4|lli

IBM ILOG Views
Application Framework V5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Chapter 1

Chapter 2

Table of Contents

About This Manual 7
What You Need to KNOWo e 7
Manual Organizationt 7
Nt ON. . o 8
Typographic CONVENLIONSottt e e e e e 8
Naming ConNVENTIONSt et e e e 8
Introducing IBM ILOG Views Application Framework. 9
What is Application Framework 9
The Document/View ArchiteCture. e 10
Using the Application Framework Editor 13
Starting Up the Application Framework Editor 13
Application Framework Editor Main Window i 14
Components Palette e 15
WOTKSPACE . . o ottt 16
Creating a New Application e e 17
Selecting @ DOCUMENE TYPEo ottt e et e e 18
Creating and Configuring an Options File (.odvfile) 19
Setting Application Parameters e 19

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 3

Chapter 3

Adding MenU HEMSo 20

Adding Toolbar HemsS 21
Setting DocumMeNnt Parameterst 21
Setting General Document Parametersttt e 22
Setting Parameters for a Selected Document e 24
Setting Window Parameters 25
Setting Toolbar Parameters for a Document Typettt 28
Setting ACtion Parameters i 28
Action Definitiono 29
Creating an ACHION oo 32
Setting Popup Menu Parameters 32
Popup Definition. 33
Creating a POpUP MENUttt e e e e 34
Adding a PopuUp tem 35
Adding a New POpup SUDMENU e e 35
Setting Dialog Parameters 35
Dialog Definition. 36
Creating @ Dialog BOXttt 38
Setting Data Parameters i e 39
Data Definition 40
Generating Parameterso e 40
Parameters Commandt 40
GUI ACLION SUMMANY . . . oot e e e e e e e e e e e e 44
Implementing an Application. a7
How Application Framework FUNCtions. e a7
OptioN FileS . 49
Main Bl . . 50
Implementation of aDocument Classot 50
NeW DOCUMENT. e e 51
Senalization 51
COMMaANAS .« .t 53

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Chapter 4

Chapter 5

Undo/ Redo/ Repeat ACIONSo ottt 54

Reflecting Changes Made In the Data to Associated Views 55
Implementation of aDocument View Class.ttt 56
INtEraCtONS. . . . o 57
Application Framework Interfaces i 61
The Interface Mechanism e 61
Declaring an Interface 62
Naming Convention for Macrosttt e e e e 62
ACHIONS. L o 65
Activating an Action EVent 65
Processing an Action EVent e 66
... 67

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 5

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

About This Manual

This User’'s Manual describes the Application Framework package of

IBM® ILOG® Views. Application Framework is alibrary designed to simplify the task of
developing your graphical user interface (GUI) for applications based on the

IBM ILOG Views Component Suite of C++ libraries for graphics creation and control.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since

IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization

This manual contains the following chapters:

¢ Chapter 1, Introducing IBM ILOG Views Application Framework provides an overview
of the document/view architecture and other features of the Application Framework
package of IBM® ILOG® Views.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 7

& Chapter 2, Using the Application Framework Editor describes the Application
Framework Editor, itself an easy-to-use GUI.

& Chapter 3, Implementing an Application provides the steps and classes necessary to
incorporate the document/view architecture of Application Framework.

& Chapter 4, Application Framework Interfaces describes how to incorporate the interface
mechanism of Application Frameowrk.

& Chapter 5, Actions describes how to activate and process actions under Application
Framework.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:
& Code extracts and file names are written in courier typeface.

& Entriesto be made by the user are writtenin courier italics.

& Somewordsin italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions
Throughout this manual, the following naming conventions apply to the API.

¢ The names of types, classes, functions, and macros defined in the ILOG Views
Foundation library begin with T1v.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

& The names of virtual and regular methods begin with alowercase |etter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo* () const;

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Introducing IBM ILOG Views Application
Framework

The IBM® ILOG® Views Application Framework provides an easy-to-use graphics user
interface (GUI) for defining the user interface for an application. This chapter provides an
overview of the IBM ILOG Views Application Framework package. It includes the sections:

& \What is Application Framework

& The Document/View Architecture

What is Application Framework

Application Framework isalibrary that lets you devel op complete applications, such asthe
one shown in Figure 1.1:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 9

i Manager editor - [usa.ilv]

||/ Ele Edt Leyow Tsos Window

L E @&

‘m— —m‘
O+ —[

PHE = [

Feady

Figure1.1 Application Developed with Application Framework

It provides atool called the Application Framework Editor, which allows you to edit the
application graphically: all menus, bars, actions, dynamic menus, and so on, are specified
using thistool. Chapter 2 describes in detail how to start up and use the Application
Framework Editor.

Application Framework also provides a mechanism that allows its objects to track and
process GUI events. This mechanism will belooked at in Chapter 4, Application Framework
Interfaces.

The Document/View Architecture

Application Framework is built on a Document/View architecture, common to most
Windows applications. In thistype of architecture, the application is aframe window holding
toolbars and menus, that allows you to edit several documents at the same time. This frame
window manipulates documents (data that is opened using menu items such as File > Open,
File > New, and so on) that the user can edit inside views, which are usually created in a
frame window.

10 IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

The Document/View Architecture

For example, a document in Microsoft Excel is atable in memory loaded from an . x1s file,
and the views that can display and modify this document are sheets or charts.

Warning: In Microsoft applications, the term document is used for both the data in
memory and the view that lets the user edit the data.

Chapter 3, Implementing an Application describes the document/view architecture in more
detail.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 11

12

IBM

ILOG VIiEws V5.3

— APPLICATION FRAMEWORK

Using the Application Framework Editor

The IBM® ILOG® Views Application Framework provides an easy-to-use graphics user
interface (GUI) for defining the user interface for an application.

Starting Up the Application Framework Editor

Oninitial startup, the Application Framework Editor shows this dialog box:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 13

¥ Application Framework Editor

% O Zipen an existing application

% () Open a recently opened application

Show this dialog next time

[ok l [Cancel]

Figure2.1 The Application Framework Editor Wizard
This dialog box has the following options:

& New application wizard - to begin creating a new application. See Creating a New
Application.

& Open an existing application - to display the browse dialog box for selecting an existing
application to open. See Creating and Configuring an Options File (.odv file).

& Open arecently opened application - to quickly select an application from the drop-down
list. See Application Framework Editor Main Window.

You can choose to bypass this screen by desel ecting the “ Show this dialog next time” option.
In this case, you are taken directly to the Application Editor main window.

Application Framework Editor Main Window
The Application Framework Editor main window displays a menu bar, action toolbar, status

bar, an Application Components palette, and a multidocument workspace. The startup
window is shown in Figure 2.2.

14 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

Application Framework Editor Main Window

AppFrame Application - [ODVDoc1]

iﬁ File Gereration Toole ‘Window -8 X
D eEHE B ik &

Application Data |

Application name | ODYDocl |

Application Main window kitle | AppFrame Application |

|

|Main Menu & Toolbars

Bars Categories
] | |
[=)- File

0] Hew Commands

= Open...
Close

n Save
Save As...

& save al =

@ Page Setup...

&S Prirt...

Recent Files

|

Dialogs Exit
= Tools

% Customize, ..
Modules. ..

Data (=) Window

s 9

Ready

Figure2.2 Application Editor Main Window

Components Palette

The Application Components palette on the left allows you to select the application entity
you are editing:

Application

Document types

Actions

Popup menus

Diaogs - for dialog boxes and windows
Data

® & 6 6 o o

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 15

Workspace

The workspace on the right displays and allows you to set the parameters of the selected
entry for each of the application entities.

& A hierarchical tree in the middle area of the workspace allows you to select the item
location to be edited or added to. For example:

E Tain rmenu

[=) File
[Mew...
@ Qpen...
Close
n Save

Sawe As...
& save al

% Page Setup. ..

