4|lli

IBM ILOG Views
Application Framework V5.3

Tutorial

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Tutorial 1

IBM

Table of Contents

About This Tutorial. 5
What You Need to KNOWo e 5
Nt ON. . 5
The Bitmap Editor Application i 7
Step 1: Generating the Base Files Withthe Wizard 9
Creating and Configuring an Options File (.odvfile) 9
Generating the C++ Code and Resource Files 15
CONCIUSION . . o 16
Step 2: Implementing the Document and the View. 17
Implementing the BitmapDocument Class.ot 17
Reading @ Bitmap.ot 17
Creating @a New Bitmap e 18
Implementing the BitmapView 19
Step 3: Modifying and Saving a Bitmap.t 22
Defining the DrawRectangleCommand 22
Defining the DrawBitmapInteractort e 23
Adding Notification on the Document VIeWS i 24
Enabling Undo/Redo with Application Framework Editor. 25

ILOG VIEwWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 3

4

IBM

Changing the Document Palette i e 28
Step 4: Inserting Dialogs Done with IBM ILOG Views Studio 30
Designing the Dialog Box Using IBM ILOG Views Studio 31
Integrating the Dialog Box in the Bitmap Editor Application. 32
Step 5: Adding Zoom CommMandsttt 33
Adding Zoom Actions Using the Application Framework Editor. 33
Modifying the BitmapView Class to Catch the New Actions 34
Implementing Zoom in the BitmapView Class i 34
.. 53

ILOG VIEwWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

About This Tutorial

This tutorial shows you how to create the Bitmap Editor application based on the
Application Framework package of IBM® ILOG® Views.

What You Need to Know

This manual assumesthat you are familiar with the PC or UNIX® environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since

IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Notation

Typographic Conventions
The following typographic conventions apply throughout this manual:

& Code extracts, file names, and entries to be made by the user are written in courier
typeface.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 5

6

IBM

Naming Conventions
Throughout this manual, the following naming conventions apply to the API.

4 The names of types, classes, functions, and macros defined in the IBM ILOG Views
libraries begin with T1v.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized:

class IlvDrawingView;

& The names of virtual and regular methods begin with alowercase |etter; the names of
static methods start with an uppercase letter:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo* () const;

ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

The Bitmap Editor Application

This tutorial shows you how to create the Bitmap Editor application based on the
Application Framework package of IBM® ILOG® Views. It recreates the basic features of
well-known bitmap editors. You will learn how to use the Application Framework Wizard to
configure the user interface of the Bitmap Editor and how to use the API to take advantage
of the Document/View architecture.

The code for this tutoria islocated under the ILVHOME/doc/tutorials/appframe/
bitmaped directory, where IL.vHOME is the root directory where IBM ILOG Views was
installed.

The main features of this Bitmap Editor are:
Reading bitmaps (PNG, BMP, and JPEG files)
Creating new bitmaps

Writing bitmaps (PNG, BMP, and JPEG files)
Modifying bitmaps using drawing commands

Undo and redo of drawing commands

® & 6 6 o o

Bitmap mani pul ation—zooming and unzooming features

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 7

*

Document/View architecture—this feature makes it possible to get several different
views of the same document. Modifications made in aview are handled by the
document, which then notifies all views pointing to it of the last modifications carried
out.

The final application when completed looks like this:

|| File Edit Tools Window

¢ Bitmap Editor by Application Framework - [color.bmp]

(Im= == = el =

[[ERICICEREL

Zoorn the bitrap

|1z yosemite.jpy

Ready

Figure1.1 TheFinal Bitmap Editor Application
Thistutorial hasfive steps:

*

* & o o

Step 1. Generating the Base Files With the Wizard

Step 2: Implementing the Document and the View

Step 3: Modifying and Saving a Bitmap

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio
Step 5: Adding Zoom Commands

8 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 1: Generating the Base Files With the Wizard

Step 1: Generating the Base Files With the Wizard
Thisfirst step shows how to create the base or the foundation of the final application using
the Wizard (Application Framework Editor).
The following tasks will be explained:
& Creating and Configuring an Options File (.odv file)

& Generating the C++ Code and Resource Files

Creating and Configuring an Options File (.odv file)
Tocreatea . odv file:
1. Launch the Application Framework Editor.

To launch the Application Framework Editor, execute <TLVHOME>/bin/<SYSTEM>/
dvwizard. <ILVHOME> iS the directory where you installed IBM® ILOG® Views and
<SYSTEM> is the platform (for instance, x86_.net2008_9.0 or
ultrasparc32_10_11). Make surethat your path includes IBM ILOG Viewslibraries.

2. Select New application wizard and click OK to create a new application:

7Y Application Framework Editor g|

% () ©pen a recently opened application

Shaw this dialog next time

[OF] [Cancel]

3. From the Select a document type panel, choose Generic:

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 9

“¥ Select a document type

Manager Grapher Project

Description

Creates empty documents, Default associated view is a text view

[Customize. ..] [OF] [Cancel]

Several predefined types of documents are made available. Each type of document
defines convenient methods for manipulating its data and is pre-associated with a
specific view.

For instance, the Manager document type dealswith T1vGraphic objectsinsertedin an
IlvManager Object. It is particularly suited for developing graphic editors.

The Generic document type does not make any assumptions about the type of document.
Thisisthe choice for most applications.

