4|lli

|IBM ILOG Views
Data Access V5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C @) N T E N T S
Table of Contents

Preface About This Manual e e e e e e 11
What You Need TO KNOW. e e e 11

Manual Organizationt e 12

NOtAtION. . .. 13

Typographic CONVENLIONSttt e e e e e 13

Naming ConNVENTIONSottt e e e 13

Related Documentation and Bibliography. i 13

IBM ILOG Manuals. 13

C++ Programming Language Publications i 14

Database Publications 14

Part | IBM ILOG Views Data Access Common Framework. .. 15
Chapter 1 INtroducing Data ACCESSottt e 17
What IS Data ACCESS? . . o ittt et e e e e e e e 17

Supported Databasesot 18

Distribution STrUCTUre 19

Chapter 2 Data ACCESS BaSiCS 21

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 3

Chapter 3

4

IBM

OV IV BW L v v e e 21

IBMILOG Views INterfaceot e 22
IVAPPICALION . . . 22
(701 = 110 [= £ 23
GaAdgELS . . ot 24
Callbackso 24
Data ACCESS CONCEPLS . ..ttt et e e e e e 25
ValUBS . o 26
TablES . . 26
Data SOUIMCES 27
Data-Source-Aware GadgetsS.ottt 27
Integrating with IBM ILOG Views Advanced Graphics. 28
Tables .. 31
Introduction to Tablesot 32
One-Tier and Two-Tier Tables.o e 33
The Roleof aTable Object e e e e 34
SO BMAS . . . oo 35
SChemMa PrOPerties. . . o oo 35
Defining the Schema of a Table Object. i 37
Managing Rows inaTable 38
BasiC TEChNIQUES.ot 38
Techniques for Two-Tier Tables e e 40
Error CatChing oo o 41
Changing Error MESSagES oot 43
Table HOOK . ..o 43
Copying and Serializing Table Objects e 44
Specialized Table SubcClasses e 44
B SQLTabIE ... 45
IMemoOryTable. . ..o 45
B StriNgsSTable . . 45
liIMapTable. . . 46
ILOG VIEws DATA ACCESS V5.3 — USER’'S MANUAL

Chapter 4

IBM

Subclassing IiTable. 46

GUIdEIINES . . o 46
Subclassing Example. 49
Directory Class EXample o 51
P IS S ENCE . . . o 52
Table Properties e 53
SCOPEA PrOPertieS . . o ottt 53
Property-Aware Gadgetsot 54
Data Sources and Gadgets it 57
Data SOUICES . ..ttt 57
Creating a Data Source Gadget.ottt 58
Connecting Data-Source-Aware Gadgetsottt 59
The Scope of aData SOUICEt e 59
Managing Rows in aData SOUICEttt e e e e 60
Customizing a Data SOUICE oottt e e 62
Error Handlingo o 66
The RePOSIHOIY. . . oo e 67
Data-Source-Aware GadgetS.t 69
Interface to Data-Source-Aware Gadgets e 69
liTableGadgetot 72
DDl . . 76
BENtryField . .o e 76
liITableCombOoBOXt e 77
DT XL, . . . oo 77
1T 1 e T T | [78
liToggleSelector e 78
HiDBNAVIGAtOr.o e 78
DD TiMer. . .o 80
HIHT ML RGO Y. . . ot e e e e e 80
XML . 80
HiDDPICIUNE. . . . oo e 81

ILOG VIEws DATA ACCESS V5.3 — USER’'S MANUAL 5

Chapter 5

Chapter 6

6

IBM

NIDDOPLONMENUot e e e e e e 81

DS NGLISt. . . o 82
liDbTreeGadget.o e e 82
lIChartGraphiC. e 83
BDDGIaPNEr. . . o 85
BiDDGANTLot e 86
Global Callbacks 88
Handling Values in Data ACCESSttt e 91
The Value Class.ot e e 91
Constructing aValue Object i e 92
NUILValUE. .« o 92
Data TY PSS . . .ttt 92
Checking the Data Type of an Object e 93
Converting a Data Access Data Typeto a C++ TYPeo ot ittt 93
Formatting an lliValue Object. i e 95
SHTUCTUIEA TY DS & v o ittt ettt e e e e e e 96
Hints and Tips for Using Data ACCeSSt 99
Working with DbFields in Data ACCESSottt e e 99
The Style of a DbField 100
Creating a Form Using the Forms Assistant 103
Foreign Tables e 105
Specifying a Foreign Table in IBM ILOG Views Studio, 105
Using a Foreign Tableto ConvertValues i 107
Using a Foreign Table to Constrain Values e 109
Using the Forms Assistant with Foreign Tables. 109
Setting the Table LOOK. 110
ColumMN GEOMBIIY . .ttt e e 110
Read-Only Settingsot e e 111
Fixed ColUMNS . ..o 112
Troubleshooting.ot 112

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Part Il

Chapter 7

Chapter 8

IBM

Avoiding Common Names in Foreign Tables. 112

Matching Types witha Foreign Table e 113
Data Accessand SQL 115
SQL Tables 117
INtrOdUCTION . .o 118
Structural Definition. 118
Creating the Definition Using IBM ILOG Views Studio., 119
Creating the Definition in CH++ 120
A Shortcut C++ Definition.t 122
The SQL Sessionofan SQL Table. i i 122
RUN-TIME OPtiONS ..ot e e e e 123
Concurrency CONMIOlot o 123
AUto-CommMIt MOE 124
FetCh PoOliCY o 125
Auto-Refresh Mode e 125
Inserting-Nulls Mode e 126
Dynamic-SQL MOde.o 126
Bound Variables Mode. e 126
Cursor BUffering. o 127
Auto-RowW LOCKING MOOEo 127
ParamM S . . 128
Transaction Manager.ottt e e e 128
STUCTUIEd TYPES . ottt e e e e e 131
ASYNChronoUS MOot 134
SOQL Data SOUICES . .ttt e e 137
QUENY MO . 137
Parameters . . . 139
Defining a Parameter. 139
Defining a Parameter That Accepts User Inputot 139

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 7

Chapter 9

Part Il

Chapter 10

Chapter 11

8

IBM

Working with an SQL Data SOUICE.ottt e e e e 144

Defining ColUMNS. 144
Forcingthe Name of a Column e e e 145
The Table Primary Key 147
ConnectingtoaDatabase 149
SQL Sessions and Cursor Objects. 149
Connecting to a Database System. 150
(O £] £ 151
Database DIiVEISottt e 153
The Connect Dialog BOX e e e 154
Registered SeSSIONSo 154
IBM ILOG Views Data Access Gadgets 157
IBM ILOG Views Studio Data Access Gadgets......................... 159
The Palettes Panel 159
Data Access and SQL Gadgetst 160
Charts, Grapher and Gantt Chart Gadgetsttt 162
SQL Tables . .. 163
Notebook Pages Common to Data Access Gadgets Inspectors. 165
Callbacks Notebook Page 167
Dialog Boxes Common to Data Access Gadgets Inspectors 168
Font Chooser Dialog BOX. ottt 168
Color Chooser Dialog BoXo ot e 169
File Chooser Dialog BOXot e e 170
Data Source Gadgets Reference. i 171
S QL DataSOUIC . . o o vttt it e e e 171
lliSQLDataSource Inspector Panel 172
liISQLDAtaSOoUrce MENUS.ottt e e e e 172
General EIemMentso e 174
SELECT Section Notebook Pages. e e e e 174

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Chapter 12

IBM

Dialog BOXES . . . oo e 184

IIMEeMOryDataSOUICEt e e e e e 192
Display Gadgets Reference. i 201
liTableGadget e e e e e 202
Table Gadget Inspector Panel 202
1 o] = 209
DbField Inspector Panel e 209
IHENtryField ... 213
Entry Field Inspector Panel 213
ITableCombOBOXot 216
Table Combo Box Inspector Panel 216
DD T Xt . . 223
DbText Inspector Panel 224
Db Toggle . ..o 226
DbToggle Inspector Panel 227
HToggleSelector e 231
ToggleSelector Inspector Panel 231
DDNAVIGATOr. . o .o e 234
DbNavigator Inspector Panel 234
DD TIMEr .« o 237
DbTimer Inspector Panel e 237
HT ML REP O T .« .« .ottt e e e e e e e e e e 238
HTMLReporter Inspector Panel e 238
XML . 243
XML INsSpector Panel e 243
DD P C U . . e 245
DbPicture Inspector Panel 245
DB OPLIONMENU e 247
DbOptionMenu Inspector Panel e 247
DD StIINGLISt. . oo 250
DbStringList Inspector Panel 250

ILOG VIEws DATA ACCESS V5.3 — USER’'S MANUAL 9

Appendix A

Appendix B

Appendix C

Appendix D

10

IBM

IiDbTreeGadget e 256

DbTreeGadget Inspector Panel 257
HChartGraphiCo 265
ChartGraphic Inspector Panel 265
1T o €] = o 4= 269
DbGrapher Inspector Panel e 270
DD GANTt .« . . 276
DbGantt Inspector Panel 276
ULility ClasSes 291
The liString Classt e e e e e e e e 291
The liDecimal Classt e e 292
The iDate Classt e e e e 292
The lIFormat Classt e e 293
The INPUtMask Classot e 295
Format Syntax. e 297
SHING FOIMats . ..o e e 297
NUMDBDEr FOIMALSot e e 298
Date FOrmats 300
Literal CharaCters. 302
Mask Syntax 303
Placeholders. 304
Predefined Masks. 305
Error Messages. 307
... 309

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

About This Manual

Welcometo IBM® ILOG® Views Data Access, referred to as Data Access, alibrary
dedicated to the development of client-server database applications. Data Accessis fully
integrated with IBM ILOG Views, therefore allowing you to build graphical user interfaces
and to link them to data sources to provide intuitive data.

What You Need To Know

The guide assumes that you are familiar with the UNIX® or PC environment in which you
are going to use Data Access, including its specific windowing system. Since Data Accessis
written for C++ developers, this guide a so assumes that you can write C++ code and that
you are familiar with your C++ devel opment environment so as to manipul ate files and
directories, use atext editor, and compile and run C++ programs.

Finally, asthis product is an add-on to IBM® ILOG® Views Controls, you must be familiar
with how to use IBM ILOG Views Controls, and its graphical editor IBM ILOG Views
Studio.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 11

Manual Organization

This manual consists of atable of contents, preface, 12 chapters, 4 appendixes and a
glossary.

Part I, IBM ILOG Views Data Access Common Framework

*
*

Chapter 1, Introducing Data Access contains a brief introduction of the product.

Chapter 2, Data Access Basics describes the basic objectsin IBM ILOG Viewsthat are
necessary to build an application with Data Access. The second part of this chapter is an
overview of Data Access and the main objects that are available in the API.

Chapter 3, Tables describes one of the most important objects in Data Access, the table
object (11iTable classand its subclasses).

Chapter 4, Data Sources and Gadgets describes the data source object (11ibataSource
and its subclasses) and data source aware gadgets.

Chapter 5, Handling Values in Data Access contains information on how values are
handled in Data Access, without having to take into account their actual type until run
time. Thisfeature isimplemented by the T11ivalue class.

Chapter 6, Hints and Tipsfor Using Data Access contains some examples of the types of
situations that you may encounter when using Data Access (and IBM ILOG Views
Studio), and provides you with some useful tips on how to handle them.

Part 11, Data Access and SQL

4

4

4

Chapter 7, SQL Tables contains more detailed information on one of the most important
table subclassesin Data Access, 11isQLTable. Thisisthe class used to connect with a
relational database management system.

Chapter 8, SQL Data Sources tells you how to define parametersin an SQL table and
provides hints on using the SQL data source.

Chapter 9, Connecting to a Database contains information on how Data Access objects
are used to implement a connection to a database.

Part 111, IBM ILOG Views Data Access Gadgets

4

4

Chapter 10, IBM ILOG Views Sudio Data Access Gadgets introduces the Data A ccess
gadgets found on the Palettes panel.

Chapter 11, Data Source Gadgets Reference describes the two data source creation
gadgets: T1isQLbataSource and I1iMemoryDataSource.

Chapter 12, Display Gadgets Reference describes the display gadgets listed in the Data
Access menu in the Palettes Panel.

12 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

& Appendix A, Utility Classes provides information on afew of the useful additional
classesin Data Access, I1iString, I1iDate, IliFormat, and I1iInputMask.

& Appendix B, Format Syntax, describes the syntax used to specify the data format.
& Appendix C, Mask Syntax, describes the syntax used to specify the mask format.
& Appendix D, Error Messages, describes the error messages.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:
& Code extracts and file names are written in courier typeface.

& Entriesto be made by the user are written in courier typeface.

& Some words appear in italics when seen for the first time.

Naming Conventions
Throughout the documentation, the following naming conventions apply to the API.

& The names of classes defined in the IBM ILOG Views library begin with 11v, for
example T1vDisplay.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized, for example T1vGadgetContainer.

Related Documentation and Bibliography

Certain IBM ILOG manuals can help you get started with Data Access, while various books
found in the marketplace can be a good source of information to create SQL database
applications.

IBM ILOG Manuals
These IBM ILOG manuals can help you use Data Access:

¢ To get started with Data Access, see the IBM ILOG Views Data Access Getting Sarted
manual.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 13

14

IBM

The IBM ILOG Views Data Access Reference Manual describes the C++ classes for
Data Access.

For more help in using the graphical user interface, see the manual IBM ILOG Views
Studio User’s Manual provided with IBM ILOG Views.

The IBM ILOG Views Foundation User’s Manual provides helpful information and
numerous examples to help you quickly get proficient in the use of IBM ILOG Views.

For information on C++ classes of other packages of IBM ILOG Views, refer to the
appropriate reference manuals.

For information on IBM ILOG Views DB Link, seethe IBM ILOG Views DB Link
Reference Manual.

C++ Programming Language Publications

The following books provide information on the C++ programming language:

L 4
L 4

2

Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Wesley, 1989.

Stroustrup, Bjarne. The C++ Programming Language. Reading, MA: Addison-Wesley,
1986.

Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley,
1994,

Database Publications

The following books contain some helpful, general information on databases:

2

2

Date, C.J. A Guide to the SQL Standard. Reading, Mass.: Addison Wesley Publishing
Company.

Date, C.J. An Introduction to Database Systems. Reading, Mass.:Addison Wesley
Publishing Company.

ILOG VIEwWs DATA AccEss V5.3 — USER’'S MANUAL

Part |

IBM ILOG Views Data Access Common
Framework

This part describes how to use the common features of Data Access, including the Data
Access basics, the use of table objectsin Data Access, data sources and gadgets, and the
handling of valuesin Data Access. It also provides some hints and tips for using Data
Access.

16 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Introducing Data Access

This chapter introduces you to the Data Access package of IBM® ILOG® Views Studio.
You can find information on the following topics:

& What is Data Access?
& Supported Databases
& Distribution Structure

What is Data Access?

Data Accessisavisual environment for graphic-intensive database applications. Using
IBM® ILOG® Views, it lets you create graphical business objects and link them to data
sources to provide intuitive data access.

Data Access is organized as a set of C++ classlibraries. These classes are to be used in
conjunction with the IBM ILOG Views C++ class libraries. Data Accessis also
accompanied by a schema editor (SQL Schema Editor).

Libraries

The IBM ILOG Views libraries provide the APl needed to implement the graphical part of
your application. IBM ILOG Views handles the drawing and management of gadgets and

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 17

graphics. The Data Access libraries provide the additional functionality required to handle
datafrom an external data source.

For more information on the IBM ILOG Views class libraries, refer to the appropriate
IBM ILOG Views Reference Manual.

Editors

The graphical editor provided with IBM ILOG Views, called IBM ILOG Views Studio, isa
powerful editor that enables you to build a portable graphical user interface.

IBM ILOG Views Studio allows you to construct your interface from predefined
“gadgets’—that is, buttons, scroll bars, menus, and other interface objects—using smple
drag-and-drop operations, while generating C++ code for you to program your application.
IBM ILOG Views Studio is fully documented in the IBM ILOG Views Studio User’s
Manual.

The graphical editor provided with Data Accessis based on IBM ILOG Views Studio, but
has been adapted to be used with Data Access. This editor isreferred to as

IBM ILOG Views Studio and contains an additional “Data Access’ palette, which contains
all those predefined gadgets that may interact with an external source of data. Thereisaso a
special interface that allows you to set up the connection with the external data source, in a
simple graphical way.

Also included with Data Accessis the SQL Schema Editor. This editor is provided should
you need asimple editor to create tables in a database.

The schemais the table-form structure in which the datais stored. The schema editor is
therefore used to edit the table definitions and the data. The schema editor is also used to
drop atable in a database. This editor islocated into the SQL Tables palette from the Data
Access palette.

Supported Databases

You can use Data Access with the following databases:
¢ Oracle

¢ Informix

& Sybase

¢ OLE DB (only for Windows)

¢ ODBC (only for Windows)

& Microsoft SQL Server (only for Windows)

¢ DB2

18 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Distribution Structure

support.

I Note: Check the compatibility of your particular database version directly with 1BM

Distribution Structure

When Data Accessis installed on your machine, severa directories are created, some of
them accompanied with a dedicated README file that you are advised to read. The
following main directories are created:

4

* & & o

2

bin and its subdirectories, provide some basic tools (IBM ILOG Views Studio with
static Data Access libraries, IBM ILOG Views Prototype Studio with static Data Access
libraries and other tools). In the directory of each tool you will find <systems> and
<database> directories for your specific target systems.

data and its subdirectories provide panel description files (suffixed . i1v) used by the
delivered Data Access samples and editors, as well as the message description files. You
should avoid modifying them.

include and its subdirectories provide all Data Access class header files.
inform30 and its subdirectories provide the compatibility with InForm 3.0.
1ib and its subdirectories contain the Data Access libraries.

samples and its subdirectories provide sample coding to let you see particular aspects of
the classes provided by Data Access.

studio and its subdirectories contain the Data Access libraries for Studio.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 19

20 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Data Access Basics

This chapter briefly describesthe IBM® ILOG® Views objects that are required to create a
basic Data Access application. It then continues with an overview of the basic concepts of
Data Access and the C++ classes that are provided in the Data Access API.

You can find information on the following topics:
¢ Overview

¢ |BM ILOG Views Interface

& Data Access Concepts

Overview

IBM

Data Accessisalibrary dedicated primarily to the development of client-server database
applications. These applications generally consist of forms, which contain a set of fields
(text fields, check boxes, and so on). The values shown in these fields are the result of a

mapping between the fields and the data from an external data system.

The mapping between the fields in the graphical user interface and the external data system
is bidirectional: data can be retrieved from the database and displayed in the fields, and can
be modified by the user and updated in the external data source for long term storage.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 21

The gadgets that enable you to build the user interface for your application in Data Access
are provided by IBM® ILOG® Views. Some of these gadgets are the same asin

IBM ILOG Views, whereas others have been slightly modified to enable them to connect to
an external data source.

Data Access applications can be programmed either in C++ or in IBM ILOG Script, an IBM
ILOG implementation of the JavaScript language. This user's manual shows how things can
be donein C++.

IBM ILOG Views Interface

22

IBM

Data Accessisan add-onto IBM® ILOG® Views so, therefore, the complete functionality
of the IBM ILOG Views APl isavailable to users of Data Access. Some IBM ILOG Views
classes are essential to an application created in Data Access. These are briefly described in
this section. For more information, refer to the IBM ILOG Views documentation.

IlvDisplay

Any application that is constructed using Data Access must have an 11vDisplay oObject
before anything el se can be created. This object manages all aspects of the communication
with the display system (such as drawing primitives, event handling, and so on).

The following code sample shows how a display object can be created:

// --- Display ---
int main (int argc, char* argv([]) {
IlvDisplay* display = new IlvDisplay(“sample”, ““, argc, argv);

}

Note that when IBM ILOG Views Studio generates source code for your application it will
createan Ilvapplication object, instead of creating a display object in thisway. This
application object then creates the display.

llvApplication

Applications built with IBM ILOG Views Studio contain an instance of a subclass of the
Ilvapplication class. This class manages the creation of the T11vDisplay oObject aong
with the creation of the application panels (that is, containers). Assuming the name of the

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM ILOG Views Interface

application is“Myapp”, the following is a sample of the code that IBM ILOG Views Studio
would generate;

class MyApp: public IlvApplication {
virtual void makePanels () ;
Yi
void MyApp: :makePanels() {

// Create all the panels defined in the Application.

}

int main (int argc, char* argv([]) {

MyApp* appli = new MyApp (“‘myapp”, 0, argc, argv);

Containers

Applicationsinteract with the end user through windows that appear on the computer screen.
A container is awindow that may hold a given number of graphic objects (such as charts,
gauges, buttons, and so on). Most of the interaction between an application and the end user
takes place through containers and the graphic objects they contain.

I Note: In IBM ILOG MViews Studio, containers are referred to as panels.

Data Access typically usesthe IBM ILOG Views I11vGadgetContainer class asabase
class for the panels of the application.

Three different techniques can be used to set up a container. You can:
1. Code completely in C++.
o Create the container.
o Create the graphic objects.
o Put the graphic objects into the container.
o Set their positions and any other properties as required (font, color, and so on).

Since this technique requires the most coding, it is seldom used except in situations
where agreat deal of flexibility isrequired (such as creating graphic objects that depend
on run-time information).

2. Design the panel using IBM ILOG Views Studio and saveitinan .ilv datafile. Then
create the container by coding in C++ and initialize it by reading the . i 1v datafile.
Although this technique is more convenient than the previous one, it still has one

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 23

shortcoming: in order to manipulate a graphic object in a container through coding, you
need to call the I1vContainer: : getObject member function and cast its result into
the appropriate type.

3. Design the panel using IBM ILOG Views Studio and generate the source code for the
corresponding panel class. This technique combines the benefits of the previous
technique with those gained from the fact that IBM ILOG Views Studio generates a
custom subclass of the T11vGadgetContainer classthat correspondsto the panel being
generated. This panel class will have appropriate member functions to retrieve the
objects contained in the panel and will define virtual member functions to handle
callbacks.

Note that these techniques can be combined. For example, it is possible to design a panel
with IBM ILOG Views Studio, generate its source code, and then, at run time, create
additional objects and put them into the container.

For more information regarding the code generated by IBM ILOG Views Studio, refer to the
IBM ILOG Views Gadgets - User's Manual.

Gadgets

Among the graphic objects that can be used in containers, one category of graphic objectsis
especialy relevant for Data Access, namely gadgets.

All gadget classes inherit from the T11vGadget class, which is a subclass of the
IlvGraphic class. Gadgets are specially designed graphic objects that are used to build
dataentry forms.

IBM® ILOG® Views provides avariety of gadgets (text fields, buttons, menu bars, and so
on) for creating objectsin your graphical user interface. These gadgets can be accessed in
the IBM ILOG Views Studio Palettes panel. See Chapter 1 of the IBM ILOG Views Data
Access Getting Sarted.

Data Access provides a certain number of additional gadgets that are designed to facilitate
the seamless integration of different types of data sources with graphical user interfaces.
These gadgets are generally referred to as data-source-aware gadgets. Data-source-aware
gadgets are described in more detail later. See Data-Source-Aware Gadgets on page 69.

Callbacks

The behavior of a gadget can be customized by defining a callback function and attaching
this function to one of the callback types that the gadget is able to trigger.

At the bottom of the IBM ILOG Views Studio main window, you will find a callback field
that lets you define the primary callback of the selected gadget. There are, however, other
callback types available with certain gadget classes. These other callback types can
generally be defined through the last page of the various gadget inspectors. (The only

24 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data Access Concepts

exception is the SQL Data Source inspector where the callbacks panel is accessed through
the Callbacks item in the Tools menu.)

Entry Field =] E3

[rata Source | General | Specific Callbacks |

Type Mame Walue Script

Generic I— I—
Secondary I— I—
Focus In I— I—
Focus Out I— I—
Enter Gadget I— I—
Leave Gadget I— I—

[i i e

-

Aol I Cloze |

Note that a check box lets you choose whether the callback is coded in IBM ILOG Script or
C++.

The callback types that are supported by each gadget class are described in the
IBM ILOG Views and Data Access Reference Manuals. Additional information for classes
specific to Data Access can be found in the rest of this manual.

Data Access Concepts

This section summarizes the fundamental concepts of Data Access. The information in this
introduction is brief. Each section, however, contains a reference to alater chapter where
you will find more detailed information.

You can find information on the following topics:
Values

Database Connection

Tables

Data Sources

Data- Source-Aware Gadgets

® & 6 6 o o

Formats

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 25

& Masks
& Integrating with IBM ILOG Views Advanced Graphics

Values

The C++ language provides different typesthat can be used to represent values (for example,
int, double, char*, and so on). Data Access can dea with datain a uniform way,
independently of itstype. It usesthe T1ivalue classto represent datawhosereal typeis not
known at compile time. See Chapter 5, Handling Values in Data Access.

The 11iDpatatype class defines objects that are used to represent the dynamic type of an
TI1livalue object.

Database Connection

All communication between a Data A ccess program and a remote database system goes
through the 11isQLsession and 11isQLCursor classes. These classes provide a high-
level interface to all the database access functions needed by Data Access. They are
themselves implemented with the IBM ILOG Views DB Link library. See Chapter 9,
Connecting to a Database.

Tables
The r1iTable abstract class defines an object that resembles atable. See Chapter 3, Tables.

A tableisadatastructure that is defined by an ordered collection of columns. Each column
has aname, adatatype, and other properties that define the way valuesin the column should
be handled in Data Access. The ordered collection of columns of atable is known asthe
table schema.

Once the schema of atable is defined, the table can manage a set of rows, each row being an
ordered collection of values. The valuesin arow conform to the data types of the
corresponding columns in the schema.

The r11iTable isabstract in the sense that although it provides the interface needed to
manipulate the rowsin atable, it does not, itself, provide any useful implementation for this
interface.

Instead, more specialized subclasses of 11iTable provideimplementationsthat are specific
to different types of data stores. For instance, the 111 sQLTable class manages rowsthat are
located in aremote relational database server. See Chapter 7, SQL Tables. The
IliMemoryTable class manages rows that are located in the process memory space.

The Data Access API aso enables you to define new types of table objects that can deal with
other types of data stores or data feeds.

26 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Data Access Concepts

The 11isQLTable class (and itsinstances) should not be confused with the tables that are
located in a remote database server. These two entities are referred to as table objects and
database tables, respectively. The 11isQLTable class represents Data Access objects that
arelocated in the process address space and that serve as a bridge to tables (or SQL queries)
that are located (and executed) remotely in a database system.

Data Sources

Generally speaking, a data source indicates a particular source of information, such asadata
feed or a database system.

Data Access provides an T1ibataSource gadget class. This class serves as a bridge
between the T11iTable class and the data-source-aware gadget classes. Data-source-aware
gadgets are dedicated to handling user input and displaying datain different styles. They are
described in the next section.

From now on in this manual, the term “data source” is used to refer to instances of the
IlibataSource class (or one of its subclasses). This should not be confused with the
general meaning of thisterm.

Althoughthe T1ipatasource classisagadget class, itsinstances are not visible to the user
of an Data Access application. They are, however, visiblein IBM ILOG Views Studio so
that they can be edited.

Like other gadgets, a data source has a name and supports a set of callback types through
which it is possible to customize its behavior for specific needs, such as business rules, and
S0 on. See Chapter 4, Data Sources and Gadgets.

Data-Source-Aware Gadgets

In Data Access, you will find a set of gadget classes that can be seamlessly integrated with
the data sources described in the previous section. These gadgets are known as data-source-
aware gadgets.

A data-source-aware gadget class is a class that inherits through multiple inheritance paths
from both the 11vGadget class (or one of its subclasses) andthe 11iFieldItf class.

The11irFieldrtf class definesthe interface common to all data-source-aware gadgets. It
has member functions that deal with such operations as connecting to a data source,
guerying or changing the value of the gadget, and so on.

For instance, the T1iEntryField classis the data-source-aware version of the
IBM ILOG Views I1vTextField class. It hastwo superclasses, T1vTextField and
TI1iFieldTtf. See Chapter 4, Data Sources and Gadgets.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 27

28

IBM

Formats

TheIliFormat classisused to format values according to different rules. For instance, it is
possible to define aformat that specifies that floating-point numbers should be displayed
with three digits after the decimal point. See the description of the T11iFormat classin
Appendix A, Utility Classes.

Once aformat has been defined, it can be used in C++ code to convert an T1ivalue object
into a character-string representation. Alternatively, it can be used to configure a data-
source-aware gadget so that the values displayed in the gadget are formatted according to a
predefined format.

Formats are defined using the format specification language described in Appendix B,
Format Syntax.

Masks

The1liInputMask classissimilartothe11iFormat classexcept that it aso manages user
input in addition to the format. Masks can be used to:

& Check application-defined constraints on the values entered by the end user.
& Permit the end user to enter values according to customized syntax.

A specification language lets you specify masks from within IBM ILOG Views Studio. This
format specification language for masksis described in Appendix C.

It is possible to specify amask in C++ instead of using the specification language. The
IliInputMaskIpl class needsto be subclassed for this purpose.

Integrating with IBM ILOG Views Advanced Graphics

One of theinteresting features of Data Access isthat its complete integration with

IBM ILOG Views enables the creation of customized graphic objects that are linked to data
originating from an Data A ccess data source. The way in which this can be set up is shown
in the following figure:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data Access Concepts

I1liTableHook .
‘ 1trabletioo ‘ Actions performed on
Each time something graphic objects can be
changes in the table, the ‘ reflected in the table using
manager is notified and may interactors
make modifications to the .
advanced graphics IliTable
Riows
, $ Database
IliDataSource

Consistency between e
connected . =
data-source-aware
ohjects in all panels

Figure2.1 Data Accesswith IBM ILOG Views Advanced Graphics

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 29

30 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Tables

This chapter describes the most important object in Data Access, the table object. The table
is created and manipulated viathe 11iTable class and its subclasses. This chapter also
discussesthe 11ischema class and its relationship to table objects.

You can find information on the following topics:

*
*
*
*
*
*
*
*
*
*

ILOG VIEwWSs DATA ACCESS V5.3 —

Introduction to Tables

One-Tier and Two-Tier Tables

The Role of a Table Object

Schemas

Managing Rows in a Table

Table Hook

Copying and Serializing Table Objects
Specialized Table Subclasses
Subclassing IliTable

Table Properties

USER'S MANUAL

31

Introduction to Tables

32

IBM

The1liTable classplaysacentral role within Data Access sinceit serves two fundamental
purposes:

¢ Modeélling

Tables are used as a structuring tool for user interface intensive applications. Before
tables, user interfaces were designed as aset of unrelated entry fields and the relationship
between these fields and the application data was coded in a programming language.
Now, the datamodel of the application can be graphically defined in terms of tables, with
gadgets in the panels being connected to table columns.

& Connectivity

Data can be seamlessly exchanged with external data stores using specialized subclasses
of the11iTable class. For instance, the 11isQLTable classis dedicated to data
exchange with arelational database system.

Note: In database terminology, theterm“ table” designates a data structurethat is stored
in and managed by a database system. Fromthe graphical user interface point of view, the
term*“ table” designates a graphic object (or gadget). In this document, the terms

“ database table” and “ table gadget” are used to refer to these two different tabl e types.
Theterm* table” or “table object” will be used to designate an instance of a subclass of
theTliTable class.

A tableisimplemented by the 11iTable classin Data Access. Thisclassis an abstract class
that defines objects capable of managing a collection of rows. Each table has a schema that
isdefined by the 11ischema class, fromwhichthe 11iTable classinherits. Therowsthat a
table manages must conform to its schema.

Asexplained in Chapter 2, Data Access Basics, the 11iTable class defines an interface for
managing rowsin atable but it does not provide any useful implementation for thisinterface.
Instead, Data A ccess provides a set of subclasses of the T1iTable classthat implement this
interface with a specific storage policy.

The 11iTable class defines a protocol for creating, editing, and inspecting atable object,
and is designed to be subclassed. The subclasses of T11iTable (thatis, I1isQLTable,
IliMemoryTable, I1iStringsTable, and I1iMapTable) implement this protocol for
the different types of data sources with which they are associated.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

One-Tier and Two-Tier Tables

liMemoryTable liSQLTable

lliSchema l— lliTable lliStrings Table |

lliMapTable

Figure3.1 TheIliSchema Hierarchy

One-Tier and Two-Tier Tables

The subclasses of I1iTable managetablesin different ways. I1iMemoryTable and
I1liStringsTable managerowsin the process memory space. Thesetables are called one-
tier tables. Only the local processisinvolved to manage these types of tables.

Other classes such as 111 sQLTable, however, manage rows that are located in aremote
database. These types of tables are referred to as two-tier tables since they interact with
another process (in this case, the database server).

In the case of two-tier tables, alocal row cache isimplemented, which stores copies of some
of the remote rows which thetable istied to, at any particular time. This cache reduces the
communication overhead with the remote database engine. It also provides random accessto
the rows, even if the database system lacks this capability.

Database Server

Results

Figure3.2 One-Tier and Two-Tier Tables

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 33

The Role of a Table Object

DbField

The primary role of atable object isto manage data. The datais managed in the form of
rows of values. But before a table can manage rows, it needs to be properly defined.

The way in which atable object is defined depends on its class. For instance, an
I1isQLTable object needsto know its own schema and how this schema relates to the
schema of the associated relational database. This contrasts with 11iMemoryTable objects
that do not need any information other than their own schema.

A table object can be defined either by coding in C++ through the API or interactively by
using an appropriate inspector in IBM® ILOG® Views Studio.

Note: In IBM ILOG Views Studio, inspectors are only available for the 11isgQLTable
and I1iMemoryTable classes.

Once defined, atable object can be used directly by coding its member functionsin C++ to
inspect, add to, or modify its rows. However, it is mainly used by being attached to a data
source gadget that will manage it on behalf of the end user. A data source gadget will usually
have one or more gadgets (such as table gadgets, entry fields, combo boxes, and so on)
connected to it.

PANEL

Data Source

Froduct

TABLE OBJECT
|Juni0r30 =
o8 S
Frice Vi — ROL
{ $14.89 Product | Price | —Frame Jhstock
S * | Juniarao 499 Fibre Glass |fes
- Juniosad $18.99: Carbon Fibre [No
|F'bre Glass L Deitabi §33.591 Carbon Fibre iYes

/ DeltaB0 $25.00¢ Carbon Fibre Mo
Delta0 $35.00: Carbon Fibre Mo
DbToggle Airwing101 $49.99 Carhon Fibre | es Table Gadget

34 IBM

Sock $38.99: Mo Frame Ma

Figure3.3 The Links Between a Data Source and Data-Sour ce-Awar e Gadgets and a Table Object

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Schemas

Schemas

IBM

This section describes the properties of atable that relate to its columns. These propertiesare
defined by the T11i schema and the 11iTable Objects.

You can find information on the following topics:
& Schema Properties
& Defining the Schema of a Table Object

Schema Properties

The schema of atable isan ordered collection of columns. Most of the properties relating to
the schema of atable are defined by the 11ischema class, from which the 11iTable class
inherits. However, the “mapping” properties are defined by the 11iTable class. Each
column in a schema has the following properties:

Identification

¢ |ndex — Indicates the position of the column within the schema (starting from 0). Note
that the index of a column may change when other columns are inserted or removed from
the schema.

& Name — Allows other components of the Data Access library (such as data-source-
aware gadgets) to refer to a column by its name.

& Token— Isa“magic cookie” (an T11nt) that isassigned to the column at creation time.
It is guaranteed to remain constant even across program executions and is unique among
all the columns that belong to a given schema. It is used mostly by subclasses of the
TIliTable classthat need to identify columnsindependently of name or index changes.
This property is not accessible from within IBM ILOG Views Studio.

Column Type
& Datatype — Specifies the datatype of al valuesin this column.

& Maximum Length — Applies only when the data type of the column assumes val ues of
varying size (typicaly, the 11istringType datatype).

& Nullable — Specifies whether a column allows null values or not.

& Part Of Key — Specifies whether the column belongs to the primary key of the table or
not. The primary key of aschemais asubset of the columns such that the table will reject
any update or insertion that would result in the table having two rows whose values are
equal over the columns belonging to the primary key. In other words, the primary key isa
set of columns that can serve to identify rows in the table uniquely.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 35

& Default Value — Indicates aval ue that will be displayed when the user inserts a new row
in the table.

Look

& Format — Specifies the format that will be used to display values. Seethe 11iFormat
class.

& Mask — Specifies the mask used to enter values. Seethe 111 InputMask class.

& Alignment — Specifies how valuesin this column will be displayed. Usually, character
string values are | eft-aligned and date and numeric values are right-aligned.

& Display Width — Indicates the width in pixels of the column when it is displayed.

& Visibility — Indicates whether a column isvisible to the end users. Note that in this case
the column and the values it contains can still be accessed by the API.

& Title— Specifies the caption of the column when it is displayed in atable gadget. By
default, the name of the column is used.

& Label — Isthe caption of the column when it isdisplayed in apbField gadget. By
default, the name of the column is used.

& Read Only — Specifies whether the column is read-only.

For more information on how the look of a column applies to gadgets that are connected to
it, see Setting the Table Look on page 110.

Mapping

A column can be mapped onto a column that belongs to another table. This tableisreferred
to asthe foreign table. See Foreign Tables on page 105. In this situation, when the columnis
displayed, the value shown is not the original column value. Instead, avalue from the foreign
tableis displayed. The foreign tableis therefore used asiif it were a dictionary. In addition,
the user can modify the column value by selecting a value from a pull-down menu that
contains alist of possible values. The foreign table provides the domain of values for the
column.

The properties relating to the mapping of a column are defined by the T11iTable class.

There are two ways in which aforeign table can be defined: either the name of adata source
or the name of atable object can be specified. The latter isan API-only option.

& Foreign Data Source Name — Specifies the name of the data source from which the
foreign table is obtained.

& Foreign Table— Indicates the foreign table (this property is not accessible from within
IBM ILOG Views Studio).

¢ Vaue Column — Indicates the name of the column in the foreign table that defines the
domain.

36 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Schemas

& Display Column — Indicates the name of the column in the foreign table that will be
displayed in place of the original column value.

& Constrained — Indicates whether the column rejects any values that do not belong to the
value column of the foreign table.

& Completion — Indicates whether any incomplete user input will be automatically
completed by the gadget on validation, when the columnis being edited in atable combo
box.

Defining the Schema of a Table Object

This section shows how atable can be created and its schema defined. Sincethe 11iTable
class is abstract and therefore cannot be instantiated, the 11iMemoryTable classisused in
the example below.

The 11iMemoryTable classimplements the table interface by storing rowsin the process
memory space. Therefore, this class is suitable for transient tables that do not retain their
states across program executions.

A number of member functionslet you access or modify the schema of atable. Most of these
can be found in the description of the T1ischema class. See IBM ILOG Views Data Access
Reference Manual. The 11iTable class defines those member functions that deal
specifically with the mapping of columns.

Hereisalist of some of the schema member functions :
class IliSchema {

I1Int getColumnsCount () const;
const char* getColumnName (I1lInt colno) const;
const IliDatatype* getColumnType (IlInt colno) const;
I1lBoolean isColumnPartOfKey (IlInt colno) const;
void setColumnPartOfKey (IlInt colno, IlBoolean partOfKey) ;
I1Boolean isColumnNullable(IlInt colno) const;
void setColumnNullable(IlInt colno, IlBoolean nullable);
I1Boolean insertColumn(IlInt colno,

const char* colname,

const IliDatatype* type,

IlInt maxlen = -1);

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 37

The following code shows how a memory table can be defined:

enum ColumnTag { IdColumn, NameColumn, SalaryColumn };
IlvDisplay* display;

IliMemoryTable* tbl = new IliMemoryTable(display) ;
tbl->lock() ;

tbl->insertColumn (IdColumn, “Id”, IliIntegerType) ;
tbl->insertColumn (NameColumn, “Name”, IliStringType) ;
tbl->insertColumn (SalaryColumn, “Salary”, IliDoubleType) ;
tbl->setColumnPartOfKey (IdColumn, IlvTrue) ;
tbl->unLock () ;

In this example, a memory table is created and its schema is defined. The schema has three
columns, one of which serves as akey for thetable. The 11iSchema: : insertColumn and
IliSchema: : setColumnPartOfKey member functions are used.

Note that the T1iMemoryTable classlike al classes derived from the T1iSchema classis
reference counted. This meansthat it is necessary to lock instances of these classes when
they are used. An instance of these classesis implicitly deleted when its reference count
reaches 0.

The next section contains information on how to access or edit the rows of atable. The
IliTableBuffer classisthe main classrequired to carry out these actions.

Managing Rows in a Table

The 11iTable class providesaset of virtual member functions that can be used to manage
the rows of atable. Basic row management techniques that apply to all table types are
described first. Then, the specid case of two-tier tables is described.

You can find information on the following topics:
& Basic Techniques

¢ Techniques for Two-Tier Tables

¢ Error Catching

¢ Changing Error Messages

Basic Techniques

The main operations that can be performed on arow are:
¢ Insertarow (seeIliTable: : insertRow)

& Modify arow (see I1iTable: : updateRow)

& Deletearow (see11iTable: :deleteRow)

38 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Managing Rows in a Table

& Inspect arow (seeT1iTable: :getValue and I1iTableBuffer: : rowToBuffer)

These member functions do not give access to the actual row implementation. Instead, they
make use of the T1iTableBuffer classthat can store a copy of the valuesin arow.

This means that any updates to atable are aways carried out on a complete row. The user
edits one complete row at atime, therefore avoiding — in the case of 11isQLTable Objects
— time consuming network activity by validating changes in a complete row.

In addition, it avoids any problemswith data coherency that the end user may have. The data
inindividual columnsin arow may apply constraints to each other. For example, having a
particular value in one column may limit the values allowed in another column. If the end
user must validate arow one column at atime, this problem may occur. When awholerow is
validated at one time, the problem is avoided.

A table buffer is created using the T1iTable: : getBuf fer method. The table buffer must
bereleased usingthe 11iTable: : releaseBuf fer method when it is no longer needed.

Note that rows are identified by their position within the table object. Thisis represented by
an integer, starting with zero for the first row.

The following code sample shows how to insert a new row into the memory table created in
the previous example:

IliTableBuffer* buf = tbl->getBuffer();
buf->at (IdColumn) . importInteger (1) ;
buf->at (NameColumn) . importString (“Smith”) ;
buf->at (SalaryColumn) . importDouble (255.00) ;
if (tbl->appendRow (buf) < 0) {

IlvPrint (“Append row failed”);
}
tbl->releaseBuffer (buf) ;

TheIliTableBuffer: :at member function returns areferenceto an 11ivalue object
that stores the value of the column, whose index is given. The

Ilivalue: :importInteger and Ilivalue: : importString member functions are
then used to assign the i d and name to the buffer values. Finally, T1iTable: : appendRow
iscalled to insert a new row into the table.

The following code sample shows how arow in atable can be modified:

IliTableBuffer* buf = tbl->getBuffer();
IlInt rowno = 10;
if (!buf->rowToBuffer (rowno)) {

IlvPrint (“Invalid row number : %$1d”, (long)rowno) ;
}
IlDouble salary = buf->at(SalaryColumn) .asDouble() ;
buf->at (SalaryColumn) .importDouble (salary * 1.1);
if (!tbl->updateRow(rowno, buf)) {

I1lvPrint (“Update row failed”);
}
tbl->releaseBuffer (buf) ;

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 39

TheIliTableBuffer: : rowToBuf fer member function copiesthe row at the specified
index into the buffer.