&b Print...

Recent Files

Exit

[= Tools
Customize. ..
Modules. ..

& Selecting an item in the tree activates other possible parameter entry fields in the
workspace. The fields are tailored to the specific operation. For example:

Main Menu & Toolbars

Bars Categories
E Main rmenu - | File: v |
[=) File
Commands

B NMNewDocument
ﬁ Openbocument

R arantFilae

CloseDocument ‘

& The workspace toolbar at the bottom of the workspace allows you to easily select the
operations tailored to the current workspace. For example:

16 IBM

Insert & nes action

ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Creating a New Application

The workspace toolbar changes appropriately, and items are grayed/activated, with the
type of application entity. Possible toolbar icons are shown in Table 2.1

Table2.1 Wobrkspace Toolbar

Toolbar Icon Description

Insert a new action, popup, or dialog item below the currently selected tree
or item; or a new category, accelerator, or other item to a list.

Insert a new popup menu.

Insert a new separator

Remove the currently selected item.

Move the selected item up in the tree.

4|

lzj Move the selected item down in the tree.
Insert a new toolbar.

)

Remove the selected toolbar.

&l

Creating a New Application

To devel op an application with Application Framework, follow these basic steps:

1. Launch the Application Framework Editor and edit all the application options. Edit the
different menus and toolbars that will appear in the application, describe all the
document types that the application will be able to open, and so on. These items are
saved in an optionsfile that is read by the generated application, when initializing.

2. Generate the application code, using the Application Framework Editor.
3. Complete the generated code:

e To manage the data (the document):
- seridlize the data,

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 17

- add accessors.
e Todisplay and edit the data (the view):
- initialize the view according to the data (an example of thisisfilling a tree gadget),

- manage commands generated by the user events on views.

Note: You can modify the application options described in Step 1 at any time during the
devel opment of the application. You are not required to regenerate the code when you
modify these options.

The remainder of this chapter describes the general navigation and operational features of
the Application Framework Editor. For step-by-step instructions refer to the tutorial sample
for Application Framework.

Selecting a Document Type

Thefirst step in creating anew application is to select the document type. When you begin a
New application, the Select a document type dialog box appears:

''¥ Select a document type E‘E|gl

Manager Grapher Project

Description

Creates emphy documents, Default associated view is 3 bexk view

[Custamize. ..] [ok] [Cancel]

Figure2.3 Select a Document Type

Several predefined types of documents are made available. Each type of document defines
convenient methods for manipulating its data and is preassociated with a specific view.

The document types are described further in Table 2.2.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Application Parameters

Table2.2 Sdlection of Document Type

Document

Type Use To: Description

Create a generic application | The Generic document type does not make any
assumptions about the typeof document. This is
the choice for most applications.

Create a manager The Manager document type deals with
application IlvGraphic objects inserted in an
IlvManager object.

Create a grapher application | The Grapher document type deals with
I1lvGraphic objects inserted in an
IlvGrapher as nodes or links.

Create a project application | The Project document type is an organization of
files in folders and subfolders.

Create a text application The Text document type is any text document.

After you select adocument type, the Application Framework Editor main window appears.
See Application Framework Editor Main Window.

Creating and Configuring an Options File (.odv file)

Application Framework stores all parameters that describe an application in an optionsfile
(. odv extension).

The Application Framework Editor opens anew . odv file whenever you create a new
application (New from the File menu, toolbar, or initial wizard) and select a document type.

Setting Application Parameters

The Application Framework Editor is used to set your application parameters when
Application is selected from the Application Framework Editor Palette.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 19

2, 8 AppFrame Application - [ODVDoc2] E”E”‘S__q

rﬁ File Generation Tools ‘wWindow =8 x
D@ biil @
: |App]icati011 Data |
Application name | ODVDocZ |
IMain window title | AppFrame Application |
E% |Maj11 Menu & Toolbars |
Document bypes Bars Categories
=] » |
[=) File:
0y Hew... Commands
Dq' Qpen...
Actions Close
n Save
Save As...
Gl save 2l !
Popup menus
% Page Setup...
- & Frint...
== Recent Files
Dialogs Exit
= Tools
% Customize. ..
Modules. ..
Data (=) Window b
EERE. + 4
Feady

Figure2.4 Application Selected from Palette
In the Application Data workspace of the Application Framework Editor you set:
& The application namein the Application name field. By default, this name is used to

create the directory and the project name. The default name shown in Figure 2.2 is
ODVDocl.

& Themain window titlein the Main window titlefield. Thisisthe name that will appear as
thetitle in your application.

Adding Menu Items

You add menu itemsin the Main Menu & Toolbars section of the workspace when
Application is selected from the Application Framework Editor Palette.

1. Select aniteminthe"Main menu" tree where you want to insert a new item. The item
will beinserted after thisitem.

2. Click the "Insert anew action” button |-

3. Maodify the inserted item by choosing the associated action in the "Categories’ combo
box and "Commands" list.

20 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

Setting Document Parameters

If you want to modify amenu item, select the item and modify it by selecting the new action
in the "Commands' list.

If you want to insert new commands, refer to Creating an Action.

To remove an item in the main menu bar, select the item to remove and click the delete
button | X .

Adding Toolbar Items

You add toolbar itemsin the Main Menu & Toolbars section of the workspace when
Application is selected from the Application Framework Editor Palette.

1. Select aniteminthe"Standard" tree where you want to insert a new button in the toolbar.
Theitem will be inserted after thisitem.

2. Click the"Insert anew action” button | =

3. Maodify the inserted item by choosing the associated action in the "Categories’ combo
box and "Commands" list.

If you want to modify amenu item, select the item and modify it by selecting the new action
in the "Commands' list

If you want to insert new commands, refer to Creating an Action.

To remove an item from the toolbar, select the item to remove and click the delete button
1.

Setting Document Parameters

The Application Framework Editor is used to set your document parameters when
Document typesis selected from the Application Framework Editor Palette.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 21

¥ AppFrame Application - [ODVDoc2]

rﬁ Eile Generation Toolz ‘window =& X
O edd &iEild
B [SR== } Genlloc |Dncument type Description |
™ Document ﬁ —
o= Views) EsCHption | Specific menu template
Application Wfindon 1
s# Toolbars Mame |GenDoc |
1=
Document bypes
Descripkion | Generic document |
1 Default document name GenDoc |
Bitmap | E|

Actions

l Filters
Selected filker

Popup menus Generic document Files

»
= Description Generic document Files
X
Dialogs
Filkers appear in open dialog
% Mew Document bype
Data [— ol]
[X Remove]
Ready

Figure2.5 ‘Document Types Selected from Palette

The middle column shows the document tree, headed by the document type (GenDoc in
Figure 2.5; or Grapher, Project, Text, Of Manager depending on the chosen type). This
column shows the document types that the application can handle. You can add many
document types with the "New Document Type" button .

The right column allows you to change parameters of the selected itemsin the middle
columns as described bel ow.

Setting General Document Parameters

When GenbDoc is selected in the tree, the workspace has the following tabs:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Document Parameters

& Description tab contains basic information about the document type.

Document type Description

Description | Specific menu template

Mame Genboc

Description Generic documeant

Default document name GenDoc

Bitmap A
Filters

Selected Ffilker

Generic document files

filker *. bt

Description Generic document files

Filkers appear in open dialog

Figure2.6 ‘Description’ Tab (Document Type Description)

o Name: This nameis used when you want to retrieve the document template that can
create this type of document.

o Description: The description of the document type.

o Default Document Name: This name is used when a document of thistypeis created.
When created, the document has this name.

o Bitmap: This bitmap associated to the document type.

o Filters section: This section allows you to define the elements that will appear in the
open document dialog box of your application. These elements will be used in the
"Files of types" section in the open document dialog box .

o Filter: The extension of the document files. The form of thisfield should be * . xxx
where xxx is the extension.

o Description: Description of the filter.

o Filtersappearsin open dialog: If the check box is checked, these filters will appear in
the open dialog box of your final application.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 23

24

& Specific menu template tab sets the menu visibility feature for a document.