The Application Framework Editor opensanew . odv file and displays several windows.
The left arealets you select the application entity you are editing (Application,
Document types, Actions, Popup menus, and Data), whereas the right arealets you set
the parameters of the selected entity:

10 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 1: Generating the Base Files With the Wizard

¥ AppFrame Application - [0DVDoc2] |’._||’E|r5__<|
rﬁ File Generation Tools ‘wWindow =8 x
D@ biil @
B |App]ication Data |
Application name | ODVDocZ |
IMain window title | AppFrame Application |
E% |Main Menu & Toolbars |
Docurnent bypes Ba CRlEEmiTEs
B ~ |
[=) File:
0] Hew... Commands
Dq' Qpen...
Actions Close
n Save
Save As...
& save al =
Popup menus -~
% Page Setup...
- @ Print...
—e= Recent Files
Dialogs Exit
= Tools
% Customize. ..
Modules. ..
Data (=) Window b
EERE. + 4
Feady

Enter the Application Parameters

1. Change the application name from obvDoc1 to Bi tmapEditor. By default, thisnameis
used to create the directory and the project name.

2. Change the main window titleto Bitmap Editor by Application Framework.
Specify the Document Parameters Used to Generate the Code

1. Click Document Type from the left area of the window:

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 11

¥ AppFrame Application - [0DVDocZ] |Z”E|r‘5__<|

rﬁ File Generation Tools ‘wWindow =8 x
=~ 1 RS
B SR} GenDoc |Document type Description |
[Document DRzt -
o F Wiew(s) escripbion | Specific menu template
Application Window 1
w2 Toolbars Marme |GenD0c |
Description | Generic document |
Default document name
Actions Bitmap | 2l |

Filters

Selected filker

Description Generic document: Files

Filters appear in open dialog

Popup menus

Dialogs

o
o
ﬂl@

Mew Document bype

Feady

The center area presents within a tree the application documents, their views, and their
toolbars. The area to the right inspects the object selected in the tree.

2. From the treein the center area, select GenDoc.
Theright area displays the Document type Description page.

3. From this description, change the Name field to Bi tmapEditor.
The document name is used by the application.

4. Changethe Description fieldto Bitmap Editor Document.

This property is used for displaying the document type description in the New Document
dialog box.

5. Set the Default document name field to Bi tmap.

This property is used to assign a default name to new documents before they are saved
by the user.

6. Changethefilters. Selected filter is changed to * . png. This property is used when
opening a new document through the file selector. * . png will be the default extension.
The Bitmap Editor allows you to open PNG, BMP, and JPEG files.

12 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 1: Generating the Base Files With the Wizard

7. Setthedescriptionto PNG Files (.png).

8. Click the Add afilter button to add a BMP filter.

9. Selected filter ischanged to * . bmp in the filter field.
10. Set the descriptionto BMP Files (.bmp)

11. Click the Add afilter button to add a JPG filter.

12. Selected filter is changed to * . 5pg in thefilter field.
13. Set the descriptionto JPG Files (.3jpg):

Filters
Selected filker

PHi Files {.png)
BMP Files {.bmp) Filker
PG Editor . kxt)

*.prg

Description PG Files {.png)

Specify the Document C++ Class

1. Select Document from the tree in the center window:

=-{Z3 BitmapEditor Document Description
o = Document class
Window 1 MyDocument
12 Toolbars

Derived from

IlvDrvProjectDocument
IlvDrvManagerDocurment
IlvDrviGrapherDocument
IlvDwChartDocument

]

Allow multiple documnents

Theright arealets you name the class and determine the document class from which the
bitmap document will inherit.

2. Change the Document classfield to Bi tmapDocument.

The document classinherits from I1vDvDocument (Which isthe base classfor al

documents). A BitmapDocument C++ classwill be generated. The generated code will
be completed later on.

Up to this point, several characteristics of the bitmap document have been specified. A name
has been given to the document, a description to be displayed in tooltips and information

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 13

aress, thefile extension used in thefile selector to open abitmap, and so on. Finaly, the C++
class to be generated has been selected.

Specify the View and User Interface

1. From the center areatree, select Window1.:

=1 BitmapE ditor Document type Views

1 Document -
= Viewls) Yiews | vView(s) container

View classes Selected view

12 Toolbars

Class

[y Wiew

Derived from

IlvDrvManageriew v

% Mew View window E]

The Document type Views page lets you determine the type of views that may be
attached to the document and to specify the C++ class to be generated. Application
Framework provides different views that can be used with a document. Each view
implements the corresponding IBM ILOG Views objects and provides specific methods
that simplify the interaction between the document and the view.

There is now abitmap in the Bitmap Editor document and it needsto be displayed in a
document view. From the predefined document views proposed by Application
Framework, none alow you to display abitmap. Therefore, select T1vDvFormview,
which isageneric class alowing you to load IBM ILOG Viewsfiles (. 11v).

I Note: Step 2 will show how to display the bitmap.

2. Inthe Views notebook page the Classfield is replaced by Bi tmapview, whichis still
derived from I1vDvFormview.

3. Inthe View(s) container notebook page, set Typetoview in MDI child frame (this
isthe default selection).

This parameter lets you choose among several ways of displaying the view: MDI child
frame, MDI maximized child frame, or docked at either the left, right, top, bottom, or
float window.