The following code sample shows how arow can be removed from atable by calling the
IliTable: :deleteRow member function:

IlInt rowno = 15;
tbl->deleteRow (rowno) ;

Additional member functions are provided in the 11iTable classthat allow you to move a
row in atable, sort atable, or search for a given value in atable. For more information, refer
to the moveRow, findRow, findFirstRow, and sortRows member functionsin the
I1liTable class documented inthe IBM ILOG Views Data Access Reference Manual.

Techniques for Two-Tier Tables

The I1iTable classalso provides aset of member functions dedicated to managing two-
tier tables. A two-tier table istied to rows that are managed by some external process or
system; therefore serving as a bridge between Data Access and this external system. For
instance, the 11isQLTable class (described in Chapter 6, Hints and Tips for Using Data
Access) serves as abridge to relational database systems. The DirectoryTable sample
class serves as a bridge to the file system. See Subclassing Example on page 49.

A two-tier tableis usually defined by specifying some sort of criteria that will be used to
identify aresult set extracted from the remote or external system. Precisely how thisis done
depends on the subclass of T1iTable being used. For an 11isQLTable, for example, an
SQL SELECT statement has to be specified.

TheIliTable: :select member function retrieves the data from the external system
identified by the above mentioned criteria. This datais then copied into alocal row cache
managed by the table object.

With atwo-tier table, the basic row management member functions (described in section
Managing Rowsin a Table on page 38) perform specific actions, the details of which depend
on the specific subclass being used. For more information, refer to the appropriate classin
the IBM ILOG Views Data Access Reference Manual.

A two-tier table can retrieve rows in one of the following ways:

& Theselect member function immediately retrieves all rows identified by the selection
criteriaand stores them in the local row cache.

& Theselect member function locates the rows identified by the selection criteriain the
external system, but delays their retrieval until they are required.

The 1liTable: : getRowsCount member function returns the number of rows that are
located in the local row cache. However, when a two-tier table implements the delayed row
retrieval, the value returned by T1iTable: : getRowsCount corresponds to the number of

40 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

IBM

Managing Rows in a Table

rows that have been retrieved to date. It does not take into account those rows that have not
been retrieved yet.

The1liTable: : fetchCompleted member function returns true when all rows have
been retrieved and stored in the local row cache. This member function can therefore be used
to check that the row count (as returned by getRowsCount) is definitive.

The1liTable::fetchNext and IliTable: : fetchall functions are used to retrieve
explicitly afixed number of rows or al remaining rows from the result set. However, when
any of the insertRow, updateRow, deleteRow, and getvalue member functions are
called and given arow number outside of the rowsin the local row cache, all missing rows
up to thisrow areretrieved. Inthisway, the delayed retrieval featureistransparent except for
the rows count.

The insertRowInCache, updateRowInCache, and deleteRowInCache member
functions are similar to their non-incache counterparts except that they ssmply act on the
local row cache, leaving the remote data store unaffected.

TheIliTable: :clearRows clearsthe row cache. For two-tier tables, the external system
towhichthe 11iTable oObjectistied isnot affected by the c1earrRows member function. A
subsequent select would retrieve the same rows again.

In aone-tier table, however, the T1iTable: : clearRows effectively deletesal rowsin the
IliTable Object.

Error Catching

All operationsthat are carried out on the rows of atable can fail for avariety of reasons. If an
operation fails, an 11iErrorMessage object that describes the error is created. The
member function that triggered the error returns an error status.

Aninstance of the T1iErrorMessage class contains the following information:

¢ Origin— an enumeration tag that identifies the library from which the error originates. It
can be any of thefollowing libraries. bbmsServer, DbmsClientApi, DbLink,
Data Access Or Application.

¢ Code — an integer whose interpretation depends on the origin.

& Message — acharacter string that contains a description of the error.

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 41

Error messages are caught by 11iErrorsink objects. An error sink is an object to which
errors can be forwarded.

class IliErrorSink {
public:

virtual void addError (const IliErrorMessage&) {}
Yi
//The I1iErrorSink class is intended to be subclassed. Here is an example:
class MyErrorSink : public IliErrorSink {
public:
virtual void addError (const IliErrorMessage& msg) {
IlvPrint (“Error: code=%1d, message='%s’",
(long)msg.getCode (),
msg.getMessage ()) ;

}i

Alternatively, the T1iErrorList class can be used. This classinherits from
IliErrorSink, overloading the adderror member function so that all errors caught are
recorded and made available for inspection.

Once a particular type of error sink has been chosen, the 11iTable: :addErrorSink
member function can be used to indicate that all subsequent error messages be forwarded to
it.

Hereis an example of how the addErrorsink member function can be used:

IliErrorList errors;
IliTable* tbl;

tbl->addErrorSink (&errors) ;
if (!tbl->deleteRow(10)) {
for(IlInt 1 = 0; i < errors.getErrorsCount(); ++i) {
IlvPrint (“Error: %s”,
errors.getErrorAt (i) .getMessage()) ;
}

tbl->removeErrorSink (&errors) ;

Note that when table objects are acted upon through the default Data Access interaction
mechanisms (such as the bbNavigator or the table gadget), any errors that occur are
automatically reported to the end user.

However, when table objects are acted upon by custom C++ or IBM ILOG Script code that
executes on behalf of user interface callbacks, it is the custom code that bears the
responsibility to catch any errors that may occur (in an error list object, for example) and to
explicitly report these errors to the end user.

The distinction should be made between user interface callbacks (such as the callback of a
button gadget or of a menu item) and other more specialized callbacks (such as the data
source validateRow callback).

42 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Table Hook

Catching and reporting errors has to be done by user interface callbacks. It does not need to
be done by the more specialized callbacks because the latter callbacks always execute in the
context of auser interface callback.

Errors are reported by the 11iErrorReporter class, which hasavirtual reportErrors
member function. It is possible to provide a custom error reporter on a data source or table
gadget basis, or, more globally, the default error reporter may be overridden.

Changing Error Messages

Data Access and IBM® ILOG® Views DB Link error messages are translated in message
database files.

& Data Access error messages are located in:
SILVHOME/data/dataccess/dataccess.dbm
¢ |IBM ILOG Views DB Link error messages are located in:

SILVHOME/data/dataccess/dblink.dbm
The following code sequence is necessary to ensure that error messages are correctly
translated:

IliFormat: :ReadMessageDatabase (display, "dataccess/dataccess.dbm") ;
IliErrorMessage: :ReadMessageDatabase (display) ;

IliFormat: :ReadMessageDatabase (display, "dataccess/dblink.dbm") ;
IlisSQLSession: :ReadMessageDatabase (display) ;

Table Hook

The 11iTableHook class can be used to monitor the changes that a table object undergoes.
The 11iTableHook class hasanumber of virtual member functions that can be overloaded
in subclasses to monitor different events that occur within atable object.

In the following example, atable hook is used to print amessage each time arow isinserted
in atable object:

class CustomHook: public IliTableHook {

virtual void rowInserted (IlInt rowno) {

IlvPrint (“A rows has been inserted at position %d”,
(int) rowno) ;

}
}i
int main () {

IliTable* tbl;

CustomHook* hook = new CustomHook;
tbl->addHook (hook) ;

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 43

tbl->removeHook (hook) ;
delete hook;
return 0;

Copying and Serializing Table Objects

A table object can be copied withthe T1iTable: : copyTable member function.

IliTable* origTable;

IliTable* cloneTable = origTable->copyTable() ;

Note that, in the case of two-tier tables, the row cache is not copied.

A table object can be written to astream withthe 11iTable: :writeTable member
function:

IliTable* tbl;
ostream& os;

ébi—>writeTable(os);
At alater date, the table object can be rebuilt by reading from a stream:
istream& is;

IliTable* tbl = IliTable::ReadTable(is) ;

Note that, in the case of two-tier tables, the row cache is not written to the stream.

Specialized Table Subclasses

The Data Access library provides subclasses of the T1iTable class. Each oneis dedicated
to a specific row management policy.

You can find information on the following topics:

¢ |[liSQLTable
¢ |liMemoryTable
& |liSringsTable
¢ |liMapTable

44 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Specialized Table Subclasses

IliSQLTable

The 11isgQLTable classimplements the table interface by managing rows that are located
in aremote relational database system. It handles all communication aspects with the
database system, such as the generation of SQL statements, error checking, and so on.

The 11isoLTable class defines two-tier tables.

Instances of this class can be defined and used either through the C++ API or interactively in
IBM ILOG Views Studio through an 11isQLpataSource object.

See Chapter 7, QL Tables for more information on the 11isQLTable class.

IliMemoryTable

A memory tableisatable that is managed locally in memory. You would use this type of
table for datathat is required only temporarily and therefore is not stored in a database. The
SQL query language cannot be used with memory tables.

The 11iMemoryTable class defines one-tier tables.

Objects of this class can be defined and used either through the C++ API or interactively in
IBM ILOG Views Studio through an 11iMemoryDataSource Object.

Examples of how a memory tableis defined and used can be found in Managing Rowsin a
Table on page 38.

lliStringsTable

Ther1istringsTable class definesaone-tier table with a single column of type string.
Itissimilar to the I1iMemoryTable class, with the following exceptions:

¢ Itsschemaisfixed and cannot be changed.

& |t provides a custom interface to manage rows. Thisinterface usesthe const char*
C++typeinstead of the T1ivalue and I1iTableBuffer classes.

Hereisan example of how it is used:

IlvDisplay* dpy;
IliDataSource* ds;

IliStringsTable* tbl = new IliStringsTable (dpy) ;
// No need to define the schema.

tbl->lock() ;

tbl->appendString (“One”) ;
tbl->appendString (“Two”) ;

tbl->appendString (“Three”) ;

ds->setTable(tbl) ;

tbl->unLock () ;

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 45

Objects of this class can be defined only through the C++ API.

lliMapTable

The 11iMapTable class defines one-tier tables with two columns, the first column being of
type integer and the second of type string. It issimilar to the T1iMemoryTable class,
with the following exceptions:

¢ Itsschemaisfixed and cannot be changed.
¢ Itisread-only. Itsrows are given at construction time and cannot be changed afterwards.

¢ It supports IBM ILOG Views messages so that the values in the second column can be
automatically trandated before being displayed. See the
IliMapTable: : setLanguageSensitive member function.

Hereis an example of how the T11iMapTable class can be used:

IlvDisplay* dpy:
IliDataSource* ds;

static IliMapEntry entries[] = {
1, “red”,
2, “green”,
3, “blue”,
0, NULL

}i

IliMapTable* tbl = new IliMapTable (dpy, entries);
ds->setTable(tbl, IlTrue);

Objects of this class can be defined only through the C++ API.

Subclassing lliTable

46

IBM

This section describes how to subclassthe 11iTable classto create your own custom table
classes.

You can find information on the following topics:
¢ Guidelines

& Subclassing Example

& Directory Class Example

L 2

Persistence

Guidelines

When subclassing 11iTable, the following guidelines should be respected:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

Subclassing IliTable

& Thefollowing virtual member functions may be overloaded for both one- and two-tier

tables:

Member Function Overload
getRowsCount mandatory
getValue mandatory
updateRow optional
insertRow optional
deleteRow optional
moveRow optional
allowRowMove optional
updateRowInCache optional
insertRowInCache optional
deleteRowInCache optional

Member Function Overload
clearRows mandatory
select mandatory
isSelectDone mandatory
fetchCompleted optional
fetchNext optional
fetchall optional

¢ Thefollowing virtual member functions may be overloaded for two-tier tables:

& The subclass should be designed to notify the Data Access library when certain events
occur. Notification is performed by calling the appropriate function from the following:

Member Function

When Called

a significant number of changes.

allRowsDeleted Called when the clearRows member function
is called.
tableChanged Called when the I1iTable object has undergone

ILOG VIEwWSsS DATA ACCESS V5.3

USER'S MANUAL 47

48

IBM

Member Function

When Called

rowInserted

Called just after a new row has been inserted
in the table.

rowsInserted

Called just after a sequence of rows has been inserted.
Note that instead of calling this member function,

the rowInserted member function may be

called repeatedly, once for each row.

rowToBeChanged

Called just before a row is changed.

rowChanged

Called just after a row has changed.

rowToBeDeleted

Called just before a row is removed.

rowDeleted

Called just after a row has been removed.

rowMoved

Called just after a row has moved
to another position.

rowsExchanged

Called just after two rows have exchanged positions.

rowFetched

Called just after a new row has been fetched
from a remote database and inserted into
the local row cache (the rowInserted
member function must also be called).

rowsFetched

Called just after a sequence of rows

has been fetched. Note that instead of calling
this member function, the rowFetched
member function may be called repeatedly,
once for each row.

cellChanged

Called just after a cell has changed.

If more than one cell has changed in a row,
it is preferable to call the rowChanged
member function once, instead of

calling cel1Changed many times.

raiseError

Called each time an error occurs.
The error is described by
an IliErrorMessage object.

Note that in many instances, the implementor of an 11iTable object can choose to notify

certain events by calling one or another member function.

For instance, if two cellsin agiven row are changed, the 11iTable object implementor can

choose to do one of the following:

& Call cellchanged twice.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Subclassing IliTable

or
& Call rowChanged once.

Similarly, the insertion of two or more consecutive rows in the table, can be notified in one
of the following ways:

& By repeatedly calling rowInserted, once for each row.
or
& By cdling rowsInserted once.

As aconsequence, when a given event can be notified either by calling one member function
or another, an 11iTable object using atable hook to monitor changes undergone by the
table should overload both member functions, otherwise some events may be missed.

Subclassing Example

Hereisan example that definesapirectoryTable class. This class managesfilesin a
directory. Within this example, the member functionsthat are used to notify the Data Access
library when certain events occur appear in bold type.

#include <dirent.h>

#include <string.h>

#include <stdio.h>

#include <limits.h>

#include <ilviews/dataccess/table.h>

class DirectoryTable : public IliTable {
public:
enum ColumnTags { FileName = 0 };
DirectoryTable (IlvDisplay* dpy, const char* directory)
IliTable (dpy)
{
_rowsCount = 0;
_files = NULL;
_directory = dupString(directory) ;
insertColumn (FileName, “FileName”, IliStringType);
}
~DirectoryTable() {

tidy ()
delete [] _directory;
}
void clearRows () {
tidy () ;

allRowsDeleted() ;
tableChanged() ;

}

IlvBoolean select() {
readDir () ;

}

IlvBoolean isSelectDone() const {
return _files != NULL;

}

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 49

50

IBM

IlvInt getRowsCount () const {
return _rowsCount;
}
IlvBoolean getValue(IlInt rowno, IlvInt colno,
Ilivalue& value) const {
if (rowno >= 0 && rowno < _rowsCount && colno == 0) {
value = _files[rowno];
return IlTrue;
}
return IlFalse;
}
I1lvBoolean updateRow(IlInt rowno,
IliTableBuffer* buf) {
const Ilivalue& value = buf->at(FileName) ;
if (rowno >= 0 && rowno < _rowsCount
&& !value.isNull () && value.getType() == IliStringType)
const char* newname = value.asString();
char oldpath[_POSIX_ MAX PATH];
char newpath[_POSIX_MAX PATH];
sprintf (oldpath, “%$s/%s”, _directory, _files[rownol]);
sprintf (newpath, “%s/%s”, _directory, newname) ;
if (rename (oldpath, newpath) == 0) {
delete _files[rowno];
_files[rowno] = dupString (newname) ;
rowChanged (rowno) ;
return IlTrue;
} else {

IliErrorMessage msg;
msg.setApplicationError (strerror (errno)) ;
raiseError (msg) ;

}
return IlFalse;
}
IlvBoolean insertRow(IlInt rowno,
IliTableBuffer* buf) {
IliErrorMessage msg;
msg.setApplicationError (“Insertion not supported in “
“DirectoryTables”) ;
raiseError (msg);
return IlFalse;
}
IlvBoolean deleteRow (IlInt rowno) {
IliErrorMessage msg;
msg.setApplicationError (“*Deletion not supported in *
“DirectoryTables”) ;
raiseError (msg) ;
return IlFalse;

private:

I1lInt _rowsCount;
char* _directory;
char** _files;

char* dupString(const char* str) const {
char* d = new char[strlen(str) + 1];

{

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Subclassing IliTable

strcpy (d, str);
return d;

}

void tidy() {

for (IlInt i = 0; i < _rowsCount; ++i)
delete [] _files[i];
delete [] _files;

_files = NULL;
_rowsCount = 0;
}
IlBoolean readDir () {
DIR *dir = opendir (_directory);
if (dir != NULL) {
tidy ()
struct dirent* entry;
while ((entry = readdir(dir)) != NULL)
_rowsCount++;
_files = new char*[_rowsCount];
rewinddir (dir) ;
_rowsCount = 0;
while ((entry = readdir(dir)) != NULL)
_files[_rowsCount++] = dupString(entry->d_name) ;
closedir (dir) ;
tableChanged() ;
return IlTrue;
}
IliErrorMessage msg;
msg.setApplicationError (strerror (errno)) ;
raiseError (msg);
IlFalse;

Note: Thisexample appliesonly to systemswherethe opendir, readdir, and closedir
functions are defined. For other systems, you may have to make some changesin order to
call the appropriate functions.

Directory Class Example
The directory class could be used in the following way:

IlvDisplay* dpy;
IliDataSource* ds;

DirectoryTable* tbl = new DirectoryTable(dpy, “/usr/home/me”);
ds->setTable(tbl, IlTrue);

In this example, the directory table is created and attached to an existing data source.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 51

Persistence

Having created a custom table class, you may want to make it persistent. Making it
persistent meansthat it isintegrated in IBM® ILOG® Views Studio. It can appear in the
Data Access palette of the Palettes panel and can be used in the same way as other Data
Access classes. For example, you may want to make a custom data source that uses your
persistent custom table.

To make your custom table class persistent, you should ensure that the following items are
declared in the header file for the class:

acopy constructor

a stream based constructor

the I1iDeclareDTypeInfo macro in the class declaration
awrite virtual member function

dn operator==

® 6 6 o o o

the I1ibDeclareTypeInit macroisused in the header file
#include <ilviews/dataccess/table.h>

class DirectoryTable : public IliTable {
public:

DirectoryTable (const DirectoryTable&) ;
DirectoryTable (IlvDisplay*, istream&) ;

IliDeclareDTypeInfo (DirectoryTable) ;
virtual void write (ostream&) const;

int operator == (const DirectoryTable&) const;

}i
IliDeclareTypeInit (DirectoryTable) ;

In the source file, the implementation should do the following:
& UsetheIliRegisterDClass Macro.
¢ Implement all the constructors and member functions mentioned above.

Hereis an outline of what the implementation may look like. The details have been left for
you to fill in:

DirectoryTable: :DirectoryTable (const DirectoryTable& o)
: IliTable (o)

{

}

DirectoryTable: :DirectoryTable(IlvDisplay* dpy, istream& is)
: IliTable (dpy, is)

52 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Table Properties

{
}

void DirectoryTable::write (ostream& os) const {
IliTable: :write(os) ;

}

int DirectoryTable: :operator == (const DirectoryTable& o) const {
if (!IliTable: :operator == (0))
return 0;

}

IliRegisterDClass (DirectoryTable, I1liTable) ;

Table Properties

The 11iTable class supports annotating parts of atable with properties. In contrast to the
primary content of the table (the table's rows), the properties are not constrained by the table
schema

A property has aname (an 11symbo1l* object) and avalue (an T1ivalue object).
The parts of an T1iTable object that can have properties are:

¢ Thewholetable

¢ Any column

& Anyrow

¢ Any cell

Each part can have any humber of properties attached to it as long as the property names are
unique for each part. Two different parts (two cells or acell and arow) can have properties
with the same name.

The 11iTable class does not manage propertiesitself, instead it delegates property
management to the T1iTablePropertyManager class.

An T1liTable object has adefault property manager, but it can manage additional property
managers if needed. The requirement that a given part of atable cannot have two properties
with the same name applies to each property-manager. Among different property managers,
agiven I1iTable part can have properties with the same name, one for each property
manager.

Scoped Properties

Thereis a containment relationship between the different types of parts of atable:

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 53

& A givenrow may contain agiven cell.
& A given column may contain a given cell.
& Thewholetable contains al columns, all rows, and al cells.

Consequently, in addition to the properties that are attached to a given part, there may be
properties attached to containing parts.

A given part is said to have a given scoped property if it hasthis property or if one of the
partsin which it is contained has a scoped property with this name.

Note that the scoped property value of a part is the value of the property closest to the part.
In the case of aconflict, if agiven cell does not have a property but both the row and the
column of the cell have a property with that name, the property of the row takes precedence.

The order of precedence for scoped properties lookup is as follows:
¢ Cdl

¢ Row

¢ Column

& Thewholetable

Property-Aware Gadgets

Data-source-aware gadgets can be sensitive to given properties. Each gadget specifiesthe
property hames to which it is sensitive and what values are expected for these properties. It
is then possible to change the behavior or look of the gadget by changing the property value
of the table part to which the gadget is connected.

Asaconsequence, if agiven table part is simultaneously displayed through different
gadgets, some of its graphical attributes (for example, the font or the color) will
automatically beidentical in all gadgets. The application code that decides of the color needs
only assign the “font” property to that part. It does not need to know in which gadgets that
part is displayed nor does it need to access these gadgets and call member functions specific
to them.

In addition, a property-aware gadget can use a different property manager than the default
property manager of the table on demand.

Currently, the following gadgets are property-aware:
€ IliTableGadget

I1iDbField

IliEntryField

2
2
¢ I1iDbText

¢ IliTableComboBox

54 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Table Properties

€ IliDbStringList
€ IliToggleSelector
€ I1iDbToggle
¢ I1iDbOptionMenu
These gadgets support the following properties (when applicable):

Property Name Property Value Type |Property Value

font String font name

background String color name

foreground String color name

readOnly Boolean lor0

format String format name or specification
mask String mask name or specification

ILOG VIEwWSs DATA ACCESS V5.3 —

The following code example shows how table properties are used:

void MakePrimaryColumnsReadOnly (IliTable* table) {
IlvInt count = table->getColumnsCount () ;
const IlInt allRows = -1;
const IlInt allColumns = -1;
const IlInt insertRow = -2;

const IlvSymbol* readOnlyName = IlvGetSymbol ("readOnly");

Ilivalue trueval = (IlInt)1l;
IlivValue falseval = (IlInt)O0;

for (IlInt colno = 0; colno < count; ++colno) {
if (table->isColumnPartOfKey (colno)) {
table->setProperty (allRows,
colno,
readOnlyName,
trueval) ;
}
}
table->setProperty (insertRow,
allColumns,
readOnlyName,
falseval) ;
}

Note that avalue of -2 can be used for the row index to designate the insertion row.

TheMakePrimaryColumnsReadOnly function in the previous example works for the
following reason. Since rows have precedence over columns, the readon1y property will be
falsefor all cells contained in the insertion row (whatever the column), whereasit will be

true for all primary key column cells contained in other rows.

USER'S MANUAL 55

56 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data Sources and Gadgets

This chapter describes data sources and the gadgets, called data-source-aware gadgets, that
can be connected to data sources.

You can find information on the following topics:
¢ Data Sources

& Data-Source-Aware Gadgets

Data Sources

Data Access provides an T11iDataSource classthat “glues’ table objects (the 11iTable
class and its subclasses) and gadgets used for data entry.

A data sourceis agadget. Like other gadgets, it can have defined callbacks. The data source
appearsin the Data Access palette of the IBM ILOG Views Studio Palettes panel and can be
inspected in IBM ILOG Views Studio.

Each data source manages an 11iTable object and a current row.

Data Access provides other types of gadgets, such as data-source-aware gadgets, that are
connected to a data source. These gadgets connect to a particular column and display the
value of the current row in this column. Data-source-aware gadgets are discussed later in this
chapter. See Data-Source-Aware Gadgets on page 69.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 57

The I11iDpataSource classinheritsfromthe I1ibataGem Class. I1iDataGem iSaspecial
class that defines gadgets that are only visible during the design phase. Data source gadgets
can be moved and inspected using the Selection mode of IBM ILOG Views Studio.
However, when the panel is being tested during panel construction or when the applicationis
being run, the data source gadget is no longer visible.

You can find information on the following topics:
Creating a Data Source Gadget

Connecting Data-Source-Aware Gadgets

The Scope of a Data Source

Managing Rows in a Data Source
Customizing a Data Source

Error Handling

® 6 6 6 6 o o

The Repository

Creating a Data Source Gadget

A data source is a gadget that manages an 11iTable object. The following code sample
shows how a data source can be created and set up to manage a memory table:

IlvDisplay* display;
IlvGadgetContainer* panel;

// Create a data source gadget.
IliDataSource* ds = new IliDataSource (display,
IlvPoint (10, 10));

// Create and define a memory-table.
IliMemoryTable* tbl = new IliMemoryTable (display) ;
tbl->lock() ;

tbl->appendColumn (“Id”, IliIntegerType) ;
tbl->appendColumn (“Name”, IliStringType) ;

// Assign the memory-table to the data source.
ds->setTable(tbl) ;

tbl->unLock () ;

// Put the data source in a panel.

panel->addObject (ds) ;
panel->setObjectName (ds, “EMP”);

Data Access provides the following subclasses of the T1ipataSource class:
& IliMemoryDataSource—thisclassinstantiates an I1iMemoryTable.

€ TlisQLDataSource—thisclassinstantiatesan 11isQLTable.

58 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data Sources

The only difference between these two classes and their base classisthat they automatically
instantiate the corresponding type of table. These two subclasses are provided for
convenience, however, the T1ibataSource class can manage any type of 11iTable
object.

Note: Another slight difference between these subclasses and their base classesis that
each subclass has a specific bitmap that appearsin IBM ILOG Views Sudio.

Connecting Data-Source-Aware Gadgets

A data-source-aware gadget is a gadget that can be connected to a data source. The
following code sample shows how an T11iEntryField gadget is created.

// Create an entry-field and put it in the panel.
IliEntryField* ef = new IliEntryField(display,

IlvRect (25, 50, 55, 22));
panel->addObject (ef) ;

// Connect the entry field to the data source.
ef->f setDataSourceName (“EMP”) ;
ef->f_setDataSourceColumnName (“Id”) ;

The newly created entry field is connected to the “1d” column of the “EMP” data source.

Similarly, the next example shows how to create another entry field gadget and connect it to
the “Name” column.

// Create an entry-field and put it in the panel.
ef = new IliEntryField(display, IlvRect (25, 80, 155, 22));
panel->addObject (ef) ;

// Connect the entry-field to the data source.
ef->f setDataSourceName (“EMP”) ;
ef->f_setDataSourceColumnName (“*Name”) ;

The Scope of a Data Source

A data source can be accessed either by the gadgetsin its own panel or by gadgetsin other
panels. A data source can be accessed by gadgets located in other unrelated panels only if it
has global scope. The 11iDataGem class hastwo member functions, hasGlobalScope and
setGlobalScope, that let you determine and set the scope of a data source. Seethe
IliDataGem classinthe IBM ILOG Views Data Access Reference Manual.

The precise rules by which a data source is accessed are found in the section The Repository
on page 67.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 59

60

IBM

Managing Rows in a Data Source

Once a data source gadget has been defined and gadgets have been connected to it, the row
management member functions of the data source can be used. These row management
functions differ from the 11iTable row management functionsin that they are based on the
concept of a current row. Changing the current row of a data source has adirect result on the
user interface. The T11iTable row management functions should be used when you want to
manage rows without changing the current row in the user interface. Changing the current
row means moving to another row. With regard to editing the valuesin arow (current or not),
the user interface is updated in both cases. See Managing Rows in a Table on page 38.

From the end user’s point of view, Data Access provides an 11iDbNavigator gadget that
connects to a data source. With this gadget, the end user can perform actions on the data
source.

APl and GUI

deleteCurrentRow

gotoPrevious

gotolast ‘ cancel K/KSBlBCt
< <|>|>I||+ -|'\‘I'IHI@|C~|—Clear

gotolext

gotoFirst

startInsert validate

¢ APl anly

-1

gotoRow

Figure4.1 AnlliDbNavigator Gadget and the APl Member Functions that It Calls

Each button in the 11iDbNavigator calsthe corresponding member functionsin
IliDataSource directly.

If the table object managed by the data source is atwo-tier table (for example, an
I1isQLTable), the select member function can be used to re-evaluate the SQL table
query.

The“goto” set of member functions enable you to move the current row of the data source.

You can move to any row using the gotoPrevious, gotoNext, gotoFirst, gotoLast,
gotoRow. The gotoRow member function takes arow index parameter.

When the current row of a data source changes, the value displayed by any gadget connected
to the data source (for example, entry fields), is automatically adjusted.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data Sources

If you want to modify arow in the underlying table of a data source, you can proceed in the
following way:

IliDataSource* ds;

// We want to modify the 2nd row.

ds->gotoRow (1) ;

// Make any changes to the columns of the data source.
ds->setValue (“Name”, Ilivalue(“Smith”));

// Validate changes.
if (!ds->validate())
IlvPrint (“Update failed”);

The setvalue member function is used to modify a value contained in the data source
buffer. The data source buffer retains the changes until the validate member function is
called. When there are changes pending in a validation, the 1 s TnputModi £ ied member
function returns true.

During the period of timethat it takes for the i sITnputModi £ied member function to return
true On adata source, any pending changes can be canceled using the cancel member
function.

In all situations, the underlying table is modified only when validate iscalled, not each
time the setvalue member function is called.

The following code sample shows how a new row can be inserted:

IliDataSource* ds;

// We want to insert a new row.

ds->startInsert () ;

// Assign values to the columns of the data source.
ds->setValue (“Id”, IliValue(32));

ds->setValue (“Name”, Ilivalue(“Jones”));

// Validate insertion.

if (!ds->validate())
IlvPrint (“Insert failed”);

The main difference between this example and the previous oneisthat the startInsert
member function is used instead of using the gotorRow member function to moveto an
existing row.

Note: You can disable the insertion through a data source by calling the enableInsert
member function with the parameter set to false.

The deletecurrentRow member function can be used to remove the current row.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 61

Customizing a Data Source

The behavior of a data source can be customized using callbacks. A callback isa C++
function that will be called when a given event occurs. A callback can be defined by calling
one of the I1vGraphic: :setCallback Or I1vGraphic: :addCallback member
functions.

Hereisan example:

void ILVCALLBACK MyEnterRow(IlvGraphic* g, IlAny) {

IliDataSource* ds = (IliDataSource*)g;

IlvPrint (“Enter Row %1d in data source ‘%$s’”,
(long)ds->getCurrentRow () ,
ds->getName ()) ;

}

int main(int argc, char** argv) {
IliDataSource* ds;

ds->setCallback(IliDataSource: :EnterRowSymbol (),
MyEnterRow) ;

}

This example defines the Enterrow callback of a data source. This callback will be called
each time a new row becomes the current row of the data source.

For each callback type (such as EnterRow), the T1iDataSource class provides:

& A static member function that returns the name of the callback type in the form of an
T1symbol* (for example, EnterRowSymbol).

& A virtua member function (such as onEnterRow) that is called by the data source when
the corresponding event occurs. This virtual member function callsin turn the
corresponding callback (if any).

Monitoring the Selected Row

The following callback types can be used to monitor the selected row:

€ EnterRow

€ QuitRow

Update Validation

The following callback types can be used to customize the way rows are updated:

€ EnterUpdateMode

¢ ValidateRow

€ PrepareUpdate

*

QuitUpdateMode

62 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Data Sources

€ CancelEdits
These callbacks are called in a particular order.

Thefirst time the end user startsto modify arow (by typing a key on the keyboard), the
EnterUpdateMode callback iscaled. At this point, the
IliDataSource: :isInputModified member function returns true.

When the end user has finished editing the row, validation will usually be triggered.
Validation proceeds as follows:

& ThevalidateRow callback iscalled.
& TheprepareUpdate calback iscalled.

These two callbacks are designed to allow you to code custom checks that depend on the
application logic, and make on-the-fly adjustments to the row being updated.

Both of these callbacks have the same purpose. However, the validateRrow callback isalso
called when arow isinserted (as you will seein the next section), therefore enabling you to
specify asingle function that is called in both cases.

The following example shows how custom checks can be coded:

void ILVCALLBACK MyValidateRowCallback (IlvGraphic* g, IlAny) {
IliDataSource* ds = (IliDataSource*)g;
if (ds->getvValue(“Qty”) .asInteger() > 15) {
ds->dontValidateRow() ;
ds->addErrorMessage (“Invalid quantity”);
}
}

IliDataSource* ds = ...;
ds->setCallback(IliDataSource: :ValidateRowSymbol (),
MyValidateRowCallback) ;

If the check criterion is not satisfied, the callback callsthe dontvalidaterRow member
function to stop validation and it calls the addErrorMessage member function to provide
an appropriate error message.

If both of these callbacks agree on validation (that is, they do not call the
dontvalidateRow member function), the row updates are transmitted to the underlying
table throughthe T1iTable: : updateRow member function. If this call succeeds, the
QuitUpdateMode callback iscalled.

The cancelEdits calback iscalled if the end user cancels the modifications instead of
validating.

Insert Validation
The following callback types can be used to customize the way rows are inserted:

€ EnterInsertMode

€ ValidateRow

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 63

64

IBM

® Preparelnsert
€ QuitInsertMode
€ CancelEdits

These callbacks work in the same way as the update callbacks (see the previous section).

The following example shows how a PrepareInsert calback can be defined to compute a
unique identifier:

void ILVCALLBACK MyInsertRowCallback (IlvGraphic* g, IlAny) {

IlisQLDataSource* ds = (IliSQLDataSource*)g;
I1iSQLTable* tbl = ds->getSQLTable() ;
if (ds->getValue(“ID”).isNull()) {

I1liSQLSession* session = tbl->getEffectiveSQLSession() ;
I1iSQLCursor* curs = session->newCursor () ;
if (curs->execute (“SELECT NEXTID FROM COUNTER FOR UPDATE”)
&& curs->fetchNext ()) {
IlInt id = curs->getIntegerValue(0) ;
curs->execute (“UPDATE COUNTER SET NEXTID = NEXTID + 1”));
ds->setValue (“ID”, IlivValue(id));
}
else {
ds->dontvalidateRow () ;
ds->addErrorMessage (curs->getErrorMessage ()) ;

}

session->releaseCursor (curs) ;

}

IlisQLDataSource* ds = ...;
ds->setCallback(IliDataSource: : PrepareInsertSymbol (),
MyInsertRowCallback) ;

This example assumes that the data source istied to atable with an “ID” column. When the
end user inserts arow through the data source, the value of the “ID” column is computed by
incrementing a value found in the COUNTER database table.

Computed Columns

The FetchrRow callback can be used to compute the value of one or more columns. This
callback, which applies only to two-tier tables, iscaled each time arow isretrieved from the
remote system and stored in the local row cache.

The following example illustrates the use of the FetchrRow callback. Assume you have a
database table, named HEATER, with aMAXTEMP column that describes the maximum
temperature in degrees Celsius.

To display thistable and show the MAXTEMP column in degrees Fahrenheit, do the
following:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data Sources

& Ensure that the SQL data source has, at least, the following two columns:

MAXTEMP FAHRENHEIT
Select: | MAXTEMP
Frorm: |HEATER i v
Ciperation:
Order:
Where:

-

Selact | Having | D atatype | Look | Mapping | Parameters |

Lapli | Cloze

MATEMP FAHREHHEIT
Marne: FAHREMHEIT
Type: [Double Deouble
Length:
Mullz | Me ez
Default:
Retrieve: |Yesz ez

Select | Having Dratatype | Look | Mapping | Parameters |

Al | Cloze |

& DefineaFretchrow calback in the following way:

void ILVCALLBACK MyFetchRowCallback (IlvGraphic* g, IlAny) {
IlisQLDataSource* ds = (IliSQLDataSource*)g;
I1iSQLTable* tbl = ds->getSQLTable();
I1lInt rowno = ds->getFetchedRow() ;
IliTableBuffer* buf = tbl->getBuffer();
buf->rowToBuffer (rowno) ;
IlDouble celsius = buf->at (“MAXTEMP”) .asInteger () ;
IlDouble fahrenheit = CelsiusToFahrenheit (celsius);
buf->at (YFAHRENHEIT”) = IliValue (fahrenheit) ;
tbl->updateRowInCache (rowno, buf);
tbl->releaseBuffer (buf) ;

}

IlisQLDataSource* ds = ...;

ds->setCallback (IliDataSource: :FetchRowSymbol (),
MyFetchRowCallback) ;

Note that the updateRowIncache member function is called instead of updateRow
because only the local row cache needs to be changed.

Deleted Rows
The following callback types can be used to customize the way rows are del eted:

€ PrepareDeleteRow

€ DeleteRow

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 65

66

IBM

The prepareDeleteRow Calback can be used to prohibit row deletions through a given
data source. If the callback calls dontDeleteRow, the user will not be able to delete the
current row. Aswith the validateRow callback, the addErrorMessage member function
may be called to provide an error message.

The peleteRrow callback can be used to monitor row deletion events. Here is an example:

void ILVCALLBACK MyRowDeleted (IlvGraphic* g, IlAny) {
IliDataSource* ds = (IliDataSource*)g;
IlvPrint (*Row %$1d in data source ‘%s’ has been deleted”,
(long)ds->getDeletedRow () ,
ds->getName ()) ;
}

int main(int argc, char** argv) {
IliDataSource* ds;

ds->setCallback(IliDataSource: :DeleteRowSymbol (),
MyRowDeleted) ;

Error Handling

This section provides information on three topics concerning the handling of errorsfor a
data source: error catching, error reporting, and error raising.

Error Catching

Errors can be caught through error sink objects using a similar technique to the one
described for 11iTable objects. Seethe addErrorSink and removeErrorSink member
functions. Note that all errorsraised by the underlying table object are forwarded to the data
source error sinks. In addition, the data source itself can raise specific errors.

The following example shows how a data source should be set up in order to catch and report
errors:

IliDataSource* ds;

// Set up an error sink.

IliErrorList errors;

ds->addErrorSink (&errors) ;

// Act on the data source.
ds->gotoRow (10) ;

ds->setValue (*NAME”, IliValue(“Smith”));
ds->validate() ;

ds->removeErrorSink (&errors) ;

// Check for errors.

if (errors.getErrorsCount () > 0) {
ds->reportErrors (errors) ;

}

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

Data Sources

Error Reporting

Errors are reported through an instance of the T1iErrorReporter class. The
setErrorReporter member function can be used to provide a custom error reporter.

The following example shows how the error reporter of a data source can be redefined:

class MyErrorReporter: public IliErrorReporter {
public:
virtual void reportErrors (IlvDisplay* dpy,
IlvAbstractView* anchor,
const IliErrorList& errors) const ({
for (IlInt i = 0; 1 < errors.getErrorsCount(); ++i) {
IlvPrint (“Error: %s”, errors.at (i) .getMessage()) ;

}
Y

int main(int argc, char** argv) {
IliDataSource* ds;

MyErrorReporter* rep = new MyErrorReporter;
ds->setErrorReporter (rep) ;

}

Error Raising

Errors can beraised within avalidation callback such asvalidateRow, PrepareUpdate Or
PrepareInsert. In such cases, the dontvalidaterRow member function should be called
to stop the validation process and errors can be raised by calling the addErrorMessage
member function. For more information on Error Messages, see Appendix D, Error

Messages.

The Repository
There are two ways in which a data source can be retrieved when its name is known:

& |f the container in which it islocated is known, the I1vContainer: :getObject
member function can be used as follows:

IlvContainer* container;

IliDataSource* ds = (IliDataSource*)container->getObject (“EMP”) ;

¢ Alternatively, the I1iRepository class provides static member functions that allow
you to determine the data sources that are registered in the repository.

Each data source gadget is automatically registered in the repository when it is added to a
container or manager. When it is removed from its holder, it is unregistered from the
repository.

Herearethe 11iRepository rulesby which agadget can connect to a data source based on
the data source name and on the location of the gadget:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 67

68

IBM

& Same holder
If adata sourceisfound in the same container as the gadget, it is chosen.
& Same scope class

Otherwise, if adata sourceisfound in another container that belongs to the same scope
class as the gadget container, it is chosen.

& Same container hierarchy

Otherwise, if adata sourceisfound in another container that belongs to the same
container hierarchy as the gadget container, it is chosen.

& Global scope
Otherwise, if aglobal data sourceisfound, it is chosen.

& Otherwise, the look-up operation fails and the gadget does not connect to any data
source.
Enumerating All Data Sources Accessible from the Repository

The following code fragment iterates through all the data source gadgets that are registered
in arepository.
IlvInt count = IliRepository::GetDataSourcesCount () ;

for (IlInt i = 0; 1 < count; ++1i) {
IliDataSource* ds = IliRepository::GetDataSource (i) ;

}

Finding a Data Source Using Its Name

TheIlirRepository: :FindDataSource Static member function can be used to retrieve a
data source gadget using its name.

IlvGadget* g;

IliDataSource* ds;
ds = IliRepository::FindDataSource (“EMP”, g->getHolder());

Subscribing to a Given Data Source

The I1iRepository supports a“subscription” mechanism. This mechanism allowsyou to
specify a C++ function that should be called whenever a data source with a given name
becomes available.

For more information, seethe I1iRepository: : SubscribeToDataSource member
function in the IBM ILOG Views Data Access Reference Manual.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data-Source-Aware Gadgets

Data-Source-Aware Gadgets
This section describes the gadgets that can connect to a data source. These gadgets inherit
from both the I11vGadget andthe 11iFieldItf classes.
You can find information on the following topics:

Interface to Data-Source-Aware Gadgets

Ili TableGadget

IliDbField

IiEntryField

[1i TableComboBox

[liDbText

IliDbToggle

IliToggleSelector

IliDbNavigator

[liDbTimer

IlIHTMLReporter

HiXML

[liDbPicture

I1iDbOptionMenu

IliDbSringList

I1iDbTreeGadget

IliChartGraphic

I1iDbGrapher

[liDbGantt

Global Callbacks

L R R K 2R 2BR JEE R R JER R IR IR R R RN RN JEER JEER R 4

Interface to Data-Source-Aware Gadgets

Data-source-aware gadgets have a common interface that isdefined by the 11iFieldItf
class.

For example, the 11iEntryField class has the following hierarchy:

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 69

70

IBM

IvTextField

IGEntryField

|Junior30

lliFieldItf

Figure4.2 ThelliEntryField Hierarchy and Example Gadget

Asyoucansee, I1iEntryFieldinheritsfromboththeT11iFieldrtf and I1vTextField
classes. T1vTextFieldisan IBM ILOG Views gadget class.

The11liTsaField global function can be used to test whether a graphic object is a data-
source-aware gadget. The 11iGraphicToField global function can be used to convert a
pointer to agraphic object into apointer toan 11iFieldItf.

IlvGraphic* g;

if (IliIsAField(g)) {
I1iFieldItf* fld = IliGraphicToField(qg) ;

}

Objects can be converted in the opposite direction using the f_getGraphic member
function.

IliFieldItf* f14;
IlvGraphic* g = fld->f_getGraphic();

Connecting to a Data Source

The main feature of data-source-aware gadgetsis their ability to connect to adata source and
stay “tuned” with the value in the current row of a given column.

Staying tuned involves the following:

& When the current row of the data source changes, the data-source-aware gadget is
assigned the new current row value for the given column.

4 When the end user edits the value in the data-source-aware gadget, this value is sent to
the data source.

Here is an example that shows how a data-source-aware gadget is connected to a data
source:

IliEntryField* ef;

ef->f_setDataSourceName (“EMP”) ;
ef->f setDataSourceColumnName (“DEPTNO”) ;

The data source is specified by name. However, if a data source with this name does not exist
when f_setDataSourceName is called, the gadget remains unconnected, but remembers

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data-Source-Aware Gadgets

the name of the data source it must connect to. The £_isConnectedToDataSource
member function can be used to check whether a gadget is connected to a data source.

