding an item
shows all its subitems; collapsing an item hides all its subitems. You can also perform the
same operations using I1vHierarchicalSheet: : shrinkItem and
IlvHierarchicalSheet: :expandItem.

When an item becomes invisible because one of its parents has been collapsed, its
corresponding row in the sheet disappears. Note, however, that it is not deleted.

Changing the Look of the Tree Gadget Hierarchy

Thelinesthat link items to their parents can be displayed or hidden using the
IlvHierarchicalSheet: : showLines member function.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 317

You can define the indentation between an item and its parent using the
IlvHierarchicalSheet: :setIndent member function.

Event Handling and Callbacks

The Expand Callback

When the user expands atree gadget item, the Expand callback isinvoked. The callback type
can beretrieved with T1vHierarchicalSheet: : ExpandCallbackType. See
Associating a Callback with a Gadget on page 209.

The Shrink Callback

When the user collapses atree gadget item, the Shrink callback isinvoked. The callback type
can beretrieved with T1vHierarchicalSheet: : ShrinkCallbackType. See
Associating a Callback with a Gadget on page 209.

318 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

15

Panes

You can group the various elements that make up a graphical user interface, such as graphic
panels, tool bars, and menu bars, inside panes of various sizes to create highly intuitive and
customizable applications.

This chapter explains what panes are and how to use them in your graphical applications. It
coversthe following topics:

& Introducing Panes

& Creating Panes

& Adding Panes to Paned Containers
& Resizing Panes

Introducing Panes

The IBM® ILOG® Views Gadgets library supports panes. A pane is agraphical areathat
displays any kind of drawing, such as 11vGraphic Or I1vview Objects.

Panes are objects of the class T1vPane that are stored in paned containers of the class
IlvPanedContainer. A paned container can be either vertical or horizontal. In vertical
paned containers, panes are arranged from top to bottom, whereas in horizontal paned
containersthey are arranged from left to right. Panesinside a vertical paned container have

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 319

al the same width, but their height can vary. Similarly, panesinside a horizontal paned
container have al the same height, but their width can vary.

A pane can encapsulate a paned container, allowing you to build complex, nested pane
structures, asillustrated in the following figure.

A horizontal

paned container 1 FaneD Fane 1 Fare 2
Pare Pane 0

Pane 1 encapsulates

a paned container

that contains two = -

panes. Pt = Pang 1 s

o [
Aovertical
paned container Pang 7 Pane 2

Figure15.1 Horizontal and Vertical Paned Container and Encapsulated Paned Container
The following figure shows an application main window that implements panes:

320 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Introducing Panes

The main window iz g verical paned container

ivstudio - testapp

Pane 0 { File Edit “iew Draw Tools Applicstion Window Help
et (| EED Q| B0 @ EELAJE @ EER
Al
Pane2 Ej
|t
v | |5
container with 9
panes E
=
=
B
=
LH
=
z
[
o
o
=
o
Eunnamed
e —— o EEEEY S| SN~
% Y w h Right Bottom Mame Callback. 15
Pane 4 [| | || I O
Panes — | GadPets Selection
encapsulates a
horizontal paned

container with 5
panes

Pane 0 —%
Pane 4 —&

Pane 1
Pane 2
Pane 3

Figure15.2 Application Main Window Made Up of Several Panes

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 321

Creating Panes
A paneisan instance of the 11vpane class. Sincethis classis abstract, you must subclass it
or use one of its predefined subclasses:
& IlvVviewPane, Which encapsulates any 11vview oObject.
€ TIlvGraphicPane, Which encapsulatesany T1vGraphic object.

Most of the time, you do not have to subclassthe 11vpPane class asits predefined subclasses
are appropriate for nearly al application needs.

This section discusses the following:
& Creating a Graphic Pane

& Creating a View Pane

& Showing or Hiding a Pane

Creating a Graphic Pane

The following example demonstrates how to create a graphic pane (11vGraphicPane).

First we create the T11vGraphic object we want to add to the graphic pane. Here, we
encapsulate an T1vTreeGadget Object.

IlvDisplay* display
IlvTreeGadget* tree

new IlvTreeGadget (display, IlvRect (0, 0, 100, 100));

Then we create a graphic pane:

IlvGraphicPane* graphicPane = new IlvGraphicPane ("Tree", tree);

The first argument provided to the constructor is a string representing the name of the pane.

Creating a View Pane
The following example shows how to create aview pane (I11vviewPane).
First we create the 11vview object we want to add to the view pane;

IlvView* view = new IlvView(parent, IlvRect (0, 0, 100, 100));

Then we create the view pane:

IlvViewPane* viewPane = new IlvViewPane ("View", view) ;

322 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Adding Panes to Paned Containers

The first argument provided to the constructor is a string representing the name of the pane.

Note: The view used in the view pane must be a subview. That is why the encapsul ated
view was created with the T11vview constructor that takes a parent view asitsfirst
argument.

Showing or Hiding a Pane

You can show or hide a pane using the T1vpane: : show and I1vPane::hide member
functions. A hidden pane does not appear in its paned container.

Note: If you modify the layout of a paned container by adding or removing panes or by
showing or hiding panes, you must call the T1vPanedContainer: :updatePanes
member function for your changes to become effective.

Adding Panes to Paned Containers
A paned container is an instance of the T1vpPanedContainer class, asubclass of
IlvGadgetContainer, to which panes must be added.
This section covers the following topics:
¢ Creating a Paned Container
& Modifying the Layout of a Paned Container
& Retrieving Panes
L 2

Encapsulating a Paned Container in a View Pane

Creating a Paned Container

When creating a paned container, you must specify itsdirection (horizontal or vertical). Ina
vertical paned container, panes are arranged from top to bottom. In a horizontal pane, they
are arranged from left to right.

The following code sample creates a vertical paned container as atop view:

IlvPanedContainer* container = new IlvPanedContainer (display,
"Paned Container",
"Paned Container",
IlvRect (0, 0, 500, 500),
IlvVertical) ;

You can retrieve the specified orientation and modify it using the member functions
IlvPanedContainer: :getDirection and IlvPanedContainer: :setDirection.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 323

Once you have created a paned container, you can add panesto it with the member function
IlvPanedContainer: :addPane OF remove panesfrom it with
IlvPanedContainer: :removePane.

Modifying the Layout of a Paned Container

If you modify the current layout of a paned container by adding, removing, showing, or
hiding panes, you must call the 11vPanedContainer: :updatePanes member function to
make your changes effective.

container->addPane (panel) ;
container->addPane (pane2) ;
container->addPane (pane3) ;
container->updatePanes () ;

Retrieving Panes

You can use the member function I1vPanedContainer: :getCardinal to know the
number of panesthat a given paned container handles.

The 11vPanedContainer: : get Pane member functions lets you retrieve a pane using its
index or using its name.

You can get the index of a specific pane with the T1vPanedContainer: :getIndex
member function.

Note: Paned containers reference the panes they hold using indexes. However, we
strongly recommend that you do not reference panes using their indexes, because these
can change for internal reasons. Instead, use the member function I1vpane: : setName
to identify panes.

Encapsulating a Paned Container in a View Pane

Because the class 11vPanedContainer inheritsfrom r1vGadgetContainer, itself a
subclass of T11vview, you can encapsulate a paned container inside aview pane.

Encapsulating a paned container in aview pane allows you to build complex nested pane
structures, as shown in Figure 15.1 on page 320.
The following code sample encapsulates a horizontal paned container in aview pane.
First we create the main vertical paned container:
IlvPanedContainer* container = new IlvPanedContainer (display,
"Paned Container",
"Paned Container",

IlvRect (0, 0, 500, 500),
IlvVertical) ;

324 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Resizing Panes

Then we create a horizontal paned container and encapsulate it in aview pane:

IlvPanedContainer* innerContainer = new IlvPanedContainer (container,
IlvRect (0, 0, 500,200)
IlvHorizontal) ;

IlvViewPane* viewPane = new IlvViewPane ("ViewPane", innerContainer);

Note: In our example, we have created innerContainer asa subview of container.
Although this practice is not mandatory, we strongly recommend that you proceed that
way when creating your own applications. If you do not specify container asthe parent
of innerContainer, it will be reparented when added to container.

The last step consists of adding the view pane to the main paned container:

container->addPane (viewPane) ;

Note: You can get the view pane that encapsulates a given paned container using the
IlvPanedContainer: :getViewPane member function. If no view pane encapsul ates
the paned container, this member function returns o.

Resizing Panes

Panes can be resized.

This section covers the following topics:

& Setting the Resize Mode and the Minimum Size of a Pane
& Resizing Panes With Siders

Setting the Resize Mode and the Minimum Size of a Pane

When you resize a paned container, the panes it holds are resized according to their resizing
mode. A pane can have one of three resizing modes:

& Fixed—Fixed panes are never resized.
& Elastic—Elastic panes are always resized.

¢ Resizable—Resizable panes are resized only if their paned container does not include
elastic panes.

To set the resize mode of apane, usethe I1vpPane: : setResizeMode member function. By
default, the resize mode of new panesis fixed.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 325

326

You can also provide aminimum size for a pane. To set a minimum size for a pane, use the

IlvPane: :setMinimumSize member function. The minimum size of new panesis 1 by
default.You cannot make a pane smaller than the specified minimum size.

Note: The resize mode and the minimum size of a pane can be defined for both the
horizontal and vertical directions.

Resizing Panes With Sliders

A dider paneis an instance of the class T1vsliderPane, asubclass of 11vGraphicPane,
which you can drag to resize adjacent panes.

¥ ivstudio - testapp

File Edit “iew Draw Tools Applicstion ‘window Help
SRS e +Eres d @EIEIUGTARER
GemFo2@ =@ 18

L unnamed, - Application: P_‘J Click on the slider panel and
drag it up or down toresize
adiacent panes. Panes are
resized when you releases the
mause button

Errors

[YEEEEs

[v|=— ~Ret—
% Y w h Right Battom Mame Callback. 15
I N | || | N | | |0

| (Gadgets ‘ Selection

IBM

Figure15.3 dider Pane

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Resizing Panes

Using Automatic Slider Creation

By default, a paned container automatically creates slider panes between resizable and
elastic panes.

Note: Sider panes are actually created only after you call the member function
IlvPanedContainer: :updatePanes. Thisisvery important asit affects the index
number originally assigned to the panes. For example, if you create an empty container to
which you add two resizable panes, their indexes will be 0 and 1, respectively. After
calling updatePanes, the indexes of the resizable panes will be 0 and 2, the dider pane
being assigned the index number 1. See Retrieving Panes on page 324.

When the paned container creates automatic dider panes, it callsthe
IlvPanedContainer: :createSliderPane member function, which you can overrideto
create custom slider panes.

If you do not want that slider panes be created automatically, you can call the
IlvPanedContainer: :manageSliders member function with false asitsargument. If
you disable thisfeature, and if you still want resizable and €l astic panesto be resizable using
adider, you must create sliders panes by hand and add them to the paned container.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 327

328 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

16

Docking Panes and Containers

The IBM® ILOG® Views Gadgets library supports docking panes.

This section explains what docking panes are and how to use them in your graphical
applications. Before reading this section, be sure that you are familiar with panes. Panes are
discussed in detail in Chapter 15, Panes.

This chapter covers the following topics:

Introducing Docking Panes and Dockable Containers
Creating Docking Panes

Controlling Docking Operations

Using Docking Bars

Building a Standard Application With Docking Panes

* & 6 o o

Samples
See the ViewFile Application tutorial.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 329

Introducing Docking Panes and Dockable Containers

A dockable container is a particular type of paned container to which you can dock panes
and undock them. Docking a pane means adding it to a dockable container at a given
location interactively. Undocking a pane means removing it from its dockabl e container to
put it inside a special top view interactively.

The classesin the IBM® ILOG® Views Gadgets library that implement docking panes are
IlvDockable and IlvDockableContainer.

In the following illustration, all the panes that make up the graphical interface are docked.

ivstudio - testapp

. File Edit iew Draw Tools Application Window Help

EPO e +RL2S | HEADLSITREJa@ TEAER

HE £+

R

Eunnamed EIE)X] [BD| <application=[=[2)(X]

| — 12 S
h Righk Boktom Mame Callback 15

1 I I I | | | | O

| Gadgets | Selection

[F/EEEEX
" ¥ w

Figure16.1 GUI with Docked Panes

In the following illustration, the main menu bar has been undocked and floats inside atop
window.

330 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

IBM

Introducing Docking Panes and Dockable Containers

I?

ivstudio - testapp
EEO af tE0RS K EERAJE HM@TAER
[kemmo2@ 2@ 148E

Menu bar

Eile Edit Yiew Draw Tools Application ‘Window Help

et~
h Right EBioktam ame Callback 15

i ¥
;I] [| | '

| Gadgets | Selection

Figure16.2 Main Menu Bar Undocked

In the following illustration, the main menu bar is docked again to the right side of the GUI
main window.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 331

'V livstudio - testapp z|

'Er[”]@lﬁﬁlotl@gll&I@Ildﬂ@l@%%

[RtoE2E =@ 12

diaH mopu, Uonedddy 5001 MEdQ MEl P38

IR TE G
h Right Boktom Mame: Callback 15

§| CIC I i | a

|Gadgets|SebcH0n

Figure 16.3 Main Menu Bar Redocked

Creating Docking Panes

Creating adocking paneis very much the same as creating anormal pane asillustrated in the
following two code samples. Panes are described in Chapter 15, Panes.

Below, the “ Tree” paneis added to a paned container with the addpane member function:

IlvPanedContainer* container = new IlvPanedContainer (display,
"Paned Container",
"Paned Container",
IlvRect (0, 0, 500, 500),
IlvVertical);
IlvTreeGadget* tree = new IlvTreeGadget (display, IlvRect (0, 0, 100, 100));
IlvGraphicPane* graphicPane = new IlvGraphicPane (“Tree”, tree);

332 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Creating Docking Panes

container->addPane (graphicPane) ;

Below, the same “ Tree” paneis added to a dockable container with the member function
IlvDockableContainer: :addDockingPane, Which makesit a dockable pane:

IlvDockableContainer* container =
new IlvDockableContainer (display,
"Dockable Container",
"Dockable Container",
IlvRect (0, 0, 500, 500)
IlvVertical) ;
IlvTreeGadget* tree = new IlvTreeGadget (display, IlvRect (0, 0, 100, 100));
IlvGraphicPane* graphicPane = new IlvGraphicPane (“Tree”, tree);
container->addDockingPane (graphicPane) ;

In the second code sample, the paned container is of type 11vDockableContainer, a
subclass of T1vPanedContainer, and panes are added to it with the member function
IlvDockableContainer: :addDockingPane tO create docking panes.