Now that the parameters of both the document and the view have been set, the C++ code and
the configuration file (. odv) that will be used to build and run the application can be
generated.

14 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 1: Generating the Base Files With the Wizard

Generating the C++ Code and Resource Files
To generate the code for the application with the options that have just been declared:
1. Open the Generation menu in the standard toolbar.

2. Select Parameters. This displays the following window:

¥ Project generation

Project Path | General | Generation

Project root path

| c:itemphBitmapEditor, | E]
Following files can be relative to

Flatform Makefile path

| Microsoft Yisual C++ 8.0 V| |x86_.netZDDS_S.D,l’BitmapEditor.vcproj z|

Data directory

| data |E]
Source directory

E @
Directory for header files

| include |E]
Directory for help files

e @
[Generate all] [Customize generation. ..] [Generate data] [Close]

I Note: It isassumed that you are working in the <worRkDIR> directory.

e Set Project root path to <wORKDIR> .
e Choose your platform.
o Click the Generate All button.

Note: Thefilesgenerated are . cpp, .h, .odv, .dbm, and Makefile or .dsp files
depending on the platform you are working on.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 15

Conclusion

Step 1 is now complete. Using only the Application Framework Editor, a Bitmap Editor
Application has been created with the following features:

¢ Managing aMost Recently Used Fileslist.
¢ Handling MDI Frames.

If you compile, link, and execute the generated code, you get the following basic
application:

M Bitmap Editor by Application Framework

File Tools ‘wWindow

sEE=2"F ¥

Feady

Note: Depending on the platform on which you are running the application, you may have
to set the environment variable TL.vPATH 1O . . /data to allow the application to accessits
data.

The following files have been generated:
& main.cpp - Thiscode reads the configuration file (. odv) and launches the application.

€ BitmapDocument .cpp and BitmapDocument .h - Implement the document class. The
following methods have been generated and need to be completed (see Step 2).

o Constructor and destructor.
e initializeDocument - Executed when calling New command.

e clean - Executed when destroying the document (typically, closing the last view
opened on the document).

16 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 2: Implementing the Document and the View

e serialize - Executed when loading or saving a document from afile (typicaly,
Open and Save commands).

€ BitmapView.cpp and Bitmapview.h - Implement the view class. The following
methods have been generated and need to be completed (see Step 2).

e Constructor and destructor.

e initializeVview - Executed upon creation of the document or when anew view to a
document is created.

e getBitmapDocument - Returnsthe BitmapDocument associated with the view.

€ BitmapEditor.odv - Contains persistent information on the application configuration,
code generation, and compilation. This file may be reloaded into the Application
Framework Editor to add new commands (for example).

Step 2 will focus on the C++ code to be developed to implement the document and the view
of the Bitmap Editor application.

Step 2: Implementing the Document and the View

Now that the skeleton of the Bitmap Editor application isbuilt (see “ Step 1: Generating the
Base Files With the Wizard"), Step 2 shows how to implement a document. You will see
how to read a document or create a new one, as well as how to display the bitmap. The
classes generated and used are Bi tmapDocument, Which derives from 11vDvDocument
and Bi tmapVview, Which derives from 11vbDvFormview. Both classes have been generated
during Step 1 with the Application Framework Editor.

Implementing the BitmapDocument Class

Thisisthe most important class of the application since it manipulates the application data
(the bitmap). All actions performed on the datawill be done by this class. You will first learn
how to load a bitmap file, and then you will see how to create a new bitmap.

The Bi tmapDocument class owns as amember a pointer to an 11vBitmap object. The
I1vBitmap object istheinternal data. Thisclassisdeclared in Bi tmapbocument .h and
defined in BitmapDocument . cpp.

Reading a Bitmap
A document is read when:
& The user chooses File > Open from the application menu bar,

¢ or, when selecting the Open button from the tool bar,

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 17

& or, with the CTRL-O accelerator.

The association between the user action and the document action is automatically performed
by Application Framework.

When the user chooses File > Open, Application Framework calls the
BitmapDocument : : readDocument method. This method will be overridden to implement
the actual work performed when reading a bitmap file.

IlvBoolean
BitmapDocument : : readDocument (const IlvPathName& pathname)
{

IlvDisplay* display = getDisplay() ;

// Read the bitmap

IlvBitmap* bitmap = display->readBitmap (pathname) ;

// If the bitmap has not been read correctly

if (!bitmap || bitmap->isBad()) {
delete bitmap;
IlvFatalError ("Cannot load %s bitmap !", getPathName());
return IlvFalse;

} else {

// The bitmap read by readBitmap is a shared bitmap.

// Here you do not want to use a shared bitmap because the editor may
// modify it. So, the name set by the call to IlvDisplay::readBitmap
// 1s removed.

bitmap->setName (0) ;

setBitmap (bitmap) ;

setPalette(display->defaultPalette());

return IlvTrue;

Note: The default implementation of the T1vDvDocument : : readDocument method calls
the serialize virtual method. Another way to deal with I/O inside a document isto
override only the serialize method. However, the serialize method cannot be used
here because the bitmap must be read using its full path; the method used to read the
bitmap takes a string as parameter (I11vDisplay: :readBitmap (const char*)),
whereasthe serialize method takes a stream as parameter. See the Reference Manual
for more information on the I 1vDvDocument : : readDocument and

IlvDvDocument : : serialize methods.