The actual connection takes place whenever a data source with the given name entersinto
the gadget scope. A data source isin gadget scope when it is either in the same panel as the
gadget or in another panel and with global scope (see I1iDataGem: : setGlobalScope).
Managing Gadget Values

The vaue of a data-source-aware gadget can be managed with the f_getvalue and
f_setvalue member functions.

The f_getvalue member function can be used to retrieve the value of the gadget:
I1iFieldItf* f1d;

const IliValue& val = fld->f_getValue() ;
IlvPrint (“Current value is : %s”, val.getFormatted());

The f_setValue member function can be used to assign a new value to a gadget:
Ilivalue newval = “A New val”;
fld->f_setValue (newval) ;

Gadget Look

Some aspects of the look of a gadget can be accessed and set with the following member
functions:

Accessor Mutator

f_isReadOnly

f_setReadOnly

f_getFormat

f_setFormat

f_getAlignment

f_setAlignment

f_getLabel

f_setLabel

f_getMask

f setMask

The effect of these functions depends on the actual gadget class being used and sometimes
thereis no effect at al. For example, calling f_setFormat for an I11ibbToggle hasho

effect.

Foreign Table

A gadget can have a mapping associated with it. See Mapping on page 36. To specify a
mapping, you must provide the following information:

& Foreigntable
& Value column

& Display column

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 71

A mapping is used to convert the value of the gadget (itsinternal value) to another value that
is substituted in the display.

IliFieldItf* f1d;

fld->f_setForeignDataSourceName (“DEPT”) ;
fld->f_setForeignValueColumnName (“DEPTNO”) ;
fld->f_setForeignDisplayColumnName (“NAME”) ;

For more information on foreign tables, see Foreign Tables on page 105.

Subclassing lliFieldlItf

New data-source-aware gadget classes can be defined. Thistypically involves defining anew
subclass of both T1iFieldrtf and some other existing gadget class. For an example of
such asubclass, seetheT1iFieldrtf classinthelBM ILOG Views Data Access Reference
Manual.

lliTableGadget

IIvGadget } | Pruoducl Prive Frame In sluck

lliTableGad get * | JuniuZ0 $12.93! FiLie Glesz '

. JunicrE0 419,99} Carbon Fikre (Mo
J|De|tasu 3 B! Caban Fikre fvat
Delt=20 $25.00; Me Frame Mo

Mek=an $3R N Cabon Fikee MA

ArwncTl $44.99! Larbon bibre iY'=es

fozk $36.93: N Freme Mo

Figure4.3 ThelliTableGadget Hierarchy and Example Gadget

The 11iTableGadget class enablesyou to display an entire table. It also lets the end user
edit table values, and add or delete rows.
A table gadget can be connected to a data source by calling £_setbataSourceName.
IliTableGadget* tg = new IliTableGadget (display,

IlvRect (20, 30, 300, 450));

panel->addObject (tg) ;
tg->f_setDataSourceName (“EMP”) ;

The 11iTableGadget class provides many member functionsthat allow you to control the
look of the gadget.

Selection

TheTliTableselection classisused to describe the highlighted areain atable gadget at
agiven point in time. This area can be any of the following:

72 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data-Source-Aware Gadgets

acell (identified by column and row indices)
one or more rows (identified by their indices)
one or more columns (identified by their indices)

the complete table gadget

* & 6 o o

empty

The getselection member function returns the current selection in atable gadget and the
setSelection changesthis selection.

By default, atable gadget is bound to its data source. This means that the row of the
selection in the table gadget remains synchronized with the current row of the data source.
The bindToDataSource member function controls this.

ThepointToSelection member function can be used to identify which part of atable
gadget contains a given geometrical point.

Column Geometry

Thetable gadget event handler lets the end user resize the columns and change their order. I
there is more than one table gadget connected to the same data source, resizing acolumnin
one of them will also resize the column in the others (by default). Thisis because the size
and order of columns are stored in the table object of the data source and the data sourceis
shared by the table gadgets.

Thetable gadget supports a special modein which column size, visibility, and order are local
to the table gadget itself and independent of other table gadgets connected to the same data
source. The setColumnsGeometryLocal member function can be used to activate this
mode. See Setting the Table Look on page 110.

Note that when column geometry islocal, the index of a column can be different in the table
gadget and the underlying table. The getRealColno and getvisualColno member
functions can be used to convert a column index between the table gadget order and the
underlying table object order.

Cell Editor

Table gadget cells can be edited with editors that are managed by the table gadget. Each
column in atable gadget has an editor. By default, a table gadget creates the editor for each
column depending on the column data type and mapping.

For columns with aforeign column, the table gadget creates an 111 TableComboBox. For
other columns, it createsan I1iEntryField.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 73

74

IBM

A table cell with an

NAME DEPT SALARY |4 .

Ey— — pdminsiaton, oG8l | lliTableComboBox as
* | Femandez Administration = f 7500, editor

Goodman Documentation £300.0

Thomasson Marketing a00o.0

‘williams Marketing 4000.0

‘Waong R&D 00

Bornstein R&D 8E50.0 .

Harrizon b arketing 45?5.0\ A table Ce” with an

Horner Documentation £375.0 — IliEntryField as

Tanaka Finance 9000.0 editor

Figure4.4 Different Types of Editors within a Table Gadget
The setColumnEditor can be used to define a custom editor for agiven column.

Customizing a Table Gadget
Table gadgets can be customized with callbacks.

Thecetcellralette callback can be used to change the foreground and background
colors, and the font, cell by cell.

Hereisan example:

void ILVCALLBACK MyGetCellPalette (IlvGraphic* g, IlAny) {

IliTableGadget* tg = (IliTableGadget*)g;
IliCellPaletteStruct* cell = tg->getCellPaletteStruct();
if (cell->getRowno() == 3 && cell->getTableColno() == 2) {

// Change the background color of cell(3,2).
cell->setFillPalette (tg->getDisplay () ->getPalette("Highlight"));
}

int main() {
IliTableGadget* tg;

tg->setCallback (IliTableGadget: :GetCellPaletteSymbol (),
MyGetCellPalette) ;

}

Note that colors defined through acetcellpalette callback are dynamic. The table
gadget does not keep arecord of the colorsfor acell. Instead, it callsthe Getcellralette
callback each time it needsto draw the cell.

Note that another technique is available to define colors on arow, acolumn, or acell basis.
See Table Properties on page 53 for more information.

The prawcel1 callback can be used to provide a custom draw procedure for some of the
cellsin atable gadget. Here is an example:
void ILVCALLBACK MyDrawCell (IlvGraphic* g, IlAny) {

IliTableGadget* tg = (IliTableGadget*)g;
IliDrawCellStruct* cell = tg->getDrawCellStruct();

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data-Source-Aware Gadgets

if (cell->tblColno == 2) {
// Draw cells in column 2.
IlvDisplay* dpy = tg->getDisplay() ;
IlvPalette* pal = dpy->defaultPalette() ;
IlvInt value;

//---- compute the position gauge ----

value = tg->at(cell->rowno, cell->tblColno).asInteger();
value = (value > 100L) ? 100L : value;

value = (value < OL) ? OL : value;

value = (cell->bbox.w() * value) / 100L;

// Draw the cell.
IlvRect rect;
rect.x(cell->bbox.x());
rect.w((IlvDim)value) ;
rect.y(cell->bbox.y ()+2);
rect.h(cell->bbox.h()-4);
dpy->fillRectangle(cell->dst, pal, rect);

}

else
tg->defaultDrawCell () ;

}

int main() {
IliTableGadget* tg;

tg->setCallback (IliTableGadget: :DrawCellSymbol (),
MyDrawCell) ;

}

Customizing the Column Editor of a Table Gadget with a Toggle

You can change the column editor of atable gadget. For example, columns with a data type
like Boolean, can replace the Yes/No combo box by atoggle without a label (class
IliSimpleToggle).

// In the header file:
#include <inform/gadgets/dbsimtog.h>

class MyPanel:
public IlvGadgetContainer ({

protected:
IliSimpleToggle* _toggle;
}i

// In the source file:

MyPanel: :MyPanel (...) :IlvGadgetContainer(...) {
_toggle = new IliSimpleToggle (getDisplay (), IlvPoint(0,0));
IliTableGadget*

tbl=(IliTableGadget*)getObject (“tableGadgetName”) ;
tbl->setColumnEditor (_toggle) ;

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 75

76

IBM

Note: If you work under Windows 95, Windows NT 4, or Matif, you should change the
column background color (do not keep white) to see the toggle relief.

lliDbField

||VG adg et |J.1ni0r30
IlthFleId \v
II|F|eIdItf

Trame

Fram [CatorFbe =
£ Mo Frame o Frame
 “be Glass Fbre Glaze
@ ZabonFhbe

K & Taggle (,)

Figure4.5 ThelliDbField Hierarchy and Different Gadget Looks

The 11iDbField gadget isvery flexible. It has different styles that can determine its look
and feel. The style can be changed using the setsty1e member function. For more
information on the Dbrield gadgets, see Working with DbFieldsin Data Access on page 99.

A form created using the Forms Assistant (IBM ILOG Views Studio) is made up of a set of
DbField, each of which is connected to a column of the underlying table object. Initialy,
each DbField has adefault style that can subsequently be changed, if required.

The flexibility of the bbField look and feel lets you modify the styles of each of the
DbField contained in the form to suit your requirements. Without this flexibility, you would
have to replace a bbrield object with the appropriate object to changeits style.

lliEntryField

IvTextField

IGEntryField |Junior30

HiFieldItf

Figure4.6 ThelliEntryField Hierarchy and Example Gadget
TherliEntryField classdefinesatext field gadget that can be connected to a data source.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data-Source-Aware Gadgets

Note that this gadget does not take the foreign table into account.

lliTableComboBox

HvGadgm

mnmdm

:J—{"EHUYHBN|—ﬂ"ﬂhsﬁaﬂ€omhoﬁoxP—”HﬂhMeComhoﬁox

| Fibre Glazz -l

Figure4.7 The lliTableComboBox Hierarchy and Example Gadget

The 11iTableComboBox defines a combo box gadget that opens a pull-down menu when
the user clicks on the combo button. The pull-down menu displays a column of the foreign
table of thefield.

IliTableComboBox* combo;
combo = new IliTableComboBox (display, IlvRect (20, 30, 150, 21));
panel->addObject (combo) ;

// Connect the combo to EMP (DEPTNO) .
combo->f_setDataSourceName (“EMP”) ;
combo->f_setDataSourceColumnName (“DEPTNO”) ;

// Specify the mapping as DEPT(ID -> NAME) .
combo->f_setForeignDataSourceName (“DEPT”) ;
combo->f_setForeignValueColumnName (“ID") ;
combo->f_setForeignDisplayColumnName (“NAME”) ;

[liDbText

lIvText

Thiz bow can be uzed | &
ko contain lorger

IliDbText

text descriptions.

Figure4.8 ThelliDbText Hierarchy and Example Gadget

The 11ipbText class defines agadget that edits multi-line character strings. This gadget is
not designed to be used with aforeign table.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 7

IliDbToggle

IIvToggle

Figure4.9 ThelliDbToggle Hierarchy and Example Gadget

The 11ipbToggle class defines a gadget that manages Boolean values. A Boolean value
can be either 0, 1, or nu11. Notethat it is possible to specify another set of values through
the use of aforeign table. For example, the set of values could be the three strings “on”,
“off”, and “out Of Order”.

lliDbToggle & |nstock v In stock

IliToggleSelector

Frame

IIvG adget }—l IllGadgetSet‘ - Mo Frame
” liDbToggleSelector " Fibre Glass

' Carban Fibre

Figure4.10 ThelliToggleSdector Hierarchy and Example Gadget

TheIliTogglesSelector classdefinesagadget that contains aset of toggle gadgets. Each
toggle gadget corresponds to arow of the foreign table. Within these toggle gadgets, only
one gadget can be checked at any particular time. See IliToggleSel ector Syle on page 102.

IliDbNavigator

IliDbNavigator isagadget that lets the end user carry out certain actions on the data
source. When atableis being edited viaaform or table, the current row (record) is stored in
abuffer (specified by 11iTableBuffer). The end user isfreeto edit any of the values
shown in the current record.

78 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

IBM

Data-Source-Aware Gadgets

H livGadget }—”uioadgetSet
liDbNavigator |<| p | 5 | N

v +]ele]

+

Figure4.11 ThelliDbNavigator Hierarchy and Example Gadget
Using the DbNavigator gadget, you can do the following:

4

4

Changethe current record (k| < | > | ®I| back to thefirst record in the table, back to the
previous record, forward to the next record, or forward to the last record in the table).

Display the current row position in the data source or, if in query mode, display the
current row position of the query E1

Display the number of rowsin the data source or, if in query mode, display the number of
rows of the query | 1.

Validate Ll any entries that have changed in the current record (create in database) or
apply query mode.

Cancel _><| any entriesthat have been madein the current record (create in database) or
cancels query mode.

Insert a new record ;l , provided Allow Insert is activated.
Delete current record _| .
Clear the data source cache, update it by querying the database, and refresh the display

EI .

Clear the data source cache Ll .
Put the data source in query mode il .

Note: Until you validate the changes that you have made in the current record, the values
will not be updated in the database. The new values are actually stored at the data source
in the table buffer. This leaves you the possibility of editing the complete record.

Adding a User Button to the Navigator

The following sample code shows how to add buttons to your DbNavigator to customize it
for your needs. The new buttons here are called Print and Quit.

MyPanel::initialize()

{

IliDbNavigator* navig = ...;

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 79

80

IBM

// Add the buttons.
Navig->addButton (“P”, MyPrintCallback, “Print”, 2);
Navig->addButton (“Q”, MyQuitCallback, “Quit”, 1);

// Compute the position and width of the buttons.
Navig->adjustButtonsSize() ;

IliDbTimer

|| lliDataGem || IliDbTimer E—j

Figure4.12 ThelliDbTimer Hierarchy and Example Gadget

The 11ipbTimer gadget lets you specify atimeinterval and a callback that will be called
repeatedly.

IIHTMLReporter

R —
||IHDamGem WHHTMLRepone% HTHL

Figure4.13 ThelliIHTMLReporter Hierarchy and Example Gadget

The 11iHTMLReporter gadget generates an HTML document from the contents of a data
source.

IiXML

|| lliDataGem H| XML P

Figure4.14 ThelliXML Hierarchy and Example Gadget

The 111ixmML gadget manages the communication between a data source and an xML stream.
It manages the import and export of notification and modification.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data-Source-Aware Gadgets

IliDbPicture

lIvGadget |—

Figure4.15 ThelliDbPicture Hierarchy and Example Gadget

The 11ipbPicture class defines a gadget that displays bitmaps. The column to whichitis
connected must contain bitmap names. This gadget is not designed to be used with aforeign
table.

iD bPicture mf ‘

IliDbOptionMenu

|Hv0pﬂonMenu Optiar =]
DbOptiontd enu
D bOptionhenu

M -

Figure4.16 The IliDbOptionMenu Hierarchy and Example Gadget

The 11iDboptionMenu class defines an option menu gadget that can be connected to adata
source. This gadget opens a pull-down menu when the user clicks the gadget. The pull-down
menu displays a column of foreign tables of the field.

I1iDbOptionMenu* opt;
opt = new IliDbOptionMenu (display, IlvRect (20, 30, 150, 21));
panel->addObject (opt) ;

// Connect the Option Menu to EMP (DEPTNO)
opt->f_setDataSourceName (“EMP”) ;
opt->f_setDataSourceColumnName (“DEPTNO”) ;

// Specify the mapping as DEPT(ID -> NAME)
opt->f_setForeignDataSourceName (“"DEPT”) ;
opt->setForeignvValueColumnName (“ID”) ;
opt->setForeignDisplayColumnName (“NAME”) ;

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 81

IliDbStringList

llvStringList

Figure4.17 ThelliDbSringList Hierarchy and Example Gadget

TherlipbstringList class definesastring list gadget that can be connected to a data
source. This gadget displaysalist of strings and/or pictures that come from the field of a
foreign table column.

HiDbStringList

IliDbStringList* 1st;

lst = new IliDbStringList* (display, IlvRect (20, 30, 150, 150));
panel->addObject (1st) ;

// Connect the string list to EMP (DEPTNO)
lst->f_setDataSourceName (“EMP”) ;

1lst->f_setDataSourceColumnName (“DEPTNO”) ;

// Specify the mapping as DEPT(ID -> NAME
1lst->f_setForeignDataSourceName (“DEPT”) ;
lst->setForeignValueColumnName (“ID”) ;
lst->setForeignDisplayColumnName (“NAME”) ;
lst->setForeignBitmapColumnName (“PICTURE”) ;

IliDbTreeGadget
Bl Cronos -
Hades
H I¥TreeGadget }—H iDbTree Gadget - Possidon
B Zeus

Figure4.18 ThelliDbTreeGadget Hierarchy and Example Gadget

The 11iDbTreeGadget class defines atree gadget that works with a data source or several
data sources (depending on the model). This gadget displays the links between the children
and their parents. Each data source row defines atree gadget item.

To provide the data to the tree gadget, you can use the following models:
& Recursive: All items of the tree gadget are defined by only one data source.

& Structural: Each tree gadget level hasits own data source with its columns.

82 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

The Parent column is not used for the first level.

Data-Source-Aware Gadgets

lliChartGraphic

H livChartGraphic }—H IlichartGrap hic ‘

Figure4.19 The lliChartGraphic Hierarchy and Example Gadget

The 11ichartGraphic class defines achart graphic that works with a data source or
several data sources (depending on the data model). With an T11iChartGraphic itisaso
possible to display a pie chart.

Hereisan example:

Let's take a data source, named DATA_MS, with the following schema:

To connect an T1ichartGraphic to thisdata source, you must go through the following

¢ two columns
NAME and VALUE(doubl€)
¢ data
Beer 150.0
Soda 300.0
Water 600.0
Wine 350.0
steps:
1. Draganddrop an r11iChartGraphic
2. Inspectthe 11iChartGraphic
3. Goto Specific page
4. Inthe Datamodé field, select “By data sources’
5. Go to Data Source page
6. Select DATA_MSfor data source

IBM ILOG VIEws DATA ACCESS V5.3 —

USER'S MANUAL 83

7. Select VALUE for X axis

8. Select VALUE for Value

9. Go to Data sets page

10. In the Data sets field, select the first data set

11. In the Displayersfield, uncheck Displayer 1

12. In the data set type, select Data Access

13.In the seriesidentifier field, enter DATA_MS

14. Go back to Data sets field and select the second data set
15. Uncheck Displayer 3

16. Check Displayer 1

17. Go to Displayers page

18. In the Displayersfield, select Displayer 1

19. On the General tab, uncheck the Visible option

20. Select Displayer 2 in the Displayersfield

21. Uncheck the Visible option

22. Select Displayer 3

23. In the Displayer type field, select “Pie”

24, Select the Specific tab and enter 360 in the Range field
25. Select the Slices tab and enter 5 in the Rho value
26. Add at least one dlice by clickingthe ‘=. button
27. Go to Projection page

28. In the Type of projection, select Polar

29. Go to Scales page

30. In the Scalesfield select the first scale

31. Uncheck the Scale visible option on the General tab

32. Click Apply
If you want to change the slice color, you must add some slices to change the color and label.

84 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data-Source-Aware Gadgets

[liDbGrapher

lli2bGrzpher
” IIvSC GrapherRectangle }—luinberapher

I

4] B

Figure4.20 ThelliDbGrapher Hierarchy and Example Gadget

The 11iDbGrapher gadget lets you specify a nodes data source and a links data source. It
displays the information contained in these data sources in the form of a graph.
Customizing a DbGrapher

The DbGrapher can be customized with callbacks.

The setbefine0bject member function lets you specify a callback that is called when the
end user attemptsto create anew node. The callback is expected to fill in atable buffer with

the values for the node to be created. It can open adialog box to obtain information from the
end user if needed. A similar callback for defining links can also be specified.

Hereisan example:
static IlvBoolean

MyDefineNodeCallback (IliTableBuffer* buf, IlvGraphic*, IlAny any) {
static int stId = 1000;

if (buf->at ("IDENTIFIER").isNull()) {
buf->at ("IDENTIFIER") .importInteger (stId) ;
stId++;

}
return IlvTrue;

}

int main() {
I1liDbGrapher* gr;

gr->setDefineObjectCallback (MyDefineNodeCallback, NULL, IlvTrue);

}

The setCreate0bject member function lets you specify a callback that is called when a
new row has been inserted in the nodes data source. This callback is needed to create and
configure the graphic object that will represent thisrow. A similar callback for defining links
can also be specified.

Hereisan example:

static IlvGraphic*

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 85

MyCreateNodeCallback (IliTableBuffer* buf, IlAny any) {

I1iDbGrapher* gr = (IliDbGrapher*)any;

const char* picture;

switch (buff->at("TYPE") .asInteger()) {
case TypeNodeCenter : picture = "center.xpm"; break;
case TypeNodeParabol : picture = "parabol.xpm"; break;
default : picture = "terminal.xpm"; break;

}

gr->setBitmapName ((const char*)picture) ;

IlvGraphic* obj = gr->createDefaultObjectNode (buf) ;

if (obj->isSubtypeOf (IliLabeledBitmap: :ClassInfo())) {
IliLabeledBitmap* node = (IliLabeledBitmap*)obj;
node->setLabelName (buff->at ("NAME") .getFormatted()) ;

}

return node;

}

int main() {
I1iDbGrapher* gr;

gr->setCreateObjectCallback (MyCreateNodeCallback, gr,IlvTrue);
}
There are also aNodeDoubleClicked calback and a LinkDoubleClicked callback.

Hereis an example of using the NodeDoubleClicked callback:

static void
MyDoubleClickNodeCallback (IlvGraphic* g, IlAny any) {

I1iDbGrapher* gr = (IliDbGrapher*)g;
const char* s = gr->getObjectNameDoubleClicked() ;
IlvPrint ("Node %s double clicked", (const char*)s);
}
int main() {

I1iDbGrapher* gr;

gr->addCallback (I1iDbGrapher: :NodeDoubleClickedSymbol (),
MyDoubleClickNodeCallback,myPanel)

IliDbGantt

HHUGanﬁChaﬂForm}——{‘IHDbGanﬁ ‘ _J

KD [»

Figure4.21 ThelliDbGantt Hierarchy and Example Gadget

86 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Data-Source-Aware Gadgets

The 11ipbGantt gadget lets you specify data sources for resources, activities, constraints,
precedences, breaks and work load curve. It displays the information contained in these data
sourcesin the form of a Gantt chart.

Customizing a DbGantt Gadget
A DbGantt gadget can be customized with callbacks (or corresponding virtual functions).

The getScaleNumericLabel member function lets you specify a callback that is called
when the end user needs to compute alabel for anumeric scale label.

Hereisan example:

static void

MyComputeLabel (I1vGraphic* g,IlAny any) {
IliDbGantt* dbg = (IliDbGantt*)g;
IliString s;

s << dbg->getScaleNumericvValue() ;
s << ||$||;
dbg->setScaleNumericLabel (s) ;

}

int main() {
I1iDbGantt* dbg;

dbg->addCallback (I1iDbGantt: : ScaleNumericLabel Symbol,
MyComputeLabel, 0) ;

}

The isactivePeriod member function lets you specify a callback that is called when the
end user needs to determinate if a period is active or not. By default, a period is active. This
iswhy this callback is used to indicate the periods which are not active.
Hereisan example:
static void
MyComputePeriod (IlvGraphic* g,IlvAny any) {

I1iDbGantt* dbg = (IliDbGantt*)g;

if (dbg->getActivePeriodInfo(IliScaleDateWeekDay) == IliDbGanttSunday)
dbg->setInactivePeriod() ;

}

int main() {
I1liDbGantt* dbg;

dbg->addCallback (I1iDbGantt: : IsActivePeriodSymbol,
MyComputePeriod, 0) ;

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 87

Global Callbacks

Gadget behavior can be customized using callbacks. Data Access supports four ways of
defining callbacks.

& Callback function—The callback isa C++ function directly attached to the gadget. The
following example shows how a callback function can be attached directly to a gadget.

void CustomCallback (IlvGraphic*g, IlvAny userdata) {
}
int main(int argc, char* argv[]) {

IlvSymbol* callbackType;

IlvGadget* g;

IlvAny userData;

g->setCallback (callbackType,

CustomCallback,
userData) ;

& Named callback—The I1vCcontainer: : registercallback member functionis
used to associate a name with a C++ function. This name can then be used as a callback
for any gadgets in the container. The following example shows how this can be done:

void CustomCallback (IlvGraphic*g, IlvAny userdata) {
}
int main() {

// Register the callback.
IlvContainer* cont;

cont->registerCallback (*MyCallbackName”,
CustomCallback) ;

// Use this callback.
IlvGadget* g;
I1lvSymbol* callbackType;

g->setCallback (callbackType,
“MyCallbackName”) ;

}

¢ |IBM ILOG Script callback—The callback isan IBM ILOG Script function. These
callbacks are usualy defined from within the IBM ILOG Views Studio environment.

88 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Data-Source-Aware Gadgets

& Global callback— Data Access adds a way to define and use callbacks globally. The
IlicCallbackManager classcan be used to register callbacksthat are globally available
and that can have parameters. The callback manager is the unique instance of the
IlicallbackManager classand it can beretrieved by calling the
IliGetCallbackManager function. For the callback manager to be active, the file
<ilviews/dataccess/gcallbak.h> must beincluded in at least one of the
application modules. If thisis not the case, the global callbackswill not be available. The
following example shows how a callback can be set up as global:

#include <ilviews/dataccess/gcallbak.h>
// Define the callback function.
void MessageBoxCallbak (IlvGraphic* g,
IlAny arg,
I1lInt paramsCount,
const char* const* params) {
IlvContainer* view = IlvContainer::getContainer (g);

if (paramsCount == 1 && views != NULL) {
IlvIMessageDialog msgBox (view->getDisplay (),
params[0],
NULL,
IlvDialogOk,

view->getSystemView()) ;
msgBox.show () ;
}
}

int main() {

// Register the global callback.

IlvSymbol* callbackName = IlvGetSymbol (“*MsgBox”) ;

IliGetCallbackManager () .registerCallback (callbackName,
MessageBoxCallback) ;

}

Onceaglobal callback has been registered as shown above, it can be used by prefixing its
name with the“ @" character.

) | || | N) —T € ——]~
¥ ¥ w h FRiight Bottom Mame Callback 15
| | [| | | r

| Gadgets | Selection

Figure4.22 Using a Global Callback in IBM ILOG Views Sudio

Guidelines for Defining Global Callbacks

Some general guidelines can help you determine which method to use for defining global
callbacks:

& For C++ programmers.
e Inapure C++ application where IBM ILOG Views Studio is not used, the callback
function approach is the most convenient as it resultsin less coding.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 89

90

I BM

¢ When IBM ILOG Views Studio is used to design the panels of the application, the
named callback and the global callback approaches are recommended since they
enable you to enter the callback name directly in the required inspector in
IBM ILOG Views Studio.

o If acallback is needed in only one panel, the named callback approach is the most
suitable. However, if the same callback is required in many panels, the global callback
approach is the most appropriate.

& For IBM ILOG Script programmers.

e Global callbacks are of little help to IBM ILOG Script programmers sinceit is as
convenient and straightforward to define an IBM ILOG Script function and useit asa
callback asit would be to use aglobal callback. In effect, we consider that global
callbacks have been superseded by the capability to program in IBM ILOG Script.

Predefined Global Callbacks
Thefollowing isalist of the predefined global callbacks that are available in Data Access:
@Quit ()

@ShowPanel (panelName)
@HidePanel (panelName)
@Validate (dataSourceName)
@Cancel (dataSourceName)
@Clear (dataSourceName)
@Select (dataSourceName)
@StartInsert (dataSourceName)
@Commit (sessionName)
@Rollback (sessionName)
@Connect (sessionName)

@QueryConnect (sessionName)

L R 2B JER JEE JER K 2K JER JER JER SR 2R 2

@Disconnect (sessionName)

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Handling Values in Data Access

This chapter describes how Data Access handles values. They are implemented by the
Ilivalue class and the following sections describe how to use an 11ivalue object.

You can find information on the following topics:
¢ ThelliValue Class

& Data Types

& Structured Types

The IliValue Class

IBM

The 11ivalue class supports polymorphism for the most primitive data types, such as
character strings, integers, and float values. An 11ivalue object can hold avalue belonging
to any of these primitive types. Moreover, the type of avalue can be changed dynamically.
This classworksin conjunction with the 11ipatatype class, which isused to represent the
dynamic type of an 11ivalue object.

The 11ivalue classis essential to Data Access. It enables valuesto be handled in a
completely transparent way, so that table objects and data-source-aware gadgets can deal
with values without having to take into account their type.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 91

Each of the data-source-aware gadgets has an f_getvalue member function that returns
the gadget value in the form of an T1ivalue oObject.

Constructing a Value Object

There are two ways to construct avalue. It can be specified with aninitial value:

Ilivalue initVval

= 3;
Ilivalue stringVal =

“Good morning."”

Also, it can be constructed by specifying the data type explicitly:

IlivValue boolVal (I1liBooleanType) ;

In this case, the value has an initial value of null.

Null Value

The null value is a special value that can be used to denote an unspecified value. You can
check for the null value withthe T1ivalue: : isNull method.

Ilivalue value;
if (value.isNull()) {

}

An object can have anull valuein two situations: either it has been constructed with no
initial value just by specifying its data type (shown above) or it has been set as null using the
Ilivalue: :setNull method.

TheTlivalue::setNull method also alowsyou to change the object datatype. Thiscan
be seen in the following code sample:

Ilivalue value = “aString”;
value.setNull(); // value set to null,

// datatype remains IliStringType
value.setNull (IliIntegerType); //datatype is now IliIntegerType

Data Types

92 IBM

The 11ivalue classworksin close conjunction with the T1ipatatype class. This class
specifiesthe type of an 11ivalue object. Aninstance of the T1iDatatype classexistsfor
each supported type. The possible data types are:

€ I1iNullType
€ IliStringType

€ IliBooleanType

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Data Types

I1iByteType
IliIntegerType
IliFloatType
IliDoubleType
IliDecimalType
IliDateType
I1liTimeType

IliBinaryType

® 6 6 6 O 6 0 0 o

IliAnyType

The datatype of an 11ivalue object constrains the set of values that it can hold. For
example, an I1iBooleanType Object can hold three values: 11vTrue, I1vFalse, and
null.

In addition to these predefined types, the Data Access library can dynamically synthesize
new types. For a description of when this can occur, see Parameters on page 128. These
types are collectively called structured types and fall in two categories. object types and
table types. The section Structured Types at the end of this chapter explains how these types
are used.

Checking the Data Type of an Object

The data type of an object can be checked using the T1ivalue: : getType method in the
following way:

Ilivalue value;
if (value.getType() == IliDateType) {

}

Converting a Data Access Data Type to a C++ Type

To manipulate the datain an application, you will need to work with values in the standard
C++ types:

const char*
IliByte
IlvInt
IlvFloat
IlvDouble

IliDecimal

® 6 6 6 0 ¢ o

IliDate

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 93

€ IliBinary
¢ IliTable*
¢ IlvAny

Any T1ivalue object can be easily converted into one of the standard C++ types. However,
aconversion of thistype will only return a meaningful value if the data type of the
Ilivalue Object is compatible with the target C++ standard type.

Table5.1 Type Conversions That Return a Meaningful Value

C++ Cast

Data Type as<Type>() Method

yp Operator ype>()
I1iStringType const char* asString(const char* nvl)
I1iStringType I1liByte asBoolean (IlvBoolean nvl)
I1iBooleanType IlvInt asByte (I1liByte nvl)
I1iByteType IlvFloat asInteger (IlvInt nvl)
IliIntegerType IlvDouble asFloat (IlvFloat nvl)
IliFloatType IliDecimal asDouble (IlvDouble nvl)
IliDoubleType asDecimal (const IliDecimal& nvl)
I1liDecimalType
IliStringType IliDate asDate(const IliDate& nvl)
IliDateType I1liTime asTime (const IliTime& nvl)
I1iTimeType
I1iBinaryType IliBinary asBinary(const IliBinary& nvl)
Object type IliTable* asTable(const IliTable* nvl)
Table type
IliAnyType I1lAny asAny (I1Any nvl)

T1ivalue objects can be converted in one of two ways:
¢ Using a C++ cast operator (implicit or explicit).
¢ By calling one of the as<Type> () methods availablein the 11ivalue class.

Thisis demonstrated in the next example:

Ilivalue stringValue = “Hello world!”;
const char* strl = stringValue; // implicit cast
const char* str2 = stringValue.asString(“Null”);

The main difference between these two conversionsisthat the as<Type> method accepts an
extra parameter. In the following example, the asstring method returns the string value of
the object for which it is called unless the object isnu11 or its data type is not
IlistringDataType. Inthiscase, it returnsthe value of the nvi parameter.

class Ilivalue {

94 IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Data Types

public:

operator const char*() const;

const char* asString(const char* nvl = 0) const;
}i

The cast operator returns o if the object isnul11 or itstypeisnot I11istringDataType.

Ilivalue stringValue(IliStringType); //initial value is null
Ilivalue integerValue = 6;

const char* strl stringValue; //strl ==
const char* str2 integervValue; //str2 ==
const char* str3 = integerValue.asString(“Undefined”); //str3 != 0

You should remember to use the character string returned by the const char* operator or
theasstring () method as soon as possible. If not, the character string can become invalid
the next time the 11ivalue object is modified.

Numeric data types can be converted to any of the numeric C++ types. However, the
conversion can cause aloss of precision and numbers can even be truncated.

Ilivalue integerValue = 5;

Ilivalue doublevValue = 9.8;

IlInt anInt = doubleValue; //loss of precision
IlDouble aDouble = integerValue;

The I11istringType datatype can also be converted to any of the numeric types as shown
in the following example:

Ilivalue stringValue = “3.14";
IlInt i = stringvValue; // i set to 3
IlDouble d = stringValue; // d set to 3.14

Ilivalue stringValue = “Not A Number”;

IlInt i = stringvValue; // i set to 0O

IlDouble d = stringValue; // d set to 0.0

i = stringValue.asInt(-1); // 1 set to -1

d = stringValue.asDouble(-2.0); // i set to -2.0

An I1livalue object can aso be changed using one of the = operators:

Ilivalue value = “One”;
value = “Two”;
value 3; //Data type changed to IliIntegerType

value 4.0; //Data type changed to IliDoubleType

Formatting an IliValue Object

An 1livalue object can be formatted using the 11ivalue: : format member function.
Thisis shown in the following example:

IliString stringBuf;

IliFormat fmt (“#,##0.00 Yens”);

Ilivalue value = 5.677;
value. format (stringBuf, fmt);

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL 95

IlvPrint (“Price: %s”, (const char*)stringBuf) ;

YoucanasousetheTlivalue: : getFormatted member function, which does not require
an I1istring parameter to store the result. An exampleis shown in the following code:
IliFormat fmt (“#,##0.00 Yens”);

Ilivalue value = 5.677;

const char* result = value.getFormatted(fmt) ;
IlvPrint (“Price: %s, result);

Note that the getFormatted member function returns its result in a static character buffer.
This result must therefore be used immediately after the call.

Structured Types

The Data Access type system can be extended beyond the basic data types described in the
previous sections. This occurs automatically when structured values are obtained from a
database system such as Oracle 9i (or later) or Informix 9.x.

Each structured type has an associated schemathat can be obtained as follows:

void DescribeStructuredType (const IliDatatype* type) {
if (type->isStructuredType()) {
const IliSchema* schema = type->getNestedSchema () ;
I1lvPrint ("Type %s manages tables with %1d columns",
schema->getName () ,
(long) schema->getColumnsCount ()) ;
}
else
IlvPrint ("Not a structured type !");
}

A structured type manages 11ivalue objectsthat contain a pointer to an 11iTable object.

The following code sample shows how an 11ivalue object can be initialized with an
IliTable Object:

Ilivalue MakeStructuredvValue (const IliDatatype* type) {
if (type->isStructuredType()) {
Ilivalue value(type) ;
IliTable* table = type->makeTable() ;
table->lock() ;
value.importTable (table) ;
table->unLock () ;
return value;
}
else {
IlvPrint ("Not a structured type !");
return Ilivalue();
}
}

96 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Structured Types

This exampleusesthe T1iDatatype: :makeTable member function to create an
IliTable object whose schemaisidentical to the schemareturned by the
IliDatatype: :getNestedSchema member function.

Thetablereturned by T1iDatatype: :makeTable isrealy an I1iMemoryTable oObject.
Consequently, all row management member functions (insertRow, updateRow, and SO on)
can be called to fill thistable. Note, however, that structured types fall into two categories:
object types and table types. They differ in that an object types expects to manage atable
that contains at most one row, whereas table types manage tables with many rows. The
isObjectType and isTableType member functions can be used to distinguish between
object and table types.

It isimportant to understand how the T11ivalue classmanages 11iTable objects. When an
Ilivalue object iscopied into another, the nested 11iTable oObject isshared between both
Ilivalue Objects as shown by the following code excerpt:

const IliDatatype* type = ...;

Ilivalue firstvVal = MakeStructuredvalue (type) ;
IlivValue secondvVal = firstVal;

assert (firstval.asTable() == secondval.asTable());

As a consequence, you should not directly ater the table contained in an T1ivalue object.
Instead, a copy of the table should be made, altered, and then assigned back to the
T1livalue objectsin the following code excerpt:

Ilivalue value = ...;

const IliTable* table = value.asTable();

if (table != NULL) {
IliTable* tempTable = table->copyTable() ;
tempTable->lock () ;
// alter tempTable in some way ...
tempTable->sortRows () ;
value. importTable (tempTable) ;
tempTable->unLock () ;

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL 97

98 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Hints and Tips for Using Data Access

This chapter contains some useful hints for using Data Access. The most common user
requirements are described, along with tips on how to use the features of Data Access to
satisfy these requirements. The chapter primarily discusses the way to set up your
application using IBM ILOG Views Studio, rather than using the Data Access API.

You can find information on the following topics:

4

* & & o

Working with DbFieldsin Data Access
Foreign Tables

Setting the Table Look

Fixed Columns

Troubleshooting

Working with DbFields in Data Access

This section describesthe T1ipbField class and the different formsthat it can take. A
DbField gadget isan entry field that can be connected to the column of atable object. The
DbField gadget then displays the value of this column for the current record. A formis
made up of DbField objects with different styles.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 99

The Style of a DbField

A T1iDbField object can dynamically changeitslook and fedl. Its style can be any of the
following:

€ IliEntryFieldStyle
IliTextStyle
IliOptionMenuStyle
IliTableComboBoxStyle
IliToggleStyle

IliToggleSelectorStyle

® 6 ¢ 6 0 o

IliStringListStyle

To change the style of an 11iDbField gadget in IBM ILOG Views Studio, you must select
the required style from the Stylefield in the corresponding pbField inspector.

DbField H[=] E3

Data Source | M.apping | General | Callbacks I

Data seurce: | Product

Celumn: | Frame
Alignment: | Left
Fermat:
Maszk:
Max length;
Read anly: [Mo
Usze property manager: |Yes
| Style: | TableCombe
Label: [Text
Labelfont: | Togale
Label celor: | EntryField

Label pesition:
Ciption Menu b
ToogleSelector =

Apply | Cloze |

I |«

Figure6.1 Changing the DbField Syle in the DbField Inspector

The following sections describe the different styles of abbField gadget, giving you the best
Situations to use themin.

IliEntryFieldStyle

This style can be used to display or edit avalue of any type. It is not designed to be used with
acolumn that accepts aBoolean value or with acolumn that has aforeign table. Other styles
are better adapted to these two situations.

100 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Working with DbFields in Data Access

IliTextStyle

This styleisascrolling text areathat can be used to display or edit multiple lines of data. It
is not designed to be used with a column that accepts a Boolean value or with a column that
has aforeign table. Other styles are better adapted to these two situations.

IliOptionMenuStyle

This styleis designed to be used with a column that has aforeign table or with a column that
accepts a Boolean value (see Foreign Tables on page 105). It consists of alabel and a button.
The button accesses a menu that contains values to be selected and displayed in the label.

If the DbField islinked to a Boolean value column, the menu contains the options Yes and
No, and will not accept any other input.

However, if the column has a foreign table, only the values contained in the menu can be
selected in the field.
IliTableComboBoxStyle

This style is designed to be used with a column that has a foreign table or a column that
accepts a Boolean value (see Foreign Tables on page 105). It consists of an entry field and a
button. The button accesses a menu that contains values that can be entered in the field.

Frame

[Carbon Fitre vI

Mo Frame
Fibre Glass

Figure6.2 A DbField with the IliTableComboBoxStyle

If the DbField islinked to a Boolean value column, the menu contains the options Yes and
No, and will not accept any other input.

However, if the column has a foreign table and if the Constrained property inthe DbrField
inspector is set to Yes, only the values contained in the menu can be entered in the field.

However, if the Constrained property in the Dbrield inspector is set to No, values other
than those in the menu can be entered directly into the field.

Finally, if the Completion property in the bbField inspector isset to Yes, when one or more
characters are entered in the bbField, the option is completed by the appropriate menu
entry (provided the characters uniquely define a menu entry).

IliToggleStyle

This styleisvery similar to the T11iDbToggle object. It isagraphical object that enables
you to display a state. A toggle usually includes a state marker and alabel. The state marker

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 101

isto the left of the label and indicates whether the stateis on or off (according to its Boolean
value).

The look of the button depends on the ook that has been selected in
IBM ILOG Views Studio (Windows, Windows XP, or Matif).

@+ Toggle ~.~ Toggle

Figure6.3 A Togglein Windows95 Look and Feel and a Toggle in Motif Look and Feel

This styleis specifically designed to be connected to atable column that has a Boolean
value. In thisway it can be used to turn the value on or off in the column as required. It
should not be used with columns that contain values of other types or with acolumn that has
aforeign table.

There are two ways to create atoggle that is linked to atable object column: either the style
of an 11iDbField instance can be changed or an instance of T11ibbToggle can be created
directly.

The 11ipbToggle class provides more flexibility regarding the look of the toggle state
marker. However, changing the style of an existing 11iDbbField enablesyou to create a
form using the Forms Assistant and to customize the style of each of the Dbrield contained
in the form.

lliToggleSelectorStyle

Thisstyleis specifically designed to be used with acolumn that has aforeign table mapping.
Itisaset of togglesthat are contained in aframe. Only one of the toggles can be turned on at
atime.

Frame
" Mo Frame

" Fibre Glass
{#' Carban Fibre

Figure6.4 A DbFidd with the IliToggleSelector Syle

Note: ThisT1liToggleselectorstyle should not be used when thelist of valuesis
long since the style becomes difficult to manage.

lliStringListStyle

This styleis designed to be used with a column that has aforeign table. It consists of astring
list and astring in thelist can be selected using the mouse or the keyboard. The stringsin the
list are read from the foreign table. See Foreign Tables on page 105.

102 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Working with DbFields in Data Access

Creating a Form Using the Forms Assistant

A formin Data Accessis a set of gadgetsthat lets you display all the valuesin atable object
row, thus providing easier access than with a table gadget. An instant form can be obtained
from the Forms Assistant command in the Data Access menu in IBM® ILOG® Views
Studio.