Document type Description

Description | Specific menu template

Unopened document actions

Command name

Figure2.7 ‘Specific Menu Template' Tab

& Always show menu: When the toggle is checked, the specific menu and toolbar are
added even if adocument of this typeis not active.

Setting Parameters for a Selected Document

When the bocument item for a document type is selected in the tree, the workspace has the
following fields:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Document Parameters

=5 GenDoc Document Description
Dracument
- Wiewls) Docurnent class
“findaw 1 MyDocurment

w8 Toolbars

Detived Fram

IlvDvDocument

IO TexkDocurment
IIvDrvProjectDocument
IlvDvManagerDocurment
IlvCreiarapherDocument
TvCreChartDocumeant

Allow rultiple docurments

*

Figure2.8 ‘Document Description’

& The Document class specifies the name of the class used during the code generation.

4 You can specify the parent class by choosing one item in the "Derived from" string list
whichisfilled by a predefined class.

& The"Allow multiple documents" check box specifiesif your application can handle
many document of this type or only one.

Setting Window Parameters

When the Window item for a document type is selected in the tree, the workspace has the
following tabs:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 25

& \iew tab allows you to define the class of the views on the document.

|Ducu1'nent type Views |

Wigws |'u'iew(s) conkainer

Wiew classes Selected view

oMoe 8 Class

My'iew Miyisw

Derived from

IO Projectview
IlvDwManageriew
ThvDrviarapherfic
ThvDrwFarmbisw
TIvDvListwiew

IO Treewiaw
IIvDvMatriziiew
ThvDwSheetview
IlvDvHierarchicalsheetyiew
ThvDrw Chart e

(]

Figure2.9 ‘Views Tab

¢ Inthe Classtext field, you specify the class name that will be used during the code
generation.

¢ Inthe"Derived from" list, you select the class from which the selected view classisto
be derived.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Document Parameters

& \iew(s) container tab provides additional parameters for the container that will contain
the view.

|Ducument type Views |
Views | Wiew(s) conbainer

#llow duplication of window:

ILY template file

=
| 3

Tvpe

| Wigw in MOT child Frame “ |

Figure2.10 ‘View(s) Container’ Tab

o "Allow duplication of window" specifiesif your application can handle only one or
many views on the same document.

o Inthe"Type" combo box, you can choose theinitialize configuration of your window.
You can choose between:

- View in MDI child frame

- View in MDI maximized child frame
- Docked at left

- Docked at right

- Docked at top

- Docked at bottom

- Docked in afloat window

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 27

o For al docked configurations, you can specify a method in the " Show/hide action”
text field which will be called when this window appears or disappears. Thistext field
is displayed only for docked configurations.

Setting Toolbar Parameters for a Document Type

When the Toolbars itemis selected in the tree, the workspace allows you to define or
change a specific toolbar that isto be displayed only when a document of this type is active.
For editing this toolbar see Adding Toolbar Items.

=5 GenDoc Document type Menu & Toolbars

1 Document .
2 Viewls) Bars Categories

Wwindow =] ~
EER [oolbars =l File
O mew Carmmands

= Open...
Close

n Save

Save As...
ﬁ Save All

I__,.% Page Setup...

&b Print...

Recent Files

Exit

=I- Edit
é’;‘;. Cut
Copy
B Paste

= Tools
Customize...
Modules. ..

=1 Window

----- dgg ¥
s

@ Specific document items

Figure2.11 ‘Document Type Menu & Toolbars

Setting Action Parameters

The Application Framework Editor is used to set your action parameters when Actionsis
selected from the Application Framework Editor Palette.

28 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

¥ AppFrame Application - [0DVDoc2]

rﬁ File Generation Tools ‘wWindow

Setting Action Parameters

D@ biil @
B =23 Praject

=3 Al

FecentProjects

Application

Docurnent bypes

Actions

Popup menus

Dialogs

Data

Feady

| Action Definition

Description |Bitmaps || Kevboard |

Command name

| RecentProjects |

Description

| &RecentFileDesc

Menu

Tooltip

Categories list

Selected category

Project L3

Figure2.12 ‘Actions Selected from Palette

The middle column shows the Actions tree. By clicking either of the RecentProjects in
the tree, you display the Action Definition.

Action Definition

The Action Definition workspace has the following tabs:

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

29

30

& Description tab contains basic information about the action.

Action Definition

Description |Eitmaps | Kevboard
Command name
RecentPrajects

Description

&RecentFileDesc

Menu

Tooltip

Categories lisk

Selected cateqary

Project w

Figure2.13 ‘Description’ Tab of Action Definition
¢ Command Name: This nameis created by the user to identify the action.

e Description: The user can enter a description of the action.

e Menu: The name of the item appearing in the menu (for example New, Open, Save,
and so forth).

e Tooltip: The name of the item appearing in the tooltip text (for example “New
(Ctrl+N)").

o Categories list: shows the category of the action.

o Selected Category: lists the current categories that can be selected (Application, File,
Project, and so forth).

The Description, Menu, and Tooltip items can be text, or they can be amessage identifier
of theform gidentifier for text contained in a . dbm file. (For information on the
.dbm file type see the IBM ILOG MViews Foundation User’s Manual .)

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Action Parameters

& Bitmaps tab shows characteristics of the bitmap icon associated with the action. This
icon appears in the menu, toolbar, and tree lists with the action hame.

Action Definition

Description | Bitmaps |Kevboard

Bitrnap bype

Sensitive

Selecked
Unsensitive
Highlighted
Large: Sensitive
Large: Selected
Large: Unsensitive
Large: Highlighted

Selected bitmap path

[+

Figure2.14 ‘Bitmaps Tab of Action Definition

o Bitmap Type: You can define a set of bitmaps for each different type in the string list.
These bitmaps will be used depending on the status of the action.

o Selected bitmap path: The path where theicon isfound for the selected bitmap type.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

31

& Keyboard tab shows the keyboard shortcut for the action.

Action Definition

Description || Bitmaps | Keyboard

Accelerators list 'S

Selected accelerator

Chil+w x

Figure2.15 ‘Keyboard' Tab of Action Definition

o Acceleratorslist: To add an accelerator click the Add button |- and use the * Selected
accelerator’ field, for example * Ctrl+W’ is added as a default first accelerator.

o Selected Accelerator: The current accelerator or keyboard shortcut. To change the
shortcut, click in the field, and then type the sequence of the sortcut on your keyboard.

Creating an Action

For compl ete details on implementing actions, see Chapter 5, Actions.

Setting Popup Menu Parameters

The Application Framework Editor is used to set your popup menu parameters when Popup
menus is selected from the Application Framework Editor Palette.

32 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

¥ AppFrame Application - [0DVDoc1.odv *]

rﬁ File Generation Tools ‘wWindow

Setting Popup Menu Parameters

9((=1E

=

x

D EEE Bisa
— B

Application

=

Docurnent bypes

|

Actions

Popup menus

Dialogs

Data

Mew Popup

|Popup Definition
Bars Cateqaries
Properties. .. Commands

> Remove

Feady

Figure2.16 ‘Popup Menus Selected from Palette
The Popup Definition workspace becomes active when you begin adding a popup menu.

Popup Definition

The Popup Definition workspace allows you to define popups that will be accessible from

your application.

