
IBM ILOG JViews TGO V8.6

Business objects and data
sources

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing business objects and data sources...9
Overview..10

Business model and business classes...11

Data sources..12

Predefined business objects..13
Network elements...14
Links...16
Groups..17
Subnetworks...19
Shelves, cards, ports, and LEDs..20
Base Transceiver Stations (BTS)..23
Off-page connectors...24
Alarms..25

States..26

Predefined business classes...29
Overview of the predefined business classes..30
Attributes of predefined business objects...34
Computed attributes based on the object state..38
Extending predefined business classes...39

The business model...43
Business model, business classes, and business objects...44

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Integrating the business model with the back end..45

Defining the business model in XML...47
Defining a dynamic class in XML...48
Extending a predefined business class in XML..54
Loading the business model...56

Business model API..57
Class overview...58
Business class API...59
Business object API...60
Attribute API...62

Business class manager API..66

Defining the business model from JavaBeans classes...68

Defining the business model with dynamic classes..71
Defining a dynamic class using the API...72
Extending a predefined business class using the API..75

Data sources...79
About data sources...81

Data source API...82

Adding business objects from XML..85
Reading an XML file into a data source...86
Writing the data source content to XML...95
Adding predefined business objects...96

Adding business objects from JavaBeans...97

Adding dynamic business objects..98

Defining business object relationships...101

Grouping changes in batches..106

Advanced parsing and writing of a data source...108

Implementing a new data source...110

Network elements...115
Network element class..116

Loading a network element defined in XML..118

Creating a network element with the API..120

Representation of network elements in a network...121
Network element types...122
Network element functions...135
Network element families...139

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S4

Partial network elements..140
Shortcut network elements...141
Network element sizes...142

Representation of network elements in a table and in a tree..143

Links..145
Classes overview...147

Links...148

Link sets...151

Link bundles..154

Representation of links in a network...158

Representation of links in a table and in a tree..162

Link connection ports...163

Link programming examples..167

Groups...171
Group class..172

Group shapes..173

Loading a group defined in XML..175

Creating a group with the API..177

Representation of groups in a table and in a tree..179

Subnetworks...181
About subnetworks...182

Loading a subnetwork defined in XML..183

Creating a subnetwork with the API..185

Representing alarms in expanded subnetworks..187

Shelves and cards..191
Overview of classes..192

Shelves...193
Overview of shelves...194
Shelf class..195
Loading a shelf defined in XML..196
Creating a shelf with the API..197

Shelf items...199
Cards..201

Overview of cards...202
Card class...203

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 5

Loading a card defined in XML...204
Creating a card with the API...206

Empty slots...209
Overview of empty slots..210
Empty slot class..211
Loading an empty slot defined in XML..212
Creating an empty slot with the API..214

Card carriers...217
Overview of card carriers..218
Card carrier class..219
Loading a card carrier defined in XML..220
Creating a card carrier with the API..222

Card items..225
Overview of card items...226
Card item class...227
LEDs...229

Overview of LEDs...230
LED class..231
Loading an LED defined in XML...232
Creating an LED with the API...234
Predefined LED types...235

Ports...237
Overview of ports..238
Port class..239
Loading a port defined in XML..240
Creating a port with the API..242
Predefined port types..243

Representation of shelves and cards in a table and in a tree...247

BTS (Base Transceiver Station)...249
BTS Class...250

Loading a BTS object defined in XML...252

Creating a BTS object with the API...254

Representation of BTS objects in a table and in a tree...256

Off-page connectors..257
Off-page connector class...258

Loading an off-page connector defined in XML...259

Creating an off-page connector with the API...260

Representation of off-page connectors in a network..261

Representation of off-page connectors in a table and in a tree..262

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S6

Alarms...263
Alarm object class...264

Loading an alarm defined in XML..267

Creating an alarm with the API..269

Representation of alarms in a network...270

Representation of alarms in a table and in a tree...271

Lookup tables for state visuals...273
The OSI state dictionary visuals..275
Graphical representation of the OSI primary states...276
Graphical representation of OSI secondary states...278

The Bellcore state dictionary visuals..283
Graphical representation of the Bellcore primary states..284
Graphical representation of the Bellcore secondary states..285

The SNMP state dictionary visuals..293
Graphical representation of SNMP primary states...294
Graphical representation of SNMP secondary states..295

The Misc state dictionary visuals..305
Graphical representation of Misc secondary states...306

The Performance state dictionary visuals..309
Graphical representation of Performance secondary states..310

The SAN state dictionary visuals...315
Graphical representation of SAN secondary states...316

The SONET state dictionary visuals..319
Graphical representation of SONET primary states...320
Graphical representation of SONET secondary states..323

States...325
Graphical representations of predefined business object states.......................................327

State dictionaries: an overview..329

The OSI state dictionary...331

The Bellcore state dictionary...333

The SNMP state dictionary...334

Miscellaneous states: the Misc state dictionary..336

Performance states: the Performance state dictionary...337

SAN states: the SAN state dictionary..338

Link states: the SONET state dictionary...339

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 7

Alarm states...341
Graphical representation of alarm conditions...342
Setting the alarm counters...348
Defining alarm states with the API...350
Loading alarm states in XML..352

Trap states..353

Managing states..357
State values, state classes, and state systems..358
Object states..361
The object state classes...364
Modifying states and statuses..366
Accessing and removing states..368

Defining states in XML..369
Overview...371
OSI states...374
Bellcore states..378
SNMP states..381
Miscellaneous states..386
Performance states..388
SAN states...390
SONET states..392
BiSONET states...394
Alarm states...396
Trap states..399

Information window...401

System window..403

Customizing the representation of states and alarms...404

Index..405

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S8

Introducing business objects and data
sources

Presents the concepts of business model and data sources as well as the predefined business
objects supplied with JViews TGO.

In this section

Overview
Introduces the relationship between a back-end application and JViews TGO objects such
as data sources, business objects, graphic components.

Business model and business classes
Defines the concept of business model.

Data sources
Defines the concept of data source.

Predefined business objects
Introduces the predefined business objects provided by JViews TGO.

States
Provides a basic description of the visual aspect of states.

Predefined business classes
Shows class diagrams of the predefined business classes and describes their attributes and
how to extend them.

© Copyright IBM Corp. 1987, 2009 9

Overview

IBM® ILOG® JViews TGO graphic components communicate with the back-end application
from which they obtain data to be displayed through a data source. The role of the data
source is to transform data retrieved from the back end to objects that JViews TGO can
handle. These objects, known as business objects, can be represented in any of the JViews
TGO graphic components.

JViews TGO provides a set of predefined business classes that you can use directly in your
applications. These classes are specifically designed for easing the development and
leveraging the overall graphic quality and the ergonomics of user interfaces in
telecommunication applications. All you have to do is insert instances of these predefined
business classes for them to be translated into high-quality graphic representations with a
common look and feel in all the JViews TGO graphic components. Predefined business objects
include a default graphic renderer that maps them to graphic representations automatically,
thus significantly minimizing coding efforts.

In addition, JViews TGO furnishes a complete library of graphic symbols, icons, and
decorations for representing changes in telecommunication business object states and
alarms. State and alarm representations comply with the most widely-spread
telecommunication standards, such as OSI, Bellcore, and SNMP. For detailed information
on graphical representations of states and alarms, see States and Lookup tables for state
visuals.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S10

Business model and business classes

The business model translates back-end data into classes that JViews TGO can easily
manipulate. It describes inheritance between these classes, along with their associated
attributes.

Business objects are instances of business classes, which are described by a business model.

Business classes and their instances are dynamic, which means that you can modify them
and add new attributes at runtime. As a consequence, you do not have to recompile your
application for modifications to be taken into account.

Business classes can also be defined directly in XML.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 11

Data sources

Data sources are connecting objects that bridge the back-end with the front-end application,
or GUI. They transform data retrieved from the back end into business objects that will then
be rendered as graphic objects at the level of the graphic components.

JViews TGO provides a default implementation of the data source that directly plugs to XML
files or streams or to JavaBeans™. On the other side, the same data source can be connected
to multiple graphic components, allowing you to have different views of the same original
data with a consistent appearance.

You can specialize the data source to connect to other types of back end, such as Java™
Naming and Directory Interface (JNDI), or any other kind of back-end application.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S12

Predefined business objects

Introduces the predefined business objects provided by JViews TGO.

In this section

Network elements
Presents the differents kinds of network elements and their graphical representation.

Links
Provides some examples of links and their graphical representation.

Groups
Explains what a group is and presents the differents kinds of groups and their graphical
representation.

Subnetworks
Defines the concept of subnetwork and shows the two possible ways to display a subnetwork.

Shelves, cards, ports, and LEDs
Defines and illustrates the concepts of shelves, cards, ports, and LEDs.

Base Transceiver Stations (BTS)
Defines the concept of base transceiver station.

Off-page connectors
Describes what off-page connectors are used for.

Alarms
Describes the specificity of the JViews TGO alarm object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 13

Network elements

Network elements include any kind of shelf-based telecom or data-communications equipment
(a switch, a multiplexer, a cross-connect, and so on), outside plant equipment (coax node),
and peripheral equipment (terminal or printer).

Network element representations
A network element can be represented by a pictorial representation (bitmap image or vector
drawing), a symbol, or a shape. Not all physical details of the element are visible in the
representation.

♦ Pictorial representation.The network element base is a bitmap image or vector drawing.
This drawing is meant to be realistic. Several predefined bases are available for shelf-based
equipment, terminals, and mobile phone access network elements. New bases can easily
be introduced by providing bitmap images.

Pictorial representations of shelf-based equipment and terminal

♦ Symbolic representation. The network element base has a square and the network
element function is denoted by a symbol containing ITU/ANSI or traditional symbols. The
default type corresponding to the default symbolic network element representation is
called NE (Network Element). The following figure illustrates an NE type network element:
here, an add-drop multiplexer with a capacity of OC192.

Symbolic representation of NE type network element

♦ Shape representation. The network element base has a geometric shape that symbolizes
the network element type (or function class). The center of the base may contain an icon
that further refines the network element function. Several predefined shapes are provided
as types of the network elements. The following figure illustrates a Mux shape network
element.

Shape representation of mux network element

Partial network elements
A partial network element is an abstraction which denotes a network element that is only
part of the real-world network element. Partial network elements can be used in several
situations, for example:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S14

♦ To represent distributed clusters where parts of a cluster need to be divided accross
different subnetworks.

♦ To allow one network element to be used by different service providers. In this case, the
network element needs to be divided in several parts. Each part is represented as a partial
network element and its state reflects only the elements that are interesting for the service
provider that is using it.

Partial network elements are graphically represented by an icon located at the bottom left
of the network element base.

Partial network elements expanded and collapsed

Shortcuts
A shortcut network element is an abstraction denoting an object that is only a reference to
an existing network element.

Shortcuts can be either standard or dangling. In the first case, the network element is a
shortcut to another object that is managed by the system. In the second case, the network
element is a shortcut to an object that is currently not available, which means that the
shortcut is dangling and needs to be validated by the management system.

Shortcut network elements are graphically represented by an icon located at the bottom
left of the network element base.

Standard shortcuts

Sample links

For more information about network elements, see Network elements.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 15

Links

Links are used to display the transmission elements making up the network lines.

Links feature the same dynamic display as network elements. Each type of link has its own
graphical representation, and different link states are represented graphically by changes
in color or internal pattern design. Links can also carry decorations, in particular to represent
alarms. Links can be directional.

Some sample links are shown in the following figure.

A link in the disabled state.

A link in the active state.

A link with secondary states and a label.

A link with an alarm cluster.

The drawing of a link between two nodes is, by default, automatically calculated by JViews
TGO. The link calculation is performed using a layout optimizer.

The default layout optimizer provided draws direct links without intermediate points and
according to a given angle. The links are attached to nodes using small horizontal or vertical
segments.

For more information about links, see Links.

Links can also be grouped in a link bundle, that is, a set of links that have the same destination
node. Links in a bundle can be collapsed to a single overview link.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S16

Groups

Groups are containers that logically group network resources. They are used to display a
geographic or a functional region by grouping together either network elements (such as
multiplexers, switches, and so on) or links (such as transport, access, and so on).

Groups support the whole set of state and alarm representations: alarm balloons, severity
color, primary state representation graphics, status or secondary state icons, and so forth.

Groups have three kinds of visual representations: polygonal, rectangular, and linear.

Polygonal groups
Polygonal groups are flexible containers that generally represent a group of network elements
at a regional level. Polygonal groups usually do not represent a physical object, but rather
a user-defined collection of objects that are not necessarily located in the same place.
Polygonal groups are represented by a screened transparent polygon with a relief border
as shown in the following figure.

Polygonal group with single minor alarm

In this figure the group label, the alarm counter, and the alarm balloon are displayed as a
cluster. The drawing of this cluster is organized around a central rectangle called a plinth
which is drawn by default at the polygon center.

Rectangular groups
Rectangular groups hold network elements that are located in the same place such as a site,
a building, or a city. They can be resized to create any kind of rectangular container.
Rectangular groups look like an opaque relief rectangle, as shown in the following figure.

Rectangular group with single warning alarm

Rectangular groups with alarms contain an information cluster located by default at the
center of the rectangle.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 17

Linear groups
Linear groups are bendable, “pipe-like” containers. They are used to hold a group of network
elements and links or they may represent the backbone transport system in the network.
The graphical representation of linear groups evokes a linear collection of objects. For
example, linear groups can be used to represent all the repeaters between two line
termination network elements.

The following figure shows an example of a linear group on which a critical alarm has been
detected.

Linear group with single critical alarm

When an alarm is displayed on a linear group, an information cluster appears at the center
of the median segment. The median segment is the segment containing the midpoint of the
link.

Shortcuts
A shortcut group is an abstraction denoting an object that is only a reference to an existing
group.

Shortcuts can be either standard or dangling. In the first case, the group is a shortcut to
another object that is managed by the system. In the second case, the group is a shortcut
to an object that is currently not available, which means that the shortcut is dangling and
needs to be validated by the management system.

Shortcut groups are graphically represented by an icon located at the bottom left of the
group plinth.

Standard shortcut

Dangling shortcut

For more information about groups, see Groups.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S18

Subnetworks

Subnetworks allow you to create applications that display a network inside another network.
They are not pure predefined business objects in the sense that they are created automatically
by the JViews TGO network component when you define a containment relationship between
objects in the data source.

A subnetwork can be defined as any business object with child objects in the network
component. You can display it either collapsed or expanded in the network component.

♦ In the collapsed state, the subnetwork is represented as a single object.

Collapsed subnetwork

♦ In the expanded state, the subnetwork is displayed with all the objects contained in it.

Expanded subnetwork

For more information about subnetworks, see Subnetworks.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 19

Shelves, cards, ports, and LEDs

Shelves are telecom objects that can be made up of a certain number of slots of different
widths in which cards can be stored. By default, slot numbers are displayed at the bottom
of the slots.

Cards are represented by rectangles that support the same base states as network elements.
Like network elements, they can carry alarm and status icons. They are used to display
details of modifications that have been made to the states and alarms of an item of equipment
at the level of the physical card.

The following figure shows a shelf with empty slots (the first five) and cards in various states,
some of them carrying alarms.

Shelf with cards in various states

By default, status and secondary state icons are displayed at the bottom of the card, and
alarms at the top of the card. Only the letter corresponding to the highest outstanding alarm
is displayed. Other counting information such as figures and + signs do not appear.

There are three different types of card:

♦ Standard cards correspond to the description given above. Such cards can take up one
or several slots on the shelf and do not necessarily extend across an entire shelf section.
You can, for example, place a card starting from slot #3 of the shelf and occupying this
slot, the next slot and 50% of slot 5. Each card has its own label.

An example of a set of standard cards in various states (from disabled on the left to busy
and shutting down on the right) is provided in the following figure.