Panes added to a dockable container with the addbockingPane member function are
connected to an instance of the T1vbockable class, which handles docking operations for
them. For more information on this class, see Controlling Docking Operations on page 337.

Note: If you want to use a subclass of 11vbockable, you should be aware that you have

to connect it explicitly before calling addpockingPane. See Connecting an Instance of
the IlvDockable Class to a Pane on page 337.

Docking panes are equipped with a handle, which you can click and drag to undock the
pane. See the following illustration.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 333

¥ ivstudio - testapp

File Edit View Draw Tools Application ‘Window Help

@Fﬂtﬁﬂ e Lt EER S W EASFE 16 TEER
kRO ?E 2EIEE

unnamed_2 ||

T unnamed | [(5]5)0%) [<Application=(® [5)x]

Docking Pane Handles ——

L FMEREEY Ve N —

* y w h Right Eioktam Mame Callback 15
NN)| | | N | | IO

Gadgets | Selection

Figure 16.4 Docking Pane Handles
When you drag the pane to move it, a ghost image appears that helps you position it to its
new location.

Note: Because the dockable container adds a handle to a docking pane, itsindex is no

longer the one specified when calling the member function
IlvDockableContainer: :addDockingPane. The handleis added to the left of the

pane if the target paned container is horizontal and to the top of the pane if the container
isvertical. For information about pane indexing, see Using Automatic Sider Creation on
page 327 and Creating Orthogonal Dockable Containers on page 334.

Creating Orthogonal Dockable Containers

Orthogonal dockable containers are an advanced feature. Use this feature if you want to
create docking panes having a nonstandard behavior. For further information, see Using the
IlvDockableMainWindow Class on page 344 where the T1vDockableMainWindow class
that implements this feature is described.

334 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Creating Docking Panes

The I1vDockableContainer class provides the member function
createOrthogonalDockableContainer, which when set to true, modifies the
behavior of the addDockingPane member function as follows:

& Creates an internal dockable container which is orthogonal to the main dockable
container.

The “create orthogonal dockable container” feature does not apply to this internal
container.

& Encapsulates the internal dockable container into aview pane.
& Addsthe view pane to the dockable container.
& Adds the docking pane and its handle to the internal dockable container.

If you add a pane to a vertical dockable container when the “create orthogonal dockable
container” feature is disabled, you obtain the following:

Pane A
Pane A
Handle of Docking Pane G
Added
Pane C panes
Pane B -
Pane B

Figure16.5 Create Orthogonal Dockable Container Feature Disabled
If the “ create orthogonal dockable container” feature is enabled, you obtain the following:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 335

Pane A
Pane A
&)
5
o &)
@
o == D _FPanes added
%5 EcLCU to the orthogonal
é paned container
Pane B
Pane B

Figure 16.6 Create Orthogonal Dockable Container Feature Enabled

This feature makes it possible to dock other panes to the dockable container of Pane C to get
a pane structure similar to the one shown below:

Pane A Pane A
& &) fa
— — D 1]
o = o C S C
af o af o af =
gm fub] T o] =]
=c C — P | C T o cg’ o
T 2 i “E [a) o = i
5 o ITE o ITE o
(=] (=] (=]
[} [} [}
Pane B Pane B

Figure 16.7 PaneD is Docked into the Dockable Container of Pane C

When the “create orthogonal dockable container” feature is enabled, the dockable container
to which the paneis actually added is not the one for which you called the member function
addDockingPane. Also, the index of the added pane might have changed. Therefore, we

recommend that you retrieve the pane using its name instead of itsindex inside its container.

336 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Controlling Docking Operations

Controlling Docking Operations

You can manage docking operations rel ative to a specific pane with the 11vbockable class.
Each docking pane has an instance of the T1vDockable class connected to it. Thisinstance
can be automatically created when adding the pane using the member function
IlvDockableContainer: :addDockingPane, Of can be specified by the user.

This section covers the following topic:

& Connecting an Instance of the IlvDockable Class to a Pane
& Docking and Undocking a Pane

& Filtering Docking Operations

Connecting an Instance of the llvDockable Class to a Pane

To connect an instance of the T1vbockable classto a pane, you first have to create an
instance of the 11vDockable classor of asubclasslike this:

IlvDockable* dockable = new IlvDockable() ;

Then you can set it to your pane using the static member function
IlvDockable: : SetDockable.

To retrieve the T1vDockable instance connected to a pane, call:
IlvDockable* dockable = IlvDockable: :GetDockable (pane) ;
This member function returns 0 if pane isnot adocking pane.

To retrieve the pane connected to an T1vDockable instance, call:

IlvPane* pane = dockable->getPane() ;

Docking and Undocking a Pane

When a pane is docked, you can undock it using the member function
IlvDockable: :unDock.

When a pane is undocked, you can dock it using the member function
IlvDockable: :dock. Thismember function calls
IlvDockableContainer: :addDockingPane t0 dock the pane.

To know whether a pane is docked, use the T1vDockable: : i sDocked member function.

Controlling User Interactions
You can dock or undock a docking pane by double-clicking its handle.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 337

To prevent a pane from being docked, you can press the Ctrl key while dragging it onto a
dockable container.

To cancel a docking operation, press the Escape key.

Filtering Docking Operations

Potentially, a docking pane can be attached to any dockable container in your application.
You can, however, control docking operations and prevent docking panes from being
attached to a given container.

When you drag a pane onto a dockable container, the virtual member function
TIlvDockable: :acceptDocking iscalled. If it returns true, the pane can be docked;
otherwise, the operation is not allowed.

Hereisabrief description of what acceptDocking checks:

¢ |f the target container isthe same as the current paned container, acceptDocking
returns I1True.

& Thetarget container is asked whether docking is allowed for the pane with the member
function I1vbockableContainer: :acceptDocking. If the dockable container
returns I1ralse, docking isnot allowed and acceptDocking returns 11False. By
default, the member function acceptbocking returns the dockable state of the
container. You can change this state with the member function
IlvDockableContainer: :setDockable.

& Thedocking direction set is compared with the direction of the target container. If both
directions do not match, docking is not carried out and acceptbocking returns
I1False. You can set the docking direction using the member function
IlvDockable: : setDockingDirection. Thisfunctionisuseful if youwant toforcea
paneto always dock horizontally for example. By default, a pane can be docked both to a
vertical and a horizontal container.

Using Docking Bars
Most GUI applications include docking bars. Their behavior is slightly different from that of
standard docking panes.
This section introduces you to docking bars. It covers the following topics:
& Using the lIvAbstractBarPane Class
& Customizing Docking Bars

338 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Using Docking Bars

Using the llvAbstractBarPane Class

Theclass T1vabstractBarPane definesapane specifically designed for handling toolbars
and menu bars. This classis a subclass of the 11vGraphicPane classwhich encapsulates
an T1vabstractBar object. It is responsible for managing the bar orientation.

When adocking bar is docked, its direction must change according to its new location.

The following illustrations show the same toolbar oriented horizontally and vertically.

¥ ivstudio - testapp

File Edit Wiew Draw Tools Application Wwindow Help
ERO 6P+ BERS M AEHIE 1R TEER
RraFE A=A 18m

™= unnamed [E)E)®) B <Application=[= 2 (%]

[PRy v = N
Cox ¥ W h Right EBotkom MName Callback 15
I | I |0

| Gadgets | Selection

Figure 16.8 Horizontal Toolbar

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 339

ivstudio - testapp
File Edit Wiew Draw Tools Application Wwindow Help

EE e +Rres |k aapde dee¢ oa®s

[
n@u
T
&

W OB B B

=
[

unnamed

[F R v = N
® ¥ w h Right Eottom Mame Callback. 15
| I I | | | I I |0

| Gadgets | Selection

Figure16.9 Vertical Toolbar

Note: This class manages its own subclass of T11vbockable and, therefore, must not be
modified.

Customizing Docking Bars

The 11vabstractBarPane class hasvirtual member functions that you can redefine to

meet your specific needs:

& IlvAbstractBarPane::orientationChanged—Is called each time the orientation
of the toolbar encapsulated by the pane changes.

& TlvAbstractBarPane::geometryChanged—Iscalled each timethe geometry of the
toolbar encapsulated by the pane changes. See Notifying the Bar About Geometry
Changes on page 298.

340 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Building a Standard Application With Docking Panes

The following example shows a subclass of the T1vabstractBarPane classthat changes
the orientation of the labels according to the bar orientation:

class MyMainMenuBarPane
: public IlvAbstractBarPane
{
public:
MyMainMenuBarPane (const char* name, IlvAbstractBar* bar)
: IlvAbstractBarPane (name, bar) {}
virtual void setContainer (IlvPanedContainer* container)
{
IlvAbstractBarPane: :setContainer (container) ;
if (container)
checkLabelOrientation() ;
}
virtual void orientationChanged ()
{
checkLabelOrientation() ;
IlvAbstractBarPane: :orientationChanged() ;
}
void checkLabelOrientation()
{
IlvDockable* dockable = IlvDockable::GetDockable (this) ;
getBar () ->setLabelOrientation (dockable && dockable->isDocked ()
? getBar ()->getOrientation()
: IlvHorizontal,
IlFalse,
IlFalse);

}:

The checkLabelOrientation member function iscalled each time the bar orientation
changes. It sets the orientation of the bar labelsto the bar orientation if the paneis docked, or
to I1vHorizontal if the bar is undocked.

Building a Standard Application With Docking Panes

GUI applications with docking panes all have more or less the same look.
IBM® ILOG® Views Gadgets provides aclass that lets you build standard GUI applications
with docking panes very easily.

This section covers the following topics:
¢ Defining a Sandard Layout
4 Using the IlvDockableMainWindow Class

Defining a Standard Layout
Asagenerd rule, standard GUI applications have the following layout:

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 341

Menu Bar

Tool Bar 1

Tool Bar 2

Wain Work space

Tool Bar 3
A Docked Pane

A Docked Fane

Status Bar

You can see from theillustration that a standard layout is composed of a central area, called
the main workspace, which is surrounded by several panes on the left and right sides and
aso at the top and bottom.

Hereis an example of atypical GUI application with docking panes:

342 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Building a Standard Application With Docking Panes

'Y livstudio - testapp

. Fle Edit Yiew Draw Tools Application ‘Window Help

B ad s d @asdE A6e TEER

T View
Graphics

. M 1eons
ain workspace area ——

Rectangles

~
Meszagelabel =
[Mondy &

3 Joa 5o |

g

£

= w

7 oo

[FEEEEY o | = TR S

| Application | Selection

Figure16.10 Typical GUI Application with Docking Panes

Using the docking pane functionality, you can build a standard GUI application that has the

following pane structure:

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

343

Area available for docking panes

Thizis a
horizontal
dockable
container
that contains
the main
work space
area pane.

The main window
iz a vertical

dockable container. _| Main Work space

Area available for docking panes

Area available for docking panes

Area available for docking panes

With thislayout, it is possible to add panes anywhere around the main workspace area, as
shown on Figure 16.10 on page 343.

Using the llvDockableMainWindow Class

The I1vDockableMainwindow classimplements the layout described in Defining a
Sandard Layout on page 341. Using this class, you can specify where a pane should be
added relative to a specific pane in avery easy way and without knowing exactly how panes
are organized. Adding a new pane with the member function

I1lvDockableMainWindow: : addRelativeDockingPane iSassimpleas using the
following sentence to specify whereit should go: “1 want to put my menu bar on top of the
main workspace area.”

Building the whole application interface becomes very simple since what you have to
provide is the names of the panes instead of their indexes.

Below is an example of what you can obtain using the member function
IlvDockableMainWindow: :addRelativeDockingPane.

Creating an instance of the T1vDockableMainwindow produces the following pane layout:

344 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Building a Standard Application With Docking Panes

Dockable Sample |Z| |E| le

————&— Main Workspace

Feady

Then, amenu bar is added at the top of the main workspace area, as shown below:

Dockable Sample |Z| |E| le
File Edit “iew Tools ‘Windows Help —

Menu Bar

Feady

Then a docking pane is added to the left of the main workspace area, as shown below:

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 345

9((=1E

Dockable Sample

File Edit “iew Tools ‘Windows Help

Sub-Project 1
Sub-Project 2

Second Rook

Docking Pane

Feady

Then atoolbar is added underneath the menu bar, as shown below:

9((=1E

Dockable Sample

Taolbar

File Edit “iew Tools ‘Windows Help

Sub-Project 2
Second Rook

Feady

Finally a second docking pane is added above the first docking pane, as shown below:

346 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Building a Standard Application With Docking Panes

9((=1E

Dockable Sample
File Edit “iew Tools ‘Windows Help

¥ BR B

Docking Pane

Projeck

[=) Project Roaot
Sub-Project 1
Sub-Project 2

Second Rook

Feady

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 347

348 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

17

View Frames

The IBM® ILOG® Views Gadgets library supports view frames.

This chapter explains what view frames are and how to use them in your graphical
applications. It covers the following topics:

Introducing View Frames

Creating a Desktop with View Frames

Managing View Frames

Minimizing, Maximizing, and Restoring View Frames

Closing View Frames

® & 6 6 o o

Changing the Current View Frame

Introducing View Frames
A view frameisaspecial container with atitle bar that encapsulates aclient view. Itstitle bar

iscomposed of anicon, alabel, and several buttons. A view frame is displayed inside a
parent view, called a desktop view.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 349

View frames are instances of the class 11vviewFrame. A desktop view isaways linked to
an instance of the class 11vDesktopManager, which manages all the framesinside the
desktop view.

MDI Sample

File ‘Windows Help

ﬁ | g | | Simple buffering v

|l Frame O

Desktop View

iL Frame 1

e I I

Wign iz Frame 2 B £l Title Bar of a “iew
Frames Frame

Cliert “iesn of &
Wienw Frame

Ready

Figure17.1 Application Composed of Frames

Creating a Desktop with View Frames
This section explains how to create a desktop containing view frames. It covers the
following sections:
¢ Creating a Desktop
& Creating View Frames

Creating a Desktop
Thefirst step consists of creating the desktop view and the desktop manager:

IlvView* desktopView = new IlvView(...);
IlvDesktopManager* desktop = new IlvDesktopManager (desktopView) ;

350 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Managing View Frames

l Note: The desktop view can be an instance of any subclass of 11vview.

