
IBM ILOG JViews TGO V8.6

Graphic components

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing graphic components...7
The network component...8

The equipment component..9

The table component..11

The tree component..12

Network component...13
Introducing the network component...14

Creating a network component: a sample..17

Configuring the network component...21
Introduction...22
Configuring a network component through a CSS file...23
Configuring a network component through the API..52
Loading a project file..54
Customizing the rendering of network nodes and links..55

Network component services...57
Introduction to network component services..59
Interacting with the network view..60
Interacting with the network objects...69
Positioning..72
Layout...75
Label layout..84

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Layers...89
Zooming...93
Background support...96
Filtering...110
Accepted and excluded classes...111
Setting a list of origins..112
Node factory...114
Link factory...115
Expansion strategy...116

Architecture of the network component...117
Class overview...118
The model..120
The view...123
The controller...125
The adapter..128

Equipment component..131
Introducing the equipment component...132

Creating an equipment component: a sample..135

Configuring the equipment component..139
Configuring an equipment component through CSS..140
Configuring an equipment component through the API...167
Customizing the rendering of equipment nodes and links..169
Loading a project file..170

Equipment component services..171
Interacting with the equipment view...173
Interacting with the equipment objects...183
Positioning..186
Relative positioning..187
Layout...193
Zooming...200
Background support...201
Filtering...202
Accepted and excluded classes...203
Setting a list of origins..204
Node factory...206
Link factory...207
Expansion strategy...208

Architecture of the equipment component...209
Class overview...210
The model..212
The view...214

G R A P H I C C O M P O N E N T S4

The controller...216
The adapter..219

Tree component..223
Introducing the tree component..224

Creating a tree component: a sample...226

Configuring the tree component..229
Introduction...230
Configuring the tree component through a CSS file...231
Configuring the tree component through the API...241
Loading a project file..243
Customizing the rendering of tree nodes...244

Tree component services...245
Introduction...247
Filling the tree with business objects..248
Interacting with the tree view..249
Interacting with the tree nodes...253
Handling the selection..255
Filtering the tree nodes...257
Accepted and excluded classes...258
Sorting the tree nodes..259
Controlling the display of objects as tree leaves...260
Setting a list of origins..261

Architecture of the tree component...263
Class overview...264
The model..268
The view...269
The controller...271
The adapter..272

Table component..275
Introducing the table component...276

Creating a table component: a sample..278

Configuring the table component..281
Introduction...282
Configuring the table component through a CSS file...283
Configuring the table component through the API...293
Loading a project file..295
Customizing column headers and rows..296

Table component services..297
Introduction to table component services...299
Selecting the accepted class of objects...300

G R A P H I C C O M P O N E N T S 5

Filling the table with business objects..301
Interacting with the table view..302
Interacting with the table cells..306
Handling the selection..308
Fitting to Contents..310
Resizing columns...311
Fixing columns in a table..312
Moving columns..313
Searching for a string in a table..314
Showing or hiding columns in a table...315
Sorting columns..316
Adding new columns to the table..317
Filtering rows..318
Excluding table rows...320

Architecture of the table component...321
Class overview...322
The model..327
The view...329
The controller...331
The adapter..333

Architecture of graphic components..335
The MVC architecture: an overview...336

The representation model..339
Overview...340
Representation objects...341
Predefined representation object classes..343

The graphic view...345
Introduction...346
Graphic objects..347
Graphic holders..349
Graphic view configuration...350

The controller...351
Introduction...352
Interacting with the graphic components..353

The adapter..358

Using JViews products in Eclipse RCP applications..360

Index..365

G R A P H I C C O M P O N E N T S6

Introducing graphic components

Introduces each graphic component provided by IBM® ILOG® JViews TGO. These
components are ready-to-use graphic components that let you represent business objects
and data as a network of nodes and links (the network component),as items of equipment
composed of cards, ports, and LEDs (the equipment component), as a tree structure (the
tree component), or in a two-dimensional table format (the table component).

In this section

The network component
Introduces the network component, which shows network nodes interconnected by links.

The equipment component
Introduces the equipment component, which displays items of equipment such as cards,
shelves, ports, and LEDs.

The table component
Introduces the table component, which displays data in a two-dimensional table format.

The tree component
Introduces the tree component, which displays data in a hierarchical representation.

© Copyright IBM Corp. 1987, 2009 7

The network component

The network component is based on the IBM® ILOG® JViews grapher. It shows network
nodes interconnected by links. The network component has support for editing the network,
navigation, automatic layout of nodes and links, and background maps. It also supports
pop-up menus and tooltips.

Network component

The network component can be configured either through a CSS file, where you define all
its associated settings (map displayed in the background, display of toolbar or overview
window, zoom policy, and so on), or through an API.

G R A P H I C C O M P O N E N T S8

The equipment component

Like the network component, the equipment component is based on IBM® ILOG® JViews.
It allows you to display items of equipment such as cards, shelves, ports, and LEDs. It also
supports pop-up menus and tooltips.

Equipment component

Like the network component, the equipment component can be configured either through
a CSS file, where you define all its associated settings (map displayed in the background,
toolbar, and so on), or through an API.

G R A P H I C C O M P O N E N T S 9

JViews TGO includes an equipment editor, a graphic user interface, that allows you to build
an equipment component in a very easy and user-friendly manner.

The equipment editor

G R A P H I C C O M P O N E N T S10

The table component

The table component is based on the Swing table component. It allows you to display data
in a two-dimensional table format. Business objects are displayed in table rows, while their
associated properties appear in separate columns.

The table component features smart resizing modes, multiple selection, and sorting, as well
as filtering and searching capabilities. It also supports pop-up menus and tooltips.

Table component

G R A P H I C C O M P O N E N T S 11

The tree component

The tree component is based on the Swing tree component. It allows you to display data in
a hierarchical representation. It features an efficient tiny look and feel, smart selection
modes, sorting capabilities, as well as load-on-demand.

Tree component

G R A P H I C C O M P O N E N T S12

Network component

Describes the network component, which is one of the four graphic components supplied
with IBM® ILOG® JViews TGO (JTGO). This component displays telecommunication networks
in the form of topological or geographical views, depending on how you want to view them.

In this section

Introducing the network component
Describes the network component, which allows you to display data in the form of a graph
representing nodes connected by links on top of a background map.

Creating a network component: a sample
Details the steps required to create a sample network component.

Configuring the network component
Identifies the rendering information necessary to display a network.

Network component services
Describes the services that are available for a network: view services, adapter services, and
handler services.

Architecture of the network component
A graphic component encapsulates a model, a view, and a controller. The network component,
like all the other graphic components, is based on the MVC architecture, which means that
it has a model, a view and a controller associated with it. For a general introduction to the
MVC architecture, see Architecture of graphic components. That section describes the
classes and features of the network component that are specific to each module of the MVC
architecture, and also explains the role of the adapter.

© Copyright IBM Corp. 1987, 2009 13

Introducing the network component

The network component is based on the Swing network component. It allows you to display
data in the form of a graph representing nodes connected by links on top of a background
map. The nodes may appear collapsed or expanded to reveal their child objects.

The network component supports editing, navigation, automatic layout of nodes and links,
and background maps (for geographical displays). It can display all kinds of JViews TGO
objects: network elements, links, groups, polylines, off-page connectors, cards, card carriers,
shelves, ports, LEDs.

The network component is connected to a data source, from which it obtains the business
objects to be displayed. By default, the network displays all the objects contained in the data
source. However, it is also possible to restrict the contents displayed by:

♦ selecting the root nodes to be shown,

♦ applying a filter,

♦ specifying the business classes to be accepted or excluded by the component,

G R A P H I C C O M P O N E N T S14

♦ specifying whether nodes are expandable or not (load on demand).

Objects that do not have a parent are displayed as root nodes, while the others are displayed
under their parent.

The network component offers the following notable features:

♦ Filtering capabilities

The network component allows you to filter the nodes that are displayed. That is, the
business objects present in the attached data source are only displayed if they are accepted
by the current filter.

♦ Interaction support

You can interact with the network view as a whole as well as with individual objects.

♦ Load on demand

The network component supports load on demand for the business objects to be displayed.
This means that the graphic representation of a given business object is only created
when its parent object is expanded through code or through user interaction. By default,
load on demand is customized through the CSS property expansion (see Customizing
the expansion of business objects). More advanced customization can be performed at
the adapter level (see Expansion strategy).

♦ Layout capabilities

You can perform node, link and label layouts.

♦ Zooming capabilities

There are three zoom policies: physical, logical, and mixed.

♦ Background support

The network component allows you to display maps in the background.

The network component is implemented by the class IlpNetwork, which is a Swing
JComponent that can be directly inserted into a panel (JPanel).

IlpNetwork provides the API for the most common uses of the network component, such
as:

♦ setting or retrieving the associated data source: getDataSource(), setDataSource(ilog.
cpl.datasource.IlpDataSource)

♦ accessing andmodifying the selection: getSelectionModel(), setSelectionModel(ilog.
cpl.network.IlpNetworkSelectionModel), addSelectionObject(ilog.cpl.model.
IlpObject), removeSelectionObject(ilog.cpl.model.IlpObject), clearSelection(),
isObjectSelected(ilog.cpl.model.IlpObject), getSelectedObject(),
getSelectedObjects()

♦ setting or retrieving the view interactor: setViewInteractor(ilog.cpl.interactor.
IlpViewInteractor), getViewInteractor()

♦ changing the root nodes of the network through the data source adapter: getAdapter()

♦ filtering the network nodes: setFilter(ilog.cpl.util.IlpFilter), getFilter()

G R A P H I C C O M P O N E N T S 15

IlpNetwork also acts as a façade for a number of lower-level components that it contains.
These components provide more detailed APIs and advanced services. They are described
in Architecture of the network component.

The information presented in this section is based on samples of typical network applications.

G R A P H I C C O M P O N E N T S16

Creating a network component: a sample

The network component to be created is shown in the following figure.

A Styled Network

This example describes the steps for creating a frame as a network container, creating an
instance of IlpNetwork, creating a data source and connecting it to the network, and finally
reading in the network data.

How to create a basic network component
1. Create a frame to contain the network.

// Create a frame.
JFrame frame = new JFrame("ILOG JTGO network sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

G R A P H I C C O M P O N E N T S 17

2. Create the network component.

IlpNetwork network = new IlpNetwork(networkDescriptionFileName,context);
frame.add(network);

You need to create a new instance of a network and make sure that the appropriate
configuration is assigned. The network configuration is normally read in from a CSS
file. You ensure that the network configuration file is taken into account and parsed by
passing the URL and context or, as in the example, by passing the filename and context
as arguments of IlpNetwork. You then add the network component to the frame.

For more information on how to create the network configuration, see Configuring a
network component through a CSS file

3. Create the data source and connect it to the network component.

// Connect the data source to the network component.
IltDefaultDataSource dataSource = new IltDefaultDataSource(context);
network.setDataSource(dataSource);

The data source holds the business objects that will be converted into representation
objects by the network adapter through the data source API.

4. Read in an XML file, network.xml, that contains the network nodes and links.

dataSource.parse("network.xml");

The default data source creates the business objects by parsing an XML file or stream
where the objects are described, as shown.

You can create your own data sources from a file or database, or even create complex
data sources based on proprietary object definitions.

How to add business objects to the data source for a network
component through an XML file
The easiest way to populate a network is to read an XML data file into its data source.

The business object IDs must be unique within the given network.

The following XML code shows how to add a link.

<addObject id="1004035002697 60">
<class>
ilog.tgo.model.IltLink

</class>
...

</addObject>

For information on how to define an XML file, refer to Defining the business model in XML
.

G R A P H I C C O M P O N E N T S18

How to add business objects to the data source for a network
component through the API
You can create business objects and insert them in the data source through the API, although
this process is slower and less dynamic than reading an XML file. The following example
shows how to insert an JViews TGO network element identified by its name, type and status
into the data source as a node business object identified as node1.

// Put some objects into the datasource.
IlpObject node1 =

new IltNetworkElement("washington",IltNetworkElement.Type.NE,
new IltObjectState());

dataSource.addObject(node1);

G R A P H I C C O M P O N E N T S 19

G R A P H I C C O M P O N E N T S20

Configuring the network component

Identifies the rendering information necessary to display a network.

In this section

Introduction
Introduces the different ways to configure network display.

Configuring a network component through a CSS file
Describes display customization using CSS.

Configuring a network component through the API
Describes how to use the API to configure the network view and the network adapter of a
network component.

Loading a project file
Describes how to load a project file that combines rendering style sheets and a data source.

Customizing the rendering of network nodes and links
Provides links to further information on rendering network nodes and links.

G R A P H I C C O M P O N E N T S 21

Introduction

To display a network, you need rendering information. This information defines how to
display network data.

You can configure a network either through a CSS configuration file or through the API, the
easiest and preferred way being the CSS configuration. You also have the possibility to load
a project file which combines the CSS configuration and the network data.

A network configuration relates to one network only. It defines the behavior and properties
of the network component as well as the behavior and some properties of any representation
object created in the network model. (See The model for more information about features
like representation objects and network model.)

You can customize the network adapter (filters, node and link factories, for example), the
network view (toolbar, background, interactors, for example) and the network objects.

G R A P H I C C O M P O N E N T S22

Configuring a network component through a CSS file

You can customize the following features in a CSS file:

♦ Network view

● Toolbar visibility

● Toolbar buttons

● Overview window

● View interactor

● Zoom policy

● Node layout

● Link layout

● Label layout

● Background maps

● Position converter

♦ Network Adapter

● Expansion

● Filtering

● Origin

● Node factory

● Link factory

● Accepted classes

● Excluded classes

How to load a CSS file in a network component
The network configuration can be split across several CSS files. The method setStyleSheets
(int, java.lang.String) accepts several CSS filenames.

There are three ways to apply a CSS configuration to a network component, depending on
whether you have one or several configuration files:

♦ If you have a single configuration file and you do not want to inherit the settings from
the default configuration file, pass the CSS configuration filename to the constructor of
IlpNetwork as follows:

G R A P H I C C O M P O N E N T S 23

networkComponent = new IlpNetwork(myConfigurationFile);

If no CSS file is specified, the network component uses the default network configuration
file, that is, ilog.cpl.network.defaultConfiguration.css from the jviews-tgo-all.
jar file.

♦ If you have one or several configuration files to be applied, you can specify a project file
that lists the style sheets and the data file to be loaded in the component (see Loading a
project file). The project file will be as follows:

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd"
style="configurationFile1.css,configurationFile2.css">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

fileName="network.xml"/>
</tgo>

If the settings in two of the CSS files disagree, the effect depends on the order of the
filenames in the list: the last file mentioned takes precedence over the first file.

♦ If you have several configuration files to be applied together, use the setStyleSheets
(int, java.lang.String) method as follows:

networkComponent = new IlpNetwork();
networkComponent.setStyleSheets(
new String[] { myConfigurationFile1, myConfigurationFile2 });

or, if you want to inherit and extend the settings from the default configuration file, use
setStyleSheets as follows:

networkComponent = new IlpNetwork();
networkComponent.setStyleSheets(
new String[] {
IlpNetwork.DefaultConfigurationFileName,
myExtraConfigurationFile

});

If the settings in two of the CSS files disagree, the effect depends on the order of the
filenames in the list: the last file mentioned takes precedence over the first file.

How to configure a network component in a CSS file
The following code represents an example of configuring a network in CSS. It is based on
the CSS files located in <installdir> /samples/network/styling where <installdir> is
the directory where you have installed JViews TGO.

The configuration in CSS is organized as a set of rules that define properties.

// ***

G R A P H I C C O M P O N E N T S24

// * COMPONENT CUSTOMIZATION *
// * *
// * This section is enclosed by *
// * Network { *
// * } *
// * and specifies which feature will be customized: *
// * - toolbar (Network Component's toolbar) *
// * - view (Scrollbar configuration) *
// * - overview (Presence of an overview) *
// * - interactor (Default view interactor) *
// * - zooming (Zoom policy set in the view) *
// * - graphlayout (Layout for the nodes) *
// * - linklayout (Layout for the links) *
// * - labellayout (Layout for the labels) *
// * - positioning (Position policy for objects) *
// * - backgrounds (Backgrounds set in the view) *
// * - adapter (Network adapter customization) *
// ***
Network {

toolbar: true;
interactor: true;
zooming: true;
adapter: true;

}

For detailed information about the CSS syntax, refer to Introducing cascading style sheets.

The Network rule
This rule specifies Boolean flags that indicate whether each customizable property is present.
For example, customization of the property GraphLayout is not taken into account unless
graphlayout: true; is declared in the Network rule.

This feature provides powerful cascading possibilities of CSS files. Thus, you can define
GraphLayout customizations in a default CSS file and then turn them on or off in another
CSS file.

The following properties are supported in the Network rule. You will find detailed
documentation for each of these properties in the IBM® ILOG® JViews TGO Java™ API
Reference Documentation, package ilog.cpl.network.renderer.

G R A P H I C C O M P O N E N T S 25

CSS properties of the network view
Rule TypeProperty

Adapteradapter

ToolBartoolbar

Viewview

Overviewoverview

Interactorinteractor

Zoomingzooming

GraphLayoutgraphLayout

LinkLayoutlinkLayout

LabelLayoutlabelLayout

Backgroundsbackgrounds

Positioningpositioning

The ToolBar rule
This rule controls the toolbar.

The property enabled is a Boolean property, with default value true. It controls whether
the toolbar is visible or not.

The property external is a Boolean property, with default value false. It specifies whether
the placement and visibility of the toolbar are managed by user code instead of internally
by the network component.

Buttons can be added through the syntax button[i]: @+ButtonId; followed by the
customization setting of the button with the given ButtonId.

A button has a mandatory property, actionType. This property specifies the action triggered
by the button or a separator that is added to the toolbar. The value can be:

♦ a short name, such as Select, used for predefined actions, or

♦ the name of a subclass of AbstractButton with a constructor that takes an instance of
IlpViewsView as argument, or

♦ the Separator short name to indicate that a separator should be placed in the specified
position.

How to add a toolbar separator for the network component
You can add toolbar separators in specified positions of the network component toolbar.
When configuring the network component toolbar, you can specify the position where a
separator should be placed by using the predefined button action called Separator. This
button action supports an optional property, dimension, which allows you to specify the
dimensions of the separator in the toolbar.

The following example shows how to achieve this result:

G R A P H I C C O M P O N E N T S26

ToolBar {
enabled: true;
button[0]: @+SelectButton;
button[1]: @+Separator;
button[2]: @+PanButton;

}
Subobject#Separator {
actionType: "Separator";
dimension: "20,10";

}

The predefined values for the actionType property are the following:

G R A P H I C C O M P O N E N T S 27

Predefined values of the actionType property
DescriptionBean ClassactionTypeValues

Allows you to zoom in the
view

IlpNetworkZoomInButtonZoomIn

Allows you to zoom out of
the view

IlpNetworkZoomOutButtonZoomOut

Allows you to go back to
the previous zoom level

IlpNetworkZoomBackButtonZoomBack

Allows you to reset the
zoom level to the original
level

IlpNetworkZoomResetButtonZoomReset

Allows you to specify a
rectangular area on which
to zoom

IlpNetworkZoomViewButtonZoomView

Allows you to fit the
contents of the view to the
size of the view

IlpNetworkFitToContentsButtonFitToContents

Allows you to recenter the
view

IlpNetworkScrollToContentsButtonScrollToContents

Allows you to pan the viewIlpNetworkPanButtonPan

Allows you to select and
move objects

IlpNetworkSelectButtonSelect

Allows you to create linksIlpNetworkMakeLinkButtonMakeLink

Allows you to create linear
groups

IlpNetworkMakeLinearGroupButtonMakeLinearGroup

Allows you to create
polygonal groups

IlpNetworkMakePolyGroupButtonMakePolyGroup

Allows you to create
rectangular groups

IlpNetworkMakeRectGroupButtonMakeRectGroup

Allows you to edit the
shape of groups

IlpNetworkEditGroupButtonEditGroup

Allows you to edit labelsIlpNetworkEditLabelButtonEditLabel

Allows you to edit
equipment objects

IlpNetworkEditEquipmentObjectButtonEditEquipmentObject

Allows you to trigger the
label layout

IlpNetworkLabelLayoutButtonLabelLayout

A button can have a property permanent. This is a Boolean property, with default value true.
For interactor buttons, this property denotes whether the interactor remains attached after
it has performed its action.

A button can have a property name. This property specifies the name by which other elements
in the file refer to the button. The default name is the short name used as actionType.

G R A P H I C C O M P O N E N T S28

A button can have additional properties, corresponding to Bean properties of the Java™
class. For example, the Select button has the properties multipleSelectionMode,
moveAllowed, dragAllowed, editingAllowed, moveThreshold, opaqueMove,
showingMovingObject, opaqueDragSelection, opaqueResize, opaquePolyPointsEdition,
multipleSelectionModifier, selectionModifier, which are documented in the class ilog.
cpl.network.action.toolbar.IlpNetworkSelectButton.

An interactor button can have key or gesture actions attached to it. These actions are
triggered by specific keystrokes or gestures while the interactor is active. They are added
through the syntax action[i]: @+ActionId; followed by a customization setting for the
action.

An action customization has the mandatory property class, which specifies the Java class
of the javax.swing.Action object. Bean properties of this class are also customizable and
the properties key and gesture can be set to specify when the action is to be executed.
These two properties are not used in combination. For example, if you specify:

key: "control A";
gesture: "BUTTON1_CLICKED";

the action will be executed either when the key sequence ‘control-A’ is typed, or when the
mouse BUTTON1 is clicked. To define the property gesture, specify one of the predefined
user gestures defined in class IlpGesture. To define the property key, specify a string that
will be converted to a keystroke by the type converter (IlpTypeConverter).

The following predefined actions are available:

♦ IlpSelectAllObjectsAction

♦ IlpRemoveSelectedObjectsAction

An interactor can have a pop-up menu factory associated with it. This factory can be specified
using the property popupMenuFactory. The value of this property should be a bean that
implements the interface IlpPopupMenuFactory. For example,

Subobject#SelectButton {
actionType: "Select";
popupMenuFactory: @+popupMenuFactory;

}

Subobject#popupMenuFactory {
class: 'CustomPopupMenuFactory';

}

In this example, the value of the property "popupMenuFactory" is a bean that is defined by
the class CustomPopupMenuFactory. This class should implement the interface
IlpPopupMenuFactory.

For more information on configuring the toolbar in a network view, refer to the class
IlpToolBarRenderer.

How to add a predefined toolbar button to the network component
JViews TGO provides a list of predefined toolbar buttons usable in the network component
(see Predefined values of the actionType property).

G R A P H I C C O M P O N E N T S 29

The following example shows how to add a predefined button that enables the select
interactor. When this interactor is enabled, you can customize actions, pop-up menus and
interactor properties as illustrated here:

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;
popupMenuFactory: @+popupMenuFactory;

}

Subobject#popupMenuFactory {
class: 'CustomPopupMenuFactory';

}

Subobject#action0 {
key: "control A";
class: 'ilog.cpl.graph.action.IlpSelectAllObjectsAction';

}

How to add a custom toolbar button to the network component
To add your own toolbar button, you need to create a new action class that inherits from
IlpNetworkInteractorAction and contains a constructor that takes an IlpViewsView as
parameter.

public class CustomButtonAction extends IlpNetworkInteractorAction {

public CustomButtonAction(IlpViewsView view) {
super(view);
// Do any needed initialization
// Define your own view interactor that will be active when the button

is
selected

// in the toolbar
IlpViewsViewInteractor interactor = new IlpViewsViewInteractor();
// Register the interactor in this action
setIlpInteractor(interactor);

}
}

Then, you need to register this new button in your component configuration, as follows:

ToolBar {
enabled: true;
button[0]: @+MyButton;

G R A P H I C C O M P O N E N T S30

}

Subobject#MyButton {
actionType: 'CustomButtonAction';
toolTipText: "Custom";
icon: @+customIcon;

}
Subobject#customIcon {
class: 'javax.swing.ImageIcon';
image: '@|image("custom.png")';

}

The custom action will be encapsulated in an IlpNetworkInteractorButton, and you will
be able to customize the properties of this button as with the predefined buttons. For example,
you can customize the following:

♦ name

♦ usingObjectInteractor

♦ popupMenuFactory

♦ actions associated with gestures and keystrokes

The View rule
This rule controls the view.

You can customize the following properties of the view:

View properties
DescriptionDefault ValueTypeProperty Name

Defines the
policy for the

IlvJScrollManagerView.
HORIZONTAL_SCROLLBAR_AS_NEEDED

inthorizontalScrollBarPolicy

visibility of the
horizontal
scrollbar

Defines the
policy for the

IlvJScrollManagerView.
VERTICAL_SCROLLBAR_AS_NEEDED

intverticalScrollBarPolicy

visibility of the
vertical
scrollbar

Defines
whether the

falsebooleankeepingAspectRatio

view keeps
the aspect
ratio when
zooming

Specifies the
minimum

0doubleminZoomXFactor

zoom factor

G R A P H I C C O M P O N E N T S 31

DescriptionDefault ValueTypeProperty Name

allowed on the
X (horizontal)
axis of the
view

Specifies the
maximum

Double.MAX_VALUEdoublemaxZoomXFactor

zoom factor
allowed on the
X (horizontal)
axis of the
view

Specifies the
minimum

0doubleminZoomYFactor

zoom factor
allowed on the
Y (vertical)
axis of the
view

Specifies the
maximum

Double.MAX_VALUEdoublemaxZoomYFactor

zoom factor
allowed on the
Y (vertical)
axis of the
view

Defines
whether the

truebooleanwheelZoomingEnabled

view zooms in
response to
moving the
mouse wheel
while pressing
the Control
key

Defines
whether the

truebooleanwheelScrollingEnabled

view scrolls in
response to
moving the
mouse wheel

The following CSS sample shows how to customize the view:

View {
horizontalScrollBarPolicy: AsNeeded;
verticalScrollBarPolicy: Never;

G R A P H I C C O M P O N E N T S32

keepingAspectRatio: true;
}

For more information on configuring a network view, refer to the class IlpViewRenderer.

The Overview rule
This rule controls the overview window.

The property enabled controls the visibility of the overview window. The default value is
false.

The following CSS sample shows how to customize the overview:

Overview {
enabled: true;

}

For more information on configuring the overview window in a network view, refer to the
class IlpOverviewRenderer.

The Interactor rule
This rule controls the interactor associated with the view.

You can customize the following properties of the interactor:

Interactor properties
DescriptionDefault

Value
TypeProperty Name

Specifies the name of a toolbar button
that activates an interactor. This button

noneStringname

is activated at startup. Its interactor
becomes the initial view interactor, as
well as the default view interactor when
another interactor stops its interaction.
This property is only considered when
the view has a toolbar configured and
enabled.

Specifies the interactor instance that
becomes the initial view interactor, and

noneIlpViewsViewInteractorviewInteractor

the default view interactor when another
interactor stops its interaction.

How to configure a network interactor in a CSS file
Prior to configuring the network view interactor, you need to configure the network
component so that the interactor configuration is enabled:

Network {

G R A P H I C C O M P O N E N T S 33

interactor: true;
}

After that, you can customize the interactor property in the Interactor rule as illustrated by
the next code extract. for details about the CSS syntax, refer to The CSS specification.

How to set the default view interactor from the toolbar of the
network component
You can customize the default view interactor to be one of the interactors present in the
toolbar configured for the network component. In this case, the toolbar button is identified
when the network component is configured, and it is activated at startup. This interactor
becomes the initial view interactor, and the default view interactor when another interactor
stops its interaction. This configuration is achieved through the property name, whose value
must be the name of one of the configured toolbar buttons.

The following CSS extract configures the network view to use the Select toolbar button as
the default view interactor:

Interactor {
name: "Select";

}

How to set the default view Interactor when the toolbar is disabled
in the network view
When the toolbar is disabled, you can no longer specify the default view interactor by using
a toolbar button name, as in the example above. However, you can specify the view interactor
directly in CSS, as follows:

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';

}

The behavior of the view interactor is determined by the actions that are associated with
user gestures and keystrokes. This behavior can also be customized through CSS. You can
also configure a pop-up menu to be displayed in the network view. For more information
about interactor customization, refer to Interacting with the network view and Interacting
with the network objects.

When the interactor renderer is enabled, you can also customize objects interactors using
property interactor. For further information, refer to IlpInteractorRenderer .

The Zooming rule
This rule controls the zoom policy.

G R A P H I C C O M P O N E N T S34

The mandatory property type specifies the type of zoom. The possible values are Logical,
Physical, or Mixed. Each zoom policy may have additional properties that you can also set
using CSS:

♦ Logical zoom policy (see IltLogicalZoomPolicy)

Logical zoom property
DescriptionDefaultTypeProperty Name

Specifies an additional zoom factor that is implicitly added
to the zoom transformer of the view.This property is useful
when printing with non standard transformers.

1doubleadditionalZoom

♦ Physical zoom policy (see IltPhysicalZoomPolicy)

Physical zoom properties
DescriptionDefaultTypeProperty Name

Specifies a list of decoration names that are
customized at the zoom policy level. See

nullString[]decorationNames

IltGraphicElementName for a list of decoration
names that can be used.

Specifies a list of thresholds, one for each decoration
name customized with property decorationNames.

nulldouble[]visibilityThresholds

These thresholds indicate the zoom level below which
the decorations become invisible in the view. It allows
you to hide decorations as the user zooms out in the
view.

♦ Mixed zoom policy (see IltMixedZoomPolicy)

Mixed zoom properties
DescriptionDefaultTypeProperty Name

Specifies the zoom threshold when the physical
zoom or the logical zoom should be used

1doublezoomThreshold

Specifies an additional zoom threshold that is
applied to expanded subnetworks

1doublesubnetworkZoomFactor

Specifies a list of decoration names that are
customized at the zoom policy level. See

nullString[]decorationNames

IltGraphicElementName for a list of decoration
names that can be used.

Specifies a list of thresholds, one for each
decoration name customized with property

nulldouble[]visibilityThresholds

decorationNames.These thresholds indicate the
zoom level below which the decorations become

G R A P H I C C O M P O N E N T S 35

DescriptionDefaultTypeProperty Name

invisible in the view. It allows you to hide decorations
as the user zooms out in the view.

How to customize the zoom policy in a network component
The following CSS sample shows how to customize the zoom policy in a network view:

Zooming {
type: "Mixed";
zoomThreshold: 1.0;
subNetworkZoomFactor: 1.0;

}

For more information on configuring the zoom behavior in a network view, refer to the class
IlpZoomingRenderer.

How to configure the visibility of decorations for a specific network
component
JViews TGO provides three predefined zoom policies that you can use directly in the network
component. For more information, see Zooming. When using the physical or the mixed zoom
policy, decorations may become invisible as the user zooms out in the view. By default, this
configuration is global in the application. However, you may need to specify the visibility
threshold for a specific view. This feature is supported by properties decorationNames and
visibilityThresholds. Property decorationNames specifies each decoration that is
configured for the view (see IltGraphicElementName for the list of decoration names that
can be customized). Property visibilityThresholds specifies, for each decoration name,
the visibility threshold below which the decoration becomes invisible. This configuration is
illustrated by the following example:

Zooming {
type: "Mixed";
decorationNames[0]: Name;
decorationNames[1]: AlarmBalloon;
decorationNames[2]: AlarmCount;
decorationNames[3]: Plinth;
visibilityThresholds[0]: 0.5;
visibilityThresholds[1]: 0.8;
visibilityThresholds[2]: 0.5;
visibilityThresholds[3]: 0.5;

}

The GraphLayout rule
This rule allows you to control the automatic node layout in the view and to configure
nonautomatic node layouts. Nonautomatic node layouts can only be executed through the
API. For more details, see Layout.

G R A P H I C C O M P O N E N T S36

How to control the automatic node layout in the network view
Automatic node layout is configured through the property class. This property specifies
the graph layout class, a subclass of IlvGraphLayout. Additional Bean properties can be
specified, depending on the class.

The following CSS sample shows how to customize the graph layout:

GraphLayout {
class:
'ilog.views.graphlayout.uniformlengthedges.IlvUniformLengthEdgesLayout';

respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

The graph layout is always a subclass of IlvGraphLayout which supports the
"preserveFixedNodes" property. This property allows you to switch the support of fixed
nodes on or off. You can set a node as fixed in the business object customization.

If a graph layout is set and supports fixed nodes, a link layout is required when links
are connected to the fixed nodes.

Note:

The properties of each layout algorithm are fully explained in the IBM® ILOG® JViews
Diagrammer Using Graph Layout Algorithms documentation.

The properties of the IlvGraphLayout subclasses conform to the following JavaBeans™
convention: if a class has a pair of methods called setMyProp (with a single parameter) and
getMyProp (without parameters), then you can set the property myProp in the style sheet.

If the value of the property is an enumeration of integer values defined by static member
variables of the class, then you can use the name of the variable alone, or the variable

Note:

name prefixed by the class name alone, or the variable name prefixed by the fully
qualified class name. For example, the following declarations are all valid:

globalLinkStyle: "ORTHOGONAL_LINKS";

globalLinkStyle: "IlvHierarchicalLayout.ORTHOGONAL_LINKS";

globalLinkStyle: "ilog.views.graphlayout.hierarchical.
IlvHierarchicalLayout.ORTHOGONAL_LINKS";

How to configure multiple node layouts in a network view
The Graph Layout rule allows you to configure multiple node layouts, and to define the node
layout to be used automatically in the view. Multiple node layout configuration is achieved
through the properties layouts and autoLayoutIndex, as illustrated below:

G R A P H I C C O M P O N E N T S 37

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchicalLayout;
layouts[2]: @+springEmbedderLayout;
autoLayoutIndex: 1;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;

}

Subobject#springEmbedderLayout {
class: 'ilog.views.graphlayout.springembedder.IlvSpringEmbedderLayout';
respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

In this use case, three node layouts are configured for the view: IlvTreeLayout,
IlvHierarchicalLayout and IlvSpringEmbedderLayout. The hierarchical layout is configured
to be performed automatically when the contents of the view changes. This configuration
is achieved by specifying the value of property autoLayoutIndex as the index of the
hierarchical layout defined through the layouts property. The other node layouts can be
performed on demand using the API (see IlpGraphView.performAttachedLayout).

How to configure nonautomatic node layouts in the network
component
If you are not interested in automatic node layout, you can still configure multiple node
layouts in CSS. To have only nonautomatic node layouts, set property autoLayoutIndex to
-1, as illustrated below:

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchicalLayout;
layouts[2]: @+springEmbedderLayout;
autoLayoutIndex: -1;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {

G R A P H I C C O M P O N E N T S38

class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;

}

Subobject#springEmbedderLayout {
class: 'ilog.views.graphlayout.springembedder.IlvSpringEmbedderLayout';
respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

How to specify a different node layout for each subnetwork
When the node layout is configured for a view, it is applied to the view and to all the
subnetworks displayed in this network view.

However, you can specify different node layouts for subnetworks. The node layouts of
subnetworks are configured in CSS using the same properties as for the view configuration
(layouts and autoLayoutIndex).

When you configure the node layout for a specific subnetwork, you must declare the CSS
selector with a specific pseudoclass that identifies the graph layout renderer. The pseudoclass
must be graphLayoutRenderer, as illustrated below:

GraphLayout {
layouts[0]: @+treeLayout;
autoLayoutIndex: 0;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

#SubNetwork:graphLayoutRenderer {
layouts[0]: @+hierarchicalLayout;
autoLayoutIndex: 0;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Top;

}

The property autoLayoutIndex, when used in an object selector with the
graphLayoutRenderer pseudoclass, specifies the automatic node layout that is applied to
the subnetwork.

You can also specify nonautomatic node layouts for subnetworks. This configuration is
achieved in the same way as for the view configuration (layouts property with multiple
node layouts and the autoLayoutIndex set to -1).

When you call the method performAttachedLayout(int index), it is applied recursively in
the model hierarchy. Therefore if a node layout is configured for the given index in the

G R A P H I C C O M P O N E N T S 39

subnetwork, this specific layout is performed. Otherwise, the node layout configured for the
parent network is executed.

How to set node or link parameters on graph layout objects in the
network component
You can set parameters for a graph layout algorithm that applies to a particular node or
link, in the style sheet. Such parameters are defined by a method of the form:

setMyParam(Object node, value);

or

setMyParam(Object link, value);

Node parameters are set in the style sheet as follows:

object."ilog.tgo.model.IltObject":graphLayoutRenderer {
myParam: "value";

}

The name of the property is the name of the method, without the prefix set. The pseudoclass
graphLayoutRenderer indicates that the declarations apply to the node layouts that are
configured in the graph layout rule.

For example, the graph layout defines a setFixed method that lets you specify whether a
node or link is fixed. Fixed nodes or links are not moved when the layout is applied. The
signature of the method is:

setFixed(Object nodeOrLink, boolean fixed);

In the style sheet, you can set this parameter as follows:

object."ilog.tgo.model.IltObject":graphLayoutRenderer {
fixed: true;

}

The value of the property can be any basic type (integer, String, float), or it can be the name
of a public constant defined by the graph layout class, for example, WEST , which is defined
in the class IlvHierarchicalLayout.

When the graph layout rule contains multiple node layouts, you can still specify node and
link layout parameters by using pseudoclasses that identify the graph layout to which the
declarations apply.

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchical;
autoLayoutIndex: 0;

}

G R A P H I C C O M P O N E N T S40

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Top;

}

#NE1:graphLayoutRenderer:tree {
root: true;

}

#NE1:graphLayoutRenderer:hierarchical {
specNodeLevelIndex: 0;

}

#NE2:graphLayoutRenderer:hierarchical {
specNodeLevelIndex: 1;

}

In the example above, NE1 is configured as the root object for the Tree Layout algorithm.
This is achieved by declaring the property root in a selector that contains the pseudoclasses
graphLayoutRenderer (indicates that this is a graph layout renderer per-object property)
and tree (indicates that this is a property specific to the IlvTreeLayout algorithm).

At the same time, NE1 is configured to be placed at level 0 in case of a hierarchical layout.
This is achieved using pseudoclasses graphLayoutRenderer and hierarchical(indicates
that this is a graph layout per-object property specific to the IlvHierarchicalLayout
algorithm).

Each layout algorithm supports a set of per-object parameters. For more information on the
parameters supported by each layout algorithm, refer to package ilog.cpl.graph.css.
renderer.graphlayout.

In addition to the properties that are specific to the layout algorithms, the graph layout
renderer also supports the following properties:

♦ layoutIgnored: If this property is set to true, the object is completely ignored by the
graph model (using an IlvLayoutGraphicFilter).

♦ markedForIncremental: If the layout algorithm is an IlvHierarchicalLayout, you can
use the property markedForIncremental. When this property is set to true for an object,
the method IlvHierarchicalLayout.markForIncremental(java.lang.Object) is called
for this object. This means that the position of the object is recomputed during the next
incremental layout. This property has an effect only if the incrementalMode property of
the layout itself is set to true. For example:

GraphLayout {
layouts[0]: @+hierarchicalLayout;

}

G R A P H I C C O M P O N E N T S 41

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
incrementalMode: true;

}

#NE1:graphLayoutRenderer:hierarchical {
markedForIncremental : "true";

}

Starting with JViews TGO 7.5, if you are not using any node or link parameters,
you can disable this mechanism by specifying IlpGraphLayoutRenderer.

Important:

setUsePerObjectParameters(false). This will remove the overhead of
testing the parameters and speed up the rendering process significantly.

How to disable the per-object layout parameters for node
configuration in the network view
You can also disable the per-object layout parameters configuration through CSS as follows:

GraphLayout {
layouts[0]: @+hierarchicalLayout;
usePerObjectParameters: false;

}

For more information on configuring the node layout in a network view, refer to the class
IlpGraphLayoutRenderer.

The LinkLayout rule
This rule controls the automatic link layout in the view.

The mandatory property class specifies the link layout class, a subclass of IlvGraphLayout.
Additional Bean properties can be specified, depending on the class.

How to control the automatic link layout in the network view
The following CSS sample shows how to customize the link layout:

LinkLayout {
class: "ilog.views.graphlayout.link.IlvLinkLayout";
globalLinkStyle: MIXED_STYLE;

}

The link layout is always a subclass of IlvGraphLayout which supports the
"preserveFixedLinks" property. This property allows you to switch the support of fixed
links on or off.

G R A P H I C C O M P O N E N T S42

How to specify a different link layout for each subnetwork
When the link layout is configured for a view, it is applied to the view and to all the
subnetworks displayed in this network view.

However, you can also specify different link layouts for subnetworks. The link layout is
configured in CSS using the property linkLayout and the pseudoclass linkLayoutRenderer,
as illustrated below:

LinkLayout {
class:'ilog.views.graphlayout.link.IlvLinkLayout';

}

#SubNetwork:linkLayoutRenderer {
linkLayout: @+shortLinkLayout;

}

Subobject#shortLinkLayout{
class: 'ilog.tgo.graphic.graphlayout.IltShortLinkLayout';

}

Like the graph layout renderer, the link layout renderer supports setting per-object link
layout parameters through CSS. See How to set node or link parameters on graph layout
objects in the network component.

How to specify per-object parameters for link layouts in the
network view
Link parameters are set in the style sheet as follows:

object."ilog.tgo.model.IltAbstractLink":linkLayoutRenderer {
linkStyle: ORTHOGONAL_STYLE;

}

#Link1:linkLayoutRenderer {
linkStyle: DIRECT_STYLE;

}

Starting with JViews TGO 7.5, if you are not using any node or link parameters,
you can disable this mechanism by specifying IlpLinkLayoutRenderer.

Important:

setUsePerObjectParameters(false). This will remove the overhead of
testing the parameters and speed up the rendering process significantly.

How to disable per-object layout parameters for link configuration
in the network view
You can also disable the per-object layout parameters configuration through CSS as follows:

G R A P H I C C O M P O N E N T S 43

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';
usePerObjectParameters: false;

}

For more information on configuring the link layout in a network view, refer to the class
IlpLinkLayoutRenderer.

The LabelLayout rule
This rule controls the automatic label layout in the view.

The mandatory property class specifies the label layout class, a subclass of IlvLabelLayout.
Additional Bean properties can be specified, depending on the class. The usual setting is
IltAnnealingLabelLayout.

The following CSS sample shows how to customize the label layout:

LabelLayout {
class: 'ilog.tgo.graphic.graphlayout.labellayout.IltAnnealingLabelLayout';

obstacleOffset: 10;
labelOffset: 15;

}

Note that some properties can be set within the IltAnnealingLabelLayout and somewithin
the IlvAnnealingLabelLayout. For more details, refer to the IBM® ILOG® JViews TGO
Java API Reference Documentation .

For more information on configuring the label layout in a network view, refer to the class
IlpLabelLayoutRenderer.

The Backgrounds rule
This rule allows you to configure two kinds of background that affect the network component
representation:

♦ network background

♦ manager view background

Network backgrounds
This refers to background files such as maps or background images. You can specify a
network background through:

1. A URL

The background file is specified directly by its URL:

Backgrounds {

G R A P H I C C O M P O N E N T S44

background[i]: "URL";
}

For example:

Backgrounds {
background[0]: "backgrounds/sf-bayarea.png";

}

2. A CSS bean

The background URL and its properties are specified through a CSS bean:

Backgrounds {
background[i]: @+background0;

}

Subobject#background0 {
class: "ilog.cpl.graph.background.css.IlpBackgroundCSSConfiguration";

PROPERTY : PROPERTY_VALUE;
...

}

The bean IlpBackgroundCSSConfiguration encapsulates all the properties supported
by the predefined background types. You should use it if want to use one of the predefined
types.

For example:

Backgrounds {
background[0]: @+background0;

}

Subobject#background0 {
class: "ilog.cpl.graph.background.css.IlpBackgroundCSSConfiguration";

//////////////////////
//Background properties
//////////////////////
url : "backgrounds/sf-bayarea.png";
loadOnDemand : "true";
threaded : "false";

}

If you intend to use a custom background type that has additional properties, you can
either subclass the default IlpBackgroundCSSConfiguration and use it with the
additional bean properties. Or you can provide a bean that contains all the required
properties to configure the IlpBackground implementation. All bean properties are
automatically communicated and stored in the IlpBackground implementation through
its IlpBackground.setProperty interface method.

G R A P H I C C O M P O N E N T S 45

For details on the properties available and supported for each IlpBackground
implementation, see Background support.

You can mix and match options 1 and 2 by specifying some backgrounds as beans and some
as straight URL strings.

In the case of the Image Tile background type (IlpImageTileBackground), only the url
property can be configured through CSS. For the other properties, use the XML configuration.
See Background support.

Manager view background
This refers to the representation of the view as a background for your network backgrounds
(the area that the network backgrounds do not cover).

You can configure the manager view background as follows:

Backgrounds {
PROPERTY : PROPERTY_VALUE;

}

For example:

Backgrounds {
backgroundColor : "white";

}

The following table lists the properties that allow you to customize the manager view
background:

Properties of the manager view background
DescriptionSampleDefaultTypeProperty Name

Specifies the color to be
used to fill the background
of the view.

backgroundColor:"black";nullColorbackgroundColor

Specifies the location of the
pattern image to be used to

backgroundPattern:"pattern.png";nullStringbackgroundPattern

fill the background of the
view.

For more information on configuring the background in a network, refer to the class
IlpBackgroundsRenderer.

The Positioning rule
This rule controls the type and converter of the user-defined IlpPosition.

The property positionClass denotes the Java class name of the class or interface that
implements IlpPosition.

G R A P H I C C O M P O N E N T S46

The property converterClass denotes a Java class name or CSS bean that implements the
IlpPositionConverter interface and determines the conversion between business data
coordinates and (x,y) coordinates in the view.

The following CSS sample shows how to customize the positioning:

Positioning {
positionClass: 'my.package.MyPosition';
converterClass: 'my.package.MyPositionConverter';

}

For more information on configuring the positioning in a network view, refer to the class
IlpPositioningRenderer.

The Adapter rule
This rule controls the configuration of the network adapter. The network adapter is
responsible for converting the business objects in the data source to representation objects
(network nodes) in the network component. It provides the following features:

♦ Filtering: applies a filter so that business objects currently in the data source are not
mapped to representation objects in the network component.

♦ Origins: defines which objects become root nodes in the network.

♦ Link factory: defines how a link representation object will be created from its business
object counterpart.

♦ Node factory: defines how a representation object that is not a link will be created from
its business object counterpart.

♦ Expansion strategy: defines how the objects will be loaded in the network component,
that is, either at initialization time or on demand, as the user interacts with the network
nodes.

♦ Accepted classes: defines the list of business classes that are accepted by the network
adapter. Only the business objects that match one of these business classes will be mapped
to representation objects by the network adapter.

♦ Excluded classes: defines the list of business classes that are excluded by the network
adapter. The business objects of these business classes will not be mapped to
representation objects by the network adapter. By default, the IltAlarm business class
is part of the list of excluded classes.

These network adapter features can be customized through CSS using the following
properties:

G R A P H I C C O M P O N E N T S 47

CSS properties of the network adapter
Property TypeProperty Name

IlpFilterfilter

list of object identifiersorigins

IlpNetworkNodeFactorynetworkNodeFactory

IlpNetworkLinkFactorynetworkLinkFactory

IlpExpansionStrategyexpansionStrategyFactory

list of IlpClassacceptedClasses

list of IlpClassexcludedClasses

How to configure a network adapter in a CSS file
Prior to configuring the adapter, you need to configure the network component so that the
adapter configuration is enabled:

Network {
adapter: true;

}

After that, you can customize each adapter property in the Adapter rule as illustrated by
the following code extract. Refer to The CSS specification in the Styling documentation for
details about the CSS syntax.

Adapter {
filter: @+Filter;

}

Subobject#Filter {
class: 'CustomFilter';
rejectObject[0]: "NE1";
rejectObject[1]: "Link5";

}

How to programmatically configure adapter using CSS
You can programmatically modify the CSS configuration of the default network adapter (
IlpNetworkAdapter) by using mutable style sheets through the IlpMutableStyleSheet
API.

The mutable style sheet is set to the adapter as a regular style sheet and is
cascaded in the order in which it has been declared.

Important:

To use mutable style sheets:

1. Get the mutable style sheet.

G R A P H I C C O M P O N E N T S48

You access the mutable style sheet through the getMutableStyleSheet() method in
the network adapter API:

IlpMutableStyleSheet mutable = adapter.getMutableStyleSheet();

This method automatically registers the mutable style sheet into the adapter. You can
manually instantiate an object of the class IlpMutableStyleSheet and register it yourself
through the setStyleSheet() API:

IlpMutableStyleSheet mutable = new IlpMutableStyleSheet(adapter);
try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

2. Set the CSS declarations.

Once you have the mutable style sheet, you can set the declarations you want:

mutable.setDeclaration("#myObjectId", "expansion", "NO_EXPANSION");

This creates the following CSS declaration into the mutable style sheet:

#myObjectId {
expansion: NO_EXPANSION;

}

3. Register the mutable style sheet.

The mutable style sheet should be set to the adapter as a regular style sheet using the
setStyleSheet() method:

try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

4. Set and update the CSS declarations.

The mutable style sheet can be modified even after being registered to the adapter:

// Update the expansion type for 'myObjectId'
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
// Add a new declaration
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");

G R A P H I C C O M P O N E N T S 49

Like any style sheet, the mutable style sheet is lost when the setStyleSheet
() API is invoked and a new set of style sheets is applied to the adapter.

Note:

How to customize the mutable style sheet
Reapplying a CSS configuration may be a heavy task, as the adapter may be forced to review
filters, origins, recreate representation objects, and so on. It is important to use the mutable
style sheet with care and to customize it properly to reapply the CSS wisely. To do so, there
are two methods available in the IlpMutableStyleSheet API: setUpdateMask() and
setAdjusting().

1. setUpdateMask()

This method controls what should be recustomized once a declaration of the mutable
style sheet has been updated. The CSS configuration of the adapter is divided into two
parts: adapter customization and representation object customization.

The adapter customization handles the origins, filters, and so on:

Adapter {
origins[0]: id0;
origins[1]: id1;
showOrigin: true;
filter: @+myFilter;

}

The representation object customization handles the expansion type of a representation
object:

#myObjectId {
expansion: IN_PLACE;

}

The accepted values for setUpdateMask() are:

♦ IlpStylable.UPDATE_COMPONENT_MASK: Only the adapter part is recustomized.

♦ IlpStylable.UPDATE_OBJECTS_MASK: Only the representation object part is
recustomized.

♦ IlpStylable.UPDATE_ALL_MASK: Bot the adapter and representation object parts are
recustomized.

♦ IlpStylable.UPDATE_NONE_MASK: Nothing is recustomized.

For example, if you update the expansion type of a representation object through the
mutable style sheet, it is recommended that you set the update mask to
UPDATE_OBJECTS_MASK as there is no need to reapply the CSS configuration for the
adapter part:

G R A P H I C C O M P O N E N T S50

mutable.setUpdateMask(IlpStylable.UPDATE_OBJECTS_MASK);
mutable.setDeclaration("object", "expansion", "IN_PLACE");

2. setAdjusting()

This method is used when a series of declarations must be applied to the mutable style
sheet. When the method is set to true, the mutable style sheet puts all the calls to
setDeclaration() into a queue. When the method is set back to false, all the queued
declarations are processed in a batch:

mutable.setAdjusting(true);
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");
mutable.setAdjusting(false);

G R A P H I C C O M P O N E N T S 51

Configuring a network component through the API

For details of the classes involved in the architecture of the network component, see
Architecture of the network component.