Standard cards in various states

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S20

♦ Empty slots correspond to an empty portion of the shelf for which you want to display
certain characteristics, either static (a label) or dynamic (statuses and alarms). The
following figure shows a set of empty slots, where the basic design does not vary.

Empty slots

♦ Card-carrier cards hold other cards in a linear arrangement. All cards contained in the
card carrier are the same size and can contain states, statuses, and alarms. The following
figure shows a set of five card carriers, each of which carries two cards (in various states).
The card carrier itself can carry statuses and alarms. The area at the bottom of the card
carrier is used to display a graphic representation of its state.

Several card carriers with cards

Cards can contain ports and LEDs, which are called card items.

Ports are the physical interfaces of pieces of equipment and are usually located on cards,
Ports can also be connectors.

Example of ports

LEDs (Light Emitting Diode) are used to represent the state of an item of equipment through
a color. Most types of equipment use LEDs as interfaces to provide the user with information
on hardware and software conditions.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 21

Examples of LEDs

For more information about shelves and cards, see Shelves and cards.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S22

Base Transceiver Stations (BTS)

Base Transceiver Stations (BTS) are base stations composed of antennas that relay (receive
and transmit) radio messages within cells of a cellular phone system.

Each antenna has an orientation and a beam width that are graphically represented. Each
antenna can have its own state and graphical characteristics.

A BTS with three antennas

For more information about base tranceiver stations, see BTS (Base Transceiver Station).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 23

Off-page connectors

Off-page connectors usually come in pairs and are used to show the continuation of a link
from one network to another. They can be used in place of nodes (either groups or network
elements) and can have links connected to them.

The following figure shows a partial network with three off-page connectors, each with a
different graphic representation.

Network with different representations of off-page connectors

For more information about off-page connectors, see Off-page connectors.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S24

Alarms

The JViews TGO alarm object is based on the alarm object defined by the Java™ Specification
Requests (JSR)-90 workgroup. This alarm object has been designed to be used in the
development of OSS/J Quality of Service APIs (telecom management applications).

Alarms are of two kinds: raw and impact.

An alarm table with raw (balloons) and impact (clouds) alarms

A raw alarm is an alarm reported by a network element and carried by this element.

An impact alarm corresponds to a propagated alarm that is reported by a network element
but carried by another element.

Alarms can be represented as individual objects in a table and tree. For more information,
see Alarms.

Alarms can also be represented as part of the managed object (in a network or
equipment view). In this case, they are considered as part of the object state and not
as individual objects. For more information, see Alarm states.

Note:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 25

States

Base element states
JViews TGO provides a comprehensive and user-friendly graphical environment for network
states and components, as well as for the alarms detected by the supervisory system (network
management application).

For full details about states, refer to States.

In most cases, telecom equipment is in one of the following three fundamental states:

♦ Out Of Service (OOS)

♦ In service but carrying No Traffic (NT)

♦ In service and Carrying Traffic (CT)

These states may be named differently depending on the telecom standard used, but these
three fundamental states appear in the main state models.

States are represented graphically through a base element. The following figure shows a
network management workstation in the three fundamental states.

Network management workstation in different states

State modifiers
The other states introduced by the various state models are represented by icons placed at
the base of the telecom object. These icons, called modifiers, enhance the visual
representation provided by the base state. The following figure illustrates how state modifiers
placed on a network element and on a link are displayed.

Network element and link with state modifiers

Alarm states
A number of graphical properties have been developed to notify the operator of the presence
of alarms. When a new alarm is registered on an element, four visual cues are added to the
graphical representation of the element:

♦ An alarm counter is displayed in the network element base.

♦ An alarm balloon appears above the network element displaying another alarm count.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S26

♦ The object base turns a vibrant color (red, orange, or yellow) according to the severity
of the alarm.

♦ A colored outline is associated with the object base.

The following figure shows a network element in three different alarm states illustrating
the colored base, the outline, the alarm balloon, and the alarm count.

Network element with outstanding alarms

Details of the alarm color coding scheme and other alarm characteristics are provided in
Alarm states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 27

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S28

Predefined business classes

Shows class diagrams of the predefined business classes and describes their attributes and
how to extend them.

In this section

Overview of the predefined business classes
Presents the relationship between the predefined business classes.

Attributes of predefined business objects
Describes the attributes of the IltObject class and its subclasses.

Computed attributes based on the object state
Shows how to define a new computed attribute.

Extending predefined business classes
Shows the two ways to dynamically extend a predefined business class.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 29

Overview of the predefined business classes

Predefined business objects include telecommunication network managed objects such as:

♦ Network elements of the class IltNetworkElement

♦ Links of the class IltLink

♦ Groups of links of the classes IltLinkBundle, IltLinkSet

♦ Groups of the class IltGroup

♦ Shelves, cards, ports, and LEDs of the classes IltShelf, IltCard, IltPort and IltLed

♦ Dedicated wireless representations of BTS and antennas of the classes IltBTS and
IltBTSAntenna

♦ Off-page connectors of the class IltOffPageConnector

Inheritance tree of predefined business classes provides the complete hierarchy for business
object classes. For a detailed description of each of these object classes, see the subsequent
sections in this documentation.

Predefined business object classes are subclasses of IltObject, which is itself a subclass
of IlpDefaultObject. For each class deriving from IltObject, there is an instance of
IltObjectInfo that is a subclass of IlpDefaultClass.

The following diagram shows the relationship between these classes.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S30

IltObject inheritance path

For details on IlpDefaultObject and IlpDefaultClass, see Business model API.

The following figure shows the inheritance tree of predefined business classes.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 31

Inheritance tree of predefined business classes

All predefined business object classes can be retrieved using the method GetIlpClass,
which is declared in each one of these classes; for example, GetIlpClass(). Every business
class contains specific attributes that you can set using their particular API, for example,
IltNetworkElement.setFamily(value), or the generic IlpObject API, for example,
setAttributeValue(IltNetworkElement.FamilyAttribute,value). See Business model
API.

Instances of predefined business classes hold two types of data: structural data and states
and alarms.

♦ Structural data remains constant while the application is running. It includes:

● Characteristics of the element (for example, its name, Toronto-C10).

● The key properties of the element that have an impact on its own representation,
regardless of its states or alarms. The network element function and family (such as,
ATM, OC192) are examples of structural data that can be displayed permanently.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S32

♦ State and alarm data describes the most recently known or inferred state of the managed
object. A state can have several different aspects that depend on the type of network
management used. For example, in the OSI state system, there are three categories of
states: operational states, usage states, and administrative states. On top of these values,
a set of statuses can further qualify the managed object. In other standards, such as
Bellcore, all states are either primary or secondary states.

For an introduction to state and alarm visuals, refer to States.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 33

Attributes of predefined business objects

By default, the IltObject class defines several attributes that are present in all its subclasses.
These attributes are the following:

♦ Name indicates the name of the business object and is represented graphically by a label.

● Name: name

● Value class: String

● Attribute: IltObject.NameAttribute

♦ Graphic Representation is a computed attribute used to make it possible to display the
entire business object in one column of a table. This attribute is computed from all the
other attributes attached to the object and cannot be set to a value directly.

● Name: graphicRepresentation

● Value class: ilog.tgo.model.attribute.IltGraphicRepresentationAttributeType

● Attribute: IltObject.GraphicRepresentationAttribute

♦ Object State defines the state of the business object. See States for a complete
description of object states. By default, the object state is not displayed in the table. This
attribute is used as a base for all computed attributes that display the state of the telecom
object. For more information, see Computed attributes based on the object state.

● Name: objectState

● Value class: ilog.tgo.model.IltObjectState

● Attribute: IltObject.ObjectStateAttribute

♦ Position indicates the geometric position or the shape of the business object in the
network and equipment components. See Positioning for more information. By default,
the object position is not displayed in the table.

● Name: position

● Value class: ilog.cpl.graphic.IlpPosition

● Attribute: IltObject.PositionAttribute

♦ New Alarm Count indicates the number of new raw alarms or traps of the business object.
This string is displayed in the alarm balloon of the object. This count is computed from
the object state and should not be set to a value directly.

● Name: newAlarmCount

● Value class: ilog.tgo.model.IltAlarmCountAttributeType

● Attribute: IltObject.NewAlarmCountAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S34

♦ New Alarm Count Number indicates the number of new raw alarms or traps of the business
object. This alarm count is computed from the object state and should not be set to a
value directly.

● Name: newAlarmCountNumber

● Value class: java.lang.Integer

● Attribute: IltObject.NewAlarmCountNumberAttribute

♦ Alarm Count indicates the number of outstanding raw alarms or traps of the business
object. Outstanding refers to both ackowledged and new alarms or traps. This string
displays on the object base. The count is computed from the object state and should not
be set to a value directly.

● Name: alarmCount

● Value class: ilog.tgo.model.IltAlarmCountAttributeType

● Attribute: IltObject.AlarmCountAttribute

♦ Alarm Count Number indicates the number of outstanding raw alarms or traps of the
business object. Outstanding refers to both ackowledged and new alarms or traps. This
integer represents the number of outstanding raw alarms or traps. The count is computed
from the object state and should not be set to a value directly.

● Name: alarmCountNumber

● Value class: java.lang.Integer

● Attribute: IltObject.AlarmCountNumberAttribute

♦ New Alarm Highest Severity indicates the highest severity of the new raw alarms or
traps raised on the business object. This attribute determines the color of the alarm
balloon. It is computed from the object state and should not be set to a value directly.

● Name: newAlarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

● Attribute: IltObject.NewAlarmHighestSeverityAttribute

♦ Alarm Highest Severity indicates the highest severity of the outstanding raw alarms
or traps raised on the business object. Outstanding refers to both ackowledged and new
alarms or traps. This attribute determines the color of the alarm border. It is computed
from the object state and should not be set to a value directly.

● Name: alarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

● Attribute: IltObject.AlarmHighestSeverityAttribute

♦ Ack Alarm Highest Severity indicates the highest severity of the acknowledged raw
alarms or traps of the business object. By default, this attribute is not displayed in the
table. It is computed from the object state and should not be set to a value directly.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 35

● Name: ackAlarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

● Attribute: IltObject.AckAlarmHighestSeverityAttribute

♦ New Impact Alarm Count indicates the number of new impact alarms of the business
object. This string is displayed in the alarm balloon of the object. The new impact alarm
count is computed from the object state and should not be set to a value directly.

● Name: newImpactAlarmCount

● Value class: ilog.tgo.model.IltAlarmCountAttributeType

● Attribute: IltObject.NewImpactAlarmCountAttribute

♦ New Impact Alarm Count Number indicates the number of new impact alarms of the
business object. This integer represents the number of new impact alarms. The new
impact alarm count is computed from the object state and should not be set to a value
directly.

● Name: newImpactAlarmCountNumber

● Value class: java.lang.Integer

● Attribute: IltObject.NewImpactAlarmCountNumberAttribute

♦ Impact Alarm Count indicates the number of outstanding impact alarms of the business
object. Outstanding refers to both ackowledged and new alarms. This string displays on
the object base. The impact alarm count is computed from the object state and should
not be set to a value directly.

● Name: impactAlarmCount

● Value class: ilog.tgo.model.IltAlarmCountAttributeType

● Attribute: IltObject.ImpactAlarmCountAttribute

♦ Impact Alarm Count Number indicates the number of outstanding impact alarms of the
business object. Outstanding refers to both ackowledged and new alarms. This integer
represents the number of outstanding impact alarms. The impact alarm count is computed
from the object state and should not be set to a value directly.

● Name: impactAlarmCountNumber

● Value class: java.lang.Integer

● Attribute: IltObject.ImpactAlarmCountNumberAttribute

♦ New Impact Alarm Highest Severity indicates the highest severity of the new impact
alarms raised on the business object. This attribute determines the color of the alarm
balloon. It is computed from the object state and should not be set to a value directly.

● Name: newImpactAlarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S36

● Attribute: IltObject.NewImpactAlarmHighestSeverityAttribute

♦ Impact Alarm Highest Severity indicates the highest severity of the outstanding impact
alarms raised on the business object. Outstanding refers to both ackowledged and new
alarms. This attribute determines the color of the alarm border. It is computed from the
object state and should not be set to a value directly.

● Name: impactAlarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

● Attribute: IltObject.ImpactAlarmHighestSeverityAttribute

♦ Ack Impact Alarm Highest Severity indicates the highest severity of the acknowledged
impact alarms of the business object. By default, this attribute is not displayed in the
table. It is computed from the object state and should not be set to a value directly.

● Name: ackImpactAlarmHighestSeverity

● Value class: ilog.tgo.model.IltAlarmSeverity

● Attribute: IltObject.AckImpactAlarmHighestSeverityAttribute

♦ Primary State indicates the primary state of the business object. This attribute determines
the base style. It is computed from the object state and should not be set to a value
directly.

● Name: primaryState

● Value class: String

● Attribute: IltObject.PrimaryStateAttribute

♦ Secondary States indicates the secondary states or statuses of the business object. This
attribute determines the small icons displayed at the top left of the base. It is computed
from the object state and should not be set to a value directly.

● Name: secondaryStates

● Value class: String

● Attribute: IltObject.SecondaryStatesAttribute

♦ Tiny Type indicates the way the object will be displayed in the tiny representation. By
default, this attribute does not appear in the table.

● Name: tinyType

● Value class: ilog.tgo.model.IltObject.TinyType

● Attribute: IltObject.TinyTypeAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 37

Computed attributes based on the object state

The IlpDefaultClass IltObject business class includes a number of predefined attributes
that make it possible to represent the state of the object in the table component. However,
you might want to display other information that is contained in the object state in a table
column. To do so, you can define a new computed attribute based on the object state.

The following example shows how to define a new computed attribute that returns the
number of major new alarms.

How to define a new computed attribute

IlpAttribute NewMajorAlarmAttribute =
new IltComputedAttribute("newMajorAlarmAttribute",

String.class) {
public Object getValue (IlpAttributeValueHolder h) {
IltObjectState oState =

(IltObjectState)h.getAttributeValue(IltObject.ObjectStateAttribute);

IltAlarm.State alarmState = oState == null
? null : (IltAlarm.State)oState.getAlarmState();

if (alarmState == null) return null;
return alarmState.getNewAlarmCount(IltAlarm.Severity.Major);

}

public boolean isDependentOn (IlpAttribute a) {
return a.getName().equals(ObjectStateAttribute.getName());

}
};

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S38

Extending predefined business classes

To extend a predefined business class dynamically, you can:

♦ Create a new instance of IlpDefaultClass directly or create it from an XML description
of the class.

♦ Create a new Java™ class and its associated IlpClass.

Creating a subclass of a predefined business class dynamically
The following example demonstrates how to create a subclass of a predefined business class
in XML.

How to create a subclass of a predefined business object in XML

<class>
<name>Element</name>
<superClass>ilog.tgo.model.IltNetworkElement</superClass>
<attribute>
<name>throughput</name>
<javaClass>java.lang.Integer</javaClass>

</attribute>
</class>

The syntax is the same as for creating a regular class with XML. See Defining the business
model in XML.

The newly created class extends the IltNetworkElement predefined business class and has
an additional attribute (throughput).

This class is an instance of both the IlpClass Element and the Java class ilog.tgo.model.
IltNetworkElement.

As shown in the following figure, an instance of Element derives from two class hierarchies:
the dynamic class hierarchy and the Java class hierarchy.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 39

Deriving instances from the dynamic and the Java class hierarchies

If you create an instance of the IlpClass Element with XML or with the API, the created
object will be an instance of the Java class IltNetworkElement.