If you create aform using the Forms Assistant command, a set of fields (11ipbField
objects) are displayed. Each field is connected to one of the columns of the data source table
object and has alabel that isthetitle of itsassociated column. Thereisan 11iDbNavigator
across the top of the panel to help you navigate through the table object records.

The Forms Assistant can also create a form based on a table gadget instead of on a set of
DbField gadgets.

You may notice that the Dbrield gadget automatically adopts the
I1liTableComboBoxStyle for columnsthat either contain a Boolean value or have a
foreign table mapping (see Foreign Tables on page 105). In the case of a Boolean, the pop-
up menu has two entries, Yes and No.

iu,..- Gadgets - Chdbstudinidatalprod.ilv *

os Ll T 7 ilel ol elelo]

DbField with

combo box style Froduct
connected to a [Junior3s
column with a Price

foreign table

EEE]

_,1
o
3
o

DbField with

combo box style
connected to a
Boolean column

Figure6.5 A Form Showing the Automatic Combo Box for Columns with a Limited Value Domain

It can be useful to change the style of the Dbrield with a Boolean value to atoggle gadget.
See The Style of a DbField on page 100 for information on how to change the style.

Forms Assistant Pages
The Forms Assistant has four notebook pages that let you change various presentations.

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 103

Forms Assistant =] B

D ata source:

Col Title Displayed Style
EMPMNO EMPMNO Yes EntryField
MNAME MNAME Yes EntryField
STATUS STATUS Yes TableCombo

[Table gadget for style

I Arranae top to battorn LI
[rata | Title | Fields | Mavigator
Cancel_|

Figure6.6 The Data Page of the Forms Assistant

The Datapage is used to select the data source using the data source combo box. In the table
column, you can specify which data source columns will have a pbrield and choose the
type of DbField used to display the information (text, toggle, combo box, and so on). The
Table gadget style check box is used to create aform with atable gadget. You can also
choose the presentation of the bbrield inthe panel (Arrange top to bottom or left to right)
using the combo box at the bottom of the page.

The Title page is used to change the title name and its presentation (color and font).
The Fields page lets you change the Labels and Fields presentation.

The Navigator page lets you activate or de-activate various navigator and the position of the
navigator.

To apply changes and display information in the Main window, click OK.

Columns with a Foreign Table

Asshown in Figure 6.6, the bbField that islinked to a column with aforeign table is set
automatically to the 11iTableComboBoxStyle. In addition, it automatically has the same
foreign table as the table column (this can be seen in itsinspector). This occurs only when
the forms assistant is activated on a data source that already has aforeign table mapping.

If you create apbrField and link it to a data source column yourself, the foreign table will
not automatically be set for the bbrield gadget.

For more information on foreign tables and how they can be linked to table objects and data-
source-aware gadgets, see Foreign Tables on page 105.

104 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Foreign Tables

Foreign Tables

Any table object in Data Access can be used as aforeign table; that is, the T1iTable
subclasses, 11isQLTable, I1iMemoryTable, and so on. A foreign tableisidentified as
such from another object. Each column of atable object or of the 11iDbField,
IliTableComboBox, and I1iToggleSelector gadgets can have aforeign table.

A foreign table has two main purposes. It can be used to map the values in acolumn to
another set of values or it can be used to define the domain of values for the column.

There are two approaches for applying a foreign table to atable column.

& A foreign table can be applied to the column of atable object using the data source
inspector in IBM ILOG Views Studio. The foreign table then applies directly to any table
gadget, or form created with the Forms Assistant that is subseguently connected to the
data source.

& A foreign table can be applied to a particular data-source-aware gadget. In this case, the
foreign table applies only to the gadget.

Foreign tables are specified in the appropriate inspector in IBM ILOG Views Studio. In the
Data Access API, the methods found in the T1iTable (See Schema Properties on page 35)
and I1iFieldItf classes (see Foreign Table on page 71) can be used to specify the foreign
table.

Specifying a Foreign Table in IBM ILOG Views Studio

A foreign table can be set up for the data source or for an individual gadget. The
I1iDbField, I1iTableComboBox, and I1iToggleSelector gadgetscan have aforeign
table. The foreign tableis set up for aparticular column in the appropriate inspector.

To specify aforeign table for a particular table column, you must select the required column
and specify the following characteristics of the foreign table:

& the data source with which the foreign tableis associated
& the columnin the foreign table that corresponds to the val ue column
& the columnin the foreign table that corresponds to the display column

The vaue column is a column in the foreign table in which values will be located. A value
from the table column is matched with avalue in the foreign table value column. The display
column is the column from which avalue will be extracted to be displayed in place of the
original value.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 105

SAL Data Source =] 3

File Query
|EMF'_DS [Global W Allow insert
* _EMP W
EIPNO
MAME
STATUS
DEPTND
SALARY
d| [o
Specifying
Dot EMPHO HAME STATU7 DDEtPTNO\\,\ the forelgn table
Zt3 SGUICE: ep - —
Value column: [IDEPTHD \ / for the DEPTNO
Dizplay column: | MAME | column
Constrained: | Me e e \ e I
Completion: |Yez ez ez \ ez /
Select | Hawing | Datatype | Look Mapping |Earamete|s |
Apply | Cloge |

Figure6.7 Specifying a Foreign Table for a Column of an SQL Table

MemoryD ataSource [%]
Data Source | General | Specific | [rata | Callbacks |

Calurnn n Twpe Diata source:
Prpduct String Walue colurnn: | Frarme
Frice Louble Display column: | Material
|Frame Imtecer Constrained: Mo
In stack Boolean Completion: [Vas

Datatype | Look Mappingl

Apply | Cloze |

Figure6.8 Specifying a Foreign Table for the “ Frame” Column of a Memory Table

106 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Foreign Tables

TableComboB ox TableComboB ox
[rata Source | Mapping | General | Specific | Callbacks | DataSource Mapping | General | Specific | Calbacks |
Data source: | Product Foreign data source: | Frarme
Column:|| Frame Foreign walue column: | Frame
Format: Foreign display column: | Waterial -
Mask: Constrained: Mo
Use property manager: |ves Completion: [vYes
Tahle calumns:
Apply I Apply Cloze

Figure6.9 Specifying a Foreign Table for an IliTableComboBox

Using a Foreign Table to Convert Values

If you are using the foreign table to convert values, the value and display columns will be
different columnsin the foreign table. The values in atable object column are converted in

the following way.

For each value in the column:

1. Thevalueis searched for in the foreign table value column.

2. Therow inwhichitisfound isidentified.

3. Theforeign table value that isin the display column and the identified row is returned
and displayed in place of the original column value.

ILOG VIEwWSsS DATA ACCESS V5.3

— USER’S

MANUAL

107

Table Object Foreign Table

1 |Carbon
(2 Y(Fibre glass
)z /
Nt /
/ Value column/ \Display column
Column mapped Table Gadge
to a foreign table
Product Price In stock
* | Junior30 1451 Fibre Glass ez
JuniorS0 $19.93: Carbon Fibre | Mo
DeltaE0 $22.99: Carbon Fibre :Yes
Deltag0 $25.00; Mo Frame Mo
Deltad0 $36.00 Carbon Fibre : Mo
Airwing] 01 $49.99; Carbon Fibre | ves
Sock $38.93: Mo Frame Mo

Figure6.10 Using a Foreign Table to Convert Values

In addition, acombo box is automatically displayed on acell in a column that is connected
to aforeign table. The combo box menu contains all the possible values that the cell can
accept, that is, al the valuesthat are contained in the foreign table display column.

This mechanism is completely reversed if the user edits a value in the display gadget.
1. Thenew valueis searched for in the foreign table display column.
2. Therow inwhichitisfound isidentified.

3. Thevaluein the value column and the identified row, of the foreign table is returned to
the table object (replacing the display value).

Note: A table column that uses a foreign table to convert valuesis automatically set as
Constrained. This prevents any inconsistency that can arise from the user entering a new
value that is not in the foreign table display column.

Using the Toggle Selector

When apbFrield hasaforeign table, it is possible to display the value domain. This can be
done by selecting a particular style for the 11ipbField.

108 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Foreign Tables

You can use table combo box style to show the value domain in a pop-up menu. Another
useful style, however, isthe T1iToggleSelectorStyle. Thisstyle enablesyou to display
a set of toggle gadgets that show the domain of values.

Each togglein the toggle selector corresponds to aforeign table row. Only one toggle can be
checked at atime.

Frame
" Mo Frame

" Fibre Glass
{+' Carbon Fibre

Figure6.11 A Toggle Selector Connected to a Column with a Foreign Table

Using a Foreign Table to Constrain Values

A foreign table can also be used to constrain values. To use aforeign table in this way,
specify avalue and a display column that are the same column. In addition, set the
Constrained option in the appropriate inspector to ves.

This ensures that only the values contained in the foreign table display (value) column can
be entered by the user.

Using the Forms Assistant with Foreign Tables

When you create an automatic form using the Forms Assistant option in the Data Access
menu of IBM ILOG Views Studio, a column that already has aforeign table will
automatically have a combo box for afield.

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 109

o8 Ll (oo 7 ilxl] olefa

Product

|Juni0r30
Ds|

Price

Column with | $14.99

aforeign table Frame

|Fibre Glass

In stock

I jv

Figure6.12 A Form Showing a Field Connected to a Column with a Foreign Table
This happens only when the foreign table has been tied to a column via the data source.

Setting the Table Look

The SQL Data Source and the Memory Data Source inspectors provide a L ook page that
allows you to set several properties. These properties are specia in that they apply to any
table gadgets or forms (created using the Forms Assistant) that are connected to the data
source. They include the text alignment in columns, the column width, the column read/
write permissions, and the column visibility.

Column Geometry

When a number of table gadgets are connected to the same data source, column geometry is
controlled globally viathe data source. This means that if you manually change the column
width in one table gadget, the change will automatically be reflected in any other table
gadget that is connected to the same data source.

If you want two table gadgets that are connected to the same data source to have different
column geometry, you can disconnect them from each other via the Columns Geometry
property of the table gadget inspector.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Setting the Table Look

TableG adget =1 E3

[rata Source | General | Specific | Callbacks |

Data seurce: | EMP_DS

Fead only: [Mo
| Calumn geemetry: | Global hd
Show inzert row: | Yes
Bound to datz source: [Yes
Use preperty manager: |Yes
Aute fit: | Proportional

Column sort: | Mo

Aol I Cloze |

Figure6.13 Setting Columns Geometry in the Table Gadget I nspector

By default, this property is set to Global, which means that the table gadget inherits the
properties of the data source table. If you want to work on a table gadget without your
changes affecting other table gadgets, you must set the Column Geometry to Local. You can
work on this table gadget locally.

If, at any time, you reset Column Geometry to Global, the table gadget isimmediately set to
the geometry specified for the data source table.

Note: If you want two table gadgets that are connected to the same data source to have a
different set of visible columns, set up the SQL data source so that the appropriate
columns for one of the table gadgets are visible. Then disconnect one of the table gadgets
by setting it with a local column geometry. You can then set up the columns just for the
second table gadget.

The column geometry properties that can be controlled on aglobal or local level are column
width, column visibility, and column position.

If atable gadget haslocal column geometry, a column can be picked up and dragged to a
new horizontal position in the table gadget. However, if it hasaglobal column geometry, this
same procedure can only be carried out in the SQL Data Source inspector. In this case, it
appliesto all table gadgets with aglobal column geometry.

Read-Only Settings

A table object column can be set as read-only. This means that the values in the column can
only be consulted and not modified. If you set up a column as being read-only in the data
source inspector, thiswill apply to any connected table gadget or form that is subsequently

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 111

created with the Forms Assistant. However, in the bbField that make up the form, the read-
only property of a column can be changed locally.

Fixed Columns

A table gadget can be set so that when you horizontally scroll the table a set number of the
columns on the far |eft side of the table always stay in position. Thisis useful for columns
that contain key information, such as the record name.

To set the columns that will be fixed, you must access the Table Gadget inspector and use the
Fixed Column field of the inspector panel to set the number of columns that you reguire.
These are counted from the column the farthest to the left in the table schema. Therefore,
you should make sure that the columns that you want fixed are on the left of the data source
table.

For example, if you enter 2 in the Fixed Columnsfield, the two columns farthest to the left in
the data source table will always be displayed in the table gadget.

The methods in the API that implement this feature are getFixedColumnsCount and
setFixedColumnsCount inthe T1iTableGadget class. Becausethisisadirect property
of the I11iTableGadget class, any other table gadget that is linked to the same data source
can have a different number of fixed columns (or no fixed columns at all).

Troubleshooting
This section describes some of situations that you should be careful to avoid as they can
cause unexpected results in your application.
You can find information on the following topics:
¢ Avoiding Common Names in Foreign Tables

& Matching Types with a Foreign Table

Avoiding Common Names in Foreign Tables

When agadget istied to atable column and has aforeign table, you must ensure that the
Data Source and Column gadget values are never the same as its Foreign Data Source and
Foreign Value Column/Foreign Display Column.

112 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Troubleshooting

DbField DbField M =] E3
[rata Source |Mapping | General | Calbacks | — The Data Source Data Source Mapping | General | Callbacks I
and Column
Data zourck’ | MANME \ should never be Foreign data zource: N@I%
GoluR| name_/ the same as the ——-———tovakeToiaT o
Alignment: [C& . Foreian display celumn: | Azarma -
Format: Forelgn Data Conatrained: | Mo
Mask: Source and Completion: |Ves
Max length: columns.
Read only: | Mo
Usze preperty manager: |ves
Style: | EntryField
Label: | Marme
Label font: [2:MS Sans Serif-11-
Label calor: | black
Label pesition: | Top
Apply I Close I Apply | Cloze

Figure6.14 A DbField with the Same Data Source and Foreign Data Source

You can be tempted to set up a combo box this way so that you can select the current row
based on values in one of the columns. This step has a more disturbing result.

Data Source and Column are used to specify the data source column to which the gadget is
tied. This means that values from this column can be displayed and edited via the gadget.
Foreign Data Source and Foreign Value Column/Foreign Display Column specify the
foreign table of a gadget.

Take the case of agadget that istied to acolumn displaying values from that column and that
also has a combo box. The combo box menu will contain the set of possible values that the
column can take, which will be the same set of values. If you then select a new value for a
row, you will end up with a column that starts to have repeating values.

To successfully set up a combo box that enables you to select the current row in aform, you
must use a parameter. See Parameters on page 139.

Matching Types with a Foreign Table

When agadget has aforeign table, the actual value of the column to which it istied is
compared with avalue column in the foreign table to identify a value to be displayed from
the foreign table display column. It is therefore important to ensure that the type of gadget
column and the foreign table value column are the same.

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 113

DbField

Data Source | I apping | General | Callbacks I

M= E3

|_-The types

Data source:

7= =

must be the

Columrf

DEFTNG

Alignment;

Tt

Format:

Mazk:

Max length:

FRead anly:

e

Use preperty manager:

fes

Style:

TableCombe

Lakel:

DEPTMO

Label font:

WME Sans Serif-11-

Label coler:

black

Label position:

Top

Apply I

Close

114

DbField

Data Source Mapping |General | Calbacks |

—

M=

lan data source:
Foreign value
Fareign display celumn;
Caonstrained:
Cempletion:

DEFT D15

ADEPTHNO)

o=

Mo

ez

Apply |

Cloze

Figure6.15 A DbField Inspector with a Foreign Table

If the type is not the same, the comparison between the actual value and the value column is
not possible. Values must be of the same type for a comparison to produce a useful result.

IBM

ILOG VIEwWs DATA AcCCEss V5.3

USER'S MANUAL

Part Il

Data Access and SQL

This part describes how to use Data A ccess when connected to an SQL database. It describes
SQL tables and data sources, and how to connect to a database.

IBM

SQL Tables

You were given an overview of table objectsin Chapter 3, Tables. An SQL tableisatable
object that is used when Data Access is connected to an SQL database. This chapter
describes the SQL table object in more detail.

You can find information on the following topics:
Introduction

Structural Definition

The SQL Session of an SQL Table

Run-Time Options

Parameters

Transaction Manager

Structured Types

L 4
L 4
L 4
L 4
L 4
L 4
L 4
& Asynchronous Mode

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 117

Introduction

The 11isQLTable class defines an object that manages rows on a remote relational
database management system. It is created automatically when an 11isQLDataSource iS
created. Each T1isQLDataSource object has an associated 11isQLTable.

This chapter explainshow 11isQLTable objects are defined and subsequently used.

Structural Definition

Each 11isgrrable object must have an associated SQL SELECT statement that is
submitted to the database system whenever the rows of the SQL table object need to be
recomputed.

The following shows an example of an SQL SELECT statement:

SELECT EMP.ID, EMP.NAME, EMP.DEPTNO
FROM EMP

WHERE EMP.DEPTNO = 3

ORDER BY 2

When you submit this statement, the result is an ordered collection of rows, each of which
has three values (EMPID, EMPNAME and EMPDEPTNO). These rows are extracted from
the database table named EMP and they are sorted by NAME (orRDER BY 2). Not all rows
are extracted from table EMP: only the rows whose EMP.DEPTNO is equal to 3. In other
words, this SQL statement returns the ID, NAME, and DEPTNO of all employees working
in department number 3.

An SQL SELECT statement can have more than one database table referenced in the FROM
clause. Hereis an example:
SELECT EMP.ID, EMP.NAME, DEPT.NAME

FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.ID

The rows produced by this query are obtained by combining rows from the database tables
EMP and DEPT through ajoin operation.

AnT1isQLTable object can be defined so that its SQL query resembles one of the
statements shown above. Two different techniques can be used to achieve this. Thefollowing
sections describe these techniques: creating the definition interactively using

IBM ILOG Views Studio and creating the definition in pure C++.

118 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Structural Definition

Creating the Definition Using IBM ILOG Views Studio

The 11isgoLTable can be defined interactively in IBM ILOG Views Studio through the
T1isQLDataSource Object inspector.

SAL Data Source =] 3
File Query
| [Global W Allow insert
il I_EMP
EIPNO
MAME
STATUS
DEPTND
SALARY
d| [
EMPHO HAME STATUS DEPTHO SALARY
Select: | EMPMO MNAME STATUS DEPTHO | SALARY -
Frerm: [|_EMP I_EMP I_EMP I_EMP I_EMP
Operation:
Crder:
Where:
Select | Hawing | Datatype | Look | Mapping | Parameters
Apply Cloge

Figure7.1 The SQL Data Source Inspector
Within SQL Data Source inspector, you can:

4

4

Specify the database tables to be referenced by the FROM clause (the Add Tables menu
item).

Specify the joins between tables when multiple database tables are added. These joins
can be specified by dragging a column from one table to a column in another table. This
resultsin acondition of theform Tablel.Columnl = Table2.Column2 being added
to the wHERE clause of the SQL SELECT statement.

Specify the columns of the 111 sQLTable object. These columns are derived from the
columns of the database tables in the following way: drag a column belonging to a
database table and drop it over the SELECT areain the inspector. Thiswill create a new
column in the schema of the 11isQrTable object.

Alternatively, the SELECT areain the inspector contains an undefined column that
alows you to type in the definition of a new column. The rows labeled Select and From
are used to specify how the 11isQLTable column relates to the database table. In the
From row, enter the name of the database table from which the column is derived. In the

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 119

Select row, enter the name of the database table column from which the columniis
derived.

If you want to define an 11isQLTable column that is derived from multiple database
columns, leave the From row empty and, in the Select row, enter an SQL expression that
computes the column value (for example, PRICE * QTY).

& Specify the wHERE clause by typing the selection criteriain the Where row. If you enter
conditions for multiple columns, these conditions will be combined with an anD logical
operator in the SELECT statement. Once you enter a condition in the Where row, a new
row labeled Or appears. In the Or row, you can type a new set of conditions that will be
combined, viaan or logical operator, with the Where row conditions. There can be any
number of Or rows.

& |f the SELECT statement contains aGcrouP BY clause or if it contains aggregate
functions such as COUNT or sum, enter the appropriate operations in the Operation row.
Note that in this case, all columns must have a specified operation and that conditions
should be entered in the Having row instead of the Where row.

e Specify the orRDER BY clause in the “Order By” row.
e Specify other column propertiesin the Datatype, L ook, and Mapping notebook pages.
o Specify the parameters used in the wHERE clause in the Parameters page.

o If duplicate rows should be removed from the result produced by the SELECT
statement, the Distinct property should be set to Yes.

o Inadditionto performing an SQL SELECT statement, an 11isQLTable Objectis
able to forward user updates to the database. Thisinvolves generating SQL UPDATE,
INSERT, and DEL ETE statements on-the-fly. Note that when more than one database
table is added to a data source, only one of the database tables can be updated in this
way. Ensure that the updatable Table property contains the database table name that
will be changed through the 111 sgr.Table object.

At this point, the T1isorTable is structurally defined. This means that its schemais
defined and the processthat it should use to compute its rows from the tables in the database
is also defined.

Creating the Definition in C++

All of the steps described in the previous section can also be carried out by coding in C++.
This following example shows how this can be done:

& Createthe 11isQLTable object
IlvDisplay* display;

I1iSQLTable* sglTbl = new I1liSQLTable (display) ;
sglTbl->lock() ;

120 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Structural Definition

& Specify the database tables
I1isQLTableRef refEMP (“EMP”, “SCOTT") ;
I1isQLTableRef refDEPT(“DEPT”, “SCOTT”);

I1lInt tblEMP = sqglTbl->addTable (refEMP) ;
I1lInt tb1DEPT = sqlTbl->addTable (refDEPT) ;

& Specify thejoins

sglTbl->addJoin (tblEMP, “DEPTNO”, tblDEPT, “ID”);

& Specify the columns

I1Int cID = sglTbl->appendColumn (“ID”, IliIntegerType) ;
sglTbl->setColumnPartOfKey (cID, IlvTrue);
sglTbl->setColumnSQLText (cID, “ID”);
sqglTbl->setColumnTable (cID, tblEMP) ;

I1lInt cNAME = sqglTbl->appendColumn (“*NAME”, IliStringType) ;
sglTbl->setColumnSQLText (cNAME, “NAME”) ;
sglTbl->setColumnTable (cNAME, tblEMP) ;

I1Int cDEPT = sqlTbl->appendColumn (“*DEPT”, IliStringType) ;

sglTbl->setColumnSQLText (cDEPT, “NAME”) ;
sglTbl->setColumnTable (cDEPT, tblDEPT) ;

A computed column could be defined in the following way (note that the following code
excerpt is not part of the example).

I1Int cTOTAL = sglTbl->appendColumn (“TOTAL”, IliIntegerType) ;
sqlTbl->setColumnSQLText (cTOTAL, “PRICE * QTY”);

& Specify the criteria
I1lInt where = 0;

sglTbl->insertConjunct (where, I1vTrue) ;
sqglTbl->setColumnPredicat (cNAME, where, “<> ‘Smith’”, IlvTrue);

& Specify the sort
sglTbl->setColumnOrderBy (cNAME, IliSQLAscending) ;

& Specify the updatable table

sglTbl->setTableUpdatable (tbl1EMP, I1lTrue);

& Generatethe SQL SELECT statement

sqlTbl->makeQuery () ;

At thispoint, the 11isgorTable object isdefined and ready for use. Calling the
I1isQLTable: :getQuery member function generates the following SQL statement:
SELECT EMP.ID, EMP.NAME, DEPT.NAME

FROM SCOTT.EMP, SCOTT.DEPT
WHERE EMP.DEPTNO = DEPT.ID

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 121

AND EMP.NAME <> ‘Smith’
ORDER BY 2

A Shortcut C++ Definition

The 11isQLTable: : setQueryFrom member function allows you to define an
T1isQLTable that has only one database table. Here is an example:

IlvDisplay* display;

// Create the IliSQLTable object.
I1iSQLTable* sqglTbl = new IliSQLTable (display) ;
sqlTbl->1lock() ;

// Define its session.

I1iSQLSession* session;

session = new IliSQLSession(“oracle”, “scott/tiger@orasrv”);
sqlTbl->setSQLSession(session) ;

// Define the I1iSQLTable object.
IlisQLTableRef tblRef (“EMP”, “SCOTT”);
sqlTbl->setQueryFrom(tblRef) ;

The setQueryFrom member function reads the schema of the given database table and
definesthe 11isQLTable object accordingly.

The SQL Session of an SQL Table

AnT1isQLTable object must have a properly defined SQL session before any real work
can be done. The SQL session handles all requests sent to a database server. See SQL
Sessions and Cursor Objects on page 149.

When defining an 11isQLbataSource gadget in IBM ILOG Views Studio through the
inspector, the SQL session can be edited through the connection property. Editing this
property causes a connection dialog box to be displayed in which the user can choose one of
the following options:

& Creating a custom session by entering al required connection parameters.
& Selecting the name of an application-wide session.

An SQL session can be shared among several 111isQLTable objects by selecting the same
application-wide session for each of them.

The rest of this section describes how these actions can be carried out in C++.

A custom session can be defined as follows:
I1iSQLTable* sqlTbl;

I1iSQLSession* session;

122 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Run-Time Options

session = new IliSQLSession(“oracle”, “scott/tiger@orasrv”);
sqlTbl->setSQLSession(session) ;

An application-wide session can be selected as follows:
I1iSQLTable* sqlTbl;
I1iSQLSession* session;

session = IliSQLSession::GetRegisteredSession(“Main”) ;
sqlTbl->setSQLSession(session) ;

The SQL sessionthat an 111 sQLTable object usesto communicate with the database server
can beretrieved in the following way:

I1liSQLSession* session = sglTbl->getEffectiveSQLSession();

Run-Time Options

This section contains information on the options that affect theway an 111 sQL.Table object
behaves. These options can be set through the API using the appropriate member functions
inthe11isgQLTable class.

You can find information on the following topics:
Concurrency Control

Auto-Commit Mode

Fetch Policy

Auto-Refresh Mode

Inserting-Nulls Mode

Dynamic-SQL Mode

Bound Variables Mode

Cursor Buffering

® & 6 6 6 6 0 o o

Auto-Row Locking Mode

Concurrency Control

In aclient-server environment, there can be multiple client programs simultaneously
accessing the same data in the database server. When concurrency control is enabled, any
row updates or deletionsin an SQL table will succeed only if the rows concerned have not
changed in the database since the last time they were fetched and stored in the local memory
cache. In other words, concurrency control obliges the SQL table to protect the work carried
out through it from any changes made by other database users.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 123

Thisisachieved by adding extra conditions in the SQL statements that are generated when a
row is updated or deleted.

For example, assume that the SQL SELECT statement of an 11isgLTable object isthe
following and that 1D isthe primary key of the Emp table:

SELECT ID, NAME
FROM EMP

If the name of an employee whose ID is 6 is changed from “ Smith” to “ Jones’, the resulting
SQL UDPATE statements will be as follows:

4 Without concurrency control
UPDATE EMP

SET NAME = ‘Jones’
WHERE ID = 6

& With concurrency control enabled

UPDATE EMP

SET NAME = ‘Jones’
WHERE ID = 6
AND NAME = ‘Smith’

The latter statement will fail if the name of the employee has been changed by another user.

Note: The technique used to deal with concurrency control is referred to as optimistic
concurrency control. It does not explicitly lock rows at read time. For more information on
how rows can be locked at read time using a technique known as pessimistic concurrency
control, see Auto-Row Locking Mode on page 127.

Auto-Commit Mode

When the auto-commit mode is enabled, the 111 sQL.Table Object commits the transaction
immediately after an INSERT, UPDATE or DELETE operation. When auto-commit is
disabled, the transaction must be committed (through the effective SQL session) as required.
Hereisan example:

I1isSQLTable* sglTbl;

}}.Delete two rows and then commit.

sqglTbl->setAutoCommit (I1lvFalse) ;

sgqlTbl->deleteRow (10) ;

sqlTbl->deleteRow(9) ;
sqlTbl->getEffectiveSQLSession () ->commit () ;

124 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Run-Time Options

Fetch Policy

Data Access supports two ways of fetching rows from the database after a successful
SELECT operation: either all rows are fetched at once at select time or the retrieval of rows
is delayed until required. The fetch policy of an SQL table can be set using the
IliSQLTable: : setFetchPolicy member function.

Hereis an example where the fetch policy isimmediate:
I1iSQLTable* sqlTbl;

sqglTbl->setFetchPolicy (I1iFP_Immediate) ;

sgqlTbl->select () ;

// All rows have been fetched and are now available locally.
I1Int rowsCount = sglTbl->getRowsCount() ;

// The rows count is accurate.

The advantage of the immediate fetch policy is that the row count is accurate, since the
IliTable: :select member function retrievesall the database rows at once. However, the
disadvantage isthat if the SQL SELECT statement retrieves ten thousand rows, the
IliTable: :select function will incur serious overhead.

Alternatively, the 11isgLTable object can delay the retrieval of rows until necessary. Here
isan example:

I1iSQLTable* sqlTbl;

sqglTbl->setFetchPolicy (I1iFP_AsNeeded) ;

// Auto-commit must be disabled.
sqlTbl->setAutoCommit (I1False) ;
sqlTbl->select () ;

// Rows have not yet been fetched.

I1lInt initialRowsCount = sglTbl->getRowsCount () ;
// The initial rows count equals 0.
sqlTbl->fetchNext (10) ;

I1Int halfWayRowsCount = sqglTbl->getRowsCount () ;
// Now, 10 rows are available locally.
sglTbl->fetchAll () ;

IlInt totalRowsCount = sqglTbl->getRowsCount () ;
// All rows have been fetched and are now available locally.

Note that the auto-commit mode must be disabled for this way of retrieving rowsto be
effective.

Auto-Refresh Mode

When auto-refresh mode is enabled, an INSERT or UPDATE operation on the database is
followed immediately by arequest to the database for the inserted or updated row. The row
obtained viathis request replaces the inserted or updated row in the T1isQrTable object.

Thisisuseful in either of the following situations:

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 125

126

IBM

& The database contains triggers that can alter inserted or modified rows.

& Thesdected list of the SQL SELECT statement contains formulas (for example, PRICE
* QTY) that need to be recal culated each time the row changes.

Inserting-Nulls Mode
When inserting arow in a database table, the row can contain one or more NULL values.

Hereis an example of the SQL statement when the ADDRESS of employee Williamsis
NULL and the insert-nulls property is enabled:

INSERT INTO EMP(ID, NAME, ADDRESS) VALUES(7, ‘Williams’, NULL)

Alternatively, the following example shows the SQL statement when the insert-nulls
property is disabled:

INSERT INTO EMP(ID, NAME) VALUES(7, ‘Williams’)

Dynamic-SQL Mode

When arow is edited, it can contain some modified values and some values that remain
unchanged. For instance, assuming the address of employee Williams is modified, the
following example shows the SQL statement that would be generated if dynamic-SQL is
enabled:

UPDATE EMP

SET ADDRESS = ‘16, Chocolate Street’
WHERE ID = 7

Hereisthe SQL statement if dynamic-SQL is disabled:

UPDATE EMP
SET ID = 7,
NAME = ‘Williams’,
ADDRESS = ‘16, Chocolate Street’

WHERE ID = 7

In the latter case, the values for all the columns are sent back to the database each time an
update takes place.

Bound Variables Mode

Most database systems support the use of bound variablesin SQL statements. When bound
variables are used, the SQL statements contain variable markers. Here is an example:
UPDATE EMP

SET NAME
WHERE ID

?

?

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Run-Time Options

The question marks represent variables. The value for avariable is provided separately. The
advantage of using bound variablesis that the same SQL statement can be reused even
though the values involved change each time. Using the same SQL statement each time
instead of having many SQL statements can offer a serious boost in performance. Thisis
because the time spent in parsing an SQL statement and selecting an access plan on the
database server can be significant.

Cursor Buffering

Cursor buffering isaway to obtain better throughput when fetching alarge number of rows.
It consists of having the lower layers of the database library fetch more than one row at a
time from the database server.

By default, rows are obtained one at atime from the database server. This can seriously slow
down the application when many rows have to be fetched since a hetwork round-trip will be
required for each row.

The11isQLTable: : setCursorBuf feredRowsCount member function lets you specify
how many rows can be fetched at one time.

I1iSQLTable* sglTbl;

sqlTbl->setCursorBuf feredRowsCount (15) ;

Note that thiswill result in better throughput only with database servers that support this
feature, which currently are Oracle and Sybase.

Auto-Row Locking Mode

TherlisQLTable classhasarefreshandLockRow member function that rereads a given
row and attempts to acquire alock on this row in the database. Thisis useful if you want to
implement the “pessimistic concurrency control policy”.

The I1ibpataSource class has“auto-row locking” mode in which it automatically callsthe
refreshAndLockRow member function of the underlying table whenever the end user
starts modifying the current row.

Hereis how the “auto-row locking” mode can be enabled:

IliSQLDataSource* sqglDs;

sglDs->enableAutoRowLocking (I1vTrue) ;

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 127

Note: When using an Oracle database system, it is possible to request that the
I1lisSQLTable: : refreshandLockRow member function includes the “* NOWAIT"
clausein the SQL SELECT statement it uses to lock the row. By doing this, the end user
will not wait when locks are held by other database users. See the

I1isQLTable: : enableNoWaitOnLockRow member function for more information.

Parameters

The SQL SELECT statement of an 11isgLTable object can contain references to
parameters. See Parameters on page 139. Here is an example:
SELECT ID, NAME, ADDRESS

FROM EMP
WHERE NAME = :name_p

In this example name_p isthe name of a parameter and as such it must be preceded by a
colon “:" inthe SQL statement.

In addition, the parameter must be declared in the T1isQLTable object. This can be done
either interactively through the SQL Data Sourceinspector in IBM ILOG Views Studio or in
C++ asfollows:

I1iSQLTable* sglTbl;

ééin1—>appendParameter(“name;p", IliStringType) ;

A value should be assigned to this parameter beforethe t11iTable: : select member
function is caled. This code extract only shows how the parameter is defined in C++. For a

compl ete description of the code required to generate this SQL statement, see Creating the
Definition in C++ on page 120.
Ilivalue v (“Smith”) ;

sqlTbl->setParameterValue (“name_p”, V) ;
sgqlTbl->select () ;

The parameter can subsequently be assigned other values as required.

Transaction Manager
The IliTransactionManager class manages so-called local transactions in which the

propagation of changes of one or more 11iTable objectsisdeferred. Thisis especialy
useful when using 11isQLTable objects. In effect, each time arow isinserted, updated, or

128 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Transaction Manager

deleted in an 11isQLTable Object, one or more corresponding SQL statements are
submitted to the database server to which the SQL table object is connected.

Although it is necessary to send SQL statementsimmediately whenthe 11isQrTable
object isin auto-commit mode, it can be useful to retain these statements when not in auto-
commit mode. Instead, the user could be allowed to make a number of changes to one or
more I1isQLTable objects. The changes would be effective in local row cache so that they
are reflected in all connected gadgets, but the corresponding SQL statements are retained.
Later, when the user validates the changes, all SQL statements are submitted to the database
server.

If al statements are accepted by the server, the transaction has succeeded and the user can
issue a database commit. However, if at least one of the statements fails, the user should
issue a database rollback to cancel any statement that would have succeeded beforeit. The
user can then either make some additional changes and retry the validation process or cancel
al changeslocaly so that the local row cache(s) of the 11isgLTable object(s) revert their
state(s) to what they were before the first change.

The set of changes that have been effected in the local row cache(s) of the 11isgLTable
object(s) and the corresponding SQL statements that have been retained are called alocal
transaction.

To participatein alocal transaction, an 11iTable object must be managed by an instance of
the I1iTransactionManager class.

A transaction manager is anonymous or named. The name space for atransaction manager is
global. There can be at most one transaction manager with a given name.

The simplest way to assign a transaction manager to an 11iTable Object isto assign its
transactionManagerName property. If aname isassigned to the property and thereis no
transaction manager with that name, a transaction manager is automatically created and is
assigned to the 11iTable object. Other table objects can then be made to share this
transaction manager by assigning the same name to their transactionManagerName
property. The transaction manager can then be obtained by accessing the
transactionManager property of one of the table objects.

The11isQLTable and I1iMemoryTable Classesare currently transaction-manager-aware
classes.

Note that the following restrictions apply to the use of atransaction manager:

& TherIliTable::select andIliTable: :clearRows member functions should not
be called on table objects involved in a pending local transaction.

& Nested tables should not be managed by a transaction manager. See the Parameters on
page 128 for more information.

ILOG VIEwWS DATA AccESS V5.3 — USER’S MANUAL 129

The following code sample shows how a transaction manager is used:

class MyPanel: public IlvGadgetContainer ({

public:
I1iSQLTable* getTableEMP() const { ... }
I1iSQLTable* getTableDEPT() const { ... }

MyPanel (IlvDisplay* dpy)
IlvGadgetContainer (dpy, ...)
{ ...}

void initPanel() {
// Could be done in IBM ILOG Views StUdiO without coding,
// shown here for exposition.
// Ensure both tables are using the same transaction manager.
getTableEMP () ->setTransactionManagerName (" TRANS_MGR") ;
getTableDEPT () ->setTransactionManagerName ("TRANS_MGR") ;

// And the same session.
IliSQLSession* session = getTableEMP ()->getSQLSession() ;
getTableDEPT () ->setSQLSession (session) ;

// Do not auto-commit.

getTableEMP () ->setAutoCommit (I1lvFalse) ;

getTableDEPT () ->setAutoCommit (I1lvFalse) ;
}

IliTransactionManager* getTransMgr () const
{ return getTableEMP ()->getTransactionManager (); }

I1iSQLSession* getSQLSession() const
{ return getTableEMP ()->getEffectiveSQLSession(); }

IlBoolean isTransactionStarted() const
{ return getTransMgr ()->isStarted(); }

void startTransaction()
{ getTransMgr ()->start(); }

I1lBoolean acceptTransaction() {

if (getTransMgr ()->accept()) {
getTransMgr () ->stop () ;
getSQLSession () ->commit () ;
return IlTrue;

}

else {
getSQLSession()->rollback() ;
return IlFalse;

}

void cancelTransaction() {
getTransMgr () ->cancel () ;
getTransMgr () ->stop () ;
}
}i

130 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Structured Types

Structured Types

Some database systems (for example, Oracle 9i or later, Informix 9.x) support extensible
type systems in which the type of a database table column is not limited to the traditional
scalar datatypes. It can also be either a structured type or a collection type.

Data Access represents values of the structured types as 11iMemoryTable Objects.

For example, a database table called PRODUCT can be defined in an Oracle 8.x database
system as follows:

CREATE TYPE PART_T AS OBJECT (
PARTNO INTEGER NOT NULL,
PARTNAME VARCHAR (20) NOT NULL) ;

CREATE TYPE PART_TABLE_T AS TABLE OF PART_T;

CREATE TABLE PRODUCT (
PRODNO INTEGER NOT NULL PRIMARY KEY,
PRODNAME VARCHAR2 (50) NOT NULL,
PARTS PART_TABLE_T) ;

An SQL data source named PRODUCT _DS based on the PRODUCT table can then be
created. All three columns of the PRODUCT table should be included in the PRODUCT_DS
data source.

The following code extract shows how the contents of the PARTS column can be used in
IBM ILOG Script.

IlisQLDataSource prodDS = ...;
I1lisSQLTable* prodTable = prodDS->getSQLTable() ;
for (IlInt prodIdx = 0; prodIdx < prodTable->getRowsCount (); ++prodIdx) {
const IliTable* partsTable = prodTable->at (prodIdx, "PARTS").asTable();
const char* prodName = prodTable->at (prodIdx, "PRODNAME") ;
if (partsTable != NULL) {
IlvPrint ("Product %s parts:", prodName) ;
I1Int partCount = partsTable->getRowsCount () ;
for (IlInt partIdx = 0; partIdx < partCount; ++partIdx) {
const char* partName = partsTable->at (partIdx, "PARTNAME") ;
IlvPrint (" %s", partName) ;
}
}
else
IlvPrint ("Product %s does not have parts", prodName) ;

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 131

132

IBM

The following code extract shows how a new row can be inserted in the PRODUCT table.

IlisQLDataSource prodDS = ...;
I1iSQLTable* prodTable = prodDS->getSQLTable() ;

// Create the nested PARTS table.

I1Int partsColno = prodTable->getColumnIndex ("PARTS") ;

const IliDatatype* type = prodTable->getColumnType (partsColno) ;
IliTable* partsTable = type->makeTable() ;

partsTable->lock() ;

IliTableBuffer* partsBuf = partsTable->getBuffer();

// Insert the first part.
partsBuf->at ("PARTNO") = (IlInt)610;
partsBuf->at ("PARTNAME") = "Drawer";
partsTable->appendRow (partsBuf) ;

// Insert the second part.
partsBuf->at ("PARTNO") = (IlInt)611;
partsBuf->at ("PARTNAME") = "Handle";
partsTable->appendRow (partsBuf) ;

partsTable->releaseBuffer (partsBuf) ;

// Insert the new product.
IliTableBuffer* prodBuf = prodTable->getBuffer () ;

prodBuf->at ("PRODNO") = (IlInt)61l;
prodBuf->at ("PRODNAME") = "Dresser";
prodBuf->at ("PRODNAME") = partsTable;

prodTable->appendRow (prodBuf) ;
prodTable->releaseBuffer (prodBuf) ;

partsTable->unLock () ;

In both examples shown above, prodTable designates an 111iSQLTable Whereas
partsTable designates anested 11iMemoryTable. Care must be taken not to modify the
nested memory table. Doing so would inevitably lead to inconsistencies between the Data
Access application and the database. Instead, a PARTS DS SQL data source based on the
PRODUCTS.PARTS nested table can be created. This data source is defined as follows
through the SQL Data Source inspector:

1. Set the data source nameto PARTS DS.

2. Add the PRODUCT database table by selecting Add Tables... from the Query menu of
the inspector panel.

3. Inthe PRODUCT table, open the PARTS column by clicking on the + sign that appears
to the left of the column name.

4. Drag the PARTNO and PARTNAME columns and drop them in the SELECT section.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

Structured Types

5. To edit the definition of the PRODUCT table, double-click on the PRODUCT table. In
the Table definition dialog box that appears, make sure that the following items are
defined:

Parent: PrRODUCT_DS

Alias; PRODUCT
The PARTS DS data source can be used in two different settings:

¢ The PRODUCT_DS data source does not include the PARTS column. Instead, the
PARTS DS data source retrieves the contents of the nested PARTS table each timeits
select methodis called. Note that in this case, there are no nested 11iMemoryTable
objects involved. Instead there are two 11isQLTable objects, one of them belongs to
PRODUCT_DS and the second one belongsto PARTS DS.

& The PRODUCT_DS data source does include the PARTS column. Consequently, there
are many nested I1iMemoryTable available, onefor each row in the PRODUCT_DS
data source. The PARTS_DS data source can be used in this setting to edit any nested
partsTable I1liMemoryTable objectscontained in the PRODUCT_DS datasource as
shown in the following code extract:

partsMemoryTable->Lock() ;

IlisQLDataSource* prodDS = ...;

I1iSQLTable* prodTable = prodDS->getSQLTable() ;
I1Int prodIdx = prodDS->getCurrentRow () ;

const IliTable* partsMemoryTable = prodTable->at (prodIdx,
"PARTS") .asTable() ;
if (partsMemoryTable == NULL) {
I1Int partsColno = prodTable->getColumnIndex(""PARTS") ;
const IliDatatype* type = prodTable->getColumnType (partsColno) ;
partsMemoryTable = type->makeTable() ;
prodTable->set (prodIdx, "PARTS", IliValue (partsMemoryTable) ;
partsMemoryTable = prodTable->at (prodIdx, "PARTS").asTable();
}

IlisQLDataSource* partsDS = ...;

I1isSQLTable* partsSQLTable = partsDS->getSQLTable() ;
partsSQLTable->setCache (partsMemoryTable) ;
partsMemoryTable->unLock () ;

Once the nested memory table has been assigned to the cache property of the PARTS DS
table, it can be edited as any SQL table through PARTS _DS.

