
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Application Framework V5.3

Tutorial

June 2009

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C O N T E N T S
Table of Contents

IBM ILOG Views Application Framework V5.3

Preface About This Tutorial. 5

What You Need to Know .5

Notation. .5

Tutorial 1 The Bitmap Editor Application . 7

Step 1: Generating the Base Files With the Wizard .9

Creating and Configuring an Options File (.odv file) .9

Generating the C++ Code and Resource Files .15

Conclusion .16

Step 2: Implementing the Document and the View. .17

Implementing the BitmapDocument Class .17

Reading a Bitmap. .17

Creating a New Bitmap .18

Implementing the BitmapView .19

Step 3: Modifying and Saving a Bitmap. .22

Defining the DrawRectangleCommand .22

Defining the DrawBitmapInteractor .23

Adding Notification on the Document Views .24

Enabling Undo/Redo with Application Framework Editor. .25
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 3

Changing the Document Palette .28

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio .30

Designing the Dialog Box Using IBM ILOG Views Studio .31

Integrating the Dialog Box in the Bitmap Editor Application. .32

Step 5: Adding Zoom Commands .33

Adding Zoom Actions Using the Application Framework Editor. .33

Modifying the BitmapView Class to Catch the New Actions .34

Implementing Zoom in the BitmapView Class .34

Index . 53
4 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

P R E F A C E
About This Tutorial

This tutorial shows you how to create the Bitmap Editor application based on the
Application Framework package of IBM® ILOG® Views.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX® environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts, file names, and entries to be made by the user are written in courier
typeface.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 5

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the IBM ILOG Views
libraries begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized:

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
6 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

C H A P T E R
1

The Bitmap Editor Application

This tutorial shows you how to create the Bitmap Editor application based on the
Application Framework package of IBM® ILOG® Views. It recreates the basic features of
well-known bitmap editors. You will learn how to use the Application Framework Wizard to
configure the user interface of the Bitmap Editor and how to use the API to take advantage
of the Document/View architecture.

The code for this tutorial is located under the ILVHOME/doc/tutorials/appframe/
bitmaped directory, where ILVHOME is the root directory where IBM ILOG Views was
installed.

The main features of this Bitmap Editor are:

◆ Reading bitmaps (PNG, BMP, and JPEG files)

◆ Creating new bitmaps

◆ Writing bitmaps (PNG, BMP, and JPEG files)

◆ Modifying bitmaps using drawing commands

◆ Undo and redo of drawing commands

◆ Bitmap manipulation—zooming and unzooming features
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 7

◆ Document/View architecture—this feature makes it possible to get several different
views of the same document. Modifications made in a view are handled by the
document, which then notifies all views pointing to it of the last modifications carried
out.

The final application when completed looks like this:

Figure 1.1

Figure 1.1 The Final Bitmap Editor Application

This tutorial has five steps:

◆ Step 1: Generating the Base Files With the Wizard

◆ Step 2: Implementing the Document and the View

◆ Step 3: Modifying and Saving a Bitmap

◆ Step 4: Inserting Dialogs Done with IBM ILOG Views Studio

◆ Step 5: Adding Zoom Commands
8 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 1: Generating the Base Files With the Wizard
Step 1: Generating the Base Files With the Wizard

This first step shows how to create the base or the foundation of the final application using
the Wizard (Application Framework Editor).

The following tasks will be explained:

◆ Creating and Configuring an Options File (.odv file)

◆ Generating the C++ Code and Resource Files

Creating and Configuring an Options File (.odv file)

To create a .odv file:

1. Launch the Application Framework Editor.

To launch the Application Framework Editor, execute <ILVHOME>/bin/<SYSTEM>/
dvwizard. <ILVHOME> is the directory where you installed IBM® ILOG® Views and
<SYSTEM> is the platform (for instance, x86_.net2008_9.0 or
ultrasparc32_10_11). Make sure that your path includes IBM ILOG Views libraries.

2. Select New application wizard and click OK to create a new application:

3. From the Select a document type panel, choose Generic:
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 9

Several predefined types of documents are made available. Each type of document
defines convenient methods for manipulating its data and is pre-associated with a
specific view.

For instance, the Manager document type deals with IlvGraphic objects inserted in an
IlvManager object. It is particularly suited for developing graphic editors.

The Generic document type does not make any assumptions about the type of document.
This is the choice for most applications.