You can retrieve the 11vbesktopManager instance that is linked to a view using the static
method IlvDesktopManager: :Get!:

IlvDesktopManager* desktop = IlvDesktopManager:Get (view) ;

To know the desktop view associated with a desktop manager, use the method
IlvDesktopManager: :getView:

Ilvview* view = desktop->getView() ;

Note that when the desktop view is deleted, the desktop manager is notified, but is not
del eted.

Creating View Frames

Once the desktop manager is created, you can build the view frames as child windows of the
desktop view:
IlvViewFrame* vframe = new IlvViewFrame (desktopView,

"Frame 0",
IlvRect (0, 0, 100, 100));

The new view frame is automatically managed by the instance of 11vDesktopManager
that islinked to its parent view (that is, the desktop view). Note that if no desktop manager
has been attached to the parent view of aview frame, a default desktop manager is created
using the parent view of the view frame as desktop view. This default desktop manager is
internally managed, so you will not have to delete it.

To know the desktop manager of aview frame, use:

IlvDesktopManager* desktop = vframe->getDesktopManager () ;

You can also retrieve the list of frames managed by a desktop manager using:

IlvUInt count;
IlvViewFrame* const* frames = desktop->getFrames (count);

Managing View Frames

This section covers the following topics:
& Creating a Client View
& Changing the Title Bar

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 351

& Changing the View Frame Menu

Creating a Client View

When created, aview frame has no client view. To add a client view to aview frame, you
must create a child window inside it:

IlvGadgetContainer* clientView =
new IlvGadgetContainer (vframe, IlvRect(0, 0, 200, 200));

The view frameisresized to fit the client view geometry.

l Note: The client view can be any instance of any subclass of T11vview.

To know the client view associated with aview frame, use:

IlvView* clientView = vframe->getClient();

I Note: A view frame should only handle one client view.

Changing the Title Bar

Thetitle bar consists of an icon, atitle, and three buttons.

Icon iiE- Frame 0 Cloze button
Title Minimize Button Maximize Button

Figure17.2 TheTitle Bar of a View Frame
To change the icon of the title bar, use the method T11vviewFrame: : setIcon:

IlvBitmap* bitmap = ...
virame->setIcon (bitmap) ;

To changeitstitle, usethe method T1vviewFrame: :setTitle:

virame->setTitle ("Frame Title");

The three buttons to the right of the title bar are used to switch to one of the three states that
aframe can have. These are detailed below.

Changing the View Frame Menu

Each view frame has a pop-up menu that is displayed when you click theicon located on the
left end of thetitle bar.

352 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Minimizing, Maximizing, and Restoring View Frames

Frame 0

Minirnize
b aximize

Cloze Ctil+F4

Figure17.3 The Pop-up Menu of a View Frame

By default, the pop-up menu of aview frame contains the following choices: Restore,
Minimize, Maximize, and Close. You can however add new itemsto it.

To access this menu, use:

IlvPopupMenu* popup = virame->getMenu() ;

Minimizing, Maximizing, and Restoring View Frames

A view frame can bein one of the following states: Normal, Minimized, Maximized.

To retrieve the state of aframe, use the method r11vviewFrame: : getCurrentState. The
possible returned values are: NormalState, MinimizedState, and MaximizedState.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 353

MDI Sample

File ‘Windows Help

?ﬁ | 4 | | Simple buffering

|l Frame 1

== Fi 2
iz Framen [FO)) Iy Frame

Ready

EFEE

Figure17.4 Normal and Minimized View Frames

Normal View Frames

By default, aview frameis displayed with its normal size. To restore aframe to this state
after it has been maximized or minimized, usethe I1vviewFrame: : restoreFrame
method:

virame->restoreFrame() ;
This method does nothing if the frame is already in the normal state.

You can also revert aview frameto itsinitial state by clicking the Restore button in itstitle
bar.

Minimized View Frames

When aview frameis minimized, only itstitle bar isvisible, and its position is managed by
the desktop manager. To minimize aframe, usethe T1vviewFrame: :minimizeFrame
method:

virame->minimizeFrame () ;

A list of minimized view frames is managed by the desktop manager, and can be accessed
using the T1vbesktopManager: : getMinimizedFrames method.

354 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Closing View Frames

You can aso minimize aview frame by clicking the Minimize button in itstitle bar.

Maximized View Frames
When aview frame is maximized, its client view occupies all the desktop view.

To maximize aview frame, use the method 11vviewFrame: :maximizeFrame:

virame->maximizeFrame () ;

You can aso maximize aview frame by clicking the Maximize button in itstitle bar.

When aview frame is maximized, itstitle bar and hence the buttonsit contains are no longer
visible. In this case, however, the desktop manager can display these buttons in another
place.

The following lines tell the desktop manager to display the buttons of thetitle bar in
container when aframeis maximized.

IlvContainer* container =
desktop->makeMaximizedStateButtons (container->getHolder()) ;

The following lines tell the desktop manager to display the buttons of the title bar in

toolbar:

IlvToolBar* toolbar = ...
desktop->makeMaximizedStateButtons (toolbar) ;

Closing View Frames

When you try to close aview frame (using the Close button for example), the
I1lvViewFrame: : closeFrame mMethod is called. By default, this method invokes the
destroy callbacks set for the view frame, which meansthat if you want to control how aview
frame is destroyed, you have to set a destroy callback.

For example:

vframe->setDestroyCallback (DestroyFrame) ;

with the following callback:

static void DestroyFrame (IlvView* view, IlvAny)
{
IlvIQuestionDialog dlg(view->getDisplay (), "Are you sure ?");
dlg.moveToMouse () ;
if (dlg.get())
delete view;

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 355

displays adialog box asking confirmation to the user before deleting the frame.

l Note: If no destroy callback has been set, attempting to close the view frame has no effect.

Changing the Current View Frame

356

IBM

The current view frame of a desktop manager is the view frame that has the keyboard focus.
You can change the current view frame by clicking another view frame, which will become
the new current view frame.

You can aso change the current view frame by coding:

desktop->setCurrentFrame (vframe) ;

When the current view frame changes, the virtual method

IlvDesktopManager: : frameSelectionChanged iscaled. You can overridethis
method in your own subclass of T1vbesktopManager to execute a specific action when the
current view frame changes.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

18

Customizing the Look and Feel

This chapter introduces the classes used by the look-and-feel mechanism. It coversthe
following topics:

& Understanding the Architecture

& Making a User-Defined Component Look-and-Feel Dependant
& Changing the Look and Feel of an Existing Component

& Creating a New Look-and-Feel Handler

Understanding the Architecture

The purpose of this section is to explain how gadgets can adapt themselves to their look and
feel. You can find information on the following topics:

¢ llvLookFeelHandler

¢ |lvObjectLFHandler

¢ ClassDiagram

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 357

llvLookFeelHandler

The I1vLookFeelHandler classisthe base classfor all the look-and-feel handlers. It acts
as acollection of object look-and-feel handlers and gathers properties common to a specific
look. Each component that needs to be look-and-feel dependant must have an accessto an
instance of the T1vL.ookFeelHandler class. During the drawing process, the component
will use this handler to draw itself. Similarly, when the component receives an event, it will
use this handler to handle the event the way it is defined by the handler.

Note: Look-and-feel handlers are shared objects. You should not create them using the
standard operator new, and you should not delete them.

Getting a Pointer to an IllvLookFeelHandler Object

There are three ways for a gadget to get a pointer to an T1vLookFeelHandler subclass
instance:

& Object level

The method T1vGraphic: :getLookFeelHandler() iSused to query an object about
its look-and-feel handler. The default implementation is to use the look-and-feel handler
defined by the object holder.

& Holder level

The method T1vGraphicHolder: : getLookFeelHandler() iSused to query aholder
about its look-and-feel handler. The default implementation is to use the look-and-feel
handler defined by the holder display instance.

¢ Display level

The method T1vDisplay: :getLookFeelHandler() isused to query adisplay
instance about its look-and-feel handler. The default value is defined by the platform on
which the application has been built. See the section Using the Default Look and Feel on
page 217 for details.

IlvObjectLFHandler

Once agadget has retrieved its look-and-feel handler, it must ask its specific object look-
and-feel handler. This object look-and-feel handler isimplemented by means of the
IlvObjectLFHandler class. Each component that needs to be look-and-feel dependant
must create a subclass of the 11vobjectLFHandler class.

Getting a Pointer to an llvObjectLFHandler Object

The 11vLookFeelHandler class handles a hash table of 11vobjectLFHandler. Each
instance of the T1vobjectLFHandler class can be retrieved using its class information.

358 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Understanding the Architecture

For example, the following code retrieves the object look-and-feel handler of the
IlvButton class:

IlvLookFeelHandler 1fh = display->getLookFeelHandler () ;
IlvButtonLFHandler* buttonLF = (IlvButtonLFHandler*)
1fh->getObjectLFHandler (I1lvButton: :ClassInfo()) ;

Note: The value returned by getObjectLFHandler iScast into an
IlvButtonLFHandler pointer, which isthe base classfor button object look-and-feel
handlers.

After retrieving a pointer to its specific object look-and-feel handler, the button can draw
itself using the following code:

void

IlvButton: :draw(IlvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const

IlvButtonLFHandler* lfhandler = (IlvButtonLFHandler*)
getObjectLFHandler (I1lvButton: :ClassInfo()) ;
lfhandler->draw(this, dst, t, clip);

Class Diagram

The following diagram shows the relations between the three actors of the look-and-feel
process. the objects, the look-and-feel handler, and the object |ook-and-feel handlers.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 359

[IvE uthan >

|IvButhonLFH andler
. 1
|1+Toggle » |1+T ogglel FH andler
« 1
1T extField » Il extFieldLFHandler
1 1
» IlvLookFeelH andler <+
1
llvtenub ar > llvMeruBarl FHandler
1
IIvToolBar > 11T oolB arLFH andler
1

Figure18.1 Relations between some classes involved in the look-and-feel process

The following diagram is a trace of events during the drawing of an T1vButton, in Motif

look:

IlyButton IlvDisplay IlvMotifLFHander IlvButtonMLFHandler

draw
_
getLookFeeHandler

getObjectLFHandler

L

draw

Figure18.2 Event Trace: Drawing a button

Making a User-Defined Component Look-and-Feel Dependant

This section describes how to create a new component that will be look-and-feel dependant.

You will find information on the following topics:

360 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Making a User-Defined Component Look-and-Feel Dependant

Creating a New Component
Defining the Object Look-and-Feel Handler API
Subclassing the Object Look-and-Feel Handler

L 2
L 2
L 2
¢ Installing the Object Look-and-Feel Handlers

Creating a New Component

You can find detailed information on how to create properly a new component in the
Foundation User’s Manual, IIvGraphic: The graphic object class, Creating a New Graphic
Object Class.

The key isto register properly the class information, which is mandatory to make the
component |ook-and-feel dependant.

Let's assume that the new created component iS MyComponent, asubclass of T1vGadget.

Defining the Object Look-and-Feel Handler API

The object look-and-feel handler API depends on the component you are designing. Asa
general rule, you should provide away to customize itslook and its behavior. This can be
done by adding the following methods to your object class:

class MyComponent : public IlvGadget
{

virtual void draw(IlvPort* dst,

const IlvTransformer* t,

const IlvRegion* clip) const;
virtual IlBoolean handleEvent (I1lvEvent& event) const;

}i

You must also add these methods to the object |ook-and-feel handler class:

class MyComponentLFHandler : public IlvObjectLFHandler
{
MyComponentLFHandler (I1lvLookFeelHandler* 1fh)
IlvObjectLFHandler (MyComponent: :ClassInfo(), 1fh) {}

virtual void draw(const MyComponent* object,
IlvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const = 0;
virtual IlBoolean handleEvent (MyComponent* object,
IlvEvent& event) const = 0;

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 361

Notes:

1. Since object look-and-feel handlers are shared objects, you need to give accessto
MyComponent instance in each method of the object look-and-feel handler class. You
can do this by using thefirst parameter of the methods.

2. The constructor of MyComponentLFHandler usesthe MyComponent: :ClassInfo
method to link this object handler with MyComponent class. Thus, each subclass of
MyComponentLFHandler Will be dedicated to MyComponent component.

The implementation of the MyComponent methods should be as follow:

void

MyComponent: :draw (I1lvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const

MyComponent* lfhandler = (MyComponentLFHandler*)
getObjectLFHandler (MyComponent: :ClassInfo()) ;
lfhandler->draw(this, dst, t, clip);
}

and for the handleEvent method:

I1Boolean
MyComponent : :handleEvent (I1vEvent& event)
{
MyComponentLFHandler* lfhandler = (MyComponentLFHandler*)
getObjectLFHandler (ClassInfo());
return lfhandler->handleEvent (this, event) ;

}

Of course, you can add other functionalities to your component, and make them look-and-
feel dependant using the same scheme.

Subclassing the Object Look-and-Feel Handler

Oncethe API of the object look-and-feel handler has been defined, you can implement
various subclasses corresponding to different look-and-feel styles. For example, here we

362 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Changing the Look and Feel of an Existing Component

create the subclass of MyComponentLFHandler dedicated to the Motif ook, the
MyComponentMLFHandler class:

class MyComponentMLFHandler : public MyComponentLFHandler
{
MyComponentMLFHandler (I1vLookFeelHandler* 1fh)
MyComponentLFHandler (1fh) {1}

virtual void draw(const MyComponent* object,
IlvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const;
virtual IlBoolean handleEvent (MyComponent* object,
IlvEvent& event) const;

Y

You need now to install your object look-and-feel handlers so that they will be used when
the corresponding look and feel is set.

Installing the Object Look-and-Feel Handlers

Toinstall your object look-and-feel handlers on their corresponding look-and-feel handler,
use the macro I1vRegisterObjectLFHandler:
IlvRegisterObjectLFHandler (I1lvMotifLFHandler,

MyComponent,
MyComponentMLFHandler) ;

The previous code registers the MyComponentMLFHand1er classasthe object |ook-and-feel
handler for the MmyComponent class displayed using the Motif [ook.

You do not have to create or delete instances of object |ook-and-feel handlers, it will be done
automatically.