For example:

How to extend predefined business object classes for use with
the Java API

IlpClass elementClass =
classManager.getClass("Element");

IlpObject element = elementClass.newInstance("element 1", true);

The method newInstance is available in business classes to create new instances. This
method has two arguments:

♦ object identifier: a unique object identifier used by the new instance

♦ boolean initializeAttributeValues: a flag which indicates whether the new instance
has its default attribute values initialized. It is important to note that predefined business
objects and their subclasses always have their default attributes initialized when a new
instance is created. In this case, the second parameter is ignored.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S40

Creating a Java subclass of a predefined business class
Creating a Java subclass of a predefined business class is similar to what is described in
Adding predefined business objects with the following differences:

♦ Methods getIdentifier, getIlpClass, getAttributeValue and setAttributeValue
should not be overridden.

♦ You must implement the following constructors:

public MyClass (Object identifier) {
super(identifier);

}

and

public MyClass (IlpClass ilpclass, Object identifier) {
super(ilpclass, identifier);

}

♦ You must call the superclass in the constructor.

♦ You must create a static instance of IltObjectInfo that will store the business class
information so that it is recognized as an JViews TGO business class.

♦ You must implement the method IlpClass. This method allows your new business class
to be automatically recognized by the Class Manager service.

♦ Your new accessor methods (for example, getThroughput/setThroughput) should call
getAttributeValue and setAttributeValue with the appropriate parameters. These
methods already provide the mechanism to store the objects internally as well as
notification support.

The following example illustrate the implementation of a new business object class that
inherits from IltNetworkElement. This new business class contains a new attribute, called
THROUGHPUT.

How to create a new business class from a predefined business
class

public class CustomNetworkElement extends IltNetworkElement {

// Create the business class
static IltObjectInfo metainfo = new IltObjectInfo(CustomNetworkElement.class,

"CustomNetworkElement");

// Create the business attribute and register in the class
public static final IlpAttribute THROUGHPUT = new IltAttribute("throughput",

Integer.class,

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 41

metainfo,
new
Integer(0));

// Register the new attribute in this business class
static {
metainfo.addAttribute(THROUGHPUT);

}

// Implement method GetIlpClass so that this class is automatically
// recognized as a business class by the Class Manager service
public static IltObjectInfo GetIlpClass() {
return metainfo;

}

// Implement the class constructor
public CustomNetworkElement (Object identifier) {
super(identifier);

}

// Implement the class constructor
public CustomNetworkElement (IlpClass clazz, Object identifier) {
super(clazz, identifier);

}

public int getThroughput() {
Object v = getAttributeValue(THROUGHPUT);
if (v == ilog.cpl.model.IlpAttributeValueHolder.VALUE_NOT_SET)
return 0;

else
return ((Integer)v).intValue();

}

public void setThroughput(int throughput) {
setAttributeValue(THROUGHPUT, new Integer(throughput));

}
}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S42

The business model

Goes into the details of the business model, business classes and business objects.

In this section

Business model, business classes, and business objects
Summarizes the relationship between business model, business classes, and business objects.

Integrating the business model with the back end
Describes the various approaches to integrate a JViews TGO business model with the back-end
application.

Defining the business model in XML
Explains how to create dynamic classes by describing them in an XML file that will be loaded
at runtime.

Business model API
Describes the API of the components of a business model: business classes, business objects,
and attributes.

Business class manager API
Describes the business class manager interface and its implementations.

Defining the business model from JavaBeans classes
Describes how to make use of the JavaBean wrappers provided by JViews TGO.

Defining the business model with dynamic classes
Describes how to define a business model from any Java™ class.

© Copyright IBM Corp. 1987, 2009 43

Business model, business classes, and business objects

The business model allows the back-end application and JViews TGO to share a common
vocabulary. In other words, it translates the real application in the back end to a data model
that JViews TGO can understand. The business model describes business classes, their
inheritance and their attributes.

In the JViews TGO business model, classes are defined as instances of the IlpClass interface.
You can retrieve the IlpClass corresponding to a given Java™ class. You can also create
IlpClass instances dynamically, either by using the API or by loading a class description
written in XML.

Instances of business classes or, in short, business objects are defined by the IlpObject
interface.

The purpose of business objects is to allow you to map application data to JViews TGO
graphic components in a flexible way and to make it possible to reuse the same data across
multiple components, thus providing homogeneous graphical representations throughout
an application.

JViews TGO provides a set of predefined business objects classes that you can use directly
in your applications. These classes are described in detail in the following sections of this
documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S44

Integrating the business model with the back end

There are different ways of integrating a JViews TGO business model with the back-end
application. The approach depends on the requirements of a specific business model and
on whether this model is based on Java™ classes or not.

The different possibilities are the following:

1. The easiest and recommended approach consists in mapping your business model with
the JViews TGO predefined business classes. JViews TGO provides a set of predefined
business classes that you can use directly in your applications. They have been specifically
designed to ease the development and to leverage the overall graphic quality and
ergonomics of user interfaces in telecommunication applications. Adapting predefined
business classes to your own needs allows you to take advantage of the look and feel of
these classes.

For a complete list of the predefined business classes, refer to Introducing business
objects and data sources.

JViews TGO predefined business objects can be used either if your model is based on
Java classes or if you prefer to describe the model and its data in XML. For more details,
refer to Introducing business objects and data sources and to Adding business objects
from JavaBeans.

Your business model may require more information than available in the predefined
business classes. If this is the case, you can easily extend the predefined business classes
with your own attributes. For details, refer to Extending predefined business classes.

If you cannot easily map your business classes with the JViews TGO predefined business
classes, you can still envisage one of the other possibilities to integrate your business
model with the back end.

2. You can describe your business model and its data in XML. For more information, refer
to Defining the business model in XML and Adding business objects from JavaBeans.

3. You can describe your business model as Java classes that comply with the JavaBeans™
pattern. JViews TGO provides direct support for JavaBeans business classes. For more
information, refer to Defining the business model from JavaBeans classes and Adding
business objects from JavaBeans.

4. You can describe your business model as Java classes either by using the default business
class (IlpDefaultClass) and business object (IlpDefaultObject) implementations,
or by implementing the corresponding interfaces (IlpClass, IlpObject) directly. For
more information, refer toDefining the business model with dynamic classes and Adding
dynamic business objects.

Whatever the approach you choose to integrate an JViews TGO business model with the
back-end application, all the objects will be represented with a default look and feel in the
graphic components. If this look and feel does not suit you, you can customize it by using
Cascading Style Sheets (CSS). For more information on how to customize the graphic
representation of business objects, refer to Using Cascading Style Sheets.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 45

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S46

Defining the business model in XML

Explains how to create dynamic classes by describing them in an XML file that will be loaded
at runtime.

In this section

Defining a dynamic class in XML
Explains how to create a dynamic class in XML and describes the notions of inheritance,
attribute types, and type conversion.

Extending a predefined business class in XML
Explains how to extend a predefined class in XML.

Loading the business model
Describes the two methods for loading a business model: at application start up or from a
data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 47

Defining a dynamic class in XML

The XML file may be loaded at the beginning of the program or at a later stage. In the same
way as you can load a model from a file, you can also load the corresponding data from a
file. You will find an example of a model and the corresponding data defined in the same
file in Adding business objects from JavaBeans.

The example below shows how to describe the dynamic classes Event and Alarm in XML
format. These classes will be created when the XML file is loaded.

The Event class has the ID attribute of type string. The Alarm class is a subclass of the
Event class that has two attributes, PerceivedSeverity, of type String, and Acknowledged,
a Boolean attribute that defaults to false. The Alarm class inherits the ID attribute from
the Event class. For details, see Inheritance.

How to define dynamic classes in XML

<classes xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/model.xsd">
<classes>
<class>
<name>Event</name>
<attribute>
<name>ID</name>
<javaClass>java.lang.String</javaClass>

</attribute>
</class>
<class>
<name>Alarm</name>
<superClass>Event</superClass>
<attribute>
<name>PerceivedSeverity</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>Acknowledged</name>
<javaClass>java.lang.Boolean</javaClass>
<defaultValue>false</defaultValue>

</attribute>
</class>

</classes>

The following table describes the elements that you can use to define your business model
in XML format. You can also find a description of this format in the XML schema file
model.xsd.

Elements in an XML business model
DescriptionDefaultAttributesXML element

Delimits classes definition.This element is required.The
file containing classes should necessarily start and end

None<classes>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S48

DescriptionDefaultAttributesXML element

with this element. This element can be used inside data
(see Elements in an XML data file). This element
contains <class> elements.

Contains a class definition.The class definition contains
a name and possibly a <superClass> element and some
<attribute> elements.

None<class>

Contains the name of the superclass.None<superClass>

Contains the name of the class or of the attribute being
defined.

None<name>

Defines an attribute in the current <class>. The attribute
contains a <name>, a <javaClass>, and optionally a
<defaultValue>.

None<attribute>

Contains the name of the Java™ class of the attribute
(for example java.lang.String).

None<javaClass>

Contains the default value of an attribute.<defaultValue>

Sometimes the Java class of the default value is not the
Java class of the attribute (for example, if the Java class

The Java
class of

javaClass

of the attribute is abstract). This attribute allows you to
specify the Java class of the default value.

the
attribute.

If the default value is to be null, you can set this optional
attribute to true.

falsenull

Inheritance
The dynamic classes created from an XML file can inherit from existing classes, in the same
way as the dynamic classes that you can create using the Java API, which are either classes
created from JavaBean™ classes or custom IlpClass implementations retrieved by the static
GetIlpClass() method.

The order in which classes are defined within the element <classes> has no impact when
loading classes that have inheritance relationships. In other words, you can define a class
before a superclass within the same <classes> element.

Attribute types
The JViews TGO schema for defining an XML business model provides a <javaClass> element
that lets you assign an abstract class or interface type to an attribute (for example java.
lang.Number) and provide a default value.

How to assign an abstract class or interface type and default value
to an attribute

<attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 49

<name>number</name>
<javaClass>java.lang.Number</javaClass>
<defaultValue javaClass="java.lang.Integer">100</defaultValue>

</attribute>

You may want to specify that an attribute has a null default value. Sometimes it is difficult
to distinguish between a null value and an empty value. For example, if you have an attribute
of type String, its default value will be "".

How to specify a null default value for an attribute

<attribute>
<name>emptyString</name>
<javaClass>java.lang.String</javaClass>
<defaultValue />

</attribute>

Therefore, there is another XML attribute for default values to specify that the default value
is null:

<attribute>
<name>nullString</name>
<javaClass>java.lang.String</javaClass>
<defaultValue null="true" />

</attribute>

Type conversion
The types assigned to attributes of dynamic classes defined in an XML file should be
recognized by the XML parser in order to load data contained in these classes.

Since attribute types may be complex, JViews TGO supports both simple attribute types,
which can be read from a single string, and complex attribute types which can be composed
of several XML tags.

For converting simple types, the XML parser uses the type converter service of the current
application context (see Type converter). It executes the type conversion by calling the
methods createJavaInstance and createStringValue. These methods support all the types
defined in java.lang, plus extra ones such as:

♦ Dates (instances of java.util.Date). The following format is supported:

"yyyy'-'MM'-'dd'T'HH':'mm':'ss"

♦ Colors (instances of java.awt.Color). Regular HTML formats are supported; for example:

"RED" or "#NNNNNN"

♦ Fonts (instances of java.awt.Font). To know the formats that are supported, see the
java.awt.Font.decode method.

♦ Enumerated values (instances of ilog.util.IlEnum).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S50

You can extend the number of types supported by the default type converter by creating
specific property editors or by subclassing the type converter.

Complex types
The interface IlpSAXSerializable supports complex types. This interface lets you read an
instance from a SAX XmlReader and write it as a SAX event to a SAX ContentHandler. To
be recognized, this interface should be implemented by a class named <className>SAXInfo;
or, if you are using the default type converter implementation (IlpDefaultTypeConverter),
you can register the value handler so that it is automatically taken into account by the XML
parser, using the method IlpDefaultTypeConverter. setAttributeValueHandler(java.
lang.Class, ilog.cpl.storage.IlpSAXSerializable).

Most of the JViews TGO classes that can be used as attribute types have a corresponding
SAXInfo class. For example, the IlpPoint class in the ilog.cpl.graphic package comes
with the IlpPointSAXInfo class. When an IlpPoint is to be read, the default type converter
checks whether there is a corresponding IlpSAXSerializable instance. If not, it will try to
load the IlpPointSAXInfo class. If it succeeds, this class will be returned as the
IlpSAXSerializable interface of the IlpPoint class.

As an example, here is the code of the class IlpPointSAXInfo.

How to use the IlpSAXSerializable interface with complex types

/**
* Returns a SAX handler capable of reading the attribute.
* To avoid an instance of a SAX handler being used simultaneously
* by two concurrent threads, this method should either return a new
* instance of a SAX handler each time it is called or take advantage of
* the java.lang.ThreadLocal class to return a different
* instance for each thread.
* @return A SAX event handler.
*/
public IlpSAXAttributeValueHandler getSAXHandler() {
return new IlpSAXPointHandler();

}

public static class IlpSAXPointHandler extends IlpSAXAttributeValueHandler
{
protected float x;
protected float y;
/**
* Indicates the beginning of an element.
* By default, this method only clears the content of the element.
*/
public void startElement(String namespaceURI,

String localName,
String qName,
Attributes atts) throws SAXException {

if (localName.equals(finalTag)) {
x = y = 0.0f;

}
super.startElement(namespaceURI,localName,qName,atts);

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 51

/**
* Notifies the end of an element.
* When this method is called for the "attribute" element,
* the <CODE>getAttributeValue</CODE> method is called, the object
* is modified accordingly, and parsing continues.
*/
public void endElement(String namespaceURI,

String localName,
String qName) throws SAXException {

if (localName.equals("x")) {
x = Float.parseFloat(getContent());

}

if (localName.equals("y")) {
y = Float.parseFloat(getContent());

}

super.endElement(namespaceURI,localName,qName);
}

/**
* Is called at the end of the "attribute" element.
*/
protected Object getAttributeValue() {
Object value = new IlpPoint(x,y);
return value;

}

}

/**
* Writes the <CODE>value</CODE> to a SAX ContentHandler.
* The method translates the object as SAX ContentHandler method calls.
* @param value The object to write.
* @param typeConverter The type converter that may be needed to translate
* values to strings.
* @param outputHandler The SAX ContentHandler used by this method.
* @see ilog.cpl.util.IlpTypeConverter#createStringValue(Object,IlpKey)
*/
public void output(Object value,
IlpTypeConverter typeConverter,
ContentHandler outputHandler)
throws SAXException {
IlpPoint point = (IlpPoint)value;
String valueStr = String.valueOf(point.x);
outputHandler.startElement("","x","x",IlpSAXSerializable.EMPTY_ATTRS);
outputHandler.characters(valueStr.toCharArray(),0,valueStr.length());
outputHandler.endElement("","x","x");
valueStr = String.valueOf(point.y);
outputHandler.startElement("","y","y",IlpSAXSerializable.EMPTY_ATTRS);
outputHandler.characters(valueStr.toCharArray(),0,valueStr.length());
outputHandler.endElement("","y","y");

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S52

}
}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 53

Extending a predefined business class in XML

To extend a predefined business class dynamically, you can create a new instance of
IlpDefaultClass from an XML description of the class.

The following example demonstrates how to create a subclass of a predefined business class
in XML.

How to create a subclass of a predefined business class in XML

<class>
<name>Element</name>
<superClass>ilog.tgo.model.IltNetworkElement</superClass>
<attribute>
<name>throughput</name>
<javaClass>java.lang.Integer</javaClass>

</attribute>
</class>

The syntax is the same as for creating a regular class with XML. See Defining the business
model in XML.

The newly created class extends the IltNetworkElement predefined business class and has
an additional attribute (throughput).

This class is an instance of both the IlpClass Element and the Java™ class ilog.tgo.model.
IltNetworkElement.