Note that the PARTS_DS data source assumes that the nested table it is editing belongs to
the current row of the PRODUCT _DS data source. As a conseguence, it is necessary to
adjust the value of the cache property when the PRODUCT _DS data source moves to
another row.

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 133

Asynchronous Mode

Normally, calls made by a client application to a database server are blocking. This means
that the client application has to wait for server replies each time it submits an SQL
statement or when it attempts to fetch rows. The effect of thisisthat the end user may feel
that the application is not sufficiently responsive.

Asynchronous mode, which is supported by some database systems, can be used to increase
application responsiveness. Instead of blocking until the server responds, asynchronous calls
return quickly and the caller must check whether the call has completed (that is, whether the
server has responded). If not, the caller is expected to repeat the call until completion. In the
meantime, the caller can proceed with other tasks (such as giving the main loop a chance to
handle other events).

The advantages of asynchronous mode are that the application can become more responsive
to user input and, in addition, the user may be given the opportunity to cancel along-running
task that has taken too much time. The disadvantage is that programming applications with
asynchronous calls is more difficult than programming with synchronous calls.

The 11isQLTable class supports selecting and fetching rows asynchronously from a
database server. It does not, however, support asynchronous insert, update, or delete
operations.

A typical way of using asynchronous callsisto set up atimer in the application (see the
I1iDbTimer class) and to proceed as follows. Assume that an SQL data source needs to
perform its select call in asynchronous mode.

& Put the data source session in asynchronous mode:

IlisQLDataSource* ds = ...;
I1isSQLTable* sglTable ds->getSQLTable() ;
I1iSQLSession session ds->getEffectiveSQLSession() ;
session->enterAsyncMode () ;

¢ Ensurethat thefetch policy is*Immediate” so that acall to the select member function
will also fetch all rows:

sglTable->setFetchPolicy (I1iFP_Immediate) ;

& Call the select member function:

sglTable->select () ;

134 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

Asynchronous Mode

& Inthetimer callback, cal continueasynccall aslong asthecall to select hasnot
completed:

void ILVCALLBACK OnTimer (IlvGraphic*, IlAny) {
IliSQLDataSource* ds = ...;
I1iSQLTable* sglTable = ds->getSQLTable() ;
if (!sglTable->isAsyncCallCompleted())
sglTable->continueAsyncCall () ;
}

Note that asynchronous mode is not supported by all database systems. Moreover, when it is
supported by adatabase system, support may depend on the database server rel ease number.
You should dynamically test whether asynchronous mode is supported as shown in the
following code:

I1iSQLSession* session = sglTable->getEffectiveSQLSession() ;
if (session->supportsAsyncMode()) {

}

Another important issue to consider is that there can be at most one non-completed
asynchronous call among all cursors that belong to the same session. This means that you
cannot execute asynchronoudly in parallel two SQL statements through two cursors that
belong to the same session. Consequently, it is recommended that an SQL table have a
private SQL session (that is, not an application-defined session) when used in asynchronous
mode.

ILOG VIEwWS DATA AccESS V5.3 — USER’S MANUAL 135

136 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

SOQL Data Sources

This chapter provides information on SQL data sources, including how to define parameters
in an SQL table and SQL data sources.

You can find information on the following topics:
& Query Mode

& Parameters

& Wbrking with an SQL Data Source

Query Mode

The 11iDataSource and T1isQLTable classes support query mode.

When query mode is entered, the data source substitutes a memory table for the SQL table
(see T1iDataSource: : switchToQueryMode). This memory table has the same number
of columns asthe SQL table, but it differsin that all columnsin the memory table have a
String type. The user can then edit the contents of the memory table through the same set of
gadgets that are used to edit the SQL table in regular (nonquery) mode.

Each column of a memory table can contain:

¢ A litera value (implying the = relational operator)

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 137

& A vaue containing the SQL wildcard character % or the underscore character
(implying the LIKE SQL operator)

& An SQL condition such as:
e NULL or ISNULL
e NOT NULL or ISNOT NULL
o LIKE ‘apattern’
¢ NOT LIKE *apattern’
e BETWEEN _literal_value AND another_literal_value

e =a literal_value
e <>a litera_vaue
e < _litera_vaue

A memory table can contain more than one row. All conditions that appear on the same line
will be combined with an AND operator when the query is applied. Conditions that appear
on different lines will be combined with an OR operator.

Then, the user can apply the query (see T11iDataSource: : applyQueryMode), which will
synthesize a portion of the WHERE clause based on the contents of the memory table. This
WHERE clause will then be assigned to the SQL table by calling the

I1iSQLTable: : setQueryConjunct member function. The I11iTable: :select
member function will be called and the data source will revert to using the SQL table instead
of the memory table so that all connected gadgets show the contents of the SQL table.

Alternatively, the user can cancel the query (see I1ibataSource: : cancelQueryMode),
which simply reverts to using the SQL table instead of the memory table so that all
connected gadgets show the contents of the SQL table.

The 11ipbNavigator gadget has been upgraded to optionally contain a QueryMode
button.

The QueryMode button islabelled with a question mark (7). When the QueryMode button is
clicked, the SQL data source switchesto query mode. When in query mode, the Validate (V)
and Cancel (X) buttons of the navigator behave differently than when in regular mode.
Clicking on the Validate navigator button applies query mode and clicking on the Cancel
navigator button cancels query mode.

138 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Parameters

Parameters

IBM

Parameters can be defined in the SQL table via the data sourcein IBM® ILOG® Views
Studio. These parameters can be used to filter the data that is displayed in aform.

Parameters are defined in terms of a column of a data source table. This means that the
content of the data source column is taken to be the value of the parameter at any particular
time.

Defining a Parameter

A parameter is defined in the SQL Data Source inspector on the Parameters page. In the
table on the Parameters page, you can enter as many parameters as you need.

A parameter is defined by four characteristics:

¢ Name

¢ Type

¢ Name of the data source that it is attached to

& Column of the data source table that defines the parameter

Pammeer Type Data Source Column
dept_name String dept_name narme

Select | Having | Lratatype | Look | Mapping Earameters

Apply | Cloze

Figure8.1 Defining a Parameter in the SQL Data Source | nspector

Note: When a parameter is defined, the parameter name is used. However, when the
parameter is used, its name must be prefixed by a colon “:” .

Defining a Parameter That Accepts User Input

Inthe IBM ILOG Views Data Access Getting Started Manual, you saw how to filter data
according to the values in a column of another data source table. It is possible to adapt this
behavior to accept user input as a parameter. This can be done using a memory data source.

The following example shows how to filter an employee table to show only those employees
that work in a particular department. The example also uses aforeign table. The tables used

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 139

140

IBM

in this example are the same as those used in the example described in the IBM ILOG Views
Data Access Getting Started Manual.

You need to set up apanel containing an SQL data source, a gadget table that is connected to
it, and aDbField gadget to control record display.

You will start with atable resembling the one shown in the following figure, that is, an SQL
data source connected to atable gadget that showsthe | EMP database table:

EMPNO NAME STATUS DEFTHOD SALARY

- 1iRochette 21 Administration 6000.0
2! Femandez 1! Administration 7E00.0(1_EmMP
31 Goodman 2iDocumentation £300.0
4 i Thomazzon 1 Marketing 8000.0
5 i 'Wwilliams 2 Marketing 4000.0
£ 'waong 2 R&D 7700.0
7 Bomstein 1 F&D 8650.0
8 Harizon 2 Marketing 4575.0
9i Homer 1:Documentation E375.0
10: Tanaka 1 Finance 5000.0

Figure8.2 A Table Gadget Linked to an SQL Table

Note: Ensure that when you connect to the database you click on the “ Keep Password”
button. This avoids having to reconnect later.

The DEPTNO column has a foreign table that is connected to it and that converts a

department number to the appropriate department name (See Foreign Tables on page 105).

The foreign table is amemory table like the one shown in the following figure:

DEPTHO NAME
1{ Administration
- 21 Marketing DEFT
IRED
4! Documentation
5: Finance

Figure8.3 The Foreign Table for the DEPTNO Column

A new DbField gadget and a memory data source should then be created. The DbField
gadget will be connected to the single column of the memory data source. The memory table
must be set up as a single column table that accepts an integer type.

The memory data source that acts as a“ go-between” for the parameter value.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Parameters

MemoryD ataSource [%]
Data Source | General | Specific | [rata | Callbacks |

Column Type Length:
name Integer Fart of key: Mo
Sting ¥ Null; [Fa

Drefault:

Datatype | Look | IMapping |

Figure8.4 The DEPT_NAME Memory Data Source

Notethat it isimportant to set up the column type as an integer even though the user will be
entering a string value. Thisis because the foreign table will convert the string to an integer
before entering the value into the memory table.

The pbField should be connected to this memory data source and configured in the
following way:

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 141

DbField

[rata Source |Mapping | General | Calbacks |

=] DbField =]

. Data Source Mapping |General | Calbacks |
. Memory Table with

Data sours | DEPT_MAME N—" One Column Foreign data sope: [DEPT ™\
Columk; | name /] Foreign valu mn: [DEPTNO)
Alignrment: | ef— . gign display co n: | MAME -
Format: Forelgn Table/ Constrained T e— /
Mazk: Completion: [Yes
Max length:
Read only: | Mo
Lze property manager: [Yes
Style: Style Set as
Lebal lliTableComboBoxStyl|
Label fent: | normal
Label color: | black
Label pesition: | Top
Apply | Close I Apply I Close

142

IBM

Figure8.5 The Data Source and Mapping pages of the DbField Inspector that Accepts the
Parameter |nput

You will now define a parameter in the original SQL table that acceptsits input from the
contents of the only column in the memory data source. This column in turn acceptsitsinput
from the bbField. A parameter must be defined in the SQL Data Source inspector:

P Type Data Source Column
department Integer DEFT_MAME harme

T

Select | Having | Datatype | Look| Mapping EBarametars

T

Figure8.6 Defining a Parameter via a Memory Data Source with a Single Column

In addition to this, you must set Auto Select to Yes in the SQL Data Source Properties
dialog box. This enables a data source that uses data from another data source table to

automatically select the required value.

To specify that the data shown in the table gadget is to be filtered according to the
department parameter, you need to enter the following into the Select page of the SQL Data

Source inspector:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Parameters

The Selection Criterion

EMPHO HAME STATUS DEPTHO SALARY
Select: | EMPNO MAME STATLIS DEPTHO SALARY
Frerm: | I_EMP I_EMP I_EMP I_EMP I_EMP
Ciperation:
Order:
Where: \ ::department)
Or: .
Select |ﬂa\:ing | Latatype | Look | Mapping | Parameters |
Lol Claze

Figure8.7 Specifying the Selection Criterion for a SQL Table

Note: When a parameter is used, its name must be prefixed by a colon
(for example, = : department).

You are now able to enter adepartment in the DbField that will be entered into the memory
table column and taken as the “department” parameter value. It will then be used to make a
selection in the SQL table.

One thing remains to be done. The validation of the user input in the memory table can be
done by setting a predefined callback on the bbField.

Callback.
I (@ alidate[DEPT_MARME]

Figure8.8 Setting a Callback on the DbField

This callback validates the user input in the memory table. Now, when you test this panel,
the SQL table automatically selects according to the value that you enter in the DbField.

You should now have a panel that allows you to select the required department from acombo
box and display only the employees that work in the department.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 143

Test: unnamed M= E3

Department

| Marketing j
EMPMNO MNAME STATUS DEPTHO SALARY
- |4 Thomasson 1 Marketing a0o0.0
aiWilliams 2 Marketing 4000.0
8iHarrizon 2 Marketing 4574.0

Figure8.9 Completed Panel Allowing Department Selection and Table Contents Filtering

Working with an SQL Data Source

This section contains some hints for using the SQL data source.
You can find information on the following topics:

& Defining Columns

& Forcing the Name of a Column

& The Table Primary Key

Defining Columns

When you add a database table to a data source, you can tie the columns of the table to the
columns of the data source table. This can either be done graphically or manually in the data
source inspector.

The graphical method is described in the IBM ILOG Views Data Access Getting Started
Manual. To specify the column that should be selected from a database manually, you can
type directly in the Select and From cells in the appropriate column in the SQL Data Source
inspector.

If you just want to select a particular column from a database, enter the name of the column
in the Select field and the name of the database table in the From field. If you have entered

144 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Working with an SQL Data Source

the column and database table name correctly, the data source table will then be updated
accordingly.

It isalso possible to specify a column in the data source table that is the result of a
calculation carried out on datafrom other table columns. Thisis possible within the limits of
the formulas that are accepted by the database. See your database documentation for more
information on the formulas that can be used.

E| SALARY SALARYS2 SALARY | SALARY/2 ;l
SALARY SALARYRZ S000.0¢ 4000.0

- >
I_EMP 4000.0: 2000.0

8600.0:¢ 4300.0 —
4575.0; 2287 5 LI

m

SQL Data Source Inspector Resulting Table Columns

Figure8.10 Specifying a Computed Column

To set up acolumn like this, click in the Select cell and enter the formulathat you require.
The From cell must remain empty. If there is a database table name in the From cell, Data
Access tries to locate a column that has the name specified in the Select cell.

Forcing the Name of a Column

When atable is added to an SQL data source and the columns of the underlying table object
are specified, you will notice that the name of the column is automaticaly set. It is
automatically set to the name of the database table column. In most situations, this behavior
is acceptable. However, there are certain situations when it can be useful to be ableto change
this name.

You may have noticed in the IBM ILOG Views Data Access Getting Sarted Manual that
when an additional table is added to the data source, any columns that are not uniquely
named are prefixed by the table name they originate from.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 145

SOL Data Source Hi=] E3
File Quemn
EG [Global [Allaw insert
I I_EMP #] |_DEPT W
ENIPNO DEPTNG
RS provitc The two NAME columns
STATUS MANAGER are uniquely identified by
crramy prefixing their name with
—| the database table that
4 |»["]| they originate from
EMPNO HAME | | DEPT. v
Select: EMPN}Z’ MAME MAME \ -
Frem: I_EMF\ I_EmMP |_DEPT /
Cperation:
Order:
Where:
Select | Having | Lratatype | Look | Mapping EBarametars |
s | Oese |

Figure8.11 An SQL Data Source with Two Database Tables Showing Automatic Column Naming

If you have already set up anumber of gadgets that are linked to columns and then add
another table to the data source, certain table column names can change. Thiswill have an
effect on any gadgets tied to these columns. The gadget will fail to locate the columniit is
tied to because the column name has changed.

To work around this problem, specify a specific column name in the Datatype page of the
SQL Data Source inspector. Providing you do not create any ambiguities, you can type the
original column name here. Any gadgets connected to the column will then be updated to
show the values in the column.

146 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Working with an SQL Data Source

SAL Data Source =] 3
File Query
[EmP [Glabal 7 Allow insert
* I_EMP *| |_DEPT
ENPNG DEPTNG
MNAME MNAME
STATUS MAMAGER
DEFTHNC
SALARY
-
(q W | _-The column
EMPLOY.NAME has
EMEN HAME, L been forced to NAME
Marne: NAME /)
Type: [Integer String
Length: 25 254
Mull: | Me Mo (0]
Default:
Retrieve: [Ves fes es
Select | Hawing Datatype |Look | Mapping FParameters |
s | Oose |

Figure8.12 Forcing the Name of a Column Using the Datatype Page

Note: The table gadget is the only gadget whose column names change dynamically with
the data source.

If you leave the Name field empty, the column name will change automatically to avoid any
ambiguity whenever anew table is added.

The Table Primary Key

When you set up an SQL data source and its table object, you must include each of the
primary key columnsin the table object. If you do not do this, you can find that two of the
rowsin your table appear to be the same, even though they are uniquely identified by the
primary key column(s).

If you try to update one of these rows, Data Access will not be able to identify uniquely the
row in the database and the update will fail. An error message from the database will be
displayed indicating that if the update were to continue, more than one row would be edited.
This also appliesto adeletion of arow that appears to be exactly the same as another row.

If you do not want to display the primary key columns of the table in the user interface, you
should change column visibility in the SQL Data Source inspector.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 147

148 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Connecting to a Database

This chapter describes the Data A ccess classes and functions required for communicating
with arelational database system.

You can find information on the following topics:
& SOL Sessions and Cursor Objects

¢ Database Drivers

& The Connect Dialog Box

& Rejistered Sessions

SQL Sessions and Cursor Objects

The 11isQLSession class establishes a communication channel with aremote database
engine. An instance of this classis created whenever you connect to arelational database
using the Connect panel in IBM® ILOG® Views Studio.

Each SQL data source in Data Access hasan 11isQLTable object which in turn has an
T1isQLSession object. These session objects are usually associated with one and only one
SQL data source. However, if you create an application-wide SQL session, it can be
associated with more than one SQL data source. See Registered Sessions on page 154.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 149

Creating a Session

An 11isQLSession objectisautomatically created when you connect to the database using
the connect panel in IBM ILOG Views Studio. An example of how the 11isQLSession
object is created is shown in the following code:

I1iSQLSession* session;
session = new IliSQLSession(“oraclel0”, “scott/tiger@options”);
session->lock();

session->unLock() ;

The first parameter in the 111 sQLSession constructor isthe name of the database driver.
This can be any of the following names: “oracle”," oracle9” ,“ oraclelQ”, “oraclell”,

“sybase”, “informix”, “informix72”,"informix9”,“ oledb”, “mssgl” or “odbc” (for the set of
databases that are currently supported).

The second parameter designates the user, password, and other connection parameters
required to establish the communication with the remote database engine. Itsformat depends
on the database driver used. See 11iSQLSession: :getConnectionParams inthe

IBM ILOG Views Data Access Reference Manual.

After obtaining an 11isQLSession object you should lock it and keep it locked until you
have finished using it. When you have finished with the session, the
IliRefCounted: :unLock member function should be called to unlock the session.

Connecting to a Database System

Once you have created a session object, you can connect to the database system using the
I1isQLSession: : connect member function. Thisis donein the following way:

if (session->connect()) {

}
else
IlvPrint (“Error: %s”, session->getErrorMessage () .getMessage());

During the session, you can check whether the session is still connected using the
T1iSQLSession: : isConnected member function. An example of thisis showninthe
following code:

if (!session->isConnected())
I1lvPrint (*Not connected”) ;

To end asession, usethe 11isQLSession: :disconnect member function. This method
rolls back any (uncommitted) work in progress and breaks the communication channel with
the database system.

session->disconnect () ;

150 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

SQL Sessions and Cursor Objects

Cursors

Before you can do anything useful with your session object, you must obtain an
IlisQLcursor object. The cursor allows you to submit SQL statements to a database and
to retrieve any result sets produced by these statements. A cursor can be created in the
following way:

I1iSQLCursor* cursor = session->newCursor();
if (cursor != 0) {

session->releaseCursor (cursor) ;

}
else
IlvPrint (“Out of cursors.”);

Once acursor object has been created, any SQL statements (except SELECT statements) can
be submitted to the database using the 111 sQL.Cursor: : execute member function. An
example of thisis shown in the following code:

if (cursor->execute (“UPDATE EMP SET SALARY = SALARY * 1.17)) {
IlvPrint (“Happy days!"”);
}
else
IlvPrint (“Error: %s”, cursor->getErrorMessage().getMessage());

The SQL SELECT Statement and Its Result Set

To submit an SQL SELECT statement you can usethe 11isQLCursor: : select member
function as follows:

if (cursor->select (“SELECT NAME, SALARY FROM EMP”))
while (cursor->fetchNext () && cursor->hasTuple())
IlvPrint (“Employee %s : %1d4”,
cursor->getStringvalue (0),
cursor->getIntegervValue(l));

{
{

}
}
else
IlvPrint (“Error: %s”, cursor->getErrorMessage () .getMessage());

At the beginning of the inspection processjust after the select member function has been
called, the cursor is positioned before the first row. Each call to the fetchNext member
function moves the cursor to the next row. When all rows have been seen, acall to
fetchNext positionsthe cursor after the last row.

The 11isQLCursor: :hasTuple member function can be called to determine if the cursor
is positioned on arow (as opposed to being positioned before the first row or after the last
row). If the cursor is positioned after the last row, the result set has been exhausted.

Once an SQL SELECT statement has been successfully executed it leaves aresult set
available for inspection through the cursor. A result set is an ordered collection of rows.
Each of these rows conforms to the same schema.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 151

You can retrieve the value of acolumn using the T11isQLCursor: : getvValue method. An
example of thisis shown in the following code:

Ilivalue value;
if (cursor->getValue(colno, value)) {

}

The columns of the result set areidentified by their position, starting from 0. If you know the
type of agiven column in the result set, you can use one of the following methods:

const char* IliSQLCursor::getStringValue(Ilnt colno) const;
I1Int I1iSQLCursor::getIntegerValue(IlInt colno) const;
IlFloat IliSQLCursor::getFloatValue(IlInt colno) const;
IlDouble I1liSQLCursor::getDoubleValue(IlInt colno) const;
IliDate IliSQLCursor::getDateValue(IlInt colno) const;
IliBinary I1liSQLCursor::getBinaryValue(IlInt colno) const;

The character string returned by the get stringvalue member function and the byte array
returned by the getBinaryvalue member function (it is part of the 11iBinary Structure)
belong to the cursor. Therefore, they will be overwritten the next time one of the
fetchNext, select, Of execute member functionsis called.

Note that the get stringvalue member function will return NuLL if the column is not of
type character string. If you want to convert avalue into astring, usethe getvalue
member function as shown in the following example:

Ilivalue value;
if (cursor->getValue(colno, value)) {
IlvPrint (“*%s”, value.getFormatted()) ;

}

The member function isNu11 tests whether a given column is null. The testing of a column
is shown in the following example:
if (cursor->isNull (colno))

IlvPrint (“*NULL") ;

else
IlvPrint (“%s”, cursor->getStringValue(colno));

All work done on a session object through its cursors belongs to a transaction. Because of
transaction management, any work done needs to be committed or canceled (rolled back) at
some point in time.

To commit or roll back the work done on a session object, use the
I1iSQLSession: :commit and I1iSQLSession: : rollback member functions. An
example of their usage is shown in the following code:
if (session->commit())
IlvPrint (“*Work done”) ;

else
IlvPrint (“Error: %s”, session->getErrorMessage () .getMessage());

152 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Database Drivers

If you forget to commit your work, it will eventually be canceled (rolled back) when the
sessionis freed.

To obtain information on the structure of your result set after a successful call totheselect
member function, you can usethe 11isQLCursor: : getSchema member function.

const IliSchema* schema = cursor->getSchema() ;

This member function returns a schema object that belongs to the cursor. (See the
IliSchema classintheBM ILOG Views Data Access Reference Manual.) Note that this
schema object can be modified the next time you call the select or execute member
functions on that cursor, so it should be used as soon as possible.

When you are finished with the cursor object you should release it using the
I1iSQLSession: :releaseCursor member function.

Database Drivers

The 11isQLSession class can be used to communicate with different database servers. To
connect a session object to a given database server, the corresponding database driver must
be included in the application executablefile.

The database driver isincluded in the application at compile time. This can be done by
adding the following code to the source file that contains themain () function:

#define ILDORACLE
#define ILDINFORMIX

#include <ildblink/dblink.h>
#include <ilviews/dataccess/dbms/session.h>

static IldDbms* ILVCALLBACK
CustomNewDbms (const char* dbms, const char* params) {
return IldNewDbms (dbms, params) ;

}

main(int argc, char* argv(])
{
I1iSQLSession: : SetNewDbmsFunction (CustomNewDbms) ;

}

This code extract specifies that the Oracle and Informix drivers are included in the
application executable file.

The following list contains the macro symbols that must be defined in order to include the
corresponding database driver.

4 ILDDB2

4 ILDORACLE

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 153

ILDINFORMIX
ILDSYBASE
ILDOLEDB

ILDMSSOL

® 6 O o o

ILDODBC

Note: The Microsoft SQL Server , OLE DB and ODBC driver are only supported on
Windows platforms.

The Connect Dialog Box

In the section Creating a Session on page 150, you saw how a session object is created with
the connection parameters (user name, password, and so on) hard-coded in the source code.
The1lisQLSession: :queryConnect member function can be used to obtain some or al
of these parameters from the end user.

The following code extract initializes a session object with a connection string from which
the password is missing. A dialog box is then automatically displayed in which the user can
enter his password.

IlvDisplay* dpy;
IlvAbstractView* view;

I1iSQLSession* session;

session = new IliSQLSession(“oracle”, “scott/@options”);
session->lock();

if (session->queryConnect (dpy, view, IliQueryPassword)) {

}

session->unLock() ;

Registered Sessions

154

IBM

When you use the IBM® ILOG® Views Studio editor to create the panels of an application,
you can define application-wide sessions and then specify one or more SQL data sources
that share the same session. An application-wide session is, in fact, aregistered session
object.

TheIlisQLSession: :RegisterSession member function registers a session object.
Thisis shown in the following code excerpt:

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

Registered Sessions

I1liSQLSession* session;

session = new IliSQLSession(“oraclel0”, “scott/@options”);
session->setSessionName (“MainSession”) ;

I1isQLSession: :RegisterSession(session) ;

Alternatively, a session can be registered using the following code:

I1isQLSession: :RegisterSession(“MainSession”,
“oraclelO”,
“scott/@options”)

TheIlisQLSession: :GetRegisteredSession member function can beusedto retrieve
aregistered session:

I1iSQLSession* session =
IliSQLSession: :GetRegisteredSession(“MainSession”) ;

ILOG VIEwWS DATA AccESS V5.3 — USER’S MANUAL 155

156 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Part |l

IBM ILOG Views Data Access Gadgets

This part describes how to use Data Access gadgets when connected to an SQL database.
This part serves areference to all the gadgets provided with Data Access.

The gadgets described in the following chapters can be divided into two groups:
& Data Source Gadgets Reference
& Display Gadgets Reference

158 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

10

IBM ILOG Views Studio Data Access
Gadgets

This chapter introduces the Data A ccess gadgets found on the Pal ettes panel.
You can find information on the following topics:

¢ The Palettes Panel

¢ Notebook Pages Common to Data Access Gadgets | nspectors

& Dialog Boxes Common to Data Access Gadgets Inspectors

The Palettes Panel

The Palettes panel appears when Data Accessislaunched. If it has been closed and you want
to open it, choose Palettes from the Tools menu in the IBM ILOG Views Studio Main
window.

The Palettes panel is divided into two panes. The top pane displays atree with variousitems,
each corresponding to a particular gadget or graphic palette. The topmost items are for the
Data Access palettes. They are:

¢ agadgets palette, which appears when you highlight Data Access
& SQL gadgets

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 159

160

IBM

*
*
*

SQL tables, which is not a gadget, lists all user-created data tables and contains an SQL
schema editor.

Charts, which presents a graphic chart connected to various data sources.
Grapher, which presents contents of a nodes and links data source in a grapher

Gantt Chart, for defining a Gantt chart connected to various data sources

To use agadget, drag it from the Palette and drop it in the work space in the Main window.

Data Access and SQL Gadgets

The gadgetsillustrated below appear when you select Data Access or SQL Gadgets on the
Palettes panel.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

Palettes

The Palettes Panel

Palettes

S0OL gadgets
i SOL tables

L«

Columni Column2 =
lliTableGadget
e »
DbField
liDbField—l —
liEntryField__[Enwfes
lliTableComboBox—F— =]
||iDbText4|m
”|DbTOgg| DbTDggIe
— Selector
= Choice 1

lliToggleSelector £ Choice2

II|DbNaV|gator——k-|-<|>|>|| | -]+]

IllMemoryDataSourc FF
T

I|DbT|me

II|HTMLReporter——
i -
IliDbPicture——

”IDbOptlon Menl;l—@ptionl\denu vl

Itemn1 -~
Itemn2
lliDbStringList— e =
B Eronos |
- Hades
) Poseidon
lliDbTreeGadget———& Zsus _|ﬂ
1 | »

E- Data Access

SQL tables
- Grapher
- Gantt Chart

- Charts

EIE![Gadgets

- Menus

- EEH b atrin

-T2 Miscellaneous
-5 Wiew Rectangles
= 4 Graphics
=V

-l Gauges
’ Mare

gl Charts

I'_—'l--ﬂ Grapher
l:"I_n Grapher Llnks

—— 1 lliSQLDataSource

4 o

Use the above gadgets for the following purposes:

IliTableGadget — For editing tables.

IliDbField — For displaying data with a data source aware gadget whose appearance can be
dynamically changed (to an entry field, toggle switch, and so on).

[liEntryField — For displaying text in a data source aware text field.

IliTableComboBox — For listing items in a data source aware popup menu and displaying

the item chosen.

[liDbText — For displaying text in a data source aware multi-line scrollable text field.

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL 161

162

IBM

I1iDbToggle — For choosing between three states (True, False and null) with a data source
aware toggle button.

IliToggleSelector — For selecting among any number of items using data source awvare
selector buttons.

IliDbNavigator — For creating atool bar with buttons to navigate through rows and edit
datain adata source table.

I1iM emor yDataSour ce — For defining alocal memory data source.

IiDbTimer — For calling a callback periodically

IIHTML Reporter — For generating an HTML document from a data source.

IiXM L — For managing the communication between a datasource and an XML stream.
I1iDbPicture — For displaying a picture in a data source aware gadget.

I1iDbOptionM enu — For listing itemsin a data source aware popup menu and displaying
the item chosen.

IliDbStringList — For displaying alist of labels in a data source aware multi-line string list.

I1iDbTreeGadget — For displaying the contents of a data source in atree gadget based on a
parent/child relationship.

11iSQL DataSour ce — For providing alink to an SQL database from which atableis
defined and displayed.

Charts, Grapher and Gantt Chart Gadgets

The gadgetsillustrated below appear when you select Charts, Grapher and Gantt Chart under
Data Access on the Palettes panel.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

The Palettes Panel

Palettes

[Data Access

- S0L gadgets
- SOL tables
- Grapher

- Gartt Chart

EIE![Gadgets
- Menus

-] Matrix

= Miscellaneous

= 4 Graphics

M lcons

B Gauges

’ Mare

gl Charts
I'_—'l--ﬂ Grapher

Pl Grapher Lirks
i Grapher Views

[Data Access

- S0L gadgets

- S0L tables

& Grapher

- Gantt Chart

- Charts

EIE![Gadgets

“E Menus

S Matrin
Miscellaneous
Wiew Rectangles
= 4 Graphics
=V

-l Gauges

’ Mare

gl Charts
Grapher

Pl Grapher Lirks
13 Grapher Views

[Data Access

- S0L gadgets
- SOL tables
- Grapher

- Charts

EIE![Gadgets

- Menus

- EEH b atrin

- Miscellaneous
= Wiew Rectangles

= 4 Graphics

=V

-l Gauges

’ Mare

gl Charts

I'_—'l--ﬂ Grapher
Pl Grapher Lirks

i Grapher Views

- = |
23 / R
L \/I I D bGrapher
13 =
4
g —T—T—
0124456] IC

4 o

I — — _>ILI

_<I__I_>ILI

lliChartGraphic

IliDbGrapher

Use the above gadgets for the following purposes:

IliChartGraphic — For defining a chart graphic connected to various data sources.

11iDbGrapher — For displaying contents of a nodes and links data source in a grapher.

IliDbGantt

IliDbGantt — For defining a Gantt chart connected to various data sources.

SQL Tables

When you select SQL Tables under Data Access on the Palettes panel, the lower paneis

empty.

ILOG VIEwWSsS DATA ACCESS V5.3

USER'S MANUAL

Click the button to open the Connect dialog box. After you type your name, password,
and the connection options, the user-created SQL database tables appear in the lower pane.
You can drag the tables from the pane, drop them in the Gadgets buffer window, then
double-click a SQL data source gadget to open the SQL Data Source inspector with the table

aready in place.

[Data Access
- S0L gadgets

SOL tables:
- Grapher
- Gantt Chart
- Charts
EIE![Gadgets
- Menus
- EEH b atrin
-T2 Miscellaneous
-5 Wiew Rectangles
= 4 Graphics
=V
-l Gauges
’ Mare
gl Charts
= ﬂ Grapher

----- l:"I_n Grapher Llnks

o W g
Jlodbc

|Iog.-".-"

i o

The SQL Tables palette has also an SQL Schema Editor toolbar with the following buttons:

121 Create table.
K=

Drop selected table.

164 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Notebook Pages Common to Data Access Gadgets Inspectors

ee, Edit schema of the selected table.
@ Edit data of the selected table.
¥ Enable / disable SQL trace.

Export selected table.
f@ =°

Import selected table.

'@

Notebook Pages Common to Data Access Gadgets Inspectors

Most Data Access gadgets inspectors have a General and a Callbacks notebook page.

General Notebook Page

The Genera page text fields and check boxes are the same for all the inspectors, however,
the avail ability of each selection depends on the inspector.

[rata Source | Mapping General | Callbacks |

Mame l—
Tooltip l—
Thickness lﬁ
Layer m
Interactor lﬁ
State m
Tratsmaret: -

Focuzable v

Show frame v

Apply I Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 165

Label

Description

Name

Menu: None.
Default: No default.
Explanation: Name of the gadget.

Tooltip

Menu: None.
Default: No default.
Explanation: Text to appear in the tooltip.

Thickness

Menu: Grayed if this option is not available.
Default: 2.

Explanation: Increases the width of the border
surrounding the gadget.

Layer

Menu: Layer 1, Layer 2.

Default: Layer 2

Explanation: Manager layer in which the gadget
will be placed.

Interactor

Menu: Names of the available interactors.

Default: None.

Explanation: Allows you to select the kind of interactor you want
for this gadget.

State

Menu: Active, Inactive, Grayed out.
Default: Active.
Explanation: Specifies the gadget activity status.

Transparent

Check box.

Default: Not checked.

Explanation: When this box is checked,
the gadget appears transparent.

Focusable

Check box.

Default: Checked.

Explanation: When this box is checked,

the gadget can receive the mouse pointer or keyboard focus.

Show Frame

Check box.

Default: Checked.

Explanation: When this box is checked, the gadget frame is
displayed.

166 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Notebook Pages Common to Data Access Gadgets Inspectors

Callbacks Notebook Page

Thefirst six callbacks are common to most inspectors. However, the 11ipbChart,
I1iDbGrapher, and I1iDbGantt inspectors have only the first two callbacks.

Some Data A ccess gadgets have additional callbacks, which are listed in this manual.
Descriptions of the callbacks are located in the IBM ILOG Views Data Access Reference
Manual.

All calbacks have the following fields:
& Name: Function name of the callback.
¢ Value: Typethe callback value.

¢ Script: Check thisbox if you want to use IBM ILOG Script. The button to the right of
the check box becomes active when the box is selected. Clicking the button shows you
the callback source code in the Script Editor.

DbField [H[=] B3

[rata Source | Mapping | General Callbacks |

Type Mame Walue Script

Generic I— I—
Secondary I— I—
Focus In I— I—
Focus Out I— I—
Enter Gadget I— I—
Leave Gadget I— I—

[i i e

-

Apply I Cloze
Callback Description
Generic Used to perform the main action of the gadget,

for example, when a button is activated or
when you double-click an item in a string list.

Secondary Called when a change is made in the gadget,
for example, when you type text in a field,
highlight an item in a menu, or select a value in a list.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 167

Callback Description

Focus In Called when the gadget receives the keyboard focus.
Focus Out Called when the gadget loses the keyboard focus.
Enter Gadget Called when the mouse pointer enters the gadget.
Leave Gadget Called when the mouse pointer leaves the gadget.

Dialog Boxes Common to Data Access Gadgets Inspectors

The dialog boxes that can be called from various Data Access gadgets inspectors are
described in this section.

You can find information on the following topics:
& Font Chooser Dialog Box

& Color Chooser Dialog Box

& File Chooser Dialog Box

Font Chooser Dialog Box

The Font Chooser dialog box is used to choose the font style for text.

Font Chooser M= 3
Foundry [T
HE_TERMIMNAL & 7 Italic
Haettenschweile 13
Impact " Bold 16

Letter Gothic MT : 18
Underl

Lucida Consale J LR 24

Lucida Sans Uni 32

M5 I Use paint size

(123456729 abcdparst ABCDEPQRST

Apply | Cloze |

To use the Font Chooser dialog box, do the following:

168 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Dialog Boxes Common to Data Access Gadgets Inspectors

1. Select the foundry, font, font size, and font style.
The charactersin the text field at the bottom change to match the selection.
2. Click Apply.

The name of the font selected appears in the inspector panel field from which the Font
Chooser dialog box was called.

Color Chooser Dialog Box

Use the Color Chooser dialog box for choosing the background and text colors. You can
select the colors by name or by using the color disk.

Choose the Choose the
color system selection method
Color chooser Color chooser [%]
Color Names RGE hdll Color Disk
Wan Bl Elack - Max
Il Fed
‘white
Agquamarine
| | | Il Elue
N N N Bl Blue Yiolet G5 T
Il Brown
I Cadet Blue
Coral
Cornflower Blue
Cyan
Bl Dk Green
B Dark Olive Gresn
Dark Orchid T
4 »
Min Min
B G B B G B
|192 |192 |192 |192 |192 |192
Apply | Cloze | Apply | Cloze |

To use the Color Chooser dialog box:

1. Atthetop of the dialog box, choose the color system and/or selection method, then select
the color you want. Use the RGB/HSV values and/or the color wheel to define your own
colors or use the Color Names option to use predefined colors.

RGB = Red, Green, Blue
HSV = Hue, Saturation, Value
The color selected appears in the lower-right rectangle of the Color Chooser dialog box.

2. Click Apply.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 169

The name of the color selected appears in the inspector panel field from which the Color
Chooser dialog box was called.

File Chooser Dialog Box
Data A ccess gadgets inspectors use afile chooser dialog box to select:
¢ animagefile

& atextfile

I Note: On Unix, this dialog box is called a File Selector. In Windows, it is called Open, as

illustrated below.
Lok in: Iadbstudio j gl

data employes.iva
viewzd0 emprngr.ilv
controlilv

dprnaszal ik

employdb.iva

employee.ily

Filez of type: IEommonFiles[".ilv,".iva] j Cancel |

™ Open as read-only

To use the File Chooser dialog box, do the following:
1. Select thefile you want.
2. Click Open (Windows) or Apply (Unix).

The name of the file selected appears in the inspector panel field from which the File
Chooser dialog box was called.

170 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

11

Data Source Gadgets Reference

This chapter describes the two data source creation gadgets:
€ IliSQLDataSource
€ IliMemoryDataSource

To access T1iMemoryDataSource gadget, click Data Access in the Palettes panel. The
gadgets appear in the lower pane.

To accessthe 11isQLDataSource gadget, click SQL Gadgets in the Palettes Panel.

To use one of the above gadgets, drag and drop its gadget-icon in the Gadgets buffer
window.

[liSQLDataSource

The 11isQLbataSource gadget is used for creating a data source by:
& connecting to a database,
& defining data source tables through the specification of selection criteria,

& defining how dataisto be displayed in gadgets connected to the data source through the
specification of format criteria.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 171

lliSQLDataSource Inspector Panel
This panel appears by double-clicking the gadget-icon after having placed it in the Gadgets

buffer window.
SQL Data Source [_ (O] x|
File Quern Menus
| [Global ¥ dllow inzert General Elements
FROM Section
1 [+
Select: -
Frerm:
Operation:
Orcar: SELECT Section
Where:
Select | Hawing | Datatype | Loak | Mapping Farameters | Pages
Apply | Cloze —I—— Commands

IliSQLDataSource Menus

The SQL Data Source inspector panel has two menus:
¢ File

¢ Query

172 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

File Menu
Menu ltems Description
Properties... Displays the SQL Data Source Properties dialog box.

View Source...

Displays the Source dialog box.

Close Closes the SQL Data Source inspector panel.

Query Menu

Menu ltems Description

Add Tables... If not connected to a database, displays the Connect dialog box. If
connected, displays the Select Tables dialog box.

Edit Table... Displays a Table Definition dialog box that lets you

change the table title and the owner name.

Remove Table...

Removes selected table in FROM section.
You can also use the Delete key.

Synchronize Table
with Database...

Updates the selected database table representation
in the FROM section to the data source.

Optionally, updates the data source columns

in the SELECT section. The information updates
are structural. Displays the Differences dialog box

if the data source table has changed.

Synchronize All
Tables
With Database...

Updates all database table representations in the
FROM section to the data source. Optionally, updates
the data source columns in the SELECT section.

The information updates are structural.

Displays the Differences dialog box if the

data source table has changed.

Append Column

Adds a column to the right of the existing columns.

Insert Column

Inserts a column to the left of the selected column.

Delete Column...

Removes the selected column.
You can also use the Delete key.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 173

174

IBM

Menu ltems

Description

Edit Join... Displays an Edit Join Table dialog box
to select the type of join. A join operation
only concerns lines selected in the FROM section.
Inactive if no join line is selected.

Delete Join... Displays a Question dialog box to confirm

the deletion of a join operation whose line is selected
in the FROM section. Inactive if no join line is selected.
You can also use the Delete key.

General Elements

These elements apply to the SQL data source as awhole.

Element

Description

Name field

The SQL data source name that appears

under the SQL data source gadget in the work space
when Apply is clicked in the

SQL Data Source inspector panel.

Global checkbox

Default: Not checked. When checked, allows more than one user
panel to use the current SQL data source.

Allow insert
checkbox

Default: Checked. When not checked, prevents the user from
inserting a new row into the SQL data source tables, but does not
prevent the user from editing existing rows.

SELECT Section Notebook Pages

The SELECT section of the SQL Data Source inspector panel has six notebook pages:

Select Page
Having Page
Datatype Page
Look Page
Mapping Page
Parameters Page

® & 6 6 o o

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliSQLDataSource

These pages define the criteria for selecting data from the database and for formatting the
datain display gadgets.

Note: “ Default” in the pages described below refers to what appears when a column is
created in the SELECT section by dragging a line from the FROM section.

Select Page
The Select page is used for:

& defining the data source columnsin terms of the columns in the FROM section (Select
and From rows),

& specifying operations to compute results (Operation row),
& defining the sort order in which the datais to be displayed (Order row),
& establishing selection criteria by which datais retrieved from the database (Where row).

Select: -
From:
Cperaticn:
Order:
Where:

Select | Having | Lratatype | Loaok | Mapping Parametars |

Apply | Cloge

Note: If the Operation row is used for a column, any entries in the Where row for that
column must be made on the Having page.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 175

Label Description

Select Menu: The columns of the data source table in the From row.
Default: No default.

Explanation: Defines a data source column taken from

the table displayed in the From row, or an SQL expression
that may include one or more columns.

From Menu: Tables defined for the current data source.
Default: No default.

Explanation: Specifies the table from which the column
in the Select row is taken. Mandatory if a column exists
in the Select row.

Operation Menu: None, Group By, Count, Sum, Avg, Min, Max.
Default: No default.

Explanation: Performs operations by which rows are
grouped and their aggregate values computed.

If “Group By” is used in a column, all the other columns
must have an operation.

Order Menu: No, Asc, Desc (No=random order, Asc=ascending,
Desc=descending).

Default: No default.

Explanation: Determines the order of the rows in the
display table. If more than one column is entered,

the leftmost column has priority.

Where Menu: None.

