
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule 
Contract with IBM Corp.

IBM ILOG Views

Gadgets V5.3

User’s Manual

June 2009

usrgadgets.book  Page 1  Tuesday, July 28, 2009  11:01 AM



usrgadgets.book  Page 2  Tuesday, July 28, 2009  11:01 AM



Copyright notice
© Copyright International Business Machines Corporation 1987, 2009. 

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA 
ADP Schedule Contract with IBM Corp. 

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are 
trademarks or registered trademarks of International Business Machines Corp., registered in 
many jurisdictions worldwide. Other product and service names might be trademarks of 
IBM or other companies. A current list of IBM trademarks is available on the Web at 
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks 
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or 
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft 
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in 
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrgadgets.book  Page 2  Tuesday, July 28, 2009  11:01 AM



C O N T E N T S

usrgadgets.book  Page 3  Tuesday, July 28, 2009  11:01 AM
Table of Contents

IBM ILOG Views Gadgets V5.3

Preface About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

What You Need to Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Manual  Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Typographic Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Part I Creating GUI Applications with IBM ILOG Views Studio 21

Chapter 1 Introducing the Gadgets Extension of IBM ILOG Views Studio. . . . . . . . . . . . .  23

Loading the GUI Application and GUI Generation Plug-In. . . . . . . . . . . . . . . . . . . . . . . . . .24

The Main Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Buffer Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

The Menu Bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

The Action Toolbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

The Editing Modes Toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

The Palettes Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Gadgets Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Menus Palette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 3



usrgadgets.book  Page 4  Tuesday, July 28, 2009  11:01 AM
Matrix Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Miscellaneous Palette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

View Rectangles Palette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Gadgets Extension Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

AddPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

EditApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Generate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

GenerateAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

GenerateApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

GenerateMakeFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

GeneratePanelClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

GeneratePanelSubClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

InspectPanel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

KillTestPanels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

MakeDefaultApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

NewApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

NewGadgetBuffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

NewPanelClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

OpenApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

RemoveAllAttachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

RemoveAttachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

RemovePanel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

RemovePanelClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

SaveApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

SaveApplicationAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

SelectAttachmentsMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

SelectFocusMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

SelectMatrixMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

SelectMenuMode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

ShowAllTestPanels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

ShowApplicationInspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 5  Tuesday, July 28, 2009  11:01 AM
ShowClassPalette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

ShowPanelClassInspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

TestApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

TestDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

TestPanel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Gadgets Extension Panels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Application Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

The Panel Class Inspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

The Panel Instance Inspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Chapter 2 Editing Gadget Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Creating a New Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Creating Gadget Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Inspecting an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Testing a Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Using Active Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Setting the Keyboard Focus in Panels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Using the Attachments Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Setting the Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Attaching Objects to Guides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Attachment Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Editing Menus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Menu Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Pop-up Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Using Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Setting Up Matrix Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Extracting Matrix Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Inspecting Matrix Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Editing Spin Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Inserting a Spin Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Setting the Type of Spin Box Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 5



usrgadgets.book  Page 6  Tuesday, July 28, 2009  11:01 AM
Chapter 3 Editing Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

The Application Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Application Description File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Other Generated Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

The Application Inspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

The General Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

The Options Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

The Header and Source Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

The Script Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

The Application Inspector Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Editing an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

The Panel Class Palette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Panel Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

The Panel Class Inspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Panel Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Testing an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Chapter 4 Using the Generated Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

Building the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Setting Up the Application Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Creating the First Panel Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Creating the Second Panel Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Generating the C++ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

FirstPanelClass Header File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

FirstPanelClass Source File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

MyApplication Header File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

MyApplication Source File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

Testing the Generated Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Extending the Generated Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Defining a Derived Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Using the Derived Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Defining Callbacks without Deriving Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
6 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 7  Tuesday, July 28, 2009  11:01 AM
Chapter 5 Customizing the Gadgets Extension of IBM ILOG Views Studio . . . . . . . . . . .  135

Configuration Options for the Gadgets Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Chapter 6 Extending IBM ILOG Views Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Extending IBM ILOG Views Studio Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Defining a New Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Defining a New Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

IBM ILOG Views Studio Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Defining a New Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

Defining a New Editing Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

The Class IlvStExtension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Integrating your Own Graphic Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Defining a New Command to Add an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Adding the Include File and Library File of a New Class to the Generated Code . . . . . . . . . .151

Customizing the Palettes Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Defining and Integrating an Inspector Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Extending IBM ILOG Views Studio: An Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Defining a New Buffer Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Defining a New Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Defining a New Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

Providing Container Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

Registering Callbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Chapter 7 Using Inspector Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

What Is an Inspector? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Components of an Inspector Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

Preconditions and Validators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

Editors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

Defining a New Inspector Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Creating the Color Combo Box Inspector Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 7



usrgadgets.book  Page 8  Tuesday, July 28, 2009  11:01 AM
Part II IBM ILOG Views Gadgets  . . . . . . . . . . . . . . . . . . . . . . .  193

Chapter 8 Introducing IBM ILOG Views Gadgets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

Gadgets Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

Gadgets in a Snapshot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Menus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Common Gadgets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

Gadgets Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

Code Sample  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

Chapter 9 Understanding Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Gadget Holders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

List of Available Gadget Holders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

Focus Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

Gadgets Attachments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

Common Gadget Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Gadget Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Associating a Callback with a Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209

Localizing a Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

Associating a Mnemonic with a Gadget Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Setting Tooltips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Gadget Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

Gadgets Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Using the Default Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Using Several Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

Dynamic Loading of Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Changing the Look and Feel Dynamically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

Using the Windows XP Look and Feel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Chapter 10 Dialogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
8 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 9  Tuesday, July 28, 2009  11:01 AM
Predefined Dialog Boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

IlvIMessageDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

IlvIQuestionDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

IlvIErrorDialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

IlvIWarner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

IlvIInformationDialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

IlvIFileSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

IlvIPromptString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

IlvFontSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

IlvColorSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Creating Your Own Dialog Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

Showing and Hiding Dialog Boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

Setting a Default Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

Chapter 11 Using Common Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

Using IlvArrowButton  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

Using IlvButton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

Displaying a Bitmap in a Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Displaying the Button Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Associating a Mnemonic with a Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Using IlvComboBox and IlvScrolledComboBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

Setting a Combo Box as Noneditable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

Setting and Retrieving Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

Changing or Retrieving the Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Using Large Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Setting the Number of Visible Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Localizing Combo Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Using IlvDateField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

Formatting a Date  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

Setting and Retrieving a Date Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 9



usrgadgets.book  Page 10  Tuesday, July 28, 2009  11:01 AM
Year 2000 Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

Using IlvFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Associating a Mnemonic with a Frame  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Using IlvMessageLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Associating a Bitmap with a Message Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

Making the Message Label Opaque  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Laying Out the Message Label  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Localizing a Message Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Associating a Mnemonic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Using IlvNotebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Customizing Notebook Tabs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Handling Notebook Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Using IlvNumberField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Selecting an Editing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

Choosing a Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

Defining a Range of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Setting and Retrieving a Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Specifying the Thousand Separator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Specifying the Decimal Point Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Using IlvOptionMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Setting and Retrieving Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

Changing and Retrieving the Selected Item. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

Localizing Option Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

Using IlvPasswordTextField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

Using IlvScrollBar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

Setting the Scrollbar Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

Setting the Scrollbar Orientation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
10 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 11  Tuesday, July 28, 2009  11:01 AM
Using IlvSlider  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252

Setting the Slider Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Setting the Slider Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Setting the Thumb Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

Using IlvSpinBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

Adding and Removing Fields to a Spin Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

Working with Text Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

Working with Numeric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Using IlvStringList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Manipulating String List Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Customizing the Appearance of String List Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

Displaying Tooltips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259

Localizing String List Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

Handling Events and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

Using IlvText. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

Setting and Retrieving Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

Event Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

Using IlvTextField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Aligning Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Setting and Retrieving Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Localizing a Text Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Limiting the Number of Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Using IlvToggle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Changing the State and Color of a Toggle Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

Toggle and Radio Button Styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

Displaying a Bitmap on a Toggle Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

Aligning and Positioning the Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 11



usrgadgets.book  Page 12  Tuesday, July 28, 2009  11:01 AM
Changing the Size of the State Marker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

Localizing a Toggle Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

Associating a Mnemonic with a Toggle Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

Handling Events and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Grouping Toggle Buttons in a Selector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Using IlvTreeGadget  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270

Changing the Tree Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

Navigating Through a Tree Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Changing the Characteristic of an Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Expanding and Collapsing a Gadget Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Changing the Look of the Tree Gadget Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

Chapter 12 Gadget Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277

Introducing Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Using Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278

Creating a Gadget Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

Setting a Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

Setting a Picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

Specifying the Layout of a Gadget Item. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

Nonsensitive Gadget Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Dynamic Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Using Palettes with Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

Drawing a Gadget Item  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

Gadget Item Holders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

Gadget Item Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

Finding Gadget Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

Redrawing Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

Creating Gadget Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

Editing Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

Dragging and Dropping Gadget Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285

List Gadget Item Holders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
12 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 13  Tuesday, July 28, 2009  11:01 AM
Modifying a List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

Accessing Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

Sorting a List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288

Chapter 13 Menus, Menu Bars, and Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

Introducing Menus, Menu Bars, and Toolbars  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Menus and Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

Using IlvAbstractMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

Using IlvMenuItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291

Pop-up Menus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

Aligning Item Labels in a Pop-up Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

Using Tear-Off Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Using the Open Menu Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Using Checked Menu Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Using Stand-alone Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296

Using Tooltips in a Pop-Up Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296

Menu Bars and Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

Using IlvAbstractBar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

Using IlvMenuBar and IlvToolBar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

Chapter 14 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301

Introducing Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Using IlvAbstractMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302

Subclassing IlvAbstractMatrix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302

Drawing Items Over Multiple Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303

Setting Fixed Rows and Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

Using IlvMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

Handling Columns and Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Handling Matrix Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

Using Gadget Items in a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 13



usrgadgets.book  Page 14  Tuesday, July 28, 2009  11:01 AM
Using IlvSheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315

Using IlvHierarchicalSheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

Changing the Tree Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

Navigating through a Tree Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

Changing the Characteristic of a Tree Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

Expanding and Collapsing a Gadget Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

Changing the Look of the Tree Gadget Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

Event Handling and Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318

Chapter 15 Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319

Introducing Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319

Creating Panes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Creating a Graphic Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Creating a View Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Showing or Hiding a Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Adding Panes to Paned Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Creating a Paned Container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Modifying the Layout of a Paned Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Retrieving Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Encapsulating a Paned Container in a View Pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Resizing Panes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

Setting the Resize Mode and the Minimum Size of a Pane. . . . . . . . . . . . . . . . . . . . . . . . . . .325

Resizing Panes With Sliders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

Chapter 16 Docking Panes and Containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329

Introducing Docking Panes and Dockable Containers  . . . . . . . . . . . . . . . . . . . . . . . . . . .330

Creating Docking Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

Creating Orthogonal Dockable Containers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

Controlling Docking Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Connecting an Instance of the IlvDockable Class to a Pane . . . . . . . . . . . . . . . . . . . . . . . . . .337

Docking and Undocking a Pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Filtering Docking Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
14 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 15  Tuesday, July 28, 2009  11:01 AM
Using Docking Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

Using the IlvAbstractBarPane Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

Customizing Docking Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

Building a Standard Application With Docking Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Defining a Standard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Using the IlvDockableMainWindow Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

Chapter 17 View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349

Introducing View Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

Creating a Desktop with View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350

Creating a Desktop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350

Creating View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Managing View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Creating a Client View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Changing the Title Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Changing the View Frame Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Minimizing, Maximizing, and Restoring View Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . .353

Normal View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354

Minimized View Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354

Maximized View Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

Closing View Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

Changing the Current View Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356

Chapter 18 Customizing the Look and Feel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357

Understanding the Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357

IlvLookFeelHandler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

IlvObjectLFHandler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359

Making a User-Defined Component Look-and-Feel Dependant  . . . . . . . . . . . . . . . . . . . .360

Creating a New Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

Defining the Object Look-and-Feel Handler API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

Subclassing the Object Look-and-Feel Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 15



usrgadgets.book  Page 16  Tuesday, July 28, 2009  11:01 AM
Installing the Object Look-and-Feel Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

Changing the Look and Feel of an Existing Component . . . . . . . . . . . . . . . . . . . . . . . . . .363

Subclassing the Component Object Look-and-Feel Handler . . . . . . . . . . . . . . . . . . . . . . . . . .363

Replacing an Object Look-and-Feel Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364

Creating a New Look-and-Feel Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

Registering a New Look-and-Feel Handler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler  . . . . . . . . . .366

Appendix A Editing States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

Creating a Simple Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367

Creating the First Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368

Creating the Second Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369

States Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

Editing the Show State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

Chaining States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374

Changing the Label and the Callback of the Show Button. . . . . . . . . . . . . . . . . . . . . . . . . . . .376

Creating a Substate: the Edit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377

The State File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
16 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



P R E F A C E

usrgadgets.book  Page 17  Tuesday, July 28, 2009  11:01 AM
About This Manual

This User’s Manual explains how to use IBM® ILOG® Views Controls. It explains three of 
the packages that make up IBM ILOG Views Controls: IBM ILOG Views Studio, 
IBM ILOG Views Gadgets, and IBM ILOG Views Application Framework.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you 
are going to use IBM® ILOG® Views, including its particular windowing system. Since 
IBM ILOG Views is written for C++ developers, the documentation also assumes that you 
can write C++ code and that you are familiar with your C++ development environment so as 
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual  Organization

This User’s Manual explains how to use the Gadgets package of IBM® ILOG® Views 
Controls. It contains two separate parts and one Appendix:

Part I, Creating GUI Applications with IBM ILOG Views Studio describes how to use 
IBM ILOG Views Studio with the Gadgets extension installed. It contains the following 
chapters:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 17



usrgadgets.book  Page 18  Tuesday, July 28, 2009  11:01 AM
◆ Chapter 1, Introducing the Gadgets Extension of IBM ILOG Views Studio

◆ Chapter 2, Editing Gadget Panels

◆ Chapter 3, Editing Applications

◆ Chapter 4, Using the Generated Code

◆ Chapter 5, Customizing the Gadgets Extension of IBM ILOG Views Studio

◆ Chapter 6, Extending IBM ILOG Views Studio

◆ Chapter 7, Using Inspector Classes

Part II, IBM ILOG Views Gadgets provides information for developing applications that 
incorporate IBM ILOG Views Gadgets. It contains the following chapters:

◆ Chapter 8, Introducing IBM ILOG Views Gadgets

◆ Chapter 9, Understanding Gadgets

◆ Chapter 10, Dialogs

◆ Chapter 11, Using Common Gadgets

◆ Chapter 12, Gadget Items

◆ Chapter 13, Menus, Menu Bars, and Toolbars

◆ Chapter 14, Matrices

◆ Chapter 15, Panes

◆ Chapter 16, Docking Panes and Containers

◆ Chapter 17, View Frames

◆ Chapter 18, Customizing the Look and Feel

Appendix A, Editing States provides an example of how to use the state mechanism of 
IBM ILOG Views Studio.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier. 

◆ Some words appear in italics when seen for the first time.
18 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 19  Tuesday, July 28, 2009  11:01 AM
Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the library begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with 
each initial letter capitalized. 

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of 
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const; 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 19



usrgadgets.book  Page 20  Tuesday, July 28, 2009  11:01 AM
20 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 21  Tuesday, July 28, 2009  11:01 AM
Part I
Creating GUI Applications with

IBM ILOG Views Studio

This part describes how to use IBM® ILOG® Views Studio with the Gadgets extension 
installed.



usrgadgets.book  Page 22  Tuesday, July 28, 2009  11:01 AM



C H A P T E R

usrgadgets.book  Page 23  Tuesday, July 28, 2009  11:01 AM
1

Introducing the Gadgets Extension of
IBM ILOG Views Studio

This chapter introduces you to the Gadgets extension of IBM® ILOG® Views Studio. You 
can find information on the following topics:

◆ Loading the GUI Application and GUI Generation Plug-In

◆ The Main Window

◆ The Palettes Panel

◆ Gadgets Extension Commands

◆ Gadgets Extension Panels

Note: The chapters concerning the use of the Gadgets extension of IBM ILOG Views Studio 
assume that you are familiar with the information in the IBM ILOG Views Studio User’s 
Manual. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 23



usrgadgets.book  Page 24  Tuesday, July 28, 2009  11:01 AM
Loading the GUI Application and GUI Generation Plug-In

Once the Gadgets package of IBM® ILOG® Views has been installed, you can use the GUI 
Application plug-in and the GUI Generation plug-in with IBM® ILOG® Views Studio.

Launch ivfstudio with the -selectPlugIns command line parameter. When the 
IBM ILOG Views Studio Plug-Ins dialog box appears, select the GUI Application 
(smguiapp) and the GUI Generation (smguigen) check box and click OK. 

You can also execute the SelectPlugins command from the Studio Main window to display 
the IBM ILOG Views Studio Plug-Ins dialog box. Then select the GUI Application 
(smguiapp) and the GUI Generation (smguigen) check box and click OK.

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears 
as follows:
24 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Main Window

usrgadgets.book  Page 25  Tuesday, July 28, 2009  11:01 AM
Figure 1.1      

Figure 1.1  IBM ILOG Views Studio Main Window with Gadgets Extension at Start-up Time

The Main window appears much as it does when only the Foundations package is installed. 
However, you will notice that with Gadgets package you have access to additional buffer 
windows, additional palettes in the Palettes panel, and additional items in the menu bar and 
toolbars of the interface. 

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window. 
The current buffer type is shown at the bottom of the Main window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 25



usrgadgets.book  Page 26  Tuesday, July 28, 2009  11:01 AM
With the Gadgets extension of IBM® ILOG® Views Studio, you can edit the following 
types of buffers:

◆ Gadgets

◆ 2D Graphics

◆ Application

An empty Gadgets buffer and an empty Application buffer are displayed by default when 
you launch IBM ILOG Views Studio. 

When creating a new buffer window, you must specify its type (Gadgets, 2D Graphics, or 
Application) using the File > New menu selection.

You will notice the following differences as you switch between the buffers currently loaded 
in the Main window:

◆ Each buffer type has its own set of editing modes. When you change the current buffer, 
the editing modes available as icons in the toolbar change accordingly. 

◆ The behavior of certain commands varies depending on the current buffer. For example, 
the Test command tests just the panel if you are editing a Gadgets buffer, but it tests all 
the panel instances in an application if you are editing an Application buffer.

The Gadgets Buffer Window

The Gadgets buffer window is used to edit panel classes. It lets you edit the contents of an 
IlvGadgetContainer object. Gadgets can be dragged from the Palettes panel to the active 
Gadgets buffer window.

To open a new Gadgets buffer window:

1. Choose New from the File menu.

2. Then choose Gadgets from the submenu that appears. 

When you open a .ilv file that was generated by an IlvGadgetContainer, a Gadgets 
buffer window is automatically opened.

For more information on editing gadgets buffer windows, see Chapter 2, Editing Gadget 
Panels.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundations package. It is still available with 
the Gadgets extension of IBM ILOG Views Studio. It allows you to edit the contents of an 
IlvManager or an IlvContainer. It uses an IlvManager to load, edit, and save objects. 

To create a new 2D Graphics buffer window:

1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears. 
26 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Main Window

usrgadgets.book  Page 27  Tuesday, July 28, 2009  11:01 AM
To open this window, you can also execute the NewGraphicBuffer command from the 
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvManager, a 2D Graphics buffer 
window is automatically opened.

The Application Buffer Window

The Application buffer lets you edit the contents and properties of an IlvApplication. 

To create a new Application buffer window:

1. Choose New from the File menu.

2. Then choose Application from the submenu that appears. 

You can also execute the NewApplication command from the Commands panel, which 
you can display by choosing Commands from the Tools menu.

When you open a .iva file, the Application buffer discards its contents and edits the newly 
opened application.

Editing an Application
In IBM ILOG Views Studio, an application can be edited in the same way as other types of 
buffers. Only one application may be open at a time. Opening a new application 
automatically closes any open application. 

When you launch IBM ILOG Views Studio, a default Application buffer window, called 
testapp, is opened.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 27



usrgadgets.book  Page 28  Tuesday, July 28, 2009  11:01 AM
Figure 1.2     

Figure 1.2  The Application Buffer Window

You edit an application by adding panel class instances via the Panel Class palette. The Panel 
Class palette is a palette that you use to create, inspect, or remove panel classes. The panel 
classes that are available in the Panel Class palette may be dragged directly into the 
Application buffer window to create panel instances.

For more information on how to edit applications, see Chapter 3, Editing Applications.

The Menu Bar

When the Gadgets package is installed, additional commands are available through the menu 
bar in the Main window. Most notably, you will notice the addition of the Application menu, 
which provides access to the commands for generating the C++ code of your application. 
28 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Main Window

usrgadgets.book  Page 29  Tuesday, July 28, 2009  11:01 AM
Figure 1.3    

Figure 1.3  IBM ILOG Views Studio Gadgets Extension Menu Bar

The following tables summarize the additional commands that you can execute through the 
menu bar. For details on these commands, see Gadgets Extension Commands on page 38, 
where they are listed in alphabetical order.

File Menu Commands

Application Menu Commands

Menu Item Command

New > Gadgets NewGadgetBuffer

New > Application NewApplication

New > Make Default Application MakeDefaultApplication

Menu Item Command

Test Panel TestPanel

New Panel Class NewPanelClass

Panel Class Palette ShowClassPalette

Panel Class Inspector ShowPanelClassInspector

Generate Panel Subclass GeneratePanelSubClass

Add Panel Instance AddPanel

Panel Inspector InspectPanel

Application Inspector ShowApplicationInspector

Test Application TestApplication

Generate Generate
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 29



usrgadgets.book  Page 30  Tuesday, July 28, 2009  11:01 AM
Window Menu Commands

The Action Toolbar

The Action toolbar contains additional icons for you to quickly access the commands of the 
Gadgets extension. 

Figure 1.4     

Figure 1.4  IBM ILOG Views Studio Gadgets Extension Action Toolbar

Test Tests the application if the current buffer is the application or tests the panel 
data if the current buffer is a panel buffer. See TestDocument on page 47.

Panel Class Palette Shows or hides the Panel Class Palette in the Main window. 
See ShowClassPalette on page 47.

Edit Application Make the application buffer the active buffer and shows the 
Panel Class Palette. See EditApplication on page 39.

Application Inspector Opens the Application Inspector panel. See 
ShowApplicationInspector on page 46.

The Editing Modes Toolbar

The editing modes available for your use depend on the type of buffer you are editing. You 
will see different icons in displayed in the toolbar for each of the buffers available with the 
Gadgets extension.

Generate All GenerateAll

Generate Application GenerateApplication

Generate Panel Class GeneratePanelClass

Generate Make File GenerateMakeFile

Menu Item Command

Edit Application EditApplication

Menu Item Command
30 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Main Window

usrgadgets.book  Page 31  Tuesday, July 28, 2009  11:01 AM
Gadgets Buffer Editing Modes

The Editing Modes toolbar appears as follows when the Gadgets buffer is the active window 
in the workspace.

Figure 1.5

Figure 1.5  Gadgets Buffer Editing Modes Toolbar

The Editing Modes toolbar of the Gadgets buffer contains the following icons:

Selection Mode Use the Selection mode for selecting, creating, deleting, moving, 
resizing and performing other common editing operations. This mode is selected 
when IBM ILOG Views Studio is launched.

PolySelection Mode Use this mode to move or rotate the different points of your 
IlvPolyline, IlvPolygon, IlvSpline, IlvFilledSpline, and 
IlvClosedSpline objects. To complete the operation, double-click the 
workspace or select another mode.

Label Mode Use this mode to create and edit an IlvLabel object. After selecting 
this interactor, click the workspace to indicate the label position and type the string 
you want. Press Enter to complete the operation.

To edit an existing IlvLabel object, select this mode and click the IlvLabel 
object you want to edit.

Label List Mode Use this mode to create and edit a multiline label 
(IlvListLabel) object. After selecting this interactor, click the workspace to 
indicate the label position and type the string you want. You can go to a new line by 
pressing Enter. Double-click the workspace (outside this object) to complete the 
operation.

To edit an existing IlvListLabel, select this mode and click the IlvListLabel 
you want to edit.

Rotate Mode Use this mode to rotate an object in the buffer window. First, select 
the object you want to rotate in the buffer window. Click the Rotate Mode icon in 
the Editing Modes toolbar. Then click the left mouse button in the buffer window. 
An arrow appears in the buffer window. Drag the mouse to indicate the angle of 
rotation. When you release the mouse button, the object will rotate the specified 
amount. 

Active Mode Use the Active mode to test the behavior of your objects and edit 
some of their properties. In the Active mode, the objects in the workspace can 
respond to mouse and keyboard events. You can thus change text field labels, toggle 

the state of a toggle button, and so on.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 31



usrgadgets.book  Page 32  Tuesday, July 28, 2009  11:01 AM
Focus Mode Use this mode to specify the path of the keyboard focus in your 
panel. See Setting the Keyboard Focus in Panels on page 59.

Attachments Mode Use this mode to set how the position and dimensions of the 
objects in the panel change when the panel is resized. See Using the Attachments 
Mode on page 60.

Menu Mode Use this mode to attach pop-up menus to menu bars or other pop-up 
menus. See Attaching Pop-up Menus to the Menu Bar on page 70.

Matrix Mode Use this mode to change the matrix items that appear in a matrix 
gadget. See Using Matrices on page 74.

Spin Box Mode Use this mode to specify the items that appear in a spin box 
object. See Editing Spin Boxes on page 77.

Application Buffer Editing Modes

The Editing Modes toolbar appears as follows when the Application buffer is the active 
window in the workspace.

Figure 1.6

Figure 1.6  Application Buffer Editing Modes Toolbar

The Editing Modes toolbar of the Gadgets buffer contains the following icons:

Generate Use this mode to generate the application and modified panels.

Graphics Buffer Editing Modes

When you use a Graphics buffer, you have access to the same editing modes that you use 
with the Foundation Studio. 

Figure 1.7

Figure 1.7  Graphics Buffer Editing Modes Toolbar 

These editing modes are described in Chapter 3, “The IBM ILOG Views Studio Interface,” 
of the IBM ILOG Views Studio User’s Manual.

The Palettes Panel

When you use the Gadgets extension of IBM® ILOG® Views Studio, you have access to 
additional predefined gadget objects through the Palettes panel. You will use the gadgets in 
32 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Palettes Panel

usrgadgets.book  Page 33  Tuesday, July 28, 2009  11:01 AM
the Palettes panel just in the same as you do with the Foundations package of 
IBM ILOG Views Studio. You create the objects in the workspace either using the drag-and-
drop operation or the creation mode operation. 

You will notice the 5 additional palettes in the upper pane of the Palettes panel that are 
provided with the Gadgets extension. Click the appropriate palette in the upper pane to 
access the various gadget objects in the lower pane.

Figure 1.8       

Figure 1.8   IBM ILOG Views Studio Gadgets Extension Palettes Panel 

The following sections describe the objects provided with the Gadgets extension. For a 
description of the objects provided with the Foundation package, see the IBM ILOG Views 
Studio User’s Manual. 

Gadgets Palette

The Gadgets palette contains the following objects that can be created using the normal 
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 33



usrgadgets.book  Page 34  Tuesday, July 28, 2009  11:01 AM
Type Icon Description

Message Label Creates an IlvMessageLabel 
object. 

Button Creates an IlvButton object.

Toggle Creates an IlvToggle object.

Text Field Creates an IlvTextField 
object.

SC Combo Box Creates an 
IlvScrolledComboBox object.

Spin Box Creates an IlvSpinBox object.

String List Creates an IlvStringList 
object.

Multiline Text Creates an IlvText object.

Tree Creates an IlvTreeGadget 
object.
34 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Palettes Panel

usrgadgets.book  Page 35  Tuesday, July 28, 2009  11:01 AM
Menus Palette

The Menus palette contains the following objects that can be created using the normal 
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation. 

Matrix Palette

The Matrix palette contains the following objects that can be created using the normal 
creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

Notebook Creates an IlvNotebook object.

Frame Creates an IlvFrame object.

Relief Line Creates an IlvReliefLine 
object.

Type Icon Description

Menu Bar Creates an IlvMenuBar 
object.

Pop-up Menu Creates an IlvPopupMenu 
object. If you want to attach a 
pop-up menu to a menu bar or 
another pop-up menu, you must 
use the Menu editing mode. 
Click the Menu icon in the 
Editing Modes toolbar.

Toolbar Creates an IlvToolBar 
object.

Type Icon Description
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 35



usrgadgets.book  Page 36  Tuesday, July 28, 2009  11:01 AM
Miscellaneous Palette

The Miscellaneous palette contains the following objects that can be created using the 
normal creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

Type Icon Description

Matrix Creates an IlvMatrix object.

Sheet Creates an IlvSheet object.

Hierarchical
Sheet

Creates an 
IlvHierarchicalSheet 
object.
36 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Palettes Panel

usrgadgets.book  Page 37  Tuesday, July 28, 2009  11:01 AM
Type Icon Description

Slider Creates an IlvSlider object. 
You can choose either a 
horizontal or a vertical 
orientation for the slider.

Label Creates an IlvLabel object. 

Multilines Label Creates an IlvListLabel 
object.

Scroll bar Creates an IlvScrollBar 
object. You can choose either a 
horizontal or a vertical 
orientation for the scroll bar.

Option menu Creates an IlvOptionMenu 
object.

Combo Box Creates an IlvComboBox 
object.

Number Field Creates an IlvNumberField 
object.

Date Field Creates an IlvDateField 
object.

Password Field Creates an 
IlvPasswordTextField 
object.

Colored Toggle Creates an 
IlvColoredToggle object.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 37



e 

gle 

ngle 

usrgadgets.book  Page 38  Tuesday, July 28, 2009  11:01 AM
View Rectangles Palette

The View Rectangles palette contains the following objects that can be created using the 
normal creation mode of IBM® ILOG® Views Studio or the drag-and-drop operation.

Gadgets Extension Commands

This section presents an alphabetical listing of the additional predefined commands that are 
available in the Gadgets extension of IBM® ILOG® Views Studio. (All of the 

Arrow Button Creates an IlvArrowButton 
object.

Gadget Creates an IlvGadget object.

Type Icon Description

Gadget Container Creates an 
IlvGadgetContainerRectangl
object.

SC Gadget Container Creates an 
IlvSCGadgetContainerRectan
object.

SC Manager Creates an IlvSCManagerRecta
object.

Type Icon Description
38 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Commands

usrgadgets.book  Page 39  Tuesday, July 28, 2009  11:01 AM
IBM ILOG Views Studio Foundation commands are available as well.) For each command, 
it indicates its label, the category to which it belongs, how to access it if it is accessible other 
than through the Commands panel, and what it is used for. 

To display the Commands panel, choose Commands from the Tools menu in the Main 
window or click the Commands icon  in the Action toolbar.

AddPanel 

 

EditApplication 

  

Generate 

Label Add Panel

Category application

Action Creates a panel instance of the selected panel class and adds it to the 
application.

Label Edit Application

Path Main window: Tools menu and Edit application icon in the toolbar

Category application

Action Selects the application buffer and opens the Class Palette.

Label Generate

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the 
application and its modified panel classes. If the application file name is the 
default name, a File Selector panel is opened to let you enter a new file 
name. If the Make toggle button in the Application Inspector is turned on, the 
make file is also generated.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 39



usrgadgets.book  Page 40  Tuesday, July 28, 2009  11:01 AM
GenerateAll 

GenerateApplication 

GenerateMakeFile 

Label Generate All

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the 
application and all its panel classes. If the application file name is the default 
name, a File Selector panel is opened to let you enter a new file name. If the 
Make toggle button in the Application Files inspector is turned on, the make 
file is generated too.

Label Generate Application

Path Main window: Application menu

Category application

Action Saves the application description file, and generates the C++ code for the 
application. If the application file name is the default name, a File Selector 
panel is opened to let you enter a new file name. If the Make toggle button in 
the Application Inspector is turned on, the make file is also generated.

Label Generate Make File

Path Main window: Application menu

Category application

Action Generates the application make file, even if the Make toggle button in the 
Application Inspector is not turned on.
40 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Commands

usrgadgets.book  Page 41  Tuesday, July 28, 2009  11:01 AM
GeneratePanelClass 

GeneratePanelSubClass 

InspectPanel

  

KillTestPanels 

Label Generate Panel Class

Path Main window: Application menu

Category application

Action Generates the C++ code for the currently selected panel class. To select a 
panel class, use the Classes palette.

Label Generate Panel Sub Class

Path Main window: Application menu

Category application

Action Generates a subclass skeleton for the current panel class. This command 
activates a dialog box which lets you enter the class name, the file base 
name and the directories where the header and source files will be 
generated.

Label Inspect Panel Class

Path Panel Class palette: toolbar

Category application, panel

Action Opens the Panel Class Inspector that lets you inspect the properties of the 
selected panel class.

Label Kill Test Panels
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 41



usrgadgets.book  Page 42  Tuesday, July 28, 2009  11:01 AM
MakeDefaultApplication 

NewApplication 

 

NewGadgetBuffer 

 

Category application

Action Kills all the panels that are created for testing the application or the current 
buffer.

Label Make Default Application

Path Main window: File menu > New

Category application

Action If the current buffer is a panel buffer, this command creates an application, 
creates a panel class for the current buffer, and creates a panel instance of 
that panel class.

Label Application

Path Main window: File menu > New

Category application

Action Discards the current application and edits a new one. Only one application 
can be edited at a time.

Label Gadgets

Path Main window: File menu > New

Category buffer

Action Creates a new gadget buffer. This buffer becomes the current buffer.
42 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Commands

usrgadgets.book  Page 43  Tuesday, July 28, 2009  11:01 AM
NewPanelClass 

 

OpenApplication 

 

RemoveAllAttachments 

 

RemoveAttachments 

 

Label New Panel Class

Path Panel Class palette 

Category application

Action Creates a new panel class for the current buffer if this buffer is designed for a 
container and if it is not already part of the application.

Label Open…

Path Main window: File menu and Open icon in the toolbar

Category application

Action Discards the current application and loads an application previously saved by 
IBM ILOG Views Studio. This command opens a File Selector panel that lets 
you choose an application description file. 

Label Remove All Attachments

Category attachments

Action Removes all the attachments for the selected object. This command only 
works if the current mode is the Attachments mode.

Label Remove Attachments

Category attachments

Action Removes all the attachments of the current buffer. This command only works 
if the current mode is the Attachments mode.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 43



usrgadgets.book  Page 44  Tuesday, July 28, 2009  11:01 AM
RemovePanel 

 

RemovePanelClass 

 

SaveApplication 

 

SaveApplicationAs

 

Label Remove Panel

Path Panel instance window in the Application buffer window: the close (X) button 
or the menu.

Category application

Action Removes the selected panel instance from the application.

Label Remove Panel Class

Path Panel Class palette

Category application

Action Removes the selected panel class and all its panel instances.

Label Save

Path Main window: File menu and Save icon in the toolbar

Category application

Action Saves the description of the current application to its data file. If the 
application’s name is the default name, this command executes the 
SaveApplicationAs command in order to let you enter an application file 
name. Execute the SaveApplicationAs command for saving a new 
application for the first time or changing its file name.

Label Save As...

Path Main window: File menu and Save icon in the toolbar
44 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Commands

usrgadgets.book  Page 45  Tuesday, July 28, 2009  11:01 AM
SelectAttachmentsMode 

 

SelectFocusMode 

 

SelectMatrixMode 

 

Category application

Action Opens a File Selector panel that lets you enter a new file name for your 
application and save its description to that file. This command lets you 
change your application’s file base name (therefore its generated C++ files) 
as well as its location. 

Label Attachments

Path Main window: Editing Modes toolbar (when editing Gadgets buffers)

Category mode, gadgets

State True if this mode is selected.

Action Selects the Attachments mode. See Using the Attachments Mode on 
page 60.

Label Focus

Path Main window: Editing Modes toolbar (when editing Gadgets buffers) 

Category mode, gadgets

State True if this mode is selected.

Action Selects the Focus mode. See Setting the Keyboard Focus in Panels on 
page 59.

Label Matrix

Path Main window: Editing Modes toolbar (when editing Gadgets buffers) 

Category mode
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 45



usrgadgets.book  Page 46  Tuesday, July 28, 2009  11:01 AM
SelectMenuMode 

 

ShowAllTestPanels 

 

ShowApplicationInspector 

 

State True if this mode is selected.

Action Selects the Matrix mode. See Using Matrices on page 74.

Label Menu

Path Main window: Editing Modes toolbar (when editing Gadgets buffers) 

Category mode

State True if this mode is selected.

Action Selects the Menu mode. See Editing Menus on page 65.

Label Show All Test Panels

Category application, panel 

Action Shows all the current panels in the application. Unlike the 
TestApplication command that shows only visible panels, this command 
shows every panel.

Label Inspect Application

Path Main window: Tools menu and Inspect Application in the toolbar

Category application, panel

Action Opens the Application Inspector panel.
46 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Commands

usrgadgets.book  Page 47  Tuesday, July 28, 2009  11:01 AM
ShowClassPalette 

  

ShowPanelClassInspector 

  

TestApplication 

 

TestDocument

 

Label Classes

Path Main window: Classes icon in the toolbar

Category application, panel

Action Opens the Class Palette that lets you create, inspect or remove panel classes 
and creates panel instances. 

Label Inspect Panel Class

Path Panel Class palette: toolbar

Category application, panel

Action Shows or hides the Panel Class Inspector of the selected object.

Label Test

Path Main window: toolbar 

Category application

State True if the application is being tested.

Action If the application is not being tested, opens the panels that are visible and 
lets you test them until you execute this command again. If the application is 
being tested, this command kills the test panels and stops testing.

Label Test Application 

Path Main window: toolbar 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 47



usrgadgets.book  Page 48  Tuesday, July 28, 2009  11:01 AM
TestPanel 

Gadgets Extension Panels 

The Gadgets extension provides several additional panels and dialog boxes for your use 
when creating your own panels and applications.

◆ Application Inspector

◆ The Panel Class Inspector

◆ The Panel Instance Inspector

Application Inspector

The Application inspector is used to edit the settings of the generated application. It lets you 
specify the location of the C++ files, the class declaration, and several options for the 
generated code. This panel also lets you insert code in the generated application class files 
(see The Header and Source Pages on page 92). 

Category application

Action Tests the application if the current buffer is the application or tests the panel 
data if the current buffer is a panel buffer.

Label Test

Path Main window: toolbar 

Category buffer

Action Tests the current buffer.
48 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Panels

usrgadgets.book  Page 49  Tuesday, July 28, 2009  11:01 AM
Figure 1.9

Figure 1.9  Application Inspector

Access to Panel

The panel is accessed by:

◆ Clicking the Application Inspector icon in the Action toolbar. 

     

or 

◆ Choosing Application Inspector from the Application menu. 

or 

◆ Choosing Commands from the Tools menu, selecting the 
ShowApplicationInspector command in the list, and clicking Apply. 

Application Inspector Elements

The Application inspector has five notebook pages: General, Options, Header, Source, and 
Script; and four buttons: Apply, Reset, Close, and Help. For a complete description of each 
notebook page and the fields contained on the page, see The Application Inspector on 
page 88. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 49



usrgadgets.book  Page 50  Tuesday, July 28, 2009  11:01 AM
The Panel Class Inspector  

The Panel Class inspector is used to inspect the directories and options for generating the 
panel class. This panel can also be used to insert your own code in the generated panel class 
files (see The Header and Source Pages on page 92).

Figure 1.10 

Figure 1.10  Panel Class Inspector

Access to Panel

The panel is accessed by:

◆ Clicking the Panel Class Inspector icon in the Panel Class palette. 

   

or 

◆ Choosing Panel Class Inspector from the Application menu. 
50 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Extension Panels

usrgadgets.book  Page 51  Tuesday, July 28, 2009  11:01 AM
or 

◆ Choosing Commands from the Tools menu, selecting the ShowPanelClassInspector 
command in the list, and clicking Apply. 

Panel Class Inspector Elements

The Panel Class Inspector has four notebook pages: General, Options, Header, and Source; 
and four buttons: Apply, Reset, Close, and Help. For a complete description of each 
notebook page and the fields contained on the page, see The Panel Class Inspector on 
page 97. 

The Panel Instance Inspector

The Panel Instance inspector is used to edit the properties of the selected panel instance.

Figure 1.11

Figure 1.11  Panel Instance Inspector 

Access to Panel

The panel is accessed by:

◆ Double-clicking the title bar of the panel instance in the Application buffer window. 

or 

◆ Choosing Panel Inspector from the panel pop-up menu accessible by clicking the box 
located in the top-left corner of the panel instance.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 51



usrgadgets.book  Page 52  Tuesday, July 28, 2009  11:01 AM
or 

◆ Choosing Panel Inspector from the Application menu. 

or 

◆ Choosing Commands from the Tools menu, selecting the InspectPanel command in 
the list, and clicking Apply. 

Panel Class Instance Inspector Elements

The Panel Class Inspector has four notebook pages: General, Properties, Sizes, and 
Hierarchy; and five buttons: Apply, Reset, Test, Close, and Help. For a complete description 
of each notebook page and the fields contained on the page, see Inspecting a Panel Instance 
on page 103. 
52 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 53  Tuesday, July 28, 2009  11:01 AM
2

Editing Gadget Panels

This chapter introduces you to the basic commands, panels, and modes that you can use to 
create gadget panels. 

You will find information on the following topics:

◆ Creating a New Panel

◆ Creating Gadget Objects

◆ Inspecting an Object

◆ Testing a Panel

◆ Using Active Mode

◆ Setting the Keyboard Focus in Panels

◆ Using the Attachments Mode

◆ Editing Menus

◆ Using Matrices

◆ Editing Spin Boxes
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 53



usrgadgets.book  Page 54  Tuesday, July 28, 2009  11:01 AM
Creating a New Panel

When IBM® ILOG® Views Studio is launched, an empty Gadgets buffer window is open, 
which is ready to be edited. You will create your panel in this Gadgets buffer window. If 
required, to create a new Gadgets buffer window:

1. Choose New from the File menu. 

2. Then choose Gadgets in the submenu that appears. 

The new Gadgets buffer window becomes the current window and can be edited.

Creating Gadget Objects

The Gadgets palette in the Palettes panel provides the various predefined gadget objects 
from which you will create the objects for your panels. You can use either a drag-and-drop 
operation or the creation mode feature.

Using the Drag-and-Drop Operation 

When you use the drag-and-drop operation for creating your objects, the object that is added 
to the buffer window is an exact copy of the object as it is found in the Palettes panel. The 
object has the same shape and dimensions of the object in the Palettes panel. 

To create an object using the drag-and-drop operation:

1. In the upper pane of the Palettes panel, click the item in the tree corresponding to the 
type of gadget you want to create.

The related palette appears in the lower pane.

2. Click the gadget you are interested in and drag it to the Gadgets buffer window.

When you release the mouse button, you are in Selection mode. The object remains 
selected in the buffer window and you can modify it as required.

For example, to create a text field:

1. In the upper pane of the Palettes panel, click Gadgets in the tree.

2. In the lower pane of the Palettes panel, click the Text Field gadget.

3. Drag it to the Gadgets buffer window.
54 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating Gadget Objects

usrgadgets.book  Page 55  Tuesday, July 28, 2009  11:01 AM
  

Using the Creation Mode

When you use the creation mode, you are essentially drawing the object in the buffer 
window. You determine for yourself the size and shape of the object. Creation mode also 
allows you to create multiple objects once you have selected the kind of object you want to 
create in the Palettes panel. 

To create an object using the creation mode:

1. In the upper pane of the Palettes panel, click the item in the tree corresponding to the 
kind of object you want to create.

The related palette appears in the lower pane.

2. In the lower pane of the Palettes panel, click the object you are interested in. A bounding 
box appears around the object to indicate that creation mode is active. 

If you want to add only one object to the buffer window, click the object in the Palettes 
window once. (This puts you in transient creation mode. After you have drawn the object 
in the buffer window, you will leave creation mode automatically.)

If you want to add multiple objects of the same kind, hold down the Shift key and click 
the object in the Palettes panel. (This puts you in permanent creation mode. You will 
remain in creation mode and you can draw as many objects as you like. To leave creation 
mode, you must click the Selection mode icon in the Editing Modes toolbar.) 

3. Move the pointer to the buffer window. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 55



usrgadgets.book  Page 56  Tuesday, July 28, 2009  11:01 AM
4. Click in the buffer window where you want your object positioned and drag the mouse 
until the object is the size and shape you want.

For example, to create a string list box:

1. In the upper pane of Palettes panel, click Gadgets in the tree.

2. In the lower pane of the Palettes panel, click the IlvStringList icon once. Notice the 
bounding box that appears around the IlvStringList icon indicating you are in 
creation mode. 

3. Click in the Gadgets window at the position where you want to start drawing the string 
list box.

4. Drag the mouse until the string list box is the size and shape you want. 

As you drag the mouse, you see a bounding box that shows the shape and size of your 
object. 

5. Release the mouse button. The string list box appears with the dimensions of the 
bounding box you have just drawn. 

When you release the mouse button, you automatically leave creation mode and are put 
into Selection mode. Notice that the IlvStringList icon in the Palettes panel is no 
56 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Inspecting an Object

usrgadgets.book  Page 57  Tuesday, July 28, 2009  11:01 AM
longer selected and that the Selection mode icon  is selected in the Editing Modes 
toolbar. 

You can reshape, resize, move, or modify the box as you want.

Inspecting an Object

To inspect the properties specific to an object, double-click the object. You can also click the 
Inspect icon in the Action toolbar of the Main window.

Figure 2.1        

Figure 2.1  Inspect Icon in the Main Window Toolbar

If the object class has an associated inspector panel, you can use it to edit the specific 
properties of the object class. The contents of the inspector depend on the related object 
class. 

If you click a string list gadget, the following inspector panel appears:

Figure 2.2 

Figure 2.2  String List Inspector Panel (General Page)
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 57



usrgadgets.book  Page 58  Tuesday, July 28, 2009  11:01 AM
To validate the changes made to the object properties, click Apply. To close the panel, click 
Close. 

Only one object can be inspected at a time. If you select another object of the same type 
while the first is being inspected, the properties of the newly selected object appear in the 
inspector panel. If another type of object is selected, its associated inspector replaces the one 
that is displayed.

Testing a Panel   

To test the behavior of a panel, click the Test icon in the Main window toolbar.

Figure 2.3     

Figure 2.3  Test Icon in the Main Window Toolbar

A panel representing the current buffer is displayed and ready to be tested. To exit the test 
mode, click the same icon again. 

Using Active Mode 

In the Active mode, the objects in the workspace can respond to mouse and keyboard events. 
This lets you test the behavior of your objects and edit some of their properties. You can, for 
example, change text field labels and toggle the state of a toggle button.

To select the Active mode, click the Active icon in the Editing Modes toolbar: 

Figure 2.4         

Figure 2.4  Active Mode Icon
58 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Setting the Keyboard Focus in Panels

usrgadgets.book  Page 59  Tuesday, July 28, 2009  11:01 AM
Setting the Keyboard Focus in Panels  

By default, the keyboard focus is determined by the object bounding box positions. This 
default focus logically moves between objects from left to right, and from top to bottom. 
Since this default path is not always suitable, IBM® ILOG® Views Studio provides you 
with a Focus editing mode that lets you draw the path of the keyboard focus in your panel.

To select the Focus mode, click the Focus icon in the Editing Modes toolbar:

Figure 2.5      

Figure 2.5  Focus Mode Icon

The keyboard focus path is shown by a series of arrows:

Figure 2.6

Figure 2.6  Focus Path
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 59



usrgadgets.book  Page 60  Tuesday, July 28, 2009  11:01 AM
Next Focus Object

For each focusable object (graphic object that can receive the keyboard events), you can 
specify its next focus object. To do so, drag a line from that object and release the mouse 
button when the line is on the object you want to be the next focus object. This operation 
only works for focusable objects.

First Focus Object

When the panel is focused for the first time, the first focus object is the one that takes the 
keyboard focus. To designate the first focus object, drag a line from anywhere in the 
workspace (but not from an object). Release the mouse button when the line is in the object 
you choose as the first focus object. A filled circle is then drawn in the center of that object. 
A gadget container can have only one first focus graphic.

Last Focus Object

To designate a last focus graphic, drag a line from that object and release the mouse button 
when the line is anywhere in the workspace (but not in an object). When the keyboard focus 
chain leaves a last focus graphic of a gadget container, it goes back to the first focus graphic. 
However, if the gadget container is linked to another container, it gives the keyboard focus to 
that container instead. A gadget container can have more than one last focus graphic.

Using the Attachments Mode

IBM® ILOG® Views Studio provides an Attachments mode that you can use to set how the 
position and dimensions of the objects in the panel change when the panel is resized. To 
activate this mode, click the Attachments icon in the Editing Modes toolbar:

Figure 2.7     

Figure 2.7  Attachments Icon

Setting attachments involves two steps:

◆ Setting the Guides

◆ Attaching Objects to Guides
60 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using the Attachments Mode

usrgadgets.book  Page 61  Tuesday, July 28, 2009  11:01 AM
Setting the Guides

When you first click the Attachments icon, guides appear on the top and left borders with 
numbers next to them. These numbers refer to the weight corresponding to the guides (see 
below).

Figure 2.8       

Figure 2.8  Attachment Guides

1. Select a guide by clicking on it or its weight number.

2. Create a guide by selecting one of the initial guides at the top or left borders and 
dragging the new guide created—with the mouse button pressed—to any position you 
want, then releasing the mouse button.

A guide is defined by four elements that can be edited in the Guide Inspector panel. To open 
this panel, double-click the guide or its weight number:

Figure 2.9

Figure 2.9  Guide Inspector Panel
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 61



usrgadgets.book  Page 62  Tuesday, July 28, 2009  11:01 AM
The Guide Inspector panel contains the following fields:

◆ Position For horizontal guides, the number of pixels from the top border. For vertical 
guides, the number of pixels from the left border.

◆ Size For horizontal guides, the number of pixels to the next guide below. For vertical 
guides, the number of pixels to the next guide to the right.

◆ Limit The minimal size of the section set off by the guide when the window is resized 
(see “Size”).

◆ Weight The amount of the window to be allocated to a section (delimited by a guide) 
relative to other sections when the window is resized. The following formula applies to 
each section when a window is resized, where Delta equals the new size of the window 
less its initial size:

  

Attaching Objects to Guides

Each object has an Attachments Inspector that provides added control to set fixed (double 
lines) and elastic (single line) positions. By double-clicking the object, you open the 
Attachments Inspector, in which you can only edit existing attachments. The numbers in the 
text fields refer to the number of pixels from the edge of the object to the guide being used:

Figure 2.10

Figure 2.10  Attachments Inspector 

There are six locations for creating attachments, each of which can be one of two types:
62 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using the Attachments Mode

usrgadgets.book  Page 63  Tuesday, July 28, 2009  11:01 AM
◆ Location An attachment can be made from any of the four sides of the object bounding 
box to a guide parallel to that side. Attachments can also be defined within an object 
(horizontally and vertically) to specify whether the object changes size when the panel is 
resized.

◆ Type Two types of attachments are possible for each of the six locations: fixed or 
elastic.

● Fixed (double line): The distance between the object and the guide stays the same as 
the panel is being resized. Fixed inside the object means that the object does not 
change size when the panel is resized.

● Elastic (single line): The distance between the object and guide changes 
proportionately as the panel is being resized. Elastic inside the object means the object 
changes sizes proportionally when the panel is resized.

Attachment Operations

Here are the types of operations you can perform while attaching objects:

◆ Creating Attachments Select the object you want to attach and drag a line (with the 
mouse button pressed) from a middle handle of that object to a guide parallel to that side. 
When the guide becomes highlighted, release the mouse button. Default attachments are 
made on the opposite side and inside the object. The specified attachments apply to all 
the selected objects.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 63



usrgadgets.book  Page 64  Tuesday, July 28, 2009  11:01 AM
Figure 2.11

Figure 2.11  Attaching an Object to a Guide 

◆ Removing Attachments Drag one of the attachment’s handles and release the mouse 
button when the new line is not touching a guide.

◆ Changing an Attachment from One Guide to Another Drag a line from the 
attachment handle to a new guide.

◆ Changing the Type of Attachment Click on the attachment line, which toggles 
between fixed and elastic. This can also be carried out in the Attachments Inspector.

◆ Showing an Object’s Attachments Select the object in Attachments editing mode and 
double-click the object to show the Attachments Inspector.

Defaults 

The defaults selected depend on the handle used to begin the attachment:

Note: When creating attachments between a guide and an object, you may have 
problems if the object is too close to the guide. In this case drag the mouse in the 
opposite direction and then back to the guide.
64 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Menus

usrgadgets.book  Page 65  Tuesday, July 28, 2009  11:01 AM
◆ Left and Top Handles The object enlarges with the panel (fixed, elastic, fixed).

◆ Right and Bottom Handles The object moves while remaining the same size (elastic, 
fixed, fixed).

Testing the Attachments

You can test the attachments applied to the objects by clicking the Test icon  in the 
Main Window toolbar. Change the test window size by using the windowing system. You 
will see the object behavior as the panel changes size. If you need to make changes, you can 
click the Test icon  again to close the test panel and make your changes in Attachments 
mode. 

Editing Menus

The Menus palette provides three types of menu gadgets that you can use in your panels. 
This section gives you information on how to create these objects. 

◆ Menu Bars

◆ Pop-up Menus

◆ Toolbars

Menu Bars

To insert a menu bar (IlvMenuBar) in your panel:

1. In the top pane of the Palettes panel, click Menus.

The Menus palette is displayed in the bottom pane of the Palettes panel. 

2. Click the menu bar gadget and drag it to the active Gadgets buffer window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 65



usrgadgets.book  Page 66  Tuesday, July 28, 2009  11:01 AM
  

The menu bar is automatically resized so it is as wide as the panel itself and default 
horizontal attachments are set to reflect panel changes (fixed, elastic, fixed).

To inspect this menu bar, double-click it or click the Inspect icon from the Main window 
toolbar. Its inspector looks like this:
66 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Menus

usrgadgets.book  Page 67  Tuesday, July 28, 2009  11:01 AM
Figure 2.12 

Figure 2.12  Menu Bar Inspector Panel (General page)

The options in the Items page let you insert, add, or remove items from the selected menu 
bar. You can also add a separator between a set of menu items or append a pop-up menu. 

The left side of the page displays the structure of the menu bar as a tree. To apply changes to 
the whole menu bar or to any one of the items of which it is composed, select the appropriate 
item in the tree and make the changes you want in the right side of the page. Click Apply to 
validate the changes.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 67



usrgadgets.book  Page 68  Tuesday, July 28, 2009  11:01 AM
Figure 2.13        

Figure 2.13  Menu Bar Inspector Panel (Items Page)

Pop-up Menus

Before being attached to the menu bar, a pop-up menu must be inserted and edited in the 
workspace. 

To insert a pop-up menu (IlvPopupMenu) in the workspace:

1.  In the top pane of the Palettes panel, click Menus.

The Menus palette is displayed in the bottom pane of the Palettes panel. 

2. Click the pop-up menu gadget and drag it to the Gadgets buffer window.
68 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Menus

usrgadgets.book  Page 69  Tuesday, July 28, 2009  11:01 AM
3. Double-click the pop-up menu to display its inspector panel.

 

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 69



usrgadgets.book  Page 70  Tuesday, July 28, 2009  11:01 AM
4. To insert, add, or remove items from the pop-up menu in the buffer window, use the 
Items page of the PopupMenu inspector. You can also add a separator between a set of 
menu items.

The left side of the page displays the structure of the pop-up menu as a tree. To apply 
changes to the whole pop-up menu or to each one of the items of which it is composed, 
select the appropriate item in the tree and make the changes you want in the right side of 
the page. 

5. Click Apply to validate the changes.

Attaching Pop-up Menus to the Menu Bar

To attach pop-up menus to menu items:

1. Click the Menu mode icon in the Editing Modes toolbar:

   
70 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Menus

usrgadgets.book  Page 71  Tuesday, July 28, 2009  11:01 AM
2. Click the pop-up menu and drag the mouse to the menu bar item to which you want to 
attach it. 

As you drag the mouse, a black line appears linking the two items. The pop-up menu 
disappears when you release the mouse button.

To edit a pop-up menu that has been attached to a menu bar or another pop-up menu item:

1. Go back to the Menu mode. 

2. Double-click the menu item to which the pop-up menu is attached. 

Its submenu tears off and can be selected and edited.

● To change a pop-up menu item, drag an object from the workspace and place it on the 
item to be changed. That object will then be removed from the workspace.

● To get a copy of the object used by a menu item, drag that item and place it outside the 
menu. You can then edit this copy and place it back in the menu item.

Toolbars

To insert a toolbar (IlvToolBar) in your panel:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 71



usrgadgets.book  Page 72  Tuesday, July 28, 2009  11:01 AM
1. In the top pane of the Palettes panel, click Menus.

The Menus palette is displayed in the bottom pane of the Palettes panel. 

2. Click the toolbar gadget and drag it to the Gadgets buffer window.

 

3. Double-click on the toolbar to display its inspector panel.
72 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Menus

usrgadgets.book  Page 73  Tuesday, July 28, 2009  11:01 AM
4. To insert, add, or remove items from the selected toolbar, use the Items page of the 
Toolbar inspector. You can also add a separator between a set of toolbar items. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 73



usrgadgets.book  Page 74  Tuesday, July 28, 2009  11:01 AM
The left side of the page displays the structure of the toolbar as a tree. To apply changes 
to the whole toolbar or to any one of the items of which it is composed, select the 
appropriate item in the tree and make the required changes in the right side of the page.

Toolbars can be oriented horizontally or vertically. In addition, toolbar items can display 
tooltips and can be attached to pop-up menus.

Using Matrices

Use the Matrix mode to change items in your IlvMatrix or IlvSheet objects as well as in 
their respective inspector panels that let you edit their general properties.

Figure 2.14     

Figure 2.14  Matrix Mode Icon

Setting Up Matrix Items

You can set up a matrix item by dragging an object from the workspace and dropping it in 
the desired item: a copy of the dragged object is made and put in the matrix item; the source 
object remains available in the workspace.
74 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using Matrices

usrgadgets.book  Page 75  Tuesday, July 28, 2009  11:01 AM
If the dragged object is an IlvLabel object, the new matrix item becomes an 
IlvLabelMatrixItem. If the dragged object is an icon (of class IlvIcon or derived 
classes), the new item becomes an IlvBitmapMatrixItem. The matrix and item classes 
are documented in the IBM ILOG Views Reference Manual.

Extracting Matrix Items

You can extract the object from a matrix item by dragging that item and dropping it in the 
workspace. The extracted object can then be edited and put back where it was or copied to 
other items.

Inspecting Matrix Items

The Matrix mode provides you with an item inspector. To inspect a cell, double-click on it. 
The following inspector panel appears:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 75



usrgadgets.book  Page 76  Tuesday, July 28, 2009  11:01 AM
Figure 2.15

Figure 2.15  Matrix Item Inspector Panel

Item References

The Matrix Item inspector panel lets you inspect:

◆ one cell

◆ all the rows in a column

◆ all the columns in a row

◆ the whole matrix

The Column and Row fields display the coordinates of the inspected cell(s). If you want to 
inspect all the columns, enter “*” in the Column field. If you want to inspect all the rows, 
enter “*” in the Row field.

Item Type

The Type option menu lets you choose the matrix item class for the inspected cells:

 

Option Matrix Item Class Matrix Item Class with Resources

Empty None. (Empty cells) 

Label IlvLabelMatrixItem IlvFilledLabelMatrixItem 

Int IlvIntMatrixItem IlvFilledIntMatrixItem 

Float IlvFloatMatrixItem IlvFilledFloatMatrixItem 
76 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Spin Boxes

usrgadgets.book  Page 77  Tuesday, July 28, 2009  11:01 AM
The last column of the above table shows the matrix item classes that are used if you choose 
a foreground, a background or a font for your label or numeric items. For more information, 
see the sections in the IBM ILOG Views Reference Manual corresponding to the classes in 
the above table.

Item Flags

Use the Sensitive, Read only, Relief and Interactive toggle buttons to set the corresponding 
flags for your items:

 

Item Resources

Use the Foreground, Background, and Font fields to set the colors and fonts for the selected 
items. 

Validating

Click Apply to validate the characteristics you edit in the Matrix Item inspector panel.

Editing Spin Boxes

To include a spin box in your panel, you will need to insert the spin box and then specify the 
type of item you want to appear in the spin box. 

Double IlvDoubleMatrixItem IlvFilledDoubleMatrixItem 

Bitmap IlvBitmapMatrixItem 

Graphic IlvGraphicMatrixItem 

Gadget IlvGadgetMatrixItem 

Toggle 
button

See class get function set function

Sensitive IlvMatrix isItemSensitive setItemSensitive 

Read only IlvMatrix isItemReadOnly setItemReadOnly 

Grayed IlvMatrix isItemGrayed setItemGrayed 

Relief IlvMatrix isItemRelief setItemRelief 

Interactive IlvGadgetMatrixItem isInteractive setInteractive 

Option Matrix Item Class Matrix Item Class with Resources
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 77



usrgadgets.book  Page 78  Tuesday, July 28, 2009  11:01 AM
Inserting a Spin Box

To insert a spin box (IlvSpinBox) in your panel:

1. In the top pane of the Palettes panel, click Gadgets.

The Gadgets palette is displayed in the bottom pane of the Palettes panel. 