As shown in the following figure, an instance of Element derives from two class hierarchies:
the dynamic class hierarchy and the Java class hierarchy.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S54

Deriving instances from the dynamic and the Java class hierarchies

If you create an instance of the IlpClass Element with XML, the created object will be an
instance of the Java class IltNetworkElement.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 55

Loading the business model

Dynamic classes can be loaded either when the application starts up, that is, when IltSystem.
Init() is called, or later when data is loaded in a data source. See Adding business objects
from JavaBeans.

Loading at application start up
To load a model when the application is launched, you can modify the deployment descriptor
by adding the following lines inside the <deployment> element:

<classManager>
<file>mymodel.xml</file>

</classManager>

The <classManager> element can include a number of <file> tags. The path to these files
is resolved by means of the URL access service, which is created and configured by the
deployment descriptor.

For more information, see Class manager.

Loading with the data in a data source
You can insert business model XML elements, that is, complete <classes> elements, in a
data source file. For details, refer to Adding business objects from JavaBeans.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S56

Business model API

Describes the API of the components of a business model: business classes, business objects,
and attributes.

In this section

Class overview
Provides a diagram of the different classes involved in a business model.

Business class API
Describes the business class interfaces and their implementations.

Business object API
Describes the business object interfaces and their implementations.

Attribute API
Describes the attribute-related interfaces and their implementations.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 57

Class overview

The business model API is composed of the following APIs:

♦ Business class API

♦ Business object API

♦ Attribute API

The following figure illustrates the various elements that compose the business object model.

The business model API

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S58

Business class API

The interface IlpClass defines static classes. It provides methods to:

♦ Retrieve the class structure, that is, its superclass and subclasses

♦ Retrieve the associated attributes, that is, the attribute group

The interface IlpMutableClass defines dynamic classes. In addition to the methods listed
above, it provides methods to:

♦ Add and remove attributes

♦ Aggregate attribute groups to the class

♦ Notify listeners about these modifications

JViews TGO provides a few convenience implementations of these interfaces that you can
use directly or subclass when building an application:

♦ IlpAbstractClass—An abstract implementation that helps you create new
IlpMutableClass implementations.

♦ IlpDefaultClass—A default implementation for a dynamic class.

♦ IlpBeansClass—A wrapper for an existing JavaBean™ class that makes it possible to
access it (through introspection) as if it were a dynamic class. Properties discovered
during introspection are automatically translated to IlpBeansAttribute instances and
inserted in the class attribute group.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 59

Business object API

The interface IlpObject defines instances of business classes. These instances (business
objects) contain values for the attributes defined by the corresponding class. They also have
an attribute group that can be the IlpClass itself or an extension allowing you to define
new attributes at the object level.

Each business object must be assigned to an identifier when it is created. The identifier
must be unique (even across data sources); it is used to identify and retrieve the IlpObject.
The object identifier can be of any type, as long as it satisfies the following constraints:

1. The identifier must be convertible to String, through an IlpTypeConverter installed
in the IlpContext. The IlpDefaultTypeConverter uses the Object.toString()method
to convert objects of unknown types to String. The String that results from this
conversion must be unique.

2. It must be possible to create or retrieve the identifier Object, given the corresponding
String, by using the IlpTypeConverter installed in the IlpContext. The
IlpDefaultTypeConverter uses a constructor with a single String argument to create
instances of unknown types.

3. The identifier Object itself must not be an instance of IlpObject.

Note the following recommendations:

♦ Ideally the identifier should be implemented as a simple object in order to perform a fast
comparison. For the sake of simplicity, it is recommended to use simple objects, such as
Number or String, which already satisfy the constraints listed above.

♦ If you are using your own Java™ class as identifier, the public boolean equals(Object
obj)method of the identifier class should be overridden to perform an efficient comparison
of identifier instances. The public int hashcode() method should also be overridden
and must be consistent with the public boolean equals(Object obj) implementation.

♦ An identifier generator can be used to generate the object identifiers in a consistent
manner. A predefined identifier generator is available in ilog.cpl.util. IlpIDGenerator.

Note that once the proper implementation for the IlpTypeConverter is created (normally
you do this by subclassing IlpDefaultTypeConverter), you can register it with the
IlpContext implementation as follows:

IlpContext context = ...;
context.addService(IlpTypeConverter.class, new CustomTypeConverter(context));

For more information about how to customize and extend the behavior of the default type
converter, refer to Type converter and to Complex types.

The IlpObject interface has methods to:

♦ Retrieve the object identifier

♦ Retrieve the corresponding business class

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S60

♦ Set/get the attribute values, retrieve the attribute group and notify interested listeners,
according to the interface IlpAttributeHolder

JViews TGO provides the following convenience implementations of this interface that you
can use directly when building your application:

♦ IlpDefaultObject—Default object instance created given a class and an identifier.

♦ IlpBeansObject—Provides a wrapper for an existing JavaBean™ instance, which will
allow it to be handled as a dynamic object.

♦ IlpObjectSupport—Provides a default implementation for all IlpObjectmethods. If your
Java classes do not follow the JavaBeans pattern and you cannot create your business
objects by inheriting from IlpDefaultObject, you can write your own implementation
of the IlpObject interface by using the class IlpObjectSupport.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 61

Attribute API

Attributes are the properties that qualify a business class. For example, an object of type
alarm can be qualified by a severity and a description. An attribute is identified by its name
and its value and is typed by a Java™ class.

The following figure illustrates the attribute API:

The attribute API

The interface IlpAttribute defines attributes. It provides the following methods:

♦ String getName() returns the attribute name used as an identifier.

♦ Object getValueClass() returns the class of the attribute value.

♦ Object getDefaultValue() returns the default value of the given attribute. The default
value is used to initialize the attribute in a newly created business object (see newInstance
(ilog.cpl.model.IlpClass, java.lang.Object, boolean)).

♦ getAttributeGroup() getAttribute(java.lang.String)IlpAttribute.getAttributeGroup()
returns the attribute group that contains the attribute instance.

♦ void setAttributeGroup(IlpAttributeGroup group) sets the attribute group that
contains the instance.

♦ boolean isTransient() returns whether the attribute should persist or not when the
business object is stored.

JViews TGO provides a set of convenience implementations for IlpAttribute that you can
use directly or subclass in order to obtain application-specific behavior:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S62

♦ IlpDefaultAttribute—Defines a simple attribute with a name and a value class. The
attribute value is not stored in the attribute, but in the object to which this attribute
belongs.

♦ IlpStaticAttribute—Defines an attribute with a static value; in other words, this
attribute is the same for all objects that contain it.

♦ IlpReferenceAttribute—Defines an attribute with a value derived from the value of
another attribute in the same object instance.

♦ IlpObjectReferenceAttribute—Defines an attribute with a value derived from the value
of another attribute in another object instance.

♦ IlpComputedAttribute—Defines an attribute with a value that is calculated from a given
formula defined by the user. For more information, see Computed attributes.

♦ IlpBeansAttribute—Provides a wrapper for an existing JavaBean™ class property; this
wrapper makes it possible to access the property (through introspection) as if it were a
dynamic attribute.

Attribute group
Attributes are logically gathered in attribute groups. An attribute group can be static or
dynamic. Static attribute groups are defined by the interface IlpAttributeGroup and
dynamic attribute groups are defined by IlpMutableAttributeGroup.

These interfaces provide methods that allow you to perform the following operations:

♦ Iterate over the list of attributes

♦ Search for a certain attribute given its name

♦ Verify whether a given attribute is present in the attribute group

♦ Insert and remove attributes

♦ Notify interested objects about the modifications described above

JViews TGO provides the following convenience implementations of IlpAttributeGroup:

♦ IlpDefaultAttributeGroup—Defines a simple dynamic attribute group.

♦ IlpExtendedAttributeGroup—Defines a dynamic attribute group that can be extended
with other attribute groups. The attribute groups used are not copied, but simply referred
to.

Attribute value holder
In JViews TGO, an attribute value is not carried by the attribute itself but by an attribute
value holder because this value is specific to the object with which the attribute is associated.
An attribute value holder is defined by the IlpAttributeValueHolder interface. Business
objects and representation objects carry attribute values, and as such they implement this
interface. The IlpAttributeValueHolder interface includes methods to retrieve and set
the value of an attribute, and notify interested objects about changes in attribute values.

Attribute values may be set using the following method:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 63

public void setAttributeValue (IlpAttribute attribute, Object value)

where value may be null.

In cases where attributes have not been set or initialized, the value is
IlpAttributeValueHolder.VALUE_NOT_SET.

Attribute values may be retrieved using the following method:

public Object getAttributeValue (IlpAttribute attribute)

Computed attributes
A computed attribute is an attribute which value is derived from the value of one or more
other attributes. To implement a computed attribute, you need to extend the abstract class
IlpComputedAttribute and implement its abstract part and a constructor. The abstract
part of this class is also known as the IlpAttributeValueProvider interface.

The IlpAttributeValueProvider interface contains the following methods:

public Object getValue (IlpAttributeValueHolder h);
public boolean isDependentOn (IlpAttribute a) ;

The getValue(ilog.cpl.model.IlpAttributeValueHolder) method returns a value that
is computed from its attribute value holder parameter. The isDependentOn(ilog.cpl.model.
IlpAttribute) method specifies the attributes used to calculate the value of the computed
attribute. Whenever the value of one of these attributes changes, the object carrying this
attribute notifies its listeners that the computed attribute value has been modified. Note
that the computed value is cached. Therefore, calling the getAttributeValue() method of
IlpAttributeValueHolder twice calls the method IlpComputedAttribute.
IlpComputedAttribute only once. This cached value is erased whenever the value of an
attribute on which the computed attribute depends is modified.

The example below shows how to define a computed attribute that returns a sorted array
of integers calculated from another array of integers.

How to define a computed attribute

class SortIntAttribute extends IlpComputedAttribute {
IlpAttribute arrayAttribute;
public SortIntAttribute(String name,
IlpAttributeGroup model,
IlpAttribute arrayAttribute) {
super(name, model, arrayAttribute.getValueClass());
this.arrayAttribute = arrayAttribute;

}

public Object getValue(IlpAttributeValueHolder h) {
Object value = h.getAttributeValue(arrayAttribute);
if (value != IlpAttributeValueHolder.VALUE_NOT_SET) {
int[] array = (int [])h.getAttributeValue(arrayAttribute);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S64

array = (int [])array.clone();
Arrays. sort(array);
return array;

}
return IlpAttributeValueHolder.VALUE_NOT_SET;

}

public boolean isDependentOn (IlpAttribute a) {
return a == arrayAttribute;

}
}

The constructor of SortIntAttributes takes three arguments:

♦ name is the name of the attribute,

♦ model specifies the attribute group (usually, an IlpClass),

♦ arrayAttribute specifies the attribute that the computed attribute depends on.

The constructor of the abstract class IlpComputedAttribute takes three arguments: the
name, the model, and the Java class of the value it returns. If the last argument is set to
null, the computed attribute returns java.lang.Object. In this example, this argument
is specified and corresponds to the value class of the attribute on which the computed
attribute depends.

The getValue method computes the attribute value. Computation is protected. As a
consequence, if the value of the attribute on which the computed attribute depends is not
initialized, or in other words if its value is IlpAttributeValueHolder, the method does not
perform the computation and returns IlpAttributeValueHolder.VALUE_NOT_SET. In this
example, when the value is set, the returned array is duplicated, sorted, and returned.

The implementation of the isDependentOn method is quite straightforward, since in this
example the computed attribute depends only on one other attribute, which is specified in
the constructor.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 65

Business class manager API

Once business object classes are created, it is important to make them available to the whole
application and allow them to be used by all the components. This is the role of the class
manager defined by the interface IlpClassManager. This interface provides methods to:

♦ Retrieve an IlpClass from an identifier

♦ Verify whether a given class is part of the business model

♦ Retrieve the root classes in the model

For example, the following function writes the entire content of a class manager. It iterates
over all the classes stored in a class manager and then over their attributes, displaying the
class they belong to along with their default value, if any.

How to write the content of a class manager

public void displayModel(IlpClassManager classManager) {
for (Iterator i = classManager.getClasses().iterator();

i.hasNext();) {
IlpClass ilpClass = (IlpClass)i.next();
System.out.println(ilpClass.getName());
if (ilpClass.getSuperClass() != null) {
System.out.println("\t"+ilpClass.getSuperClass().getName());

}
for (Iterator j = ilpClass.getAttributes().iterator();

j.hasNext();) {
IlpAttribute attr = (IlpAttribute)j.next();
System.out.println("\t" +attr.getName() +": "

+attr.getValueClass().toString());
if (attr.getDefaultValue() !=

IlpAttributeValueHolder.VALUE_NOT_SET) {
System.out.print("\t\tdefault: " +attr.getDefaultValue());
if (attr.getDefaultValue() != null) {
System.out.print(" " +attr.getDefaultValue().getClass());

}
System.out.println();

}
}

}
}

JViews TGO provides a default implementation of the class manager, which is defined by
the class IlpDefaultClassManager. This implementation has the following additional
functionality:

♦ Creates dynamic classes from an XML file. Classes and attributes can be defined by the
application using XML and can be loaded in the class manager at runtime.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S66

♦ Retrieves a dynamic class from a Java™ class. If the IlpClass defining the Java class is
not yet present in the class manager, an IlpBeansClass is created and the attribute group
is automatically built through introspection in the Java class.

You can deactivate this behavior or provide a specific IlpClass implementation
for your Java classes as described in Defining the business model with dynamic
classes.

Note:

JViews TGO also provides a class manager implementation to automatically handle the
predefined business classes. This implementation is defined by class
IltDefaultClassManager.

For easier access to the business classes information in your application, the class manager
has been defined as one of the application context services. For information on how to
customize the class manager information through the application context and the deployment
descriptor, refer to Class manager.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 67

Defining the business model from JavaBeans classes

If the back-end application is made up of classes that fully comply with the JavaBeans™
pattern, you can integrate these classes easily using the JViews TGO wrapper for existing
JavaBeans classes (see Reminder about JavaBeans design patterns). This wrapper, defined
by IlpBeansClass, makes it possible to access the class as if it were a dynamic class. Business
object instances also have a corresponding wrapper— IlpBeansObject—that allows the
user to view them as dynamic objects.

The following figure shows the various JavaBeans wrappers that JViews TGO supplies.

JavaBeans wrappers

Reminder about JavaBeans design patterns
JavaBeans have the following main design patterns:

Properties
Properties can be defined with a pair of get and setmethods. Their names are derived from
the method names. The following class contains the "severity" property:

public class Alarm {
public int getSeverity() {...}
public void setSeverity(int severity) {...}

}

If the getSeverity method is specified without the setSeverity method, the property is
readable only.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S68

Bound properties
Each time the value of a bound property changes, other objects are notified accordingly. A
PropertyChange event is fired specifying the property name, the old value, and the new
value. The IlpBeansObject class takes advantage of this process, so that each time a bound
property changes, its new value is reflected in all the graphic components displaying it.

Mandatory default constructor or serialized instance
A constructor with no parameters should be available on the Bean or a serialized instance
should be provided. For more information, see the instantiate method of the class java.
beans.Beans.

The following example shows a Java™ class that conforms to the JavaBeans design pattern.

How to write a Java class that conforms to the JavaBeans design
pattern

public static class MO {
String name;
int state = 0;
PropertyChangeSupport support = new PropertyChangeSupport(this);
public MO() {
}
public MO(String name) {
this.name = name;
}
public String getName() {
return name;
}
public void setName(String name) {
String oldName = this.name;
this.name = name;
support.firePropertyChange("name",oldName,name);
}
public int getState() {
return state;
}
public void setState(int state) {
int oldState = this.state;
this.state = state;
support.firePropertyChange("state",oldState,state);
}
public void addPropertyChangeListener(PropertyChangeListener listener) {
support.addPropertyChangeListener(listener);
}
public void removePropertyChangeListener(PropertyChangeListener

listener) {
support.removePropertyChangeListener(listener);
}

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 69

To retrieve the corresponding IlpClass, execute the following (assuming that you have a
class manager):

IlpClass moAsIlpClass = classManager.get(MO.getClass().getName());

For details, see Business class manager API.