The following example shows how to configure the network view through the API. For details
o programming the individual services, see Network component services.

How to configure the network view with the API

IlpNetworkView view = network.getView();

//Toolbar
view.getToolBar().add(new IlpNetworkSelectButton(view));
view.getToolBar().add(new IlpNetworkZoomResetButton(view));
// Overview
view.setOverviewVisible(true);
// View interactor
IltSelectInteractor selInteractor = new IltSelectInteractor();
selInteractor.setEditingAllowed(true);
IlpViewsViewInteractor viewsInteractor =

new IlpViewsViewInteractor(selInteractor);
view.getController().setViewInteractor(viewsInteractor);
// Zoom policy
view.setZoomPolicy(
new IltMixedZoomPolicy() {{
setZoomThreshold(2.0);

}});
// Layout
view.setNodeLayout(new IlvGridLayout());
view.setLinkLayout(new IltShortLinkLayout());
// Background
view.addBackgroundURL(
context.getURLAccessService().getFileLocation(
"data/images/europe.jpg"));

// LayerPolicy
view.getCompositeGrapher().setLayerPolicy(myLayerPolicy)
// Position
view.setPositionConverter(
new IlpGeographicPositionConverter(projection,true));

How to configure the network adapter with the API
The following example shows how to configure the network adapter through the API. For
details on programming the individual services, see Network component services.

IlpNetworkAdapter adapter = network.getAdapter();

// Filter

G R A P H I C C O M P O N E N T S52

IlpFilter myFilter = new MyFilter();
// (it is the same as network.setFilter(myFilter);)
adapter.setFilter(myFilter);

// Origin
List myOrigins = new ArrayList();
myOrigins.add(objectID_1);
myOrigins.add(objectID_2);
:
:
myOrigins.add(objectID_n);
// in this case we want to display the origins
boolean showOrigin = true;
adapter.setOrigins(myOrigins, showOrigin);

// Expansion Strategy Factory
// Usually the expansion strategy factory relies
// on the adapter to access the data source and
// to load/release objects
IlpExpansionStrategyFactory myExpFactory = new
MyExpansionStrategyFactory(adapter);

adapter.setExpansionStrategyFactory(myExpFactory);

// Position Attribute
// Here, imagine that MyObject implements IlpObject
// interface and defines "Placement" as the
// IlpAttribute that defines the object position
IlpClass myObjectClass = MyObject.getIlpClass();
IlpAttribute myPosAttrib = MyObject.Placement;
adapter.setPositionAttribute(myObjectClass, myPosAttrib);

// Node and Link Factory
IlpNetworkNodeFactory myNodeFactory = new MyNodeFactory();
adapter.setNodeFactory(myNodeFactory);

IlpNetworkLinkFactory myLinkFactory = new MyLinkFactory();
adapter.setLinkFactory(myLinkFactory);

G R A P H I C C O M P O N E N T S 53

Loading a project file

A project is a combination of style sheets that supply rendering information and a data
source that supplies the data to be represented in a network component. A project is saved
as an XML file with extension .itpr.

Loading a project file is the recommended way to configure a graphic component in Java™
as it is the fastest.

How to load a project file into a network component
The following code sample shows how to load a project file into a network component, using
the method setProject.

IlpNetwork network = new IlpNetwork();
network.setProject(new URL("file:project.itpr");

The project is represented by the IlpTGOProject class, included in the package ilog.cpl.
project. When a new project is created, the style sheet and data source are both null.

How to create a new project for the network component
The following code sample shows how to create a new project file by setting the style sheets
and data source, then saving the project.

IlpTGOProject project = new IlpTGOProject();
project.setStyleSheet(new URL("file:example.css");
IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.setFileName("data.xml");
project.setDataSource(dataSource);
project.write(new URL("file:example.itpr");

G R A P H I C C O M P O N E N T S54

Customizing the rendering of network nodes and links

Network nodes and links can be customized through CSS according to their business class.
For details, see Customizing network and equipment nodes and Customizing network and
equipment links.

G R A P H I C C O M P O N E N T S 55

G R A P H I C C O M P O N E N T S56

Network component services

Describes the services that are available for a network: view services, adapter services, and
handler services.

In this section

Introduction to network component services
Lists the different services available for a network.

Interacting with the network view
Describes the predefined view interactors available to manage the behavior of the network
view.

Interacting with the network objects
Describes how to use object interactors to associate behavior with business objects.

Positioning
Describes the positioning facility for defining where a given object is displayed on the screen.

Layout
Gives an overview of the graph layout algorithms available for the network component.

Label layout
Describes the automatic placement of labels in a network to facilitate legibility.

Layers
Desribes how to cutomize the layer used for a given object.

Zooming
Details the zooming modes available: physical zoom, logical zoom, and mixed zoom.

G R A P H I C C O M P O N E N T S 57

Background support
Describes how to use the background API to integrate various types of background in the
network and equipment components.

Filtering
Describes how to filter nodes displayed by the network component.

Accepted and excluded classes
Details how to specify the business classes to be accepted for or excluded from display in
the network component.

Setting a list of origins
Describes how to set a list of orgins to explicitly select the root nodes to be displayed by the
network component.

Node factory
Describes the node factory.

Link factory
Describes the link factory.

Expansion strategy
Describes the expansion strategy used by the network adaptor to determine whether objects
should be loaded in the network model.

G R A P H I C C O M P O N E N T S58

Introduction to network component services

The services that are available for a network are of three kinds:

♦ View services, related to the network view

● Interacting with the network view

● Interacting with the network objects

● Positioning

● Layout

● Label layout

● Layers

● Zooming

● Background support

♦ Adapter services, related to the network model

● Filtering

● Accepted and excluded classes

● Setting a list of origins

● Node factory

● Link factory

● Expansion strategy

♦ Handler services, related to the network controller

G R A P H I C C O M P O N E N T S 59

Interacting with the network view

The IlpNetwork allows you to associate behavior with the network view as a whole and with
the business objects it contains. JViews TGO provides predefined view interactors to manage
the behavior of the network view. See View interactors.

With the default view interactors, you can:

♦ associate actions with mouse events and focus events

♦ associate actions with keyboard events

♦ define a pop-up menu factory to build a pop-up menu that displays in the view

Each view interactor works with one network view only and is managed by the network
controller. A network view can have several interactors, but only one interactor is active at
a time.

View interactors have two modes of operation:

♦ Transient

♦ Permanent

In transient mode, the view interactor removes itself from the network view when it has
performed its action.

In permanent mode, the view interactor remains in the view until the controller removes it.

By default, view interactors are permanent.

View interactors can display a pop-up menu.

A view interactor has a context implemented through IlpViewInteractionContext. When
a user gesture is completed, the network view clones this context and makes it accessible
through IlpViewActionEvent.

The predefined view interactors are in the ilog.tgo.interactor package and are subclasses
of IlvManagerViewInteractor. When one of these interactors is installed, it must be wrapped
in an IlpViewsViewInteractor.

How to wrap a predefined view interactor when installing it

IlvManagerViewInteractor iltInteractor = new Ilt...Interactor();
IlpViewInteractor ilpInteractor =
new IlpViewsViewInteractor(iltInteractor);

controller.setViewInteractor(ilpInteractor);

Setting the view interactor
The method setViewInteractor(ilog.cpl.interactor.IlpViewInteractor) allows you
to set the view interactor, that is, the object-independent interactor, which is active at a
given moment in the view. This interactor is replaced whenever the end user activates a

G R A P H I C C O M P O N E N T S60

different interactor. Such activation occurs, for example, when the user clicks a toolbar
button.

Some interactors are one-shot interactors, that is, they have the attribute permanent:false
in CSS. When such an interactor finishes its interaction, it is replaced by the default view
interactor.

To customize through CSS, refer to The Interactor rule.

View interactor and default view interactor
When you use the setViewInteractor method you are attaching the specified interactor
directly to the view. On the other hand, the setDefaultViewInteractor(ilog.cpl.
interactor.IlpViewInteractor)allows you to define the interactor that will be attached
when the current interactor is detached from the view and no other interactor is attached.
The default interactor is not attached automatically to the view, so it will not be available
immediately.

The following example combines both methods:

// Configuring the default view interactor and making
// it active
IltSelectInteractor selInteractor = new IltSelectInteractor();
selInteractor.setEditingAllowed(true);
IlpViewsViewInteractor viewsInteractor =

new IlpViewsViewInteractor(selInteractor);

network.setDefaultViewInteractor(viewsInteractor);
network.setViewInteractor(viewsInteractor);

In this example, you define the default view interactor through the call to
setDefaultViewInteractor, and you activate it through the call to setViewInteractor so
that it is immediately available.

How to associate an action with a mouse event in the network
view
You can associate actions with mouse events by using either CSS or the API.

The following extract shows how to customize the default view interactor in CSS:

Network {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
action[0]: @+viewAction0;

}

G R A P H I C C O M P O N E N T S 61

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON3_CLICKED;
action: @+myAction;

}

Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

IlpNetwork network = // ...

// Retrieve the view interactor
IlpViewInteractor viewInteractor = network.getDefaultViewInteractor();

// Create an actionAction
myAction = new MyAction();

// Clicking the 3rd mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED,myAction);

You can also customize the actions that are associated with the interactors defined in the
network component toolbar. This configuration is done with the toolbar button definition.
The following CSS extract illustrates how this can be achieved:

How to associate an action with a mouse event for a network
ToolBar button interactor
You can associate actions with mouse events when one of the interactors defined in the
network component toolbar is active. The following CSS extract illustrates this configuration:

Network {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;

}

Subobject#action0 {
gesture: BUTTON1_DOUBLE_CLICKED;

G R A P H I C C O M P O N E N T S62

class: "ShowDetailsAction";
}

In this configuration, the action "ShowDetailsAction" is triggered when a double-click event
occurs while the selection interactor is set in the network view. You can define any list of
actions associated with gestures by using the indexed property action. To be accepted by
the CSS customization, the action class must be a JavaBean™.

You can find out whether this event occurred on an IlpObject by means of the following
code (which should be in the MyAction class):

How to check whether a given action occurred in the network view
interactor

// Implementation of the ActionListener interface
public void actionPerformed(ActionEvent e) {
// ILOG JTGO interactors use IlpViewActionEvent
IlpViewActionEvent viewEvent = (IlpViewActionEvent)e;
// Get the IlpObject (if any) where the interaction occurred
IlpObject ilpObj = viewEvent.getIlpObject();
// Perform operation on the given object

}

How to associate an action with a keyboard event in the network
view
You can associate actions with keyboard events by using either CSS or the API.

The following extract shows how to proceed in CSS:

Network {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpKeyStrokeAction';
keyStroke: 'typed D';
action: @+myAction;

}

Subobject#myAction {

G R A P H I C C O M P O N E N T S 63

class: MyAction;
}

The same configuration can be achieved through the API, as follows:

// Create an actionAction myAction = new MyAction();
// Typing CTRL+D will trigger myAction
viewInteractor.setKeyStrokeAction(KeyStroke.getKeyStroke('D',java.awt.Event.
CTR
L_MASK),myAction);

You can also customize the keystroke actions that are associated with the interactors defined
in the network component toolbar. This configuration is performed with the toolbar button
definition. The following CSS extract illustrates how this can be achieved:

How to associate an action with a keyboard event for a network
toolbar button interactor
You can associate actions with keyboard events when one of the interactors defined in the
network component toolbar is active. The following CSS extract illustrates this configuration:

Network {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;

}

Subobject#action0 {
key: "control A";
class: "ilog.cpl.graph.action.IlpSelectAllObjectsAction";

}

In this configuration, the action "IlpSelectAllObjectsAction" is triggered when a Control-A
keyboard event occurs while the selection interactor is set in the network view. You can
define any list of actions associated with keyboard events by using the indexed property
action. To be accepted by the CSS customization, the action class must be a JavaBean.

How to define a pop-up menu factory for the network view
You can customize a pop-upmenu factory for the network view either through CSS or through
the API.

The following extract shows how to add a pop-up menu factory through CSS:

G R A P H I C C O M P O N E N T S64

Network {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
popupMenuFactory: @+viewPopupMenuFactory;

}

Subobject#viewPopupMenuFactory {
class: MyPopupMenuFactory;

}

The same configuration can be achieved through the API, as follows:

// Subclass IlpAbstractPopupMenuFactory, which has useful shortcuts
IlpPopupMenuFactory popupMenuFactory = new IlpAbstractPopupMenuFactory() {
// Add the identifier of each of the selected objects to the menu
public JPopupMenu createPopupMenu (IlpObjectSelectionModel ilpSelectionModel)

{
// Create an empty popup menu
JPopupMenu menu = new JPopupMenu();
// Access the selected objects from the selection model
Collection selectedObjects = ilpSelectionModel.getSelectedObjects();
// fill the menu according to the current selection
return menu;

}
};

The following code shows you how to associate the defined pop-up menu factory with the
network component:

How to associate a pop-up menu factory with the network
component

// Set the popup menu factory to the view interactor
viewInteractor.setPopupMenuFactory(popupMenuFactory);

You can also customize a pop-up menu factory that is associated with the interactors defined
in the network component toolbar. This configuration is performed with the toolbar button
definition. The following CSS extract illustrates how this can be achieved:

G R A P H I C C O M P O N E N T S 65

How to define a pop-up menu factory for a network toolbar button
interactor
The following CSS extract illustrates this configuration:

Network {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
popupMenuFactory: @=viewPopupMenuFactory;

}

Subobject#viewPopupMenuFactory {
class: 'AlarmPopupMenuFactory';

}

The pop-up menu factory is customized using property popupMenuFactory in the button
configuration. To be accepted during the CSS customization, the pop-up menu factory class
must be a JavaBean.

Selection interactor
The IltSelectInteractor class allows you to select, move, and interact directly with objects.
You can:

♦ Click an object to select it and deselect all other objects.

♦ Use Shift-click to select an unselected object or to deselect a selected object while keeping
other prior selected objects selected.

♦ Drag a selection rectangle to select all objects within this rectangle.

♦ Drag one selected object and thereby cause all other selected objects to move in relation
to it.

If setUsingObjectInteractor(true) is called on the interactor, then you can also:

♦ Use other gestures that are understood by a specific object interactor.

You can configure the selection interactor to use Ctrl-click instead of Shift-click for multiple
selection.

G R A P H I C C O M P O N E N T S66

How to configure the selection interactor for multiple selection in
the network view
In CSS, use the following rules:

Subobject#SelectButton {
multipleSelectionModifier: "java.awt.event.InputEvent.CTRL_MASK";
selectionModifier: "java.awt.event.InputEvent.SHIFT_MASK";

}

In the API, use the following code:

setMultipleSelectionModifier(InputEvent.CTRL_MASK);
setSelectionModifer(InputEvent.SHIFT_MASK);

Group reshape interactor
The IltEditGroupInteractor class allows you to change the shape of rectangular, polygonal,
and linear groups (IltGroup, IltLinearGroup, IltRectGroup and IltPolyGroup). Clicking
an object starts shape editing interaction. Clicking the background ends it.

For polygonal and linear groups:

♦ Dragging a vertex moves it.

♦ Ctrl-click on a vertex removes it.

♦ Ctrl-click on an edge adds a vertex at that point on the edge.

Make rectangular node interactor
The IltMakeRectGroupInteractor class creates a node with a rectangular shape (
IltRectGroup). One corner of the rectangle is denoted by the point where the cursor is
located when the mouse button is released. Make sure that you do really move the mouse
between the timewhen you press and the timewhen you release themouse button. Otherwise,
the shape is created empty and the node might be invisible.

Make polygonal node interactor
The IltMakePolyGroupInteractor class creates a node with a polygonal shape (
IltPolyGroup). A point is added each time the user clicks. Double-clicking marks the last
point to be added.

Make polyline node interactor
The IltMakeLinearGroupInteractor class creates a node with a polyline shape (
IltLinearGroup). A point is added each time the user clicks. Double-clicking marks the last
point to be added.

G R A P H I C C O M P O N E N T S 67

Make link interactor
The IltMakeLinkInteractor class creates links (IltLink) between nodes. This interactor
works in the following way: the user clicks one node and then goes on dragging the mouse
over another node so that the two nodes are selected. When the user releases the mouse,
a link is drawn between the two nodes.

For a detailed description of interactors and gestures, refer to Interacting with the graphic
components.

G R A P H I C C O M P O N E N T S68

Interacting with the network objects

Interacting with the network view describes how to set an interactor on the entire network
view. You can also associate behavior with business objects (a whole class or individual
objects), as well as with individual object instances.

To do so, you use object interactors, which offer you the same possibilities as the view
interactor:

♦ Associating actions with mouse events

♦ Associating actions with keyboard events

♦ Defining a pop-up menu factory to build a pop-up menu that displays on representation
objects

An object interactor handles any event occurring to the object with which it is associated,
provided the view interactor has enabled the use of object interactors. You can check this
with the isUsingObjectInteractormethod ormodify it with the setUsingObjectInteractor
method.

Object interactors are enabled by default.

No default interactor is associated with any object. To associate actions with mouse or
keyboard events, or to define a pop-up menu factory, you first have to create an instance of
IlpObjectInteractor. You can use the IlpDefaultObjectInteractor class, extend it, or
create your own implementation.

How to associate an object interactor with a network component
object
You can associate an object interactor with a representation object by using either CSS or
the API.

The following extract shows how to proceed in CSS:

Network {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement" {
interactor: @+objInteractor;

}

Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpNetwork network = // ...
IlpNetworkController networkController = network.getController();

G R A P H I C C O M P O N E N T S 69

// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
networkController.setObjectInteractor(bo, objectInteractor);
// Configuring the specific object interactor is similar to configuring
// a view interactor.
objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED, new MyAction())
;

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. You can also define a pop-up menu factory in the same way as for the
view interactor. Refer to Interacting with the network view.

An object interactor can also be associated with a specific decoration that is part of the
business object graphic representation in the network view. Each decoration represents a
business attribute in the model. Therefore the customization of the interactor for a specific
decoration takes into account the business object and a business attribute as illustrated
below:

How to associate an object interactor with the label decoration in
a network component object
You can associate an object interactor with one of the graphic decorations of the object by
setting the interactor to the business attribute that is represented. You can do it using CSS
or the API.

The following extract shows how to proceed in CSS:

Network {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement/name" {
interactor: @+objInteractor;

}

Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpNetwork network = // ...
IlpNetworkController networkController = network.getController();
// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
networkController.setObjectInteractor(bo, IltObject.NameAttribute,
objectInteractor);
// Configuring the specific object interactor is similar to configuring
// a view interactor.
objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED, new
MyAction());

G R A P H I C C O M P O N E N T S70

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. You can also define a pop-up menu factory in the same way as for the
view interactor. Refer to Interacting with the network view.

For a detailed description of interactors and gestures, refer to Interacting with the graphic
components.

G R A P H I C C O M P O N E N T S 71

Positioning

This facility is for defining where a given object is displayed on the screen.

Each representation object has the option of carrying a position. The position data can
originate from the back end (mapped automatically from an attribute of the corresponding
business object, or manually from a separate source), from computation by a default layout
algorithm in the network view, or from explicit end-user gestures to move or reshape nodes
in the view. It is possible to retrieve the origin of the position data through the
IlpPositionSource enumeration. There are three possible origins for the position of
representation objects:

♦ BACKEND: The position has been set by the adapter when creating the representation
object.

♦ LAYOUT: The position has been set in the view by an automatic layout algorithm (either
the node layout or the link layout).

♦ USER: The position has been set by the user through interactors.

To retrieve the position origin, you need to access the method getPositionSource in the
network view.

The position implements the IlpPosition interface.The following supplied types implement
IlpPosition:

♦ IlpPoint for fixed-size nodes

♦ IlpRect for variable-size nodes

♦ IlpPolyline for links

♦ IlpPolygon for polygonal regions

♦ IlpRelativePoint for elements of IltCard

♦ IlpShelfItemPosition for elements of IltShelf and IltCardCarrier

The position can be attached to a representation object through the method setPosition
and retrieved through the method getPosition of the network view (IlpNetworkView).

A position converter is used to convert positions in the network model to positions in the
network view or vice versa. The position converter implements the IlpPositionConverter
interface.

JViews TGO provides a default position converter (IlpDefaultPositionConverter) for the
predefined business objects position data. The following predefined position types are
supported:

♦ IlpPoint

♦ IlpRect

♦ IlpPolygon

♦ IlpPolyline

G R A P H I C C O M P O N E N T S72

♦ IlpShelfItemPosition

Since the network view already supports these position types, the
IlpDefaultPositionConverter does nothing else than verify that the given position is one
of the predefined types.

Positioning using geographic coordinates
A more complex converter is provided for geographic coordinates (
IlpGeographicPositionConverter). It extends the default position converter to support
the following types of positions:

♦ IlpGeographicPosition (in the model) <-> IlpPoint (in the view)

♦ IlpGeographicPolygon (in the model) <-> IlpPolygon (in the view)

♦ IlpGeographicPolyline (in the model) <-> IlpPolyline (in the view)

When you use a background map, you can give the positions of objects directly in geographic
coordinates (latitude/longitude). The conversion to screen coordinates is performed by using
an instance of IlpGeographicPositionConverter. You can parameterize this converter
through classes that are part of the IBM® ILOG® JViews Maps product: an IlvProjection
or an IlvMathTransform, optionally followed by an IlvTransformer. Refer to The two
coordinate systems.

How to parameterize the geographic position converter

// Set the position converter. It converts the geographic coordinates
// of the objects in the XML file to planar (x,y) coordinates.
IlvProjection projection =
new IlvEquidistantCylindricalProjection();

IlvTransformer t = new IlvTransformer(0.00001,0,0,0.00001,1,6.5);
IlpPositionConverter converter =
new IlpGeographicPositionConverter(projection,true,t);

networkComponent.setPositionConverter(converter);

You can also parameterize the geographic position converter through CSS by using the
following steps:

1. Define a converter class with an empty constructor.

public class MyConverter extends IlpGeographicPositionConverter {
public MyConverter() {
super(new IlvEquidistantCylindricalProjection(),

true,
new IlvTransformer(0.00001, 0, 0, 0.00001, 1, 6.5));

}
}

2. Reference the converter class in a CSS file as follows.

Positioning {

G R A P H I C C O M P O N E N T S 73

positionClass: 'ilog.cpl.network.IlpGeographicPosition';
converterClass: 'my.package.MyConverter';

}

The parameters used to configure an IlpGeographicPositionConverter should
conform to the georeferencing configuration of the background map in use. For
details, see Background support.

Important:

You can define your own application-specific implementation of the IlpPosition interface,
for example, you could implement polar coordinates. When you define your own
implementation of IlpPosition, you must also attach the corresponding implementation of
the IlpPositionConverter to the view. In this particular case, you would attach a converter
from polar positions to the predefined view position types.

When an object has no attached position, the view assigns a position to the corresponding
graphic object. The position is assigned through the layout mechanism (node layout for
positioning nodes, and link layout for shaping links).

If the position of an object changes due to user interaction, the controller requests the
handler to confirm the change.

G R A P H I C C O M P O N E N T S74

Layout

JViews TGO makes use of the IBM® ILOG® JViews graph layout algorithms. Each
IlpNetworkView can be connected to several node algorithms and one link algorithm.

♦ The node layout algorithms are:

● IlvBusLayout

● IlvCircularLayout

● IlvHierarchicalLayout

● IlvRandomLayout

● IlvSpringEmbedderLayout

● IlvTopologicalMeshLayout

● IlvTreeLayout

● IlvUniformLengthEdgesLayout

♦ The link layout algorithms can be:

● IlvLinkLayout

● IlvShortLinkLayout

● IlvLongLinkLayout

● IltLinkLayout

● IltShortLinkLayout

● IltLocalLinkLayout

● IltStraightLinkLayout

The difference between Ilv... and Ilt... link layout algorithms is that Ilt...
algorithms support connection ports whereas Ilv... algorithms don’t.

Note:

The detailed description of all the graph layout algorithms can be found in the IBM®
ILOG® JViews Diagrammer Using Graph Layout Algorithms documentation.

In case of multiple layouts, one layout can be set to be applied automatically whenever the
contents of the view changes, while the others can be applied on demand. If the view contains
subnetworks, you can specify different node layouts and a different link layout for the
subnetworks.

To configure the layouts, it is recommended to use CSS (see Configuring a network
component through a CSS file). Using CSS, you can also configure per-object layout
parameters.

G R A P H I C C O M P O N E N T S 75

If a layout takes too much time to execute, or if you want to add toolbar buttons to execute
a layout, you can configure the layout for the view and subnetworks, then execute it on
demand by using the API method performAttachedLayout(int). The advantage of this
method over the method performLayoutOnce(ilog.views.graphlayout.IlvGraphLayout)
is that the layout remains attached to the view, therefore storing any previously-defined
configuration.

The class IlpNetworkView provides the following methods to handle the layout operation:

♦ void setNodeLayout (IlvGraphLayout layout, boolean perform). This method sets the
given layout as the default for this IlpNetworkView. If the perform parameter is set to
true, the layout is applied to the objects immediately. With this method the layout is
executed every time the network content changes.

♦ void setLinkLayout (IlvGraphLayout layout, boolean perform). This method sets
the given layout as the default link layout for this instance of IlpNetworkView. If the
perform parameter is set to true, the layout is applied to the links immediately. With this
method the layout is executed every time the network content changes.

♦ public void performLayoutOnce(IlvGraphLayout layout). This method executes the
layout algorithm once on the manager content.

♦ void startDelayingUpdates(). This method suspends temporarily the layout operations.
This mechanism avoids unnecessary computation when you intend to perform a sequence
of operations that affect the network layout.

♦ void endDelayingUpdates(). This method resumes the layout operations suspended by
a call to the method startDelayingUpdates. Any operation that requests a layout
recalculation is suspended when it is executed between startDelayingUpdates and
endDelayingUpdates calls.

♦ void setGraphLayouts(IlvGraphLayout[] layouts). This method sets the given graph
layouts for this IlpNetworkView. Several graph layouts can be set to position nodes in
the view. One of them can be configured to be executed every time the network contents
changes. This method does not apply the layout to the nodes immediately. All the graph
layouts given as argument to the method are attached to the view.

♦ void setGraphLayouts(int index, IlvGraphLayout layout). This method sets a new
graph layout for the IlpNetworkView or replaces an existing graph layout. This method
does not apply the layout to the nodes immediately.

♦ IlvGraphLayout[] getGraphLayouts(). This method returns the graph layouts that have
been configured for the view.

♦ IlvGraphLayout getGraphLayouts(int index). This method returns the graph layout
that is configured for the view at the given index.

♦ void setAutoLayoutIndex (int index). This method indicates, from the list of graph
layouts that have been configured using method setGraphLayouts, which one is executed
automatically when the contents of the view changes.

♦ int getAutoLayoutIndex(). This method returns the index of the graph layout that is
executed automatically when the contents of the view changes.

♦ void setGraphLayouts(IlpRepresentationObject ro, IlvGraphLayout[] layouts).
This method allows you to set graph layouts that can be used to position nodes in the

G R A P H I C C O M P O N E N T S76

subnetwork corresponding to the given representation object. One of the graph layouts
can be configured to be executed automatically when the contents of the subnetwork
changes. The other graph layouts are attached to the view and can be performed on
demand.

♦ void setGraphLayouts(IlpRepresentationObject ro, int index, IlvGraphLayout
layout). This method allows you to set or replace a graph layout used to position nodes
in a subnetwork.

♦ IlvGraphLayout[] getGraphLayouts(IlpRepresentationObject ro). This method
returns the graph layouts that have been configured for the given subnetwork.

♦ IlvGraphLayout getGraphLayouts(IlpRepresentationObject ro, int index). This
method returns the graph layout that has been configured for the given subnetwork at
the given index.

♦ void setAutoLayoutIndex(IlpRepresentationObject). This method defines which
graph layout configured using setGraphLayouts(IlpRepresentationObject)will execute
automatically when the contents of the subnetwork changes.

♦ int getAutoLayoutIndex(IlpRepresentationObject). This method returns the graph
layout that has been configured to execute automatically when the contents of the
subnetwork changes.

♦ void setLinkLayout(IlpRepresentationObject). This method defines a link layout for
the given subnetwork.

♦ void performAttachedLayout(int index). This method executes the layout that has
been configured for the given index, recursively in the object tree. The layout has been
already attached to the view and keeps the configuration whenever it is performed.

♦ IlvGraphic getLayoutProxy(IlpRepresentationObject). This method returns the
graphic object corresponding to the given representation object for layout purposes. This
method should be used if you need to set per-object layout properties to configure the
layout algorithms.

Graphical parameters, such as the layout region, that are passed to the graph layout
are expressed in view coordinates.Therefore, if you have expressed these parameters

Note:

in stationary coordinates, you must transform them to view coordinates (by applying
network.getView().getCompositeGrapher().getZoomTransformer()
network.getManagerView().getTransformer()) before passing them to the
graph layout.

How to use hierarchical node layout in the network component
In CSS, use the following rules:

Network {
graphLayout: true;

}

G R A P H I C C O M P O N E N T S 77

GraphLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;
levelJustification: Top;
globalLinkStyle:

'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout.POLYLINE_STYLE';
connectorStyle:

'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout.EVENLY_SPACED_PINS';
}

Note that the full class path is required for the properties globalLinkStyle and
connectorStyle for the type converter to locate and convert the constants.

For an example of a CSS link layout, refer to The LinkLayout rule.

In the API, use the following code:

IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setFlowDirection (IlvDirection.Bottom);
layout.setLevelJustification (IlvDirection.Top);
layout.setGlobalLinkStyle (IlvHierarchicalLayout.POLYLINE_STYLE);
layout.setConnectorStyle (IlvHierarchicalLayout.EVENLY_SPACED_PINS);

network.setNodeLayout(layout);

All layouts to be used with JViews TGO must be set in view coordinate mode. This
mode is automatically set when you install layouts through setNodeLayout(ilog.

Note:

views.graphlayout.IlvGraphLayout), setLinkLayout(ilog.views.
graphlayout.IlvGraphLayout)setLinkLayout(ilog.views.graphlayout.
IlvGraphLayout), or performLayoutOnce(ilog.views.graphlayout.
IlvGraphLayout). If you call the method performLayout() directly, you must
first set the mode: layout.setCoordinatesMode(IlvGraphLayout.
VIEW_COORDINATES);

Even when you decide to use a certain node or link layout, you may want some links or nodes
to be pinned; that is, you may want to keep a certain element in a specified position that is
not affected when the layout is executed on a network.

You can achieve this effect by using the following methods defined in IlvGraphLayout:

♦ setPreserveFixedLinks (boolean preserve). This method determines whether or not
the layout will preserve the position of the registered links.

♦ setPreserveFixedNodes (boolean preserve). This method determines whether or not
the layout will preserve the position of the registered nodes.

♦ void setFixed (Object obj /* link or node */, boolean fix). This method
determines whether or not the given object will be fixed in the network.

G R A P H I C C O M P O N E N T S78

♦ boolean isFixed (Object obj). The return value indicates whether or not the given
object is marked to be fixed. The object to be passed is an IlvGraphic belonging to the
IlpGraphic that represents the object and not the IlpGraphic or
IlpRepresentationObject itself.

♦ void unfixAllLinks()

♦ void unfixAllNodes()

How to set a link to fixed shape and a node to fixed position in the
network view
The following code illustrates how you can set a given link to have a fixed shape and a given
node to have a fixed position in the network.

In CSS, use the following rules:

Network {
graphLayout: true;
linkLayout: true;

}

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';

}

GraphLayout {
layouts[0]: @+treeLayout;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';

}

#Link:linkLayoutRenderer {
fixed: true;

}

#NE1:graphLayoutRenderer:tree {
fixed: true;

}

In the API, use the following code:

IlvGraphLayout layout = networkView.getLinkLayout();
layout.setPreserveFixedLinks (true);
IlpRepresentationObject linkRO = networkAdapter.getRepresentationObject(link)
;
layout.setFixed(networkView.getLayoutProxy(linkRO));

layout = networkView.getNodeLayout();
layout.setPreserveFixedNodes (true);

G R A P H I C C O M P O N E N T S 79

IlpRepresentationObject neRO = networkAdapter.getRepresentationObject(ne);
layout.setFixed(networkView.getLayoutProxy(neRO));

When the position or shape of an object is not handled by the layout, you must set it by
calling themethod setPosition(ilog.cpl.model.IlpRepresentationObject, ilog.cpl.
graphic.IlpPosition, ilog.cpl.graphic.IlpPositionSource) (or IlpNetworkView.
setPosition).

JViews TGO provides a default layout which uses IlvShortLinkLayout to shape and position
links. This default layout sets all objects without an attached position to (0,0).

How to use multiple node layouts in a network view
In this scenario, two node layouts are configured for the network view. The first one is
configured to be executed automatically.

In CSS, use the following rules:

Network {
graphLayout: true;

}

GraphLayout {
layouts[0]: @+hierarchicalLayout;
layouts[1]: @+treeLayout;
autoLayoutIndex: 0;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;
levelJustification: Top;
globalLinkStyle: POLYLINE_STYLE;
connectorStyle: EVENLY_SPACED_PINS;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

The same layout that is applied to the network view will be applied to the whole subnetwork
hierarchy.

In the API, use the following code:

IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setFlowDirection (IlvDirection.Bottom);
layout.setLevelJustification (IlvDirection.Top);
layout.setGlobalLinkStyle (IlvHierarchicalLayout.POLYLINE_STYLE);
layout.setConnectorStyle (IlvHierarchicalLayout.EVENLY_SPACED_PINS);

IlvTreeLayout treeLayout = new IlvTreeLayout();

G R A P H I C C O M P O N E N T S80

layout.setFlowDirection(IlvDirection.Bottom);

network.setGraphLayouts(new IlvGraphLayout[] { layout, treeLayout });
network.getView().optimizeLayout();

To execute the tree layout in the view, use the method performAttachedLayout, where the
index is the one defined in the CSS configuration, as illustrated below:

network.getView().performAttachedLayout(1);

How to use different layouts for the view and subnetworks
It is also possible to configure some subnetworks with layout algorithms that are different
from the network view.

If the subnetworks have intergraph links, the link layout renderer must be enabled,
otherwise the intergraph links will not be routed.

Note:

In this scenario, the object 'SubNetwork1' positions its nodes using a tree layout algorithm,
while the nodes in the main view are positioned using a grid layout.

In CSS, use the following rules:

Network {
graphLayout: true;
linkLayout: true;

}

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';

}

GraphLayout {
layouts[0]: @+gridLayout;

}

Subobject#gridLayout {
class: 'ilog.views.graphlayout.grid.IlvGridLayout';

}

#SubNetwork1:graphLayoutRenderer {
layouts[0]: @+treeLayout;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';

}

In the API, use the following code:

G R A P H I C C O M P O N E N T S 81

IlvGridLayout gridLayout = new IlvGridLayout();
network.setGraphLayouts(new IlvGraphLayout[] { gridLayout });

IlvTreeLayout treeLayout = new IlvTreeLayout();
layout.setFlowDirection(IlvDirection.Bottom);

IlpRepresentationObject ro =
network.getAdapter().getRepresentationObject("SubNetwork1");
network.getView().setGraphLayouts(ro, new IlvGraphLayout[] { treeLayout });
network.getView().optimizeLayout();

How to configure per-object layout properties in the network
component
Some layout algorithms require a specific configuration in order to be properly executed.
For example, the bus layout needs to have a bus object specified; or the tree layout, for
which you may want to specify the root node prior to the layout execution. Starting from
JViews TGO 7.5, you can configure these properties using CSS, as illustrated below:

Network {
graphLayout: true;

}

GraphLayout {
layouts[0]: @+busLayout

}

Subobject#busLayout {
class: 'ilog.views.graphlayout.bus.IlvBusLayout';
horizontalOffset: 50;
verticalOffsetToLevel: 50;
verticalOffsetToPreviousLevel: 40;
margin: 30;
marginOnBus: 50;

}

// Configure the bus object as the bus in the layout
// All layout configuration uses the 'graphLayoutRenderer'
// and the graph layout name pseudoclasses
#BUS:graphLayoutRenderer:bus {
bus: true;

}

// Configure the bus to route the links that connect the
// bus to the nodes
#BUS {
linksConnectToBase: true;

}

or, using the API:

G R A P H I C C O M P O N E N T S82

IlvBusLayout busLayout = new IlvBusLayout();
network.setGraphLayouts(new IlvGraphLayout[] { busLayout });

IlpRepresentationObject ro =
network.getAdapter().getRepresentationObject("BUS");
IlvGraphic layoutProxy = network.getView().getLayoutProxy(ro);
busLayout.setBus((IlvPolyPointsInterface)layoutProxy);

How to disable the per-object layout properties configuration in
the network view
By default, per-object layout parameters can be configured using CSS. However, if you are
not interested in this feature, you can disable it by setting the property
usePerObjectParamenters in the graph layout renderer and link layout renderer. Disabling
the per-object layout properties configuration speeds up significantly the rendering process.

Network {
graphLayout: true;
linkLayout: true;

}

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';
usePerObjectParameters: false;

}

GraphLayout {
layouts[0]: @+treeLayout;
usePerObjectParameters: false;

}

G R A P H I C C O M P O N E N T S 83

Label layout

JViews TGO allows you to place labels in a network automatically to make them easier to
read. This placement overrides the default placement of labels in JViews TGO, namely:

♦ Below network elements

♦ At the center of gravity of groups

Label layout allows you to reduce overlap between labels and other objects in the current
view. Therefore, it is particularly useful for positioning labels on links.Network Links without
Label Layout shows labels positioned by default. Network Links with Label Layout shows
the same links with customized positioning of the labels through label layout.

Network Links without Label Layout

Network Links with Label Layout

G R A P H I C C O M P O N E N T S84

Label layout tries to find the best position for your labels, but sometimes even this
mechanism does not achieve attractive results. To get the best results, leave large
spaces between network objects.

Note:

Label layout in JViews TGO uses the label layout of IBM® ILOG® JViews. See the IBM®
ILOG® JViewsDiagrammer Using Graph Layout Algorithms documentation for more details
on label layout.

Using label layout
JViews TGO provides the IltAnnealingLabelLayout class (a subclass of
IlvAnnealingLabelLayout) that moves the labels of the nodes and the links so that they do
not overlap. If it is impossible to prevent some overlap, this class will minimize the overlap
between different labels.

The class IlpNetworkView provides the following method for handling label layout:

void setLabelLayout (IltAnnealingLabelLayout layout);

This method sets the given layout for the specified view. This method is also available from
the class IlpNetwork, for convenience.

Unlike node layout and link layout, label layout is not performed automatically when the
content of the network changes. You need to call labelLayout.performLayout() explicitly.
There is a toolbar button for triggering label layout computation. See the class
IlpNetworkLabelLayoutButton.

Here is a typical example of how to use label layout.

How to use label layout

IlpNetwork network = new IlpNetwork();

// fill the network with your elements
IltAnnealingLabelLayout labelLayout =
new IltAnnealingLabelLayout();

network.setLabelLayout(labelLayout);
labelLayout.performLayout();
network.setLabelLayout(null);

In this example you:

1. Create the label layout.

IltAnnealingLabelLayout labelLayout =
new IltAnnealingLabelLayout();

2. Attach this layout to the current network.

G R A P H I C C O M P O N E N T S 85

network.setLabelLayout(labelLayout);

3. Perform the layout, placing the labels esthetically and where they will be easy to read.

labelLayout.performLayout();

4. Optionally, detach the layout from the network and release the resources used by label
layout. The positions of the labels are maintained.

network.setLabelLayout(null);

Defining the labels you want to position
Label layout positions only the labels of links by default. You can choose to apply the layout
to other types of object through the following methods:

void setObjects (IltLabelLayoutConstants[] types)
void setObjects (int index, IltLabelLayoutConstants type)
IltLabelLayoutConstants[] getObjects()
IltLabelLayoutConstants getObjects (int index)

or through the following convenience methods:

setUsesOthers(boolean flag)
setUsesLinks(boolean flag)
setUsesNetworkElements(boolean flag)
setUsesBTS(boolean flag)
setUsesLinearGroups(boolean flag)
setUsesPolyGroups(boolean flag)
setUsesRectGroups(boolean flag)

How to apply label layout to network elements only

IltAnnealingLabelLayout labelLayout =
new IltAnnealingLabelLayout();

labelLayout.setObjects(0, IltLabelLayoutConstants.NETWORK_ELEMENTS);
network.setLabelLayout(labelLayout);
network.performLabelLayout();
network.setLabelLayout(null);

The method setObjects indicates whether a certain type of object will have its label placed
by the label layout. In this example, only Network Elements will have their labels placed by
the label layout.

G R A P H I C C O M P O N E N T S86

How to apply label layout to network elements only using CSS

Network {
labelLayout: true;

}

LabelLayout {
class: 'ilog.tgo.graphic.graphlayout.labellayout.IltAnnealingLabelLayout";
objects[0]: NETWORK_ELEMENTS;

}

The property objects indicates whether a certain type of object will have its label placed
by the label layout. In this example, only network elements will have their labels placed by
the label layout.

Defining obstacles
The label layout positions the labels of the objects by taking into account the obstacles that
are in the network view. By default, all objects are considered as obstacles, but you can
configure this behavior in CSS or through the API:

How to specify obstables in the label layout using CSS

Network {
labelLayout: true;

}

LabelLayout {
class:

'ilog.tgo.graphic.graphlayout.labellayout.IltAnnealingLabelLayout';
obstacles[0]: NETWORK_ELEMENTS;
obstacles[1]: LINKS;

}

How to specify obstables in the label layout using the API

void setObstacles (IltLabelLayoutConstants[] types)
void setObstacles (int index, IltLabelLayoutConstants type)
IltLabelLayoutConstants[] getObstacles()
IltLabelLayoutConstants getObstacles (int index)

Constraints
The following constraints exist for label layout:

♦ Label layout does not work in subnetworks.

♦ If you move an object on which you have performed label layout, the label position will
not be maintained. You must perform label layout again on the object after the move.

G R A P H I C C O M P O N E N T S 87

♦ Label layout is not appropriate for dynamically changing networks.

Label layout is designed for stable networks. If you modify your network frequently, you
need to call the method performLayout() whenever any object with a label changes. The
IBM® ILOG® JViews algorithm for annealing label layout used in JViews TGO consumes
a lot of resources. Therefore, it is not recommend to call the method performLayout()
often. Note also that the layout does not always find the same position for the labels. See
the IBM® ILOG® JViews Diagrammer User’s Documentation for more information.

You can configure the label layout in a CSS file through the labelLayout property. For more
information, see The LabelLayout rule.

G R A P H I C C O M P O N E N T S88

Layers

The grapher in JViews TGO has a set of predefined rules for assigning layers to objects that
are inserted in the grapher. The choice of layer for a given object can be customized using
the abstract class IltLayerPolicy. The IlpNetworkView class provides the following default
layering policy in setLayerPolicy(ilog.tgo.composite.IltcLayerPolicy), for which no
coding is required:

♦ Nodes are gathered in the same layer.

♦ Links are gathered in a layer below the node layer.

♦ Regions are gathered in a layer below the link layer.

JViews TGO adopts the following conventions for displaying network objects and their
associated decorations:

♦ Within a layer, a graphic object is displayed with all its related decorations (site label,
function icon, family label, status icon, and so on).

♦ The only exception concerns alarm balloons, which are systematically displayed above
all the objects in the view. Information windows are displayed above all other objects.

The layer in which a representation object is displayed (along with all its associated
decorations) is determined by the IltLayerPolicy.

The network and each of its subnetworks have their own set of layers.The descriptions
concerning layers apply separately to each grapher.

Note:

JViews TGO provides support for layers in the form of a layer policy and a layer visibility.

Layer policy
Each graphic representation of an object is an instance of the class IlpGraphic. It has a set
of decorations that are instances of the class IlvGraphic. (Note that the IlpGraphic class
itself is a subclass of IlvGraphic.) The graphic representations (IlpGraphic) are layered
according to a given order, and so are the decorations. The mechanism that defines the
stacking order for decorations and graphic representations is called layer policy, and is
implemented by the abstract class IltLayerPolicy. This mechanism defines how two graphic
representations overlap and ensures that their decorations do not intertwine. See the stacking
order defined at the beginning of Layers.

Each IlpNetworkView has a layer policy that defines in which order the objects will be
displayed in the grapher. This layer policy is created during initialization, but you can also
modify it through the IltCompositeGrapher class:

♦ getLayerPolicy() returns the current layer policy.

♦ setLayerPolicy(ilog.tgo.composite.IltcLayerPolicy)changes the current layer
policy. The policy object specified as a parameter should be an instance of
IltLayerPolicy.

G R A P H I C C O M P O N E N T S 89

You get the IltCompositeGrapher that belongs to an IlpNetworkView by calling network.
getView().getCompositeGrapher().

The layer policy is responsible for allocating specific layers in the IBM® ILOG® JViews
grapher. The grapher is used to define the stacking order of the decorations. JViews TGO
provides a specific class for handling layers called IltcLayer. This interface is the extension
of IlvManagerLayer for IlpGraphic objects. Even though JViews TGO uses IltcLayer
instances, it is also possible to use IlvManagerLayer instances directly to place graphic
objects like map backgrounds or annotations.

The created layers must be referenced using IlvManagerLayer instead of the
layer numbers, since JViews TGO may cause layers to be added or removed,
which invalidates the previous layer numbers.

Important:

To create your own layer policy, you will have to implement the IltLayerPolicy interface
that defines the following methods:

♦ public IltcLayergetDefaultLayer (IlpGraphic graphic). This method returns the
IlpLayer into which the main objects will be inserted. If you want to define specific layers
according to the type of object, you should implement this method.

♦ public IltcLayergetElementLayer (IlpGraphic graphic, IltGraphicElementName
element). This method returns the IltcLayer into which a specific decoration will be
inserted. This method determines whether alarm balloons will be displayed on top of the
other decorations.

♦ public boolean isRemovable (IltcLayer. This method indicates which layers cannot
be removed; for example, all the layers created by this layer policy.

The layers returned by the methods above can be created in layer policy initialization. The
class IltCompositeGrapher provides methods through its superclass for dynamically
allocating the layers in the grapher to execute this operation.

♦ addLayerOnTop/addLayerBelow (IltcLayer. These methods create a new IltcLayer
above or below the given IltcLayer.

♦ addLayerOnTop/addLayerBelow (IlvManagerLayer. These methods create a new
IltcLayer above or below the given IlvManagerLayer.

♦ addIlvManagerLayerOnTop/addIlvManagerLayerBelow (IltcLayer. These methods
create a new IlvManagerLayer above or below the given IltcLayer.

♦ addLayerOnTop. This method creates a new IltcLayer on top of all the other layers of
this grapher.

♦ addLayerAtBottom. This method creates a new IltcLayer beneath all the other layers
of this grapher.

The following code extract shows you how to create layers.

G R A P H I C C O M P O N E N T S90

How to create layers

public MyLayerPolicy (IltCompositeGrapher grapher) {
_groupLayer = grapher.addLayerOnTop ();
_linkLayer = grapher.addLayerOnTop();
_mainLayer = grapher.addLayerOnTop();
_alarmBalloonLayer = grapher.addLayerOnTop();
_infoWindowLayer = grapher.addLayerOnTop();
_systemWindowLayer = grapher.addLayerOnTop();

}

public IltcLayer getElementLayer (IlpGraphic graphic,
IltGraphicElementName element) {

if (element == IltGraphicElementName.AlarmBalloon)
return _alarmBalloonLayer;

else if (element == IltGraphicElementName.InfoWindow)
return _infoWindowLayer;

else if (element == IltGraphicElementName.SystemWindow)
return _systemWindowLayer;

return null;
}

When you use the layer policy and your own layers in an IlpNetworkView, JViews
TGO expects all the layers for IlpGraphic instances and decorations to be adjacent.

Note:

For example, if you intend to load an IVL file that has predefined layers for the vectorial
elements, these layers must be previously allocated in the IlvGrapher instance
before you create the IlpNetworkView. (See IlvManager in the IBM® ILOG®
JViews Java™ API Reference Documentation for information on how to create layers.)

Layer visibility
The layering mechanism is frequently used to hide and show collections of objects. Since
JViews TGO manages the allocation of layers and the distribution of IlvGraphic instances
on them, the following methods are available for controlling the visibility of collections of
objects.

There are three possible mechanisms for modifying the visibility of layers:

♦ To set the visibility of a specified JViews TGO layer to on or off, use the following:

● setVisible(ilog.views.IlvManagerView, ilog.tgo.composite.IltcLayer,
boolean)IltCompositeGrapher.setVisible (IltcLayer layer, boolean visibility).

♦ To set the visibility of a specified IBM® ILOG® JViews Manager layer to on or off, use
the following:

● setVisible(ilog.cpl.graphic.views.IlpLayer, boolean)IlpNetworkView.setVisible
(IlvManagerLayer layer, boolean visibility) .

G R A P H I C C O M P O N E N T S 91

♦ To indicate that the layer must be hidden or displayed at a specific moment, use the
following filter:

● addVisibilityFilter(ilog.views.
IlvLayerVisibilityFilter)IltcLayer.addVisibilityFilter (IlvLayerVisibilityFilter filter)

See IlvLayerVisibilityFilter in the IBM® ILOG® JViews Java™ API Reference
Documentation.

The visibility of layers in subnetworks cannot be changed. Only layers in
the top level of the grapher can be made invisible.

Note:

To control the visibility of an individual IlpObject, use the methods addObject(ilog.cpl.
model.IlpObject) or removeObject(java.lang.Object, boolean) on
IlpMutableDataSource. You can also use filters, or assign accepted or excluded classes to
the component adapter (see Filtering for details).

To control the visibility of an individual IlpRepresentationObject use the methods
addRootObject(ilog.cpl.model.IlpRepresentationObject) or removeRootObject(ilog.
cpl.model.IlpRepresentationObject) on IlpMutableNetworkModel. For objects belonging
to a container, use addChild(ilog.cpl.model.container.IlpRepresentationNode) or
removeChild(ilog.cpl.model.container.IlpRepresentationNode).

G R A P H I C C O M P O N E N T S92

Zooming

JViews TGO supports three different zooming modes, as described below:

♦ Physical zoom. In this display mode, the sizes and coordinates of all objects change
proportionally with the zoom factor. JViews TGO supports this zoom mode only for zoom
factors less than one, that is, for zoom-out, not zoom-in. This mode is implemented by the
IltPhysicalZoomPolicy class.

♦ Logical zoom. In this display mode, the following changes occur: the coordinates of
network elements change proportionally but their sizes remain constant; the sizes of
groups change proportionally; the link layout is recalculated according to the new
coordinates and sizes. The application can define additional actions in the framework of
logical zooming, for example groups being replaced with subnetworks when the user
zooms in. This mode is implemented by the IltLogicalZoomPolicy class.

♦ Mixed zoom. In this display mode, physical zoom is used for zoom factors less than one,
that is, for zoom-out, and logical zoom is used for zoom-in. The IltMixedZoomPolicy class
implements this mode.

To summarize, physical zoom provides a fast miniaturized view of a network, whereas logical
zoom keeps the graphical quality of the displayed objects.

Zoom support is implemented by the IlpZoomPolicy instances. By default, an IlpNetworkView
instance has the physical zoom support set. However, the user can modify this configuration
through the following method:

♦ IlpNetworkView.setZoomPolicy(ilog.cpl.graphic.views.IlpZoomPolicy) installs
the specified zoom policy in the given view.