2. Click the spin box gadget and drag it to the Gadgets buffer window.

3. Double-click the spin box gadget to display its inspector.

4. Use the Spin Box inspector to edit the items that appear in the spin box. 
78 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Spin Boxes

usrgadgets.book  Page 79  Tuesday, July 28, 2009  11:01 AM
The Specific page of the inspector allows you to add fields to the spin box, specify the 
values that appear in the fields and specify how the spin arrows appear in the spin box.

Setting the Type of Spin Box Item

The default item in the spin box gadget is an IlvTextField object. By using the Spin Box 
editing mode, you can specify the type of gadget object that appears as a spin box item. For 
example, you may want to have an IlvNumberField as the spin box item rather than an 
IlvTextField. 

To set an IlvNumberField as the item in a spin box, do the following:

1. Drag a spin box gadget from the Palettes panel to the Gadgets buffer window.

2. Double-click the spin box gadget to display the Spin Box inspector.

3. Click the Specific tab to display the Specific page.

4. Select the IlvTextField item in the Fields box.

5. Click the Remove icon  below the Fields box.

The item is removed along with its settings defined in the other fields of the inspector.

6. In the upper pane of the Palettes panel, click Miscellaneous.

The Miscellaneous palette is displayed in the bottom pane of the Palettes panel.

7. Click the IlvNumberField gadget and drag it to the Gadgets buffer window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 79



usrgadgets.book  Page 80  Tuesday, July 28, 2009  11:01 AM
8. Click the Spin Box icon in the Editing Modes toolbar.

      

9. Drag a line from the number field gadget to the spin box gadget. 

10. The spin box now contains the number field and you can specify the settings for the item 
in the spin box inspector.
80 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing Spin Boxes

usrgadgets.book  Page 81  Tuesday, July 28, 2009  11:01 AM
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 81



usrgadgets.book  Page 82  Tuesday, July 28, 2009  11:01 AM
82 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 83  Tuesday, July 28, 2009  11:01 AM
3

Editing Applications

This chapter describes how to work with application buffers. Application buffers contain 
panel instances that are derived from panel classes. Panel classes and panel instances are 
created and handled using a special palette called the Panel Class palette.

You will find information on the following topics:

◆ The Application Buffer

◆ Application Description File

◆ Other Generated Files

◆ The Application Inspector

◆ Editing an Application

The Application Buffer

In IBM® ILOG® Views Studio, you edit an application via the Application buffer window. 
When you launch IBM ILOG Views Studio, a default application called “testapp” is created. 
To activate the Application buffer window, choose <Application> from the Window menu or 
click in the Application buffer window (by default, an empty Application buffer window is 
displayed at start-up). Only one application can be edited at a time. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 83



usrgadgets.book  Page 84  Tuesday, July 28, 2009  11:01 AM
Figure 3.1

Figure 3.1  The Application Buffer Window in the Main Window 

When the Application buffer window is activated, you will notice the following:

◆ The title bar of the Main window changes to reflect the application file name, followed 
by the word <Application>. 

◆ The type of the current buffer, Application, is displayed at the bottom right of the Main 
window. 

◆ The Editing Modes toolbar that appears at the top of the Main window contains a single 
icon, corresponding to the Generate command.

◆ The generic inspector disappears.
84 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Application Buffer

usrgadgets.book  Page 85  Tuesday, July 28, 2009  11:01 AM
When you edit an application, you will use the Application buffer window along with the 
Panel Class palette. To activate the Application buffer window and the Panel Class palette, 
click the Edit Application icon in the toolbar at the top of the Main window. 

Figure 3.2     

Figure 3.2  The Edit Application Icon

When you edit an Application buffer, the Main window should look something like this:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 85



usrgadgets.book  Page 86  Tuesday, July 28, 2009  11:01 AM
Figure 3.3  

Figure 3.3  Editing an Application Buffer

The Application buffer window contains any panel instances that have been added to it.

The Panel Class palette lets you create new panel classes, as well as remove and inspect 
them. The icons in the palette show the panel classes that have been created for the current 
application.
86 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Application Description File

usrgadgets.book  Page 87  Tuesday, July 28, 2009  11:01 AM
Application Description File  

The properties of the application, and also panel classes and panel instances that make up the 
application, are saved in a data file that typically has an .iva extension. Although the file 
format is easy to understand, it is better to use IBM® ILOG® Views Studio to edit the 
application buffer.

Only one application can be edited at a time. If you are editing an application and want to 
open a new one, save the current application and then create a new application or load a 
previously saved application.

You can use the following commands in the File menu to work with application description 
files.

New > Application  

By default, IBM ILOG Views Studio reates an empty application when it is launched 
(“testapp”). Choose <Application> from the Window menu to start editing “testapp”, or 
click on its window to activate it.

If you are already editing an application, and want to create a new one, save your current 
application and choose New from the File menu and then Application in the submenu that 
appears.

Save As…

Before saving an application, make sure that the current buffer is the Application buffer 
(using the Window menu, if necessary). To save a new application for the first time, choose 
Save As… from the File menu. This command opens the File Chooser that lets you save the 
application description file in a directory. Application files are saved with the .iva file 
extension.

Save

To save an application, choose Save from the File menu or click the Save icon  from the 
toolbar. This command saves the application description in a data file. See the Save As… 
command above for saving a new application file.

Open…

To load an application previously saved by IBM ILOG Views Studio, choose Open… from 
the File menu, or click the Open icon  from the toolbar. This command opens a File 
Chooser that lets you choose an application file. To filter the list of files that are displayed in 
the File Chooser, select Application files in the File type option menu. 

This command discards the current application; so, if necessary, save the current application 
first.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 87



usrgadgets.book  Page 88  Tuesday, July 28, 2009  11:01 AM
Other Generated Files

In addition to the data files, IBM® ILOG® Views Studio  generates the following for each 
application:

◆ A header file and a source file for the generated C++ application class,

◆ A header file and a source file for the panel class corresponding to each buffer,

◆ A simple make file.

The location of these files can be individually specified and, in each C++ generated file, you 
can insert your own code using special inspector panels. 

The Application Inspector  

The application properties can be displayed and edited using the Application inspector. To 
display the inspector of the current application, choose Application Inspector from the 
Application menu in the Main window or click the Application Inspector icon  in the 
Main window toolbar.

The Application inspector is opened for the current application. This may be the default 
application if you have not already opened an application.

The Application inspector has five notebook pages: General, Options, Header, Source, and 
Script and four buttons: Apply, Reset, Close, and Help.
88 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Application Inspector

usrgadgets.book  Page 89  Tuesday, July 28, 2009  11:01 AM
Figure 3.4 

Figure 3.4  General Page of the Application Inspector

The General Page  

The General page of the Application inspector contains the following fields:

Class  The class name of the generated application can be specified in the Class field. By 
default it is Testapp. The name that you specify in this field must be a valid C++ class 
name.

Base Class  The base class of the application can be specified in the Base Class field. By 
default it is IlvApplication. The name that you specify in this field must be a valid C++ 
class name.

Instead of deriving the generated class from IlvApplication, you can specify your own 
base class. In this case, the given class must be derived from IlvApplication and must 
include compatible constructors. Of course, the declaration of your base class must be 
known by the compiler when compiling the generated files; that is, it must be inserted or 
included in the generated file. See The Header and Source Pages on page 92.

File Name  Shows the name of the .iva file containing the application. 

Directories

Data The Data field displays the directory where the application data file is saved. This 
field cannot be edited. To change the location of the application data file, activate the 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 89



usrgadgets.book  Page 90  Tuesday, July 28, 2009  11:01 AM
Application buffer window, choose Save As… from the File menu of the Main window, and 
save it in the directory of your choice.

Header Use the Header field to specify where the application header file should be 
generated. By default, the header file is generated in the directory where the application data 
file is saved. This directory is relative to the application data file directory.

Header File Scope The directory where header files are generated is obtained by appending 
a header file scope to the specified header directory. The option Header File Scope is used to 
specify a subdirectory that is generated in the #include statements.

Assuming that the application file is in the directory /myappdir, the Header directory is 
include, and the Header File Scope is myapp, header files are generated in the directory /
myappdir/include/myapp. The generated #include statements corresponding to the 
application header files are the following:

#include <myapp/file1.h> 
#include <myapp/file2.h> 

instead of

#include <file1.h>
#include <file2.h>

Source Use the Source field to specify where the application source file should be 
generated. By default, the source file is generated in the directory where the application data 
file is saved. This directory is relative to the application data file directory.

Objects Use the Objects field to specify the location where the application make file is 
generated. By default, the make file is generated in the directory where the application data 
file is saved. This directory is relative to the application data file directory.

System  Use this menu to specify the name of the platform for which you want to generate 
the make file. The default platform is the one on which IBM ILOG Views Studio is running.

Motif  This toggle button is only visible if the platform you choose in the System option 
menu is an X11 platform. If this toggle button is selected, the generated make file chooses 
the Motif version of the IBM ILOG Views libraries and links the libXt and libXm libraries 
to your application.

The Options Page

The Options page of the Application inspector is illustrated below:
90 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Application Inspector

usrgadgets.book  Page 91  Tuesday, July 28, 2009  11:01 AM
Figure 3.5

Figure 3.5  Options Page of the Application Inspector

The Options page contains the following fields:

Generate  

Exit An Exit button, in a separate panel, can be activated when you run the generated 
application. This provides you with a simple way to quit the application. Select this toggle 
button if you want to set the Exit button.

main() Select this toggle button if you want IBM ILOG Views Studio to generate a simple 
main function in the application source file. If the generated application class is Testapp, 
and the application file base name is myappli, the main function looks like this:

main(int argc, char* argv[])
{
  Testapp* appli = new Testapp("myappli", 0, argc, argv);
  if (!appli->getDisplay())
    return -1;
  appli->run();
  return 0;
}

Make Select this toggle button if you want a simple make file to be generated.

Panel Accessors  A panel accessor is a member function of the generated application that 
lets you access a particular panel of your application. If you check the Panel Accessors 
toggle button, IBM ILOG Views Studio generates a member function for each panel 
instance. The member function has the following signature:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 91



usrgadgets.book  Page 92  Tuesday, July 28, 2009  11:01 AM
MyPanelClass* getMyPanelInstance() const;

where MyPanelClass is the type of panel instance named MyPanelInstance. The names 
of your panels must be valid C++ names.

Include in Header  In the generated code of an application, the header files generated for 
the panel classes of the application must be included. The necessary #include statements 
can be generated in the application header file or in the application source file. If you want to 
generate the panel accessors (the Panel Accessors toggle button is checked), the headers of 
the panel classes need to be included in the application header file. In this case, the Include 
In Header toggle button is unavailable, since you have no choice. Otherwise, the #include 
statements can be generated in the application source file instead of the application header 
file. To minimize the compilation dependencies of your whole application, do not check this 
toggle button. 

Bitmap Readers

The bottom part of the Options page contains information on bitmap readers. The toggle 
buttons in this part of the inspector let you explicitly register predefined bitmap readers in 
the generated code.

The Header and Source Pages

The Header and Source pages can be used to add code to the header and source files.

Figure 3.6 

Figure 3.6  Header Page in the Application Inspector
92 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



The Application Inspector

usrgadgets.book  Page 93  Tuesday, July 28, 2009  11:01 AM
Code for the header file The text you enter in this page is inserted as typed in the 
Application header buffer, after the generated #include statements and before the 
declaration of the generated class. If you want to subclass the generated class from a class 
other than IlvApplication, you have to insert the #include statement to include the file 
declaring your base class. Of course, instead of inserting code, you can use this feature to 
comment your application.

Code for the source file The text you enter in this panel is inserted as typed in the 
application source file just before defining the generated member functions. You can use this 
text to comment the generated file or to insert any C++ code.

The Script Page 

The Script page can be used to specify the use of IBM ILOG Script.

Figure 3.7

Figure 3.7  Script Page in the Application Inspector

The Script page contains the following fields:

Use IBM ILOG Script Select this toggle button if you want to use IBM ILOG Script. 

Auxiliary Library Select this toggle button if you want to use the auxiliary library of 
IBM ILOG Script for IBM ILOG Views in your application through the scripting language. 
This library lets you use additional features, such as the dialog boxes. For more information, 
see the chapter “IBM ILOG Script Programming” in the IBM ILOG Views Foundation 
User’s Manual. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 93



usrgadgets.book  Page 94  Tuesday, July 28, 2009  11:01 AM
Script File Enter the name of a file containing script code or click the button next to the text 
field to display a File Chooser to select a file. 

The Application Inspector Buttons

These buttons appear at the bottom of the Application inspector.

Apply Applies the changes made to the application properties.

Reset Resets the application properties to their initial values.

Close Closes the Application inspector.

Help Displays online help about the fields in the Application inspector.

Editing an Application

In IBM® ILOG® Views Studio, you edit an application using the Panel Class palette. Panel 
classes can be added to the Panel Class palette and then dragged to the Application buffer 
window to create panel instances. A panel instance appears as it will look in the final 
application. The dimensions and the position of the panel can be directly edited within the 
Application buffer window.
94 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 95  Tuesday, July 28, 2009  11:01 AM
Figure 3.8     

Figure 3.8  Panel Class Palette

The following sections explain how to create panel classes and add instances of these panel 
classes to your application.

The Panel Class Palette

The Panel Class palette is used to create, inspect, or remove panel classes. This palette can 
be accessed, whatever the current buffer, by clicking the Panel Class Palette icon  in the 
Main window toolbar or by selecting Panel Class Palette from the Code menu. It can also be 
opened together with the Application buffer by choosing the Edit Application icon  
from the toolbar of the Main window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 95



usrgadgets.book  Page 96  Tuesday, July 28, 2009  11:01 AM
The Panel Class palette consists of a toolbar containing the commands that can be used to 
manipulate panel classes, and a panel class buffer that shows icons representing the existing 
panel classes. 

Figure 3.9      

Figure 3.9  Toolbar of the Panel Class Palette

You can do the following using the commands in the Panel Class palette toolbar:

◆ New Panel Class Creates a new panel class from the current buffer. The current buffer 
must have already been saved.

◆ Remove Panel Class Removes the selected panel class from the palette.

◆ Panel Class Inspector Opens the inspector of the selected panel class.

◆ Help Lets you access Online Help on the Panel Class palette.

When you double-click a panel class icon in the Panel Class palette, the file containing the 
panel description is opened and set as the current buffer.

When you double-click the background of the Panel Class palette (without clicking a panel 
class icon), the Application buffer is set as the current buffer.

Panel Classes

Panel classes can be created using the Panel Class palette. These classes can then be used to 
add panel instances to the Application buffer.

For each Gadgets buffer that is part of the edited application, IBM ILOG Views Studio 
generates a C++ class derived from IlvGadgetContainer. The generated class does the 
following:

◆ Reads the data used to create the panel objects.

◆ Generates callbacks as methods.

◆ Generates accessors for named objects.

Adding a Panel Class  

To add a new panel class to the application:

1. Make sure that the required panel buffer is open, and is the current buffer. 
96 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 97  Tuesday, July 28, 2009  11:01 AM
2. Click the Panel Class Palette icon  in the Main window toolbar to open the Panel 
Class palette. 

3. Click the New Panel Class icon  in the Panel Class palette toolbar. 

The new panel class is added to the palette. 

Removing a Panel Class  

To remove a panel class from the application:

1. In the Panel Class palette, select the panel class you want to remove. 

2. Click the Remove Panel Class icon  in the Panel Class palette toolbar.

The Panel Class Inspector  

To inspect a Panel class, click the Panel Class Inspector icon  in the Panel Class palette 
toolbar. 

The Panel Class inspector appears:

Figure 3.10 

Figure 3.10  Panel Class Inspector

There are four notebook pages in the Panel Class inspector, each containing a set of 
properties of the inspected panel class.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 97



usrgadgets.book  Page 98  Tuesday, July 28, 2009  11:01 AM
The General Page  

Class Use this field to name the C++ panel class. The class name must be a valid C++ class 
name. By default, IBM ILOG Views Studio names this class by capitalizing the first letter of 
the corresponding buffer name. 

Base Class Use this field to specify the base class for the class generated. By default for 
gadget buffers, IBM ILOG Views Studio derives the generated class from 
IlvGadgetContainer. 

Instead of deriving the generated panel class from IlvGadgetContainer, you can specify 
your own base class. In this case, the given class must be derived from 
IlvGadgetContainer and include compatible constructors. Of course, the compiler must 
know the declaration of your base class when compiling the generated files, so it must be 
inserted or included in the generated file. See The Header and Source Pages on page 100.

File Name  This field shows the name of the file that contains the selected panel class. It 
cannot be edited.

Data This field displays the directory where the panel data file (.ilv file) is saved.

Header Use this field to specify the directory where the panel class header file is generated. 
If this field is empty, the header file is generated in the same directory as the application 
header file.

Source Use this field to indicate the directory where the panel class source file is generated. 
If this field is empty, the source file is generated in the same directory as the application 
source file.

The Options Page  

The Options page of the Panel Class inspector is illustrated below.
98 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 99  Tuesday, July 28, 2009  11:01 AM
Figure 3.11

Figure 3.11  Options Page of the Panel Class Inspector

The Generate section contains the following:

Data Select this toggle button to have IBM ILOG Views Studio generate the data string in 
the C++ panel class code so that its constructor does not need to read the data file at runtime. 
The code generated with data is used only on the UNIX® platforms. On Windows® 
systems, the string data generated is not used.

Names Select this toggle button to have IBM ILOG Views Studio generate member 
functions that return the named objects in your panel. For example, if you have a text field 
named MyTextField in your panel, the following member function is generated:

IlvTextField* getMyTextField() const
  { return (IlvTextField*)getObject("MyTextField"); }

The generated member functions are always named following this rule.

Callback Declarations IBM ILOG Views Studio provides you with a simple way to deal 
with callbacks. When the Callback Declarations toggle button is selected, it generates an 
IlvGraphicCallback function and declares a default virtual member function. The 
generated IlvGraphicCallback invokes the corresponding virtual member function, 
which has the same name as the callback you specified in IBM ILOG Views Studio. 
Therefore, the names you use for callbacks must be valid C++ function names. 

The Callback Declarations toggle button must be selected for the Callback Definitions 
toggle button to have any effect.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 99



usrgadgets.book  Page 100  Tuesday, July 28, 2009  11:01 AM
Callback Definitions The default definition code (the body function) for these callback 
virtual member functions can be generated, letting you test your application before defining 
the real callbacks. When you select the Callbacks Definitions toggle button, you redefine 
your own versions of the callbacks in your derived classes.

If you do not want these function definitions to be generated, do not select the Callback 
Definitions toggle button. This is useful if you do not want to derive a class from the 
generated class. In this case, you can write your own definition of these member functions in 
a separate file that will not be erased by future code generations.

The callback registering task is generated in the C++ code so that you only have to define the 
callback methods.

The Optional Constructors section has two toggle buttons that let you generate your panel 
class to use within the native system views. 

System View  Select this toggle button if you want to create a panel by using an existing 
system view.

System View Child  Select this toggle button if you want to create your panel as a child 
window of an existing system view.

The Header and Source Pages

To insert your own code in the generated panel class header or source files, click the Header 
or Source page of the Panel Class inspector. 

Figure 3.12

Figure 3.12  Source Page in the Panel Class Inspector
100 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 101  Tuesday, July 28, 2009  11:01 AM
Code for the header file The text you enter in this field is inserted as typed in the panel 
class header file, after the generated #include statements and before the declaration of the 
generated class. If you want to derive the generated class from a class other than 
IlvGadgetContainer, you have to insert the #include statement to include the file 
declaring your base class. Of course, instead of inserting code, you can use this feature to 
comment your panel class.

Code for the source file The text you enter in this field is inserted as typed in the panel 
class source file just before defining the generated member functions. You can use this text 
to comment the generated file or to insert any C++ code.

Panel Instances  

Once the panel classes have been defined in the Panel Class palette, you can create and 
inspect the instances of these classes.

Adding a Panel to an Application  

To add a panel to your application:

1. Make sure that the Application buffer window is the current window, and that the Panel 
Class palette is displayed. 

To display the Panel Class palette, click the Panel Class Palette icon  in the Main 
window toolbar.

2. In the Panel Class palette, select the panel class icon and drag it directly into the 
Application buffer window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 101



usrgadgets.book  Page 102  Tuesday, July 28, 2009  11:01 AM
An instance of the panel is created in the Application buffer window. This instance is 
represented as a window. The panel class name is the default name of your new panel.

Managing Panel Instances in the Application Buffer  

Once panel instances have been added to your Application buffer window, you can manage 
them in the same way that you manage windows in a windowing environment. Each panel 
instance window has a pop-up menu that appears when you click on the top-left corner of the 
window. The menu has standard window options, such as Restore and Minimize. 
102 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 103  Tuesday, July 28, 2009  11:01 AM
Figure 3.13

Figure 3.13  Panel Pop-up Menu

The Restore menu item enables you to restore a minimized panel instance to a window with 
its original size. 

The Minimize menu item reduces the panel instance to its title bar. 

A panel instance can be inspected by choosing Panel Inspector from this menu. 

The Load Contents menu item lets you explicitly load the contents of your panel instance. 
This is useful when you use the noPanelContents option. (See the description of the 
noPanelContents option in the section “Configuration Options for the Gadgets 
Extension” in Chapter 5, Customizing the Gadgets Extension of IBM ILOG Views Studio.

The Remove Panel option removes the panel instance from the Application buffer window.

Inspecting a Panel Instance

To inspect a panel instance:

1. Click the box in the top-left corner of the panel instance.

A pop-up menu appears.

2. From that menu, choose Panel Inspector.

You can also double-click the title bar of the panel instance window.

The Panel Instance inspector appears:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 103



usrgadgets.book  Page 104  Tuesday, July 28, 2009  11:01 AM
Figure 3.14

Figure 3.14  The General Page of the Panel Instance Inspector 

The four notebook pages of the Panel Instance inspector allow you to edit the properties of 
your panel instances.

The General Page 
Name Use this field to name your panel. This name must be a valid C++ name if you want 
IBM ILOG Views Studio to generate the panel accessors for your application.

Class This text field displays the name of the generated class of your panel. You cannot edit 
this field. 

User Class If you use a class that is derived from the generated class displayed in the Class 
field, type its name in this field. In this case, the file declaring such a class must be included 
in the generated application class file (see The Header and Source Pages on page 92) and its 
definition module must be linked to the final application.

Title Use this field to set the title of your panel.

Transient  Use this option menu to set up a relationship between two panels. By selecting 
an existing panel in this field, you are specifying that the current panel will always be 
displayed in front of the panel selected in the Transient field.

Destroy Callback This is the callback invoked when the panel is closed by the window 
manager. Use the option menu to choose a default destroy callback for your panel.

Bitmap Enables you to specify a bitmap as the panel background.
104 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 105  Tuesday, July 28, 2009  11:01 AM
Visible If you do not want the panel to be displayed when launching the application, do not 
select the Visible toggle button. By default, the panel is visible.

Accelerators If checked, the panel instance is created with the default container’s 
accelerators. This means that the panel constructor is called with useacc parameter set to 
IlvTrue.

Double Buffering  If checked, the inspected panel uses the double-buffering mechanism. 
This generates the following code:

cont ->setDoubleBuffering(IlvTrue)

The Properties Page
The toggle buttons in the Properties page let you specify the window frame properties. In the 
generated code, the selected options are combined to set the properties parameter in the 
call to the panel constructor. Each option corresponds to a predefined property.

Figure 3.15

Figure 3.15  The Properties Page of the Panel Instance Inspector

The following table shows the predefined properties that are linked to the toggle buttons in 
the Properties page of the Panel Instance inspector.

 

Toggle button Predefined Property

No Border IlvBorder 

No Resize Border IIvNoResizeBorder 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 105



usrgadgets.book  Page 106  Tuesday, July 28, 2009  11:01 AM
The Sizes Page
The Sizes page of the Panel Instance inspector has three sections: Bounding Box, Minimum 
Size, and Maximum Size.

Figure 3.16 

Figure 3.16  The Sizes Page of the Panel Instance Inspector

x, y, Width, Height Use these fields to specify the initial position of the panel. The panel 
size defaults to the size of the buffer. If you want to assign a new size to your panel, turn on 
the toggle button Generate Size and enter desired values in the Width and Height fields.

Maximum and Minimum Size  Use these fields to specify the Maximum or Minimum 
field sizes for the panel by entering the desired values in the Width and Height fields

No Title Bar IlvNoTitleBar 

No System Menu IlvNoSysMenu 

No Min Box IlvNoMinBox 

No Max Bars IlvNoMaxBox 

Iconified IlvIconified 

Maximized IlvMaximized 

MDI child IlvMDIChild 

Toggle button Predefined Property
106 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 107  Tuesday, July 28, 2009  11:01 AM
Panel Instance Buttons
Apply Click to validate your panel options.

Reset Click to reset the Panel Instance inspector to the last validated values.

Test Click to test your panel. Unlike the global test for the application, only the inspected 
panel is shown by this action. The options entered but not yet validated with the Apply 
button are used to create the test panel. Even if the panel is configured to be not visible, it 
can be tested.

Close Click to close the Panel Instance inspector.

Help Click to access Online Help.

Editing Subpanels

You can use the Application buffer window to create panel instances that are contained in an 
IlvContainerRectangle object or in an IlvNotebook object. In other words, container 
rectangles and notebooks can hold subpanels.

To make a panel instance a subpanel of a container rectangle or of a notebook, proceed as 
explained below:

1. Click View Rectangles in the top pane of the Palettes panel to display the corresponding 
palette.

2. Drag a container rectangle (an IlvGadgetContainerRectangle for example) to the 
Gadgets buffer window.

3. Save the buffer as mymainpanel.ilv.

4. Click the Panel Class Palette icon  in the Main window toolbar to display the Panel 
Class palette. 

5. Click the New Panel Class icon  to add the Mymainpanel class to the Panel Class 
palette.

6. From the File menu, choose New. In the submenu that appears, choose Gadgets.

A new Gadgets buffer window opens.

7. Click Gadgets in the top pane of the Palettes panel.

8. Drag an IlvNotebook object to the current Gadgets buffer window.

9. Save the buffer as notebook.ilv.

10. Click the New Panel Class icon  to add the Notebook panel class to the Panel Class 
palette.

11. Choose <Application> from the Window menu to activate the Application buffer 
window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 107



usrgadgets.book  Page 108  Tuesday, July 28, 2009  11:01 AM
12. Drag the Mymainpanel class icon from the Panel Class palette to the Application buffer 
window.

13. Drag the Notebook class icon from the Panel Class palette to the container rectangle 
inside Mymainpanel.

The container rectangle is highlighted when you drop the subpanel on it. 

14. Choose New from the File menu and then Gadgets in the submenu that appears.

A new Gadgets buffer window opens.

15. Drag any objects to the buffer window (text field and message labels, for example) and 
save it as firstpage.ilv.

16. Click the New Panel Class icon  to add the Firstpage panel class to the Panel 
Class palette.

17. Choose <Application> from the Window menu to activate the Application buffer 
window.

18. Drag the Firstpage class icon from the Panel Class palette and drop it onto the 
notebook inside the Mymainpanel panel.

The following dialog box appears.

This dialog box lets you add the subpanel instance as a new notebook page or replace an 
existing page with a new one. A sample of the notebook is displayed in the dialog box in 
which you can select a page to indicate where the new page should be inserted. If you 
108 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing an Application

usrgadgets.book  Page 109  Tuesday, July 28, 2009  11:01 AM
activate the “Add a new page” toggle button, the new page is inserted after the last 
notebook page and the selected page is ignored. 

Inspecting Subpanel Instances

To inspect a subpanel instance:

1. Click the box in the top-left corner of Mymainpanel in the Application buffer window.

2. Choose Panel Inspector from the menu that appears.

The Panel Instance inspector is displayed.

3. Click the Hierarchy page.

In this page, the hierarchy of the panel is displayed as a tree gadget.

You can see that the Firstpage panel is a subpanel of the Notebook panel, which is itself a 
subpanel of Mymainpanel. 

4. Double-click the subpanel you want to inspect in the tree gadget, or select the subpanel 
and click Object Inspector.

The Panel Instance inspector for the subpanel appears.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 109



usrgadgets.book  Page 110  Tuesday, July 28, 2009  11:01 AM
5. To remove a subpanel, select it in the tree gadget in the Hierarchy page and click 
Remove.

Testing an Application

The Test icon  in the Main window toolbar can be used to test the application when the 
Application buffer is the current buffer. When you click the Test icon, a window is opened 
for each of the visible panel instances in the application. To close a test panel, click the Test 
icon again.

If you wish to test a panel instance individually, use the Test button in the Panel Instance 
inspector.
110 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 111  Tuesday, July 28, 2009  11:01 AM
4

Using the Generated Code

This chapter uses an example to explain how to use the generated C++ code. You will find 
information on the following topics:

◆ Building the Application

◆ Generating the C++ Code

◆ Extending the Generated Code

Building the Application 

You are going to create an application composed of the following three panels:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 111



usrgadgets.book  Page 112  Tuesday, July 28, 2009  11:01 AM
Figure 4.1

Figure 4.1  Example Panels

The steps to create the application are the following:

◆ Setting Up the Application Class

◆ Creating the First Panel Class

◆ Creating the Second Panel Class

◆ Generating the C++ Code

Setting Up the Application Class 

The first step is to edit and save the application properties. 
112 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building the Application

usrgadgets.book  Page 113  Tuesday, July 28, 2009  11:01 AM
Let us assume that you are going to edit the default application testapp.

1. In the Main window, choose Application Inspector from the Application menu to open 
the Application inspector. 

2. Change the Class name to MyApplication. Click Apply, then Close.

3. In the Application buffer window, choose Save As… from the File menu and save your 
application as myappli.iva in a directory of your choice.

This operation sets the file base name and a default path for all your application files.

4. Check the application default directories by inspecting the panel again.

The header, source, and object directories default to the data directory. You can place 
these generated files in different directories by specifying the directories of your choice 
in the corresponding text fields of the Application inspector.

Creating the First Panel Class 

The First and Second Panels (see Figure 4.1) are two instances of the same panel class (the 
class FirstPanelClass). This means that they have the same contents, but their names, 
titles, and positions are different.

You are now going to build the panel class for the two instances of this panel class.

Creating the Panel Data File 

1. If necessary, open a new Gadget buffer window. In the Main window, choose New from 
the File menu and then Gadgets in the submenu that appears.

2. In the top pane of the Palettes panel, click Gadgets.

3. Drag the following gadgets from the bottom pane of the Palettes panel and drop them in 
the Gadgets buffer window:

● Message label (class name: IlvMessageLabel)

● Text field (class name: IlvTextField)

When a gadget is selected, its class name appears in the message area at the bottom of the 
Main window.

4. Double-click the message label to open its inspector panel.

5. In the Specific page of the Message Label inspector:

● Delete the text in the Label field.

● Type Value in the Label field.

6. Click Apply, then Close.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 113



usrgadgets.book  Page 114  Tuesday, July 28, 2009  11:01 AM
7. Double-click the text field to open its inspector panel.

8. In the Specific page of the Text Field inspector:

● Delete the text in the Label field.

● Select Right in the Alignment option menu.

● Turn off the Editable toggle button.

The Text Field inspector should look like this:

9. Click Apply, then Close.

10. In the top pane of the Palettes panel, click Miscellaneous.

11. From the bottom pane, drag the horizontal slider (class name: IlvSlider) and drop it in 
the Gadgets buffer window. 

12. Move and resize the objects, then resize the panel so that it looks like in the figure below. 

     
114 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building the Application

usrgadgets.book  Page 115  Tuesday, July 28, 2009  11:01 AM
13. Select the slider.

14. Type Slider in the Name field of the generic inspector.

15. Type SliderCB in the Callback field of the generic inspector.

The generic inspector should look like this:

16. Select the text field.

17. Type TextField in the Name field of the generic inspector.

18. Choose Save As… from the File menu and save the panel as class1.ilv in the 
directory of your choice.

Setting Up the Panel Class

To set up the panel class: 

1. Make sure that class1 is the current buffer. 

2. Click the Panel Class Palette icon  in the Main window tool bar to open the Panel 
Class palette. 

3. Create the new panel class by clicking the New Panel Class icon  in the Panel Class 
palette. 

An icon representing the new panel class, with the title Class1, appears in the palette.

4. Select the Class1 panel class and click the Panel Class Inspector icon  in the Panel 
Class palette tool bar to open its inspector.

5. On the General page of the inspector, type FirstPanelClass in the Class field.

6. Click Apply, then Close.

Creating the First Panel 

To create the first instance of the class FirstPanelClass:

1. Choose the Edit Application icon  from the tool bar in the Main window to edit the 
application. 

The Application buffer window is activated and the Panel Class palette is displayed (if it 
isn’t already displayed).
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 115



usrgadgets.book  Page 116  Tuesday, July 28, 2009  11:01 AM
2. To create an instance of the first panel, drag the icon from the Panel Class palette to the 
Application buffer window. 

An instance of FirstPanelClass appears in the Application buffer window.

3. Double-click the panel title bar to inspect the panel instance. 

The Panel Instance inspector appears.

4. In the Panel Instance inspector, type FirstPanel in the Name field. 

This name is used to retrieve this panel.

5. In addition, the title can be changed to First Panel and the position (x,y) can be 
moved to (200,200).

Specify the title in the General page.

Specify the position of the panel in the Sizes page.

The Panel Instance inspector should look like this:

6. Click Apply to validate the FirstPanel options, then click Close.

Creating the Second Panel Instance 

To create a second instance of the class FirstPanelClass:

1. Drag the FirstPanelClass icon again from the Panel Class palette to the Application 
buffer window.
116 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building the Application

usrgadgets.book  Page 117  Tuesday, July 28, 2009  11:01 AM
2. In the General page of the Panel Instance inspector of the second instance of 
FirstPanelClass, change the fields as follows:

● Name: SecondPanel 

● Title: Second Panel 

3. In the Sizes page of the same inspector, change the fields as follows:

● x: 200 

● y: 400 

The Panel Instance inspector should look like this:

 

4. Click Apply, then Close. 

Creating the Second Panel Class 

You are now going to build the panel class for the instance of the Second Panel class 
illustrated below. (This is the Results Panel in Figure 4.1.)
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 117



usrgadgets.book  Page 118  Tuesday, July 28, 2009  11:01 AM
      

Creating the Panel Data File 

1. Open a new Gadgets buffer window. In the Main window, choose New from the File 
menu and then Gadgets in the submenu that appears.

2. Edit the new buffer to create the panel illustrated above.

3. Choose Save As… from the File menu to save it as class2.ilv in the directory of your 
choice.

Setting Up the Panel Class 

To set up the panel class:

1. Make sure that class2 is the current buffer. 

2. Select Panel Class Palette in the Application menu to open the Panel Class palette (if it 
isn’t already open). 

3. Click the New Panel Class icon  in the Panel Class palette tool bar to create the 
panel class. 

An icon representing the new panel class, with the title Class2 appears in the palette.

4. Select the class2 panel class and click the Panel Class Inspector icon  in the Panel 
Class palette to examine it.

The Panel inspector appears.

5. On the General page of the Panel inspector, type SecondPanelClass in the Class field.

6. Click Apply, then Close.

Creating the Second Panel

1. Click the Edit Application icon  in the Main window toolbar to edit the application.
118 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building the Application

usrgadgets.book  Page 119  Tuesday, July 28, 2009  11:01 AM
The current Application buffer window is opened and the Panel Class palette is displayed 
(if it isn’t already open).

2. To create an instance of the second panel, drag the SecondPanelClass icon from the 
Panel Class Palette to the Application buffer window. 

An instance of SecondPanelClass appears in the Application buffer window.

3. Double-click the SecondPanelClass title bar.

 The Panel Instance inspector appears.

4. In the General page of the Panel Instance inspector, type Result in the Name field. 

This name can be used to retrieve this panel.

5. Change the other fields in the appropriate inspector page as follows:

● Title: Result Panel 

● Destroy Callback: Exit 

● x: 200 

● y: 650

The inspector should look like this:

6. Click Apply to validate the options, then click Close to close the inspector.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 119



usrgadgets.book  Page 120  Tuesday, July 28, 2009  11:01 AM
Generating the C++ Code  

To generate the C++ code for the first time, choose Generate All from the Application menu. 
For our application, IBM® ILOG® Views Studio generates the following files:

◆ FirstPanelClass 

● class1.ilv Contains the data for the FirstPanelClass panels.

● class1.h Header file for the FirstPanelClass.

● class1.cc Source file for the FirstPanelClass (if the C++ source file 
extension is .cc on your platform).

◆ SecondPanelClass 

● class2.ilv Contains the data for the SecondPanelClass panel.

● class2.h Header file for the SecondPanelClass.

● class2.cc Source file for the SecondPanelClass.

◆ MyApplication 

● myappli.iva Contains the description of the application.

● myappli.h Header file for the application class.

● myappli.cc Source file for the application, which also includes the main function.

● myappli.mak Simple make file for compiling and testing the application.

The following sections describe the class1.h, class1.cc, myappli.h, and myappli.cc 
files.

FirstPanelClass Header File

The class1.h header file is generated as follows:

// ----------------------------------------------------- -*- C++ -*-
// File: /tmp/test/class1.h
// IlogViews 4.0 generated header file
// File generated Wed May 03 16:56:53 2000
//      by IBM ILOG Views Studio
// -----------------------------------------------------------------
#ifndef __class1__header__
#define __class1__header__

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/textfd.h>
#include <ilviews/gadgets/msglabel.h>
#include <ilviews/gadgets/slider.h>

// -----------------------------------------------------------------
class FirstPanelClass
120 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Generating the C++ Code

usrgadgets.book  Page 121  Tuesday, July 28, 2009  11:01 AM
: public IlvGadgetContainer {
public:
    FirstPanelClass(IlvDisplay* display,
                    const char* name, 
                    const char* title,
                    IlvRect*    size            = 0,
                    IlBoolean   useAccelerators = IlFalse,
                    IlBoolean   visible         = IlFalse,
                    IlUInt      properties      = 0,
                    IlvSystemView transientFor  = 0)
      : IlvGadgetContainer(display,
                           name,
                           title,
                           size ? *size : IlvRect(0, 0, 219, 58),
                           properties,
                           useAccelerators,
                           visible,
                           transientFor)
        { initialize(); }
    FirstPanelClass(IlvAbstractView* parent, 
                    IlvRect* size = 0,
                    IlBoolean useacc = IlFalse,
                    IlBoolean visible = IlTrue)
      : IlvGadgetContainer(parent, 
                           size ? *size : IlvRect(0, 0, 219, 58),
                           useacc,
                           visible)
        { initialize(); }
    // ____________________________________________________________
    virtual void SliderCB(IlvGraphic*);
    IlvSlider* getSlider() const
     { return (IlvSlider*)getObject(“Slider”); }
    IlvTextField* getTextField() const
     { return (IlvTextField*)getObject(“TextField”); }
protected:
    void initialize();
};

#endif /* !__class1__header__*/

Header

The first lines of the class1.h panel class header file give the date and file location for the 
generated file. It also tells you what IBM ILOG Views version you are using.

Included Header Files

The following lines show the necessary header files for the generated class:

#include <ilviews/gadgets/gadcont.h> 
#include <ilviews/gadgets/textfd.h> 
#include <ilviews/gadgets/msglabel.h> 
#include <ilviews/gadgets/slider.h> 

For each object contained in the generated panel, IBM ILOG Views Studio searches for its 
associated header file. In our example, the class FirstPanelClass has to include the files 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 121



usrgadgets.book  Page 122  Tuesday, July 28, 2009  11:01 AM
<ilviews/gadgets/textfd.h>, <ilviews/gadgets/msglabel.h>, and <ilviews/
gadgets/slider.h> for its text field, message label, and slider objects, respectively.

Base Class

Since we have not modified the base class name for FirstPanelClass, the generated class 
is derived from IlvGadgetContainer.

Constructors

Two public constructors are generated:

    FirstPanelClass(IlvDisplay* display,
                    const char* name, 
                    const char* title,
                    IlvRect*    size            = 0,
                    IlBoolean  useAccelerators = IlFalse,
                    IlBoolean  visible         = IlFalse,
                    IlUInt     properties      = 0,
                    IlvSystemView transientFor  = 0)
      : IlvGadgetContainer(display,
                           name,
                           title,
                           size ? *size : IlvRect(0, 0, 219, 58),
                           properties,
                           useAccelerators,
                           visible,
                           transientFor)
        { initialize(); }
    FirstPanelClass(IlvAbstractView* parent, 
                    IlvRect* size = 0,
                    IlBoolean useacc = IlFalse,
                    IlBoolean visible = IlTrue)
      : IlvGadgetContainer(parent, 
                           size ? *size : IlvRect(0, 0, 219, 58),
                           useacc,
                           visible)
        { initialize(); }

The first constructor builds the panel as a main window. The second builds the panel as a 
part of a parent view that is an IlvAbstractView. 

Callback

Because the callback SliderCB is assigned to the slider, IBM ILOG Views Studio generates 
its related virtual member function:

virtual void SliderCB(IlvGraphic*); 

Named Objects

Our two named objects, Slider and TextField, can be accessed by the following 
generated member functions:

IlvSlider* getSlider() const
    { return (IlvSlider*)getObject(“Slider”); }
IlvTextField* getTextField() const
122 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Generating the C++ Code

usrgadgets.book  Page 123  Tuesday, July 28, 2009  11:01 AM
    { return (IlvTextField*)getObject(“TextField”); }

If you do not want IBM ILOG Views Studio to generate these functions, turn off the Names 
toggle button in the Panel Class inspector (Options notebook page).

FirstPanelClass Source File

Header

The FirstPanelClass source file starts with following header lines:

// ----------------------------------------------------- -*- C++ -*-
// File: /tmp/test/class1.cc
// IlogViews 4.0 generated source file
// File generated Wed May 03 16:56:53 2000
//      by IBM ILOG Views Studio
// -----------------------------------------------------------------

Class Header File

The panel class header file is the first included file:

#include <class1.h> 

Panel Data

The lines between the #include statement and the callback definition _SliderCB define 
the way the panel data is loaded when the panel class constructor is called. If the Data toggle 
button of the Panel Class inspector (Options notebook page) is turned on, the panel data is 
generated in a constant character string. In this case, instead of loading the data from a file, 
the panel can load its description from the generated string (through an istrstream), 
unless there is a compiler limitation.

Callback

Because the callback name SliderCB is assigned to a panel object, IBM ILOG Views 
Studio generates the following callback:

static void ILVCALLBACK
_SliderCB(IlvGraphic* g, IlvAny)
{
    FirstPanelClass* o = (FirstPanelClass*)
                        g->GetCurrentCallbackHolder()->getContainer();
    if (o) o->SliderCB(g);
}

This function gets the panel class from the graphic object and calls the related method that is 
declared in the class declaration.

Callback Method Definition

Because the Callbacks Definitions toggle button of the Panel Class inspector (Options 
notebook page) is turned on, the default definition of the callback method SliderCB is 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 123



usrgadgets.book  Page 124  Tuesday, July 28, 2009  11:01 AM
generated in the source file. This lets you compile, link and test your application before 
writing the real function definition.

The generated callback method looks like this:

void
FirstPanelClass::SliderCB(IlvGraphic* g)
{
    const char* className = g->className();
    IlvPrint(" %s : SliderCB method ...",className);
}

When called by a slider, this function prints the following message:

IlvSlider : SliderCB method ... 

If you do not want IBM ILOG Views Studio to generate this callback method definition, turn 
off the Callbacks Definitions toggle button of the Panel Class inspector (Options notebook 
page). In this case, you must write your own version of FirstPanelClass::SliderCB in 
a separate file and link that file object to the application.

initialize Member Function

The generated constructors of the class FirstPanelClass call the initialize member 
function to initialize the panel. 

The initialize function loads the panel contents from a file or an istrstream, 
according to the platform you use to compile the application.

void
FirstPanelClass::initialize()
{
#if defined(ILVNOSTATICDATA)
    readFile(FILENAME);
#else  /* !ILVNOSTATICDATA */
    istrstream str((char*)_data);
    read(str);
#endif /* !ILVNOSTATICDATA */
    registerCallback(“SliderCB”, _SliderCB);
}

MyApplication Header File 

Header

Like all the generated files, the first lines of the application header file, myappli.h, show 
the date and directory path for the generated file, as well as providing the version of 
IBM® ILOG® Views:

// ----------------------------------------------------- -*- C++ -*-
// File: /tmp/test/myappli.h
// IlogViews 4.0 generated application header file
// File generated Wed May 03 16:56:53 2000
//      by IBM ILOG Views Studio
// -----------------------------------------------------------------
124 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Generating the C++ Code

usrgadgets.book  Page 125  Tuesday, July 28, 2009  11:01 AM
Included Header Files

The application header file includes the default base class header file and its panel classes 
header files:

#include <ilviews/gadgets/appli.h> 
#include <class1.h> 
#include <class2.h> 

MyApplication Class

IBM ILOG Views Studio generates the following application class:

class MyApplication: public IlvApplication {
public:
    MyApplication(
        const char* appName,
        const char* displayName = 0,
        int argc = 0,
        char** argv = 0
    );
    MyApplication(
        IlvDisplay* display,
        const char* appName
    ); 
    ~MyApplication();
    virtual void makePanels();
    virtual void beforeRunning();
    FirstPanelClass* getFirstPanelClass() const
        { return (FirstPanelClass*) getPanel(“FirstPanelClass”); }
    FirstPanelClass* getSecondPanel() const
        { return (FirstPanelClass*) getPanel(“SecondPanel”); }
    SecondPanelClass* getResult() const
        { return (SecondPanelClass*) getPanel(“Result”); }
};

Base Class

The generated class is derived from IlvApplication. See IlvApplication in the 
IBM ILOG Views Reference Manual for a description of this class, which is part of the 
IBM ILOG Views library.

Constructors

The generated constructors only call the related base class constructors.

makePanels Method

For each application, IBM ILOG Views Studio generates the makePanels method that is 
called when the application is initialized. This method handles the creation of the generated 
application panels. See the class IlvApplication in the IBM ILOG Views Reference 
Manual. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 125



usrgadgets.book  Page 126  Tuesday, July 28, 2009  11:01 AM
Panel Accessors

For each panel in the application IBM ILOG Views Studio generates a panel accessor which 
returns the panel.

MyApplication Source File

Header

As usual, the first lines of the application source file, myappli.cc, show file, date and path 
directory for the generated file, as well as providing the version of IBM® ILOG® Views:

// ----------------------------------------------------- -*- C++ -*-
// File: /tmp/test/myappli.cc
// IlogViews 4.0 generated application source file
// File generated Wed May 03 16:56:53 2000
        by IBM ILOG Views Studio 
// -----------------------------------------------------------------

Class Header File

The application source file always includes the generated application class header file:

#include <myappli.h> 

makePanels Function Definition

The generated makePanels member function looks like this:

void
MyApplication::makePanels()
{
    // --- parameters ---
    IlvDisplay*         display = getDisplay();
    IlvRect             bbox;
    IlvContainer*       cont;
    // --- FirstPanel ---
    bbox.moveResize(200, 200, 500, 500);
    cont = new FirstPanelClass(display, 
                               “FirstPanel”, 
                               “First Panel”, 
                               &bbox,
                               IlFalse, 
                               IlFalse, 0, 0);
    addPanel(cont);
    cont->show();
    // --- SecondPanel ---
    bbox.moveResize(200, 300, 500, 500);
    cont = new FirstPanelClass(display, 
                               “SecondPanel”, 
                               “Second Panel”,
                               &bbox
                               IlFalse, 
                               IlFalse, 0, 0);
    addPanel(cont);
    cont->show();
    // --- Result ---
126 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Generating the C++ Code

usrgadgets.book  Page 127  Tuesday, July 28, 2009  11:01 AM
    bbox.moveResize(200, 400, 500, 500);
    cont = new SecondPanelClass(display, 
                                “Result”, 
                                “Result Panel”, 
                                &bbox
                                IlFalse, 
                                IlFalse, 0, 0);
    addPanel(cont);
    cont->setDestroyCallback(IlvAppExit, this);
    cont->show();
    // --- The Exit panel is not wanted ---
    setUsingExitPanel(IlFalse);
}

This application contains three panels: FirstPanel and SecondPanel are part of the class 
FirstPanelClass. The following points should be noted:

◆ Each panel is created at the position specified in the x and y fields of the Panel Instance 
inspector (Sizes notebook page).

◆ The size of the rectangle passed to the panel constructor does not really affect the panel 
sizes, since they are resized when their data is loaded. If the Generate Size toggle button 
of the Panel Instance inspector (Sizes notebook page) is turned on, the Bounding Box 
Width and Height values specified in the Panel Instance inspector are used to resize the 
panel after it is created.

◆ Each panel is added to the application after being created:

addPanel(cont); 

◆ If the Visible toggle button in the Panel Instance inspector (General notebook page) is 
turned on, that panel is shown by the show() member function:

cont->show(); 

◆ The following code is generated because the destroy callback of the Result panel is set to 
Exit in the Panel Instance inspector (General notebook page):

cont->setDestroyCallback(IlvAppExit, this); 

◆ Since the Exit panel is not wanted, the following code is generated:

setUsingExitPanel(IlFalse); 

main Function

Because the main() toggle button is checked in the Options notebook page of the 
Application Inspector, the main function is generated in the application source file:

main(int argc, char* argv[])
{
    // IlvSetCurrentCharSet(<YourCharSet>);
    IlvSetLanguage();
    MyApplication* appli = new MyApplication(“myappli”, 0, argc,
    argv);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 127



usrgadgets.book  Page 128  Tuesday, July 28, 2009  11:01 AM
    if (!appli->getDisplay())
        return -1;
    appli->run();
    return 0;
}

This function creates an application of class MyApplication. Before running the 
application, the function checks whether the created application succeeded in creating a 
display.

If you do not want the main function to be generated, turn off the main() toggle button. 

Testing the Generated Application  

To test the generated application, run the make utility in the application object directory 
using the generated make file, then launch myappli. Following is an example of the 
commands. If the object directory is /tmp/test: 

cd /tmp/test
make -f myappli.mak
myappli

To end the application, close the Result panel with your window manager.

Extending the Generated Code  

To add a member function and write an appropriate version of SliderCB, you will derive 
the MyFirstPanelClass from FirstPanelClass.

Defining a Derived Class   

In the file myclass1.h, you will declare MyFirstPanelClass like this:

#include <class1.h>

class MyFirstPanelClass
: public FirstPanelClass {
public:
    MyFirstPanelClass(IlvDisplay* display,
                     const char* name, 
                     const char* title,
                     IlvRect*    size            = 0,
                     IlBoolean  useAccelerators = IlFalse,
                     IlBoolean  visible         = IlFalse,
                     IlvUInt     properties      = 0,
                     IlvSystemView transientFor  = 0):
    FirstPanelClass(display,
                    name, 
                    title, 
                    size, 
128 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending the Generated Code

usrgadgets.book  Page 129  Tuesday, July 28, 2009  11:01 AM
                    useAccelerators,
                    visible)
    {}
    virtual void SliderCB(IlvGraphic*);
    IlvInt getValue() const { return getTextField()->getIntValue(); }
};

Base Class

MyFirstPanelClass is derived from FirstPanelClass.

Constructor

You only need to define one constructor. This constructor builds the panel as a main window 
and calls its base class constructor.

Callback Method 

The SliderCB virtual member function is redefined in the derived class to display the slider 
value in the text field. Here is a possible definition of such a function:

void
MyFirstPanelClass::SliderCB(IlvGraphic*)
{
    getTextField()->setValue(getSlider()->getValue(), IlTrue);
}

getValue Member Function

To get the value displayed by the panel, you must define this inline member function:

IlvInt getValue() const { return getTextField()->getIntValue(); } 

Using the Derived Class  

To use MyFirstPanelClass instead of FirstPanelClass, which is needed to create 
FirstPanel:

◆ Set the User Class field in the Panel Instance inspector.

◆ Insert a #include statement in the generated application header file.

Setting Up the User Class  

To set up the user class:

1. In the Application buffer window, double-click the first instance of FirstPanelClass.

2. In the Panel Instance inspector, type MyFirstPanelClass in the User Class field:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 129



usrgadgets.book  Page 130  Tuesday, July 28, 2009  11:01 AM
3. Click Apply, then Close. 

Instead of generating the following code in the makePanels function:

cont = new FirstPanelClass(display, 
                           “FirstPanel”, 
                           “First Panel”, 
                           &bbox,
                           IlFalse, 
                           IlFalse, 0, 0);
);

IBM ILOG Views Studio generates the code below in the application source file 
myappli.cc: 

cont = new MyFirstPanelClass(display, 
                            “FirstPanel”, 
                            “First Panel”, 
                            &bbox,
                            IlFalse, 
                            IlFalse, 0, 0);
);

Since MyFirstPanelClass is declared in myclass1.h, you need to include this file in 
myappli.h.

Note: Steps 2 and 3 can be repeated for SecondPanel. 
130 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending the Generated Code

usrgadgets.book  Page 131  Tuesday, July 28, 2009  11:01 AM
Inserting Code in the Generated Application Header File  

1. Choose Application Inspector from the Code menu. The Application inspector is 
displayed.

2. In the Application inspector, open the Header notebook page.

3. In the Header notebook page, type #include <myclass1.h>:

4. Click Apply, then Close.

When generating the application source file again, IBM ILOG Views Studio inserts the 
following expression in the application header file:

// -----------------------------------------------------------------
// --- Inserted code

#include <myclass1.h>

// --- End of Inserted code

Linking Additional Object Files 

The make file generated by IBM ILOG Views Studio takes care of compiling the generated 
files and linking the application. In addition, it can link your own object files to the 
application through the make USEROBJS variable. You are responsible for your own object 
files. However, you can write your own make file to maintain the additional object files by 
copying the make options generated by IBM ILOG Views Studio. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 131



usrgadgets.book  Page 132  Tuesday, July 28, 2009  11:01 AM
For example, if the definition of the MyFirstPanelClass::SliderCB is in your object 
file myclass1.o, you can use the generated make file myappli.mak like this:

make -f myappli.mak USEROBJS=myclass1.o

Defining Callbacks without Deriving Classes 

In the previous section, we derived a panel class and defined the callback methods in the 
derived class. For SecondPanelClass, we will now insert its callback methods in the 
generated source file without deriving a subclass:

1. In the Panel Class palette, select SecondPanelClass and click the Panel Class 
Inspector icon in the Panel Class palette tool bar.

2. In the Panel Class inspector, go to the Options notebook page and turn off the Callback 
Definitions toggle button.

3. Open the Source notebook page and type the following code in the section “Code for the 
source file”:

#include <ilviews/gadgets/appli.h>
#include <myclass1.h>

void
SecondPanelClass::ComputeCB(IlvGraphic*)
{
    IlvApplication* appli = IlvApplication::GetApplication(this);
    MyFirstPanelClass* pan1 =
        (MyFirstPanelClass*)appli->getPanel(“FirstPanel”);
132 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending the Generated Code

usrgadgets.book  Page 133  Tuesday, July 28, 2009  11:01 AM
    MyFirstPanelClass* pan2 =
        (MyFirstPanelClass*)appli->getPanel(“SecondPanel”);
    getResult()->setValue(pan1->getValue() + pan2->getValue(), IlTrue);
}
void
SecondPanelClass::QuitCB(IlvGraphic*)
{
    delete IlvApplication::GetApplication(this);
    IlvExit(0);
}

4. Click Apply to validate the operation, and Close to quit the inspector.

5. In the Panel Class User Code panel, click Apply.

When generating again, IBM ILOG Views Studio inserts your two callback methods in the 
class2.cc file.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 133



usrgadgets.book  Page 134  Tuesday, July 28, 2009  11:01 AM
134 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 135  Tuesday, July 28, 2009  11:01 AM
5

Customizing the Gadgets Extension
of IBM ILOG Views Studio

This chapter provides a list of the configuration options for the Gadgets extension of 
IBM® ILOG® Views Studio. You can use these options to customize Studio.

◆ Configuration Options for the Gadgets Extension

Configuration Options for the Gadgets Extension

IBM® ILOG® Views provides you with the following configuration options for the Gadgets 
extension:

◆ additionalLibraries "<library list>" lets you specify a list of 
IBM ILOG Views libraries to link into the generated application.

For example:

studio {
    additionalLibraries "ilvadvgadmgr ilvgadmgr ilvmgr"; 
}

◆ applicationBaseClass <className> lets you specify the name of the base class of 
the generated application class. The default value is IlvApplication.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 135



usrgadgets.book  Page 136  Tuesday, July 28, 2009  11:01 AM
◆ applicationBufferBackground "<colorName>" lets you specify the background 
color of the Application buffer window. The default value is "Cadet Blue".

◆ applicationFileExtension "<extension>" lets you specify the extension of the 
application file. The default value is ".iva". 

◆ applicationHeaderFile "<header>" lets you specify the header file to be included 
in the generated application header file. The default value is "<ilviews/appli.h>".

◆ defaultApplicationName <name> lets you specify the name of a new application. 
The default value is testapp. 

For example:

studio {
    defaultApplicationName newappli;
}

◆ defaultCallbackLanguage <language> lets you specify the callback language 
used by default when a callback is attached to an object. This option only applies to 
IBM ILOG Views Studio Script extension (jsstudio). Its default value is JvScript. If 
you do not want callbacks written in jsstudio to default to JvScript, set this option 
to none.

For example:

studio {
    defaultCallbackLanguage none;
}

◆ defaultHeaderDir "<dir>" lets you specify the header file directory set by default 
for new applications. The specified directory is relative to the application directory. 
Once the application is created, this directory can be modified via the Application 
inspector.

For example:

studio {
    defaultHeaderDir "include";
}

◆ defaultHeaderFileScope "<dir>" lets you specify a subdirectory which is 
generated in the #include statements. Once the application is created, the header file 
scope can be modified via the Application inspector. 

For example:

studio {
    defaultHeaderFileScope "myinclude/";
}

◆ defaultObjDir "<dir>" lets you specify the makefile directory that is set by default 
for new applications. The specified directory is relative to the application directory. Once 
the application is created, it can be modified through the Application Inspector.
136 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Configuration Options for the Gadgets Extension

usrgadgets.book  Page 137  Tuesday, July 28, 2009  11:01 AM
For example:

studio {
    defaultObjDir "obj";
}

◆ defaultSrcDir "<dir>" lets you specify the source file directory that is set by 
default for new applications. The specified directory is relative to the application 
directory. Once the application is created, this directory can then be modified through the 
Application Inspector.

For example:

studio {
    defaultObjDir "obj";
}

◆ defaultSystemName "<name>" lets you specify the target system for which you want 
to generate the application makefile. This information is not specific to an application. It 
concerns only the system you use to compile the generated application. By default, the 
makefile is generated for the system on which IBM ILOG Views Studio is running. Use 
this option if you want to modify the platform for which the makefile will be generated 
by default.

For example:

studio {
    defaultSystemName "sparc_5_4.0";
}

◆ headerFileExtension "<extension>" lets you specify the extension of the 
generated header file. The default value is ".h".  

For example:

studio {
    headerFileExtension ".hxx";
}

◆ JvScriptApplication <true/false> lets you specify whether the generated C++ 
application will use IBM ILOG Script for IBM ILOG Views. This option is only 
applicable when you use the GUI Application plug-in with the jsstudio extension. 

For example:

studio {
    JvScriptApplication false;
}

◆ makeFileExtension "<extension>" lets you specify the extension of the generated 
makefile. The default value is ".mak".  For example:

studio {
    makeFileExtension ".mk";
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 137



usrgadgets.book  Page 138  Tuesday, July 28, 2009  11:01 AM
◆ noPanelContents <true/false> lets you specify whether the contents of the panel 
instances must be loaded when you open an application file. This option defaults to 
false. Use this option to reduce the loading time if you often edit applications 
containing a lot of panels. Then, you can explicitly load the contents of a panel by 
choosing Load Contents from the panel instance menu in the Application buffer window.

◆ panelBaseClass <className> lets you specify the base class name that will be 
automatically given to newly created panel classes, whatever the buffer type. If this 
option is not specified, the base class name will depend on your buffer type. 

For example:

studio {
    panelBaseClass MyGadgetContainer;
}

◆ sourceFileExtension "<extension>" lets you specify the extension of the 
generated C++ source file regardless of the selected target platform. The default value 
depends on the target platform that is selected in the Application inspector panel. 

◆ system <systemDescription> declares the information related to the target 
platform, needed by the editor to generate your application files. This option can be 
repeated. Its format is the following:

system "<system-name>" {
    <option-1> <value-1>;
    ...
    <option-n> <value-n>;
}

system-name is the IBM ILOG Views platform name, such as msvc5 or 
sparc_5_4.0. You should not have to modify these options since they are given for all 
the platforms on which IBM ILOG Views is available. Following is the list of the 
possible options used in the system description:

● compiler  "<command>" specifies the command to run the compiler on this 
platform.