Changing the Look and Feel of an Existing Component
This section describes how to modify the look and feel of a specific component. You can
find information on the following topics:
& Subclassing the Component Object Look-and-Feel Handler
¢ Replacing an Object Look-and-Feel Handler

Subclassing the Component Object Look-and-Feel Handler

To change the look and feel of a component, you must first identify its object look-and-feel
handler base class. Usualy, the component class and its object look-and-feel handler are
declared in the same header file, and the name of the object look-and-feel handler classisthe

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 363

364

concatenation of the component class name with the string “ LFHand1ler”. For example,
both the T1vButton and I1vButtonLFHandler classes arelocated inthe <ilviews/
gadgets/button.h> header file.

Once you have found the object look-and-feel handler base class, you must look closely at
its API to find which of the virtual member functions need to be overridden.

The following example is a subclass of the T1vButtonLFHandler Where the
drawBackground member function has been redefined:

class MyButtonLFHandler : public IlvButtonLFHandler
{

virtual void drawBackground(const IlvButton* button,
IlvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const;

Replacing an Object Look-and-Feel Handler

Once you have defined the new object look-and-feel handler, you need to install it on an
I1lvLookFeelHandler instance.

The simplest way to install an object look-and-feel handler isto cal the
IlvLookFeelHandler: :addObjectLFHandler method on the look-and-feel handler of
the component:

IlvButton* button =

IlvLookFeelHandler* 1fh = button->getLookFeelHandler () ;
MyButtonLFHandler* mylfh = new MyButtonLFHandler (1fh);
1fh->addObjectLFHandler (mylfh) ;

By modifying the look-and-feel handler this way will affect other buttons referencing the
same look-and-feel handler. Indeed, by default, thereis only one look-and-feel handler,
owned by the T1vDisplay class. If you do not want to modify the default |ook-and-feel
handler because you want to modify only the look and feel of specific components, you must
do the following:

& Create anew look-and-feel handler instance using the
IlvLookFeelHandler: :Create method.

¢ |nstall your object look-and-feel handler using the
IlvLookFeelHandler: :addObjectLFHandler method.

¢ |nstall the new look-and-feel handler instance on your component using the
IlvGadget: : setLookFeelHandler method.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Creating a New Look-and-Feel Handler

The following code creates a new look-and-feel handler for the Motif ook, and installs on it
the object look-and-feel handler. Finally, the new look-and-feel handler isinstalled on the
component:

IlvLookFeelHandler* 1fh = IlvLookFeelHandler::Create(“motif”);
MyButtonLFHandler* mylfh = new MyButtonLFHandler (1fh);
1fh->addObjectLFHandler (mylfh) ;

IlvButton* button =

button->setLookFeelHandler (1fh) ;

Note: The first two steps can be executed through a single action by creating a subclass of
the T1vLookFeelHandler. You can find more information in the section Creating a New
Look-and-Feel Handler on page 365.

Creating a New Look-and-Feel Handler

To create a new look-and-feel handler, you can either:
& subclassdirectly the I1vLookFeelHandler classor

& subclass one of the existing predefined look-and-feel handler classes
(I lvMotifLFHandler, IlviWindowsLFHandler, I1viWindows95LFHandler,
IlviWiindowsXPLFHandler).

The second optionis easier, since you do not have to provide an object look-and-feel handler
for all the registered gadgets. You just have to provide the object |ook-and-feel handlers for
the objects you want the look and feel to be changed.

The sample 1ookfeel located in the directory ILVHOME/samples/gadgets/lookfeel
shows how to create a new look-and-feel handler.

Registering a New Look-and-Feel Handler

To be able to dynamically create alook-and-feel handler, you need to properly register it. To
do this, you need to add the following macro inside the class declaration:

DeclareLookFeelTypeInfo () ;

Then, in the definition file, use the following macros:

IlvPredefinedLookFeelMembers (MyLookFeelHandler, "MyLook");
IlvRegisterLookFeelClass (MyLookFeelHandler, BaseClass) ;

where BaseClass isthe base class of the new look-and-feel handler.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 365

366

The classis now properly registered, that is, you can create for example an instance of it
using the following code:

IlvLookFeelHandler* 1fh = IlvLookFeelHandler: :Create(IlGetSymbol ("MyLook")) ;

Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler
To register object look-and-feel handlersinto a new look-and-feel handler, you can either:
& overidethe I1vLookFeelHandler: : createObjectLFHandler method or

& usetheIlvRegisterObjectLFHandler mMacro.

For example, by using the T1vRegisterObjectLFHandler macro, you can codein the
definition file:

IlvRegisterObjectLFHandler (MyLookFeelHandler, IlvButton, MyButtonLFHandler) ;

Thiswill register the object look-and-feel handler class MyButtonLFHandler into thelook-
and-fedl handler MyLookFeelHandler for the I1vButton class. This means that when an
I1vButton object that has the look-and-feel MyL.ookFeelHandler triesto retrieve its
object look-and-feel handler, it will get a pointer on aMyButtonLFHandler instance.

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing States

States | et you predefine different contexts, or states, for your application. In a particular
context, your application may open or close panels, hide or show graphic objects, change
their sensitivity, colors or any other properties. All these settings are called state
requirements. A stateisjust a set of state requirements. Asagenera rule, it is not
recommended to modify these settings through programming when they belong to contexts
that are handled by the state mechanism.

IBM® ILOG® Views Studio lets you interactively define states and their requirements for
your application.

This appendix provides an example of how to use the state mechanism of IBM ILOG Views
Studio. It is divided into two sections:

& Creating a Smple Application
& Editing the Show State

Creating a Simple Application
In the following example, you will create a simple application with two panels. Only one of

the panelsisvisible when the application is started. The objectiveisto open the second panel
by clicking a button on the first panel.

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 367

A. Editing States

368

IBM

If you are aready working in IBM® ILOG® Views Studio, start by choosing Close All from
the Window menu to close al open buffers. Then, open a new application buffer window by
choosing New from the File menu and Application in the submenu that appears.

Creating the First Panel

To create the first panel, do the following:

1.

S L

©

Choose New from the File menu and then choose Gadgets in the submenu to open anew
Gadgets window buffer.

Click Gadgetsin the tree in the upper pane of the Pal ettes panel.

Drag two buttons to the Gadgets buffer window from the lower pane of the Palettes
panel.

Double-click the buttons to open the associated inspector panel.

In the Name field of the General page, type ShowButton and HideButton.
Inthe Label field of the Specific page, type show and Hide.

Resize the panel so it has a suitable size.

Save the Gadgets buffer window aspanell.ilv inadirectory of your choice.

The Panel1 should have the following appearance:

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Creating a Simple Application

¥ iystudio - testapp |._||E”Z|
File Edit Wiew Draw Tools Application Window Help

& B G|t BERS | AERIE A E TEER
[k O PE BE TEE

Palettes

£

Gadgets - E:..."\data'sd,

jtests'\PanelL.ily

“H Menus
= Matrix o
[H Miscellaneous D ol
I} view Rectangles RS s Ll S

=49 Graphics
Q Icons

K Gauges

’ More

Meszagel abel

[Tesse

| Text Fisld |

| SCCombo - |

|

[Fal|

H EHE (o V&€ v~
x y w h Right Battom Mame Callback 15

(NN |) N | | I !

Gadgets | Selection

9. Click the Panel Class Palette icon in the Main window toolbar to open the Panel Class
palette.

10. Click the New Panel Classicon in the Panel Class palette to create the Panel1 panel class.
To do so, make sure that the panel1 . i1v Gadgets buffer window is activated.

11. Click the Application buffer window to bring it to the foreground.
You can also choose <Application> from the Window menu.

12. Drag the Panel 1 icon from the Panel Class palette and drop it in the Application window
buffer.

Creating the Second Panel
You are now going to create a second panel.

1. Choose New from the File menu and then Gadgets in the submenu to open a new
Gadgets buffer window.

2. If necessary, click Gadgetsin the tree in the upper pane of the Palettes panel.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 369

A. Editing States

Drag amultiline text gadget (11vText) to the current buffer window.

Double-click the text gadget to open its inspector panel.

3
4
5. Inthe Namefield of the General page, type Text.
6. Drag two buttons below that text.

7

Double-click the buttons to open the associated inspector panel.

©

In the Name field of the General page, type EditButton and CloseButton.

©

Inthe Label field of the Specific page, type Edit and Close.
10. Save the buffer aspanel2.i1v in the same directory.

Panel 2 should have the following appearance:

v

-~ ivstudio - testapp

File Edit Wiew Draw Tools Application Window Help
liﬂ[@”ﬁ Al4EERS K EEOLATE 16 ETEAER
R +OF @ =@ 1@

Panel Class Palette] '_FE Gadgets - E:...\dal JPanelz.ily
Bl) SEEE
testapp - Do Test
E o oo [l fines
Palettes

Meszagel abel

) ose

| Text Fisld |

| SCCombo v|

sl Tl | NIET J==[wN€)~

x y w h Right Battom Mame Callback 15

N | N | A | | I I |0
Save the document | Gadgets | Selection

370 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Creating a Simple Application

11. Click the New Panel Classicon in the Panel Class palette to create the Panel 2 panel class.
To do so, make sure that the panel2 . i 1v Gadgets buffer window is activated.

12. Click the Application buffer window to bring it to the foreground.
You can aso choose <Application> from the Window menu.

13. Drag the Panel 2 icon from the Panel Class palette and drop it in the Application window
buffer.

14. Double-click thetitle bar of Panel2 to open its inspector.
15. Turn off the Visible toggle button in the General page of the Panel Instance inspector.
16. Click the Test button in the Main window toolbar.

You can see that Panel2 is not visible at application start-up.

Click the Test button again to close the test panel.

17. Save the application asmyapp . iva in the same directory.

States Panels
IBM® ILOG® Views Studio provides you with two separate panels to edit states:
& The State Tree panel for managing the whole state hierarchy of the application.

SLEEY

= Root
= B2 Subset
Shate

Figure A1l The Sate Tree Panel

& The State inspector panel for inspecting the properties of the state selected in the State
Tree.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 371

A. Editing States

1V State: State

Panel |Object |Attribute |va|ue |

FigureA.2 The Sate Inspector Panel

To open these panel s, you can use the Commands panel of IBM ILOG Views Studio. Click
the Commands icon in the Main window toolbar. Then select EditStates from the list of
commands in the Commands panel.

If your application has no defined state, the Edit State command creates aroot state, a
subset, and a state. The state subsets will be discussed later in this chapter.

Editing the Show State

372

IBM

You need two states for the application. Thefirst oneistheinitia root state where only the
first panel isvisible. The second is a state where Panel2 is visible.

To name this second state Show:
1. Select Statein the State Tree panel.

2. Click Rename in the State Tree toolbar.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing the Show State

Y. stateTree E][E|E|
W Y
= Roat

= Subset F—
.[: ate

Rename ican

A dialog box opens allowing you to enter a new name for the selected state.

Mew Mame

3. Type show and click Apply.

The application now has two states: Root and Show. Using the State inspector, you can
define the requirements for each state. You want Panel 2 to be visible when the application is
in the Show state.

To do this, you are going to set the visible attribute for Panel2 to true:
1. If necessary, activate the Application buffer window.
2. Make sure the Show state is selected in the State Tree panel.
3. Inthe State inspector, click in the first row of the Panel column.
A combo box appears with alist of the panel instances from the application.
4. Select Panel2 from the list.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 373

A. Editing States

1Y State: Show
AR
[Initial

Panel |Object |Attribute |va|ue |

o] | | |

Panell

5. Click in the Attribute column.

A list of state requirements related to the panel is displayed.
6. Choosevisible fromthelist.
7. Click in the Value column.

A list of valuesrelated to visible isdisplayed.

8. Choose true from thelist.

1V state: Show

AR

[Initial

Panel |Object |Attribute |va|ue |
Panelz | |visib|e " true v "

Thetarget of this state requirement isapanel. It isidentified by the panel name. Sincethe
target of the state requirement is not an object, the Object column remains blank.

Chaining States

When the application islaunched, the Root state is automatically selected. You want to be
able to go to the Show state by clicking the Show button.

374 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Editing the Show State

To attach the Show state to the Show button, follow these steps:
1. If necessary, activate the Application buffer window.
2. Select the Root state in the State Tree panel.
3. Inthe State inspector, click in the first row of the Panel column.
A combo box appears with alist of the panel instances from the application.
4. Select Panell from thelist.

1Y State: Root
[
[Initial

Panel |Object |Attribute |va|ue |

anell v | | | |

Panelz

5. Inthe Object column, select ShowButton from the list of objectsin the combo box.
6. Click the Attribute column.
A list of state requirements related to T1vBut ton objectsis displayed.
7. Choose callback fromthelist.
8. Click the Value column of the sheet.
A list of related callbacks is displayed.

9. Choose setState (Show) .

IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL 375

A. Editing States

1V state: Root

BB

[Initial

Panel |Object Attribute value

Panell ShowButton callback. setState(Show) w

When you test your application, only Panel1 isvisible. But now, when you click the
Show button, Panel2 is displayed and you are in the Show state.

Changing the Label and the Callback of the Show Button

The states mechanism provides you with predefined callbacks that let you set or leave a
state. A callback is a state requirement attached to an object in a particular state. It can be
overridden in different states.

In the next exercise, you want the Show button to bring the application from the Show state
back to the Root state. You also want to change the button label so it displays Root when the
Show state is selected.

1.
2.

376 IBM

Select the Show state in the State Tree panel.

If necessary, click the New requirementsicon at the top-left of the State inspector to add
anew row.

In the State inspector, click in the empty row of the Panel column.

A combo box appears with alist of the panel instances from the application.

Select Panell from the list.

In the Object column, select ShowButton from the list of objectsin the combo box.
Click in the Attribute column and choose 1abel from the list.

Scroll down the list to make 1abel appear.

Type Root inthe Value field and press Enter.

A new row is automatically added when you reach the last column and press Enter.

Click in the Attribute column of the new empty row.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing the Show State

The panel and object names are automatically copied from the previous line and the
related state requirement names are displayed.

9. Choose callback.

10. Click in the Value column and choose 1eaveState (Show) .

When you test your application and go into the Show state (by clicking the Show button), the
label of the Show button changes to Root. When you click it once again, you are back to the
initial Root state. The label and callback of the Show button are restored and Panel2 is
hidden. In short, when you |leave a state, the properties modified by the state requirements
arerestored.

Creating a Substate: the Edit State

You do not want the text field in Panel 2 to be editable when this panel isin the Show state.
You do, however, want to be able to edit the text in the Edit state.