The Bitmap Editor application is now able to read bitmap files and to store the bitmap data
in the Bi tmapDocument class.

Creating a New Bitmap

The Bitmap Editor is also able to create new documents, that is, to create new bitmaps. In
order to simplify the tutorial, newly-created bitmaps are considered to have a size of

18 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 2: Implementing the Document and the View

128x128 pixelsin this step. Step 4 will show how to introduce a dialog box that lets the user
set the bitmap dimensions.

A new document is created when the user performs one of the following actions:
¢ Selection of File> New from the menu bar

¢ Selection of the New button from the main toolbar

¢ CTRL+N accelerator

The association between the user action and the document creation is handled transparently
by Application Framework, which calls the Bi tmapDocument : : initializeDocument
method. This method creates anew 11vBitmap oObject and storesit in the bitmap member
field of the Bitmap Editor using Bi tmapDocument : : setBitmap:

IlvBoolean
BitmapDocument: :initializeDocument (I1vAny data)
{
if (!IlvDvDocument::initializeDocument (data))
return IlvFalse;

IlvDisplay* display = getDisplay();
// Creates the bitmap with a default size of 128x128
IlvDim width = 128;
IlvDim height = 128;
IlvBitmap* bitmap =
new IlvBitmap (display, width, height, display->screenDepth()) ;
setBitmap (bitmap) ;

// Initialize it with the display palette
setPalette(display->defaultPalette()) ;

getPalette()->invert () ;

bitmap->fillRectangle (getPalette(), IlvRect(0, 0, width, height));
getPalette()->invert () ;

return IlvTrue;

Implementing the BitmapView

In Step 1, the C++ code of aview called Bitmapview that inherits from I1vDvFormview
was generated. The code for this view will now be written. The Bi tmapview class
implementsaview in aBitmapbocument Object. Its purposeisto display the bitmap and to
provide editing capabilities, such as changing the color of a pixel.

The reguirements of the view to be implemented are:
¢ Display an 11vBitmap Object
¢ Allow scrolling

There are several ways of displaying 11vBitmap objectsin IBM ILOG Views. The
I1lvZoomableIcon classisusedto do soin thistutorial.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 19

All graphic objects must be placed in a container in order to be displayed. Since scrolling
capabilities are also needed, T1vscGadgetContainerRectangle Will be used (this class
owns a container and provides scrolling capabilities).

Now that the decision of how to display the bitmap has been taken, the object must be
inserted in the Bitmapview class. As asubclass of I11vDvFormvView, BitmapView can
read an IBM ILOG Views(.i1v)file, usingthe 11vDvFormview: : setFileName method.
Thisfile describes the graphic objects that will display the elements of the document.

The .i1v fileisnow created using IBM ILOG Views Studio. This . i1v file will contain an
IlvSCGadgetContainerRectangle (aview that scrolls) into which an
IlvZzoomableIcon, Which handlesthe bitmap, will be placed.

1. Launch ivfstudio.
Select File > New > Gadgets.
Select View Rectangles in the Gadgets pal ette.

2
3
4. Dragan I1vsCGadgetContainerRectangle and drop it in the gadgets buffer.
5. Click the Attachments mode icon.

6

Select the T1vsCGadgetContainerRectangle Object.
7. Set the vertical and horizontal guides.
8. Double-click guides.
9. Setto zero all the distances and then click Apply.

10. Select File > Save As and specify <WORKDIR>/data/bitmapview.ilv.

Thebitmapview.ilv filewill now beintegrated into the Bi tmapview class. The
initialization of aview is performed upon the Bi tmapDocument object instantiation through
theBitmapview: : initializeview method. The code for thismethod readsthe . i1v file
and connects the graphics objects to the document. The code for the Bi tmapview classis
defined inthe Bitmapview. cpp file.

void
BitmapView: :initializeView()
{
IlvDvFormView: :initializeview() ;
BitmapDocument* document = getBitmapDocument () ;
if (document->getBitmap()) {
// Load the file
setFilename ("bitmapview.ilv");
// Retrieve the IlvSCGadgetContainerRectangle
IlvSCGadgetContainerRectangle* rectangle =
(I1lvSCGadgetContainerRectangle*)getContainer () ->
getObject ((I1vUInt)O0) ;
// Change the color of the clip view to 'black'
IlvColor* color = getDisplay()->getColor ("black");
rectangle->getScrolledView () ->getClipView () ->setBackground (color) ;

20 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

IBM

Step 2: Implementing the Document and the View

// Add the zoomable icon

IlvContainer* container = rectangle->getContainer();

icon = new IlvZoomableIcon (getDisplay(),
IlvPoint (0, 0),
document->getBitmap (),
document->getPalette()) ;

container->addObject ("Icon", _icon);

container->fitToContents () ;

}

Now that Bi tmapDocument and Bi tmapview are implemented, you can compile and
launch the Bitmap Editor application. You will be able to:

& Open oneor several PNG, BMP, or JPG files.

4 Have simultaneous views on a bitmap.

& Create anew bitmap (although the bitmap is empty for the moment).
The Bitmap Editor application at the end of Step 2 is shownin Figure 1.2:

\.{'Bilmap Editor by Application Framework - [color.bmp]

|| File Edit Tools Window
[Is=Re=E e =lsi=
[|EEENE

Lz fulicolor.png O] x] .

|1z Bitmap1

Ready

Figure 1.2 The Bitmap Editor Application After Step 2

ILOG VIEwWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 21

Step 3: Modifying and Saving a Bitmap

Editing capabilities will now be added to the Bitmap Editor application. The basic editing
function needed can change the color of a pixel inthe Bi tmapDocument.