● compilerOptions "<options>" specifies the options to be passed to the compiler 
for producing an object file. 

● linker "<command>" specifies the command to run the linker on this platform.

● linkerOptions "<options>" specifies the options to be passed to the linker for 
producing an executable file.

● libraries "<libraries>" lists the IBM ILOG Views libraries to link with for 
producing an executable file.

● systemLibraries "<libraries>" lists the system libraries to link with for 
producing an executable file.
138 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Configuration Options for the Gadgets Extension

usrgadgets.book  Page 139  Tuesday, July 28, 2009  11:01 AM
● motif  Either true or false to indicate whether the platform can use Motif.

◆ toolBarItem <commandName> <toolBarName> [-before <refCommandName>] 
lets you add a command <commandName> in the tool bar <toolBarName>. This option 
can be repeated. Optionally, you can specify a command <refCommandName> before 
which you want to insert the new command by using the keyword -before. 

For example:

studio {
    toolBarItem SelectLabelMode IlvStGadgetBuffer -before
SelectFocusMode;
}

◆ userSubClassPrefix "<prefix>" lets you customize the prefix of the class name 
for a generated panel subclass. By default, this prefix is "My".

◆ userSubClassSuffix "<suffix>" lets you specify the suffix of the class name for a 
generated panel subclass.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 139



usrgadgets.book  Page 140  Tuesday, July 28, 2009  11:01 AM
140 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 141  Tuesday, July 28, 2009  11:01 AM
6

Extending IBM ILOG Views Studio

This chapter describes additional ways to extend IBM® ILOG® Views Studio when you 
have installed the Gadgets extension. It contains the following sections:

◆ Extending IBM ILOG Views Studio

◆ Integrating your Own Graphic Objects

◆ Extending IBM ILOG Views Studio

Extending IBM ILOG Views Studio Components 

This section describes the IBM® ILOG® Views Studio components that you can extend.

◆ Defining a New Command

◆ Defining a New Panel

◆ IBM ILOG Views Studio Messages

◆ Defining a New Buffer

Note: To extend IBM ILOG Views Studio, you need the IBM ILOG Views Gadgets, and 
IBM ILOG Views Manager packages.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 141



usrgadgets.book  Page 142  Tuesday, July 28, 2009  11:01 AM
◆ Defining a New Editing Mode

◆ The Class IlvStExtension

Defining a New Command

A command is an action that the user can perform using the editor. A command is a C++ 
class, IlvStCommand, which is described in the file <ivstudio/command.h>. It is 
defined by:

◆ A declaration that contains information to be displayed in a menu, an icon, or a help 
message and a list of message names to be sent when the command has been successfully 
executed. Predefined commands are declared in the command description file 
studio.cmd. For more information on this file, see the section “IBM ILOG Views 
Studio Command File” in the IBM ILOG Views Studio User’s Manual.

◆ An action that is defined in the virtual member function doIt. It returns 0 when no error 
occurs; otherwise it returns the corresponding error. 

Command Errors

An IBM ILOG Views Studio error is a subclass of the IlvStError class, which is declared 
in the file <ivstudio/error.h>. An error can be returned by the doIt member function 
of a command. An error is defined by a string message and a type. There are three types of 
errors:

◆ IlvStInformation 

◆ IlvStWarning 

◆ IlvStFatal 

To add a new command, do the following:

1. Define a subclass of IlvStCommand to define the virtual member function doIt.

2. Add a descriptor in a command declaration file or directly in an option file.

3. If you use a new command declaration file, declare it in your option file using the 
commandFile option.

4. Register the command in the editor using the member function 
IlvStudio::registerCommand, giving the command name and a function to build an 
instance of the command.

Predefined Command Classes

There are two subclasses for common needs:

◆ IlvStClickAddObject to add a new object to the current buffer.
142 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio Components

usrgadgets.book  Page 143  Tuesday, July 28, 2009  11:01 AM
◆ IlvStShowPanel to display a panel on the screen. The construction of the instance uses 
the panel to be displayed. If the panel is already visible, this command just hides the 
panel.

Executing a Command

If the editor is requested to execute a command and it fails, the corresponding error is 
returned by the command execution procedure and is managed by the editor. If it succeeds, 
the list of messages associated with the command are sent by the editor. It means that the 
subscriptions attached to each message are executed.

Defining a New Panel 

The IBM® ILOG® Views Studio interface is composed of several panels. Panels are 
instances of a subclass of IlvStPanelHandler, which is described in the file <ivstudio/
panel.h>. This class is not a gadget container class, but rather a handle to the actual 
graphic panels that are instances of IlvGadgetContainer. It allows you to keep the 
graphic aspect of the panel completely separate from its behavior within IBM ILOG Views 
Studio. Following are the virtual member functions that may be redefined:

◆ connect initializes the panel. This method is usually called after the panel has been 
created. It is meant to separate the constructor from initialization.

◆ apply is associated with the apply callback that you can attach to any object.

◆ cancel is associated with the cancel callback that you can attach to any object.

◆ reset is associated with the reset callback that you can attach to any object.

The show and hide methods of the panel handler must be used to show and hide an 
IBM ILOG Views Studio panel. Never directly show or hide the handled gadget container.

The subclass IlvStDialog is a handle for an instance of IlvDialog.

IBM ILOG Views Studio Messages

An IBM® ILOG® Views Studio message contains information that describes an event that 
took place. A message collects subscriptions. A subscription is an action that is performed 
whenever a message is sent. Messages are never created by the user, but are accessed 
through the editor using their names.

A subscription is a subclass of the IlvStSubscription class, which is declared in the file 
<ivstudio/message.h>. It is associated with a receiver and has a doIt virtual member 
function. For example, when a panel wants to react to the ObjectSelected message that is 
generated each time the object selection changes in the current buffer, it subscribes to this 
message using a subscription instance. This can be done in the panel constructor by calling 
the member function subscribe on the message instance. The message instance is given by 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 143



usrgadgets.book  Page 144  Tuesday, July 28, 2009  11:01 AM
the editor through its name. Then, whenever the message ObjectSelected is sent, the 
doIt member function of this subscription is invoked.

Defining a New Buffer

A buffer is a document that is edited in IBM® ILOG® Views Studio. It uses an 
IlvManager to display, edit, save, and read its contents. If you need to subclass the 
manager to save more information concerning your objects, for example, you have to 
subclass a corresponding buffer. The IlvStBuffer class is defined to encapsulate the 
IlvManager, and the IlvStGadgetBuffer class is defined to encapsulate an 
IlvGadgetManager. These classes are declared in the file <ivstudio/stbuffer.h> and 
<ivstudio/gadgets/gadbuf.h>. If you need to define a specialized manager class to 
edit and save your graphic objects, you have to define a corresponding buffer class.

Registering Buffer Types

When loading a .ilv file, IBM ILOG Views Studio first reads the file creator class 
information to determine the type of the buffer that must be created for editing this file. For 
example, when reading a file saved by an IlvGadgetManager, IBM ILOG Views Studio 
sees that the creator class of that .ilv file is IlvGadgetManagerOutputFile and then 
creates an IlvStGadgetBuffer. This is made possible by the 
IlvStBuffers::registerType function that allows you to associate a buffer constructor 
function with a file creator class. Use this function to register your own buffer types. 
IBM ILOG Views Studio uses an IlvStBuffers object to manage all the buffers. You can 
obtain a reference to this object by calling the IlvStudio::buffers function:

static IlvStBuffer*
MakeMyBuffer(IlvStudio* editor, const char* name, const char*)
{
    // MyGadgetBuffer is a subtype of IlvStBuffer.
    return new MyGadgetBuffer(editor, name);
}

...
    editor->buffers().registerType("MyGadgetManagerOutput", 
                                    MakeMyBuffer);
...

Panel Classes

An IlvStPanelClass object is an IBM ILOG Views Studio object that describes the C++ 
panel class you wish to generate for a buffer. It contains all the information that 
IBM ILOG Views Studio requires to generate a subclass of IlvContainer using the data 
edited in your buffer. 

An IlvStPanelClass object contains the class name, the base class, the base name of the 
file, the directories where the files are generated, and so on. Some of its properties are 
related to the type of the corresponding buffer, for example, the base class: a Gadgets buffer 
144 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio Components

usrgadgets.book  Page 145  Tuesday, July 28, 2009  11:01 AM
(IlvStGadgetBuffer) is used to generate a subclass of IlvGadgetContainer, while a 
2D buffer (IlvStBuffer) is used to generate a subclass of IlvContainer. 

Let us suppose that you have defined the class MyContainer, a subclass of 
IlvGadgetContainer that can read additional information saved by your manager. You 
will then want the generated class to derive from MyContainer. You may specify the base 
class in the Panel Class inspector each time you create a panel class using your buffer, but 
the best way is to automatically set up the panel class so its base class defaults to 
MyContainer. 

You can do this by defining the setUpPanelClass virtual member function for your buffer. 
This function is called when IBM ILOG Views Studio creates a panel class from your buffer.

void
MyBuffer::setUpPanelClass(IlvStPanelClass* pclass) const
{
    IlvStGadgetBuffer::setUpPanelClass(pclass);
    pclass->setBaseClass("MyContainer");
}

Integrating Customized Container Classes

In many situations, IBM ILOG Views Studio creates instances of containers. For example, 
when you test a panel or add it to the Application buffer window. To select the appropriate 
classes IBM ILOG Views Studio uses a set of container information objects. An 
IlvStContainerInfo object provides the information that IBM ILOG Views Studio 
needs about a container subclass, and creates instances of that subclass.

To integrate a class of containers, you have to define a subclass of IlvStContainerInfo 
and add an instance of this class to the IBM ILOG Views Studio container information set as 
follows:

studio->addContainerInfo(myContainerInfo);

Defining a New Editing Mode

An editing mode is an IBM® ILOG® Views Studio object that encapsulates an object of 
type IlvManagerViewInteractor. To add a new editing mode:

1. Create an object of the class IlvStMode.

2. Add this object to the IBM ILOG Views Studio mode delegate IlvStModes.

3. Define a command constructor that returns an instance of the IlvStSetMode class.

4. Register this command constructor.

5. Declare the command descriptor in a command declaration file.

Once the editing mode has been created, you can associate it with a bitmap and add it to the 
tool bar to the left of the Main window. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 145



usrgadgets.book  Page 146  Tuesday, July 28, 2009  11:01 AM
Adding an Object to the IBM ILOG Views Studio Mode Delegate 

IlvStudio has several “delegates” that are dedicated to handling specific services. 
IlvStudio has a member of the class IlvStModes to manage the modes. Its reference can 
be accessed by:

IlvStModes& IlvStudio::modes();

You can use the following function to add your editing mode:

void IlvStModes::add(IlvStMode* mode) 

Defining a Command Constructor that Returns an Instance of the IlvStSet-
Mode Class

The command constructor to be defined can be a simple function. The Menu mode, for 
example, can be coded as follows:

◆ Adding the new mode:

editor->modes().add(new IlvStMode(editor,
                                  "Menu",
                                  "SelectMenuMode",
                                  new IlvMakeMBLinkInteractor));

◆ Command constructor function:

static IlvStCommand*
MkSelectMenuMode(IlvStudio*)
{
    return new IlvStSetMode("Menu"); 
}

The Class IlvStExtension

To initialize a new extension and add it to IBM® ILOG® Views Studio, you have to derive a 
class from IlvStExtension defining a set of methods that will be invoked in a predefined 
sequence. The constructor of IlvStExtension takes the following two parameters:

◆ name is the name of the extension.

◆ editor is the instance of the editor that is being extended.

The constructor of the IlvStExtension class adds the new instance to the extension list of 
the editor. You must create an instance of your extension before initializing the IlvStudio 
instance. When the editor is deleted, this instance is also deleted. An extension must not be 
explicitly deleted. 

Here is an example:

#include <ivstudio/studext.h>

class MyStudioExtension 
: public IlvStExtension {
146 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio Components

usrgadgets.book  Page 147  Tuesday, July 28, 2009  11:01 AM
public:
    MyStudioExtension(IlvStudio* editor);
    virtual IlBoolean preInitialize();
    virtual IlBoolean initializePanels();
    virtual IlBoolean initializeCommandDescriptors();
    virtual IlBoolean initializeBuffers();
    virtual IlBoolean initializeInspectors();
};

int
main(int argc, char* argv[])
{
    IlvSetLanguage();
    // --- Display ---
    IlvDisplay* display = new IlvDisplay("ivstudio", "", argc, argv);
    if (display->isBad()) {
        IlvFatalError("Couldn't open display");
        delete display;
        return 1;
    }

    // ---- Create and initialize the editor ---
    IlvStudio* editor = new IlvStudio(display, argc, argv);
    if (editor->isBad()) {
        IlvFatalError("Could not initialize the editor");
        delete display;
        return 2;
    }
    new MyStudioExtension(editor); // added line
    editor->initialize();
    editor->parseArguments();
    editor->mainLoop();
    return 0;
}

First Initialization Step

The preInitialize method is the first one to be invoked when the editor is initialized. At 
this stage, configuration files have not yet been read. 

What you should do in this method: 

◆ Complete the display path so that it contains the directories where your configuration 
and data files are located. 

◆ Add a configuration file.

◆ If you define a buffer type and want it to be the default buffer when the editor is 
initialized, you have to set the default constructor in this method. 

For example:

// A buffer constructor.
static IlvStBuffer* ILVCALLBACK
MakeMyBuffer(IlvStudio*  editor, const char* name, const char*)
{
   return new MyGadgetBuffer(editor, name);
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 147



usrgadgets.book  Page 148  Tuesday, July 28, 2009  11:01 AM
static const char* UserData = "../data";

IlBoolean
MyStudioExtension::preInitialize()
{
   IlvStudio* editor = getEditor();
   // Add the path.
   editor->getDisplay()->prependToPath(UserData);
   // Add an option file.
   editor->addOptionFile("mystudio.opt");
   // Must be done here so
   // the first default buffer will be a MyGadgetBuffer.
   editor->buffers().setDefaultConstructor(MakeMyBuffer);
   return IlTrue;
}

Initializing Buffers

The initializeBuffers method is called after the predefined buffers are initialized. You 
can complete the buffer initialization and the related initializations in this method. 

For example:

IlBoolean
MyStudioExtension::initializeBuffers()
{
   IlvStudio* editor = getEditor();
   editor->buffers().registerType("MyGadgetManagerOutput", MakeMyBuffer);
   return IlTrue;
}

Initializing Command Descriptors

The initializeCommandDescriptors method is called after the command descriptors 
are read and after the predefined command constructors are registered. You can register your 
command constructors in this method.

For example:

static IlvStCommand*
MkMyShowPanel(IlvStudio* editor)
{
    return new IlvStShowPanel(editor->getPanel("MyPanel")); 
}

static IlvStCommand*
MkMyAddClass(IlvStudio*) 
{ 
    return new MyAddClass; 
}

static IlvStCommand*
MkMyNewBuffer(IlvStudio*) 
{ 
    return new MyNewBuffer; 
}

148 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio Components

usrgadgets.book  Page 149  Tuesday, July 28, 2009  11:01 AM
IlBoolean
MyStudioExtension::initializeCommandDescriptors()
{
    // Register my commands.
    IlvStudio* editor = getEditor();
    editor->registerCommand("MyShowPanel", MkMyShowPanel);
    editor->registerCommand("AddMyClass", MkMyAddClass);
    editor->registerCommand("MyNewBuffer", MkMyNewBuffer);
    return IlTrue;
}

Initializing Panels

When the initializePanels method is called, the panel properties are loaded and the 
predefined panels are created, but the panel properties are not yet applied to the panels. 
Create your own panels in this method as follows:

IlBoolean
MyStudioExtension::initializePanels()
{
    IlvStudio* editor = getEditor();
    // Create MyGadgetPalette.
    MyGadgetPalette* pal = new MyGadgetPalette(editor);
    pal->connect();
    // Create MyPanel.
    MyPanelHandler* pan = new MyPanelHandler(editor, "MyPanel");
    pan->connect();
    return IlTrue;
}

Registering Inspectors

To register an inspector panel, you have to map an object that is able to create the inspector 
panel to the class name of the inspected object. The inspector panel builder must derive from 
the class IlvStInspectorPanelBuilder. To declare an inspector panel builder class, you 
must use the macro IlvStDefineInspectorPanelBuilder, as follows:

IlvStDefineInspectorPanelBuilder(MyClassInspector,\ 
                                 MyClassInspectorBuilder)

The mapping used to register an inspector panel is done inside the 
initializeInspectors method, which is called after the predefined inspectors are 
initialized. 

Here is how you add an inspector panel builder:

IlBoolean
MyStudioExtension::initializeInspectors()
{
    IlvStudio* editor = getEditor();
    editor->inspector().registerBuilder("MyClass", 
                                         new MyClassInspectorBuilder);
    return IlTrue;
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 149



usrgadgets.book  Page 150  Tuesday, July 28, 2009  11:01 AM
Initializing Editing Modes

The initializeModes method is called after the predefined editing modes are initialized. 
If you provide an editing mode, you can initialize it here.

Last Initialization Step

The postInitialize method is the last method to be called. 

Integrating your Own Graphic Objects

This section explains how to integrate your own graphic object subclasses into 
IBM® ILOG® Views Studio. 

Follow these steps to integrate a new class:

1. Define the command that will be used to add an instance of the class to the current buffer.

2. Declare the required #include statement to be generated in the panel class that uses 
your objects.

3. Put an instance of your class in the existing Palettes panel or provide your own palette.

4. Provide an Inspector panel to edit the properties of your objects.

Defining a New Command to Add an Object

To add an instance of a user-defined class to IBM® ILOG® Views Studio, you have to write 
a new command. The class IlvStClickAddObject defines a command that can be used to 
add an object at the position indicated by a mouse click. To create an instance of a user-
defined graphic class, you will have to redefine its virtual member function makeObject in 
a derived class, as shown in the example below: 

#include <ivstudio/edit.h>

class MyAddClass: public IlvStClickAddObject {
protected:
   virtual IlvStError* makeObject(IlvGraphic*& obj, IlvStudio* ed, IlvAny) {
      MyClass* mc = new MyClass(ed->getDisplay(), IlvRect(0, 0, 40, 40));
      obj = mc;
      return 0;
   }
};

The following command constructor creates and returns a new instance of the user-defined 
class:

static IlvStCommand*
MkMyAddClass(IlvStudio*) 
{ 
  return new MyAddClass; 
150 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Integrating your Own Graphic Objects

usrgadgets.book  Page 151  Tuesday, July 28, 2009  11:01 AM
}

You can then create a subclass of IlvStExtension and define the 
initializeCommandDescriptors method to register the command constructor, as 
follows:

IlBoolean
MyStudioExtension::initializeCommandDescriptors()
{
    getEditor()->registerCommand("AddMyClass", MkMyAddClass);
    return IlTrue;
}

In an option file, you can write your command declaration like this:

studio {
  // ...
  command AddMyClass {
    label "MyClass";
    prompt "Add an object of my class";
    category add;
  }
  // ...
}

The name given to the command is the same as the one registered with the editor. In this 
example, the command is displayed in the add category of the Commands panel.

If required, you can declare your option file using the ILVSTOPTIONFILE environment 
variable.

Adding the Include File and Library File of a New Class to the Generated Code

The C++ code that defines a panel containing an instance of a new user-defined class must 
contain the #include statement corresponding to the new class. To add this instruction, 
insert the following code in an initialization method of your extension class. 

For example:

#include <ivstudio/appcode.h>

IlBoolean
MyStudioExtension::initializeBuffers()
{
    // If the IlvRegisterClass is not already done.
    This macro must be called only once.
    IlvRegisterClass (MyClass, TheSuperClass);
    IlvRegisterClassCodeInformation (MyClass,"<myclass.h>","mylib");
    // ...
    return IlTrue;
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 151



usrgadgets.book  Page 152  Tuesday, July 28, 2009  11:01 AM
Customizing the Palettes Panel

You can add your own palettes to the Palettes panel using the .opt file. To add a new 
palette, define the node that corresponds to the new palette in the tree gadget, and provide 
the data file containing the objects in that palette. In the option file, you can specify the class 
of the container that is used to read and display data files. You can also remove a predefined 
palette and specify the palette that is selected by default.

The Palettes panel is split into two areas. The area at the top of the panel displays a tree 
gadget, while the bottom area displays a scrolled view. The tree gadget represents the 
hierarchy of available palettes from which you can choose. A container in the scrolled view 
displays the contents of the selected palette. Each node in the tree corresponds to a palette 
descriptor, which is defined by a name, a data file, a label, and the location of the node in the 
tree. The palette descriptor has its own container.

The container of a palette is created when the palette is selected for the first time. If the 
container class is specified, IBM® ILOG® Views Studio uses the corresponding container 
information (IlvStContainerInfo) to create an instance of the specified class. By 
default, it uses an IlvGadgetContainer object. If the palette has a specified data file, the 
created container reads that data file. All the palette containers are hidden, except the one 
that is attached to the selected palette.

Customize Options 

You can use an option file to add new palettes to the Palettes panel, remove predefined 
palettes, or designate the default palette:

To describe a new palette, use the dragDropPalette option as follows:

dragDropPalette "<palette name>" { 
    <option-1 <value-1>; 
    ...
    <option-n <value-n>;
}

To remove a predefined palette from the tree gadget in the Palettes panel, use the 
removeDragDropPalette option like this:

removeDragDropPalette "<palette name>"

To specify the palette that is selected by default, use the defaultDragDropPalette 
option:

defaultDragDropPalette "<palette name>"

Broadcast Messages

Following are the messages that are broadcast when a palette container is initialized or when 
a palette is selected:
152 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Integrating your Own Graphic Objects

usrgadgets.book  Page 153  Tuesday, July 28, 2009  11:01 AM
◆ PaletteContainerInitialized  The argument is the descriptor of the selected 
palette. When this message is broadcast, the container is created, its data file is read and 
the objects in the palette are initialized.

◆ PaletteSelected  The argument is the descriptor of the selected palette. 

Example

The following example shows how to use options related to the IBM ILOG Views Studio 
palettes:

// mystudio.opt 
studio { 
   dragDropPalette "MyRootPalette" { 
       dataFileName "myfile1.ilv"; 
       path -before "Gadgets"; 
   } 
   dragDropPalette "MyPalette" {
       label "My Palette"; 
       bitmap "myicon.gif";
       dataFileName "myfile2.ilv";
       path "Gadgets" "Miscellaneous"; 
   }
   removeDragDropPalette "ViewRectangles"; 
   defaultDragDropPalette "MyRootPalette";
}

Defining and Integrating an Inspector Panel

To inspect the properties of a user-defined graphic object, do the following:

1. Define a new inspector panel class for this object class.

2. Integrate this inspector class into IBM® ILOG® Views Studio.

Defining an Inspector Panel Class

The new inspector panel class must derive from the IlvStInspectorPanel class, which is 
declared in the file $ILVHOME/studio/ivstudio/inspectors/insppnl.h. You could 
also derive this class from IlvStIGraphicInspectorPanel to automatically inherit from 
the inspection features of properties that are common to IlvGraphic objects. These 
properties will be displayed in two notebook pages: General and Callbacks. This class can 
be found in the file $ILVHOME/studio/ivstudio/inspectors/gadpnl.h. It defines an 
inspector panel that edits a subclass of an IlvGraphic class. 

To derive this class, define the following functions:

◆ The constructor calls the parent class constructor providing a display, the title of the 
panel, a data file name, and the update mode. The last two parameters are optional.

◆ initializeEditors is called to register the accessors and editors in the inspector 
panel. Do not forget to declare the notebook pages that should appear in the inspector 
panel at the beginning of the method. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 153



usrgadgets.book  Page 154  Tuesday, July 28, 2009  11:01 AM
◆ initFrom is called whenever the inspector panel is initialized with a new object. It 
initializes the panel according to the given object. For example, if you edit the x position 
of the object in a line editor, you set the label of the line editor to the position of the x 
object using this function. By default, this method initializes accessors and editors and 
should not be overridden. 

◆ applyChange is called when the user clicks the Apply button to apply changes to the 
inspected object. By default, this method delegates his role to accessors and editors and 
should not be overridden. 

The following is an example of these function definitions:

class MyClassInspector
: public IlvStIGraphicInspectorPanel
{
public:
    // Constructor
    MyClassInspector(IlvDisplay* display,
                     const char*   title,
                     const char*   filename = 0,
                     IlvSystemView transientFor = 0,
                     IlvStIAccessor::UpdateMode mode 
                           = IlvStIAccessor::OnApply):
    IlvStIGraphicInspectorPanel(display, title, filename,
                                transientFor, mode) {}
    virtual void initializeEditors();
};

IlvStDefineInspectorPanelBuilder(MyClassInspector,\
                                 MyClassInspectorPanel);

MyClassInspector::MyClassInspector(IlvDisplay* display,
                                   const char*   title,
                                   const char*   filename,
                                   IlvSystemView transientFor,
                                   IlvStIAccessor::UpdateMode mode)
:IlvInspectorPanel(display, title, filename, transientFor, mode)
{}

void 
MyClassInspector::initializeEditors()
{
    IlvStIGraphicInspectorPanel::initializeEditors();
    // Add notebook pages.
    addPage("&Specific", "../data/myclinsp.ilv";
    // Add editors.
    link("xfield", IlvGraphic::_xValue);
    link("yfield", IlvGraphic::_yValue);
}

Integrating the Inspector Panel into IBM ILOG Views Studio

To integrate the new inspector into the editor, modify your extension class to define the 
initializeInspectors as follows:

IlBoolean
154 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio: An Example

usrgadgets.book  Page 155  Tuesday, July 28, 2009  11:01 AM
MyStudioExtension::initializeInspectors()
{
   IlvStudio* editor = getEditor();
   editor->inspector().registerBuilder("MyClass",
                                       new MyClassInspectorPanel);
   return IlTrue;
}

Extending IBM ILOG Views Studio: An Example

The example in this section shows how to create an editor that associates predefined 
callbacks with any graphic object. loadilv is a predefined callback that takes the name of 
the file to be loaded as a parameter. This name is stored in graphic objects as a property.

The first task is to derive a class from IlvGadgetManager to redefine read and write for 
storing and restoring the new property. This part is not described here. We assume that you 
have a class MyManager that saves objects with the descriptor MyGadgetManagerOutput 
and a class MyContainer restoring objects saved by MyManager.

Follow these steps to extend the editor:

1. Defining a New Buffer associated with the new manager and container.

2. Defining a New Command to create a buffer of the new type.

3. Defining a New Panel to associate the file name with objects.

Defining a New Buffer Class 

Define a subclass MyGadgetBuffer from IlvStGadgetBuffer. Below is a header 
example:

class MyGadgetBuffer
: public IlvStGadgetBuffer {
public:
    MyGadgetBuffer(IlvStudio*, const char* name, IlvManager* = 0);
    virtual const char* getType () const;
    virtual const char* getTypeLabel() const;
    virtual void setUpPanelClass(IlvStPanelClass*) const;
};

You provide:

◆ The constructor, which calls the IlvStGadgetBuffer constructor. If the manager 
parameter is not yet created, it creates a MyManager instance.

◆ The virtual member function getType, which returns the class name MyGadgetBuffer.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 155



usrgadgets.book  Page 156  Tuesday, July 28, 2009  11:01 AM
◆ The virtual member function getTypeLabel, which returns the class name label. This 
label is used by IBM ILOG Views Studio to display the type of the buffer in the Main 
window. It may be different from the label returned by the getType member function 
that is used as the identifier of the buffer type. 

◆ The virtual member function setUpPanelClass, which is called when an 
IBM ILOG Views Studio panel class is made for your buffer. 

The MyGadgetBuffer class can be defined like this:

#include <ivstudio/studio.h>
#include <ivstudio/stdesc.h>

#include <mybuf.h>
#include <myman.h>
#include <mycont.h>

MyGadgetBuffer::MyGadgetBuffer(IlvStudio* editor,
                               const char* name,
                               IlvManager* mgr)
: IlvStGadgetBuffer(editor,
                    name,
                    mgr ? mgr : new MyManager(editor->getDisplay()))
{
}

const char* 
MyGadgetBuffer::getType () const
{
    return "MyGadgetBuffer";
}

const char* 
MyGadgetBuffer::getTypeLabel () const
{
    return "Mine";
}

void
MyGadgetBuffer::setUpPanelClass(IlvStPanelClass* pclass) const
{
    IlvStGadgetBuffer::setUpPanelClass(pclass);
    pclass->setBaseClass(“MyContainer”);
} 

Once you have the new class, you have to integrate it into the editor; that is, tell the editor 
that the file saved with the new descriptor needs to be loaded in the new buffer type.

To do so, add a call to registerType in your initializeBuffers method of your 
extension class. The following is an example:

#include <mybuf.h>

static IlvStBuffer*
MakeMyBuffer(IlvStudio*  editor, const char* name, const char*)
{

156 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio: An Example

usrgadgets.book  Page 157  Tuesday, July 28, 2009  11:01 AM
    return new MyGadgetBuffer(editor, name);
}

IlBoolean
MyStudioExtension::initializeBuffers()
{
     IlvStudio* editor = getEditor();
     // ...
     editor->buffers().registerType("MyGadgetManagerOutput",
                                    MakeMyBuffer);
     // ... 
     return IlTrue;
}

Defining a New Command

The editor now recognizes what MyManager has generated. But a new buffer instance must 
be created.

To do so, provide a new command to create an instance of MyBuffer. Make a subclass of 
IlvStCommand, redefining the virtual member function doIt. The following is an example:

const char* NameNewBuffer = “MyNewBuffer”;

class MyNewBuffer: public IlvStCommand {
public:
    virtual IlvStError* doIt(IlvStudio*, IlvAny);
};

IlvStError*
MyNewBuffer::doIt(IlvStudio* editor, IlvAny arg)
{
    if (arg) {
        editor->buffers().setCurrent((IlvStBuffer*)arg);
        return 0;
    }
    const char* name = editor->options().getDefaultBufferName();
    IlvStBuffer* buffer = new MyGadgetBuffer(editor, name);
    if (editor->buffers().get(name))
    buffer->newName(name); // uniq name
    return editor->execute(IlvNmNewBuffer, 0, 0, buffer);
}

Now the command must be integrated into the editor. To do so:

1. Add the registration of the new command to your initialize function, providing a function 
to build it.

2. Describe the new command in a new command declaration file named mystudio.cmd. 
You have to specify this command declaration file in your option file using the 
commandFile option.

The following is an example of the initialize function:

static IlvStCommand*
MkMyNewBuffer(IlvStudio*)
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 157



usrgadgets.book  Page 158  Tuesday, July 28, 2009  11:01 AM
{ 
    return new MyNewBuffer; 
}

IlBoolean
MyStudioExtension::initializeCommandDescriptors()
{
    IlvStudio* editor = getEditor();
    // ...
    editor->registerCommand("MyNewBuffer", MkMyNewBuffer);
    // ...
    return IlTrue;
}

The following is a command declaration example:

command MyNewBuffer {
    label "MyBuffer";
    prompt "Open my buffer";
    category buffer;
}

Defining a New Panel

Now you have to create a new panel to get the new property. Below are the steps to follow:

1. Create a panel using IBM® ILOG® Views Studio with a line editor named file name 
and two buttons with the callbacks Apply and Cancel.

2. Describe a subclass of IlvStDialog to provide the constructor with the member 
functions Apply and Cancel.

3. Integrate the new panel into the editor.

Here is a header example:

#include <ivstudio/panel.h>
class MyPanelHandler
: public IlvStDialog {
public:
    MyPanelHandler(IlvStudio* ed, const char* name, 
                   IlvDialog* dlg = 0);
    virtual void apply();
    virtual void reset();
};

You provide:

◆ The constructor, which calls IlvStDialog constructor giving the data file you created. 
It initializes the panel and subscribes to the message ObjectSelected by the member 
function resetOnMessage. The callback passed to the subscription calls the reset 
member function for the panel.

◆ The virtual member function apply, which reads the file name object contents and 
associates it with the object property.
158 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio: An Example

usrgadgets.book  Page 159  Tuesday, July 28, 2009  11:01 AM
◆ The virtual member function reset, which initializes the file name object contents for 
the property of the currently selected object.

The following is a coding example:

#include <ivstudio/studio.h>
#include <mypan.h>
#include <myutil.h>
#define DATAFILE "../data/mypanel.ilv"

MyPanelHandler::MyPanelHandler(IlvStudio* ed, const char* name,
                               IlvDialog* dlg)
: IlvStDialog(ed, name, DATAFILE, IlvRect(0, 0, 254, 71))
{
    IlvTextField* tf = 
       (IlvTextField*)getDialog()->getObject(“filename”);
    tf->setLabel("", IlTrue);
    resetOnMessage("ObjectSelected");
}
void
MyPanelHandler::apply()
{
   IlvGraphic* obj = getEditor()->getSelection();
   if (obj) {
       const char* name =
   ((IlvTextField*)getDialog()->getObject(“filename”))->getLabel();
       if (name && name[0]) {
         MySetParameter(obj, IlvGetSymbol(name));
         obj->setCallbackName(IlvGetSymbol(“loadilv”));
         }
   }
}

void 
MyPanelHandler::reset()
{
    IlvTextField* tf = 
          (IlvTextField*)getDialog()->getObject(“filename”);
    IlvGraphic* obj = getEditor()->getSelection();
    IlvSymbol* fi = 0;
    if (obj) 
        fi = MyGetParameter(obj);
    tf->setLabel(fi ? fi->name() : ““, IlTrue);
}

Once the panel class is created, it must be integrated into the editor. To do so:

1. Add the building of the panel to the editor initialization function.

2. Provide its description in the file mystudio.pnl.

The following is a coding example with a command to display the panel.

static IlvStCommand*
MkMyShowPanel(IlvStudio* editor)
{
    return new IlvStShowPanel(editor->getPanel("MyPanel")); 
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 159



usrgadgets.book  Page 160  Tuesday, July 28, 2009  11:01 AM
IlBoolean
MyStudioExtension::initializePanels()
{
    // ... 
    // Create MyPanel.
    MyPanelHandler* pan = new MyPanelHandler(getEditor(), "MyPanel");
    pan->connect();
    // ... 
    return IlTrue;
}

Providing Container Information

To integrate your container class, you have to define a subclass of IlvStContainerInfo 
and add it to the IBM® ILOG® Views Studio information set, as shown below:

class MyContainerInfo
: public IlvStContainerInfo {
public:
   MyContainerInfo() : IlvStContainerInfo("MyContainer") {}
   IlvContainer* createContainer(IlvAbstractView* parent,
                                 const IlvRect&   bbox,
                                 IlBoolean       useacc,
                                 IlBoolean       visible) {
      return new MyContainer(parent, bbox, useacc, visible);
   }
   IlvContainer* createContainer(IlvDisplay*    display,
                                 const char*    name,
                                 const char*    title,
                                 const IlvRect& bbox,
                                 IlUInt          properties,
                                 IlBoolean       useacc,
                                 IlBoolean       visible,
                                 IlvSystemView    transientFor) {
       return new MyContainer(display,
                              name,
                              title,
                              bbox,
                              properties,
                              useacc,
                              visible,
                              transientFor);
   }
   const char* getFileCreatorClass() const {
     return "MyGadgetManagerOutput";
   }
};

   // ...
   editor->addContainerInfo(new MyContainerInfo());    
160 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Extending IBM ILOG Views Studio: An Example

usrgadgets.book  Page 161  Tuesday, July 28, 2009  11:01 AM
Registering Callbacks

IBM® ILOG® Views Studio lets you use your own callbacks when you test panels or 
applications by calling the IlvStudio::registerCallback function:

static void ILVCALLBACK
MyCallback(IlvGraphic* obj, IlvAny)
{
    IlvPrint(“MyCallback is called”);
}

 ....
    IlvStudio* editor = ...
....
    editor->registerCallback(“MyCallback”, MyCallback);
    editor->registerCallback(“myCallback”, MyCallback);
 ....
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 161



usrgadgets.book  Page 162  Tuesday, July 28, 2009  11:01 AM
162 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 163  Tuesday, July 28, 2009  11:01 AM
7

Using Inspector Classes

This chapter introduces you to the use of the IBM® ILOG® Views Studio inspector classes. 
You can find information on the following topics:

◆ What Is an Inspector?

◆ Components of an Inspector Panel

◆ Defining a New Inspector Panel

For a more detailed description of the classes that are referred to in this chapter, see the 
IBM ILOG Views Studio Reference Manual. 

What Is an Inspector?

In IBM® ILOG® Views Studio, an inspector is an instance of the class IlvStInspector. 
IBM ILOG Views Studio contains one instance of this class, which is used to inspect 
selected graphic objects in the active buffer. The role of an inspector is to display the 
inspector panel that corresponds to the last selected graphic object. 

Note: To use the inspector classes of IBM ILOG Views Studio, you need the 
IBM ILOG Views Gadgets and IBM ILOG Views Manager packages.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 163



usrgadgets.book  Page 164  Tuesday, July 28, 2009  11:01 AM
To display the appropriate inspector panel, the inspector maintains a table that maps graphic 
object classes to inspector panel classes. If a graphic object class has no associated inspector 
panel, the inspector attaches it to the inspector panel of the first superclass in the inheritance 
path that has an associated inspector panel. Let us suppose that the object to be inspected is 
of the type IlvMyTextField, a class derived from IlvTextField. If no inspector panel 
has been defined for this class, the IBM ILOG Views Studio inspector displays the 
IlvTextField inspector panel.

An inspector panel is made up of several components, which are described in the following 
sections.

Components of an Inspector Panel

Inspecting an object boils down to examining its properties. In general, to inspect a property, 
an inspector panel uses the following pair of components: an accessor and an editor. 

The accessor interfaces with the inspected property while the editor interfaces with a gadget 
that represents it graphically in the inspector panel (an IlvTextField, for example). In the 
context where an accessor is paired with an editor, the accessor is responsible for fetching 
the property value and displaying it via the editor. The editor for its part notifies the accessor 
whenever its content changes. In other words, inspecting a property means initializing the 
accessor when the inspector is initialized, and requesting the accessor to apply modifications 
made to the editor’s content. In this context, only a list of accessors is required to inspect an 
object. 

Certain editors, however, do not need to be linked with accessors to work. For example, a 
combo box used to show or hide a set of gadgets does not need to access data to be 
initialized. Similarly, changing the selected item in the combo box does not affect the data. 
Because these stand-alone editors are not initialized by accessors, they must be initialized 
explicitly. 

To handle both the pairs accessors/editors and stand-alone editors, an inspector panel makes 
use of a main editor defined by the class IlvStIMainEditor. Actually, inspection 
operations, including managing the Apply button present in each inspector panel, which are 
carried out by the inspector panel, are processed by the main editor. 

The following figures illustrate respectively:

◆ The various components of an inspector panel and how they relate to one another.

◆ The initialization steps of an inspector panel.

◆ What happens when a property is modified in a inspector panel.

◆ The steps involved in applying changes to properties made via an inspector panel.
164 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 165  Tuesday, July 28, 2009  11:01 AM
Figure 7.1       

Figure 7.1  Components of an Inspector Panel
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 165



usrgadgets.book  Page 166  Tuesday, July 28, 2009  11:01 AM
Figure 7.2     

Figure 7.2  Initialization Steps of an Inspector Panel 
166 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 167  Tuesday, July 28, 2009  11:01 AM
Figure 7.3      

Figure 7.3  What Happens When Modifications are Made in the Inspector Panel
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 167



usrgadgets.book  Page 168  Tuesday, July 28, 2009  11:01 AM
Figure 7.4     

Figure 7.4  Applying Modifications Made in an Inspector Panel

Accessors

An inspector panel handles accessors of the class IlvStIAccessor, which is the base class 
of all the accessor classes. It performs two actions on accessors by calling the methods 
initialize and apply. Calling the first method initializes the calling accessors, while 
apply brings into effect the modifications made to the inspected object. 

Property Accessors

Most of the time, accessors are used to inspect object properties. In fact, if you take a look at 
the accessor class hierarchy illustrated below, you’ll see that IlvStIPropertyAccessor, a 
subclass of IlvStIAccessor, is the base class for all types of accessors in the library.
168 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 169  Tuesday, July 28, 2009  11:01 AM
Figure 7.5       

Figure 7.5  Accessor Hierarchy

Property accessors manipulate properties via the class IlvStIProperty in which they are 
encapsulated. For example, to manipulate a property of the type IlvValue, an accessor uses 
an object of the type IlvStIValueProperty deriving from the class IlvStIProperty, in 
which the IlvValue object is encapsulated.

Accessors inspect properties using two different modes: 

◆ An update mode, which specifies whether the property accessor should apply 
modifications immediately or when the user clicks the Apply button.

◆ A building mode, which specifies whether a property should be created, if not found, 
and/or copied. 

Since the initialize and apply methods of the property accessor utilize these 
parameters, you must not redefine them when subclassing IlvStIPropertyAccessor. 
Instead redefine the methods getOriginalValue and applyValue, which are invoked by 
initialize and apply, respectively. 

The following example shows how to subclass IlvStIPropertyAccessor to access the 
label of a gadget item:

class IlvLabelAccessor
: public IlvStIPropertyAccessor
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 169



usrgadgets.book  Page 170  Tuesday, July 28, 2009  11:01 AM
{
public:
    IlvLabelAccessor(IlvGadgetItem* gadgetItem,
                     const char* name = 0,
                     UpdateMode updateMode = NoUpdate,
                     BuildMode buildMode = None):
          IlvStIPropertyAccessor(name, updateMode, buildMode),
          _gadgetItem(gadgetItem)
    {}
protected:
    IlvGadgetItem* _gadgetItem;
    IlvGadgetItem* getGadgetItem()const;
    virtual IlvStProperty* getOriginalValue() const;
    virtual void applyValue(IlvStProperty* property);
};

IlvGadgetItem*
IlvLabelAccessor::getGadgetItem() const
{
    return _gadgetItem;
}

IlvStIProperty*
IlvLabelAccessor::getOriginalValue()
{
    IlvGadgetItem* gadgetItem = getGadgetItem();
    return new IlvStIValueProperty(gadgetItem->getLabel(), “label”);
}
void
IlvLabelAccessor::applyValue(IlvStIProperty* property)
{
    IlvGadgetItem* gadgetItem = getGadgetItem();
    IlvValue value;
    property->getValue(value);
    const char* label = (const char*)value;
    gadgetItem->setLabel(label);
}

Dependent Accessors

Certain inspected properties directly depend on other inspected properties. For example, the 
user should not be able to inspect the intermediate state of a toggle button if the intermediate 
mode was not set for it. In other words, the accessor to the “intermediate state” property 
should always be aware of the value set for the accessor to the “intermediate mode” property, 
and its associated editor should appear gray or not depending on that value. This means that 
if the accessor to the “intermediate mode” property is initialized or is modified, the accessor 
to the “intermediate state” must be reinitialized accordingly. For this initialization 
precedence order to be achieved, the accessor to the “intermediate state” property should be 
made dependent on the accessor to the “intermediate mode” property using the method 
IlvStIAccessor::addDependentAccessor. 

This dependency mechanism is also used by combined accessors, which are described in the 
next section. 
170 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 171  Tuesday, July 28, 2009  11:01 AM
Combined Accessors

A combined accessor is an instance of the class IlvStICombinedAccessor, a subclass of 
IlvStIPropertyAccessor, which is used to inspect the property of an object that is 
returned by another accessor. For example, let us consider a name accessor used to inspect 
the name of a gadget item. By combining this accessor with a gadget item accessor, you can 
use it to inspect both an element selected in a gadget item list or a gadget item in a message 
label. Combined accessors are usually implemented as dependent accessors since they must 
be reinitialized whenever the property they access through another accessor is itself 
reinitialized. In our example, changing the current selection in a gadget item list would cause 
the name accessor to be reinitialized.

The example given in the section Accessors on page 168 has been rewritten below to 
illustrate combined accessors. It shows how to subclass IlvStICombinedAccessor to 
access the label of a gadget item:

class IlvLabelAccessor
: public IlvStICombinedAccessor
{
public:
protected:
    IlvGadgetItem* getGadgetItem() const;
    virtual IlvStProperty* getOriginalValue();
    virtual void applyValue(IlvStProperty* property);
};

IlvGadgetItem*
IlvLabelAccessor::getGadgetItem()
{
    if (!getObjectAccessor())
         return 0;
    IlvStIProperty* property = getObjectAccessor()->get();
    return (property? (IlvGadgetItem*)property->getPointer() : 0);
}

// The implementation of the getOriginalValue and applyValue methods
// are the same as in previous the sample.
...

List Accessors

A list accessor is an instance of the class IlvStIPropertyListAccessor, which derives 
from IlvStICombinedAccessor. A list accessor is used to inspect a list of properties. It 
allows you to add, remove, or modify a property in a list. This type of accessor works in 
conjunction with instances of the class IlvStIPropertyListEditor. Editors of this kind 
handle gadgets that are used to edit lists, that is, list gadgets, and the following four buttons: 
Add After, Add Before, Remove, and Clean. 

The following code sample shows how to access a list of gadget items that are contained in a 
gadget item holder:

class IlvStIGadgetItemListAccessor
: public IlvStIPropertyListAccessor {
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 171



usrgadgets.book  Page 172  Tuesday, July 28, 2009  11:01 AM
public:
    // ----------------------------------------------------------------------
    // Constructor / destructor
    IlvStIGadgetItemListAccessor(IlvStIPropertyAccessor* accessor = 0,
                                 IlvStIAccessor::UpdateMode updateMode=
                                                IlvStIAccessor::Inherited,
                                 const char* name = 0);
    ~IlvStIListGadgetItemAccessor();

   IlvListGadgetItemHolder* getListGadgetItemHolder() const;

protected:
    IlvGadgetItem* getGadgetItem(const IlvStIProperty*) const;
    virtual IlvStIProperty** getInitialProperties(IlUInt& count);
    virtual IlvStIProperty*  createDefaultProperty() const;
    virtual IlvGadgetItem* createGadgetItem(
                                         const IlvStIProperty* prop) const;
    
    virtual void addProperty(IlvStIProperty* property, IlUInt index);
    virtual void replaceProperty(IlvStIProperty* origProperty,
                                 IlvStIProperty* newProperty,
                                 IlUInt index);
    virtual void deleteNewProperty(IlvStIProperty* property);
    virtual void deleteProperty(IlvStIProperty* property, IlUInt index);
    virtual void moveProperty(IlvStIProperty* property,
                              IlUInt previousIndex,
                              IlUInt newIndex);
};

IlvStIGadgetItemListAccessor::
          IlvStIGadgetItemListAccessor(IlvStIPropertyAccessor* accessor,
                                       IlvStIAccessor::UpdateMode updateMode,
                                       const char* name):
   IlvStICombinedAccessor(accessor, update, name)
{
}

IlvStIGadgetItemListAccessor::~IlvStIGadgetItemListAccessor()
{
}
IlvListGadgetItemHolder*
IlvStIGadgetItemListAccessor::getListGadgetItemHolder() const
{
    if (!getObjectAccessor())
        return 0;
    IlvStIProperty* property = getObjectAccessor()->get();
    return (property? (IlvListGadgetItemHolder*)property->get() : 0);
}

IlvStIProperty**
IlvStIListGadgetItemAccessor::getInitialProperties(IlUInt& count)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return 0;
    count = (IlUInt)listHolder->getCardinal();
    if (!count)
        return 0;
172 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 173  Tuesday, July 28, 2009  11:01 AM
    IlvStIProperty** properties = new IlvStIProperty*[count];
    for(IlUInt i = 0; i < count; i++)
        properties[i] = new IlvStIValueProperty(
                            (IlvAny)listHolder->getItem((IlvUShort)i));
    return properties;
}

IlvGadgetItem*
IlvStIListGadgetItemAccessor::getGadgetItem(
                                const IlvStIProperty* property)const
{
    return (property? (IlvGadgetItem*)property->getPointer() : 0);
}

IlvStIProperty*
IlvStIListGadgetItemAccessor::createDefaultProperty()const
{
    return new IlvStIValueProperty(
                  (IlvAny)new IlvGadgetItem("&Item", (IlvBitmap*)0));
}

IlvGadgetItem*
IlvStIListGadgetItemAccessor::createGadgetItem(
                                         const IlvStIProperty* prop) const
{
    const IlvStIGadgetItemValue* value =
                       ILVI_CONSTDOWNCAST(IlvStIGadgetItemValue, prop);
    if (!value)
        return 0;
    IlvGadgetItem* newGadgetItem =
               (value->getGadgetItem()? value->getGadgetItem()->copy() : 0);
    if (!newGadgetItem)
        return 0;
    newGadgetItem->setSensitive(IlTrue);
    newGadgetItem->showLabel(IlTrue);
    newGadgetItem->showPicture(IlTrue);
    newGadgetItem->setEditable(IlFalse);
    return newGadgetItem;
}

void
IlvStIListGadgetItemAccessor::addProperty(IlvStIProperty* property,
                                          IlUInt index)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (listHolder) {
        listHolder->insertItem(getGadgetItem(property), (IlvShort)index);
    }
}

void
IlvStIListGadgetItemAccessor::replaceProperty(IlvStIProperty* origProperty,
                                              IlvStIProperty* newProperty,
                                              IlUInt position)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return;
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 173



usrgadgets.book  Page 174  Tuesday, July 28, 2009  11:01 AM
    listHolder->removeItem((IlvUShort)position);
    listHolder->insertItem(getGadgetItem(newProperty), (IlvUShort)position);
}

void
IlvStIListGadgetItemAccessor::deleteNewProperty(IlvStIProperty* property)
{
    delete getGadgetItem(property);
}

void
IlvStIListGadgetItemAccessor::deleteProperty(IlvStIProperty* property,
                                             IlUInt index)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder
        return;
    listHolder->removeItem((IlvShort)(IlvUShort)index);
}

void
IlvStIListGadgetItemAccessor::moveProperty(IlvStIProperty* property,
                                           IlUInt previousIndex,
                                           IlUInt newIndex)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return;
    listHolder->removeItem((IlvUShort)previousIndex, IlFalse);
    listHolder->insertItem(getGadgetItem(property),
                          (IlvShort)(IlvUShort)(newIndex - 
                                     (newIndex > previousIndex? 1 : 0)));
}

Tree Accessors

A tree accessor is an instance of the class IlvStIPropertyTreeAccessor, which derives 
from IlvStICombinedAccessor. A tree accessor is used to inspect a tree of properties. It 
allows you to add, remove, or modify a property in a tree. This type of accessors works in 
conjunction with instances of the class IlvStIPropertyTreeEditor. Editors of this kind 
handle gadgets that are used to edit trees, that is, tree gadgets, and the following five buttons: 
Add After, Add Before, Add Child, Remove, and Clean. 

The following code sample shows how to access a tree of gadget items that are contained in 
a tree gadget:

class IlvStIGadgetItemTreeAccessor
: public IlvStIPropertyTreeAccessor {
public:
    IlvStIGadgetItemTreeAccessor(IlvStIPropertyAccessor* accessor = 0,
                                 IlvStIAccessor::UpdateMode updateMode =
                                                 IlvStIAccessor::Inherited,
                                 const char* name = 0,
                                 IlvStIAccessor::BuildMode buildMode =
                                        IlvStIAccessor::Copy);
    ~IlvStIGadgetItemTreeAccessor();
174 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 175  Tuesday, July 28, 2009  11:01 AM
    // ----------------------------------------------------------------------
    IlvTreeGadgetItemHolder* getTreeGadgetItemHolder() const;

protected:
    
    IlvTreeGadgetItem* getGadgetItem(const IlvStIProperty*) const;
    IlvTreeGadgetItem* getParentGadgetItem(const IlvStIProperty*) const;
    
   // Applying.
    
    virtual IlUInt getChildPosition(const IlvStIProperty* parentProperty,
                                     const IlvStIProperty* property) const;
    virtual void addProperty(IlvStIProperty* property, 
                             const IlvStIProperty* parent,
                             IlUInt childPosition);
    virtual void replaceProperty(IlvStIProperty* origProperty,
                                 IlvStIProperty* newProperty,
                                 const IlvStIProperty* parent,
                                 IlUInt childPosition);
     // Array of properties.
    virtual IlvStIProperty** getInitialChildrenProperties(
                                     IlUInt& count, 
                                     const IlvStIProperty* parent = 0) const;
    // Insertion of properties.
    virtual IlvStIProperty* createProperty(const IlvStIProperty* parent,
                                           IlUInt childPosition,
                                           IlvAny param = 0) const;

     // Destruction of properties.
    virtual void deleteNewProperty(IlvStIProperty* property);
    virtual void deleteProperty(IlvStIProperty* property);
};

IlvStIGadgetItemTreeAccessor::IlvStIGadgetItemTreeAccessor(
                                     IlvStIPropertyAccessor* accessor,
                                     IlvStIAccessor::UpdateMode updateMode,
                                     const char* name,
                                     IlvStIAccessor::BuildMode buildMode):
    IlvStIPropertyTreeAccessor(accessor,
                               updateMode,
                               buildMode,
                               (name? name : "GadgetItemTreeAccessor"))
{
}

IlvStIGadgetItemTreeAccessor::~IlvStIGadgetItemTreeAccessor()
{
}

IlvTreeGadgetItemHolder*
IlvStIGadgetItemTreeAccessor::getTreeGadgetItemHolder()const
{
    IlvStIProperty* property = (_accessor? _accessor->get() : 0);
    return (property?  (IlvTreeGadget*)property->getPointer() : 0);
}

// --------------------------------------------------------------------------
IlvTreeGadgetItem*
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 175



usrgadgets.book  Page 176  Tuesday, July 28, 2009  11:01 AM
IlvStIGadgetItemTreeAccessor::getGadgetItem(
                               const IlvStIProperty* property) const
{
    return (property? (IlvTreeGadgetItem*)property->getPointer() : 0);
}

IlvTreeGadgetItem*
IlvStIGadgetItemTreeAccessor::getParentGadgetItem(
                              const IlvStIProperty* property) const
{
    if (!property) {
         // Returns root.
          IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder();
           if(!holder)
                return 0;
          return holder->getRoot();
    }
    return (property? (IlvTreeGadgetItem*)property->getPointer() : 0);
}

IlUInt
IlvStIGadgetItemTreeAccessor::getChildPosition(
                              const IlvStIProperty* parentProperty,
                              const IlvStIProperty* property)const
{
    // Get parentItem.
    IlvTreeGadgetItem* parentItem = getParentGadgetItem(parentProperty);
    if (!parentItem)
          return (IlUInt)-1;
    
    IlvTreeGadgetItem* findItem = getGadgetItem(property);
    IlUInt position = 0;
    for(IlvTreeGadgetItem* item = parentItem->getFirstChild(); 
                           item; 
                           item = item->getNextSibling(), position++) {
        if (item == findItem)
             return position;
    }
    return (IlUInt)-1;
}

void
IlvStIGadgetItemTreeAccessor::addProperty(IlvStIProperty* property, 
                                          const IlvStIProperty* parent,
                                          IlUInt index)
{
    IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder();
    if (!holder)
         return;
     holder->addItem(getParentGadgetItem(parent),
                     getGadgetItem(property), (IlvInt)index);
}

void
IlvStIGadgetItemTreeAccessor::replaceProperty(IlvStIProperty* origProperty,
                                              IlvStIProperty* newProperty,
                                              const IlvStIProperty* property,
                                              IlUInt index)
176 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 177  Tuesday, July 28, 2009  11:01 AM
{
    IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder();
    if (!holder)
        return;
    // Instead of removing the old gadget item and adding the new one, the
    // following line copies the attributes of the new created gadget item
    // to the old one.
    *(getGadgetItem(origProperty)) = *getGadgetItem(newProperty);
    // After this method is called, newProperty becomes the new 
    // original property and should therefore be updated. 
    // As we have copied attributes from the new created gadget item 
    // to the initial one, the inspected gadget item
    // keeps being the one contained in origProperty.
    newProperty->setPointer(origProperty->getPointer());
}

// Array of properties.
IlvStIProperty**
IlvStIGadgetItemTreeAccessor::getInitialChildrenProperties(
                                         IlUInt& count,
                                         const IlvStIProperty* parent) const
{
    IlvTreeGadgetItem* parentItem = getParentGadgetItem(parent);
    if (!parentItem)
        return 0;
    IlvArray properties;
    for(IlvTreeGadgetItem* item = parentItem->getFirstChild(); 
                           item;
                           item = item->getNextSibling()) {
         properties.add(new IlvStIValueProperty((IlvAny)item));
    }
    count = properties.getLength();
    if (!count)
         return 0;
    IlvStIProperty** props = new IlvStIProperty*[count];
    ::memcpy(props, 
             properties.getArray(),
             (size_t)(sizeof(IlvStIProperty*) * (IlvInt)count));
    return props;
}

// Inserting properties.
IlvStIProperty*
IlvStIGadgetItemTreeAccessor::createProperty(const IlvStIProperty*,
                                             IlUInt,
                                             IlvAny) const
{
    return new IlvStIValueProperty((IlvAny)new IlvTreeGadgetItem("&Item"));
}

// Destruction of properties.
void
IlvStIGadgetItemTreeAccessor::deleteNewProperty(IlvStIProperty* property)
{
    IlvGadgetItem* gadgetItem = (IlvGadgetItem*)property->getPointer();
    if (gadgetItem)
         delete gadgetItem;
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 177



usrgadgets.book  Page 178  Tuesday, July 28, 2009  11:01 AM
void
IlvStIGadgetItemTreeAccessor::deleteProperty(IlvStIProperty* property)
{
    IlvTreeGadgetItemHolder* holder = getTreeGadgetItemHolder();
    if (!holder)
         return;
    holder->removeItem(getGadgetItem(property));
}

Preconditions and Validators

Accessors use internally the classes IlvStIPrecondition and IlvStIValidator, and 
their derived classes, to perform a number of verifications.

Preconditions

Preconditions are tests that accessors can run to determine whether they can access the 
inspected property. These tests are performed by calling the method isAccessible of the 
class IlvStIPrecondition. If the precondition test succeeds, access is allowed. 
Otherwise, it is denied and the associated editors are disabled. 

The classes IlvStIPreconditionValue and IlvStICallbackPrecondition are two 
classes derived from IlvStIPrecondition that are sufficient to run precondition tests in 
most cases. 

IlvStIPreconditionValue objects compare the value returned by an accessor with a 
given value. 

Let us consider an accessor to the scientific mode property of a number field. As shown 
below, access is permitted only if the float mode is set for the number field. 

//This code extract is part of the code of an inspector panel.
IlvStIEditor* editor = link("NumFieldFloat", IlvNumberField::_floatModeValue);
IlvStIPropertyAccessor* floatAccessor = editor->getAccessor();
floatAccessor->setPreviewValueAccessor(previewAccessor,
                                       IlvNumberField::_floatModeValue);

// Scientific value.
IlvStIEditor* editor = link(“ScientificField”,
                            IlvNumberField::_scientificModeValue);
editor->getAccessor()->setPrecondition( 
             new IlvStIPreconditionValue(floatAccessor,
                                         (IlBoolean)IlTrue,
                                         (IlBoolean)IlFalse));

The IlvStICallbackPrecondition class is provided for cases where the code of the 
isAccessible function can be included in a callback. Using this class, you can avoid 
deriving the IlvStIPrecondition class. 

The following code sample implements a precondition that is used to avoid changing the 
alignment of a gadget item label if it does not contain one or more “end-of-line” characters.

IlBoolean
178 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Components of an Inspector Panel

usrgadgets.book  Page 179  Tuesday, July 28, 2009  11:01 AM
IlvStIsMultiLineText(IlvStIProperty* property,
                     IlvAny,
                     IlvStIProperty**,
                     IlvStIPropertyAccessor::PropertyStatus*)
{
    if (!property)
        return IlFalse;
    IlvValue value;
    const char* label = (const char*)property->getValue(value);
    if (!label)
        return IlFalse;
    while (*label)
        if (*label++ == ‘\n’)
             return IlTrue;
    return IlFalse;
}

The callback precondition will be used as follows:

     // Define an accessor to the label of the inspected gadget item.
     IlvStIPropertyAccessor* labelAcc;
      ...
     // Define the accessor to the alignment of the
     // the inspected gadget item label.
     IlvStIPropertyAccessor* labelAlignAcc;
    ...
     labelAlignAcc->setPrecondition(
               new IlvStICallbackPrecondition(labelAcc,
                                              IlvStIsMultiLineText));

Validators

The IBM ILOG Views Studio Inspectors API includes a validator class, 
IlvStIValidator, that you can use to test whether the values entered by the user are 
correct. The test is performed with the isValid method of the class. This methods tests the 
value passed as its parameter and returns an error of the type IlvStIError if the value is 
not valid. You can define whether the test should be carried out when the user’s 
modifications are entered or only when he/she clicks on Apply button in the inspector panel.