♦ IlpNetworkView.setZoomPolicy(ilog.cpl.graphic.views.IlpZoomPolicy) with
parameter set to null, uninstalls the zoom policy from the view.

The two coordinate systems
This section assumes that you are familiar with the IBM® ILOG® JViews class
IlvTransformer and with the difference betweenmanager coordinates and view coordinates
(see the method getTransformer() in the class IlvManagerView).

Because of the possibility of a logical zoom (where the coordinates of the objects are changed
according to the zoom level), there are two coordinate systems in use in JViews TGO:

♦ Stationary coordinates. Coordinates passed in this coordinate system do not change
over time. This is the coordinate system used to set the position of an object through the
method setPosition(ilog.cpl.model.IlpRepresentationObject, ilog.cpl.graphic.
IlpPosition, ilog.cpl.graphic.IlpPositionSource).

♦ View coordinates. Coordinates given in this coordinate system change when the
transformer of the view changes; for example, in the case of a scrollable view, when the
user moves one of the scrollbars. This is the coordinate system seen by the layout
optimizers and by the connection to the IBM® ILOG® JViews graph layout.

Depending on the method you use, it may be necessary to convert from one coordinate
system to another.

G R A P H I C C O M P O N E N T S 93

To convert from stationary coordinates to view coordinates, apply network.getManagerView
().getTransformer(). This rule holds good only for objects in the top-level network. It
cannot be applied to subnetworks.

To convert back, apply the inverse transformer. (See the methods inverse(ilog.views.
IlvRect) and computeInverse(ilog.views.IlvTransformer) in the class IlvTransformer.)

Physical zoom
Graphic representations of telecom objects make intensive use of labels and icons. Therefore,
some graphic objects cannot be resized without deteriorating their aspect when the physical
zoom mechanism is used. This effect is even more visible when unzooming. While some
JViews TGO objects, like groups, can be resized, other objects, such as network elements,
have been intentionally designed to have an optimal size depending on the quantity of
information they hold. Resizing these objects impairs the readability and compactness of
their graphic representation.

For these reasons, the physical zoom mode was implemented to hide the decorations of
telecom objects according to a certain configurable zoom factor. This factor is called the
visibility threshold and represents the absolute value of the determinant of the view
transformer. When the value of this determinant is lower than the decoration visibility
threshold, decorations of the affected type are no longer displayed.

The visibility threshold for each decoration type can be configured locally to a network
component through the methods:

♦ IltPhysicalZoomPolicy.setDecorationNames(java.lang.String[])

♦ IltPhysicalZoomPolicy. setVisibilityThresholds(int, double)

or through the CSS properties:

♦ decorationNames

♦ visibilityThresholds

How to set the visibility threshold for decorations in a specific
network component
The following example describes a network component configuration that sets a physical
zoom policy to the component, and defines visibility thresholds for the decorations Name,
AlarmBalloon, AlarmCount and Plinth. Refer to Configuring a network component through
a CSS file for more information.

Zooming {
type: "Physical";
decorationNames[0]: Name;
decorationNames[1]: AlarmBalloon;
decorationNames[2]: AlarmCount;
decorationNames[3]: Plinth;
visibilityThresholds[0]: 0.5;
visibilityThresholds[1]: 0.8;
visibilityThresholds[2]: 0.5;

G R A P H I C C O M P O N E N T S94

visibilityThresholds[3]: 0.5;
}

Visibility thresholds can also be configured globally for all network components through the
methods:

♦ IltrZoom. GetVisibilityThreshold(ilog.tgo.graphic.IltGraphicElementName)

♦ IltrZoom. SetVisibilityThreshold(ilog.tgo.graphic.IltGraphicElementName,
double). This method sets the value of the visibility threshold for the specified element
name. This method defines, for a specific type of decoration, the threshold above which
the decoration will disappear when the view is zoomed.

How to set the visibility threshold of decorations for all network
components
The following example shows how you can customize the visibility threshold of specific
decorations globally, so that all network components created in the application have the
same configuration:

IltrZoom.SetVisibilityThreshold (IltGraphicElementName.Name, 0.5);
IltrZoom.SetVisibilityThreshold (IltGraphicElementName.AlarmBalloon, 0.8);
IltrZoom.SetVisibilityThreshold (IltGraphicElementName.AlarmCount, 0.5);
IltrZoom.SetVisibilityThreshold (IltGraphicElementName.Plinth, 0.5);

Logical zoom
The logical zoom effectively transforms the proportional zoom mechanism of IBM®
ILOG® JViews in such a way that the coordinates of JViews TGO objects in the manager are
modified when the zoom factor changes. The effect of this operation is that network elements
are not resized and the layout of the links is recalculated to correspond to the new coordinates
of the nodes in the manager.

Only the main view of an IlpNetwork can hold the logical zoom support. The overview
window always has a physical zoom.

Combining physical and logical zoom (mixed zoom)
JViews TGO provides a mechanism that combines the physical and logical zoom policies.
This mechanism is implemented by the class IltMixedZoomPolicy and uses physical zoom
for zoom factors less than one and logical zoom for zoom factors greater than one, in the
same view.

You can configure the zoom policy in the CSS file through the zooming property. For more
information, see The Zooming rule.

G R A P H I C C O M P O N E N T S 95

Background support

IBM® ILOG® JViews TGO allows you to develop telecommunication user interfaces that
display telecommunication elements on a geographic or non-geographic background.

Telecommunication objects on Top of a Geographic Background

The background API
The background API allows you to integrate various types of background in the network and
equipment components. It is made up of the following classes (see Background class
relationships and Background support classes for an illustration of the class relationships).

IlpBackground
Backgrounds are implementations of the IlpBackground interface. This interface is part of
the ilog.cpl.graph.background package where all background classes reside.

An IlpBackground implementation is usually associated with a specific background format.
JViews TGO provides implementations of this interface that cover the most used background
formats. See the table below for a complete list:

G R A P H I C C O M P O N E N T S96

Supported background formats
Background file extensionBackground classBackground format

SVGIlpSVGBackgroundScalable Vector Graphics

SVGZIlpSVGZBackgroundGZIP Scalable Vector Graphics

GIF, PNG, JPEG and JPGIlpImageBackgroundRaster Images

GIF, PNG, JPEG and JPGIlpImageTileBackgroundTiled Raster Images

SHP, DBF, SHX and IDXIlpShapeBackgroundESRI Shape

MIF and MIDIlpMIDMIFBackgroundMID/MIF

IVL and ILVIlpIVLFrameworkBackgroundJViews Vector Graphics

IVL with Map ThemesIlpIVLMapBackgroundJViews Vector Graphics

If the background format you are interested in is not listed here, please see Advanced
support.

The IlpBackground interface defines two key methods: create and dispose. The method
create produces the representation of the background itself; the method dispose disposes
of the constructs that compose the representation of the background.

The ultimate representation of an IlpBackground is made up of instances of IlvGraphic
objects that are part of the IBM® ILOG® JViews Framework. These graphics typically reside
on one or more instances of IlvManagerLayer which compose the actual background
representation. An IlpBackground implementation is responsible for appropriately processing
the data in a given background format, creating IlvGraphic instances that appropriately
represent the background data and populating one or several IlvManagerLayer instances
with these IlvGraphic instances. Each IlvManagerLayer instances is accessible through
the IlpBackground.getManagerLayer method.

IlpAbstractBackground
The IlpAbstractBackground class is the recommended base class that implements the
common methods of the IlpBackground that should be used when introducing new
IlpBackground types. It implements the IlvBatchable interface in order to minimize the
performance side effects of property changes in a given background instance. For more
information on how to use this interface, see the IlvBatchable and IlpAbstractBackground
API.

IlpBackgroundSupport
Instances of IlpBackground aremanaged by an implementation of the IlpBackgroundSupport
interface. JViews TGO provides a predefined implementation that is used by default, namely
the IlpDefaultBackgroundSupport.

The IlpBackgroundSupport is in charge of providing all background-related functionality
that graphic components like IlpNetwork and IlpEquipment may need. For example, it
allows you to add, remove, move and reload backgrounds as well as access the added
backgrounds and their constructs.

IlpBackgroundSupport is also the entity that handles the lifecycle of IlpBackground
instances. It determines when the graphical representation of IlpBackground instances is

G R A P H I C C O M P O N E N T S 97

created or disposed of. The following diagram illustrates the possible states and interactions
involved when switching between them:

The following table summarizes the interactions where the IlpBackground API is triggered
by the IlpBackgroundSupport:

Interactions between IlpBackground and IlpBackgroundSupport
InvokedIlpBackground method

create ♦ when a background is added to the graphic component

♦ when a background is reloaded in the graphic component (preceded
by a call to dispose)

dispose ♦ when a background is removed from the graphic component

♦ when a background is reloaded in the graphic component (followed by
a call to create)

Although not optimal, it is nonetheless legal to use a given implementation of
IlpBackgroundSupport.moveBackground to remove, then add again a given IlpBackground
at the appropriate index in order to move a background. For information on the default
implementation of this method, see IlpDefaultBackgroundSupport.moveBackground.

IlpMapDataSourceBackground
The IlpMapDataSourceBackground is an interface that allows you to integrate additional
background formats provided in IBM® ILOG® JViews Maps via its Map DataSource API. It
extends the IlpBackground interface by defining two additional methods that are necessary
to establish the integration with JViews TGO: IlpMapDataSourceBackground.
createMapDataSource to create the IlvMapDataSource that will handle the background file

G R A P H I C C O M P O N E N T S98

and IlpMapDataSourceBackground.getMapDataSource to provide access to the
IlvMapDataSource of the background.

See Limitations for limitations related to the functionality provided by the
IlpMapDataSourceBackground.

IlpAbstractMapDataSourceBackground
JViews TGO provides an abstract base class implementation of the
IlpMapDataSourceBackground interface that allows the integration of new IlvMapDataSource
implementations to take place with minor effort. This class is called
IlpAbstractMapDataSourceBackground.

This class handles all the logistics involved in integrating IlvMapDataSource-based
backgrounds within JViews TGO. It leaves as abstract the IlpMapDataSourceBackground.
createMapDataSource which must be implemented by the concrete type. It introduces a
new method, IlpAbstractMapDataSourceBackground.createRenderer, which returns an
IlvFeatureRenderer that can be used to install a custom feature renderer to be used during
the creation of the IlvGraphic instances for the provided IlvMapDataSource.

In addition, this type has a utility method, getMapStyle(), which provides access to the
IlvMapStyle used by the underlying IlvMapDataSource.

This type is naturally the recommended base type for integrating new implementations of
background formats that use the JViews Maps IlvMapDataSource API.

IlpAbstractIVLBackground
JViews TGO uses implementations of IlpAbstractIVLBackground to integrate backgrounds
defined in IVL files. Besides the standard IlpBackground functionality, this type also allows
users to add and remove IlvManagerLayer instances directly to and from the
IlpAbstractIVLBackground instance through the IlpAbstractIVLBackground.
addManagerLayer and IlpAbstractIVLBackground.removeManagerLayer, respectively.

The added IlvManagerLayer instances are treated just like another layer that was originated
from the source IVL file, meaning that the background properties are propagated to these
layers. Thus, the properties of the IlpBackground (like visibility) are applied to the added
layers as the state of the IlpAbstractIVLBackground changes.

See Limitations for limitations related to the functionality provided by the
IlpAbstractIVLBackground implementations.

There are two implementations of IlpAbstractIVLBackground: IlpIVLFrameworkBackground
and IlpIVLMapBackground.

IlpIVLFrameworkBackground should be used to read standard IVL files that contain only
JViews Framework content. For more information, see IlpIVLFrameworkBackground in the
Java™ API Reference Documentation.

IlpIVLMapBackground should be used to read IVL files that contain JViews Maps content.
For more information, see IlpIVLMapBackground in the Java API Reference Documentation.

Background class relationships illustrates the background classes.

G R A P H I C C O M P O N E N T S 99

Background class relationships

Background support classes illustrates the background support classes.

Background support classes

Configuring the background
Backgrounds can be configured at two different levels:

♦ the component level

♦ the individual background level

G R A P H I C C O M P O N E N T S100

1. Component backgrounds

As described earlier, you can use the IlpBackgroundSupport interface to manage
backgrounds programmatically. You can add, remove, reload and access backgrounds.
See How to add a background to the network component for a sample on how to add a
background to the network component.

You can also specify the precise background configuration through CSS. For more
details, see the CSS configuration of backgrounds in The Backgrounds rule.

2. Individual background

Each IlpBackground instance has a set of predefined properties that can be retrieved
or set at runtime through the methods IlpBackground.getProperty or IlpBackground.
setProperty. Each IlpBackground implementation defines the properties that are
available to customize its behavior and representation. See the IlpBackground interface
for general background properties.

You can also specify the precise properties for a given background through CSS. For
more details, see the CSS configuration of backgrounds in The Backgrounds rule.

The following table lists the properties that are available and supported by each
IlpBackground implementation:

IlpBackground properties
DescriptionSupported

backgrounds
SampleDefaultTypeName

Defines the URL of the
file that contains the

ALLurl:”sf
-bayarea.
png”;

nullStringurl

background. This is a
read-only property.

Determines whether
the background is
visible or not.

ALLvisible:
”true”

truebooleanvisible

Determines whether
the background uses
load-on-demand or not.

-Shape (shp)

-Image (gif, png
and jpg)

loadOnDemand:
“false”

falsebooleanloadOnDemand

Determines whether
the internal processing

-Image (gif, png
and jpg)

threaded:
”true”

falsebooleanthreaded

of the background uses
-Image Tile (gif,
png and jpg)

a multithreaded
approach to improve
performance.

Determines the height,
in pixels, of the tile to

Image (gif, png
and jpg)

tileHeight:
“100”

300integertileHeight

be created. This
property is taken into
account only when the

G R A P H I C C O M P O N E N T S 101

DescriptionSupported
backgrounds

SampleDefaultTypeName

loadOnDemand
property is set to true.

Determines the width,
in pixels, of the tile to

Image (gif, png
and jpg)

tileWidth:
“100”

300integertileWidth

be created. This
property is taken into
account only when the
loadOnDemand
property is set to true.

Determines whether
the provided IVL file
contains Map Themes.

JViews Vector
Graphics (ivl)

mapThemed:
”true”

truebooleanmapThemed

Map themes
The background support provided by JViews TGO has become more interactive. Users can
now specify a Map Theme to be associated with backgrounds.

A Map Theme is composed of several background-related features such as, but not limited
to:

♦ Map Styles - Allows to modify the background graphical representation according to map
scale.

♦ Areas of Interest - Bookmarks areas in the view that are of interest.

♦ Coordinate System - The coordinate system that matches the background map.

♦ Display Preferences - Preferences that affect the display of cartographic data as
backgrounds and background-related beans.

♦ Map Labeling - Allows the labeling of background data.

These features are provided by the underlying JViews Maps framework and exposed in
JViews TGO. You can find more information on each of these features in the JViews Maps
Documentation, Using the Map Builder, section Map Themes and Zoom Levels.

Integration
Map Themes integration into JViews TGO is available through the use of IVL background
files generated from the JViews Maps Map Builder (more specifically through the use of
IlpIVLMapBackground).

The typical steps for integrating Map Themes created in the Map Builder are:

1. Load the background formats of interest.

2. Edit the various Map features of interest (Map Theme).

3. Save the configured background and its Map Theme as an IVL file.

4. Use this IVL file as a standard background within JViews TGO:

G R A P H I C C O M P O N E N T S102

Backgrounds {
background[0]: @+background0;
}
Subobject#background0 {
class: "ilog.cpl.graph.background.css.IlpBackgroundCSSConfiguration";
url: "background/backgroundWithMapTheme.ivl";
mapThemed : true;
}

After editing the background and its Map Theme in the Map Builder, you can also save
the Map Theme only in an IVL file. Then you can use the created IVL Map Theme file

Note:

(which does not contain the background itself) as a standalone background in JViews
TGO.

For more information on the JViews Maps Map Builder, see Using the Map Builder in the
JViews Maps documentation.

See Limitations for limitations of the Map Theme functionality.

Background beans

IlpBackgroundPanel
This bean allows you to integrate into your user interface the ability to load, reorder, and
save backgrounds for an IlpNetwork or IlpEquipment.

G R A P H I C C O M P O N E N T S 103

IlpBackgroundPanel Bean

A background located at the top has higher priority (drawing-wise) than the background
below it. In the figure above, the europe.jpg background has the lowest priority of all and
will be drawn below all other backgrounds. Whereas paris-subway.svg will be drawn on
top of all backgrounds (highest priority).

The IlpBackgroundPanel bean provides the following features:

G R A P H I C C O M P O N E N T S104

Load a CSS file that contains a background configuration

Save the current background configuration

Add a background to the current configuration

Remove the selected background from the current configuration

Provide more information on the selected background

Move the selected background up

Move the selected background down

You can customize the background files that are filtered by this bean, by setting the
getBackgroundExtensionsmethod. You can also specify the default directory where it looks
for backgrounds, by using the setDefaultDirectory method. Lastly, you can show or hide
both the Add Background and the Remove Background buttons at runtime by using the
showAddBackgroundButton and showRemoveBackgroundButton property accessors of
IlpBackgroundPanel.

See the IlpBackgroundPanel Java API for additional information.

Some quick facts

♦ When the view is zoomed, the background map is also zoomed.

♦ The objects and the background map do not change positions during zoom operations.

♦ Backgrounds are stacked according to their indices, where the background at index 0 is
the bottommost background, that is, it has the lowest priority drawing-wise. However,
keep in mind that index i does not necessarily correspond to the IlvManagerLayer index
i, because some backgrounds span over more than one layer.

Advanced support
JViews TGO provides advanced support of the following:

♦ memory management

♦ configuring backgrounds through XML

G R A P H I C C O M P O N E N T S 105

♦ integration of background formats not supported natively

Memory management
Some of the IlpBackground implementations allow you to configure the policy used to handle
the management of the resources needed to represent its format.

This is the case in particular with the IlpImageBackground which leverages the advanced
performance features provided by JViews Maps. More specifically, it takes advantage of the
IlvRasterMappedBuffer which allows you to specify the memory management policy used
to handle the rasters that ultimately represent the backgrounds.

By default, JViews TGO enforces the in-memory policy which stores the resources in memory.
But you can also take advantage of the disk-mapped policy which stores pixel information
on disk-mapped memory.

The disk-mapped policy is not supported in applets.Important:

For more details on this topic, see:

♦ The IBM® ILOG® JViewsMaps Documentation, Programming with JViewsMaps, section
Raster Image Management.

♦ The IlvRasterMappedBuffer Java API.

XML background format
In addition to the natively supported background formats (see Supported background
formats), JViews TGO also provides the ability to configure backgrounds via XML.

The XML format allows you to configure one or more background files and specify some of
the properties that each background uses to configure itself. This format is typically used
if you need an image tile background and need to specify its configuration statically. Image
tile backgrounds consist of a rectangular array of JPG, GIF, or PNG files, each with a filename
denoting the column number and the row number. For a sample of how to make use of this
format and configure an image tile background, seeHow to specify a tiled image background
using the XML format.

The XML format does not support all the parameters, such as offsets and built-in
projections, that a given background may internally use.

Note:

Unless you have specific needs, the recommended way to configure your backgrounds
is through CSS which allows nearly any type of customization.

Integration of unsupported background formats
If you want to use of a background format that is not supported natively by JViews TGO (for
example, TIGER Linemaps), the recommended approach is to check if this format is supported
by the underlying JViews Maps product that JViews TGO makes use of. If this map format
is supported by JViews Maps, then you should follow these steps:

G R A P H I C C O M P O N E N T S106

1. Use the JViews Maps Map Builder to load and customize the map as needed.

2. Export the map as an IVL file.

3. Use this IVL file as an IVL background file that contains JViews Maps content in JViews
TGO, as described in Integration.

For more information on the JViews Maps Map Builder, see Using the Map Builder in the
JViews Maps documentation.

If the map format is supported neither by JViews TGO nor by JViews Maps, then it is
recommended to export the unsupported format into one of the formats supported by
JViews Framework, JViews Maps or JViews TGO, so that the standard or above integration
can take place.

Limitations
The following table lists the limitations of backgrounds in JViews TGO:

Background limitations
DescriptionArea

Loading a background that contains a map theme may overwrite
some or all of the map theme settings of a previously loaded
background. The recommended approach will be to:

Map Themes - Multiple backgrounds

1. Load all the backgrounds of interest in the JViews Maps Map
Builder.

2. Customize the map theme of all these backgrounds.

3. Save the map theme as a whole (as opposed to individually).

4. Load the global map theme as a standard IVL background.

Access to the IlvCoordinateSystem of an IlvMapDataSource
from an IlpMapDataSourceBackground is read-only.

IlpMapDataSourceBackground

If you set the coordinate system of the IlvMapDataSource for a
given IlpMapDataSourceBackground through the method
IlvMapDataSource.setCoordinateSystem(), it will not take
effect because the IlvMapDataSource is recreated during a
background reload.

If you need to customize the map data source with a custom
IlvCoordinateSystem, the recommended approach is to
overwrite the IlpAbstractMapDataSource.
createDataSource method to return an IlvMapDataSource
that already has the IlvCoordinateSystem of interest set on it.

When you add IlvManagerLayer instances manually to an
IlpAbstractIVLBackground, these instances will not be

IlpAbstractIVLBackground

restored during a background reload. If reload support is required,
it is recommended to create an additional
IlpAbstractIVLBackground that points to an IVL file containing
the additional graphics, or to add again the additional

G R A P H I C C O M P O N E N T S 107

DescriptionArea

IlvManagerLayer instances after the background has been
reloaded.

How to add a background map in MIF format

URL url = context.getURLAccessService().getFileLocation("world.mif");
networkComponent.addBackgroundURL(url);

How to add a background to the network component

IlpNetwok network = …;

URL backgroundURL = context.getURLAccessService().getFileLocation("backgrounds/
world.png");

How to specify a tiled image background using the XML format

<?xml version="1.0" encoding="UTF-8"?>
<background
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ilog/cpl/schema/background.xsd"
type="ImageTile">
<property name="pattern">jpp%c%r.jpg</property>
<property name="tileWidth">400</property>
<property name="tileHeight"400</property>
</background>

How to add an IVL background to the underlying IlvManager
The appropriate approach is to use an IlpAbstractIVLBackground, which gives you direct
access to the underlying IlvManager that hosts the network (or equipment) component. If
this approach does not satisfy your needs, you can (although this is not advised):

1. Obtain the IlpNetwork or (IlpEquipment) underlying IlvManager by calling network.
getView().getManagerView().getManager()

2. Make sure that the needed number of IlvManagerLayer instances is inserted in this
IlvManager (so that your background does not corrupt any of the existing
IlvManagerLayer instances).

You can add more IlvManagerLayer instances by calling IlvManager.addLayer(0)

3. Call IlvManager.read to read the IVL file.

G R A P H I C C O M P O N E N T S108

How to find out the georeferencing configuration needed for my
IlpGeographicPositionconverter
If your background is georeferenced, you will likely be using several advanced Map
background settings that are required when configuring the
IlpGeographicPositionConverter.

These settings can typically be found in the IlvCoordinateSystem associated with a given
background.

♦ If you use an IlpMapDataSourceBackground, you can access its IlvMapDataSource and
from there you can find the IlvCoordinateSystem.

♦ If you use a non IlpMapDataSourceBackground, the information is typically configured
manually by setting it explicitly on the underlying IlvManager or indirectly through a
Map Theme (in an IVL file). Either way, you can access the IlvCoordinateSystem through
the call IlvCoordinateSystemProperty.getCoordinateSystem().

Note that if you have different coordinate systems for which you want to find out an
IlvMathTransform, you can use an IlvCoordinateTransformation.

Lastly, note that the different types of IlvCoordinateSystem provide different types of
settings. For example, an IlvProjectedCoordinateSystem provides access to a possibly
needed IlvProjection. So assuming that the background map has an
IlvProjectedCoordinateSystem, to find out the IlvProjection used by it, you can do the
following:

IlpMapDatasourceBackground background = …;
IlvCoordinateSystem coordinateSystem =

background.getMapDataSource().getCoordinateSystem();
if(coordinateSystem instanceof IlvProjectedCoordinateSystem) {

IlvProjectedCoordinateSystem projectedCoordinateSystem =
(IlvProjectedCoordinateSystem)coordinateSystem;

IlvProjection projection = projectedCoordinateSystem.getProjection()
…
}

G R A P H I C C O M P O N E N T S 109

Filtering

The network component allows you to filter the nodes that are displayed. To do so, attach
an instance of IlpFilter to the network component by using the method setFilter. The
accept() method of the filter object will be invoked whenever the network is prompted to
display an IlpObject. If the method returns false, the object will not be shown in the
network. In the same way, an object will not be shown if its parent is not displayed.

For example, write the following code to show only objects of the class IltNetworkElement.

How to filter objects to be shown in the network component

IlpNetwork network = // ...
// Create a new IlpFilter instance
IlpFilter filter = new IlpFilter(){
// This method is called for every object in the data source
public boolean accept (Object object){
IlpObject ilpObject = (IlpObject)object;
IlpClass clz = ilpObject.getIlpClass();
// Check if the class == IltNetworkElement
return clz.equals(IltNetworkElement.GetIlpClass());

}
// Set the filter to the network
network.setFilter(filter);

All the objects are refiltered whenever a new filter is set. If the filter is null (which is the
default), all the objects under the root nodes will be displayed.

To retrieve the active filter, use the method getFilter().

The filtering takes actually place at the adapter level.Note:

To see how to configure filtering through CSS, refer to The Adapter rule.

G R A P H I C C O M P O N E N T S110

Accepted and excluded classes

You can specify the business objects that will be represented or not in the network component
depending on their business classes. To do so, you need to specify the business classes to
be accepted or excluded using methods setAcceptedClasses or setExcludedClasses in
the network component adapter. To retrieve the adapter, use the getAdapter method. The
adapter must be an instance of a subclass of IlpAbstractNodeAdapter. By default, business
objects of the class IltAlarm are excluded from the network component, so that alarm
objects in the data source are only used to compute the alarms present in a given managed
entity instead of being graphically represented in the view.

How to specify excluded classes in the network component
You can specify that business objects from specific business classes are not represented in
the network component. You can do that using the API, setExcludedClasses(java.util.
List) method, or using CSS.

The following example shows you how to prevent objects from business classes IltAlarm
and IltLed to be represented:

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[1]: "ilog.tgo.model.IltLed";

}

How to specify an accepted class in the network component
By default, all business classes, except IltAlarm, are accepted by the network component.
If you want to specify exactly which business classes to represent, you should combine the
list of excluded and accepted classes, so that you exclude all business classes except those
that are marked in the accepted class list.

In the following example, the network component is configured in a way that it graphically
represents only business objects from the class IltNetworkElement.

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[0]: "ilog.tgo.model.IltObject";
acceptedClasses[0]: "ilog.tgo.model.IltNetworkElement";

}

The filtering that is performed through the use of the accepted and excluded class lists
takes actually place at the adapter level.

Note:

To see how to configure excluded and accepted classes through CSS, refer to The Adapter
rule.

G R A P H I C C O M P O N E N T S 111

Setting a list of origins

By default, all the objects in the data source that do not have a parent are treated as root
nodes by the network component. However, you can explicitly select the root nodes to be
displayed through the adapter that forms a bridge between the data source and the network
component. To retrieve the adapter, use the getAdapter() method. The adapter must be
an instance of a subclass of IlpAbstractNodeAdapter.

The root nodes can be changed by modifying the list of origins for the adapter. These origins
are set and retrieved as IlpObject identifiers. The network adapter has two options: either
the origins are represented as root nodes, or they are hidden and their child objects are
represented as root nodes.

The method getOrigins allows you to get the list of current origins. The method
isShowingOrigin indicates whether the origins themselves or their child objects are
represented as root nodes. By default, the list of origins is empty and the origins are not
shown, which means that all objects without a parent are shown as root nodes. Thus, the
entire contents of the data source are displayed in the network.

The origins are specified using identifiers, not the IlpObject instances.You can
retrieve the identifier of an IlpObject with the getIdentifier method of the object.

Note:

To change the list of origins, use the setOriginsmethod. This method takes a list of business
object identifiers as its first parameter. Its second parameter is a Boolean flag that indicates
whether or not the origins themselves should be shown as root nodes.

Calling this method with an empty list and the second parameter set to true empties the
network:

setOrigins(Collections.EMPTY_LIST, true);

Calling the method with an empty list and the second parameter set to false restores the
default; that is, all the objects in the data source are shown:

setOrigins(Collections.EMPTY_LIST, false);

How to show an object as the root node of a network
To show only a given IlpObject as the root node of a network, use the following code:

IlpNetwork network =;
IlpObject originObject =;
java.util.List originList = new ArrayList();
originList.add(originObject.getIdentifier());
network.getAdapter().setOrigins(originList, true);

G R A P H I C C O M P O N E N T S112

See the IlpAbstractHierarchyAdapter class for additional methods to help you manage
origins.

To see how to configure origins through CSS, refer to The Adapter rule.

G R A P H I C C O M P O N E N T S 113

Node factory

The network adapter converts business objects retrieved from the associated data source
into instances of IlpNetworkNode. The new representation objects are created by a
representation object factory. The network adapter uses by default the
IlpDefaultNetworkNodeFactory that creates representation objects of type
IlpDefaultNetworkNode.

To know how to configure a network node factory through CSS, refer to The Adapter rule.

G R A P H I C C O M P O N E N T S114

Link factory

As the network node factory transforms business objects into representation objects, the
link factory transforms business objects that are links into representation objects that are
instances of IlpNetworkLink. The network adapter uses by default the
IlpDefaultNetworkLinkFactory that creates representation objects of type
IlpDefaultNetworkLink.

To see how to configure a network link factory through CSS, refer to The Adapter rule.

G R A P H I C C O M P O N E N T S 115

Expansion strategy

The network adapter uses an expansion strategy to identify whether objects should be loaded
or not in the network model. The expansion strategy defines how an object is going to behave
when it is expanded, for example, when the user opens a network node by double-clicking
or by using the network expansion handles. The expansion strategy indicates whether load
on demand is implemented and provides methods to load and release child nodes.

The network adapter uses an expansion strategy factory to decide the expansion strategy
to apply to a network node when it is created by the adapter. The default expansion strategy
factory implementation, IlpDefaultNodeExpansionStrategyFactory, checks the property
"expansion" of each business object in the cascading style sheet loaded in the component
to identify the expansion strategy to use.

The default network expansion strategy factory supports three types of expansion strategies:

♦ IN_PLACE: loads the child objects immediately in the network model. In this expansion
strategy, nodes are considered as parent nodes only when they have containment
relationships defined in the attached data source, through the IlpContainer interface.
The child objects should already be loaded in the data source and should be visible
according to the data source filter, if there is one defined.

♦ IN_PLACE_MINIMAL_LOADING: loads the child objects on demand in the network model,
that is, as the user expands the parent nodes. All nodes with this expansion strategy are
considered as possible parent nodes, and therefore are represented with an expansion
icon. If the node does not contain child objects, the expansion icon will disappear when
the expansion is executed for the first time.

♦ NO_EXPANSION: expansion is not supported by the node.

See Customizing the expansion of business objects in the Styling documentation for
information on how to customize the business object expansion type, which is defined by
the property expansion.

The expansion strategy factory can be customized for the adapter either through CSS or
through the API.

G R A P H I C C O M P O N E N T S116

Architecture of the network component

A graphic component encapsulates a model, a view, and a controller. The network component,
like all the other graphic components, is based on the MVC architecture, which means that
it has a model, a view and a controller associated with it. For a general introduction to the
MVC architecture, see Architecture of graphic components. That section describes the
classes and features of the network component that are specific to each module of the MVC
architecture, and also explains the role of the adapter.

In this section

Class overview
Gives an overivew of the MVC architecture of the network component.

The model
Describes the classes of the network model.

The view
Describes the classes of the network view.

The controller
Describes the classes of the network controller.

The adapter
Describes the classes of the network adapter.

G R A P H I C C O M P O N E N T S 117

Class overview

The MVC architecture of the network component is implemented by the following classes:

♦ The class IlpNetwork contains a model, a view, and a controller.

♦ The model interfaces are IlpNetworkModel and IlpMutableNetworkModel.

The interface IlpMutableNetworkModel provides API facilities for adding and removing
objects. The two network model interfaces are implemented through the class
IlpDefaultNetworkModel. Instances of IlpNetwork use the class
IlpDefaultNetworkModel.

Representation objects to be displayed in the component must be added to the model.
The network model recognizes the following objects:

● Nodes

● Links, which connect nodes

Representation objects to be added to the model must implement the IlpNetworkNode
or IlpNetworkLink interface. Concrete implementations of these interfaces are provided
as IlpDefaultNetworkNode and IlpDefaultNetworkLink. You can create subclasses of
these representation object classes.

♦ The class IlpNetworkView defines the network view.

It displays the objects in a rectangular area, with scrollbars and a toolbar to let users
navigate. The view displays the objects contained in the model or made accessible through
container expansion of objects in the model.

♦ The class IlpNetworkController defines the network controller.

The controller configures the view interactor, reacts to actions triggered by the interactor,
and forwards these actions to a handler.

Main classes used by the network component shows the main classes used by the network
component.

G R A P H I C C O M P O N E N T S118

Main classes used by the network component

G R A P H I C C O M P O N E N T S 119

The model

The model contains the representation objects used to produce the graphic objects in the
view. The model describes the end points of links, and as such it models the topology of the
network. The model allows the view to access contained objects through the method
getChildren(ilog.cpl.model.IlpRepresentationObject). The model provides support
for load-on-demand; that is, for adding child objects asynchronously when expanding network
objects through the class IlpExpansionStrategy.

Classes of the network model
The interface IlpNetworkModel is implemented by the class IlpDefaultNetworkModel. This
class is automatically created when you instantiate IlpNetwork. JViews TGO provides the
following interfaces for creating nodes and links:

♦ IlpNetworkNode for nodes

♦ IlpNetworkLink for links

JViews TGO supplies default implementations of these interfaces.

Classes used by the network model shows the classes used by the network model.

G R A P H I C C O M P O N E N T S120

Classes used by the network model

Creating nodes and links in the network model
When you want to create a new node or link, use the default implementations:

♦ IlpDefaultNetworkNode

♦ IlpDefaultNetworkLink

To create a linkset, create several links with the same end nodes.

To set the end nodes of a link, apply the methods setFromNode (for the start node) and
setToNode (for the end node).

A link cannot be displayed unless it has end nodes, but you can create the link before you
create the end nodes.

The following examples show how to use the classes for creating nodes and links.

G R A P H I C C O M P O N E N T S 121

How to create a node

IlpDefaultNetworkNode node = new IlpDefaultNetworkNode(MyAttributes,null);
network.setPosition(node,new IlpPoint(100,200), IlpPositionSource.BACKEND);
model.addRootObject(node);

How to create a link

IlpDefaultNetworkLink link = new IlpDefaultNetworkLink(MyAttributes,null);
link.setFromNode(node1);
link.setToNode(node2);
model.addRootObject(link);

For convenience, the main methods of IlpNetworkModel and IlpMutableNetworkModel are
also accessible from IlpNetwork. Thus, the following statements are equivalent:

network.getModel().addRootObject(node);

and

network.addRootObject(node);

G R A P H I C C O M P O N E N T S122

The view

The view displays a rectangular area of a theoretically infinite plane area. The view performs
the following functions:

♦ Displays a subset of the objects of the model

♦ Allows navigation using scrollbars and provides a zoom facility

♦ Assigns default positions to nodes that have no value for position in the model

♦ Assigns shapes to links that have none

♦ Modifies link shapes when end nodes are moved

♦ Provides a toolbar for choosing a view interactor

♦ Optionally displays an overview window

Classes of the network view
The IlpNetwork class automatically creates the concrete class IlpNetworkView, which is
provided for developing the network view. This class provides methods that allow you to
configure the view in the following ways:

♦ Turn the scrollbars on or off: setHorizontalScrollBarVisible(boolean),
setVerticalScrollBarVisible(boolean)

♦ Set the zoom level: getManagerView()

♦ Set the toolbar on or off (here set to off): setToolBarVisible(boolean) (false)

♦ Set the overview panel to be displayed or not (here set to be displayed):
setOverviewVisible(boolean)

For convenience, these methods are also accessible from the class IlpNetwork. They delegate
to IlpNetworkView.

For information on how to configure the network view in CSS, see Configuring a network
component through a CSS file .

For information on how to configure the network view through the API, seeHow to configure
the network view with the API .

Graphic objects in the network component
Graphic objects display as many details as possible within the limits of the display area and
without loss of readability.

The network component uses only composite graphic objects. The graphic objects are created
by the view renderer, which calls the appropriate object renderers to obtain the composite
graphic objects. The view determines which object renderer is required to draw the graphic
object that translates a particular representation object or attribute from the style sheet
properties.

G R A P H I C C O M P O N E N T S 123

The following basic variations of graphic object exist in the network component:

♦ Nodes—Nodes are the basic graphic objects and they are represented as network elements
according to the conventions of the governing standards, such as ITU-T or ANSI, and the
appropriate protocols.

♦ Links—Links are the connections between nodes.

End-user interaction with a graphic object is handled by an object interactor. Object
interactors handle the gestures of an end user when performing a task. Gestures consist of
one or more mouse events to perform one task.

For more information on object interactors, see Object interactors.

Graphic object classes
The graphic representation of each object displayed in the network component is implemented
through the IlpGraphic interface. JViews TGO provides predefined network graphic objects
that are produced by the default network component renderer. You can customize the
rendering of the objects through CSS.

For custom business objects, JViews TGO provides a default representation with a set of
properties that can be customized to better represent your objects. If you prefer, you can
also specify a new graphic representation by defining an IlvGraphic class in the CSS. For
more information, refer to Customizing user-defined business objects. You can also refer to
<installDir> /samples/network/compositeGraphic to see how to create a new object
representation by using the IBM® ILOG® JViews composite graphics feature.

Predefined business objects already have a specific graphic representation that can only be
changed through CSS customization by setting the object properties.

You can customize the graphic representation by adding new decorations. To see how to
add new decorations to the objects using CSS, look at the decoration sample at <installDir>
/samples/network/decoration.

Network graphic object renderers
Object renderers in the network component create one graphic object that translates a
complete representation object. No graphic objects are created that correspond to attributes
of a representation object. Instead, subcomponents of graphic objects are created from
attributes for example, a label can be created from the name attribute.

Such subcomponents are combined into composite graphic objects, like the link with
secondary states and a label shown in Link with secondary states and a label by using
attachments.

Link with secondary states and a label

A composite graphic object constructed in this way looks like one object. The different
instances of IlpGraphic used to build the graphic object cannot be distinguished as separate
objects in the network. JViews TGO manages only the composite object. You cannot move
the label separately from the link.

G R A P H I C C O M P O N E N T S124

The controller

The controller is used for configuring view parameters, including layout and the background
map. It manages the toolbar and the interactors: it determines which interactors are available
from the toolbar.

The controller manages end-user interaction, such as object creation or move requests. It
forwards these requests to the handler (see The handler). It forwards all end-user requests
to:

♦ create objects

♦ delete objects

and actions triggered by the end user to:

♦ move objects

♦ reshape objects

Classes of the network controller
The IlpNetwork class automatically instantiates the class IlpNetworkController.

Using the network controller
The normal way of customizing the behavior of the controller is to attach a handler through
the API.

The default handler is the IlpNetworkHandlerWithoutDataSource. When a mutable data
source is connected to the network component, a new handler,
IlpNetworkHandlerWithDataSource, is attached to the controller. You can customize either
of these handlers by extending them. To set a new handler, use the method setHandler
(ilog.cpl.network.IlpNetworkHandler):

IlpNetwork network = ...
IlpNetworkController controller = network.getController();
IlpNetworkHandler myHandler = new MyCustomHandler();
controller.setHandler(myHandler);

Another controller configuration is to set the default view interactor through the method
setDefaultViewInteractor. See also Interacting with the network view.

You can also customize the controller by using CSS rules in the network configuration. The
following code gives an example. For more details, see Configuring a network component
through a CSS file.

How to customize the network controller through CSS

Interactor {

G R A P H I C C O M P O N E N T S 125

name: "Select";
}

This rule selects the default interactor.

The handler
In the same way as the adapter passes information about the objects in the data source to
the network component, the handler passes information in the opposite direction, that is,
from the network component to the data source.

The information notified in this way includes:

♦ Actions triggered by interactors for

● Creating objects in the data source

● Removing objects from the data source

● Changing attributes of objects in the data source

● Changing the parent object of an object in the data source

● Expanding and collapsing container objects

♦ Propagating position changes of objects

The position changes are usually due to layout, zoom change, or interactors.

The handler has been designed to simplify the customization of user interactions without
rewriting the controller.

There are four types of handler:

♦ IlpPositionHandler to handle object position changes.

♦ IlpNodeHandler to handle object additions, removals and updates, as well as relationship
changes.

♦ IlpLoadHandler to handle reloading of model objects from an XML file.

♦ IlpExpansionHandler to handle the expansion and collapsing of objects.

The IlpNetworkHandler interface indirectly extends all four types of handler.

The handler has a reference to the data source in the form of an IlpMutableDataSource,
and to the network adapter.

You can customize the behavior of the handler by subclassing the class
IlpNetworkHandlerWithDataSource. A particular method can be overridden for each of the
possible actions.

You can customize the way position changes are propagated by overriding the method
propagatePositionToDataSource(ilog.cpl.model.IlpObject, ilog.cpl.graphic.
IlpPositionSource). In a typical situation where the client is active, position changes are
propagated to the data source. Therefore, this method returns true by default. In a situation
where the client has read-only access, you may want to allow only user-requested position
changes or no position changes at all to be forwarded to the data source. You can achieve

G R A P H I C C O M P O N E N T S126

this result by allowing the method propagatePositionToDataSource(ilog.cpl.model.
IlpObject, ilog.cpl.graphic.IlpPositionSource) to return false in the appropriate
cases.

The handler is most often subclassed to allow you to customize the creation of new objects
in the data source. The object interactors may need to be customized in the same way. A
customized object creation interactor typically calls the controller method createObject
(java.lang.Class, ilog.cpl.model.IlpAttributeGroup, java.util.Map, ilog.cpl.
graphic.IlpPosition)with specific properties. The controller then forwards these properties
to the handler. Finally, the method handleCreateObject(java.lang.Class, ilog.cpl.
model.IlpAttributeGroup, java.util.Map, ilog.cpl.graphic.IlpPosition) of the
handler parses the additional properties and creates the new objects.

By default, the handler creates new objects in two steps:

1. The ID of the new object is created with the method createObjectId(java.lang.Class,
ilog.cpl.model.IlpAttributeGroup, java.util.Map).

2. The IlpObject corresponding to this ID is created with the method createObject(java.
lang.Class, ilog.cpl.model.IlpAttributeGroup, java.util.Map, java.lang.
Object).

You can customize each step separately by overriding these methods in a subclass.

Any user interaction with the network is processed by the network controller which delegates
action to the network handler. The handler has two default implementations:

♦ IlpNetworkHandlerWithoutDataSource is attached by default to the controller and
performs user interactions directly in the network model.

♦ IlpNetworkHandlerWithDataSource is automatically attached to the controller when a
data source is connected with the network component. User interactions are executed
inside the data source that will notify the adapter, and the adapter in turn will notify the
network model. In this particular use case, changes will be reflected on all network
components, if any, connected to the data source.

G R A P H I C C O M P O N E N T S 127

The adapter

The network adapter converts business objects into representation objects of type network
node and network link. It is defined by the class IlpNetworkAdapter.

Network adapters retrieve structural information (that is, parent/child relationship) about
business objects from the associated data source and determine whether an object should
appear as a root representation object by examining a list of origins. See Setting a list of
origins for details.

Like the tree adapter, the network adapter supports load on demand.

The following figure shows network adapter classes:

Network adapter classes

The network adapter creates either a node or a link representation object depending on the
value returned by the method getLinkInterface(java.lang.Object). If the return value
is not null, then a link is created; otherwise, a node is created.

G R A P H I C C O M P O N E N T S128

Nodes are created with an IlpNetworkNodeFactory. By default, this factory is an instance
of the class IlpDefaultNetworkNodeFactory, which creates IlpDefaultNetworkNode
instances.

Similarly, links are created with an IlpNetworkLinkFactory. By default, this factory is an
instance of the class IlpDefaultNetworkLinkFactory, which creates IlpDefaultNetworkLink
instances.

The network adapter handles the position or shape of objects. By default, it interprets every
object attribute with the name position as denoting the position of the object. You can use
the method setPositionAttribute(ilog.cpl.model.IlpClass, ilog.cpl.model.
IlpAttribute) in IlpAbstractNodeAdapter to specify any other attribute to be used instead
for all instances of a given IlpClass.

You can create a network adapter implicitly by instantiating the IlpNetwork component as
shown in the following example.

How to create a network adapter by instantiating a network
component

IlpNetwork ilpNetwork = new IlpNetwork();
IlpDataSource dataSource = new IlpDefaultDataSource();
ilpNetwork.setDataSource(dataSource);

If you want to configure the adapter, to set its origin for example, you must first retrieve it
from the network component and then set it to the data source.

How to configure a network adapter

IlpNetwork ilpNetwork = new IlpNetwork();
IlpDataSource dataSource = new IlpDefaultDataSource();
// configure the adapter, for example set an origin
IlpNetworkAdapter adapter = ilpNetwork.getAdapter();
adapter.setOrigins(Collections.singletonList("origin"),false);
adapter.setDataSource(dataSource);

For information on how to configure the adapter in CSS, see The Adapter rule.

Controlling the display of objects as containers
Unlike the tree adapter, the network adapter considers by default that objects are not
containers. There are two conditions for an object to be a container: its
getContainerInterface(java.lang.Object) method should not return null and the
property expansion applying to that object should be set to ExpansionType.IN_PLACE. By
default, this property is set to ExpansionType.NO_EXPANSION. For information on how to set
a property value, see Introducing cascading style sheets.

G R A P H I C C O M P O N E N T S 129

There is no way to represent an object in a network component as a container, if its
getContainerInterface(java.lang.Object) returns null.

Note:

Creating a temporary representation object
The network adapter supports temporary representation objects. These objects are
placeholders that can be used in place of permanent representation objects for editing
purposes and, more specifically, when new objects are created in the network view. When
a business object corresponding to the temporary representation object is added to the data
source, this temporary representation object is removed and replaced by the permanent
representation of the business object. A filter, defined by IlpFilter, is used to determine
when the representation object of a business object added to the data source is a candidate
to replace the temporary representation object. Filtering criteria can be of any kind.

The following example shows how to add a temporary representation object to a network
adapter.

How to add a temporary representation object to a network adapter
First you create the temporary representation object, like this:

IlpDefaultNetworkNode temp=
new IlpDefaultNetworkNode(new IlpDefaultAttributeGroup());

Then you add it to the adapter along with the filtering criteria using the method
storeTemporaryRepresentationObject(ilog.cpl.model.container.
IlpRepresentationNode, ilog.cpl.model.container.IlpMutableRepresentationNode,
ilog.cpl.util.IlpFilter):

adapter.storeTemporaryRepresentationObject(temp, null, new IlpFilter() {
public boolean accept(Object o) {
IlpObject ilpO = (IlpObject)o;
return ilpO.getIdentifier().equals("right one");
}

};

The temporary representation object will be replaced by a permanent representation object
as soon as a business object satisfying the filtering criteria is added to the data source.

G R A P H I C C O M P O N E N T S130

Equipment component

Describes the equipment component, which is one of the four graphic components provided
in IBM® ILOG® JViews TGO. It is designed to display and interact over telecommunication
equipment such as shelves, cards, ports, and LEDs.

In this section

Introducing the equipment component
Describes the equipment component, which allows you to display shelves, cards, ports, and
LEDs connected by links on top of a background map.

Creating an equipment component: a sample
Details the steps required to create a sample equipment component.

Configuring the equipment component
Describes how to display an equipment using rendering information. This information defines
how to display equipment data.

Equipment component services
Describes the services associated with the equipment component in JViews TGO, which are
of three kinds: view services, related to the equipment view; adapter services, related to
the equipment model; handler services, related to the equipment controller. As most of the
equipment services are shared with the network component, you are strongly recommended
to read the corresponding topics in Network component.

Architecture of the equipment component
Describes the classes and features of the equipment component that are specific to each
module of the MVC architecture, and also explains the role of the adapter.

© Copyright IBM Corp. 1987, 2009 131

Introducing the equipment component

The equipment component is based on the Swing equipment component. It allows you to
display shelves, cards, ports and LEDs connected by links on top of a background map.

The equipment component is connected to a data source from which it obtains the business
objects to be displayed. By default, the equipment component displays all the objects
contained in the data source. However, it is also possible to restrict the contents displayed
by:

♦ Selecting the root nodes to be shown

G R A P H I C C O M P O N E N T S132

♦ Applying a filter

♦ Specifying the business classes to be accepted or excluded by the component

♦ Specifying whether nodes are expandable or not (load on demand)

The equipment is described in detail in Shelves and cards . You can customize: add, remove,
configure shelves, cards, ports, and LEDs, either through the equipment component API or
through a user-friendly Equipment Editor provided in <installdir>
/samples/equipment/equipmenteditor.

Objects that do not have a parent are displayed as root nodes, while the others are displayed
under their parent.

The equipment component offers the following notable features:

♦ Filtering capabilities

The equipment component allows you to filter the nodes that are displayed. That is, the
business objects present in the attached data source are only displayed if they are accepted
by the current filter.

♦ Interaction support

You can interact with the equipment view as a whole as well as with individual objects.

♦ Load on demand

The equipment component supports load on demand for the business objects to be
displayed. This means that the graphic representation of a given business object is only
created when its parent object is expanded through code or through user interaction. By
default, load on demand is customized through the CSS property expansion (see
Customizing the expansion of business objects). More advanced customization can be
performed at the adapter level (see Expansion strategy).

♦ Layout capabilities

You can perform node and label layouts.

♦ Zooming capabilities

There are three zoom policies: physical, logical, and mixed.

♦ Background support

The equipment component allows you to display maps in the background.

The equipment component is implemented by the class IlpEquipment, which is a Swing
JComponent that can be directly inserted into a panel (JPanel).

IlpEquipment provides the API for the most common uses of the equipment component,
such as:

♦ setting or retrieving the associated data source: getDataSource(), setDataSource(ilog.
cpl.datasource.IlpDataSource)

♦ accessing andmodifying the selection: getSelectionModel(), setSelectionModel(ilog.
cpl.equipment.IlpEquipmentSelectionModel), addSelectionObject(ilog.cpl.model.
IlpObject), removeSelectionObject(ilog.cpl.model.IlpObject), clearSelection(),

G R A P H I C C O M P O N E N T S 133

isObjectSelected(ilog.cpl.model.IlpObject), getSelectedObject(),
getSelectedObjects()

♦ setting or retrieving the view interactor: setViewInteractor(ilog.cpl.interactor.
IlpViewInteractor), getViewInteractor()

♦ changing the root nodes of the equipment through the data source adapter: getAdapter
()

♦ filtering the equipment nodes: setFilter(ilog.cpl.util.IlpFilter), getFilter()

IlpEquipment also acts as a façade for a number of lower-level components that it contains.
These components provide more detailed APIs and advanced services. They are described
in Architecture of the equipment component.

The information presented in this section is based on samples of typical equipment
applications.