The Application Framework Editor opens a new .odv file and displays several windows.
The left area lets you select the application entity you are editing (Application,
Document types, Actions, Popup menus, and Data), whereas the right area lets you set
the parameters of the selected entity:
10 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 1: Generating the Base Files With the Wizard

Enter the Application Parameters

1. Change the application name from ODVDoc1 to BitmapEditor. By default, this name is
used to create the directory and the project name.

2. Change the main window title to Bitmap Editor by Application Framework.

Specify the Document Parameters Used to Generate the Code

1. Click Document Type from the left area of the window:
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 11

The center area presents within a tree the application documents, their views, and their
toolbars. The area to the right inspects the object selected in the tree.

2. From the tree in the center area, select GenDoc.

The right area displays the Document type Description page.

3. From this description, change the Name field to BitmapEditor.

The document name is used by the application.

4. Change the Description field to Bitmap Editor Document.

This property is used for displaying the document type description in the New Document
dialog box.

5. Set the Default document name field to Bitmap.

This property is used to assign a default name to new documents before they are saved
by the user.

6. Change the filters. Selected filter is changed to *.png. This property is used when
opening a new document through the file selector. *.png will be the default extension.
The Bitmap Editor allows you to open PNG, BMP, and JPEG files.
12 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 1: Generating the Base Files With the Wizard
7. Set the description to PNG Files (.png).

8. Click the Add a filter button to add a BMP filter.

9. Selected filter is changed to *.bmp in the filter field.

10. Set the description to BMP Files (.bmp)

11. Click the Add a filter button to add a JPG filter.

12. Selected filter is changed to *.jpg in the filter field.

13. Set the description to JPG Files (.jpg):

Specify the Document C++ Class

1. Select Document from the tree in the center window:

The right area lets you name the class and determine the document class from which the
bitmap document will inherit.

2. Change the Document class field to BitmapDocument.

The document class inherits from IlvDvDocument (which is the base class for all
documents). A BitmapDocument C++ class will be generated. The generated code will
be completed later on.

Up to this point, several characteristics of the bitmap document have been specified. A name
has been given to the document, a description to be displayed in tooltips and information
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 13

areas, the file extension used in the file selector to open a bitmap, and so on. Finally, the C++
class to be generated has been selected.

Specify the View and User Interface

1. From the center area tree, select Window1:

The Document type Views page lets you determine the type of views that may be
attached to the document and to specify the C++ class to be generated. Application
Framework provides different views that can be used with a document. Each view
implements the corresponding IBM ILOG Views objects and provides specific methods
that simplify the interaction between the document and the view.

There is now a bitmap in the Bitmap Editor document and it needs to be displayed in a
document view. From the predefined document views proposed by Application
Framework, none allow you to display a bitmap. Therefore, select IlvDvFormView,
which is a generic class allowing you to load IBM ILOG Views files (.ilv).

2. In the Views notebook page the Class field is replaced by BitmapView, which is still
derived from IlvDvFormView.

3. In the View(s) container notebook page, set Type to View in MDI child frame (this
is the default selection).

This parameter lets you choose among several ways of displaying the view: MDI child
frame, MDI maximized child frame, or docked at either the left, right, top, bottom, or
float window.

Now that the parameters of both the document and the view have been set, the C++ code and
the configuration file (.odv) that will be used to build and run the application can be
generated.

Note: Step 2 will show how to display the bitmap.
14 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 1: Generating the Base Files With the Wizard
Generating the C++ Code and Resource Files

To generate the code for the application with the options that have just been declared:

1. Open the Generation menu in the standard toolbar.

2. Select Parameters. This displays the following window:

● Set Project root path to <WORKDIR>.

● Choose your platform.

● Click the Generate All button.

Note: It is assumed that you are working in the <WORKDIR> directory.

Note: The files generated are .cpp, .h, .odv, .dbm, and Makefile or .dsp files
depending on the platform you are working on.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 15

Conclusion

Step 1 is now complete. Using only the Application Framework Editor, a Bitmap Editor
Application has been created with the following features:

◆ Managing a Most Recently Used Files list.

◆ Handling MDI Frames.

If you compile, link, and execute the generated code, you get the following basic
application:

The following files have been generated:

◆ main.cpp - This code reads the configuration file (.odv) and launches the application.

◆ BitmapDocument.cpp and BitmapDocument.h - Implement the document class. The
following methods have been generated and need to be completed (see Step 2).

● Constructor and destructor.

● initializeDocument - Executed when calling New command.

● clean - Executed when destroying the document (typically, closing the last view
opened on the document).

Note: Depending on the platform on which you are running the application, you may have
to set the environment variable ILVPATH to ../data to allow the application to access its
data.
16 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 2: Implementing the Document and the View
● serialize - Executed when loading or saving a document from a file (typically,
Open and Save commands).