IlvStIValidator has a derived class, IlvStIRangeValidator, that tests whether a 
value is between a minimum and a maximum value. In addition to a value range, this class 
takes a message string as a parameter. This message string specifies an error message that 
can contain one or more %1, %2, and %3 substrings. These substrings are replaced by the 
minimum value, the maximum value, and the tested value, respectively. 

The following example shows how to use a validator to check whether the month entered by 
the user is between 1 and 12. 

// Define an accessor to the month property, called monthAccessor.
IlvStIPropertyAccessor* monthAccessor;
...
// Add the month validator to the month accessor.
IlvStIRangeValidator* monthValidator =
    new IlvStIRangeValidator((IlvInt)1, (IlvInt)12, "&MonthNotInRange");
monthAccessor->setValidator(monthValidator);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 179



usrgadgets.book  Page 180  Tuesday, July 28, 2009  11:01 AM
The message string "&MonthNotInRange" is translated as follows:

"You must specify a month between %1 and %2".

Editors

Editors are objects of the type IlvStIEditor used to edit inspected values. 

Editors Associated with Accessors

In most cases, the value to be inspected is directly retrieved by its accessor and is then 
modified via the associated editor graphically represented by a gadget.

Here is a list of the gadget classes that can be associated with an editor: 

◆ IlvTextField 

◆ IlvNumberField 

◆ IlvToggle 

◆ IlvStringList 

◆ IlvOptionMenu 

◆ IlvScrolledComboBox 

◆ IlvSelector 

◆ IlvSpinBox 

There is one class of editor for each one of the gadget classes enumerated above. These 
editor classes are encapsulated in the class IlvStIDefaultEditorBuilder, a subclass of 
IlvStIEditor, and are therefore transparent for the user. If you want to create an editor 
and associate it with a gadget, you have to build an instance of the class 
IlvStIDefaultEditorBuilder and provide it with the name of the gadget that you want 
to attach to it. When this instance is initialized, it creates an editor that corresponds to the 
type of the specified gadget. The created editor is managed as a child editor of the 
IlvStIDefaultEditorBuilder instance. 

In the following example, we have an accessor, represented by the floatAccessor 
variable, that is used to inspect the float mode of a number field. Here is how you would 
create an editor and associate it with this accessor to handle a toggle named 
"floatToggle" in an inspector panel. 

IlvStIEditor* editor = 
     new IlvStIDefaultEditorBuilder("floatToggle”, floatAccessor);
addEditor(editor);

Editors Not Associated with Accessors

In certain rare cases, inspected values can be so complex that they cannot be handled by an 
IlvStIPropertyAccessor object. It would be easier, for example, to fetch an array of 
180 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 181  Tuesday, July 28, 2009  11:01 AM
values directly from the inspected object and place it in a matrix rather than going through 
an IlvStIPropertyAccessor and trying to fit the value array in an IlvStIProperty 
object. In this case, you have to derive a class from IlvStIEditor and redefine the 
following virtual methods:

◆ virtual IlBoolean initialize() = 0; 

◆ virtual IlBoolean apply() = 0; 

◆ virtual IlBoolean connectHolder(IlvGraphicHolder* holder); 

◆ virtual IlBoolean isModified() const; 

◆ virtual void setModified(IlBoolean = IlTrue); 

For more information about these methods, see the IBM ILOG Views Studio Reference 
Manual.

Instances of these derived editors are added to an inspector panel like any other editors by 
calling the method IlvStIEditorSet::addEditor.

Defining a New Inspector Panel

The following sections explain how to define a new inspector panel. Defining a new 
inspector panel involves two main steps that are detailed below. These are:

1. Create a new inspector class.

2. Incorporate the inspector class that was created to IBM® ILOG® Views Studio. This 
step is not covered in this chapter. For instructions on how to incorporate an inspector to 
IBM ILOG Views Studio, see Registering Inspectors on page 149.

The explanations in this section are based on an example, which we introduce in the next 
section.

Example

The example consists of creating the inspector panel for a combo box that displays a set of 
colors from which the user can choose. This inspector panel will be used to define the colors 
present in the combo box and configure the way these colors will be displayed. 

Figure 7.6 shows the combo box and Figure 7.7 shows the associated inspector panel.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 181



usrgadgets.book  Page 182  Tuesday, July 28, 2009  11:01 AM
Figure 7.6   

Figure 7.6  Color Combo Boxes with Small Color Rectangle (left) and Full Color Rectangle (right)

Figure 7.7     

Figure 7.7  Pages of the Color Combo Box Inspector Panel

The complete code for this example can be found in the following directory:

$(ILVHOME)/samples/studio/colorbox 

Creating the Color Combo Box Inspector Panel

Graphic object inspectors derive from the class IlvStInspectorPanel. Since in our 
example, the inspected graphic object is also a gadget, the inspector panel we are going to 
create derives from IlvStIGadgetInspectorPanel, a subclass of 
IlvStInspectorPanel. 

class IlvColorComboBoxInspectorPanel
: public IlvStIGadgetInspectorPanel {
public:
    IlvColorComboBoxInspectorPanel(IlvManager* manager,
                                   IlvSystemView transientFor = 0,
                                   IlvStIAccessor::UpdateMode =
                                                   IlvStIAccessor::OnApply);
    virtual void initializeEditors();
};
182 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 183  Tuesday, July 28, 2009  11:01 AM
As we said in the section Components of an Inspector Panel on page 164, inspector panels 
are implemented with accessors and editors. These must be declared in the method 
initializeEditors. In our example, the definition of this method is divided in two parts, 
corresponding each to the implementation of the two notebook pages that make up the 
inspector panel (see Figure 7.7). These pages are described in the following two sections.

Implementing the Specific Page

The Specific page has been designed to inspect the following properties:

◆ Color name offset Specifies the offset used to display the name of the color. This 
property is defined by the following value:

IlvListGadgetItemHolder::_labelOffsetValue 

◆ Color rectangle horizontal margin Specifies the margin between the vertical border of 
the color rectangle and the border of the gadget item. This property is defined by the 
following value:

IlvColorDrawInfo::_HColorRectMarginValue

◆ Color rectangle vertical margin Specifies the margin between the horizontal border of 
the color rectangle and the border of the gadget item. This property is defined by the 
following value:

IlvColorDrawInfo::_VColorRectMarginValue

◆ Small rectangle Specifies whether the color rectangle in the gadget item should be 
drawn in the margin specified by the color name offset property or occupy the whole 
gadget item. The property is defined by the following value: 

IlvColorDrawInfo::_SmallColorRectValue

◆ Rounded rectangle radius Specifies the radius applied to the rectangle corners. For the 
purpose of this example, this property is ignored if the small rectangle property has been 
set. The property is defined by the following value:

IlvColorDrawInfo::_ColorRoundRectRadius 

◆ Visible items Specifies which items appear in the drop-down list of the combo box. The 
property is defined by the following value:

IlvScrolledComboBox::_nbVisibleItemsValue

◆ Enable large list option Specifies the “Enable large list” option for the combo box. For 
details about this option, see the class IlvScrolledComboBox in the IBM ILOG Views 
Reference Manual. The property is defined by the following value:

IlvScrolledComboBox::_largeListValue

Note: The General and Callback pages are created automatically.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 183



usrgadgets.book  Page 184  Tuesday, July 28, 2009  11:01 AM
To inspect the above properties, you must define the initializeEditors member 
function as follows:

void
IlvColorComboBoxInspectorPanel::initializeEditors()
{

   // Color name offset.
   link("ColorNameOffset", IlvListGadgetItemHolder::_labelOffsetValue);

   // Horizontal margin.
   link("XColorMargin", IlvColorDrawInfo::_HColorRectMarginValue);

   // Vertical margin.
   link("YColorMargin", IlvColorDrawInfo::_VColorRectMarginValue);

   // Small rectangle editor.
   link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue);

   // Rounded rectangle editor.
   link("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius);

   // Visible items.
   link("ComboVisibleItems", IlvScrolledComboBox::_nbVisibleItemsValue);
}

The link method automatically builds an editor and associates it with the gadget whose 
name is passed as its first parameter. It also creates an accessor to the property provided as 
its second parameter. It then links the editor and the accessor, which will be used in 
conjunction to inspect the property. For more information about this function, refer to the 
class IlvStInspectorPanel in the reference manual.

Previewing Changes 
The changes made to the color combo box properties via the inspector panel can be reflected 
in a preview gadget. To achieve this, you have to create an accessor to the gadget that you 
decide to use as the preview gadget. To create this accessor, we recommend that you use the 
class IlvStIGraphicContainerAccessor. Once this is done, you register the accessor 
as the preview accessor to the inspected property using the setPreviewAccessor or 
setPreviewValueAccessor member functions (IlvStIEditor and 
IlvStIPropertyAccessor). Here is what you should do to implement a preview gadget 
for the properties mentioned earlier in this section:

void
IlvColorComboBoxInspectorPanel::initializeEditors()
{
    IlvStIPropertyAccessor* previewGadgetAcc =
          new IlvStIGraphicContainerAccessor(getHolder(), "ColorItemsList");
   
    IlvStIEditor* editor;

    // Color name offset.
    editor = link("ColorNameOffset",
                  IlvListGadgetItemHolder::_labelOffsetValue);
    editor->setPreviewValueAccessor(
184 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 185  Tuesday, July 28, 2009  11:01 AM
                                previewGadgetAcc,
                                IlvListGadgetItemHolder::_labelOffsetValue);

    // Horizontal margin.
    editor = link("XColorMargin", IlvColorDrawInfo::_HColorRectMarginValue);
    editor->setPreviewValueAccessor(previewGadgetAcc,
                                    IlvColorDrawInfo::_HColorRectMarginValue);

    // Vertical margin.
    editor = link("YColorMargin", IlvColorDrawInfo::_VColorRectMarginValue);
    editor->setPreviewValueAccessor(previewGadgetAcc,
                                    IlvColorDrawInfo::_VColorRectMarginValue);

    // Small rectangle editor.
    editor = link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue);
    editor->setPreviewValueAccessor(previewGadgetAcc,
                                    IlvColorDrawInfo::_SmallColorRectValue);

    // Rounded rectangle editor.
    editor = link("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius);
    editor->setPreviewValueAccessor(previewGadgetAcc,
                                    IlvColorDrawInfo::_ColorRoundRectRadius);
}

Using Preconditions 
Earlier in this section, we said that the Rounded rectangle radius property is ignored when 
the small rectangle property is set. The following code shows you how to implement this 
condition:

    // Small rectangle editor.
    editor = link("SmallRect", IlvColorDrawInfo::_SmallColorRectValue);
    IlvStIPropertyAccessor* smallRectAcc =
                            (IlvStIPropertyAccessor*)editor->getAccessor();

    // Rounded rectangle editor.
    editor = link("RoundRadius", IlvColorDrawInfo::_ColorRoundRectRadius);
    editor->getAccessor()->setPrecondition(
              new IlvStIPreconditionValue(smallRectAcc, 
                                          IlFalse, (IlvInt)0));
    ...

Implementing the Items Page

The Items page allows the user to edit the list of colors displayed in the combo box. To 
handle the list of colors, we must first define a list accessor by deriving the class 
IlvStIPropertyListAccessor, as illustrated below. List accessors are described in the 
List Accessors on page 171. 

class IlvColorItemsAccessor
: public IlvStIPropertyListAccessor {
public:
    // ----------------------------------------------------------------------
    // Constructor / destructor
    ....
    // ----------------------------------------------------------------------
    IlvListGadgetItemHolder* getListGadgetItemHolder() const;
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 185



usrgadgets.book  Page 186  Tuesday, July 28, 2009  11:01 AM
protected:
    IlvGadgetItem* getGadgetItem(const IlvStIProperty* property) const;

    virtual IlvStIProperty** getInitialProperties(IlUInt& count);
    virtual IlvStIProperty*  createDefaultProperty() const;
    
    virtual void addProperty(IlvStIProperty* property, IlUInt index);
    virtual void replaceProperty(IlvStIProperty* origProperty,
                                 IlvStIProperty* newProperty,
                                 IlUInt index);
    virtual void deleteNewProperty(IlvStIProperty* property);
    virtual void deleteProperty(IlvStIProperty* property, IlUInt index);
};

The getListGadgetItemHolder method returns the gadget item holder that contains the 
colors to be displayed. This value is the one returned by the IlvStIPropertyAccessor 
passed to the constructor. 

IlvListGadgetItemHolder*
IlvColorItemsAccessor::getListGadgetItemHolder()const
{
    IlvStIProperty* property = (_accessor? _accessor->get() : 0);
    return (property? (IlvListGadgetItemHolder*)property->getPointer() : 0);
}

The getGadgetItem method returns the gadget item stored in the property provided as its 
parameter.

IlvGadgetItem*
IlvColorItemsAccessor::getGadgetItem(const IlvStIProperty* property)const
{
    return (IlvGadgetItem*)(property? property->getPointer() : 0);
}

The getInitialProperties method returns an array of properties which corresponds to 
the initial colors contained in the combo box.

IlvStIProperty**
IlvColorItemsAccessor::getInitialProperties(IlUInt& count)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return 0;

    count = (IlUInt)listHolder->getCardinal();
    if (!count)
        return 0;
    IlvStIProperty** properties = new IlvStIProperty*[count];
    for(IlUInt i = 0; i < count; i++) {
         properties[i] =
             new IlvStIValueProperty(
                  (IlvAny)listHolder->getItem((IlvUShort)i), "Item");
    }
    return properties;
}

186 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 187  Tuesday, July 28, 2009  11:01 AM
The createDefaultProperty method is called when the user presses the Add button to 
create a new color. By default, this color is black. 

IlvStIProperty*
IlvColorItemsAccessor::createDefaultProperty() const
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return 0;
    IlvValue valueInfo(IlvColorDrawInfo::_ColorInfosValue->name());
    IlvColorDrawInfo* colorInfo = (IlvColorDrawInfo*)(IlvAny)
                          listHolder->getGadget()->queryValue(valueInfo);
    return new IlvStIValueProperty(
                    new IlvColorGadgetItem(listHolder->getGadget()->
                                             getDisplay()->getColor("Black"),
                                           colorInfo),
                    "Item");
}

The addProperty method is called when changes are applied to add the gadget item 
contained in the property given as its first parameter to the position specified by the index 
parameter. The gadget item is added to the combo box. 

void
IlvColorItemsAccessor::addProperty(IlvStIProperty* property, IlUInt index)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (listHolder)
        listHolder->insertItem(getGadgetItem(property), 
                               (IlvShort)(IlvUShort)index);
}

The replaceProperty method is called when changes are applied to replace the gadget 
item contained in the property given as its first parameter by the gadget item contained in the 
property given as its second parameter. The third parameter indicates the position of the 
replaced gadget item in the combo box. 

void
IlvColorItemsAccessor::replaceProperty(IlvStIProperty* origProperty, 
                                       IlvStIProperty* newProperty,
                                       IlUInt)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return;
    IlvGadgetItem* origGadgetItem = getGadgetItem(origProperty);
    IlvGadgetItem* newGadgetItem = getGadgetItem(newProperty);
    *(origGadgetItem) = *newGadgetItem;
    newProperty->setPointer(origGadgetItem);
}

The deleteNewProperty method deletes the gadget item contained in the property passed 
as its parameter. This method is invoked when the changes made by the user are cancelled, to 
destroy the gadget item created by pressing the Add button. Since this gadget item is not 
actually added to the combo box, it does not have to be removed from it. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 187



usrgadgets.book  Page 188  Tuesday, July 28, 2009  11:01 AM
void
IlvColorItemsAccessor::deleteNewProperty(IlvStIProperty* property)
{
    IlvGadgetItem* gadgetItem = getGadgetItem(property);
    if (gadgetItem)
        delete gadgetItem;
}

The deleteProperty method is called when changes are applied to remove the gadget 
item contained in the property given as the parameter from the color combo box. 

void
IlvColorItemsAccessor::deleteProperty(IlvStIProperty*, IlUInt index)
{
    IlvListGadgetItemHolder* listHolder = getListGadgetItemHolder();
    if (!listHolder)
        return;
    listHolder->removeItem((IlvShort)(IlvUShort)index);
}

Reusing the Color List Accessor 
As we have seen throughout the example, the list accessor does not access the combo box 
directly but through its gadget item holder. The same list accessor can therefore be reused to 
inspect a color string list. To access the gadget item holder of the inspected combo box, we 
just have to create a combined accessor, as shown in the following code sample. For a 
description of combined accessors, see the section Combined Accessors on page 171. This 
combined accessor will be provided as a parameter to the IlvColorItemsAccessor 
constructor.

class IlvColorGadgetItemHolderAccessor
: public IlvStICombinedAccessor
{
public:
    IlvColorGadgetItemHolderAccessor(IlvStIPropertyAccessor* accessor = 0,
                                     UpdateMode updateMode = NoUpdate,
                                     BuildMode buildMode = None,
                                     const char* name = 0);
    // ----------------------------------------------------------------------
protected:
    virtual IlvStIProperty* getOriginalValue();
};

IlvStIProperty*
IlvColorGadgetItemHolderAccessor::getOriginalValue()
{
    IlvStIProperty* property =
                   (getObjectAccessor()? getObjectAccessor()->get() : 0);
    if (!property)
         return 0;
    IlvColorComboBox* combo = (IlvColorComboBox*)property->getPointer();
    if ((!combo) || (!combo->getStringList()))
        return 0;
    return new IlvStIValueProperty((IlvListGadgetItemHolder*)combo,
                                   "ColorHolder");
}

188 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 189  Tuesday, July 28, 2009  11:01 AM
The class IlvColorItemsAccessor is used in the inspector panel in the following way:

IlvColorItemsAccessor* lstAccessor = 
    new IlvColorItemsAccessor(
         new IlvColorGadgetItemHolderAccessor(getInspectedGraphicAccessor()));

Modifying Colors in the List 
In the previous section, we explained how to access a list of colors. We are now going to 
modify a color selected in the list. To do so, we define a class that lets us inspect the color of 
an IlvColorGadgetItem gadget item. Since the color is defined by the gadget item label, 
changing the label implies changing the color.

class IlvGadgetItemColorAccessor
: public IlvStICombinedAccessor
{
public:
      ...
      // ----------------------------------------------------------------------
protected:
    IlvGadgetItem* getGadgetItem() const;
    virtual IlvStIProperty* getOriginalValue();
    virtual void            applyValue(IlvStIProperty*);
};

IlvGadgetItem*
IlvGadgetItemColorAccessor::getGadgetItem() const
{
    IlvStIProperty* property =
                (getObjectAccessor()? getObjectAccessor()->get() : 0);
    return (property? (IlvGadgetItem*)property->getPointer() : 0);
}

IlvStIProperty*
IlvGadgetItemColorAccessor::getOriginalValue()
{
    IlvGadgetItem* gadgetItem = getGadgetItem();
    if (!gadgetItem
        return 0;
    return new IlvStIValueProperty(gadgetItem->getLabel(), "Color");
}

void
IlvGadgetItemColorAccessor::applyValue(IlvStIProperty* property)
{
    IlvGadgetItem* gadgetItem = getGadgetItem();
    if (!gadgetItem)
        return;
    IlvValue value;
    gadgetItem->setLabel((const char*)property->getValue(value));
}

This class is used in the inspector panel code as follows:

editor = new IlvStIPropertyColorEditor("EditColorItem",
       new IlvGadgetItemColorAccessor(lstAccessor->getSelectionAccessor()));
addEditor(editor);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 189



usrgadgets.book  Page 190  Tuesday, July 28, 2009  11:01 AM
The class IlvStIPropertyColorEditor interfaces with a selection field to make it 
possible to select a color. The label that appears in the selection field represents the name of 
the selected color. 

Creating the Color List Editor 
To display a list of items, it is common practice to use an IlvStringList, which is 
handled by an IlvStIPropertyListEditor. However in the case of our example, we 
want the list to display color gadget items instead of character strings. We have implemented 
such list using the class IlvColorStringList, a subclass of IlvStringList. To 
interface this new class, we have defined the following editor class:

class IlvColorListEditor
: public IlvStIPropertyListEditor {
public:
    // ----------------------------------------------------------------------
    // Constructor / destructor
    ...
    // ----------------------------------------------------------------------
    // Overridables.
    virtual IlBoolean connectHolder(IlvGraphicHolder* holder);
protected:
    virtual IlvGadgetItem* createGadgetItem(
                                     const IlvStIProperty* property) const;
};

IlBoolean
IlvColorListEditor::connectHolder(IlvGraphicHolder* holder)
{
    // Replaces string list of colors by an IlvColorStringList.
    IlvGraphicHolder* subHolder;
    IlvGadget* oldList =
          (IlvGadget*)IlvStIFindGraphic(holder, getName(), &subHolder);
    if (!oldList)
        return IlvStIPropertyListEditor::connectHolder(holder);
    IlvRect bbox;
    oldList->boundingBox(bbox);
    IlvColorStringList* colorList =
            new IlvColorStringList(oldList->getDisplay(),
                                   bbox,
                                   oldList->getThickness(),
                                   oldList->getPalette());
    colorList->useFullSelection(IlTrue, IlFalse);
    colorList->setSelectionMode(IlvStringListSingleSelection);
    colorList->setExclusive(IlTrue);
    colorList->scrollBarShowAsNeeded(IlTrue, IlTrue, IlFalse);
    subHolder->getContainer()->replace(oldList, colorList, IlTrue);

    return IlvStIPropertyListEditor::connectHolder(holder);
}

IlvGadgetItem*
IlvColorListEditor::createGadgetItem(const IlvStIProperty* property) const
{
    IlvGadgetItem* gadgetItem = (IlvGadgetItem*)property->getPointer();
    if (!gadgetItem)
        return 0;
190 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Defining a New Inspector Panel

usrgadgets.book  Page 191  Tuesday, July 28, 2009  11:01 AM
    IlvValue valueInfo(IlvColorDrawInfo::_ColorInfosValue->name());
    IlvColorDrawInfo* colorInfo = 
         (IlvColorDrawInfo*)(IlvAny)getListGadget()->queryValue(valueInfo);
    IlvGadgetItem* newGadgetItem = 
         new  IlvColorGadgetItem(getDisplay()->getColor(gadgetItem-
>getLabel()),
                                colorInfo);
    newGadgetItem->setEditable(IlFalse);
    return newGadgetItem;
}

Declaring Accessors and Editors for Inspecting Color Items to the Inspector Panel 
Accessors and editors for inspecting color items are declared in the initializeEditors 
method as follows: 

IlvColorItemsAccessor* lstAccessor =
     new IlvColorItemsAccessor(
         new IlvColorGadgetItemHolderAccessor(getInspectedGraphicAccessor()));
addEditor(new IlvColorListEditor(lstAccessor, "ColorItemsList"));
    
IlvStIEditor* editor =
    new IlvStIPropertyColorEditor("EditColorItem",
        new IlvGadgetItemColorAccessor(lstAccessor->getSelectionAccessor()));
addEditor(editor);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 191



usrgadgets.book  Page 192  Tuesday, July 28, 2009  11:01 AM
192 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 193  Tuesday, July 28, 2009  11:01 AM
Part II
IBM ILOG Views Gadgets

This part provides information for developing applications that incorporate 
IBM® ILOG® Views Gadgets.



usrgadgets.book  Page 194  Tuesday, July 28, 2009  11:01 AM



C H A P T E R

usrgadgets.book  Page 195  Tuesday, July 28, 2009  11:01 AM
8

Introducing IBM ILOG Views Gadgets

The IBM® ILOG® Views Gadgets package is a C++ class library for building interactive 
graphical user interfaces. This package is built on top of the IBM ILOG Views Foundation 
package and is composed of classes for creating special graphic objects, called gadgets, 
which you can add to container objects to create graphic panels or interfaces. Buttons, tool 
bars, and menus are some of the many interactive graphic objects you can create with 
IBM ILOG Views Gadgets.

This introductory chapter contains the following:

◆ Gadgets Main Features

◆ Gadgets Libraries

◆ Gadgets in a Snapshot

Gadgets Main Features

The IBM® ILOG® Views Gadgets library provides:

◆ A large set of lightweight graphic objects, such as buttons, text fields, menus, and 
toolbars.

◆ A large set of gadget containers, including several predefined dialog boxes.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 195



usrgadgets.book  Page 196  Tuesday, July 28, 2009  11:01 AM
◆ Four predefined presentation styles: Motif®, Microsoft® Windows® 3.11, Microsoft 
Windows 95, and Microsoft Windows XP.

◆ An easy way to create your own presentation style.

◆ A library that is portable to UNIX® workstations and PCs running Microsoft Windows.

◆ An easy way to combine applications written with a standard widget toolkit, such as 
Motif and Microsoft Windows, with new applications using IBM ILOG Views gadgets.

Gadgets in a Snapshot

The base class for all the gadgets is IlvGadget. This class derives from IlvGraphic, a 
class of the IBM® ILOG® Views Foundation library.

The following illustrations show the various gadgets that the Gadgets library provides: 

Menus

Common Gadgets

IlvMenuBar IlvToolBar 

IlvPopupMenu 

IlvMessageLabel 
IlvButton IlvToggle 

 IlvTextField IlvComboBox and
IlvScrolledComboBox 

IlvSpinBox 
196 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Libraries

usrgadgets.book  Page 197  Tuesday, July 28, 2009  11:01 AM
Matrices

Gadgets Libraries

For each gadget that you want to use in your application you have to include the appropriate 
header file. Header files for gadgets can be found in the following directory:

ILVHOME/include/ilviews/gadgets

You must also link your application with the following gadget library:

◆ ilvgadgt.lib for Microsoft® Windows® platforms

◆ libilvgadgt for UNIX® platforms

If you are using advanced gadgets, you must link your application with the following gadget 
library:

IlvStringList IlvText IlvTreeGadget 

IlvFrame 
IlvNotebook 

IlvMatrix 
IlvSheet 

IlvHierarchicalSheet 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 197



usrgadgets.book  Page 198  Tuesday, July 28, 2009  11:01 AM
◆ ilvadvgdt.lib for Microsoft Windows platforms

◆ libilvadvgdt for UNIX platforms

To know whether a gadget class is located in the standard or advanced gadget library, refer to 
the Reference Manual.

You must also link your application with the look-and-feel gadgets libraries, depending on 
the look and feel your application will use. By default, an application ran on UNIX will use 
the Motif® look, and an application ran on Windows will use one of the provided Windows 
looks. See the section Gadgets Look and Feel on page 216 for details.

Note: The gadget libraries use resources that are located under the ILVHOME directory. If 
you do not want to set ILVHOME, or if IBM ILOG Views is not installed on the target 
computer, you must add  those resources to your application.
198 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Code Sample

usrgadgets.book  Page 199  Tuesday, July 28, 2009  11:01 AM
Code Sample

Here is a very basic program that displays a container with a button. Clicking on the button 
exits the program.

#include <ilviews/gadgets/button.h>
#include <ilviews/gadgets/gadcont.h>

void Quit(IlvGraphic*, IlAny arg)
{
    IlvDisplay* display = (IlvDisplay*)arg;
    delete display;
    IlvExit(0);
}

int main(int argc, char* argv[])
{
    // Create the display.
    IlvDisplay* display = new IlvDisplay("Hello", "", argc, argv);
    if(!display)
       return 0;
    if(display->isBad()){
       delete display;
       return 1;
    }

    // Create the container.
    IlvGadgetContainer* cont = 
       new IlvGadgetContainer(display, "Hello", "Hello", IlvRect(0,0,100,100));
    cont->moveToScreen(IlvCenter);

    // Add the button.
    IlvButton* button = new IlvButton(display, IlvPoint(30, 30), "Click Me !");
    button->addCallback(Quit, display);
    cont->addObject(button);

   // Show the container and run the event loop.
    cont->show();
    IlvMainLoop();

    return 0;
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 199



usrgadgets.book  Page 200  Tuesday, July 28, 2009  11:01 AM
200 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 201  Tuesday, July 28, 2009  11:01 AM
9

Understanding Gadgets

This chapter introduces you to properties that are common to all the gadgets in the library. It 
covers the following topics:

◆ Gadget Holders

◆ Common Gadget Properties

◆ Gadgets Look and Feel

Gadget Holders

Gadget holders are objects for storing, displaying, and handling gadgets. The main class for 
gadget holders is the IlvGadgetContainer class. This class derives from IlvContainer 
and thus inherits from all the features this superclass provides, such as member functions for 
adding or removing objects. It also provides basic features such as keyboard focus 
management, attachments, and tooltips.

In this section, you will find information on the following topics:

◆ List of Available Gadget Holders

◆ Handling Events

◆ Focus Management
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 201



usrgadgets.book  Page 202  Tuesday, July 28, 2009  11:01 AM
◆ Gadgets Attachments

List of Available Gadget Holders

The IlvGadgetContainer objects are not the only gadget holders that 
IBM® ILOG® Views Gadgets provide. This section introduces you to other available 
gadget holders:

◆ Gadget Managers

◆ Notebooks

◆ Matrices

◆ Toolbars

◆ Paned Containers

You will find also information about:

◆ Limitations in the use of gadget holders

Gadget Managers
The IlvGadgetManager class is a subclass of the IlvManager class that deals with 
gadgets. For details about managers, see the related User’s Manual. Unlike IlvManager 
objects, instances of IlvGadgetManager have only one associated view because gadgets, 
cannot appear in several views at the same time, whereas basic graphic objects can.

As a general rule, unless you want to save gadgets to an .ilv file (the IBM ILOG Views 
format), we recommend that you use gadget containers rather than gadget managers to store 
gadgets. 

Notebooks

You can display gadgets inside notebook pages. Actually, default notebook pages are 
implemented using gadget containers. For more information, see Handling Notebook Pages 
on page 243.

Matrices

A matrix is a special gadget made up of rows and columns. Each matrix item can contain a 
gadget that has its own behavior inside the matrix. For details, see Using Gadgets in a 
Matrix on page 314.

Toolbars 

Gadgets can be displayed inside a toolbar. For details, see Managing Gadgets in a Toolbar 
on page 299.
202 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadget Holders

usrgadgets.book  Page 203  Tuesday, July 28, 2009  11:01 AM
Paned Containers

The IlvPanedContainer class is a subclass of IlvGadgetContainer that divides the 
container into panes. Each panes can encapsulate a gadget. For details, see Creating a 
Graphic Pane on page 322.

Limitations

We do not recommend that you use simple containers to store gadgets since these objects do 
not implement features such as keyboard focus management. Adding gadgets to these 
containers might produce unexpected results. 

In addition, gadgets cannot be zoomed in or out. As a consequence, we do not recommend 
that you modify the scaling factor of a gadget holder.

Handling Events

Gadget holders are responsible for dispatching events to the gadgets. The IlvGadget class 
has a handleEvent member function that processes user events, such as clicking the mouse 
or using the keyboard. Unlike with other graphic objects, you do not have to set an interactor 
to a gadget to be able to use it. 

The handleEvent member function is virtual and can be redefined in subclasses to handle 
additional events.

Gadget Holder Events

When the mouse enters or leaves an IlvGadget object, its associated gadget holder 
generates the IlvMouseEnter and IlvMouseLeave events (These two events are defined 
in the enum IlvEventType). These events are sent to the gadget, or to its associated 
interactor, if any, and are processed by the handleEvent member function. Then, the 
virtual member functions IlvGadget::enterGadget or IlvGadget::leaveGadget are 
called. By default, these member functions invoke the Enter Gadget and the Leave Gadget 
callbacks, respectively. See Associating a Callback with a Gadget on page 209.

One consequence of this is that you cannot have the IlvMouseEnter and IlvMouseLeave 
event trigger an accelerator because an accelerator is attached to an IlvView object. The 
IlvView object does not have knowledge of these events.

Focus Management

Gadget holders manage the keyboard focus. For a gadget, having the focus means that it can 
receive a keyboard event. A gadget has the focus when the user clicks on it with the mouse.

Note: However, you can set an interactor to a gadget if you want to. 

Note: This only applies to the IlvGadgetContainer and IlvGadgetManager classes.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 203



usrgadgets.book  Page 204  Tuesday, July 28, 2009  11:01 AM
Pressing the Tab key moves the focus to the next gadget. Pressing Shift-Tab moves it to the 
previous gadget. By default, the Tab key moves from one gadget to another first from left to 
right, then from top to bottom. However, you can specify the order in which the gadgets are 
given the focus when the Tab key is pressed by defining a focus chain.

This section explains the following:

◆ Defining a Focus Chain 

◆ Setting a Focus Chain Between Gadget Holders

◆ Notifying a Change of Focus

Defining a Focus Chain

Only the gadgets stored in the same gadget holder can be linked by a focus chain. To define 
a focus chain, use the following member functions of the IlvGraphic class:

◆ IlvGraphic::setNextFocusGraphic

◆ IlvGraphic::setPreviousFocusGraphic

◆ IlvGraphic::setLastFocusGraphic

◆ IlvGraphic::setFirstFocusGraphic

The name parameter provided in the member functions setNextFocusGraphic and 
setPreviousFocusGraphic is a symbolic name that must be created from the name of 
the target gadget. For example, if you want the next object in the focus chain of gadget to 
be the gadget named “Button”, call:

gadget->setNextFocusGraphic(IlvGetSymbol("Button"));

Setting a Focus Chain Between Gadget Holders

By default, the focus loops back to the first gadget in the chain when the user reaches the last 
gadget in the focus chain. You can, however, force the focus to another gadget holder that 
you specify using the following member functions:

◆ IlvGraphicHolder::getNextFocusHolder 

◆ IlvGraphicHolder::setNextFocusHolder 

◆ IlvGraphicHolder::getPreviousFocusHolder 

Notifying a Change of Focus

When the keyboard focus enters or leaves an IlvGadget object, its associated gadget holder 
generates the IlvKeyboardFocusIn and IlvKeyboardFocusOut events. These events 
are sent to the gadget, or to its associated interactor, if any, and are processed by the 
handleEvent member function. Then, the virtual member functions 
IlvGadget::focusIn and IlvGadget::focusOut are called. By default these member 
204 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadget Holders

usrgadgets.book  Page 205  Tuesday, July 28, 2009  11:01 AM
functions invoke the Focus In and Focus Out callbacks, respectively. See Associating a 
Callback with a Gadget on page 209.

Gadgets Attachments

The gadget holder provides an attachment model that manages the geometry of the gadgets 
when the holder is resized. This attachment model is defined by the IlvGraphicHolder 
interface. 

You can get a pointer to the IlvGraphicHolder interface using the getHolder member 
function.

To attach a gadget to its gadget holder, you have to define guides.

This section covers the following topics:

◆ Introducing Guides and Sections

◆ Attaching a Gadget to Guides

◆ Setting the Weight of a Gadget

Introducing Guides and Sections

Guides split gadget holders into several sections, either horizontally or vertically:

        

Guides are not numbered, whereas the sections they delimit are. When a new guide is added, 
sections are renumbered to include the resulting new sections.

By default, there are no guides, except those alongside the window borders. 

When the holder is resized, each of its sections are resized according to their weight. The 
weight of a section is the portion of the window that is allocated to it (delimited by the 
guide) relative to other sections, when the window is resized. The following formula is 
applied to each section when the window is resized:

     

where Delta equals the new size of the window minus its initial size.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 205



usrgadgets.book  Page 206  Tuesday, July 28, 2009  11:01 AM
It is possible to manipulate guides using the IlvGraphicHolder member functions listed 
below:

◆ addGuide

◆ removeGuide

◆ getGuideCardinal

◆ getGuidePosition

◆ getGuideSize

◆ getGuideWeight

◆ getGuideLimit

Attaching a Gadget to Guides

Once guides have been defined, it is possible to attach a gadget to them using the member 
function IlvGraphicHolder::attach:

holder->attach(object);

This code attaches gadgets to the guides as shown in the following diagram:

      

In this example, we use the default guides located along the window borders. However, you 
can use the last three parameters of the attach member function to specify other guides. 

holder->attach(obj1, IlvHorizontal, 0, 1, 0, 1, 1);
holder->attach(obj2, IlvHorizontal, 0, 1, 0, 1, 2);

This will produce the following result:

     

Setting the Weight of a Gadget

The third, fourth, and fifth parameters of the attach member function define the weight 
before the gadget, the gadget weight, and the weight after the gadget, respectively. These 
weights are used in the same manner as the guides weight, using the same formula. For 
example, the following call:
206 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Common Gadget Properties

usrgadgets.book  Page 207  Tuesday, July 28, 2009  11:01 AM
holder->attach(object, IlvHorizontal, 1, 0, 0);

will result in the following attachments:

 

Common Gadget Properties

In this section, you will find information on the following topics:

◆ Gadget Appearance

◆ Associating a Callback with a Gadget

◆ Localizing a Gadget

◆ Associating a Mnemonic with a Gadget Label

◆ Setting Tooltips

◆ Gadget Resources

Gadget Appearance

You can define the appearance of a gadget by:

◆ Setting a Gadget as Sensitive

◆ Setting the Thickness of a Gadget

◆ Setting a Gadget as Transparent

◆ Showing or Hiding the Gadget Frame

Setting a Gadget as Sensitive

A gadget is said to be sensitive if it responds to events, that is, if something happens when 
the user clicks on it. The visual appearance of sensitive gadgets is different from that of 
nonsensitive ones, as shown in the illustration below:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 207



usrgadgets.book  Page 208  Tuesday, July 28, 2009  11:01 AM
Figure 9.1

Figure 9.1  Sensitive Gadget versus Nonsensitive Gadget

To change the sensitivity of a gadget, use the member function 
IlvGraphic::setSensitive.

You can also use the member function IlvGadget::setActive with IlFalse as 
parameter to specify that a gadget should not respond to events.

The difference between this method and the setSensitivity member function is that the 
drawing of the gadget does not change and the handleEvent member function of the 
gadget is not called.

Setting the Thickness of a Gadget

You can customize the appearance of a gadget by modifying its thickness. The thickness 
defines the size of the shadow that is used to draw borders, decorations, and so on. To 
change the thickness of a gadget, use the member function IlvGadget::setThickness.

The following illustration shows two buttons with different thicknesses in the Motif look:

Figure 9.2

Figure 9.2  Buttons with Different Thickness Values

Setting a Gadget as Transparent

By default, all gadgets are opaque except for message labels, which are transparent. See 
Using IlvMessageLabel on page 238. You can make a gadget transparent by calling the 
member function IlvGadget::setTransparent with IlTrue as its parameter. All the 
gadgets in the following illustration are transparent. The transparent setting allows for the 
background texture to show through. The gadgets are shown here with the Windows 95 look-
and-feel:

Note: Depending on the look and feel in use, modifying the thickness of a gadget may not 
affect the way it appears. More specifically, on Microsoft® Windows® and Microsoft 
Windows 95, most of the gadgets do not take thickness into account. 
208 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Common Gadget Properties

usrgadgets.book  Page 209  Tuesday, July 28, 2009  11:01 AM
Figure 9.3

Figure 9.3  Transparent Gadgets

Showing or Hiding the Gadget Frame

Most of the gadgets use a frame to give a relief aspect. The frame of a gadget is the last part 
of the gadget to be drawn. It is drawn by calling the IlvGadget::drawFrame member 
function. You can choose to change the frame visibility by calling the 
IlvGadget::showFrame member function. The following figure shows two gadgets, one 
with a frame, and the other one without:

Associating a Callback with a Gadget

You can associate a callback function with a gadget using the method 
IlvGraphic::addCallback. A callback function is generally invoked by the 
handleEvent member function of its associated gadget when the user performs an action 
on it. The prototype of the callback function is defined by the IlvGraphicCallback type.

A gadget can define several callback types, each one corresponding to a specific user action. 
Each callback type stores a list of callback functions that will be invoked when the related 
action is performed.

Predefined Callback Types

Gadgets have predefined callback types:

◆ Main—This callback type defines the callbacks that carry out the main action attached to 
a gadget.

Note: The scrolling of scrollable gadgets may be slowed down when these gadgets are set 
to transparent. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 209



usrgadgets.book  Page 210  Tuesday, July 28, 2009  11:01 AM
◆ Focus In—This callback type defines callbacks that carry out actions performed when 
the gadget is given the focus. The symbol corresponding to this callback type can be 
retrieved by IlvGadget::FocusInSymbol. See Focus Management on page 203.

◆ Focus Out—This callback type defines callbacks that carry out actions performed when 
the gadget loses the focus. The symbol corresponding to this callback type can be 
retrieved by IlvGadget::FocusOutSymbol. See Focus Management on page 203.

◆ Enter Gadget—This callback type defines callbacks that carry out actions performed 
when the mouse enters the gadget. The symbol corresponding to this callback type can 
be retrieved by IlvGadget::EnterGadgetSymbol. See Gadget Holder Events on 
page 203.

◆ Leave Gadget—This callback type defines callbacks that carry out actions performed 
when the mouse leaves the gadget. The symbol corresponding to this callback type can 
be retrieved by IlvGadget::LeaveGadgetSymbol. See Gadget Holder Events on 
page 203.

For example, if you want to add a Focus In callback to a gadget, you can code:

gadget->addCallback(IlvGadget::FocusInSymbol(), callback);

where callback has been declared as follows:

void callback(IlvGraphic* g, IlAny arg) { ... }

In addition to these general predefined callback types, each gadget type has specific 
predefined callback types attached. For more details, see the sections describing the 
individual gadgets.

Localizing a Gadget

Gadgets containing text can be localized. Localizing a gadget means adapting its text to the 
language used in the final application. This property allows you to create multilingual 
applications whose current language can be changed dynamically very easily. 

IBM® ILOG® Views lets you create message databases as files where you can store all the 
text that will be displayed in your final application with its translation to as many languages 
as you want. The message database file have a .dbm extension. See “IlvMessageDatabase” 
in the chapter “Internationalization” of the IBM ILOG Views Foundation User’s Manual.

To have the text of a gadget change dynamically depending on the language used in the final 
application, you must provide a reference to the message database where the text is stored 
instead of hard-coding it. 

Let’s suppose that you have created the following message database:

Message: &MenuPrinterSetup
en_US: Printer Setup
fr_Fr: Configuration imprimante
210 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Common Gadget Properties

usrgadgets.book  Page 211  Tuesday, July 28, 2009  11:01 AM
You can assign a gadget label the string defined by &MenuPrinterSetup like this:

gadget->setLabel("&MenuPrinterSetup");

Calling the getLabel member function will return the string &MenuPrinterSetup and 
invoking the getMessage member function will provide the translation to the current 
language (for example, “Printer Setup” for English and “Configuration imprimante” for 
French). 

Associating a Mnemonic with a Gadget Label

A gadget can be associated with a mnemonic. A mnemonic is an underlined letter in a 
gadget label that you can use as a keyboard shortcut to activate the gadget.

To associate a mnemonic with a gadget label, type a caret (^) before the letter that you want 
to use as a mnemonic:

gadget->setLabel("^File");
char mnemo = gadget->getMnemonic();

You can have a different mnemonic depending on the language you use. You could, for 
example, have a special entry in your language database (.dbm file) such as:

Message: &MenuPrinterSetup
en_US: Printer ^Setup
en_Fr: ^Configuration imprimante

In French, the letter used as the mnemonic is “C” whereas it is “S” in English. 

Setting Tooltips

Gadgets can be associated with a tooltip. A tooltip is short explanatory text that is displayed 
when the user places the mouse pointer over a gadget. By default, tooltips are supported by 
the gadget holders. If you want to use tooltips outside gadget holders, use the class 
IlvToolTipHandler.

This section covers the following topics:

◆ Creating a Tooltip

◆ Attaching a Tooltip to a Gadget

◆ Enabling and Disabling Tooltips

◆ Specific Tooltips

Note: To type a caret (^) inside a gadget label, use the Escape sequence: \^.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 211



usrgadgets.book  Page 212  Tuesday, July 28, 2009  11:01 AM
Creating a Tooltip

A tooltip is an instance of the IlvToolTip class. To create a tooltip, call:

IlvToolTip* tooltip = new IlvToolTip(“This is a test”);

Attaching a Tooltip to a Gadget

You can attach a tooltip to a gadget with the member function 
IlvGraphic::setNamedProperty since IlvToolTip is a subclass of the 
IlvNamedProperty class:

gadget->setNamedProperty(new IlvTooltip(“This is a test”));

Enabling and Disabling Tooltips

You can enable or disable tooltip management at the application level using the static 
member function IlvToolTip::Enable.

Specific Tooltips

Some gadgets have their own tooltip mechanism, including IlvToolBar, IlvTreeGadget, 
IlvMatrix, IlvStringList, and IlvPopupMenu.

For more information, refer to the sections dedicated to these gadgets. 

Gadget Resources

The system resource mechanism allows you to customize graphic objects at runtime. Object 
resources are resolved when an object is added to a gadget holder using the member function 
addObject.

One resource setting can be applicable to an individual object or to an object class. Its scope 
can also be restricted to an individual storage object or to a storage class, where storage 
stands for IlvGadgetContainer or IlvGadgetManager.

Each graphic object class can define a set of significant parameters as resources.

Predefined Object Resources

IlvGraphic implements the following object resources:

Resource Name Description Value

x x position integer string

y y position integer string

w or width horizontal size integer string

h or height vertical size integer string
212 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Common Gadget Properties

usrgadgets.book  Page 213  Tuesday, July 28, 2009  11:01 AM
IlvSimpleGraphic implements the following resources.

Setting Object Resources

The user defines values for these resources in the same way as described in Display System 
Resources: getResource in Graphic Resources. Even though the syntax is system-dependent, 
the global structure of a resource setting is the same. The structure is key value. The left 
part of the resource specification, key, is more complex than the resource specification 
described in Display System Resources: getResource so that the objects affected by this 
setting can be easily identified. The key specification is defined as follows:

Program.Storage.GraphicObject.Resource

Here is the description of these four fields:

◆ Program can be either an application name or the string IlogViews.

Resource Name Description Value

background palette background color color name

foreground palette foreground color color name

font palette font font name

pattern palette pattern pattern name

colorPattern palette color pattern pattern name

lineStyle palette line style line style name

lineWidth palette line width integer string

fillStyle palette fill style FillPattern
FillMaskPattern
FillColorPattern

arcMode palette arc mode ArcPie
ArcChord

fillRule palette fill rule EvenOddRule
WindingRule

alpha palette alpha value Integer string

antialiasingMode palette antialiasing mode DefaultAntialiasing
UseAntialiasing
NoAntialiasing

Warning: IlvSimpleGraphic resources are only applied to graphic objects that have 
the default palette.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 213



usrgadgets.book  Page 214  Tuesday, July 28, 2009  11:01 AM
◆ Storage can be either the name of a gadget container or gadget manager, or the string 
IlvGadgetContainer or IlvGadgetManager.

◆ GraphicObject can be the name of a graphic object (as returned by 
IlvGraphic::getName) or the name of a graphic object class (as returned by 
IlvGraphic::className).

◆ Resource is the name of the object resource as it appears in the documentation of the 
class defining this resource.

The fields Program, Storage and GraphicObject can be replaced by the wild card ‘*’.

It is the responsibility of the application developer to document the names of objects, gadget 
containers, and gadget managers.

It is the responsibility of the graphic object class designer to document the name of the 
resources defined by this class.

Example: Specifying Object Resources
Here is how to specify that all instances of the IlvPolygon class must be red and filled 
using the even-odd rule:

◆ On X Window, add the following to your ~/.Xdefaults file:

● IlogViews*IlvPolygon.foreground: red

● IlogViews*IlvPolygon.fillRule: EvenOddRule

◆ On Microsoft Windows, add the following to any .INI file: 
Section [IlogViews] or [<ApplicationName>]:

● *IlvPolygon.foreground=red

● *IlvPolygon.fillRule=EvenOddRule

Priorities and Conflicts

When several resource settings are applicable to the same target(s), IBM ILOG Views gives 
priority to the most precise setting, which means that:

◆ any string has priority over ‘*’,

◆ an application name has priority over IlogViews,

◆ a gadget container or gadget manager name has priority over IlvGadgetContainer or 
IlvGadgetManager,

◆ an object name has priority over an object class.

If a conflict remains in spite of these priorities, the result is undefined.
214 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Common Gadget Properties

usrgadgets.book  Page 215  Tuesday, July 28, 2009  11:01 AM
Example: Resource Priority
Using X Window syntax:

Line 5 has priority over all the others.
Line 4 has priority over lines 1 and 2.

There is an unresolved conflict between lines 3 and 4. The color of an IlvButton in a 
gadget container called myPanel is not predictable.

Adding New Resources

If you want to add a new resource to a graphic object, you have to overload the virtual 
member function IlvGraphic::applyResources. This method loads object resources 
and is called by the addObject member function of IlvGadgetContainer and 
IlvGadgetManager.

When overloading this method, subclasses should call the applyResources method of the 
superclass, then they should use the second IlvDisplay::getResource member function 
to fetch possible values for the new resources they define:

1. IlogViews.*.*.foreground: blue
2. myApp.*.*.foreground: green
3. myApp.*.IlvButton.foreground: red
4. myApp.myPanel.*.foreground: yellow
5. myApp.myPanel.myButton.foreground: cyan

const char* getResource(const char* resourceName,
                        const char* objectName,
                        const char* objectClassName,
                        const char* storageName = 0,
                        const char* storageClassName = 0) const;
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 215



usrgadgets.book  Page 216  Tuesday, July 28, 2009  11:01 AM
Example: Adding Resources
 

Gadgets Look and Feel

The appearance and behavior of some gadgets can be modified to conform to the graphic 
environment in which they are being used. Currently, IBM® ILOG® Views takes into 
account four graphic environments: Motif®, Microsoft® Windows® 3.11, Microsoft 
Windows 95, and Microsoft Windows XP. You can decide which look and feel is to be used 
by your gadgets. You can also define a custom look and feel by inheriting an existing one, or 
by completely redesigning your own look and feel.

In this section, you will find information on the following topics:

◆ Using the Default Look and Feel

◆ Using Several Look and Feel

◆ Dynamic Loading of Look and Feel

◆ Changing the Look and Feel Dynamically

◆ Using the Windows XP Look and Feel

// Assuming class MyObjectClass: public MyObjectSuperClass
// definig a method setLabel.
// The following defines a resource called “labelString”.

void MyObjectClass::applyResources(const char* storageName,
                                   const char* storageClassName,
                                   const char* objectName,
                                   const char* objectClassName,
                                   IlvDisplay* display)
{
    if (!display)
       display = getDisplay();
    MyObjectSuperClass::applyResources(storageName,
                                       storageClassName,
                                       objectName,
                                       objectClassName,
                                       display);
    const char* resource = display->getResource(“labelString”,
                                                objectName,
                                                objectClassName,
                                                storageName,
                                                storageClassName);
    if (resource)
       setLabel(resource);
}

216 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Look and Feel

usrgadgets.book  Page 217  Tuesday, July 28, 2009  11:01 AM
Using the Default Look and Feel

By default, only one style is used in a given IBM® ILOG® Views program, which is the 
standard style of the computer system:

◆ Motif® style on UNIX®

◆ Microsoft® Windows 3®.11 style on Windows 3.x and Microsoft Windows NT 3.x

◆ Microsoft Windows 95 style on Windows 95 Windows NT 4, and Windows 2000

◆ Microsoft Windows XP style on Windows XP

Depending on the platform on which you are building your application, it must be linked 
with the corresponding look-and-feel libraries. The following tables sum up the different 
libraries available:

Note: You can override this default setting by using the ILVLOOK environment variable, or 
the LOOK resource. In this case, be sure to provide access to the specified look to your 
application, or it will not be used. See the section Using Several Look and Feel on page 218 
and Dynamic Loading of Look and Feel on page 219.

Note: The Microsoft Windows XP style is only available on computers running Microsoft 
Windows XP. An IBM ILOG Views application built on a Microsoft Windows XP platform 
may not run on a previous version of Microsoft Windows (Windows 2000, NT, and so on). 
For more details, see the section Using the Windows XP Look and Feel on page 221.

Table 9.1 Look Libraries for Windows Platforms

Look
Standard Gadgets 
Library

Advanced Gadgets 
Library

Motif ilvmlook.lib ilvamlook.lib

Windows 3.11 ilvwlook.lib ilvawlook.lib

Windows 95 ilvw95look.lib, 
ilvwlook.lib

ilvaw95look.lib, 
ilvawlook.lib

Windows XP ilvwxplook.lib, 
ilvw95look.lib, 
ilvwlook.lib, 
uxtheme.lib

ilvawxplook.lib, 
ilvaw95look.lib, 
ilvawlook.lib
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 217



usrgadgets.book  Page 218  Tuesday, July 28, 2009  11:01 AM
Note that the uxtheme.lib is a Microsoft library. If this library is not present on your 
computer, it is available in the Microsoft Platform SDK. To get the SDK, go to http://
www.microsoft.com/downloads/details.aspx?FamilyId=A55B6B43-E24F-

4EA3-A93E-40C0EC4F68E5&displaylang=en.

For example, if you are building a program using the IBM ILOG Views standard gadget 
library (See the section Gadgets Libraries on page 197 for details) on Microsoft Windows 
95, you will need to link with ilvw95look.lib, ilvwlook.lib.

Similarly, if you are building a program using the IBM ILOG Views advanced gadget library 
on UNIX, you will need to link with libilvmlook and libilvamlook.

However, if you are using shared libraries, you can avoid linking with look-and-feel 
libraries. See the section Dynamic Loading of Look and Feel on page 219.

Using Several Look and Feel 

If you want to use several styles in your program, you must add a compiler option or an 
include file to indicate which of the additional styles you want to use:

◆ In the compiler flags, define the symbol names for the styles you want to use:

● ILVMOTIFLOOK for the Motif® look in Windows® applications.

Table 9.2 Look Libraries for UNIX Platforms

Look
Standard Gadgets 
Library

Advanced Gadgets 
Library

Motif libilvmlook libilvamlook

Windows 3.11 libilvwlook libilvawlook

Windows 95 libilvw95look, 
libilvwlook

libilvaw95look, 
libilvawlook

Note: Windows XP look is not mentioned in the above table, because this look is available 
only for platforms running the Microsoft Windows XP operating system. For more details, 
see the section Using the Windows XP Look and Feel on page 221.

Note: On Windows platforms, linking with the look-and-feel libraries is not required, even 
when using static libraries. The libraries needed by the application will be automatically 
linked with it thanks to specific directives put in header files.
218 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Look and Feel

usrgadgets.book  Page 219  Tuesday, July 28, 2009  11:01 AM
● ILVWINDOWSLOOK for the Microsoft® Windows® 3.11 look in X Window 
applications.

● ILVWINDOWS95LOOK for the Microsoft Windows 95 look in X Window applications.

● ILVWINDOWSXPLOOK for the Microsoft Windows XP look in Windows applications.

◆ In your implementation file, and before any other #include directive, include the style 
header file. Note that if a header file declaring a gadget class precedes one of these 
header files, the corresponding virtual styles will not be loaded in your program. This 
may result in a crash when you change the style of your application. 

Here are the files to include:

● <ilviews/motif.h> 

to add an access to the Motif look for Microsoft Windows applications.

● <ilviews/windows.h> 

to add an access to the Microsoft Windows 3.11 look for X Window applications.

● <ilviews/win95.h> 

to add an access to the Microsoft Windows 95 look for X Window applications.

● <ilviews/winxp.h> 

to add an access to the Microsoft Windows XP look. This look is only available for 
Windows XP platforms.

You must also link your application with the look-and-feel gadget libraries corresponding to 
the looks used by your application. See Table 9.1 on page 217 and Table 9.2 on page 218.

However, if you are using shared libraries, you can avoid linking with look-and-feel 
libraries. See the section Dynamic Loading of Look and Feel on page 219.

Dynamic Loading of Look and Feel

When using the dynamic loading of look and feel, you do not have to care about which look 
and feel your application will use. Depending on what is needed by the application, the looks 
will be loaded at runtime. This means that you do not have to link your application with any 
look-and-feel specific library.

How does it work?

◆ You must use shared libraries (or DLL for Microsoft® Windows®). This is the sine qua 
none condition without which dynamic loading of modules is not possible.

Note: If you do not want the default look and feel to be used, you must compile with the 
ILVNODEFAULTLOOK flag. Compiling with this flag will prevent you from linking with the 
default look-and-feel libraries.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 219



usrgadgets.book  Page 220  Tuesday, July 28, 2009  11:01 AM
◆ You must not include look specific header files, or you will have to link with the 
corresponding libraries.

◆ You must compile with the ILVNODEFAULTLOOK symbol defined, or you will have to 
link with the default look libraries.

Changing the Look and Feel Dynamically

The appearance of a graphic object is managed at different levels:

◆ Object level 

The method IlvGraphic::getLookFeelHandler() is used to query an object about 
its look-and-feel handler. The default implementation is to use the look-and-feel handler 
defined by the object holder.

◆ Holder level 

The method IlvGraphicHolder::getLookFeelHandler() is used to query a holder 
about its look-and-feel handler. The default implementation is to use the look-and-feel 
handler defined by the holder display instance.

◆ Display level 

The method IlvDisplay::getLookFeelHandler() is used to query a display 
instance about its look-and-feel handler. The default value is defined by the platform on 
which the application has been built. See the section Using the Default Look and Feel on 
page 217 for details.

It is possible to change the look of a single gadget, of a whole container, or of the whole 
application by using respectively the methods IlvGadget::setLookFeelHandler, 
IlvGadgetContainer::setLookFeelHandler, and 
IlvDisplay::setLookFeelHandler.

A look-and-feel handler is a subclass of the IlvLookFeelHandler class. Each handler has 
a unique name that identifies it. Here are the names for the four predefined look-and-feel 
styles:

Note: Using the dynamic loading of look and feel is strongly encouraged, as it allows the 
application to be completely independent of the style used at runtime.

Motif motif

Windows 3.11 windows

Windows 95 win95

Windows XP winxp
220 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadgets Look and Feel

usrgadgets.book  Page 221  Tuesday, July 28, 2009  11:01 AM
A look-and-feel handler is associated to a display instance. To obtain an instance of a look-
and-feel handler, use the method IlvDisplay::getLookFeelHandler that takes a name 
as parameter:

IlvLookFeelHandler* lfh = display->getLookFeelHandler(IlGetSymbol(“motif”));

If the required look and feel has already been created for this display, it is returned, 
otherwise a new one is created. If the look and feel cannot be created, the method returns 0.

Changing the Look and Feel of the Whole Display

As seen above, the method IlvDisplay::setLookFeelHandler should be used to 
change the look and feel of the whole display. However, the ILOG Views 4.0 API used to 
define an enum (IlvLookStyle) to describe predefined looks. This enum can still be used 
as follow:

#include <ilviews/ilv.h>

typedef enum IlvLookStyle {
                IlvOtherLook,
                IlvMotifLook,
                IlvWindowsLook,
                IlvWindows95Look,
                IlvWindowsXPLook
};

The following member functions of the IlvDisplay class let you manipulate the setting of 
the look display resource using this enum: 

◆ IlvDisplay::getCurrentLook returns the current style identifier used by this 
display instance. If the current look and feel of the display is not one of the predefined 
look-and-feel styles, IlvOtherLook is returned.

◆ IlvDisplay::setCurrentLook sets the style identifier used by this display instance 
to style.

You can be informed of a change in the look and feel of the display by using the following 
methods:

◆ IlvDisplay::addChangeLookCallback and lets you add user-defined functions that 
are called when the style is dynamically changed. 

◆ IlvDisplay::removeChangeLookCallback lets you remove user-defined functions 
that are called when the style is dynamically changed. 

Using the Windows XP Look and Feel

Although the Microsof®t Windows® 3.11, Microsoft Windows 95, and Motif styles are 
independent of the platform, the Microsoft Windows XP style uses the system (Microsoft 
Windows XP) to draw the components. This means that you can only use this style on a 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 221



usrgadgets.book  Page 222  Tuesday, July 28, 2009  11:01 AM
platform running Microsoft Windows XP. This also means that if a new theme is available to 
Microsoft Windows XP, it will also be available to IBM ILOG Views applications.

Using IBM ILOG Views Dynamic Link Libraries

When using the IBM ILOG Views DLLs (dll_md, or dll_mda), the Microsoft Windows 
XP style can be dynamically loaded when needed. This means that you can built an 
IBM ILOG Views application that can be run on any Microsoft Windows platform. The 
application will load the Microsoft Windows XP style if it is needed. See Dynamic Loading 
of Look and Feel on page 219 for more details.

Using IBM ILOG Views Static Libraries

When using the IBM ILOG Views static libraries (stat_st, stat_sta, stat_md, 
stat_mda, stat_mt, or stat_mta), you must be aware of the following issues:

◆ When building an IBM ILOG Views application using the default style on a Microsoft 
Windows XP platform, the flag WINVER must be set to 0x501 when compiling your 
application, otherwise only the Microsoft Windows 95 style will be registered. See Using 
the Default Look and Feel on page 217.

◆ An IBM ILOG Views application using the Microsoft Windows XP style and the 
IBM ILOG Views static libraries can be run only on platforms running Microsoft 
Windows XP. If you want to compile an IBM ILOG Views application on a Microsoft 
Windows XP platform and you want this application to run on any Windows platform, 
you can either not define the WINVER flag, or define the ILVNODEFAULTLOOK flag. In 
this last case, you will need to link your application with look-and-feel libraries other 
than XP libraries. See Using Several Look and Feel on page 218 for more details.