G R A P H I C C O M P O N E N T S134

Creating an equipment component: a sample

This topic shows you how to create the following equipment view:

An equipment view

The following example describes the steps of creating a frame as an equipment container,
creating an instance of IlpEquipment, creating a data source and connecting it to the
equipment, and finally reading in the equipment data.

G R A P H I C C O M P O N E N T S 135

How to create a basic equipment component
1. Create a frame to contain the equipment.

// Create a frame.
JFrame frame = new JFrame("ILOG JTGO equipment sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

2. Create the equipment component.

IlpEquipment equipment = new IlpEquipment(sampleConfigurationFile, context)
;
frame.getContentPane().add(equipment);

You need to create a new instance of an equipment and make sure that the appropriate
configuration is assigned. The equipment configuration is normally read in from a CSS
file. You ensure that the equipment configuration file is taken into account and parsed
by passing the URL and context or, as in the example, by passing the filename and
context as arguments of IlpEquipment. For more information on how to create the
equipment configuration, seeConfiguring an equipment component through CSS . Then
you add the equipment component to the frame.

3. Create the data source and connect it to the equipment component.

// Creates the data source
IltDefaultDataSource dataSource = new IltDefaultDataSource(context);
// Set data source for the equipment component
equipment.setDataSource(dataSource);

Once the equipment component is created, you need to associate it with a data source.
By default, no data source is set for the equipment component. The data source holds
the business objects that will be converted into representation objects by the equipment
adapter through the data source API.

4. Read in an XML file, equipment.xml, that contains the equipment nodes and links.

dataSource.parse("equipment.xml");

The default data source creates the business objects by parsing an XML file or stream
where the objects are described, as shown. You could instead create your own data
source from a file or database, or even create a complex data source based on proprietary
object definitions.

For information on how to define an XML file, refer to Defining the business model in XML
.

How to add business objects to the data source for an equipment
component through an XML File
The easiest way to populate the data source for an equipment is to read an XML data file.

G R A P H I C C O M P O N E N T S136

The business object IDs in the XML file must be unique within the given equipment.

The following example shows an object definition in the XML file.

<addObject id="1004035002697 60">
<class>
ilog.tgo.model.IltShelf

</class>
...

</addObject>

How to add business objects to the data source for an equipment
component through the API
An alternative way to populate the data source for an equipment is to create business objects
and insert them in the data source through the API.

The following example shows how to insert a shelf.

// Creates an empty shelf using API
IlpObject obj = new IltShelf(3, 40, 30, 0);
// Add object to data source
dataSource.addObject(obj);
// Set its position to 200, 50 in the view
obj.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(200, 50));

G R A P H I C C O M P O N E N T S 137

G R A P H I C C O M P O N E N T S138

Configuring the equipment component

Describes how to display an equipment using rendering information. This information defines
how to display equipment data.

In this section

Configuring an equipment component through CSS
Describes display customization using CSS.

Configuring an equipment component through the API
Describes how to use the API to configure the equipment view and the equipment adapter
of an equipment component.

Customizing the rendering of equipment nodes and links
Provides links to further information on rendering equipment nodes and links.

Loading a project file
Describes how to load a project file that combines rendering style sheets and a data source.

G R A P H I C C O M P O N E N T S 139

Configuring an equipment component through CSS

You can configure an equipment either through a CSS configuration file or through the API,
the easiest and preferred way being the CSS configuration. You also have the possibility to
load a project file which combines the CSS configuration and the equipment data. You can
customize the behavior and properties of the equipment component, for example by redefining
the toolbar, specifying a zoom policy, or choosing a specific background image. You can also
customize the behavior and properties of the equipment objects.

You can customize the following features in a CSS file:

♦ Equipment view

● Toolbar visibility

● Toolbar buttons

● Overview window

● View interactor

● Zoom policy

● Link layout

● Type of background map and its URL

● Position converter

♦ Equipment adapter

● Expansion

● Filtering

● Origin

● Node factory

● Link factory

● Accepted classes

● Excluded classes

How to load a CSS file in an equipment component
The equipment configuration can be split across several CSS files. The method
setStyleSheets(int, java.lang.String) accepts several CSS filenames.

There are three ways to apply a CSS configuration to an equipment component, depending
on whether you have one or several configuration files:

♦ If you have a single configuration file, and you do not want to inherit the settings from
the default configuration file, pass the CSS configuration filename to the constructor of
IlpEquipment, as follows:

G R A P H I C C O M P O N E N T S140

equipmentComponent = new IlpEquipment(myConfigurationFile);

If no CSS file is specified, the equipment component uses the default configuration, that
is, ilog.cpl.equipment.defaultConfiguration.css from the jviews-tgo-all.jar file.

♦ If you have one or several configuration files to be applied, you can specify a project file
that lists the style sheets, the configuration files, and the XML data file to be loaded in
the component (see Loading a project file). The following example shows a project file
with two configuration files.

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd"
style="configurationFile1.css,configurationFile2.css">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

fileName="equipment.xml"/>
</tgo>

If the settings in two CSS files disagree, the effect depends on the order of the filenames
in the list: the last file mentioned takes precedence over the first file.

♦ If you have several configuration files to be applied together, use the setStyleSheets
method, as follows:

equipmentComponent = new IlpEquipment();
equipmentComponent.setStyleSheets(
new String[] { myConfigurationFile1, myConfigurationFile2 });

or, if you want to inherit and extend the settings from the default configuration file, use
setStyleSheets as follows:

equipmentComponent = new IlpEquipment();
equipmentComponent.setStyleSheets(
new String[] {
IlpEquipment.DefaultConfigurationFileName,
myExtraConfigurationFile

});

If the settings in two CSS files disagree, the effect depends on the order of the filenames
in the list: the last file mentioned takes precedence over the first file.

How to configure an equipment component in a CSS file
The following code represents an example of configuring an equipment component in CSS.
It is based on the CSS files located in <installdir> /samples/equipment/styling where
<installdir> is the directory where you have installed JViews TGO.

The configuration in CSS is organized as a set of rules that define properties.

Equipment {

G R A P H I C C O M P O N E N T S 141

toolbar: true;
overview: true;
interactor: true;
zooming: true;
graphLayout: true;
backgrounds: true;
positioning: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;
button[1]: @+ZoomResetButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;

}

Subobject#ZoomResetButton {
actionType: "ZoomReset";

}

Overview {
enabled: true;

}

Interactor {
name: "Select";

}

Zooming {
type: "Mixed";
zoomThreshold: 2.0;

}

GraphLayout {
class: "ilog.views.graphlayout.grid.IlvGridLayout";

}

Backgrounds {
background[0]: "data/images/europe.jpg";

}

Positioning {
positionClass: "ilog.cpl.graphic.IlpPosition";
converterClass: "ilog.cpl.network.IlpDefaultPositionConverter";

}

G R A P H I C C O M P O N E N T S142

The Equipment rule
This rule specifies Boolean flags that indicate whether each customizable property is present.
For example, customization of the property GraphLayout is not taken into account unless
graphlayout: true; is declared in the Equipment rule.

This feature provides powerful cascading possibilities of CSS files. Thus, you can define
GraphLayout customizations in a default CSS file and then turn them on or off in another
CSS file.

The following properties are supported in the Equipment rule. You will find detailed
documentation for each of these properties in the IBM® ILOG® JViews TGO Java™ API
Reference Documentation, package ilog.cpl.equipment.renderer.

CSS properties of the equipment view
Rule TypeProperty

Adapteradapter

ToolBartoolbar

Viewview

Overviewoverview

Interactorinteractor

Zoomingzooming

GraphLayoutgraphLayout

LabelLayoutlabelLayout

Backgroundsbackgrounds

Positioningpositioning

The ToolBar rule
This rule controls the toolbar.

The property enabled is a Boolean property, with default value true. It controls whether
the toolbar is visible or not.

The property external is a Boolean property, with default value false. It specifies whether
the placement and visibility of the toolbar are managed by user code instead of internally
by the equipment component.

Buttons can be added through the syntax button[i]: @+ButtonId; followed by the
customization setting of the button with the given ButtonId.

A button has a mandatory property, actionType. This property specifies the action triggered
by the button or a separator that is added to the toolbar. The value can be:

♦ a short name, such as Select, used for predefined actions, or

♦ the name of a subclass of AbstractButton with a constructor that takes an instance of
IlpViewsView as argument, or

G R A P H I C C O M P O N E N T S 143

♦ the Separator short name to indicate that a separator should be placed in the specified
position.

How to add a toolbar separator for the equipment component
You can add toolbar separators in specified positions of the equipment component toolbar.
When configuring the equipment component toolbar, you can specify the position where a
separator should be placed by using the predefined button action called Separator. This
button action supports an optional property, dimension, which allows you to specify the
dimensions of the separator in the toolbar.

The following example shows how to achieve this result:

ToolBar {
enabled: true;
button[0]: @+SelectButton;
button[1]: @+Separator;
button[2]: @+PanButton;

}
Subobject#Separator {
actionType: "Separator";
dimension: "20,10";

}

The predefined values for the actionType property are the following:

G R A P H I C C O M P O N E N T S144

Predefined values of the actionType property
DescriptionBean ClassactionType

Values

Allows you to zoom in the viewIlpEquipmentZoomInButtonZoomIn

Allows you to zoom out of the
view

IlpEquipmentZoomOutButtonZoomOut

Allows you to go back to the
previous zoom level

IlpEquipmentZoomBackButtonZoomBack

Allows you to reset the zoom
level to the original level

IlpEquipmentZoomResetButtonZoomReset

Allows you to specify a
rectangular area on which to
zoom

IlpEquipmentZoomViewButtonZoomView

Allows you to fit the contents of
the view to the size of the view

IlpEquipmentFitToContentsButtonFitToContents

Allows you to recenter the viewIlpEquipmentScrollToContentsButtonScrollToContents

Allows you to pan the viewIlpEquipmentPanButtonPan

Allows you to select and move
objects

IlpEquipmentSelectButtonSelect

Allows you to create linksIlpEquipmentMakeLinkButtonMakeLink

Allows you to create linear
groups

IlpEquipmentMakeLinearGroupButtonMakeLinearGroup

Allows you to create polygonal
groups

IlpEquipmentMakePolyGroupButtonMakePolyGroup

Allows you to create rectangular
groups

IlpEquipmentMakeRectGroupButtonMakeRectGroup

Allows you to edit the shape of
groups

IlpEquipmentEditGroupButtonEditGroup

Allows you to edit labelsIlpEquipmentEditLabelButtonEditLabel

Allows you to edit equipment
objects

IlpEquipmentEditObjectButtonEditObject

Allows you to trigger the label
layout

IlpEquipmentLabelLayoutButtonLabelLayout

A button can have a property permanent. This is a Boolean property, with default value true.
For interactor buttons, this property denotes whether the interactor remains attached after
it has performed its action.

A button can have a property name. This property specifies the name by which other elements
in the file refer to the button. The default name is the short name used as actionType.

A button can have additional properties, corresponding to Bean properties of the Java™
class. For example, the Select button has the properties multipleSelectionMode,

G R A P H I C C O M P O N E N T S 145

moveAllowed, dragAllowed, editingAllowed, moveThreshold, opaqueMove,
showingMovingObject, opaqueDragSelection, opaqueResize, opaquePolyPointsEdition,
multipleSelectionModifier, selectionModifier, which are documented in the class
ilog.cpl.equipment.action.toolbar. IlpEquipmentSelectButton.

An interactor button can have key or gesture actions attached to it. These actions are
triggered by specific keystrokes or gestures while the interactor is active. These actions are
added through the syntax action[i]: @+ActionId; followed by a customization setting for
the action.

An action customization has the mandatory property class which specifies the Java class
name of the javax.swing.Action object. Bean properties of this class are also customizable.
The properties key and gesture can be set to specify when the action is to be executed.
These two properties are not used in combination. For example, if you specify:

key: "control A";
gesture: "BUTTON1_CLICKED";

the action will be executed either when the key sequence ‘control-A’ is typed, or when the
mouse BUTTON1 is clicked. To define the property "gesture", specify one of the predefined
user gestures defined in class IlpGesture. To define the property "key", specify a string
that will be converted to a keystroke by the type converter (IlpTypeConverter).

The following predefined actions are available:

♦ ilog.cpl.graph.action. IlpSelectAllObjectsAction

♦ ilog.cpl.graph.action. IlpRemoveSelectedObjectsAction

An interactor can have a pop-up menu factory associated with it. You can specofy this factory
using the Bean property popupMenuFactory. Its value should be an indirect reference (through
@+ or @#) to a property class or to other Bean properties. For example,

Subobject#SelectButton {
actionType: "Select";
popupMenuFactory: @+popupMenuFactory;

}

Subobject#popupMenuFactory {
class: 'CustomPopupMenuFactory';

}

In this example, the value of the property popupMenuFactory is a bean that is defined by
the class CustomPopupMenuFactory. This class should implement the interface
IlpPopupMenuFactory.

For more information on configuring the toolbar in an equipment view, refer to the class
IlpToolBarRenderer.

How to add a predefined toolbar button to the equipment
component
JViews TGO provides a list of predefined toolbar buttons usable in the equipment component
(see Predefined values of the actionType property).

G R A P H I C C O M P O N E N T S146

The following example shows how to add a predefined button that enables the select
interactor. When this interactor is enabled, you can customize actions, pop-up menus and
interactor properties as illustrated here:

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;
popupMenuFactory: @+popupMenuFactory;

}

Subobject#popupMenuFactory {
class: 'CustomPopupMenuFactory';

}

Subobject#action0 {
key: "control A";
class: 'ilog.cpl.graph.action.IlpSelectAllObjectsAction';

}

How to add a custom toolbar button to the equipment component
To add your own toolbar button, you need to create a new action class that inherits from
IlpEquipmentInteractorAction and contains a constructor that takes an IlpViewsView as
parameter.

public class CustomButtonAction extends IlpEquipmentInteractorAction {

public CustomButtonAction(IlpViewsView view) {
super(view);
// Do any needed initialization
// Define your own view interactor that will be active when the button

is
selected

// in the toolbar
IlpViewsViewInteractor interactor = new IlpViewsViewInteractor();
// Register the interactor in this action
setIlpInteractor(interactor);

}
}

Then, you need to register this new button in your component configuration, as follows:

ToolBar {
enabled: true;
button[0]: @+MyButton;

G R A P H I C C O M P O N E N T S 147

}

Subobject#MyButton {
actionType: 'CustomButtonAction';
toolTipText: "Custom";
icon: @+customIcon;

}
Subobject#customIcon {
class: 'javax.swing.ImageIcon';
image: '@|image("custom.png")';

}

The custom action will be encapsulated in an IlpEquipmentInteractorButton, and you will
be able to customize the properties of this button as with the predefined buttons. For example,
you can customize the following:

♦ name

♦ usingObjectInteractor

♦ popupMenuFactory

♦ actions associated with gestures and keystrokes

The View rule
This rule controls the view.

You can customize the following properties of the view:

View properties
DescriptionDefault valueTypeProperty Name

Defines the
policy for the

IlvJScrollManagerView.
HORIZONTAL_SCROLLBAR_AS_NEEDED

inthorizontalScrollBarPolicy

visibility of the
horizontal
scrollbar

Defines the
policy for the

IlvJScrollManagerView.
VERTICAL_SCROLLBAR_AS_NEEDED

intverticalScrollBarPolicy

visibility of the
vertical
scrollbar

Defines
whether the

falsebooleankeepingAspectRatio

view keeps
the aspect
ratio when
zooming

Specifies the
minimum

0doubleminZoomXFactor

zoom factor

G R A P H I C C O M P O N E N T S148

DescriptionDefault valueTypeProperty Name

allowed on the
X (horizontal)
axis of the
view

Specifies the
maximum

Double.MAX_VALUEdoublemaxZoomXFactor

zoom factor
allowed on the
X (horizontal)
axis of the
view

Specifies the
minimum

0doubleminZoomYFactor

zoom factor
allowed on the
Y (vertical)
axis of the
view

Specifies the
maximum

Double.MAX_VALUEdoublemaxZoomYFactor

zoom factor
allowed on the
Y (vertical)
axis of the
view

Defines
whether the

truebooleanwheelZoomingEnabled

view zooms in
response to
moving the
mouse wheel
while pressing
the Control
key

Defines
whether the

truebooleanwheelScrollingEnabled

view scrolls in
response to
moving the
mouse wheel

The following CSS sample shows how to customize the view:

View {
horizontalScrollBarPolicy: AsNeeded;
verticalScrollBarPolicy: Never;

G R A P H I C C O M P O N E N T S 149

keepingAspectRatio: true;
}

For more information on configuring an equipment view, refer to the class IlpViewRenderer.

The Overview rule
The Overview rule controls the overview window.

The property overviewVisible controls the visibility of the overview window. The default
value is false.

The following CSS sample shows how to customize the overview:

Overview {
overviewVisible: true;

}

For more information on configuring the overview window in an equipment view, refer to
the class IlpOverviewRenderer.

The Interactor rule
The Interactor rule controls the interactor associated with the view.

You can customize the following properties of the interactor:

Interactor properties
DescriptionDefault

value
TypeProperty Name

Specifies the name of a toolbar button
that activates an interactor. This button

noneStringname

is activated at startup. Its interactor
becomes the initial view interactor, as
well as the default view interactor when
another interactor stops its interaction.
This property is only considered when
the view has a toolbar configured and
enabled.

Specifies the interactor instance that
becomes the initial view interactor, and

noneIlpViewsViewInteractorviewInteractor

the default view interactor when another
interactor stops its interaction.

How to configure an equipment interactor in a CSS file
Prior to configuring the equipment view interactor, you need to configure the equipment
component so that the interactor configuration is enabled:

Equipment {

G R A P H I C C O M P O N E N T S150

interactor: true;
}

After that, you can customize the interactor property in the Interactor rule as illustrated by
the next code extract. Refer to The CSS specification in the Styling documentation for details
about the CSS syntax.

How to set the default view interactor from the toolbar of the
equipment component
You can customize the default view interactor to be one of the interactors present in the
toolbar configured for the equipment component. In this case, the toolbar button is identified
when the equipment component is configured, and it is activated at startup. This interactor
becomes the initial view interactor, and the default view interactor when another interactor
stops its interaction. This configuration is achieved through the property name, whose value
must be the name of one of the configured toolbar buttons.

The following CSS extract configures the equipment view to use the Select toolbar button
as the default view interactor:

Interactor {
name: "Select";

}

How to set the default view interactor when the toolbar is disabled
in the equipment view
When the toolbar is disabled, you can no longer specify the default view interactor by using
a toolbar button name, as in the example above. However, you can specify the view interactor
directly in CSS, as follows:

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';

}

The behavior of the view interactor is determined by the actions that are associated with
user gestures and keystrokes. This behavior can also be customized through CSS. You can
also configure a pop-up menu to be displayed in the equipment view. For more information
about interactor customization, refer to Interacting with the equipment view and Interacting
with the equipment objects .

When the interactor renderer is enabled, you can also customize interactors for objects
displayed in the equipment component. The property in the object selector will only be
considered if the interactor renderer is enabled.

For more information on configuring the default view interactor in an equipment view, refer
to class IlpInteractorRenderer .

G R A P H I C C O M P O N E N T S 151

The Zooming rule
Th Zooming rule controls the zoom policy.

The mandatory property type specifies the type of zoom. The possible values are Logical,
Physical, or Mixed. Each zoom policy may have additional properties that you can also set
using CSS:

♦ Logical zoom policy (see IltLogicalZoomPolicy)

Logical zoom property
DescriptionDefaultTypeProperty name

Specifies an additional zoom factor that is implicitly
multiplied with the view's transformer. This property is
useful when printing with unusual transformers.

1doubleadditionalZoom

♦ Physical zoom policy (see IltPhysicalZoomPolicy)

Physical zoom properties
DescriptionDefaultTypeProperty name

Specifies a list of decoration names that are
customized at the zoom policy level. See

nullString[]decorationNames

IltGraphicElementName for a list of decoration
names that can be used.

Specifies a list of thresholds, one for each decoration
name customized with property decorationNames.

nulldouble[]visibilityThresholds

These thresholds indicate the zoom level below which
the decorations become invisible in the view. It allows
you to hide decorations as the user zooms out in the
view.

♦ Mixed zoom policy (see IltMixedZoomPolicy)

Mixed zoom properties
DescriptionDefaultTypeProperty name

Specifies the zoom threshold when the physical
zoom or the logical zoom should be used

1doublezoomThreshold

Specifies an additional zoom threshold that is
applied to expanded subnetworks

1doublesubnetworkZoomFactor

Specifies a list of decoration names that are
customized at the zoom policy level. See

nullString[]decorationNames

IltGraphicElementName for a list of decoration
names that can be used.

Specifies a list of thresholds, one for each
decoration name customized with property

nulldouble[]visibilityThresholds

decorationNames.These thresholds indicate the
zoom level below which the decorations become

G R A P H I C C O M P O N E N T S152

DescriptionDefaultTypeProperty name

invisible in the view. It allows you to hide decorations
as the user zooms out in the view.

How to customize the zoom policy in an equipment component
The following CSS sample shows how to customize the zoom policy in an equipment view:

Zooming {
type: "Mixed";
zoomThreshold: 1.0;
subNetworkZoomFactor: 1.0;

}

For more information on configuring the zoom behavior in an equipment view, refer to class
IlpZoomingRenderer.

How to configure the visibility of decorations for a specific
equipment component
JViews TGO provides three predefined zoom policies that you can use directly in the
equipment component (see Zooming for more information). When using the physical or the
mixed zoom policy, decorations may become invisible as the user zooms out in the view. By
default, this configuration is global in the application and can be customized using visibility
thresholds. However, you may need to specify the visibility threshold for a specific view.
This feature is supported by properties decorationNames and visibilityThresholds.
Property decorationNames specifies each decoration that is configured for the view. For a
list of the decoration names that can be customized, see IltGraphicElementName . Property
visibilityThresholds specifies the visibility threshold belowwhich the decoration becomes
invisible for each decoration name. The following example shows a mixed configuration.

Zooming {
type: "Mixed";
decorationNames[0]: Name;
decorationNames[1]: AlarmBalloon;
decorationNames[2]: AlarmCount;
decorationNames[3]: Plinth;
visibilityThresholds[0]: 0.5;
visibilityThresholds[1]: 0.8;
visibilityThresholds[2]: 0.5;
visibilityThresholds[3]: 0.5;

}

The GraphLayout rule
This rule allows you to control the automatic node layout in the view and to configure
nonautomatic node layouts. Nonautomatic node layouts can only be executed through the
API (see Layout for more details).

G R A P H I C C O M P O N E N T S 153

How to control the automatic node layout in the equipment view
Automatic node layout is configured through the property class. This property specifies
the graph layout class, a subclass of IlvGraphLayout. Additional Bean properties can be
specified, depending on the class.

The following CSS sample shows how to customize the graph layout:

GraphLayout {
class:
'ilog.views.graphlayout.uniformlengthedges.IlvUniformLengthEdgesLayout';

respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

The graph layout is always a subclass of IlvGraphLayout which supports the
"preserveFixedNodes" property. This property allows you to switch the support of fixed
nodes on or off. You can set a node as fixed in the business object customization.

If a graph layout is set and supports fixed nodes, a link layout is required when links
are connected to the fixed nodes.

Note:

The properties of each layout algorithm are fully explained in Layout algorithms in Using
graph layout algorithms in the documentation for JViews Diagrammer.

The properties of the IlvGraphLayout subclasses conform to the following JavaBeans™
convention: if a class has a pair of methods called setMyProp (with a single parameter) and
getMyProp (without parameters), then you can set the property myProp in the style sheet.

If the value of the property is an enumeration of integer values defined by static member
variables of the class, then you can use the name of the variable alone, or the variable

Note:

name prefixed by the class name alone, or the variable name prefixed by the fully
qualified class name. For example, the following declarations are all valid:

globalLinkStyle: "ORTHOGONAL_LINKS";

globalLinkStyle: "IlvHierarchicalLayout.ORTHOGONAL_LINKS";

globalLinkStyle: "ilog.views.graphlayout.hierarchical.
IlvHierarchicalLayout.ORTHOGONAL_LINKS";

How to configure multiple node layouts in an equipment view
The Graph Layout rule allows you to configure multiple node layouts, and to define the node
layout to be used automatically in the view. Multiple node layout configuration is achieved
through the properties layouts and autoLayoutIndex, as illustrated below:

G R A P H I C C O M P O N E N T S154

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchicalLayout;
layouts[2]: @+springEmbedderLayout;
autoLayoutIndex: 1;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;

}

Subobject#springEmbedderLayout {
class: 'ilog.views.graphlayout.springembedder.IlvSpringEmbedderLayout';
respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

In this use case, three node layouts are configured for the view: IlvTreeLayout,
IlvHierarchicalLayout and IlvSpringEmbedderLayout. The hierarchical layout is configured
to be performed automatically when the contents of the view changes. This configuration
is achieved by specifying the value of property autoLayoutIndex as the index of the
hierarchical layout defined through the layouts property. The other node layouts can be
performed on demand using the API (see IlpGraphView.performAttachedLayout).

How to configure nonautomatic node layouts in the equipment
component
If you are not interested in automatic node layout, you can still configure multiple node
layouts in CSS. To have only nonautomatic node layouts, set property autoLayoutIndex to
-1, as illustrated below:

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchicalLayout;
layouts[2]: @+springEmbedderLayout;
autoLayoutIndex: -1;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {

G R A P H I C C O M P O N E N T S 155

class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;

}

Subobject#springEmbedderLayout {
class: 'ilog.views.graphlayout.springembedder.IlvSpringEmbedderLayout';
respectNodeSizes: true;
preferredLinksLength: 200;
forceFitToLayoutRegion: true;
layoutRegion: "50, 50, 700, 450";

}

How to set node or link parameters on graph layout objects in the
equipment component
You can set parameters for a graph layout algorithm that applies to a particular node or
link, in the style sheet. Such parameters are defined by a method of the form:

setMyParam(Object node, value);

or

setMyParam(Object link, value);

Node parameters are set in the style sheet as follows:

object."ilog.tgo.model.IltObject":graphLayoutRenderer {
myParam: "value";

}

The name of the property is the name of the method, without the prefix set. The pseudoclass
graphLayoutRenderer indicates that the declarations apply to the node layouts that are
configured in the graph layout rule.

For example, the graph layout defines a setFixed method that lets you specify whether a
node or link is fixed. Fixed nodes or links are not moved when the layout is applied. The
signature of the method is:

setFixed(Object nodeOrLink, boolean fixed);

In the style sheet, you can set this parameter as follows:

object."ilog.tgo.model.IltObject":graphLayoutRenderer {
fixed: true;

}

The value of the property can be any basic type (integer, String, float), or it can be the name
of a public constant defined by the graph layout class, for example, WEST , which is defined
in the class IlvHierarchicalLayout.

G R A P H I C C O M P O N E N T S156

When the graph layout rule contains multiple node layouts, you can still specify node and
link layout parameters by using pseudoclasses that identify the graph layout to which the
declarations apply.

GraphLayout {
layouts[0]: @+treeLayout;
layouts[1]: @+hierarchical;
autoLayoutIndex: 0;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Top;

}

#NE1:graphLayoutRenderer:tree {
root: true;

}

#NE1:graphLayoutRenderer:hierarchical {
specNodeLevelIndex: 0;

}

#NE2:graphLayoutRenderer:hierarchical {
specNodeLevelIndex: 1;

}

In the example above, NE1 is configured as the root object for the Tree Layout algorithm.
This is achieved by declaring the property root in a selector that contains the pseudoclasses
graphLayoutRenderer (indicates that this is a graph layout renderer per-object property)
and tree (indicates that this is a property specific to the IlvTreeLayout algorithm).

At the same time, NE1 is configured to be placed at level 0 in case of a hierarchical layout.
This is achieved using pseudoclasses graphLayoutRenderer and hierarchical (indicates
that this is a graph layout per-object property specific to the IlvHierarchicalLayout
algorithm).

Each layout algorithm supports a set of per-object parameters. For more information on the
parameters supported by each layout algorithm, refer to package ilog.cpl.graph.css.
renderer.graphlayout .

In addition to the properties that are specific to the layout algorithms, the graph layout
renderer also supports the following properties:

♦ layoutIgnored: If this property is set to true, the object is completely ignored by the
graph model (using an IlvLayoutGraphicFilter).

♦ markedForIncremental: If the layout algorithm is an IlvHierarchicalLayout, you can
use the property markedForIncremental. When this property is set to true for an object,
the method IlvHierarchicalLayout.markForIncremental(java.lang.Object) is called

G R A P H I C C O M P O N E N T S 157

for this object. This means that the position of the object is recomputed during the next
incremental layout. This property has an effect only if the incrementalMode property of
the layout itself is set to true. For example:

GraphLayout {
layouts[0]: @+hierarchicalLayout;

}

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
incrementalMode: true;

}

#NE1:graphLayoutRenderer:hierarchical {
markedForIncremental : "true";

}

Starting with JViews TGO 7.5, if you are not using any node or link parameters,
you can disable this mechanism by specifying IlpGraphLayoutRenderer.

Important:

setUsePerObjectParameters(false). This will remove the overhead of
testing the parameters and speed up the rendering process significantly.

How to disable the per-object layout parameters for node
configuration in the equipment view
You can also disable the per-object layout parameters configuration through CSS as follows:

GraphLayout {
layouts[0]: @+hierarchicalLayout;
usePerObjectParameters: false;

}

For more information on configuring the node layout in an equipment view, refer to the
class IlpGraphLayoutRenderer.

The LinkLayout rule
The LinkLayout rule controls the automatic link layout in the view.

The mandatory property class specifies the link layout class, a subclass of IlvGraphLayout.
Additional Bean properties can be specified, depending on the class.

How to control the automatic link layout in the equipment view
The following CSS sample shows how to customize the link layout:

LinkLayout {

G R A P H I C C O M P O N E N T S158

class: "ilog.tgo.graphic.graphlayout.IltShortLinkLayout";
globalLinkStyle: MIXED_STYLE;

}

The link layout is always a subclass of IlvGraphLayout which supports the
"preserveFixedLinks" property. This property allows you to switch the support of fixed
links on or off.

Like the graph layout renderer, the link layout renderer supports setting per-object link
layout parameters through CSS. See How to set node or link parameters on graph layout
objects in the equipment component.

How to specify per-object parameters for link layouts in the
equipment view
Link parameters are set in the style sheet as follows:

object."ilog.tgo.model.IltAbstractLink":linkLayoutRenderer {
linkStyle: ORTHOGONAL_STYLE;

}

#Link1:linkLayoutRenderer {
linkStyle: DIRECT_STYLE;

}

Starting with JViews TGO 7.5, if you are not using any node or link parameters,
you can disable this mechanism by specifying IlpLinkLayoutRenderer.

Important:

setUsePerObjectParameters(false). This will remove the overhead of
testing the parameters and speed up the rendering process significantly.

How to disable per-object layout parameters for link configuration
in the equipment view
You can also disable the per-object layout parameters configuration through CSS as follows:

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';
usePerObjectParameters: false;

}

For more information on configuring the link layout in an equipment view, refer to class
IlpLinkLayoutRenderer.

The LabelLayout rule
The LabelLayout rule controls the automatic label layout in the view.

G R A P H I C C O M P O N E N T S 159

Themandatory property class specifies the label layout class, a subclass of IlvLabelLayout.
Additional Bean properties can be specified, depending on the class. The usual setting is
ilog.tgo.graphic.graphlayout.labellayout. IltAnnealingLabelLayout.

The following CSS sample shows how to customize the label layout:

LabelLayout {
class: 'ilog.tgo.graphic.graphlayout.labellayout.IltAnnealingLabelLayout';

obstacleOffset: 10;
labelOffset: 15;

}

Some properties can be set within IltAnnealingLabelLayout and some within
IlvAnnealingLabelLayout. Refer to the IBM® ILOG® JViews TGO Java™ API Reference
Documentation for more details.

For more information on configuring the label layout in an equipment view, refer to class
IlpLabelLayoutRenderer.

The Backgrounds rule
The Backgrounds rule allows you to configure two kinds of background that affect the
equipment component representation:

♦ Equipment backgrounds

♦ Manager view background

Equipment backgrounds
You can use background files such as maps or images. You can specify an equipment
background through:

1. A URL

The background file is specified directly by its URL:

Backgrounds {
background[i]: "URL";

}

For example:

Backgrounds {
background[0]: "backgrounds/sf-bayarea.png";

}

2. A CSS bean

The background URL and its properties are specified through a CSS bean:

G R A P H I C C O M P O N E N T S160

Backgrounds {
background[i]: @+background0;

}

Subobject#background0 {
class: "ilog.cpl.graph.background.css.IlpBackgroundCSSConfiguration";

PROPERTY : PROPERTY_VALUE;
...

}

The bean IlpBackgroundCSSConfiguration encapsulates all the properties supported
by the predefined background types. You should use it if want to use one of the predefined
types.

For example:

Backgrounds {
background[0]: @+background0;

}

Subobject#background0 {
class: "ilog.cpl.graph.background.css.IlpBackgroundCSSConfiguration";

//////////////////////
//Background properties
//////////////////////
url : "backgrounds/sf-bayarea.png";
loadOnDemand : "true";
threaded : "false";

}

If you intend to use a custom background type that has additional properties, you can
either subclass the default IlpBackgroundCSSConfiguration and use it with the
additional bean properties or provide a bean that contains all the required properties
to configure the IlpBackground implementation. All bean properties are automatically
communicated and stored in the IlpBackground implementation through its
IlpBackground.setProperty interface method.

For details on the properties available and supported for each IlpBackground
implementation, see Background support.

You can mix and match options 1 and 2 by specifying some backgrounds as beans and some
as straight URL strings.

In the case of the Image Tile background type (IlpImageTileBackground), only the url
property can be configured through CSS. For the other properties, use the XML configuration.
See Background support.

Manager view background
This refers to the representation of the view as a background for your equipment backgrounds
(the area that the equipment backgrounds do not cover).

You can configure the manager view background as follows:

G R A P H I C C O M P O N E N T S 161

Backgrounds {
PROPERTY : PROPERTY_VALUE;

}

For example:

Backgrounds {
backgroundColor : "white";

}

The following table lists the properties that allow you to customize the manager view
background:

Properties of the view background
DescriptionSampleDefaultTypeProperty name

Specifies the color to be
used to fill the background
of the view.

backgroundColor:"black";nullColorbackgroundColor

Specifies the location of the
pattern image to be used to

backgroundPattern:"pattern.png";nullStringbackgroundPattern

fill the background of the
view.

For more information on configuring the background in an equipment view, refer to class
IlpBackgroundsRenderer.

The Positioning rule
The Positioning rule controls the type and converter of the user-defined IlpPosition.

The property positionClass denotes the Java class name of the class or interface that
implements IlpPosition.

The property converterClass denotes a Java class name or CSS bean that implements the
IlpPositionConverter interface and determines the conversion between business data
coordinates and (x,y) coordinates in the view.

The following CSS sample shows how to customize the positioning:

Positioning {
positionClass: 'my.package.MyPosition';
converterClass: 'my.package.MyPositionConverter';

}

For more information on configuring the positioning in an equipment view, refer to class
IlpPositioningRenderer.

G R A P H I C C O M P O N E N T S162

The Adapter rule
The Adapter rule controls the configuration of the equipment adapter. The equipment adapter
is responsible for converting the business objects in the data source to representation objects
(equipment nodes) in the equipment component. It provides the following features:

♦ Filtering: applies a filter so that business objects currently in the data source are not
mapped to representation objects in the equipment component.

♦ Origins: defines which objects become root nodes in the equipment.

♦ Link factory: defines how a link representation object will be created from its business
object counterpart.

♦ Node factory: defines how a representation object that is not a link will be created from
its business object counterpart.

♦ Expansion strategy: defines how the objects will be loaded in the equipment component,
that is, either at initialization time or as the user interacts with the equipment nodes.

♦ Accepted classes: defines the list of business classes that are accepted by the equipment
adapter. Only the business objects that match one of these business classes will be mapped
to representation objects by the equipment adapter.

♦ Excluded classes: defines the list of business classes that are excluded by the equipment
adapter. The business objects of these business classes will not be mapped to
representation objects by the equipment adapter. By default, the IltAlarm business class
is part of the list of excluded classes.

These equipment adapter features can be customized through CSS using the following
properties:

CSS Properties of the equipment adapter
Property typeProperty name

ilog.cpl.util.IlpFilterfilter

list of object identifiersorigins

ilog.cpl.equipment.IlpEquipmentNodeFactorynodeFactory

ilog.cpl.equipment.IlpEquipmentLinkFactorylinkFactory

ilog.cpl.util.IlpExpansionStrategyFactoryexpansionStrategyFactory

list of IlpClassacceptedClasses

list of IlpClassexcludedClasses

How to configure an equipment adapter in a CSS file
Prior to configuring the adapter, you need to configure the equipment component so that
the adapter configuration is enabled:

Equipment {

G R A P H I C C O M P O N E N T S 163

adapter: true;
}

After that, you can customize each adapter property in the Adapter rule as illustrated by
the following code extract. Refer The CSS specification in the Styling documentation for
details about the CSS syntax.

Adapter {
filter: @+Filter;

}

Subobject#Filter {
class: 'CustomFilter';
rejectObject[0]: "NE1";
rejectObject[1]: "Link5";

}

How to programmatically configure an equipment adapter using
CSS
You can programmatically modify the CSS configuration of the default equipment adapter
(IlpEquipmentAdapter) by using mutable style sheets through the IlpMutableStyleSheet
API.

The mutable style sheet is set to the adapter as a regular style sheet and is
cascaded in the order in which it has been declared.

Important:

To use mutable style sheets:

1. Get the mutable style sheet.

You access the mutable style sheet through the getMutableStyleSheet() method in
the equipment adapter API:

IlpMutableStyleSheet mutable = adapter.getMutableStyleSheet();

This method automatically registers the mutable style sheet into the adapter. You can
manually instantiate an object of the class IlpMutableStyleSheet and register it yourself
through the setStyleSheet() API:

IlpMutableStyleSheet mutable = new IlpMutableStyleSheet(adapter);
try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

2. Set the CSS declarations.

G R A P H I C C O M P O N E N T S164

Once you have the mutable style sheet, you can set the declarations you want:

mutable.setDeclaration("#myObjectId", "expansion", "NO_EXPANSION");

This creates the following CSS declaration into the mutable style sheet:

#myObjectId {
expansion: NO_EXPANSION;

}

3. Register the mutable style sheet.

The mutable style sheet should be set to the adapter as a regular style sheet using the
setStyleSheet() method:

try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

4. Set and update the CSS declarations.

The mutable style sheet can be modified even after being registered to the adapter:

// Update the expansion type for 'myObjectId'
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
// Add a new declaration
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");

Like any style sheet, the mutable style sheet is lost when the setStyleSheet
() API is invoked and a new set of style sheets is applied to the adapter.

Note:

How to customize the mutable style sheet
Reapplying a CSS configuration may be a heavy task, as the adapter may be forced to review
filters, origins, recreate representation objects, and so on. It is important to use the mutable
style sheet with care and to customize it properly to reapply the CSS wisely. To do so, there
are two methods available in the IlpMutableStyleSheet API: setUpdateMask() and
setAdjusting().

1. setUpdateMask()

This method controls what should be recustomized once a declaration of the mutable
style sheet has been updated. The CSS configuration of the adapter is divided into two
parts: adapter customization and representation object customization.

The adapter customization handles the origins, filters, and so on:

G R A P H I C C O M P O N E N T S 165

Adapter {
origins[0]: id0;
origins[1]: id1;
showOrigin: true;
filter: @+myFilter;

}

The representation object customization handles the expansion type of a representation
object:

#myObjectId {
expansion: IN_PLACE;

}

The accepted values for setUpdateMask() are:

♦ IlpStylable.UPDATE_COMPONENT_MASK: Only the adapter part is recustomized.

♦ IlpStylable.UPDATE_OBJECTS_MASK: Only the representation object part is
recustomized.

♦ IlpStylable.UPDATE_ALL_MASK: Bot the adapter and representation object parts are
recustomized.

♦ IlpStylable.UPDATE_NONE_MASK: Nothing is recustomized.

For example, if you update the expansion type of a representation object through the
mutable style sheet, it is recommended that you set the update mask to
UPDATE_OBJECTS_MASK as there is no need to reapply the CSS configuration for the
adapter part:

mutable.setUpdateMask(IlpStylable.UPDATE_OBJECTS_MASK);
mutable.setDeclaration("object", "expansion", "IN_PLACE");

2. setAdjusting()

This method is used when a series of declarations must be applied to the mutable style
sheet. When the method is set to true, the mutable style sheet puts all the calls to
setDeclaration() into a queue. When the method is set back to false, all the queued
declarations are processed in a batch:

mutable.setAdjusting(true);
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");
mutable.setAdjusting(false);

G R A P H I C C O M P O N E N T S166

Configuring an equipment component through the API

For details of the classes involved in the architecture of the equipment component, see
Architecture of the equipment component.

The following example shows how to configure the equipment view through the API. For
programming details on the individual services, see Equipment component services.

How to configure the equipment view with the API

// Instantiates equipment component
IlpEquipment equipment = new IlpEquipment();
// Sets Toolbar visible
equipment.setToolBarVisible(true);
// Set overview window visible
equipment.setOverviewVisible(true);
// Set default view interactor
IlpSelectInteractor select = new IlpSelectInteractor();
select.setEditingAllowed(true);
equipment.setViewInteractor(select);
// Set zoom policy to mixed
IltMixedZoomPolicy mixed = new IltMixedZoomPolicy();
mixed.setZoomThreshold(2.0);
equipment.setZoomPolicy(mixed);
// Sets Horizontal Scroll Bar invisible
equipment.setHorizontalScrollBarVisible(false);

How to configure the equipment adapter with the API
The following example shows how to configure the equipment adapter through the API. See
Equipment component services for programming details on the individual services.

IlpEquipmentAdapter adapter = equipment.getAdapter();

// Filter
IlpFilter myFilter = new MyFilter();
// (it is the same as equipment.setFilter(myFilter);)
adapter.setFilter(myFilter);

// Origin
List myOrigins = new ArrayList();
myOrigins.add(objectID_1);
myOrigins.add(objectID_2);
:
:
myOrigins.add(objectID_n);
// in this case we want to display the origins
boolean showOrigin = true;
adapter.setOrigins(myOrigins, showOrigin);

G R A P H I C C O M P O N E N T S 167

// Expansion Strategy Factory
// Usually the expansion strategy factory relies
// on the adapter to access the data source and
// to load/release objects
IlpExpansionStrategyFactory myExpFactory = new
MyExpansionStrategyFactory(adapter);

adapter.setExpansionStrategyFactory(myExpFactory);

// Position Attribute
// Here, imagine that MyObject implements IlpObject
// interface and defines "Placement" as the
// IlpAttribute that defines the object position
IlpClass myObjectClass = MyObject.getIlpClass();
IlpAttribute myPosAttrib = MyObject.Placement;
adapter.setPositionAttribute(myObjectClass, myPosAttrib);

// Node Factory
IlpEquipmentNodeFactory myNodeFactory = new MyNodeFactory();
adapter.setNodeFactory(myNodeFactory);

G R A P H I C C O M P O N E N T S168

Customizing the rendering of equipment nodes and links

Equipment nodes and links can be customized through CSS according to their business
class. For details, see Customizing network and equipment nodes and Customizing network
and equipment links .

G R A P H I C C O M P O N E N T S 169

Loading a project file

A project is a combination of style sheets that supply rendering information and a data
source that supplies the data to be represented in an equipment component. A project is
saved as an XML file with extension .itpr.

Loading a project file is the recommended way to configure a graphic component in Java™
as it is the fastest.

How to load a project file into an equipment component
The following code sample shows how to load a project file into an equipment component,
using the method setProject.

IlpEquipment equipment = new IlpEquipment();
equipment.setProject(new URL("file:project.itpr");

The project is represented by the IlpTGOProject class, included in the package ilog.cpl.
project. When a new project is created, the style sheet and data source are both null.

How to create a new project for the equipment component
The following code sample shows how to create a new project file by setting the style sheets
and data source, then saving the project.

IlpTGOProject project = new IlpTGOProject();
project.setStyleSheet(new URL("file:example.css");
IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.setFileName("data.xml");
project.setDataSource(dataSource);
project.write(new URL("file:example.itpr");

G R A P H I C C O M P O N E N T S170

Equipment component services

Describes the services associated with the equipment component in JViews TGO, which are
of three kinds: view services, related to the equipment view; adapter services, related to
the equipment model; handler services, related to the equipment controller. As most of the
equipment services are shared with the network component, you are strongly recommended
to read the corresponding topics in Network component.

In this section

Interacting with the equipment view
Describes the predefined view interactors available to manage the behavior of the equipment
view.

Interacting with the equipment objects
Describes how to use object interactors to associate behavior with business objects.

Positioning
Describes the positioning facility for defining where a given object is displayed on the screen.

Relative positioning
Describes the relative positioning that is applied to child objects based upon the position of
the parent object.

Layout
Gives an overview of the graph layout algorithms available for the equipment component.

Zooming
Identifies where to find more information on the physical, logical, and mixed zoom modes.

G R A P H I C C O M P O N E N T S 171

Background support
Identifies where to find more information on the use of background maps.

Filtering
Describes how to filter nodes displayed by the equipment component.

Accepted and excluded classes
Details how to specify the business classes to be accepted for or excluded from display in
the equipment component.

Setting a list of origins
Describes how to set a list of orgins to explicitly select the root nodes to be displayed by the
equipment component.

Node factory
Describes the node factory.

Link factory
Describes the link factory.

Expansion strategy
Describes the expansion strategy used by the equipment adaptor to determine whether
objects should be loaded in the equipment model.

G R A P H I C C O M P O N E N T S172

Interacting with the equipment view

The IlpEquipment allows you to associate behavior with the equipment view as a whole and
with the business objects it contains. JViews TGO provides predefined view interactors to
manage the behavior of the equipment view. See View interactors. These interactors allow
you to change the zoom factor, to move and resize objects, and to change the relationship
between objects. See Configuring the equipment component for details on how to enable
the interactors.

The predefined interactors available in the equipment view are the following:

♦ Select interactor

Allows you to select any object displayed in the equipment component and to move root
objects. When a root object is moved, its position property value is updated to reflect
the new user-defined position. Multiple selection is also possible.

♦ Edit interactor

Like the select interactor, this interactor allows you to select any object displayed in the
equipment component, and to move root objects.

This interactor also allows you to reshape selected objects or to change their relationship.
Root objects such as cards, shelves, and card carriers can be reshaped or moved around
in the view. Cards and card carriers can be moved from the view to a shelf item container
(shelf or card carrier) and vice versa; the same action can be performed on LEDs and
ports, moving them from the view to a card item container (card). A child object can have
its position updated or its relationships changed when it is moved from one container to
another or to the view.

By default, this interactor is not enabled. You can enable it either through a button in the
CSS configuration file, as follows:

ToolBar {
button[4]: @+button4;

}

Subobject#button4 {
actionType: "EditObject";

}

or through the API, as follows:

IlpEquipment equipment = new IlpEquipment();
equipment.setDefaultViewInteractor(new IlpEditEquipmentObjectInteractor())
;

♦ Pan interactor

G R A P H I C C O M P O N E N T S 173

Allows you to recenter the equipment view, without changing the position of the objects.

♦ Zoom In interactor

Increases the zoom factor. Depending on the zoom configuration, the result may vary.

♦ Zoom Out interactor

Decreases the zoom factor. Depending on the zoom configuration, the result may vary.

♦ Reset Zoom interactor

Sets the current zoom factor back to its default value, regardless of the zoom configuration.

♦ Fit to Contents interactor

Adjusts the zoom factor so that all the objects fit in the view. This setting may change
the scale of the objects. However, the position and shape of the objects are not affected.

♦ Zoom on a Rectangle interactor

Allows you to select a rectangular area and to zoom on the objects it contains, so that
they fit in the view.

♦ Zoom Back interactor

Allows you to zoom back to the last zoom level.

Each view interactor works with one equipment view only and is managed by the equipment
controller. An equipment view can have several interactors, but only one interactor is active
at a time.

With the default view interactors, you can:

♦ associate actions with mouse events and focus events

♦ associate actions with keyboard events

♦ define a pop-up menu factory to build a pop-up menu that displays in the view

G R A P H I C C O M P O N E N T S174

View interactors have two modes of operation:

♦ Transient

♦ Permanent

In transient mode, the view interactor removes itself from the equipment view when it has
performed its action.

In permanent mode, the view interactor remains in the view until the controller removes it.

By default, view interactors are permanent.

View interactors can display a pop-up menu.

A view interactor has a context implemented through IlpViewInteractionContext. When
a user gesture is completed, the equipment view clones this context and makes it accessible
through IlpViewActionEvent.

The predefined view interactors are in the package-frame package and are subclasses of
IlvManagerViewInteractor. When one of these interactors is installed, it must be wrapped
in an IlpViewsViewInteractor.

How to wrap a predefined view interactor when Installing It

IlvManagerViewInteractor iltInteractor = new Ilt...Interactor();
IlpViewInteractor ilpInteractor =
new IlpViewsViewInteractor(iltInteractor);

controller.setViewInteractor(ilpInteractor);

Setting the view interactor
The method setViewInteractor(ilog.cpl.interactor.IlpViewInteractor) allows you
to set the view interactor, that is, the object-independent interactor, which is active at a
given moment in the view. This interactor is replaced whenever the end user activates a
different interactor. Such activation occurs, for example, when the user clicks a toolbar
button.

Some interactors are one-shot interactors, that is, they have the attribute permanent:false
in CSS. When such an interactor finishes its interaction, it is replaced by the default view
interactor.

To customize through CSS, refer to The Interactor rule.

View interactor and default view interactor
When you use the setViewInteractor method you are attaching the specified interactor
directly to the view. On the other hand, setDefaultViewInteractor(ilog.cpl.interactor.
IlpViewInteractor) allows you to define the interactor that will be attached when the
current interactor is detached from the view and no other interactor is attached. The default
interactor is not attached automatically to the view, so it will not be available immediately.

The following example combines both methods:

G R A P H I C C O M P O N E N T S 175

// Configuring the default view interactor and making
// it active
IltSelectInteractor selInteractor = new IltSelectInteractor();
selInteractor.setEditingAllowed(true);
IlpViewsViewInteractor viewsInteractor =

new IlpViewsViewInteractor(selInteractor);

equipment.setDefaultViewInteractor(viewsInteractor);
equipment.setViewInteractor(viewsInteractor);

In this example, you define the default view interactor through the call to
setDefaultViewInteractor(ilog.cpl.interactor.IlpViewInteractor), and you activate
it through the call to setViewInteractor(ilog.cpl.interactor.IlpViewInteractor) so
that it is immediately available.

How to associate an action with a mouse event in the equipment
view
You can associate actions with mouse events by using either CSS or the API.

The following extract shows how to customize the default view interactor in CSS:

Equipment {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON3_CLICKED;
action: @+myAction;

}

Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

IlpEquipment equipment = // ...

// Retrieve the view interactor
IlpViewInteractor viewInteractor = equipment.getDefaultViewInteractor();

G R A P H I C C O M P O N E N T S176

// Create an actionAction
myAction = new MyAction();

// Clicking the 3rd mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED,myAction);

You can also customize the actions that are associated with the interactors defined in the
equipment component toolbar. This configuration is done with the toolbar button definition.
The following CSS extract illustrates how this can be achieved:

How to associate an action with a mouse event for a equipment
toolbar button interactor
You can associate actions with mouse events when one of the interactors defined in the
equipment component toolbar is active. The following CSS extract illustrates this
configuration:

Equipment {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;

}

Subobject#action0 {
gesture: BUTTON1_DOUBLE_CLICKED;
class: "ShowDetailsAction";

}

In this configuration, the action "ShowDetailsAction" is triggered when a double-click event
occurs while the selection interactor is set in the equipment view. You can define any list
of actions associated with gestures by using the indexed property action. To be accepted
by the CSS customization, the action class must be a JavaBean™.