◆ BitmapView.cpp and BitmapView.h - Implement the view class. The following
methods have been generated and need to be completed (see Step 2).

● Constructor and destructor.

● initializeView - Executed upon creation of the document or when a new view to a
document is created.

● getBitmapDocument - Returns the BitmapDocument associated with the view.

◆ BitmapEditor.odv - Contains persistent information on the application configuration,
code generation, and compilation. This file may be reloaded into the Application
Framework Editor to add new commands (for example).

Step 2 will focus on the C++ code to be developed to implement the document and the view
of the Bitmap Editor application.

Step 2: Implementing the Document and the View

Now that the skeleton of the Bitmap Editor application is built (see “Step 1: Generating the
Base Files With the Wizard”), Step 2 shows how to implement a document. You will see
how to read a document or create a new one, as well as how to display the bitmap. The
classes generated and used are BitmapDocument, which derives from IlvDvDocument
and BitmapView, which derives from IlvDvFormView. Both classes have been generated
during Step 1 with the Application Framework Editor.

Implementing the BitmapDocument Class

This is the most important class of the application since it manipulates the application data
(the bitmap). All actions performed on the data will be done by this class. You will first learn
how to load a bitmap file, and then you will see how to create a new bitmap.

The BitmapDocument class owns as a member a pointer to an IlvBitmap object. The
IlvBitmap object is the internal data. This class is declared in BitmapDocument.h and
defined in BitmapDocument.cpp.

Reading a Bitmap

A document is read when:

◆ The user chooses File > Open from the application menu bar,

◆ or, when selecting the Open button from the toolbar,
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 17

◆ or, with the CTRL-O accelerator.

The association between the user action and the document action is automatically performed
by Application Framework.

When the user chooses File > Open, Application Framework calls the
BitmapDocument::readDocument method. This method will be overridden to implement
the actual work performed when reading a bitmap file.

IlvBoolean
BitmapDocument::readDocument(const IlvPathName& pathname)
{
 IlvDisplay* display = getDisplay();
 // Read the bitmap
 IlvBitmap* bitmap = display->readBitmap(pathname);
 // If the bitmap has not been read correctly
 if (!bitmap || bitmap->isBad()) {
 delete bitmap;
 IlvFatalError("Cannot load %s bitmap !", getPathName());
 return IlvFalse;
 } else {
 // The bitmap read by readBitmap is a shared bitmap.
 // Here you do not want to use a shared bitmap because the editor may
 // modify it. So, the name set by the call to IlvDisplay::readBitmap
 // is removed.
 bitmap->setName(0);
 setBitmap(bitmap);
 setPalette(display->defaultPalette());
 return IlvTrue;
 }
}

The Bitmap Editor application is now able to read bitmap files and to store the bitmap data
in the BitmapDocument class.

Creating a New Bitmap

The Bitmap Editor is also able to create new documents, that is, to create new bitmaps. In
order to simplify the tutorial, newly-created bitmaps are considered to have a size of

Note: The default implementation of the IlvDvDocument::readDocument method calls
the serialize virtual method. Another way to deal with I/O inside a document is to
override only the serialize method. However, the serialize method cannot be used
here because the bitmap must be read using its full path; the method used to read the
bitmap takes a string as parameter (IlvDisplay::readBitmap(const char*)),
whereas the serialize method takes a stream as parameter. See the Reference Manual
for more information on the IlvDvDocument::readDocument and
IlvDvDocument::serialize methods.
18 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 2: Implementing the Document and the View
128x128 pixels in this step. Step 4 will show how to introduce a dialog box that lets the user
set the bitmap dimensions.

A new document is created when the user performs one of the following actions:

◆ Selection of File > New from the menu bar

◆ Selection of the New button from the main toolbar

◆ CTRL+N accelerator

The association between the user action and the document creation is handled transparently
by Application Framework, which calls the BitmapDocument::initializeDocument
method. This method creates a new IlvBitmap object and stores it in the bitmap member
field of the Bitmap Editor using BitmapDocument::setBitmap:

IlvBoolean
BitmapDocument::initializeDocument(IlvAny data)
{
 if (!IlvDvDocument::initializeDocument(data))
 return IlvFalse;

 IlvDisplay* display = getDisplay();
 // Creates the bitmap with a default size of 128x128
 IlvDim width = 128;
 IlvDim height = 128;
 IlvBitmap* bitmap =
 new IlvBitmap(display, width, height, display->screenDepth());
 setBitmap(bitmap);

 // Initialize it with the display palette
 setPalette(display->defaultPalette());
 getPalette()->invert();
 bitmap->fillRectangle(getPalette(), IlvRect(0, 0, width, height));
 getPalette()->invert();

 return IlvTrue;
}

Implementing the BitmapView

In Step 1, the C++ code of a view called BitmapView that inherits from IlvDvFormView
was generated. The code for this view will now be written. The BitmapView class
implements a view in a BitmapDocument object. Its purpose is to display the bitmap and to
provide editing capabilities, such as changing the color of a pixel.