◆ As the dynamic loading of modules is disabled when using static libraries, your 
application needs to be linked with the right libraries. See Look Libraries for Windows 
Platforms on page 217.

Note:  You can build an application using the Microsoft Windows XP style on any other 
Microsoft Windows platform. In this case, you may need to install the Microsoft Platform 
SDK. To get the SDK, go to http://www.microsoft.com/downloads/
details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-
40C0EC4F68E5&displaylang=en.
222 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 223  Tuesday, July 28, 2009  11:01 AM
10

Dialogs

The Gadgets library provides the IlvDialog class that you can use to create dialog boxes. 
Since this class inherits from IlvGadgetContainer, its instances can contain gadgets. 
IlvDialog has various subclasses that implement standard dialog boxes. 

This chapter covers the following topics: 

◆ Predefined Dialog Boxes

◆ Creating Your Own Dialog Box

◆ Showing and Hiding Dialog Boxes

◆ Setting a Default Button

The following illustration shows the dialog class hierarchy:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 223



usrgadgets.book  Page 224  Tuesday, July 28, 2009  11:01 AM
Figure 10.1     

Figure 10.1  Class Hierarchy of Dialog Boxes

Predefined Dialog Boxes 

The Gadgets library provides the following classes for defining standard dialog boxes:

◆ IlvIMessageDialog

◆ IlvIQuestionDialog

◆ IlvIErrorDialog

◆ IlvIWarner

◆ IlvIInformationDialog

◆ IlvIFileSelector

◆ IlvIPromptString

◆ IlvFontSelector

◆ IlvColorSelector

IlvIMessageDialog

A message dialog box (IlvIMessageDialog class) includes a message text field, a bitmap, 
and two buttons.
224 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Predefined Dialog Boxes

usrgadgets.book  Page 225  Tuesday, July 28, 2009  11:01 AM
Figure 10.2

Figure 10.2  A Message Dialog Box 

IlvIQuestionDialog 

A question dialog box (IlvIQuestionDialog class) displays a question and expects a yes 
or no answer.

Figure 10.3

Figure 10.3  A Question Dialog Box

Here is a code example for a question dialog box:

{
    IlvIQuestionDialog dlg(getDisplay(), msg, 0,
                           IlvDialogOkCancel, transientFor);
    dlg.setString("dialog message");
    if (dlg.get()) ...
}

This code creates a dialog box named dlg that will be destroyed after its use. This dialog 
box will be transient for the view specified by transientFor. It has two buttons, Ok and 
Cancel. The method get opens the dialog box and waits for the result. This method returns 
IlTrue if Ok is chosen, and IlFalse otherwise.

IlvIErrorDialog 

An error dialog box (IlvIErrorDialog class) displays an error message.

Note: By default, this dialog does not include a bitmap. Therefore, you have to provide 
one.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 225



usrgadgets.book  Page 226  Tuesday, July 28, 2009  11:01 AM
Figure 10.4   

Figure 10.4  An Error Dialog Box

IlvIWarner

A warning dialog box (IlvIWarner class) displays a warning message.

Figure 10.5

Figure 10.5  A Warning Dialog Box

IlvIInformationDialog 

An information dialog box (IlvIInformationDialog class) displays an information 
message.

Figure 10.6

Figure 10.6  An Information Dialog Box

IlvIFileSelector 

A file selector (IlvIFileSelector class) asks the user to select a file name.
226 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Predefined Dialog Boxes

usrgadgets.book  Page 227  Tuesday, July 28, 2009  11:01 AM
Figure 10.7

Figure 10.7  A File Selector

Here is an example of using a file selector:

filesel = new IlvIFileSelector(display, 0, "*.cc");
filesel->setName("File Chooser");
filename = filesel->get();
if (filename && filename[0] && IlvFileExists(filename)) ...

IlvIPromptString 

A prompt string (IlvIPromptString class) asks the user to select or to type a string.

Note: If you want to use the file selector specific to the platform you are working on, use 
either the IlvFileSelector or the IlvFileBrowser class. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 227



usrgadgets.book  Page 228  Tuesday, July 28, 2009  11:01 AM
Figure 10.8

Figure 10.8  A Prompt String

IlvFontSelector 

A font selector (IlvFontSelector class) asks the user to select a font.

Figure 10.9

Figure 10.9  A Font Selector

IlvColorSelector

A color selector (IlvColorSelector class) asks the user to select a color.
228 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating Your Own Dialog Box

usrgadgets.book  Page 229  Tuesday, July 28, 2009  11:01 AM
Figure 10.10

Figure 10.10  Color Selectors with Color Names (Left) and with a Color Wheel (Right)

Creating Your Own Dialog Box

To create your own dialog box, follow the steps below:

1. Design the visual representation of the panel. 

This step includes several aspects such as choosing which gadgets to use, how the focus 
is managed, or how gadgets will behave when the dialog is resized. This phase can be 
achieved by using IBM® ILOG® Views Studio. 

2. Display your panel in a dialog box.

You can either use the generated code of IBM ILOG Views Studio (For details, see 
Chapter 4, Using the Generated Code), or directly use the IlvDialog class. The 
constructors of IlvDialog provide a facility to pass a file name as a parameter.

The class IlvDialog has already two registered callbacks:

◆ apply: This callback invokes the virtual IlvDialog::apply method.

◆ cancel: This callback invokes the virtual IlvDialog::cancel method.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 229



usrgadgets.book  Page 230  Tuesday, July 28, 2009  11:01 AM
You can, for example, have two buttons in your dialog box, one with the callback set to 
“apply” and the other set to “cancel”. 

Showing and Hiding Dialog Boxes

The class IlvDialog provides methods for managing dialog boxes.

Use the IlvDialog method wait to wait until the user clicks Ok or Cancel (which calls the 
Apply or Cancel callbacks). This method displays a modal dialog box. The method 
wasCanceled tells you whether the user has clicked Cancel.

dialog.wait();
if (!dialog.wasCanceled())  {
  ...
 }

You can also use the methods show and hide. Standard dialog boxes have their own special 
methods that display them and wait until the value is returned.

Setting a Default Button

A dialog box can have a default button. The default button is the one that is activated when 
the user presses the Enter key when the dialog box has the keyboard focus.

The default button has a special appearance that distinguishes it from other buttons. To set a 
default button, use the setDefaultButton member function.

Note that when a default button has been defined, pressing the Enter key only applies to this 
button. In certain cases you might want to override this behavior. For example, when editing 
a matrix you might want to use the Enter key to validate changes. To modify this behavior, 
you can use the member function IlvGadget::usesDefaultButtonKeys.
230 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 231  Tuesday, July 28, 2009  11:01 AM
11

Using Common Gadgets

This chapter explains how to use the large variety of gadgets provided in the Gadgets library. 
It covers the following topics:

◆ Using IlvArrowButton

◆ Using IlvButton

◆ Using IlvComboBox and IlvScrolledComboBox

◆ Using IlvDateField

◆ Using IlvFrame

◆ Using IlvMessageLabel

◆ Using IlvNotebook

◆ Using IlvNumberField

◆ Using IlvOptionMenu

◆ Using IlvPasswordTextField

◆ Using IlvScrollBar

◆ Using IlvSlider

◆ Using IlvSpinBox

◆ Using IlvStringList
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 231



usrgadgets.book  Page 232  Tuesday, July 28, 2009  11:01 AM
◆ Using IlvText

◆ Using IlvTextField

◆ Using IlvToggle

◆ Using IlvTreeGadget

Using IlvArrowButton

The class IlvArrowButton defines a button displaying an arrow. The arrow can be 
oriented up, down, right, or left. IlvArrowButton is a subclass of IlvButton.  

Figure 11.1

Figure 11.1  Arrow Buttons

You can specify the direction of an arrow using IlvArrowButton::setDirection and 
retrieve it with IlvArrowButton::getDirection.

See Using IlvButton on page 232.

Using IlvButton

The class IlvButton defines a rectangular area that the user can click. IlvButton is a 
subclass of IlvMessageLabel around which it adds a relief rectangle.   

Figure 11.2 

Figure 11.2   A Button

The label that appears inside a button can have various alignment settings and can be 
localized. For details about these properties, see Using IlvMessageLabel on page 238. 

This section covers the following topics:

◆ Displaying a Bitmap in a Button 

◆ Displaying the Button Frame

◆ Associating a Mnemonic with a Button

◆ Event Handling and Callbacks
232 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvButton

usrgadgets.book  Page 233  Tuesday, July 28, 2009  11:01 AM
Displaying a Bitmap in a Button

A button can display a bitmap. Four kinds of bitmaps can be displayed: sensitive, 
nonsensitive, selected, and highlighted. 

Sensitive bitmaps are described in Associating a Bitmap with a Message Label on page 239.

A selected bitmap is displayed when the button is clicked. To set a selected bitmap, use 
IlvButton::setSelectedBitmap.

A highlighted bitmap is displayed when the mouse is over the button. To set a highlighted 
bitmap, use IlvButton::setHighlightedBitmap. 

Displaying the Button Frame

You can use the IlvButton::showFrame member function to specify whether or not the 
frame surrounding the button be displayed when it is highlighted. The following illustration 
shows buttons in the Windows® 95 look and feel.

Figure 11.3

Figure 11.3  Button with Frame Hidden (Left) and with Frame Displayed (Right)

Associating a Mnemonic with a Button

A button label can be associated with a mnemonic letter. When you press the key 
corresponding to the mnemonic letter, the IlvButton::activate member function is 
called. If the button does not have the keyboard focus, you must press the modifier key (Alt 
on PCs and Meta on UNIX) with the letter.

See Associating a Mnemonic with a Gadget Label on page 211.

Event Handling and Callbacks

When the user clicks a button or presses the mnemonic letter associated with it, or presses 
the Enter key or the space bar, the IlvButton::activate member function is called. This 
virtual member function calls the Main callback of the button. 

See Handling Events on page 203 and Associating a Callback with a Gadget on page 209.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 233



usrgadgets.book  Page 234  Tuesday, July 28, 2009  11:01 AM
Using IlvComboBox and IlvScrolledComboBox

The class IlvComboBox combines a text field with a list of predefined strings from which 
the user can choose. IlvScrolledComboBox displays a scrollbar when the list exceeds a 
certain number of choices. IlvComboBox class is a subclass of IlvTextField and 
IlvListGadgetItemHolder, and IlvScrolledComboBox class is a subclass of 
IlvComboBox.

Figure 11.4 

Figure 11.4  A Combo Box

See Using IlvTextField on page 263.

This section covers the following topics:

◆ Setting a Combo Box as Noneditable

◆ Setting and Retrieving Items

◆ Changing or Retrieving the Selection

◆ Using Large Lists

◆ Setting the Number of Visible Items

◆ Localizing Combo Boxes

◆ Event Handling and Callbacks

Setting a Combo Box as Noneditable

By default, the text field part of the combo box can be edited, which means that you can 
change its content either by typing new text in it or pasting text from the clipboard. The 
member function IlvTextField::setEditable allows you to switch to read-only mode. 
In this mode, you can only choose a value from the menu. 

The appearance of a combo box changes when it switches to read-only mode. Therefore, you 
must call the IlvGadget::reDraw member function when changing the editing mode of a 
combo box.

Setting and Retrieving Items

Because IlvComboBox is a subclass of IlvListGadgetItemHolder, you must use the 
member functions of this class to modify the items of the combo box.

See IlvListGadgetItemHolder.
234 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvComboBox and IlvScrolledComboBox

usrgadgets.book  Page 235  Tuesday, July 28, 2009  11:01 AM
Changing or Retrieving the Selection

Because IlvComboBox is a subclass of IlvTextField, you can use the member functions 
of this class to set the text in a combo box or retrieve it.

See Setting and Retrieving Text on page 264. 

You can also set the selected item in a combo box using an index number with 
IlvComboBox::setSelected and retrieve it with IlvComboBox::whichSelected.

Using Large Lists

Unlike IlvComboBox, the item list displayed by IlvScrolledComboBox has a fixed width 
corresponding to the combo box width. If the list contains large items, they might not fit in 
the text field and thus in the list. To modify this behavior, use the member function 
IlvScrolledComboBox::enableLargeList. 

Figure 11.5

Figure 11.5  A Combo Box with Large List Enabled

Setting the Number of Visible Items 

In a scrolled combo box, you can fix the number of visible items in the list. If all items are 
visible, there is no scrollbar. 

To set the number of visible items, use the member function 
IlvScrolledComboBox::setVisibleItems.

Localizing Combo Boxes

The text appearing in a combo box can be localized. Only noneditable combo boxes can be 
localized.

See Localizing a Gadget on page 210.

Event Handling and Callbacks

When the user selects a new item with the mouse, uses the arrow keys, or enters new text and 
presses the Enter key, the Main callback of the combo box is invoked. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 235



usrgadgets.book  Page 236  Tuesday, July 28, 2009  11:01 AM
When the user opens the combo box list, the Open List callback is invoked. To set an Open 
List callback method, use the callback symbol returned by 
IlvComboBox::OpenListSymbol().

See Associating a Callback with a Gadget on page 209.

Using IlvDateField

The class IlvDateField defines a special text field gadget for editing dates with various 
formats. IlvDateField is a subclass of IlvTextField.

Figure 11.6

Figure 11.6  A Date Field

This section covers the following topics:

◆ Formatting a Date

◆ Setting and Retrieving a Date Value

Formatting a Date

The IlvDateField can display dates in many formats. To specify the date format, use the 
member function IlvDateField::setFormat.

A date is composed of three elements: the day, the month, and the year. These elements are 
divided by separation characters. The setFormat member function allows you to specify 
these elements and which separator to use.

The default value is: 12/31/1995 (df_Month, df_Day, df_Year).

The formats are defined as follows:

enum format
    {
     df_day,          // 1
     df_Day,          // 01

     df_month,        // 3
     df_Month,        // 03
     df_month_text,   // March 
     df_abbrev_month, // Mar

     df_year,         // 95
     df_Year          // 1995
   };

◆ df_day Writes the day as a number with no leading zero.
236 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvDateField

usrgadgets.book  Page 237  Tuesday, July 28, 2009  11:01 AM
◆ df_Day Writes the day as a number with a leading zero, if necessary.

◆ df_month Writes the month as a number with no leading zero.

◆ df_Month Writes the month as a number with a leading zero, if necessary.

◆ df_month_text Writes the month name. If the following month names appear in the 
language database, the corresponding name is taken from it. Otherwise, the month name 
is taken with the character ‘&’ removed.

Month names: &January, &February, &March, &April, &May, &June, 
&July, &August, &September, &October, &November, &December.

◆ df_abbrev_month Writes the abbreviated month name. If the following abbreviated 
month names appear in the language database, the corresponding name is taken from it. 
Otherwise, the abbreviated month name is taken with the character ‘&’ removed.

Abbreviated month names: &january, &february, &march, &april, &may, 
&june, &july, &august, &september, &october, &november, &december.

◆ df_year Writes the last two digits of the year.

◆ df_Year Writes the year.

If you change the format when the field contains a value, this value is applied the new 
format.

Examples of Formats

April,2,1995  (df_month_text, df_day, df_Year with separator ,)

2/4/95 (df_day, df_month, df_year with separator /)

02/04/1995 (df_Day, df_Month, df_Year with separator /)

Setting and Retrieving a Date Value

To set the date of an IlvDateField or retrieve it, use the member functions 
IlvDateField::setValue and IlvDateField::getValue.

Year 2000 Management

The right way to avoid problems linked to the new millenium is to use four digits to 
represent the year. This can be done in the IlvDateField class by using the setFormat 
member function.

Note: Only a single day, year, or month format can be passed to the setFormat member 
function. Otherwise, the function returns IlFalse and the format remains unchanged. 
Formats are defined in an embedded enum declaration. They are set as follows:
obj->setFormat(IlvDateField::df_day);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 237



usrgadgets.book  Page 238  Tuesday, July 28, 2009  11:01 AM
However, if you must use a two-digits value to represent the year part of the date, the 
IlvDateField API offers several methods to solve the problem:

1. SetBaseCentury lets you specify the base century that will be used to recompute the 
full year

2. GetBaseCentury returns the base century set by SetBaseCentury. The default value 
is 1900

3. SetCenturyThreshold lets you specify the threshold over which the base century 
used will be the value returned by GetBaseCentury() plus 1

4. GetCenturyThreshold returns the value set by SetCenturyThreshold. The default 
value is 30

For example, with a base century of 1900 and a threshold of 30, a value of 10 is converted to 
2010, and a value of 40 is converted to 1940.

Using IlvFrame

The class IlvFrame displays a rectangle around a label. It is used for grouping gadgets 
together in a section of a panel. IlvFrame derives from the class IlvMessageLabel.

Figure 11.7

Figure 11.7  A Frame

See Using IlvMessageLabel on page 238.

Associating a Mnemonic with a Frame

Frame labels can be associated with a mnemonic letter. When you press the key 
corresponding to the mnemonic letter with the modifier key (Alt on PCs and Meta on 
UNIX), the keyboard focus is given to the first gadget in the frame that can have the focus.

See Associating a Mnemonic with a Gadget Label on page 211 and Focus Management on 
page 203.

Using IlvMessageLabel

The class IlvMessageLabel displays a message, which can be accompanied by a bitmap. 
Messages are recorded in a database that can be associated with the current instance of 
IlvDisplay. 
238 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMessageLabel

usrgadgets.book  Page 239  Tuesday, July 28, 2009  11:01 AM
The alignment of the message relative to the bitmap can be set to any position. In addition, it 
is possible to change the alignment of the whole block (message + bitmap) to IlvCenter, 
IlvLeft, or IlvRight in relation to its bounding box.

Figure 11.8 shows an example of an IlvMessageLabel. The alignment of the message 
relative to the picture is IlvBottom, and the global alignment of the IlvMessageLabel is 
IlvCenter.

Figure 11.8

Figure 11.8  A Message Label

This section covers the following topics:

◆ Associating a Bitmap with a Message Label

◆ Making the Message Label Opaque

◆ Laying Out the Message Label

◆ Localizing a Message Label

◆ Associating a Mnemonic

Associating a Bitmap with a Message Label

Bitmaps can be associated with a message label using the member functions 
IlvMessageLabel::setBitmap and IlvMessageLabel::setInsensitiveBitmap.

setBitmap associates a main bitmap with the message label. setInsensitiveBitmap 
sets the bitmap that will be displayed when the message label is set to nonsensitive. If you do 
not provide a nonsensitive bitmap, a default one is automatically computed from the 
sensitive bitmap when setting the message label to nonsensitive.

Figure 11.9

Figure 11.9  Message Label with Sensitive and Nonsensitive Bitmap
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 239



usrgadgets.book  Page 240  Tuesday, July 28, 2009  11:01 AM
See Localizing a Gadget on page 210.

Making the Message Label Opaque

Unlike the other gadgets, the message label is transparent by default. To make it opaque, call 
the member function IlvGadget::setTransparent with IlFalse as its parameter. The 
bounding box of an opaque message label is filled with the background color that is set in 
the object palette.

Figure 11.10

Figure 11.10  An Opaque Message Label

See Setting a Gadget as Transparent on page 208.

Laying Out the Message Label

When a message label displays both a label and a bitmap, you can change the position of the 
label relative to the bitmap using the member function 
IlvMessageLabel::setLabelPosition. 

For example, to have the label appear to the left of the bitmap, call:

 message->setLabelPosition(IlvLeft);

To set the spacing between the label and the bitmap to 20 pixels, call:

 message->setSpacing(20);

To center the grouped label and the bitmap inside the bounding box of the message label, 
call:

 message->setAlignment(IlvCenter);

Figure 11.11

Figure 11.11  Label and Bitmap Aligned as One Block
240 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvNotebook

usrgadgets.book  Page 241  Tuesday, July 28, 2009  11:01 AM
Localizing a Message Label

A message label can be localized. 

See Localizing a Gadget on page 210.

Associating a Mnemonic

Message labels can include a mnemonic letter. When you press the key corresponding to the 
mnemonic letter with the modifier key (Alt on PCs or Meta on UNIX), or click the message 
label, the focus is given to the next gadget in the focus chain. 

See Associating a Mnemonic with a Gadget Label on page 211.

Using IlvNotebook

The class IlvNotebook simulates a real notebook. A notebook is composed of pages that 
you can select and bring to the front by clicking their tab. These pages are implemented by 
the class IlvNotebookPage.

Figure 11.12

Figure 11.12  A Notebook with Pages

This section covers the following topics:

◆ Customizing Notebook Tabs

◆ Handling Notebook Pages

◆ Event Handling and Callbacks

Customizing Notebook Tabs 

The tabs of a notebook can be customized in many different ways:

◆ Setting the Position of Tabs

◆ Setting the Orientation of Tabs

◆ Setting the Tabs Margins

◆ Setting the Page Margins
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 241



usrgadgets.book  Page 242  Tuesday, July 28, 2009  11:01 AM
Setting the Position of Tabs

The tabs of a notebook can be displayed on any of its borders (top, bottom, left, or right). 
You can change the position of the tabs with the member function 
IlvNotebook::setTabsPosition and retrieve this position with 
IlvNotebook::getTabsPosition.

Setting the Orientation of Tabs

Within the tab, the label can be drawn horizontally or vertically. You can change the 
orientation of the labels with the member function IlvNotebook::setLabelsVertical. 
To know whether the label are horizontal or vertical, use 
IlvNotebook::areLabelsVertical.

When the tab labels are oriented vertically, the label can be written from top to bottom, or 
from bottom to top. 

Figure 11.13

Figure 11.13  A Notebook with Vertical Tabs

A label that is written from bottom to top is said to be flipped. To change the way vertical 
labels are drawn, use these member functions IlvNotebook::mustFlipLabels and 
IlvNotebook::flipLabels.

Setting the Tabs Margins

You can change the margin between the border of the tab and its label with these member 
functions: IlvNotebook::getXMargin, IlvNotebook::setXMargin, 
IlvNotebook::getYMargin, and IlvNotebook::setYMargin. 

Figure 11.13  Tab Margins (x and y)
242 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvNotebook

usrgadgets.book  Page 243  Tuesday, July 28, 2009  11:01 AM
Setting the Page Margins

You can also change the margins between the border of the notebook and its page view. The 
value returned by the member function IlvNotebook::getPageArea depends on the 
values set for the page margins.

Following are the member functions for setting the page margins: 
IlvNotebook::setPageTopMargin, IlvNotebook::setPageBottomMargin, 
IlvNotebook::setPageLeftMargin, IlvNotebook::setPageRightMargin. You 
can retrieve the margins set with the corresponding get member functions.

Figure 11.14

Figure 11.14  Page Margins

Handling Notebook Pages

The pages of a notebook are implemented by the class IlvNotebookPage, which you can 
subclass to meet specific requirements. Instances of IlvNotebookPage can encapsulate an 
IlvGadgetContainer or any other type of view. See Displaying the Contents of a Page on 
page 244.

This section covers the following topics:

◆ Adding and Removing a Notebook Page

◆ Displaying the Contents of a Page

◆ Customizing a Notebook Page

◆ Changing the Color of a Notebook Page

◆ Setting the Content of Tabs

Adding and Removing a Notebook Page

When created, a notebook has no pages. A notebook must contain at least one page.

To add a page to a notebook, use one of the IlvNotebook::addPage member functions:

IlvNotebookPage* addPage(IlvNotebookPage* page,
                         IlUShort idx = IlvNotebookLastPage);

IlvNotebookPage* addPage(const char* label,
                         IlvBitmap* bitmap = 0,
                         IlBoolean transparent = IlTrue,
                         const char* filename = 0,
                         IlUShort idx = IlvNotebookLastPage);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 243



usrgadgets.book  Page 244  Tuesday, July 28, 2009  11:01 AM
The first addPage member function lets you add a subclass of IlvNotebookPage. The 
second one creates a new instance of IlvNotebookPage. The idx parameter specifies the 
position at which the page is to be added. 

An IlvNotebookPage is always related to a specific notebook, which means that you 
cannot share an IlvNotebookPage between two notebooks. You can retrieve the notebook 
related to a page using IlvNotebookPage::getNotebook.

To know how many pages there are in a notebook, use 
IlvNotebook::getPagesCardinal.

To retrieve the internal notebook page array, use IlvNotebook::getPages. To retrieve the 
first page, call:

page = notebook->getPages()[0];

To remove a specific page, use IlvNotebook::removePage.

Displaying the Contents of a Page

The member function IlvNotebookPage::createView creates a view of type 
IlvGadgetContainer to display the contents of the page, which you can retrieve with 
IlvNotebookPage::getView.

You can load an .ilv file into a notebook page with the member function 
IlvNotebookPage::setFileName and retrieve this file with 
IlvNotebookPage::getFileName.

The member function setFileName assumes that the view is an IlvGadgetContainer or 
one of its subclasses. You will have to override it if you use another type of view.

Customizing a Notebook Page

You can change the view held by an IlvNotebookPage using the member function 
IlvNotebookPage::setView. You can also redefine the member function 
IlvNotebookPage::createView in a subclass of IlvNotebookPage. See Displaying 
the Contents of a Page on page 244. 

This member function instantiates an invisible view with the size given as its parameter. It 
also loads an .ilv file (result of getFileName) into the new view.

For example, to have notebook pages encapsulate IlvScrolledView instances, subclass 
IlvNotebookPage as follows:

class myNotebookPage : public IlvNotebookPage 
{
public:
    myNotebookPage(IlvNotebook* gadget,
                const char*    label,
                Ilvbitmap*     bitmap,
                IlBoolean      transparent,
                const char*    filename)
   : IlvNotebookPage(gadget, label, bitmap, transparent, filename) {}
244 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvNotebook

usrgadgets.book  Page 245  Tuesday, July 28, 2009  11:01 AM
       virtual IlvView* createView(IlvAbstractView* parent,
   const IlvRect& size);
};

IlvView* myNotebookPage::createView(IlvAbstractView* parent,
                                    const IlvRect& size)
{
  IlvScrolledView* scview = new IlvScrolledView(parent,size);
  IlvGadgetContainer* child = new IlvGadgetContainer(scview->getClipView(),
                                                     IlvRect(0,0,100,100));
  if (_filename && _filename[0])
    child->readFile(_filename);
  child->fitToContents();
  return scview;
}

Then create a new notebook page and add it to the notebook:

    myNotebookPage* np5=
       new myNotebookPage(nb,”Page5”,0,IlFalse,”../snbook.ilv”);
    nb->addPage(np5);

If your view can read an .ilv file, you can overload the member function 
IlvNotebookPage::setFileName. 

If you need to add more drawings to your page, you can overload the draw method:

void draw(IlvPort* dst,
          const IlvRect& pageRect,
          const IlvTransformer* t,
          const IlvRegion* clip) const;

You also need to create the following constructors for your page:

MyNotebookPage::MyNotebookPage(IlvNotebook* notebook);
MyNotebookPage::MyNotebookPage(IlvNotebook* notebook,
                               const char*  label,
                               IlvBitmap*   bitmap,
                               IlBoolean    transparent,
                               const char*  filename);
MyNotebookPage::MyNotebookPage(const MyNotebookPage& source);
MyNotebookPage::MyNotebookPage(IlvNotebook* notebook,
                               IlvInputFile&);

The member function IlvNotebookPage::write and the constructor that takes an 
IlvInputFile as a parameter let you extend the.ilv format of the page.

Changing the Color of a Notebook Page

Each page of the notebook can have a different background color. To change this color, use 
the member function IlvNotebookPage::setBackground. When you change the 
background color of a notebook page, this color is applied to the background of its view. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 245



usrgadgets.book  Page 246  Tuesday, July 28, 2009  11:01 AM
Setting the Content of Tabs

The notebook tab can contain a label and/or a bitmap. To set the label that appears in a 
notebook tab, use the member function IlvNotebookPage::setLabel. Use 
IlvNotebookPage::getLabel to retrieve this label. 

This label can have a mnemonic. See Associating a Mnemonic with a Gadget Label on 
page 211.

To set the bitmap that appears in a notebook tab, use the member function 
IlvNotebookPage::setBitmap. Use IlvNotebookPage::getBitmap to retrieve this 
bitmap.

Event Handling and Callbacks

When the user selects a notebook page by clicking it with the mouse, by pressing the arrow 
keys, or by pressing the key corresponding to its associated mnemonic letter, the member 
function IlvNotebook::changeSelection is called. This member function invokes 
IlvNotebook::pageDeselected with the previous selected page as its parameter and 
IlvNotebook::pageSelected with the new selected page as its parameter. 
IlvNotebook::pageDeselected calls IlvNotebookPage::deSelect and triggers the 
Page Deselected callback. IlvNotebook::pageSelected calls 
IlvNotebookPage::select and triggers the Page Selected callback. You can retrieve 
their types with IlvNotebook::PageSelectedCallbackType and 
IlvNotebook::PageDeselectedCallbackType. Resizing the notebook page invokes 
the Page Resize callback. You can retrieve its type with 
IlvNotebook::PageResizedCallbackType.

See Associating a Callback with a Gadget on page 209.

Using IlvNumberField

The class IlvNumberField class defines a specialized text field for editing numbers with 
various formats. IlvNumberField is a subclass of IlvTextField.

Figure 11.15

Figure 11.15  A Number Field

See Using IlvTextField on page 263.

This section covers the following topics:

◆ Selecting an Editing Mode

◆ Choosing a Format
246 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvNumberField

usrgadgets.book  Page 247  Tuesday, July 28, 2009  11:01 AM
◆ Defining a Range of Values

◆ Setting and Retrieving a Value

◆ Specifying the Thousand Separator

◆ Specifying the Decimal Point Character

◆ Event Handling and Callbacks

Selecting an Editing Mode

The IlvNumberField class has two main editing modes, one for integers (IlvInt) and 
one for floating-point numbers (IlDouble). The editing mode in effect depends on the 
constructor used. 

To create a number field for editing integers, use one of these two constructors:

IlvNumberField* field  = new IlvNumberField(display,0,
                                            IlvRect(10,10, 100, 30));
IlvNumberField* field  = new IlvNumberField(display,
                                            IlvPoint(10,10), 0);

To create a number field for editing floating point numbers, use one of these two 
constructors:

IlvNumberField* field  = new IlvNumberField(display, 0.0,
                                            IlvRect(10,10, 100, 30));
IlvNumberField* field  = new IlvNumberField(display,
                                            IlvPoint(10,10), 0.0);

Choosing a Format

A number field can be assigned a format. You can change the current format at runtime with 
IlvNumberField::setFormat.

Formats are defined by this enum declaration:

enum {  thousands  = 1,
        scientific = 2,
        padright   = 4,
        showpoint  = 8,
        floatmode  = 16};

They are set as follows:

obj->setFormat(IlvNumberField::floatmode|IlvNumberField::scientific);

Following is a description of these various date formats:

◆ floatmode—Use this mode to edit float values. This mode is automatically set when 
using a constructor with a value of type IlDouble. See Selecting an Editing Mode on 
page 247.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 247



usrgadgets.book  Page 248  Tuesday, July 28, 2009  11:01 AM
◆ scientific—Use this mode to control the output of IlDouble values in the gadget. If 
scientific is set, the value is converted using scientific notation, where there is one 
digit before the decimal point and the number of digits after it is equal to the specified 
number (six by default). The letter e introduces the exponent. If scientific is not set, 
the value is converted to decimal notation with precision digits after the decimal point 
(six digits by default). This only works when the floatmode is set.

◆ padright—Use this mode to add the trailing zeros after the decimal point. This only 
works when the floatmode is set.

◆ showpoint—Use this mode with the padright mode to keep the decimal point when 
removing trailing zeros. This only works when the floatmode is set.

◆ thousands—Use this mode to display a “thousand” separator. The default “thousand” 
separator is the character ‘,’. See Specifying the Thousand Separator on page 248.

Defining a Range of Values

You can specify the minimum and maximum numbers that can be edited in a number field. 
There are two sets of member functions depending on whether you are editing an integer or 
a floating-point value:

For integers, use IlvNumberField::setMaxInt and IlvNumberField::setMinInt.

For floating-point numbers, use IlvNumberField::setMaxFloat and 
IlvNumberField::setMinFloat.

Setting and Retrieving a Value

The IlvNumberField provides two sets of member functions for setting and retrieving a 
value.

If the value is an integer, use:

IlInt     getIntValue(IlBoolean& error) const;
IlBoolean setValue(IlInt, IlBoolean redraw = IlFalse);

If the value is a floating-point number:

IlDouble  getFloatValue(IlBoolean& error) const;
IlBoolean setValue(IlDouble, IlBoolean redraw = IlFalse);

Specifying the Thousand Separator

When the number formats thousands and float are set, the thousand separator is 
displayed. The default thousand separator is the comma character (,). You can change this 
character using the member function IlvNumberField::setThousandSeparator. 
Calling this member functions does not directly change the text in the number field. 
248 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvOptionMenu

usrgadgets.book  Page 249  Tuesday, July 28, 2009  11:01 AM
Therefore, if the field already contains a value, you must first retrieve that value, change the 
separator, and then set the value again.

Specifying the Decimal Point Character

The default decimal point character for floating-point numbers is the period character (.). 
You can change this character using the member function 
IlvNumberField::setDecimalPointChar.

Calling this member function does not directly change the text in the number field. 
Therefore, if the field already contains a value, you must first retrieve that value, change the 
decimal point character, and then set the value again.

Event Handling and Callbacks

When the user presses the Enter Key in a number field, the IlvNumberField::validate 
member function is called. This virtual member function invokes the Main callback 
associated with the number field and moves the keyboard focus to the next gadget in the 
focus chain. This happens only if the field content can be converted to a number, and this 
number is within the range specified by IlvNumberField::setMaxFloat, 
IlvNumberField::setMinFloat, IlvNumberField::setMaxInt, and 
IlvNumberField::setMinInt. 

See Defining a Range of Values on page 248, Focus Management on page 203, and 
Associating a Callback with a Gadget on page 209.

Using IlvOptionMenu

The class IlvOptionMenu defines a drop-drown list of items from which the user can 
select. 

Figure 11.16

Figure 11.16  An Option Menu

This section covers the following topics:

Note: Because the Microsoft ®Windows® look and feel does not provide an option menu, 
the class IlvOptionMenu is represented as a combo box when the style in use is 
Microsoft Windows.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 249



usrgadgets.book  Page 250  Tuesday, July 28, 2009  11:01 AM
◆ Setting and Retrieving Items

◆ Changing and Retrieving the Selected Item

◆ Localizing Option Menus

◆ Event Handling and Callbacks

Setting and Retrieving Items

Because IlvOptionMenu is a subclass of IlvListGadgetItemHolder, you must use the 
member functions of this class to modify the items of the option menu.

See IlvListGadgetItemHolder.

Changing and Retrieving the Selected Item

To modify the selected item in an option menu, use the member function 
IlvOptionMenu::setSelected. To retrieve the index of the selected item, use 
IlvOptionMenu::whichSelected.

Localizing Option Menus

Option menus can be localized.

See Localizing a Gadget on page 210.

Event Handling and Callbacks

When the user selects a new item in the menu, either by pointing on it with the mouse or by 
using the arrow keys, the virtual member function IlvOptionMenu::doIt is called. It can 
be overridden in a subclass of the option menu when necessary. 

Its default implementation invokes the Main callback of the option menu.

See Associating a Callback with a Gadget on page 209.

Using IlvPasswordTextField

The IlvPasswordTextField class is a special text field for entering passwords. A special 
character replaces the characters that you type in the field so that the password remains 
secret. IlvPasswordTextField is a subclass of IlvTextField. 

To retrieve the text entered by the user, use the IlvTextField::getLabel member 
function. To modify the character typed in place of the real text, call 
IlvPasswordTextField::setMaskChar.
250 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvScrollBar

usrgadgets.book  Page 251  Tuesday, July 28, 2009  11:01 AM
Using IlvScrollBar

The class IlvScrollBar defines a rectangular area with two arrows and a slider used for 
scrolling through a window. This rectangular area is called a scrollbar.

Figure 11.17 

Figure 11.17  A Scrollbar

This section covers the following topics:

◆ Setting the Scrollbar Values

◆ Setting the Scrollbar Orientation

◆ Event Handling and Callbacks

Setting the Scrollbar Values

A scrollbar is defined by the following values:

◆ Its current value.

◆ Its minimum and maximum values.

◆ The slider size.

◆ The increment, that is, the value added to or removed from the scrollbar current value 
when clicking the scrollbar arrows or when pressing the Left, Right, Up or Down keys.

◆ The page increment, that is, the value added to or removed from the current scrollbar 
value when clicking the areas between the slider and the arrows or when pressing the 
Page-Up or Page-Down keys.

The current value of the scrollbar can change within the minimum value and the (maximum 
- slider size) value.

Use the IlvScrollBar::setValues method to set the current value of the scrollbar and 
its minimum and maximum values.

Use the IlvScrollBar::setIncrement and IlvScrollBar::setPageIncrement 
methods to set the increment and the page increment.

Setting the Scrollbar Orientation

A slider can have four types of orientation, which are specified in the constructor. You can 
also change its orientation using IlvScrollBar::setOrientation. The orientation of 
the slider can be:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 251



usrgadgets.book  Page 252  Tuesday, July 28, 2009  11:01 AM
◆ IlvLeft Horizontal slider with minimum value on the left.

◆ IlvRight Horizontal slider with minimum value on the right.

◆ IlvTop Vertical slider with minimum value on the top.

◆ IlvBottom Vertical slider with minimum value on the bottom.

Event Handling and Callbacks

When the user drags the slider, thus causing the scrollbar value to change, the virtual 
member function IlvScrollBar::drag is called. This member function can be 
overridden in subclasses. Its default implementation invokes the member function 
IlvScrollBar::valueChanged.

IlvScrollBar::valueChanged is also called when the user clicks the scrollbar arrows or 
the area located between the slider and the arrows, or when the user presses the arrow keys 
or the Home and End keys. This virtual member function can be overridden in subclasses. Its 
default implementation invokes the Main callback associated with the scrollbar.

When the user releases the slider, after he dragged it, the virtual member function 
IlvScrollBar::dragged is called. This member function can be overridden in 
subclasses. Its default implementation invokes the secondary callback associated with the 
scrollbar.

See Associating a Callback with a Gadget on page 209.

Using IlvSlider

The class IlvSlider defines a rectangular area that contains a slider. When the user moves 
the slider, its value changes.

Figure 11.18 

Figure 11.18  Horizontal and Vertical Sliders

This section covers the following topics:
252 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvSlider

usrgadgets.book  Page 253  Tuesday, July 28, 2009  11:01 AM
◆ Setting the Slider Values

◆ Setting the Slider Orientation

◆ Setting the Thumb Orientation

◆ Event Handling and Callbacks

Setting the Slider Values

The class IlvSlider provides an easy way to modify a value between a range. 

The slider is defined by the following values:

◆ Its current value.

◆ Its minimum and maximum values.

◆ The slider size.

◆ The page increment, that is, the value added to or removed from the slider current value 
when clicking the areas outside the slider or when pressing the Page Up or Page Down 
keys.

You can set the value and the range of the slider using the member function 
IlvSlider::setValues. You can set the page increment with 
IlvSlider::setPageIncrement.

Setting the Slider Orientation

A slider can have four types of orientation, which are specified in the constructor. You can 
also change its orientation using IlvSlider::setOrientation. The orientation of the 
slider can be:

◆ IlvLeft Horizontal slider with minimum value on the left.

◆ IlvRight Horizontal slider with minimum value on the right.

◆ IlvTop Vertical slider with minimum value on the top.

◆ IlvBottom Vertical slider with minimum value on the bottom.

Setting the Thumb Orientation

The thumb orientation can be also be set using the IlvSlider::setThumbOrientation 
method. However, this setting is not supported by all kinds of look-and-feel styles. For 
example, setting the thumb orientation has no effect when using the Motif look and feel.

The following illustration shows two sliders with different thumb orientation:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 253



usrgadgets.book  Page 254  Tuesday, July 28, 2009  11:01 AM
Figure 11.19

Figure 11.19  The Thumb Orientation of the Sliders

Event Handling and Callbacks

When the user drags the slider, clicks outside it, or presses the arrow keys, the Home or End 
keys, thus causing the slider value to change, the virtual member function 
IlvSlider::valueChanged is called. This member function can be overridden in 
subclasses to perform a specific action. Its default implementation invokes the Main callback 
associated with the slider. Any changes made to the slider value call the slider callback. 

See Associating a Callback with a Gadget on page 209.

Using IlvSpinBox

The class IlvSpinBox defines a composite gadget made up of two buttons and several 
fields of the type IlvTextField or IlvNumberField.

For text fields, you can define a list of predefined string values which the user can spin 
through using the buttons. For number fields, you can define a set of numeric values, within 
the specified value range, which the user can increment or decrement using the buttons. 

You can also add graphic objects to a spin box.

Figure 11.20

Figure 11.20  A Spin Box

See Using IlvNumberField on page 246 and Using IlvTextField on page 263.

This section covers the following topics:

◆ Adding and Removing Fields to a Spin Box

◆ Working with Text Fields

◆ Working with Numeric Fields

◆ Event Handling and Callbacks
254 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvSpinBox

usrgadgets.book  Page 255  Tuesday, July 28, 2009  11:01 AM
Adding and Removing Fields to a Spin Box

When created, a spin box has no fields; it is composed only of two arrow buttons. You can 
add one or more IlvTextField or IlvNumberField to a spin box. Note, however, that 
you can use a spin box that has no fields to increment or decrement a value in your 
application.

Adding Fields

To add a field to a spin box, you can use either one of these two member functions, 
depending on the type of values you want to display (character strings or numbers). 

void addField(IlvTextField* field,
              const char**  values,
              IlUShort     count,
              IlUShort     pos,
              IlBoolean    loop,
              IlUShort     at     = 0,
              IlBoolean    redraw = IlFalse);

The values parameter holds the string values that you will spin through. The count 
parameter specifies the number of strings in values.

void addField(IlvNumberField* field,
              IlDouble       value,
              IlDouble       increment,
              IlBoolean      loop, 
              IlUShort       at     = 0, 
              IlBoolean      redraw = IlFalse);

When you add a numeric field to a spin box, the buttons allow you to change the value of the 
numeric field within the value range specified by the numeric field itself (see Using 
IlvNumberField on page 246).

The value parameter is the initial value of the field. The increment parameter specifies 
the value that is added to or removed from the value of the numeric field when the user 
clicks the Increment or Decrement buttons.

If the loop parameter is set to IlTrue, the spin box returns to the first value when the user 
tries to increment the last value, and to the last value when the user tries to decrement the 
first value.

The at parameter lets you insert the field at a specific location in the spin box.

Here is a short example (spinbox is a pointer to an IlvSpinBox object):

const char* values[7] = {"Monday", "Tuesday", "Wednesday",
                         "Thursday","Friday","Saturday","Sunday"};
spinbox->addField(new IlvTextField(display,"",IlvRect(0,0,10,10)),
                  values, 7, 0, IlTrue);
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 255



usrgadgets.book  Page 256  Tuesday, July 28, 2009  11:01 AM
Removing Fields

To remove a field from an IlvSpinBox, use IlvSpinBox::removeObject. This member 
function also removes a graphic object added to the spin box as a decoration.

Adding Graphic Objects

You can add any graphic object to a spin box with the member function 
IlvSpinBox::addObject. Graphic objects appearing in a spin box serve as decorations 
and do not have any specific behaviors.

Working with Text Fields

If the field in a spin box is of type IlvTextField, you can retrieve its array of predefined 
strings with IlvSpinBox::getLabels and IlvSpinBox::getLabelsCount.

You can add a predefined string to a text field with IlvSpinBox::addLabel and remove it 
with IlvSpinBox::removeLabel.

You can set or retrieve the contents of a text field with these member functions:

const char* getLabel(IlvTextField*) const;
void setLabel(IlvTextField* field,
              const char* label,
              IlBoolean    redraw = IlFalse);
void setLabel(IlvTextField* field,
              IlUShort index,
              IlBoolean    redraw = IlFalse); 

Working with Numeric Fields

If the field in a spin box is of type IlvNumberField, you can set the increment specified 
with IlvSpinBox::setIncrement and retrieve it with IlvSpinBox::getIncrement.

The increment is the value that is added to or retrieved from the field value when the user 
clicks the spin box buttons.

You can set and retrieve the numeric value of a field with these member functions:

IlDouble getValue(IlvNumberField* field,
                   IlBoolean& error)const;
IlBoolean setValue(IlvNumberField* field,
                    IlDouble value);

Note: The rectangle used for creating the IlvTextField has no meaning here. Also, you 
do not need to add the IlvTextField to a container because now it is managed by the 
spin box.
256 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvStringList

usrgadgets.book  Page 257  Tuesday, July 28, 2009  11:01 AM
Event Handling and Callbacks 

 The class IlvSpinBox defines two callback types, Increment and Decrement, which you 
can access using the following:

static IlvSymbol* IncrementCallbackType();

static IlvSymbol* DecrementCallbackType();

These callbacks are invoked when the user clicks the Increment and Decrement buttons. The 
active field, if any, is incremented/decremented just before the callback is invoked. The Main 
callback is called in both cases. 

See Associating a Callback with a Gadget on page 209.

Using IlvStringList

The class IlvStringList displays a list of gadget items of the class IlvGadgetItem, or 
of a subclass. IlvStringList is a subclass of IlvScrolledGadget and 
IlvListGadgetItemHolder.

String lists can store up to 32767 items and can be composed of labels, bitmaps, or graphic 
objects (class IlvGraphic), and support scrollbars.

Figure 11.21

Figure 11.21  A String List

This section covers the following topics:

◆ Manipulating String List Items

◆ Customizing the Appearance of String List Items

◆ Displaying Tooltips

◆ Localizing String List Items

◆ Handling Events and Callbacks

Manipulating String List Items

Member functions for manipulating string list items are defined in the base class 
IlvListGadgetItemHolder.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 257



usrgadgets.book  Page 258  Tuesday, July 28, 2009  11:01 AM
Customizing the Appearance of String List Items

In addition to the graphic features of gadget items (see the class IlvGadgetItem), the class 
IlvStringList offers several ways to customize the global display of its items:

◆ Defining Item Height

◆ Showing Label and Picture

◆ Setting Label and Picture Position

◆ Setting the Label Alignment

◆ Choosing a Selection Mode

Defining Item Height

By default, items in a string list can have different heights. You can however choose to 
display all the items with the same height using the member function 
IlvStringList::setDefaultItemHeight.

Showing Label and Picture

Pictures in a string list can be shown or hidden with the member function 
IlvStringList::showPicture.

Similarly, labels in a string list can be displayed or hidden with the member function 
IlvStringList::showLabel.

By default, a string list displays both labels and pictures. 

Setting Label and Picture Position

You can change the position of the item labels relative to their pictures with 
IlvStringList::setLabelPosition.

By default, the label is placed to the right of the picture (IlvRight).

Setting the Label Alignment

When the label position is IlvRight (the default value), and when only certain items are 
using a picture and a label, you may want all the labels to be left-aligned, as illustrated in 
Figure 11.21.

Note: You can override this global setting for a specific item with 
IlvGadgetItem::showLabel and IlvGadgetItem::showPicture.

Note: You can override this global setting for a specific item with 
IlvGadgetItem::setLabelPosition.
258 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvStringList

usrgadgets.book  Page 259  Tuesday, July 28, 2009  11:01 AM
By default, item labels are automatically aligned. When an item is modified, the list 
recomputes the new label alignment. Since this operation can be time-consuming, it is 
possible to disable the automatic alignment of labels using the member function 
IlvStringList::autoLabelAlignment.

You may also want to disable the automatic label alignment mode because you know the size 
of all your pictures. In this case, call IlvStringList::setLabelOffset.

For example, the following call will ensure that each label item will be displayed with a left 
margin of 30 pixels:

slist->setLabelOffset(30);

Choosing a Selection Mode

When a string list item is selected, it is highlighted. The IlvStringList class provides two 
different modes for displaying selected items: 

◆ Full selection mode When this mode (the default) is set, the selection extends on the 
whole width of the string list.

◆ Partial selection mode When this mode is set, the selection extends to the item labels 
only.

These two modes are illustrated in the figure below:

Figure 11.22

Figure 11.22  Full Selection Mode (Left) and Partial Selection Mode (Right)

You can switch from one mode to the other using IlvStringList::useFullSelection.

Displaying Tooltips

String lists can display tooltips when the mouse pointer is over partially visible items, 
provided that tooltips have been enabled with the member function 
IlvStringList::useToolTips.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 259



usrgadgets.book  Page 260  Tuesday, July 28, 2009  11:01 AM
Figure 11.23

Figure 11.23  Tooltip Displayed 

Localizing String List Items

String list labels can be localized.

See Localizing a Gadget on page 210.

Handling Events and Callbacks 

This section covers the following topics:

◆ Selection Modes

◆ Selecting and Double-clicking a String List Item

◆ Editing a String List Item

◆ Dragging and Dropping a String List Item

Selection Modes

There are two selection modes for string lists: single (or exclusive) selection and multiple 
selection. 

In single selection mode, only one item can be selected at a time. This mode has two 
submodes: 

◆ IlvStringListSingleSelection—You can select only one item at a time. 

◆ IlvStringListSingleBrowseSelection—This mode is similar to the previous one 
except that clicking the selected item cancels the selection.

In multiple selection mode, several items can be selected at the same time. This mode has 
three submodes: 

◆ IlvStringListBrowseSelection—You can select several items at the same time 
either by clicking  them or dragging the mouse. Similarly, you can deselect several items 
by clicking them or by dragging the mouse with the middle button. 

◆ IlvStringListMultipleSelection—Clicking  an item selects it or cancels the 
selection. 

Note: Tooltips work only if the partial selection mode is set. See Choosing a Selection 
Mode on page 259.
260 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvText

usrgadgets.book  Page 261  Tuesday, July 28, 2009  11:01 AM
◆ IlvStringListExtendedSelection—You can extend the selection using the Shift 
or the Control key. 

To modify the selection mode in effect, use the member function 
IlvStringList::setExclusive. To change the submode, use 
IlvStringList::setSelectionMode. In multiple selection mode, you can set a limit to 
the number of items that can be selected with the member function setSelectionLimit.

Selecting and Double-clicking a String List Item

When the user double-clicks on a string list item, the Main callback is invoked. When the 
user selects an item or cancels the selection, the Select callback is called. To set this 
callback, use the member function IlvStringList::setSelectCallback.

See Associating a Callback with a Gadget on page 209.

To control selecting and double-clicking items in a list, you can redefine the following 
member functions in subclasses: IlvStringList::select (for selecting an item), 
IlvStringList::unSelect (for cancelling the selection), or IlvStringList::doIt 
(for double-clicking on an item).

If you want to change the selection by coding, you can use 
IlvStringList::setSelected. 

Editing a String List Item

Items in a string list can be edited. See Finding Gadget Items on page 283.

Dragging and Dropping a String List Item

The IlvStringList class provides an easy-to-use drag-and-drop mechanism. See 
Dragging and Dropping Gadget Items on page 285.

Using IlvText

The class IlvText defines a multiline text editor. Since IlvText is a subclass of 
IlvScrolledGadget, the text editor has scrollbars.

Figure 11.24

Figure 11.24  A Multiline Text Editor
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 261



usrgadgets.book  Page 262  Tuesday, July 28, 2009  11:01 AM
The class IlvText provides a large number of member functions for setting or retrieving 
text, and for switching between the edit and read-only modes.  

For details about handling scrollbars, see the base class IlvScrolledGadget. 

This section covers the following topics:

◆ Setting and Retrieving Text

◆ Event Handling

Setting and Retrieving Text

You can specify the content of an IlvText object with the virtual member function 
IlvText::setText and retrieve it with IlvText::getText.

You can also set the text of a specific line with IlvText::setLine and retrieve it with 
IlvText::getLine.

You can add a line or remove a line with IlvText::addLine and 
IlvText::removeLine.

The class IlvText has many other helpful methods to set or retrieve several lines. 

Event Handling 

This section covers the following topics:

◆ The check Method

◆ Keyboard Shortcuts

The check Method

Each time the user types a regular ASCII character in a text gadget, the virtual member 
function IlvText::check is called. Its default implementation removes the selected text 
and adds the character that the user enters at the current cursor location.

Keyboard Shortcuts

The following table lists the keyboard shortcuts that can be used with text fields:

Key Behavior

Home or Ctrl+A Moves the cursor to the beginning of the line.

Meta < Moves the cursor to the beginning of the text.

Meta > Moves the cursor to the end of the text.

End or Ctrl+E Moves the cursor to the end of the line.
262 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvTextField

usrgadgets.book  Page 263  Tuesday, July 28, 2009  11:01 AM
Using IlvTextField

The class IlvTextField defines a one-line text editor that is used to edit a short character 
string.

Left arrow key or Ctrl+B Moves the cursor left one character.

Right arrow key or Ctrl+F Moves the cursor right one character.

Up key or Ctrl+P Moves the cursor up one line.

Down key or Ctrl+N Moves the cursor down one line.

Page Up Moves the cursor one page up.

Page Down Moves the cursor one page down.

Ctrl+K Removes the text after the cursor.

Del or Ctrl+D Removes the character after the cursor.

Back Space or Ctrl+H Removes the character before the cursor.

Ctrl+X Cuts the selected text to the clipboard.

Ctrl+C Copies the selected text to the clipboard.

Ctrl+V Pastes text from the clipboard.

Ctrl+Insert (Windows®) Copies the selected text to the clipboard.

Shift+Insert (Windows) Pastes text from the clipboard.

Ctrl+Left, Ctrl+Right Moves the cursor one word backward or forward.

Shift+Left, Shift+Right
Shift+Up, Shift+Down

Extends the selection one character up, down, left or right.

Ctrl+Shift+Left, 
Ctrl+Shift+Right

Extends the selection one word to the left or to the right.

Shift+Home, Shift+End Extends the selection to the beginning or end of the line.

Ctrl+Shift+Home
Ctrl+Shift+End

Extends the selection to the beginning or end of the text.

Key Behavior
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 263



usrgadgets.book  Page 264  Tuesday, July 28, 2009  11:01 AM
Figure 11.25

Figure 11.25  A Text Field

This section covers the following topics:

◆ Aligning Text

◆ Setting and Retrieving Text

◆ Localizing a Text Field

◆ Limiting the Number of Characters

◆ Event Handling and Callbacks

Aligning Text

The text of an IlvTextField can be left-aligned (the default), right-aligned, or centered. 
To change the text alignment, use IlvTextField::setAlignment.

Setting and Retrieving Text

Use the member functions IlvTextField::setLabel and IlvTextField::getLabel 
to set and retrieve text. The class IlvTextField also contains a set of useful methods for 
setting or retrieving formatted text such as integer or float values: 

◆ getIntValue() retrieves an integer value.

◆ getFloatValue() retrieves a float value.

◆ setValue(IlvInt) sets an integer value.

◆ setValue(IlvFloat,const char* format) sets a float value.

Subclasses of IlvTextField edit an integer, a float, a date, and a password. 

See Using IlvDateField on page 236, Using IlvNumberField on page 246.

Localizing a Text Field

Text fields in read-only mode can be localized. 

See Localizing a Gadget on page 210.

Limiting the Number of Characters

You can limit the number of characters that can be edited in a text field with 
IlvTextField::setMaxChar. When its parameter is set to -1, you can type as many 
characters as you want. This member function limits the number of characters that you can 
264 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvTextField

usrgadgets.book  Page 265  Tuesday, July 28, 2009  11:01 AM
type in a text field, but not the number of characters you can specify with 
IlvTextField::setLabel. See Setting and Retrieving Text on page 264.

Event Handling and Callbacks

This section covers the following topics:

◆ The Validate Method and the Main Callback

◆ The Check Method

◆ The labelChanged Method

The Validate Method and the Main Callback

When the user presses the Enter key in a text field, the IlvTextField::validate 
member function is called. This virtual method invokes the Main callback of the text field 
and moves the focus to the next gadget in the focus chain. 

Setting the Main callback for a text field provides an easy way to validate it. You can set a 
Focus Out callback to validate the text field instead of the Main callback. In this case, the 
field is validated when it loses the focus.

See Associating a Callback with a Gadget on page 209 and Focus Management on page 203.

The Check Method

Each time the user types a regular ASCII character in a text field, the virtual 
IlvTextField::check member function is called. Its default implementation removes the 
selected text and adds the characters that the user enters at the current cursor location.

This method checks the maximum number of characters allowed (see Limiting the Number 
of Characters on page 264). As a consequence, when you redefine it, be sure to add a test 
(similar to the one shown below) to allow this mechanism to work.

The labelChanged Method

When the user modifies the content of a text field, the member function 
IlvTextField::labelChanged is called. Its default implementation invokes the Change 
callback. 

To set this callback, use IlvTextField::setChangeCallback.

See Associating a Callback with a Gadget on page 209.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 265



usrgadgets.book  Page 266  Tuesday, July 28, 2009  11:01 AM
Keyboard Shortcuts

The following table lists the keyboard shortcuts that can be used with text fields:

Using IlvToggle

The class IlvToggle defines toggle and radio buttons. Toggle and radio buttons are made 
up of a label and a marker that shows a state. State markers can be represented as a rectangle 
or a diamond. The class IlvToggle has a subclass, IlvColoredToggle, that implements 
a toggle button whose marker can have a color.

Key Behavior

Home or Ctrl+A Moves the cursor to the beginning of the text.

End or Ctrl+E Moves the cursor to the end of the text.

Left arrow key or Ctrl+B Moves cursor left one character.

Right arrow key or Ctrl+F Moves cursor right one character.

Ctrl+K Removes the text after the cursor.

Ctrl+U Removes the text before the cursor.

Del or Ctrl+D Removes the character after the cursor.

Back Space or Ctrl+H Removes the character before the cursor.

Ctrl+X Cuts the selected text to the clipboard.

Ctrl+C Copies the selected text to the clipboard.

Ctrl+V Pastes text from the clipboard.

Ctrl+Insert (Windows) Copies the selected text to the clipboard.

Shift+Insert (Windows) Pastes text from the clipboard.

Ctrl+Left, Ctrl+Right Moves the cursor one word backward or forward.

Shift+Left, Shift+Right Extends the selection one character to the left or to the 
right.

Ctrl+Shift+Left, 
Ctrl+Shift+Right

Extends the selection one word to the left or to the right.

Shift+Home, Shift+End Extends the selection to the beginning or the end of the 
text.
266 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvToggle

usrgadgets.book  Page 267  Tuesday, July 28, 2009  11:01 AM
Figure 11.26

Figure 11.26  A Toggle Button

This section covers the following topics:

◆ Changing the State and Color of a Toggle Button

◆ Toggle and Radio Button Styles

◆ Displaying a Bitmap on a Toggle Button

◆ Aligning and Positioning the Label

◆ Changing the Size of the State Marker

◆ Localizing a Toggle Button

◆ Associating a Mnemonic with a Toggle Button

◆ Handling Events and Callbacks

◆ Grouping Toggle Buttons in a Selector

Changing the State and Color of a Toggle Button

The appearance of the state marker changes according to the state of the related toggle or 
radio button (on or off). To set the state of a toggle button, use the member function 
IlvToggle::setState and IlvToggle::getState to retrieve it.  

To set the color of a colored toggle marker, use IlvColoredToggle::setCheckColor 
and IlvColoredToggle::getCheckColor to retrieve it.

Toggle and Radio Button Styles

The class IlvToggle can have two different shapes: a normal toggle button or a radio 
button.

Figure 11.27      

Figure 11.27  Various Styles of Toggle Buttons

To set the style for a toggle button as radio, use IlvToggle::setRadio.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 267



usrgadgets.book  Page 268  Tuesday, July 28, 2009  11:01 AM
Displaying a Bitmap on a Toggle Button

IlvToggle instances always display a label, even when they are explicitly requested to 
display a bitmap. If the toggle button is set to draw a bitmap and if its label is not empty, the 
IlvToggle instance is displayed with the label on top of the bitmap.

To display a bitmap on a toggle button, use the member function IlvToggle::setBitmap.

Aligning and Positioning the Label

The label of a toggle button can be placed to the right or to the left of the state marker. The 
label can also be left, right, or center-aligned in the space:

Figure 11.28   

Figure 11.28  Text Alignment in a Toggle Label

To set the position of the label, use the member function IlvToggle::setPosition.

To set the alignment of the label, use the method IlvToggle::setTextAlignment.

Changing the Size of the State Marker

You can change the size of the state marker (that is, the height and width of its bounding 
box) with the member function IlvToggle::setCheckSize.

Giving a state marker size of 0, sets the state marker size to a default size.

Localizing a Toggle Button

The label of toggle buttons can be localized.

See Localizing a Gadget on page 210.

Associating a Mnemonic with a Toggle Button

A toggle button can be associated with a mnemonic. 

See Associating a Mnemonic with a Gadget Label on page 211.

Note: When the Windows® look and feel is selected, changing the marker size has no 
effect.
268 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvToggle

usrgadgets.book  Page 269  Tuesday, July 28, 2009  11:01 AM
Handling Events and Callbacks

When the user clicks on a toggle button, presses its associated mnemonic letter, or presses 
the Enter key or the space bar, the state of the button changes and the member function 
activate is called. This virtual member function calls the Main callback of the toggle 
button. 