Default: No default.

Explanation: Selection criteria applied to the column in the Select
row.

The selection criteria is used with a logical AND operator

and added to criteria in other columns to further restrict the
selection of data to be retrieved from the database.

Only applies when the Operation row is empty.

Having Page

The Having page is used for establishing the selection criteria of the data extracted from the
database to which the data source is connected, and when the current column has an
Operation defined. Use the Select page when no Operation is defined for the column.

176 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

Select: -
Fretm:
Operation:
Hawing:

Select Hawing |gatatype | Look | Mapping | Parameters

Apply Cloge

Label Description

Select Menu: The columns of the data source table in the From row.
Default: No default.

Explanation: Defines a data source column taken

from the table displayed in the From row or an

SQL expression that may include one or more columns.

From Menu: Tables defined for the current data source.
Default: No default.

Explanation: Specifies the table from which the

column in the Select row is taken. Mandatory if a column
exists in the Select row.

Operation Menu: None, Group By, Count, Sum, Avg, Min, Max.
Default: No default.

Explanation: Performs operations by which rows

are grouped and their aggregate values computed.

If “Group By” is used in a column, all the other

columns must have an operation. If an operation is used
without “Group By” the entire table is used to compute
the value.

Having Menu: None.

Default: No default.

Explanation: Selection criteria applied to the column
in the Select row. The selection criteria is used with a
logical AND operator and added to criteria in other
columns to further restrict the selection of data to be
retrieved from the database. Only applies when there
is a value in the Operation row.

Datatype Page
The Datatype page is used for defining the type of data that can be entered in the column.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 177

MNarme:
Type:
Length:
MNull:
Drefault:
Retrieve:

Select | Having

Datatype |£ook | Mapping | Parameters |

Apply | Cloze

Label

Description

Name

Menu: None.

Default: No default.

Explanation: Each column must have a name

by which it can be attached to a gadget. This name

is automatically taken from the database and appears
at the top of the column. This row is used to change
this name. While the name given by the system

can be automatically changed by adding a prefix

to distinguish it from other columns having

the same name in other tables, the name entered here
will not change. The title at the top of the column

in the SELECT section is replaced by the one
entered here.

Type

Menu: String, Long string, Boolean, Byte, Integer,
Float, Double, Decimal, Date, Time.

Default: As defined in the database schema.
Explanation: The type of data that can be entered
in the cells of the column.

Length

Menu: None.

Default: As defined in the database schema.
Explanation: The number of characters that can be
entered in the cells of the column.

Null

Menu: Yes, No.

Default: As defined in the database schema.
Explanation:

Yes = The cell can remain empty.

No = The cell cannot remain empty.

178 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

Label Description

Default Menu: None.

Default: No default.

Explanation: The data that appears in a cell when
it is added to the table.

Retrieve Menu: Yes, No.

Default: No default.

Explanation:

Yes = Column is an element of the data source.
No = Column is not an element of the data source
and will not appear in the result. Is used only with
selection criteria.

Look Page
The Look page is used to define how data entered in the column will appear.

Header:
Label:
Format:
Mask:
Alignment:
Wiclth: LI

Select | Hawing | Datatype Look | Mapping | Parameters |

Apply | Cloze |

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 179

Label

Description

Header

Menu: None.

Default: No default.

Explanation: Title that will appear at the top of

the column when displayed in a table gadget.

If left empty, the table gadget uses the Name row

on the Datatype page, or, if also empty, the name given
by the system from the database schema.

Label

Menu: None.

Default: No default.

Explanation: Applies only when the Data Source Assistant
is used to create a form. The caption that appears

next to the form gadget containing the data for the column.
If empty, the label is taken from the Name row

on the Datatype page, or, if also empty, the name given

by the system from the database schema.

(The Header row on the Look page is not used.)

Format

Menu: Formats corresponding to what is entered

in the Type cell on the Datatype page.

Default: No default.

Explanation: Predefined system and user formats
from the menu or a format entered by the user by which
data in the column cells will be formatted.

Mask

Menu: Masks corresponding to how and what data

is entered in the Type cell on the Datatype page.
Default: No default.

Explanation: Predefined by the user for data input

in the column cells. There are predefined system masks
for date and time.

Alignment

Menu: Left, Center, Right.

Default: Depends on the entry in the Type row on the
Datatype page.

Explanation: How data in the column cells will be
aligned within the cell.

Width

Menu: None.

Default: No default.

Explanation: Display width in pixels of the
column cells.

Can be changed in the table gadget.

180 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

Label Description

Read only Menu: Yes, No.
Default: No default.
Explanation:

Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.

Visible Menu: Yes, No.

Default: No default.

Explanation:

Yes = The column is visible.

No = The column exists but does not appear.

Mapping Page
The Mapping pageis used for displaying datain acolumn by referring to datain acolumnin

another table.
Data source: -
Value column:
Dizplay column:
Constrained:
Completion:
Select | Hawing | Datatype | Look Mapping | Parameters |
Apply | Cloze
Label Description
Data source Menu: Current data sources.
Default: No default.
Explanation: The foreign data source containing
the columns to which the values for the current column
are to be mapped. If a foreign data source is specified here,
creates a combo box pull-down menu in the cell
showing the values in the foreign data source.
Value column Menu: Columns of data source selected in
data source row.
Default: No default.
Explanation: The column containing the value
to which the current column is to be mapped.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 181

Label

Description

Display column

Menu: Columns of the data source selected in the
data source cell.

Default: No default.

Explanation: The column associated with the
Value column containing the data to be displayed.

Constrained

Menu: Yes, No.

Default: No default.

Explanation: Applies only when the value entered
in the Value Column and Display column rows

is the same.

Yes = Can only enter a value that belongs to

a foreign data source.

No = Can enter any value.

Completion

Menu: Yes, No.

Default: No default.

Explanation:

Is only in effect when constrained = Yes.

Yes = Can enter a combo box list item by typing
enough of its initial characters to make it unique,
then leaving the cell.

No = Cannot enter a combo box list item by typing
its initial characters.

Parameters Page

The Parameters page is used for defining a parameter in terms of datalocated in a column
from any other data source. This parameter can then be used as selection criteriain the

Where row of the Select page.

| I Pamameer I Type I Data Source I Column I

gelec{| Hawing | Datatype | Look | Mapping Barameters

182 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Apply Cloge

lliSQLDataSource

Column Description

Parameter Menu: None.

Default: No default.

Explanation: The name of the parameter that
represents the column from which data is to be retrieved.
This name can then be used as selection criteria in a
Where row on the Select page.

Type Menu: String, Long string, Boolean, Byte, Integer,
Float, Double, Decimal, Date, Time.

Default: No default.

Explanation: Type of the parameter.

Data Source Menu: Current data sources.

Default: No default.

Explanation: Data source from which the parameter
will take its value.

Column Menu: Columns of data source selected in

Data Source column.

Default: No default.

Explanation: Column from which the parameter
will take its value. The column must exist in the
data source shown in the Data Source column.

Callbacks

The SQL Data Source inspector has no Callbacks page. To access this gadget callbacks,
open the Callbacks panel by selecting Callbacks from the Tools menu.

Buttons
The SQL Data Source inspector panel has two buttons at the bottom:

& Apply
& Close

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 183

Button Description

Apply Applies changes made in the SQL Data Source panel

to the data source. This does not submit a query

to the database, which is done by pressing the F9 key
when the gadget has the focus or by pressing the “@” button
in the navigation tool bar.

Close Closes the SQL Data Source inspector panel.

Dialog Boxes

Various elementsin the SQL Data Source inspector panel can call different dialog boxes:
QL Data Source Properties Dialog Box

Connect Dialog Box

Source Dialog Box

Select Tables Dialog Box

Question Dialog Box

® & 6 6 o o

Differences Dialog Box

SQL Data Source Properties Dialog Box

The SQL Data Source Properties dialog box is used for defining various properties of the
data source. It is called by the Properties... menu item in the File menu of the SQL Data
Source inspector panel.

S0L Data Source Properties M= =
| Fiead anly: | Mo hal I
Distinct: | Mo

Updatable tables:
Concurr. contrel: | Off
Fetch policy: | As MNeeded
Aute commit: [es
Aute refresh: | Mo
Aute select: [MNo
Inzert nulls: | Yes
Dynarmic SQL: | Yes -
Usze bound vars: |Yes
Rews count limit:
Cennection: | (Connection) LI

()8 | Cancel |

184 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

Label Description

Read only Menu: Yes, No.
Default: No.
Explanation:

Yes = The data source cannot be edited.
No = The data source can be edited.

Distinct Menu: Yes, No.

Default: No.

Explanation:

Yes = Duplicate rows are merged.
No = Duplicate rows are left intact.

Updatable tables | Menu: List of tables in FROM section.

Default: First table that has been added to the

data source.

Explanation: The table that the data source updates.
A data source can only update one table.

Concurr. control Menu: On, Off.

(concurrency Default: Off.

control) Explanation:

On = The data source takes extra steps to ensure
that a row has not been updated by another user from
the time the row was retrieved from the database and
when it was resubmitted to the database.

Off = The data source does not take such extra steps.

Fetch policy Menu: As Needed, Immediate.

Default: As Needed.

Explanation:

As Needed = Selected data is retrieved from the

database and stored in data cache only as data is needed.
For As Needed to be effective, Auto Commit (see below)
must be No. When Auto Commit is Yes,

Immediate is implied.

Immediate = All selected data is retrieved at once

and stored in data cache.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 185

Label

Description

Auto commit

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = After each operation, a COMMIT command
is automatically sent to the database.

No = COMMIT command is not sent to database,
and must be done by other means

(for example, programming).

Auto refresh

Menu: Yes, No.

Default: No.

Explanation:

Yes = Each time a row is inserted or updated,

it is sent to the database and retrieved for verification
in the data source.

No = Row is not retrieved.

Auto select

Menu: Yes, No.

Default: No.

Explanation:

Yes = Data source recomputes its data by submitting

a query to the database each time a foreign data source,
to which the data source is connected by parameters,
changes.

No = Data source does not recompute its data.

Insert nulls

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Null columns are inserted in the database table
when a row is inserted. Database schema default values
are not taken into account since a null value is

explicitly specified, but performance may be increased.
No = Null columns are not inserted.

Dynamic SQL

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = When a row is updated in the database,

only those values of columns in remote tables
whose values have changed in current table are set.
No = All values of columns in remote tables are set.

186 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

Label Description

Use bound vars Menu: Yes, No.

Default: Yes.

Explanation:

Yes = When column values are sent to the database,

are packaged in bound variables of the native database
call interface, instead of being part of the SQL statements.
When combined with Dynamic SQL = No

and Insert Nulls = Yes, can greatly increase performance.
No = Column values are not packaged in bound variables.

Rows count limit | Menu: None.

Default: No default.

Explanation: Maximum number of rows that can be retrieved.
If empty, unlimited number of rows can be retrieved.

Connection Menu: None. Click button to open the Connect dialog box.
Default: No default.

Explanation: Specifies the SQL session by which the
data source will communicate with the database.

Query conjunct Menu: None.

Default: No default.

Explanation: Additional SQL selection criteria that
will be added to criteria in Where and/or Having rows.

Transaction Menu: List of available transaction managers.
manager Default: No default.

Explanation: Name of the transaction manager used
by this data source.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The data source uses a property manager.
No = The data source does not use a property manager.

Connect Dialog Box

The Connect dialog box is used for connecting the data source to a database, that is, for
establishing an SQL session. It is called by the following menu itemsin the SQL Data
Source inspector panel when the data source is not connected to a database:

& Properties... —> Connection button in the SQL Data Source Properties panel that
appears. See Properties... menu item and Connection field.

& View Source... menu item in the File menu. See View Source... menu item.

¢ Add Tables... menu item in the Query menu. See Add Tables... menu item.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 187

The Connect dialog box that appears depends on the type of DBM S being used. Below isa

Connect dialog box for an odbc DBMS.

Mo
Cancel |

Uszer |

Password I—

Databaze I—

[Eeep Password

[Cr—
Cancel |

The Connect dialog box changes to this
version on the right after an SQL
session is chosen from the combo box
menu in the Name field

Mame:

Element Description

Name field The name of the SQL session or (Custom). If (Custom),
must fill in other fields to create a new SQL session.

User field The system database user name.

Password field The user password.

Database field

The name of the database.

Options field

The data necessary to connect to the database.

Keep Password
checkbox

When not checked, forces the user to enter a password
each time a connection to the database is requested.

OK button

Validates the entries and creates an SQL session having
the name entered in the Name field.

Cancel button

Closes the Connect dialog box without validating
the entries. No SQL session is created.

Source Dialog Box

The Source dialog box is used for reading the SQL statements automatically created by the
user’s screen operations. The Source dialog box is called by the View Source... menu item of
the File menu in the SQL Data Source inspector panel if the data source is connected to a
database. If not already connected to a database, this menu item calls the Connect dial og box
. After connecting to the database through the Connect dialog box, the Source dialog box

then appears.

The Source dialog box shows the SQL statements corresponding to the current data source.

Itisread-only.

188 IBM

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

lliSQLDataSource

Source =

SELECT “I_EMP™ . MAME", -
“I_EMP® . STATUS,
“I_DEPT™ . MANAGER®

FROM “I_EMP™,
“I_DEPT® -
4| v
Button Description
Close Closes the Source dialog box.

Select Tables Dialog Box

The Select Tables dialog box is used for selecting tables to be added to the data source from
the currently connected database. A representation of the table is placed in the FROM
section of the SQL Data Source inspector panel. See the picture of the [liSQLDataSource
Inspector Panel on page 172.

The Select Tables dialog box is called by the Add Tables... menu item of the Query menuin
the SQL Data Source inspector panel (if the data source is connected to a database). If not
already connected to a database, this menu item calls the Connect dialog box. After
connecting to the database through the Connect dialog box, the Select Tables dialog box
then appears.

The Select Tables dialog box consists of:
& A list on the left side of the box containing all the tables owned by the selected user.
& A list on theright side of the box, initially empty, to which the end user can add tables.
& Two buttons for moving selected database tables:
e ->Addsthetable selected in the left list to the right list.
e <- Removesthe selected table from theright list.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 189

Select Tables M=

| =
Bl GANTTLOA =
B GANTTRES
B I_DEPT |
=N =
Database tables

Note: To display the columns of a table in the left list, double-click on its name or on the
'+' to the | eft of its name.

Button Description

OK Adds the selected database tables to the
data source.

Cancel Closes the Select Table dialog box without adding
any table to the data source.

Question Dialog Box

The Question dialog box is used for confirming acommand by the user. It is called by the
following menu items of the Query menu in the SQL Data Source inspector panel when an
item corresponding to the command is selected in the panel:

¢ Remove Table... See Remove Table... menu item.
& Delete Column... See Delete Column... menu item.
& Delete Join... See Delete Join... menu item.

The Question dialog box allows you to confirm one of the above three commands.

190 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliSQLDataSource

@Hemwe table |_ERP* 7
LCancel |

Button Description

OK Deletes the selected item.

Cancel Closes the Question dialog box and no item
is deleted.

Differences Dialog Box

Differences =]

State Tabke Column Aftributes
Added

I_EMP SITEND

¥ Update data source columng

Walidate | Cancel |

This dialog box is used to show the differences between the data source tables and the
database tables—in the event that a table has been modified in the database by another user.
When you synchronize a data source with atable (or all tables) the structural information in
the FROM data source table changes. (These operations are on the Query menu. If there are
differences between the tables, the above window is displayed.) To update the table(s) in the
FROM section press Validate. To update the table(s) in the SELECT section as well, check
the Update data source columns box and Validate.

Column Description

State Indicates whether something has been added to,
removed from, or changed in the database.

Table Shows the table name being synchronized.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 191

Column Description
Column Shows the column being synchronized.
Attributes The four possible types are: Max length, PartofKey,
Datatype, Nullable.
lliMemoryDataSource

192

IBM

The 11iMemoryDataSource gadget isused for:

¢ defining temporary tablesin local memory by entering data.

& defining how the dataisto be displayed by specifying format criteriafor display gadgets

connected to the memory data source.

lliMemoryDataSource Inspector Panel

This panel appears by double-clicking its gadget-icon (seen above) in the Gadgets buffer

window. The T1iMemoryDataSource inspector has five notebook pages:

2

* 6 o o

Data Source Page
General Page
Foecific Page
Data Page
Callbacks Page

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliMemoryDataSource

Data Source Page

Memory Data Source (=[] =]

Data Source | General | Specific | Drata | Callbacks |

Column Type | Length:

Fart of key:
Nl
Drefault:

Datatype |L00k | Mapping |

Eppli |

Data Source Page Table Columns

Column Description

Column Menu: None.
Default: No default.
Explanation: The name of the column.

Type Menu: String, Boolean, Byte, Integer, Float,
Double, Date

Default: No default.

Explanation: The type of data that can be
entered in the column.

Data Source Page Notebook Pages

The Data Source page has three notebook pages. The rows on these pages define the criteria
for mapping data to other data source columns and for formatting the datain display
gadgets.

& Datatype Page
The Datatype page is used to define the type of data that can be entered in the column.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 193

I Length:
Fart of key:
MNull:

Drefault:

Label Description

Length Menu: None.

Default: No default.

Explanation: Number of characters that can be
entered in the cells of the column.

Part of key Menu: Yes, No.

Default: No

Explanation:

Yes = The column is included in the key for the table.
No = The column is not included in the key.

Null Menu: Yes, No.

Default: No

Explanation:

Yes = The cell can remain empty.
No = The cell cannot remain empty.

Default Menu: None.

Default: No default.

Explanation: Data that appears in a cell when
it is added to the table.

& Look Page
The Look pageis used for defining how data entered in the column will appear.

194 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliMemoryDataSource

| Fermat: -
Mask:
Alignment:
Wiclth:
Fead only:
Wisible:
Header:
Label:

Label Description

Format Menu: Formats corresponding to what is entered
in the column Type cell in the Memory

Data Source inspector panel.

Default: No default.

Explanation: Predefined system and user formats
from the menu or a format entered by the user,

by which data in the column cells will be formatted.

Mask Menu: Masks corresponding to how and what data
is entered in the column Type cell in the

Memory Data Source inspector panel.

Default: No default.

Explanation: Predefined by the user for data input
in the column cells. There are predefined system
masks for date and time.

Alignment Menu: Left, Center, Right.

Default: Depends on the entry in the Type cell in the
Memory Data Source inspector panel.

Explanation: How data in the column cells will be
aligned within the cell.

Width Menu: None.

Default: No default.

Explanation: The display width in pixels

of the column cells. Can be changed in the table gadget.

Read only Menu: Yes, No.

Default: No default.

Explanation:

Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 195

Label Description

Visible Menu: Yes, No.

Default: No default.

Explanation:

Yes = The column is visible.

No = The column exists but does not appear.

Header Menu: None.

Default: No default.

Explanation: The title that will appear at the top

of the column when displayed in a table gadget.

If left empty, the table gadget uses the column name.

Label Menu: None.

Default: No default.

Explanation: Applies only when the Data Source Assistant
is used to create a form. The caption that appears

next to the form gadget containing the data for the column.
If empty, the column name is used.

(The Header row on the Look page is not used.)

& Mapping Page
The Mapping page is used to display datain a column by referring to datain acolumnin
another table.

I Data source: -

Walue celurmn:
Dizplay column:
Constrained:
Completion:

Datatype | Look EMappingé

196 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliMemoryDataSource

Label Description

Data Source Menu: Current data sources.

Default: No default.

Explanation: The foreign data source containing

the columns to which the values for the current column

are to be mapped. If a foreign data source is specified here,
creates a combo box pull-down menu in the cell

showing the values in foreign data source.

Value column Menu: Columns of the data source selected in the
Data source row.

Default: No default.

Explanation: Column containing the value to which
the current column is to be mapped.

Display column Menu: Columns of the data source selected in the

Data source row.

Default: No default.

Explanation: Column associated with the Value column
containing the data to be displayed.

Constrained Menu: Yes, No.

Default: No default.

Explanation: Applies only when the value entered in the
Value column and Display column rows is the same.

Yes = Can only enter a value that belongs to the

foreign data source.

No = Can enter any value.

Completion Menu: Yes, No.

Default: No default.

Explanation: Is only in effect when Constrained = Yes.
Yes = Can enter a combo box list item by typing
enough of its initial characters to make it unique,

then validating it or leaving the cell.

No = Cannot enter a combo box list item by typing

its initial characters.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 197

198

IBM

Specific Page

Memory Data Source (=[] =]
[rata Source | General Specific | Data | Callbacks |
| Read only: M bt
Global: (Mo
Allowe insett: | Yes

Transaction manager:
Use property manager:

Column

Description

Read only

Menu: Yes, No.

Default: No default.

Explanation:

Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.

Global

Menu: Yes, No.

Default: No.

Explanation:

Yes = Allows more than one user panel to use the
current memory data source.

No = Only one user panel can use the current
memory data source.

Allow insert

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Allows a new row to be inserted into the
data source table.

No = Prevents the user from inserting a new row
into the data source tables, but does not prevent
the user from editing existing rows.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliMemoryDataSource

Column Description
Transaction Menu: List of available transaction managers.
manager Default: No default.

Explanation: Name of the transaction manager
used by this data source.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The data source uses a property manager.
No = The data source does not use a property
manager.

Data Page

Memory Data Source (=[] =]

Drata Sourcel Generall Specific Data Eallbacksl

.

Aol I Cloze |

The Data page is used to edit the data source data. But the data source schema must be
defined and validated.
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

¢ validateRow
€ FetchRow

¢ EnterRow
2

QuitRow

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 199

EnterUpdate Mode
PrepareUpdate
QuitUpdateMode
EnterInsertMode
PrepareInsert
QuitInsertMode
PrepareDeleteMode
CancelEdits

DeleteRow

® 6 6 6 O 6 6 0O 0 o

EnterModifiedState

Buttons
The Memory Data Source inspector panel has two buttons at the bottom:

¢ Apply

¢ Close

Button Description

Apply Applies changes made in the Memory Data Source
inspector panel to the data source table(s).

Close Closes the Memory Data Source inspector panel.

200 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

12

Display Gadgets Reference

This chapter describes the display gadgets listed below. To access these gadgets, click Data
Access or Grapher or Gantt Chart in the Palettes panel. The gadgets appear in the lower
pane. To use a gadget, drag-and-drop it in the Gadgets buffer window.

You can find information on the following topics:
Ili TableGadget
IliDbField
IiEntryField

[1i TableComboBox
[liDbText
IliDbToggle
IliToggleSelector
IliDbNavigator
[liDbTimer
IlIHTMLReporter
HiXML
[liDbPicture

® & 6 6 6 6 O O O 0 o

ILOG VIEwWS DATA AccESS V5.3 — USER’S MANUAL 201

I1iDbOptionMenu
IliDbSringList
I1iDbTreeGadget
IliChartGraphic
I1iDbGrapher
[liDbGantt

® & 6 6 o o

lliTableGadget

The 11iTableGadget isused for editing and displaying tables.

Columnl Columnz Column3

Table Gadget Inspector Panel

The 11iTableGadget ingpector has four notebook pages:
& Data Source Page

¢ General Page

& Specific Page

& Callbacks Page

202 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliTableGadget

Data Source Page

TableG adget =1 E3

[rata Source | General | Specific | Callbacks |

| Data scurce: || -
Fead only: [Mo

Column gecmetry: | Glebal
Show inzert row: | Yes
Bound to datz source: [Yes
Use preperty manager: |Yes
Aute fit: | MNone
Column sort: | Mo

Apply I Cloze
Label Description
Data source Menu: Names of current data sources.

Default: No default.
Explanation: Name of the source to which the
table gadget is to be connected.

Read only Menu: Yes, No.

Default: No.

Explanation:

Yes = The gadget cannot be edited.
No = The gadget can be edited.

Column geometry | Menu: Local, Global.

Default: Global.

Explanation:

Local = The table gadget manages column widths,
visibility and ordering independently of the underlying
data source table.

Global = The table gadget manages column widths,
visibility, and ordering in conjunction with the
underlying data source table.

If there are many table gadgets using the same
underlying data source, Local is recommended.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 203

Label Description

Show insert row Menu: Yes, No.
Default: Yes.
Explanation:

Yes = Shows insert row.
No = Hides insert row.

Bound to Menu: Yes, No.
data source Default: Yes.
Explanation:

Yes = Current row of the table gadget is synchronized
with the current row of the data source.

No = Current row of the table gadget is independent of
the current row of the data source.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The table gadget uses a property manager.
No = The table gadget does not use a
property manager.

Auto fit Menu: None, Proportional, Last.

Default: None.

Explanation: Sets how visible column widths change as table
gadget is resized.

None = Column widths do not change.

Proportional = Column widths change proportionally,

leaving no empty space.

Last = Only width of last column changes to fill

all empty space.

Column sort Menu: Yes, No.

Default: No.

Explanation:

Yes = Sorts columns of the table gadget columns
by alphabetical or numeric order.

No = Does not sort columns of the table gadget

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

204 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliTableGadget

Specific Page

TableG adget =1 E3

[rata Source | General Specific | Callbacks |

| Delete key: |Yes %
Confirmdeletes: |Yes
Refresh key: |ves
Fixed celumns: | o
Header height: |12
Feow height: (17
Shew headers: |Yes
Show markers | Yes
Show grid: |Yes
Usze relief: [Yes
Shew cell editer: | Yes o
Rew select: [Mo
Always show selection: [Mo
Werical screll: | AzMeeded
Herizental screll: | AsMeedad LI

Apply I Cloze |

|v

Label Description

Delete key Menu: Yes, No.

Default: Yes.

Explanation:

Yes = The Delete key can be used to delete
the current row.

No = The Delete key cannot be used to delete
the current row.

Confirm deletes Menu: Yes, No.

Default: Yes.

Explanation:

Yes = The user is prompted to confirm
the deletion of a row.

No = The user is not prompted to confirm
the deletion of a row.

Refresh key Menu: Yes, No.

Default: Yes.

Explanation:

Yes = User can use the Refresh key (F9 by default)
to refresh the data source table.

No = Refresh key is disabled.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 205

Label Description
Fixed columns Menu: None.
Default: 0.

Explanation: The number of columns on the left side
of the table that do not scroll.

Header height

Menu: None.
Default: Height of the font used for drawing headers.
Explanation: Height of the header row in pixels.

Row height

Menu: None.

Default: Height of the font used for drawing cells.
Explanation: Height of the rows, other than the header,
in pixels.

Show headers

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Header row is displayed.
No = Header row is not displayed.

Show markers

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Row markers are displayed.
No = Row markers are not displayed.

Show grid

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Grid is displayed in the table gadget.
No = Grid is not displayed in the table gadget.

Use relief

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Table gadget has a relief border.

No = Table gadget does not have a relief border.

Show cell editor

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Cell editor is shown in cells when table gadget
is read only.

No = Cell editor is nhot shown when table gadget is
read only.

206 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliTableGadget

Label Description

Row select Menu: Yes, No.
Default: No.
Explanation:

Yes = When an attempt is made to select a cell,
the entire row containing the cell is selected instead.
No = A cell can be selected independently of its row.

Always show Menu: Yes, No.

selection Default: No.
Explanation:
Yes = Selection in the table gadget is always
highlighted.

No = Selection in the table gadget is highlighted
only when table gadget has the focus.

Vertical scroll Menu: Never, AsNeeded, Always.

Default: AsNeeded.

Explanation:

Never = Vertical scroll bar is never displayed.
AsNeeded = Vertical scroll bar is displayed
when needed.

Always = Vertical scroll bar is always displayed.

Horizontal scroll | Menu: Never, AsNeeded, Always.

Default: AsNeeded.

Explanation:

Never = Horizontal scroll bar is never displayed.
AsNeeded = Horizontal scroll bar is displayed
when needed.

Always = Horizontal scroll bar is always displayed.

Header font Menu: None. Click the button to open the
Font Chooser Dialog Box.

Default: Font of table gadget palette.
Explanation: Sets the font used in the
header row of the table gadget.

Cell font Menu: None.

Button: Click to open the Font Chooser Dialog Box.
Default: Font of table gadget palette.

Explanation: Sets the font used for cells in

the table gadget.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 207

Label Description

Cell background | Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: Background color of table gadget palette.
Explanation: Sets background color for cells in

the table gadget.

Cell foreground Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: Foreground color of the table gadget palette.
Explanation: Sets foreground color for cells in

the table gadget.

Multi selection Menu: Yes, No.

Default: Yes.

Explanation:

Yes = More than one table gadget row can be selected
at the same time.

No = Table gadget rows cannot be selected

at the same time.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the T1iTableGadget
section of the IBM ILOG Views Data Access Reference Manual.

DoubleClick
ValidateCell
ValidateRow
EnterCell
QuitCell
EnterRow
QuitRow
SelectionChange
EnterUpdateMode
PrepareUpdate
QuitUpdateMode
EnterInsertMode

Preparelnsert

L 2R JER JER 2K JER JEE 2R 2ER JER 2ER JEE 2R 2R 2

QuitInsertMode

208 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbField

PrepareDeleteRow
CancelEdits
DeleteRow
FetchRow

DrawCell

® 6 6 6 o o

GetCellPalette

[liDbField

The 11ipbField gadget isused for displaying datawith a data-source-aware gadget whose
appearance can be dynamically changed (see the Style field below).

llvGadyg et IJ.miulBD
: II|DhF|eId (\v
Ihﬁemhf

rame

Framie CabanFbe =
Mo Frams Mo Frame
S Glass Fbe Glass

' ZabonFhbe

DbField Inspector Panel

The 11iDbField inspector has four notebook pages:
& Data Source Page

& Mapping Page

¢ General Page

& Callbacks Page

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 209

210

IBM

Data Source Page

DbField

[rata Source | Mapping | General | Callbacks |

IS[=] E3

| Data source:

Caolumn:

Alignment: | Left

Format:

Mask:

Mz length:

Fead only: [Mo

Usze property manadger: |Yes

Style: | EntryField

Label: | ~DbField

Label fent: | norrmal

Label coler: | black

Label pesition: | Top

Apply I Cloze

Label

Description

Data source

Menu: Names of current data sources.

Default: No default.

Explanation: Name of the data source to which
the DbField gadget is to be connected.

Column

Menu: Column names of the data source selected in
the Data source field.

Default: No default.

Explanation: Column of the data source table to which
the DbField gadget is to be connected.

Alignment

Menu: Left, Center, Right.

Default: Left.

Explanation: Alignment of the value in
the DbField gadget.

Format

Menu: List of predefined system and user formats.
Default: No default.

Explanation: Format to be applied to the value in
the DbField gadget.

Mask

Menu: List of predefined system and user input formats.
Default: No default.

Explanation: Input format to be entered in

the DbField gadget.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliDbField

Label Description

Max length Menu: None.
Default: No default.
Explanation: Maximum number of characters that
can be entered in the DbField gadget.

Read only Menu: Yes, No.

Default: No.

Explanation:

Yes = The field can be edited.
No = The field cannot be edited.

Use property
manager

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = The DbField gadget uses a property manager.
No = The DbField gadget does not use

a property manager.

Style

Menu: List of possible styles the DbField gadget
can assume.

Default: EntryField.

Explanation: Sets the style for the DbField gadget.

Label

Menu: None.

Default: DbField

Explanation: The text for the label placed next
to the gadget.

Label font

Menu: None.

Button: Click to open the Font Chooser Dialog Box.
Default: Font of DbField gadget palette.
Explanation: Font used for the label entered in

the Label field.

Label color

Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: Foreground color of the DbField gadget
palette.

Explanation: Color used for the label entered in

the Label field.

Label position

Menu: Top, Left.
Default: Top.

Explanation: The position of the label relative to the gadget.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

211

Mapping Page

DbField [H[=] B3

Data Source Mapping |General | Callbacks |

| Foreign data source: -
Fareign value column:
Fareign dizplay column:
Constrained: | Mo
Completion: | ez

Apply I Cloze
Label Description
Foreign data Menu: Names of foreign data sources.
source Default: No default.

Explanation: Data source containing the columns
to which the values for the current column

are to be mapped so as to convert the value

to another value and display it.

Foreign value Menu: Column names of the data source selected
column in the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to which the current column is
to be mapped.

Foreign display Menu: Column names of the data source selected in
column the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign Value Column row is referred to.

212 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

iEntryField

Label

Description

Constrained

Menu: Yes, No.

Default: No.

Explanation: Applies only when the value entered in
the Foreign value column and Foreign display
column rows is the same.

Yes = Can only enter a value that belongs to

the foreign data source.

No = Can enter any value.

Completion

Menu: Yes, No.

Default: Yes.

Explanation: Is in effect only when constrained = Yes.
Yes = Can enter a DbField item by typing enough of
its initial characters to make it unique, then validating it
or leaving the cell.

No = Cannot enter a DbField item by typing its

unique initial characters.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on

page 167.

lliEntryField

IBM

The 11iEntryField gadget isused for entering and displaying datain a data-source-
aware, one-line text field.

EntryField

Entry Field Inspector Panel

The IliEntryField inspector has four notebook pages:
& Data Source Page

& General Page

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

213

214

IBM

& Specific Page
& Callbacks Page

Data Source Page

EntryField [%]

D ata Source

General | Specific | Callbacks |

Diata source:

Column:

Format:

Mask:

Use propery manager: [Yes

Aol I Cloze

Label

Description

Data source

Menu: Names of current data sources.
Default: No default.

Explanation: Name of the source to which the
entry field gadget is to be connected.

Column

Menu: Column names of the data source selected in
the Data source field.

Default: No default.

Explanation: Column of the data source table to which
the gadget is to be connected.

Format

Menu: List of predefined system and user formats.
Default: No default.

Explanation: Format to be applied to the value in
the entry field gadget.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

IBM

iEntryField

Label

Description

Mask

Menu: List of predefined system and user input formats.
Default: No default.

Explanation: Input format to be applied to the value in
the entry field gadget.

Use property
manager

Menu: Yes, No.

Default: Yes.

Explanation:

Yes = The entry field gadget uses a property manager.
No = The entry field gadget does not use

a property manager.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.
Specific Page

EntryField [%]
[rata Source | General Specific | Callbacks |
Label | Lael
Alignment I Left LI
-1

Mo. Chars I

¥ Change focus on validation

Apply I Cloze
ILOG VIEwWs DATA ACCESS V5.3 — USER’'S MANUAL

215

Label Description

Label Not available.
Alignment Menu: Left, Center, Right.
Default: Left.

Explanation: The alignment of the value in
the Entry Field gadget.

No. Chars Menu: None.

Default: -1.

Explanation: The maximum number of characters that
can be entered in the Entry Field gadget.

Editable Check box.

Default: Checked.

Explanation:

Checked = The field in the gadget can be edited.

Not checked = The field in the gadget cannot be edited.

Change focus on Check box.
validation Default: Checked.
Explanation:

Checked = Focus moves to the next gadget
after validation.
Not checked = Focus remains on this gadget.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliTableComboBox

TheI1iTableComboBox gadget isused for displaying alist of itemsin a data-source-aware
menu and then displaying the item selected from the list.

| =l

Table Combo Box Inspector Panel

The 11iTableComboBox inspector has five notebook pages:

216 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

* & 6 o o

Data Source Page
Mapping Page
General Page
Specific Page
Callbacks Page

Data Source Page

TableComboBox [%]

D ata Source

Mapping | General | Specific | Callbacks |

Diata source:

-

Column:

Format:

Mask:

Use propery manager: [Yes

Apply

Cloze

ILOG VIEwWSsS DATA ACCESS V5.3

IliTableComboBox

USER'S MANUAL 217

Label Description

Data source Menu: Names of current data sources.
Default: No default.

Explanation: Name of the source to which

the table combo box gadget is to be connected.

Column Menu: Column names of the data source
selected in the Data source field.

Default: No default.

Explanation: Column of the data source table
to which the gadget is to be connected.

Format Menu: List of predefined system and user formats.
Default: No default.

Explanation: Format to be applied to the values
in the table combo box gadget.

Mask Menu: List of predefined system and user input
formats.

Default: No default.

Explanation: Input format to be applied to the values
in the table combo box gadget.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The table combo box uses a property manager.
No = The table combo box does not use
a property manager.

Mapping Page

218 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliTableComboBox

TableComboBox [%]

Data Source Mapping Generall Specificl Eallbacksl

Foreign data source: -
Fareign value column:
Fareign display column:
Constrained: Mo
Completion: |ves

Tahle columns:

Apply Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 219

Label

Description

Foreign data
source

Menu: Names of foreign data sources.

Default: No default.

Explanation: A data source containing the columns

to which the values for the current column are

to be mapped so that the value can be converted to another value
and displayed. Creates a combo box pull-down menu in the table
combo box field showing the values in the foreign data source.

Foreign value
column

Menu: Column names of the data source selected in

the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source containing the
value to which the current column is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.

Default: No default.

Explanation: The column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.

Constrained

Menu: Yes, No.

Default: No.

Explanation: Applies only when the value entered in
the Foreign value column and

Foreign display column rows is the same.

Yes = Can only enter a value that belongs to

foreign data source.

No = Can enter any value.

Completion

Menu: Yes, No.

Default: Yes.

Explanation: Is only in effect when constrained = Yes.
Yes = Can enter a combo box list item by typing

enough of its initial characters to make it unique,

then validating it or leaving the cell.

No = Cannot enter a combo box list item by typing its initial
characters.

Table columns

Menu: None.

Button: Click to have the Table Columns Dialog Box
appear.

Default: No default.

Explanation: The column(s) in the foreign data source
to be displayed in the pull-down menu.

220 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliTableComboBox

Table Columns Dialog Box

Table columns =] &=

Display Columns
EMPHO

Pl ashiE

STATUS

LEFTHO

RALARY

1T

Ok | Cancel |

Label Description

Display Check box.

Default: Not checked.

Explanation: If checked, the column name appears
in the pull-down menu.

Columns Column names.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 221

Specific Page

TableComboBox [%]
[rata Source | Mapping | General Specific | Callbacks |
Label | Lael

Alignment I Left LI
Mo. Chars I -1

¥ Change focus on validation

Apply I Cloze

222 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliDbText

Label

Description

Label

Not available.

Alignment

Menu: Left, Center, Right.

Default: Left.

Explanation: Alignment of the values in
the table combo box gadget.

No. Chars

Menu: None.

Default: -1.

Explanation: The maximum number of characters
that can be entered in the Table Combo Box gadget.

Editable

Check box.

Default: Checked.

Explanation:

Checked = The field in the gadget can be edited.

Not checked = The field in the gadget cannot be edited.

Change focus on
validation

Check box.

Default: Checked.

Explanation:

Checked = Focus moves to the next gadget.
Not checked = Focus remains on this gadget.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the
I1liAbstractComboBox Section of the IBM ILOG Views Data Access Reference Manual.

¢ Open
® Close

[liDbText

IBM

The 11ipbText gadget is used for entering and displaying multi-line datain a scrollable
data-source-aware text field.

Db et

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

223

DbText Inspector Panel

The 11ipbText inspector has four notebook pages:
& Data Source Page

¢ General Page

& Scrollbars Page

& Callbacks Page

Data Source Page

DbText M=l B3
D ata Source | General | Scrollbars | Callbacks |
| Data source: -
Caolumn:
Fead only: [Mo
Use preperty manager: |Yes

Apply I Cloze
Label Description
Data source Menu: Names of current data sources.

Default: No default.
Explanation: Name of the data source to which
the DbText gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.

Default: No default.

Explanation: Column of the data source table to which
the gadget is to be connected.

224 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

IliDbText

Label Description

Read only Menu: Yes, No.
Default: No.
Explanation:

Yes = The field can be edited.
No = The field cannot be edited.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The DbText gadget uses a property manager.
No = The DbText gadget does not use
a property manager.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Scrollbars Page

DbText & 3
Data Sourcel General ~ Scrollbars Eallbacksl
Wertical Scroll bar
[Show =l et
Horizontal scraoll bar
[Hide =l [CiTop
Marging
Left | 132 Right | 132
Top W Bottam W
Apply I Cloze

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

225

Label Description

Vertical scroll Menu: Show, Hide

Default: Show.

Explanation:

Show = The field has a vertical scroll bar.

Hide = The field does not have a vertical scroll bar.

Horizontal scroll Menu: Show, Hide

Default: Hide.

Explanation:

Show = The field has a horizontal scroll bar.

Hide = The field does not have a horizontal scroll bar.

Margins Menu: None.

Default: 1.

Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show frame Check Box.

Default: Checked.

Explanation: If the check box is checked, a frame appears around
the DbText gadget.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

€ ScrollBar Moved

€ ScrollBar Visibility Changed
€ Cursor Move

€ Selection Changed

*

Value Changed

[liDbToggle

The I11iDbToggle gadget isused for selecting between two or sometimes three states.

" DbToggle

226 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbToggle

DbToggle Inspector Panel

The 11iDbToggle inspector has five notebook pages:
Data Source Page

Mapping Page

General Page

Foecific Page

Callbacks Page

*® 6 6 o o

Data Source Page

DbToggle =1 E3

[rata Source | Mapping | General | Specific | Callbacks |

Data source:

Caolumn:
| LUse property manager: |Ves hd

Apply I Cloze

Label Description

Data source Menu: Names of current data sources.

Default: No default.

Explanation: Name of the data source to which
the DbToggle is to be connected.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 227

Label Description

Column Menu: Column names of the data source selected in
the Data source field.

Default: No default.

Explanation: Column of the data source table to which
the gadget is to be connected.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The DbToggle gadget uses a property manager.
No = The DbToggle gadget does not use
a property manager.

Mapping Page

DbToggle =1 E3

Data Source Mapping |General | Specific | Callbacks |

| Foreign data source: -
Fareign value column:
Fareign dizplay column:

Apply I Cloze

228 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbToggle

Label Description
Foreign data Menu: Names of foreign data sources.
source Default: No default.

Explanation: Data source containing the columns
to which the values for the current column are to be mapped
S0 as to convert the value to another value and display it.

Foreign value Menu: Column names of the data source selected in

column the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source

containing the value to which the current column is to be mapped.

Foreign display Menu: Column names of the data source selected in
column the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to be displayed when

the column specified in the Foreign value column row
is referred to.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Specific Page

[rata Source | Mapping | General Specific | Callbacks |
Label I “DbToggle

Bitmap I ﬂ
Pasitian | Right x|
Size f 13
Shape I Fiadio LI
Alignment I Left LI
[™ | 3states mode

Apply I Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 229

Label Description

Label Menu: None.

Default: DbToggle.

Explanation: The text for the label placed next to
the toggle gadget.

Bitmap Menu: None.

Button: Click to open the Open dialog box.
Default: No default.

Explanation: The bitmap image to be placed as
the label next to the toggle gadget.

Position Menu: Left, Right.

Default: Right.

Explanation: Position of the label relative to
the toggle gadget.

Size Menu: None.
Default: 13.
Explanation: The width or height of the state marker.

Shape Menu: Radio, CheckBox.
Default: Radio.
Explanation: The type of toggle gadget to be used.

Alignment Menu: Left, Center, Right.

Default: Left.

Explanation: Alignment of the label within
the bounding box of the toggle gadget.

3 States Mode Check box: Available if Shape = CheckBox

(see Shape above).

Default: Unchecked.

Explanation: The toggle can have three states

(True, False, Null) when the toggle is a check box and
if this field is true.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

230 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliToggleSelector

lliToggleSelector

The I1iToggleSelector gadget isused to select a gadget among any number of items
having data-source-aware selector buttons.