For an example of how to use this class in a data source, see Adding business objects from
JavaBeans.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S70

Defining the business model with dynamic
classes

Describes how to define a business model from any Java™ class.

In this section

Defining a dynamic class using the API
Explains how to create new instances of IlpClass dynamically.

Extending a predefined business class using the API
Explains how to create a wrapper for a Java object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 71

Defining a dynamic class using the API

You can create new instances of IlpClass dynamically using the Java API.

The easiest way to define a business model from any Java class is to create business classes
as instances of IlpDefaultClass and register related class attributes with
IlpDefaultAttribute. For more information, see Business model API. The best place to
put the IlpClass definition is the IlpObject implementation.

Here is an example taken from the FileObject.java file located in the following sample
directory:

<installdir>/samples/datasource/explorer2

where <installdir> is the directory where you have installed JViews TGO.

How to create a business class and register the related class
attributes

public static IlpDefaultAttribute EXISTS =
new IlpDefaultAttribute("exists",Boolean.class, true);

public static IlpDefaultAttribute NAME =
new IlpDefaultAttribute("name",String.class, true);

public static IlpDefaultAttribute PARENT =
new IlpDefaultAttribute("parent",String.class, true);

public static IlpDefaultAttribute PATH =
new IlpDefaultAttribute("path",String.class, true);

public static IlpDefaultAttribute DIRECTORY =
new IlpDefaultAttribute("directory",Boolean.class, true);

public static IlpDefaultAttribute HIDDEN =
new IlpDefaultAttribute("hidden",Boolean.class, true);

public static IlpDefaultAttribute LASTMODIFIED =
new IlpDefaultAttribute("lastModified", Long.class, true);

public static IlpDefaultAttribute LASTMODIFIEDDATE =
new IlpDefaultAttribute("lastModifiedDate", Date.class, true);

public static IlpDefaultAttribute LENGTH =
new IlpDefaultAttribute("length", Long.class, true);

public static IlpDefaultAttribute ROOT =
new IlpDefaultAttribute("root", Boolean.class, true);

protected static IlpDefaultClass ILPCLASS;

static {
ILPCLASS = new IlpDefaultClass("FileObject") {
/**
* This method is called when objects are loaded from XML.
*/
public IlpObject newInstance(IlpClass ilpClass, Object identifier,
boolean initializeAttributeValues) {
return new FileObject((File)identifier,ilpClass);

}
};

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S72

ILPCLASS.addAttribute(EXISTS);
ILPCLASS.addAttribute(NAME);
ILPCLASS.addAttribute(PARENT);
ILPCLASS.addAttribute(PATH);
ILPCLASS.addAttribute(DIRECTORY);
ILPCLASS.addAttribute(HIDDEN);
ILPCLASS.addAttribute(LASTMODIFIED);
ILPCLASS.addAttribute(LASTMODIFIEDDATE);
ILPCLASS.addAttribute(LENGTH);
ILPCLASS.addAttribute(ROOT);

}

In this sample code, you have created the IlpClass as an IlpDefaultClass with a specific
implementation of the newInstancemethod. This method is used to create objects read from
an XML file. Its implementation depends entirely on the case you have to handle. Note that
you do not need to implement the newInstancemethod if you do not intend to use XML with
your IlpClass.

Here the FileObject class uses a File as its identifier with all its content. The IlpClass
parameter allows you to subclass IlpClass. The parameter initializeAttributeValues
has the same meaning as in the XML format. See Elements in an XML data file . Here you
do not use that parameter because there are no default attribute values.

The class manager is not aware of this new IlpClass. You have to define a static method
called GetIlpClass in your implementation of IlpObject to have that class registered with
the class manager automatically.

If your Java classes include attributes, you can write an implementation of IlpObject that
will act as a wrapper. This wrapper will delegate methods to the underlying Java object to
access its attributes. This implementation of IlpObject is described by an IlpClass.

The main methods to implement are the following:

♦ public static IlpClass GetIlpClass—This method should return the corresponding
IlpClass. This method tells the class manager how to retrieve the IlpClass corresponding
to the Java class. When its getClassmethod is called with the Java class as its parameter,
the class manager loads the Java class from its name (Class.forName) and calls the
GetIlpClassmethod that retrieves the IlpClass. This way, your IlpClass is automatically
registered with all the class managers that may use it.

If you do not want a given Java class to be considered as a JavaBean™ and
cannot add the static method GetIlpClass to that class, you can register an

Note:

IlpClass that has the same name as the Java class before the class name is
queried from the class manager.

♦ public Object getIdentifier—This method must return an identifier. This identifier
can be the underlying Java object, an attribute, or another identifier stored in the
implementation of IlpObject.

♦ public IlpClass getIlpClass()—This method returns the IlpClass. Usually, you have
to store the IlpClass as a Java attribute of your IlpObject implementation to support

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 73

subclasses. If you do not want to support subclasses, you can return the result of the
static GetIlpClass() method.

♦ public Object getAttributeValue (IlpAttribute attribute)—This method returns
the value of an attribute. Therefore, it results in a call to a method of the delegate Java
object.

♦ public void setAttributeValue (IlpAttribute attribute, Object value)—This
method sets the value of an attribute. It is not meant to be supported for all attributes.
If supported, it usually results in a call to a method of the delegate Java object.

♦ public Object getAttributeValue (String attributeName)—This method returns
the value of an attribute, given the attribute name. Therefore, it results in a call to a
method of the delegate Java object.

♦ public void setAttributeValue (String attributeName, Object value)—This
method sets the value of an attribute. It is not meant to be supported for all attributes.
If supported, it usually results in a call to a method of the delegate Java object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S74

Extending a predefined business class using the API

The wrapper class FileObject implements the IlpObject interface directly. You could have
built it by extending the IlpDefaultObject class, or by using the
IlpAttributeValueHolderSupport. However, both these classes contain the structure to
store an arbitrary number of attributes and thus have a footprint. In this example, since the
underlying File instance stores all the attributes, there is no need for such a structure.

How to create a wrapper for a Java object

public class FileObject implements IlpObject {

The FileObject class contains the definition of the corresponding IlpClass. The
corresponding code is not repeated here.

This class contains a number of attribute members. It wraps a java.io.File and has a file
attribute, which is also used as the class identifier. This class also contains an IlpClass
attribute which makes it possible to use it with IlpClass instances other than the one it
defines (typically subclasses of the one it defines). This class also contains an
AttributeValueChangeSupport instance that handles notification of attribute changes.

protected File file;
protected IlpClass ilpClass;
protected IlpAttributeValueChangeSupport support =

new IlpAttributeValueChangeSupport(this);

The static method GetIlpClass allows you to register the IlpClass with the class manager
automatically. Note that ILPCLASS is a static member.

public static IlpClass GetIlpClass() {
return ILPCLASS;

}

The class has two constructors. The first one is the easiest to use, as it takes only the file to
be wrapped as parameter. The second one lets you initialize the ilpClass attribute. It
corresponds to the method newInstance(IlpClass ilpClass, Object identifier,
boolean initializeAttributeValues) of the IlpClass.

public FileObject(File file) {
this.file = file;
this.ilpClass = GetIlpClass();

}

public FileObject(File file, IlpClass ilpClass) {
this.file = file;
this.ilpClass = ilpClass;

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 75

The following methods add or remove listeners to attribute value changes and fire events.
They all delegate to the IlpAttributeValueChangeSupport instance.

public void addAttributeValueListener (AttributeValueListener l) {
support.addAttributeValueListener(l);

}

public void removeAttributeValueListener (AttributeValueListener l) {
support.removeAttributeValueListener(l);

}

public void fireEvent (AttributeValueEvent ev) {
support.fireEvent(ev);

}

The method getAttributeValue retrieves attribute values from the java.io.File object.

public Object getAttributeValue (IlpAttribute attribute) {
if (attribute == EXISTS) {
return file.exists()?Boolean.TRUE:Boolean.FALSE;

}
if (attribute == NAME) {
String name = file.getName();
// for the roots the name may be null, so return the path in this case
return name != null && name.length() != 0 ?name:file.getPath();

}
if (attribute == PARENT) {
return file.getParent();

}
if (attribute == PATH) {
return file.getPath();

}
if (attribute == DIRECTORY) {
return file.isDirectory()?Boolean.TRUE:Boolean.FALSE;

}
if (attribute == HIDDEN) {
return file.isHidden()?Boolean.TRUE:Boolean.FALSE;

}
if (attribute == LASTMODIFIED) {
return new Long(file.lastModified());

}
if (attribute == LASTMODIFIEDDATE) {
Date date = new Date();
date.setTime(file.lastModified());
return date;

}
if (attribute == LENGTH) {
return new Long(file.length());

}
if (attribute == ROOT) {
return file.getParent() == null ?Boolean.TRUE:Boolean.FALSE;

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S76

return null;
}

Here the method setAttributeValue sets the value for one attribute only and sets off
notification about value change.

public void setAttributeValue (IlpAttribute attribute, Object value) {
if (attribute == LASTMODIFIED) {
if (value instanceof Number) {
file.setLastModified(((Number)value).longValue());
fireEvent(new AttributeValueEvent(this, LASTMODIFIED));

} else
throw new IllegalArgumentException(value+" is not acceptable as value

of attribute "+attribute);
}
}

The getIdentifier method simply returns the wrapped file. The getIlpClass method
returns the corresponding attribute. The getIlpAttributeGroup method also returns the
IlpClass. The hasAttributeValue method is delegated to the attribute group.

The initializeDefaultValues method does nothing here. It is invoked to initialize the
default values of the attributes and corresponds to the XML attribute
initializeDefaultValue. See Elements in an XML data file for details.

public Object getIdentifier() {
return file;

}

public IlpClass getIlpClass() {
return ilpClass;

}

public IlpAttributeGroup getAttributeGroup () {
return getIlpClass();

}

public boolean hasAttributeValue (IlpAttribute a) {
return getAttributeGroup().hasAttribute(a);

}

public void initializeDefaultValues() {
// nothing to do here

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 77

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S78

Data sources

Explains how the various formats of business objects are handled at the data source level.

In this section

About data sources
Gives a brief description of the purpose of a data source.

Data source API
Describes the different data source interfaces with their usage and provides a class diagram.

Adding business objects from XML
Explains how the default implementation of the data source can create IlpObject instances
from XML files.

Adding business objects from JavaBeans
Shows how to add JavaBean objects to a data source.

Adding dynamic business objects
Explains how to create dynamic business objects, add them to a data source, and remove
them when they are no longer required.

Defining business object relationships
Explains how to define relationships such as links and containment in a data source.

Grouping changes in batches
Explains how to make changes to the contents of a data source or to business objects by
grouping them into batches.

© Copyright IBM Corp. 1987, 2009 79

Advanced parsing and writing of a data source
Explains how to use the IlpDataSourceLoader and IlpDataSourceOutput classes.

Implementing a new data source
Shows how to implement a data source for loading on demand a hierarchy of objects and,
more precisely, a file system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S80

About data sources

In IBM® ILOG® JViews TGO, the GUI part of the application connects to the back-end
application where it retrieves data to be displayed through a data source.

The role of the data source is to turn business data, whatever the format, into objects that
JViews TGO can handle, that is, instances of IlpObject. For details, see Business model
API.

JViews TGO has been designed so that it can integrate smoothly with back-end data in a
large variety of formats. JViews TGO plugs to the back-end application through data sources
that are specific to the type of data handled.

A data source is a collection of business objects of the class IlpObject that notifies its
listeners when an object is added or removed or when the object structure is modified. A
data source is defined by the IlpDataSource interface.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 81

Data source API

JViews TGO provides a default data source implementation, IltDefaultDataSource, to
connect to XML files. This default data source includes methods for adding or removing
business objects implementing the IlpObject interface or JavaBeans™, that is, Java™ objects
that comply with the JavaBeans design pattern (see Reminder about JavaBeans design
patterns). It also provides an API that lets you obtain structural information about the
existence of a parent, children, an origin or a destination from the back-end and store it in
the IlpObject.

To learn how to create a custom data source, see Implementing a new data source.

The interface IlpDataSource defines static data sources. It provides methods to:

♦ Retrieve objects based on their identifier.

♦ Retrieve all the objects stored in the data source.

♦ Notify listeners about objects added or removed from the data source.

♦ Retrieve structural information, such as parent, child and containment relationships.

The interface IlpMutableDataSource defines dynamic data sources. In addition to the
methods listed above, it provides methods to:

♦ Add and remove objects.

♦ Set structural information, such as parent, child and containment relationships.

JViews TGO provides a convenience implementation of these interfaces that you can use
directly when building an application: IltDefaultDataSource. This default implementation
for a dynamic data source is able to read business model information from XML and to
manage custom business objects as well as predefined business objects.

The following sample code shows how to create a data source instance to be used with the
different JViews TGO graphic components.

How to create a data source

IlpContext context = IltSystem.GetDefaultContext();
IltDefaultDataSource dataSource = new IltDefaultDataSource(context);

A diagram of the data source classes and of their relationships is given in the following
figure.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S82

Data source classes

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 83

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S84

Adding business objects from XML

Explains how the default implementation of the data source can create IlpObject instances
from XML files.

In this section

Reading an XML file into a data source
Gives examples of correct and incorrect XML business models and explains how to read
them into a data source.

Writing the data source content to XML
Explains how to write a data source into an XML file.

Adding predefined business objects
Lists the predefined business objects that you can add into a data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 85

Reading an XML file into a data source

The following sample code reads an XML file into a data source.

How to read an XML file into a data source

try {
dataSource.parse("XMLFileExample.xml");

} catch (Exception e) {
e.printStackTrace();

}

Following is an example of an XML file.

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<cplData>
<classes>
<class>
<name>Alarm</name>
<attribute>
<name>ID</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>severity</name>
<javaClass>itest.table.datasourcexmltable.MainFrame$Severity</javaClass>

<defaultValue>Warning</defaultValue>
</attribute>
<attribute>
<name>acknowledged</name>
<javaClass>java.lang.Boolean</javaClass>
<defaultValue>false</defaultValue>

</attribute>
</class>

</classes>
<addObject id="alarm1" initializeDefaultValue="true">
<class>Alarm</class>
<attribute name="ID">alarm1</attribute>

</addObject>
<addObject id="alarm2" initializeDefaultValue="false">
<class>Alarm</class>
<attribute name="ID">alarm2</attribute>
<attribute name="severity">Major</attribute>
<attribute name="acknowledged">false</attribute>

</addObject >
<addObject id="alarm3" initializeDefaultValue="false">
<class>Alarm</class>
<attribute name="ID">alarm3</attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S86

<attribute name="severity">Major</attribute>
<attribute name="acknowledged">true</attribute>

</addObject >
<addObject id="alarm4" initializeDefaultValue="false">
<class>Alarm</class>
<attribute name="ID">alarm4</attribute>

</addObject >
<updateObject id="alarm2">
<attribute name="acknowledged">true</attribute>

</updateObject>
</cplData>

In this example, the <classes> XML element delimits the business model definition. This
model can also be defined in a separate file. For details, see Defining a dynamic class in
XML.

When defining your business model in a data source file, please note that the business class
inheritance (defined through the tag "superClass") is resolved at the end of each <classes>
element. As a consequence, you cannot define within the first <classes> element a class
that inherits from a class defined within another <classes> element later in the file. For
example, the following model definition is incorrect:

Incorrect example

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<classes>
<class>
<name>Domain</name>
<superClass>NetworkElement</superClass>

</class>
</classes>

<classes>
<class>
<name>NetworkElement</name>
<attribute>
<name>name</name>
<javaClass>java.lang.String</javaClass>

</attribute>
</class>

</classes>
</cplData>

To get a correct business model definition, you can either define the whole business class
hierarchy inside the same <classes> element as follows:

Correct example

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 87

<classes>
<class>
<name>NetworkElement</name>
<attribute>
<name>name</name>
<javaClass>java.lang.String</javaClass>

</attribute>
</class>
<class>
<name>Domain</name>
<superClass>NetworkElement</superClass>

</class>
</classes>
</cplData>

or, make sure that the business class needed is already present in the class manager of the
current application context. To do so, you load a separate business model XML file directly
in the class manager. Please refer to Class manager in the Application Context and
Deployment Descriptor documentation.