The requirements of the view to be implemented are:

◆ Display an IlvBitmap object

◆ Allow scrolling

There are several ways of displaying IlvBitmap objects in IBM ILOG Views. The
IlvZoomableIcon class is used to do so in this tutorial.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 19

All graphic objects must be placed in a container in order to be displayed. Since scrolling
capabilities are also needed, IlvSCGadgetContainerRectangle will be used (this class
owns a container and provides scrolling capabilities).

Now that the decision of how to display the bitmap has been taken, the object must be
inserted in the BitmapView class. As a subclass of IlvDvFormView, BitmapView can
read an IBM ILOG Views (.ilv) file, using the IlvDvFormView::setFileName method.
This file describes the graphic objects that will display the elements of the document.

The .ilv file is now created using IBM ILOG Views Studio. This .ilv file will contain an
IlvSCGadgetContainerRectangle (a view that scrolls) into which an
IlvZoomableIcon, which handles the bitmap, will be placed.

1. Launch ivfstudio.

2. Select File > New > Gadgets.

3. Select View Rectangles in the Gadgets palette.

4. Drag an IlvSCGadgetContainerRectangle and drop it in the gadgets buffer.

5. Click the Attachments mode icon.

6. Select the IlvSCGadgetContainerRectangle object.

7. Set the vertical and horizontal guides.

8. Double-click guides.

9. Set to zero all the distances and then click Apply.

10. Select File > Save As and specify <WORKDIR>/data/bitmapview.ilv.

The bitmapview.ilv file will now be integrated into the BitmapView class. The
initialization of a view is performed upon the BitmapDocument object instantiation through
the BitmapView::initializeView method. The code for this method reads the .ilv file
and connects the graphics objects to the document. The code for the BitmapView class is
defined in the BitmapView.cpp file.

void
BitmapView::initializeView()
{
 IlvDvFormView::initializeView();
 BitmapDocument* document = getBitmapDocument();
 if (document->getBitmap()) {
 // Load the file
 setFilename("bitmapview.ilv");
 // Retrieve the IlvSCGadgetContainerRectangle
 IlvSCGadgetContainerRectangle* rectangle =
 (IlvSCGadgetContainerRectangle*)getContainer()->
 getObject((IlvUInt)0);
 // Change the color of the clip view to 'black'
 IlvColor* color = getDisplay()->getColor("black");
 rectangle->getScrolledView()->getClipView()->setBackground(color);
20 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 2: Implementing the Document and the View
 // Add the zoomable icon
 IlvContainer* container = rectangle->getContainer();
 _icon = new IlvZoomableIcon(getDisplay(),
 IlvPoint(0, 0),
 document->getBitmap(),
 document->getPalette());
 container->addObject("Icon", _icon);
 container->fitToContents();
 }
}

Now that BitmapDocument and BitmapView are implemented, you can compile and
launch the Bitmap Editor application. You will be able to:

◆ Open one or several PNG, BMP, or JPG files.

◆ Have simultaneous views on a bitmap.

◆ Create a new bitmap (although the bitmap is empty for the moment).

The Bitmap Editor application at the end of Step 2 is shown in Figure 1.2:

Figure 1.2

Figure 1.2 The Bitmap Editor Application After Step 2
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 21

Step 3: Modifying and Saving a Bitmap

Editing capabilities will now be added to the Bitmap Editor application. The basic editing
function needed can change the color of a pixel in the BitmapDocument.

In IBM® ILOG® Views, editing is done through the use of interactor objects. Interactor
objects can be associated with a view or with a graphic object and can handle events to
perform actions on these objects.

In most Document/View applications, modifications to the document are done through their
view. The user performs some action on the view, which results in a modification of the
document through a command call. Once the command is executed, the document notifies
the views so that they can reflect the changes. The commands that are executed on a
document are kept in memory to enable Undo/Redo operations.

Implementing pixel edition requires the following steps:

◆ Defining a subclass of IlvDvCommand that changes the color of a pixel in the
BitmapDocument. In particular, the doIt and undo methods will have to be
implemented.