IBM ILOG VIEws V5.3

— APPLICATION FRAMEWORK

33

Popup Definition

Bars Cakeqoties
B8 Popup all L
Properties. . Commands
Customize -
3 cue
W Delete

ﬁa DurnpPostScripk
Exit
HideEar
InsertFile
InsertFolder
Modules

[MewDocument
MewProject

% TeAindow

B MextWindow

@ Openbocument
OpenProject

@ OpenProjectItem
PageSetup
Paste

& PreviousWindow

=

& Properties
5 E % o+ s EecentFiIe_s . =z

Figure2.17 Popup Definition
& Thetree showsthelayout of the popup menu. When an item of the popup is selected, the
remaining fields become activated.

& Categories: A list showing the possible categories. You can select a category of action to
retrieve an action more easily. When the All category is selected (as shown), all
commands are displayed a phabetically in the Commands list.

& Commands: The possible commandsin the selected category.

Creating a Popup Menu

To begin defining a new popup menu, click the New Popup button = below the main tree.

This column shows a new item in the tree which is the new popup menu created (see
Figure 2.16). The created popup has a default layout with two items (separator and
Propertiesitems), but you can change this layout.

The default name of the popup menu is Popupxx Where xx is an incremental number when
you insert more than one popup menu. You can change the name of this popup by selecting
theroot item in the Popup Definition window, pressing the F2 key, and then typing the new
name.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Setting Dialog Parameters

In your code, you can retrieve this popup by using the
IlvDvApplication: :readPopup (const IlvSymbol*) function.

In the Popup Definition window, you can define the layout of the popup by adding or
removing items. For adding items to the popup menu see Adding a Popup Item.

Adding a Popup Item

1. Select anitemin the popup layout where you want to insert anew item. The item will be
inserted after thisitem.

2. Click the "Insert anew action" button [£,

3. Modify the inserted item by choosing the associated action in the "Commands® list.

If you want to modify a popup item, select the item and modify it by selecting the new action
in the "Commands' list.

If you want to insert new commands, refer to Creating an Action.

To remove an item in the popup, select the item to remove and click the delete button li]

Adding a New Popup Submenu
The Popup Definition workspace allows you to submenus in the popup.

& Inthe Popup Definition tree, select the item where you want to insert the submenu. The
submenu will be inserted after thisitem.

¢ Click the"New” popup menu button E in the Popup Definition tool bar.
& Modify the label of the popup item (use the F2 accelerator) and then enter the new label.

& Modify the submenu by adding or editing the items of the submenu (see Adding a Popup
Item).

Setting Dialog Parameters

The Application Framework Editor is used to set your dialog box parameters when Dialogs
is selected from the Application Framework Editor Palette.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 35

¥ AppFrame Application - [0DVDoc1.odv *]
rﬁ File Generation Tools ‘wWindow

D@ biil @
- Questian

Dialog Definition |

Description |SubCIass || Properties

Application
Mame
E% | Question

Docurnent bypes

Classname
| QuestionDialog |

Actions

Derived from

m | IlvGadgetContainer w | D
Resource key

Popup menus

| question.ilv |
m 1LY Filename
=== | E:wiewsS, 2\datalibviquestion.ilv E|
Dialogs

Title

| QuestionDialog |

Feady

Figure2.18 ‘Dialogs Sdected from Palette
The Dialog Definition workspace becomes active when you begin adding a dialog.

Dialog Definition

The Dialog Definition workspace allows you to define dial og box properties. The dialog box
must first be defined in IBM ILOG Views Studio.

The Dialog Definition workspace has the following tabs:

36 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

Setting Dialog Parameters

& Description tab contains basic information about the dialog box.

Dialog Definition

Description | SubClass || Properties

Mame

Queskion

Classnane
QuestionDialog
Derived from

IlvGadgetContainer w E]

Resource key
queskion. ik

1L Filename

[+

E:lwigws5, 2ldatalilquestion.ily
Title

ZueskionCialog

Figure2.19 ‘Description’ Tab of Dialog Definition

e Name: This nameis by default the name of the . i1v file, for example Question
when the file loaded is question.ilv.

e Classname: Thisnameis by default the Name and the word Dialog, for example
QuestionDialog. Thisname will be used during the code generation.

e Derived From: The IBM ILOG Views class from which the dialog is derived. Select
fromthelist.

e Resource Key: The name of the resource used to reread thisfile, by default the .i1v
file name.

e ILV Filename: The full path name of the . i1v file that was loaded.
o Title: Thetitle that appears in the Windowsttitle bar. By default it is the Classname.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 37

& Subclass tab contains the name of the dialog’s subclass. This entry isoptional.
Dialog Definition
Description | SubClass | Properties

Classnarme

Figure2.20 ‘SubClass Tab of Dialog Definition

& Propertiestab allows you to specify standard properties of the dialog box. Choose any or
al of these properties.

Dialog Definition

Description || SubClass | Properties

] Mo Resize Border
[Mo Title Bar

D Mo System Menu
D Mo Min Box

D Mo Max Box

[1conified

] Maximized

] Mol child

Figure2.21 ‘Properties’ Tab of Dialog Definition

Creating a Dialog Box
To begin a definition, click the New Dialog button .}, You are requested to open the
predefined . i1v file.

Note: To create a dialog box in the Application Framework Editor, you must define a dialog
box in IBM ILOG Views Sudio and saveit (. i1v file). This nameis requested when
creating a dialog box in the Application Framework Editor.

38 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

Setting Data Parameters

The middle column shows the Dial og tree, with the Dialog Definition on the right. Complete
the information for the Dialog Definition tabs (for details see Dialog Definition).

Setting Data Parameters

The Application Framework Editor isused to set your data parameterswhen Data is selected
from the Application Framework Editor Palette.

¥ AppFrame Application - [0DVDoc1.odv *]

rﬁ File Generation Tools ‘wWindow

D2 B i@

|Data Definition |

views.db
H Mame
Application | wiews,dbm |
EE
ﬁ 1LY Filename

Docurnent bypes

o

Actions

Popup menus

12|

| E:wiewsS, 2ibindatatilviews|views, dbm

#* New Data. ..

Feady

Figure2.22 ‘Data’ Selected from Palette

You can use this feature to add data files to the application executable. They can be any data
files: . dbm, bitmaps, . i1v, or user datafilesthat are not otherwise included.

The Data Definition workspace becomes active when you begin adding a data file by
clicking the New Data button .- .

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 39

Data Definition

The Data Definition workspace (see Figure 2.22) allows you to define the data properties
needed to include thefile.

& Name: The name to be used to reread the file for retrieving the data. The default is the
name of the file that was loaded. You can change this name by editing the text field.

¢ LV Filename: The full path name of thefile. This path name can be changed by clicking
2 and selecting a new path.

Generating Parameters

After you have defined the application parametersin the Application Framework Editor, you
must generate it.

The Generation menu provides commands to generate the application.

Parameters Command

For initial generation, when you select Generation -> Parameters, it displays the Project
Generation window.

40 IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Generating Parameters

''¥ Project generation

Praject Path | General | Generation

Praject root path
| c:kemplODYDoc Y, | E]

Following Files can be relative to

PlatFarm Makefile path

12|

| Microsoft Wisual C++ 8.0 Vl |xEﬁ_.netZDDS_E.D,I'ODVDncl.vcprnj

Data directory

| data |E]

Source directory

E m

Directary For header files

| include |E]

Directory For help files

| help |D

[Generate all][Qustomize generation... H Generate data H Close]

Figure2.23 Project Generation window, Project Path tab
This window has three tabs:

& Project Path tab (see Figure 2.23) contains the fields:

o Project Root Path: The root path where the project is saved. The following paths can
be relative to this root path.

o Platform: The platform for the makefile.
o Makefile Path: The path for the makefile, based on the Platform selection.

o Directoriesfor: Data, Source, Header files, and Help files. These are al given defaults
but can be changed.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 41

42

¢ General tab allows you to set general information fields.