InIBM® ILOG® Views, editing is done through the use of interactor objects. Interactor
objects can be associated with aview or with a graphic object and can handle eventsto
perform actions on these objects.

In most Document/View applications, modifications to the document are done through their
view. The user performs some action on the view, which results in a modification of the
document through a command call. Once the command is executed, the document notifies
the views so that they can reflect the changes. The commands that are executed on a
document are kept in memory to enable Undo/Redo operations.

Implementing pixel edition requires the following steps.

& Defining asubclass of 11vbvcommand that changes the color of apixel in the
BitmapDocument. In particular, the doTt and undo methods will have to be
implemented.

& Defining asubclassof T1vinteractor that isassociated with the I1vZoomableIcon
object. Thisinteractor will handle the user events on Bi tmapview and call the above
command.

& Adding notification on the document views.
& Enabling Undo/Redo with the Application Framework Editor.

BitmapView USeSan I1vZoomableIcon object to display the BitmapDocument. In order
to edit a pixel of the document, you need to associate an T1vInteractor object that will
handle the mouse events and call the appropriate command.

Defining the DrawRectangleCommand

The brawRectangleCommand classisasubclass of T1vDvCommand. It isdeclared in
drawcmd . h and defined in drawemd . cpp. The purpose of the brawRectangleCommand
classisto modify the document by drawing afilled rectangle in the document bitmap at the
specified location, using the specified color. Thus, from this command, you need to access:

& The document
& Therectanglethat will be modified
& The palette used to draw into the bitmap

The constructor appears as follows:

DrawRectangleCommand: : DrawRectangleCommand (BitmapDocument* document,
const IlvPointé& point,

22 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 3: Modifying and Saving a Bitmap

IlvDim size,
IlvPalette* palette,
const char* name)

Note: Thepoint and size arguments are used to compute the rectangle that will be
modified by the command.

The DrawRectangleCommand: : doIt method is called when the command is executed
(See the T1vDvDocument : : doCommand method). Before modifying the document, the
rectangle that will be modified to make the command undoable must be saved:

void
DrawRectangleCommand: :doIt ()
{
// Save the initial bitmap
_bitmap->drawBitmap (_document->getPalette(),
_document->getBitmap (),
_rect,
IlvPoint (0,0));
// Then draw in the document's bitmap
_document->getBitmap () ->fillRectangle (_palette, _rect);
// Finally, refresh all the views connected to the document
_document->refreshViews (_rect) ;

}

The refreshviews method will be described later in this step. Its purposeisto refresh all
the views connected to the document being modified.

The undo method simply restores the bitmap saved in the dozt method and then refreshes
the views.

void
DrawRectangleCommand: :undo ()
{
// Restore the bitmap saved in _bitmap into the document's bitmap
_document->getBitmap () ->drawBitmap (_document->getPalette(),
_bitmap,
IlvRect (0,
0,
_bitmap->width(),
_bitmap->height()),
IlvPoint (_rect.x (), _rect.y()));
// Then, refresh all the views connected to the document
_document->refreshViews (_rect) ;

Defining the DrawBitmapInteractor

The DrawBitmapInteractor classisasubclass of I1vInteractor. Itisdeclaredin
drawinter.h and defined in drawinter . cpp. The purpose of the
DrawBitmapInteractor classisto handle interactionsthat occur in aBitmapview

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 23

object. When the mouse is clicked and dragged, it generates brawRectangleCommands to
modify the document. Here is the code of the handleEvent method:

IlvBoolean
DrawBitmapInteractor::handleEvent (I1vGraphic* g,
IlvEvent& event,
const IlvTransformer* t)

switch (event.getType()) {
case IlvButtonDown:
case IlvButtonDragged: {
IlvPoint point (event.x(),event.y());
if (t)
t->inverse (point) ;
_document->drawRectangle (point, 2, _document->getPalette());
return IlTrue;
}
default:
return IlFalse;
}
}

The interactor calls the BitmapDocument : : drawRectangle method to draw in the
document bitmap. This method simply creates a brawRectangleCommand and executes it:

void
BitmapDocument : :drawRectangle (const IlvPoint& point,
IlvDim size,
IlvPalette* palette)
{
doCommand (new DrawRectangleCommand (this,
point,
size,
palette,
"drawRectangle")) ;

}

The interactor is set on the T1vZoomableIcon object that displays the document bitmap in
aBitmapView oObject. Thisisdonein the Bitmapview: :initializeview method. The
code for this method is the same asin Step 2. The interactor is set at the end of the method

by caling:

_icon->setInteractor (new DrawBitmapInteractor (document)) ;

Adding Notification on the Document Views

The brawRectangleCommand method used to call the

BitmapDocument : : refreshviews method to notify a change in the document (as seen
earlier in this step). This method will now be implemented:

void

BitmapDocument: :refreshViews (const IlvRegion& region)

{

notifyViews (I1lvGetSymbol ("BitmapHasChanged"), 0, ®ion) ;
}

24 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 3: Modifying and Saving a Bitmap

This method broadcasts the Bi tmapHasChanged message, giving the specified region as
argument. To catch the message, the Bi tmapview declares amethod in its interface:

IlvDvBeginInterface (BitmapView)
Methodl (BitmapHasChanged, bitmapHasChanged, IlAny, region)
IlvDvEndInterfacel (I1vDvFormView)

& Thefirst argument of the Method1 macro is the message name.