To make the text field in Panel2 noneditable when the Show state is active, do the following:
1. Select the Show state in the State Tree panel.
2. If required, click the New requirement icon in the State Inspector to create a new row.

3. Inthe Panel column of the new row, select Panel2 from the list of panels in the combo
box.

4. Inthe Object column, select Text from the list of objectsin the combo box.
5. Click in the Attribute column and choose editable fromthelist.

You will notice that the list of related requirements is not the same as the one you chose
for abutton, as the requirements depend on the object type.

6. Click in the Value column and choose false.

7. Test the application and verify that the Text field is not editable in the Show state.

You are now going to define a substate of Show that will inherit from itsvisibility
requirement: the Edit substate. To do so:

1. Select the Show state in the State Tree panel.
2. Click the New Subset icon in the State Tree toolbar.

A new treeitemis created and selected. Notice that the toolbar has slightly changed—the
New Subset icon is now replaced with the New State icon.

3. Click the New State icon in the toolbar.

A new state item is created in the tree.

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 377

A. Editing States

378 IBM

1Y StateTree [ZI[EW__Q
D

=] Rook
(= B2 Subset
= Show
(= B2 Subset

State

4. Click Rename to rename the state to Edit.

¥ StateTree EI[E'E'
R E Y
=] Rook
(= B2 Subset
= Show
(= B2 Subset

B BB

Leave the Edit state selected in the State Tree or select it if needed.

If required, click the New regquirement icon in the State | nspector to create a new row.
7. Inthe Panel column of the empty row, choose Panel2 from the combo box.

8. Inthe Object column, choose Text from the list of objects.

9. Choose editable in the Attribute column.

10. Choose true in the Value column.

11. Click New Requirement in the State Inspector toolbar to create a new row in the State
Inspector panel.

12. Choose Panel2 in the Panel column and EditButton from the Object column.

13. Choose 1abel in the Attribute column.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

Editing the Show State

14. Type apply in the Value column and press Enter (or click New Requirement in the

toolbar).

15. In the empty row just below, click in the Attribute column and select callback.

16. Choose leavesState (Edit) inthe Vaue column.

17. Create another state requirement for this button and choose foreground asits attribute.

18. Click the Value item and select a color from the color selector (for example, red).

IV State: Edit
3
BB
[Initial
Panel |Object Attribute value
Panelz Text editable true
Panelz EditButton label Apply
Panelz EditButton callback leaveStatelEdit)
Panelz EditButton Foreground red ==

Notice that when you click the Value column in the State | nspector panel, the behavior of
the inspector depends on the chosen attribute. It may activate a string list of predefined
values or a specialized selector.

Now, go back to the Show state to attach the Edit state to the Edit button in Panel2:

1
2.
3.

IBM

Select the Show state in the State Tree panel.
In the State inspector, create an empty row.

Choose Panel 2 from the combo box of the Panel column and EditButton from the combo
box of the Object column.

Choose callback in the Attribute column.

Choose setstate (Edit) inthe Vaue column.

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 379

A. Editing States

380

IBM

1V state: Show

AR

[Initial

Panel |Object Attribute value

Panelz visible true

Panell ShowButkon label Root

Panell ShowButton callback leaveStateiRook)
Panelz Text editable False

Panelz EditButton callback setState(Edit) W

6. Now, test the application. Once you are in the Show state, go to the Edit state by clicking

the Edit button in Panel2.

You can also enhance your application states by modifying and adding the state

requirements so they look like this:

1V state: Root

AR

[Initial

Panel |Object Attribute |va|ue |
Panell ShowBUtEon callback sebStateShow)
Panell HideEutkon sensitive | false v |

Figure A.3 The Root Sheet of the Sate Ingpector

ILOG VIEwWS GADGETS V5.3 —

USER'S MANUAL

1Y State: Show

AR

[Initial

Panel |Object Attribute value

Panelz visible true

Panell ShowButton label Root

Panell ShowBUtEon callback leaveStateiRook)
Panelz Text editable False

Panelz EditButton callback setStatelEdit)
Panelz (CloseButton callback setState(Root)
Panell HideEutkon sensitive true

Panell HideButton callback setState(Root) W

Figure A4 The Show Sheet of the Sate I nspector

1Y State: Edit

AR

[Initial

Panel |Object Attribute value

Panelz Text editable true

Panelz EditButton label Apply

Panelz EditButton callback leaveStatelEdit)
Panelz EditButton Foreground red

Panell ShowButkon sensitive false v

Figure A5 The Edit Sheet of the Sate Inspector

Editing the Show State

The State File

When you save an application that has defined states, the state definitions are saved in a

. ivs file, with the same name and directory as the application file. Thisfileis automatically
loaded when you load the corresponding application file. In the generated C++ code, the
state fileis loaded if there are defined state requirements. The state file must be found in a
directory specified by the tLvPATH environment variable (or the equivalent resource).

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 381

A. Editing States

382 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

Numerics

2D Graphics buffer window
description of 26

A

accessors
building mode 169
combined 171
dependent 170, 171
panels 126
preconditions 178
properties 168
tree 174
update mode 169
validators 179
activate member function
IlvButton class233
ActivateCallbackType member function
IlvTreeGadget class275
activateMatrixItem member function
IlvMatrix class313
activating objects 58
Active editing mode 58
Active mode 31
addChangeLookCallback member function
IlvDisplay class221
addField member function
I1lvSpinbox class 255

Index

addGuide member function
IlvGraphicHolder class 206
addItem member function
IlvTreeGadget class271, 272
addLabel member function
I1lvSpinbox class 256
addLine member function
IlvText class262
addObject member function
I1vSpinBox class 256
addpage member function
IlvNotebook class 243
addPane member function
IlvPanedContainer class 324
AddPanel command 39
addRelativeDockingPane member function
IlvDockableMainWindow class 344
adjustLast member function
IlvMatrix class 306
alignmentBaseClass option 135
allowEdit member function
IlvMatrix class312
Application buffer window 83, 94
default 27
description of 27
editing 27
opening 87
saving 87
application files
inserting code 131

IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL 383

Application inspector

description of 48

Genera page 89

Options page 90
applicationBufferBackground option 136
applicationFileExtension option 136
applicationHeaderFile option 136
applications

building an example 111

C++ code generation 120

default 83

derived classes 128

description files 87

editing 83, 94

general properties 89

generating code 91

header files 92

inspecting 88

setting options 90

source files 92, 126

testing 110, 128

viewing properties 88
applyResources member function

IlvGraphic class215
areLabelsVertical member function

IlvNotebook class 242
arrow buttons 232

setting the arrow direction 232
attach member function

IlvGraphicHolder class 206
attaching objects 60, 62

setting guides 61

testing 65
Attachment editing mode 60
Attachmentsicon 60
Attachments inspector panel 62
Attachments mode 32
autoFitToSize member function

IlvMatrix class306
autoLabelAlignment member function

IlvStringList class 259

B
bitmaps

insensitive 233
sensitive 233
toggle buttons 268
BitmapSymbol member function
IlvGadgetItemclass280
buffers
initializing 148
buttons 232
callbacks 233
displaying bitmaps 233
displaying the frame 233
handling events 233
mnemonics 233

C

C++
prerequisites 17
C++ code
generating 120
callback method
generating 123
callback types
gadgets 209
callbacks 122, 123
buttons 233
defining 132
in panel classes 99
string lists 260
cellBBox member function
IlvAbstractMatrix class304
cellInfo member function
IlvAbstractMatrix class 303
changeSelection member function
IlvNotebook class 246
check member function
IlvText class 262
IlvTextField class 265
checkLabelOrientation member function
IlvAbstractBarPane class341
client views 349
columnBBox member function
IlvAbstractMatrix class304
columns member function
IlvAbstractMatrix class 302

384 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

columnSameWidth member function
IlvAbstractMatrix class302
combo boxes 234
callbacks 235
editable 234
localizing 235
setting the selected text 235
command classes
predefined 142
command description, initializing 148
commands
adding 142
errors 142
compareltems member function
IlvGadgetListItemHolder class288
configuration options 135
alignmentBaseClass 135
applicationBufferBackground 136
applicationFileExtension 136
applicationHeaderFile 136
defaultApplicationName 136
defaultCallbackLanguage 136
defaultHeaderDir 136
defaultHeaderFileScope 136
defaultObjDir 136
defaultSrcDhir 137
defaultSystemName 137
headerFileExtension 137
JvScriptApplication 137
makeFileExtension 137
noPanelContents 138
panelBaseClass 138
sourceFileExtension 138
system 138
toolBarItem 139
userSubClassPrefix 139
userSubClassSuffix 139
createItem member function
IlvGadgetItemHolder class284
createSliderPane member function
IlvPanedContainer class 327
creating
gadgets 54
menu bars 65
objects 54

panel classinstances 101

panel classes 96

panels 54

pop-up menus 68
creating objects 54

D

datafiles 87, 88
date fields 236

formats 247

setting a date value 237

setting the format 236
dates

fields 236

formats 236
DecrementCallbackType member function

IlvSpinBox class 257
default application 83
defaultApplicationName option 136
defaultCallbackLanguage option 136
defaultHeaderDir option 136
defaultHeaderFileScope option 136
defaultItemsSize member function

IlvAbstractBar class298
defaultObjDir option 136
defaultSrcDir option 137
defaultSystemName option 137
derived classes

defining 128

using 129
description files

state 381
desktop managers 350
desktop views

creating 350
detachItem member function

IlvTreeGadget class272
dialog boxes

creating 229

predefined 224

showing and hiding 230
dockable containers

introducing 330

orthogonal 334

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

385

docking bars 338
customizing 340
docking panes
creating 332
handles 333
introducing 330
doIt member function
I1vOptionMenu class 250
IlvStringList class261
drag member function
IlvScrollBar class 252
draw member function
IlvGadgetItem class 282
drawItem member function

IlvAbstractMatrix class 303

E

Edit Application icon 85
EditApplication command 39
editing
Application buffer windows 27
applications 83
menus 65
objects 54
pop-up menus 68
editing modes
Active 31, 58
Attachments 32, 60
Focus 32, 59
for application buffer 32
for gadgets buffer 31
Generate 32
initializing 150
Label 31
Label List 31
Matrix 32, 74
Menu 32, 70
PolySelection 31
Rotate 31
Selection 31
Spin Box 32
editing states 367
editing states example
chaining states 374

changing the callback of the Show button 376
changing the label 376
creating a substate 377
creating the first panel 368
creating the second panel 369
editing the Show state 372
overview 367
panel descriptions 371
state file description 381
editItem member function
IlvMatrix class313
editors 180
list171
paired with accessors 180
stand-alone 180
tree174
enableLargeList member function
IlvScrolledComboBox class 235
errors
See IlvStError class142
ExpandCallbackType member function
IlvHierarchicalSheet class318
IlvTreeGadget class 275
expandItem member function
IlvTreeGadget class272
extending IBM ILOG Studio 141
example 155
extensions
commands 142
panels 143

F

files

generated 88

header 92, 100

make 88

source 92, 100
fitToSize member function

IlvMatrix class 306
flipLabels member function

IlvNotebook class 242
focus chain 59

defining 204
focus management 203

386 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

Focus mode 32, 59
focusIn member function
IlvGadget class 204
focusOut member function
IlvGadget class 204
frames 238
associating amnemonic 238
functions
main 127

G

gadget containers 212

gadget holders 201, 202
IlvMouseEnter event 203
IlvMouseLeave event 203
limitations 203

gadget items
creating 284
drawing 282
finding 283
introducing 277
managing lists of 286
nonsensitive 281
palettes 282
represented by a bitmap 280
represented by a graphic object 280
setting a mnemonic 279
sorting 288

gadgets
arrow button 232
associating callbacks 209
associating mnemonics 211
attaching to guides 206
attachments 205
button 232
containers 202
creating 54
handling events 203
inside matrix 202
inside notebooks 202
inside tool bars 202
localizing 210
look and feel 217
Microsoft Windows look and feel 217

Motif look and feel 217
predefined callback types 209
sensitive 207
setting the weight 206
setting tooltips 211
thickness 208
transparent 208
Gadgets buffer window 54
Generate command 39
Generate mode 32
GenerateAll command 40
GenerateApplication command 40
generated code
extending 128
generated files 88
GenerateMakeFile command 40
GeneratePanelClass command 41
GeneratePanelSubClass command 41
generating
C++ code 120
callback method 123
header files 120
geometryChanged member function
IlvAbstractBar class298
get class
I1lvPopupMenu class 296
Get member function
IlvDesktopManager class 351
getBitmap member function
IlvNotebookPage class 246
getBitmapCount member function
IlvGadgetItemclass280
getCallbackItem member function
IlvTreeGadget class274
getCardinal member function
IlvPanedContainer class 324
getCheckColor member function
IlvColoredToggle class 267
getColumnwidth member function
IlvAbstractMatrix class303
getCurrentBitmap member function
IlvGadgetItemclass280
getCurrentLook member function
IlvDisplay class221
getCurrentState member function

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 387

IlvViewFrame class 353
getDirection member function
IlvArrowButton class 232
IlvPanedContainer class 323
getFileName member function
IlvNotebookPage class 244
getFirstChild member function
IlvTreeGadgetItem class272
getFloatValue member function
I1lvNumberField class 248
IlvTextField class264
getGuideCardinal member function
IlvGraphicHolder class 206
getGuideLimit member function
IlvGraphicHolder class 206
getGuidePosition member function
IlvGraphicHolder class 206
getGuideSize member function
IlvGraphicHolder class 206
getGuideWeight member function
IlvGraphicHolder class 206
getHeight member function
IlvGadgetItem class281
getHighlightTextPalette member function
IlvGadgetItemHolder class282
getIncrement member function
I1vSpinbox class 256
getIndex member function
IlvPanedContainer class 324
getInsensitivePalette member function
IlvGadgetItemHolder class282
getIntvalue member function
I1lvNumberField class 248
IlvTextField class 264
getItem member function
IlvMatrix class309
IlvMenultem class 292
getItemByName member function
IlvGadgetItemHolder class283
getLabel member function
IlvNotebookPage class 246
I1vOptionMenu class 250
getLabels member function
I1vSpinbox class 256
getLabelsCount member function