IBM

¥ Project generation

Project Path| General | Generation

Project narne

| ODVDocl

[] Gererate module

Generate a resource file

Viewws rook direckory

| ${ILYHOME) | B

[Generate all][Qustomize generation... H Generate data H Close

Figure2.24 ‘General’ tab (Project Generation)

ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Generating Parameters

& Generation tab provides information about the project generation.

'¥ Project generation

Project Path | General Generationl

Template files Zode file

b= | Templates classes
=@ GenDoc
= MyDocument
Header
Implementation
=T MyWiew
Header
Implementation
5 Dialogs
=] Question
Header
Implementation
Main file
Resource file

[

[Generate all ngstomize generation. .. H Generate data H Close

Figure2.25 ‘Generation’ tab (Project Generation)
Generate All
Use Generate All to generate al files of your application.

Important: This operation replaces all existing generated files of your application. A
dialog asks you for confirmation before proceeding.

Custom Generation

Use Custom Generation to generate just one or selected portions of the application. This can
be done when adding a new dialog box, for example.

Generate Data

Use Generate Data for updates that do not require changing the source code or makefiles
after the initial generation of the application. For example, it can be used to add an action, a
document type, a popup, or anew datafile.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 43

GUI Action Summary

Table 2.3 Menu and Toolbar Operations

Action ;I(':ooor:bar Menu Operation Comments
File Operations
Create a new project B File>New
Load an .oadv file = File>Open
(=
Close the current . odv File>Close
file
Save an .oadv file File>Save For Save As, type a new name including file
File>Save As extension.
Save all open . odv files File>Save All

Generation Operations

Set project generation

Generation>Parameterst

parameters
Generate the entire w | Generation>Generate all
application. &o the application
Generate specific files in o Generation>Generate Opens the Custom Generation dialog box.
the current application. BL | specific files...
Generate data. = Generation>Generate data | Displays the generation report log.
; CH

Tools

Customize application

Tools>Customize

Opens the Customize window.

Insert and remove
modules

Tools>Modules

Opens the Insert/Remove modules dialog box.

Script a project

Tools>Script project

Creates or opens a script project file (. sp3j).

Window Operations

44 IBM

ILOG VIiEws V5.3

APPLICATION FRAMEWORK

GUI Action Summary

Table 2.3 Menu and Toolbar Operations (Continued)

Action ;I;ooor:bar Menu Operation Comments

Start a new window Window>New window

Display the next window =Y Window>Next Window

Display the previous & Window>Previous Window

window

Cascade all document Window>Cascade

views Windows

Tile all document views Window>Tile Horizontally

horizontally

Tile all document views Window>Tile Vertically

vertically

Quit the Application File>Exit Asks about unsaved files before exiting.

Framework Editor

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 45

46

IBM

ILOG VIiEws V5.3

— APPLICATION FRAMEWORK

Implementing an Application

This chapter discusses how to implement an application under Application Framework,
including a description of the classes and files required. It is divided as follows:

& How Application Framework Functions
Option Files

Main File

Implementation of a Document Class

Commands

* & 6 o o

Implementation of a Document View Class

How Application Framework Functions
Application Framework is built on a Document/View architecture (see The Document/View

Architecture). Figure 3.1 illustrates the different classes that the Document/View mechanism
relies upon.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 47

NwDw Application v Dw M ain WindowInterface E

¥

‘ Document Manager §

L

v DwDocTemplate

e Edit View

Uy DyWViewFrame

—b‘ UvDvContainerFactory §

‘ NvDvFrameand BarHandler

Creates

Document part

wDvabstractDocView

Eeady

View part

#— What is defined by the user

Figure3.1 Document/View Classes

All the classes shown in the figure, except the T1vDvapplication class, the
IlvDvDocument hierarchy, and the I11vDvDocviewInterface hierarchy, are hidden from
the devel oper. Instances of these classes are automatically created according to the
application options that are read while the application isinitiaizing.

The code of an Application Framework application consists of:

& Option Files: At least one option file, which is edited using the Application Framework

Editor.

& Main File: A main file containing the main entry point of the program, which must
instantiate an T1vbvApplication (or aderived class) object. Thisfileis generated by
the Application Framework Editor and must only be completed in very specific cases, as

shown in the Text sample.

& |Implementation of a Document Class: Filesimplementing a document class, whichisa
subclass of I1vDvDocument.

& | mplementation of a Document View Class. Filesimplementing a document view class,
whichis asubclass of I1vDvDocviewInterface class.

48 IBM ILOG VIEwWSs V5.3

— APPLICATION FRAMEWORK

Option Files

Option Files

IBM

Whileinitializing, an Application Framework application reads three option files that
contain data. This data can be the contents of menus and toolbars, the recently used file list,
document templates, and so on.

The option files are the following:

& The Application Framework option file. Its path iS <TLVHOME> /data/ilviews/

appframe/docview.odv and it is contained by the <TLVHOME>/data/res/
appframe.rc file.

Thisfile contains the descriptions of the default actions (OpenDocument,
SaveDocument, Cut, Copy, and so on), the default menus, and the description of the
default toolbars.

The application option file. The file path is given to the T1vbvapplication object
using the I1vDvApplication: : setAppOptionsFilename method.

Thisfileis edited using the Application Framework Editor and contains the following
information:

e Application name and title of the main window.
e Description of different document templates.

e Themain menu and the toolbars, if different from the default ones stored in the
Application Framework option file.

e Description of actions.
e User application data.
User profile optionsfile. Its default path is given as follows:

e Windows:

<Windows directory>/Profiles/<Username>/Application Data/
<Application name>.odv

e UNIX:

S (HOME) /<Application name>.odv
To specify adifferent path, use the method:
IlvDvApplication: :setUserOptionsFilename

This file contains the application data modified by the user the last time the application
was run. It ismainly composed of:

o Most Recently Used filelist.

o Position and size of the application main window.

ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 49

o Positions and state (hidden or not) of all dockable toolbars.
e Customizing of toolbar contents.

e Customizing of actions.

Main File

When you create an Application Framework application, you must first create an
I1vDvApplication object inthe main procedure, the same way you create an
Ilvapplication objectinasimple I BM® ILOG® Views application:

l Note: The main file is automatically generated using the Application Framework Editor.

int
main(int argc, char* argv[])

{
IlvDvApplication* app = new IlvDvApplication("", 0, argc, argv);

IlvDisplay* display = app->getDisplay();

if (!display || display->isBad()) {
IlvFatalError ("Couldn't create display");
delete display;
return -1;

}
// Adding the options file
app ->setAppOptionsFilename((const char*) "myapp.odv") ;

// Adding the data base file
display->getDatabase () ->read((const char*) "myapp.dbm", display);

// Continue.. .
application->run() ;
return 0;

}

I1vDvApplication isasubclass of T1vapplication and features management of
options data and the handling of menu and toolbar items, as well as actions and their states.

Most of al, this T1vDvapplication object isaware of all objectsinvolved inthe
Document/View mechanism (see Figure 3.1). Similarly, al these objects are aware of the
application object. The application object is useful, for example, when changing the state of
an action from a document or from a document view.

Implementation of a Document Class

A document classis derived from the I1vDvDocument class.

50 IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Implementation of a Document Class

The document is the user data. The document class loads and saves data and also provides
accessors that are used by document views to modify data.

l Note: The user dataissimilar to the Model View Controller (MVC) approach.

Application Framework provides document classes that manage specific data, such as
IBM ILOG Views managers, text buffers, or projects, as shown in the following inheritance
tree:

IIvDvDocument

NvDvManagerDocument

— IvDvTextDocument

NvDvProjectDocument

New Document

A derived document class must override the T1vDvDocument : :initializeDocument
method.