Selector
£ Choice 1
' Choice 2

ToggleSelector Inspector Panel

The 11iToggleselector inspector has four notebook pages:
& Data Source Page

& Mapping Page

¢ General Page

& Callbacks Page

Data Source Page

ToggleSelector [%]
[rata Source | Mapping | General | Callbacks |
Diata source: hd
Column:
Read only: | Mo

Use propery manager: [Yes
Label: | “Selector

Apply Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 231

Label Description

Data source Menu: Names of current data sources.

Default: No default.

Explanation: Name of the data source to which
the toggle selector gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.

Default: No default.

Explanation: Column of the data source table to which
the gadget is to be connected.

Read Only Menu: Yes, No.

Default: No.

Explanation:

Yes = The toggle selector gadget can be edited.
No = The toggle selector gadget cannot be edited.

Use property Menu: Yes, No.
manager Default: Yes.
Explanation:

Yes = The toggle selector uses a property manager.
No = The toggle selector does not use
a property manager.

Label Menu: None.

Default: Selector.

Explanation: The text for the label placed next to
the toggle selector gadget.

232 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliToggleSelector

Mapping Page

ToggleSelector [%]

General | Callbacks |

Data Source Mapping

Foreign data source: -
Fareign value column:
Fareign display column:

IBM

Apply Cloze

Label

Description

Foreign data
source

Menu: Names of foreign data sources.

Default: No default.

Explanation: Data source containing the columns

to which the values for the current column are to be mapped so as
to convert the value to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in

the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source

containing the value to which the current column is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign Data Source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL 233

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

lliDbNavigator

The I11ipbNavigator gadget isatool bar with buttons for navigating through rows and
editing datain a data source table.

Jelolole]-|vls]e]e]

DbNavigator Inspector Panel

The 11iDbNavigator ingpector has three notebook pages:
& Data Source Page

¢ General Page

& Callbacks Page

Data Source Page

DbMavigator =1 E3

D ata Source | General | Callbacks |

| Data source: -

Confirmdeletes: |Yes
Mavigation buttonz: [Yes
Current position: [Mo
MNumber of lines: | Mo
Insert butten: | Yes
Delete butten: | ves
Walidation buttens: |Yes
Select button: | Yes
Clear butten: | Yes
Query mede butten: | Me

klelo o o] |v][«]e]]
Apply I Cloze

234 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbNavigator

Label Description

Data source Menu: Names of current data sources.

Default: No default.

Explanation: Name of the data source to which
the DbNavigator gadget is to be connected.

Confirm deletes Menu: Yes, No.

Default: Yes.

Explanation:

Yes = The user is prompted to confirm the deletion
of a row.

No = The user is not prompted to confirm

the deletion of a row.

Navigation Menu: Yes, No.
buttons Default: Yes.
Explanation:

Yes = Displays four navigation buttons (|<, <, >, >|).

No = Does not display four navigation buttons (|<, <, >, >|).
|< = go to first row,

< = previous row,

> = next row,

>| = last row.
Current Menu: Yes, No.
position Default: No.

Explanation:

Yes = Displays the current row position of the query if
in Query mode, of the Data source if in Normal mode.
No = Does not display the current row position.

Number of lines Menu: Yes, No.

Default: No.

Explanation:

Yes = Displays the number of lines of the query if

in Query mode, of the Data source if in Normal mode.
No = Does not display the number of lines.

Insert button Menu: Yes, No.

Default: Yes.

Explanation: The insert button gives the focus to (makes current)
the insert row.

Yes = Displays the insert button (+).

No = Does not display the insert button (+).

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 235

Label

Description

Delete button

Menu: Yes, No.

Default: Yes.

Explanation: Applies when a row is selected for deletion.
It displays a confirmation dialog box before deleting

the row if Confirm Deletes = Yes (see above).

If Confirm Deletes = No, row is immediately deleted.

Yes = Displays the delete button (-).

No = Do not display the delete button (-).

Validation
buttons

Menu: Yes, No.

Default: Yes.

Explanation: Applies when an edit has been made
in a row.

Yes = Displays the two validation buttons (v, x).

No = Do not display the two validation buttons (v, x).
In Normal mode:

v = validate the edit.

x = cancel the edit and return to original state.

In Query mode:

v = apply Query mode.

x = cancel Query mode.

Select button

Menu: Yes, No.

Default: Yes.

Explanation: Clears the data source cache, queries the database,
retrieves the result from the data source, and displays the result in
the display gadget.

Yes = Displays the select button (@).

No = Do not display the select button (@).

Clear button

Menu: Yes, No.

Default: Yes.

Explanation: Empties the data source cache, thus clearing the
display gadget.

Yes = Display the clear button (c).

No = Do not display the clear button (c).

Query mode
button

Menu: Yes, No.

Default: No.

Explanation: Puts the data source in Query mode, allowing you to
use other buttons on this notebook page. Query mode remains
active until one of the other validation buttons is used to return to
normal mode.

Yes = Query mode is active.

No = Query mode is not active.

236 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliDbTimer

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbTimer

The 11ipbTimer gadget is used for calling a callback periodically.

=

DbTimer Inspector Panel

The I11ibpbTimer inspector has two notebook pages:
& Specific Page

& Callbacks Page

Specific Page

Calbacks |

Specific

Mame: | |
Period (x50 ms): |0 |

Apply Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 237

Label Description

Name Menu: None.
Default: None.
Explanation: The name of the gadget.

Period Menu: None.

Default: 0

Explanation: The period with which the callback
associated with the gadget will be called.

The value entered is multiplied by 0.05 to get seconds
(for example, the user needs to type 40

if a period of 2 seconds is desired).

If the value is 0, the callback is not called.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

llIHTMLReporter

The I1iHTMLReporter gadget is used to generate an HTML document from data source
contents.

HTHL

—

HTMLReporter Inspector Panel

The 11iHTMLReporter ingpector has five notebook pages:
4 Document Page

Table of contents Page

First page Page

General Page

L 2
L 2
L 2
& Callbacks Page

238 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IlIHTMLReporter

Document Page

HtmlIR eporter [%]
Document | Table of contents | First page | General { <| »
File name:
Diata source:
Title:
Copyright:
Background:

Model: | Classic table
Tahle of contents: | Mo
HTML comments: | Yes

Apply Cloze
Label Description
File name Menu: None.

Button: Click to open the File Chooser Dialog Box.
Default: None.
Explanation: Name of the file to be generated.

Data source Menu: Names of current data sources.

Default: None.

Explanation: Data source whose contents will be used to create
the HTML file.

Title Menu: None.
Default: None.
Explanation: Title of the HTML file.

Copyright Menu: None.
Default: None.
Explanation: The HTML document copyright.

Background Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: None.

Explanation: The HTML page background color.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 239

240

Label

Description

Model

Menu: Classic table, Classic form, Table,

Form, Dynamic Form.

Default: Classic table.

Explanation: The model that will be used to create the HTML
document.

Table of contents

Menu: Yes, No.

Default: No.

Explanation: If “Yes”, a table of contents will be present in the
HTML file.

HTML comments

Menu: Yes, No.
Default: Yes.
Explanation: Enable or disable comments in the HTML file.

Table of contents Page

HtmlIR eporter [%]

Document Table of contents

First page | General { <| »

| Calurnn:
Title:
Atthe beginning:

-

Tahle of contents

fes

Apply Cloze

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

IlIHTMLReporter

Label Description

Column Menu: Column names of the data source

selected in the Document page.

Default: None.

Explanation: The column that will be used to create the table of
contents.

Title Menu: None.
Default: Table of contents.
Explanation: The table of contents title.

At the beginning | Menu: Yes, No.

Default: Yes

Explanation:

Yes = The table of contents appears
at the beginning of the document.
No = The table of contents appears
at the end of the document.

First page Page
This pageis used only if the value of Table of contents field on the Documents pageis
“Yes'.

HtmlIR eporter [%]
General { <| »

Title: | Contents of table |
Picture name: | |

Documentl Table of contents First page

Apply Cloze

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 241

Label Description

Title Menu: None.
Default: Contents of the table.
Explanation: The first page title.

Picture Name Menu: None.

Button: Click to open the File Chooser dialog box.

Default: None.

Explanation: The picture to appear above the first page title.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
thisinspector usesthe callbacks listed below, which are described inthe 11iHTMLReporter
section of the IBM ILOG Views Data Access Reference Manual.

Generic

Secondary

FocusIn

Focus Out

Enter Gadget

L eave Gadget
ReportBeginDocument
ReportEndDocument
ReportFirstPageHeading
ReportFirstPageContents
ReportFirstPageFooting
ReportTableHeading
ReportTableTitle
ReportTableBeginEntries
ReportTableEndEntries

ReportTableFooting

L 2R B JEE R JER JEE 2R 2N JEE 2B 2ER 2R 2R JER R R 2

ReportHeading

242 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

[iXML

ReportBeginRows
ReportRowContent
ReportEndrows
ReportFooting
ReportLastPageHeading

ReportLastPageContents

® 6 6 6 O ¢ o

ReportLastPageFooting

IiXML

The 111ixML gadget manages the communication between a datasource and an XML
document. It also manages the import and export of notification and definition.

—

XML Inspector Panel

The 11ixML inspector has six notebook pages:

& Connection Page

& Import properties Page, Export properties Page, Stream properties Page
& General Page

& Callbacks Page

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 243

Connection Page

XML

Caonnection

Import properties | Export properties | Sl{ <| »

Diata source:

-

Impoart model: | Mothing

Export model: | Mothing

Stream model: | Mothing

Auto export: Mo

Apply Cloze

Label

Description

Data source

Menu: Names of current data sources.
Default: No default.

Explanation: Name of the data source

to which the XML gadget is to be connected.

Import model

Menu: Nothing, Dynamic, Default.

Default: Nothing.

Explanation: The model name that is used
to import the XML document.

Export model

Menu: Nothing, Dynamic, Default.

Default: Nothing.

Explanation: The model name that is used
to export the XML document.

Stream model

Menu: Nothing, File.

Default: Nothing.

Explanation: The model name that is used to connect to an XML
document.

Auto export

Menu: Yes, No.

Default: No.

Explanation: Enable or disable the automatic export of
notification.

244 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

[liDbPicture

Import properties Page, Export properties Page, Stream properties Page
These pages contain the properties list of the selected model.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
thisinspector uses the callback listed below which is described in the 111 xmr, section of the
IBM ILOG Views Data Access Reference Manual:

€ XMLNotificationExported

IliDbPicture

IBM

The 11ipbPicture gadget is used for displaying a picture. The picture file name comes
from a data source column.

Vie £

DbPicture Inspector Panel

The 11iDbPicture inspector has three notebook pages:
& Data Source Page

& General Page

& Callbacks Page

ILOG VIEwWSsS DATA AccEss V5.3 — USER’'S MANUAL 245

246

IBM

Data Source Page

DbPicture =] 3
D ata Source | General | Callbacks |
| Data source: -
Caolumn:
Alignment: | Center
Streched bitrmap: | Me
Type: | String
Apply I Cloze
Label Description

Data source

Menu: Names of current data sources.

Default: No default.

Explanation: Name of the data source

to which the DbPicture gadget is to be connected.

Column

Menu: Column names of the data source

to which the file name of the picture is attached.
Default: No default.

Explanation: Column of the data source table
to which the gadget is to be connected.

Alignment

Menu: Left, Center, Right.

Default: Center.

Explanation: Alignment of the picture within
the picture gadget bounding box.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

[liDbOptionMenu

Label Description

Stretched bitmap |Menu: Yes, No.

Default: No.

Explanation:

Yes = The image is stretched in the gadget rectangle.
No = The image is not stretched in the gadget rectangle.

Type Menu: String, Bitmap (later).

Default: String.

Explanation: Type of data that can be entered in the column. For
the time being you can only use the type string for a file name.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

[liDbOptionMenu

The 11iDboptionMenu gadget isused to display a data source list of items.

I Db0 ptionbd e LI

DbOptionMenu Inspector Panel

The 11iDbOptionMenu ingpector has four notebook pages:
& Data Source Page

& Mapping Page

& General Page

& Callbacks Page

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 247

Data Source Page

DbOptionMenu M= 3
[rata Source | Mapping | General | Callbacks |
| Data source: -
Caolumn:
Use preperty manager: |Yes
Apply I Cloze
Label Description

Data source

Menu: Name of current data sources.

Default: No default.

Explanation: Name of the data source

to which the option menu gadget is to be connected.

Column

Menu: Column name of the data source
selected in the Data source field.

Default: No default.

Explanation: Column of the data source table
to which the gadget is to be connected.

Use property
manager

Menu: Yes, No.

Default: No.

Explanation:

Yes = The DbOptionMenu uses a property manager.
No = The DbOptionMenu does not use

a property manager.

248 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

[liDbOptionMenu

Mapping Page

IBM

DbOptionMenu M= 3
Data Source Mapping |General | Callbacks |
| Foreign data source: -
Fareign value column:
Fareign dizplay column:
Apply I Cloze
Label Description

Foreign data
source

Menu: Name of current data sources.

Default: No default.

Explanation: Data source containing

the columns to which the values for the current column
are to be mapped so as to convert the value

to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to which the current column

is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.

Default: No default.

Explanation: The column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

249

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

[liDbStringList

TheIlipbstringList gadget isused to display a data source list of items.

[terml il
[tem:

[tem3 LI

DbStringList Inspector Panel

The I1ipbStringList ingpector has six notebook pages:
Data Source Page

Mapping Page

General Page

Specific Page

Scrollbars Page

Callbacks Page

® & 6 6 o o

250 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

[liDbStringList

Data Source Page

DbStringList [H[=] B3
[rata Source | Mapping | General | Specific | Scrollbars | Callbacks |
| Data source: -
Caolumn:
Fead only: [Mo
Use preperty manager: |Yes

Apply I Cloze
Label Description
Data source Menu: Names of current data sources.

Default: No default.
Explanation: Name of the data source
to which the string list gadget is to be connected.

Column Menu: Column names of the data source
selected in the Data source field.

Default: No default.

Explanation: Column of the data source table
to which the gadget is to be connected.

Read only Menu: Yes, No.

Default: No.

Explanation:

Yes = The field cannot be edited.
No = The field can be edited.

Use property Menu: Yes, No.
manager Default: No.
Explanation:

Yes = The DbStringList uses a property manager.
No = The DbStringList does not use
a property manager.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 251

Mapping Page

DbStringList =] E3

Data Source Mapping |General | Specific | Scrollbars | Callbacks |

| Foreign data source: -
Fareign value column:
Fareign dizplay column:
Fareign bitmap column:

Apply I Cloze
Label Description
Foreign data Menu: Name of current data sources.
source Default: No default.

Explanation: Data source containing the columns
to which the values for the current column

are to be mapped so as to convert the value

to another value and display it.

Foreign value Menu: Column names of the data source selected in
column the Foreign data source field.

Default: No default.

Explanation: The column in the foreign data source
containing the value to which the current column

is to be mapped.

252 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IBM

[liDbStringList

Label

Description

Foreign display

column

Menu: Column names of the data source selected in
the Foreign data source field.

Default: No default.

Explanation: Column in the foreign data source
containing the value to be displayed when the column

specified in the Foreign value column row is referred to.

Foreign bitmap
column

Menu: Column names of the data source selected in
the Foreign data source field.

Default: No default.

Explanation: Column in the Foreign data source
containing the bitmap to be displayed.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.
Specific Page

DbStringList [H[=] B3
[rata Source | Mapping | General Specific | Scrollbars | Callbacks |
Selection I Single browse selection LI
Full selection v
Editatile r
Tianlhips aritens r
Drag and drop I
Fixed item height r | I l
Automatic label alignment v | I l
Aszpect -
o] E AIlgnm{e_pt
Cals;
) e e
¥ Image
e e o
e e
e
Apply I Cloze

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

253

Label

Description

Selection

Menu: Single selection, Single browse selection,
Multiple selection, Extended selection, Browse selection.
Default: Single browse selection.

Explanation: Type of selection to be used

by the gadget.

Full selection

Check box.

Default: Checked.

Explanation:

Checked = Selects the entire line.

Not checked = Selects only the item length.

Editable Not available.
Tooltips on items | Not available.
Drag and drop Check box.

Default: Not checked.
Explanation: Determines whether items
can be dragged and dropped.

Fixed item height

Check box.
Default: Not checked.
Explanation: When checked, 20 appears as the default.

Automatic label

Check box.

alignment Default: Checked.
Explanation: When not checked, 28 appears as
the default if a foreign data source is used. 0 appears
as the default if a foreign data source is not used.
Visible label Check box.
Default: Checked.
Explanation: Determines whether labels are visible
in the gadget.
Image Check box.
Default: Checked.
Explanation: Determines whether images
are visible in the gadget.
Alignment Menu: None. Available positions are indicated by graphic.

Default: Right center.

Explanation: When Image and Visible label

are selected, gives the position of the label relative
to the image.

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

[liDbStringList

Scrollbars Page

DbStringList = B3

Calbacks |

[rata Sourcel Mappingl Generall Specific Scrollbars

Wertical Scroll bar

[As Needed =l et

Horizontal scraoll bar

[As Needed x| [Top
Marging

Left | 032 Right | 032
Taop W Bottam W

Apply I Cloze

Label Description

Vertical scroll bar | Menu: Show, Hide, As Needed.

Default: As Needed.

Explanation:

Show = The field has a vertical scroll bar.

Hide = The field does not have a vertical scroll bar.
As Needed = Vertical scroll bar if needed.

Left Check box.

Default: Not checked.

Explanation:

Checked = The vertical scroll bar is on the left side
of the gadget.

Not checked = The vertical scroll bar is on

the right side of the gadget.

Horizontal Menu: Show, Hide, As Needed.
scrollbar Default: As Needed.
Explanation:

Show = The field has a horizontal scroll bar.
Hide = The field does not have a horizontal scroll bar.
As Needed = Horizontal scroll bar if needed.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 255

Label Description

Top Check box.

Default: Not checked.

Explanation:

Checked = The horizontal scroll bar

is above the gadget.

Not checked = The horizontal scroll bar
is below the gadget.

Margins Menu: None.

Default: 0.

Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show Frame Check box.
Default: Checked.
Explanation: Determines whether frames are visible.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

€ ScrollBar Moved

ScrollBar Visibility Changed
Start Edit Item

End Edit Item

Start Drag Item

Item Dragged

® 6 6 6 o o

End Dragged Item

IliDbTreeGadget

The 11iDbTreeGadget gadget is used to display the data source contents as atree
structure.

El- Cronos -

Pozeidon
=8 Zeus

Athena LI

256 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbTreeGadget

DbTreeGadget Inspector Panel

The 11iDbTreeGadget inspector has six notebook pages:
Data Source Page

Properties Page

General Page

Foecific Page

Scrollbars Page

Callbacks Page

* 6 6 o o o

Data Source Page

operties | General | Specific | Scrollbars | Callbacks |
Model: I Structural LI
| | [rata Source | |dentifier | Label | Farent | Bitmap | Farmat |
O |
Aol I Cloze
Label Description
Model Menu: Structural, Recursive.

Default: Structural.
Explanation: Model of the tree gadget.

Data Source Menu: Names of current data sources.

column Default: No default.

Explanation: Name of the data source to which
the tree gadget is to be connected.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 257

258

IBM

Label

Description

Identifier column

Menu: Column names of the data source
selected in the DataSource field.
Default: No default.

Explanation: Column in the data source
containing the child identifier.

Label column

Menu: Column names of the data source
selected in the DataSource field.
Default: No default.

Explanation: Column in the data source
containing the child label.

Parent column

Menu: Column names of the data source
selected in the Data Source field.
Default: No default.

Explanation: Column in the data source
containing the value for parents.

Bitmap column

Menu: Column names of the data source

selected in the Data Source field.

Default: No default.

Explanation: Column containing the file name of the picture.

Format column

Menu: List of predefined system and user formats.
Default: No default.

Explanation: Format to be applied to the label in
the tree gadget, if a label exists, or to the value

if no label exists.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliDbTreeGadget

Properties Page

DbTreeG adget (=[] =]

General | Specific | Scrollbars | Callbacks |

[ata Source Properties

| Enable iterns deletion
Enable recursive deletion
Confirm deletes: | Mo
Enable itemns insertion: [Mo
Enable items edition: Mo
Uze item dialog: [Yes
Dialog Model: [Data Access
Use itemn popup menu: [Yes
Fopup menu Model: | Data Access
Sortitems: [Yes

i Cloze

Label Description
Enable items Menu: Yes, No.
deletion Default: No.

Explanation: Enable or disable items deletion.

Enable recursive |Menu: Yes, No.

deletion Default: No.

Explanation: Enable or disable recursive deletion.
Yes: When a parent is deleted, its child

is also deleted.

No: A parent will not be deleted if it has

one or more children.

Confirm deletes Menu: Yes, No.

Default: No.

Explanation: Enable or disable message
to ask confirmation of a deletion.

Enable items Menu: Yes, No.
insertion Default: No.
Explanation: Enable or disable items insertion.

Enable items Menu: Yes, No.
edition Default: No.
Explanation: Enable or disable items edition.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 259

260

IBM

Label

Description

Use item dialog

Menu: Yes, No.
Default: Yes

Explanation: Enable or disable item dialog box.

Dialog Model

Menu: Data Access.
Default: Data Access.

Explanation: Model of the dialog box.

Use item popup
menu

Menu: Yes, No.
Default: No.

Explanation: Enable or disable item popup menu
which appears when clicking the desired item

and then the mouse right button.

Default: Yes.

Popup menu Menu: Data Access.
Model Default: Data Access.

Explanation: Model of the popup menu.
Sort items Menu: Yes, No.

Explanation: Enable or disable items sorting.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.
Specific Page

DbTreeG adget

[rata Sourcel Propertiesl General Specific

Scrollbars | Callbacks |

= E3

& — Sample
~ =82 First Root
v oot [
¥ Show buttons .
¥ Link roots l[g Second Root
W Tooltips
W visible label
¥ Image
Indentation Alignment ——
| 20 3: i o i Selection mode
i i i+ | Single selection ;I
A e [~ lterms editable
[~ Drag and drop
Aol I Cloze |

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

lliDbTreeGadget

Label Description

Show lines Check box.
Default: Checked.
Explanation:

Checked = Lines connecting elements in
the tree are shown.
Not checked = Lines are not shown.

Lines as root Check box.

Default: Checked.

Explanation:

Checked = Lines connect roots.

Not checked = Lines do not connect roots.

Show button Check box.

Default: Checked.

Explanation:

Checked = Shows the buttons that indicate
whether the tree is expanded.

Not checked = The button is not shown.

Link roots Check box.

Default: Checked.

Explanation:

Checked = A line links the roots.

Not checked = The roots are not visibly linked.

Tool tips Check box.

Default: Checked.

Explanation:

Checked = Displays tooltips if the item length is
larger than the gadget width.

Not checked = There are no tooltips.

Visible label Check box.

Default: Checked.

Explanation:

Checked = The labels are visible.

Not checked = The labels are not visible.

Image Check box.

Default: Checked.

Explanation:

Checked = The images showing roots and nodes
are visible.

Not checked = The images are not visible.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 261

262

IBM

Label

Description

Indentation

Menu: None.

Default: 20.

Explanation: Distance of roots and nodes from
the left of the tree.

Alignment

Menu: None. Available positions are indicated
by graphic.

Default: Right.

Explanation: Gives the position of the label
relative to the image.

Sample

Shows how the tree looks as you change the options
in the Appearance column.

Selection mode

Menu: Single selection, Extended selection.
Default: Single selection.

Explanation:

Single = Only one item in the tree can be selected.
Extended = More than one item can be selected.

Iltems editable

Not available.

Drag and drop

Check box.

Default: Checked.

Explanation: Determines whether items can be dragged and
dropped.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

Scrollbars Page

DbTreeG adget

[rata Sourcel Propertiesl Generall Specific Scrollbars

Wertical Scroll bar

| As Needed

Horizontal scraoll bar

=l Len

| As Needed

=l [CiTop

lliDbTreeGadget

= E3

Calbacks |

Marging

Left | 032 Right

Top | 032 Bottorm

Apply I Cloze

Label

Description

Vertical
scroll bar

Menu: Show, Hide, As Needed.

Default: As Needed.

Explanation:

Show = The field has a vertical scroll bar.

Hide = The field does not have a vertical scroll bar.
As Needed = Vertical scroll bar if needed.

Left

Check box.

Default: Not checked.

Explanation:

Checked = The vertical scroll bar is on the left side
of the gadget.

Not checked = The vertical scroll bar is on

the right side of the gadget.

Horizontal scroll
bar

Menu: Show, Hide, As Needed.

Default: As Needed.

Explanation:

Show = The field has a horizontal scroll bar.

Hide = The field does not have a horizontal scroll bar.
As Needed = Horizontal scroll bar if needed.

IBM ILOG VIEws DATA ACCESS V5.3 —

USER'S MANUAL

263

Label Description

Top Check box.

Default: Not checked.

Explanation:

Checked = The horizontal scroll bar

is above the gadget.

Not checked = The horizontal scroll bar
is below the gadget.

Margins Menu: None.

Default: 0.

Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show Frame Check box.
Default: Checked.
Explanation: Determines whether frames are visible.

Callbacks Page

In addition to the Generic and Secondary callbacks described in the section Callbacks
Notebook Page on page 167, thisinspector uses the callbacks listed below. The callbacks
IncoherentTreeData, Deleteltem, InsertChildItem, InsertSiblingItem and
EditItem aredescribed inthe IBM ILOG Views Data Access Reference Manual
IliTreeGadget Section.

ScrollBar Moved
ScrollBar Visibility Changed
Item Selected

Item Expanded

Item Shrinked
Start Edit Item
Abort Edit Item
End Edit Item
Start Drag Item
Item Dragged

End Drag Item
Abort Drag Item
IncoherentTreeData

Deleteltem

L 2R R 2R K JER JEE JER JEE JER 2R 2ER 2K JER JER 4

InsertChildItem

264 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliChartGraphic

€ InsertSiblingItem

¢ EditItem

lliChartGraphic

The r1ichartGraphic dadget is used to display the data source as a chart graphic.

012345686

ChartGraphic Inspector Panel

The 11ichartGraphic inspector has twelve notebook pages:
Foecific Page

Data Source Page

Data Model Properties Page

Series Model Properties Page

General Page

Callbacks Page

* 6 6 o o o

For a description of the Data Sets, Displayers, Projection, Scales, Layout, and
Miscellaneous pages, refer to the section Using the Chart Inspector in the Charts User’s
Manual.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 265

Specific Page

IiChartGraphic [%]

Specific

[rata Source | [rata model properties | Series model properties | Geni <| »

Data model
Series model [D

Aol Cloze

Label

Description

Data model

Menu: The current data model name.

Default: By row.

Explanation: Name of the data model which is used to extract the
data from the data source.

Series model

Menu: The current series model name.

Default: Default model.

Explanation: Name of the series model which is used to manage
the new series.

266 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliChartGraphic

Data Source Page

IiChartGraphic [%]
Specific Data Source | Data model properties | Series model properties | Geni 9 | »
DataSource / Cols | Walue
B Data source: ;I
— Series:
¥ A
— Value:
-
Aol I Cloze |

This page is used to define the data sources and the columns of the data model. The contents
of this page depends on the data model.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 267

Data Model Properties Page

IiChartGraphic

This page is used to edit the porperties of the current data model. If this page is empty, the
model has no property.

268 IBM ILOG VIEwWS DATA AccESS V5.3 — USER’S MANUAL

lliDbGrapher
Series Model Properties Page

IiChartGraphic [%]
Geni <| »

Specific | [rata Source | [ata model properties Series model properties

Aol | Cloze |

This page is used to edit the properties of the current series model. if this page is empty, the
model has no property.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

[liDbGrapher

The 11iDbGrapher gadget is used to display the data source contents as hodes and links.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 269

D bGrapher

] [»

DbGrapher Inspector Panel

The I11iDbGrapher inspector has six notebook pages:
Nodes Page

Links Page

Properties Page

Events Page

General Page

Callbacks Page

® & 6 6 o o

Nodes Page

DbGrapher (=[] =]

Modes | Links | Froperties | Ewents | General | Callbacks |

-

| Data source:
¥ position:

Y position:
Identifier:
Label:
Bitmap:
Faregraund:
Background:

i Cloze

270 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbGrapher

Label Description

Data source Menu: The names of current data sources.

Default: None.

Explanation: Name of the node data source to which the grapher
is to be connected.

X position Menu: Numeric column names of the selected

data source.

Default: None.

Explanation: The column name contains the values
for the x axis.

Y position Menu: Numeric column names of the selected

data source.

Default: None.

Explanation: The column name contains the values
for the y axis.

Identifier Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the nodes identifier.

Label Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes label.

Bitmap Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes bitmap.

Foreground Menu: String column names of the selected data source.
Default: None.

Explanation: The column name contains the nodes foreground
color.

Background Menu: String column names of the selected data source.
Default: None.

Explanation: The column name contains the nodes background
color.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 271

Links Page

DbGrapher (=[] =]

Modes Links

Properties | Ewents | General | Callbacks |

| Data source:
From:

T

Color:

Type:
Oriented:

-

i Cloze

Label Description

Data source Menu: The names of current data sources.
Default: None.

Explanation: Name of the data source to which
the grapher is to be connected.

From Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains the node
from which the links start.

To Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains the node
to which the links go.

Color Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the links color.

272 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

lliDbGrapher

Label

Description

Type

Menu: Numeric column names of the
selected data source.

Default: None.

Explanation: The column name contains
the links type (from 0O through 6).

Oriented

Menu: Boolean column names of the selected
data source.

Default: None.

Explanation: The column name indicates
whether the links are oriented.

Properties Page

DbGrapher (=[] =]
Nodesl Links Properties Eventsl Generall Eallbacksl
| Background picture:
Default node bitmap:
Default node fareground: | black
Default node background: | white
Show node name: |ves
Default link type: | Straight line
Drefault link color: | blue
Drefault link orientation: | Mo
i Cloze
Label Description
Background Menu: None.
picture Button: Click to open the File Chooser Dialog Box.

Default: None.

Explanation: The picture to be placed as the grapher background.

Default node
bitmap

Menu: None.

Button: Click to open the File Chooser Dialog Box.

Default: None.
Explanation: The default bitmap used for

the nodes if not specified in the nodes data source.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 273

274

IBM

Label

Description

Default node
foreground

Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: black.

Explanation: The default foreground color used

for the nodes if not specified in the nodes data source.

Default node
background

Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: white.

Explanation: The default background color used

for the nodes if not specified in the nodes data source.

Show node name

Menu: Yes, No.
Default: Yes.
Explanation: Enable or disable node name displaying.

Default link type

Menu: List of available link types.

Default: Straight line.

Explanation: The default link type used if not specified
in the links data source.

Default link color

Menu: None.

Button: Click to open the Color Chooser Dialog Box.
Default: blue.

Explanation: The default link color used if not specified
in the links data source.

Default link
orientation

Menu: Yes, No.

Default: No.

Explanation: Enable or disable the default link orientation.
Yes: The links are oriented if not specified in

the links data source. No: The links are oriented or not

as specified in the links data source.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

lliDbGrapher

Events Page

DbGrapher (=[] =]

Gereral | Callbacks |

Nodesl Linksl Froperties - Events

| Fropagate node deletion:
Fropagate node rename:
Supports out of arder events:
Read only: | Mo

i Cloze

Label Description

Propagate node Menu: Yes, No.
deletion Default: Yes.
Explanation: When a node is deleted, all its links are also deleted.

Propagate node Menu: Yes, No.

rename Default: Yes.

Explanation: When a node is renamed, the links data source is
updated with the new name.

Supports out of Menu: Yes, No.

order events Default: No.

Explanation: If a link is created before its node(s), it will be
displayed on the grapher as soon as the node(s) is (are) created.

Read only Menu: Yes, No.

Default: No.

Explanation:

No = The grapher can be edited: the nodes can be moved.
Yes = The grapher cannot be edited:

the nodes cannot be moved.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 275

Callbacks Page

In addition to the Generic and Secondary callbacks described in the section Callbacks
Notebook Page on page 167, thisinspector uses the callbacks listed below, which are
described inthe 11iDbGrapher section of the IBM ILOG Views Data Access Reference
Manual.

¢ NodeMoved

€ NodeDoubleClicked
€ LinkDoubleClicked
2

PrepareDeleteObject

IliDbGantt

The 11ipbGantt gadget isused for defining a Gantt chart connected to various data
sources.

RN [

DbGantt Inspector Panel

The 11iDbGantt inspector has eleven notebook pages:
Resources Page

Model Page

Scales Page

Periods Page

Properties Page

General Page

Callbacks Page

® 6 6 6 o o o

276 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliDbGantt

Resources Page

DbGantt HE 3

Model | Scales | Periods | Froperties | General | Callbacks |

Data source: | =l

Columns

Identifier:
Height:

| | Displayed columns

|
Name: [» | =l

Others:
Aol I Cloze
Label Description
Data source Menu: The names of current data sources.

Default: None.
Explanation: Name of the resources data source file to which the
gantt is connected.

Identifier column | Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains the resource identifier.

Height column Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains the resource height.

Name displayed Menu: Column names of the selected data source.

column Default: None.

Explanation: The column name contains the first name to be
displayed.

Others displayed |Menu: Column names of the selected data source.
column Default: None.
Explanation: Lets you specify other column names
to be displayed.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 277

Model Page

DbGantt] 3
Fesources Model Scalesl Periodsl Propertiesl Generall Eallbacksl
| Madel:| Full e
Data source: | Activities
Diata source name:
Start min:
Start ma:
End min:
End max:
Identifier:
Label:
=notused=
=notused=
i Cloze
Label Description
Model Menu: Full, light.
Default: Full.
Explanation: The model name of the data model.
Data source Menu: Activities, Constraints, Precedences,

Breaks, Load. Activities is only available if
the selected model is Full.

Default: Activities.

Explanation: The datasource usages.

Activities Data Source Properties

Label Description

Data source name | Menu: The name of the current data sources.
Default: None.

Explanation: Name of the activities data source
to which the gantt is to be connected.

Start min Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the activity start minimum value.

278 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliDbGantt

Label

Description

Start max

Menu: Column names of the selected data source.

Default: None.
Explanation: The column name contains
the activity start maximum value.

End min

Menu: Column names of the selected data source.

Default: None.
Explanation: The column name contains
the activity end minimum value.

End max

Menu: Column names of the selected data source.

Default: None.
Explanation: The column name contains
the activity end maximum value.

Identifier

Menu: Column names of the selected data source.

Default: None.
Explanation: The column name contains
the activity identifier.

Label

Menu: Column names of the selected data source.

Default: None.
Explanation: The column name contains
the activity label.

Constraints Data Source Properties

Full Model

Scales | Periods | Froperties | General | Callbacks |

Resources Model

Light Model

Resources Model

DbG antt = B3

Scales | Periods | Froperties | General | Callbacks |

| Model:
Diata source:

Diata source name:
Identifier:
Resource identifier:
Activity identifier;
Capacity:
Faoreground:
Background:
=notused=
=notused=

Ful

% |

Model:

Constraints

Diata source: | Constraints

Diata source name:

Identifier:

Resource identifier:

Label:

Capacity:

Faregraund:

Background:

Start:

End:

Apply Cloze

Apply

Cloze

IBM

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

279

Label

Description

Data source name

Menu: The name of the current data sources.
Default: None.

Explanation: Name of the constraints data source
to which the gantt is to be connected.

Identifier

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the constraint.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the resource identifier to which the constraint is linked.

Label

Only available if the selected mode is Light.
Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the constraint label.

Activity identifier

Only available if the selected model is Full.

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the activity identifier to which the constraint is linked.

Capacity

Menu: Integer column names of the selected data source.
Default: None.

Explanation: The column name contains

the constraint capacity.

Foreground

Menu: String column names of the selected data source.
Default: None.

Explanation: The column name contains

the foreground color for the costraint.

Background

Menu: String column names of the selected data source.
Default: None.

Explanation: The column name contains

the background color for the costraint.

280 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

IliDbGantt

Label

Description

Start

Only available if the selected model is Light.

Menu: Integer column names of the selected data source.

Default: None.
Explanation: The column name contains
the constraint start value.

End

Only available is the selected model is Light.

Menu: Integer column names of the selected data source.

Default: None.
Explanation: Name of the precedences data source
to which the gantt is to be connected.

Precedences Data Source Properties

DbG antt

Resources Model

Scales | Periods | Froperties | General | Callbacks |

[[x]

Diata source name:

S| Full

Source constraint:

Diestination constraint:

Type:

Delay:

Color:

=notused=

=notused=

=notused=

Apply Cloze

Label

Description

Data source name

Menu: The names of the current data sources.
Default: None.

Explanation: Name of the precedences data source
to which the gantt is to be connected.

Source constraint

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the constraint identifier from which the precedences start.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

281

282

Label

Description

Destination
constraint

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the constraint identifier to which the precedences go.

Type

Menu: Integer column names of the selected data source.
Default: None

Explanation: The column name contains

the precedence type.

Delay

Menu: Integer column names of the selected data source.
Default: None.

Explanation: The column name contains

the precedence delay.

Color

Menu: String column names of the selected data source.
Default: None.

Explanation: The column name contains the color of the
precedence.

Breaks Data So

urce Properties

DbG antt = B3

Resources Model | 5

cales | Periods | Froperties | General | Callbacks |

tadel: | Full

| Data source:
Diata source name:
Identifier:

Resource identifier:
From:

T

=notused=
=notused=
=notused=
=notused=

Apply Cloze

IBM ILOG VIEWS

DATA ACCESs V5.3 — USER’'S MANUAL

IBM

IliDbGantt

Label

Description

Data source name

Menu: The names of the current data sources.
Default: None.

Explanation: Name of the breaks data source
to which the gantt is to be connected.

Identifier

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the break identifier.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the resource identifier to which the break is linked.

From

Menu: Integer column names of the selected data source.

Default: None.

Explanation: The column name contains

the value where the break starts, in relation to
the horizontal scale.

To

Menu: Integer column names of the selected data source.

Default: None.

Explanation: The column name contains

the value where the break stops, in relation to
the horizontal scale.

ILOG VIEwWSs DATA AccEss V5.3 — USER'S MANUAL

283

Load Data Source Properties

DbG antt = B3

Resources Model

Scales | Periods | Froperties | General | Callbacks |

Model:

Full

| Data source:
Diata source name:
Resource identifier:
From:

T

Capacity:
=notused=
=notused=
=notused=
=notused=

Apply Cloze

Label

Description

Data source name

Menu: The names of the current data sources.
Default: None.

Explanation: Name of the load data source

to which the gantt is to be connected.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.

Explanation: The column name contains

the resource identifier to which the work load curve
is linked.

From

Menu: Integer column names of the selected data source.
Default: None.

Explanation: The column name contains

the value where the work load curve starts.

To

Menu: Integer column names of the selected data source.
Default: None.

Explanation: The column name contains

the value where the work load curve stops.

Capacity

Menu: Integer column names of the selected data source.
Default: None.

Explanation: The column name contains

the work load curve capacity.

284 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Scales Page

DbG antt = B3

Periods | Froperties | General | Callbacks |

Hesourcesl Model - Scales

| Reference year. | 1995
Reference manth: | January

Display full name: |ves

Type: | Date

Time unit: | Day

IliDbGantt

i Cloze
Label Description
Reference year Menu: None.

Default: 1998.
Explanation: Reference year for the Gantt chart.

Reference month | Menu: The months of the year.
Default: January.
Explanation: Reference month for the Gantt chart.

Display full name |Menu: Yes, No.

Default: Yes.

Explanation:

Yes = Full display of the selected reference time period.
No = Short display of the selected reference time period.

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

285

286

Label

Description

Type

Menu: Various date formats, for example:
Date with week days

Date by hour

Week days by 30 minutes

Hours and minutes

Numeric.

Default: Date.

Explanation: Type of scale.

Time unit

Menu: Various units of time in seconds, minutes,
hours, day or numeric.

Default: Day.

Explanation: Unit of the time scale.

Periods Page

DbGantt HE 3

Hesourcesl Modell Scales Periods

Inactive periods:

Froperties | General | Callbacks |

| I Lnit I Test I Walue 1 I Walue 2 I Walue 3 I Walue 4 I
(=1 = |
Aol Cloze
Label Description
Unit column Menu: Month, Day, Weekday, Hour, Minute, Second,

Month and day, Hour and minute.
Default: None.
Explanation: Time unit for inactive period.

Test column

Menu: Equal, Not equal, Less, Greater, Include, Exclude.
Default: None.
Explanation: Test for inactive period.

IBM

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

IliDbGantt

Label Description

Value 1 column Menu: Depends on the selected unit. For example, if the selected
unit is Day, the menu is Monday to Sunday; if the unit is Hour, the
menu is 0 to 23.

Default: None.

Explanation: Value of the inactive period.

Value 2, Value 3, Menu: Depends on the selected unit and test.
Value 4 columns | Default: None.

Explanation: Value of the inactive period.
Ignore = There is no use for the test.

Properties Page

DbG antt = B3

General | Callbacks |

Hesourcesl Modell Scalesl Periods Properties

| Fropagate deletion event: -
FPropagate update event: |ves
Read only: | Mo
Interaction data source to gantt: |Yes
Delimiter color: | red
Default precedence calar: | darkgreen
Break caolar: [green
Work load curve colar: | red
Inactive period color: | aray
Active period color, |white

i Cloze
Label Description
Propagate Menu: Yes, No.
deletion event Default: Yes

Explanation: A deletion event in a data source deletes
corresponding events in other data sources.

Propagate update |Menu: Yes, No.

event Default: Yes.

Explanation: An update event in a data source updates
corresponding events in other data sources.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 287

288

IBM

Label

Description

Read only

Menu: Yes, No.

Default: No.

Explanation: Yes: the Gantt chart cannot be edited: the
constraints cannot be moved.

No: The Gantt chart can be edited:

the constraints can be moved.

Interaction data
source to gantt

Menu: Yes, No.

Default: Yes.

Explanation: Gantt chart is updated or not when the data source
is updated or modified.

Delimiter color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: red.

Explanation: Delimiter color of the constraint.

Default
precedence color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: darkgreen.

Explanation: Default color used for precedences if not specified in
the precedences data source.

Break color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: green.

Explanation: The color used for the breaks.

Work load curve
color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: red.

Explanation: The color used for the work load curves.

Inactive period
color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: gray.

Explanation: Color for the inactive periods in the Gantt chart.

Active period
color

Menu: None. Click the button to open the Color Selector Dialog
Box.

Default: white.

Explanation: Color for the active periods in the Gantt chart.

General Page

For a description of this notebook page, refer to the section General Notebook Page on

page 165.

ILOG VIEwWSs DATA ACCESS V5.3 —

USER'S MANUAL

IliDbGantt

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
thisinspector uses the callbacks listed below, which are described in the IBM ILOG Views
Data Access Reference Manual 11iDbGantt Section.

€ IsActivePeriod

€ ConstraintDoubleClicked
@ PrecedenceDoubleClicked
2

ScaleNumericLabel

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 289

290 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Utility Classes

This appendix describes the following utility classes of Data Access: T1iString,
IliDecimal, IliDate, I1iFormat, and I1iInputMask.

You can find information on the following topics:
& ThelliSring Class

ThelliDecimal Class

ThelliDate Class

The lliFormat Class

The IlilnputMask Class

* & & o

The IliString Class

The 11istring class defines objects that manage a character string.
IliString str;
// Assign a new value to the string.

str = "Hello "

// Append to it.
str << "World !";

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 291

A. Utility Classes

// Convert it to a pointer to characters.
const char* ptr = str;

// Query its length.
I1UInt len = str.length();

This class manages transparently the memory required to store its character string value. It
is, therefore, used when buffering is required.