See Associating a Callback with a Gadget on page 209.

Grouping Toggle Buttons in a Selector

To create radio boxes, you can group toggle buttons into an IlvSelector. The 
IlvSelector class is a special kind of graphic set (IlvGraphicSet) that handles a unique 
selection among the objects it holds.

Two useful methods of the selector let you know what is selected:

 IlvShort whichSelected() const;
 IlvGraphic* whichGraphicSelected() const;

Source Program
#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/toggle.h>
#include <ilviews/graphics/selector.h>

static void QuitCallback(IlvView* top, IlvAny)
{
    IlvDisplay* display = top->getDisplay();
    delete top;
    delete display;
    IlvExit(0);
}

int main(int argc , char* argv[])
{
    IlvDisplay* display = new IlvDisplay("Demo", "", argc, argv);
    if (!display || display->isBad()) {
        IlvFatalError("Couldn’t open display");
        delete display;
        IlvExit(-1);
    }
    
    IlvGadgetContainer* container =  
       new IlvGadgetContainer(display,
                              "Demo",
                              "Demo",
                              IlvRect(0, 0, 100, 150));

Note: As the class IlvSelector is not a subclass of IlvGadget you must explicitly set 
the “Selector” interactor to have an interactive selector.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 269



usrgadgets.book  Page 270  Tuesday, July 28, 2009  11:01 AM
    container->setDestroyCallback(QuitCallback);
    
    IlvSelector* selector = new IlvSelector;
    IlvToggle* toggle;
    toggle = new IlvToggle(display, IlvPoint(10, 10), "Toggle 1");
    selector->addObject(toggle);
    toggle = new IlvToggle(display, IlvPoint(10, 50), "Toggle 2");
    selector->addObject(toggle);
    toggle = new IlvToggle(display, IlvPoint(10, 90), "Toggle 3");
    selector->addObject(toggle);
    
    container->addObject("Selector", selector);

    container->show();
    
    IlvMainLoop();
    return 0;
}

Creating the Selector

The selector is created by invoking its constructor:

IlvSelector* selector = new IlvSelector;

Then set the interactor:

selector->setInteractor(IlvInteractor::Get("Selector"));

Adding Toggle Buttons

Each toggle button is created and added to the selector with the addObject method:

IlvToggle* toggle;
toggle = new IlvToggle(display, IlvPoint(10, 10), "Toggle 1");
selector->addObject(toggle);
toggle = new IlvToggle(display, IlvPoint(10, 50), "Toggle 2");
selector->addObject(toggle);
toggle = new IlvToggle(display, IlvPoint(10, 90), "Toggle 3");
selector->addObject(toggle);

Adding the Selector to its Container
container->addObject("Selector", selector);

Using IlvTreeGadget

An IlvTreeGadget is a gadget that displays a hierarchical list of items. Each item is an 
instance of the IlvTreeGadgetItem class, a subclass of IlvGadgetItem. The user may 
expand or collapse an item to display or hide its subitems. 
270 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvTreeGadget

usrgadgets.book  Page 271  Tuesday, July 28, 2009  11:01 AM
Figure 11.29 

Figure 11.29  A Tree Gadget

The IlvTreeGadget class handles scrollbars. For details about handling scrollbars, see the 
base class IlvScrolledGadget.

This section covers the following topics:

◆ Changing the Tree Hierarchy

◆ Navigating Through a Tree Hierarchy

◆ Changing the Characteristic of an Item

◆ Expanding and Collapsing a Gadget Item

◆ Changing the Look of the Tree Gadget Hierarchy

Changing the Tree Hierarchy

The tree gadget has an invisible root item which you can retrieve using the 
IlvTreeGadgetItemHolder::getRoot member function.

Creating a Hierarchy

To create a hierarchical list of items, you first have to create the items that will be part of that 
list. Here are a few examples:

item1 = new IlvTreeGadgetItem("item1");   // Creates an item with a label.
item2 = new IlvTreeGadgetItem("item1",    // Creates an item with a label
                              bitmap);    // and a bitmap.
item3 = new IlvTreeGadgetItem(bitmap);    // Creates an item with a bitmap.
item4 = new IlvTreeGadgetItem(graphic);   // Creates an item with a graphic.

Once tree gadget items are created, you can arrange them as a tree structure in the following 
ways:

◆ Create tree gadget items as explained above and add them one by one to the tree gadget 
using the member function IlvTreeGadget::addItem.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 271



usrgadgets.book  Page 272  Tuesday, July 28, 2009  11:01 AM
◆ Create a complete new hierarchy and add it to the tree gadget in a single operation. This 
solution is far more efficient. To do so, create tree gadget items as explained above and 
add them as children using IlvTreeGadgetItem::insertChild. Then add the root 
item with IlvTreeGadget::addItem:

IlvTreeGadgetItem* item = new IlvTreeGadgetItem("New Item");
item->insertChild(new IlvTreeGadgetItem("Leaf 1"));
item->insertChild(new IlvTreeGadgetItem("Leaf2"));
tree->addItem(0 /* tree->getRoot() */, item);

Removing Tree Gadget Items

When you remove an item from a tree gadget, all its children are also removed from the tree.

To remove an item without destroying it, use 
IlvTreeGadgetItemHolder::detachItem. To remove all the items at once, call 
IlvTreeGadget::removeAllItems.

Moving Tree Gadget Items

You can move an item and all its children from its current parent item to a new parent item 
with IlvTreeGadgetItemHolder::moveItem. 

Navigating Through a Tree Hierarchy

Once you have created a tree hierarchy, you can navigate in the tree using the member 
functions IlvTreeGadgetItem::getParent, 
IlvTreeGadgetItem::getFirstChild, IlvTreeGadgetItem::getNextSibling, 
IlvTreeGadgetItem::getPrevSibling.

Changing the Characteristic of an Item

To change the visible characteristic of an IlvTreeGadgetItem, such as its label and 
bitmap, see the base class IlvGadgetItem.

You can specify whether the number of children of an item is known with 
IlvTreeGadgetItem::setUnknownChildCount. In this case, the tree gadget allows you 
to expand the item with the Expand button. This lets you have an Expand callback which is 
invoked even if the item does not have any subitems. You can then add items in the expand 
callback. 

Expanding and Collapsing a Gadget Item

You can expand or collapse a gadget item either by clicking its Expand button or by double-
clicking it. Expanding an item shows all its subitems; collapsing an item hides all its 
subitems. You can also perform the same operations using the following member functions 
IlvTreeGadget::shrinkItem and IlvTreeGadget::expandItem.
272 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvTreeGadget

usrgadgets.book  Page 273  Tuesday, July 28, 2009  11:01 AM
Changing the Look of the Tree Gadget Hierarchy

The way in which the IlvTreeGadget hierarchy is displayed can be customized to meet 
application requirements. To do so, use the following IlvTreeGadget member functions.

The lines that link items to their parents can be displayed or hidden with the 
IlvTreeGadget::showLines member function.

Lines can be drawn to connect the root item to its children using the 
IlvTreeGadget::setLinesAtRoot member function.

A line can be drawn to connect (or disconnect) the children of the root item using the 
IlvTreeGadget::linkRoots member function.

The buttons for expanding/collapsing may be set as visible or invisible using the 
IlvTreeGadget::showButtons member function.

You can define the indentation between an item and its parent using the 
IlvTreeGadget::setIndent member function.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 273



usrgadgets.book  Page 274  Tuesday, July 28, 2009  11:01 AM
Label and Picture Visibility

You can change the visibility of all the pictures in a tree gadget by calling this method:

void showPicture(IlBoolean value = IlTrue,  
                 IlBoolean redraw = IlTrue);

In the same way, you can change the visibility of all the labels in a tree gadget by calling this 
method:

void showLabel(IlBoolean value = IlTrue,
               IlBoolean redraw = IlTrue);

By default, the tree gadget displays both labels and pictures.

Label and Picture Position

You may want to change the position of an item label relative to its picture. To do so, use the 
method:

void setLabelPosition(IlvPosition position,
                      IlBoolean redraw = IlTrue);

By default, the label is placed to the right of the picture (IlvRight).  

Event Handling and Callbacks

The tree gadget has several predefined callbacks. Callbacks are always related to a particular 
item. To retrieve the item associated with the callback in your code, use the member function 
IlvTreeGadget::getCallbackItem.

Selection Modes

The tree gadget has two different selection modes:

Note: You can override these global settings for a specific item through the API of the 
IlvGadgetItem class. For details, see the methods IlvGadgetItem::showLabel and 
IlvGadgetItem::showPicture.

Note: You can override these global settings for a specific item through the API of the 
IlvGadgetItem class. For details, see the IlvGadgetItem::setLabelPosition 
method.
274 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvTreeGadget

usrgadgets.book  Page 275  Tuesday, July 28, 2009  11:01 AM
◆ Single selection mode You can select only one item at a time. 

◆ Extended selection mode You can select several items and expand the selection.

The selection modes are defined by the following type:

enum IlvTreeSelectionMode
  {
   IlvTreeExtendedSelection = 0,
   IlvTreeSingleSelection   = 1
  }

To modify the selection mode, use the following IlvTreeGadget member functions:

IlvTreeSelectionMode getSelectionMode() const;

void setSelectionMode(IlvTreeSelectionMode mode);

The Select Callback

When the user selects an item or cancels the selection, the Select callback is invoked. Its type 
can be retrieved with the member function IlvTreeGadget::SelectCallbackType. See 
Associating a Callback with a Gadget on page 209.

The Expand Callback

When the user expands an item, the Expand callback is invoked. Its type can be retrieved 
with the member function IlvTreeGadget::ExpandCallbackType. See Associating a 
Callback with a Gadget on page 209.

The Shrink Callback

When the user collapses an item, the Shrink callback is invoked. Its type can be retrieved 
with the member function IlvTreeGadget::ShrinkCallbackType. See Associating a 
Callback with a Gadget on page 209.

The Activate Callback

When the user double-clicks an item that has no subitems, the Activate callback is invoked. 
Its type can be retrieved with IlvGadgetItemHolder::ActivateCallbackType. See 
Associating a Callback with a Gadget on page 209.

Editing Tree Gadget Items

You can edit tree gadget items. See Editing Gadget Items on page 284.

Dragging and Dropping an Item

The IlvTreeGadget class provides an easy-to-use, drag-and-drop mechanism. See 
Dragging and Dropping Gadget Items on page 285.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 275



usrgadgets.book  Page 276  Tuesday, July 28, 2009  11:01 AM
276 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 277  Tuesday, July 28, 2009  11:01 AM
12

Gadget Items

Most of the gadgets are composed of items, which are defined by the IlvGadgetItem 
class.

This chapter introduces you to gadget items and explains how to use them. It covers the 
following topics:

◆ Introducing Gadget Items

◆ Using Gadget Items

◆ Gadget Item Holders

◆ List Gadget Item Holders

Introducing Gadget Items

Gadget items are objects of the class IlvGadgetItem. Gadget items are gadget elements 
that can be represented by a label, a picture, or both. They can be dragged and dropped and 
be edited interactively. They can also display a tooltip and be localized. See Localizing a 
Gadget on page 210.

A gadget item does not implement behavior. Behavior is controlled by the gadget that 
manages it. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 277



usrgadgets.book  Page 278  Tuesday, July 28, 2009  11:01 AM
Gadget items are handled by the following gadget classes and their derived classes:

◆ IlvAbstractMenu 

◆ IlvMatrix 

◆ IlvMessageLabel 

◆ IlvStringList 

◆ IlvTreeGadget 

◆ IlvNotebook 

Figure 12.1 shows some of the gadgets that are composed of items. From left to right, you 
can see a button, a tree gadget, a string list, a pop-up menu, a tool bar, and an option menu.

Figure 12.1

Figure 12.1  Gadgets Composed of Gadget Items

Using Gadget Items

This section covers the following topics:

◆ Creating a Gadget Item

◆ Setting a Label

◆ Setting a Picture

◆ Specifying the Layout of a Gadget Item

◆ Nonsensitive Gadget Items

◆ Dynamic Types

◆ Using Palettes with Gadget Items
278 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using Gadget Items

usrgadgets.book  Page 279  Tuesday, July 28, 2009  11:01 AM
◆ Drawing a Gadget Item

Creating a Gadget Item

A gadget item can be represented by a label, a picture, or both. The picture can be a bitmap 
or  a graphic object. See Setting a Label on page 279 and Setting a Picture on page 280.

You define the way a gadget item appears when you create it. Here are a few examples: 

item1 = new IlvGadgetItem("Item1"); // Creates an item with only a label.
item2 = new IlvGadgetItem("Item2",  // Creates an item with a label
                          bitmap);  // and a bitmap.
item3 = new IlvGadgetItem(bitmap);  // Creates an item with a bitmap.
item4 = new IlvGadgetItem("Item 4", // Creates an item with a label
                          graphic); // and an IlvGraphic.
item5 = new IlvGadgetItem(graphic); // Creates an item with an IlvGraphic.

Setting a Label

A gadget item can be represented by a label. To associate a label with a gadget item, use the 
member function IlvGadgetItem::setLabel.

When a gadget item label extends over several lines, you can use 
IlvGadgetItem::setLabelAlignment to specify whether the text should be aligned 
right, left, or be centered. 

Figure 12.2 

Figure 12.2  Message Labels with Various Alignments

Using the member function IlvGadgetItem::setLabelOrientation, you can also 
specify whether a gadget item label should be drawnhorizontally (the default) or vertically. 

Figure 12.3

Figure 12.3  Message Labels Displayed Vertically
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 279



usrgadgets.book  Page 280  Tuesday, July 28, 2009  11:01 AM
Setting a Picture

A gadget item can include either an IlvBitmap or an IlvGraphic object. The following 
sections explain how gadget items handle these objects. 

IlvBitmap Used as a Picture

A gadget item manages an array of bitmaps. Each bitmap in the array can be accessed by 
means of an index or a symbol name. You can retrieve the bitmap displayed by a gadget item 
from its bitmap array using IlvGadgetItem::getCurrentBitmap. This member 
function determines the displayed bitmap from the state of the gadget item. For example, if 
the gadget item is selected, the bitmap corresponding to the “selected” state is returned. 

Below are the symbol names associated with the various gadget item states a bitmap can 
represent:

IlvGadgetItem::BitmapSymbol();             Sensitive state
IlvGadgetItem::SelectedBitmapSymbol();     Selected state
IlvGadgetItem::InsensitiveBitmapSymbol();  Nonsensitive state
IlvGadgetItem::HighlightedBitmapSymbol();  Highlighted state

To know how many bitmaps are associated with a gadget item, call the method 
IlvGadgetItem::getBitmapCount.

To set the bitmap that will be displayed by the gadget item when it is selected, call:

item->setBitmap(IlvGadgetItem::SelectedBitmapSymbol(), bitmap);

To retrieve the bitmap that is displayed when the gadget item is set to nonsensitive, call:

IlvBitmap* bitmap = item->getBitmap(IlvGadgetItem::InsensitiveBitmapSymbol());

IlvGraphic Used as a Picture

A gadget item can be represented by an IlvGraphic object. Use the member function 
IlvGadgetItem::setGraphic to associate a gadget item with a graphic object. 

Specifying the Layout of a Gadget Item

You can define the position of a gadget item label relative to its picture using the member 
function IlvGadgetItem::setLabelPosition. For example, to place the label under 
the picture, call:

item->setLabelPosition(IlvBottom);

You can also fix the spacing between the label and the picture with 
IlvGadgetItem::setSpacing. For example, to set the spacing to 10 pixels, call:

item->setSpacing(10);
280 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using Gadget Items

usrgadgets.book  Page 281  Tuesday, July 28, 2009  11:01 AM
A gadget item can be any size. Its dimensions are automatically computed from its label, its 
picture, the label position, and the spacing between the label and the picture. To retrieve the 
size of a gadget item, use the following methods:

IlvDim width = item->getWidth();
IlvDim height = item->getHeight();

To know the position of a label and a picture inside a gadget item, use the following member 
functions:

item->labelRect(rect, itembbox);// Puts the label bounding box of the item
                                // in rect when the item is drawn in itembbox.
item->pictureRect(rect, itembbox); // Puts the picture bounding box of the item
                                  //in rect when the item is drawn in itembbox.

You can show or hide either the label or the picture that makes up a gadget item. To hide a 
gadget item label, use IlvGadgetItem::showLabel with its parameter set to IlFalse. 
If the gadget item contains no picture, it becomes invisible.

To make the picture visible,  use the IlvGadgetItem::showPicture method with its 
parameter set to IlTrue.

Nonsensitive Gadget Items

 By default, gadget items are sensitive, which means that they respond to user events. Calling 
the member function IlvGadgetItem::setSensitive with IlFalse as parameter lets 
you set a gadget item to nonsensitive. In this case, the gadget item appears dimmed on the 
screen and cannot be selected. 

If only a sensitive bitmap is provided, the insensitive bitmap is computed automatically. If a 
nonsensitive bitmap is provided, this bitmap is used. 

Dynamic Types

Gadget items are dynamically typed and can therefore be subclassed, saved, and read easily.

The following code lets you access class information:

IlvClassInfo* classInfo = item->getClassInfo();

To check the type of an item, use:

if (item->isSubtypeOf(IlvTreeGadgetItem::ClassInfo())) {
// The item is an IlvTreeGadgetItem.
}

Note: The width and height of a gadget item should not exceed 65535 pixels. The member 
functions getWidth and getHeight return 0 if the item is not managed by a gadget.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 281



usrgadgets.book  Page 282  Tuesday, July 28, 2009  11:01 AM
Using Palettes with Gadget Items

Several palettes are used to draw a gadget item:

◆ The palette returned by IlvGadgetItem::getOpaquePalette is used when the item 
is opaque.

◆ The palette returned by IlvGadgetItem::getSelectionPalette is used to draw the 
background of a selected gadget item.

◆ The palette returned by IlvGadgetItem::getSelectionTextPalette is used to 
draw the text of a selected gadget item.

◆ The palette returned by IlvGadgetItem::getHighlightTextPalette is used to 
draw the text of a highlighted gadget item.

◆ The palette returned by IlvGadgetItem::getInsensitivePalette is used to draw 
nonsensitive gadget items.

◆ The palette returned by IlvGadgetItem::getNormalTextPalette  is used to draw 
the text of a gadget item that is not selected. 

By default, a gadget item uses the palettes of its holder. You can, however, modify the 
palettes associated with a gadget item, thus making it possible to have gadget items with 
different palettes inside the same gadget.

To change the palettes assigned to a given gadget item, use the following member functions: 

◆ IlvGadgetItem::setNormalTextPalette  

◆ IlvGadgetItem::setSelectionTextPalette 

◆ IlvGadgetItem::setHighlightTextPalette 

◆ IlvGadgetItem::setOpaquePalette 

Drawing a Gadget Item

To draw a gadget item, the virtual member function IlvGadgetItem::draw is called. You 
can override it in a subclass to customize the way a gadget item is drawn. 

Gadget Item Holders

Gadget item holders are objects of the class IlvGadgetItemHolder, an abstract class for 
managing gadget items. A gadget item cannot compute its size and be drawn if it is not 
linked to a gadget item holder. Usually, you do not have to link a gadget item with its holder 
since this operation is carried out by the managing gadget automatically.
282 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadget Item Holders

usrgadgets.book  Page 283  Tuesday, July 28, 2009  11:01 AM
Gadget items are described in Using Gadget Items on page 278.

This section covers the following topics:

◆ Gadget Item Features

◆ Finding Gadget Items

◆ Redrawing Gadget Items

◆ Creating Gadget Items

◆ Editing Gadget Items

◆ Dragging and Dropping Gadget Items

Gadget Item Features

When global operations have to be performed on gadget items, it is a lot more convenient to 
call the corresponding functions on the holder than on the gadget items themselves. For 
example, it might be tedious to call:

item->showPicture(IlFalse);

for each item in a list whose picture you want to hide. 

For this reason the gadget item inherits from certain features of its holder. If a given feature 
is not redefined at the gadget item level, the gadget item will get it from its holder. This is the 
case for the editable state, label and picture visibility, label position, and label orientation.

For example, if you want to hide all the pictures of a toolbar (IlvToolBar is a subclass of 
IlvGadgetItemHolder), just call:

toolbar->showPicture(IlFalse);

Then if you want to override this choice for the 4th item in the tool bar and show its picture, 
call:

toolbar->getItem(3)->showPicture(IlTrue);

Finding Gadget Items

The member function IlvGadgetItemHolder::getItemByName lets you find an item 
from its name. This method is particularly useful when searching for an item that is part of a 
tree structure (IlvAbstractMenu or IlvTreeGadget).

Redrawing Gadget Items

When you change the graphical representation of a gadget item using one of the 
IlvGadgetItem member functions, the gadget item is automatically redrawn.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 283



usrgadgets.book  Page 284  Tuesday, July 28, 2009  11:01 AM
In the following example, calling setLabel redraws the area of the list that was modified:

IlvStringList* list = ...
list->getItem(0)->setLabel("First Item");

If you want to apply several graphical representation changes at the same time, you can use 
the redraw mechanism of the gadget item holder, as shown below:

IlvStringList* list = ...
list->initReDrawItems();
list->getItem(0)->setLabel("First Item");
list->getItem(1)->setLabel("Second Item");
list->reDrawItems();

The redraw operation is executed only when the IlvGadgetItemHolder::reDrawItems 
method is called.

Creating Gadget Items

The IlvGadgetItemHolder class contains a method for creating an item from a specified 
label, bitmap, or IlvGraphic object:

virtual IlvGadgetItem* createItem(const char* label,
                                  IlvGraphic* g = 0,
                                  IlvBitmap* bitmap = 0,
                                  IlvBitmap* sbitmap = 0,
                                  IlBoolean copy = IlTrue)const;

This method creates an IlvGadgetItem object using the label, graphic, or bitmap passed as 
a parameter. It can be overridden in subclasses of IlvGadgetItemHolder to return a 
subclass of IlvGadgetItem. This is the case for the tree gadget, where createItem has 
been redefined to return an instance of IlvTreeGadgetItem.

Editing Gadget Items

The IlvGadgetItemHolder class supports gadget item editing for the following gadgets 
classes: IlvMatrix, IlvStringList, and IlvTreeGadget.

Enabling Editing

To make a gadget item editable, you must call the member function 
IlvGadgetItem::setEditable with IlTrue as its parameter. You can also enable 
editing at the level of the managing gadget with the either IlvMatrix::allowEdit, 
IlvStringList::setEditable, or IlvTreeGadget::setEditable depending on 
which class the gadget item belongs to.

For example, the following code allows editing for all the gadget items in the string list 
except the second item (specified by the index number 1). 

slist->setEditable(IlTrue);
slist->getItem(1)->setEditable(IlFalse);
284 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Gadget Item Holders

usrgadgets.book  Page 285  Tuesday, July 28, 2009  11:01 AM
Editing a Gadget Item

Once editing has been enabled, you can edit a gadget item interactively either by clicking it 
or by pressing the F2 key after it has been selected. You can also edit an item by code using 
the member function IlvGadgetItem::edit.

Controlling Editing

When an item is being edited, two callbacks are invoked:

◆ Start Edit Item is called at the beginning of the editing process. To set a Start Edit Item 
callback, use the symbol returned by the member function 
IlvGadgetItemHolder::StartEditItemCallbackType.

You can cancel the operation by setting the item to noneditable inside this callback.  

◆ End Edit Item is called at the end of the editing process. To set a End Edit Item callback, 
use the symbol returned by the member function 
IlvGadgetItemHolder::EndEditItemCallbackType.

You can cancel the editing of an item by pressing the Escape key. In this case, the End 
Edit Item callback is not invoked.

See “Callbacks” in  Graphic Objects“.

Dragging and Dropping Gadget Items

The IlvGadgetItemHolder class implements the drag-and-drop functionality. Only 
instances of IlvMatrix, IlvStringList, and IlvTreeGadget support the drag-and-
drop feature for gadget items.

Enabling Drag-and-Drop

To enable the drag-and-drop functionality for gadget items, you must call one of the 
following member functions with IlTrue as parameter: IlvMatrix::allowDragDrop, 
IlvStringList::allowDragDrop, or IlvTreeGadget::allowDragDrop.

Controlling Drag-and-Drop

When the drag-and-drop functionality is enabled, you can drag a gadget item from its 
current location and drop it anywhere. The following callbacks are invoked:

◆ Start Drag Item is called at the beginning of a drag-and-drop event. To set this callback, 
use the symbol returned by 
IlvGadgetItemHolder::StartDragItemCallbackType. 

Note: You can also enable editing from the Start Edit callback. See Controlling Editing on 
page 285.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 285



usrgadgets.book  Page 286  Tuesday, July 28, 2009  11:01 AM
You can cancel the operation by calling the member function 
IlvGadgetItemHolder::setDraggedItem  with 0 as parameter from this callback.

◆ Drag Item is called each time the mouse is moved. To set this callback, use the symbol 
returned by IlvGadgetItemHolder::DragItemCallbackType.

◆ End Drag Item is called when a dragged item is dropped anywhere in the workspace.
To set this callback, use the symbol returned by 
IlvGadgetItemHolder::EndDragItemCallbackType.

During a drag-and-drop operation, you can retrieve the dragged item using 
IlvGadgetItemHolder::getDraggedItem. You can also change the ghost image of the 
item that is being dragged. By default, the ghost image is the dragged item drawn in XOR 
mode. To use a ghost image of your own, call 
IlvGadgetItemHolder::setDraggedImage from the Start Drag Item or the Drag Item 
callback.

List Gadget Item Holders

List gadget item holders are specific types of gadget item holders for managing lists of 
gadget items. The class  IlvListGadgetItemHolder is the base class of all the gadgets 
that handle gadget item lists, such as string lists and menus. 

For information on gadget item holders, see Gadget Item Holders on page 282.

This section covers the following topics:

◆ Modifying a List

◆ Accessing Items

◆ Sorting a List

Modifying a List

All the member functions that modify a list redraw the modified area automatically. If you 
want to make several changes to a list without redrawing the area every time a modification 
is made, you can use the redraw mechanism of the IlvGadgetItemHolder class. 

For details, see Redrawing Gadget Items on page 283. 

Adding an Item to a List

Several member functions for adding items to a list are available. The most important one 
the IlvListGadgetItemHolder::insertItem. This member function inserts an item 
inside a list at the specified position. Other methods, such as addLabel and insertLabel, 
call the insertItem method after they have created the item using the 
286 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



List Gadget Item Holders

usrgadgets.book  Page 287  Tuesday, July 28, 2009  11:01 AM
IlvGadgetItemHolder::createItem method. For details, see Creating Gadget Items 
on page 284.

For example:

IlvStringList* list = ....
list->insertLabel("Label 1");

is equivalent to:

IlvStringList* list = ....
IlvGadgetItem* item = list->createItem("Label 1");
list->insertItem(item);

Changing All the Items in a List

You may want to change all the items in a list at once. To do this, use the 
IlvListGadgetItemHolder::setItems method. Using this method is more efficient 
than adding items one by one.

Here is an example of how to use the method IlvListGadgetItemHolder::setItems:

IlvUShort count = 3;
IlvGadgetItem** items = new IlvGadgetItem*[count];
items[0] = new IlvGadgetItem("item0");
items[1] = new IlvGadgetItem("item1");
items[2] = new IlvGadgetItem("item2");
IlvStringList* list = ...
list->setItems(items, count);
delete [] items;

Note that the items are not copied and that the items array is not used by the holder, and 
therefore needs to be deleted.

Other member functions, such as the setLabels methods, can be used to change a whole 
list. All these functions call the member function 
IlvListGadgetItemHolder::setItems. 

Removing an Item From a List

To remove an item from a list, use the IlvListGadgetItemHolder::removeItem 
member function.

Removing all Items

To remove all items from a list, use the IlvListGadgetItemHolder::empty member 
function.

Accessing Items

To know the number of items managed by a list gadget item holder, use the 
IlvListGadgetItemHolder::getCardinal member function.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 287



usrgadgets.book  Page 288  Tuesday, July 28, 2009  11:01 AM
To retrieve an item using its position in the list, use the 
IlvListGadgetItemHolder::getItem member function.

To find the position of an item in its holder, use the 
IlvListGadgetItemHolder::getIndex member function.

You can also find an item knowing its label using the 
IlvListGadgetItemHolder::getPosition member function.

Sorting a List

You can sort a list using the member function IlvListGadgetItemHolder::sort, which 
takes a comparison function as a parameter. If you do not provide your own comparison 
function, the virtual member function IlvListGadgetItemHolder::compareItems is 
used. This method simply uses the strcmp function to compare two strings and returns the 
result of the comparison.

If you want to use another function, you can either specify it in the call to sort or redefine 
the compareItems member function in your subclass of IlvListGadgetItemHolder.

The following is an example of a list compare function that sorts items in descending order:

int MyCompareFunction(const char* string1, 
                      const char* string2,
                      IlvAny, 
                      IlvAny)
{
   return -strcmp(string1, string2);
}

288 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 289  Tuesday, July 28, 2009  11:01 AM
13

Menus, Menu Bars, and Toolbars

The IBM® ILOG® Views Gadgets library provides classes for creating menus and toolbars 
and for handling menu items.

This chapter covers the following topics:

◆ Introducing Menus, Menu Bars, and Toolbars

◆ Menus and Menu Items

◆ Pop-up Menus

◆ Menu Bars and Toolbars

Introducing Menus, Menu Bars, and Toolbars

Menus provide the user with a set of commands. When the user selects a menu or toolbar 
entry, a specific action is performed immediately or a dialog box is displayed in which the 
user is required to supply additional information before the action can be carried out. Menus 
can be attached to menu bars or toolbars or can be stand-alone. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 289



usrgadgets.book  Page 290  Tuesday, July 28, 2009  11:01 AM
Figure 13.1      

Figure 13.1  Menus

Menus and Menu Items

This section introduces the classes for defining menus and menu items. It covers the 
following topics:

◆ Using IlvAbstractMenu

◆ Using IlvMenuItem

Using IlvAbstractMenu

The class IlvAbstractMenu, a subclass of IlvGadget, defines a common interface for 
menu bars, toolbars, and pop-up menus. IlvAbstractMenu also inherits from the class 
IlvListGadgetItemHolder, which handles lists of gadget items. IlvAbstractMenu 
handles a list of IlvMenuItem objects, a subclass of IlvGadgetItem.

Manipulating Menu Items

Member functions for manipulating menu items are defined in the class 
IlvListGadgetItemHolder.

Callbacks

When the user highlights a menu item, the Highlight callback is invoked. This callback 
allows actions to take place according to the user selection. For example, the Highlight 
callback can be used to display a small help message when the user highlights an item in a 
pop-up menu.

You can set a Highlight callback with the symbol returned by the member function 
IlvAbstractMenu::HighlightCBSymbol. 

Here is an example of Highlight callback that simply writes the index of the highlighted 
item:

static void
290 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Menus and Menu Items

usrgadgets.book  Page 291  Tuesday, July 28, 2009  11:01 AM
Highlight(IlvGraphic* g, IlvAny any)
{
   // Highlighted item position.
   IlvShort pos = *(IlvShort*)any;
   IlvAbstractMenu* menu = (IlvAbstractMenu*)g;
   if (pos != -1)
     IlvPrint("Item %d highlighted", pos);
   else
     IlvPrint("No item highlighted");
  }

Handling Events

The class IlvAbstractMenu includes the following virtual member functions that you can 
redefine in subclasses:

◆ IlvAbstractMenu::isSelectable specifies whether a menu item can be selected.

◆ IlvAbstractMenu::selectNext and IlvAbstractMenu::selectPrevious 
return the next or previous selectable item when the user moves in the menu using the 
arrow keys. 

◆ IlvAbstractMenu::select and IlvAbstractMenu::unSelect are called when 
the specified item is selected or deselected.

Using IlvMenuItem

Menu bars, toolbars, and pop-up menus are composed of several entries, called menu items. 
Menus items are implemented by the IlvMenuItem class, a subclass of IlvGadgetItem. 
They can display a label, a bitmap, or any IlvGraphic object. See Chapter 12, Gadget 
Items.

Creating Menu Items

The following code sample creates three menu items: one with a label, one with a bitmap, 
and one with an IlvGraphic object.

item1 = new IlvMenutItem("item1"); // Creates an item with a label.
item2 = new IlvMenuItem(bitmap); // Creates an item with a bitmap.
item3 = new IlvMenuItem(graphic); // Creates an item with a graphic.

A menu item can also be used as a separator. A separator is a line that divides a group of 
commands represented by menu items in a menu.

item4 = new IlvMenuItem();         // Creates a separator.

Note: Once it has been cast to IlvShort, the value of the any parameter is the position 
of the highlighted menu item, or -1 if no item is highlighted. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 291



usrgadgets.book  Page 292  Tuesday, July 28, 2009  11:01 AM
You can check whether an item is a separator or not using the IlvMenuItem::getType 
member function, as follows:

if (item->getType() == IlvSeparatorItem) {
...
}

Attaching a Submenu to a Menu Item

Any menu item that is not a separator can display a submenu. To attach a submenu to a menu 
item, use the member function IlvMenuItem::setMenu. When the menu item belongs to 
a pop-up menu, a small arrow next to it indicates that it provides access to a submenu. 

Figure 13.2    

Figure 13.2  New Menu Item with a Submenu

Associating a Callback with a Menu Item

When the user selects a menu item, its associated callback is invoked to perform an action. 
Each menu item can have a specific callback.

To attach a callback to a menu item, use one of the following member functions:

◆ item->setCallback(myCallback);

where myCallback is a function that might be described like this:

   static void
   myCallback(IlvGraphic* g, IlvAny data)
   {
   ....
   }

The g parameter is the holder of the item that triggers the callback, that is, an instance of 
a subclass of IlvAbstractMenu. The data parameter is the client data of the menu 
item which you can install with the member function 
IlvGadgetItem::setClientData.

Of course, it is useless to set a callback to a menu item separator or to a menu item that 
has a submenu, as these callbacks will never be called.

◆ item->setCallbackName("myCallback");

In this case, the callback name "myCallback" must be registered with the container that 
holds the menu.
292 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Pop-up Menus

usrgadgets.book  Page 293  Tuesday, July 28, 2009  11:01 AM
If a menu item does not have a callback, the Main callback associated with the menu, if any, 
is invoked. This allows you to perform the same action for each item of the menu. See 
Associating a Callback with a Gadget on page 209.

Associating Mnemonics with Menu Items

You can associate a mnemonic letter with a menu item. Pressing the modifier key (Alt on 
PCs, and Meta on UNIX) and the mnemonic letter associated with a menu or toolbar item 
displays the attached pop-up menu. When a menu is open, pressing the mnemonic letter 
selects the corresponding command in that menu, that is, triggers the Menu Item callback. 

See  Associating a Mnemonic with a Gadget Label on page 211.

Associating Accelerators with Menu Items

A pop-up menu item can be associated with an accelerator. An accelerator is a combination 
of a letter key with a modifier key. When the user presses the key combination, the Menu 
Item callback is directly accessed without the corresponding menu being opened.

An accelerator is composed of two parts: a key combination and the accelerator itself. The 
key combination appears beside its associated menu item. 

For example, if you want to assign the key combination Ctrl+A to a menu item, use the 
following code:

item->setAcceleratorText("Ctrl+A");
item->setAcceleratorModifiers(0);
item->setAcceleratorKey(IlvCtrlChar('A'));

Pop-up Menus

A pop-up menu consists of a list of menu items laid out vertically. Pop-up menus are 
implemented with the class IlvPopupMenu, a subclass of IlvAbstractMenu. See Using 
IlvAbstractMenu on page 290 and Using IlvMenuItem on page 291.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 293



usrgadgets.book  Page 294  Tuesday, July 28, 2009  11:01 AM
Figure 13.3 

Figure 13.3  A Pop-up Menu

This section covers the following topics:

◆ Aligning Item Labels in a Pop-up Menu

◆ Using Tear-Off Menus

◆ Using the Open Menu Callback

◆ Using Checked Menu Items

◆ Using Stand-alone Menus

◆ Using Tooltips in a Pop-Up Menu

Aligning Item Labels in a Pop-up Menu

By default, the labels in a pop-up menu are automatically aligned as illustrated by the 
leftmost popup-menu in Figure 13.4. However, you can specify your own label offset with 
the member function IlvPopupMenu::setLabelOffset. 

The middle image represents a pop-up menu for which the default alignment mode has been 
deactivated and no specific label offset has been defined. The rightmost image shows a pop-
up menu aligned with a label offset of 40 pixels. 

Figure 13.4     

Figure 13.4  Aligning Menu Items Labels
294 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Pop-up Menus

usrgadgets.book  Page 295  Tuesday, July 28, 2009  11:01 AM
Using Tear-Off Menus

A pop-up menu can be torn off, which means that it can be detached from the menu bar and 
placed into a floating window. A tear-off menu is represented by a dashed line across its top 
border. 

Figure 13.5     

Figure 13.5  A Tear-Off Menu

You can tear off a pop-up menu by selecting its first item. The first item of a tear-off menu 
must be of the type IlvTearOffItem. To set a menu item as a tear-off item, use the 
IlvMenuItem::setTearOff member function. 

Using the Open Menu Callback

Each time the user opens a pop-up menu, the Open Menu callback is invoked. This callback 
is particularly useful when you want items in the menu to change according to the state of 
the application, for example from “Save (Not Needed)” to “Save (Needed)” when there is 
something to save. The easiest way to achieve this is to set an Open Menu callback that 
verifies the state of the application and changes the item label accordingly.

You can set an Open Menu callback with the member function 
IlvPopupMenu::OpenMenuCallbackSymbol. See Associating a Callback with a Gadget 
on page 209.

Using Checked Menu Items

 Menu items in pop-up menus can have a small check mark appear beside them (a ✔ for the  
Microsoft® Windows® style or a small button for Motif®). Check marks are generally used 
with menu items that represent “on/off” options. 

Figure 13.6 

Figure 13.6  A Checked Menu Item

The best place to set a check mark for a menu item is the Open Menu callback. That way the 
check mark is always correct when the menu is opened. See Using the Open Menu Callback 
on page 295. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 295



usrgadgets.book  Page 296  Tuesday, July 28, 2009  11:01 AM
The check mark does not automatically disappear when you select a checked item, you must 
uncheck the item when necessary. To set a check mark for a menu item, use the member 
function IlvMenuItem::setChecked. Use IlvMenuItem::isChecked to know 
whether a menu item has a check mark.

Using Stand-alone Menus

Pop-up menus can be used either as submenus or as stand-alone menus. Most stand-alone 
menus are used as contextual menus, which appear when the user clicks in the workspace 
(generally with the right mouse button). 

Figure 13.7

Figure 13.7  A Contextual Menu

To use a pop-up menu as a stand-alone menu, use the IlvPopupMenu::get member 
function.

When the user chooses an item from a contextual menu, the member function 
IlvPopupMenu::doIt is called.

Using Tooltips in a Pop-Up Menu

The menu items in a pop-up menu can be associated with a tooltip. A tooltip is short 
explanatory text that is displayed when the user places the mouse over its associated menu 
item. 

Note: A contextual menu cannot be a submenu.
296 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Menu Bars and Toolbars

usrgadgets.book  Page 297  Tuesday, July 28, 2009  11:01 AM
To set a tooltip for a menu item, use IlvMenuItem::setToolTip. To disable tooltips, call 
IlvPopupMenu::useToolTips with its parameter set to IlFalse.

Menu Bars and Toolbars

In IBM® ILOG® Views Gadgets, menu bars and toolbars are implemented by the classes 
IlvMenuBar and IlvToolBar respectively. Both these classes derive from 
IlvAbstractBar, a subclass of IlvAbstractMenu.

This section covers the following topics:

◆ Using IlvAbstractBar

◆ Using IlvMenuBar and IlvToolBar

Using IlvAbstractBar

IlvAbstractBar is an abstract class for managing the size and position of menu bar or 
toolbar items. See Using IlvAbstractMenu on page 290 and Using IlvMenuItem on page 291.

This section covers these topics:

◆ Setting the Bar Orientation

◆ Constraining the Bar Geometry

◆ Notifying the Bar About Geometry Changes

◆ Setting the Default Item Size

◆ Aligning Items Flush-right

◆ Using Docking Features

Setting the Bar Orientation

You can specify the orientation of the bar with the member function 
IlvAbstractBar::setOrientation and retrieve it with 
IlvAbstractBar::getOrientation.

The bar can be vertical, in which case menu items are arranged from top to bottom, or it can 
be horizontal, in which case items are arranged from left to right.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 297



usrgadgets.book  Page 298  Tuesday, July 28, 2009  11:01 AM
Figure 13.8

Figure 13.8  Vertical and Horizontal Toolbars

Constraining the Bar Geometry

You can constrain the bar geometry so that all its items are visible whatever its size with the 
member function IlvAbstractBar::setConstraintMode. When this member function 
is set to IlTrue, the bar is automatically resized to accommodate all its items. Items can be 
extended to several lines if necessary. To know whether the constraint mode is on, call 
IlvAbstractBar::useConstraintMode.

Figure 13.9

Figure 13.9  Constrained (Top) and Nonconstrained Toolbars (Bottom)

Notifying the Bar About Geometry Changes

When the constraint mode is on, the virtual member function 
IlvAbstractBar::geometryChanged is called if:

◆ Modifying the height of a vertical bar causes its width to change.

◆ Modifying the width of a horizontal bar causes its height to change. 

Setting the Default Item Size

You can set a default size for all the items in a bar with the member function 
IlvAbstractBar::setDefaultItemSize and retrieve it with 
IlvAbstractBar::getDefaultItemSize. You can specify the spacing between two 
items in a bar with IlvAbstractBar::setSpacing and retrieve it with 
IlvAbstractBar::getSpacing.
298 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Menu Bars and Toolbars

usrgadgets.book  Page 299  Tuesday, July 28, 2009  11:01 AM
Aligning Items Flush-right

You can align the last item in a bar with its right border with the member function 
IlvAbstractBar::setFlushingRight. Help menus, for example, are flush-right most 
of the time.

Figure 13.10 

Figure 13.10  Help Menu Aligned Flush-right

Using Docking Features

You can dock and undock abstract bar objects. See Using Docking Bars on page 338.

Using IlvMenuBar and IlvToolBar

The classes IlvMenuBar and IlvToolBar define menu bars and toolbars.

Figure 13.11 

Figure 13.11  A Menu Bar

Figure 13.12

Figure 13.12  A Toolbar

These classes are very similar. The only difference is that IlvToolBar provides interactive 
features that the IlvMenuBar does not support, such as tooltips and gadgets.

Managing Gadgets in a Toolbar

You can use gadgets as toolbar items using the member function 
IlvGadgetItem::setGraphic. These gadgets are active, which means that they react to 
user events.

You can add a gadget to a toolbar with the member function 
IlvListGadgetItemHolder::insertGraphic. 

Figure 13.13 shows a toolbar with a combo box.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 299



usrgadgets.book  Page 300  Tuesday, July 28, 2009  11:01 AM
Figure 13.13

Figure 13.13  A Toolbar with a Gadget

When the user clicks a gadget in a toolbar, the gadget is given the focus and all keyboard 
events are directly sent to it. See Focus Management on page 203.

You can force the focus to be given to a specific item with IlvToolBar::setFocusItem 
and retrieve the gadget that has the focus with IlvToolBar::getFocusItem. 

Using Tooltips in a Toolbar

Menu items in a toolbar can be associated with a tooltip. A tooltip is short explanatory text 
that is displayed when the user places the mouse over its associated menu item. 

To set a tooltip for a menu item, use IlvMenuItem::setToolTip. To disable tooltips, call 
IlvToolBar::useToolTips with its parameter set to IlFalse.

Figure 13.14

Figure 13.14  Tooltip Displayed
300 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 301  Tuesday, July 28, 2009  11:01 AM
14

Matrices

The IBM® ILOG® Views Gadgets library provides classes for creating matrices. 

This chapter covers the following topics:

◆ Introducing Matrices

◆ Using IlvAbstractMatrix

◆ Using IlvMatrix

◆ Using IlvSheet

◆ Using IlvHierarchicalSheet 

Introducing Matrices

A matrix is a rectangular area made up of rows and columns that form a grid. The 
intersection of a row and a column forms a cell. A matrix can contain various matrix items, 
such as labels, numbers, graphic objects, gadgets, or gadget items. A matrix can have 
scrollbars. 

The IBM® ILOG® Views Gadgets classes that implement matrices are 
IlvAbstractMatrix, IlvMatrix, IlvSheet, and IlvHierarchicalSheet.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 301



usrgadgets.book  Page 302  Tuesday, July 28, 2009  11:01 AM
Figure 14.1

Figure 14.1  A Matrix

Using IlvAbstractMatrix

The class IlvAbstractMatrix is an abstract class for drawing matrices. Several of its 
member functions are virtual and must be redefined in subclasses. This class allows you to 
specify whether items should extend over several rows or columns, and also how many fixed 
rows and columns a matrix should contain. It also manages scrolling.

This section covers the following topics:

◆ Subclassing IlvAbstractMatrix

◆ Drawing Items Over Multiple Cells

◆ Setting Fixed Rows and Columns

◆ Handling Events

Subclassing IlvAbstractMatrix

The class IlvAbstractMatrix does not contain any values. It provides a set of pure 
virtual member functions that must be implemented in subclasses:

◆ IlvAbstractMatrix::rows and IlvAbstractMatrix::columns must return the 
number of rows and columns in the matrix.

◆ IlvAbstractMatrix::rowSameHeight and 
IlvAbstractMatrix::columnSameWidth must return IlTrue if all the rows and 
columns should have the same height and width. 
302 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvAbstractMatrix

usrgadgets.book  Page 303  Tuesday, July 28, 2009  11:01 AM
◆ IlvAbstractMatrix::getRowHeight and 
IlvAbstractMatrix::getColumnWidth must return the height of each row and the 
width of each column. If rowSameHeight returns IlTrue, getRowHeight(0) returns 
the height of the rows and getColumnWidth(0) returns the width of the columns. 

◆ IlvAbstractMatrix::drawItem draws an item in a matrix at the specified location 
defined by a row and a column number. This member function also specifies the 
bounding box of the matrix item and a clip rectangle. 

Drawing Items Over Multiple Cells

You can have items extend to multiple rows and columns. To enable this feature, you must 
set the Boolean member value _allowCellMode to IlTrue in the IlvAbstractMatrix 
constructor. Also, you must redefine IlvAbstractMatrix::cellInfo. This member 
function specifies how many rows and columns the matrix item spans and the position of its 
top-left cell. 

In the following example, the matrix item is defined to start at position (10,10) and to occupy 
five rows and five columns:

if ((colno >= 10) && (colno < 15) &&
       (rowno >= 10) && (rowno < 15))
   {
      startcol = 10;
      startrow = 10;
      nbcol = 5;
      nbrow = 5;
   }
   else
      IlvAbstractMatrix::cellInfo(colno, rowno, 
                                  startcol, startrow,
                                  nbcol, nbrow);

 

When this member function is redefined, only the top-left cell is drawn (see 
IlvAbstractMatrix::drawItem). The rectangle passed to the drawItem member 
function encompasses all the rows and columns that the matrix item covers.

Setting Fixed Rows and Columns

You can specify that a number of rows and columns in a matrix remain fixed. Fixed rows and 
columns are always visible even when the user scrolls the matrix. Only the leftmost columns 
and the topmost rows can be fixed. 

To have fixed rows or columns, use IlvAbstractMatrix::setNbFixedRow and 
IlvAbstractMatrix::setNbFixedColumn.

Note: Items extending over several rows and columns cannot overlap. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 303



usrgadgets.book  Page 304  Tuesday, July 28, 2009  11:01 AM
Handling Events 

The class IlvAbstractMatrix does not define particular behaviors. 

The member function IlvAbstractMatrix::handleEvent simply handles events 
related to scrollbars, if the matrix has scrollbars, and calls 
IlvAbstractMatrix::handleMatrixEvent. 

If you want to implement a specific behavior for a matrix, you must redefine this member 
function in a subclass. 

The following methods can help you write the behavior for your class:

virtual IlBoolean  pointToPosition(const IlvPoint& p,
                                   IlUShort& colno,
                                   IlUShort& rowno,
                                   const IlvTransformer* t = 0) const;

This method returns, in colno and rowno, the location of the item which is under the point 
p when the matrix is displayed using the transformer t. The returned value is IlTrue if 
there is an item at this location, or IlFalse if there is none.

IlBoolean rowBBox(IlUShort rowno,
                   IlvRect& rect,
                   const IlvTransformer* t = 0) const;
IlBoolean columnBBox(IlUShort colno,
                      IlvRect& rect,
                      const IlvTransformer* t = 0) const; 
IlBoolean cellBBox(IlUShort colno,
                    IlUShort rowno,
                    IlvRect& rect,
                    const IlvTransformer* t = 0) const;

The above methods compute in rect the bounding box of a column, a row, or a cell when 
the matrix is drawn with the transformer t.The method returns IlTrue if the item is visible 
(even partially), or IlFalse if it is not. 

To redraw a column, use the IlvAbstractMatrix::invalidateColumn method. To 
redraw a row, use the IlvAbstractMatrix::invalidateRow method.

Using IlvMatrix

A matrix is an instance of the IlvMatrix class, a subclass of IlvAbstractMatrix. A 
matrix is a rectangular grid made up of rows and columns, which can contain many different 
types of objects (labels, graphic objects, other gadgets, and so on). These objects, called 
matrix items, are of the class IlvAbstractMatrixItem.

This section covers the following topics:
304 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMatrix

usrgadgets.book  Page 305  Tuesday, July 28, 2009  11:01 AM
◆ Handling Columns and Rows 

◆ Handling Matrix Items

◆ Handling Events

◆ Using Gadget Items in a Matrix

Handling Columns and Rows

This section introduces the various operations you can perform on rows and columns:

◆ Adding Rows and Columns

◆ Resizing Rows and Columns

◆ Setting the Automatic Fit-to-Size Mode

Adding Rows and Columns

You can specify the number of rows or columns that a matrix will contain in the IlvMatrix 
constructor. 

IlvMatrix(IlvDisplay* display, 
          const IlvRect& rect,
          IlUShort nbcol, 
          IlUShort nbrow,
          IlvDim xgrid = IlvDefaultMatrixWidth,
          IlvDim ygrid = IlvDefaultMatrixWidth,
          IlvDim thickness = IlvDefaultGadgetThickness, 
          IlvPalette* palette = 0);

You can add new columns and rows to a matrix with the IlvMatrix::insertColumn and 
IlvMatrix::insertRow member functions and remove them with 
IlvMatrix::removeColumn or IlvMatrix::removeRow.

You can modify the number of columns and rows in a matrix in one operation using the 
member function IlvMatrix::reinitialize.

Resizing Rows and Columns

The initial width of a column and height of a row are specified by the xgrid and ygrid 
parameters provided to the IlvMatrix constructor. When a matrix is created, its rows and 
columns all have the same dimensions that are indicated by these parameters. You can, 
however, modify the original settings with the IlvMatrix::setXgrid and 
IlvMatrix::setYgrid member functions, which let you set the width of each column and 
the height of each row, respectively. Also, you can change the size of each individual column 
or row with the member functions IlvMatrix::resizeColumn and 

Note: A matrix must have at least one row and one column. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 305



usrgadgets.book  Page 306  Tuesday, July 28, 2009  11:01 AM
IlvMatrix::resizeRow. In this case, the global settings defined for the matrix are no 
longer used, and modifying their values will have no effect on the dimensions of the other 
rows and columns. 

To revert to a matrix whose columns and rows are all of the same size, use 
IlvMatrix::sameHeight and IlvMatrix::sameWidth.

Setting the Automatic Fit-to-Size Mode

You can request that the dimensions of the columns and rows in a matrix be adjusted 
automatically when the matrix is resized with the member function 
IlvMatrix::autoFitToSize. This feature does not apply when a matrix has scrollbars. 
When the “auto fit to size” mode is set, you can specify that only the width of the last 
column or the height of the last row be adjusted when the matrix is resized with 
IlvMatrix::adjustLast.

You can also recompute the size of all the columns and rows so that they fit into the matrix 
bounding box with IlvMatrix::fitToSize. 

Handling Matrix Items

Matrix items are instances of subclasses of the class IlvAbstractMatrixItem. Matrix 
items can be selected and edited. Gadgets used as matrix items are active, meaning that they 
react to user input. 

This section covers the following topics:

◆ Predefined Matrix Item Classes

◆ Creating a New Subclass of Matrix Items

◆ Adding and Removing Matrix Items

◆ Redrawing Matrix items

◆ Aligning Matrix Items

◆ Creating a Relief Matrix Item

◆ Setting Matrix Items Selection

◆ Changing Matrix Items Sensitivity

Predefined Matrix Item Classes

Below is a list of subclasses of IlvAbstractMatrixItem:

◆ IlvLabelMatrixItem defines a matrix item as a label. 

◆ IlvFilledLabelMatrixItem defines a matrix item as a label with a filled 
background.

◆ IlvBitmapMatrixItem defines a matrix item as a bitmap.
306 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMatrix

usrgadgets.book  Page 307  Tuesday, July 28, 2009  11:01 AM
◆ IlvIntMatrixItem defines a matrix item as an integer.

◆ IlvFilledIntMatrixItem defines a matrix item as an integer with a filled 
background.

◆ IlvFloatMatrixItem defines a matrix item as a floating-point value.

◆ IlvFilledFloatMatrixItem defines a matrix item as a floating-point value with a 
filled background.

◆ IlvDoubleMatrixItem defines a matrix item as a double-precision floating-point 
value.

◆ IlvFilledDoubleMatrixItem defines a matrix item as a double-precision floating-
point value with a filled background.

◆ IlvGraphicMatrixItem defines a matrix item as a graphic object.

◆ IlvGadgetMatrixItem defines a matrix item as a gadget. This type of matrix item 
differs from IlvGraphicMatrixItem objects in that it can be active in a matrix.

◆ IlvGadgetItemMatrixItem defines a matrix item as a gadget item.

Creating a New Subclass of Matrix Items

If the predefined subclasses of the IlvAbstractMatrixItem class (see Predefined Matrix 
Item Classes on page 306) do not fit your needs, you can create your own matrix item 
subclass. This section describes how to properly register a new matrix item class. Typically, 
this will enable your matrix item class to be persistent.

The code sample located below is taken from the sample edit. This sample can be found in 
ILVHOME/samples/gadgets/table/src/edit.cpp, where ILVHOME is the root 
directory under which IBM ILOG Views has been installed.

The class described here is a subclass of the IlvFloatMatrixItem class. It overrides the 
IlvFloatMatrixItem::getFormat method to give an access to the display format. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 307



usrgadgets.book  Page 308  Tuesday, July 28, 2009  11:01 AM
However, the important point here is not the class itself, but the registration of the class 
through the use of macros.

The macro DeclareMatrixItemInfo declares the methods and members needed to 
handle class information.

The macro DeclareMatrixItemIOConstructors declares the i/o and copy constructors. 
These constructors are defined in the following way:

The write method is needed because the macro DeclareMatrixItemInfo was used in 
the class declaration. It simply calls the superclass write method, and writes the _format 

class FormattedFloatItem : public IlvFloatMatrixItem
{
public:
   FormattedFloatItem(IlFloat value, const IlString& format)
     : IlvFloatMatrixItem(value),
       _format(format)
   {
   }
   void setFormat(const IlString& format)
   {
       _format = format;
   }
   virtual const char* getFormat() const
   {
       return (const char*)_format;
   }
    DeclareMatrixItemInfo();
    DeclareMatrixItemIOConstructors(FormattedFloatItem);
protected:
    IlString _format;
};

FormattedFloatItem::FormattedFloatItem(const FormattedFloatItem& source)
    : IlvFloatMatrixItem(source),
      _format(source._format)
{
}
FormattedFloatItem::FormattedFloatItem(IlvDisplay* display,
                                       IlvInputFile& is)
  : IlvFloatMatrixItem(display, is),
    _format()
{
    _format.readQuoted(is.getStream());
}

308 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMatrix

usrgadgets.book  Page 309  Tuesday, July 28, 2009  11:01 AM
member into the stream. To create a read-only subclass of IlvAbstractMatrixItem, use 
the macro DeclareMatrixItemInfoRO.

The implementation of the copy and readItem methods are defined using the following 
macro:

IlvPredefinedMatrixItemIOMembers(FormattedFloatItem);

Finally, the class is registered as a subclass of IlvFloatMatrixItem.

IlvRegisterMatrixItemClass(FormattedFloatItem, IlvFloatMatrixItem);

Adding and Removing Matrix Items

You can add an item to a matrix at a specific location with the member function 
IlvMatrix::set and remove it with IlvMatrix::remove. The IlvMatrix::getItem 
member function retrieves an item given its position in the matrix. 

Redrawing Matrix items

After adding or removing an item, or modifying it in any way, you must call 
IlvMatrix::reDrawItem to redraw it. You can also wait until all the modifications are 
made and call IlvGadget::reDraw at the very end to redraw the entire matrix. 

Aligning Matrix Items

A matrix item can be centered within a cell or be aligned with the right or left border of the 
cell. 

Figure 14.2

Figure 14.2  Aligning Items in a Cell

void
FormattedFloatItem::write(IlvOutputFile& os) const
{
    IlvFloatMatrixItem::write(os);
    os.getStream() << " ";
    _format.writeQuoted(os.getStream());
    os.getStream() << " ";
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 309



usrgadgets.book  Page 310  Tuesday, July 28, 2009  11:01 AM
You can change the alignment of a matrix item using the member function 
IlvMatrix::setItemAlignment. You have to redraw the matrix item for the 
modifications to take effect. See the section Redrawing Matrix items on page 309.  

Creating a Relief Matrix Item

You can create a special relief effect for a matrix item. An item in relief has the same 
appearance as a button. When selected, a relief matrix item appears like a clicked button. To 
have a button appear in relief, use IlvMatrix::setItemRelief. You must call the 
redrawItem member function for the modifications to take effect. See Redrawing Matrix 
items on page 309. 

Setting Matrix Items Selection

Matrix items can be selected. A selected matrix item is surrounded by a filled rectangle. 

Figure 14.3

Figure 14.3  Selected and Nonselected Matrix Items

You can select a single matrix item with the member function 
IlvMatrix::setItemSelected and an entire row or column with 
IlvMatrix::setColumnSelected and IlvMatrix::setRowSelected. In single 
selection mode setSelectedItem does not deselect the previously selected item. See 
Selection Modes on page 311. 

Once you have selected an item, you must redraw it. See Redrawing Matrix items on 
page 309.

You can change the way the selection is drawn by overriding the member function 
IlvMatrix::drawSelection in subclasses.

To retrieve the first item selected in a matrix, call IlvMatrix::getFirstSelected.

Note:  IlvGadgetMatrixItem objects and IlvGraphicMatrixItem objects holding 
nonzoomable graphics occupy the full rectangle of the cell and cannot be aligned. For 
information on these classes, see Predefined Matrix Item Classes on page 306.
310 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMatrix

usrgadgets.book  Page 311  Tuesday, July 28, 2009  11:01 AM
Changing Matrix Items Sensitivity

Matrix items can be sensitive or nonsensitive. Nonsensitive matrix items cannot be selected 
nor edited and appear dimmed by default as shown below. You can use the member function 
IlvMatrix::setItemGrayed with IlFalse as the parameter to make them look like 
sensitive items (that is, not grayed). 

Figure 14.4 

Figure 14.4  Sensitive and Nonsensitive Matrix Items

To change the sensitivity of an item, use the member function 
IlvMatrix::setItemSensitive. You must redraw the item for the modifications to take 
effect. See Redrawing Matrix items on page 309.

You can also set a matrix item as read only with IlvMatrix::setItemReadOnly. Read-
only matrix items cannot be edited but can be selected. 

Handling Events

This section describes the standard matrix behavior implemented by the member function 
IlvMatrix::handleMatrixEvent. The following topics are covered:

◆ Selection Modes

◆ Editing a Matrix Item

◆ Item Callback

◆ Activate Callback

◆ Using Gadgets in a Matrix

◆ Modifying handleEventMatrix

Selection Modes

There are two selection modes for matrices: single (or exclusive) selection and multiple 
selection. To set the selection mode, use IlvMatrix::setExclusive with IlTrue as its 

Note: If the matrix item is a graphic object or a gadget, modifying the sensitivity does not 
affect the drawing of the item. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 311



usrgadgets.book  Page 312  Tuesday, July 28, 2009  11:01 AM
parameter if you want to specify the single selection mode or IlFalse to specify the 
multiple selection mode.

In single selection mode, only one item can be selected at a time. This mode has two 
submodes:

◆ Single selection—In this mode, you can select only one item at a time. When the 
selection changes, the previous selected item is deselected.

◆ Single browse—This mode is similar to the previous one except that clicking the selected 
item with the middle mouse button cancels the selection.