& The second argument is the method of Bitmapview that will be called when the
message Bi tmapHasChanged iSreceived.

& Thethird argument is the type of the first argument passed when calling the
bitmapHasChanged method.

& Thefourth argument is the name of the first argument passed when calling the
bitmapHasChanged method.

Note: Only simple types are supported in the interface declaration. Sncean I11vRegion is
needed to know what the modified regionis, an 11any (that is, a non-typed pointer) is
used.

Hereisthe code of the bitmapHasChanged method:

void
BitmapView: :bitmapHasChanged (I1Any region)
{
IlvRegion redrawRegion (* (I1lvRegion*)region) ;
IlvContainer* container = IlvContainer::GetContainer (_icon);
// Deal with the container transformer
if (container->getTransformer())
redrawRegion.apply (container->getTransformer ()) ;
// Optimization: Clip using the visible size of the container
IlvRect rect;
container->sizevisible (rect) ;
redrawRegion.intersection (rect) ;
// Then redraw the region
container->bufferedDraw (redrawRegion) ;

Enabling Undo/Redo with Application Framework Editor

First the GUI needs to be modified to allow the user to execute the Undo and Redo
commands. Thisis done through the Application Framework Editor. Undo and Redo will be
added to the Edit menu of the menu bar, and to the document-specific toolbar. Asthe Undo
and Redo actions are predefined actions, it is not necessary to create new actions.

1. Launch the Application Framework Editor.
2. OpentheBitmapEditor.odv file.

3. Click the Document Typesicon located to the left:

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 25

''¥ AppFrame Application - [BitmapEditor.ody]

|Id Eile Generation Tools ‘window

D2 B i@

|Document type Description |

SR | Bitmap
1 Document ==
25 Viewls] Description | Specific menu template
indow 1
=# Toolbarz Marmne |BitmapEdit0r |

Description | Bitmap Editor Document |

Default document name

Bitmap | A |
Filters

Selected filker

Popup menus
filker *.png

Description PG Files {.png)

= e
Dialogs
= [] Filkers appear in open dialag
® .
Feady

4. Click ToolBars:

123 BitmapE ditor
[Document
= Viewls)

EER T oolbars:

5. Select Paste in the Edit menu located in the tree displaying the menu bar and toolbar.

6. Insert anew action:

A new action has been added.

7. Select Undo in the Commands section:

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 3: Modifying and Saving a Bitmap

Document type Menu & Toolbars
Bars Cateqaries
By Main menu ~ Editar -
=I- File
0] Hew... Commands
= Open... Copy
Close é{; Cut
n - ¥ Delete
28V E Paste
Save bs... £ Redo
ﬁ Save Al [4] Repeat
% Page Setup... Selectal
& Frit... Undo
Recent Files
Exit
= Edit
é{; Cut
Copy
E Paste
=
= Tools
Cuskomize. .,
Modules. ..
=1 Window
% Tew Window
B2 Mext Window
AR Bresinne iindmw 0
e ME X 14
@ Specific document items

8. Insert anew action.

9. Change the category to Editor.

10. Select Redo in the Commands section.

11. Remove the default editor actions not implemented in the editor: cut, copy, and paste.

From the Edit menu, select Cut and remove the command from the menu. Repeat thisfor
the other non-relevant actions.

12. Find the document-specific toolbar in the tree (the last toolbar in the menu).

13. Select the last item of the tool bar.

14. Repeat steps 6 to 11 for the document-specific toolbar and then continue with step 15.
15. Savethefile.

It isnow possible for the user to trigger the Undo and Redo actions. These actions are
automatically caught by the document.

You can compile and execute your application.
1. Launch the application.

2. Create anew bitmap.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 27

28

IBM

3.
4.

5.

Click and drag the mouse into the created view. You should see your modifications.
Open the Edit menu of the menu bar. The Undo action should be available.

Click on the Undo action. Thelast point drawn should disappear.

Changing the Document Palette

Earlier in this step, the palette used to modify the document bitmap was the palette of the
document (as seen inthe DrawBitmapInteractor: :handleEvent method). One way to
change the drawing color isto modify the document palette. To do so, a new action must
first be added to our application—the ColorChooser action:

1.
2.
3.

11.
12.
13.
14.
15.

ILOG

Launch the Application Framework Wizard.
Open the BitmapEditor.odv file.

Click on Actions:

Click New Action to add a new action.

Change the Command name of the created action to ColorChooser.
Change the description of the action.

Change the tooltip description.

In the Bitmaps tab, change the bitmap of the actionto i crespan.png.

Click on Document types.

. Click Toolbarsin the tree:

123 BitmapE ditor
[Document
= Viewls)
“findow 1

Select one of the commands in the document-specific toolbar (MyCommands).
Add a new action to the toolbar.

Change the category to Project.

Change the created action to the ColorChooser action.

Save the document.

VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 3: Modifying and Saving a Bitmap

The event must now be caught at the document level. To do this, the document interfaceis
modified as follows:

IlvDvBeginInterface (BitmapDocument)
Action(ColorChooser, colorChooser)
IlvDvEndInterfacel (I1lvDvDocument)

This means that the Bi tmapDocument : : colorChooser method will be caled when the
ColorChooser action is triggered. Here is the code of the
BitmapDocument : : colorChooser method:

void
BitmapDocument: :colorChooser ()
{
IlvColorSelector dialog(getDisplay());
IlvColor* color = dialog.get (IlTrue);
if (color) {
IlvPalette* palette = getPalette();
setPalette(getDisplay () ->getPalette(palette->getBackground(),
color,
palette->getPattern(),
palette->getColorPattern(),
palette->getFont (),
palette->getLineStyle(),
palette->getLinewWidth (),
palette->getFillStyle()
palette->getArcMode() ,
palette->getFillRule()));

i

}

The method displays a color selector and then changes the document palette by calling the
BitmapDocument : : setPalette method.

The Bitmap Editor application at the end of Step 3 is shown in Figure 1.3:

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 29

_}{'Bilmap Editor by Application Framework - [fullcolor.png =]

|| File Edit Tools Window

(mi=te== e =l el

e
BEE
= B

Ready

Figure 1.3 The Bitmap Editor Application After Step 3

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio

In this step, a dialog box designed with IBM® ILOG® Views Studio will be integrated
inside an Application Framework based application. To illustrate this point, the user will be

able to choose the size of the bitmap about to be created. The following dialog box will be
displayed each time the user asks for a new document:

¢ New Image M =]k
Bitmap Settings 7

Width: kl@

Height: 128

Ok |

Figure1.4 The Sample Dialog Box
This step covers the following points:

30 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio

& Designing the Dialog Box Using IBM ILOG Views Studio
¢ Integrating the Dialog Box in the Bitmap Editor Application

Designing the Dialog Box Using IBM ILOG Views Studio

1. Launch IBM ILOG Views Studio. For more information on IBM |LOG Views Studio,
seethe IBM ILOG Views Studio User's Manual.

2. Select File > New > Gadget. Thiswill create an empty gadget buffer.
3. Select the Gadgets item in the Drag and Drop palette:

H Menus
= Matrix
B Miscellaneous
5 wiew Rectangles
=49 Graphics
Q Icons
K Gauges

t Mpre v

4. Dragan I1vFrame from the objects palette and drop it into the gadget buffer.

5. Dragan T1vNumberField and set its nameto width. Inspect it and change its default
valueto 128.

6. Drag another 11vNumberField and set its name to Height. Inspect it and change its
default valueto 128.

7. Dragtwo r1vMessageLabel and change their labels; one to width and the other to
Height.

8. Dragan r1vButton and changeitslabel to ok. Also changeits callback to apply. This
callback is a predefined callback for subclasses of 11vDialog Objects. See
IlvDialog: :apply for moreinformation.

9. Dragan r1vReliefLine to Separate the button from the number fields.

10. Arrange the objects as shown in Figure 1.4.

11. Save thefile asbmpsize.ilv inthe data directory of the Bitmap Editor application.
12. Select File > New > Make Default Application. Thisis needed to generate the C++ code.
13. Select Code > Panel Class Inspector.

14. Change the class name to Bi tmapSizeDialog.

15. Change the base classto T11vDialog.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 31

16. Change the directory headers and sources to match the directories of your Bitmap Editor
application.

17. Click Apply.
18. Select Code > Generate Panel Class to generate the code.

Two files have been generated: a header file (include/bmpsize.h) and asourcefile
(src/bmpsize.cpp).

19. Quit IBM ILOG Views Studio.

Integrating the Dialog Box in the Bitmap Editor Application

The code for the dialog box has been generated. It must now be integrated into the
application.

The dialog box will be displayed to let the user choose the size when creating anew bitmap.
Step 2 demonstrated how the Bi tmapDocument : : initializeDocument method was
called to create a new document. This method must now be modified to display the dialog
box:

IlvBoolean
BitmapDocument: :initializeDocument (I1vAny data)
{
if (!IlvDvDocument::initializeDocument (data))
return IlvFalse;

IlvDisplay* display = getDisplay();
// Pops-up a dialog to let the user choose the initial size
BitmapSizeDialog dialog(display, "New Image", "New Image");
dialog.moveToMouse (IlvCenter) ;
dialog.wait () ;
IlvDim width = dialog.getWidth()->getIntValue() ;
IlvDim height = dialog.getHeight () ->getIntValue() ;
IlvBitmap* bitmap =

new IlvBitmap (display, width, height, display->screenDepth()) ;
setBitmap (bitmap) ;

// Initialize it with the display palette
setPalette(display->defaultPalette());

getPalette()->invert () ;

bitmap->fillRectangle (getPalette(), IlvRect(0, 0, width, height));
getPalette()->invert () ;

return IlvTrue;

}

The bmpsize. cpp file must be added to the makefile or project in order to link the
application.