You can find out whether this event occurred on an IlpObject by means of the following
code (which should be in the MyAction class):

How to check whether a given action occurred in the equipment
view interactor

// Implementation of the ActionListener interface
public void actionPerformed(ActionEvent e) {
// ILOG JTGO interactors use IlpViewActionEvent

G R A P H I C C O M P O N E N T S 177

IlpViewActionEvent viewEvent = (IlpViewActionEvent)e;
// Get the IlpObject (if any) where the interaction occurred
IlpObject ilpObj = viewEvent.getIlpObject();
// Perform operation on the given object

}

How to associate an action with a keyboard event in the equipment
view
You can associate actions with keyboard events by using either CSS or the API.

The following extract shows how to proceed in CSS:

Equipment {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpKeyStrokeAction';
keyStroke: 'typed D';
action: @+myAction;

}

Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

// Create an actionAction myAction = new MyAction();
// Typing CTRL+D will trigger myAction
viewInteractor.setKeyStrokeAction(KeyStroke.getKeyStroke('D',java.awt.Event.
CTR
L_MASK),myAction);

You can also customize the keystroke actions that are associated with the interactors defined
in the equipment component toolbar. This configuration is performed with the toolbar button
definition. The following CSS extract illustrates how this can be achieved:

G R A P H I C C O M P O N E N T S178

How to associate an action with a keyboard event for a equipment
toolbar button interactor
You can associate actions with keyboard events when one of the interactors defined in the
equipment component toolbar is active. The following CSS extract illustrates this
configuration:

Equipment {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";
usingObjectInteractor: true;
opaqueMove: true;
action[0]: @+action0;

}

Subobject#action0 {
key: "control A";
class: "ilog.cpl.graph.action.IlpSelectAllObjectsAction";

}

In this configuration, the action "IlpSelectAllObjectsAction" is triggered when a Control-A
keyboard event occurs while the selection interactor is set in the equipment view. You can
define any list of actions associated with keyboard events by using the indexed property
action. To be accepted by the CSS customization, the action class must be a JavaBean.

How to define a pop-up menu factory for the equipment view
You can customize a pop-up menu factory for the equipment view either through CSS or
through the API.

The following extract shows how to add a pop-up menu factory through CSS:

Equipment {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.graphic.views.IlpViewsViewInteractor';
popupMenuFactory: @+viewPopupMenuFactory;

}

G R A P H I C C O M P O N E N T S 179

Subobject#viewPopupMenuFactory {
class: MyPopupMenuFactory;

}

The same configuration can be achieved through the API, as follows:

// Subclass IlpAbstractPopupMenuFactory, which has useful shortcuts
IlpPopupMenuFactory popupMenuFactory = new IlpAbstractPopupMenuFactory() {
// Add the identifier of each of the selected objects to the menu
public JPopupMenu createPopupMenu (IlpObjectSelectionModel ilpSelectionModel)

{
// Create an empty popup menu
JPopupMenu menu = new JPopupMenu();
// Access the selected objects from the selection model
Collection selectedObjects = ilpSelectionModel.getSelectedObjects();
// fill the menu according to the current selection
return menu;

}
};

The following code shows you how to associate the defined pop-up menu factory with the
equipment component:

How to associate a pop-up menu factory with the equipment
component

// Set the popup menu factory to the view interactor
viewInteractor.setPopupMenuFactory(popupMenuFactory);

You can also customize a pop-up menu factory that is associated with the interactors defined
in the equipment component toolbar. This configuration is performed with the toolbar button
definition. The following CSS extract illustrates how this can be achieved:

How to define a pop-up menu factory for a equipment toolbar
button interactor
The following CSS extract illustrates this configuration:

Equipment {
toolbar: true;

}

ToolBar {
enabled: true;
button[0]: @+SelectButton;

}

Subobject#SelectButton {
actionType: "Select";

G R A P H I C C O M P O N E N T S180

usingObjectInteractor: true;
opaqueMove: true;
popupMenuFactory: @=viewPopupMenuFactory;

}

Subobject#viewPopupMenuFactory {
class: 'AlarmPopupMenuFactory';

}

The pop-up menu factory is customized using property popupMenuFactory in the button
configuration. To be accepted during the CSS customization, the pop-up menu factory class
must be a JavaBean.

Selection interactor
The IltSelectInteractor class allows you to select, move, and interact directly with objects.
You can:

♦ Click an object to select it and deselect all other objects.

♦ Use Shift-click to select an unselected object or to deselect a selected object while keeping
other prior selected objects selected.

♦ Drag a selection rectangle to select all objects within this rectangle.

♦ Drag one selected object and thereby cause all other selected objects to move in relation
to it.

If setUsingObjectInteractor(true) is called on the interactor, then you can also:

♦ Use other gestures that are understood by a specific object interactor.

You can configure the selection interactor to use Ctrl-click instead of Shift-click for multiple
selection.

How to configure the selection interactor for multiple selection in
the equipment view
In CSS, use the following rules:

Subobject#SelectButton {
multipleSelectionModifier: "java.awt.event.InputEvent.CTRL_MASK";
selectionModifier: "java.awt.event.InputEvent.SHIFT_MASK";

}

In the API, use the following code:

setMultipleSelectionModifier(InputEvent.CTRL_MASK);
setSelectionModifer(InputEvent.SHIFT_MASK);

G R A P H I C C O M P O N E N T S 181

Group reshape interactor
The IltEditGroupInteractor class allows you to change the shape of rectangular, polygonal,
and linear groups (IltGroup, IltLinearGroup, IltRectGroup and IltPolyGroup). Clicking
an object starts shape editing interaction. Clicking the background ends it.

For polygonal and linear groups:

♦ Dragging a vertex moves it.

♦ Ctrl-click on a vertex removes it.

♦ Ctrl-click on an edge adds a vertex at that point on the edge.

Make rectangular node interactor
The IltMakeRectGroupInteractor class creates a node with a rectangular shape (
IltRectGroup). One corner of the rectangle is denoted by the point where the cursor is
located when the mouse button is released. Make sure that you do really move the mouse
between the timewhen you press and the timewhen you release themouse button. Otherwise,
the shape is created empty and the node might be invisible.

Make polygonal node interactor
The IltMakePolyGroupInteractor class creates a node with a polygonal shape (
IltPolyGroup). A point is added each time the user clicks. Double-clicking marks the last
point to be added.

Make polyline node interactor
The IltMakeLinearGroupInteractor class creates a node with a polyline shape (
IltLinearGroup). A point is added each time the user clicks. Double-clicking marks the last
point to be added.

Make link interactor
The IltMakeLinkInteractor class creates links (IltLink) between nodes. This interactor
works in the following way: the user clicks one node and then goes on dragging the mouse
over another node so that the two nodes are selected. When the user releases the mouse,
a link is drawn between the two nodes.

Refer to Interacting with the graphic components for a detailed description of interactors
and gestures.

G R A P H I C C O M P O N E N T S182

Interacting with the equipment objects

Interacting with the equipment view describes how to set an interactor on the entire
equipment view. You can also associate behavior with business objects (a whole class or
individual objects), as well as with individual object instances.

To do so, you use object interactors, which offer you the same possibilities as the view
interactor:

♦ associating actions with mouse events

♦ associating actions with keyboard events

♦ defining a pop-up menu factory to build a pop-up menu that displays on representation
objects

An object interactor handles any event occurring to the object with which it is associated,
provided the view interactor has enabled the use of object interactors. You can check this
with the isUsingObjectInteractormethod ormodify it with the setUsingObjectInteractor
method.

Object interactors are enabled by default.

No default interactor is associated with any object. To associate actions with mouse or
keyboard events, or to define a pop-up menu factory, you first have to create an
IlpObjectInteractor. You can use the IlpDefaultObjectInteractor, extend it, or create
your own implementation.

How to associate an object interactor with an equipment
component object
You can associate an object interactor with a representation object by using either CSS or
the API.

The following extract shows how to proceed in CSS:

Equipment {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement" {
interactor: @+objInteractor;

}

Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpEquipment equipment = // ...
IlpEquipmentController equipmentController = equipment.getController();

G R A P H I C C O M P O N E N T S 183

// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
equipmentController.setObjectInteractor(bo, objectInteractor);
// Configuring the specific object interactor is similar to configuring
// a view interactor.
objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED, new MyAction())
;

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. You can also define a pop-up menu factory in the same way as for the
view interactor. Refer to Interacting with the equipment view.

An object interactor can also be associated with a specific decoration that is part of the
business object graphic representation in the equipment view. Each decoration represents
a business attribute in the model. Therefore the customization of the interactor for a specific
decoration takes into account the business object and a business attribute as illustrated
below:

How to associate an object interactor with the label decoration in
an equipment component object
You can associate an object interactor with one of the graphic decorations of the object by
setting the interactor to the business attribute that is represented. You can do it using CSS
or the API.

The following extract shows how to proceed in CSS:

Equipment {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement/name" {
interactor: @+objInteractor;

}

Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpEquipment equipment = // ...
IlpEquipmentController equipmentController = equipment.getController();
// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
equipmentController.setObjectInteractor(bo, IltObject.NameAttribute,
objectInteractor);
// Configuring the specific object interactor is similar to configuring
// a view interactor.
objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED, new
MyAction());

G R A P H I C C O M P O N E N T S184

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. You can also define a pop-up menu factory in the same way as for the
view interactor. Refer to Interacting with the equipment view.

For a detailed description of interactors and gestures, refer to Interacting with the graphic
components .

G R A P H I C C O M P O N E N T S 185

Positioning

Each object has a position value, which indicates where it will be displayed.

The position is defined by the IlpPosition interface which has the following predefined
implementations:

♦ IlpPoint for shelves placed in the component

♦ IlpShelfItemPosition for cards and card carriers placed in the component

♦ IlpRelativePoint for ports and LEDs placed inside a card

♦ IlpShelfItemPosition for cards and card carriers placed inside a shelf or card carrier

Both IlpRelativePoint and IlpShelfItemPosition are relative positions. For more
information, see Relative positioning.

The position value can originate from the back end as an attribute of the corresponding
business object, or from separate data storage through the equipment component API, or
from explicit end-user interactions to move objects in the component.

G R A P H I C C O M P O N E N T S186

Relative positioning

An equipment object has a hierarchical structure: a shelf can contain cards, which can
contain ports and LEDs, thus defining parent-child relationships. When positioning objects
as children of other objects, relative positioning is applied instead of regular positioning.

Regular positioning applies to root objects (parents), and is based on the component; it may
change from one application to another. In contrast, relative positioning applies to child
objects and is based on the position of the parent object; this relative position remains the
same, regardless of the position of the parent in the component.

The supported parent objects are the following:

♦ Shelves

Business objects of the class IltShelf. The positioning of child objects is based on slots.

♦ Card carriers

Business objects of the class IltCardCarrier. The positioning of child objects is based
on slots.

Card carriers are a special type of card that can contain other cards. Like a regular card,
it can be placed inside a shelf or another card carrier.

♦ Cards

Business objects of the class IltCard. The positioning of child objects is based on (x,y)
coordinates.

Shelves and card carriers
Shelves and card carriers are containers for card objects that are positioned based on the
available slots. A card can occupy one or more slots in the container.

To position a card inside a shelf or a card carrier, use the IlpShelfItemPosition class
(instance of IlpPosition). This class allows you to define the slot index and spanning, so
that the card can spread over more than one slot.

The class IlpShelfItemPosition has four attributes:

♦ xIndex defines the x coordinate of the slot.

♦ yIndex defines the y coordinate of the slot.

♦ xSpan defines the spanning over x.

♦ ySpan defines the spanning over y.

For the special case of card carriers, yIndex is always equal to 0 and ySpan is always equal
to 1.0.

Shelves support an array of slots, referenced by two indices (xIndex and yIndex), while
card carriers support slots referenced by a single index (xIndex). The spanning attributes
of IlpShelfItemPosition define by how much the card spans over the neighboring slots:

G R A P H I C C O M P O N E N T S 187

a value of 1.0 means no spanning at all; a value of 2.0 means that the next slot is fully
occupied; a value of 1.5 means that the next slot is partially occupied (50%).

One slot cannot hold more than one object, even if it is only partially occupied.Note:

The following code gives an example of relative positioning of cards inside a shelf. (It assumes
that a data source is connected to the equipment component.)

How to perform relative positioning of a card in a shelf

// Creates a shelf business object
IltShelf shelf = new IltShelf(3, 60, 3, 60, 0);
// Sets its view position to point (50, 50)
shelf.setPosition(new IlpPoint(50, 50));

// Creates a card business object
IltCard card = new IltCard((IltObjectState)null, "card");
// Sets its relative position to index x = 0, spanning over by 1.8
// and index y = 1, spanning over by 1.2.
card.setPosition(new IlpShelfItemPosition(0, 1, 1.8f, 1.2f));

// Sets the relationship between card and shelf
dataSource.setParent(card, shelf);

// Adds objects to the data source
dataSource.addObject(shelf);
dataSource.addOject(card);

The graphic result looks like this:

Card positioned inside a shelf

The XML file corresponding to Card positioned inside a shelf is the following:

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

G R A P H I C C O M P O N E N T S188

xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<addObject id="shelf" container="true">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>60</value>
<value>60</value>
<value>60</value>

</width>
<height>
<value>60</value>
<value>60</value>
<value>60</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>50</x>
<y>50</y>
</attribute>
</addObject>
<addObject id="card" container="true">
<class>ilog.tgo.model.IltCard</class>
<parent>shelf</parent>
<attribute name="name">card</attribute>
<attribute name="position"
javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<xIndex>0</xIndex>
<yIndex>1</yIndex>
<xSpan>1.8</xSpan>
<ySpan>1.2</ySpan>

</attribute>
</addObject>
</cplData>

The following code gives an example of relative positioning of cards inside a card carrier.
(It assumes that a data source is connected to the equipment component.)

How to perform relative positioning of a card in a card carrier

// Creates a card carrier business object
IltCardCarrier carrier = new IltCardCarrier((IltObjectState)null, 3);
// Sets its position and shape
carrier.setPosition(new IlpShelfItemPosition(50, 50, 100, 200));

// Creates a card business object
IltCard card = new IltCard((IltObjectState)null, "");
// Sets its relative position to index x = 0, spanning over by 1.8
card.setPosition(new IlpShelfItemPosition(0, 0, 1.8f, 0));

// Sets the relationship between card and card carrier
dataSource.setParent(card, carrier);

G R A P H I C C O M P O N E N T S 189

// Adds objects to the data source
dataSource.addObject(carrier);
dataSource.addOject(card);

The graphic result looks like this:

Card positioned inside a card carrier

The XML file corresponding to Card positioned inside a card carrier is the following:

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<addObject id="carrier" container="true">
<class>ilog.tgo.model.IltCardCarrier</class>
<attribute name="slotCount">3</attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>50</x>
<y>50</y>
<width>100</width>
<height>200</height>

</attribute>
</addObject>
<addObject id="card" container="true">
<class>ilog.tgo.model.IltCard</class>
<parent>carrier</parent>
<attribute name="name">card</attribute>
<attribute name="position"
javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<xIndex>0</xIndex>
<yIndex>0</yIndex>
<xSpan>1.8</xSpan>
<ySpan>0</ySpan>

</attribute>
</addObject>
</cplData>

G R A P H I C C O M P O N E N T S190

Cards
Cards are containers for ports and LEDs. The top left corner of a card defines the origin for
the relative positioning of ports and LEDs on the card. In other words, the child objects are
placed at (x,y) pixels from the top left corner of the card.

This positioning system is dependent on the direction of the card. Usually, cards are oriented
in a direction set to top. If this direction was set to right, the top right corner of the card
would become the origin for positioning the child objects. If the card was oriented in the
direction bottom, the (x,y) origin would be the lower right corner.

The IlpRelativePoint class, an instance of IlpPosition, is used to position a port or LED
inside a card. IlpRelativePoint defines two attributes corresponding respectively to the
horizontal (x) and vertical (y) distance from the container (x,y) origin (which has the position
(0,0)).

The following code gives an example of the relative positioning of a port or LED inside a
card. (It assumes that a data source is connected to the equipment component.)

How to perform relative positioning of a port or LED in a card

// Creates a card business object
IltCard card = new IltCard((IltObjectState)null, "card");
// Sets its position and shape
card.setPosition(new IlpShelfItemPosition(50, 50, 50, 100));

// Creates a LED business object
IltLed led = new IltLed("", IltLed.Type.Rectangular);
// Sets its relative position, which is (10, 10) from the xy origin
led.setPosition(new IlpRelativePoint(10, 10));

// Sets the relationship between LED and card
dataSource.setParent(led, card);

// Adds objects to the data source
dataSource.addObject(card);
dataSource.addObject(led);

The graphic result looks like the following figure.

LED positioned inside a card

The XML file corresponding to this figure is as follows.

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

G R A P H I C C O M P O N E N T S 191

xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<addObject id="card" container="true">
<class>ilog.tgo.model.IltCard</class>
<attribute name="name">card</attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>50</x>
<y>50</y>
<width>50</width>
<height>100</height>

</attribute>
</addObject>
<addObject id="led">
<class>ilog.tgo.model.IltLed</class>
<parent>card</parent>
<attribute name="type">Rectangular</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRelativePoint">
<x>10</x>
<y>10</y>

</attribute>
</addObject>
</cplData>

G R A P H I C C O M P O N E N T S192

Layout

JViews TGO makes use of the IBM® ILOG® JViews graph layout algorithms. Each
IlpEquipmentView can be connected to several node algorithms and one link algorithm.

♦ The node layout algorithms are:

● IlvBusLayout

● IlvCircularLayout

● IlvHierarchicalLayout

● IlvRandomLayout

● IlvSpringEmbedderLayout

● IlvTopologicalMeshLayout

● IlvTreeLayout

● IlvUniformLengthEdgesLayout

♦ The link layout algorithms can be:

● IlvLinkLayout

● IlvShortLinkLayout

● IlvLongLinkLayout

● IltLinkLayout

● IltShortLinkLayout

● IltLocalLinkLayout

● IltStraightLinkLayout

The difference between Ilv... and Ilt... link layout algorithms is that Ilt...
algorithms support connection ports whereas Ilv... algorithms don’t.

Note:

The detailed description of all the graph layout algorithms can be found in the IBM®
ILOG® JViews Diagrammer Using Graph Layout Algorithms documentation.

In case of multiple layouts, one layout can be set to be applied automatically whenever the
contents of the view changes, while the others can be applied on demand.

To configure the layouts, it is recommended to use CSS (see Configuring an equipment
component through CSS). Using CSS, you can also configure per-object layout parameters.

If a layout takes too much time to execute, or if you want to add toolbar buttons to execute
a layout, you can configure the layout for the view, then execute it on demand by using the

G R A P H I C C O M P O N E N T S 193

API method performAttachedLayout(int). The advantage of this method over the method
performLayoutOnce(ilog.views.graphlayout.IlvGraphLayout) is that the layout remains
attached to the view, therefore storing any previously-defined configuration.

The class IlpEquipmentView provides the following methods to handle the layout operation:

♦ void setNodeLayout (IlvGraphLayout layout, boolean perform). This method sets the
given layout as the default for this IlpEquipmentView. If the perform parameter is set to
true, the layout is applied to the objects immediately. With this method the layout is
executed every time the equipment content changes.

♦ void setLinkLayout (IlvGraphLayout layout, boolean perform). This method sets
the given layout as the default link layout for this instance of IlpEquipmentView. If the
perform parameter is set to true, the layout is applied to the links immediately. With this
method the layout is executed every time the equipment content changes.

♦ public void performLayoutOnce(IlvGraphLayout layout). This method executes the
layout algorithm once on the manager content.

♦ void startDelayingUpdates(). This method suspends temporarily the layout operations.
This mechanism avoids unnecessary computation when you intend to perform a sequence
of operations that affect the equipment layout.

♦ void endDelayingUpdates(). This method resumes the layout operations suspended by
a call to the method startDelayingUpdates. Any operation that requests a layout
recalculation is suspended when it is executed between startDelayingUpdates and
endDelayingUpdates calls.

♦ void setGraphLayouts(IlvGraphLayout[] layouts). This method sets the given graph
layouts for this IlpEquipmentView. Several graph layouts can be set to position nodes in
the view. One of them can be configured to be executed every time the equipment contents
changes. This method does not apply the layout to the nodes immediately. All the graph
layouts given as argument to the method are attached to the view.

♦ void setGraphLayouts(int index, IlvGraphLayout layout). This method sets a new
graph layout for the IlpEquipmentView or replaces an existing graph layout. This method
does not apply the layout to the nodes immediately.

♦ IlvGraphLayout[] getGraphLayouts(). This method returns the graph layouts that have
been configured for the view.

♦ IlvGraphLayout getGraphLayouts(int index). This method returns the graph layout
that is configured for the view at the given index.

♦ void setAutoLayoutIndex (int index). This method indicates, from the list of graph
layouts that have been configured using method setGraphLayouts, which one is executed
automatically when the contents of the view changes.

♦ int getAutoLayoutIndex(). This method returns the index of the graph layout that is
executed automatically when the contents of the view changes.

♦ void performAttachedLayout(int index). This method executes the layout that has
been configured for the given index, recursively in the object tree. The layout has been
already attached to the view and keeps the configuration whenever it is performed.

G R A P H I C C O M P O N E N T S194

♦ IlvGraphic getLayoutProxy(IlpRepresentationObject). This method returns the
graphic object corresponding to the given representation object for layout purposes. This
method should be used if you need to set per-object layout properties to configure the
layout algorithms.

Graphical parameters, such as the layout region, that are passed to the graph layout
are expressed in view coordinates.Therefore, if you have expressed these parameters

Note:

in stationary coordinates, you must transform them to view coordinates (by applying
equipment.getView().getCompositeGrapher().getZoomTransformer()
equipment.getManagerView().getTransformer()) before passing them to
the graph layout.

How to use hierarchical node layout in the equipment component
In CSS, use the following rules:

Equipment {
graphLayout: true;

}

GraphLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;
levelJustification: Top;
globalLinkStyle:

'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout.POLYLINE_STYLE';
connectorStyle:

'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout.EVENLY_SPACED_PINS';
}

The full class path is required for the properties globalLinkStyle and connectorStyle for
the type converter to locate and convert the constants.

For an example of a CSS link layout, refer to The LinkLayout rule .

In the API, use the following code:

IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setFlowDirection (IlvDirection.Bottom);
layout.setLevelJustification (IlvDirection.Top);
layout.setGlobalLinkStyle (IlvHierarchicalLayout.POLYLINE_STYLE);
layout.setConnectorStyle (IlvHierarchicalLayout.EVENLY_SPACED_PINS);

equipment.setNodeLayout(layout);

G R A P H I C C O M P O N E N T S 195

All layouts to be used with JViews TGO must be set in view coordinate mode. This
mode is automatically set when you install layouts through setNodeLayout(ilog.

Note:

views.graphlayout.IlvGraphLayout), setLinkLayout(ilog.views.
graphlayout.IlvGraphLayout), or performLayoutOnce(ilog.views.
graphlayout.IlvGraphLayout). If you call the method performLayout()
directly, you must first set the mode: layout.setCoordinatesMode
(IlvGraphLayout.VIEW_COORDINATES);

Even when you decide to use a certain node or link layout, you may want some links or nodes
to be pinned; that is, you may want to keep a certain element in a specified position that is
not affected when the layout is executed on an equipment.

You can achieve this effect by using the following methods defined in IlvGraphLayout:

♦ setPreserveFixedLinks (boolean preserve). This method determines whether or not
the layout will preserve the position of the registered links.

♦ setPreserveFixedNodes (boolean preserve). This method determines whether or not
the layout will preserve the position of the registered nodes.

♦ void setFixed (Object obj /* link or node */, boolean fix). This method
determines whether or not the given object will be fixed in the equipment view.

♦ boolean isFixed (Object obj). The return value indicates whether or not the given
object is marked to be fixed. The object to be passed is an IlvGraphic belonging to the
IlpGraphic that represents the object and not the IlpGraphic or
IlpRepresentationObject itself.

♦ void unfixAllLinks()

♦ void unfixAllNodes()

How to set a link to fixed shape and a node to fixed position in the
equipment view
The following code illustrates how you can set a given link to have a fixed shape and a given
node to have a fixed position in the equipment view.

In CSS, use the following rules:

Equipment {
graphLayout: true;
linkLayout: true;

}

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';

}

GraphLayout {

G R A P H I C C O M P O N E N T S196

layouts[0]: @+treeLayout;
}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';

}

#Link:linkLayoutRenderer {
fixed: true;

}

#NE1:graphLayoutRenderer:tree {
fixed: true;

}

In the API, use the following code:

IlvGraphLayout layout = equipmentView.getLinkLayout();
layout.setPreserveFixedLinks (true);
IlpRepresentationObject linkRO =
equipmentAdapter.getRepresentationObject(link);
layout.setFixed(equipmentView.getLayoutProxy(linkRO));

layout = equipmentView.getNodeLayout();
layout.setPreserveFixedNodes (true);
IlpRepresentationObject neRO = equipmentAdapter.getRepresentationObject(ne);
layout.setFixed(equipmentView.getLayoutProxy(neRO));

When the position or shape of an object is not handled by the layout, you must set it by
calling themethod setPosition(ilog.cpl.model.IlpRepresentationObject, ilog.cpl.
graphic.IlpPosition, ilog.cpl.graphic.IlpPositionSource) (or view.setPosition).

JViews TGO provides a default layout which uses IlvShortLinkLayout to shape and position
links. This default layout sets all objects without an attached position to (0,0).

How to use multiple node layouts in an equipment view
In this scenario, two node layouts are configured for the equipment view. The first one is
configured to be executed automatically.

In CSS, use the following rules:

Equipment {
graphLayout: true;

}

GraphLayout {
layouts[0]: @+hierarchicalLayout;
layouts[1]: @+treeLayout;
autoLayoutIndex: 0;

}

G R A P H I C C O M P O N E N T S 197

Subobject#hierarchicalLayout {
class: 'ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout';
flowDirection: Bottom;
levelJustification: Top;
globalLinkStyle: POLYLINE_STYLE;
connectorStyle: EVENLY_SPACED_PINS;

}

Subobject#treeLayout {
class: 'ilog.views.graphlayout.tree.IlvTreeLayout';
flowDirection: Bottom;

}

To execute the tree layout in the view, use the method performAttachedLayout, where the
index is the one defined in the CSS configuration, as follows:

equipment.getView().performAttachedLayout(1);

How to configure per-object layout properties in the equipment
component
Some layout algorithms require a specific configuration in order to be properly executed.
For example, the bus layout needs to have a bus object specified; or the tree layout, for
which you may want to specify the root node prior to the layout execution. Starting from
JViews TGO 7.5, you can configure these properties using CSS as follows:

Equipment {
graphLayout: true;

}

GraphLayout {
layouts[0]: @+busLayout

}

Subobject#busLayout {
class: 'ilog.views.graphlayout.bus.IlvBusLayout';
horizontalOffset: 50;
verticalOffsetToLevel: 50;
verticalOffsetToPreviousLevel: 40;
margin: 30;
marginOnBus: 50;

}

// Configure the bus object as the bus in the layout
// All layout configuration uses the 'graphLayoutRenderer'
// and the graph layout name pseudoclasses
#BUS:graphLayoutRenderer:bus {
bus: true;

}

// Configure the bus to route the links that connect the

G R A P H I C C O M P O N E N T S198

// bus to the nodes
#BUS {
linksConnectToBase: true;

}

Alternatively, you can configure these properties using the API as follows:

IlvBusLayout busLayout = new IlvBusLayout();
equipment.setGraphLayouts(new IlvGraphLayout[] { busLayout });

IlpRepresentationObject ro =
equipment.getAdapter().getRepresentationObject("BUS");
IlvGraphic layoutProxy = equipment.getView().getLayoutProxy(ro);
busLayout.setBus((IlvPolyPointsInterface)layoutProxy);

How to disable the per-object layout properties configuration in
the equipment view
By default, per-object layout parameters can be configured using CSS. However, if you are
not interested in this feature, you can disable it by setting the property
usePerObjectParamenters in the graph layout renderer and link layout renderer. Disabling
the per-object layout properties configuration speeds up significantly the rendering process.

Equipment {
graphLayout: true;
linkLayout: true;

}

LinkLayout {
class: 'ilog.views.graphlayout.link.IlvLinkLayout';
usePerObjectParameters: false;

}

GraphLayout {
layouts[0]: @+treeLayout;
usePerObjectParameters: false;

}

G R A P H I C C O M P O N E N T S 199

Zooming

There are three different zoom modes for the equipment component: physical, logical, and
mixed. For more information on zoom modes, see Zooming in section Network component.

G R A P H I C C O M P O N E N T S200

Background support

A background map can be used to create more realistic views of equipment and to have a
more detailed look at equipment objects. For more information on background support, see
Background support in Network component.

G R A P H I C C O M P O N E N T S 201

Filtering

The equipment component allows you to filter the nodes that are displayed. To do so, attach
an instance of IlpFilter to the equipment component by using the method setFilter. The
accept(java.lang.Object) method of the filter object will be invoked whenever the
equipment is prompted to display an IlpObject. If the method returns false, the object
will not be shown in the equipment view. In the same way, an object will not be shown if its
parent is not displayed.

For example, write the following code to show only objects of the class IltShelf.

How to filter objects to be shown in the equipment component

IlpEquipment equipment = // ...
// Create a new IlpFilter instance
IlpFilter filter = new IlpFilter(){
// This method is called for every object in the data source
public boolean accept (Object object){
IlpObject ilpObject = (IlpObject)object;
IlpClass clz = ilpObject.getIlpClass();
// Check if the class == IltShelf
return clz.equals(IltShelf.GetIlpClass());

}
// Set the filter to the equipment
equipment.setFilter(filter);

All the objects are refiltered whenever a new filter is set. If the filter is null (which is the
default), all the objects under the root nodes will be displayed.

To retrieve the active filter, use the method getFilter.

The filtering takes actually place at the adapter level.Note:

To see how to configure filtering through CSS, refer to The Adapter rule .

G R A P H I C C O M P O N E N T S202

Accepted and excluded classes

You can specify the business objects that will be represented or not in the equipment
component depending on their business classes. To do so, you need to specify the business
classes to be accepted or excluded using methods setAcceptedClasses or
setExcludedClasses in the equipment component adapter. To retrieve the adapter, use the
getAdapter method. The adapter must be an instance of a subclass of
IlpAbstractNodeAdapter. By default, business objects of the class IltAlarm are excluded
from the equipment component, so that alarm objects in the data source are only used to
compute the alarms present in a given managed entity instead of being graphically
represented in the view.

How to specify excluded classes in the equipment component
You can specify that business objects from specific business classes are not represented in
the equipment component. You can do that using the API, setExcludedClasses(java.util.
List) method, or using CSS.

The following example shows you how to prevent objects from business classes IltAlarm
and IltLed to be represented:

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[1]: "ilog.tgo.model.IltLed";

}

How to specify an accepted class in the equipment component
By default, all business classes, except IltAlarm, are accepted by the equipment component.
If you want to specify exactly which business classes to represent, you should combine the
list of excluded and accepted classes, so that you exclude all business classes except those
that are marked in the accepted class list.

In the following example, the equipment component is configured in a way that it graphically
represents only business objects from the class IltNetworkElement.

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[0]: "ilog.tgo.model.IltObject";
acceptedClasses[0]: "ilog.tgo.model.IltNetworkElement";

}

The filtering that is performed through the use of the accepted and excluded class lists
takes actually place at the adapter level.

Note:

To see how to configure excluded and accepted classes through CSS, refer to The Adapter
rule .

G R A P H I C C O M P O N E N T S 203

Setting a list of origins

By default, all the objects in the data source that do not have a parent are treated as root
nodes by the equipment component. However, you can explicitly select the root nodes to be
displayed through the adapter that forms a bridge between the data source and the equipment
component. To retrieve the adapter, use the getAdapter() method. The adapter must be
an instance of a subclass of IlpAbstractNodeAdapter.

The root nodes can be changed by modifying the list of origins for the adapter. These origins
are set and retrieved as IlpObject identifiers. The equipment adapter has two options:
either the origins are represented as root nodes, or they are hidden and their child objects
are represented as root nodes.

The method getOrigins allows you to get the list of current origins. The method
isShowingOrigin indicates whether the origins themselves or their child objects are
represented as root nodes. By default, the list of origins is empty and the origins are not
shown, which means that all objects without a parent are shown as root nodes. Thus, the
entire contents of the data source are displayed in the equipment.

The origins are specified using identifiers, not the IlpObject instances.You can
retrieve the identifier of an IlpObject with the getIdentifier method of the object.

Note:

To change the list of origins, use the setOriginsmethod. This method takes a list of business
object identifiers as its first parameter. Its second parameter is a Boolean flag that indicates
whether or not the origins themselves should be shown as root nodes.

Calling this method with an empty list and the second parameter set to true empties the
equipment:

setOrigins(Collections.EMPTY_LIST, true);

Calling the method with an empty list and the second parameter set to false restores the
default; that is, all the objects in the data source are shown:

setOrigins(Collections.EMPTY_LIST, false);

How to show an object as the root node of an equipment
To show only a given IlpObject as the root node of an equipment, use the following code:

IlpEquipment equipment =;
IlpObject originObject =;
java.util.List originList = new ArrayList();
originList.add(originObject.getIdentifier());
equipment.getAdapter().setOrigins(originList, true);

G R A P H I C C O M P O N E N T S204

See the IlpAbstractHierarchyAdapter class for additional methods to help you manage
origins.

To know how to configure origins through CSS, refer to The Adapter rule .

G R A P H I C C O M P O N E N T S 205

Node factory

The equipment adapter converts business objects retrieved from the associated data source
into instances of IlpEquipmentNode. The new representation objects are created by a
representation object factory. By default, the equipment adapter uses
IlpDefaultEquipmentNodeFactory, which creates representation objects of type
IlpDefaultEquipmentNode.

To see how to configure an equipment node factory through CSS, refer to The Adapter rule
.

G R A P H I C C O M P O N E N T S206

Link factory

As the equipment node factory transforms business objects into representation objects, the
link factory transforms business objects that are links into representation objects that are
instances of IlpEquipmentLink. The equipment adapter uses by default the
IlpDefaultEquipmentLinkFactory that creates representation objects of type
IlpDefaultEquipmentLink.

To see how to configure an equipment link factory through CSS, refer to The Adapter rule
.

G R A P H I C C O M P O N E N T S 207

Expansion strategy

The equipment adapter uses an expansion strategy to identify whether objects should be
loaded or not in the equipment model. The expansion strategy defines how an object is going
to behave when it is expanded, for example, when the user opens an equipment node by
double-clicking or by using the equipment expansion handles. By default, equipment objects
are configured to expand their child objects in place; for example, shelves and cards are
automatically expanded. The expansion strategy indicates whether load on demand is
implemented and provides methods to load and release child nodes.

The equipment adapter uses an expansion strategy factory to decide the expansion strategy
to apply to an equipment node when it is created by the adapter. The default expansion
strategy factory implementation, IlpDefaultNodeExpansionStrategyFactory, checks the
property "expansion" of each business object in the cascading style sheet loaded in the
component to identify the expansion strategy to use.

The default equipment expansion strategy factory supports three types of expansion
strategies:

♦ IN_PLACE: loads the child objects immediately in the equipment model. In this expansion
strategy, nodes are considered as parent nodes only when they have containment
relationships defined in the attached data source, through the IlpContainer interface.
The child objects should already be loaded in the data source and should be visible
according to the data source filter, if there is one defined.

♦ IN_PLACE_MINIMAL_LOADING: loads the child objects on demand in the equipment model,
that is, as the user expands the parent nodes. All nodes with this expansion strategy are
considered as possible parent nodes, and therefore are represented with an expansion
icon. If the node does not contain child objects, the expansion icon disappears when the
expansion is executed for the first time.

♦ NO_EXPANSION: expansion is not supported by the node.

See Customizing the expansion of business objects in the Styling documentation for
information on how to customize the business object expansion type, which is defined by
the property expansion.

The expansion strategy factory can be customized for the adapter either through CSS or
through the API.

G R A P H I C C O M P O N E N T S208

Architecture of the equipment component

Describes the classes and features of the equipment component that are specific to each
module of the MVC architecture, and also explains the role of the adapter.

In this section

Class overview
Gives an overivew of the MVC architecture of the equipment component.

The model
Describes the classes of the equipment model.

The view
Describes the classes of the equipment view.

The controller
Describes the classes of the equipment controller.

The adapter
Describes the classes of the equipment adapter.

G R A P H I C C O M P O N E N T S 209

Class overview

A graphic component encapsulates a model, a view, and a controller. The equipment
component, like all the other graphic components, is based on the MVC architecture, which
means that it has a model, a view and a controller associated with it. For a general
introduction to the MVC architecture, see Architecture of graphic components.

TheMVC architecture for the equipment component is implemented by the following classes:

♦ The class IlpEquipment contains a model, a view, and a controller.

♦ The model interfaces are IlpEquipmentModel and IlpMutableEquipmentModel.
IlpMutableEquipmentModel provides API facilities for adding and removing objects. The
two equipment model interfaces are implemented through the class
IlpDefaultEquipmentModel. Instances of IlpEquipment use the class
IlpDefaultEquipmentModel.

The representation objects to be displayed in the equipment component must be added
to the model. The equipment model recognizes the following objects: nodes, and links
that connect nodes. The representation objects to be added to the model must implement
the IlpEquipmentNode or IlpEquipmentLink interface. Concrete implementations of
these interfaces are provided as IlpDefaultEquipmentNode and
IlpDefaultEquipmentLink. You can create subclasses of these representation object
classes.

♦ The class IlpEquipmentView defines the equipment view that is automatically instantiated
when an equipment object (an instance of IlpEquipment) is created.

♦ The class IlpEquipmentController creates a controller that manages interactions between
the user and an IlpEquipmentView.

G R A P H I C C O M P O N E N T S210

Main classes used by the equipment component

G R A P H I C C O M P O N E N T S 211

The model

The model in the equipment component contains and manages the representation objects,
that is, the objects that are used to represent equipment business objects in JViews TGO
(typically shelves and cards). The representation objects will in turn be converted to graphic
objects displayed in the equipment view. Therefore, the equipment view needs to have access
to the model to be able to render and graphically display the representation objects.

The model sends notifications for every single change in the representation node hierarchy,
that is, for added or removed root and child nodes.

Classes of the equipment model
The model is made up of two interfaces:

♦ IlpEquipmentModel: Provides methods to access the model.

♦ IlpMutableEquipmentModel: Provides methods to set and update the model.

The default implementation of both interfaces is the class IlpDefaultEquipmentModel,
which is automatically instantiated when the equipment component is created.

The model stores and maintains information about the representation objects, which may
be added to the model either through the API or by an adapter. The adapter converts the
business objects of the data source to representation objects. (An adapter is created
automatically when a data source is connected to the equipment component.)

When a representation object is added, removed, or updated in the model, events of the
EquipmentModelEvent class are sent to all registered listeners. The view itself is a listener
to equipment model events, so that it is always synchronized with the contents of the model.
To receive model events, you must implement the EquipmentModelListener interface and
register your implementation with the model through the addEquipmentModelListener
method.

When a data source is attached to the equipment component, the model listens to changes
affecting the business objects; it updates the representation objects accordingly and fires
model events to all is listeners.

Using the equipment model
The whole model API can be accessed through the IlpEquipment. getModel()method, but
IlpEquipment also provides shortcut methods to access some model services.

How to retrieve the model root objects
To retrieve the root objects that are currently set in the equipment model, use the
IlpEquipmentModel API, as follows:

IlpEquipment equipmentComponent = ...; // the equipment component
IlpMutableEquipmentModel model = equipmentComponent.getModel();
Collection roots = model.getRootObjects();

G R A P H I C C O M P O N E N T S212

When a change occurs in the structure of the model (representation objects), a notification
is fired to all listeners registered within the equipment model. In the case of multiple changes,
it is more effective to store the changes in a buffer, thus postponing the internal processing
of notifications. The method startBatch() allows you to execute a series of operations at
once in the equipment component. Then, when endBatch() is called, all the notifications
generated by these operations will be sent to the model and its listeners.

It is your responsibility to manage both startBatch() and endBatch() methods.
In other words, when the method startBatch is issued, it has to be followed by the
method endBatch.

Note:

The following example shows how to batch a series of changes in the equipment model

How to manage notification in batch mode

// starts notification bufferization
IlpDefaultDataSource datasource = (IlpDefaultDataSource)
equipment.getDataSource();
datasource.startBatch();
datasource.addObject(newRoot1);
datasource.addObject(newRoot2);
datasource.addObject(newRoot3);
// ends notification bufferization
dataSource.endBatch();

In this example, implicit notifications arising from additions or removals of child objects will
also be buffered.

To add a listener to the model, you must implement the interface EquipmentModelListener
and register it with the model by using the method addEquipmentModelListener(ilog.cpl.
equipment.EquipmentModelListener). Conversely, to remove a listener from the model,
use the method removeEquipmentModelListener(ilog.cpl.equipment.
EquipmentModelListener).

The listener is based on the EquipmentModelEvent class, which defines the equipment model
events. It is divided into four different types of events: ROOT_OBJECT_ADDED,
ROOT_OBJECT_REMOVED, CHILDREN_ADDED and CHILDREN_REMOVED. Each type of event
corresponds to a specific update. There are two special types of events, SERIES_BEGIN and
SERIES_END, used to delimit a series of notifications sent after the model has completed
buffered changes. Right after the method endBatch() has been issued, an event of type
SERIES_BEGIN is sent to the listeners indicating the beginning of buffered changes, followed
by all the buffered events. Then, an event of type SERIES_END is sent, which indicates the
end of buffered notifications.

G R A P H I C C O M P O N E N T S 213

The view

The view displays a rectangular surface of a theoretically infinite plane area. The view
performs the following functions:

♦ Displays a subset of the objects of the model

♦ Allows navigation using scrollbars and provides a zoom facility

♦ Assigns a default position to nodes that have no value for position in the model

♦ Assigns a shape to links that have none

♦ Modifies link shapes when end nodes are moved

♦ Provides a toolbar for choosing a view interactor

♦ Optionally displays an overview window

Classes of the equipment view
The IlpEquipmentclass automatically creates the concrete class IlpEquipmentView that is
provided for developing the equipment view. This class provides methods that allow you to
configure the view in the following ways:

♦ Turn the scrollbars on or off: setHorizontalScrollBarVisible(boolean),
setVerticalScrollBarVisible(boolean)

♦ Set the zoom level: getManagerView()

♦ Set the toolbar on or off (here set to off): setToolBarVisible(boolean) (false)

♦ Set the overview window to be displayed or not (here set to be displayed):
setOverviewVisible(boolean)

For convenience, these methods are also accessible from the class IlpEquipment. They
delegate to IlpEquipmentView.

See Configuring an equipment component through CSS for how to configure the equipment
view in CSS.

SeeConfiguring an equipment component through the API for how to configure the equipment
view through the API.

Graphic objects in the equipment component
Graphic objects display as many details as possible within the limits of the display area and
without loss of readability.

The equipment component uses only composite graphic objects. The graphic objects are
created by the view renderer, which calls the appropriate object renderers to obtain the
composite graphic objects. The view determines which object renderer is required to draw
the graphic object that translates a particular representation object or attribute from the
style sheet properties.

G R A P H I C C O M P O N E N T S214

The following basic variations of graphic object exist in the equipment component:

♦ Nodes—Nodes are the basic graphic objects and they are represented as equipment
elements according to the conventions of the governing standards, such as ITU-T or ANSI,
and the appropriate protocols.

♦ Links—Links are the connections between nodes.

End-user interaction with a graphic object is handled by an object interactor. Object
interactors handle the gestures of an end user when performing a task. Gestures consist of
one or more mouse events to perform one task.

For more information on object interactors, see Object interactors.

Graphic object classes
The graphic representation of each object displayed in the equipment component is
implemented through the IlpGraphic interface. JViews TGO provides predefined equipment
graphic objects that are produced by the default equipment component renderer. You can
customize the rendering of the objects through CSS.

For custom business objects, JViews TGO provides a default representation with a set of
properties that can be customized to represent your objects better. If you prefer, you can
also specify a new graphic representation by defining an IlvGraphic class in the CSS. For
more information, refer to Customizing user-defined business objects. You can also refer to
the composite graphics sample at <installdir>/samples/network/compositeGraphic to
see how to create a new object representation by using the IBM® ILOG® JViews composite
graphics feature.

Predefined business objects already have a specific graphic representation that can only be
changed through CSS customization by setting the object properties.

You can customize the graphic representation by adding new decorations. To see how to
add new decorations to the objects using CSS, look at the decoration sample at <installdir>
/samples/network/decoration).

Equipment graphic object renderers
Object renderers in the equipment component create one graphic object that translates a
complete representation object. No graphic objects are created that correspond to attributes
of a representation object. Instead, subcomponents of graphic objects are created from
attributes for example, a label can be created from the name attribute.

Such subcomponents are combined into composite graphic objects, like the link with
secondary states and a label shown in Link with secondary states and a label by using
attachments.

Link with secondary states and a label

A composite graphic object constructed in this way looks like one object. The different
instances of IlpGraphic used to build the graphic object cannot be distinguished as separate
objects in the equipment. JViews TGO manages only the composite object. You cannot move
the label separately from the link.

G R A P H I C C O M P O N E N T S 215

The controller

The controller manages the actions triggered by the end user, which have an immediate
effect on the view, such as changing the zoom level. It is an instance of the class
IlpEquipmentController.

The controller helps configure the view interactors and reacts to end-user interactions (such
as requests to reshape or move objects) by forwarding actions to the handler, which updates
the model directly or indirectly (through the data source).

The controller is used to support view parameters such as layers, zoom, and background.
It also manages the toolbar and the interactors by defining which interactors are available
in the toolbar.

Classes of the equipment controller
Each time an equipment component is created (instance of IlpEquipment), a default controller
of class IlpEquipmentController is automatically created.

By default, a handler of class IlpEquipmentHandlerWithoutDataSource is instantiated. This
handler is designed to forward end-user interactions directly to the equipment model. When
a data source is attached to an equipment component, a different handler is instantiated,
namely IlpEquipmentHandlerWithDataSource; this handler forwards end-user interactions
to the data source instead of the model.

Using the equipment controller
Some of the most common methods of the class IlpEquipmentController can also be found
in the class IlpEquipment.

Access to the controller API is through the method getController().

By default, no data source is associated with the equipment component, which means that
the default handler is an instance of the class IlpEquipmentHandlerWithoutDataSource.
When amutable data source is associated with the equipment component through themethod
setDataSource(ilog.cpl.datasource.IlpDataSource), a new handler of class
IlpEquipmentHandlerWithDataSource is instantiated, unless a custom handler has been
set. The method setHandler(ilog.cpl.equipment.IlpEquipmentHandler) allows you to
set new handlers to the controller.

The controller manages the view and object interactors. By default, an instance of the class
IlpEquipmentDefaultViewInteractor is set as the view interactor for the controller, but
it is possible to define specific interactors for the view through the IlpEquipment API.

The handler
In the same way as the adapter passes information about the objects in the data source to
the equipment component, the handler passes information in the opposite direction, that is,
from the equipment component to the data source.

The information notified in this way includes:

♦ Actions triggered by interactors for

G R A P H I C C O M P O N E N T S216

● Creating objects in the data source

● Removing objects from the data source

● Changing attributes of objects in the data source

● Changing the parent object of an object in the data source

● Expanding and collapsing container objects

♦ Propagating position changes of objects

The position changes are usually due to layout, zoom change, or interactors.

The handler has been designed to simplify the customization of user interactions without
rewriting the controller.

There are four types of handler:

♦ IlpPositionHandler to handle object position changes.

♦ IlpNodeHandler to handle object additions, removals and updates, as well as relationship
changes.

♦ IlpLoadHandler to handle reloading of model objects from an XML file.

♦ IlpExpansionHandler to handle the expansion and collapsing of objects.

The IlpEquipmentHandler interface indirectly extends all four types of handler.

The handler has a reference to the data source in the form of an IlpMutableDataSource,
and to the equipment adapter.

You can customize the behavior of the handler by subclassing the class
IlpEquipmentHandlerWithDataSource. A particular method can be overridden for each of
the possible actions.

You can customize the way position changes are propagated by overriding the method
propagatePositionToDataSource(ilog.cpl.model.IlpObject, ilog.cpl.graphic.
IlpPositionSource). In a typical situation where the client is active, position changes are
propagated to the data source. Therefore, this method returns true by default. In a situation
where the client has read-only access, you may want to allow only user-requested position
changes or no position changes at all to be forwarded to the data source. You can achieve
this result by allowing the method propagatePositionToDataSource(ilog.cpl.model.
IlpObject, ilog.cpl.graphic.IlpPositionSource) to return false in the appropriate
cases.

The handler is most often subclassed to allow you to customize the creation of new objects
in the data source. The object interactors may need to be customized in the same way. A
customized object creation interactor typically calls the controller method createObject
(java.lang.Class, ilog.cpl.model.IlpAttributeGroup, java.util.Map, ilog.cpl.
graphic.IlpPosition)with specific properties. The controller then forwards these properties
to the handler. Finally, the method handleCreateObject(java.lang.Class, ilog.cpl.
model.IlpAttributeGroup, java.util.Map, ilog.cpl.graphic.IlpPosition) of the
handler parses the additional properties and creates the new objects.

By default, the handler creates new objects in two steps:

G R A P H I C C O M P O N E N T S 217

1. The ID of the new object is created with the method createObjectId(java.lang.Class,
ilog.cpl.model.IlpAttributeGroup, java.util.Map).

2. The IlpObject corresponding to this ID is created with the method createObject(java.
lang.Class, ilog.cpl.model.IlpAttributeGroup, java.util.Map, java.lang.
Object).

You can customize each step separately by overriding these methods in a subclass.

Any user interaction with the equipment is processed by the equipment controller which
delegates action to the equipment handler. The handler has two default implementations:

♦ IlpEquipmentHandlerWithoutDataSource is attached by default to the controller and
performs user interactions directly in the equipment model.

♦ IlpEquipmentHandlerWithDataSource is automatically attached to the controller when
a data source is connected with the equipment component. User interactions are executed
inside the data source that will notify the adapter, and the adapter in turn will notify the
equipment model. In this particular use case, changes will be reflected on all equipment
components, if any, connected to the data source.

G R A P H I C C O M P O N E N T S218

The adapter

The equipment adapter converts business objects into representation objects of type
equipment node. It is defined by the class IlpEquipmentAdapter.

Equipment adapters retrieve structural information (that is, parent/child relationship) about
business objects from the associated data source and determine whether an object should
appear as a root representation object by examining a list of origins. See Setting a list of
origins for details.

The following figure shows equipment adapter classes:

Equipment adapter classes

Nodes are created with an IlpEquipmentNodeFactory. By default, this factory is an instance
of the class IlpDefaultEquipmentNodeFactory which creates IlpDefaultEquipmentNode
instances.