IlvSpinbox class 256
getLine member function
IlvText class 262
getMinimizedFrames member function
IlvDesktopManager class 354
getNextSibling member function
IlvTreeGadgetItemclass272
getNormalTextPalette member function
IlvGadgetItemHolder class282
getNotebook member function
I1lvNotebook class 244
getOpaquePalette member function
IlvGadgetItemHolder class282
getOrientation member function
IlvAbstractBar class 297
getPageArea member function
I1lvNotebook class 243
getPageBottomMargin member function
I1lvNotebook class 243
getPageLeftMargin member function
IlvNotebook class 243
getPageRightMargin member function
I1lvNotebook class 243
getPages member function
I1lvNotebook class 244
getPagesCardinal member function
IlvNotebook class 244
getPageTopMargin member function
I1lvNotebook class 243
getPane member function
IlvPanedContainer class324
getParent member function
IlvTreeGadgetItem class272
getPrevSibling member function
IlvTreeGadgetItemclass272
getResources member function
IlvDisplay class215
getRoot member function
IlvTreeGadget class271
getRowHeight member function
IlvAbstractMatrix class303
getSelectionMode member function
IlvTreeGadget class275
getSelectionPalette member function
IlvGadgetItemHolder class282

388 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

getSelectionTextPalette member function
IlvGadgetItemHolder class 282

getSpacing member function
IlvAbstractBar class 298

getState member function
IlvToggle class 267

getTabsPosition member function
IlvNotebook class 242

getText member function
I1lvText class 262

getTreeltem member function
IlvHierarchicalSheet class317

getValue member function 129
IlvDateField class 237
I1vSpinbox class 256

getView member function
IlvDesktopManager class351
IlvNotebookPage class 244

getViewPane member function
IlvPanedContainer class 325

getWidth member function
IlvGadgetItem class281

getXMargin member function
I1lvNotebook class 242

getYMargin member function
IlvNotebook class 242

graphic objects
integrating 150

graphic panes
creating 322

H

handleEvent member function
IlvGadget class 203
handleMatrixEvent member function
IlvAbstractMatrix class 304
IlvMatrix class311
header files92, 120, 121, 124
headerFileExtension option 137
hide member function
IlvPane class 323
hierarchical sheets316
creating 316
expanding or collapsing an item 317

handling events 318
navigating 317
removing items 317
HighlightCBSymbol member function
I1lvAbstractMenu class 290
HighlightedBitmapSymbol member function
IlvGadgetItem class280

icons
Attachments 60
Edit Application 85
Inspect 57, 66
Menu 70
Panel Class Palette 95
Test 58,110
IlvAbstractBar class297, 339
defaultItemsSize member function 298
geometryChanged member function 298
getOrientation member function 297
getSpacing member function 298
setConstraintMode member function 298
setDefaultItemSize member function 298
setFlushingRight member function 299
setOrientation member function 297
setSpacing member function 298
useConstraintMode member function 298
IlvAbstractBarPane class
checkLabelOrientation member function 341
geometryChanged member function 340
orientationChanged member function 340
IlvAbstractBarPane class 339
IlvAbstractMatrix class301
cellBBox member function 304
cellInfo member function 303
columnBBox member function 304
columns member function 302
columnSameWidth member function 302
drawItem member function 303
getColumnWidth member function 303
getRowHeight member function 303
handleMatrixEvent member function 304
invalidateColumn member function 304
invalidateRow member function 304

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 389

pointToPosition member function 304
rowBBox member function 304
rows member function 302
rowSameHeight member function 302
setNbFixedColumn member function 303
setNbFixedRow member function 303
subclassing 302
IlvAbstractMenu class 290, 293
HighlightCBSymbol member function 290
isSelectable member function 291
select member function 291
selectNext member function 291
unSelect member function 291
IlvApplication class27, 89, 93, 125
makePanels member function 125, 126
IlvArrowButton class232
getDirection member function 232
setDirection member function 232
IlvBitmapMatrixItem class306
IlvButton class232
activate member function 233
setHighlightedBitmap member function 233
setSelectedBitmap member function 233
showFrame member function 233
IlvColoredToggle class
getCheckColor member function 267
setCheckColor member function 267
IlvColorSelector class228
I1lvComboBox class 234
setSelected member function 235
whichSelected member function 235
IlvContainer class26
IlvDateField class236
getValue member function 237
setFormat member function 236
setValue member function 237
IlvDesktopManager class
Get member function 351
getMinimizedFrames member function 354
getView member function 351
IlvDisplay class
addChangeLookCallback member function 221
and gadgets look and feel 221
getCurrentLook member function 221
getResources member function 215

setCurrentLook member function 221
IlvDockable class 330, 333, 337

acceptDocking member function 338

dock member function 337

isDocked member function 337

setDockable member function 338

setDockingDirection member function 338

unDock member function 337
IlvDockableContainer class 330

acceptDocking member function 338

addDockingPane member function 333, 337

createOrthogonalDockableContainer

member function 335

IlvDockableMainWindow class 344

addRelativeDockingPane member function 344
IlvDoubleMatrixItem class 307
IlvFilledDoubleMatrixItem class307
IlvFilledFloatMatrixItem class307
IlvFilledIntMatrixItem class307
IlvFilledLabelMatrixItem class 306
IlvFloatMatrixItem class307
IlvFontSelector class228
IlvFrame class 238
IlvGadget class 196

focusIn member function 204

focusOut member function 204

handleEvent member function 203

IlvMouseEnter event 203

IlvMouseLeave event 203

reDraw member function 234

setTransparent member function 208
IlvGadgetContainer class 96, 98, 101, 201, 212
IlvGadgetItem class270, 277

BitmapSymbol member function 280

draw member function 282

getBitmapCount member function 280

getCurrentBitmap member function 280

getHeight member function 281

getWidth member function 281

HighlightedBitmapSymbol member function 280

InsensitiveBitmapSymbol member function 280

labelRect member function 281

pictureRect member function 281

SelectedBitmapSymbol member function 280

setBitmap member function 280

390 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

setGraphic member function 280, 299
setHighlightTextPalette member function 282
setLabel member function 279
setLabelAlignment member function 279
setLabelOrientation member function 279
setLabelPosition member function 280
setNormalTextPalette member function 282
setOpaguePalette member function 282
setSelectionTextPalette member function 282
setSensitive member function 281
setSpacing member function 280
showPicture member function 281
IlvGadgetItemHolder class 282
createItem member function 284
getHighlightTextPalette member function 282
getInsensitivePalette member function 282
getItemByName member function 283
getNormalTextPalette member function 282
getOpaquePalette member function 282
getSelectionPalette member function 282
getSelectionTextPalette member function 282
reDrawItems member function 284
IlvGadgetItemMatrixItem class307
IlvGadgetManager class 202, 212
IlvGadgetMatrixItem class 307
IlvGraphic class212
applyResources member function 215
setFirstFocusGraphic member function 204
setLastFocusGraphic member function 204
setNextFocusGraphic member function 204
setPreviousFocusGraphic member function 204
IlvGraphicCallback function 99
IlvGraphicHolder class
addGuide member function 206
attach member function 206
getGuideCardinal member function 206
getGuideLimit member function 206
getGuidePosition member function 206
getGuideSize member function 206
getGuideWeight member function 206
removeGuide member function 206
IlvGraphicMatrixItem class307
IlvGraphicPane class 322
IlvGraphicSet class 269
IlvHierarchicalSheet class301, 316

IBM

ExpandCallbackType member function 318
getTreeltem member function 317
ShrinkCallbackType member function 318
IlvIErrorDialog class225
IlvIFileSelector class226
IlvIInformationDialog class226
IlvIMessageDialog class 224
IlvIntMatrixItem class307
I1lvIPromptString class227
IlvIQuestionDialog class225
IlvIWarner class226
IlvLabelMatrixItem class306
IlvListGadgetItemHolder class 286, 290
compareltems member function 288
insertGraphic member function 299
sort member function 288
IlvManager class 26, 144
IlvManagerViewInteractor class 145
IlvMatrix class301, 304
activateMatrixItem member function 313
adjustLast member function 306
allowEdit member function 312
autoFitToSize member function 306
editItem member function 313
fitToSize member function 306
getFirstSelected member function 310
getItem member function 309
handleMatrixEvent member function 311
insertColumn member function 305
insertRow member function 305
pointToItem member function 314
pointToPosition member function 314
reinitialize member function 305
remove member function 309
removeColumn member function 305
removeRow member function 305
resizeColumn member function 305
resizeRow member function 305
sameHeight member function 306
sameWidth member function 306
set member function 309
setBrowseMode member function 312
setColumnSelected member function 310
setExclusive member function 311
setItemAlignment member function 310

ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 391

setItemCallback member function 313
setItemReadOnly member function 311
setItemRelief member function 310
setItemSelected member function 310
setItemSensitive member function 311
setXGrid member function 305
setYGrid member function 305
showLabel member function 314
showPicture member function 314
validate member function 313
I1lvMenuBar class299
IlvMenultem class291
getItem member function 292
setMenu member function 292
setTooltip member function 300
IlvMessageLabel class
setAlignment member function 240
setBitmap member function 239
setInsensitiveBitmap member function 239
setLabelPosition member function 240
setSpacing member function 240
setTransparent member function 240
IlvMessageLabel code 238
I1lvNotebook class 241
addPage member function 243
areLabelsVertical member function 242
changeSelection member function 246
flipLabels member function 242
getNotebook member function 244
getPageArea member function 243
getPageBottomMargin member function 243
getPageLeftMargin member function 243
getPageRightMargin member function 243
getPages member function 244
getPagesCardinal member function 244
getPageTopMargin member function 243
getTabsPosition member function 242
getXMargin member function 242
getYMargin member function 242
pageDeselected member function 246
PageResizeCallbackType member function 246
pageSelected member function 246
removePage member function 244
setLabelsVertical member function 242
setPageBottomMargin member function 243

setPageRightMargin member function 243
setPageTopMargin member function 243
setTabsPosition member function 242
setXMargin member function 242
setYMargin member function 242
IlvNotebookPage class 241, 243
getBitmap member function 246
getFileName member function 244
getLabel member function 246
getView member function 244
mustFlipLabels member function 242
setBackground member function 245
setBitmap member function 246
setFileName member function 244
setLabel member function 246
IlvNumberField class 246
getFloatValue member function 248
getIntValue member function 248
setDecimalPointChar member function 249
setFormat member function 247
setMaxFloat member function 248
setMaxInt member function 248
setMinFloat member function 248
setMinInt member function 248
setThousandSeparator member function 248
setValue member function 248
validate member function 249
I1vOptionMenu class 249
doIt member function 250
getLabel member function 250
setSelected member function 250
whichSelected member function 250
IlvPane class319
hide member function 323
predefined subclasses 322
show member function 323
IlvPanedContainer class202, 319, 323
addPane member function 324
createSliderPane member function 327
getCardinal member function 324
getDirection member function 323
getIndex member function 324
getPane member function 324
getViewPane member function 325
manageSliders member function 327

392 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

removePane member function 324
setDirection member function 323
setMinimumSize member function 326
setResizeMode member function 325
updatePanes member function 323, 324
IlvPasswordTextField class 250
setMaskChar member function 250
IlvPopupMenu class 293
get class 296
isChecked class 296
OpenMenuCallbackSymbol class 295
setChecked class 296
setLabelOffset class294
setTearOff class 295
IlvScrollBar class251
drag member function 252
setIncrement member function 251
setPageIncrement member function 251
setValues member function 251
valueChanged member function 252
IlvScrollbar class251
setOrientation member function 251
IlvScrolledComboBox class 234
enablelLargeList member function 235
setVisibleItems member function 235
IlvSelector class269
whichGraphicSelected member function 269
whichSelected member function 269
IlvSheet class 301, 315
IlvSimpleGraphic class213
IlvSlider class
setOrientation member function 253
setPageIncrement member function 253
setValues member function 253
valueChanged member function 254
IlvSliderPane class326
IlvSpinBox class 254
addField member function 255
addLabel member function 256
addObject member function 256
DecrementCallbackType member function 257
getIncrement member function 256
getLabels member function 256
getLabelsCount member function 256
getValue member function 256

IncrementCallbackType member function 257

numeric fields 256

removeLabel member function 256

removeObject member function 256

setIncrement member function 256

setValue member function 256

text fields 256
IlvstBuffer class144
IlvStClickAddObject class

redefining 150
I1vStCommand class 142
IlvStContainerInfo class

description of 145
IlvStDialog class143
IlvStError class142
IlvStGadgetBuffer class 144
IlvStIAccessor class 168

apply member function 168

initialize member function 168
IlvStICallbackPrecondition class178
I1lvStICombinedAccessor class171
IlvStIEditor class180
I1vStIError class179
IlvStIMainEditor class164
IlvStInspector class163
IlvStInspectorPanelBuilder class 149
IlvStIPrecondition class178
IlvStIPreconditionValue class178
IlvStIProperty class169
IlvStIPropertyAccessor class 168
IlvStIPropertyListAccessor class171
IlvStIPropertyListEditor class171
IlvStIPropertyTreeAccessor class174
IlvStIPropertyTreeEditor class174
IlvStIRangeValidator class179
IlvStIValidator class178, 179
IlvStIValueProperty class169
I1vStMode class 145
IlvStPanelHandler class 143
IlvStringList class257

autoLabelAlignment member function 259

doIt member function 261

select member function 261

setDefaultItemHeight member function 258

setExclusive member function 261

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 393

setLabelOffset member function 259
setLabelPosition member function 258
setSelectCallback member function 261
setSelected member function 261
setSelectionLimit member function 261
setSelectionMode member function 261
showLabel member function 258
showPicture member function 258
unSelect member function 261
useFullSelection member function 259
useToolTips member function 259
IlvStSubscription class 143
IlvText class261
addLine member function 262
check member function 262
getLine member function 262
getText member function 262
removeLine member function 262
setLine member function 262
setText member function 262
IlvTextField class263
check member function 265
getFloatValue member function 264
getIntValue member function 264
labelChanged member function 265
setAlignment member function 264
setChangeCallback member function 265
setEditable member function 234
setMaxChar member function 264
setValue member function 264
validate member function 265
IlvToggle class 266
getState member function 267
setBitmap member function 268
setCheckSize member function 268
setPosition member function 268
setRadio member function 267
setState member function 267
IlvToolBar class299
useToolTips member function 300
IlvTreeGadget class270