◆ Defining a subclass of IlvInteractor that is associated with the IlvZoomableIcon
object. This interactor will handle the user events on BitmapView and call the above
command.

◆ Adding notification on the document views.

◆ Enabling Undo/Redo with the Application Framework Editor.

BitmapView uses an IlvZoomableIcon object to display the BitmapDocument. In order
to edit a pixel of the document, you need to associate an IlvInteractor object that will
handle the mouse events and call the appropriate command.

Defining the DrawRectangleCommand

The DrawRectangleCommand class is a subclass of IlvDvCommand. It is declared in
drawcmd.h and defined in drawcmd.cpp. The purpose of the DrawRectangleCommand
class is to modify the document by drawing a filled rectangle in the document bitmap at the
specified location, using the specified color. Thus, from this command, you need to access:

◆ The document

◆ The rectangle that will be modified

◆ The palette used to draw into the bitmap

The constructor appears as follows:

DrawRectangleCommand::DrawRectangleCommand(BitmapDocument* document,
 const IlvPoint& point,
22 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 3: Modifying and Saving a Bitmap
 IlvDim size,
 IlvPalette* palette,
 const char* name)

The DrawRectangleCommand::doIt method is called when the command is executed
(See the IlvDvDocument::doCommand method). Before modifying the document, the
rectangle that will be modified to make the command undoable must be saved:

void
DrawRectangleCommand::doIt()
{
 // Save the initial bitmap
 _bitmap->drawBitmap(_document->getPalette(),
 _document->getBitmap(),
 _rect,
 IlvPoint(0,0));
 // Then draw in the document's bitmap
 _document->getBitmap()->fillRectangle(_palette, _rect);
 // Finally, refresh all the views connected to the document
 _document->refreshViews(_rect);
}

The refreshViews method will be described later in this step. Its purpose is to refresh all
the views connected to the document being modified.

The undo method simply restores the bitmap saved in the doIt method and then refreshes
the views.

void
DrawRectangleCommand::undo()
{
 // Restore the bitmap saved in _bitmap into the document's bitmap
 _document->getBitmap()->drawBitmap(_document->getPalette(),
 _bitmap,
 IlvRect(0,
 0,
 _bitmap->width(),
 _bitmap->height()),
 IlvPoint(_rect.x(), _rect.y()));
 // Then, refresh all the views connected to the document
 _document->refreshViews(_rect);
}

Defining the DrawBitmapInteractor

The DrawBitmapInteractor class is a subclass of IlvInteractor. It is declared in
drawinter.h and defined in drawinter.cpp. The purpose of the
DrawBitmapInteractor class is to handle interactions that occur in a BitmapView

Note: The point and size arguments are used to compute the rectangle that will be
modified by the command.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 23

object. When the mouse is clicked and dragged, it generates DrawRectangleCommands to
modify the document. Here is the code of the handleEvent method:

IlvBoolean
DrawBitmapInteractor::handleEvent(IlvGraphic* g,
 IlvEvent& event,
 const IlvTransformer* t)
{
 switch (event.getType()) {
 case IlvButtonDown:
 case IlvButtonDragged: {
 IlvPoint point(event.x(),event.y());
 if (t)
 t->inverse(point);
 _document->drawRectangle(point, 2, _document->getPalette());
 return IlTrue;
 }
default:
 return IlFalse;
 }
}

The interactor calls the BitmapDocument::drawRectangle method to draw in the
document bitmap. This method simply creates a DrawRectangleCommand and executes it:

void
BitmapDocument::drawRectangle(const IlvPoint& point,
 IlvDim size,
 IlvPalette* palette)
{
doCommand(new DrawRectangleCommand(this,
 point,
 size,
 palette,
 "drawRectangle"));
}

The interactor is set on the IlvZoomableIcon object that displays the document bitmap in
a BitmapView object. This is done in the BitmapView::initializeView method. The
code for this method is the same as in Step 2. The interactor is set at the end of the method
by calling:

_icon->setInteractor(new DrawBitmapInteractor(document));

Adding Notification on the Document Views

The DrawRectangleCommand method used to call the
BitmapDocument::refreshViews method to notify a change in the document (as seen
earlier in this step). This method will now be implemented:

void
BitmapDocument::refreshViews(const IlvRegion& region)
{
 notifyViews(IlvGetSymbol("BitmapHasChanged"), 0, ®ion);
}

24 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 3: Modifying and Saving a Bitmap
This method broadcasts the BitmapHasChanged message, giving the specified region as
argument. To catch the message, the BitmapView declares a method in its interface:

IlvDvBeginInterface(BitmapView)
 Method1(BitmapHasChanged, bitmapHasChanged, IlAny, region)
IlvDvEndInterface1(IlvDvFormView)

◆ The first argument of the Method1 macro is the message name.