G R A P H I C C O M P O N E N T S 219

Similarly, links are created with an IlpEquipmentLinkFactory. By default, this factory is
an instance of the class IlpDefaultEquipmentLinkFactory which creates
IlpDefaultEquipmentLink instances.

The equipment adapter supports the concept of position or shape of objects. By default, it
interprets every object attribute with name position as the position of that object. You can
specify any other attribute instead, for all instances of a given IlpClass, through the method
setPositionAttribute of the class IlpAbstractNodeAdapter.

You can create an equipment adapter implicitly by instantiating the IlpEquipment component
as shown in the following example.

How to create an equipment adapter by instantiating an equipment
component

IlpEquipment ilpEquipment = new IlpEquipment();
IlpDataSource dataSource = new IlpDefaultDataSource();
ilpEquipment.setDataSource(dataSource);

If you want to configure the adapter, to set its origin for example, you must first retrieve it
from the equipment component and then set it to the data source.

How to configure an equipment adapter

IlpEquipment ilpEquipment = new IlpEquipment();
IlpDataSource dataSource = new IlpDefaultDataSource();
// configure the adapter, for example set an origin
IlpEquipmentAdapter adapter = ilpEquipment.getAdapter();
adapter.setOrigins(Collections.singletonList("origin"),false);
adapter.setDataSource(dataSource);

The equipment adapter supports temporary representation objects. For more information,
see Creating a temporary representation object.

Creating a temporary representation object
The equipment adapter supports temporary representation objects. These objects are
placeholders that can be used in place of permanent representation objects for editing
purposes and, more specifically, when new objects are created in the equipment view. When
a business object corresponding to the temporary representation object is added to the data
source, this temporary representation object is removed and replaced by the permanent
representation of the business object. A filter, defined by IlpFilter, is used to determine
when the representation object of a business object added to the data source is a candidate
to replace the temporary representation object. Filtering criteria can be of any kind.

The following example shows how to add a temporary representation object to an equipment
adapter.

G R A P H I C C O M P O N E N T S220

How to add a temporary representation object to an equipment
adapter
First you create the temporary representation object, like this:

IlpDefaultEquipmentNode temp=
new IlpDefaultEquipmentNode(new IlpDefaultAttributeGroup());

Then you add it to the adapter along with the filtering criteria using the method
storeTemporaryRepresentationObject(ilog.cpl.model.container.
IlpRepresentationNode, ilog.cpl.model.container.IlpMutableRepresentationNode,
ilog.cpl.util.IlpFilter):

adapter.storeTemporaryRepresentationObject(temp, null,new IlpFilter() {
public boolean accept(Object o) {
IlpObject ilpO = (IlpObject)o;
return ilpO.getIdentifier().equals("right one");
}

};

The temporary representation object will be replaced by a permanent representation object
as soon as a business object satisfying the filtering criteria is added to the data source.

G R A P H I C C O M P O N E N T S 221

G R A P H I C C O M P O N E N T S222

Tree component

The tree component is one of the four graphic components supplied with IBM® ILOG® JViews
TGO. It provides a hierarchical view of the data contained in a data source. A tree has one
or more root nodes, from which all the other nodes descend. Each tree node may be
associated with a business object (for example, a managed object, an alarm, or a service).
It has a number of graphic properties (for example, a label, an icon, a tooltip) that are set
according to the values of one or more attributes of the object. The way in which business
object attribute values map to the graphic representation of the business object is determined
by the style sheets of the tree. For details on business objects, refer to Introducing business
objects and data sources.

In this section

Introducing the tree component
Describes the tree component, which allows you to display data in a hierarchical
representation.

Creating a tree component: a sample
Details the steps required to create a sample tree component.

Configuring the tree component
Identifies the rendering information necessary to customize a tree view.

Tree component services
Describes the services that are available for a tree: view services and adapter services.

Architecture of the tree component
Describes the classes and features of the tree component specific to each of the three
modules of the MVC architecture, and also explains the role of the adapter.

© Copyright IBM Corp. 1987, 2009 223

Introducing the tree component

The JViews TGO tree component is based on the Swing tree component. It allows you to
display data in a hierarchical representation.

The tree component is connected to a data source, from which it retrieves the business
objects to be displayed. By default, the tree displays all the objects contained in the data
source. However, it is possible to restrict the contents displayed by:

♦ selecting the root nodes to be shown,

♦ specifying whether certain child objects should be visible or not,

♦ applying a filter.

Objects that do not have a parent are displayed as root nodes, while the others are displayed
under their parent.

The tree component offers the following features:

An efficient tiny look and feel to represent business objects as tree nodes
This graphic representation style provides a comprehensive view of the object state in
the tree, even if it contains less details than the normal representation style in the
network and equipment components. The graphic representation of the business objects
in the tree component can be customized through Cascading Style Sheets (CSS). For
more information, refer to Using Cascading Style Sheets.

Smart selection modes
The tree component allows you to choose a look and feel for the selection: either the
standard look and feel, where the selected cell appears highlighted, or the check box

G R A P H I C C O M P O N E N T S224

look and feel, where a check box is displayed next to each tree node with a check mark
indicating that the node is selected.

The tree component also provides a selection model that is responsible for setting,
modifying and retrieving the objects selected in the component.

Sorting capabilities
The tree component allows you to sort the nodes that are displayed.

Filtering capabilities
The tree component allows you to filter the nodes that are displayed. That is, the business
objects present in the attached data source are only displayed in the tree if they are
accepted by the current filter.

Interaction support
The tree component allows you to associate behavior with the tree as a whole, and with
the business objects it contains.

Load on demand
The tree component supports load on demand for the business objects to be displayed.
This means that the graphic representation of a given business object is only created
when its parent object is expanded through the API or through user interaction. By
default, load on demand is customized through the CSS property expansion (see
Customizing the expansion of business objects). More advanced customization can be
performed at the adapter level (see Expansion strategy).

The tree component is implemented by the class IlpTree, which is a Swing JComponent that
can be directly inserted into a panel (JPanel).

IlpTree provides the API for the most common uses of the tree component, such as:

♦ setting or retrieving the associated data source: getDataSource(), setDataSource(ilog.
cpl.datasource.IlpDataSource)

♦ accessing andmodifying the selection: getSelectionModel(), setSelectionModel(javax.
swing.tree.TreeSelectionModel), addSelectionObject(ilog.cpl.model.IlpObject),
removeSelectionObject(ilog.cpl.model.IlpObject), clearSelection(),
isObjectSelected(ilog.cpl.model.IlpObject), getSelectedObject(),
getSelectedObjects()

♦ setting or retrieving the view interactor: setViewInteractor(ilog.cpl.interactor.
IlpViewInteractor), getViewInteractor()

♦ changing the root nodes of the tree through the data source adapter: getAdapter()

♦ filtering the tree nodes: setFilter(ilog.cpl.util.IlpFilter), getFilter()

♦ sorting the tree nodes: setSortComparator(java.util.Comparator), getSortComparator
()

IlpTree also acts as a façade for a number of lower-level components that it contains. These
components provide more detailed APIs and advanced services. They are described in
Architecture of the tree component of this section.

G R A P H I C C O M P O N E N T S 225

Creating a tree component: a sample

This topic shows you how to create the following basic tree featuring a computer network.
It contains extracts of sample code located in <installdir> /samples/tree/basic and
<installdir> /samples/tree/customClasses.

A Basic Network Tree

The following sample source and resource files are located in <installdir>
/samples/tree/customClasses:

♦ Main.java: source file for the sample

♦ deploy.xml: deployment descriptor

♦ treenodes.xml: data source input

♦ tree.css: style sheet defining how the tree and objects are graphically represented

How to create a basic network tree
The following list explains how to create a tree component, how to connect it to a data
source, how to fill the data source from an XML file that describes the business objects, and
how to configure the graphic representation of the tree and the objects.

1. Initialize the JViews TGO library.

Prior to using any JViews TGO API, you must call IltSystem.init.

IltSystem.init("deploy.xml");

deploy.xml is a deployment descriptor file that defines the path to the application
resources to be used:

<deployment>
<urlAccess>
<!-- Add relative path to sample root directory -->
<relativePath>../..</relativePath>

</urlAccess>
</deployment>

2. Create a tree component.

G R A P H I C C O M P O N E N T S226

IlpTree treeComponent = new IlpTree();

3. Add the tree component to a container.

JFrame frame = //...
Container contentPane = frame.getContentPane();
contentPane.add(treeComponent);

To display the tree component, you must add it to a container. In this code, the tree
component is inserted in a JFrame container.

4. Create a data source and fill it from an XML file.

IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.parse("treenodes.xml");

treenodes.xml contains the description of the business model classes and instructions
to create business object instances in the data source.

The tree component uses the <parent> XML tag to build its hierarchy. For example, the
XML fragment:

<addObject id="Server 1">
<class>Server</class>
<parent>Domain 1</parent>

indicates that the object “Server 1” will be created as a subnode of “Domain 1.”

Refer to Adding business objects from JavaBeans in the Business Objects and Data
Sources documentation for more information on the XML format recognized by the
JViews TGO data source.

5. Connect the tree component to the data source.

treeComponent.setDataSource(dataSource);

6. Configure the graphic representation of the tree component .

You can specify how the tree and the objects should be represented by using cascading
style sheets (CSS), as follows:

String[] css = new String[] { "tree.css" };
try {
treeComponent.setStyleSheets(css);

} catch (Exception e) {
}

G R A P H I C C O M P O N E N T S 227

G R A P H I C C O M P O N E N T S228

Configuring the tree component

Identifies the rendering information necessary to customize a tree view.

In this section

Introduction
Introduces the different ways to configure tree component display.

Configuring the tree component through a CSS file
Describes display customization using CSS.

Configuring the tree component through the API
Describes how to configure the tree view, tree view interactor, and tree adapter of a tree
component with the API.

Loading a project file
Describes how to load a project file that combines rendering style sheets and a data source.

Customizing the rendering of tree nodes
Provides a link to further information on rendering tree nodes.

G R A P H I C C O M P O N E N T S 229

Introduction

The tree component can be customized either through a CSS configuration file or through
the API, the easiest and preferred way being the CSS configuration. You also have the
possibility to load a project file which combines the CSS configuration and the tree data.

You can customize the tree view with properties such as background, cell renderer and
selection look and feel. You can also customize the tree adapter and the way the business
objects are represented.

G R A P H I C C O M P O N E N T S230

Configuring the tree component through a CSS file

You can customize the following features in a CSS file:

Tree view
♦ Selection look and feel

♦ Background

♦ Tree cell renderer

♦ Row height

♦ Scrolling on expand

Tree adapter
♦ Filter

♦ Comparator

♦ Origins

♦ Accepted classes

♦ Excluded classes

♦ Expansion strategy factory

♦ Tree node factory

Tree nodes
♦ Properties listed under Customizing tree nodes in the Styling documentation.

Tree controller
♦ View interactor

♦ Object interactor

You can customize the following features in a CSS file:

How to load a CSS file in a tree component
The tree configuration can be split accross several CSS files that you can load by:

♦ Specifying a project file that lists the style sheets and the data file to be loaded in the
component (see Loading a project file). The project file will be as follows:

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd"
style="configurationFile1.css,configurationFile2.css">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

G R A P H I C C O M P O N E N T S 231

fileName="tree.xml"/>
</tgo>

If the settings in two of the CSS files disagree, the effect depends on the order of the
filenames in the list: the last file mentioned takes precedence over the first file.

♦ Using the method IlpTree.setStyleSheets as follows:

treeComponent = new IlpTree();
try {
treeComponent.setStyleSheets(new String[] {

myConfigurationFile1,myConfigurationFile2 });
} catch (Exception e) {
}

If the settings in the CSS files disagree, the effect depends on the order of the filenames
in the list: the last file listed takes precedence over the first one.

How to configure a tree component in a CSS file
The following code represents an example of configuring a tree using CSS. It is based on
the CSS file located in <installdir> /samples/tree/styling/srchtml/tree.css.html where
<installdir> is the directory where you have installed JViews TGO.

The configuration in CSS is organized as a set of rules that define properties.

// ~~
// Tree Component configuration
// Type: Tree
// The following list shows all possible properties for
// the tree component.
// - view : enables the tree view configuration
// - interactor: enables the interactor configuration
// - adapter: enables the adapter configuration
// ~~
Tree {
view: true;
adapter: true;

}
View {
background: #FFFFDF;
selectionLookAndFeel: Highlight;

}

The Tree rule
This rule specifies the elements of the tree component that will be customized. It contains
Boolean flags that indicate whether some specific customizable properties are present. For
example, the customization of the property adapter is not taken into account unless adapter:
true is declared in the Tree rule.

G R A P H I C C O M P O N E N T S232

This feature provides powerful cascading possibilities. You can define adapter customizations
in a default CSS file and turn them on or off in another CSS file.

The following CSS properties affect the tree component:

CSS properties of the tree component
UsageDefaultType of ValueCSS Property

Enables the customization of the tree view.falsebooleanview

Enables the customization of the tree interactors.falsebooleaninteractor

Enables the customization of the tree adapter.falsebooleanadapter

The View rule
This rule specifies the properties that are applied to the tree view.

The following CSS properties affect the appearance of the tree view:

CSS properties of the tree view
UsageDefaultType of ValueCSS Property

Color to be used in the
background of the tree

nullColorbackground

view. If the value is
null, the color of the
active look-and-feel is
used.

Renders the tree
nodes.

IlpTreeCellRendererTreeCellRenderercellRenderer

When a node is
expanded, this property

truebooleanscrollsOnExpand

determines whether or
not the node scrolls up,
so that the maximum
number of descendants
are visible. The default
is true.

Sets the way the
selection is rendered

HIGHLIGHTintselectionLookAndFeel

to/manipulated by the
end-user. Two possible
values:HIGHLIGHT or
CHECKBOX

Number of mouse
clicks before a node

2inttoggleClickCount

G R A P H I C C O M P O N E N T S 233

UsageDefaultType of ValueCSS Property

expands or collapses.
The default is 2.

Defines whether the
root nodes in the tree
are visible or not.

falsebooleanrootVisible

Defines whether the
handles that enable

truebooleanshowsRootHandles

nodes to be expanded
by the user are visible
or not.

Defines the row height.
If the value is -1, the

-1introwHeight

row height depends on
the tree node
rendering. If the value
is greater than 0, the
tree node height
corresponds to the
value defined by the
user.

Defines whether the
parent path of the

truebooleanexpandsSelectedPaths

selected node is
expanded or not. If
true, all the parents of
the selected node are
expanded, although
they may not all be
visible in the JTree. If
false, the parent
nodes are not
expanded and thus not
made visible in the
JTree.

Refer to the class IlpViewRenderer in the IBM® ILOG® JViews TGO Java™ API Reference
Documentation for more information on configuring the view in a tree component.

The Interactor rule
This rule controls the configuration of the tree view interactor. The tree view interactor is
responsible for handling events that occur in the tree view. You can define an interactor for
the tree view or specific interactors for the tree nodes.

G R A P H I C C O M P O N E N T S234

CSS Properties of the Tree View Interactor
Property TypeProperty Name

ilog.cpl.interactor.IlpViewInteractorviewInteractor

How to configure a tree view interactor in a CSS file
Prior to configuring the view interactor, you need to configure the tree component so that
the interactor configuration is enabled:

Tree {
interactor: true;

}

After that, you can customize the view interactor in the Interactor rule as illustrated by the
following code extract. Refer to The CSS specification in the Styling documentation for
details about the CSS syntax.

Interactor {
viewInteractor: @+viewInt;

}
Subobject#viewInt {
class: 'ilog.cpl.interactor.IlpDefaultViewInteractor;'
popupMenuFactory: @+viewPopupMenuFactory;
action[0]: @+viewAction0;

}
Subobject#viewPopupMenuFactory {
class: 'AlarmPopupMenuFactory';

}
Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON2_CLICKED;
action: @=showDetailsAction;

}

The behavior of the view interactor is determined by the actions that are associated with
user gestures and keystrokes. This behavior can also be customized through CSS. You can
also configure a pop-up menu to be displayed in the tree view. Please refer to Interacting
with the tree view and Interacting with the tree nodes for more information about interactor
customization.

When the interactor renderer is enabled, you can also customize interactors for specific
tree nodes using CSS selectors to set the value of property interactor. For more information,
refer to IlpInteractorRenderer.

The Adapter rule
This rule controls the configuration of the tree adapter. The tree adapter is responsible for
converting the business objects in the data source to representation objects (tree nodes) in
the tree component. It provides the following features:

G R A P H I C C O M P O N E N T S 235

♦ Filtering: applies a filter so that business objects currently in the data source are not
mapped to representation objects in the tree component.

♦ Comparator: specifies that the position of the objects in the tree will follow a comparison
rule. In this way, it is possible, for example, to display tree nodes in alphabetical order.

♦ Expansion strategy: defines how the objects will be loaded in the tree component, that
is, either at initialization time or on demand, as the user interacts with the tree nodes.

♦ Origins: defines which objects become root nodes in the tree.

♦ Accepted classes: defines the list of business classes that are accepted by the tree
adapter. Only the business objects that match one of these business classes will be mapped
to representation objects by the tree adapter.

♦ Excluded classes: defines the list of business classes that are excluded by the tree
adapter. The business objects of these business classes will not be mapped to
representation objects by the tree adapter.

♦ Object Attribute Changed Events Filtering: applies a filter so that attribute value
changes occuring in the business objects currently in the data source are not notified to
the tree component. This allows you to fine tune the notifications that are sent to the tree
regarding attribute value changes in the business objects present in the data source. If
an attribute value change event is not important to your application needs or to the tree
cell rendering, it can be discarded, improving the performance of your tree component.

These tree adapter features can be customized through CSS using the following properties:

CSS properties of the tree adapter
Property TypeProperty Name

ilog.cpl.util.IlpFilterfilter

list of object identifiersorigins

java.util.Comparatorcomparator

ilog.cpl.tree.IlpTreeNodeFactorynodeFactory

ilog.cpl.util.IlpExpansionStrategyexpansionStrategyFactory

Factory

list of IlpClassacceptedClasses

list of IlpClassexcludedClasses

ilog.cpl.util.IlpFilterobjectAttributeChangedFilter

How to configure a tree adapter in a CSS file
Prior to configuring the adapter, you need to configure the tree component so that the
adapter configuration is enabled:

Tree {

G R A P H I C C O M P O N E N T S236

adapter: true;
}

After that, you can customize each adapter property in the Adapter rule as illustrated by
the following code extract. Refer to The CSS specification in the Styling documentation for
details about the CSS syntax.

Adapter {
filter: @+treeFilter;
comparator: @+treeComparator;
expansionStrategyFactory: @+treeExpStrategyFactory;
nodeFactory: @+treeNodeFactory;
objectAttributeChangedfilter: @+eventFilter;
origins[0]: ROOT1;
origins[1]: ROOT2;

}

Subobject#treeFilter {
class: MyTreeFilter;

}
Subobject#treeComparator {
class: MyTreeComparator;

}
Subobject#treeExpStrategyFactory {
class: MyTreeExpansionStrategyFactory;

}
Subobject#treeNodeFactory {
class: MyTreeNodeFactory;
adapter: @adapter;

}
Subobject#eventFilter {
class: MyTreeEventFilter;

}

How to programmatically configure a tree adapter using CSS
You can programmatically modify the CSS configuration of the default tree adapter (
IlpContainmentTreeAdapter) by using mutable style sheets through the
IlpMutableStyleSheet API.

The mutable style sheet is set to the adapter as a regular style sheet and is
cascaded in the order in which it has been declared.

Important:

To use mutable style sheets:

1. Get the mutable style sheet.

You access the mutable style sheet through the getMutableStyleSheet() method in
the tree adapter API:

G R A P H I C C O M P O N E N T S 237

IlpMutableStyleSheet mutable = adapter.getMutableStyleSheet();

This method automatically registers the mutable style sheet into the adapter. You can
manually instantiate an object of the class IlpMutableStyleSheet and register it yourself
through the setStyleSheet() API:

IlpMutableStyleSheet mutable = new IlpMutableStyleSheet(adapter);
try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

2. Set the CSS declarations.

Once you have the mutable style sheet, you can set the declarations you want:

mutable.setDeclaration("#myObjectId", "expansion", "NO_EXPANSION");

This creates the following CSS declaration into the mutable style sheet:

#myObjectId {
expansion: NO_EXPANSION;

}

3. Register the mutable style sheet.

The mutable style sheet should be set to the adapter as a regular style sheet using the
setStyleSheet() method:

try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

4. Set and update the CSS declarations.

The mutable style sheet can be modified even after being registered to the adapter:

// Update the expansion type for 'myObjectId'
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
// Add a new declaration
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");

G R A P H I C C O M P O N E N T S238

Like any style sheet, the mutable style sheet is lost when the setStyleSheet
() API is invoked and a new set of style sheets is applied to the adapter.

Note:

How to customize the mutable style sheet
Reapplying a CSS configuration may be a heavy task, as the adapter may be forced to review
filters, origins, recreate representation objects, and so on. It is important to use the mutable
style sheet with care and to customize it properly to reapply the CSS wisely. To do so, there
are two methods available in the IlpMutableStyleSheet API: setUpdateMask() and
setAdjusting().

1. setUpdateMask()

This method controls what should be recustomized once a declaration of the mutable
style sheet has been updated. The CSS configuration of the adapter is divided into two
parts: adapter customization and representation object customization.

The adapter customization handles the origins, filters, and so on:

Adapter {
origins[0]: id0;
origins[1]: id1;
showOrigin: true;
filter: @+myFilter;

}

The representation object customization handles the expansion type of a representation
object:

#myObjectId {
expansion: IN_PLACE;

}

The accepted values for setUpdateMask() are:

♦ IlpStylable.UPDATE_COMPONENT_MASK: Only the adapter part is recustomized.

♦ IlpStylable.UPDATE_OBJECTS_MASK: Only the representation object part is
recustomized.

♦ IlpStylable.UPDATE_ALL_MASK: Bot the adapter and representation object parts are
recustomized.

♦ IlpStylable.UPDATE_NONE_MASK: Nothing is recustomized.

For example, if you update the expansion type of a representation object through the
mutable style sheet, it is recommended that you set the update mask to
UPDATE_OBJECTS_MASK as there is no need to reapply the CSS configuration for the
adapter part:

G R A P H I C C O M P O N E N T S 239

mutable.setUpdateMask(IlpStylable.UPDATE_OBJECTS_MASK);
mutable.setDeclaration("object", "expansion", "IN_PLACE");

2. setAdjusting()

This method is used when a series of declarations must be applied to the mutable style
sheet. When the method is set to true, the mutable style sheet puts all the calls to
setDeclaration() into a queue. When the method is set back to false, all the queued
declarations are processed in a batch:

mutable.setAdjusting(true);
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");
mutable.setAdjusting(false);

G R A P H I C C O M P O N E N T S240

Configuring the tree component through the API

For details of the classes involved in the architecture of the tree component, see Architecture
of the tree component.

For details about programming the individual services of a tree component, see Tree
component services .

How to configure the tree view with the API
The following code sample shows how to configure the tree view (IlpTreeView) through
the API.

IlpTreeView view = tree.getView();

// Setting the selection mode
view.setSelectionLookAndFeel(IlpTreeView.HIGHLIGHT_SELECTION_LOOK_AND_FEEL);

// Setting the tree cell renderer
view.setCellRenderer(new MyTreeCellRenderer());

// Setting the background color
view.setBackground(Color.white);

How to configure the tree view interactor with the API
The following code sample shows how to configure the tree view interactor through the API.
For details of this interactor, see Interacting with the tree view.

IlpTree tree = // ...
// Retrieve the view interactor
IlpViewInteractor viewInteractor = tree.getViewInteractor();
// Create an action
Action myAction = new MyAction();
// Clicking the 3rd mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED,myAction);

How to configure the tree adapter with the API
The following code sample shows how to configure the tree adapter (
IlpAbstractTreeAdapter) through the API.

IlpAbstractTreeAdapter adapter = tree.getAdapter();

// Setting the filter
IlpFilter myFilter = new MyFilter();
// (it is the same as tree.setFilter(myFilter)

G R A P H I C C O M P O N E N T S 241

adapter.setFilter(myFilter);

// Origin
List myOrigins = new ArrayList();
myOrigins.add(objectID_1);
myOrigins.add(objectID_2);
.
.
.
myOrigins.add(objectID_n);
// in this case we want to display the
// origins
boolean showOrigin = true;
adapter.setOrigins(myOrigins, showOrigin);

// Expansion Strategy Factory
// Usually the expansion strategy factory relies
// on the adapter to access the data source and to
// load/release objects
IlpExpansionStrategyFactory myExpFactory = new

MyExpansionStrategyFactory(adapter);
adapter.setExpansionStrategyFactory(myExpFactory);

// Tree Node Factory
IlpTreeNodeFactory myNodeFactory = new MyTreeNodeFactory();
adapter.setNodeFactory(myNodeFactory);

// Setting the object attribute value changed event filter IlpFilter
myEventFilter = new MyEventFilter();
adapter.setObjectAttributeChangedFilter(myEventFilter);

G R A P H I C C O M P O N E N T S242

Loading a project file

A project is a combination of style sheets that supply rendering information and a data
source that supplies the data to be represented in a tree component. A project is saved as
an XML file with extension .itpr.

Loading a project file is the recommended way to configure a graphic component in Java™
as it is the fastest.

How to load a project file into a tree component
The following code sample shows how to load a project file into a tree component, using the
method setProject.

IlpTree tree = new IlpTree();
tree.setProject(new URL("file:project.itpr");

The project is represented by the IlpTGOProject class, included in the package ilog.cpl.
project. When a new project is created, the style sheet and data source are both null.

How to create a new project for the tree component
The following code sample shows how to create a new project file by setting the style sheets
and data source, then saving the project.

IlpTGOProject project = new IlpTGOProject();
project.setStyleSheet(new URL("file:example.css");
IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.setFileName("data.xml");
project.setDataSource(dataSource);
project.write(new URL("file:example.itpr");

G R A P H I C C O M P O N E N T S 243

Customizing the rendering of tree nodes

The JViews TGO tree component renders instances of both user-defined and predefined
business classes using a default tree cell renderer (IlpTreeCellRenderer) that you can
customize through style sheets. The default tree cell renderer uses CSS properties to define
how each tree node will be represented.

For details on how to customize the rendering of tree nodes, see Customizing tree nodes.

G R A P H I C C O M P O N E N T S244

Tree component services

Describes the services that are available for a tree: view services and adapter services.

In this section

Introduction
List the different services available for a tree.

Filling the tree with business objects
Details how to fill a tree with business objects using the API or a project file.

Interacting with the tree view
Describes how to use the default view interactor to associate actions with different events
and build a pop-up menu to display in the view.

Interacting with the tree nodes
Describes how to use object interactors to associate behavior with business objects.

Handling the selection
Describes how to use the selection model to set, modify, and retrieve objects.

Filtering the tree nodes
Describes how to filter the nodes displayed by the tree component.

Accepted and excluded classes
Details how to specify the business classes to be accepted for or excluded from display in
the tree component.

Sorting the tree nodes
Describes how to specify a sort order for tree nodes.

G R A P H I C C O M P O N E N T S 245

Controlling the display of objects as tree leaves
Describes how to control whether an object is treated as a tree leaf.

Setting a list of origins
Describes how to set a list of orgins to explicitly select the root nodes to be displayed by the
tree component.

G R A P H I C C O M P O N E N T S246

Introduction

This section describes the services that are available for a tree. They are of two kinds:

♦ View services, related to the tree view

● Filling the tree with business objects

● Interacting with the tree view

● Interacting with the tree nodes

● Handling the selection

♦ Adapter services, related to the tree model

● Filtering the tree nodes

● Accepted and excluded classes

● Sorting the tree nodes

● Controlling the display of objects as tree leaves

● Setting a list of origins

G R A P H I C C O M P O N E N T S 247

Filling the tree with business objects

The tree can be filled with business objects through an IltDefaultDataSource, as illustrated
by the following code.

How to fill a tree with business objects

// Create a tree component and connect it to a data source
IlpTree treeComponent = new IlpTree();
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// The second parameter specifies which kind of object contained
// in the data source the tree will show
treeComponent.setDataSource(dataSource, IltNetworkElement.GetIlpClass());

// Create a business object and insert it in the data source
IltObjectState os = new IltBellcoreObjectState();
os.set(IltBellcore.State.EnabledActive);
IltNetworkElement london =
new IltNetworkElement("Fax", IltNetworkElement.Type.Fax, os);

dataSource.addObject(london);

Note that a data source can also load an XML file containing business objects, as shown in
Creating a tree component: a sample.

You can also use project files to easily create and load data source business objects into
your tree component, as illustrated below:

How to fill a tree with business objects using a project file
You can create the following project file to indicate the type of data source to be used and
the XML file that contains the data source information:

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

fileName="network.xml"/>
</tgo>

Once the project file is specified, you can load it in the component using method IlpTree.
setProject(URL projectURL) or IlpTree.setProject(IlpProject project). See Loading
a project file for details.

G R A P H I C C O M P O N E N T S248

Interacting with the tree view

The IlpTree allows you to associate behavior with the tree view as a whole, and with the
business objects it contains.

In particular, using the default view interactor, you can:

♦ associate actions with mouse events and focus events,

♦ associate actions with keyboard events,

♦ define a pop-up menu factory to build a pop-up menu that displays in the view.

The IlpTree is associated with an IlpDefaultViewInteractor, which should satisfy most
needs. You can retrieve this interactor by calling the method getViewInteractor().

How to associate an action with a mouse event in the tree view
You can associate actions with mouse events by using either CSS or the API. The following
CSS extract shows how to proceed:

Tree {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.interactor.IlpDefaultViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON3_CLICKED;
action: @+myAction;

}
Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

IlpTree tree = // ...
// Retrieve the view interactor
IlpViewInteractor viewInteractor = tree.getViewInteractor();
// Create an action
Action myAction = new MyAction();

G R A P H I C C O M P O N E N T S 249

// Clicking the 3rd mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED,myAction);

You can find out whether this event occurred on an IlpObject by means of the following
code (which should be in the MyAction class).

How to check whether a given action occurred

// Implementation of the ActionListener interface
public void actionPerformed(ActionEvent e) {
// ILOG JTGO interactors use IlpViewActionEvent
IlpViewActionEvent viewEvent = (IlpViewActionEvent)e;
// Get the IlpObject (if any) where the interaction occurred
IlpObject ilpObj = viewEvent.getIlpObject();
// Perform operation on the given object

}

How to associate an action with a keyboard event in the tree view
You can associate actions with keyboard events by using either CSS or the API. The following
CSS extract shows how to proceed:

Tree {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.interactor.IlpDefaultViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpKeyStrokeAction';
keyStroke: 'typed D';
action: @+myAction;

}

Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

// Create an action
Action myAction = new MyAction();

G R A P H I C C O M P O N E N T S250

// Typing CTRL+D will trigger myAction
viewInteractor.setKeyStrokeAction(
KeyStroke.getKeyStroke('D',java.awt.Event.CTRL_MASK),myAction);

How to define a pop-up menu factory for the tree view
You can customize a pop-up menu factory for the tree view either through CSS or through
the API. The following CSS extract shows how to configure a CSS file to add a pop-up menu
factory:

Tree {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.interactor.IlpDefaultViewInteractor';
popupMenuFactory: @+viewPopupMenuFactory;

}
Subobject#viewPopupMenuFactory {
class: MyPopupMenuFactory;

}

The same configuration can be achieved through the API, as follows:

// Subclass IlpAbstractPopupMenuFactory, which has useful shortcuts
IlpPopupMenuFactory popupMenuFactory = new IlpAbstractPopupMenuFactory(){
// Add the identifier of each of the selected objects to the menu
public JPopupMenu createPopupMenu (IlpObjectSelectionModel ilpSelectionModel)
{
// Create an empty popup menu
JPopupMenu menu = new JPopupMenu();
// Access the selected objects from the selection model
Collection selectedObjects = ilpSelectionModel.getSelectedObjects();
// fill the menu according to the current selection
return menu;
}

};

The following code shows you how to associate the defined pop-up menu factory with the
tree component.

G R A P H I C C O M P O N E N T S 251

How to associate a pop-up menu factory with the tree component

// Set the popup menu factory to the view interactor
viewInteractor.setPopupMenuFactory(popupMenuFactory);

The selection is updated prior to invoking the pop-up menu factory. Specifically,
right-clicking a selected object keeps the entire current selection, while clicking a

Note:

nonselected object cancels the current selection and selects the object clicked. Clicking
outside any object clears the selection.

Please refer to Interacting with the graphic components for a detailed description of
interactors and gestures.

G R A P H I C C O M P O N E N T S252

Interacting with the tree nodes

The section Interacting with the tree view describes how to set an interactor for the entire
tree view. You can also associate behavior with business objects (for a class or for individual
objects), as well as with individual IlpTreeNode instances. To do so, you use object
interactors, which provide the same options as the view interactor, that is:

♦ associating actions with mouse events,

♦ associating actions with keyboard events,

♦ defining a pop-up menu factory to build a pop-up menu that displays on representation
objects.

The object interactor handles any events occurring on the object with which the interactor
is associated, provided the view interactor has enabled the use of object interactors. You
can check this by means of the isUsingObjectInteractor method or modify it with the
setUsingObjectInteractor method. Object interactors are enabled by default.

No default interactor is associated with any object. To associate actions with mouse or
keyboard events or to define a pop-up menu factory, you first have to create an
IlpObjectInteractor. You may use the IlpDefaultObjectInteractor, extend it, or create
your own implementation.

How to associate an object interactor with a representation object
in the tree
You can associate an object interactor with a representation object by using either CSS or
the API. The following CSS extract shows how to proceed:

Tree {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement" {
interactor: @+objInteractor;

}
Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpTree tree = // ...
IlpTreeController treeController = tree.getController();
// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
// Associate the object interactor with a given representation object
IlpTreeNode treeNode = // ...
treeController.setObjectInteractor(treeNode, objectInteractor);
// Configuring the specific object interactor is similar to configuring

G R A P H I C C O M P O N E N T S 253

// a view interactor.
objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED,
new MyAction());

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. A pop-up menu factory can also be defined in the same way as for the
view interactor. Please refer to Interacting with the tree view.

Please refer to Interacting with the graphic components for a detailed description of
interactors and gestures.

G R A P H I C C O M P O N E N T S254

Handling the selection

The selection model requirements for an IlpTree are defined by the interface
IlpTreeSelectionModel. This model extends the Swing TreeSelectionModel to provide
convenience operations when working with business objects (IlpObject).

The selection model is responsible for setting, modifying, and retrieving the objects selected
in the IlpTree.

The IlpTreeSelectionModel interface provides the following basic methods:

♦ modifying or retrieving the selected IlpObject instances,

♦ setting or retrieving the selection mode,

♦ registering or unregistering selection listeners.

This interface also has a number of advanced features described in Architecture of the tree
component of this section.

IlpDefaultTreeSelectionModel is the default implementation of IlpTreeSelectionModel.

The following code shows you how to access the IlpTreeSelectionModel of an IlpTree.

How to access the selection model of a tree component

IlpTree tree = ...
//...
// Retrieve the selection model
IlpTreeSelectionModel selectionModel = tree.getSelectionModel();

How to retrieve selected objects from the selection model
The following code sample shows you how to retrieve the selected IlpObject instances from
the selection model.

Collection selection = selectionModel.getSelectedObjects();
Iterator it = selection.iterator();
while (it.hasNext()) {

IlpObject node = (IlpObject)it.next();
// Do what you want with the selected node
// ...

}

The sample <installdir> /samples/tree/basic demonstrates the use of the selection model.

Setting the selection look and feel
The IlpTree allows you to choose between the look-and-feel for the selection:

G R A P H I C C O M P O N E N T S 255

♦ HIGHLIGHT_SELECTION_LOOK_AND_FEEL: the standard mode, where a selected cell appears
highlighted.

♦ CHECKBOX_SELECTION_LOOK_AND_FEEL: in this mode, a check box is displayed next to each
tree node. A check mark indicates that the corresponding node is selected. Clicking a
check box or a cell switches the selection state of the corresponding node. In this mode,
the highlighting only indicates which cell has the focus.

In this mode, collapsing a node does not deselect its descendants.Note:

Sample tree using the check box selection look and feel

The following code shows you how to activate the CHECKBOX_SELECTION_LOOK_AND_FEEL.

How to activate a selection look and feel

IlpTree tree = ...
// Activate the CHECKBOX_SELECTION_LOOK_AND_FEEL
tree.setSelectionLookAndFeel
(IlpTreeView.CHECKBOX_SELECTION_LOOK_AND_FEEL);

G R A P H I C C O M P O N E N T S256

Filtering the tree nodes

The tree component allows you to filter the nodes that are displayed. To do so, attach an
instance of IlpFilter to the tree component by using the method setFilter. The accept
() method of the filter object will be invoked whenever the tree is prompted to display an
IlpObject. If the method returns false, the object will not be shown in the tree. In the
same way, an object will not be shown if its parent is not displayed.

For example, write the following code to show only objects of the class IltNetworkElement.

How to filter objects to be shown in the tree component

IlpTree tree = // ...
// Create a new IlpFilter instance
IlpFilter filter = new IlpFilter(){
// This method is called for every object in the data source
public boolean accept (Object object){
IlpObject ilpObject = (IlpObject)object;
IlpClass clz = ilpObject.getIlpClass();
// Check if the class == IltNetworkElement
return clz.equals(IltNetworkElement.GetIlpClass());

}
// Set the filter to the tree
tree.setFilter(filter);

All the objects are refiltered whenever a new filter is set. If the filter is null (which is the
default), all the objects under the root nodes will be displayed.

To retrieve the active filter, use the method getFilter().

The filtering takes actually place at the adapter level.Note:

G R A P H I C C O M P O N E N T S 257

Accepted and excluded classes

You can specify the business objects that will be represented or not in the tree component
depending on their business classes. To do so, you need to specify the business classes to
be accepted or excluded using methods setAcceptedClasses or setExcludedClasses in
the tree component adapter. To retrieve the adapter, use the getAdapter method. The
adapter must be an instance of a subclass of IlpAbstractTreeAdapter.

How to specify excluded classes in the tree component
You can specify that business objects from specific business classes are not represented in
the tree component. You can do that using the API, setExcludedClasses(java.util.List)
method, or using CSS.

The following example shows you how to prevent objects from business classes IltAlarm
and IltLed to be represented:

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[1]: "ilog.tgo.model.IltLed";

}

How to specify an accepted class in the tree component
By default, all business classes are accepted by the tree component. If you want to specify
exactly which business classes to represent, you should combine the list of excluded and
accepted classes, so that you exclude all business classes except those that are marked in
the accepted class list.

In the following example, the tree component is configured in a way that it graphically
represents only business objects from the class IltNetworkElement.

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[1]: "ilog.tgo.model.IltObject";
acceptedClasses[0]: "ilog.tgo.model.IltNetworkElement";

}

The filtering that is performed through the use of the accepted and excluded class lists
takes actually place at the adapter level.

Note:

Please refer to The Adapter rule to know how to configure excluded and accepted classes
through CSS.

G R A P H I C C O M P O N E N T S258

Sorting the tree nodes

The tree component allows you to sort the displayed nodes. By default, the tree adapter
sorts nodes using an arbitrary order (see ARBITRARY_COMPARATOR) in which the same set of
objects is always displayed in the same order.

You can specify your own order by providing an object that implements the Comparator
interface before the nodes are created. The compare()method of the comparator object will
be called for pairs of IlpObject instances in the data source to establish a sort order. Objects
are ordered locally, that is, within their parent node.

To retrieve the current sort order, use the method getSortComparator.

All the objects are sorted again when a new comparator is set.

For convenient sorting based on the attribute values of the business objects, JViews TGO
provides the predefined IlpAttributeComparator class as an implementation of the
Comparator interface. This class sorts objects based on the values of one or more of their
attributes.

How to sort tree nodes
The following code sample shows you how to use IlpAttributeComparator to implement
the sorting of tree nodes. This sample is available in <installdir>
/samples/framework/datasource-explorer where <installdir> is the directory where
you have installed JViews TGO.

// Create a comparator to sort all the nodes in the tree
// Use the predefined class IlpAttributeComparator to sort
// The first sort parameter is directory, so directories appear before files
// then the 'name' attribute
// then the 'path' attribute, as name is sometimes null (for roots)
IlpAttributeComparator sorter =

new IlpAttributeComparator(dataSource.fileClass.getAttribute("directory")
,

false);

sorter.setDirectionAndOrder(dataSource.fileClass.getAttribute("name"),2,true)
;

sorter.setDirectionAndOrder(dataSource.fileClass.getAttribute("path"),3,true)
;

// Set the sorter to the tree BEFORE setting the data source
treeComponent.getAdapter().setComparator(sorter);

G R A P H I C C O M P O N E N T S 259

Controlling the display of objects as tree leaves

By default, the tree adapter considers an object to be a tree leaf when the method
getContainerInterface(java.lang.Object) returns null for that object.

You can have a finer control over whether an object should be considered as a tree leaf or
not by means of the property expansion. By default, this property is set to the value
ExpansionType.IN_PLACE, which produces the default behavior described earlier. To have
an object considered as a leaf, even if the method getContainerInterface(java.lang.
Object) does not return null, you must set this property to ExpansionType.NO_EXPANSION.
For information on how to set a property value, see Introducing cascading style sheets.

If an object is a leaf, that is, if its method getContainerInterface(java.lang.
Object) returns null, there is no way to represent it as a tree branch.

Note:

G R A P H I C C O M P O N E N T S260

Setting a list of origins

The tree component takes by default as root nodes all the objects in the data source that do
not have a parent. However, you can explicitly select the root nodes to be displayed through
the adapter that forms a bridge between the data source and the tree component. To retrieve
the adapter, use the getAdapter()method. The adapter for the tree component must be an
instance of a subclass of IlpAbstractTreeAdapter.

The root nodes can be changed by modifying the list of origins for the adapter. These origins
are set and retrieved as IlpObject identifiers.

The method getOrigins allows you to get the list of current origins. The method
isShowingOrigin indicates whether the origins themselves or their child objects are
represented as root nodes. By default, the list of origins is empty and the origins are not
shown, which means that all objects without a parent are shown as root nodes. Thus, the
entire contents of the data source are displayed in the tree.

The origins are specified using identifiers, not the IlpObject instances.You can
retrieve the identifier of an IlpObject with the getIdentifier() method of the
object.

Note:

To change the list of origins, use the setOriginsmethod. This method takes a list of business
object identifiers as its first parameter. Its second parameter is a Boolean flag that indicates
whether or not the origins themselves should be shown as root nodes.

Calling this method with an empty list and the second parameter set to true empties the
tree:

setOrigins(Collections.EMPTY_LIST, true);

Calling the method with an empty list and the second parameter set to false restores the
default; that is, all the objects in the data source are shown:

setOrigins(Collections.EMPTY_LIST, false);

How to show an object as the root node of a tree
To show only a given IlpObject as the root node of a tree, use the following code:

IlpTree tree =;
IlpObject originObject =;
java.util.List originList = new ArrayList();
originList.add(originObject.getIdentifier());
tree.getAdapter().setOrigins(originList, true);

For additional methods to help you manage origins, see IlpAbstractHierarchyAdapter.

G R A P H I C C O M P O N E N T S 261

G R A P H I C C O M P O N E N T S262

Architecture of the tree component

Describes the classes and features of the tree component specific to each of the three
modules of the MVC architecture, and also explains the role of the adapter.

In this section

Class overview
Gives an overivew of the MVC architecture of the tree component.

The model
Describes how to connect the tree model to a back-end application.

The view
Describes how to customize the representation of tree nodes.

The controller
Describes how to attach a controller to a tree view.

The adapter
Describes the classes of the tree adapter.

G R A P H I C C O M P O N E N T S 263

Class overview

The tree component is internally based on the MVC architecture like the other JViews TGO
components, which means that it has a model, a view, and a controller associated with it.
For a general introduction to the MVC architecture, see Architecture of graphic components.

This topic describes the classes that you can use to create and manage trees. For a more
detailed description, refer to the overview-summary. The classes are organized as follows:

♦ MVC (model, view, controller) architecture

♦ Representation model and representation objects

♦ Graphic view and renderer

♦ Controller and interactors

MVC (model, view, controller) architecture
The MVC architecture for the tree component is implemented by the following classes (see
Model, view, and controller for the tree component):

♦ IlpTreeView is the view module of the tree in the MVC architecture. It defines a
Swing-based tree used to display instances of IlpTreeNode. It uses an IlpTreeModel as
entry model.

♦ IlpTreeModel is the model module of the tree in the MVC architecture. It is the
representation model, and contains instances of IlpTreeNode.

♦ IlpTreeController is the controller module of the tree in the MVC architecture. It allows
you to customize the behavior of the IlpTreeView.

♦ IlpTree component encapsulates an IlpTreeModel, an IlpTreeView and an
IlpTreeController.

G R A P H I C C O M P O N E N T S264

Model, view, and controller for the tree component

For general information about the model, the view, and the controller, see Architecture of
graphic components.

Representation model and representation objects
The representation model for the tree component is implemented by the following classes
(see Representation model and representation objects for the tree component):

♦ The IlpTreeModel class is the model module in the MVC architecture of the tree. It is
the representation model and contains instances of IlpTreeNode.

♦ The IlpTreeNode interface defines the representation objects for tree nodes. The
IlpDefaultTreeNode class is the default implementation of IlpTreeNode.

G R A P H I C C O M P O N E N T S 265

Representation model and representation objects for the tree component

For general information about the representation model and representation objects, see
Architecture of graphic components.

Graphic view and renderer
The graphic view and the renderer are implemented by the following classes (see Graphic
view and renderer for the tree component)

♦ The IlpTreeCellRenderer is used to render tree nodes. It is based on the CSS
configuration, which means that it uses the properties defined in the style sheet for the
nodes. The default rendering is performed by a JLabel. If the "class" property is specified
in the CSS file, it defines the IlvGraphic or JComponent that will be used to render the
tree node. See Using your own graphic representation for details.

♦ The IlpTreeSelectionModel interface defines the requirements for a selection model
containing IlpTreeNode. The IlpDefaultTreeSelectionModel class is the default
implementation of IlpTreeSelectionModel.

G R A P H I C C O M P O N E N T S266

Graphic view and renderer for the tree component

Controller and interactors
The controller is implemented by the IlpTreeController class, which allows you to register
pop-up menus and interactors.

For general information about the controller, see The controller.

No special interactor is provided for the tree component.

G R A P H I C C O M P O N E N T S 267

The model

The tree model provides the representation objects to be displayed in the tree component.
It can be connected to a back-end application by means of an adapter.

The representation model of the JViews TGO tree component includes the following classes:

♦ IlpTreeModel is a container of the tree representation objects that implements the
characteristics specific to the JViews TGO tree model.

♦ IlpTreeNode defines the requirements associated with a node in an IlpTreeModel.
IlpDefaultTreeNode is the default implementation of IlpTreeNode.

IlpTreeModel has a predefined root node that you should not remove. The
IlpTreeView automatically hides this node. Consequently, you cannot use the

Note:

setRoot() method of IlpTreeModel to modify the model. A convenient clear
() method removes all the nodes in a single operation, except the root node.

Integration with the back-end
If the tree is to be connected to a back-end application, a data source and an adapter must
be instantiated. The adapter translates insertions, removals, and updates of IlpObject
instances in the data source into insertions, removals, and updates of IlpTreeNode instances
in the tree model.The adapter must be connected both to the data source and to the tree
model.

The tree automatically creates an appropriate adapter (of class IlpContainmentTreeAdapter).
If you want to use a different adapter, you will need to create one and connect it to both the
data source and the tree component. The adapter must be an instance of a subclass of
IlpAbstractTreeAdapter.

The following code connects an IltDefaultDataSource to an IlpTree by means of a custom
adapter.

How to connect a data source to a tree Component with a custom
adapter

IlpTree ilpTree = new IlpTree();
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// Create an instance of a custom adapter
MyAdapter adapter = new MyAdapter(tree.getContext());
// Connect the adapter to the data source
adapter.setDataSource(dataSource);
// Connect the adapter to the tree component
ilpTree.setAdapter(adapter);

For more information about data sources, refer to Introducing business objects and data
sources. For more information about adapters, refer to Architecture of graphic components.

G R A P H I C C O M P O N E N T S268

The view

The tree view is responsible for displaying the graphic objects (tree nodes) and as such
corresponds to the visible part of the architecture.

You can customize the representation of tree nodes by:

♦ Using your own graphic representation

♦ Using an arbitrary TreeCellRenderer

These ways are provided in addition to the CSS-based customization of the default tree
renderer as explained in Customizing the rendering of tree nodes.

Using your own graphic representation
You can create an IlvGraphic or a JComponent directly by declaring the class property
and setting it in a CSS file.

The class property name is a reserved keyword that indicates the class name of the generated
graphic object. JViews TGO provides a predefined representation for the objects in all graphic
components, which means that the class property is optional. It can be used when you want
to replace the predefined representation.

object {
class: ilog.views.sdm.graphic.IlvGeneralNode;
foreground: red;

}

IlpTreeCellRenderer takes the information present in the CSS files to define how a tree
node is rendered. If the property class is specified, it defines the IlvGraphic or JComponent
that will be used to render the tree node.

To use a cascading style sheet class property in a tree view, do the following:

1. Implement your own graphic object or use an existing one, either as an IlvGraphic or
as a JComponent.

2. Configure the properties of the objects or classes you want to represent with this property
using CSS.

3. Load this CSS file in the tree component as illustrated in How to load a CSS file in a
tree component.

For example, the sample <installdir> /samples/tree/customClasses shows how to use
an IlvGraphic to render tree nodes. In this sample, the tree nodes are rendered as IBM®
ILOG® JViews composite graphics where the label color changes from black to red when
the object is selected.

object."Workstation" {
class: 'ilog.views.graphic.composite.IlvCompositeGraphic';
layout: @+attachmentLayout;
children[0]: @+wsBase;

G R A P H I C C O M P O N E N T S 269

children[1]: @+wsLabel;
constraints[1]: @+wsLabelConstraint;

}

Subobject#attachmentLayout {
class: 'ilog.views.graphic.composite.layout.IlvAttachmentLayout';

}
Subobject#wsBase {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("workstation.png")';

}
Subobject#wsLabel {
class: 'ilog.views.graphic.IlvText';
label: @name;
foreground: black;
font: 'arial-bold-12';

}
Subobject#wsLabel:selected {
foreground: red;

}
Subobject#wsLabelConstraint {
class: 'ilog.views.graphic.composite.layout.IlvAttachmentConstraint';
hotSpot: Left;
anchor: Right;
offset: 3,0;

}

Using an arbitrary TreeCellRenderer
The renderer used by an IlpTreeView is an IlpTreeCellRenderer. You can replace it with
you own renderer, using the IlpTreeView.setCellRenderer()method. This renderer must
implement the TreeCellRenderer interface.

To write your own renderer, do the following:

1. Implement the javax.swing.tree.TreeCellRenderer interface.

2. Configure your tree component to use your renderer.

The following code extract shows how to configure an IlpTreeView to use the
MyTreeCellRenderer class to render all tree nodes:

IlpTreeView view = //...
view.setCellRenderer(new MyTreeCellRenderer());

G R A P H I C C O M P O N E N T S270

The controller

The IlpTreeController class represents the controller module of the MVC architecture. It
can be attached to a tree view by using the following code.