In multiple selection mode, several items can be selected at the same time. This mode has 
two submodes: 

◆ Multiple browse—In this mode, you can select several items at the same time either by 
clicking them or dragging the mouse. Similarly, you can deselect several items by 
clicking them or by dragging the mouse with the middle button. 

◆ Extended—In this mode, you can select several items at the same time either by clicking 
them or by dragging the mouse. You can extend the selection by pressing the Shift and 
CTRL keys while selecting items. You can also specify the direction of the extended 
selection by using IlvMatrix::setExtendedSelectionOrientation 

To specify the selection submode, use IlvMatrix::setBrowseMode.

When the user selects a matrix item or cancels the selection, the Main callback of the matrix 
is called. 

Editing a Matrix Item

If editing is allowed for the matrix (see IlvMatrix::allowEdit), you can edit matrix 
items. Nonsensitive or read-only matrix items cannot be edited. When an item is being 
edited, an editor is displayed over it as shown in the illustration below. The base class for 
matrix item editors is the IlvMatrixItemEditor class. It encapsulates an IlvGraphic 
object that will be used to display and edit the matrix item. The default editor class used by 
an IlvMatrix is the IlvDefaultMatrixItemEditor class. It uses an IlvTextField 
object to edit matrix items. You can change this behavior by using the 
IlvMatrixItemEditorFactory class.

Note: You cannot select items that are not sensitive.
312 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvMatrix

usrgadgets.book  Page 313  Tuesday, July 28, 2009  11:01 AM
Figure 14.5

Figure 14.5  Editing a Matrix Item

To edit an item, select it first with the mouse and click it, or press the F2 key to edit the last 
selected item. To validate your modifications, press the Enter key in the text field or click in 
another cell. The virtual member function IlvMatrix::validate is called. Its default 
implementation invokes the callback associated with the item, if any. See “Item Callback” 
below. If there is none, it invokes the secondary callback of the matrix. See Associating a 
Callback with a Gadget on page 209.

To edit an item by code, call IlvMatrix::editItem. 

IlvMatrix::getEditedItem returns the location of the matrix item being edited.

Item Callback

You can attach a callback to each matrix item. When the user validates the editing of an item, 
its associated callback is invoked. This callback is defined by:

typedef void (*IlvMatrixItemCallback)(IlvMatrix* matrix,
                                      IlUShort  column,
                                      IlUShort  row,
                                      IlvAny     arg);

where matrix specifies the matrix that contains the item, column and row the location of 
the item that invoked the callback, and arg an argument passed when installing the callback.

To attach a callback to an item, use IlvMatrix::setItemCallback. 

Activate Callback

When the user double-clicks an item or presses the Enter key, the member function   
IlvMatrix::activateMatrixItem is called. By default, this method invokes the Active 
Item callback. To set this callback, use 
IlvMatrix::ActivateMatrixItemCallbackType. See Associating a Callback with a 
Gadget on page 209.

Note: By default, when the user double-clicks a matrix item, this item is ready for editing. 
In this case, the member function IlvMatrix::activateMatrixItem is not called. If 
you want to override this default behavior, call 
IlvMatrix::allowEditOnDoubleClick with IlFalseIlFalse as the parameter.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 313



usrgadgets.book  Page 314  Tuesday, July 28, 2009  11:01 AM
Using Gadgets in a Matrix

Gadget matrix items do not have the same behavior as other items. They react to events by 
using their handleEvent member function. This means that a gadget inside a matrix 
behaves like a gadget outside a matrix. The matrix defines a specific gadget matrix item that 
can have the keyboard focus. You can specify this item with IlvMatrix::setFocus.

When navigating through the matrix using the arrow keys, you can reach a cell that contains 
a gadget matrix item. You may want to either continue navigating, or send events to the 
gadget matrix item. To continue navigating, use the arrow keys to leave the cell. To send 
events to the gadget matrix item, you can either press a key that the gadget will catch (any 
key except the arrow keys) or press CTRL+Enter. The gadget matrix item will receive all the 
keyboard inputs until it receives another CTRL+Enter, or a key that it does not handle.

Modifying handleEventMatrix

You may need to modify the default behavior of a matrix in a subclass of IlvMatrix by 
redefining the method IlvMatrix::handleMatrixEvent. Some methods can help you as 
those shown below.

This method returns the column and row to which the mouse points:

virtual IlBoolean  pointToPosition(IlvPoint& p,
                                   IlUShort& c,
                                   IlUShort& r,
                                   const IlvTransformer* t =0) const;

This method returns the matrix item to which the mouse points:

virtual IlvAbstractMatrixItem* pointToItem(IlvPoint&  p,
                                           IlUShort& c,
                                           IlUShort& r,
                                           const IlvTransformer* t = 0) const;

Using Gadget Items in a Matrix

A matrix can hold gadget items via the class IlvGadgetItemMatrixItem, a subclass of 
IlvAbstractMatrixItem. Instances of this class encapsulate a gadget item and therefore 
benefit from all its features. See Chapter 12, Gadget Items.

Picture and Label Visibility

You can specify whether all the pictures in a matrix should be displayed by calling the 
method IlvMatrix::showPicture. Likewise, you can use IlvMatrix::showLabel 
define the visibility of all its labels. By default, the matrix displays both labels and pictures.

Note: You can override these global settings for a specific item by using the API of the 
IlvGadgetItem class. For details, see the methods IlvGadgetItem::showLabel and 
IlvGadgetItem::showPicture.
314 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvSheet

usrgadgets.book  Page 315  Tuesday, July 28, 2009  11:01 AM
Label and Picture Position

You may want to change the position of the item labels relative to their pictures. To do so, 
use the method IlvMatrix::setLabelPosition. By default, the label is placed to the 
right of the picture (IlvRight).

Editing Items

You can edit gadget items located in a matrix. See Editing Gadget Items on page 284.

Dragging and Dropping Items

The IlvMatrix class provides an easy-to-use drag-and-drop mechanism. See Dragging and 
Dropping Gadget Items on page 285.

Tooltips

Matrices can display tooltips when the mouse pointer is over partially visible items.

Using IlvSheet

A sheet is a particular type of matrix implemented by the class IlvSheet. See Using 
IlvMatrix on page 304. In a sheet, fixed rows and columns are delimited by a relief line. 

Figure 14.6       

Figure 14.6  A Sheet

IlvSheet has all the behavior of the class IlvMatrix. In addition, it allows the user to 
dynamically resize the columns or rows. This can be done in two ways:

◆ By clicking in the fixed columns or rows on the grid line and dragging to resize the 
column or row.

◆ By double-clicking in the fixed columns or rows on the grid line to give the column or 
row the size of its larger item.

Note: You can override this global setting for a specific item by using the API of the 
IlvGadgetItem class. For details, see the method 
IlvGadgetItem::setLabelPosition.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 315



usrgadgets.book  Page 316  Tuesday, July 28, 2009  11:01 AM
Using IlvHierarchicalSheet

The IlvHierarchicalSheet class is a subclass of IlvSheet that displays a tree structure 
in one of its columns. It can be considered as a special IlvTreeGadget object that handles 
several columns. The tree items are of the type IlvTreeGadgetItem, which means that the 
API used to handle a tree hierarchy is very close to the IlvTreeGadget object. See Using 
IlvTreeGadget on page 270.

Figure 14.7

Figure 14.7  A Hierarchical Sheet

This section covers the following topics:

◆ Changing the Tree Hierarchy

◆ Navigating through a Tree Hierarchy

◆ Changing the Characteristic of a Tree Item

◆ Expanding and Collapsing a Gadget Item

◆ Changing the Look of the Tree Gadget Hierarchy

◆ Event Handling and Callbacks

Changing the Tree Hierarchy

The hierarchical sheet has an invisible root item that can be retrieved using the 
IlvHierarchicalSheet::getRoot member function.

Changing a Hierarchy

When you want to modify the tree hierarchy, you must not use IlvSheet member 
functions, such as set, removeRow, and so on. Instead, use the IlvHierarchicalSheet 
methods described below.

To create a hierarchical list of items, you can do the following:

◆ Create tree gadget items as explained in Creating a Hierarchy on page 271 and add them 
one by one to the hierarchical sheet with IlvHierarchicalSheet::addItem member 
function.
316 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using IlvHierarchicalSheet

usrgadgets.book  Page 317  Tuesday, July 28, 2009  11:01 AM
◆ Create a complete new hierarchy and add it to the tree gadget in a single operation. To do 
so, create tree gadget items as explained above and add them as children using 
IlvTreeGadgetItem::insertChild. This solution is more efficient than the first 
one.

Then you can add the root of your new hierarchy to the tree with 
IlvHierarchicalSheet::addItem as shown below: 

IlvTreeGadgetItem* item = new IlvTreeGadgetItem("New Item");
item->insertChild(new IlvTreeGadgetItem("Leaf 1"));
item->insertChild(new IlvTreeGadgetItem("Leaf2"));
hsheet->addItem(0 /* hsheet->getRoot() */, item);

Removing Items

When you remove an item from the hierarchical sheet, all its children are also removed from 
the tree. Use IlvHierarchicalSheet::removeItem to remove a single item from a tree 
or IlvHierarchicalSheet::removeAllItems to remove all its items at once.

Navigating through a Tree Hierarchy

To move inside a hierarchical tree, use the member functions described in Navigating 
Through a Tree Hierarchy on page 272. You can also use 
IlvHierarchicalTree::getTreeItem and IlvHierarchicalSheet::getItemRow. 

Changing the Characteristic of a Tree Item

See Changing the Characteristic of an Item on page 272.

Expanding and Collapsing a Gadget Item

You can expand or collapse a gadget item by clicking its Expand button. Expanding an item 
shows all its subitems; collapsing an item hides all its subitems. You can also perform the 
same operations using IlvHierarchicalSheet::shrinkItem and 
IlvHierarchicalSheet::expandItem.

When an item becomes invisible because one of its parents has been collapsed, its 
corresponding row in the sheet disappears. Note, however, that it is not deleted. 

Changing the Look of the Tree Gadget Hierarchy

The lines that link items to their parents can be displayed or hidden using the 
IlvHierarchicalSheet::showLines member function.

Note: When you add a new item to the tree gadget, its corresponding row is created 
automatically. Similarly, when you remove an item, its row is deleted. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 317



usrgadgets.book  Page 318  Tuesday, July 28, 2009  11:01 AM
You can define the indentation between an item and its parent using the 
IlvHierarchicalSheet::setIndent member function.

Event Handling and Callbacks

The Expand Callback

When the user expands a tree gadget item, the Expand callback is invoked. The callback type 
can be retrieved with IlvHierarchicalSheet::ExpandCallbackType. See 
Associating a Callback with a Gadget on page 209.

The Shrink Callback

When the user collapses a tree gadget item, the Shrink callback is invoked. The callback type 
can be retrieved with IlvHierarchicalSheet::ShrinkCallbackType. See 
Associating a Callback with a Gadget on page 209.
318 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 319  Tuesday, July 28, 2009  11:01 AM
15

Panes

You can group the various elements that make up a graphical user interface, such as graphic 
panels, tool bars, and menu bars, inside panes of various sizes to create highly intuitive and 
customizable applications. 

This chapter explains what panes are and how to use them in your graphical applications. It 
covers the following topics:

◆ Introducing Panes

◆ Creating Panes

◆ Adding Panes to Paned Containers

◆ Resizing Panes

Introducing Panes

The IBM® ILOG® Views Gadgets library supports panes. A pane is a graphical area that 
displays any kind of drawing, such as IlvGraphic or IlvView objects.

Panes are objects of the class IlvPane that are stored in paned containers of the class 
IlvPanedContainer. A paned container can be either vertical or horizontal. In vertical 
paned containers, panes are arranged from top to bottom, whereas in horizontal paned 
containers they are arranged from left to right. Panes inside a vertical paned container have 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 319



usrgadgets.book  Page 320  Tuesday, July 28, 2009  11:01 AM
all the same width, but their height can vary. Similarly, panes inside a horizontal paned 
container have all the same height, but their width can vary. 

A pane can encapsulate a paned container, allowing you to build complex, nested pane 
structures, as illustrated in the following figure.

Figure 15.1     

Figure 15.1  Horizontal and Vertical Paned Container and Encapsulated Paned Container

The following figure shows an application main window that implements panes:
320 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Introducing Panes

usrgadgets.book  Page 321  Tuesday, July 28, 2009  11:01 AM
Figure 15.2   

Figure 15.2  Application Main Window Made Up of Several Panes
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 321



usrgadgets.book  Page 322  Tuesday, July 28, 2009  11:01 AM
Creating Panes

A pane is an instance of the IlvPane class. Since this class is abstract, you must subclass it 
or use one of its predefined subclasses:

◆ IlvViewPane, which encapsulates any IlvView object.

◆ IlvGraphicPane, which encapsulates any IlvGraphic object.

Most of the time, you do not have to subclass the IlvPane class as its predefined subclasses 
are appropriate for nearly all application needs.

This section discusses the following:

◆ Creating a Graphic Pane

◆ Creating a View Pane

◆ Showing or Hiding a Pane

Creating a Graphic Pane

The following example demonstrates how to create a graphic pane (IlvGraphicPane). 

First we create the IlvGraphic object we want to add to the graphic pane. Here, we 
encapsulate an IlvTreeGadget object.

IlvDisplay* display = ...
IlvTreeGadget* tree = new IlvTreeGadget(display, IlvRect(0, 0, 100, 100));

Then we create a graphic pane:

IlvGraphicPane* graphicPane = new IlvGraphicPane("Tree",tree);

The first argument provided to the constructor is a string representing the name of the pane.

Creating a View Pane

The following example shows how to create a view pane (IlvViewPane). 

First we create the IlvView object we want to add to the view pane:

IlvView* view = new IlvView(parent, IlvRect(0, 0, 100, 100));

Then we create the view pane:

IlvViewPane* viewPane = new IlvViewPane("View", view);
322 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Adding Panes to Paned Containers

usrgadgets.book  Page 323  Tuesday, July 28, 2009  11:01 AM
The first argument provided to the constructor is a string representing the name of the pane.

Showing or Hiding a Pane

You can show or hide a pane using the IlvPane::show and IlvPane::hide member 
functions. A hidden pane does not appear in its paned container. 

Adding Panes to Paned Containers

A paned container is an instance of the IlvPanedContainer class, a subclass of 
IlvGadgetContainer, to which panes must be added. 

This section covers the following topics:

◆ Creating a Paned Container

◆ Modifying the Layout of a Paned Container

◆ Retrieving Panes

◆ Encapsulating a Paned Container in a View Pane

Creating a Paned Container

When creating a paned container, you must specify its direction (horizontal or vertical). In a 
vertical paned container, panes are arranged from top to bottom. In a horizontal pane, they 
are arranged from left to right.

The following code sample creates a vertical paned container as a top view:

IlvPanedContainer* container = new IlvPanedContainer(display, 
                                                     "Paned Container",
                                                     "Paned Container",
                                                      IlvRect(0, 0, 500, 500),
                                                      IlvVertical);

You can retrieve the specified orientation and modify it using the member functions 
IlvPanedContainer::getDirection and IlvPanedContainer::setDirection. 

Note: The view used in the view pane must be a subview. That is why the encapsulated 
view was created with the IlvView constructor that takes a parent view as its first 
argument. 

Note: If you modify the layout of a paned container by adding or removing panes or by 
showing or hiding panes, you must call the IlvPanedContainer::updatePanes 
member function for your changes to become effective.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 323



usrgadgets.book  Page 324  Tuesday, July 28, 2009  11:01 AM
Once you have created a paned container, you can add panes to it with the member function 
IlvPanedContainer::addPane or remove panes from it with 
IlvPanedContainer::removePane.

Modifying the Layout of a Paned Container

If you modify the current layout of a paned container by adding, removing, showing, or 
hiding panes, you must call the IlvPanedContainer::updatePanes member function to 
make your changes effective.

container->addPane(pane1);
container->addPane(pane2);
container->addPane(pane3);
container->updatePanes();

Retrieving Panes

You can use the member function IlvPanedContainer::getCardinal to know the 
number of panes that a given paned container handles.

The IlvPanedContainer::getPane member functions lets you retrieve a pane using its 
index or using its name. 

You can get the index of a specific pane with the IlvPanedContainer::getIndex 
member function.

Encapsulating a Paned Container in a View Pane

Because the class IlvPanedContainer inherits from IlvGadgetContainer, itself a 
subclass of IlvView, you can encapsulate a paned container inside a view pane. 

Encapsulating a paned container in a view pane allows you to build complex nested pane 
structures, as shown in Figure 15.1 on page 320. 

The following code sample encapsulates a horizontal paned container in a view pane.

First we create the main vertical paned container:

IlvPanedContainer* container = new IlvPanedContainer(display,
                                                     "Paned Container",
                                                     "Paned Container",
                                                      IlvRect(0, 0, 500, 500),
                                                      IlvVertical);

Note: Paned containers reference the panes they hold using indexes. However, we 
strongly recommend that you do not reference panes using their indexes, because these 
can change for internal reasons. Instead, use the member function IlvPane::setName 
to identify panes.
324 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Resizing Panes

usrgadgets.book  Page 325  Tuesday, July 28, 2009  11:01 AM
Then we create a horizontal paned container and encapsulate it in a view pane:

IlvPanedContainer* innerContainer = new IlvPanedContainer(container,
                                                        IlvRect(0, 0, 500,200),
                                                        IlvHorizontal);
IlvViewPane* viewPane = new IlvViewPane("ViewPane", innerContainer);

The last step consists of adding the view pane to the main paned container:

container->addPane(viewPane);

Resizing Panes

Panes can be resized. 

This section covers the following topics:

◆ Setting the Resize Mode and the Minimum Size of a Pane

◆ Resizing Panes With Sliders

Setting the Resize Mode and the Minimum Size of a Pane

When you resize a paned container, the panes it holds are resized according to their resizing 
mode. A pane can have one of three resizing modes: 

◆ Fixed—Fixed panes are never resized.

◆ Elastic—Elastic panes are always resized.

◆ Resizable—Resizable panes are resized only if their paned container does not include 
elastic panes. 

To set the resize mode of a pane, use the IlvPane::setResizeMode member function. By 
default, the resize mode of new panes is fixed. 

Note: In our example, we have created innerContainer as a subview of container. 
Although this practice is not mandatory, we strongly recommend that you proceed that 
way when creating your own applications. If you do not specify container as the parent 
of innerContainer, it will be reparented when added to container. 

Note: You can get the view pane that encapsulates a given paned container using the 
IlvPanedContainer::getViewPane member function. If no view pane encapsulates 
the paned container, this member function returns 0.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 325



usrgadgets.book  Page 326  Tuesday, July 28, 2009  11:01 AM
You can also provide a minimum size for a pane. To set a minimum size for a pane, use the 
IlvPane::setMinimumSize  member function. The minimum size of new panes is 1 by 
default.You cannot make a pane smaller than the specified minimum size. 

Resizing Panes With Sliders

A slider pane is an instance of the class IlvSliderPane, a subclass of IlvGraphicPane, 
which you can drag to resize adjacent panes.

Figure 15.3     

Figure 15.3  Slider Pane 

Note: The resize mode and the minimum size of a pane can be defined for both the 
horizontal and vertical directions.
326 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Resizing Panes

usrgadgets.book  Page 327  Tuesday, July 28, 2009  11:01 AM
Using Automatic Slider Creation

By default, a paned container automatically creates slider panes between resizable and 
elastic panes.  

When the paned container creates automatic slider panes, it calls the 
IlvPanedContainer::createSliderPane member function, which you can override to 
create custom slider panes.

If you do not want that slider panes be created automatically, you can call the 
IlvPanedContainer::manageSliders member function with false as its argument. If 
you disable this feature, and if you still want resizable and elastic panes to be resizable using 
a slider, you must create sliders panes by hand and add them to the paned container.

Note: Slider panes are actually created only after you call the member function 
IlvPanedContainer::updatePanes. This is very important as it affects the index 
number originally assigned to the panes. For example, if you create an empty container to 
which you add two resizable panes, their indexes will be 0 and 1, respectively. After 
calling updatePanes, the indexes of the resizable panes will be 0 and 2, the slider pane 
being assigned the index number 1. See Retrieving Panes on page 324.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 327



usrgadgets.book  Page 328  Tuesday, July 28, 2009  11:01 AM
328 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 329  Tuesday, July 28, 2009  11:01 AM
16

Docking Panes and Containers

The IBM® ILOG® Views Gadgets library supports docking panes. 

This section explains what docking panes are and how to use them in your graphical 
applications. Before reading this section, be sure that you are familiar with panes. Panes are 
discussed in detail in Chapter 15, Panes.

This chapter covers the following topics:

◆ Introducing Docking Panes and Dockable Containers

◆ Creating Docking Panes

◆ Controlling Docking Operations

◆ Using Docking Bars

◆ Building a Standard Application With Docking Panes

Samples

See the ViewFile Application tutorial.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 329



usrgadgets.book  Page 330  Tuesday, July 28, 2009  11:01 AM
Introducing Docking Panes and Dockable Containers

A dockable container is a particular type of paned container to which you can dock panes 
and undock them. Docking a pane means adding it to a dockable container at a given 
location interactively. Undocking a pane means removing it from its dockable container to 
put it inside a special top view interactively.

The classes in the IBM® ILOG® Views Gadgets library that implement docking panes are 
IlvDockable and IlvDockableContainer.

In the following illustration, all the panes that make up the graphical interface are docked.

Figure 16.1

Figure 16.1  GUI with Docked Panes

In the following illustration, the main menu bar has been undocked and floats inside a top 
window.
330 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Introducing Docking Panes and Dockable Containers

usrgadgets.book  Page 331  Tuesday, July 28, 2009  11:01 AM
Figure 16.2 

Figure 16.2  Main Menu Bar Undocked

In the following illustration, the main menu bar is docked again to the right side of the GUI 
main window.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 331



usrgadgets.book  Page 332  Tuesday, July 28, 2009  11:01 AM
Figure 16.3 

Figure 16.3  Main Menu Bar Redocked

Creating Docking Panes

Creating a docking pane is very much the same as creating a normal pane as illustrated in the 
following two code samples. Panes are described in Chapter 15, Panes.

Below, the “Tree” pane is added to a paned container with the addPane member function:

IlvPanedContainer* container = new IlvPanedContainer(display, 
                                                     "Paned Container",
                                                     "Paned Container",
                                                      IlvRect(0, 0, 500, 500),
                                                      IlvVertical);
IlvTreeGadget* tree = new IlvTreeGadget(display, IlvRect(0, 0, 100, 100));
IlvGraphicPane* graphicPane = new IlvGraphicPane(“Tree”, tree);
332 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating Docking Panes

usrgadgets.book  Page 333  Tuesday, July 28, 2009  11:01 AM
container->addPane(graphicPane);

Below, the same “Tree” pane is added to a dockable container with the member function 
IlvDockableContainer::addDockingPane, which makes it a dockable pane:

IlvDockableContainer* container = 
                            new IlvDockableContainer(display, 
                                                     "Dockable Container",
                                                     "Dockable Container",
                                                     IlvRect(0, 0, 500, 500),
                                                     IlvVertical);
IlvTreeGadget* tree = new IlvTreeGadget(display, IlvRect(0, 0, 100, 100));
IlvGraphicPane* graphicPane = new IlvGraphicPane(“Tree”, tree);
container->addDockingPane(graphicPane);

In the second code sample, the paned container is of type IlvDockableContainer, a 
subclass of IlvPanedContainer, and panes are added to it with the member function 
IlvDockableContainer::addDockingPane to create docking panes.

Panes added to a dockable container with the addDockingPane member function are 
connected to an instance of the IlvDockable class, which handles docking operations for 
them. For more information on this class, see Controlling Docking Operations on page 337. 

Docking panes are equipped with a handle, which you can click and drag to undock the 
pane. See the following illustration.

Note: If you want to use a subclass of IlvDockable, you should be aware that you have 
to connect it explicitly before calling addDockingPane. See Connecting an Instance of 
the IlvDockable Class to a Pane on page 337.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 333



usrgadgets.book  Page 334  Tuesday, July 28, 2009  11:01 AM
Figure 16.4    

Figure 16.4  Docking Pane Handles

When you drag the pane to move it, a ghost image appears that helps you position it to its 
new location.

Creating Orthogonal Dockable Containers

Orthogonal dockable containers are an advanced feature. Use this feature if you want to 
create docking panes having a nonstandard behavior. For further information, see Using the 
IlvDockableMainWindow Class on page 344 where the IlvDockableMainWindow class 
that implements this feature is described.  

Note: Because the dockable container adds a handle to a docking pane, its index is no 
longer the one specified when calling the member function 
IlvDockableContainer::addDockingPane. The handle is added to the left of the 
pane if the target paned container is horizontal and to the top of the pane if the container 
is vertical. For information about pane indexing, see Using Automatic Slider Creation on 
page 327 and Creating Orthogonal Dockable Containers on page 334. 
334 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating Docking Panes

usrgadgets.book  Page 335  Tuesday, July 28, 2009  11:01 AM
The IlvDockableContainer class provides the member function 
createOrthogonalDockableContainer, which when set to true, modifies the 
behavior of the addDockingPane member function as follows:

◆ Creates an internal dockable container which is orthogonal to the main dockable 
container.

The “create orthogonal dockable container” feature does not apply to this internal 
container. 

◆ Encapsulates the internal dockable container into a view pane.

◆ Adds the view pane to the dockable container.

◆ Adds the docking pane and its handle to the internal dockable container.

If you add a pane to a vertical dockable container when the “create orthogonal dockable 
container” feature is disabled, you obtain the following:

Figure 16.5    

Figure 16.5  Create Orthogonal Dockable Container Feature Disabled 

If the “create orthogonal dockable container” feature is enabled, you obtain the following:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 335



usrgadgets.book  Page 336  Tuesday, July 28, 2009  11:01 AM
Figure 16.6     

Figure 16.6  Create Orthogonal Dockable Container Feature Enabled

This feature makes it possible to dock other panes to the dockable container of Pane C to get 
a pane structure similar to the one shown below:

Figure 16.7   

Figure 16.7  Pane D is Docked into the Dockable Container of Pane C 

When the “create orthogonal dockable container” feature is enabled, the dockable container 
to which the pane is actually added is not the one for which you called the member function 
addDockingPane. Also, the index of the added pane might have changed. Therefore, we 
recommend that you retrieve the pane using its name instead of its index inside its container.
336 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Controlling Docking Operations

usrgadgets.book  Page 337  Tuesday, July 28, 2009  11:01 AM
Controlling Docking Operations

You can manage docking operations relative to a specific pane with the IlvDockable class. 
Each docking pane has an instance of the IlvDockable class connected to it. This instance 
can be automatically created when adding the pane using the member function 
IlvDockableContainer::addDockingPane, or can be specified by the user. 

This section covers the following topic:

◆ Connecting an Instance of the IlvDockable Class to a Pane

◆ Docking and Undocking a Pane

◆ Filtering Docking Operations

Connecting an Instance of the IlvDockable Class to a Pane

To connect an instance of the IlvDockable class to a pane, you first have to create an 
instance of the IlvDockable class or of a subclass like this:

IlvDockable* dockable = new IlvDockable();

Then you can set it to your pane using the static member function 
IlvDockable::SetDockable.

To retrieve the IlvDockable instance connected to a pane, call:

IlvDockable* dockable = IlvDockable::GetDockable(pane);

This member function returns 0 if pane is not a docking pane.

To retrieve the pane connected to an IlvDockable instance, call:

IlvPane* pane = dockable->getPane();

Docking and Undocking a Pane

When a pane is docked, you can undock it using the member function 
IlvDockable::unDock. 

When a pane is undocked, you can dock it using the member function 
IlvDockable::dock. This member function calls 
IlvDockableContainer::addDockingPane to dock the pane.

To know whether a pane is docked, use the IlvDockable::isDocked member function.

Controlling User Interactions

You can dock or undock a docking pane by double-clicking its handle. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 337



usrgadgets.book  Page 338  Tuesday, July 28, 2009  11:01 AM
To prevent a pane from being docked, you can press the Ctrl key while dragging it onto a 
dockable container. 

To cancel a docking operation, press the Escape key. 

Filtering Docking Operations 

Potentially, a docking pane can be attached to any dockable container in your application. 
You can, however, control docking operations and prevent docking panes from being 
attached to a given container. 

When you drag a pane onto a dockable container, the virtual member function 
IlvDockable::acceptDocking is called. If it returns true, the pane can be docked; 
otherwise, the operation is not allowed.

Here is a brief description of what acceptDocking checks:

◆ If the target container is the same as the current paned container, acceptDocking 
returns IlTrue.

◆ The target container is asked whether docking is allowed for the pane with the member 
function IlvDockableContainer::acceptDocking. If the dockable container 
returns IlFalse, docking is not allowed and acceptDocking returns IlFalse. By 
default, the member function acceptDocking returns the dockable state of the 
container. You can change this state with the member function 
IlvDockableContainer::setDockable. 

◆ The docking direction set is compared with the direction of the target container. If both 
directions do not match, docking is not carried out and acceptDocking returns 
IlFalse. You can set the docking direction using the member function 
IlvDockable::setDockingDirection. This function is useful if you want to force a 
pane to always dock horizontally for example. By default, a pane can be docked both to a 
vertical and a horizontal container.

Using Docking Bars

Most GUI applications include docking bars. Their behavior is slightly different from that of 
standard docking panes. 

This section introduces you to docking bars. It covers the following topics:

◆ Using the IlvAbstractBarPane Class

◆ Customizing Docking Bars
338 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Using Docking Bars

usrgadgets.book  Page 339  Tuesday, July 28, 2009  11:01 AM
Using the IlvAbstractBarPane Class

The class IlvAbstractBarPane defines a pane specifically designed for handling toolbars 
and menu bars. This class is a subclass of the IlvGraphicPane class which encapsulates 
an IlvAbstractBar object. It is responsible for managing the bar orientation.

When a docking bar is docked, its direction must change according to its new location.

The following illustrations show the same toolbar oriented horizontally and vertically.

Figure 16.8 

Figure 16.8  Horizontal Toolbar
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 339



usrgadgets.book  Page 340  Tuesday, July 28, 2009  11:01 AM
Figure 16.9

Figure 16.9  Vertical Toolbar

Customizing Docking Bars

The IlvAbstractBarPane class has virtual member functions that you can redefine to 
meet your specific needs:

◆ IlvAbstractBarPane::orientationChanged—Is called each time the orientation 
of the toolbar encapsulated by the pane changes.

◆ IlvAbstractBarPane::geometryChanged—Is called each time the geometry of the 
toolbar encapsulated by the pane changes.  See Notifying the Bar About Geometry 
Changes on page 298.

Note: This class manages its own subclass of IlvDockable and, therefore, must not be 
modified.
340 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building a Standard Application With Docking Panes

usrgadgets.book  Page 341  Tuesday, July 28, 2009  11:01 AM
The following example shows a subclass of the IlvAbstractBarPane class that changes 
the orientation of the labels according to the bar orientation:

class MyMainMenuBarPane
: public IlvAbstractBarPane
{
public:
    MyMainMenuBarPane(const char* name, IlvAbstractBar* bar)
        : IlvAbstractBarPane(name, bar) {}
    virtual void setContainer(IlvPanedContainer* container)
    {
        IlvAbstractBarPane::setContainer(container);
        if (container)
            checkLabelOrientation();
    }
    virtual void orientationChanged()
    {
        checkLabelOrientation();
        IlvAbstractBarPane::orientationChanged();
    }
    void checkLabelOrientation()
    {
        IlvDockable* dockable = IlvDockable::GetDockable(this);
        getBar()->setLabelOrientation(dockable && dockable->isDocked()
                                      ? getBar()->getOrientation()
                                      : IlvHorizontal,
                                      IlFalse,
                                      IlFalse);
    }
};

The checkLabelOrientation member function is called each time the bar orientation 
changes. It sets the orientation of the bar labels to the bar orientation if the pane is docked, or 
to IlvHorizontal if the bar is undocked.

Building a Standard Application With Docking Panes

GUI applications with docking panes all have more or less the same look. 
IBM® ILOG® Views Gadgets provides a class that lets you build standard GUI applications 
with docking panes very easily. 

This section covers the following topics:

◆ Defining a Standard Layout

◆ Using the IlvDockableMainWindow Class

Defining a Standard Layout

As a general rule, standard GUI applications have the following layout: 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 341



usrgadgets.book  Page 342  Tuesday, July 28, 2009  11:01 AM
    

You can see from the illustration that a standard layout is composed of a central area, called 
the main workspace, which is surrounded by several panes on the left and right sides and 
also at the top and bottom. 

Here is an example of a typical GUI application with docking panes:
342 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building a Standard Application With Docking Panes

usrgadgets.book  Page 343  Tuesday, July 28, 2009  11:01 AM
Figure 16.10    

Figure 16.10  Typical GUI Application with Docking Panes

Using the docking pane functionality, you can build a standard GUI application that has the 
following pane structure:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 343



usrgadgets.book  Page 344  Tuesday, July 28, 2009  11:01 AM
      

With this layout, it is possible to add panes anywhere around the main workspace area, as 
shown on Figure 16.10 on page 343.

Using the IlvDockableMainWindow Class

The IlvDockableMainWindow class implements the layout described in Defining a 
Standard Layout on page 341. Using this class, you can specify where a pane should be 
added relative to a specific pane in a very easy way and without knowing exactly how panes 
are organized. Adding a new pane with the member function 
IlvDockableMainWindow::addRelativeDockingPane is as simple as using the 
following sentence to specify where it should go: “I want to put my menu bar on top of the 
main workspace area.” 

Building the whole application interface becomes very simple since what you have to 
provide is the names of the panes instead of their indexes.  

Below is an example of what you can obtain using the member function 
IlvDockableMainWindow::addRelativeDockingPane.

Creating an instance of the IlvDockableMainWindow produces the following pane layout:
344 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building a Standard Application With Docking Panes

usrgadgets.book  Page 345  Tuesday, July 28, 2009  11:01 AM
      

Then, a menu bar is added at the top of the main workspace area, as shown below:

      

Then a docking pane is added to the left of the main workspace area, as shown below:
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 345



usrgadgets.book  Page 346  Tuesday, July 28, 2009  11:01 AM
     

Then a toolbar is added underneath the menu bar, as shown below:

      

Finally a second docking pane is added above the first docking pane, as shown below:
346 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Building a Standard Application With Docking Panes

usrgadgets.book  Page 347  Tuesday, July 28, 2009  11:01 AM
     
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 347



usrgadgets.book  Page 348  Tuesday, July 28, 2009  11:01 AM
348 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 349  Tuesday, July 28, 2009  11:01 AM
17

View Frames

The IBM® ILOG® Views Gadgets library supports view frames. 

This chapter explains what view frames are and how to use them in your graphical 
applications. It covers the following topics:

◆ Introducing View Frames

◆ Creating a Desktop with View Frames

◆ Managing View Frames

◆ Minimizing, Maximizing, and Restoring View Frames

◆ Closing View Frames

◆ Changing the Current View Frame

Introducing View Frames

A view frame is a special container with a title bar that encapsulates a client view. Its title bar 
is composed of an icon, a label, and several buttons. A view frame is displayed inside a 
parent view, called a desktop view. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 349



usrgadgets.book  Page 350  Tuesday, July 28, 2009  11:01 AM
View frames are instances of the class IlvViewFrame. A desktop view is always linked to 
an instance of the class IlvDesktopManager, which manages all the frames inside the 
desktop view.

Figure 17.1       

Figure 17.1  Application Composed of Frames

Creating a Desktop with View Frames

This section explains how to create a desktop containing view frames. It covers the 
following sections:

◆ Creating a Desktop

◆ Creating View Frames

Creating a Desktop

The first step consists of creating the desktop view and the desktop manager:

IlvView* desktopView = new IlvView(...);
IlvDesktopManager* desktop = new IlvDesktopManager(desktopView); 
350 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Managing View Frames

usrgadgets.book  Page 351  Tuesday, July 28, 2009  11:01 AM
You can retrieve the IlvDesktopManager instance that is linked to a view using the static 
method  IlvDesktopManager::Get: 

IlvDesktopManager* desktop = IlvDesktopManager:Get(view);

To know the desktop view associated with a desktop manager, use the method   
IlvDesktopManager::getView:

IlvView* view = desktop->getView();

Note that when the desktop view is deleted, the desktop manager is notified, but is not 
deleted.

Creating View Frames

Once the desktop manager is created, you can build the view frames as child windows of the 
desktop view:

IlvViewFrame* vframe = new IlvViewFrame(desktopView,
                                        "Frame 0",
                                        IlvRect(0, 0, 100, 100));

The new view frame is automatically managed by the instance of IlvDesktopManager 
that is linked to its parent view (that is, the desktop view). Note that if no desktop manager 
has been attached to the parent view of a view frame, a default desktop manager is created 
using the parent view of the view frame as desktop view. This default desktop manager is 
internally managed, so you will not have to delete it.

To know the desktop manager of a view frame, use:

IlvDesktopManager* desktop = vframe->getDesktopManager();

You can also retrieve the list of frames managed by a desktop manager using:

IlvUInt count;
IlvViewFrame* const* frames = desktop->getFrames(count);

Managing View Frames

This section covers the following topics:

◆ Creating a Client View

◆ Changing the Title Bar

Note: The desktop view can be an instance of any subclass of IlvView.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 351



usrgadgets.book  Page 352  Tuesday, July 28, 2009  11:01 AM
◆ Changing the View Frame Menu

Creating a Client View

When created, a view frame has no client view. To add a client view to a view frame, you 
must create a child window inside it:

IlvGadgetContainer* clientView = 
            new IlvGadgetContainer(vframe, IlvRect(0, 0, 200, 200));

The view frame is resized to fit the client view geometry. 

To know the client view associated with a view frame, use:

IlvView* clientView = vframe->getClient();

Changing the Title Bar

The title bar consists of an icon, a title, and three buttons.

Figure 17.2      

Figure 17.2  The Title Bar of a View Frame

To change the icon of the title bar, use the method IlvViewFrame::setIcon:

IlvBitmap* bitmap = ...
vframe->setIcon(bitmap);

To change its title, use the method  IlvViewFrame::setTitle:

vframe->setTitle("Frame Title");

The three buttons to the right of the title bar are used to switch to one of the three states that 
a frame can have. These are detailed below. 

Changing the View Frame Menu

Each view frame has a pop-up menu that is displayed when you click the icon located on the 
left end of the title bar.

Note: The client view can be any instance of any subclass of IlvView.

Note: A view frame should only handle one client view.
352 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Minimizing, Maximizing, and Restoring View Frames

usrgadgets.book  Page 353  Tuesday, July 28, 2009  11:01 AM
Figure 17.3 

Figure 17.3   The Pop-up Menu of a View Frame

By default, the pop-up menu of a view frame contains the following choices: Restore, 
Minimize, Maximize, and Close. You can however add new items to it. 

To access this menu, use:

IlvPopupMenu* popup = vframe->getMenu();

Minimizing, Maximizing, and Restoring View Frames

A view frame can be in one of the following states: Normal, Minimized, Maximized.

To retrieve the state of a frame, use the method IlvViewFrame::getCurrentState. The 
possible returned values are: NormalState, MinimizedState, and MaximizedState.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 353



usrgadgets.book  Page 354  Tuesday, July 28, 2009  11:01 AM
Figure 17.4

Figure 17.4   Normal and Minimized View Frames

Normal View Frames

By default, a view frame is displayed with its normal size. To restore a frame to this state 
after it has been maximized or minimized, use the IlvViewFrame::restoreFrame 
method:

vframe->restoreFrame();

This method does nothing if the frame is already in the normal state.

You can also revert a view frame to its initial state by clicking the Restore button in its title 
bar.

Minimized View Frames

When a view frame is minimized, only its title bar is visible, and its position is managed by 
the desktop manager. To minimize a frame, use the IlvViewFrame::minimizeFrame 
method:

vframe->minimizeFrame();

A list of minimized view frames is managed by the desktop manager, and can be accessed 
using the IlvDesktopManager::getMinimizedFrames method.
354 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Closing View Frames

usrgadgets.book  Page 355  Tuesday, July 28, 2009  11:01 AM
You can also minimize a view frame by clicking the Minimize button in its title bar.

Maximized View Frames

When a view frame is maximized, its client view occupies all the desktop view. 

To maximize a view frame, use the method IlvViewFrame::maximizeFrame:

vframe->maximizeFrame();

You can also maximize a view frame by clicking the Maximize button in its title bar.

When a view frame is maximized, its title bar and hence the buttons it contains are no longer 
visible. In this case, however, the desktop manager can display these buttons in another 
place. 

The following lines tell the desktop manager to display the buttons of the title bar in 
container when a frame is maximized.

IlvContainer* container = ....
desktop->makeMaximizedStateButtons(container->getHolder());

The following lines tell the desktop manager to display the buttons of the title bar in 
toolbar:

IlvToolBar* toolbar = ...
desktop->makeMaximizedStateButtons(toolbar);

Closing View Frames

When you try to close a view frame (using the Close button for example), the 
IlvViewFrame::closeFrame method is called. By default, this method invokes the 
destroy callbacks set for the view frame, which means that if you want to control how a view 
frame is destroyed, you have to set a destroy callback. 

For example:

vframe->setDestroyCallback(DestroyFrame);

with the following callback:

static void DestroyFrame(IlvView* view, IlvAny)
{
    IlvIQuestionDialog dlg(view->getDisplay(), "Are you sure ?");
    dlg.moveToMouse();
    if (dlg.get())
       delete view;
}

I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 355



usrgadgets.book  Page 356  Tuesday, July 28, 2009  11:01 AM
displays a dialog box asking confirmation to the user before deleting the frame.

Changing the Current View Frame

The current view frame of a desktop manager is the view frame that has the keyboard focus. 
You can change the current view frame by clicking another view frame, which will become 
the new current view frame.

You can also change the current view frame by coding:

desktop->setCurrentFrame(vframe);

When the current view frame changes, the virtual method 
IlvDesktopManager::frameSelectionChanged is called. You can override this 
method in your own subclass of IlvDesktopManager to execute a specific action when the 
current view frame changes.

Note: If no destroy callback has been set, attempting to close the view frame has no effect.
356 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



C H A P T E R

usrgadgets.book  Page 357  Tuesday, July 28, 2009  11:01 AM
18

Customizing the Look and Feel

This chapter introduces the classes used by the look-and-feel mechanism. It covers the 
following topics:

◆ Understanding the Architecture

◆ Making a User-Defined Component Look-and-Feel Dependant

◆ Changing the Look and Feel of an Existing Component

◆ Creating a New Look-and-Feel Handler

Understanding the Architecture

The purpose of this section is to explain how gadgets can adapt themselves to their look and 
feel. You can find information on the following topics:

◆ IlvLookFeelHandler

◆ IlvObjectLFHandler

◆ Class Diagram
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 357



usrgadgets.book  Page 358  Tuesday, July 28, 2009  11:01 AM
IlvLookFeelHandler

The IlvLookFeelHandler class is the base class for all the look-and-feel handlers. It acts 
as a collection of object look-and-feel handlers and gathers properties common to a specific 
look. Each component that needs to be look-and-feel dependant must have an access to an 
instance of the IlvLookFeelHandler class. During the drawing process, the component 
will use this handler to draw itself. Similarly, when the component receives an event, it will 
use this handler to handle the event the way it is defined by the handler. 

Getting a Pointer to an IlvLookFeelHandler Object

There are three ways for a gadget to get a pointer to an IlvLookFeelHandler subclass 
instance:

◆ Object level

The method IlvGraphic::getLookFeelHandler() is used to query an object about 
its look-and-feel handler. The default implementation is to use the look-and-feel handler 
defined by the object holder.

◆ Holder level

The method IlvGraphicHolder::getLookFeelHandler() is used to query a holder 
about its look-and-feel handler. The default implementation is to use the look-and-feel 
handler defined by the holder display instance.

◆ Display level

The method IlvDisplay::getLookFeelHandler() is used to query a display 
instance about its look-and-feel handler. The default value is defined by the platform on 
which the application has been built. See the section Using the Default Look and Feel on 
page 217 for details.

IlvObjectLFHandler

Once a gadget has retrieved its look-and-feel handler, it must ask its specific object look-
and-feel handler. This object look-and-feel handler is implemented by means of the 
IlvObjectLFHandler class. Each component that needs to be look-and-feel dependant 
must create a subclass of the IlvObjectLFHandler class.

Getting a Pointer to an IlvObjectLFHandler Object

The IlvLookFeelHandler class handles a hash table of IlvObjectLFHandler. Each 
instance of the IlvObjectLFHandler class can be retrieved using its class information. 

Note: Look-and-feel handlers are shared objects. You should not create them using the 
standard operator new, and you should not delete them.
358 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Understanding the Architecture

usrgadgets.book  Page 359  Tuesday, July 28, 2009  11:01 AM
For example, the following code retrieves the object look-and-feel handler of the 
IlvButton class:

IlvLookFeelHandler lfh = display->getLookFeelHandler();
IlvButtonLFHandler* buttonLF = (IlvButtonLFHandler*)
      lfh->getObjectLFHandler(IlvButton::ClassInfo());

After retrieving a pointer to its specific object look-and-feel handler, the button can draw 
itself using the following code:

void
IlvButton::draw(IlvPort* dst,
                const IlvTransformer* t,
                const IlvRegion* clip) const
{
   IlvButtonLFHandler* lfhandler = (IlvButtonLFHandler*)   
         getObjectLFHandler(IlvButton::ClassInfo());
    lfhandler->draw(this, dst, t, clip);
}

Class Diagram

The following diagram shows the relations between the three actors of the look-and-feel 
process: the objects, the look-and-feel handler, and the object look-and-feel handlers. 

Note: The value returned by getObjectLFHandler is cast into an 
IlvButtonLFHandler pointer, which is the base class for button object look-and-feel 
handlers.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 359



usrgadgets.book  Page 360  Tuesday, July 28, 2009  11:01 AM
Figure 18.1

Figure 18.1  Relations between some classes involved in the look-and-feel process

The following diagram is a trace of events during the drawing of an IlvButton, in Motif 
look:

Figure 18.2

Figure 18.2  Event Trace: Drawing a button

Making a User-Defined Component Look-and-Feel Dependant

This section describes how to create a new component that will be look-and-feel dependant. 
You will find information on the following topics:
360 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Making a User-Defined Component Look-and-Feel Dependant

usrgadgets.book  Page 361  Tuesday, July 28, 2009  11:01 AM
◆ Creating a New Component

◆ Defining the Object Look-and-Feel Handler API

◆ Subclassing the Object Look-and-Feel Handler

◆ Installing the Object Look-and-Feel Handlers

Creating a New Component

You can find detailed information on how to create properly a new component in the 
Foundation User’s Manual, IlvGraphic: The graphic object class, Creating a New Graphic 
Object Class.

The key is to register properly the class information, which is mandatory to make the 
component look-and-feel dependant.

Let’s assume that the new created component is MyComponent, a subclass of IlvGadget.

Defining the Object Look-and-Feel Handler API

The object look-and-feel handler API depends on the component you are designing. As a 
general rule, you should provide a way to customize its look and its behavior. This can be 
done by adding the following methods to your object class:

You must also add these methods to the object look-and-feel handler class:

class MyComponent : public IlvGadget
{
    ...
    virtual void draw(IlvPort* dst,
                      const IlvTransformer* t,
                      const IlvRegion* clip) const;
    virtual IlBoolean handleEvent(IlvEvent& event) const;
    ...

};

class MyComponentLFHandler : public IlvObjectLFHandler
{
   MyComponentLFHandler(IlvLookFeelHandler* lfh) : 
        IlvObjectLFHandler(MyComponent::ClassInfo(), lfh) {}
    ...
    virtual void draw(const MyComponent* object,
                      IlvPort* dst,
                      const IlvTransformer* t,
                      const IlvRegion* clip) const = 0;
    virtual IlBoolean handleEvent(MyComponent* object,
                                  IlvEvent& event) const = 0;
    ...
};
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 361



usrgadgets.book  Page 362  Tuesday, July 28, 2009  11:01 AM
The implementation of the MyComponent methods should be as follow:

and for the handleEvent method:

Of course, you can add other functionalities to your component, and make them look-and-
feel dependant using the same scheme.

Subclassing the Object Look-and-Feel Handler

Once the API of the object look-and-feel handler has been defined, you can implement 
various subclasses corresponding to different look-and-feel styles. For example, here we 

Notes:
1. Since object look-and-feel handlers are shared objects, you need to give access to 

MyComponent instance in each method of the object look-and-feel handler class. You 
can do this by using the first parameter of the methods.

2. The constructor of MyComponentLFHandler uses the MyComponent::ClassInfo 
method to link this object handler with MyComponent class. Thus, each subclass of 
MyComponentLFHandler will be dedicated to MyComponent component.

void
MyComponent::draw(IlvPort* dst,
                  const IlvTransformer* t,
                  const IlvRegion* clip) const
{
    MyComponent* lfhandler = (MyComponentLFHandler*)
        getObjectLFHandler(MyComponent::ClassInfo());
    lfhandler->draw(this, dst, t, clip);
}

IlBoolean
MyComponent::handleEvent(IlvEvent& event)
{
    MyComponentLFHandler* lfhandler = (MyComponentLFHandler*)
        getObjectLFHandler(ClassInfo());
    return lfhandler->handleEvent(this, event);
}

362 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Changing the Look and Feel of an Existing Component

usrgadgets.book  Page 363  Tuesday, July 28, 2009  11:01 AM
create the subclass of MyComponentLFHandler dedicated to the Motif look, the 
MyComponentMLFHandler class:

You need now to install your object look-and-feel handlers so that they will be used when 
the corresponding look and feel is set.

Installing the Object Look-and-Feel Handlers

To install your object look-and-feel handlers on their corresponding look-and-feel handler, 
use the macro IlvRegisterObjectLFHandler:

IlvRegisterObjectLFHandler(IlvMotifLFHandler, 
                           MyComponent,
                           MyComponentMLFHandler);

The previous code registers the MyComponentMLFHandler class as the object look-and-feel 
handler for the MyComponent class displayed using the Motif look. 

You do not have to create or delete instances of object look-and-feel handlers, it will be done 
automatically.

Changing the Look and Feel of an Existing Component

This section describes how to modify the look and feel of a specific component. You can 
find information on the following topics:

◆ Subclassing the Component Object Look-and-Feel Handler

◆ Replacing an Object Look-and-Feel Handler

Subclassing the Component Object Look-and-Feel Handler

To change the look and feel of a component, you must first identify its object look-and-feel 
handler base class. Usually, the component class and its object look-and-feel handler are 
declared in the same header file, and the name of the object look-and-feel handler class is the 

class MyComponentMLFHandler : public MyComponentLFHandler
{
    MyComponentMLFHandler(IlvLookFeelHandler* lfh) :
         MyComponentLFHandler(lfh) {}
    ...
    virtual void draw(const MyComponent* object,
                      IlvPort* dst,
                      const IlvTransformer* t,
                      const IlvRegion* clip) const;
    virtual IlBoolean handleEvent(MyComponent* object,
                                  IlvEvent& event) const;
    ...
};
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 363



usrgadgets.book  Page 364  Tuesday, July 28, 2009  11:01 AM
concatenation of the component class name with the string “LFHandler”. For example, 
both the IlvButton and IlvButtonLFHandler classes are located in the <ilviews/
gadgets/button.h> header file.

Once you have found the object look-and-feel handler base class, you must look closely at 
its API to find which of the virtual member functions need to be overridden. 

The following example is a subclass of the IlvButtonLFHandler where the 
drawBackground member function has been redefined:

Replacing an Object Look-and-Feel Handler

Once you have defined the new object look-and-feel handler, you need to install it on an 
IlvLookFeelHandler instance.

The simplest way to install an object look-and-feel handler is to call the 
IlvLookFeelHandler::addObjectLFHandler method on the look-and-feel handler of 
the component:

By modifying the look-and-feel handler this way will affect other buttons referencing the 
same look-and-feel handler. Indeed, by default, there is only one look-and-feel handler, 
owned by the IlvDisplay class. If you do not want to modify the default look-and-feel 
handler because you want to modify only the look and feel of specific components, you must 
do the following:

◆ Create a new look-and-feel handler instance using the 
IlvLookFeelHandler::Create method.

◆ Install your object look-and-feel handler using the 
IlvLookFeelHandler::addObjectLFHandler method.

◆ Install the new look-and-feel handler instance on your component using the 
IlvGadget::setLookFeelHandler method.

class MyButtonLFHandler : public IlvButtonLFHandler
{
    ...
    virtual void drawBackground(const IlvButton* button,
                                IlvPort* dst,
                                const IlvTransformer* t,
                                const IlvRegion* clip) const;
    ...
};

IlvButton* button = ....
IlvLookFeelHandler* lfh = button->getLookFeelHandler();
MyButtonLFHandler* mylfh = new MyButtonLFHandler(lfh);
lfh->addObjectLFHandler(mylfh);
364 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating a New Look-and-Feel Handler

usrgadgets.book  Page 365  Tuesday, July 28, 2009  11:01 AM
The following code creates a new look-and-feel handler for the Motif look, and installs on it 
the object look-and-feel handler. Finally, the new look-and-feel handler is installed on the 
component:

Creating a New Look-and-Feel Handler

To create a new look-and-feel handler, you can either:

◆ subclass directly the IlvLookFeelHandler class or

◆ subclass one of the existing predefined look-and-feel handler classes 
(IlvMotifLFHandler, IlvWindowsLFHandler, IlvWindows95LFHandler, 
IlvWindowsXPLFHandler).

The second option is easier, since you do not have to provide an object look-and-feel handler 
for all the registered gadgets. You just have to provide the object look-and-feel handlers for 
the objects you want the look and feel to be changed.

The sample lookfeel located in the directory ILVHOME/samples/gadgets/lookfeel 
shows how to create a new look-and-feel handler.

Registering a New Look-and-Feel Handler

To be able to dynamically create a look-and-feel handler, you need to properly register it. To 
do this, you need to add the following macro inside the class declaration:

DeclareLookFeelTypeInfo();

Then, in the definition file, use the following macros:

IlvPredefinedLookFeelMembers(MyLookFeelHandler, "MyLook");
IlvRegisterLookFeelClass(MyLookFeelHandler, BaseClass);

where BaseClass is the base class of the new look-and-feel handler. 

IlvLookFeelHandler* lfh = IlvLookFeelHandler::Create(“motif”);
MyButtonLFHandler* mylfh = new MyButtonLFHandler(lfh);
lfh->addObjectLFHandler(mylfh);
IlvButton* button = ....
button->setLookFeelHandler(lfh);

Note: The first two steps can be executed through a single action by creating a subclass of 
the IlvLookFeelHandler. You can find more information in the section Creating a New 
Look-and-Feel Handler on page 365.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 365



usrgadgets.book  Page 366  Tuesday, July 28, 2009  11:01 AM
The class is now properly registered, that is, you can create for example an instance of it 
using the following code:

IlvLookFeelHandler* lfh = IlvLookFeelHandler::Create(IlGetSymbol("MyLook"));

Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler

To register object look-and-feel handlers into a new look-and-feel handler, you can either:

◆ override the IlvLookFeelHandler::createObjectLFHandler method or

◆ use the IlvRegisterObjectLFHandler macro.

For example, by using the IlvRegisterObjectLFHandler macro, you can code in the 
definition file:

IlvRegisterObjectLFHandler(MyLookFeelHandler, IlvButton, MyButtonLFHandler);

This will register the object look-and-feel handler class MyButtonLFHandler into the look-
and-feel handler MyLookFeelHandler for the IlvButton class. This means that when an 
IlvButton object that has the look-and-feel MyLookFeelHandler tries to retrieve its 
object look-and-feel handler, it will get a pointer on a MyButtonLFHandler instance.
366 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



A P P E N D I X

usrgadgets.book  Page 367  Tuesday, July 28, 2009  11:01 AM
A

Editing States

States let you predefine different contexts, or states, for your application. In a particular 
context, your application may open or close panels, hide or show graphic objects, change 
their sensitivity, colors or any other properties. All these settings are called state 
requirements. A state is just a set of state requirements. As a general rule, it is not 
recommended to modify these settings through programming when they belong to contexts 
that are handled by the state mechanism.

IBM® ILOG® Views Studio lets you interactively define states and their requirements for 
your application. 

This appendix provides an example of how to use the state mechanism of IBM ILOG Views 
Studio. It is divided into two sections:

◆ Creating a Simple Application

◆ Editing the Show State

Creating a Simple Application

In the following example, you will create a simple application with two panels. Only one of 
the panels is visible when the application is started. The objective is to open the second panel 
by clicking a button on the first panel. 
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 367



A. Editing States

usrgadgets.book  Page 368  Tuesday, July 28, 2009  11:01 AM
If you are already working in IBM® ILOG® Views Studio, start by choosing Close All from 
the Window menu to close all open buffers. Then, open a new application buffer window by 
choosing New from the File menu and Application in the submenu that appears.

Creating the First Panel

To create the first panel, do the following:

1. Choose New from the File menu and then choose Gadgets in the submenu to open a new 
Gadgets window buffer.

2. Click Gadgets in the tree in the upper pane of the Palettes panel.

3. Drag two buttons to the Gadgets buffer window from the lower pane of the Palettes 
panel.

4. Double-click the buttons to open the associated inspector panel.

5. In the Name field of the General page, type ShowButton and HideButton.

6. In the Label field of the Specific page, type Show and Hide.

7. Resize the panel so it has a suitable size.

8. Save the Gadgets buffer window as panel1.ilv in a directory of your choice.

The Panel1 should have the following appearance:
368 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating a Simple Application

usrgadgets.book  Page 369  Tuesday, July 28, 2009  11:01 AM
9. Click the Panel Class Palette icon in the Main window toolbar to open the Panel Class 
palette.

10. Click the New Panel Class icon in the Panel Class palette to create the Panel1 panel class.

To do so, make sure that the panel1.ilv Gadgets buffer window is activated.

11. Click the Application buffer window to bring it to the foreground.

You can also choose <Application> from the Window menu.

12. Drag the Panel1 icon from the Panel Class palette and drop it in the Application window 
buffer.

Creating the Second Panel

You are now going to create a second panel.

1. Choose New from the File menu and then Gadgets in the submenu to open a new 
Gadgets buffer window.

2. If necessary, click Gadgets in the tree in the upper pane of the Palettes panel.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 369



A. Editing States

usrgadgets.book  Page 370  Tuesday, July 28, 2009  11:01 AM
3. Drag a multiline text gadget (IlvText) to the current buffer window.

4. Double-click the text gadget to open its inspector panel.

5. In the Name field of the General page, type Text.

6. Drag two buttons below that text.

7. Double-click the buttons to open the associated inspector panel.

8. In the Name field of the General page, type EditButton and CloseButton.

9. In the Label field of the Specific page, type Edit and Close.

10. Save the buffer as panel2.ilv in the same directory.

Panel2 should have the following appearance: 
370 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Creating a Simple Application

usrgadgets.book  Page 371  Tuesday, July 28, 2009  11:01 AM
11. Click the New Panel Class icon in the Panel Class palette to create the Panel2 panel class.

To do so, make sure that the panel2.ilv Gadgets buffer window is activated.

12. Click the Application buffer window to bring it to the foreground.

You can also choose <Application> from the Window menu.

13. Drag the Panel2 icon from the Panel Class palette and drop it in the Application window 
buffer.

14. Double-click the title bar of Panel2 to open its inspector.

15. Turn off the Visible toggle button in the General page of the Panel Instance inspector. 

16. Click the Test button in the Main window toolbar.

You can see that Panel2 is not visible at application start-up.

Click the Test button again to close the test panel.

17. Save the application as myapp.iva in the same directory.

States Panels

IBM® ILOG® Views Studio provides you with two separate panels to edit states:

◆ The State Tree panel for managing the whole state hierarchy of the application.

Figure A.1

Figure A.1  The State Tree Panel

◆ The State inspector panel for inspecting the properties of the state selected in the State 
Tree.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 371



A. Editing States

usrgadgets.book  Page 372  Tuesday, July 28, 2009  11:01 AM
Figure A.2

Figure A.2  The State Inspector Panel 

To open these panels, you can use the Commands panel of IBM ILOG Views Studio. Click 
the Commands icon in the Main window toolbar. Then select EditStates from the list of 
commands in the Commands panel. 

If your application has no defined state, the Edit State command creates a root state, a 
subset, and a state. The state subsets will be discussed later in this chapter. 

Editing the Show State

You need two states for the application. The first one is the initial root state where only the 
first panel is visible. The second is a state where Panel2 is visible. 

To name this second state Show:

1. Select State in the State Tree panel.

2. Click Rename in the State Tree toolbar.
372 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing the Show State

usrgadgets.book  Page 373  Tuesday, July 28, 2009  11:01 AM
A dialog box opens allowing you to enter a new name for the selected state. 

3. Type Show and click Apply.

The application now has two states: Root and Show. Using the State inspector, you can 
define the requirements for each state. You want Panel2 to be visible when the application is 
in the Show state.