The following table describes the elements that you can use to define actions to be performed
on the business model data in XML format. Mandatory attributes appear in boldface. You
can also find a description of this format in the XML schema file data.xsd, located at
<installdir> /data/ilog/cpl/schema/data.xsd.

Elements in an XML data file
DescriptionDefaultAttributesXML Elements

Delimits data definition. This element
is required. The file containing XML

None<cplData>

business data should necessarily start
and end with this element.

Delimits the model definition, that is,
dynamic class definition. For details,
see Defining a dynamic class in XML.

None<classes>

Within an <updateState> element,
defines the class of the added object.

None<class>

Within an <updateState> or
<updateObject> element, defines
the values of the attributes.

<attribute>

This attribute is mandatory. The name
of the attribute as defined in the object
class.

name

This attribute is optional. When true,
it indicates that the value of the
attribute is null.

falsenull

This attribute is optional. It specifies
the Java class name of the attribute

The
attribute

javaClass

value. It becomes mandatory if theJava™

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S88

DescriptionDefaultAttributesXML Elements

class as
defined in

attribute value class is an abstract
class. See Note 3.

the
IlpClass

Within an <updateObject> element,
defines incremental updates to

<updateState>

attribute objectState for predefined
business objects. See Defining states
in XML.

Group data source updates. This
element may contain any number of

<batch>

<updateState>, <removeObject>,
<updateObject>. Also, <batch>
elements can be nested.

Adds an object to the data source.This
element contains a mandatory

<addObject>

<class> element. It may contain
structural elements and <attribute>
elements.

This attribute is mandatory and should
be unique.

id

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

This attribute is optional. When true,
it initializes attributes to their default
values.

trueinitializeDefaultValue

This attribute is optional. It allows you
to specify whether the object is a

container

container. An object is considered to
be a container if this attribute is set to
true, if it contains <children>, or if
another object is declared as its
<parent>.

Updates the value of an existing object.
It may contain structural elements,

<updateObject>

<attribute> and <updateState>
elements.

This attribute is mandatory.id

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

This attribute is optional. It allows you
to specify whether the object is a

container

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 89

DescriptionDefaultAttributesXML Elements

container. An object is considered to
be a container if this attribute is set to
true, if it contains <children>, or if
another object is declared as its
<parent>.

Removes an existing object. It should
not contain any other data or elements.

<removeObject>

This attribute is mandatory.id

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

This attribute is optional. It specifies
whether all the children of the object

truechildrenToo

should be removed from the data
source.

Structural element indicating that an
object is a potential container, even if

None<children>

<children> does not contain any

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S90

DescriptionDefaultAttributesXML Elements

other subelements. This element can
contain <child> subelements.

Structural element that lets you specify
the extremities of a link. It contains one
<to> and one <from> subelement.

<link>

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

Structural element. It contains the id
of the parent object.

<parent>

See Note 1

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

Contains the ID of the child.<child>

See Note 1

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

Contains the id of the to extremity of
a link.

<to>

See Note 1

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

Contains the id of the from extremity
of a link.

<from>.

See Note 1

This attribute is optional. It can be used
to specify a Java class name for the
id. See Note 2.

java.
lang.
String

idClass

Note: 1. Whether the object referred to by the ID in <parent>, <child>, <to>, and
<from> elements exists or not is not important. When the corresponding object
is created, either with the <addObject> XML element or through a call to a data
source method, the adapter that makes use of the structural information will perform
any necessary action to connect the representation objects matching the business
objects specified in the structural element.

2. The supported Java classes are those handled by the type converter. See
IlpTypeConverter and IlpDefaultTypeConverter for more information.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 91

3. The javaClass attribute of the <attribute> element behaves like the
javaClass attribute of the <defaultValue> element. See Attribute types.

XML file samples

How to define the business model
The following sample illustrates the use of the XML elements <cplData>, <classes>, <class>
and <attribute>, which define the business model:

<cplData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/data.xsd">
<classes>
<class>
<name>NetworkElement</name>
<attribute>
<name>name</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>site</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>position</name>
<javaClass>ilog.cpl.graphic.IlpPoint</javaClass>
</attribute>

</class>
<class>
<name>Domain</name>
<superClass>NetworkElement</superClass>

</class>
<class>
<name>LinkElement</name>
<attribute>
<name>name</name>
<javaClass>java.lang.String</javaClass>

</attribute>
</class>

</classes>
</cplData>

How to create a new business object
The following sample illustrates the use of the XML element <addObject> to create a new
business object of the business class "Domain":

<addObject id="Domain1">

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S92

<class>Domain</class>
<attribute name="name">Domain 1</attribute>
<attribute name="site">Gentilly</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>100</y>

</attribute>
</addObject>

How to create containment relationships between business objects
The following sample shows how to create containment relationships between business
objects using the XML element <parent>. The example creates a new business object
"Server1" which is a child of business object "Domain1".

<addObject id="Server1">
<class>Server</class>
<parent>Domain1</parent>
<attribute name="name">S1</attribute>
<attribute name="site">Montreuil</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>

How to specify a link relationship
The following sample shows how to specify a link relationship using the XML elements
<link>, <to> and <from>. In this example, you create the link "Link1" which connects two
objects "Domain1" and "Domain2".

<addObject id="Link1">
<class>LinkElement</class>
<attribute name="name">InterDomain</attribute>
<link>
<from>Domain1</from>
<to>Domain2</to>

</link>
</addObject>

How to update the values of an object
The following sample shows how to update values of an existing object using the XML element
<updateObject>. You can update simple attributes, such as "name", and you can also change
structural information such as changing the end point of the link:

<updateObject id="Link1">
<attribute name="name">Server1-Domain2</attribute>
<link>
<from>Server1</from>
<to>Domain2</to>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 93

</link>
</updateObject>

How to remove an object from the data source
The following sample shows how to remove an object from the data soure using the XML
element <removeObject>:

<removeObject id="Link1"/>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S94

Writing the data source content to XML

You can also write the content of the data source to an XML file like this:

datasource.output("network.xml");

You can also use a java.io.Writer. The following example prints the data source to the
default output:

Writer writer = new PrintWriter(System.out);
dataSource.output(writer);
writer.flush();

See also Advanced parsing and writing of a data source for details on more advanced
functionality.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 95

Adding predefined business objects

Almost all predefined business objects can be added to a data source. This is the case for:

♦ Alarms (See Loading an alarm defined in XML.)

♦ Links (See Loading a link defined in XML.)

♦ Link sets (See Loading a link set defined in XML.)

♦ Link bundles (See Loading a link bundle defined in XML.)

♦ Groups (See Loading a group defined in XML.)

♦ Network elements (See Loading a network element defined in XML.)

♦ Off-page connectors (See Loading an off-page connector defined in XML.)

♦ Shelves (See Loading a shelf defined in XML.)

♦ Cards (See Loading a card defined in XML.)

♦ Card carriers (See Loading a card carrier defined in XML.)

♦ LEDs (See Loading an LED defined in XML.)

♦ Ports (See Loading a port defined in XML.)

♦ Base transceiver stations (See Loading a BTS object defined in XML.)

♦ States (See Defining states in XML.)

Refer to section Introducing business objects and data sources in this documentation for an
overview of these objects.

For information on how to add these objects to a data source through XML or through the
API, refer to the corresponding sections further in this documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S96

Adding business objects from JavaBeans

The default implementation of the IlpDataSource interface provides an API that directly
supports JavaBeans™ objects. This API transforms JavaBeans objects into IlpObject instances
of type IlpBeansObject.

If necessary, see Reminder about JavaBeans design patterns.

The example below shows how to add JavaBeans objects to a data source. It reuses the MO
class defined in Defining the business model from JavaBeans classes. Objects are created
as regular Java™ objects, inserted in a data source, and modified by means of their set
methods.

How to add JavaBeans objects to a data source

MO mo1 = new MO("mo1");
dataSource.addBean(mo1,"mo1");
mo1.setState(2);

Once in the data source, these objects can be displayed in the various JViews TGO graphic
components. Bound property updates are dynamically reflected in these components.

The figure below shows an MO object displayed in a tree component.

JavaBeans object displayed in a Tree component

The graphical result depends also on the style information associated with the object.
Here, the state attribute is mapped to a color. For details, see Introducing cascading
style sheets.

Note:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 97

Adding dynamic business objects

To create a dynamic business object, all you have to do is create an instance of
IlpDefaultObject for an IlpClass, generally an IlpDefaultClass.

Here is an example:

How to create a dynamic business object

IlpDefaultObject bo = new IlpDefaultObject(alarmClass, "Alarm1");
bo.setAttributeValue(severityAttribute, new Integer(2));
bo.setAttributeValue(ackAttribute, Boolean.FALSE);

Note that here the identifier of the object is a string, but it does not have to be. This identifier
could be of any class, provided that instances of that class can be read from and converted
to string using the type converter.

The interface IlpObject also contains convenience methods to retrieve and set attribute
values based on the attribute name. These convenience methods can be easily implemented
as follows:

public Object getAttributeValue (String attribute) {
IlpAttribute attr = getAttributeGroup().getAttribute(attribute);
if (attr != null)
return getAttributeValue(attr);

return IlpAttributeValueHolder.VALUE_NOT_SET;
}

public void setAttributeValue (String attributeName, Object value) {
IlpAttribute attr = getAttributeGroup().getAttribute(attribute);
if (attr != null)
setAttributeValue(attr, value);

}

Adding business objects to the data source
The default data source implementation, IltDefaultDataSource, provides methods to add
and remove business objects. Once a business object is added into a data source that is
connected to a graphic component, it can be automatically displayed by the graphic
component.

If you want to add your business objects to the data source without having their graphic
representation created, you need to use an IlpFilter and apply it to the IlpAbstractAdapter
in charge. In this way, the objects are filtered out and not included in the graphic
representation model. No graphic representation will be created at rendering time. You can,
at a later stage, change the filter to make more objects visible as needed.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S98

The filter must be set on the IlpAbstractAdapter before the business objects are
added to the data source.

Note:

Such filters allow the business objects to be managed by the data source and still not be
represented graphically.

The following methods are available to add business objects to a data source:

♦ void

addObject(ilog.cpl.model.IlpObject). Adds a single object to the data source

♦ void addObjects(java.util.List) Adds a collection of objects to the data source.

Whenever possible, large series of IlpObject instances should be added as collections
instead of one by one. This is typically the case when you initialize the application.

For example, the code sample below:

for (...) {
parent = new IltNetworkElement("ROOT");
dataSource.addObject(parent);

for (...) {
child = new IltNetworkElement("NE");
dataSource.setParent(child, parent);
dataSource.addObject(child);

}
}

Could be improved to:

List objects = new ArrayList();
for (...) {
parent = new IltNetworkElement("ROOT");
objects.add(parent);
for (...) {
child = new IltNetworkElement("NE");
dataSource.setParent(child, parent);
objects.add(child);

}
}
dataSource.addObjects(objects);

Removing business objects from the data source
When the business objects are no longer needed by the application, they can be removed
from the data source using one of the following methods:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 99

♦ IlpObject removeObject(Object idOrIlpObject, boolean childrenToo): Removes
the required object from the data source. The argument "childrenToo" is used to indicate
if the whole object subtree should be removed from the data source at the same time.

♦ List removeObjects(List idsOrIlpObjects, boolean childrenToo): Removes a
collection of objects from the data source.

♦ void clear(): Removes all business objects from the data source.

Whenever possible, large series of IlpObject instances should be removed as collections
instead of removing the objects one by one.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S100

Defining business object relationships

Business object relationships, such as links or containment, are defined in the data source
using the following methods:

♦ void setLink (Object idOrIlpObject, Object fromIdOrIlpObject, Object
toIdOrIlpObject)

This method declares an object as being a link, connecting the from business object to
the to business object. The structural information of the link is defined by the interface
IlpLink.

♦ void setParent (Object idOrIlpObject, Object parentIdOrIlpObject)

This method declares an object as being the parent of another object.

♦ void setChildren (Object idOrIlpObject, List childrenIdsOrIlpObjects)

This method declares an object as being the parent of the given list of child objects.

How to define parent-child relationships between business objects
The following example illustrates the use of the methods setParent and setChildren in a
default data source.

IlpObject parent = new IltNetworkElement("NE1");
IlpObject child = new IltNetworkElement("NE1_1");
dataSource.setParent(child, parent);
dataSource.addObject(child);
dataSource.addObject(parent);

or

IlpObject parent = new IltNetworkElement("NE1");
IlpObject child1 = new IltNetworkElement("NE1_1");
IlpObject child2 = new IltNetworkElement("NE1_2");
IlpObject child3 = new IltNetworkElement("NE1_3");
List children = new ArrayList();
children.add(child1);
children.add(child2);
children.add(child3);
dataSource.setChildren(parent, children);
dataSource.addObjects(children);
dataSource.addObject(parent);

How to define a link between business objects
The following example illustrates the use of the method setLink in a default data source.

IlpObject fromEnd = new IltNetworkElement("NE1");

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 101

IlpObject toEnd = new IltNetworkElement("NE2");
IlpObject link = new IltLink("NE1<->NE2");

dataSource.setLink (link, fromEnd, toEnd);
List objects = new ArrayList();
objects.add(fromEnd);
objects.add(toEnd);
dataSource.addObjects(objects);
dataSource.addObject(link);

Whenever possible, first add all end-point objects to the data source, then add the
corresponding link objects. This avoids internal checks and temporary object storage to
properly create and arrange the object hierarchy.

To improve the data source and component performance, it is also recommended to avoid
changing relationships after the objects have been added to the data source. For example:

Less efficient:

dataSource.addObject(object);
dataSource.setParent(object, parent);

More efficient:

dataSource.setParent(object, parent);
dataSource.addObject(object);

How to define an intergraph link
JViews TGO is able to display links connecting objects in different hierarchies. These links
are known as intergraph links. To have an intergraph link properly displayed, you need to
take care of how the link object is created in the data source, specially at which hierarchy
level the link object is added.

To illustrate an intergraph link use case, let’s imagine the following object hierarchy:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S102

Object hierarchy

Suppose you wanted to create a link connecting Leaf A and Leaf B. You would have to add
it to the data source in the following way:

ArrayList objects = new ArrayList();
IltNetworkElement net = new IltNetworkElement("Network");
net.setName("Network");

IltNetworkElement branchA = new IltNetworkElement("BranchA");
branchA.setName("A");
IltNetworkElement branchB = new IltNetworkElement("BranchB");
branchB.setName("B");

objects.add(net);
objects.add(branchA);
objects.add(branchB);

dataSource.setParent(branchA, net);
dataSource.setParent(branchB, net);

IltNetworkElement leafA = new IltNetworkElement("LeafA");
leafA.setType(IltNetworkElement.Type.NMW);
leafA.setPosition(new IlpPoint(100,100));
leafA.setName("Leaf A");
IltNetworkElement leafB = new IltNetworkElement("LeafB");
leafB.setType(IltNetworkElement.Type.NMW);
leafB.setPosition(new IlpPoint(250,250));
leafB.setName("Leaf B");

dataSource.setParent(leafA, branchA);
dataSource.setParent(leafB, branchB);
objects.add(leafA);
objects.add(leafB);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 103

// Creating the intergraph link
IltLink link = new IltLink("LeafA-LeafB");
link.setName("LeafA-LeafB");
dataSource.setLink(link, leafA, leafB);
// Setting the link hierarchy level
dataSource.setParent(link, net);
objects.add(link);
dataSource.addObjects(objects);

The intergraph link should be placed at the highest hierarchy level common to both end
points. This is illustrated in the example above where the link is set as a child of the
"network" business object.