How to attach a controller to the tree view

IlpTreeView treeView = new IlpTreeView();
IlpTreeController treeController = new IlpTreeController();
treeView.setController(treeController);

Note that a controller is automatically attached to a tree view when a tree component is
instantiated:

IlpTree treeComponent = new IlpTree();
IlpTreeController controller = treeComponent.getController();
// treeComponent.getView().getController() == controller

The tree controller is responsible for storing and setting the interactors to the view and to
the objects.

When a controller is attached to a tree view, it listens to the keyboard, mouse, and focus
events that occur in the tree and transfers them to the view interactor set to the controller.

For more details, see Interacting with the tree view.

There can be one and only one controller per view.

G R A P H I C C O M P O N E N T S 271

The adapter

The tree adapter converts business objects retrieved from the associated data source to tree
nodes. It is defined by the class IlpContainmentTreeAdapter.

The tree adapter retrieves structural information (that is parent/child relationship) about
business objects from the associated data source and determines whether an object should
appear as a root representation object.

The default tree adapter implementation provides the following services:

♦ Filtering the tree nodes. For details, see Filtering the tree nodes

♦ Sorting the tree nodes. For details, see Sorting the tree nodes

♦ Controlling the display of objects as tree leaves. For details, see Controlling the display
of objects as tree leaves

♦ Setting a list of origins. For details, see Setting a list of origins.

♦ Creating the tree nodes. For details, see Representation object factory.

♦ Loading the tree nodes on demand. For details, see Expansion strategy.

The following figure shows the tree adapter classes.

Containment tree adapter classes

You can create a containment tree adapter implicitly by instantiating the IlpTree component
as shown in the following example.

G R A P H I C C O M P O N E N T S272

How to create a tree adapter by instantiating a tree component

IlpTree ilpTree = new IlpTree();
IlpDataSource dataSoure = new IlpDefaultDataSource();
ilpTree.setDataSource(dataSource);

How to retrieve a tree adapter

IlpAbstractTreeAdaper adapter = ilpTree.getAdapter();

Representation object factory
The tree adapter converts business objects retrieved from the associated data source to tree
nodes. The new representation objects are created by a representation object factory. The
factory interface varies according to the type of adapter. The containment tree adapter uses
by default an IlpDefaultTreeNodeFactory that creates representation objects of type
IlpDefaultTreeNode.

Expansion strategy
The tree adapter uses an expansion strategy to identify whether objects should be loaded
or not in the tree model. An expansion strategy defines how an object is going to behave
when an expansion is requested, for example, when the user opens a tree node by
double-clicking or using the tree expansion handles. The expansion strategy indicates whether
load on demand is implemented and provides methods to load and release child nodes.

The tree adapter uses an expansion strategy factory to define the expansion strategy for
each tree node that it creates. The default expansion strategy factory implementation (
IlpDefaultTreeExpansionStrategyFactory) verifies the property "expansion" defined for
each business object in the cascading style sheet loaded in the component.

The default tree expansion strategy factory supports three types of expansion strategies:

♦ IN_PLACE: loads the child objects on demand, as the user expands the parent tree node.
In this expansion strategy, tree nodes are considered as parent nodes, only when they
have containment relationships defined in the attached data source, through the
IlpContainer interface. The child objects should already be loaded in the data source,
and should be visible according to the data source filter, if there is one defined.

♦ IN_PLACE_MINIMAL_LOADING: loads the child objects on demand, as the user expands the
parent tree node. All tree nodes with this expansion strategy are considered as possible
parent nodes, and therefore are represented with an expansion icon. If the tree node
does not contain child objects, the expansion icon will disappear when the expansion is
executed for the first time.

♦ NO_EXPANSION: expansion is not supported by the tree node.

For information on how to customize the business object expansion type, see Customizing
the expansion of business objects .

G R A P H I C C O M P O N E N T S 273

The expansion strategy factory can be customized for the adapter either through CSS or
through the API. See Configuring the tree component.

Editing
Adapter interfaces are read-only, meaning that they do not perform editing operations on
the representation objects they create.

G R A P H I C C O M P O N E N T S274

Table component

Describes the table component, which is one of the four graphic components provided in
IBM® ILOG® JViews TGO. It displays data in a two-dimensional table format, composed of
a set of rows and columns and of a header row. The rows in a table typically show business
objects, while the columns show attributes of these objects, such as an FDN (Fully
Distinguished Name), a severity, or a performance.

In this section

Introducing the table component
Describes the table component, which displays objects in rows and their attributes in columns.

Creating a table component: a sample
Details the steps required to create a sample table component.

Configuring the table component
Identifies the rendering information necessary to display a table.

Table component services
Describes the services that are available for a table: view services and adapater services.

Architecture of the table component
Like the other JViews TGO components, the table component is based on the MVC
architecture, which means that it has a model, a view and a controller associated with it.
For a general introduction to theMVC architecture, see Architecture of graphic components
which describes the classes and features of the table component specific to each of the three
modules of the MVC architecture, and also explains the role of the adapter.

© Copyright IBM Corp. 1987, 2009 275

Introducing the table component

The JViews TGO table component is based on the Swing table component. It displays objects
in rows and their attributes in columns.

You can customize the rendering of cells, headers, and the component view itself.

The table component is connected to a data source, from which it retrieves the business
objects to be displayed. By default, the table displays all the objects contained in the data
source. However, it is possible to restrict the contents displayed by:

♦ Setting a filter

♦ Selecting the objects to be displayed based on their name

♦ Specifying an accepted class of objects

The most notable features of the table component include:

♦ Various selection modes

♦ Moving and resizing of columns

♦ Sorting columns

♦ Filtering at the adapter level and at the componont level

Possibility to refine the filtering on a specific class of objects.

♦ Searching for a string in the table

The table component is implemented by the class IlpTable which is a Swing JComponent
that can be directly inserted in a JPanel.

IlpTable provides the API for the most common uses of the table component, such as:

♦ setting or retrieving the associated data source: getDataSource(), setDataSource(ilog.
cpl.datasource.IlpDataSource)

G R A P H I C C O M P O N E N T S276

♦ accessing and modifying the selection: getSelectionModel(), setSelectionModel(),
addSelectionObject(), removeSelectionObject(), clearSelection(),
isObjectSelected(), getSelectedObject(), getSelectedObjects()

♦ setting or retrieving the view interactor: setViewInteractor(), getViewInteractor()

♦ filtering the table rows: setFilter(), getFilter(), setAcceptedClass(),
getAcceptedClass()

♦ sorting the table columns: addSortingCriteria(), getSortingOrder()

IlpTable also acts as a façade for a number of lower-level components that it contains.
These components provide more detailed APIs and advanced services. They are described
in Filtering rows.

G R A P H I C C O M P O N E N T S 277

Creating a table component: a sample

This section shows you how to create the following table for displaying alarms.

An alarm table

The following example shows how to create a table component, how to connect it to a data
source, how to fill the data source from an XML file that describes the business objects, and
how to configure the graphic representation of the table and the objects.

How to create a table component
1. Initialize the JViews TGO library.

Prior to using any JViews TGO API, IltSystem.Init must be called.

IltSystem.Init("deploy.xml");

deploy.xml is a deployment descriptor file that defines the path to the application
resources to be used:

<deployment>
<urlAccess>
<!-- Add relative path to sample root directory -->
<relativePath>../..</relativePath>

</urlAccess>
</deployment>

2. Create a data source and fill it with business objects from an XML file.

A data source contains business objects to be displayed in the graphic components.

IltDefaultDataSource dataSource = new IltDefaultDataSource();

G R A P H I C C O M P O N E N T S278

// Fill the data source with an XML file containing the business objects
dataSource.parse("alarms.xml");

3. Create a table component.

IlpTable tableComponent = new IlpTable();

4. Connect the data source to the table component.

The table shows only instances of a single class (and its subclasses). Here, we retrieve
the Alarm class that was created when the data file was parsed and ask the table to
display all instances of this class that are contained in the data source.

// Get the default context of the application
IlpContext context = IltSystem.GetDefaultContext();
// Get the class manager, which contains all business classes
IlpClassManager classManager = context.getClassManager();
// Retrieve the Alarm class
IlpClass alarmClass = classManager.getClass("Alarm");
// Connect the data source to the table component indicating
// which class it accepts (Alarm class)
tableComponent.setDataSource(dataSource, alarmClass);

5. Configure the graphic representation of the table component.

Once you have added objects to be displayed in the table component, you can specify
how the objects and the table itself should be represented. To do so, you can use
cascading style sheets, as follows:

String[] css = new String[] { "table.css" };
try {
tableComponent.setStyleSheets(css);

} catch (Exception e) {
}

G R A P H I C C O M P O N E N T S 279

G R A P H I C C O M P O N E N T S280

Configuring the table component

Identifies the rendering information necessary to display a table.

In this section

Introduction
Introduces the different ways to configure table display.

Configuring the table component through a CSS file
Describes display customization using CSS.

Configuring the table component through the API
Describes how to use the API to configure the table view and table interactor of a table
component.

Loading a project file
Describes how to load a project file that combines rendering style sheets and a data source.

Customizing column headers and rows
Describes how to modify the rendering of a table.

G R A P H I C C O M P O N E N T S 281

Introduction

The table component can be customized either through a CSS configuration file or through
the API, the easiest and preferred way being the CSS configuration. You also have the
possibility to load a project file which combines the CSS configuration and the table data.

You can customize the table view with properties such as background, grid color, cell and
header renderer. You can also customize the table adapter and the way business objects
are represented.

G R A P H I C C O M P O N E N T S282

Configuring the table component through a CSS file

You can customize the following features in a CSS file:

♦ Table view

● Background color

● Grid color

● Show/hide grid

● Show/hide horizontal lines

● Show/hide vertical lines

● Row margin

● Column margin

● Fixed column count

● Auto resize mode

● Selection mode

● Reordering

● Header renderer

● Default renderer

♦ Table adapter

● Filter

● Accepted class

● Excluded classes

● Table row factory

♦ Table column

● Header renderer

● Cell renderer

♦ Table row

● Row height

♦ Table cell

♦ Table controller

● View interactor

G R A P H I C C O M P O N E N T S 283

● Header interactor

● Cell interactor

● Object interactor

How to load a CSS file in a table component
The table configuration can be split accross several CSS files that you can load by:

♦ Specifying a project file that lists the style sheets and the data file to be loaded in the
component (see Loading a project file). The project file will be as follows:

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd"
style="configurationFile1.css,configurationFile2.css">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

fileName="table.xml"/>
</tgo>

If the settings in two of the CSS files disagree, the effect depends on the order of the
filenames in the list: the last file mentioned takes precedence over the first file.

♦ Using the method IlpTable.setStyleSheets as follows:

tableComponent = new IlpTable();
try {
tableComponent.setStyleSheets(new String[] {

myConfigurationFile1,myConfigurationFile2 });
} catch (Exception e) {
}

If the settings in the CSS files disagree, the effect depends on the order of the filenames
in the list: the last file listed takes precedence over the first one.

How to configure a table component in a CSS file
The following example shows you how you can customize the table component itself. It is
based on the CSS file located in <installdir>
/samples/table/styling/srchtml/table.css.html

where <installdir> is the directory where you have installed JViews TGO.

The configuration in CSS is organized as a set of rules that define properties.

// ~~
// Table Component configuration
// Type: Table
//
// This is the main selector when customizing

G R A P H I C C O M P O N E N T S284

// a table component. It identifies the
// sub-components that will be addressed in the
// CSS customization. In the Table Component, it
// is possible to customize the view, controller
// and adapter using CSS.
//
// List of available properties:
// - view: boolean
// - interactor: boolean
// - adapter: boolean
// ~~

Table {
view: true;
interactor: true;

}

The Table rule
This rule specifies the elements of the table component that will be customized. It contains
Boolean flags that indicate whether some specific customizable properties are present. For
example, the customization of the property adapter is not taken into account unless adapter:
true is declared in the Table rule.

This feature provides powerful cascading possibilities. You can define adapter customizations
in a default CSS file and turn them on or off in another CSS file.

The following CSS properties affect the table component:

CSS properties of the table component
UsageDefaultType of valueCSS property

Enables the customization of the table view.falsebooleanview

Enables the customization of the table interactors.falsebooleaninteractor

Enables the customization of the table adapter.falsebooleanadapter

The View rule
This rule specifies the properties that are applied to the table view.

The following CSS properties affect the appearance of the table view:

CSS Properties of the table view
UsageDefaultType of valueCSS property

Resize mode of the table. Possible
values are:

AUTO_RESIZE_OFFIlpTableResizeModeautoResizeMode

AUTO_RESIZE_OFF

AUTO_RESIZE_ALL_COLUMNS

G R A P H I C C O M P O N E N T S 285

UsageDefaultType of valueCSS property

AUTO_RESIZE_LAST_COLUMN.

Color to be used in the background of
the table view. By default, the color is
gray.

nullColorbackground

Color to be used for the table grid.nullColorgridColor

Determines whether the grid is diplayed
or not.

trueBooleanshowGrid

Determines whether the grid horizontal
lines are displayed or not.

trueBooleanshowHorizontalLines

Determines whether the grid vertical
lines are displayed or not.

trueBooleanshowVerticalLines

Height in pixels of the margin between
each row.

1IntegerrowMargin

Width in pixels of the margin between
each column.

1IntegercolumnMargin

Determines whether the user is allowed
to reorder the columns of the table.

trueBooleanreorderingAllowed

Defines the number of fixed columns.0IntegerfixedColumnCount

The renderer used to perform the
graphic representation of the headers of
the table columns.

IlpTableHeaderRendererIlpTableHeaderRendererheaderRenderer

The renderer used to perform the
graphic representation of the table cells.

IlpTableCellRendererIlpTableCellRendererdefaultRenderer

Selection mode of the table. Possible
values are:

MULTIPLE_OBJECTS_SELECTIONIlpTableSelectionModeselectionMode

EMPTY_SELECTION

SINGLE_OBJECT_SELECTION

MULTIPLE_OBJECTS_SELECTION

SINGLE_ATTRIBUTE_SELECTION

MULTIPLE_ATTRIBUTES_SELECTION

SINGLE_CELL_SELECTION

MULTIPLE_CELLS_SELECTION

How to configure a table view in a CSS file
Prior to configuring the table view, you need to configure the table component so that the
view configuration is enabled:

Table {

G R A P H I C C O M P O N E N T S286

view: true;
}

Then, you can customize the view properties in the View rule as illustrated by the following
code extract. Refer to The CSS specification in the Styling documentation for details about
the CSS syntax.

View {
reorderingAllowed : true;
autoResizeMode : AUTO_RESIZE_OFF;
selectionMode : MULTIPLE_OBJECTS_SELECTION;
fixedColumnCount: 1;

}

Refer to IlpViewRenderer for more information.

The Interactor rule
This rule specifies the properties that are applied to the table controller. The following CSS
properties affect how the table component handles mouse and keyboard events:

CSS Properties of the table interactor
UsageDefault valueTypeProperty name

Defines
the

IlpDefaultTableViewInteractorIlpViewInteractorviewInteractor

interactor
that
handles
events in
the view.

Defines
the

IlpDefaultTableHeaderInteractorIlpDefaultTableHeaderInteractorheaderInteractor

interactor
that
handles
events in
the table
header.

Events are only handled by the header interactor if the current view interactor is an
IlpDefaultViewInteractor.

Note:

How to configure a table interactor in a CSS file
Prior to configuring the table interactor, you need to configure the table component so that
the interactor configuration is enabled:

G R A P H I C C O M P O N E N T S 287

Table {
interactor: true;

}

After that, you can customize the each interactor property in the Interactor rule as illustrated
by the following code extract. Refer to The CSS specification in the Styling documentation
for details about the CSS syntax.

Interactor {
viewInteractor: @+viewInt;
headerInteractor: @+headerInt;

}
Subobject#viewInt {
class: 'ilog.cpl.table.interactor.IlpDefaultTableViewInteractor';

}
Subobject#headerInt {
class: 'ilog.cpl.table.interactor.IlpDefaultTableHeaderInteractor';

}

The behavior of the view interactor is determined by the actions that are associated with
user gestures and keystrokes. This behavior can also be customized through CSS. You can
also configure a pop-up menu to be displayed in the table view or table header. For more
information about interactor customization, refer to Interacting with the table view and
Interacting with the table cells.

For more information, refer to IlpInteractorRenderer.

The Adapter rule
This rule controls the configuration of the table adapter. The table adapter is responsible
for converting the business objects in the data source to representation objects (table rows)
in the table component. It provides the following features:

♦ Filtering: applies a filter so that business objects currently in the data source are not
mapped to representation objects in the table component.

♦ Accepted class: defines a specific class of business objects to be displayed in the table.

♦ Excluded classes: defines a list of business classes whose business objects will not be
displayed in the table.

These table adapter features can be customized through CSS using the following properties:

G R A P H I C C O M P O N E N T S288

CSS properties of the table adapter
Property typeProperty name

ilog.cpl.util.IlpFilterfilter

StringacceptedClass

list of IlpClassexcludedClasses

ilog.cpl.table.IlpTableRowFactoryrepresentationObjectFactory

How to configure a table adapter in a CSS file
Prior to configuring the adapter, you need to configure the table component so that the
adapter configuration is enabled:

Table {
adapter: true;

}

After that, you can customize each adapter property in the Adapter rule as illustrated by
the following code extract. Refer to The CSS specification in the Styling documentation for
details about the CSS syntax.

Adapter {
filter: @+tableFilter;
acceptedClass: ’ilog.tgo.model.IltNetworkElement;
representationObjectFactory: @+repObjFactory;

}

Subobject#tableFilter {
class: MyTableFilter;

}
Subobject#repObjFactory {
class: MyRepresentationObjectFactory;

}

How to programmatically configure a table adapter using CSS
You can programmatically modify the CSS configuration of the default table adapter (
IlpTableListAdapter) by using mutable style sheets through the IlpMutableStyleSheet
API.

The mutable style sheet is set to the adapter as a regular style sheet and is
cascaded in the order in which it has been declared.

Important:

To use mutable style sheets:

1. Get the mutable style sheet.

G R A P H I C C O M P O N E N T S 289

You access the mutable style sheet through the getMutableStyleSheet() method in
the table adapter API:

IlpMutableStyleSheet mutable = adapter.getMutableStyleSheet();

This method automatically registers the mutable style sheet in the adapter. You can
manually instantiate an object of the class IlpMutableStyleSheet and register it yourself
through the setStyleSheet() API:

IlpMutableStyleSheet mutable = new IlpMutableStyleSheet(adapter);
try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

2. Set the CSS declarations.

Once you have the mutable style sheet, you can set the declarations you want:

mutable.setDeclaration("#myObjectId", "expansion", "NO_EXPANSION");

This creates the following CSS declaration into the mutable style sheet:

#myObjectId {
expansion: NO_EXPANSION;

}

3. Register the mutable style sheet.

The mutable style sheet should be set as a regular style sheet for the adapter using the
setStyleSheet() method:

try {
adapter.setStyleSheets(new String[] { mutable.toString() });

} catch (Exception x) {
x.printStackTrace();

}

4. Set and update the CSS declarations.

The mutable style sheet can be modified even after being registered to the adapter:

// Update the expansion type for 'myObjectId'
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
// Add a new declaration
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");

G R A P H I C C O M P O N E N T S290

Like any style sheet, the mutable style sheet is lost when the setStyleSheet
() API is invoked and a new set of style sheets is applied to the adapter.

Note:

How to customize the mutable style sheet
Reapplying a CSS configuration may be a heavy task, as the adapter may be forced to review
filters, origins, recreate representation objects, and so on. It is important to use the mutable
style sheet with care and to customize it properly to reapply the CSS wisely. To do so, there
are two methods available in the IlpMutableStyleSheet API: setUpdateMask() and
setAdjusting().

1. setUpdateMask()

This method controls what should be recustomized once a declaration of the mutable
style sheet has been updated. The CSS configuration of the adapter is divided into two
parts: adapter customization and representation object customization.

The adapter customization handles the origins, filters, and so on:

Adapter {
origins[0]: id0;
origins[1]: id1;
showOrigin: true;
filter: @+myFilter;

}

The representation object customization handles the expansion type of a representation
object:

#myObjectId {
expansion: IN_PLACE;

}

The accepted values for setUpdateMask() are:

♦ IlpStylable.UPDATE_COMPONENT_MASK: Only the adapter part is recustomized.

♦ IlpStylable.UPDATE_OBJECTS_MASK: Only the representation object part is
recustomized.

♦ IlpStylable.UPDATE_ALL_MASK: Bot the adapter and representation object parts are
recustomized.

♦ IlpStylable.UPDATE_NONE_MASK: Nothing is recustomized.

For example, if you update the expansion type of a representation object through the
mutable style sheet, it is recommended that you set the update mask to
UPDATE_OBJECTS_MASK as there is no need to reapply the CSS configuration for the
adapter part:

G R A P H I C C O M P O N E N T S 291

mutable.setUpdateMask(IlpStylable.UPDATE_OBJECTS_MASK);
mutable.setDeclaration("object", "expansion", "IN_PLACE");

2. setAdjusting()

This method is used when a series of declarations must be applied to the mutable style
sheet. When the method is set to true, the mutable style sheet puts all the calls to
setDeclaration() into a queue. When the method is set back to false, all the queued
declarations are processed in a batch:

mutable.setAdjusting(true);
mutable.setDeclaration("#myObjectId", "expansion", "IN_PLACE");
mutable.setDeclaration("#myOtherId", "expansion", "IN_PLACE");
mutable.setAdjusting(false);

G R A P H I C C O M P O N E N T S292

Configuring the table component through the API

For details of the classes involved in the architecture of the table component, see Filtering
rows.

The following example shows how to configure the table view (IlpTableView) through the
API. For details on programming the individual services, see Table component services .

How to configure the table view with the API

IlpTableView view = table.getView();

// Setting the selection mode
view.setSelectionMode(ListSelectionModel.SINGLE_OBJECT_SELECTION);

// Setting the table cell renderer
view.setDefaultRenderer(new MyTableCellRenderer());

// Setting the grid color
view.setGridColor(Color.blue);

The following example shows how to configure the table interactor through the API. For
details, see Interacting with the table view.

How to configure the table interactor with the API

// Create the table, and retrieve the view interactor
IlpTable tableComponent = new IlpTable()
IlpViewInteractor viewInteractor = tableComponent.getViewInteractor();
// Create a Swing action
// We assume the MyAction class is defined elsewhere
Action myAction = new MyAction();
// Double-clicking the left mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON1_DOUBLE_CLICKED,myAction);

The following example shows how to configure the table adapter through the API. See Table
component services for details on programming the individual services.

How to configure the table adapter with the API

IlpListAdapter adapter = table.getAdapter();

// Accepted class
// (it is the same as adapter.setAcceptedClass)
table.setAcceptedClass(IltNetworkElement.GetIlpClass());

// Setting the filter

G R A P H I C C O M P O N E N T S 293

IlpFilter myFilter = new MyFilter();
// (it is the same as adapter.setFilter(myFilter)
table.setFilter(myFilter);

// Table Row Factory
IlpTableRowFactory myRowFactory = new MyTableRowFactory();
adapter.setRepresentationObjectFactory(myRowFactory);

G R A P H I C C O M P O N E N T S294

Loading a project file

A project is a combination of style sheets that supply rendering information and a data
source that supplies the data to be represented in a table component. A project is saved as
an XML file with extension .itpr.

Loading a project file is the recommended way to configure a graphic component in Java™
as it is the fastest.

How to load a project file into a table component
The following code sample shows how to load a project file into a table component, using
the method setProject.

IlpTable table = new IlpTable();
table.setProject(new URL("file:project.itpr");

The project is represented by the IlpTGOProject class, included in the package ilog.cpl.
project. When a new project is created, the style sheet and data source are both null.

How to create a new project for the table component
The following code sample shows how to create a new project file by setting the style sheets
and data source, then saving the project.

IlpTGOProject project = new IlpTGOProject();
project.setStyleSheet(new URL("file:example.css");
IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.setFileName("data.xml");
project.setDataSource(dataSource);
project.write(new URL("file:example.itpr");

G R A P H I C C O M P O N E N T S 295

Customizing column headers and rows

The table component uses a default renderer to render the column header (an instance of
IlpTableHeaderRenderer).

This renderer is based on the CSS configuration, which means that it uses the properties
defined in the cascading style sheets for the business objects, the attributes, and the table
component itself.

How to modify the table column renderer
To modify the rendering of the table, you can do one of the following:

1. Replace the default renderer by another one using the method setHeaderRenderer.

The Swing mechanism that allows you to associate a specific renderer with
instances of a specific class in the table model is disabled.

Note:

2. Modify the JViews TGO default properties.

How to modify the default properties of a table
To modify the JViews TGO default properties in a table, create a custom CSS file and load
it in your table component using the method IlpTable.setStyleSheets.

IlpTable tableComponent = new IlpTable();
String[] css = new String[] { "table.css" };
try {
tableComponent.setStyleSheets(css);

} catch (Exception e) {
}

For a description of the properties that you can use in a CSS file to modify the rendering of
the table header and of the table rows, refer to Customizing table column headers and rows.

G R A P H I C C O M P O N E N T S296

Table component services

Describes the services that are available for a table: view services and adapater services.

In this section

Introduction to table component services
Lists the different services available for a table.

Selecting the accepted class of objects
Describes how to set the accepted class, which allows you to define the class of objects to
be displayed in the table component.

Filling the table with business objects
Describes how to populate a table with business objects.

Interacting with the table view
Describes how to use interactors to associate the behavior of the table with specific actions.

Interacting with the table cells
Describes how to use object interactors to associate behavior with business objects.

Handling the selection
Describes how to set different kinds of selection models to the table.

Fitting to Contents
Explains how to set a table to dynamically adjust the width of columns to fit in the available
space.

Resizing columns
Explains how to resize a column using the API.

G R A P H I C C O M P O N E N T S 297

Fixing columns in a table
Describes how to fix a set of columns on the left side of a table.

Moving columns
Describes how to rearrange columns using the API.

Searching for a string in a table
Explains how to search for a string in a table using the API.

Showing or hiding columns in a table
Explains how to show or hide columns in a table using the API.

Sorting columns
Explains how to sort columns using the API.

Adding new columns to the table
Describes how to add new columns using the API.

Filtering rows
Describes how to filter the rows in a table using the API.

Excluding table rows
Describes how to exclude business objects from the table using the API.

G R A P H I C C O M P O N E N T S298

Introduction to table component services

Table component services are of two kinds:

♦ View services, related to the table view

● Selecting the accepted class of objects

● Filling the table with business objects

● Interacting with the table view

● Interacting with the table cells

● Handling the selection

● Fitting to Contents

● Resizing columns

● Fixing columns in a table

● Moving columns

● Searching for a string in a table

● Showing or hiding columns in a table

● Sorting columns

● Adding new columns to the table

♦ Adapter services, related to the table model

● Filtering rows

● Excluding table rows

G R A P H I C C O M P O N E N T S 299

Selecting the accepted class of objects

The accepted class allows you to define the class of objects to be displayed in the table
component. The table can display predefined business objects of the class IltObject or of
a subclass of IltObject, or user-defined business classes.

You need to specify the accepted class when you create your table component. Once the
accepted class has been set, the attributes present in this class determine the columns that
will be displayed in the table.

How to set the accepted class

// Create a table component and connect it to a data source
IlpTable tableComponent = new IlpTable();
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// The second parameter specifies which kind of object contained
// in the data source the table will show
tableComponent.setDataSource(dataSource, IltNetworkElement.GetIlpClass());

or, after connecting the table with a data source, by using the method setAcceptedClass:

tableComponent.setAcceptedClass(IltObject.GetIlpClass());

G R A P H I C C O M P O N E N T S300

Filling the table with business objects

The table can be filled with business objects through an IltDefaultDataSource, as illustrated
by the following code.

How to fill a table with business objects

// Create a table component and connect it to a data source
IlpTable tableComponent = new IlpTable();
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// The second parameter specifies which kind of object contained
// in the data source the table will show
tableComponent.setDataSource(dataSource, IltNetworkElement.GetIlpClass());

// Create a business object and insert it in the data source
IltObjectState os = new IltBellcoreObjectState();
os.set(IltBellcore.State.EnabledActive);
IltNetworkElement london =
new IltNetworkElement("Fax", IltNetworkElement.Type.Fax, os);

dataSource.addObject(london);

Note that a data source can also load an XML file containing business objects, as shown in
Creating a table component: a sample.

You can also use project files to easily create and load data source business objects into
your table component, as illustrated below:

How to fill a table with business objects using a project file
You can create the following project file to indicate the type of data source to be used and
the XML file that contains the data source information:

<?xml version="1.0"?>
<tgo xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/project.xsd">
<datasource javaClass="ilog.tgo.datasource.IltDefaultDataSource"

fileName="network.xml"/>
</tgo>

Once the project file is specified, you can load it in the component using method IlpTable.
setProject(URL projectURL) or IlpTable.setProject(IlpProject project). See Loading
a project file for details.

G R A P H I C C O M P O N E N T S 301

Interacting with the table view

The table component allows you to define behavior for the main view of the table, as well
as specific behavior for the table header. In both cases, an interactor is used. The default
interactors handle the basic interaction supported by the table (selection, moving columns,
for example) and can be easily customized to:

♦ associate actions with mouse events and focus events,

♦ associate actions with keyboard events,

♦ build a pop-up menu to be displayed on the table.

Interacting with the main table view
A default view interactor (an instance of IlpDefaultTableViewInteractor) is associated
with the main view of the table component. It is retrieved using the getViewInteractor()
method of IlpTable.

How to associate an action with a gesture in a table component
You can associate actions with mouse events by using either CSS or the API. The following
CSS extract shows how to proceed:

Table {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.table.interactor.IlpDefaultTableViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON1_DOUBLE_CLICKED;
action: @+myAction;

}
Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

// Create the table, and retrieve the view interactor
IlpTable tableComponent = new IlpTable()
IlpViewInteractor viewInteractor = tableComponent.getViewInteractor();

G R A P H I C C O M P O N E N T S302

// Create a Swing action
// We assume the MyAction class is defined elsewhere
Action myAction = new MyAction();
// Double-clicking the left mouse button will trigger myAction
viewInteractor.setGestureAction(IlpGesture.BUTTON1_DOUBLE_CLICKED,

myAction);

.

A gesture is a series of one or more atomic user input events that are meant to invoke
a single action.

Note:

How to associate an action with a keyboard event in a table
component
You can associate actions with keyboard events by using either CSS or the API. The following
CSS extract shows how to proceed:

Table {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.table.interactor.IlpDefaultTableViewInteractor';
action[0]: @+viewAction0;

}

Subobject#viewAction0 {
class: 'ilog.cpl.interactor.IlpKeyStrokeAction';
keyStroke: 'ctrl typed D';
action: @+myAction;

}

Subobject#myAction {
class: MyAction;

}

The same configuration can be achieved through the API, as follows:

// Create an action
Action myAction = new MyAction();
// Typing CTRL+D will trigger myAction
KeyStroke ctrlD = KeyStroke.getKeyStroke('D',java.awt.Event.CTRL_MASK);
viewInteractor.setKeyStrokeAction(ctrlD, myAction);

G R A P H I C C O M P O N E N T S 303

Both mouse and keyboard actions can be invoked anywhere in the table, except in the header.

Interacting with the table header
Usually, specific behavior is needed for the table header. For that reason, the table component
also has a default interactor for the header. It is an instance of
IlpDefaultTableHeaderInteractor and can be retrieved using the getHeaderInteractor
method of IlpTable. This interactor can be customized in the same way as the interactor
for the main view.

If no header interactor is set to the table controller (that it, if it is null), the events are
handled directly by the view interactor.

Note:

Using pop-up menus
The JViews TGO interactors allow you to create custom pop-up menus easily for the table.
To do this, you should implement the IlpPopupMenuFactory interface. One abstract and two
default menu factories are provided, which you can extend by subclassing:

♦ IlpAbstractPopupMenuFactory gives you easy access to the currently selected business
objects.

♦ IlpDefaultTableHeaderMenuFactory allows you to show or hide a column and change
the sorting criterion of a column.

♦ IlpDefaultTableMenuFactory allows you to fix columns and show the hidden columns.

The following code shows how to define a custom pop-up menu factory for the table view.

How to define a custom pop-up menu for the table view
You can customize a pop-up menu factory for the table view or the table header, either
through CSS or through the API. The following CSS extract shows how to configure a CSS
file to add a pop-up menu factory:

Table {
interactor: true;

}

Interactor {
viewInteractor: @+viewInt;

}

Subobject#viewInt {
class: 'ilog.cpl.table.interactor.IlpDefaultTableViewInteractor';
popupMenuFactory: @+viewPopupMenuFactory;

}
Subobject#viewPopupMenuFactory {

G R A P H I C C O M P O N E N T S304

class: MyTableMenuFactory;
}

The same configuration can be achieved through the API, as follows:

1. Create a class extending IlpAbstractPopupMenuFactory as follows:

public MyTableMenuFactory extends IlpAbstractPopupMenuFactory
{
public JPopupMenu createPopupMenu
(IlpObjectSelectionModel ilpSelectionModel)

{
// The following menu could be context-dependent
JPopupMenu popupMenu = new JPopupMenu();
// Create here the items and add them in the menu
//
return popupMenu;
}

}

2. Use a pop-up menu in the table view or header:

IlpTable tableComponent = new IlpTable();
// Use a custom pop-up menu in the table view
IlpPopupMenuFactory tableMenuFactory = new MyTableMenuFactory();
tableComponent.getViewInteractor().setPopupMenuFactory(tableMenuFactory);
// Use the default header pop-up menu in the table header
IlpPopupMenuFactory headerMenu =
new IlpDefaultTableHeaderMenuFactory();

tableComponent.getHeaderInteractor().setPopupMenuFactory(headerMenu);

For a detailed description of interactors and gestures, refer to Interacting with the graphic
components.

G R A P H I C C O M P O N E N T S 305

Interacting with the table cells

Interacting with the table view describes how to set an interactor for the entire table view.
You can also associate behavior with business objects (for a class or for individual objects),
as well as with individual table cell instances. To do so, you use object interactors, which
provide the same options as the view interactor, that is:

♦ Associating actions with mouse events

♦ Associating actions with keyboard events

♦ Defining a pop-up menu factory to build a pop-up menu that displays on representation
objects

The object interactor handles any events occurring on the object with which the interactor
is associated, provided the view interactor has enabled the use of object interactors. You
can check this by means of the isUsingObjectInteractor method or modify it with the
setUsingObjectInteractor method. Object interactors are enabled by default.

No default interactor is associated with any object. To associate actions with mouse or
keyboard events or to define a pop-up menu factory, you first have to create an
IlpObjectInteractor. You may use the IlpDefaultObjectInteractor, extend it, or create
your own implementation.

How to associate an object interactor with a representation object
in the table
You can associate an object interactor with a representation object by using either CSS or
the API. The following CSS extract shows how to proceed:

Table {
interactor: true;

}

object."ilog.tgo.model.IltNetworkElement" {
interactor: @+objInteractor;

}
Subobject#objInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';

}

The same configuration can be achieved through the API, as follows:

IlpTable table = // ...
IltNetworkElement ne = //...
IlpTableController tableController = table.getController();
// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
tableController.setObjectInteractor(ne, objectInteractor);
// Configuring the specific object interactor is similar to configuring
// a view interactor.

G R A P H I C C O M P O N E N T S306

objectInteractor.setGestureAction(IlpGesture.BUTTON3_CLICKED, new MyAction())
;

How to associate an object interactor with a table cell
You can associate an object interactor with a table cell, which is identified by a representation
object and an attribute, by using either CSS or the API. The following CSS extract shows
how to customize a specific object interactor to the cell that represents the name attribute:

Table {
interactor: true;

}
object."ilog.tgo.model.IltNetworkElement/name" {

interactor: @+objInteractor;
}
Subobject#objInteractor {

class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';
}

The same configuration can be achieved through the API, as follows:

IlpTable table = // ...
IltNetworkElement ne = //...
IlpAttribute attribute = IltNetworkElement.NameAttribute;
IlpTableController tableController = table.getController();
// Create an object interactor
IlpObjectInteractor objectInteractor = new IlpDefaultObjectInteractor();
tableController.setObjectInteractor(ne, attribute, objectInteractor);

Actions related to mouse and keyboard events can be customized in the same way as for
the view interactor. A pop-up menu factory can also be defined in the same way as for the
view interactor. Refer to Interacting with the table view.

For a detailed description of interactors and gestures, refer to Interacting with the graphic
components .

G R A P H I C C O M P O N E N T S 307

Handling the selection

Selection in the table view is managed by an IlpTableSelectionModel. Different kinds of
selection models can be set to the table by using the method setSelectionModel of the
table view. However, only the IlpDefaultTableSelectionModel allows you to use themethod
setSelectionMode, as illustrated in the following code sample.

How to handle selection in the table

IlpTable tableComponent = new IlpTable();
// Set a selection mode to select multiple entire rows
tableComponent.setSelectionMode(IlpTableSelectionMode.
MULTIPLE_OBJECTS_SELECTION);

The different selection modes, defined by the enumerated type IlpTableSelectionMode,
are the following:

♦ EMPTY_SELECTION: nothing is selected when clicking the table.

♦ SINGLE_OBJECT_SELECTION: a single row can be selected in the table.

♦ MULTIPLE_OBJECTS_SELECTION: multiple rows can be selected (by using the traditional
Shift and/or Control keys and dragging the mouse).

♦ SINGLE_ATTRIBUTE_SELECTION: a single column can be selected.

♦ MULTIPLE_ATTRIBUTES_SELECTION: multiple columns can be selected.

♦ SINGLE_CELL_SELECTION: a single cell can be selected.

♦ MULTIPLE_CELLS_SELECTION: multiple cells can be selected.

The selection mode can also be customized through the selectionMode
property. The default mode is MULTIPLE_OBJECTS_SELECTION.

Note:

The following methods can be used to select business objects:

♦ addSelectionObject(IlpObject object) adds a business object to the selection (the
entire row is selected).

♦ removeSelectionObject(IlpObject object) removes a business object from the selection.

♦ getSelectedObjects() returns the collection of selected business objects.

♦ getSelectedObject() returns the first selected business object (the first in the collection
of business objects.)

♦ isObjectSelected(IlpObject object) returns true if the given selected object is
selected.

G R A P H I C C O M P O N E N T S308

♦ clearSelection() deselects all the selected objets.

♦ selectAll() selects all the visible cells (this means that filtered objects and hidden
columns are not selected.)

Similar methods exist in IlpTableSelectionModel to select individual columns and cells.

G R A P H I C C O M P O N E N T S 309

Fitting to Contents

The table can dynamically adjust the width of one or more of its columns in order to fit in
the available space. The table supports the following resizing modes defined in the
enumerated type IlpTableResizeMode:

♦ No adjustment: AUTO_RESIZE_OFF

The width of the columns is never automatically adjusted. If there is more space than
used by the columns, it remains empty. If there is less space than required, a horizontal
scroll bar displays.

♦ Adjust last column: AUTO_RESIZE_LAST_COLUMN

The last column of the table will be adjusted to allow the width of the table to fit the
available space.

♦ Proportionally adjust all columns: AUTO_RESIZE_ALL_COLUMNS

All columns will be proportionally shrunk or expanded to occupy the available space.

Unlike what happens in the Swing JTable when the resizing mode is
AUTO_RESIZE_LAST_COLUMN and when the entire table is resized, not all the
columns are proportionally adjusted. Only the last column is adjusted.

Note:

The default resize mode is AUTO_RESIZE_OFF.

The following example applies the AUTO_RESIZE_LAST_COLUMN mode to tableComponent.

How to resize a table

IlpTable tableComponent = new IlpTable();
// Apply the policy
tableComponent.setAutoResizeMode
(IlpTableResizeMode.AUTO_RESIZE_LAST_COLUMN) ;

// Now, when a column or the entire table is resized, only the last column
//is shrunk or expanded

The resize mode can also be controlled through the autoResizeMode property.Note:

G R A P H I C C O M P O N E N T S310

Resizing columns

The user can dynamically resize the columns in a table by dragging the right border of their
header.

To resize a column by programming, use the following code, setting a size of 10 to the name
column.

How to resize columns in a table

IlpTable tableComponent = new IlpTable();
// This table will contain Network Elements
IlpClass acceptedClass = IltNetworkElement.GetIlpClass();
tableComponent.setAcceptedClass(acceptedClass);
...
// Retrieve the IlpAttribute corresponding to the name in
// IltNetworkElement class
IlpAttribute name = acceptedClass.getAttribute("name");
TableComponent.getTableColumn(name).setPreferredSize(10);

The preferred width of a column can also be controlled through the preferredWidth
property. For more information, see Customizing column headers and rows.

Note:

G R A P H I C C O M P O N E N T S 311

Fixing columns in a table

You can fix a set of columns on the left side of the table. To do so, call the method
setFixedColumnCount(int) with the number of columns you want to fix as its parameter.
The method has no effect if the value of its parameter is less than 0. A value of 0 indicates
that none of the columns in the table will be fixed. If the parameter is greater than the
number of columns in the table, all the columns are fixed. Here is an example.

How to fix the position of columns in a table

IlpTable tableComponent = new IlpTable();
...
// Fix 3 columns
tableComponent.setFixedColumnCount(3) ;
// Fix a 4th column
tableComponent.setFixedColumnCount(4) ;
// Unfix all columns
tableComponent.setFixedColumnCount(0) ;

You can retrieve the number of fixed columns in the table by using the method
getFixedColumnCount(), and know whether a given column is fixed by using the method
isColumnFixed(ilog.cpl.model.IlpAttribute).

The number of fixed columns can be configured using style sheets, as described inConfiguring
the table component.

G R A P H I C C O M P O N E N T S312

Moving columns

The user can dynamically rearrange the columns in a table by dragging their header to a
new location. This functionality can be disabled and enabled with the method
setReorderingAllowed(boolean) of the class IlpTable.

To rearrange the columns by programming, use the following code.

How to rearrange columns in a table

IlpTable tableComponent = new IlpTable();
// This table will contain Network Elements
IlpClass acceptedClass = IltNetworkElement.GetIlpClass();
tableComponent.setAcceptedClass(acceptedClass);
...
// Retrieve the IlpAttribute corresponding to the name in
// IltNetworkElement class
IlpAttribute name = acceptedClass.getAttribute("name");
// Column "name" will take the second position
tableComponent.setColumnIndex(name,1);

The default order of columns for a business class can also be controlled through the
tableColumnOrder property. For more information, see Customizing table column headers
and rows.

G R A P H I C C O M P O N E N T S 313

Searching for a string in a table

You can search for a string in a table by using the searchValue method. Searching is
performed on the values displayed in the cells (that is, with styles applied), not on the raw
values stored by the representation objects. The searchValue method returns the coordinates
of the first cell containing the string, starting from the specified cell.

If the startingcell parameter is null, the search starts from the first cell in the table.

The search is not case sensitive if the parameter caseMatching is false.

The search can be performed row by row (scanRowByRow parameter is true), or column by
column (scanRowByRow parameter is false).

The method returns null if the search value cannot be found in the scope of the search.

How to search for a string in a table

IlpTable tableComponent = new IlpTable();
...
IlpCellCoordinates cellFound

= tableComponent.searchValue("a string", // searched string
null, // starting cell
false, // scan row by row
false); // case matching

G R A P H I C C O M P O N E N T S314

Showing or hiding columns in a table

You can alternatively hide and show columns in a table by using the method
setColumnVisible. This method takes as its parameters the IlpAttribute object of the
affected column and a Boolean value setting the visibility to true or false. The attribute
can be retrieved from the table model or from the table view using the method getColumn
(int).

How to show or hide columns in a table
The following example shows how to show and hide columns in a table.

IlpTable tableComponent = new IlpTable();
// This table will contain Network Elements
IlpClass acceptedClass = IltNetworkElement.GetIlpClass();
tableComponent.setAcceptedClass(acceptedClass);
...
// Retrieve the IlpAttribute corresponding to the name in
// IltNetworkElement class
IlpAttribute nameAttr = acceptedClass. getAttribute("name");
// Hide the column
tableComponent.setColumnVisible(nameAttr, false) ;
// Show the column again
tableComponent.setColumnVisible(nameAttr, true) ;

The method isColumnVisible(ilog.cpl.model.IlpAttribute) indicates whether the
column specified by attribute is visible.

The visibility of a column can also be controlled through the visible property. For
more information, see Customizing column headers and rows.

Note:

G R A P H I C C O M P O N E N T S 315

Sorting columns

Columns can be sorted in ascending or descending order, interactively or by programming.

Interactively, the user clicks a column header once to sort it in ascending order, twice to
sort it in descending order, and three times for no sorting at all. Using the Shift key while
clicking the column header adds this column as a sorting criterion, whereas otherwise the
column is set as the only sorting criterion.

By programming, you can use the following methods:

♦ addSortingCriteria(ilog.cpl.model.IlpAttribute, int, boolean,
boolean)addSortingCriteria adds the given attribute as a sorting criterion. This method
takes as its arguments:

● the attribute corresponding to the column to be sorted

● an order parameter that defines the position of the column among the sorting criteria

● the ascendingOrder parameter, which, when set to true, sorts the column in ascending
order

● the parameter useDisplayValue, which indicates whether the sorting is applied to the
display values (that is, with style sheets applied) or to the raw values

Each sorted column serves as a sorting criterion. If order equals 1, the column is
selected as the first sorting criterion, if it equals 2, it is selected as the second sorting
criterion, and so on. If order is less than 1, the column is considered as the first
criterion. If order is greater than the current number of criteria, the column is
considered as the next criterion.

♦ getSortingOrder(ilog.cpl.model.IlpAttribute) returns the position as a sorting
criterion of the specified attribute.

♦ isUsingAscendingOrder(ilog.cpl.model.IlpAttribute) returns true if the specified
attribute is sorted in ascending order.

♦ isUsingDisplayValue(ilog.cpl.model.IlpAttribute) returns true if the specified
attribute is sorted by display values.

♦ removeAllSortingCriteria() removes all sorting criteria.

♦ getSortedAttributesCount() returns the number of sorted columns in the table.

The sorting order can also be controlled through the "sortingMode" and
"sortingPriority" properties. For more information, see Customizing column
headers and rows.

Note:

G R A P H I C C O M P O N E N T S316

Adding new columns to the table

It is possible to add custom attributes as new columns in a table component, as illustrated
by the following code sample.

How to add columns to a table

// Create a datasource
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// Read an XML file into the datasource
dataSource.parse("alarms.xml");
// Create a table component
IlpTable tableComponent = new IlpTable();
// Get the Alarm class
IlpClass alarmClass =
IltSystem.GetDefaultContext().getClassManager().getClass("Alarm");

// Set the datasource to the component, and show instances
// of the Alarm class
tableComponent.setDataSource(dataSource, alarmClass);
// Add custom attributes
// Get the existing severity attribute
IlpAttribute severity = alarmClass.getAttribute("perceivedSeverity");
// Create a 'Short severity' attribute that represents the severity
// in a concise way
IlpAttribute shortSeverityAttribute =
new IlpReferenceAttribute("shortSeverity", severity);

tableComponent.addAttribute(shortSeverityAttribute);

G R A P H I C C O M P O N E N T S 317

Filtering rows

You can filter the rows in a table by implementing the interface IlpFilter and setting it to
the table.

To perform the filtering, you can use the method setFilter at two different levels:

At the adapter level
You have the choice to apply the filter to the table component or to the adapter, the result
will be the same.

The following code shows how to create a filter displaying only IltNetworkElement instances
with alarms.

How to set a filter to the table component

// Create a table component and set it to a data source
IlpTable tableComponent = new IlpTable();
IltDefaultDataSource dataSource = new IltDefaultDataSource();
// The second parameter specifies which kind of object contained
// in the data source the table will show
tableComponent.setDataSource(dataSource,
IltNetworkElement.GetIlpClass());

IlpFilter alarmFilter = new IlpFilter() {
public boolean accept(Object object) {
IlpObject ilpObject = (IlpObject)object;
Integer alarmCount =
(Integer)ilpObject.getAttributeValue(IltObject.AlarmCountAttribute);

return (alarmCount.intValue() > 0);
}

};
tableComponent.setFilter(alarmFilter);

The following example shows how to set a filter to an adapter.

How to set a filter to the adapter

adapter.setFilter(new IlpFilter() {
public boolean accept(Object object) {
IlpObject bo = (IlpObject)object;
return bo.getAttributeValue(boolAtt).equals(Boolean.TRUE);
}

});

The argument boolAtt passed to the method getAttributeValue(ilog.cpl.model.
IlpAttribute) is an instance of IlpAttribute that returns a Boolean value. Business objects
will be transformed into representation objects only if this argument is true.

G R A P H I C C O M P O N E N T S318

At the controller level.
Filtering takes places between the model and the view and is performed by the controller.

How to set a filter to the table controller

IlpTableController controller = table.getController();
controller.setFilter(new IlpFilter() {
public boolean accept(Object object) {
IlpObject bo = (IlpObject)object;
return bo.getAttributeValue(boolAtt).equals(Boolean.TRUE);

}
});

The setFilter(ilog.cpl.util.IlpFilter)method at the adapter level may seem redundant
with the setFiltermethod at the controller level; however, the advantages and drawbacks
are not the same. Modifying the filter associated with an adapter to which a number of
representation objects have already been added causes a large number of objects to be
created or destroyed. Whereas changing a filter set to the controller only alters intermediate
data, without leading to object creation or destruction. Setting a filter to an adapter
significantly improves the performance, since it avoids creating a great number of unused
representation objects, and saves storage space in the memory of the model.

The most likely scenario for using the setFilter(ilog.cpl.util.IlpFilter) method at
two different levels is the following: The setFilter method at the adapter level can be
considered the first step in the filtering process in the sense that it reduces the number of
objects of the accepted class that will be created and displayed. The next step consists in
setting a filter at the controller level to further reduce the number of objects that will be
actually displayed in the table component.

G R A P H I C C O M P O N E N T S 319

Excluding table rows

You can specify the business objects that will not be represented in the table component
depending on their business classes. To do so, you need to specify the business classes to
be excluded using method setExcludedClasses in the table component adapter. To retrieve
the adapter, use the getAdapter method. The adapter must be an instance of a subclass of
IlpListAdapter.

How to specify excluded classes in the table component
You can specify that business objects from specific business classes are not represented in
the table component. You can do that using the API, setExcludedClasses(java.util.List)
method, or using CSS.

The following example shows you how to prevent objects from business classes IltAlarm
and IltLed to be represented:

Adapter {
excludedClasses[0]: "ilog.tgo.model.IltAlarm";
excludedClasses[1]: "ilog.tgo.model.IltLed";

}

The filtering that is performed through the use of the excluded class list takes actually
place at the adapter level.

Note:

To see how to configure excluded classes through CSS, refer to The Adapter rule .

G R A P H I C C O M P O N E N T S320

Architecture of the table component

Like the other JViews TGO components, the table component is based on the MVC
architecture, which means that it has a model, a view and a controller associated with it.
For a general introduction to theMVC architecture, see Architecture of graphic components
which describes the classes and features of the table component specific to each of the three
modules of the MVC architecture, and also explains the role of the adapter.

In this section

Class overview
Gives an overivew of the MVC architecture of the table component.

The model
Describes how to manage attributes (columns) and representation objects (rows) in the
table.

The view
Describes how to customize the representation of table cells.

The controller
Describes how to attach a controller to a table view.

The adapter
Describes the classes of the table adapter.