It iscalled when the File > New command is executed to create a document.

The method must first call 11vDvDocument: : initializeDocument. Then, it must
initialize specific data.

Serialization
The 11vDvDocument : : serialize method:
void IlvDvDocument: :serialize(IlvDvStream& stream) ;

is called when afileis opened to create the document, if acall to stream. isSaving ()
returns false. Otherwise, the document must be saved.

Typically, the body of the method has the following form:

IlvDvDocument: :serialize(stream) ;
if (stream.isSaving()) {

// Here, write your persistent data
}

else {

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 51

// Here, read data from stream

}

There are two ways of loading and saving data when using the parameter called stream.

Oneway isto use istream Or ostream Objects. These objects are given by a call to the
istream* getInStream() const and ostream* getOutStream() const methods
directly.

The other way, which is usually easier, isto use specific serialization methods, provided by
the T1vDvStrean class. Here are these methods:

& Operators

// Storing operators

I1lvDvStream& operator<<
IlvDvStream& operator<<
I1lvDvStream& operator<<
IlvDvStream& operator<<
I1lvDvStream& operator<<
IlvDvStream& operator<<
I1lvDvStream& operator<<
IlvDvStream& operator<<

IlvInt 1i);

IlvUShort w);

IlvShort ch);

I1vUInt u);

IlvBoolean b);

IlvFloat f);

IlvDouble d);

const IlvString& s); //’s’ must not contain blanks

// Reading operators

IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>
IlvDvStream& operator>>

IlvInt& 1i);
I1lvUShorté& w) ;
IlvShort& ch);
I1vUInt& u);
IlvBoolean& b);
IlvFloat& f);
IlvDouble& d) ;
IlvString& s);

® void serialize(IlvString&, IlvBoolean betweenQuotes = IlvTrue);

This method is a safe way of loading and saving strings. If the betweenQuotes
parameter is set to true, the string is saved between quotation marks. Thisway it can
contain blank spaces.

€ void serializeBitmap (IlvBitmap*&, IlvBoolean lock = IlvTrue);
Serializes a bitmap path.
& Seridization of objects

When implementing user classes, it is recommended to derive from the
IlvDvSerializable class. Thisclassisan abstract interface that provides both a
mechanism for safe downcasting and a serialization method:

virtual void serialize(IlvDvStream& stream) ;
e void serializeObjects (IlvArray&) ;

Load and save an array of 11vDvSerializable oObjects:

e void writeObject (const IlvDvSerializable*);

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Commands

e IlvDvSerializable* readObject();

® virtual void clean();

Thismethod is called to clean up the document data. It isonly used for documents whose
corresponding document type does not allow opening more than one document (SDI
document types, typically project documents). When a user tries to create a new
document while a document of the same typeis already open, Application Framework
does not delete the currently opened document to create another one. Instead, it cleans
the open document (by calling this method) and reinitializes the document.

Commands

To modify the data of a document, it is recommended to use the Application Framework
command mechanism, which provides the following advantages:

¢ Undo/Redo mechanism - The Undo, Redo, and Repeat actions are automatically
processed, aswell as their state.

& The modification state of a document is automatically managed. Adding a command to
an unmodified document will mark the document as modified (a star will appear in the
title of the frames that contain views associated with this document). Similarly, undoing
this command will restore the unmodified state of the document (and will remove the star
from the title of the same frames).

& Keepsalog of all modifications made to the document.

Consider the following document class:

class MyDocument

: public IlvDvDocument

{
void setX(int x) { _x = x; }
int getX() const { return _x; }
protected:
int _x;

}:

To modify the X property of the document while processing either a document view event/
action or a document action, it is not recommended to call directly the setx method of the
document. It is more appropriate to implement a command class (called
ChangeXPropertyCommand in this example) that will modify this property:

class ChangeXPropertyCommand

: public IlvDvCommand

{
ChangeXPropertyCommand (MyDocument* document, int newX)
: _document (document) ,
_newX (newX)

{

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 53

_o0ldX = document->getX() ;
}

virtual void doIt() { setX(_newX); }
virtual void undo() { setX(_oldX); }
void setX(int x) { _document->setX(x); }
protected:

MyDocument* _document;
int _newX;
int _oldX;

}i

Therefore, the implementation of aview or the document itself should invoke the following
code to change the X property (instead of calling directly the setx method of the
document):

document ->doCommand (new ChangeXPropertyCommand (document, newX)) ;

This code will execute the changeXPropertyCommand command by calling its doTt
method, and will store it within acommand history internally managed by the document.

Use the following method of the T1vDvDocument class to manage commands:

void doCommand (I1lvDvCommand* cmd,
IlvBoolean updateUI = IlvTrue,
IlvBoolean bSetModified = IlvTrue);

This method is called to add the command object cmd to the history of internal commands.
Then, the command is executed by calling its 11vDvCommand: : doIt method. The
updateUTI parameter specifies that the Ul of the Undo, Redo, and Repeat commands must
be updated. The bsetModi fied parameter specifies whether the modification flag of the
document must be set to true.

Undo / Redo / Repeat Actions

The Undo, Redo, and Repeat actions are automatically managed by the document. To
process these actions, the document invokes the following methods (which can be
overridden for specific uses):

€ virtual IlvBoolean canUndo() const;

This method returns true if the command that has just been executed can be undone. If
there is no command that can be undone, for example if the document has not been
modified, this method returns false.

® virtual void undo(IlvBoolean bUpdateUI = IlvTrue);

This method calls the undo method of the last command executed. The bupdateUT
parameter specifies that the Ul of the Undo, Redo, and Repeat commands must be
updated.

€ virtual IlvBoolean canRedo () const;

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Commands

This method returns true if the command that has just been undone can be redone by
calling the T1vbvCommand: : doIt method. If thereisno command that can be done, for
exampleif the document has not been modified, this method returns false.

® virtual void redo(IlvBoolean bUpdateUI = IlvTrue);

This method calls the dott method of the last undone command. The bupdateut
parameter specifies that the Ul of the Undo, Redo, and Repeat commands must be
updated.

€ virtual void repeat (IlvBoolean bUpdateUI = IlvTrue);

This method repeats the last command executed. This command is copied by calling its
I1vDvCommand: : copy Method. The copy is added to the commands history and then
executed. The bupdateUT parameter specifies that the Ul of the Undo, Redo, and
Repeat commands must be updated.

Reflecting Changes Made In the Data to Associated Views

You have seen how to modify the data of a document by using commands. However, you
still need to see how to notify the views associated with the document to reflect these
changes.

A document can have several views of different types. Therefore, to communicate with its
views, a document sends generic messages that are interpreted by each view depending on
their type. To send generic messages to its views, a document uses the following method:

void notifyViews (const char* messageName,
IlvDvDocViewInterface* exceptView, ...);

& The name of the messageismessageName. It must not be the name of an action (such as
Copy, OpenDocument, and so on).

& The exceptview parameter specifies aview that must not be notified. The value of this
parameter isusualy 0. It can also be the view returned by the call to
getCurrentCallerview () (thismethod returnsthe view that is currently notifying
the document of an event). In this case, you may want this view not to be notified
because it may have already modified its contents before it notified the document.

& Thevariablelist of parameters that follows depends on the message name. For example,
if adocument contains information on an employee and that a command has just
changed the name of that employee, the document notifies its views of this change as
follows:

void EmployeeDocument: :changeName (const char* name)
{
_employeeName = name;
notifyViews ("NameChanged", 0 /* Notify all views */, name);

}

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 55

To receive amessage, aview (or any other class that implementsthe 11vbvInterface
interface) must specify an entry in its interface declaration. This entry makes a message
name and its parameters correspond with a method of the class. Thisis explained in more
detail in Chapter 4, Application Framework Interfaces.