The Bitmap Editor application at the end of Step 4 is shownin Figure 1.5:

32 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

Step 5: Adding Zoom Commands

_}{'Bilmap Editor by Application Framework - [fullcolor.png]
“ i3 File Edit Iools MWindow =S|

(Imif=N=i=ii=llalsial=

Ready

Figure 1.5 The Bitmap Editor Application After Step 4

Step 5: Adding Zoom Commands
In this step, the Bitmap Editor application will be modified to allow zoom operations. The
following tasks must be carried out:
& Adding Zoom Actions Using the Application Framework Editor
& Modifying the BitmapView Class to Catch the New Actions

& Implementing Zoom in the BitmapView Class

Adding Zoom Actions Using the Application Framework Editor
1. Launch the Application Framework Editor.
2. OpentheBitmapEditor.odv file.

3. Click Actions:

4. Click New Action to add a new action.

IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 33

5. Change the Command name of the created action to ZoomIn.

6. Change the description of the action.

7. Change the tooltip description.

8. Inthe Bitmapstab, change the bitmap of the action to i czoomm.png.
9. Click Document types

10. Click Toolbarsin the tree:

123 BitmapE ditor
[Document

Wiew(z]

“findow 1

11. Select one of the commands in the document-specific toolbar (MyCommands).
12. Add a new action to the toolbar.

13. Change the created action to the zoomIn action.

Repeat the sequence to add the zoomout action (using the i cuzoomm. png bitmap). Then,
save the document and quit the Application Framework Editor.

Modifying the BitmapView Class to Catch the New Actions
First, the interface of the view must be modified to declare the new actions:

IlvDvBeginInterface (BitmapView)
Methodl (BitmapHasChanged, bitmapHasChanged, IlAny, region)
Action(ZoomIn, zoomIn)
Action (ZoomOut, zoomOut)

IlvDvEndInterfacel (I1lvDvFormvView)

Then, the Bitmapview: : zoomIn and BitmapView: : zoomOut methods need to be
implemented.

Implementing Zoom in the BitmapView Class

TheBitmapview: : zoomIn and BitmapView: : zoomout methods are inlined and the
BitmapView: : zoom method is called:

void zoomIn() { zoom((IlFloat)2.); }
void zoomOut () { zoom((IlFloat).5); }

The only method that needs to be implemented isthe Bi tmapview: : zoom method:
void

BitmapView: :zoom(I1lFloat factor)

{

34 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

IBM

Step 5: Adding Zoom Commands

IlvContainer* container = IlvContainer::GetContainer (_icon);
container->zoomView (IlvPoint (0,0), factor, factor);

// Resize the container to fit the bitmap

T1lvRect bbox;

container->boundingBox (bbox) ;
container->resize (bbox.w() *factor, bbox.h()*factor) ;

}

It usesthe T1vContainer: : zoomview method to change the transformer used to draw the
I1lvZoomableIcon that displaysthe document bitmap.

Then, the container of theicon isresized so that the scroll bars of the scrolled view are
updated.

The final Bitmap Editor application is shown in Figure 1.6:

_}{'Bilmap Editor by Application Framework - [fullcolor.png]

“I"Iﬁ File Edit Tools Window =
IR EE S
[ERICIEEED

Figure1.6 The Final Bitmap Editor Application

ILOG VIEwWS APPLICATION FRAMEWORK 5.3 — TUTORIAL 35

36 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

A

application parameters 11

B

Bitmap Editor
adding notification 24
adding zoom actions 33
adding zoom commands 33
application parameters 11
catching new actions 34
changing the document palette 28
configuring an optionsfile 9
creating a new bitmap 18
creating an optionsfile 9
defining DrawBitmapInteractor 23
defining DrawRectangleCommand 22
designing the dialog box 31
enabling Undo/Redo 25
generating the base files 9
generating the C++ code 15
generating the resource files 15
implementing the document and the view 17
inserting dialogs 30
integrating the dialog box 32
modifying and saving a bitmap 22
reading abitmap 17
specifying the document class 13
specifying the document parameters 11

IBM ILOG VIEWS APPLICATION

specifying the user interface 14
specifying the view 14
Bitmap Editor Application 7

C

C++
prerequisites 5

G

generating the base files 9

M

manual
naming conventions 6
notation 5
typographic conventions 5

N

naming conventions 6
notation 5

T

typographic conventions 5

FRAMEWORK 5.3 — TUTORIAL

Index

53

54 IBM ILOG VIEWS APPLICATION FRAMEWORK 5.3 — TUTORIAL

	IBM ILOG Views Application Framework V5.3 Tutorial
	About This Tutorial
	Tutorial 1 The Bitmap Editor Application
	Step 1: Generating the Base Files With the Wizard
	Creating and Configuring an Options File (.odv file)
	Generating the C++ Code and Resource Files
	Conclusion

	Step 2: Implementing the Document and the View
	Implementing the BitmapDocument Class
	Reading a Bitmap
	Creating a New Bitmap
	Implementing the BitmapView

	Step 3: Modifying and Saving a Bitmap
	Defining the DrawRectangleCommand
	Defining the DrawBitmapInteractor
	Adding Notification on the Document Views
	Enabling Undo/Redo with Application Framework Editor
	Changing the Document Palette

	Step 4: Inserting Dialogs Done with IBM ILOG Views Studio
	Designing the Dialog Box Using IBM ILOG Views Studio
	Integrating the Dialog Box in the Bitmap Editor Application

	Step 5: Adding Zoom Commands
	Adding Zoom Actions Using the Application Framework Editor
	Modifying the BitmapView Class to Catch the New Actions
	Implementing Zoom in the BitmapView Class

	Index
	A
	B
	C
	G
	M
	N
	T