◆ The second argument is the method of BitmapView that will be called when the
message BitmapHasChanged is received.

◆ The third argument is the type of the first argument passed when calling the
bitmapHasChanged method.

◆ The fourth argument is the name of the first argument passed when calling the
bitmapHasChanged method.

Here is the code of the bitmapHasChanged method:

void
BitmapView::bitmapHasChanged(IlAny region)
{
 IlvRegion redrawRegion(*(IlvRegion*)region);
 IlvContainer* container = IlvContainer::GetContainer(_icon);
 // Deal with the container transformer
 if (container->getTransformer())
 redrawRegion.apply(container->getTransformer());
 // Optimization: Clip using the visible size of the container
 IlvRect rect;
 container->sizeVisible(rect);
 redrawRegion.intersection(rect);
 // Then redraw the region
 container->bufferedDraw(redrawRegion);
}

Enabling Undo/Redo with Application Framework Editor

First the GUI needs to be modified to allow the user to execute the Undo and Redo
commands. This is done through the Application Framework Editor. Undo and Redo will be
added to the Edit menu of the menu bar, and to the document-specific toolbar. As the Undo
and Redo actions are predefined actions, it is not necessary to create new actions.

1. Launch the Application Framework Editor.

2. Open the BitmapEditor.odv file.

3. Click the Document Types icon located to the left:

Note: Only simple types are supported in the interface declaration. Since an IlvRegion is
needed to know what the modified region is, an IlAny (that is, a non-typed pointer) is
used.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 25

4. Click ToolBars:

5. Select Paste in the Edit menu located in the tree displaying the menu bar and toolbar.

6. Insert a new action:

A new action has been added.

7. Select Undo in the Commands section:
26 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 3: Modifying and Saving a Bitmap

8. Insert a new action.

9. Change the category to Editor.

10. Select Redo in the Commands section.

11. Remove the default editor actions not implemented in the editor: cut, copy, and paste.

From the Edit menu, select Cut and remove the command from the menu. Repeat this for
the other non-relevant actions.

12. Find the document-specific toolbar in the tree (the last toolbar in the menu).

13. Select the last item of the toolbar.

14. Repeat steps 6 to 11 for the document-specific toolbar and then continue with step 15.

15. Save the file.

It is now possible for the user to trigger the Undo and Redo actions. These actions are
automatically caught by the document.

You can compile and execute your application.

1. Launch the application.

2. Create a new bitmap.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 27

3. Click and drag the mouse into the created view. You should see your modifications.

4. Open the Edit menu of the menu bar. The Undo action should be available.

5. Click on the Undo action. The last point drawn should disappear.

Changing the Document Palette

Earlier in this step, the palette used to modify the document bitmap was the palette of the
document (as seen in the DrawBitmapInteractor::handleEvent method). One way to
change the drawing color is to modify the document palette. To do so, a new action must
first be added to our application—the ColorChooser action:

1. Launch the Application Framework Wizard.

2. Open the BitmapEditor.odv file.

3. Click on Actions:

4. Click New Action to add a new action.

5. Change the Command name of the created action to ColorChooser.

6. Change the description of the action.

7. Change the tooltip description.

8. In the Bitmaps tab, change the bitmap of the action to icrespan.png.

9. Click on Document types.

10. Click Toolbars in the tree:

11. Select one of the commands in the document-specific toolbar (MyCommands).

12. Add a new action to the toolbar.

13. Change the category to Project.

14. Change the created action to the ColorChooser action.

15. Save the document.
28 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 3: Modifying and Saving a Bitmap
The event must now be caught at the document level. To do this, the document interface is
modified as follows:

IlvDvBeginInterface(BitmapDocument)
 Action(ColorChooser, colorChooser)
IlvDvEndInterface1(IlvDvDocument)

This means that the BitmapDocument::colorChooser method will be called when the
ColorChooser action is triggered. Here is the code of the
BitmapDocument::colorChooser method:

void
BitmapDocument::colorChooser()
{
 IlvColorSelector dialog(getDisplay());
 IlvColor* color = dialog.get(IlTrue);
 if (color) {
 IlvPalette* palette = getPalette();
 setPalette(getDisplay()->getPalette(palette->getBackground(),
 color,
 palette->getPattern(),
 palette->getColorPattern(),
 palette->getFont(),
 palette->getLineStyle(),
 palette->getLineWidth(),
 palette->getFillStyle(),
 palette->getArcMode(),
 palette->getFillRule()));
 }
}

The method displays a color selector and then changes the document palette by calling the
BitmapDocument::setPalette method.