The sample can now be completed so that the view of an employee document can receive the
message NameChanged.

IlvDvBeginInterface (EmployeeView)
/* The message "NameChanged" with one parameter const char* name
is processed by the method:
EmployeeView: :nameChanged with one parameter const char* name */

Methodl (NameChanged, nameChanged, const char*, name)
I1lvDvEndInterfacel (I1vDvFormView)

/* The nameChanged method is automatically called when an EmployeeDocument
notifies its views giving the message name "NameChanged" */

void EmployeeView: :nameChanged (const char* name)

{
IlvTextField* nameField = getEmployeeNameField() ;
nameField->setLabel (name, IlvTrue) ;

Implementation of a Document View Class
A document view classis derived from the 11vDvDocviewInterface class. It showsthe

contents of its associated document and allows the end user to edit it. Here is the inheritance
tree of the T1vDvDocvViewInterface class:

56 IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Implementation of a Document View Class

‘PI HvDvDoc¥ iewlnterface §
| HvDvGadgetD ocView §

_+ HvDwTextView
_+ HvDwListV iew

_+ HvDwTreeView

_+ HvDwhatrixView

HwText

Iw3tringl ist

NvTreel adget

I+ atrix

LI1T]

_+ HvDv3heetView Ilv3heet

+ IlvaHierarchicalSheetViewE’| IlvHierarchicaliheet

{ NvDwView §—'*| IlvView §

When deriving from this class, only the T1vDvDocviewInterface: :initializeview
method needs to be overridden.

virtual void initializeview() ;

This method is called to initialize the document view object according to the document data.
For example, alist view can befilled according to a data set stored in the document. A
sample of the body of this method is shown here:

void

ListView::initializeView()

{
IlvDvListView: :initializeView() ;
ListDocument* document = getListDocument () ;
I1vUInt count;
Element* const* elements = document->getElements (count) ;
for (I1vUInt iElement = 0; iElement < count; iElement++)
addstring (elements[iElement] ->getName ()) ;

Interactions
You have seen how a document view can show the contents of its document.

However, you will also need to edit the contents of a document by interacting with aview.
You will want interactions made on the view to be translated into changes in the document
data.

l Reminder: It is recommended to use Application Framework commands to do this.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 57

Consider alist view that lets the user edit alist of names stored within the document
associated with the view. You want the user to be able to remove a name (the selected name
in the view) by pressing the Del key. To do so, proceed as follows:

// The list view tracks the event and makes the changes to the document
// through a command

void ListView: :handleGadgetEvent (I1lvEvent& event)

{

if (event.type() == IlvKeyDown) {
IlvUShort ¢ = event.datal();
if (¢ == IlvDeleteKey) {
getNamesDocument () ->doCommand (new RemoveNameCommand (getNamesDocument () ,
getSelectedName ()) ;
return IlvTrue;
}
}
return IlvStringList::handleGadgetEvent (event) ;
}
// Here is the implementation of the command class
class RemoveNameCommand
: public IlvDvCommand
{
public:
RemoveNameCommand (NamesDocument* document, const char* name) :
_document (document), _name (name) {}
virtual void doIt() { _document->removeName ((const char*)_name); }
virtual void undo() { _document->insertName ((const char*)_name); }
protected:

NamesDocument* _document;
IlString _name;
}i

This showed how events that occur on aview can be reflected to a view through the use of
commands. However, the view till has to be refreshed to reflect this change.

In this sample, the selected name item still has to be removed from the list when the user
presses the Del key. To do this, the document notifies its associated views when it removes a
name from its list of names. To communicate with its views, the document sends generic
messages to its associated views, as shown in section Commands.

The sample will now be completed:

// The document notifies its views when it removes a name from its
// list of names
void NamesDocument: :removeName (const char* name)
{
_namesArray .removeName (name) ;
notifyViews ("RemoveName", 0, name) ;

// The list view updates its list when the document notifies it that it

// has removed a name from its list. First, the list view class associates
// the RemoveName message with its removeName method. Thus, this method will
// be called when the user notifies its views with the RemoveName message.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK

Implementation of a Document View Class

IlvDvBeginInterface (ListView)

Methodl (RemoveName, removeName, const char*, name);
I1lvDvEndInterfacel (I1vDvListView)

void ListView: :removeName (const char* name)

{

Ilshort index = getPosition (name) ;

if (index != (IlShort)-1) {
remove (index) ;
reDraw () ;

}

For more information on managing events in document views, see samplesmanager and
synedit, both provided in the samples directory.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 59

60

IBM

ILOG VIiEws V5.3

— APPLICATION FRAMEWORK

Application Framework Interfaces

This chapter describes how to use the Application Framework interface. It isdivided as
follows:

& The Interface Mechanism
& Declaring an Interface

& Naming Convention for Macros

The Interface Mechanism

Application Framework provides an interface mechanism that allows you to:
& Track and process GUI actions (see the chapter on Actions).

& Perform introspection on your classes.

& Script your classes.

This interface mechanism associates a name with a method or field of a class. The name of
this method or field depends on how the interface mechanism is used. For introspection and
scripting, the name is a key that identifies the method.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 61

Declaring an Interface

Hereisasmall sample showing how to declare an interface to aclass (called ‘A’):

// Declaration of class A

class A

: public IlvDvInterface

{

public:
void setX(int x) { _x = x; } < /FONT >
int getX() const { return _x; }

protected:
int _x;

}i

// Implementation file of A. Use the following macros to
// introspect methods setX, getX, and field _x:

IlvDvBeginInterface (4)
Methodl (SetX, setX)
TypedMethod (GetX, getX)
Field (X, _x)

IlvDvEndInterface()

// Using an instance of A as an interface, it is possible
// to invoke its methods and to modify its field

// without being aware of class A !!!

A* a = new A;

IlvDvInterface* interf = a;

// First we invoke its methods:
IlvDvValue returnedvValue;

interf->callMethod (IlvGetSymbol ("SetX"), &returnedvValue, 100);
interf->callMethod (IlvGetSymbol ("GetX"), &returnedvalue) ;
assert ((IlvInt) returnedvalue == 100);

// Then, we modify its field directly:

interf->setFieldvValue (IlvGetSymbol ("X"), 200);

assert ((IlvInt)interf->getFieldvalue (I1vGetSymbol ("X"),
&returnedvalue) == 200);

Naming Convention for Macros

This section discusses the naming conventions for macros used for scipting and
introspection.
For methods:

& Theroot of the macro name must be Method.

62 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

Naming Convention for Macros

& If the declared method returns a value, the macro must begin with the prefix Typed.

& |f the declared method contains arguments, the macro must end with the suffix [Number

of Parameters].
For fields:
& ThemacronameisField.

Examples areincluded in Table 4.1:
Table4.1 Macro samples

Methods to “export”

Macro declarations

Violate getPosition() const;

TypedMethod (GetPosition, getPosition,
llvFloat)

const char* set(int);

TypedMethodl (Set, set, int,
ExportedFirstParameterName, const char®)

void setPosition(int x, int y);

Method2 (SetPosition, setPosition, int, X, int,
Y)

For scripting and introspection, the first macro parameter is used to identify the method or

thefield given as the second parameter.

For more information on introspection, see the sample dealing with introspection provided

in the samples directory.

IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK 63

64

IBM

ILOG VIiEws V5.3

— APPLICATION FRAMEWORK

Actions

This chapter describes how to use the action events provided with Application Framework. It
has the sections:

& Activating an Action Event

& Processing an Action Event

Activating an Action Event

Using interfaces, Application Framework provides a mechanism that makesit easy to
process actions. The application processes the activation of amenu iteminamenuorina
toolbar by generating an action event. This action event is generated according to the action
associated with the activated menu item.