To do this, you are going to set the visible attribute for Panel2 to true:

1. If necessary, activate the Application buffer window.

2. Make sure the Show state is selected in the State Tree panel.

3. In the State inspector, click in the first row of the Panel column. 

A combo box appears with a list of the panel instances from the application.

4. Select Panel2 from the list.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 373



A. Editing States

usrgadgets.book  Page 374  Tuesday, July 28, 2009  11:01 AM
5. Click in the Attribute column.

A list of state requirements related to the panel is displayed.

6. Choose visible from the list.

7. Click in the Value column.

A list of values related to visible is displayed.

8. Choose true from the list.

The target of this state requirement is a panel. It is identified by the panel name. Since the 
target of the state requirement is not an object, the Object column remains blank. 

Chaining States

When the application is launched, the Root state is automatically selected. You want to be 
able to go to the Show state by clicking the Show button. 
374 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing the Show State

usrgadgets.book  Page 375  Tuesday, July 28, 2009  11:01 AM
To attach the Show state to the Show button, follow these steps:

1. If necessary, activate the Application buffer window.

2. Select the Root state in the State Tree panel.

3. In the State inspector, click in the first row of the Panel column. 

A combo box appears with a list of the panel instances from the application.

4. Select Panel1 from the list.

5. In the Object column, select ShowButton from the list of objects in the combo box.

6. Click the Attribute column. 

A list of state requirements related to IlvButton objects is displayed. 

7. Choose callback from the list.

8. Click the Value column of the sheet. 

A list of related callbacks is displayed. 

9. Choose setState(Show).
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 375



A. Editing States

usrgadgets.book  Page 376  Tuesday, July 28, 2009  11:01 AM
When you test your application, only Panel1 is visible. But now, when you click the 
Show button, Panel2 is displayed and you are in the Show state.

Changing the Label and the Callback of the Show Button

The states mechanism provides you with predefined callbacks that let you set or leave a 
state. A callback is a state requirement attached to an object in a particular state. It can be 
overridden in different states. 

In the next exercise, you want the Show button to bring the application from the Show state 
back to the Root state. You also want to change the button label so it displays Root when the 
Show state is selected.

1. Select the Show state in the State Tree panel.

2. If necessary, click the New requirements icon at the top-left of the State inspector to add 
a new row.

3. In the State inspector, click in the empty row of the Panel column. 

A combo box appears with a list of the panel instances from the application.

4. Select Panel1 from the list.

5. In the Object column, select ShowButton from the list of objects in the combo box.

6. Click in the Attribute column and choose label from the list.

Scroll down the list to make label appear.

7. Type Root in the Value field and press Enter. 

A new row is automatically added when you reach the last column and press Enter. 

8. Click in the Attribute column of the new empty row.
376 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing the Show State

usrgadgets.book  Page 377  Tuesday, July 28, 2009  11:01 AM
The panel and object names are automatically copied from the previous line and the 
related state requirement names are displayed.

9. Choose callback.

10. Click in the Value column and choose leaveState(Show).

When you test your application and go into the Show state (by clicking the Show button), the 
label of the Show button changes to Root. When you click it once again, you are back to the 
initial Root state. The label and callback of the Show button are restored and Panel2 is 
hidden. In short, when you leave a state, the properties modified by the state requirements 
are restored. 

Creating a Substate: the Edit State

You do not want the text field in Panel2 to be editable when this panel is in the Show state. 
You do, however, want to be able to edit the text in the Edit state. 

To make the text field in Panel2 noneditable when the Show state is active, do the following:

1. Select the Show state in the State Tree panel.

2. If required, click the New requirement icon in the State Inspector to create a new row.

3. In the Panel column of the new row, select Panel2 from the list of panels in the combo 
box.

4. In the Object column, select Text from the list of objects in the combo box.

5. Click in the Attribute column and choose editable from the list. 

You will notice that the list of related requirements is not the same as the one you chose 
for a button, as the requirements depend on the object type. 

6. Click in the Value column and choose false.

7. Test the application and verify that the Text field is not editable in the Show state.

You are now going to define a substate of Show that will inherit from its visibility 
requirement: the Edit substate. To do so:

1. Select the Show state in the State Tree panel.

2. Click the New Subset icon in the State Tree toolbar. 

A new tree item is created and selected. Notice that the toolbar has slightly changed—the 
New Subset icon is now replaced with the New State icon.

3. Click the New State icon in the toolbar. 

A new state item is created in the tree.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 377



A. Editing States

usrgadgets.book  Page 378  Tuesday, July 28, 2009  11:01 AM
4. Click Rename to rename the state to Edit.

5. Leave the Edit state selected in the State Tree or select it if needed.

6. If required, click the New requirement icon in the State Inspector to create a new row.

7. In the Panel column of the empty row, choose Panel2 from the combo box.

8. In the Object column, choose Text from the list of objects.

9. Choose editable in the Attribute column.

10. Choose true in the Value column.

11. Click New Requirement in the State Inspector toolbar to create a new row in the State 
Inspector panel.

12. Choose Panel2 in the Panel column and EditButton from the Object column. 

13. Choose label in the Attribute column.
378 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing the Show State

usrgadgets.book  Page 379  Tuesday, July 28, 2009  11:01 AM
14. Type Apply in the Value column and press Enter (or click New Requirement in the 
toolbar).

15. In the empty row just below, click in the Attribute column and select callback.

16. Choose leaveState(Edit) in the Value column.

17. Create another state requirement for this button and choose foreground as its attribute.

18. Click the Value item and select a color from the color selector (for example, red).

Notice that when you click the Value column in the State Inspector panel, the behavior of 
the inspector depends on the chosen attribute. It may activate a string list of predefined 
values or a specialized selector.

Now, go back to the Show state to attach the Edit state to the Edit button in Panel2:

1. Select the Show state in the State Tree panel.

2. In the State inspector, create an empty row. 

3. Choose Panel2 from the combo box of the Panel column and EditButton from the combo 
box of the Object column.

4. Choose callback in the Attribute column.

5. Choose setState(Edit) in the Value column.
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 379



A. Editing States

usrgadgets.book  Page 380  Tuesday, July 28, 2009  11:01 AM
6. Now, test the application. Once you are in the Show state, go to the Edit state by clicking 
the Edit button in Panel2.

You can also enhance your application states by modifying and adding the state 
requirements so they look like this:

Figure A.3

Figure A.3  The Root Sheet of the State Inspector
380 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



Editing the Show State

usrgadgets.book  Page 381  Tuesday, July 28, 2009  11:01 AM
Figure A.4

Figure A.4  The Show Sheet of the State Inspector

Figure A.5

Figure A.5  The Edit Sheet of the State Inspector

The State File

When you save an application that has defined states, the state definitions are saved in a 
.ivs file, with the same name and directory as the application file. This file is automatically 
loaded when you load the corresponding application file. In the generated C++ code, the 
state file is loaded if there are defined state requirements. The state file must be found in a 
directory specified by the ILVPATH environment variable (or the equivalent resource).
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 381



A. Editing States

usrgadgets.book  Page 382  Tuesday, July 28, 2009  11:01 AM
382 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



I N D E X

usrgadgets.book  Page 383  Tuesday, July 28, 2009  11:01 AM
Index

Numerics

2D Graphics buffer window
description of 26

A

accessors
building mode 169
combined 171
dependent 170, 171
panels 126
preconditions 178
properties 168
tree 174
update mode 169
validators 179

activate member function
IlvButton class 233

ActivateCallbackType member function
IlvTreeGadget class 275

activateMatrixItem member function
IlvMatrix class 313

activating objects 58
Active editing mode 58
Active mode 31
addChangeLookCallback member function

IlvDisplay class 221
addField member function

IlvSpinbox class 255

addGuide member function
IlvGraphicHolder class 206

addItem member function
IlvTreeGadget class 271, 272

addLabel member function
IlvSpinbox class 256

addLine member function
IlvText class 262

addObject member function
IlvSpinBox class 256

addpage member function
IlvNotebook class 243

addPane member function
IlvPanedContainer class 324

AddPanel command 39
addRelativeDockingPane member function

IlvDockableMainWindow class 344
adjustLast member function

IlvMatrix class 306
alignmentBaseClass option 135
allowEdit member function

IlvMatrix class 312
Application buffer window 83, 94

default 27
description of 27
editing 27
opening 87
saving 87

application files
inserting code 131
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 383



usrgadgets.book  Page 384  Tuesday, July 28, 2009  11:01 AM
Application inspector
description of 48
General page 89
Options page 90

applicationBufferBackground option 136
applicationFileExtension option 136
applicationHeaderFile option 136
applications

building an example 111
C++ code generation 120
default 83
derived classes 128
description files 87
editing 83, 94
general properties 89
generating code 91
header files 92
inspecting 88
setting options 90
source files 92, 126
testing 110, 128
viewing properties 88

applyResources member function
IlvGraphic class 215

areLabelsVertical member function
IlvNotebook class 242

arrow buttons 232
setting the arrow direction 232

attach member function
IlvGraphicHolder class 206

attaching objects 60, 62
setting guides 61
testing 65

Attachment editing mode 60
Attachments icon 60
Attachments inspector panel 62
Attachments mode 32
autoFitToSize member function

IlvMatrix class 306
autoLabelAlignment member function

IlvStringList class 259

B

bitmaps

insensitive 233
sensitive 233
toggle buttons 268

BitmapSymbol member function
IlvGadgetItem class 280

buffers
initializing 148

buttons 232
callbacks 233
displaying bitmaps 233
displaying the frame 233
handling events 233
mnemonics 233

C

C++
prerequisites 17

C++ code
generating 120

callback method
generating 123

callback types
gadgets 209

callbacks 122, 123
buttons 233
defining 132
in panel classes 99
string lists 260

cellBBox member function
IlvAbstractMatrix class 304

cellInfo member function
IlvAbstractMatrix class 303

changeSelection member function
IlvNotebook class 246

check member function
IlvText class 262
IlvTextField class 265

checkLabelOrientation member function
IlvAbstractBarPane class 341

client views 349
columnBBox member function

IlvAbstractMatrix class 304
columns member function

IlvAbstractMatrix class 302
384 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 385  Tuesday, July 28, 2009  11:01 AM
columnSameWidth member function
IlvAbstractMatrix class 302

combo boxes 234
callbacks 235
editable 234
localizing 235
setting the selected text 235

command classes
predefined 142

command description, initializing 148
commands

adding 142
errors 142

compareItems member function
IlvGadgetListItemHolder class 288

configuration options 135
alignmentBaseClass 135
applicationBufferBackground 136
applicationFileExtension 136
applicationHeaderFile 136
defaultApplicationName 136
defaultCallbackLanguage 136
defaultHeaderDir 136
defaultHeaderFileScope 136
defaultObjDir 136
defaultSrcDir 137
defaultSystemName 137
headerFileExtension 137
JvScriptApplication 137
makeFileExtension 137
noPanelContents 138
panelBaseClass 138
sourceFileExtension 138
system 138
toolBarItem 139
userSubClassPrefix 139
userSubClassSuffix 139

createItem member function
IlvGadgetItemHolder class 284

createSliderPane member function
IlvPanedContainer class 327

creating
gadgets 54
menu bars 65
objects 54

panel class instances 101
panel classes 96
panels 54
pop-up menus 68

creating objects 54

D

data files 87, 88
date fields 236

formats 247
setting a date value 237
setting the format 236

dates
fields 236
formats 236

DecrementCallbackType member function
IlvSpinBox class 257

default application 83
defaultApplicationName option 136
defaultCallbackLanguage option 136
defaultHeaderDir option 136
defaultHeaderFileScope option 136
defaultItemsSize member function

IlvAbstractBar class 298
defaultObjDir option 136
defaultSrcDir option 137
defaultSystemName option 137
derived classes

defining 128
using 129

description files
state 381

desktop managers 350
desktop views

creating 350
detachItem member function

IlvTreeGadget class 272
dialog boxes

creating 229
predefined 224
showing and hiding 230

dockable containers
introducing 330
orthogonal 334
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 385



usrgadgets.book  Page 386  Tuesday, July 28, 2009  11:01 AM
docking bars 338
customizing 340

docking panes
creating 332
handles 333
introducing 330

doIt member function
IlvOptionMenu class 250
IlvStringList class 261

drag member function
IlvScrollBar class 252

draw member function
IlvGadgetItem class 282

drawItem member function
IlvAbstractMatrix class 303

E

Edit Application icon 85
EditApplication command 39
editing

Application buffer windows 27
applications 83
menus 65
objects 54
pop-up menus 68

editing modes
Active 31, 58
Attachments 32, 60
Focus 32, 59
for application buffer 32
for gadgets buffer 31
Generate 32
initializing 150
Label 31
Label List 31
Matrix 32, 74
Menu 32, 70
PolySelection 31
Rotate 31
Selection 31
Spin Box 32

editing states 367
editing states example

chaining states 374

changing the callback of the Show button 376
changing the label 376
creating a substate 377
creating the first panel 368
creating the second panel 369
editing the Show state 372
overview 367
panel descriptions 371
state file description 381

editItem member function
IlvMatrix class 313

editors 180
list 171
paired with accessors 180
stand-alone 180
tree 174

enableLargeList member function
IlvScrolledComboBox class 235

errors
See IlvStError class 142

ExpandCallbackType member function
IlvHierarchicalSheet class 318
IlvTreeGadget class 275

expandItem member function
IlvTreeGadget class 272

extending IBM ILOG Studio 141
example 155

extensions
commands 142
panels 143

F

files
generated 88
header 92, 100
make 88
source 92, 100

fitToSize member function
IlvMatrix class 306

flipLabels member function
IlvNotebook class 242

focus chain 59
defining 204

focus management 203
386 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 387  Tuesday, July 28, 2009  11:01 AM
Focus mode 32, 59
focusIn member function

IlvGadget class 204
focusOut member function

IlvGadget class 204
frames 238

associating a mnemonic 238
functions

main 127

G

gadget containers 212
gadget holders 201, 202

IlvMouseEnter event 203
IlvMouseLeave event 203
limitations 203

gadget items
creating 284
drawing 282
finding 283
introducing 277
managing lists of 286
nonsensitive 281
palettes 282
represented by a bitmap 280
represented by a graphic object 280
setting a mnemonic 279
sorting 288

gadgets
arrow button 232
associating callbacks 209
associating mnemonics 211
attaching to guides 206
attachments 205
button 232
containers 202
creating 54
handling events 203
inside matrix 202
inside notebooks 202
inside tool bars 202
localizing 210
look and feel 217
Microsoft Windows look and feel 217

Motif look and feel 217
predefined callback types 209
sensitive 207
setting the weight 206
setting tooltips 211
thickness 208
transparent 208

Gadgets buffer window 54
Generate command 39
Generate mode 32
GenerateAll command 40
GenerateApplication command 40
generated code

extending 128
generated files 88
GenerateMakeFile command 40
GeneratePanelClass command 41
GeneratePanelSubClass command 41
generating

C++ code 120
callback method 123
header files 120

geometryChanged member function
IlvAbstractBar class 298

get class
IlvPopupMenu class 296

Get member function
IlvDesktopManager class 351

getBitmap member function
IlvNotebookPage class 246

getBitmapCount member function
IlvGadgetItem class 280

getCallbackItem member function
IlvTreeGadget class 274

getCardinal member function
IlvPanedContainer class 324

getCheckColor member function
IlvColoredToggle class 267

getColumnWidth member function
IlvAbstractMatrix class 303

getCurrentBitmap member function
IlvGadgetItem class 280

getCurrentLook member function
IlvDisplay class 221

getCurrentState member function
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 387



usrgadgets.book  Page 388  Tuesday, July 28, 2009  11:01 AM
IlvViewFrame class 353
getDirection member function

IlvArrowButton class 232
IlvPanedContainer class 323

getFileName member function
IlvNotebookPage class 244

getFirstChild member function
IlvTreeGadgetItem class 272

getFloatValue member function
IlvNumberField class 248
IlvTextField class 264

getGuideCardinal member function
IlvGraphicHolder class 206

getGuideLimit member function
IlvGraphicHolder class 206

getGuidePosition member function
IlvGraphicHolder class 206

getGuideSize member function
IlvGraphicHolder class 206

getGuideWeight member function
IlvGraphicHolder class 206

getHeight member function
IlvGadgetItem class 281

getHighlightTextPalette member function
IlvGadgetItemHolder class 282

getIncrement member function
IlvSpinbox class 256

getIndex member function
IlvPanedContainer class 324

getInsensitivePalette member function
IlvGadgetItemHolder class 282

getIntValue member function
IlvNumberField class 248
IlvTextField class 264

getItem member function
IlvMatrix class 309
IlvMenuItem class 292

getItemByName member function
IlvGadgetItemHolder class 283

getLabel member function
IlvNotebookPage class 246
IlvOptionMenu class 250

getLabels member function
IlvSpinbox class 256

getLabelsCount member function

IlvSpinbox class 256
getLine member function

IlvText class 262
getMinimizedFrames member function

IlvDesktopManager class 354
getNextSibling member function

IlvTreeGadgetItem class 272
getNormalTextPalette member function

IlvGadgetItemHolder class 282
getNotebook member function

IlvNotebook class 244
getOpaquePalette member function

IlvGadgetItemHolder class 282
getOrientation member function

IlvAbstractBar class 297
getPageArea member function

IlvNotebook class 243
getPageBottomMargin member function

IlvNotebook class 243
getPageLeftMargin member function

IlvNotebook class 243
getPageRightMargin member function

IlvNotebook class 243
getPages member function

IlvNotebook class 244
getPagesCardinal member function

IlvNotebook class 244
getPageTopMargin member function

IlvNotebook class 243
getPane member function

IlvPanedContainer class 324
getParent member function

IlvTreeGadgetItem class 272
getPrevSibling member function

IlvTreeGadgetItem class 272
getResources member function

IlvDisplay class 215
getRoot member function

IlvTreeGadget class 271
getRowHeight member function

IlvAbstractMatrix class 303
getSelectionMode member function

IlvTreeGadget class 275
getSelectionPalette member function

IlvGadgetItemHolder class 282
388 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 389  Tuesday, July 28, 2009  11:01 AM
getSelectionTextPalette member function
IlvGadgetItemHolder class 282

getSpacing member function
IlvAbstractBar class 298

getState member function
IlvToggle class 267

getTabsPosition member function
IlvNotebook class 242

getText member function
IlvText class 262

getTreeItem member function
IlvHierarchicalSheet class 317

getValue member function 129
IlvDateField class 237
IlvSpinbox class 256

getView member function
IlvDesktopManager class 351
IlvNotebookPage class 244

getViewPane member function
IlvPanedContainer class 325

getWidth member function
IlvGadgetItem class 281

getXMargin member function
IlvNotebook class 242

getYMargin member function
IlvNotebook class 242

graphic objects
integrating 150

graphic panes
creating 322

H

handleEvent member function
IlvGadget class 203

handleMatrixEvent member function
IlvAbstractMatrix class 304
IlvMatrix class 311

header files 92, 120, 121, 124
headerFileExtension option 137
hide member function

IlvPane class 323
hierarchical sheets 316

creating 316
expanding or collapsing an item 317

handling events 318
navigating 317
removing items 317

HighlightCBSymbol member function
IlvAbstractMenu class 290

HighlightedBitmapSymbol member function
IlvGadgetItem class 280

I

icons
Attachments 60
Edit Application 85
Inspect 57, 66
Menu 70
Panel Class Palette 95
Test 58, 110

IlvAbstractBar class 297, 339
defaultItemsSize member function 298
geometryChanged member function 298
getOrientation member function 297
getSpacing member function 298
setConstraintMode member function 298
setDefaultItemSize member function 298
setFlushingRight member function 299
setOrientation member function 297
setSpacing member function 298
useConstraintMode member function 298

IlvAbstractBarPane class
checkLabelOrientation member function 341
geometryChanged member function 340
orientationChanged member function 340

IlvAbstractBarPane class 339
IlvAbstractMatrix class 301

cellBBox member function 304
cellInfo member function 303
columnBBox member function 304
columns member function 302
columnSameWidth member function 302
drawItem member function 303
getColumnWidth member function 303
getRowHeight member function 303
handleMatrixEvent member function 304
invalidateColumn member function 304
invalidateRow member function 304
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 389



usrgadgets.book  Page 390  Tuesday, July 28, 2009  11:01 AM
pointToPosition member function 304
rowBBox member function 304
rows member function 302
rowSameHeight member function 302
setNbFixedColumn member function 303
setNbFixedRow member function 303
subclassing 302

IlvAbstractMenu class 290, 293
HighlightCBSymbol member function 290
isSelectable member function 291
select member function 291
selectNext member function 291
unSelect member function 291

IlvApplication class 27, 89, 93, 125
makePanels member function 125, 126

IlvArrowButton class 232
getDirection member function 232
setDirection member function 232

IlvBitmapMatrixItem class 306
IlvButton class 232

activate member function 233
setHighlightedBitmap member function 233
setSelectedBitmap member function 233
showFrame member function 233

IlvColoredToggle class
getCheckColor member function 267
setCheckColor member function 267

IlvColorSelector class 228
IlvComboBox class 234

setSelected member function 235
whichSelected member function 235

IlvContainer class 26
IlvDateField class 236

getValue member function 237
setFormat member function 236
setValue member function 237

IlvDesktopManager class
Get member function 351
getMinimizedFrames member function 354
getView member function 351

IlvDisplay class
addChangeLookCallback member function 221
and gadgets look and feel 221
getCurrentLook member function 221
getResources member function 215

setCurrentLook member function 221
IlvDockable class 330, 333, 337

acceptDocking member function 338
dock member function 337
isDocked member function 337
setDockable member function 338
setDockingDirection member function 338
unDock member function 337

IlvDockableContainer class 330
acceptDocking member function 338
addDockingPane member function 333, 337
createOrthogonalDockableContainer 

member function 335
IlvDockableMainWindow class 344

addRelativeDockingPane member function 344
IlvDoubleMatrixItem class 307
IlvFilledDoubleMatrixItem class 307
IlvFilledFloatMatrixItem class 307
IlvFilledIntMatrixItem class 307
IlvFilledLabelMatrixItem class 306
IlvFloatMatrixItem class 307
IlvFontSelector class 228
IlvFrame class 238
IlvGadget class 196

focusIn member function 204
focusOut member function 204
handleEvent member function 203
IlvMouseEnter event 203
IlvMouseLeave event 203
reDraw member function 234
setTransparent member function 208

IlvGadgetContainer class 96, 98, 101, 201, 212
IlvGadgetItem class 270, 277

BitmapSymbol member function 280
draw member function 282
getBitmapCount member function 280
getCurrentBitmap member function 280
getHeight member function 281
getWidth member function 281
HighlightedBitmapSymbol member function 280
InsensitiveBitmapSymbol member function 280
labelRect member function 281
pictureRect member function 281
SelectedBitmapSymbol member function 280
setBitmap member function 280
390 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 391  Tuesday, July 28, 2009  11:01 AM
setGraphic member function 280, 299
setHighlightTextPalette member function 282
setLabel member function 279
setLabelAlignment member function 279
setLabelOrientation member function 279
setLabelPosition member function 280
setNormalTextPalette member function 282
setOpaquePalette member function 282
setSelectionTextPalette member function 282
setSensitive member function 281
setSpacing member function 280
showPicture member function 281

IlvGadgetItemHolder class 282
createItem member function 284
getHighlightTextPalette member function 282
getInsensitivePalette member function 282
getItemByName member function 283
getNormalTextPalette member function 282
getOpaquePalette member function 282
getSelectionPalette member function 282
getSelectionTextPalette member function 282
reDrawItems member function 284

IlvGadgetItemMatrixItem class 307
IlvGadgetManager class 202, 212
IlvGadgetMatrixItem class 307
IlvGraphic class 212

applyResources member function 215
setFirstFocusGraphic member function 204
setLastFocusGraphic member function 204
setNextFocusGraphic member function 204
setPreviousFocusGraphic member function 204

IlvGraphicCallback function 99
IlvGraphicHolder class

addGuide member function 206
attach member function 206
getGuideCardinal member function 206
getGuideLimit member function 206
getGuidePosition member function 206
getGuideSize member function 206
getGuideWeight member function 206
removeGuide member function 206

IlvGraphicMatrixItem class 307
IlvGraphicPane class 322
IlvGraphicSet class 269
IlvHierarchicalSheet class 301, 316

ExpandCallbackType member function 318
getTreeItem member function 317
ShrinkCallbackType member function 318

IlvIErrorDialog class 225
IlvIFileSelector class 226
IlvIInformationDialog class 226
IlvIMessageDialog class 224
IlvIntMatrixItem class 307
IlvIPromptString class 227
IlvIQuestionDialog class 225
IlvIWarner class 226
IlvLabelMatrixItem class 306
IlvListGadgetItemHolder class 286, 290

compareItems member function 288
insertGraphic member function 299
sort member function 288

IlvManager class 26, 144
IlvManagerViewInteractor class 145
IlvMatrix class 301, 304

activateMatrixItem member function 313
adjustLast member function 306
allowEdit member function 312
autoFitToSize member function 306
editItem member function 313
fitToSize member function 306
getFirstSelected member function 310
getItem member function 309
handleMatrixEvent member function 311
insertColumn member function 305
insertRow member function 305
pointToItem member function 314
pointToPosition member function 314
reinitialize member function 305
remove member function 309
removeColumn member function 305
removeRow member function 305
resizeColumn member function 305
resizeRow member function 305
sameHeight member function 306
sameWidth member function 306
set member function 309
setBrowseMode member function 312
setColumnSelected member function 310
setExclusive member function 311
setItemAlignment member function 310
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 391



usrgadgets.book  Page 392  Tuesday, July 28, 2009  11:01 AM
setItemCallback member function 313
setItemReadOnly member function 311
setItemRelief member function 310
setItemSelected member function 310
setItemSensitive member function 311
setXGrid member function 305
setYGrid member function 305
showLabel member function 314
showPicture member function 314
validate member function 313

IlvMenuBar class 299
IlvMenuItem class 291

getItem member function 292
setMenu member function 292
setTooltip member function 300

IlvMessageLabel class
setAlignment member function 240
setBitmap member function 239
setInsensitiveBitmap member function 239
setLabelPosition member function 240
setSpacing member function 240
setTransparent member function 240

IlvMessageLabel code 238
IlvNotebook class 241

addPage member function 243
areLabelsVertical member function 242
changeSelection member function 246
flipLabels member function 242
getNotebook member function 244
getPageArea member function 243
getPageBottomMargin member function 243
getPageLeftMargin member function 243
getPageRightMargin member function 243
getPages member function 244
getPagesCardinal member function 244
getPageTopMargin member function 243
getTabsPosition member function 242
getXMargin member function 242
getYMargin member function 242
pageDeselected member function 246
PageResizeCallbackType member function 246
pageSelected member function 246
removePage member function 244
setLabelsVertical member function 242
setPageBottomMargin member function 243

setPageRightMargin member function 243
setPageTopMargin member function 243
setTabsPosition member function 242
setXMargin member function 242
setYMargin member function 242

IlvNotebookPage class 241, 243
getBitmap member function 246
getFileName member function 244
getLabel member function 246
getView member function 244
mustFlipLabels member function 242
setBackground member function 245
setBitmap member function 246
setFileName member function 244
setLabel member function 246

IlvNumberField class 246
getFloatValue member function 248
getIntValue member function 248
setDecimalPointChar member function 249
setFormat member function 247
setMaxFloat member function 248
setMaxInt member function 248
setMinFloat member function 248
setMinInt member function 248
setThousandSeparator member function 248
setValue member function 248
validate member function 249

IlvOptionMenu class 249
doIt member function 250
getLabel member function 250
setSelected member function 250
whichSelected member function 250

IlvPane class 319
hide member function 323
predefined subclasses 322
show member function 323

IlvPanedContainer class 202, 319, 323
addPane member function 324
createSliderPane member function 327
getCardinal member function 324
getDirection member function 323
getIndex member function 324
getPane member function 324
getViewPane member function 325
manageSliders member function 327
392 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 393  Tuesday, July 28, 2009  11:01 AM
removePane member function 324
setDirection member function 323
setMinimumSize member function 326
setResizeMode member function 325
updatePanes member function 323, 324

IlvPasswordTextField class 250
setMaskChar member function 250

IlvPopupMenu class 293
get class 296
isChecked class 296
OpenMenuCallbackSymbol class 295
setChecked class 296
setLabelOffset class 294
setTearOff class 295

IlvScrollBar class 251
drag member function 252
setIncrement member function 251
setPageIncrement member function 251
setValues member function 251
valueChanged member function 252

IlvScrollbar class 251
setOrientation member function 251

IlvScrolledComboBox class 234
enableLargeList member function 235
setVisibleItems member function 235

IlvSelector class 269
whichGraphicSelected member function 269
whichSelected member function 269

IlvSheet class 301, 315
IlvSimpleGraphic class 213
IlvSlider class

setOrientation member function 253
setPageIncrement member function 253
setValues member function 253
valueChanged member function 254

IlvSliderPane class 326
IlvSpinBox class 254

addField member function 255
addLabel member function 256
addObject member function 256
DecrementCallbackType member function 257
getIncrement member function 256
getLabels member function 256
getLabelsCount member function 256
getValue member function 256

IncrementCallbackType member function 257
numeric fields 256
removeLabel member function 256
removeObject member function 256
setIncrement member function 256
setValue member function 256
text fields 256

IlvStBuffer class 144
IlvStClickAddObject class

redefining 150
IlvStCommand class 142
IlvStContainerInfo class

description of 145
IlvStDialog class 143
IlvStError class 142
IlvStGadgetBuffer class 144
IlvStIAccessor class 168

apply member function 168
initialize member function 168

IlvStICallbackPrecondition class 178
IlvStICombinedAccessor class 171
IlvStIEditor class 180
IlvStIError class 179
IlvStIMainEditor class 164
IlvStInspector class 163
IlvStInspectorPanelBuilder class 149
IlvStIPrecondition class 178
IlvStIPreconditionValue class 178
IlvStIProperty class 169
IlvStIPropertyAccessor class 168
IlvStIPropertyListAccessor class 171
IlvStIPropertyListEditor class 171
IlvStIPropertyTreeAccessor class 174
IlvStIPropertyTreeEditor class 174
IlvStIRangeValidator class 179
IlvStIValidator class 178, 179
IlvStIValueProperty class 169
IlvStMode class 145
IlvStPanelHandler class 143
IlvStringList class 257

autoLabelAlignment member function 259
doIt member function 261
select member function 261
setDefaultItemHeight member function 258
setExclusive member function 261
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 393



usrgadgets.book  Page 394  Tuesday, July 28, 2009  11:01 AM
setLabelOffset member function 259
setLabelPosition member function 258
setSelectCallback member function 261
setSelected member function 261
setSelectionLimit member function 261
setSelectionMode member function 261
showLabel member function 258
showPicture member function 258
unSelect member function 261
useFullSelection member function 259
useToolTips member function 259

IlvStSubscription class 143
IlvText class 261

addLine member function 262
check member function 262
getLine member function 262
getText member function 262
removeLine member function 262
setLine member function 262
setText member function 262

IlvTextField class 263
check member function 265
getFloatValue member function 264
getIntValue member function 264
labelChanged member function 265
setAlignment member function 264
setChangeCallback member function 265
setEditable member function 234
setMaxChar member function 264
setValue member function 264
validate member function 265

IlvToggle class 266
getState member function 267
setBitmap member function 268
setCheckSize member function 268
setPosition member function 268
setRadio member function 267
setState member function 267

IlvToolBar class 299
useToolTips member function 300

IlvTreeGadget class 270
ActivateCallbackType member function 275
addItem member function 271, 272
detachItem member function 272
ExpandCallbackType member function 275

expandItem member function 272
getCallbackItem member function 274
getRoot member function 271
getSelectionMode member function 275
removeAllItems member function 272
SelectCallbackType member function 275
setSelectionMode member function 275
showLines member function 273
ShrinkCallbackType member function 275
shrinkItem member function 272

IlvTreeGadgetItem class 270
getFirstChild member function 272
getNextSibling member function 272
getParent member function 272
getPrevSibling member function 272
insertChild member function 272
setUnknownChildCount member function 272

IlvViewFrame class 350
getCurrentState member function 353
maximizeFrame member function 355
minimizeFrame member function 354
restoreFrame member function 354
setIcon member function 352
setTitle member function 352

IlvViewPane class 322
IncrementCallbackType member function

IlvSpinBox class 257
initialize member function 124
initializing an inspector panel 164
InsensitiveBitmapSymbol member function

IlvGadgetItem class 280
insertChild member function

IlvTreeGadgetItem class 272
insertColumn member function

IlvMatrix class 305
insertGraphic member function

IlvListGadgetItemHolder class 299
insertRow member function

IlvMatrix class 305
Inspect icon 57, 66
inspecting

matrix items 75
objects 57

inspector panels 57
accessors 164
394 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 395  Tuesday, July 28, 2009  11:01 AM
components 164
defining 153
editors 164
initialization steps 164

inspectors
Application 48, 88
definition 163
initializing 149
Panel Class 97
State 371

invalidateColumn member function
IlvAbstractMatrix class 304

invalidateRow member function
IlvAbstractMatrix class 304

isChecked class
IlvPopupMenu class 296

isFirstSelected member function
IlvMatrix class 310

isSelectable member function
IlvAbstractMenu class 291

J

JvScriptApplication option 137

K

keyboard focus 203
keyboard focus chain

description of 59
KillTestPanels command 41

L

Label List mode 31
Label mode 31
labelChanged member function

IlvTextField class 265
labelRect member function

IlvGadgetItem class 281
labels 238
list accessors 171
list editors 171
look and feel 216

changing 216

Motif 216
Windows 216

M

main function 127
make file 88, 131
MakeDefaultApplication command 42
makeFileExtension option 137
makePanels member function 125
manageSliders member function

IlvPanedContainer class 327
manual

naming conventions 19
notation 18
organization 17

matrices
adding rows and columns 305
drawing items on multiple cells 303
fit to size mode 306
fixed rows and columns 303
handling events 304, 311
number of columns 305
number of rows 305
resizing rows and columns 305
reverting to initial settings 306
selection modes 311
tooltips 315
using gadget items 314
using gadgets 314

matrix items
adding 309
aligning 309
bitmap images 306
callbacks 313
double-precision floating point values 307
editing 312
filled double-precision floating point values 307
filled floating point values 307
filled integers 307
filled labels 306
floating point values 307
gadget items 307
gadgets 307, 314
graphic objects 307
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 395



usrgadgets.book  Page 396  Tuesday, July 28, 2009  11:01 AM
in relief 310
integers 307
labels 306
predefined classes 306
redrawing 309
removing 309
selecting 310
sensitive 311

Matrix mode 32, 74
extracting matrix items 75
inspecting matrix items 75
setting up matrix items 74

maximizeFrame member function
IlvViewFrame class 355

menu bars 290
constraining the geometry 298
creating 65
default item size 298
flushing items 299
notifying geometry change 298
setting the orientation 297

Menu icon 70
menu items 291

accelerators 293
adding a submenu 292
associating mnemonics 293
attaching a callback 292
callbacks 295
check marks 295
checked 295
creating 291
manipulating 290
used as separator 291

Menu mode 32
menu separator 291
menus

attaching pop-up menus 70
callbacks 290
editing 65
handling events 291
introducing 289

message labels 238
bitmaps 239
laying out 240
localizing 241

mnemonics 241
opaque 240
transparent 240

messages 143
minimizeFrame member function

IlvViewFrame class 354
mustFlipLabels member function

IlvNotebookPage class 242

N

naming conventions 19
NewApplication command 27, 42
NewGadgetBuffer command 42
NewGraphicBuffer command 27
NewPanelClass command 43
noPanelContents option 138
notation 18
notebook pages 241
notebooks 241

callbacks 246
customizing pages 244
handling events 246
page color 245
tab content 246
tab margins 242
tab orientation 242
tab position 242
tabs content 246

number fields 246
callbacks 249
decimal point 249
editing modes 247
retrieving values 248
setting values 248
thousand separator 248

O

object files
linking 131

object resources
adding 215
predefined 212
priority 214
396 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 397  Tuesday, July 28, 2009  11:01 AM
setting 213
objects

activating 58
attaching 60
creating 54
editing 54
inspecting 57
setting the focus 59
using creation mode 55

objects, creating 54
OpenApplication command 43
opening

application 87
OpenMenuCallbackSymbol class

IlvPopupMenu class 295
option menus 249

callbacks 250
localizing 250
retrieving items 250
selected item 250
setting items 250

P

pageDeselected member function
IlvNotebook class 246

PageResizeCallbackType member function
IlvNotebook class 246

pageSelected member function
IlvNotebook class 246

Palettes panel
customizing 152

paned containers 203, 319
creating 323
direction 323
encapsulating in a view pane 324
modifying the layout 324

Panel Class inspector
description of 97

Panel Class palette 94
accessing 95
commands 96
description of 28, 86, 95

Panel Class Palette icon 95
panel classes 144

adding 96
adding an instance 101
callback declarations 99
callback definitions 100
creating 96, 115
creating instances 101
general properties 98
header files 100
managing panel instances 102
removing 97
setting options 98
source files 100

Panel inspector 103
panel instances

creating 115, 116
panelBaseClass option 138
panels

accessors 126
adding 143
Application inspector 48
Attachments 62
creating 54, 113
initializing 149
inspecting 103
menu bar inspector panel 66
State Inspector 371
State Tree 371
Test 58
testing 58

panes
creating 322
docking 337
elastic 325
fixed 325
hiding 323
introducing 319
minimum size 325
resizable 325
resizing 325
resizing mode 325
retrieving 324
showing 323
sliders 326
undocking 337

passwords 250
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 397



usrgadgets.book  Page 398  Tuesday, July 28, 2009  11:01 AM
pictureRect member function
IlvGadgetItem class 281

pointToItem member function
IlvMatrix class 314

pointToPosition member function
IlvAbstractMatrix class 304
IlvMatrix class 314

PolySelection mode 31
pop-up menus 290, 293

aligning items 294
attaching 70
contextual 296
creating 68
editing 68
tear-off 295

property accessors 168

R

radio buttons 266, 267
grouping 269

reDraw member function
IlvGadget class 234

reDrawItems member function
IlvGadgetItemHolder class 284

reinitialize member function
IlvMatrix class 305

remove member function
IlvMatrix class 309

RemoveAllAttachments command 43
removeAllItems member function

IlvTreeGadget class 272
RemoveAttachments command 43
removeColumn member function

IlvMatrix class 305
removeGuide member function

IlvGraphicHolder class 206
removeLabel member function

IlvSpinbox class 256
removeLine member function

IlvText class 262
removeObject member function

IlvSpinBox class 256
removePage member function

IlvNotebook class 244

removePane member function
IlvPanedContainer class 324

RemovePanel command 44
RemovePanelClass command 44
removeRow member function

IlvMatrix class 305
resizeColumn member function

IlvMatrix class 305
resizeRow member function

IlvMatrix class 305
resources

gadgets 212
objects 212
predefined 212

restoreFrame member function
IlvViewFrame class 354

Rotate mode 31
rowBBox member function

IlvAbstractMatrix class 304
rows member function

IlvAbstractMatrix class 302
rowSameHeight member function

IlvAbstractMatrix class 302

S

sameHeight member function
IlvMatrix class 306

sameWidth member function
IlvMatrix class 306

SaveApplication command 44
SaveApplicationAs command 44
saving

applications 87
scrollbars 251

callbacks 252
increment 251
page increment 251
values 251

scrolled combo boxes
large lists 235
number of visible items 235

select member function
IlvAbstractMenu class 291
IlvStringList class 261
398 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 399  Tuesday, July 28, 2009  11:01 AM
SelectAttachmentsMode command 45
SelectCallbackType member function

IlvTreeGadget class 275
SelectedBitmapSymbol member function

IlvGadgetItem class 280
SelectFocusMode command 45
Selection mode 31
SelectMatrixMode command 45
SelectMenuMode command 46
selectNext member function

IlvAbstractMenu class 291
set member function

IlvMatrix class 309
setAlignment member function

IlvMessageLabel class 240
IlvTextField class 264

setBackground member function
IlvNotebookPage class 245

setBitmap member function
IlvGadgetItem class 280
IlvMessageLabel class 239
IlvNotebookPage class 246
IlvToggle class 268

setBrowseMode member function
IlvMatrix class 312

setChangeCallback member function
IlvTextField class 265

setCheckColor member function
IlvColoredToggle class 267

setChecked class
IlvPopupMenu class 296

setCheckSize member function
IlvToggle class 268

setColumnSelected member function
IlvMatrix class 310

setConstraintMode member function
IlvAbstractBar class 298

setCurrentLook member function
IlvDisplay class 221

setDecimalPointChar member function
IlvNumberField class 249

setDefaultItemHeight member function
IlvStringList class 258

setDefaultItemSize member function
IlvAbstractBar class 298

setDirection member function
IlvArrowButton class 232
IlvPanedContainer class 323

setEditable member function
IlvTextField class 234

setExclusive member function
IlvMatrix class 311
IlvStringList class 261

setFileName member function
IlvNotebookPage class 244

setFirstFocusGraphic member function
IlvGraphic class 204

setFlushingRight member function
IlvAbstractBar class 299

setFormat member function
IlvDateField class 236
IlvNumberField class 247

setGraphic member function
IlvGadgetItem class 280, 299

setHighlightedBitmap member function
IlvButton class 233

setHighlightTextPalette member function
IlvGadgetItem class 282

setIcon member function
IlvViewFrame class 352

setIncrement member function
IlvScrollBar class 251
IlvSpinbox class 256

setInsensitiveBitmap member function
IlvMessageLabel class 239

setItemAlignment member function
IlvMatrix class 310

setItemCallback member function
IlvMatrix class 313

setItemReadOnly member function
IlvMatrix class 311

setItemRelief member function
IlvMatrix class 310

setItemSelected member function
IlvMatrix class 310

setItemSensitive member function
IlvMatrix class 311

setLabel member function
IlvGadgetItem class 279
IlvNotebookPage class 246
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 399



usrgadgets.book  Page 400  Tuesday, July 28, 2009  11:01 AM
setLabelAlignment member function
IlvGadgetItem class 279

setLabelOffset class
IlvPopupMenu class 294

setLabelOffset member function
IlvStringList class 259

setLabelOrientation member function
IlvGadgetItem class 279

setLabelPosition member function
IlvGadgetItem class 280
IlvMessageLabel class 240
IlvStringList class 258

setLabelsVertical member function
IlvNotebook class 242

setLastFocusGraphic member function
IlvGraphic class 204

setLine member function
IlvText class 262

setMaskChar member function
IlvPasswordTextField class 250

setMaxChar member function
IlvTextField class 264

setMaxFloat member function
IlvNumberField class 248

setMaxInt member function
IlvNumberField class 248

setMenu member function
IlvMenuItem class 292

setMinFloat member function
IlvNumberField class 248

setMinimumSize member function
IlvPanedContainer class 326

setMinInt member function
IlvNumberField class 248

setNbFixedColumn member function
IlvAbstractMatrix class 303

setNbFixedRow member function
IlvAbstractMatrix class 303

setNextFocusGraphic member function
IlvGraphic class 204

setNormalTextPalette member function
IlvGadgetItem class 282

setOpaquePalette member function
IlvGadgetItem class 282

setOrientation member function

IlvAbstractBar class 297
IlvScrollbar class 251
IlvSlider class 253

setPageBottomMargin member function
IlvNotebook class 243

setPageIncrement member function
IlvScrollBar class 251
IlvSlider class 253

setPageRightMargin member function
IlvNotebook class 243

setPosition member function
IlvToggle class 268

setPreviousFocusGraphic member function
IlvGraphic class 204

setRadio member function
IlvToggle class 267

setResizeMode member function
IlvPanedContainer class 325

setSelectCallback member function
IlvStringList class 261

setSelected member function
IlvComboBox class 235
IlvOptionMenu class 250
IlvStringList class 261

setSelectedBitmap member function
IlvButton class 233

setSelectionLimit member function
IlvStringList class 261

setSelectionMode member function
IlvStringList class 261
IlvTreeGadget class 275

setSelectionTextPalette member function
IlvGadgetItem class 282

setSensitive member function
IlvGadgetItem class 281

setSpacing member function
IlvAbstractBar class 298
IlvGadgetItem class 280
IlvMessageLabel class 240

setState member function
IlvToggle class 267

setTabsPosition member function
IlvNotebook class 242

setTearOff class
IlvPopupMenu class 295
400 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 401  Tuesday, July 28, 2009  11:01 AM
setText member function
IlvText class 262

setThousandSeparator member function
IlvNumberField class 248

setTitle member function
IlvViewFrame class 352

setTooltip member function
IlvMenuItem class 300

setTransparent member function
IlvGadget class 208
IlvMessageLabel class 240

setUnknownChildCount member function
IlvTreeGadgetItem class 272

setValue member function
IlvDateField class 237
IlvNumberField class 248
IlvSpinbox class 256
IlvTextField class 264

setValues member function
IlvScrollBar class 251
IlvSlider class 253

setVisibleItems member function
IlvScrolledComboBox class 235

setXGrid member function
IlvMatrix class 305

setXMargin member function
IlvNotebook class 242

setYGrid member function
IlvMatrix class 305

setYMargin member function
IlvNotebook class 242

sheets 315
show member function

IlvPane class 323
ShowAllTestPanels command 46
ShowApplicationInspector command 46, 49, 51, 

52
ShowClassPalette command 47
showFrame member function

IlvButton class 233
showLabel member function

IlvMatrix class 314
IlvStringList class 258

showLines member function
IlvTreeGadget class 273

ShowPanelClassInspector command 47
showPicture member function

IlvGadgetItem class 281
IlvMatrix class 314
IlvStringList class 258

ShrinkCallbackType member function
IlvHierarchicalSheet class 318
IlvTreeGadget class 275

shrinkItem member function
IlvTreeGadget class 272

slider panes 326
sliders

callbacks 254
increment 253
page increment 253
setting the orientation 251, 253
values 253

sort member function
IlvGadgetListItemHolder class 288

source files 92, 123, 126
sourceFileExtension option 138
Spin box mode 32
spin boxes 254

adding fields 255
adding graphic objects 256
callbacks 257
removing fields 256
with numeric fields 256
with text fields 256

state file 381
State inspector

description of 371
State Tree panel

description of 371
states

editing 367
string lists 257

displaying items 258
drag-and-drop 261
editing items 261
full selection mode 259
gadget items 257
handling events 260
label alignment 258
localizing 260
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 401



usrgadgets.book  Page 402  Tuesday, July 28, 2009  11:01 AM
multiple selection 260
partial selection mode 259
selection modes 260
single selection 260
tooltips 259

subpanels
editing 107
inspecting 109

system option 138

T

Test icon 58, 110
Test panel 58
TestApplication command 47
TestDocument command 47
testing

applications 110, 128
attachments 65

testing panels 58
TestPanel command 48
text 261

handling events 262
retrieving 262
setting 262
special keys 262

text fields 263
aligning 264
callbacks 265
handling events 265
keyboard shortcuts 266
localizing 264
number of characters 264

toggle buttons 266
bitmaps 268
callbacks 269
grouping 269
handling events 269
in color 266
localizing 268
mnemonics 268
position 268
state of 267
styles 267
text alignment 268

toolBarItem option 139
toolbars 290

contraining the geometry 298
default item size 298
docking 299
flushing items 299
managing gadgets 299
notifying geometry change 298
setting the orientation 297
using tooltips 300

tooltips
attaching to gadgets 212
creating 212
enabling/disabling 212
matrix 315
string lists 259

tree
accessors 174
editors 174

tree gadgets 270
callbacks 274
collapsing items 272
create items 271
customizing 273
drag-and-drop 275
editing items 275
expanding items 272
moving items 272
removing items 272
scrollbars 271
selection modes 274

U

unSelect member function
IlvAbstractMenu class 291
IlvStringList class 261

updatePanes member function
IlvPanedContainer class 323, 324

useConstraintMode member function
IlvAbstractBar class 298

useFullSelection member function
IlvStringList class 259

user classes
setting up 129
402 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 403  Tuesday, July 28, 2009  11:01 AM
userSubClassPrefix option 139
userSubClassSuffix option 139
useToolTips member function

IlvStringList class 259
IlvToolBar class 300

Using Matrices on page 78 32, 46

V

validate member function
IlvMatrix class 313
IlvNumberField class 249
IlvTextField class 265

valueChanged member function
IlvScrollBar class 252
IlvSlider class 254

view frames 352
changing the menu 352
states 353

view panes
creating 322

views
client 349

W

whichGraphicSelected member function
IlvSelector class 269

whichSelected member function
IlvComboBox class 235
IlvOptionMenu class 250
IlvSelector class 269

windows
2D Graphics 26
Application 27, 83
Gadgets 54
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 403



usrgadgets.book  Page 404  Tuesday, July 28, 2009  11:01 AM
404 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L



usrgadgets.book  Page 405  Tuesday, July 28, 2009  11:01 AM
I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L 405



usrgadgets.book  Page 406  Tuesday, July 28, 2009  11:01 AM



usrgadgets.book  Page 407  Tuesday, July 28, 2009  11:01 AM



408 I B M  I L O G  V I E W S  G A D G E T S  V 5 . 3  —  U S E R ’ S  M A N U A L

usrgadgets.book  Page 408  Tuesday, July 28, 2009  11:01 AM


	IBM ILOG Views Gadgets V5.3 User’s Manual
	About This Manual
	Part I Creating GUI Applications with IBM ILOG Views Studio
	Introducing the Gadgets Extension of IBM ILOG Views Studio
	Loading the GUI Application and GUI Generation Plug-In
	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	Gadgets Palette
	Menus Palette
	Matrix Palette
	Miscellaneous Palette
	View Rectangles Palette

	Gadgets Extension Commands
	AddPanel
	EditApplication
	Generate
	GenerateAll
	GenerateApplication
	GenerateMakeFile
	GeneratePanelClass
	GeneratePanelSubClass
	InspectPanel
	KillTestPanels
	MakeDefaultApplication
	NewApplication
	NewGadgetBuffer
	NewPanelClass
	OpenApplication
	RemoveAllAttachments
	RemoveAttachments
	RemovePanel
	RemovePanelClass
	SaveApplication
	SaveApplicationAs
	SelectAttachmentsMode
	SelectFocusMode
	SelectMatrixMode
	SelectMenuMode
	ShowAllTestPanels
	ShowApplicationInspector
	ShowClassPalette
	ShowPanelClassInspector
	TestApplication
	TestDocument
	TestPanel

	Gadgets Extension Panels
	Application Inspector
	The Panel Class Inspector
	The Panel Instance Inspector


	Editing Gadget Panels
	Creating a New Panel
	Creating Gadget Objects
	Inspecting an Object
	Testing a Panel
	Using Active Mode
	Setting the Keyboard Focus in Panels
	Using the Attachments Mode
	Setting the Guides
	Attaching Objects to Guides
	Attachment Operations

	Editing Menus
	Menu Bars
	Pop-up Menus
	Toolbars

	Using Matrices
	Setting Up Matrix Items
	Extracting Matrix Items
	Inspecting Matrix Items

	Editing Spin Boxes
	Inserting a Spin Box
	Setting the Type of Spin Box Item


	Editing Applications
	The Application Buffer
	Application Description File
	Other Generated Files
	The Application Inspector
	The General Page
	The Options Page
	The Header and Source Pages
	The Script Page
	The Application Inspector Buttons

	Editing an Application
	The Panel Class Palette
	Panel Classes
	The Panel Class Inspector
	Panel Instances
	Testing an Application


	Using the Generated Code
	Building the Application
	Setting Up the Application Class
	Creating the First Panel Class
	Creating the Second Panel Class

	Generating the C++ Code
	FirstPanelClass Header File
	FirstPanelClass Source File
	MyApplication Header File
	MyApplication Source File
	Testing the Generated Application

	Extending the Generated Code
	Defining a Derived Class
	Using the Derived Class
	Defining Callbacks without Deriving Classes


	Customizing the Gadgets Extension of IBM ILOG Views Studio
	Configuration Options for the Gadgets Extension

	Extending IBM ILOG Views Studio
	Extending IBM ILOG Views Studio Components
	Defining a New Command
	Defining a New Panel
	IBM ILOG Views Studio Messages
	Defining a New Buffer
	Defining a New Editing Mode
	The Class IlvStExtension

	Integrating your Own Graphic Objects
	Defining a New Command to Add an Object
	Adding the Include File and Library File of a New Class to the Generated Code
	Customizing the Palettes Panel
	Defining and Integrating an Inspector Panel

	Extending IBM ILOG Views Studio: An Example
	Defining a New Buffer Class
	Defining a New Command
	Defining a New Panel
	Providing Container Information
	Registering Callbacks


	Using Inspector Classes
	What Is an Inspector?
	Components of an Inspector Panel
	Preconditions and Validators
	Editors

	Defining a New Inspector Panel
	Example
	Creating the Color Combo Box Inspector Panel



	Part II IBM ILOG Views Gadgets
	Introducing IBM ILOG Views Gadgets
	Gadgets Main Features
	Gadgets in a Snapshot
	Menus
	Common Gadgets
	Matrices

	Gadgets Libraries
	Code Sample

	Understanding Gadgets
	Gadget Holders
	List of Available Gadget Holders
	Handling Events
	Focus Management
	Gadgets Attachments

	Common Gadget Properties
	Gadget Appearance
	Associating a Callback with a Gadget
	Localizing a Gadget
	Associating a Mnemonic with a Gadget Label
	Setting Tooltips
	Gadget Resources

	Gadgets Look and Feel
	Using the Default Look and Feel
	Using Several Look and Feel
	Dynamic Loading of Look and Feel
	Changing the Look and Feel Dynamically
	Using the Windows XP Look and Feel


	Dialogs
	Predefined Dialog Boxes
	IlvIMessageDialog
	IlvIQuestionDialog
	IlvIErrorDialog
	IlvIWarner
	IlvIInformationDialog
	IlvIFileSelector
	IlvIPromptString
	IlvFontSelector
	IlvColorSelector

	Creating Your Own Dialog Box
	Showing and Hiding Dialog Boxes
	Setting a Default Button

	Using Common Gadgets
	Using IlvArrowButton
	Using IlvButton
	Displaying a Bitmap in a Button
	Displaying the Button Frame
	Associating a Mnemonic with a Button
	Event Handling and Callbacks

	Using IlvComboBox and IlvScrolledComboBox
	Setting a Combo Box as Noneditable
	Setting and Retrieving Items
	Changing or Retrieving the Selection
	Using Large Lists
	Setting the Number of Visible Items
	Localizing Combo Boxes
	Event Handling and Callbacks

	Using IlvDateField
	Formatting a Date
	Setting and Retrieving a Date Value
	Year 2000 Management

	Using IlvFrame
	Associating a Mnemonic with a Frame

	Using IlvMessageLabel
	Associating a Bitmap with a Message Label
	Making the Message Label Opaque
	Laying Out the Message Label
	Localizing a Message Label
	Associating a Mnemonic

	Using IlvNotebook
	Customizing Notebook Tabs
	Handling Notebook Pages
	Event Handling and Callbacks

	Using IlvNumberField
	Selecting an Editing Mode
	Choosing a Format
	Defining a Range of Values
	Setting and Retrieving a Value
	Specifying the Thousand Separator
	Specifying the Decimal Point Character
	Event Handling and Callbacks

	Using IlvOptionMenu
	Setting and Retrieving Items
	Changing and Retrieving the Selected Item
	Localizing Option Menus
	Event Handling and Callbacks

	Using IlvPasswordTextField
	Using IlvScrollBar
	Setting the Scrollbar Values
	Setting the Scrollbar Orientation
	Event Handling and Callbacks

	Using IlvSlider
	Setting the Slider Values
	Setting the Slider Orientation
	Setting the Thumb Orientation
	Event Handling and Callbacks

	Using IlvSpinBox
	Adding and Removing Fields to a Spin Box
	Working with Text Fields
	Working with Numeric Fields
	Event Handling and Callbacks

	Using IlvStringList
	Manipulating String List Items
	Customizing the Appearance of String List Items
	Displaying Tooltips
	Localizing String List Items
	Handling Events and Callbacks

	Using IlvText
	Setting and Retrieving Text
	Event Handling

	Using IlvTextField
	Aligning Text
	Setting and Retrieving Text
	Localizing a Text Field
	Limiting the Number of Characters
	Event Handling and Callbacks
	Keyboard Shortcuts

	Using IlvToggle
	Changing the State and Color of a Toggle Button
	Toggle and Radio Button Styles
	Displaying a Bitmap on a Toggle Button
	Aligning and Positioning the Label
	Changing the Size of the State Marker
	Localizing a Toggle Button
	Associating a Mnemonic with a Toggle Button
	Handling Events and Callbacks
	Grouping Toggle Buttons in a Selector

	Using IlvTreeGadget
	Changing the Tree Hierarchy
	Navigating Through a Tree Hierarchy
	Changing the Characteristic of an Item
	Expanding and Collapsing a Gadget Item
	Changing the Look of the Tree Gadget Hierarchy
	Event Handling and Callbacks


	Gadget Items
	Introducing Gadget Items
	Using Gadget Items
	Creating a Gadget Item
	Setting a Label
	Setting a Picture
	Specifying the Layout of a Gadget Item
	Nonsensitive Gadget Items
	Dynamic Types
	Using Palettes with Gadget Items
	Drawing a Gadget Item

	Gadget Item Holders
	Gadget Item Features
	Finding Gadget Items
	Redrawing Gadget Items
	Creating Gadget Items
	Editing Gadget Items
	Dragging and Dropping Gadget Items

	List Gadget Item Holders
	Modifying a List
	Accessing Items
	Sorting a List


	Menus, Menu Bars, and Toolbars
	Introducing Menus, Menu Bars, and Toolbars
	Menus and Menu Items
	Using IlvAbstractMenu
	Using IlvMenuItem

	Pop-up Menus
	Aligning Item Labels in a Pop-up Menu
	Using Tear-Off Menus
	Using the Open Menu Callback
	Using Checked Menu Items
	Using Stand-alone Menus
	Using Tooltips in a Pop-Up Menu

	Menu Bars and Toolbars
	Using IlvAbstractBar
	Using IlvMenuBar and IlvToolBar


	Matrices
	Introducing Matrices
	Using IlvAbstractMatrix
	Subclassing IlvAbstractMatrix
	Drawing Items Over Multiple Cells
	Setting Fixed Rows and Columns
	Handling Events

	Using IlvMatrix
	Handling Columns and Rows
	Handling Matrix Items
	Handling Events
	Using Gadget Items in a Matrix

	Using IlvSheet
	Using IlvHierarchicalSheet
	Changing the Tree Hierarchy
	Navigating through a Tree Hierarchy
	Changing the Characteristic of a Tree Item
	Expanding and Collapsing a Gadget Item
	Changing the Look of the Tree Gadget Hierarchy
	Event Handling and Callbacks


	Panes
	Introducing Panes
	Creating Panes
	Creating a Graphic Pane
	Creating a View Pane
	Showing or Hiding a Pane

	Adding Panes to Paned Containers
	Creating a Paned Container
	Modifying the Layout of a Paned Container
	Retrieving Panes
	Encapsulating a Paned Container in a View Pane

	Resizing Panes
	Setting the Resize Mode and the Minimum Size of a Pane
	Resizing Panes With Sliders


	Docking Panes and Containers
	Introducing Docking Panes and Dockable Containers
	Creating Docking Panes
	Creating Orthogonal Dockable Containers

	Controlling Docking Operations
	Connecting an Instance of the IlvDockable Class to a Pane
	Docking and Undocking a Pane
	Filtering Docking Operations

	Using Docking Bars
	Using the IlvAbstractBarPane Class
	Customizing Docking Bars

	Building a Standard Application With Docking Panes
	Defining a Standard Layout
	Using the IlvDockableMainWindow Class


	View Frames
	Introducing View Frames
	Creating a Desktop with View Frames
	Creating a Desktop
	Creating View Frames

	Managing View Frames
	Creating a Client View
	Changing the Title Bar
	Changing the View Frame Menu

	Minimizing, Maximizing, and Restoring View Frames
	Normal View Frames
	Minimized View Frames
	Maximized View Frames

	Closing View Frames
	Changing the Current View Frame

	Customizing the Look and Feel
	Understanding the Architecture
	IlvLookFeelHandler
	IlvObjectLFHandler
	Class Diagram

	Making a User-Defined Component Look-and-Feel Dependant
	Creating a New Component
	Defining the Object Look-and-Feel Handler API
	Subclassing the Object Look-and-Feel Handler
	Installing the Object Look-and-Feel Handlers

	Changing the Look and Feel of an Existing Component
	Subclassing the Component Object Look-and-Feel Handler
	Replacing an Object Look-and-Feel Handler

	Creating a New Look-and-Feel Handler
	Registering a New Look-and-Feel Handler
	Registering Object Look-and-Feel Handlers Into a New Look-and-Feel Handler



	Appendix A Editing States
	Creating a Simple Application
	Creating the First Panel
	Creating the Second Panel
	States Panels

	Editing the Show State
	Chaining States
	Changing the Label and the Callback of the Show Button
	Creating a Substate: the Edit State
	The State File


	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W