The Bitmap Editor application at the end of Step 3 is shown in Figure 1.3:
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 29

Figure 1.3

Figure 1.3 The Bitmap Editor Application After Step 3

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio

In this step, a dialog box designed with IBM® ILOG® Views Studio will be integrated
inside an Application Framework based application. To illustrate this point, the user will be
able to choose the size of the bitmap about to be created. The following dialog box will be
displayed each time the user asks for a new document:

Figure 1.4

Figure 1.4 The Sample Dialog Box

This step covers the following points:
30 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 4: Inserting Dialogs Done with IBM ILOG Views Studio
◆ Designing the Dialog Box Using IBM ILOG Views Studio

◆ Integrating the Dialog Box in the Bitmap Editor Application

Designing the Dialog Box Using IBM ILOG Views Studio

1. Launch IBM ILOG Views Studio. For more information on IBM ILOG Views Studio,
see the IBM ILOG Views Studio User’s Manual.

2. Select File > New > Gadget. This will create an empty gadget buffer.

3. Select the Gadgets item in the Drag and Drop palette:

4. Drag an IlvFrame from the objects palette and drop it into the gadget buffer.

5. Drag an IlvNumberField and set its name to Width. Inspect it and change its default
value to 128.

6. Drag another IlvNumberField and set its name to Height. Inspect it and change its
default value to 128.

7. Drag two IlvMessageLabel and change their labels; one to Width and the other to
Height.

8. Drag an IlvButton and change its label to OK. Also change its callback to apply. This
callback is a predefined callback for subclasses of IlvDialog objects. See
IlvDialog::apply for more information.

9. Drag an IlvReliefLine to separate the button from the number fields.

10. Arrange the objects as shown in Figure 1.4.

11. Save the file as bmpsize.ilv in the data directory of the Bitmap Editor application.

12. Select File > New > Make Default Application. This is needed to generate the C++ code.

13. Select Code > Panel Class Inspector.

14. Change the class name to BitmapSizeDialog.

15. Change the base class to IlvDialog.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 31

16. Change the directory headers and sources to match the directories of your Bitmap Editor
application.

17. Click Apply.

18. Select Code > Generate Panel Class to generate the code.

Two files have been generated: a header file (include/bmpsize.h) and a source file
(src/bmpsize.cpp).

19. Quit IBM ILOG Views Studio.

Integrating the Dialog Box in the Bitmap Editor Application

The code for the dialog box has been generated. It must now be integrated into the
application.

The dialog box will be displayed to let the user choose the size when creating a new bitmap.
Step 2 demonstrated how the BitmapDocument::initializeDocument method was
called to create a new document. This method must now be modified to display the dialog
box:

IlvBoolean
BitmapDocument::initializeDocument(IlvAny data)
{
 if (!IlvDvDocument::initializeDocument(data))
 return IlvFalse;

 IlvDisplay* display = getDisplay();
 // Pops-up a dialog to let the user choose the initial size
 BitmapSizeDialog dialog(display, "New Image", "New Image");
 dialog.moveToMouse(IlvCenter);
 dialog.wait();
 IlvDim width = dialog.getWidth()->getIntValue();
 IlvDim height = dialog.getHeight()->getIntValue();
 IlvBitmap* bitmap =
 new IlvBitmap(display, width, height, display->screenDepth());
 setBitmap(bitmap);

 // Initialize it with the display palette
 setPalette(display->defaultPalette());
 getPalette()->invert();
 bitmap->fillRectangle(getPalette(), IlvRect(0, 0, width, height));
 getPalette()->invert();
 return IlvTrue;
}

The bmpsize.cpp file must be added to the makefile or project in order to link the
application.