G R A P H I C C O M P O N E N T S 321

Class overview

This topic describes the classes that you can use to create and manage tables. For a more
detailed description, refer to the overview-summary IBM® ILOG® JViews TGO Java™ API
Reference Documentation. The classes are organized as follows:

♦ MVC (model, view, controller) architecture

♦ Representation model and representation objects

♦ Graphic view and renderers

♦ Controller and interactors

MVC (model, view, controller) architecture
The MVC architecture for the table component is implemented by the following classes (see
Model, view, and controller for the table component):

♦ The IlpTableView class is the view module of the MVC architecture. It defines a
Swing-based table used to display representation objects. It uses an IlpTableModel as
entry model.

♦ The IlpTableModel interface defines how the IlpTableView can access representation
objects and attributes. Implementations of this interface relate to the model module of
the MVC architecture.

♦ The IlpTableColumnModel class defines which columns of the table model are visible,
which are fixed, as well as the order and the size of the columns.

♦ The IlpTableController class represents the controller module of theMVC architecture.
This class is used to define the behavior of the IlpTableView. Its API contains methods
to sort the table columns and to set interactors to the table.

♦ IlpTable is a convenient Bean that replicates the key API of the MVC components and
can also be used inside an IDE. It creates an IlpTableView, an IlpTableListModel, and
an IlpTableController and interconnects these objects.

G R A P H I C C O M P O N E N T S322

Model, view, and controller for the table component

For general information about the model, the view, and the controller, see Architecture of
graphic components.

Representation model and representation objects
The representation model for the table component is implemented by the following classes
(see Representation model and representation objects for the table component):

♦ The IlpTableRow interface defines the representation objects that can be displayed in
the IlpTableView.

♦ The IlpDefaultTableRow class is the default implementation of IlpTableRow. It can use
the attribute values of the representation object directly or take the attribute values of
the corresponding business object.

♦ IlpAbstractTableModel is an abstract implementation of the IlpTableModel interface.
It provides attributes to the IlpTableView based on an IlpExtendedAttributeGroup. It
defines an arbitrary order of the attributes, which corresponds to the default order of
the columns in the table.

♦ The IlpDefaultListModel class is provided to contain representation objects (IlpTableRow
instances) stored as a list.

♦ The IlpTableListModel class extends IlpAbstractTableModel. It is designed to provide
representation objects to the IlpTableView. The representation objects are stored as a
list based on an IlpDefaultListModel. The IlpDefaultListModel can be connected to
a back-end application by means of an adapter and a data source or be fed directly with
representation objects.

G R A P H I C C O M P O N E N T S 323

Representation model and representation objects for the table component

For general information about the representation model and the representation objects, see
Architecture of graphic components.

Graphic view and renderers
The graphic view and the renderers are implemented by the following classes (see Graphic
view and renderers for the table component):

♦ The IlpTableHeaderRenderer is used to render the column headers of the table (view).
In each column header, it displays an icon, indicating the sorting direction and sorting
order of the columns, and uses the style sheet information set to the table to get the
column label and description.

♦ The IlpTableCellRenderer is used to render the cells of the table. It uses the style sheet
information set to the table to retrieve the graphic characteristics needed to display the
cell contents, such as label, icon, font, or color.

G R A P H I C C O M P O N E N T S324

♦ IlpCellCoordinates locates a cell in an IlpTableView. It is defined by a row index and
a column index.

Graphic view and renderers for the table component

For general information about the graphic view and the rendering, see Architecture of
graphic components.

Controller and interactors
The controller and interactors of the table component are implemented by the following
classes:

♦ When set to the IlpTableController, an IlpDefaultTableViewInteractor object assigns
default behavior to the table view, delegating events that occur in the table to an
IlpDefaultTableHeaderInteractor or to an IlpObjectInteractor, according to the
location of the events.

G R A P H I C C O M P O N E N T S 325

♦ IlpDefaultTableMenuFactory provides a default pop-up menu to be displayed on a table
header.

Controller and interactors for the table component

For general information about the controller and interactors, see Architecture of graphic
components.

G R A P H I C C O M P O N E N T S326

The model

The table model provides the representation objects to be displayed in the associated table.
It can be connected to a back-end application by means of an adapter. It refers to an attribute
group IlpExtendedAttributeGroup to determine which attributes of the representation
objects are to be displayed. Each time an attribute is added to or removed from this attribute
group, a column is added to or removed from the table. (For more information on attributes,
see Attribute API in the Business Objects and Data Sources documentation.)

Each added column is arbitrarily placed at the end of the table, unless its position is
defined as property index in the style sheets set to the table.

Note:

By default, the IlpTableView creates an instance of IlpTableListModel. This table model
could be filled through an IlpDefaultListModel connected to a back end or could be used
directly.

When the table is to be connected to a back-end application, a data source and a list adapter
must be instantiated. Both the data source and the default list model must be connected to
the adapter.

Managing attributes (columns)
Attributes contain the values of the representation objects, or of the business objects related
to the representation objects, to be shown in the table. Attributes are displayed in the
columns of the table.

An attribute can also contain a computed value, that is, the result of a calculation, or
refer to another attribute. See Introducing business objects and data sources.

Note:

The IlpAbstractTableModel class provides the followingmethods tomanage these attributes:

♦ setAttributeGroup(ilog.cpl.model.IlpExtendedAttributeGroup) sets the attribute
group used by the table model to determine which attributes are to be shown. A call to
this method does not empty the table model (which keeps its representation objects.)

The representation objects and the table model do not necessarily use the same
attribute group: the table model can provide computed attributes with values that
are not in the representation objects.

Note:

After a nonordered attribute group has been set to the table model, the attributes are
alphabetically sorted in the table model. This constitutes the default order of the columns
in the table. Each attribute added after the attribute group has been set to the table
model is placed at the end of the table. This arbitrary order is modified when the property

G R A P H I C C O M P O N E N T S 327

tableColumnOrder is defined for the accepted business class or when the property index
is defined for the attribute represented in the column.

♦ getAttributeGroup() returns the attribute group used by the table model.

♦ getColumns() returns the attribute at the specified index.

♦ getColumnCount() returns the number of columns (attributes) contained in the table
model.

♦ getColumnName(int)returns the name of the column, the index of which is given as
parameter. The column name is the same as the attribute name.

Managing representation objects (rows)
The IlpTableListModel class, which extends IlpAbstractTableModel, provides the following
methods to manage the representation objects in a table. The representation objects
correspond to the rows in the table. These rows must be instances of an implementation of
IlpTableRow.

♦ setModel(javax.swing.ListModel) sets the IlpDefaultListModel used by the table
model to store the representation objects.

♦ getModel() returns the IlpDefaultListModel used by the table model.

♦ getRow(int) returns the representation object (IlpTableRow) at the specified index.

♦ getRowCount() returns the number of representation objects in the table model.

To add or remove representation objects when you do not use an adapter and a data source,
you must use the following IlpDefaultListModel methods:

♦ add(java.lang.Object) adds a representation object, o, to the table model (o must be
an IlpTableRow).

♦ addAll(java.util.Collection) adds a set of representation objects, c, to the table
model (c must contain only IlpTableRow instances).

♦ remove(int) removes the representation object whose index is given as parameter.

♦ remove(java.lang.Object) removes the specified representation object from the table
model.

♦ clear() removes all the representation objects from the table model.

G R A P H I C C O M P O N E N T S328

The view

The table view is responsible for displaying the graphic objects (table cells) and as such
corresponds to the visible part of the architecture.

You can customize the representation of table cells by:

♦ Using your own graphic representation

♦ Using an arbitrary TableCellRenderer

These ways are provided in addition to the CSS-based customization of the default table cell
renderer as explained in Customizing table cells in the Styling documentation.

Using your own graphic representation
You can create an IlvGraphic or a JComponent directly by declaring the class property
and setting it in a CSS file.

The class property name is a reserved keyword that indicates the class name of the generated
graphic object. JViews TGO provides a predefined representation for the objects in all graphic
components, which means that the class property is optional. It can be used when you want
to replace the predefined representation.

object."ilog.tgo.model.IltNetworkElement/label" {
class: ilog.views.sdm.graphic.IlvGeneralNode;
foreground: red;
label: @label;

}

IlpTableCellRenderer takes the information present in the CSS files to define how a table
cell is rendered. If the property class is specified, it defines the IlvGraphic or JComponent
that will be used to render the table cell.

To use a cascading style sheet class property in a table view, do the following:

1. Implement your own graphic object or use an existing one, either as an IlvGraphic or
as a JComponent.

2. Configure the properties of the objects or classes you want to represent with this property
using CSS.

3. Load this CSS file in the table component as illustrated in How to load a CSS file in a
table component.

Using an arbitrary TableCellRenderer
The renderer used by an IlpTableView is an IlpTableCellRenderer. You can replace it
with you own renderer, using the setDefaultRenderer(ilog.cpl.table.
IlpTableCellRenderer) method. This renderer must implement the TableCellRenderer
interface.

To write your own renderer, do the following:

G R A P H I C C O M P O N E N T S 329

1. Implement the javax.swing.table.TableCellRenderer interface.

2. Configure your table component to use your renderer.

The following code extract shows how to configure an IlpTableView to use the
MyTableCellRenderer class to render all table cells:

IlpTableView view = //access the table view
view.setDefaultRenderer(new MyTableCellRenderer());

G R A P H I C C O M P O N E N T S330

The controller

The IlpTableController class represents the controller module of the MVC architecture.
It can be attached to a table view by using the following code.

How to attach a controller to the table view

IlpTableView tableView = new IlpTableView();
IlpTableController tableController = new IlpTableController();
tableView.setController(tableController);

Note that a controller is automatically attached to a table view when a table component is
instantiated:

IlpTable tableComponent = new IlpTable();
IlpTableController controller = tableComponent.getController();
// tableComponent.getView().getController() == controller

When a controller is attached to a table view, the controller listens to the keyboard, mouse,
and focus events that occur in the table and transfers them to the view interactor set to the
controller.

Only one controller can be attached to a view at a time.

By default, the IlpTableController delegates event management to an
IlpDefaultTableViewInteractor. However, you can specify another interactor by using
the following code:

tableController.setViewInteractor(new MyInteractor());

For more details, see Interacting with the graphic components.

When an interactor receives mouse events from the controller, it tries to recognize the
associated user gestures. For example, when it receives an event MOUSE_PRESSED followed
by an event MOUSE_RELEASED, the interactor recognizes the gesture BUTTON1_CLICKED. The
set of basic gestures recognized by an interactor is defined in the class IlpGesture.

Interactors allow you to associate behavior with user gestures by means of Java™ actions.
You can also associate actions with keyboard events.

The IlpDefaultViewInteractor manages the events received from the controller in the
following way:

♦ If the event is a keyboard event, it checks whether an action has been associated with
this key. If so, it triggers the action.

♦ If the event occurred in the header, it delegates the event management to the
IlpDefaultTableHeaderInteractor set to the controller, if any.

♦ If the event occurred on an IlpGraphic object or on a representation object, it delegates
the event management to the IlpObjectInteractor set to the controller, if any.

G R A P H I C C O M P O N E N T S 331

♦ It checks whether the event corresponds to the display of a pop-up menu. If so, and if a
pop-up menu is set to this interactor, it will display the pop-up menu and stop.

♦ It tries to recognize gestures from the event. When a gesture is recognized, it triggers
the action associated with this gesture, if any.

The API of the IlpTableController also contains methods to sort the columns and filter
the rows of the table view. See Table component services.

G R A P H I C C O M P O N E N T S332

The adapter

The table adapter converts business objects retrieved from the associated data source to
table rows. The table adapter is defined by the interface IlpListAdapter. This adapter does
not create representation objects in a table model but in a list model. This list model and
the representation objects it contains are transformed into a table model at the level of the
table component.

The default table adapter implementation provides the following services:

♦ Creating the table rows. For details, see Representation object factory.

♦ Filtering the table rows. For details, see Filtering rows.

♦ Excluding table rows. For details, see Excluding table rows

The following figure shows the table adapter classes:

Table adapter classes

A given IlpListAdapter instance can only represent IlpClass objects of the same type. So
that only objects of a specific class or of one of its subclasses be represented, you should
set this class with the setAcceptedClass method.

The following code plugs an IltDefaultDataSource to an IlpTableModel through an
IlpTableListAdapter.

How to create a table adapter by instantiating a table component

IlpTable ilpTable = new IlpTable();

G R A P H I C C O M P O N E N T S 333

IltDefaultDataSource dataSource = new IltDefaultDataSource();
ilpTable.setDataSource(dataSource, acceptedClass);

How to retrieve a table adapter

IlpTableListAdapter adapter = ilpTable.getAdapter();

How to set your own adapter to the table component

IlpTable ilpTable= new IlpTable();
IlpTableListAdapter adapter = new IlpTableListAdapter();
ilpTable.setAdapter(adapter);
ilpTable.setAcceptedClass(acceptedClass);
IltDefaultDataSource dataSource = new IltDefaultDataSource();
ilpTable.setDataSource(dataSource);

List adapters use by default an IlpTableRowFactory that creates representation objects of
type IlpDefaultTableRow.

You can create a table adapter implicitly by instantiating the IlpTable component, as shown
in the following example.

Representation object factory
The table adapter converts business objects retrieved from the associated data source to
table rows. The new representation objects are created by a representation object factory.
The factory interface varies according to the type of adapter. The table adapter uses by
default an IlpTableRowFactory that creates representation objects of type
IlpDefaultTableRow.

Editing
Adapter interfaces are read-only, meaning that they do not perform editing operations on
the representation objects they create.

G R A P H I C C O M P O N E N T S334

Architecture of graphic components

The IBM® ILOG® JViews TGO graphic components all implement the generic MVC
(Model-View-Controller) architecture, an object-oriented pattern used in GUI design to
clearly separate application objects and data from their graphic display and from the way
the end user interacts with them. By separating application data from the logic for displaying
and controlling this data, MVC provides a way to develop GUI systems that support multiple
presentations of the same information. This section details the main components involved
in the MVC architecture and explains the role of the adapter inside this architecture.

In this section

The MVC architecture: an overview
Provides an overview of the MVC (model, view, controller) paradigm.

The representation model
Describes the representation model of the MVC paradigm.

The graphic view
Describes the graphic view, a container for graphic objects to which it provides access.

The controller
Describes the controller in the MVC architecture, which is responsible for handling user
input and modifying the model accordingly.

The adapter
Describes the adapter, which acts like a bridge between a data source and a graphic
component.

© Copyright IBM Corp. 1987, 2009 335

The MVC architecture: an overview

In the MVC paradigm, the end user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three kinds of object:

The model
which manages the behavior and data of the application domain, responds to requests
for information about its state (coming usually from the view), and responds to
instructions to change its state (usually issued by the controller).

The view
which manages the visual display of the data represented by the model.

The controller
which translates interactions with the view, such as mouse clicks and key strokes, into
updates to be performed on the model, instructing the model or the view or both to
change as appropriate.

The MVC paradigm decouples the views and models by establishing a subscribe/notify
protocol between them. A view must ensure that its appearance reflects the state of the
model, and a model must ensure that whenever its content undergoes modifications, all the
connected views are updated accordingly. With this approach, multiple views can be
connected to the same set of information while providing different graphic representations,
which may be dependent on the view configuration.

Unlike the model, which may be loosely connected to multiple view-controller pairs, each
view is associated with a unique controller and vice versa. Therefore, although the model
is limited to sending notifications about changes in its structure or content using the
subscribe/notify protocol, both the view and the controller can send messages directly to
each other and to their model.

In JViews TGO, theMVC architecture is defined by the set of interfaces shown in the following
figure.

G R A P H I C C O M P O N E N T S336

Classes implementing the MVC architecture in IBM® ILOG® JTGO

G R A P H I C C O M P O N E N T S 337

G R A P H I C C O M P O N E N T S338

The representation model

Describes the representation model of the MVC paradigm.

In this section

Overview
Provides an overview of model representation in the MVC paradigm,

Representation objects
Describes representation objects in a graphic component model.

Predefined representation object classes
Identifies the predefined representation object classes.

G R A P H I C C O M P O N E N T S 339

Overview

According to the MVC paradigm, the model represents the application data. In JViews TGO,
the model module, referred to as the representation model, is a container for representation
objects to which it provides access. See Representation objects.

Whenever possible, JViews TGO representation models are derived from existing Swing
models and like them use listeners to notify attached views of any changes in the data. Like
Swing models, JViews TGO representation models use the JavaBeans™ Event model to
implement the notification process. In JViews TGO, notifications are stateful, which means
that they not only inform that a modification has occurred, but also indicate what is the
nature of that modification.

Also, like Java™ Swing models, representation models impose a specific structure on the
objects they hold. Therefore, JViews TGO provides a different representation model for each
type of data structure to be addressed and hence for each type of graphic component
displaying this data.

JViews TGO provides the following representation model interfaces:

♦ A network model defined by the class IlpNetworkModel.

♦ An equipment model defined by the class IlpEquipmentModel.

♦ A tree model defined by the class IlpTreeModel.

♦ A table model defined by the class IlpTableModel.

For more information about these predefined representation models, see the information
on each graphic component.

G R A P H I C C O M P O N E N T S340

Representation objects

Representation objects constitute the basic elements of a specific graphic component model.
Therefore, they cannot be shared across graphic components. More specifically, these objects
map business objects to the specific object type by which they will be represented in the
related component. For example, a business object to be displayed in a table is stored in the
table representation model as a row representation object. A business object to be displayed
in a network view is stored in the network representation model as a network node or link.

Representation objects contain sufficient data to be graphically represented inside a graphic
component, but are independent of a particular graphic rendering. The graphic component,
where the representation object is inserted, translates its attribute information into graphic
objects using a renderer. You can associate graphic settings either with a representation
object class or with a specific instance of that class in order to customize the rendering
process. For further information, see Introducing cascading style sheets.

Representation objects are linked to business objects. For more information about business
objects, see Introducing business objects and data sources. Representation objects are
defined by the interface IlpRepresentationObject, which provides methods to:

♦ Link the representation object to a business object.

♦ Retrieve its attribute group.

♦ Get and set attribute values.

♦ Notify listeners about modifications to the representation object.

Like business objects, representation objects include an attribute group that can be either
static or dynamic. For more information, see Attribute group .

If you instantiate a representation object directly, you have to create a specific attribute
group to define the list of attributes attached to that object. When a representation object
is linked to a business object, it contains all the attributes defined for the associated business
object plus any other additional attributes that you would like to include, for example, a
computed attribute calculated from other attributes present in the business object.

A dynamic attribute group does not necessarily have to be based on that of the corresponding
business objects. To create such an attribute group, you have the following choices:

♦ Skip the business object.

In basic applications, the user can directly instantiate representation objects. For example,
when almost all data is displayed in only one graphic component or when the back-end
application data is such that sharing the business model data across components is
difficult.

♦ Use the business object directly.

The attribute group of the representation object is taken from that of the corresponding
business object.

♦ Extend the business object.

The representation object may add extra attributes or hide some of the attributes present
in the connected business object. Certain attribute values can be stored locally in the
representation object.

G R A P H I C C O M P O N E N T S 341

♦ Define a custom attribute group.

The attribute group for the representation object is completely different from that of the
business object. Individual attributes may obtain their value directly or indirectly from
the business object attributes, but most of the attributes are not the same.

G R A P H I C C O M P O N E N T S342

Predefined representation object classes

JViews TGO includes predefined representation object classes for each one of the graphic
components:

♦ IlpNetworkNode represents a node in a network.

♦ IlpNetworkLink represents a link connecting two nodes in a network.

♦ IlpEquipmentNode represents a piece of equipment in an equipment view.

♦ IlpEquipmentLink represents a link connecting two nodes in an equipment.

♦ IlpTreeNode represents a node in a tree.

♦ IlpTableRow represents a row in a table.

For more information about these classes, see the information on each graphic component.

G R A P H I C C O M P O N E N T S 343

G R A P H I C C O M P O N E N T S344

The graphic view

Describes the graphic view, a container for graphic objects to which it provides access.

In this section

Introduction
Introduces the graphic view.

Graphic objects
Discusses graphic objects, which are screen represenations of business objects and their
representation objects.

Graphic holders
Describes graphic holders, which store the graphic objects created for a given graphic view.

Graphic view configuration
Provides links to information on customizing the representation of objects in the different
graphic components.

G R A P H I C C O M P O N E N T S 345

Introduction

The graphic view is a container for graphic objects to which it provides access. It is the
physical space on the screen where these objects are drawn. In addition to storing the
graphic objects created to represent the application data, the graphic view contains
configuration and rendering information that is used to translate representation objects into
graphic objects.

A graphic view is defined by the IlpGraphicView interface. This interface provides methods
to:

♦ Set and retrieve the graphic holder. See Graphic holders.

♦ Set and retrieve the graphic view configuration. See Graphic view configuration.

♦ Set and retrieve the controller. See The controller.

G R A P H I C C O M P O N E N T S346

Graphic objects

Business objects and their representation objects are graphically represented on the screen
by means of graphic objects. Graphic objects make it possible for you to create sophisticated,
high-quality graphic representations in a flexible way.

Graphic objects are always associated with a representation object and optionally with a
representation object attribute. They are created for a specific graphic view and according
to the configuration defined for that view.

Graphic object classes can be associated with default graphic settings that can be overwritten
at the level of the graphic object instance. These graphic settings are stored as properties
which are configured using cascading style sheets. For detailed information, see Introducing
cascading style sheets .

The graphic view renderer is responsible for creating the final graphic representation for
an object in a certain graphic view. See Graphic view configuration.

The preferred way to create and customize your graphic objects is using cascading style
sheets (CSS). Using CSS, you can define IlvGraphic or JComponent objects to draw your
representation objects according to the business model information. You can create simple
representations such as labels, buttons and icons; or you can create sophisticated graphic
objects that are composed of several objects using composite graphics. (See
IlvComponentGraphic for more information.)

IBM® ILOG® JViews provides a set of convenience graphic objects that you can use directly
when defining complex graphic representations:

♦ Simple graphic objects: label, icon

♦ Composite graphic objects: different balloons, stackers

Graphic object classes
JViews TGO provides all the necessary infrastructure for you to create applications that
integrate both predefined business objects and custom business objects.

So that these business objects can be represented virtually in any type of graphic component
(whether network, equipment, table, or tree), they are translated into representation objects
specific to the graphic component in which they are to be displayed and then converted to
graphic objects, ready to draw on the screen.

These graphic objects are defined by the interface IlpGraphic and can be either simple
objects or composite ones. Simple graphics, also known as leaf graphics, are made up of a
single graphic element, such as a label or an icon. Composite graphics consist of multiple
graphic objects, which are grouped together by means of attachment rules.

JViews TGO supplies the following classes to help you create graphic objects and customize
them:

♦ IlpGraphic is an interface that defines all the graphic objects.

♦ IlpAbstractGraphic is a basic implementation for graphic objects. This abstract class
contains the basic information that allows you to create your own graphic object classes,
if needed.

G R A P H I C C O M P O N E N T S 347

♦ IlpLeafGraphic is a concrete graphic object implementation that is used to create simple
graphic objects, such as labels or icons.

G R A P H I C C O M P O N E N T S348

Graphic holders

A graphic holder is defined by the interface IlpGraphicHolder. It is responsible for storing
the graphic objects created for a given graphic view. Note that in simple cases where graphic
objects can be recreated when needed, it may not be necessary to store them in a graphic
holder.

When creating a graphic view, you can use one of the following convenience implementations
of IlpGraphicHolder.

♦ IlpDefaultGraphicHolder. This default implementation stores graphic objects per
representation object and attribute.

♦ IlpEmptyGraphicHolder. This simple implementation is used when graphic object
instances do not need to be stored in the graphic view.

G R A P H I C C O M P O N E N T S 349

Graphic view configuration

JViews TGO provides support to customize the graphic representation of the objects in the
different graphic components, and of the graphic components themselves by means of
cascading style sheets (CSS). For details, refer to:

♦ Configuring a network component through a CSS file

♦ Configuring an equipment component through CSS

♦ Configuring the tree component through a CSS file

♦ Configuring the table component through a CSS file

You can load the CSS file in the graphic view using the method setStyleSheets. The CSS
is dynamically interpreted, which means that there is no need to rerun the application after
changes. Once your style sheets are set, all objects currently visible in the graphic view are
redecorated accordingly. For details, see Introducing cascading style sheets.

G R A P H I C C O M P O N E N T S350

The controller

Describes the controller in the MVC architecture, which is responsible for handling user
input and modifying the model accordingly.

In this section

Introduction
Introduces the controller.

Interacting with the graphic components
Describes the interactors managed by the controller.

G R A P H I C C O M P O N E N T S 351

Introduction

In the MVC architecture, the controller is responsible for handling the user input and
modifying the model accordingly. The controller makes sure that any changes in the model
or in the graphic view configuration are reflected appropriately to the user. The controller
is defined by the interface IlpGraphicController. This interface provides methods to:

♦ Retrieve the application context

♦ Retrieve the graphic view being controlled

♦ Retrieve the view interactor

♦ Retrieve interactors for specific representation objects and attributes

The controller has various roles:

♦ It manages view interactors, which operate on the view as a whole, and object interactors.
For more information, see Interacting with the graphic components.

♦ It creates the graphic view configuration and sets it to the graphic view. The graphic
view configuration is created based on the application context.

♦ It makes it possible for external components to register for events triggered when the
user interacts with the graphic components or when the model is modified.

♦ The controller also provides filtering and sorting capabilities. It can insert a filter between
the model and the view to display only representation objects that satisfy specified
conditions and can set a sorter that defines the order in which representation objects are
to appear within the view.

Sorting is available only for the table and the tree component.Note:

JViews TGO supplies default implementations of controllers for each one of the predefined
graphic components. These are:

♦ IlpTableController

♦ IlpTreeController

♦ IlpNetworkController

♦ IlpEquipmentController

For more information, see the information on each graphic component.

G R A P H I C C O M P O N E N T S352

Interacting with the graphic components

The controller manages interactors. Interactors translate user gestures—a series of one or
more mouse events that are executed by the user to perform a single task—and keystrokes
into actions to be performed, and more specifically into Swing action invocations. JViews
TGO provides two types of interactor:

♦ View interactors that operate on the view as a whole and

♦ Object interactors that apply to each object contained in the view individually.

Events associated with interactors can be customized, except for some gestures, such as
selectionmanagement, tooltips, and display of pop-upmenus, which have standard behavior
in most user interfaces. All interactors recognize a number of basic user gestures, such as
pressing a mouse button, while only certain component-specific interactors handle more
complex gestures, such as moving a node or a table column or creating a link. In addition,
all interactors include support for displaying a pop-up menu. For information about
component-specific interactions, see the information on each graphic component.

You can define global object interactors (that apply to the entire application) using the
IlpInteractorManager interface. A default implementation of this interface,
IlpDefaultInteractorManager, is provided, which you can use globally and access through
the default context. For information about the default context, see The application context.

By default, the controller is associated with a default interactor manager. If interactors
specific to given representation objects have been defined, these will hide the global
interactors. In this case, when an interactor is requested, it is first searched for among the
local interactors and then, if none is found, in the default manager interactor.

The figure below shows the basic classes and interfaces that implement interactor support.

G R A P H I C C O M P O N E N T S 353

Interactor classes and interfaces

♦ The class IlpGesture is an enumeration defining the basic user gestures that are
recognized by all the interactors, whatever the component they are attached to.

♦ The interface IlpInteractor contains methods to attach keystrokes or user gestures to
actions and to set a pop-up menu factory to the interactor.

♦ The class IlpInteractionContext contains information about the view to which the user
events apply, the recognized gestures that are incomplete, the complete gestures, if any,
and the position where this gesture takes place.

♦ The class IlpAbstractPopupMenuFactory provides pop-up menus for an interactor given
the specified interaction context.

♦ The class IlpAbstractInteractor is an abstract implementation of IlpInteractor. This
class provides an implementation for the method processEvent(ilog.cpl.interactor.
IlpInteractionContext, java.awt.AWTEvent) that recognizes the basic gestures defined
in IlpGesture. The only method that subclasses should implement is createEventAction.
This method must provide an ActionEvent instance that is passed to the action associated
with the recognized gesture.

View interactors
View interactors are defined by the interface IlpViewInteractor. They handle interactions
with a graphic view and are attached to the controller associated with that view. When a
view interactor is attached to the controller, the controller registers all the user events
happening on that view. It retrieves the view interaction context or creates one, if none has
been defined, and calls the IlpViewInteractor.processEventmethod to process the events.

G R A P H I C C O M P O N E N T S354

If an event applies to a graphic object, the view interactor will first check whether this object
is associated with an object interactor and, if so, will delegate processing to that interactor.
See Object interactors. The view interaction context, defined by the class
IlpViewInteractionContext, extends IlpInteractionContext to add the appropriate
graphic objects and an IlpObjectInteractionContext that is passed to object interactors.

The diagram below shows the interfaces and classes related to view interactors.

View interactors interfaces and classes

A default implementation is provided for the view interactor, which is defined by the class
IlpDefaultViewInteractor. This class defines standard behavior for all its associated
graphic views. The default view interactor provides an IlpViewActionEvent that gives
access to information contained in the view interactor context to the action that is called
when a user gesture is recognized.

Selection handling in pop-up menus
The selection behavior attached to pop-up menus is defined by the method manageSelection
(ilog.cpl.interactor.IlpInteractionContext, ilog.cpl.util.selection.
IlpRepresentationObjectSelectionModel, ilog.cpl.model.IlpRepresentationObject)
and is as follows:

G R A P H I C C O M P O N E N T S 355

♦ When the mouse is over an object and this object is not selected, this object is selected
and other objects are deselected. If the object is selected, the selection remains unchanged.

♦ When the mouse is not over an object, all the objects in the view are deselected.

To modify this behavior, you must redefine the method manageSelection(ilog.cpl.
interactor.IlpInteractionContext, ilog.cpl.util.selection.
IlpRepresentationObjectSelectionModel, ilog.cpl.model.IlpRepresentationObject).

Tooltip support
In JViews TGO, tooltip support is based on the Swing tooltip support and is handled by the
graphic view. It allows you to create tooltips for graphic objects that represent entire objects
or attributes and can be customized by means of cascading style sheets. You can define
tooltips as simple text or as complex graphic objects.

The following properties are available to configure tooltips:

♦ tooltipText defines a string value to be used as the object tooltip.

♦ tooltipGraphic defines a graphic object that is used to create a tooltip. This property
has priority over tooltipText.

The following code shows how to add tooltip support to a given graphic view.

How to add tooltip support to the view

IlpNetwork network = new IlpNetwork();
IlpGraphicView view = network.getView();
IlpToolTipManager.AddToolTipSupport (view);

Once you have added tooltip support to a graphic view, you can configure its behavior with
the IlpToolTipManager API.

How to configure tooltip support

IlpToolTipManager tmgr = IlpToolTipManager.GetToolTipManager(view);

How to remove tooltip support from the view
Tooltip support can be removed from a graphic view with the following method.

IlpToolTipManager.RemoveToolTipSupport (view);

Object interactors
Object interactors are defined by the interface IlpObjectInteractor. They handle
interactions with simple or composite IlpGraphic objects or representation objects. If a
user event applies to a simple graphic object that is part of a composite graphic object and
that object has no associated interactor, then the event will be passed to and processed by
the interactor of the parent object, if any.

G R A P H I C C O M P O N E N T S356

The diagram below shows the interfaces and classes related to object interactors.

Object interactors interfaces and classes

IlpObjectInteractionContext extends IlpInteractionContext to add the concerned
graphic object or representation object.

A default implementation is provided for the object interactor, which is defined by the class
IlpDefaultObjectInteractor. The default object interactor provides an
IlpObjectActionEvent that gives access to information contained in the object interactor
context to the action that is called when a user gesture is recognized.

G R A P H I C C O M P O N E N T S 357

The adapter

The adapter is an object that acts like a bridge between a data source and a graphic
component. It converts the business objects of the data source (IlpObject instances), which
are component-independent, to representation objects which are suitable for a given
representation model, that is, for a given graphic component. For information about the
representation model and representation objects, see The representation model.

The use of adapters is optional as you can directly instantiate and insert representation
objects into a representation model. However, they are highly recommended as they hide
the complexity of creating representation objects relationships. Using adapters, you do not
need to care about representation objects. All you have to do is create the business model
in the data source and customize the view and objects using CSS to obtain an attractive
graphic representation.

By default, adapters are meant to work in conjunction with a data source. By default, they
are used in all JViews TGO graphic components.

Adapters also handle synchronization.

JViews TGO supplies four kinds of adapter, each corresponding to a specific type of
representation model:

♦ The table adapter creates representation objects of type table row. See section Table
component for the specific features of the table adapter.

♦ The tree adapter creates representation objects of type tree node. See section Tree
component for the specific features of the tree adapter.

♦ The network adapter creates representation objects of type network node and link. See
section Network component for the specific features of the network adapter.

♦ The equipment adapter creates representation objects of type equipment node. See
section Equipment component for the specific features of the equipment adapter.

These adapters are all based on an abstract adapter, defined by the interface
IlpAbstractAdapter.

The following figure shows interfaces that are directly related to adapters.

G R A P H I C C O M P O N E N T S358

Adapter interfaces

This diagram shows that an adapter knows a data source. The adapter listens to the data
source, which notifies it whenever a new IlpObject instance is created. Once a new object
is added to the data source, the adapter creates the corresponding IlpRepresentationObject
instance if the adapter configuration allows it.

In some cases, adapters can also contain temporary representation objects that are created
independently of the corresponding business object (before it is created and retrieved from
the data source). These temporary objects are stored in the adapter along with a means to
determine whether the corresponding business object has been created. For more
information, see Creating a temporary representation object.

All adapters suppor filtering of business objects. When a filter is set to an adapter, only
IlpObject instances in the data source that satisfy specified conditions are represented in
the representation model. This filter is defined by the interface IlpFilter. For more
information, see the information on each graphic component.

G R A P H I C C O M P O N E N T S 359

Using JViews products in Eclipse RCP applications

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic describes how to use
JViews TGO inside Eclipse or RCP. It shows you how to display network, equipment, table,
and tree components embedded in an SWT window.

Installing the JViews runtime plugin
JViews provides an IlvSwingControl class that encapsulates a Swing JComponent in an
SWT widget. It allows you to use IlpNetwork, IlpEquipment, IlpTree, and IlpTable objects
in an SWT window, together with other SWT or JFace controls. In this way, it provides a
bridge between the AWT/Swing windowing system and the SWT windowing system.

In order to install the IBM® ILOG® JViews Eclipse plugins, you need to install from the
local site as shown below.

For Eclipse 3.3:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates/Find And Install.

3. In the Install/Update dialog box, click Search for new features to install.

4. Define a New Local Site with the directory <installdir>/jviews-framework86/tools/
ilog.views.eclipse.update.site.

5. Select the features you want to install.

For Eclipse 3.4:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates and select the Available Software tab.

3. Add a new local site: ClickAdd Site, then Local and specify the directory <installdir>/
jviews-framework86/tools/ilog.views.eclipse.update.site

4. Select the features you want to install, and press the Install button.

Providing access to class loaders
Many services in JViews need to look up a resource. Since the classical way to provide access
to resources is a classloader, JViews uses classloaders for this purpose. But in Eclipse/RCP
applications, each plugin corresponds to a classloader, and the JViews classloader sees only
its own resources, not the application resources. To fix this problem, you can register plugin
classloaders with JViews through the IlvClassLoaderUtil.registerClassLoader function.
Each resource lookup then considers the registered classloaders and, if the plugins are
configured accordingly, also considers the dependencies of the registered classloaders.

The code for doing this is usually located in a plugin activator class. For example:

public class MyPluginActivator extends AbstractUIPlugin
{

© Copyright IBM Corp. 1987, 2009360

/**
* This method is called upon plugin activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
IlvClassLoaderUtil.registerClassLoader(getClass().getClassLoader());

}

/**
* This method is called when the plugin is stopped
*/
public void stop(BundleContext context) throws Exception {
super.stop(context);
IlvClassLoaderUtil.unregisterClassLoader(getClass().getClassLoader());

}

}

The overriding of stop() is necessary so that, when the plugin gets unloaded, JViews gets
notified about the plugin that is going to stop and can drop references to its resources or
instances of its classes. The activator plugin is usually also the place where IlvProductUtil.
registerApplication is called. See section Before you start deploying an application for
an example.

The bridge between AWT/Swing and SWT
The bridge between the AWT/Swing windowing system and the SWT windowing system
consists of an IlvSwingControl class that encapsulates a Swing JComponent in an SWT
widget. This class allows you to use IlpNetwork, IlpEquipment, IlpTree, and IlpTable
objects in an SWT window, together with other SWT or JFace controls.

The following code shows how to create a bridge object:

Composite parent = ...;
IlpNetwork network = new IlpNetwork();
ControlSWTnetwork = new IlvSwingControl(parent, SWT.NONE, network);

At the JViews Framework level, the bridge between the AWT/Swing windowing system
and the SWT windowing system consists of an IlvSwingControl class that encapsulates a
Swing JComponent in an SWT widget. This class allows you to use IlvManager or
IlvJManagerViewPanel objects in an SWTwindow, together with other SWT or JFace controls.

The following code shows how to create a bridge object at the JViews Framework level:

Composite parent = ...;
IlvManagerView mgrView = ...;
IlvJManagerViewPanel jmgrView = new IlvJManagerViewPanel(mgrView);
ControlSWTview = new IlvSwingControl(parent, SWT.NONE, jmgrView);

Using IlvSwingControl instead of the native SWT_AWT class has the following benefits:

♦ Simplicity: it is easier to use, since you do not have to worry about the details of the
Component hierarchy (see http://java.sun.com/javase/6/docs/api/java/awt/Component.html).

G R A P H I C C O M P O N E N T S 361

http://java.sun.com/javase/6/docs/api/java/awt/Component.html

♦ Portability: IlvSwingControl also works on platforms that do not have SWT_AWT, like
X11/Motif® and MacOS® X 10.4.

♦ Less flickering: on Linux®/Gtk, flickering is reduced.

♦ Popup menus: popup menus can be positioned on each Component inside the AWT
component hierarchy. For details of components, see
http://java.sun.com/javase/6/docs/api/java/awt/Component.html.

♦ Better size management: the size management between SWT and AWT (LayoutManager)
is integrated.

♦ Focus: it provides a workaround for a focus problem onMicrosoft®Windows® platforms.

The IlvSwingControl bridge is not supported on all platforms. It is only supported
on Windows, UNIX® with X11 (Linux, Solaris™, AIX®, HP-UX®), and MacOS X 10.4
or later.

Note:

The IlvSwingControl bridge does not support arbitrary JComponents. Essentially,
components that provide text editing are not supported. See IlvSwingControl for
a precise description of the limitations.

Threading modes
You can handle the SWT-Swing user interface events in one or two threads.

Single-thread mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

♦ Two-thread mode

The SWT events are handled in the SWT event thread and AWT/Swing events are handled
in the AWT/Swing event thread. This is the default mode.

You can switch between the two threads by using the SWT method Display.asyncExec
() and the AWT method EventQueue.invokeLater().

If your application uses this mode, you must be careful to:

● Make API calls on SWT widgets only in the SWT event thread. Otherwise, you will get
SWTExceptions of type ERROR_THREAD_INVALID_ACCESS.

● Make API calls on JComponents, which include IlpNetwork, IlpEquipment, IlpTree,
and IlpTable, only in the AWT/Swing event thread. Otherwise, you risk deadlocks.

G R A P H I C C O M P O N E N T S362

http://java.sun.com/javase/6/docs/api/java/awt/Component.html

At the JViews Framework level, make API calls on JComponents, which include
IlvManager and IlvJManagerViewPanel, only in the AWT/Swing event thread.
Otherwise, you risk deadlocks.

♦ Single-thread mode

In single-thread mode, SWT and AWT/Swing events are handled in the same thread.

Single-thread mode reduces the risk of producing deadlocks.

Enable this mode by calling setAWTThreadRedirect or enableAWTThreadRedirect()
early during initialization.

The following example shows how to enable single-thread mode:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

If you are using JComponents other than IlpNetwork, IlpEquipment, IlpTree, and
IlpTable in your application, your JComponents must use the method IlvSwingUtil.
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread().

For example:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

This mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal

Note:

JInternalFrames in your application. There are also some other limitations.
See the class IlvEventThreadUtil for a precise description of the limitations.

At the JViews Framework level, if you are using JComponents other than IlvManager
and IlvJManagerViewPanel in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() (see http://
java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()) or
SwingUtilities.isEventDispatchThread() (see http://java.sun.com/javase/6/docs/api/
javax/swing/SwingUtilities.html#isEventDispatchThread().)

G R A P H I C C O M P O N E N T S 363

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()

G R A P H I C C O M P O N E N T S364

A
adapters 219, 272, 358

B
background beans 103
background configuring 100
background formats 12, 106
background limitations 12
background properties 12
background support 96
backgrounds 44, 160

C
class loader 360
configuring background 100
controller 125, 216, 267, 271
CSS properties

autoResizeMode 285
background 233, 285
cellRenderer 233
class 269, 329
columnMargin 285
defaultRenderer 285
expansion 129
fixedColumnCount 285
gridColor 285
headerRenderer 285
reorderingAllowed 285
rowMargin 285
scrollsOnExpand 233
selectionMode 285
showGrid 285
showHorizontalLines 285
showVerticalLines 285
toggleClickCount 233

CSS rules
adapter 47, 163, 235, 288
background 44, 160

equipment 143
graph layout 36, 153
interactor 33, 150, 234, 287
label layout 44, 159
link layout 42, 158
network 25
overview 33, 150
positioning 46, 162
table 285
toolbar 26, 143
tree 232
view 31, 148, 233, 285
zooming 34, 152

E
Eclipse Rich Client Platform 360

class loader 360
runtime plugin 360

enableAWTThreadRedirect method
IlvEventThreadUtil class 362

equipment component 9, 132
adapter 219
architecture 209
background maps 201
cards 191
configuring 139, 167
controller 216
creating 135
customizing 169
expansion strategy 208
filtering nodes 202
graphic objects 214
handler 216
link factory 207
model 212
node factory 206
object renderers 215
positioning 186

© Copyright IBM Corp. 1987, 2009 365

I N D E X

Index

root nodes 204
services 171
view 214
view interactors 173
zooming 200

EventQueue class
isDispatchThread method 362

G
geographic position converter 73
graphic components

adapters 358
controller 351
graphic holders 349
interactors 353
layers 91
objects 347
representation model 339
view 345
view interactors 354

I
IlpAbstractAdapter interface 358
IlpAbstractGraphic class 347
IlpAbstractInteractor class 353
IlpAbstractNodeAdapter class 112, 128, 204
IlpAbstractPopupMenuFactory class 353
IlpAbstractTableModel class 323, 327
IlpAbstractTreeAdapter class 261
IlpAttribute interface 315
IlpAttributeComparator class 259
IlpCompositeGraphic class 124
IlpContainmentTreeAdapter class 268, 272
IlpDefaultEquipmentNode class 219
IlpDefaultEquipmentNodeFactory class 219
IlpDefaultGraphicHolder class 349
IlpDefaultInteractorManager class 353
IlpDefaultListModel class 323, 327
IlpDefaultNetworkLink class 128
IlpDefaultNetworkLinkFactory class 128
IlpDefaultNetworkModel class 118
IlpDefaultNetworkNode class 128
IlpDefaultNetworkNodeFactory class 128
IlpDefaultTableHeaderMenu class 325
IlpDefaultTableListModel class 327
IlpDefaultTableRow class 323, 334
IlpDefaultTableViewInteractor class 325
IlpDefaultTreeNode class 265
IlpDefaultViewInteractor class 354
IlpEmptyGraphicHolder class 349
IlpEquipmentAdapter class 219
IlpEquipmentController class 352
IlpEquipmentHandlerWithDataSource class 216
IlpEquipmentModel interface 340
IlpEquipmentNodeFactory interface 219

IlpExtendedAttributeGroup class 323, 327
IlpFilter interface 358
IlpGeographicPolygon class 73
IlpGeographicPolyline class 73
IlpGeographicPosition class 73
IlpGeographicPositionConverter class 73
IlpGesture class 353
IlpGraphic interface 347
IlpGraphicController interface 352
IlpGraphicHolder interface 349
IlpGraphicinterface 215
IlpGraphicView interface 346
IlpInteractionContext class 353
IlpInteractor interface 353
IlpInteractorManager interface 353
IlpLeafGraphic class 347
IlpListAdapter class 333
IlpMutableDataSource interface 126, 216
IlpMutableNetworkModel interface 118
IlpNetwork class 14, 118
IlpNetworkAdapter class 128
IlpNetworkController class 352
IlpNetworkHandlerWithDataSource class 126
IlpNetworkLabelLayoutButton class 85
IlpNetworkLink interface 118, 343
IlpNetworkLinkFactory interface 128
IlpNetworkModel interface 118, 340
IlpNetworkNode interface 118, 343
IlpNetworkNodeFactory interface 128
IlpObjectInteractionContext interface 356
IlpObjectInteractor interface 325, 356
IlpPoint class 72, 73
IlpPolygon class 72, 73
IlpPolyline class 72, 73
IlpPosition interface 72, 186
IlpPositionConverter interface 72
IlpRect class 72
IlpRelativePoint class 72
IlpRepresentationObject interface 341, 358
IlpShelfItemPosition class 72
IlpTable class 322
IlpTableCellRenderer class 324
IlpTableColumnModel class 322
IlpTableController class 322, 352
IlpTableHeaderRenderer class 324
IlpTableListModel class 323, 328
IlpTableModel interface 322, 340
IlpTableRow interface 323, 343
IlpTableRowFactory class 334
IlpTableView class 322, 327
IlpToolTipManager class 356
IlpTree class 249, 264
IlpTreeCellRenderer class 266

G R A P H I C C O M P O N E N T S366

IlpTreeController class 264, 352
IlpTreeModel class 264, 265, 268, 340
IlpTreeNode class 264, 265, 268, 343
IlpTreeSelectionModel interface 255, 266
IlpTreeView class 264
IlpViewActionEvent class 354
IlpViewInteractionContext interface 354
IlpViewInteractor interface 354
IlpViewsViewInteractor class 60, 173
IltCard class 72
IltCardCarrier class 72
IltCompositeGrapher class 89
IltCompositeGrapher.setLayerPolicy class 89
IltDefaultDataSource class 333
IltLayerPolicy class 89
IltLogicalZoomPolicy class 93
IltMixedZoomPolicy class 93
IltPhysicalZoomPolicy class 93
IltShelf class 72
IlvEventThreadUtil class

enableAWTThreadRedirect method 362
setAWTThreadRedirect method 362

IlvGraphic class 91
IlvManagerViewInteractor class 60, 173
IlvMathTransform interface 73
IlvProjection class 73
IlvSwingControl class 360
IlvSwingUtil class

isDispatchThread method 362
IlvTransformer class 73, 93
interactors 267, 353
isDispatchThread method

EventQueue class 362
IlvSwingUtil class 362

isEventDispatchThread method
SwingUtilities class 362

M
map themes 102
model 212, 268
multiple node layout 37
multiple node layouts 79
mutable style sheets

adapter configuration 48, 164, 237, 289
MVC architecture 322, 336

N
network component 8, 14

adapter 128
background maps 96
configuring 21, 23, 52
creating 17
customizing 55
expansion strategy 116
filtering nodes 110

handler 126
label layout 84
layers 89
link factory 115
model 120
MVC API 117
node factory 114
object interactors 69, 183
object positioning 72
object renderers 124
root nodes 112
services 57
view 123
view interactors 60
zooming 93

nonautomatic node layout 37

O
object interactors 69, 183
obstacles 87

P
pop-up menus 304, 355
predefined representation object classes 343
project file 54, 243, 295

R
RCP 360
runtime plugin 360

S
Scalable Vector Graphics (SVG)

supported/unsupported CSS properties 362
setAWTThreadRedirect method

IlvEventThreadUtil class 362
Standard Widget Toolkit 360
SwingUtilities class

isEventDispatchThread method 362

T
table component 11, 276

adapter 333
architecture 321
configuring 281, 293
controller 331
creating 278
customizing 296
model 327
project file 295
renderers 324
services 297
view 329

tree component 12, 224
adapter 272
architecture 263
configuring 229, 241
controller 271
creating 226

G R A P H I C C O M P O N E N T S 367

customizing 244
expansion strategy 273
graphic view 266
model 268
nodes 244, 253
project file 243
renderer 266
root nodes 261
services 245

V
view 269

tree view 249
view interactors 60, 118, 173, 175

Z
zooming mode

logical 95
mixed 95
physical 94

G R A P H I C C O M P O N E N T S368

	Table of contents
	Introducing graphic components
	The network component
	The equipment component
	The table component
	The tree component

	Network component
	Introducing the network component
	Creating a network component: a sample
	Configuring the network component
	Introduction
	Configuring a network component through a CSS file
	Configuring a network component through the API
	Loading a project file
	Customizing the rendering of network nodes and links

	Network component services
	Introduction to network component services
	Interacting with the network view
	Interacting with the network objects
	Positioning
	Layout
	Label layout
	Layers
	Zooming
	Background support
	Filtering
	Accepted and excluded classes
	Setting a list of origins
	Node factory
	Link factory
	Expansion strategy

	Architecture of the network component
	Class overview
	The model
	The view
	The controller
	The adapter

	Equipment component
	Introducing the equipment component
	Creating an equipment component: a sample
	Configuring the equipment component
	Configuring an equipment component through CSS
	Configuring an equipment component through the API
	Customizing the rendering of equipment nodes and links
	Loading a project file

	Equipment component services
	Interacting with the equipment view
	Interacting with the equipment objects
	Positioning
	Relative positioning
	Layout
	Zooming
	Background support
	Filtering
	Accepted and excluded classes
	Setting a list of origins
	Node factory
	Link factory
	Expansion strategy

	Architecture of the equipment component
	Class overview
	The model
	The view
	The controller
	The adapter

	Tree component
	Introducing the tree component
	Creating a tree component: a sample
	Configuring the tree component
	Introduction
	Configuring the tree component through a CSS file
	Configuring the tree component through the API
	Loading a project file
	Customizing the rendering of tree nodes

	Tree component services
	Introduction
	Filling the tree with business objects
	Interacting with the tree view
	Interacting with the tree nodes
	Handling the selection
	Filtering the tree nodes
	Accepted and excluded classes
	Sorting the tree nodes
	Controlling the display of objects as tree leaves
	Setting a list of origins

	Architecture of the tree component
	Class overview
	The model
	The view
	The controller
	The adapter

	Table component
	Introducing the table component
	Creating a table component: a sample
	Configuring the table component
	Introduction
	Configuring the table component through a CSS file
	Configuring the table component through the API
	Loading a project file
	Customizing column headers and rows

	Table component services
	Introduction to table component services
	Selecting the accepted class of objects
	Filling the table with business objects
	Interacting with the table view
	Interacting with the table cells
	Handling the selection
	Fitting to Contents
	Resizing columns
	Fixing columns in a table
	Moving columns
	Searching for a string in a table
	Showing or hiding columns in a table
	Sorting columns
	Adding new columns to the table
	Filtering rows
	Excluding table rows

	Architecture of the table component
	Class overview
	The model
	The view
	The controller
	The adapter

	Architecture of graphic components
	The MVC architecture: an overview
	The representation model
	Overview
	Representation objects
	Predefined representation object classes

	The graphic view
	Introduction
	Graphic objects
	Graphic holders
	Graphic view configuration

	The controller
	Introduction
	Interacting with the graphic components

	The adapter

	Using JViews products in Eclipse RCP applications
	Index