ActivateCallbackType member function 275

addItem member function 271, 272
detachItem member function 272
ExpandCallbackType member function 275

expandItem member function 272
getCallbackItem member function 274
getRoot member function 271
getSelectionMode member function 275
removeAllItems member function 272
SelectCallbackType member function 275
setSelectionMode member function 275
showLines member function 273
ShrinkCallbackType member function 275
shrinkItem member function 272
IlvTreeGadgetItem class270
getFirstChild member function 272
getNextSibling member function 272
getParent member function 272
getPrevSibling member function 272
insertChild member function 272

setUnknownChildCount member function 272

IlvViewFrame class 350
getCurrentState member function 353
maximizeFrame member function 355
minimizeFrame member function 354
restoreFrame member function 354
setIcon member function 352
setTitle member function 352

IlvViewPane class322

IncrementCallbackType member function
I1lvSpinBox class 257

initialize member function 124

initializing an inspector panel 164

InsensitiveBitmapSymbol member function
IlvGadgetItemclass280

insertChild member function
IlvTreeGadgetItem class272

insertColumn member function
IlvMatrix class305

insertGraphic member function
IlvListGadgetItemHolder class299

insertRow member function
IlvMatrix class305

Inspect icon 57, 66

inspecting
matrix items 75
objects 57

inspector panels57
accessors 164

394 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

components 164

defining 153

editors 164

initialization steps 164
inspectors

Application 48, 88

definition 163

initializing 149

Panel Class 97

State 371
invalidateColumn member function

IlvAbstractMatrix class 304
invalidateRow member function

IlvAbstractMatrix class 304
isChecked class

I1lvPopupMenu class 296
isFirstSelected member function

IlvMatrix class310
isSelectable member function

IlvAbstractMenu class 291

J

JvScriptApplication option 137

K

keyboard focus 203
keyboard focus chain

description of 59
KillTestPanels command 41

L

Label List mode 31
Label mode 31
labelChanged member function
IlvTextField class 265
labelRect member function
IlvGadgetItem class281
labels 238
list accessors 171
list editors 171
look and feel 216
changing 216

Motif 216
Windows 216

M

main function 127
makefile 88, 131
MakeDefaultApplication command 42
makeFileExtension option 137
makePanels member function 125
manageSliders member function
IlvPanedContainer class327
manual
naming conventions 19
notation 18
organization 17
matrices
adding rows and columns 305
drawing items on multiple cells 303
fit to size mode 306
fixed rows and columns 303
handling events 304, 311
number of columns 305
number of rows 305
resizing rows and columns 305
reverting to initial settings 306
selection modes 311
tooltips 315
using gadget items 314
using gadgets 314
matrix items
adding 309
aligning 309
bitmap images 306
callbacks 313
double-precision floating point values 307
editing 312
filled double-precision floating point values 307
filled floating point values 307
filled integers 307
filled labels 306
floating point values 307
gadget items 307
gadgets 307, 314
graphic objects 307

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

395

inrelief 310
integers 307
labels 306
predefined classes 306
redrawing 309
removing 309
selecting 310
sensitive 311
Matrix mode 32, 74
extracting matrix items 75
inspecting matrix items 75
setting up matrix items 74
maximizeFrame member function
IlvViewFrame class 355
menu bars 290
constraining the geometry 298
creating 65
default item size 298
flushing items 299
notifying geometry change 298
setting the orientation 297
Menu icon 70
menu items 291
accelerators 293
adding a submenu 292
associating mnemonics 293
attaching a callback 292
callbacks 295
check marks 295
checked 295
creating 291
manipulating 290
used as separator 291
Menu mode 32
menu separator 291
menus
attaching pop-up menus 70
callbacks 290
editing 65
handling events 291
introducing 289
message labels 238
bitmaps 239
laying out 240
localizing 241

mnemonics 241
opague 240
transparent 240
messages 143
minimizeFrame member function
IlvViewFrame class 354
mustFlipLabels member function
IlvNotebookPage class 242

N

naming conventions 19
NewApplication command 27, 42
NewGadgetBuf fer command 42
NewGraphicBuffer command 27
NewPanelClass command 43
noPanelContents option 138
notation 18
notebook pages 241
notebooks 241

callbacks 246

customizing pages 244

handling events 246

page color 245

tab content 246

tab margins 242

tab orientation 242

tab position 242

tabs content 246
number fields 246

callbacks 249

decimal point 249

editing modes 247

retrieving values 248

setting values 248

thousand separator 248

O

object files
linking 131

object resources
adding 215
predefined 212
priority 214

396 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

setting 213
objects

activating 58

attaching 60

creating 54

editing 54

inspecting 57

setting the focus 59

using creation mode 55
objects, creating 54
OpenApplication command 43
opening

application 87
OpenMenuCallbackSymbol class

I1lvPopupMenu class 295
option menus 249

callbacks 250

localizing 250

retrieving items 250

selected item 250

setting items 250

P

pageDeselected member function
I1lvNotebook class 246

adding 96
adding an instance 101
callback declarations 99
callback definitions 100
creating 96, 115
creating instances 101
genera properties 98
header files 100
managing panel instances 102
removing 97
setting options 98
source files 100
Panel inspector 103
panel instances
creating 115, 116
panelBaseClass option 138
panels
accessors 126
adding 143
Application inspector 48
Attachments 62
creating 54, 113
initializing 149
inspecting 103
menu bar inspector panel 66
State Inspector 371

PageResizeCallbackType member function State Tree 371
IlvNotebook class 246 Test 58

pageSelected member function testing 58
IlvNotebook class 246 panes

Pal ettes panel creating 322
customizing 152 docking 337

paned containers 203, 319 elastic 325
creating 323 fixed 325
direction 323 hiding 323
encapsulating in aview pane 324 introducing 319
modifying the layout 324 minimum size 325

Panel Class inspector resizable 325
description of 97 resizing 325

Panel Class palette 94 resizing mode 325
accessing 95 retrieving 324
commands 96 showing 323
description of 28, 86, 95 sliders 326

Panel Class Palette icon 95 undocking 337

panel classes 144 passwords 250

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

397

pictureRect member function
IlvGadgetItem class281
pointToItem member function
IlvMatrix class 314
pointToPosition member function
IlvAbstractMatrix class 304
IlvMatrix class314
PolySelection mode 31
pop-up menus 290, 293
aligning items 294
attaching 70
contextual 296
creating 68
editing 68
tear-off 295
property accessors 168

R

radio buttons 266, 267
grouping 269
reDraw member function
IlvGadget class234
reDrawItems member function
IlvGadgetItemHolder class284
reinitialize member function
IlvMatrix class 305
remove member function
IlvMatrix class 309
RemoveAllAttachments command 43
removeAllItems member function
IlvTreeGadget class272
RemoveAttachments command 43
removeColumn member function
IlvMatrix class 305
removeGuide member function
IlvGraphicHolder class 206
removeLabel member function
I1vSpinbox class 256
removeLine member function
IlvText class 262
removeObject member function
I1lvSpinBox class 256
removePage member function
IlvNotebook class 244

removePane member function
IlvPanedContainer class 324
RemovePanel command 44
RemovePanelClass command 44
removeRow member function
IlvMatrix class305
resizeColumn member function
IlvMatrix class305
resizeRow member function
IlvMatrix class305
resources
gadgets 212
objects212
predefined 212
restoreFrame member function
IlvViewFrame class 354
Rotate mode 31
rowBBox member function
IlvAbstractMatrix class304
rows member function
IlvAbstractMatrix class 302
rowSameHeight member function
IlvAbstractMatrix class302

S

sameHeight member function
IlvMatrix class 306
sameWidth member function
IlvMatrix class 306
SaveApplication command 44
SaveApplicationAs command 44
saving
applications 87
scrollbars 251
callbacks 252
increment 251
page increment 251
values 251
scrolled combo boxes
large lists 235
number of visible items 235
select member function
IlvAbstractMenu class 291
IlvStringList class261

398 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

SelectAttachmentsMode command 45
SelectCallbackType member function
IlvTreeGadget class275
SelectedBitmapSymbol member function
IlvGadgetItem class 280
SelectFocusMode command 45
Selection mode 31
SelectMatrixMode command 45
SelectMenuMode command 46
selectNext member function
IlvAbstractMenu class291
set member function
IlvMatrix class309
setAlignment member function
IlvMessageLabel class 240
IlvTextField class 264
setBackground member function
IlvNotebookPage class 245
setBitmap member function
IlvGadgetItem class 280
IlvMessageLabel class 239
IlvNotebookPage class 246
IlvToggle class 268
setBrowseMode member function
IlvMatrix class312
setChangeCallback member function
IlvTextField class265
setCheckColor member function
IlvColoredToggle class 267
setChecked class
I1lvPopupMenu class 296
setCheckSize member function
I1vToggle class 268
setColumnSelected member function
IlvMatrix class310
setConstraintMode member function
IlvAbstractBar class298
setCurrentLook member function
IlvDisplay class221
setDecimalPointChar member function
I1lvNumberField class249
setDefaultItemHeight member function
IlvStringList class 258
setDefaultItemSize member function
IlvAbstractBar class298

setDirection member function
IlvArrowButton class232
IlvPanedContainer class 323
setEditable member function
IlvTextField class234
setExclusive member function
IlvMatrix class311
IlvStringList class261
setFileName member function
IlvNotebookPage class 244
setFirstFocusGraphic member function
IlvGraphic class 204
setFlushingRight member function
IlvAbstractBar class 299
setFormat member function
IlvDateField class236
IlvNumberField class 247
setGraphic member function
IlvGadgetItem class280, 299
setHighlightedBitmap member function
IlvButton class233
setHighlightTextPalette member function
IlvGadgetItemclass282
setIcon member function
IlvViewFrame class 352
setIncrement member function
IlvScrollBar class251
I1lvSpinbox class 256
setInsensitiveBitmap member function
IlvMessageLabel class 239
setItemAlignment member function
IlvMatrix class310
setItemCallback member function
IlvMatrix class313
setItemReadOnly member function
IlvMatrix class311
setItemRelief member function
IlvMatrix class310
setItemSelected member function
IlvMatrix class310
setItemSensitive member function
IlvMatrix class311
setLabel member function
IlvGadgetItemclass279
IlvNotebookPage class 246

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 399

setLabelAlignment member function
IlvGadgetItem class279
setLabelOffset class
I1lvPopupMenu class 294
setLabelOffset member function
IlvStringList class 259
setLabelOrientation member function
IlvGadgetItem class279
setLabelPosition member function
IlvGadgetItem class280
IlvMessageLabel class 240
IlvStringList class 258
setLabelsVertical member function
IlvNotebook class 242
setLastFocusGraphic member function
IlvGraphic class204
setLine member function
IlvText class 262
setMaskChar member function
IlvPasswordTextField class250
setMaxChar member function
IlvTextField class264
setMaxFloat member function
IlvNumberField class 248
setMaxInt member function
IlvNumberField class 248
setMenu member function
IlvMenuItem class 292
setMinFloat member function
IlvNumberField class 248
setMinimumSize member function
IlvPanedContainer class 326
setMinInt member function
IlvNumberField class 248
setNbFixedColumn member function
IlvAbstractMatrix class303
setNbFixedRow member function
IlvAbstractMatrix class 303
setNextFocusGraphic member function
IlvGraphic class204
setNormalTextPalette member function
IlvGadgetItem class 282
setOpaquePalette member function
IlvGadgetItem class282
setOrientation member function

IlvAbstractBar class297
IlvScrollbar class251
IlvSlider class253
setPageBottomMargin member function
I1lvNotebook class 243
setPageIncrement member function
IlvScrollBar class251
IlvSlider class253
setPageRightMargin member function
IlvNotebook class 243
setPosition member function
IlvToggle class 268
setPreviousFocusGraphic member function
IlvGraphic class 204
setRadio member function
IlvToggle class 267
setResizeMode member function
IlvPanedContainer class325
setSelectCallback member function
IlvStringList class261
setSelected member function
I1lvComboBox class 235
I1vOptionMenu class 250
IlvStringList class261
setSelectedBitmap member function
I1lvButton class233
setSelectionLimit member function
IlvStringList class261
setSelectionMode member function
IlvStringList class261
IlvTreeGadget class 275
setSelectionTextPalette member function
IlvGadgetItem class282
setSensitive member function
IlvGadgetItemclass281
setSpacing member function
IlvAbstractBar class298
IlvGadgetItemclass280
IlvMessageLabel class 240
setState member function
IlvToggle class 267
setTabsPosition member function
I1lvNotebook class 242
setTearOff class
I1lvPopupMenu class 295

400 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

setText member function
IlvText class262
setThousandSeparator member function
IlvNumberField class 248
setTitle member function
IlvViewFrame class 352
setTooltip member function
IlvMenuItem class300
setTransparent member function
IlvGadget class 208
IlvMessageLabel class 240
setUnknownChildCount member function
IlvTreeGadgetItem class272
setValue member function
IlvDateField class237
IlvNumberField class 248
I1lvSpinbox class 256
IlvTextField class 264
setValues member function
IlvScrollBar class 251
IlvSlider class253
setVisibleItems member function
IlvScrolledComboBox class 235
setXGrid member function
IlvMatrix class305
setXMargin member function
IlvNotebook class 242
setYGrid member function
IlvMatrix class305
setYMargin member function
I1lvNotebook class 242
sheets 315
show member function
IlvPane class 323
ShowAllTestPanels command 46
ShowApplicationInspector command 46, 49, 51,
52
ShowClassPalette command 47
showFrame member function
IlvButton class233
showLabel member function
IlvMatrix class314
IlvStringList class 258
showLines member function
IlvTreeGadget class273

ShowPanelClassInspector command 47
showPicture member function
IlvGadgetItemclass281
IlvMatrix class314
IlvStringList class258
ShrinkCallbackType member function
IlvHierarchicalSheet class318
IlvTreeGadget class275
shrinkItem member function
IlvTreeGadget class272
slider panes 326
diders
callbacks 254
increment 253
page increment 253
setting the orientation 251, 253
values 253
sort member function
IlvGadgetListItemHolder class 288
sourcefiles 92, 123, 126
sourceFileExtension option 138
Spin box mode 32
spin boxes 254
adding fields 255
adding graphic objects 256
callbacks 257
removing fields 256
with numeric fields 256
with text fields 256
state file 381
State inspector
description of 371
State Tree panel
description of 371
states
editing 367
string lists 257
displaying items 258
drag-and-drop 261
editing items 261
full selection mode 259
gadget items 257
handling events 260
label aignment 258
localizing 260