How to retrieve business object structural information
The current implementation of IltDefaultDataSource handles structural information, such
as child-parent relationships described earlier, pertaining to IlpObject instances
independently of the objects themselves. This implementation makes it possible for you to
load objects on demand. See How to implement load-on-demand in a data source for more
information.

The strucutral information is defined in JViews TGO through the following interfaces:

♦ IlpChild—This interface defines the method Object getParent(IlpObject object),
which returns the parent object identifier from the given business object.

♦ IlpContainer—This interface defines the method Collection getChildren(IlpObject
object), which returns the list of child identifiers from the given business object.

♦ IlpLink—This interface defines the structural information needed to indicate that a
business object is a link between two other business objects. This interface declares the
methods Object getFrom(IlpObject object) and Object getTo(IlpObject object).

♦ IlpLinkExtremity—This interface defines the structural information to indicate that a
business object is the end of links. This interface declares method Collection getLinks
(IlpObject object).

The default data source implementation provides the following methods to retrieve each
one of these interfaces:

♦ IlpChild getChildInterface (Object childIdOrIlpObject)

♦ IlpContainer getContainerInterface (Object containerIdOrIlpObject)

♦ IlpLink getLinkInterface (Object linkIdOrIlpObject)

♦ IlpLinkExtremity getLinkExtremityInterface (Object linkIdOrIlpObject)

You can use the following convenience methods to retrieve the structural information. These
methods return the structural information based on the fact that the queried business objects
are all present in the data source. If this is not the case, you should retrieve the structural
information using the interfaces instead.

♦ IlpObject getParent (IlpObject object): Returns the parent of the given object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S104

♦ Collection getChildren (IlpObject object): Returns the collection of child objects
for the given object.

♦ Collection getLinks (IlpObject node): Returns the collection of links that have the
given node as an end point.

♦ IlpObject getFrom (IlpObject link): Returns the from end point of the given link
object.

♦ IlpObject getTo (IlpObject link): Returns the to end point of the given link object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 105

Grouping changes in batches

You can . In this way, changes are handled more efficiently and provide improved
performance. You can batch additions and removals of objects, as well as changes to the
business objects themselves, such as changes in the containment structure, link extremities
or attribute values.

How to batch changes

IlpAbstractDataSource datasource = ...
...
datasource.startBatch();
// add/remove objects
// update attribute values, change containment, change link extremities
...
datasource.endBatch();

Data source changes that are grouped in a batch are delayed until the call to endBatch.

Batches can be nested. In this case, changes are delayed until the most enclosing call to
endBatch().

How to nest batches

datasource.startBatch();
datasource.startBatch();
// first batch
...
datasource.endBatch();
datasource.startBatch();
// second batch
...
datasource.endBatch();

datasource.endBatch();

How to batch changes in XML
Data source changes in XML streams can be grouped in batches using the element <batch>
as illustrated in the following sample:

<cplData>
<batch>

<addObject>
<!-- ... -->

</addObject>
<updateObject>

<!-- ... -->

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S106

</updateObject>
<removeObject>

<!-- ... -->
</removeObject>

</batch>
</cplData>

Batches can also be nested in data source XML streams by nesting <batch> elements. In
this case, changes are delayed until the most enclosing </batch>.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 107

Advanced parsing and writing of a data source

In addition to the basic IlpDefaultDataSource API for parsing a data source and writing
the data source content to an XML file, JViews TGO provides the classes
IlpDataSourceLoader and IlpDataSourceOutput for a more advanced use. Both these
classes are located in the package ilog.cpl.storage.

Parsing an XML File
The class IlpDataSourceLoader has the following functionality:

♦ Reads the data source content directly from a SAX InputSource.

♦ Gives access to the SAX XMLReader. You can modify the behavior of the XML reader before
the parsing takes place (for example, to disable the validation of the XML schema).

How to modify the behavior of the XML reader

IlpDataSourceLoader loader = new IlpDataSourceLoader(inputSource,
dataSource);

XMLReader reader = loader.getXMLReader();
reader.setFeature("http://xml.org/sax/features/validation",false);
loader.parse();

♦ Uses an identifier factory. An identifier factory lets you change the identifiers while the
XML file is being loaded.

♦ Loads new root objects as children of an object present in the data source.

♦ Loads objects that match filter criteria.

The example below loads a template file into the data source. It shows how to create an
identifier factory to modify parent identifiers of root objects. The complete sample code is
located in the following directory:

<installdir>/tutorials/browser

How to load a file into a data source

final Object parentID = expandedObject.getIdentifier();

// Create an identifier factory that prepends the parent ID to
// all identifiers read from the template.
IlpIdentifierFactory idFactory = new IlpIdentifierFactory(){
public Object getIdentifier (Object previousIdentifier){
return parentID.toString() + "/" + previousIdentifier.toString();

}
};
// Load the template into the datasource

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S108

// Load the template objects under the parent node, and transform
// their IDs so they are unique
IlpDataSourceLoader loader = new IlpDataSourceLoader(templateFileName,

mainDataSource);
loader.setIdentifierFactory(idFactory);
loader.setParentIdOfRootObjects(parentID);
loader.parse();

Writing to an XML file
The class IlpDataSourceOutput has the following functionality:

♦ Writes the contents of the data source directly to a SAX ContentHandler. This content
handler can be used to feed a DOM tree for example.

♦ Enables or disables enhanced printing. By default, pretty printing is enabled but you can
deactivate it to improve performance.

♦ Uses an identifier factory. An identifier factory lets you change the identifiers while the
XML file is being written. Its use is the same as for parsing.

♦ Writes a hierarchy of objects by calling the method outputHierarchy(IlpObject). The
IlpObject parameter and all its children (which are defined by the container interface)
are written to the file.

♦ Writes a single object by calling outputObject(IlpObject).

♦ Writes only the objects that match the specified filter criteria.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 109

Implementing a new data source

This section is based on the sample located in <installdir>/samples/datasource/explorer.

Implementing the data source
IltDefaultDataSource includes support for any IlpClass instances and handles tables
mapping IlpObject instances with identifiers. Deriving FileDataSource from that class
allows you to benefit from this functionality.

How to implement a data source
Extend the IltDefaultDataSource class as follows:

public class FileDataSource extends IltDefaultDataSource {

Write the constructor on the following model:

public FileDataSource() {
super();
// Retrieve the File Java class as an IlpClass
IlpMutableClassManager classManager = getContext().getClassManager();
fileClass = (IlpMutableClass)classManager.getClass(File.class.getName());
// Create a subclass of the java.io.File IlpClass for root objects,
// so as to apply different styles to them.
classOfRoots = new IlpDefaultClass("DirectoryRoot",

fileClass,
Collections.EMPTY_LIST);

fileClass.addSubClass(classOfRoots);
classManager.addClass(classOfRoots);
// loads the roots
File[] rootdirs = File.listRoots();
addFiles(rootdirs, classOfRoots);
}

This data source is meant to read in objects of type File which, in Java™, are instances of
the class java.io.File. In this sample code, java.io.File objects are defined by the
IlpClass automatically generated by the class manager. Here, the class java.io.File is
considered as a JavaBeans™ class (which is acceptable, as most of its methods comply with
JavaBeans conventions). As an alternative, you could create a dedicated IlpClass
implementation and the corresponding IlpObject implementation. SeeDefining the business
model with dynamic classes and Adding dynamic business objects.

There is a known limitation in Microsoft® Windows® environments: the getName method
of the class java.io.File does not display labels correctly. This is why it is necessary here
to subclass the IlpClass defining java.io.File to represent the roots of the file system.

Once the required IlpClass objects are known, the data source is initialized with the root
objects returned by the listRoots method of the class java.io.File.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S110

How to insert objects into a data source by reading from an array
of files
The addFiles method, detailed below, iterates over an array of Files, creates the
corresponding IlpObject instances if they are not yet present in the data source, and inserts
these objects into the data source.

protected synchronized void addFiles(File[] files, IlpClass ilpClass) {
List filesAsIlpObjects = new ArrayList(files.length);
for (int i = 0; i < files.length; i++) {
// use the file itself as the object identifier
Object id = files[i];
if (getObject(id) == null) {
IlpBeansObject ilpObject = new IlpBeansObject(files[i],
ilpClass,files[i]);

filesAsIlpObjects.add(ilpObject);
}

}
if (filesAsIlpObjects.size() != 0)
addObjects(filesAsIlpObjects);

}

How to implement load-on-demand in a data source
The current implementation of IltDefaultDataSource handles structural information (that
is, child-parent relationships) pertaining to IlpObject instances independently of the objects
themselves.

This implementation makes it possible for you to load objects on demand in two different
ways:

♦ with the getObject(Object id) method

or

♦ with the getContainerInterface method

This method returns an implementation of the IlpContainer interface. This interface
contains a getChildren(ilog.cpl.model.IlpObject)method that returns the identifiers
of the children of the IlpObject.

In our example, we have implemented load-on-demand by redefining the
getContainerInterface of the data source (see Implementing the getContainerInterface
method). Since we do not use the access to structural information provided by the default
data source in order not to duplicate it from the File class where it is already present, we
also provide a specific implementation of the getChildInterfacemethod (see Implementing
the getChildInterface method and the IlpChild interface).

You could also create IlpObject instances dynamically by reimplementing the method
getObject(Object id).

Note:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 111

Implementing the getContainerInterface method
The method getContainerInterface returns an IlpContainer. If the object is a container,
the method should return a non-null value, whether this container has children or not, as
shown in the following example.

How to get a container

public synchronized IlpContainer getContainerInterface(Object idOrIlpObject)
{

IlpObject object = idOrIlpObject instanceof IlpObject ?
(IlpObject)idOrIlpObject : getObject(idOrIlpObject);

if (object != null && fileClass.isAssignableFrom(object.getIlpClass()))
{

File file = (File)((IlpBeansObject)object).getBean();
if (file.isDirectory())
return DIRECTORY_LOADER;

else
return null;

}
return super.getContainerInterface(idOrIlpObject);
}

The getContainerInterface method takes an IlpObject or an identifier as parameter. It
retrieves the IlpObject instance from its parameter and checks whether the returned object
is an instance of the IlpClass corresponding to the File class and whether File is a
directory. If it is not a directory, it returns null or the default implementation of the data
source, if the object is not of the File IlpClass. If it is a directory, the method returns a
specific implementation of the IlpContainer interface (see Implementing the IlpContainer
interface).

Note that in this example, the IlpObject is downcast to an instance of IlpBeansObject and
that the Bean it contains is in turn downcast to a File instance. We could have used the
directory attribute of the IlpClass directly as follows:

How to use the directory attribute of an IlpClass directly

Boolean isDirectory =
Boolean)object.getAttributeValue(fileClass.getAttribute("directory")) ;

if (isDirectory.booleanValue())
return DIRECTORY_LOADER;

else
return null;

Implementing the IlpContainer interface
The default data source provides its own implementations of all the structural interfaces
(such as IlpChild or IlpContainer). These implementations ensure that the information
they contain is coherent. For example, if A is the child of B, B is the parent of A.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S112

These implementations do not support load-on-demand. To support load on demand, you
have to redefine the IlpContainer interface.

It is quite easy to retrieve the children of a File object and load them. Following is an
implementation of IlpContainer for the class java.io.File. It uses a static instance of the
class since the entire context of the getChildren method is contained in its parameter,
which is the IlpObject instance itself.

How to retrieve child objects

IlpContainer DIRECTORY_LOADER = new IlpContainer(){
public Collection getChildren(IlpObject object) {
// the file is supposed to be a directory
File directory = (File)((IlpBeansObject)object).getBean();
File[] files = directory.listFiles();
List filesIds = new ArrayList(files.length);
for (int i = 0; i < files.length; i++) {
// 1st get all the identifiers
filesIds.add(files[i]);

}

// then add the files
addFiles(files, fileClass);
return filesIds;

}
};

Note that to avoid recreating the same IlpObject instance twice, no record is kept as to
whether a directory has already been loaded. The test in the addFiles method (described
in Implementing the data source) is used to check whether an IlpObject instance exists
before creating it and adding it to the data source.

Implementing the getChildInterface method and the IlpChild
interface
Since you do not use the access to structural information provided by the default data source,
you have to provide specific implementations of the getChildInterface method and of the
IlpChild interface. This is quite easy, since the java.io.File class has a getParentFile
method.

How to provide specific implementations of getChildInterface and
IlpChild

public synchronized IlpChild getChildInterface(Object idOrIlpObject) {
IlpObject object = idOrIlpObject instanceof IlpObject ?

(IlpObject)idOrIlpObject : getObject(idOrIlpObject);
if (object != null && fileClass.isAssignableFrom(object.getIlpClass()))

{
File file = (File)((IlpBeansObject)object).getBean();
File parentFile = file.getParentFile();

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 113

if (parentFile != null) {
return FILE_PARENT;

} else {
return null;

}
}
return super.getChildInterface(idOrIlpObject);

}

The method gets the IlpObject and checks whether that object is a file. It then checks
whether it has a parent file and returns the specific implementation of the IlpChild interface,
described below.

Like the other structural interfaces, the IlpChild interface returns an identifier. Here, since
the identifiers of the objects are the files themselves, it returns the parent file.

How to get the parent file

IlpChild FILE_PARENT = new IlpChild() {
public Object getParent(IlpObject object) {
File file = (File)((IlpBeansObject)object).getBean();
File parentFile = file.getParentFile();
return parentFile;

}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S114

Network elements

Explains how to use IBM® ILOG® JViews TGO predefined business objects of type network
element in your application.

In this section

Network element class
Describes the attributes of the IltNetworkElement class.

Loading a network element defined in XML
Shows how to load a network element from an XML file into a data source.

Creating a network element with the API
Shows how to create a network element using the JViews TGO API and add it to a data
source.

Representation of network elements in a network
Describes the different aspects of the graphical representation of a network element in a
network.

Representation of network elements in a table and in a tree
Shows how some network elements are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 115

Network element class

Network elements include any kind of networkmanaged objects, such as data-communications
equipment (a switch, a multiplexer, a cross-connect, for example), outside plant equipment,
and peripheral equipment (terminal or printer).

Network elements are predefined business objects of the class IltNetworkElement that you
can directly insert in a JViews TGO data source and represent graphically in any of the
graphic components connected to the data source. For a general introduction to predefined
business classes, see Introducing business objects and data sources.

The IltNetworkElement class defines the following attributes:

♦ Type—Indicates the category of the network element, which determines the way it will
be graphically represented.

● Name: type

● Value class: IltNetworkElement.Type

● Attribute: IltNetworkElement.TypeAttribute

♦ Function—Indicates the function ot the network element according to its category, for
example access or switch item of equipment.

● Name: function

● Value class: IltNetworkElement.Function

● Attribute: IltNetworkElement.FunctionAttribute

♦ Family—Indicates the family of the network element according to its function. Usually,
the family represents the equipment capacity.

● Name: family

● Value class: IltNetworkElement.Family

● Attribute: IltNetworkElement.FamilyAttribute

♦ Partial—Indicates that the network element represents only part of the real-world
network element.

● Name: partial

● Value class: java.lang.Boolean

● Attribute: IltNetworkElement.PartialAttribute

♦ Shortcut—Indicates that the network element is only a reference to an existing network
element.

● Name: shortcut

● Value class: ilog.tgo.model.attribute.IltShortcutAttributeType

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S116

● Attribute: IltNetworkElement.ShortcutAttribute

You can retrieve the class IltNetworkElement using its GetIlpClass() method. You can
handle its instances as simple IlpObject instances and set and get its attributes with the
generic methods getAttributeValue and setAttributeValue.