Then, the action event is sent to the following targetsin this order:

The active document view, which is the active view inside the active view frame.
The document associated with the active document view.

The active view frame.

The views and their associated documents, which are inserted into dockable bars.

* 6 o o

The main window.

IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 65

& The action processors declared to the application.

& Theapplication itself.

Processing an Action Event

To process an action event, a class must insert an action macro in itsinterface. Thefirst
parameter of the action macro isthe name of the action, and the second parameter is the
name of the method that will process this action.

For example, hereisatext view that manages the Cut action event:

IlvDvBeginInterface (MyTextView)
Action(Cut, myCut)
IlvDvEndInterfacel (I1lvDvTextView)

void
MyTextView: :myCut ()
{

}

A document or aview can manage the action state the same way as it processes an action
event. It does this using the macro Refreshaction ([ActionName], [MethodNamel]).

For example, here isatext view that manages the Cut action state:

IlvDvBeginInterface (MyTextView)
RefreshAction(Cut, refreshCut)
IlvDvEndInterfacel (I1lvDvTextView)

void
MyTextView: :refreshCut (I1lvDvActionDescriptor* desc)
{

desc->setValid (isRelevantSelection()) ;

}

The refreshcut method will be called each time the document (and its associated
document views) becomes active. Since this may not be sufficient, it is possible to force the
checking of the action state by calling the application method refreshaction ([Action
Name]). Inthe previous sample, refreshAction (I1vGetSymbol ("Cut")) canbe
invoked, for example, each time the selection changesin the text view.

66 IBM ILOG VIEWS V5.3 — APPLICATION FRAMEWORK

I N E X
Index
Sym bols document type 18
main window 14
.odv files19 menu 44
.5pj files44 startup 13
toolbar 16, 44
A using 13
workspace 16
action application name 20
creating 32 application parameters
action event setting 19
processing 66 applications
action parameters generating 44
setting 28 generating data 44
action state generating specific files 44
forcing 66 opening 14
actions
description 65 B
adding
menu item 20 betweenQuotes 52
popup menu item 35
popup submenus 35 C
toolbar item 21
Application Framework C++
code 48 prerequisites 7
inheritance tree 51 cascade document views 45
overview 9, 65 closing
Application Framework Editor Application Framework Editor 45
creating an application 17 oDV file44
description 10 components palette 15
develop an application 17 creating
IBM ILOG VIEwWS V5.3 — APPLICATION FRAMEWORK 67

action 32

application 17

menu items 20

optionsfile 19

popup menu 34

popup menu items 35

popup submenu 35

toolbar items 21
custom generation 43
customize tool 44

D

data
generating 44
data parameters
setting 39
developing
application 17
dialog parameters
setting 35
display next window 45
display previous window 45
document
description 11
general parameters 22
setting selected parameters 24
toolbar parameters 28
document parameters
setting 21
document type 18
Document/View architecture
classes 48
description 10

E

exiting 45

F

file

new 44

operations menu 44
forcing

68 IBM ILOG VIEwWSs V5.3

action state 66
frame window 10

G

generate all 43, 44
generate data 43
generating

al 43

application 44

custom 43, 44

data43, 44

parameters 40

specific files44
generation

al 43

custom 43

data43

operations menu 44

setting project parameters 40, 44
generic document 19
grapher application 19
GUI events

track and process 10, 61

H

handling menu and toolbar items 50

IlvApplication class50
I1vDvApplication class48, 50
description 48
setAppOptionsFilename member function 49
setUserOptionsFilename member function 49
IlvDvDocument class48
description 48
initializeDocument member function 51
IlvDvDocViewInterface class56
description 48
initializeView member function 57
IlvDvSerializable class52
I1lvDvStream class52
implementation

— APPLICATION FRAMEWORK

new document 51
seridization 51
inheritance tree 51
document view class 57
initializeDocument member function
IlvDvDocument class51
initializeview member function
IlvDvDocViewInterface class57
interactions 57
interface declaration
sample 62
interface mechanism 61
introspection 61
istream 52

L

loading
ODV file44
loading data 52

M

macros
action 66
naming conventions 62
RefreshAction 66
main file
description 50
sample code 50
Main window title 20
manager application 19
managing options data 50
manual
naming conventions 8
notation 8
menu items
adding 20
menus
creating popup 34
creating popup submenus 35
modules
insert and remove 44

IBM ILOG VIEwWSs V5.3

N

naming conventions 8
examples 63
fields 63
macros 62
methods 62

new application 14

new project 44

notation 8

O

oDV file
closing 44
loading 44
saving 44
opening
application 14
ODV file44
option files
application 49
Application Framework 49
description 49
user 49
optionsfile 19
ostream 52

P

palette 15

parameters
action 28
application 19
data39
dialog 35
document 21
general document 22
generating 40
popup 32
selected document 24
toolbar for adocument 28
window 25

popup
creating menu 34

— APPLICATION FRAMEWORK

69

creating submenu 35
setting parameters 32
popup menu items
adding 35
processing
GUI events 61
profile optionsfile
Unix 49
Windows 49
project application 19

Q

quitting
Application Framework Editor 45
quotation marks 52

S

saving
ODV file44
saving as
ODV file44
saving data52
script project 44
script project file 44
setAppOptionsFilename member function
IlvDvApplication class49
setting
action parameters 28
application parameters 19
data parameters 39
dialog parameters 35
document parameters 21
document toolbar parameters 28
general document parameters 22
popup parameters 32
project generation parameters 40, 44
selected document parameters 24
window parameters 25

setUserOptionsFilename member function

IlvDvApplication class49
starting

Application Framework Editor 13

new window 45

70 IBM ILOG VIEwWSs V5.3

strings
blank spaces 52

T

text application 19
tiling
windows horizontally 45
windows vertically 45
tool bar
Application Framework Editor 16
toolbar items
adding 21
tools
menu 44
tracking
GUI events 61

w

window
display next 45
display previous 45
menu 44
window parameters
setting 25
windows
cascade 45
starting new 45
tiling horizontally 45
tiling vertically 45
workspace 16

— APPLICATION FRAMEWORK

	IBM ILOG Views Application Framework V5.3 User’s Manual
	About This Manual
	Introducing IBM ILOG Views Application Framework
	What is Application Framework
	The Document/View Architecture

	Using the Application Framework Editor
	Starting Up the Application Framework Editor
	Application Framework Editor Main Window
	Components Palette
	Workspace

	Creating a New Application
	Selecting a Document Type
	Creating and Configuring an Options File (.odv file)

	Setting Application Parameters
	Adding Menu Items
	Adding Toolbar Items

	Setting Document Parameters
	Setting General Document Parameters
	Setting Parameters for a Selected Document
	Setting Window Parameters
	Setting Toolbar Parameters for a Document Type

	Setting Action Parameters
	Action Definition
	Creating an Action

	Setting Popup Menu Parameters
	Popup Definition
	Creating a Popup Menu
	Adding a Popup Item
	Adding a New Popup Submenu

	Setting Dialog Parameters
	Dialog Definition
	Creating a Dialog Box

	Setting Data Parameters
	Data Definition

	Generating Parameters
	Parameters Command

	GUI Action Summary

	Implementing an Application
	How Application Framework Functions
	Option Files
	Main File
	Implementation of a Document Class
	New Document
	Serialization

	Commands
	Undo / Redo / Repeat Actions
	Reflecting Changes Made In the Data to Associated Views

	Implementation of a Document View Class
	Interactions

	Application Framework Interfaces
	The Interface Mechanism
	Declaring an Interface
	Naming Convention for Macros

	Actions
	Activating an Action Event
	Processing an Action Event

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	S
	T
	W