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL

401

multiple selection 260
partial selection mode 259
selection modes 260
single selection 260
tooltips 259

subpanels
editing 107
inspecting 109

system option 138

T

Testicon 58, 110
Test panel 58
TestApplication command 47
TestDocument command 47
testing
applications 110, 128
attachments 65
testing panels 58
TestPanel command 48
text 261
handling events 262
retrieving 262
setting 262
specia keys 262
text fields 263
aligning 264
callbacks 265
handling events 265
keyboard shortcuts 266
localizing 264
number of characters 264
toggle buttons 266
bitmaps 268
callbacks 269
grouping 269
handling events 269
in color 266
localizing 268
mnemonics 268
position 268
state of 267
styles 267
text aignment 268

toolBarItem option 139
toolbars 290
contraining the geometry 298
default item size 298
docking 299
flushing items 299
managing gadgets 299
notifying geometry change 298
setting the orientation 297
using tooltips 300
tooltips
attaching to gadgets 212
creating 212
enabling/disabling 212
matrix 315
string lists 259
tree
accessors 174
editors 174
tree gadgets 270
callbacks 274
collapsing items 272
createitems 271
customizing 273
drag-and-drop 275
editing items 275
expanding items 272
moving items 272
removing items 272
scrollbars 271
selection modes 274

U

unSelect member function
IlvAbstractMenu class 291
IlvStringList class261

updatePanes member function
IlvPanedContainer class 323, 324

useConstraintMode member function
IlvAbstractBar class298

useFullSelection member function
IlvStringList class259

user classes
setting up 129

402 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

userSubClassPrefix option 139

userSubClassSuffix option 139

useToolTips member function
IlvStringList class259
IlvToolBar class 300

Using Matrices on page 78 32, 46

\Y,

validate member function
IlvMatrix class313
IlvNumberField class 249
IlvTextField class 265

valueChanged member function
IlvScrollBar class252
IlvSlider class254

view frames 352
changing the menu 352
states 353

view panes
creating 322

views
client 349

\W

whichGraphicSelected member function
IlvSelector class 269
whichSelected member function
IlvComboBox class 235
I1vOptionMenu class 250
IlvSelector class 269
windows
2D Graphics 26
Application 27, 83
Gadgets 54

IBM ILOG VIEwWS GADGETS V5.3

USER'S MANUAL

403

404 IBM ILOG VIEWS GADGETS V5.3 — USER’'S MANUAL

IBM ILOG VIEwWS GADGETS V5.3 — USER’'S MANUAL 405

408 IBM ILOG VIEWS GADGETS V5.3 — USER'S MANUAL

	IBM ILOG Views Gadgets V5.3 User’s Manual
	About This Manual
	Part I Creating GUI Applications with IBM ILOG Views Studio
	Introducing the Gadgets Extension of IBM ILOG Views Studio
	Loading the GUI Application and GUI Generation Plug-In
	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	Gadgets Palette
	Menus Palette
	Matrix Palette
	Miscellaneous Palette
	View Rectangles Palette

	Gadgets Extension Commands
	AddPanel
	EditApplication
	Generate
	GenerateAll
	GenerateApplication
	GenerateMakeFile
	GeneratePanelClass
	GeneratePanelSubClass
	InspectPanel
	KillTestPanels
	MakeDefaultApplication
	NewApplication
	NewGadgetBuffer
	NewPanelClass
	OpenApplication
	RemoveAllAttachments
	RemoveAttachments
	RemovePanel
	RemovePanelClass
	SaveApplication
	SaveApplicationAs
	SelectAttachmentsMode
	SelectFocusMode
	SelectMatrixMode
	SelectMenuMode
	ShowAllTestPanels
	ShowApplicationInspector
	ShowClassPalette
	ShowPanelClassInspector
	TestApplication
	TestDocument
	TestPanel

	Gadgets Extension Panels
	Application Inspector
	The Panel Class Inspector
	The Panel Instance Inspector

	Editing Gadget Panels
	Creating a New Panel
	Creating Gadget Objects
	Inspecting an Object
	Testing a Panel
	Using Active Mode
	Setting the Keyboard Focus in Panels
	Using the Attachments Mode
	Setting the Guides
	Attaching Objects to Guides
	Attachment Operations

	Editing Menus
	Menu Bars
	Pop-up Menus
	Toolbars

	Using Matrices
	Setting Up Matrix Items
	Extracting Matrix Items
	Inspecting Matrix Items

	Editing Spin Boxes
	Inserting a Spin Box
	Setting the Type of Spin Box Item

	Editing Applications
	The Application Buffer
	Application Description File
	Other Generated Files
	The Application Inspector
	The General Page
	The Options Page
	The Header and Source Pages
	The Script Page
	The Application Inspector Buttons

	Editing an Application
	The Panel Class Palette
	Panel Classes
	The Panel Class Inspector
	Panel Instances
	Testing an Application

	Using the Generated Code
	Building the Application
	Setting Up the Application Class
	Creating the First Panel Class
	Creating the Second Panel Class

	Generating the C++ Code
	FirstPanelClass Header File
	FirstPanelClass Source File
	MyApplication Header File
	MyApplication Source File
	Testing the Generated Application

	Extending the Generated Code
	Defining a Derived Class
	Using the Derived Class
	Defining Callbacks without Deriving Classes

	Customizing the Gadgets Extension of IBM ILOG Views Studio
	Configuration Options for the Gadgets Extension

	Extending IBM ILOG Views Studio
	Extending IBM ILOG Views Studio Components
	Defining a New Command
	Defining a New Panel
	IBM ILOG Views Studio Messages
	Defining a New Buffer
	Defining a New Editing Mode
	The Class IlvStExtension

	Integrating your Own Graphic Objects
	Defining a New Command to Add an Object
	Adding the Include File and Library File of a New Class to the Generated Code
	Customizing the Palettes Panel
	Defining and Integrating an Inspector Panel

	Extending IBM ILOG Views Studio: An Example
	Defining a New Buffer Class
	Defining a New Command
	Defining a New Panel
	Providing Container Information
	Registering Callbacks

	Using Inspector Classes
	What Is an Inspector?
	Components of an Inspector Panel
	Preconditions and Validators
	Editors

	Defining a New Inspector Panel
	Example
	Creating the Color Combo Box Inspector Panel

	Part II IBM ILOG Views Gadgets
	Introducing IBM ILOG Views Gadgets
	Gadgets Main Features
	Gadgets in a Snapshot
	Menus
	Common Gadgets
	Matrices

	Gadgets Libraries
	Code Sample

	Understanding Gadgets
	Gadget Holders
	List of Available Gadget Holders
	Handling Events
	Focus Management
	Gadgets Attachments

	Common Gadget Properties
	Gadget Appearance
	Associating a Callback with a Gadget
	Localizing a Gadget
	Associating a Mnemonic with a Gadget Label
	Setting Tooltips
	Gadget Resources

	Gadgets Look and Feel
	Using the Default Look and Feel
	Using Several Look and Feel
	Dynamic Loading of Look and Feel
	Changing the Look and Feel Dynamically
	Using the Windows XP Look and Feel

	Dialogs
	Predefined Dialog Boxes
	IlvIMessageDialog
	IlvIQuestionDialog
	IlvIErrorDialog
	IlvIWarner
	IlvIInformationDialog
	IlvIFileSelector
	IlvIPromptString
	IlvFontSelector
	IlvColorSelector

	Creating Your Own Dialog Box
	Showing and Hiding Dialog Boxes
	Setting a Default Button

	Using Common Gadgets
	Using IlvArrowButton
	Using IlvButton
	Displaying a Bitmap in a Button
	Displaying the Button Frame
	Associating a Mnemonic with a Button
	Event Handling and Callbacks

	Using IlvComboBox and IlvScrolledComboBox
	Setting a Combo Box as Noneditable
	Setting and Retrieving Items
	Changing or Retrieving the Selection
	Using Large Lists
	Setting the Number of Visible Items
	Localizing Combo Boxes
	Event Handling and Callbacks

	Using IlvDateField
	Formatting a Date
	Setting and Retrieving a Date Value
	Year 2000 Management

	Using IlvFrame
	Associating a Mnemonic with a Frame

	Using IlvMessageLabel
	Associating a Bitmap with a Message Label
	Making the Message Label Opaque
	Laying Out the Message Label
	Localizing a Message Label
	Associating a Mnemonic

	Using IlvNotebook
	Customizing Notebook Tabs
	Handling Notebook Pages
	Event Handling and Callbacks

	Using IlvNumberField
	Selecting an Editing Mode
	Choosing a Format
	Defining a Range of Values
	Setting and Retrieving a Value
	Specifying the Thousand Separator
	Specifying the Decimal Point Character
	Event Handling and Callbacks

	Using IlvOptionMenu
	Setting and Retrieving Items
	Changing and Retrieving the Selected Item
	Localizing Option Menus
	Event Handling and Callbacks

	Using IlvPasswordTextField
	Using IlvScrollBar
	Setting the Scrollbar Values
	Setting the Scrollbar Orientation
	Event Handling and Callbacks

	Using IlvSlider
	Setting the Slider Values
	Setting the Slider Orientation
	Setting the Thumb Orientation
	Event Handling and Callbacks

	Using IlvSpinBox
	Adding and Removing Fields to a Spin Box
	Working with Text Fields
	Working with Numeric Fields
	Event Handling and Callbacks

	Using IlvStringList
	Manipulating String List Items
	Customizing the Appearance of String List Items
	Displaying Tooltips
	Localizing String List Items
	Handling Events and Callbacks

	Using IlvText
	Setting and Retrieving Text
	Event Handling

	Using IlvTextField
	Aligning Text
	Setting and Retrieving Text
	Localizing a Text Field
	Limiting the Number of Characters
	Event Handling and Callbacks
	Keyboard Shortcuts

	Using IlvToggle
	Changing the State and Color of a Toggle Button
	Toggle and Radio Button Styles
	Displaying a Bitmap on a Toggle Button
	Aligning and Positioning the Label
	Changing the Size of the State Marker
	Localizing a Toggle Button
	Associating a Mnemonic with a Toggle Button
	Handling Events and Callbacks
	Grouping Toggle Buttons in a Selector

	Using IlvTreeGadget
	Changing the Tree Hierarchy
	Navigating Through a Tree Hierarchy
	Changing the Characteristic of an Item
	Expanding and Collapsing a Gadget Item
	Changing the Look of the Tree Gadget Hierarchy
	Event Handling and Callbacks

	Gadget Items
	Introducing Gadget Items
	Using Gadget Items
	Creating a Gadget Item
	Setting a Label
	Setting a Picture
	Specifying the Layout of a Gadget Item
	Nonsensitive Gadget Items
	Dynamic Types
	Using Palettes with Gadget Items
	Drawing a Gadget Item

	Gadget Item Holders
	Gadget Item Features
	Finding Gadget Items
	Redrawing Gadget Items
	Creating Gadget Items
	Editing Gadget Items
	Dragging and Dropping Gadget Items

	List Gadget Item Holders
	Modifying a List
	Accessing Items
	Sorting a List

	Menus, Menu Bars, and Toolbars
	Introducing Menus, Menu Bars, and Toolbars
	Menus and Menu Items
	Using IlvAbstractMenu
	Using IlvMenuItem

	Pop-up Menus
	Aligning Item Labels in a Pop-up Menu
	Using Tear-Off Menus
	Using the Open Menu Callback
	Using Checked Menu Items
	Using Stand-alone Menus
	Using Tooltips in a Pop-Up Menu

	Menu Bars and Toolbars
	Using IlvAbstractBar
	Using IlvMenuBar and IlvToolBar

	Matrices
	Introducing Matrices
	Using IlvAbstractMatrix
	Subclassing IlvAbstractMatrix
	Drawing Items Over Multiple Cells
	Setting Fixed Rows and Columns
	Handling Events

	Using IlvMatrix
	Handling Columns and Rows
	Handling Matrix Items
	Handling Events
	Using Gadget Items in a Matrix

	Using IlvSheet
	Using IlvHierarchicalSheet
	Changing the Tree Hierarchy
	Navigating through a Tree Hierarchy
	Changing the Characteristic of a Tree Item
	Expanding and Collapsing a Gadget Item
	Changing the Look of the Tree Gadget Hierarchy
	Event Handling and Callbacks

	Panes
	Introducing Panes
	Creating Panes
	Creating a Graphic Pane
	Creating a View Pane
	Showing or Hiding a Pane

	Adding Panes to Paned Containers
	Creating a Paned Container
	Modifying the Layout of a Paned Container
	Retrieving Panes
	Encapsulating a Paned Container in a View Pane

	Resizing Panes
	Setting the Resize Mode and the Minimum Size of a Pane
	Resizing Panes With Sliders

	Docking Panes and Containers
	Introducing Docking Panes and Dockable Containers
	Creating Docking Panes
	Creating Orthogonal Dockable Containers

	Controlling Docking Operations
	Connecting an Instance of the IlvDockable Class to a Pane
	Docking and Undocking a Pane
	Filtering Docking Operations

	Using Docking Bars
	Using the IlvAbstractBarPane Class
	Customizing Docking Bars

	Building a Standard Application With Docking Panes
	Defining a Standard Layout
	Using the IlvDockableMainWindow Class

	View Frames
	Introducing View Frames
	Creating a Desktop with View Frames
	Creating a Desktop
	Creating View Frames

	Managing View Frames
	Creating a Client View
	Changing the Title Bar
	Changing the View Frame Menu

	Minimizing, Maximizing, and Restoring View Frames
	Normal View Frames
	Minimized View Frames
	Maximized View Frames

	Closing View Frames
	Changing the Current View Frame

	Customizing the Look and Feel
	Understanding the Architecture
	IlvLookFeelHandler
	IlvObjectLFHandler
	Class Diagram

	Making a User-Defined Component Look-and-Feel Dependant
	Creating a New Component
	Defining the Object Look-and-Feel Handler API
	Subclassing the Object Look-and-Feel Handler
	Installing the Object Look-and-Feel Handlers

	Changing the Look and Feel of an Existing Component
	Subclassing the Component Object Look-and-Feel Handler
	Replacing an Object Look-and-Feel Handler

	Creating a New Look-and-Feel Handler
	Registering a New Look-and-Feel Handler
	Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler

	Appendix A Editing States
	Creating a Simple Application
	Creating the First Panel
	Creating the Second Panel
	States Panels

	Editing the Show State
	Chaining States
	Changing the Label and the Callback of the Show Button
	Creating a Substate: the Edit State
	The State File

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