The following member function makes use of the 11istring class:

void IliValue::format(IliString& dest,
const IliFormat& fmt) const;

The lliDecimal Class

TheIlipecimal classisused to hold floating point numbers with up to 38 digits of
precision represented internally in base 10. This contrasts with the C++ double type that
represents floating point numbersin base 2 and has a machine-dependent precision.

The following code extract shows how this classis used:

IliDecimal dec = someField->f_getValue() .asDecimal () ;
someField->f_setValue(dec + IliDecimal(0.5));

The lliDate Class

The 11ipate classis used to hold date and time information.

IliDate dt;

// Initialize a date object.
dt.setYear (1998) ;
dt.setMonth (6) ;
dt.setMonthDay (10) ;

// Convert the date into an IliValue object.
Ilivalue val = dt;

// Assign it to a data source aware gadget.
someField->f_setValue(val) ;

In this example, the date is created, converted in an T1vvalue object, assigned to a data-
source-aware gadget and displayed.

292 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

The lliFormat Class

The IlliFormat Class

IBM

TheIliFormat classis used to format valuesinto character strings using specific rules. A
format can be user-defined or predefined. Once an 11iFormat has been created, it can be
named and referenced whenever required. This can be done using the aliasing mechanism
provided inthe I1iFormat class.

You can specify formats for numbers, dates, or character strings.

// Create a predefined format named "MyFormat".
IliFormat: :AddAlias (“MyFormat”,
“#,##0.00 FF.",
IliNumberFormatType) ;

IliFormat fmt (“MyFormat”) ;

Ilivalue val = someField->f_getValue() ;

const char* txt = val.getFormatted(fmt) ;

IlvPrint ("Here is the formatted value : %s", txt);

The 11iFormat classcontrolsthe format specification and uses some global settings. These
settings include properties such as the character that is used to represent a decimal point.
Consequently, the 11iFormat class contains a set of static member functions that can be
used to query and set the global settings.

IliFormat::SetDecimalPoint (', ") ;
IliFormat: :SetThousandsSeparator ('’ ') ;
IliFormat: :SetCurrencySymbol ("F.") ;

For more information on the syntax used to specify aformat, see Appendix B, Format
Syntax.

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 293

A. Utility Classes

It isalso possible to code formats in C++ by subclassing the 11iFormatIpl classasthe
following code extract shows:

#include <ctype.h>
#include <ilviews/dataccess/format.h>

const char* MyFormatAlias = "FancyFormat";
const char* MyFormatName = "FancyFormat";

// This format reverses the case of alphabetic
// characters: lowercase are displayed uppercase and
// vice-versa.

class FancyFormat
: public IliFormatIpl
{
public:
FancyFormat ()
IliFormatIpl (MyFormatName)
{}

virtual IliFormatType getType() const {
return IliStringFormatType;

}

virtual void formatString(IliString& dest,
const char* src) const {
if (src) {
if (isEditModeOn())
dest << src;
else
while (*src) {
if (isalpha(*src)) {
if (isupper (*src))
dest << (char)tolower (*src);
else
dest << (char)toupper (*src);
}
else
dest << *src;
++src;

}

}i

int main() {
IliFormatIpl: :AddCustomFormat (new FancyFormat()) ;
IliFormat: :AddAlias (MyFormatAlias,

MyFormatName,
IliStringFormatType) ;

294 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

The llilnputMask Class

The llilnputMask Class

Aninput mask is similar to aformat except that it allows you to control how values are
entered by the end user in addition to the formatting.

The following is an example of an input mask:

00"="00"-"00

Thisinput mask lets the end user type six digits and nothing else. It also separates each pair
of digitsfrom the next by displaying a'-' character between them. This character isonly used
for display and is not part of the value.

See Appendix C, Mask Syntax for more information on how masks can be specified.

There can be cases where the mask specification language described in Appendix C is not
sufficient for a given task. Fortunately, it is possible to define input masksin C++ by
subclassing class T1i InputMaskIpl.

Data Access providesthe I1iDateType (manages date and time) and the I1iTimeType
(manages time only) data types. In some circumstances, it may be necessary to use the
IliDateType datatype when only the time part needs to be managed. This happens, for
instance, when using a database system that exclusively supports a date-time type. Since
such a database system does not support atime-only type, it is necessary to use
IliDateType instead of T1iTimeType, even thought it isexpected that the date part of
values will be constrained to be some constant date.

The following code samples create an input mask that allows editing of the time part of a
date-time value. The date part is constrained to be some constant date.

First, asubclass of 11iInputMaskIpl must be defined:

#include <wctype.h>
#include <ilviews/dataccess/inpmask.h>

const char* MyMaskName = "MyMask";

// Use "30 Dec 1899" with an Access database.
const char* DatePart = "1-1-1901 "

class MyMask : public IliInputMaskIpl
{
public:
MyMask ()
: IliInputMaskIpl (MyMaskName),
_format ("Time")
{
setMaxCharMask (8) ;
}

virtual IlvBoolean unFormat (IliString& dest,
const char* src) const {
if (src && *src)

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 295

A. Utility Classes

dest << DatePart << src;
return IlvTrue;

}

IlvBoolean isValidChar (I1lInt pos,
wchar_t c,
IlvBoolean editMode = IlTrue) const {
if (isFixChar (pos))
return (c == L':');
return iswdigit(c);

}

virtual IlBoolean isFixChar (I1Int pos) const {
return (pos == 2 || pos == 5);

}

virtual wchar_t filterChar (IlInt pos, wchar_t c) {
return (isFixChar(pos) ? L':' : c);

}

virtual const IliFormat& getValueFormat () const {
return _format;

}

IliFormat _format;
}i

Then, at initialization time, the following code should be executed:
// Register the mask.

IliInputMaskIpl: :AddCustomMask (new MyMask) ;
IliInputMask: :AddAlias ("MyMask", "MyMask");

Hereis how the mask could be used:

//Use the mask.
I1iDbField* f1d;

IliInputMask m("MyMask") ;
fld->f_setMask (m) ;

296 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Format Syntax

This appendix contains the symbols and formats you can use to create application-wide
named formats and local formats for a particular field. A format specification controls the
way avalue will be formatted for display. There are three types of formats:

& String formats
¢ Number formats
& Dateformats

This appendix describes the syntax of the format specifications in Data Access. For each
type of format specification, there is a set of special symbols, each having a specific
meaning. You can find information on the following topics:

& String Formats

¢ Number Formats
¢ Date Formats
L 4

Literal Characters

String Formats

String formats apply to the formatting of text.

IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL 297

B. Format Syntax

Symbols
You can use the following symbols to specify a string format:

! Formatting must proceed from right to left.

< Characters following the symbol will be converted to
lowercase.

> Characters following the symbol will be converted to
uppercase.

@ Placeholder for a mandatory character.
& Placeholder for an optional character.

Normally, character string formatting proceeds by scanning the character string value and
the format specification from left to right. However, if the format specification contains a
“ 1" symbol, then scanning of both the character string value and the format specification
proceeds from right to left.

Examples

Value Format Result
forms > FORMS
FormS < forms
forms <@> fORMS
forms <@@> foRMS
forms 1>@< FORMs
forms I>@<eee> FoRMS
forms &&&&&& data” formsdata
forms eeeeee“data” forms data

@ symbols are replaced by spaces when there is no corresponding character in the string
value.

Number Formats

Number formats apply to the formatting of numbers, including currency amounts.

298 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Number Formats

Symbols
You can use the following symbols to specify a number format:

0 Placeholder for a mandatory digit.
Placeholder for an optional digit.
Placeholder for the decimal point.
, Placeholder for the thousands separator.
% Formats the value as a percentage.
E Placeholder for the exponent displayed in uppercase.
e Placeholder for the exponent displayed in lowercase.

The exponent symbols“E” and “e” can befollowed by a“+” or “-" sign. A “-" sign means
that the exponent sign must be displayed only if it is negative. A “+” sign or no sigh means
that the sign of the exponent is always displayed.

When a“%” symbol appearsin the format specification, the numeric valueto be formatted is
multiplied by 100 before formatting and a“%” symbol appearsin the resuilt.

“0” symbols are replaced by zeros when there is no corresponding digit in the number value.

Examples

Value Format Result
1234.567 #,##0.00 1 234.57
1234 .567 #,##0.0# 1 234.57
1234.5 #,##0.00 1 234.50
1234.5 #,##0.0 1 234.5
1.5 0,000.00 0 001.50
1234 0.00 E+00 1.23 E+03
1234 0.00 E-00 1.23 EO3
1234 0.00 E-## 1.23 E3
0.5432 #.# % 54.3 %

The characters used to represent the decimal point and the thousands separator in the
formatted result depend on application settings that can be changed. Typically, they depend
on the country where the application is used. These settings do not affect the symbols used
as placeholders for the decimal point and for the thousands separator in format
specifications. You should thus always use the placehol ders listed above for these values as
only the output depends on the application settings.

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 299

B. Format Syntax

Note that the maximum precision is 15 digits for double values and 7 for float values.

Date Formats

Date formats refer to the formatting of days, dates, and times.

Symbols
You can use the following symbols to specify a date format:

/ Placeholder for date separator.
Placeholder for time separator.

< Characters following the symbol will be converted to
lowercase.

> Characters following the symbol will be converted to
uppercase.

d Placeholder for day of month (1-31).

dd Placeholder for day of month (01-31).

ddd Placeholder for day of week (Sun-Sat). Depends on the

language that has been set for the application.
See the I1vDisplay class.

dddd Placeholder for day of week (Sunday-Saturday). Depends on
the language that has been set for the application.
See the I1vDisplay class.

ddddd Placeholder for full date (ex: 8/3/96. Depends on the global
settings of your application.
See the I1iFormat class.

dddddd Placeholder for full date (ex: 03 August 1996).
Depends on the language and the global settings
that have been set for the application.

See the I1vDisplay and I1iFormat classes.

w Placeholder for day of week (1-7).
ww Placeholder for week of year (1-53).
m Placeholder for month (1-12).

mm Placeholder for month (01-12).
mmm Placeholder for month (Jan-Dec).

Depends on the language that has been set
for the application. See the T1vDisplay class.

mmmm Placeholder for month (January-December).
Depends on the language that has been
set for the application. See the I1vDisplay class.

300 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

q Placeholder for quarter (1-4).

Placeholder for year day (1-366).
vy Placeholder for year (00-99).
yyyy Placeholder for year (1970-2099).
h Placeholder for hour (0-23).

hh Placeholder for hour (00-23).

H Placeholder for hour (0-11).

HH Placeholder for hour (00-11).
Placeholder for AM or PM.
Placeholder for minutes (0-59).

nn Placeholder for minutes (00-59).

S Placeholder for seconds (0-59).

Date Formats

ss Placeholder for seconds (00-59).

ttttt Placeholder for full time (ex: 05:32:12).
Depends on the global settings of your application.
See the I1iFormat class.

Examples

Value Format Result

12 jan 96 d/m/yy 12/1/96

12 jan 96 d mmmm yyyy 12 January 1996

12 jan 96 a 1

The placeholders for the date and time separators are formatted according to application

settings that can vary (typically, depending on the country).

Also, two of the format specifications depend on application settings that control if the date

should be displayed before or after the month. For example:

Application

Value Format PP ca_to Result
Properties

12 jan 96 dddddd MDY, January 12 1996
English language

12 jan 96 dddddd DMY, 12 janvier 1996
French language

IBM ILOG VIEws DATA ACCESS V5.3 —

USER'S MANUAL

301

B. Format Syntax

Literal Characters
In any format specification, you can include literal characters. They will be output “asis’
when formatting a value.
Symbols
A literal character is specified by one of the following methods:
& \c Prefix the character with aback dlash.
& “abc” Encloseastring of charactersin double quotes.

& Any character that isnot a special symbol or cannot be part of one, isconsidered as being
alitera character.

Examples

Value Format Result
1234.5 #,##0.0# Frs 1 234.5 Frs
1234.5 #,##0.0# “Frs” 1 234.5 Frs
1234.5 #, ##0.0# \F\r\s |1 234.5 Frs
12 jul 96 “Quarter” g Quarter 3
forms ILOG >@< ILOG Forms

302 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Mask Syntax

This appendix contains the symbols and formats that you can use to create application-wide
named masks called input masks and local input masks for a particular field. Masks control
user input. Format specification controls how avalue is formatted for display and a mask
sets astyle to input values. This appendix talks about the different types of masks used to
input data.

Masks are used to provide aformat to input data. A mask is defined by a character string and
uses two principles. First, there is no format and the mask automatically formats the data
displayed. Second, missing characters are replaced by default characters. There are
predefined masks for date and time.

This appendix describes the syntax of format specifications and their specific meaning.
You can find information on the following topics:

¢ Placeholders

¢ Predefined Masks

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 303

C. Mask Syntax

Placeholders

Used in the Edit mode, placeholders replace all missing characters by default characters.
There are predefined masks for the date and time. The following symbols are the
placeholders that you can use for alphanumeric formatting.

0 Placeholder for a mandatory digit.

Placeholder for an optional digit.

S Placeholder for a mandatory digit or sign.
S Placeholder for an optional digit or sign.
L Placeholder for a mandatory letter.

Placeholder for an optional letter.

U Placeholder for a mandatory uppercase letter.
u Placeholder for an optional uppercase letter.
M Placeholder for a mandatory lowercase letter.
m Placeholder for an optional lowercase letter.
A Placeholder for a mandatory digit or letter.
a Placeholder for an optional digit or letter.
P Placeholder for a mandatory digit or uppercase letter.
p Placeholder for an optional digit or uppercase letter.
W Placeholder for a mandatory digit or lowercase letter.
w Placeholder for an optional digit or lowercase letter.
X Placeholder for a mandatory digit or letter from a to f (or A to F)
X Placeholder for an optional digit or letter from a to f (or A to F)
C Placeholder for a mandatory any character.
c Placeholder for an optional any character.
Placeholder for the decimal point.
, Placeholder for the thousands separator.
E.e Placeholder for the exponent separator.
[xy Placeholder for a mandatory digit from x to y included.
{xxexex} Placeholder for a mandatory character from a set of characters.
The list of characters is placed between two braces { and }.
If you put “a” in the list and if you enter “A”, there is
an automatic conversion to “a”.
&XXXX& Placeholder for an optional character from a set of characters. The list

is placed between two “&”.

304 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Predefined Masks

(o# Placeholder for a mandatory letter from @ to # included.
If, the case of @ and # is different so the case is ignored
or else the case is active.

/ Placeholder for date separator.
Placeholder for time separator.

\ The next character included in the mask
for display and value.

! Formatting must proceed from right to left.
“al characters between” are only displayed (not present in the value).

If aformat has an exponent, digits, and number separators with a decimal separator (and
only one) then the format is afloat format. The float format ignores placeholder <!>. The
integer part reads from right to left while the decimal part reads from left to right. The other
characters which are not between double-quotes, are displayed and included in the value.

Default Value
The default value is space for characters that are not mandatory characters.

Predefined Masks

IBM

Predefined masks are used to set format specifications for date and time. You can define
your predefined masks in the Masks section of the Application Properties panel of
IBM® ILOG® Views Studio. The following table defines and names the format showing
how they are displayed. In the mask format, characters representing the decimal point
depend on application settings. The first column shows the decimal formats, the second
shows the value, and the final column shows the format applied to the values.

Mask Value Display
000.0 123.8 123.8
“(200”)"000.0## 12345.789 (12)345.789
“(200”)"000.0## 12345.78 (12)345.78
“(N00”)"000.0## 12345 12345
“(“00”)"000.0## 12345.9999 12345.9999

ILOG VIEwWS DATA AcCcCcESS V5.3 — USER’S MANUAL 305

C. Mask Syntax

The following table provides the name of the date mask in the first column and shows how
the dates will be displayed in the second column.

Name Display
Date, mmm/dd/yyyy mmm/dd/yyyy
Date, mmm/dd/yy mmm/dd/yy
Date, mm/dd/yy mm/dd/yy
Date, mm/dd/yyyy mm/dd/yyyy
Time hh:mm:ss
(This mask works

only if the data type

is time.)

306 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Error Messages

This appendix contains alist of error messages that Data Access generates. In the following
table, you will find the code error, the names of the arguments, and their type.

Code Error Argument 1(Type) |Argument 2 (Type)
I1i_UndefinedError none none
I1i_UnexpectedError none none

I1i_ IncorrectValueError none none
I1li_TableIsReadOnlyError none none
I1i_DuplicateRowError none none
I1i_NullColumnError column name (s) none
I1li_ColumnLengthError column name (s) length max (i)
I1i_InvalidRowNumber row number (i) none

TI1i InvalidTableBuffer none none
I1li_IncorrectTableAlias none none
I1li_InvalidParameterType none none

IBM ILOG VIEwWS DATA AcCCcESS V5.3 — USER’S MANUAL 307

D. Error Messages

Code Error Argument 1(Type) |Argument 2 (Type)
I1i_UndefinedQuery none none
I1i_RowsCountLimitExceeded limit (i) none
I1i_ColumnTypeMismatch column name (s) none
I1i_ColumnNotInQuery column name (s) none
I1i_FetchPendingError insert or delete (s) |none
I1i_SQLRowNotFoundError none none
I1i_SQLRowChangedSinceFetch none none
I1i_UndefinedSQLSessionError none none
I1i_CannotAllocateSQLCursorError none none
I1i_GroupedQueryIsReadOnlyError none none
I1i_NotAllColumnsAreUpdatableError |table name (s) column name (s)
I1i_DatabaseRowIsNotUniqueUpdateEr |none none
ror

I1i_DatabaseRowIsNotUniqueSelectEr |none none
ror

I1i_AlreadyConnectedError none none
TI1i_ NotConnectedError none none
I1i_ TableWithoutColumnsError none none
I1i_TableWithoutNameError none none
I1i_ColumnWithoutNameError none none
I1i_ColumnWithoutTypeError column name (s) none

To understand the error message contained in Arguments 1 and/or 2, the user must type %s
(“s’ for string type) or %14 (i for an integer type) in the message text.

308 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

A

Activities page
DbGantt inspector panel 278
addCallback member function
IlvGraphic class62
addErrorMessage member function
IliDataSource class63, 67
addErrorSink member function
IliDataSource class66
IliTable class42
Allow insert checkbox
SQL Data Source inspector panel 174
applyQueryMode member function
IliDataSource class 138
asString member function
IlivValue class94
asynchronous mode 134

B

bindToDataSource member function
IliTableGadget class 73

buttons
Memory Data Source inspector panel 200
SQL Data Source inspector panel 183

C
callbacks

overview 24

CancelEdits 63, 64

DeleteRow 66

DrawCell 74

EnterInsertMode 63

EnterRow 62

EnterUpdateMode 62

getCellPalette 74

global 88

predefined 90, 143

PrepareDeleteRow 66

PrepareInsert 64

PrepareUpdate 62

primary callback 24

QuitInsertMode 64

QuitRow 62

QuitUpdateMode 62

SQL Data Source inspector panel 183

Validate 62

ValidateRow 63

validation callbacks 67
Callbacks notebook page 167
Callbacks page

DbField inspector panel 213

DbGantt inspector panel 289

DbGrapher inspector panel 276

DbNavigator inspector panel 237

DbOptionMenu inspector panel 250

DbPicture inspector panel 247

DbStringList inspector panel 256

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

Index

309

DbText inspector panel 226
DbTimer inspector panel 238
DbToggle inspector panel 230
DbTreeGadget inspector panel 264
EntryField inspector panel 216
HTMLReporter inspector panel 242
Memory Data Source inspector panel 199
TableComboBox inspector panel 223
TableGadget inspector panel 208
ToggleSelector inspector panel 234
cancelQueryMode member function
IliDataSource class138
clearRows member function
IliTable class41l
Color Selector dialog box 169
column properties
alignment 36
completion 37
constrained 37
datatype 35
default value 36
display column 37
display width 36
foreign data source name 36
foreign table 36
format 36
index 35
label 36
maximum length 35
name 35
nullable 35
part of key 35
read only 36
title 36
token 35
vaue column 36
visibility 36
commit member function
Il1iSQLCursor class152
connect member function
I1lisSQLSession class 150
containers 23
copyTable member function
IliTable class44
Ccursors

obtaining the schema of 153
see I1iSQLCursor class

D

data formats 300
dates 300
literal characters 302
numbers 298
string 297

Data Source page
DbField inspector panel 210
DbNavigator inspector panel 234
DbOptionMenu inspector panel 248
DbPicture inspector panel 246
DbsStringList inspector panel 251
DbText inspector panel 224
DbToggle inspector panel 227
DbTreeGadget inspector panel 257
EntryField inspector panel 214
Memory Data Source inspector panel 193
TableComboBox inspector panel 217
TableGadget inspector panel 203
ToggleSelector inspector panel 231

data sources 57 to 68
overview 27
callbacks 62
connecting gadgets 70
creating 58
defining parameters 139
error handling 66
managing rows 60
retrieving 67
scope 59
table objects 34

data types
checking the type of an object 93
converting IBM ILOG InForm type 93
list of supported types 92
structured types 96

database drivers 150
including at compile time 153
macro symbols 153

database fields 209

database systems

310 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

connecting 150
database tables 32
data-source-aware gadgets 69 to 90

connecting to adata source 70

creating 59

DbField 99

DbGantt 87

DbGrapher 85

DbNavigator 78, 103

DbOptionMenu 81

DbPicture 81

DbStringList 82

DbText 77

DbTimer 80

DbToggle 78

DbTreeGadget 82

description of 24, 27

entry field 76

foreign table 71

HTMLReporter 80

interface 69

managing values 71

setting the look 71

table combo box 77

table gadget 72

toggle selector 78, 108
Datatype page

Memory Data Source inspector panel 193

SQL Data Source inspector panel 177
DbField inspector panel 209

Callbacks page 213

Data Source page 210

Genera page 213

Mapping page 212
DbField styles

IliEntryFieldStyle 100

IliOptionMenuStyle 101

IliStringListStyle 102

IliTableComboBoxStyle 101,103

IliTextStyle 101

IliToggleSelectorStyle 102

IliToggleStyle 101
DbFields 99 to 104

read-only columns 112

style 100

DbGantt inspector panel
Activitiespage 278
Callbacks page 289
Events page 287
General page 288
notebook pages 276
Periods page 286
Resources page 277
Scales page 285

DbGrapher inspector panel 270
Callbacks page 276
Events page 275
General page 275
Links page 272
Look page 273
Nodes page 270

DbNavigator inspector panel 234
Callbacks page 237
Data Source page 234
General page 237

DbOptionMenu inspector panel 247
Callbacks page 250
Data Source page 248
General page 249
Mapping page 249

DbPicture inspector panel 245
Callbacks page 247
Data Source page 246
General page 247

DbStringList inspector panel 250
Callbacks page 256
Data Source page 251
General page 253
Mapping page 252
Scrollbars page 255
Specific page 253

DbText inspector panel 224
Callbacks page 226
Data Source page 224
General page 225
Scrollbars page 225

DbTimer inspector panel 237
Callbacks page 238
Specific page 237

DbToggle inspector panel 227

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

311

Callbacks page 230
Data Source page 227
Genera page 229
Mapping page 228
Specific page 229
DbTreeGadget inspector panel 257
Callbacks page 264
Data Source page 257
Genera page 260
Scrollbars page 263
Specific page 260
deleteCurrentRow member function
IliDataSource class61
deleteRow member function
IliTable class 38
dialog boxes
Color Selector 169
File Selector 170
Font Chooser 168
SQL Data Source inspector panel
Connect 187
Differences 191
Question 190
Select Table 189
Source 188
SQL Data Source Properties 184
Table columns 221
Directory class example 51
disconnect member function
IlisSQLSession class 150
Document page
HTML Reporter inspector panel 239
dontValidateRow member function
IliDataSource class63, 67

E

editors 18
enableInsert member function
IliDataSource class61
EntryField inspector panel 213
Callbacks page 216
Data Source page 214
Genera page 215
Specific page 215

error messages generated by IBM ILOG InForm 307
errors
data sources 66
tables41
Events page
DbGantt inspector panel 287
DbGrapher inspector panel 275
execute member function
IlisQLCursor class151

F

f_getGraphic member function
IliFieldItf class70
f_getValue member function
IliFieldItf class71,92
f_ setDataSourceName member function
IliFieldItf class70, 71,72
f_setvalue member function
IliFieldItf class71
fetchAll member function
IliTable class41l
fetchCompleted member function
IliTable class41
fetchNext member function
IlisQLCursor class151
IliTable class41l
File menu
SQL Data Source inspector panel 173
File Selector dialog box 170
First page page
HTMLReporter inspector panel 241
Font Chooser dialog box 168
foreign tables 105 to 110
column properties 36
constrained 109
DbField styles 101, 102
setting up 105
table combo box 77
toggle selector 108
troubleshooting 112
types 113
format member function
IlivValue class95
Forms Assistant

312 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

creating forms 103
read-only columns 112
using with foreign table 109

G

gadgets
I1iDbField 209
IliDbGantt 276
I1liDbGrapher 269
IliDbNavigator 234
I1iDbOptionMenu 247
I1liDbPicture 245
IliDbStringList 250
I1iDbText 223
I1liDbTimer 237
I1iDbToggle 226
IliDbTreeGadget 256
IliEntryField 213
I1liHTMLReporter 238
IliMemoryDataSource 192
IliSQLDataSource 171
I1liTableComboBox 216
IliTableGadget 202
IliToggleSelector 231

Genera notebook page 165

Genera page
DbField inspector panel 213
DbGantt inspector panel 288
DbGrapher inspector panel 275
DbNavigator inspector panel 237
DbOptionMenu inspector panel 249
DbPicture inspector panel 247
DbStringList inspector panel 253
DbText inspector panel 225
DbToggle inspector panel 229
DbTreeGadget inspector panel 260
EntryField inspector panel 215
HTMLReporter ingpector panel 242
Memory Data Source inspector panel 197
TableComboBox inspector panel 221
TableGadget inspector panel 204
ToggleSelector inspector panel 233

getBinaryValue member function
IliSQLCursor class152

getBuffer member function
IliTable class 39
getDateValue member function
I1isQLCursor class152
getDoublevValue member function
I1iSQLCursor class 152
getFloatValue member function
I1isSQLCursor class152
getFormatted member function
IlivValue class96
getIntegerValue member function
I1iSQLCursor class 152
getNestedSchema member function
IliDatatype class97
getRealColno member function
IliTableGadget class73
GetRegisteredSession member function
I1isSQLSession class 155
getRowsCount member function
IliTable class40
getSchema member function
I1isQLCursor class153
getSelection member function
IliTableGadget class73
getStringValue member function
I1isQLCursor class152
getType member function
IlivValueclass93
getValue member function
I1iSQLCursor class 152
IliTable class 39
getVisualColno member function
IliTableGadget class73
Global checkbox
SQL Data Source inspector pandl 174
gotoFirst member function
IliDataSource class 60
gotoLast member function
IliDataSource class 60
gotoNext member function
IliDataSource class 60
gotoPrevious member function
IliDataSource class 60
gotoRow member function
IliDataSource class 60

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

313

H

hasGlobalScope member function

IliDataGem class59
hasTuple member function

I1isQLCursor class151
Having page

SQL Data Source inspector panel 176
HTMLReporter inspector panel 238

Callbacks page 242

Document page 239

First page page 241

General page 242

Table of contents page 240

IBM ILOG DB Link 26
IBM ILOG InForm
editors 18
IBM ILOG Views classes
IlvApplication 22
IlvContainer 88
IlvDisplay 22
IlvGadget 24, 27,69
IlvGadgetContainer 23
IlvGraphic 24,62
IlvTextField 27,70
IliCallbackManager class89
IliChartGraphic class83
IliDataGem class58, 59
IliDataSource class27,57, 137
IliDatatype class26, 91, 92, 97
IliDate class292
I1liDbField class76, 99, 105
I1iDbField gadget 209
I1liDbGantt class87
I1iDbGantt gadget 276
IliDbGrapher class85
I1iDbGrapher gadget 269
IliDbNavigator class60, 103
IliDbNavigator class 78
IliDbNavigator gadget 234
I1iDbOptionMenu class 81
I1iDbOptionMenu gadget 247

IliDbPicture class81
I1iDbPicture gadget 245
I1iDbStringList class82
I1iDbStringList gadget 250
I1iDbText class77
I1iDbText gadget 223
I1iDbTimer class80
I1iDbTimer gadget 237
I1iDbToggle class78
I1iDbToggle gadget 226
I1iDbTreeGadget class82
I1iDbTreeGadget gadget 256
IliDecimal class292
IliEntryField 76
IliEntryField class27, 69, 73
IliEntryField gadget 213
IliErrorList class42
IliErrorMessage class41
IliErrorReporter class 67
IliErrorSink class42
IliFieldItf class27,69, 72
IliFormat class28, 293
IliGraphicToField globd function 70
I1iHTMLReporter class80
I1iHTMLReporter gadget 238
IliInputMask class 28, 295
IliInputMaskIpl class28
IliIsAField global function 70
IliMapTable class32, 46
IliMemoryDataSource class58
IliMemoryDataSource gadget 192
IliMemoryTable class 26, 32, 37, 38, 45, 58, 105
IliRepository class67
IliSchema class

member functions 37
IlisQLCursor class26, 151
IlisQLDataSource class58, 118
IlisQLDataSource gadget 171
I1iSQLSession class 26, 149, 150
IlisQLTable class

as an object of adata source 149

asynchronous mode 134

auto-commit mode 124

auto-refresh mode 125

auto-row locking mode 127

314 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

bound variables mode 126

concurrency control 123

cursor buffering 127

defining in C++ 120

defining interactively 119

description of 45, 118

dynamic SQL mode 126

fetch policy 125

inserting-nulls mode 126

instantiated by T1isQLDataSource 58

managing rows 26

query mode 137

subclassof I1iTable 32

transaction managers 128

used as aforeign table 105
IliStringclass291
IliStringsTable class32, 45
IliTable class

description of 26, 32, 57

foreign table 105

managing rows 38

subclassing 46

transaction managers 128

used with structured types 96
IliTableBuffer class38, 78
IliTableComboBox class 73, 77, 105
IliTableComboBox gadget 216
IliTableGadget class72
IliTableGadget gadget 202
IliTableHook class43
IliTableSelection class72
IliToggleSelector class78

foreign tables 105
IliToggleSelector gadget 231
IliTransactionManager class 128
Ilivalue class91 to 96

checking the data type 93

constructing 92

converting to a C++ type 94

formatting 95

formatting avalue 95

null values 92

representing values 26

used with structured types 96
IlvGadgetContainer class23

InForm palette

opening 159
insertColumn member function

IliSchema class38
insertRow member function

IliTable class38
inspector panels

DbField 209

DbGantt 276

DbGrapher 270

DbNavigator 234

DbOptionMenu 247

DbPicture 245

DbStringList 250

DbText 224

DbTimer 237

DbToggle 227

DbTreeGadget 257

EntryField 213

HTMLReporter 238

Memory Data Source 192

SQL Data Source 172

TableComboBox 216

TableGadget 202

ToggleSelector 231
isConnected member function

I1iSQLSession class 150
isInputModified member function

IliDataSource class61
isNull member function

Ilivalue class92

L

libraries
IBM ILOG InForm 17
IBM ILOG Views 17
Links page
DbGrapher inspector panel 272
Look page
DbGrapher inspector panel 273
Memory Data Source inspector panel 194
SQL Data Source inspector panel 179

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

315

M

makeTable member function
IliDatatype class97
Mapping page
DbField inspector panel 212
DbOptionMenu inspector panel 249
DbStringList inspector panel 252
DbToggle inspector panel 228
Memory Data Source inspector panel 196
SQL Data Source inspector panel 181
TableComboBox inspector panel 218
ToggleSelector inspector panel 233
masks 28
default value 305
placeholders 304
predefined 305
Memory Data Source inspector panel
buttons 200
Callbacks page 199
Data Source page 193
Datatype page 193
General page 197
Look page 194
Mapping page 196
notebook pages 192
Specific page 198

N

Namefield

SQL Data Source inspector panel 174
Naming Conventions 13
navigation buttons 234
Nodes page

DbGrapher inspector panel 270
notebook pages

Callbacks page 167

Genera page 165
number data formats 298

O

one-tier tables
IliMapTable class46

IliMemoryTable class45
IliStringsTable class45

P

Palettes panel
Charts gadgets 160, 163
InForm gadgets 160
panels
see Containers
parameters 139 to 144
Parameters page
SQL Data Source inspector panel 182
Periods page
DbGantt inspector panel 286
pointToSelection member function
IliTableGadget class73
primary keys
table object 147

Q

Query menu
SQL Data Source inspector panel 173
query mode 137
queryConnect member function
IlisQLSession class154
Question dialog box 190

R

registerCallback member function
IlvContainer class88
registered sessions
see SQL sessions (application-wide)
RegisterSession member function
I1iSQLSession class 154
releaseBuffer member function
IliTable class39
releaseCursor member function
I1isSQLCursor class 153
removeErrorSink member function
IliDataSource class 66
Repository
retrieving a data source 67

316 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

Resources page
DbGantt inspector panel 277

result sets 40, 151

rollback member function
I1isSQLCursor class 152

rowToBuf fer member function
IliTable class39

run-time options for SQL sessions 123

S

Scales page
DbGantt inspector panel 285
Scrollbars page
DbStringList inspector panel 255
DbText inspector panel 225
DbTreeGadget inspector panel 263
select member function
I1isSQLCursor class151
IliTable class40
Select page
SQL Data Source inspector panel 175
SELECT section
SQL Data Source inspector panel 174
Select Tables dialog box 189
setCallback member function
IlvGraphic class62
setColumnEditor member function
IliTableGadget class74
setColumnGeometryLocal member function
IliTableGadget class73
setColumnPartOfKey member function
IliSchema class 38
setErrorReporter member function
IliDataSource class 67
setGlobalScope member function
IliDataGem class59
setLanguageSensitive member function
IliMapTable class46
setNull member function
Ilivalue class92
setQueryConjunct member function
I1iSQLTable class138
setQueryFrom member function
IlisQLTable class122

setSelection member function
IliTableGadget class73
setStyle member function
IliDbField class76
setValue member function
IliDataSource class61
Source dialog box 188
Specific page
DbsStringList inspector panel 253
DbTimer inspector panel 237
DbToggle inspector panel 229
DbTreeGadget inspector panel 260
EntryField inspector panel 215
Memory Data Source inspector panel 198
TableComboBox inspector panel 222
TableGadget inspector panel 205
SQL Data Source inspector
creating a data source definition 119
specifying columns 144
SQL Data Source inspector panel 172
Allow insert checkbox 174
buttons 183
callbacks 183
Connect dialog box 187
Datatype page 177
Differences didlog box 191
Filemenu173
FROM section 189
Global checkbox 174
Having page 176
Look page 179
Mapping page 181
menus 172
Namefield 174
Parameters page 182
Query menu 173
Question dialog box 190
Select page 175
SEL ECT section 174
Select Table dialog box 189
Source dialog box 188
SQL Data Source Properties dialog box 184
SQL data sources 144 to 147
Auto Select property 142
defining table columns 144

IBM ILOG VIEwWs DATA ACCESS V5.3 — USER’S MANUAL

317

forcing column name 145
query mode 137

SQL sessions
application-wide 122, 149, 154
committing or rolling back 152
Connect dialog box 154
connection parameters 150
creating 150
custom session 122
locking and unlocking 150
retrieving 123

SQL statements
DELETE 120
INSERT 120

SELECT 40, 118, 120, 151, 151 to 153

submitting to database 151
UPDATE 120
SQL tables 118 to 135
asynchronous mode 134
defining in C++ 120
defining SQL session 122
joining columns 118, 119, 121
structured types 131
transaction managers 128
using parameters 128
startInsert member function
IliDataSource class61
string data formats 297
structured types 96
SQL table 131
subclassing
directory table example 49
I1iFieldItf class72

T

table
create 164
drop 164
edit data 165
edit schema 165
enable/disable SQL trace 165
export 165
import 165
Table columns dialog box 221

table combo boxes 77
table gadgets 32, 72
callbacks 74
column geometry 73
columns geometry 110
customizing 74
editors 73
fixed columns 112
read-only columns 111
table objects 32, 103
copying 44
defining an instance 38
defining the key 38
defining the schema 37
error catching 41
foreign tables 105
inserting arow 39
local row cache 40
look 110
managing rows 38
modifying arow 39
primary key 147
reading from a stream 44
read-only columns 111
removing arow 40
subclasses 44
subclassing guidelines 46
writing to a stream 44
Table of contents page
HTMLReporter inspector panel 240
TableComboBox inspector panel 216
Callbacks page 223
Data Source page 217
General page 221
Mapping page 218
Specific page 222
TableGadget inspector panel
Callbacks page 208
Data Source page 203
General page 204
notebook pages 202
Specific page 205
tables
one-tier 33
two-tier 33

318 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

see also table objects
tables, synchronizing with database 191
text fields 223
toggles 226
ToggleSelector inspector panel 231
Callbacks page 234
Data Source page 231
Genera page 233
Mapping page 233
transaction managers 128
transactions 152
two-tier tables 60
callbacks 64
extrarow management techniques 40
IlisQLTable class45
row retrieval 40

U

updateRow member function
IliTable class 38, 63

\%

validate member function
IliDataSource class61
values
seeIlivalue class

\W

writeTable member function
IliTable class44

IBM ILOG VIEws DATA ACCESS V5.3

USER'S MANUAL

319

320 IBM ILOG VIEwWS DATA ACCESS V5.3 — USER’'S MANUAL

	IBM ILOG Views Data Access V5.3 User’s Manual
	About This Manual
	Part I IBM ILOG Views Data Access Common Framework
	Introducing Data Access
	What is Data Access?
	Libraries
	Editors

	Supported Databases
	Distribution Structure

	Data Access Basics
	Overview
	IBM ILOG Views Interface
	IlvDisplay
	IlvApplication
	Containers
	Gadgets
	Callbacks

	Data Access Concepts
	Values
	Database Connection
	Tables
	Data Sources
	Data-Source-Aware Gadgets
	Formats
	Masks
	Integrating with IBM ILOG Views Advanced Graphics

	Tables
	Introduction to Tables
	One-Tier and Two-Tier Tables
	The Role of a Table Object
	Schemas
	Schema Properties
	Defining the Schema of a Table Object

	Managing Rows in a Table
	Basic Techniques
	Techniques for Two-Tier Tables
	Error Catching
	Changing Error Messages

	Table Hook
	Copying and Serializing Table Objects
	Specialized Table Subclasses
	IliSQLTable
	IliMemoryTable
	IliStringsTable
	IliMapTable

	Subclassing IliTable
	Guidelines
	Subclassing Example
	Directory Class Example
	Persistence

	Table Properties
	Scoped Properties
	Property-Aware Gadgets

	Data Sources and Gadgets
	Data Sources
	Creating a Data Source Gadget
	Connecting Data-Source-Aware Gadgets
	The Scope of a Data Source
	Managing Rows in a Data Source
	Customizing a Data Source
	Error Handling
	The Repository

	Data-Source-Aware Gadgets
	Interface to Data-Source-Aware Gadgets
	IliTableGadget
	IliDbField
	IliEntryField
	IliTableComboBox
	IliDbText
	IliDbToggle
	IliToggleSelector
	IliDbNavigator
	IliDbTimer
	IliHTMLReporter
	IliXML
	IliDbPicture
	IliDbOptionMenu
	IliDbStringList
	IliDbTreeGadget
	IliChartGraphic
	IliDbGrapher
	IliDbGantt
	Global Callbacks

	Handling Values in Data Access
	The IliValue Class
	Constructing a Value Object
	Null Value

	Data Types
	Checking the Data Type of an Object
	Converting a Data Access Data Type to a C++ Type
	Formatting an IliValue Object

	Structured Types

	Hints and Tips for Using Data Access
	Working with DbFields in Data Access
	The Style of a DbField
	Creating a Form Using the Forms Assistant

	Foreign Tables
	Specifying a Foreign Table in IBM ILOG Views Studio
	Using a Foreign Table to Convert Values
	Using a Foreign Table to Constrain Values
	Using the Forms Assistant with Foreign Tables

	Setting the Table Look
	Column Geometry
	Read-Only Settings

	Fixed Columns
	Troubleshooting
	Avoiding Common Names in Foreign Tables
	Matching Types with a Foreign Table

	Part II Data Access and SQL
	SQL Tables
	Introduction
	Structural Definition
	Creating the Definition Using IBM ILOG Views Studio
	Creating the Definition in C++
	A Shortcut C++ Definition

	The SQL Session of an SQL Table
	Run-Time Options
	Concurrency Control
	Auto-Commit Mode
	Fetch Policy
	Auto-Refresh Mode
	Inserting-Nulls Mode
	Dynamic-SQL Mode
	Bound Variables Mode
	Cursor Buffering
	Auto-Row Locking Mode

	Parameters
	Transaction Manager
	Structured Types
	Asynchronous Mode

	SQL Data Sources
	Query Mode
	Parameters
	Defining a Parameter
	Defining a Parameter That Accepts User Input

	Working with an SQL Data Source
	Defining Columns
	Forcing the Name of a Column
	The Table Primary Key

	Connecting to a Database
	SQL Sessions and Cursor Objects
	Creating a Session
	Connecting to a Database System
	Cursors

	Database Drivers
	The Connect Dialog Box
	Registered Sessions

	Part III IBM ILOG Views Data Access Gadgets
	IBM ILOG Views Studio Data Access Gadgets
	The Palettes Panel
	Data Access and SQL Gadgets
	Charts, Grapher and Gantt Chart Gadgets
	SQL Tables

	Notebook Pages Common to Data Access Gadgets Inspectors
	General Notebook Page
	Callbacks Notebook Page

	Dialog Boxes Common to Data Access Gadgets Inspectors
	Font Chooser Dialog Box
	Color Chooser Dialog Box
	File Chooser Dialog Box

	Data Source Gadgets Reference
	IliSQLDataSource
	IliSQLDataSource Inspector Panel
	IliSQLDataSource Menus
	General Elements
	SELECT Section Notebook Pages
	Dialog Boxes

	IliMemoryDataSource
	IliMemoryDataSource Inspector Panel

	Display Gadgets Reference
	IliTableGadget
	Table Gadget Inspector Panel

	IliDbField
	DbField Inspector Panel

	IliEntryField
	Entry Field Inspector Panel

	IliTableComboBox
	Table Combo Box Inspector Panel

	IliDbText
	DbText Inspector Panel

	IliDbToggle
	DbToggle Inspector Panel

	IliToggleSelector
	ToggleSelector Inspector Panel

	IliDbNavigator
	DbNavigator Inspector Panel

	IliDbTimer
	DbTimer Inspector Panel

	IliHTMLReporter
	HTMLReporter Inspector Panel

	IliXML
	XML Inspector Panel

	IliDbPicture
	DbPicture Inspector Panel

	IliDbOptionMenu
	DbOptionMenu Inspector Panel

	IliDbStringList
	DbStringList Inspector Panel

	IliDbTreeGadget
	DbTreeGadget Inspector Panel

	IliChartGraphic
	ChartGraphic Inspector Panel

	IliDbGrapher
	DbGrapher Inspector Panel

	IliDbGantt
	DbGantt Inspector Panel

	Appendix A Utility Classes
	The IliString Class
	The IliDecimal Class
	The IliDate Class
	The IliFormat Class
	The IliInputMask Class

	Appendix B Format Syntax
	String Formats
	Number Formats
	Date Formats
	Literal Characters

	Appendix C Mask Syntax
	Placeholders
	Predefined Masks

	Appendix D Error Messages
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