The Bitmap Editor application at the end of Step 4 is shown in Figure 1.5:
32 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 5: Adding Zoom Commands
Figure 1.5

Figure 1.5 The Bitmap Editor Application After Step 4

Step 5: Adding Zoom Commands

In this step, the Bitmap Editor application will be modified to allow zoom operations. The
following tasks must be carried out:

◆ Adding Zoom Actions Using the Application Framework Editor

◆ Modifying the BitmapView Class to Catch the New Actions

◆ Implementing Zoom in the BitmapView Class

Adding Zoom Actions Using the Application Framework Editor

1. Launch the Application Framework Editor.

2. Open the BitmapEditor.odv file.

3. Click Actions:

4. Click New Action to add a new action.
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 33

5. Change the Command name of the created action to ZoomIn.

6. Change the description of the action.

7. Change the tooltip description.

8. In the Bitmaps tab, change the bitmap of the action to iczoomm.png.

9. Click Document types

10. Click Toolbars in the tree:

11. Select one of the commands in the document-specific toolbar (MyCommands).

12. Add a new action to the toolbar.

13. Change the created action to the ZoomIn action.

Repeat the sequence to add the ZoomOut action (using the icuzoomm.png bitmap). Then,
save the document and quit the Application Framework Editor.

Modifying the BitmapView Class to Catch the New Actions

First, the interface of the view must be modified to declare the new actions:

IlvDvBeginInterface(BitmapView)
 Method1(BitmapHasChanged, bitmapHasChanged, IlAny, region)
 Action(ZoomIn, zoomIn)
 Action(ZoomOut, zoomOut)
IlvDvEndInterface1(IlvDvFormView)

Then, the BitmapView::zoomIn and BitmapView::zoomOut methods need to be
implemented.

Implementing Zoom in the BitmapView Class

The BitmapView::zoomIn and BitmapView::zoomOut methods are inlined and the
BitmapView::zoom method is called:

void zoomIn() { zoom((IlFloat)2.); }
void zoomOut() { zoom((IlFloat).5); }

The only method that needs to be implemented is the BitmapView::zoom method:

void
BitmapView::zoom(IlFloat factor)
{

34 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

Step 5: Adding Zoom Commands
 IlvContainer* container = IlvContainer::GetContainer(_icon);
 container->zoomView(IlvPoint(0,0), factor, factor);
 // Resize the container to fit the bitmap
 IlvRect bbox;
 container->boundingBox(bbox);
 container->resize(bbox.w()*factor, bbox.h()*factor);
}

It uses the IlvContainer::zoomView method to change the transformer used to draw the
IlvZoomableIcon that displays the document bitmap.

Then, the container of the icon is resized so that the scroll bars of the scrolled view are
updated.

The final Bitmap Editor application is shown in Figure 1.6:

Figure 1.6

Figure 1.6 The Final Bitmap Editor Application
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 35

36 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

I N D E X
Index

A

application parameters 11

B

Bitmap Editor
adding notification 24
adding zoom actions 33
adding zoom commands 33
application parameters 11
catching new actions 34
changing the document palette 28
configuring an options file 9
creating a new bitmap 18
creating an options file 9
defining DrawBitmapInteractor 23
defining DrawRectangleCommand 22
designing the dialog box 31
enabling Undo/Redo 25
generating the base files 9
generating the C++ code 15
generating the resource files 15
implementing the document and the view 17
inserting dialogs 30
integrating the dialog box 32
modifying and saving a bitmap 22
reading a bitmap 17
specifying the document class 13
specifying the document parameters 11

specifying the user interface 14
specifying the view 14

Bitmap Editor Application 7

C

C++
prerequisites 5

G

generating the base files 9

M

manual
naming conventions 6
notation 5
typographic conventions 5

N

naming conventions 6
notation 5

T

typographic conventions 5
I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L 53

54 I B M I L O G V I E W S A P P L I C A T I O N F R A M E W O R K 5 . 3 — T U T O R I A L

	IBM ILOG Views Application Framework V5.3 Tutorial
	About This Tutorial
	Tutorial 1 The Bitmap Editor Application
	Step 1: Generating the Base Files With the Wizard
	Creating and Configuring an Options File (.odv file)
	Generating the C++ Code and Resource Files
	Conclusion

	Step 2: Implementing the Document and the View
	Implementing the BitmapDocument Class
	Reading a Bitmap
	Creating a New Bitmap
	Implementing the BitmapView

	Step 3: Modifying and Saving a Bitmap
	Defining the DrawRectangleCommand
	Defining the DrawBitmapInteractor
	Adding Notification on the Document Views
	Enabling Undo/Redo with Application Framework Editor
	Changing the Document Palette

	Step 4: Inserting Dialogs Done with IBM ILOG Views Studio
	Designing the Dialog Box Using IBM ILOG Views Studio
	Integrating the Dialog Box in the Bitmap Editor Application

	Step 5: Adding Zoom Commands
	Adding Zoom Actions Using the Application Framework Editor
	Modifying the BitmapView Class to Catch the New Actions
	Implementing Zoom in the BitmapView Class

	Index
	A
	B
	C
	G
	M
	N
	T