In addition, the class IltNetworkElement provides convenience methods, such as
getFunction and setFunction, which you can use directly to access each individual
predefined attribute of the class.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 117

Loading a network element defined in XML

For detailed information about data sources, see Data sources.

All you have to do to load a network element written in XML into a data source, is create a
data source using the data source default implementation defined by IltDefaultDataSource
and pass the XML file to the parse method of the data source, as follows:

dataSource = new IltDefaultDataSource();
dataSource.parse("NetworkElementXMLFile.xml");

How to define a network element in XML
Below is an example of a network element defined in XML format. For details about the XML
elements used in this example, see Elements in an XML data file .

In this example, the object state associated with the first network element (NE1) has a default
value. The second object (NE2) explicitly defines the primary states of its associated OSI
state. For details about states, see States.

<cplData>
<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="type">NE</attribute>
<attribute name="function">Transport</attribute>
<attribute name="family">OC96</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>10.0</x>
<y>50.9</y>

</attribute>
<attribute name="objectState"

JavaClass="ilog.tgo.model.IltOSIObjectState"/>
</addObject>
<addObject id="NE2">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE2</attribute>
<attribute name="type">Terminal</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>60.0</x>
<y>50.9</y>

</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltOSIObjectState">
<state>
<administrative>Unlocked</administrative>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
</attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S118

</addObject>
</cplData>

The following figure shows the two network elements displayed in a network component:

Network elements displayed in a network component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 119

Creating a network element with the API

All you have to do is create a new network element using the class IltNetworkElement and
add it to a data source.

How to create a network element through the API

IltNetworkElement ne = new IltNetworkElement("NE",
IltNetworkElement.Type.Digiphone, new IltOSIObjectState());

ne.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(100,100));
IlpDataSource dataSource = new IltDefaultDataSource();
dataSource.addObject(ne);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S120

Representation of network elements in a
network

Describes the different aspects of the graphical representation of a network element in a
network.

In this section

Network element types
Shows the graphical representations used for the different types of network element.

Network element functions
Shows the graphical representations used for the different network element functions.

Network element families
Shows the graphical representations used for the different network element families.

Partial network elements
Explains how to create a partial network element and shows its graphic representation.

Shortcut network elements
Explains how to create a shortcut network element and shows its graphic representation.

Network element sizes
Shows which type of information is represented depending on the size of the network element.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 121

Network element types

The network element type defines how a given network element will be displayed. The
network element type is specified by setting the value of the attribute type in the business
object. This attribute can be set programatically using IltNetworkElement.TypeAttribute
or through XML.

How to set the network element type using the API

IltNetworkElement ne = new IltNetworkElement("NE1");
ne.setType (IltNetworkElement.Type.NMW);

or

IlpObject ne = ...;
ne.setAttributeValue(IltNetworkElement.TypeAttribute,
IltNetworkElement.Type.NMW);

How to set the network element type using XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="type">NMW</attribute>

</addObject>

Depending on the nature of the application, a network element can be represented by a
bitmap image, a symbol, or a shape.

Pictorial representation
In its pictorial representation, the network element base is a bitmap drawing, which is
composed of individual graphic objects. This drawing is meant to be realistic, as you can
see in the following figure:

Pictorial representations of a terminal

Several predefined bases are available for shelf-based equipment, terminals, and mobile
phone access network elements. JViews TGO includes a number of predefined network
element images. The following tables show these drawings and the corresponding network
element type name.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S122

IP network elements
RepresentationNetwork Element Type

IP_ComputerFlat

IP_ComputerTower

IP_Database

IP_Desktop

IP_Equipment

IP_Firewall

IP_Firewall2

IP_InkjetPrinter

IP_Laptop

IP_Laptop2

IP_LaserPrinter

IP_Mainframe

IP_Mainframe2

IP_Mainframe3

IP_Modem

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 123

RepresentationNetwork Element Type

IP_Modem2

IP_Network

IP_Network2

IP_Network3

IP_PDA

IP_Printer

IP_Printer2

IP_Router

IP_Router2

IP_Router3

IP_SatelliteAntenna

IP_Server

IP_Server2

IP_Terminal

IP_Terminal2

Office network elements

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S124

RepresentationNetwork Element Type

Office_ComputerFlat

Office_ComputerTower

Office_Desktop

Office_Fax

Office_Fax2

Office_InkjetPrinter

Office_Laptop

Office_Laptop2

Office_LaserPrinter

Office_Modem

Office_Modem2

Office_PDA

Office_Phone

Office_Phone2

Office_Printer

Office_Printer2

Office_Server

Office_Server2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 125

RepresentationNetwork Element Type

Office_Terminal

Office_Terminal2

SAN network elements
RepresentationNetwork Element Type

SAN_CartridgeSystem

SAN_Database

SAN_Disk

SAN_DoubleDatabase

SAN_FiberChannelSwitch

SAN_FiberChannelSwitch2

SAN_Modem

SAN_Modem2

SAN_Router

SAN_Router2

SAN_Router3

SAN_ServerExternalDisk

SAN_ServerInternalDisk

SAN_SingleDatabase

SAN_TapeDrive

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S126

RepresentationNetwork Element Type

SAN_TripleDatabase

Telecom network elements
RepresentationNetwork Element Type

Telecom_Database

Telecom_Lighthouse

Telecom_Mainframe

Telecom_Mainframe2

Telecom_Mainframe3

Telecom_MD

Telecom_MD2

Telecom_NMW

Telecom_Server

Telecom_Server2

Telecom_Terminal

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 127

RepresentationNetwork Element Type

Telecom_Terminal2

Wireless network elements
RepresentationNetwork Element Type

Wireless_Antenna

Wireless_Antenna2

Wireless_BSC

Wireless_BSC2

Wireless_BTS

Wireless_BTS2

Wireless_HLR

Wireless_MobilePhone

Wireless_MSC

Wireless_MSC2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S128

RepresentationNetwork Element Type

Wireless_Satellite

Wireless_SatelliteAntenna

JViews TGO also provides a pictorial representation for clusters. A cluster network element
is an abstraction of a network element that is made up of two or more distinct subcomponents
such as other network elements that can be (and often are) managed as standalone telecom
objects. Clusters can be co-located or distributed, depending on how their subcomponents
are organized (either within a managed area or spread across different areas). As with the
new partial network elements concept, it is possible to represent wholy-owned clusters (that
is, all the subcomponents are managed by the user), or partially-owned clusters (only some
of the subcomponents are managed by the user).

Cluster network elements
RepresentationNetwork Element Type

Cluster_Colocated

Cluster_Distributed

You can create custom network element types by providing a bitmap image or a vector
drawing. This process is detailed in Customizing network element types in the Styling
documentation.

Symbolic representation
In the symbolic representation, network elements can be used for components, nodes or
clusters. These objects are represented differently depending on which aspect of the OSS
application you consider, for example, the data plane of physical managed telecom objects,
the control and management planes or the logical managed telecom objects. The default
type corresponding to the default symbolic network element representation is simply called
NE (for Network Element). The following figure illustrates an NE type network element:
here, an add-drop multiplexer with a capacity of OC192.

Symbolic representation of NE type network element

Symbolic information for NE type network elements consists of an icon representing the
function of the equipment corresponding to the network element and a string representing
the family of the equipment.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 129

Symbolic representations of nodes, components and clusters
DescriptionRepresentationNetwork Element Type

Node

A network element is an abstraction of a physical
managed telecom object unit on the data plane, such
as a router or a computer.

NE

A control element is an abstraction of a physical
managed telecom object unit on the control plane.

Control_Element

A management element is an abstraction of a physical
managed telecom object unit on the management
plane.

Management_Element

A logical network element is an abstraction of a
non-physical managed telecom object such as a service
or a software component.

NE_Logical

Component

An NE component is an abstraction of a physical
managed telecom object that is part of a network
element, such as a network card attached to a router.

NE_Component

A control component is an abstraction of a physical
managed telecom object that is part of a network
element, on the control plane.

Control_Component

A management component is an abstraction of a
physical managed telecom object that is part of a
network element, on the management plane.

Management_Component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S130

DescriptionRepresentationNetwork Element Type

NEComponent_Logical A logical NE component is an abstraction of a
non-physical managed telecom object that is part of a
logical network element, such as a software element
or a logical processor.

Cluster

An NE cluster is an abstraction of a physical managed
telecom object that is made up of two or more distinct

NE_Cluster

subcomponents such as other network elements that
can be (and often are) managed as standalone telecom
objects.

A control cluster is an abstraction of a physical
managed telecom object that is made up of two or more
distinct subcomponents, on the control plane.

Control_Cluster

A management cluster is an abstraction of a physical
managed telecom object that is made up of two or more
distinct subcomponents, on the management plane.

Management_Cluster

A logical NE cluster is an abstraction of a non-physical
managed telecom object made up of two or more

NECluster_Logical

subcomponents such as other services or software
components that can be (and ofter are) managed as
standalone telecom objects

Shape representation
In this representation, the network element base is depicted by a geometric shape that
symbolizes the network element type (or function class). The center of the base can contain
an icon that further defines the representation of the network element function. Several
predefined shapes are provided as types of the network element.

JViews TGO includes a limited number of network element shapes that can be used to build
iconic network elements. The following table gives the available shapes and the corresponding
network element type name.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 131

Network element shapes
ShapeNetwork Element Type

Shape_CellShape

Shape_Circle

Shape_CircleSmall

Shape_Diamond

Shape_Hexagon

Shape_HexagonFlat

Shape_HexagonSmall

Shape_Octogon

Shape_Oval

Shape_OvalSmall

Shape_Pentagon

Shape_PentagonBottom

Shape_PentagonLeft

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S132

ShapeNetwork Element Type

Shape_PentagonRight

Shape_PentagonTop

Shape_Rectangle

Shape_RectangleSmall

Shape_RoundSquare

Shape_Square

Shape_Transceiver

Shape_TransceiverBottom

Shape_TransceiverLeft

Shape_TransceiverRight

Shape_TransceiverTop

Shape_Trapezoid

Shape_TrapezoidBottom

Shape_TrapezoidLeft

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 133

ShapeNetwork Element Type

Shape_TrapezoidRight

Shape_TrapezoidTop

Shape_Triangle

Shape_TriangleBottom

Shape_TriangleLeft

Shape_TriangleRight

Shape_TriangleTop

The API that enables developers to include new network element shapes corresponding to
new types of network element is detailed in Customizing network element types in the Styling
documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S134

Network element functions

JViews TGO includes a certain number of icons representing functions. The design of the
icons included in the library stem from recommendations of Standards organizations
specialized in this domain (ITU/ANSI).

ANSI T1.232-1996: Operations, Administration, Maintenance and Provisioning (OAM&P)
- G Interface Specification for Use with Telecommunications Management Network
(TMN).

Note:

The following table illustrates the icons that are available in the library.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 135

Equipment function icon table
Function NameIconEquipment Function

AccessAccess Equipment

EdgeCellRegeneratorEdge Cell Regenerator

EdgeCrossConnectEdge Cross Connect

EdgeEndOfficeEdge End Office

EdgeGatewayEdge Gateway

EdgeHubEdge Hub

EdgeLineTerminatingEquipmentEdge Line Terminating Equipment

EdgeMediationDeviceEdge Mediation Device

EdgeMuxEdge Mux

EdgeNonTechnologySpecificMediationDeviceEdge Non-technology Specific Mediation
Device

EdgeRatioCellSiteEquipmentEdge Ratio Cell Site Equipment

EdgeWirelessEdgeEdge Wireless Edge

IPIP Equipment

IPAccessIP Access

IPAlarmCollectorIP Alarm Collector

IPBridgeIP Bridge

IPHubIP Hub

IPLANRegeneratorIP LAN Regenerator

IPLineTerminatingEquipmentIP Line Terminating Equipment

IPMediationDeviceIP Mediation Device

IPMUXIP MUX

IPRouterIP Router

IPSignalingGatewayIP Signaling Gateway

IPSTPIP STP

IPSwitchIP Switch

IPSwitchRouterIP Switch Router

IPTrafficGatewayIP Traffic Gateway

MultiLayerMulti-layer Equipment

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S136

Function NameIconEquipment Function

Multi-layer Access MultiLayerAccess

SwitchSwitch Equipment

SwitchingMediationDevice2ATM/Frame Relay Mediation Device

SwitchingMediationDevice1Circuit Switching Mediation Device

SwitchCrossConnectSwitch Cross Connect

SwitchingATMSwitching ATM

SwitchingDatabaseSwitching Database

SwitchingDMSSwitching DMS

SwitchingEndOffice1Switching End Office1

SwitchingEndOffice2Switching End Office2

SwitchingHub1Switching Hub1

SwitchingHub2Switching Hub2

SwitchingLineTerminatingEquipment1Switching Line Terminating Equipment1

SwitchingLineTerminatingEquipment2Switching Line Terminating Equipment2

SwitchingMUX1Switching MUX1

SwitchingMUX2Switching MUX2

SwitchingSTP1Switching STP1

SwitchingSTP2Switching STP2

SwitchingTollGateway1Switching Toll Gateway1

SwitchingTollGateway2Switching Toll Gateway2

SwitchingTollTandem1Switching Toll Tandem1

SwitchingTollTandem2Switching Toll Tandem2

TransportTransport Equipment

TransportAccess1Transport Access1

TransportAccess2Transport Access2

TransportAddDropMux1Transport Add-drop Mux1

TransportAddDropMux2Transport Add-drop Mux2

TransportAmplifierTransport Amplifier

TransportCirculatorTransport Circulator

TransportCombinerTransport Combiner

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 137

Function NameIconEquipment Function

Transport Cross Connect TransportCrossConnect

TransportCrossConnect1Transport Cross Connect1

TransportCrossConnect2Transport Cross Connect2

TransportDigitalVideoTransport Digital Video

TransportDispersionComponentModuleTransport Dispersion Component
Module

TransportDWDMOpticalTransport DWDM Optical

TransportFixedAttenuatorTransport Fixed Attenuator

TransportHub1Transport Hub1

TransportHub2Transport Hub2

TransportInterleaveFilterTransport Interleave Filter

TransportLineTerminatingEquipment1Transport Line Terminating Equipment1

TransportLineTerminatingEquipment2Transport Line Terminating Equipment2

TransportMediationDevice1Transport Mediation Device 1

TransportMediationDevice2Transport Mediation Device 2

TransportOpticalSwitchingModuleTransport Optical Switching Module

TransportRegenerator2Transport Regenerator2

TransportSONET_SDHTransport SONET SDH

TransportTrafficGateway1Transport Traffic Gateway1

TransportTrafficGateway2Transport Traffic Gateway2

TransportVariableAttenuatorTransport Variable Attenuator

TransportWaveLengthTranslatorTransport Wave Length Translator

OtherOther Equipment

UnknownUnknown Product

New functions can be added, as detailed in Customizing network element types in the Styling
documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S138

Network element families

For a given function, several families of network elements can exist. Usually the family
represents the capacity of the network element. Values of the network element families are
listed in the following table along with their corresponding numbers as shown on the symbolic
network element.

Network element families
Label on symbolic NENetwork Element Family

1OC1

3OC3

9OC9

12OC12

18OC18

24OC24

36OC36

48OC48

96OC96

192OC192

S1STM1

S3STM3

S4STM4

S6STM6

S8STM8

S12STM12

S16STM16

S32STM32

S64STM64

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 139

Partial network elements

A partial network element is an abstraction which denotes a network element that is only
part of the real-world network element. Partial network elements can be used in several
situations, for example:

♦ To represent distributed clusters where parts of a cluster need to be divided accross
different subnetworks.

♦ To allow one network element to be used by different service providers. In this case, the
network element needs to be divided in several parts. Each part is represented as a partial
network element and its state reflects only the elements that are interesting for the service
provider that is using it.

A network element can be defined as partial by setting the value of the attribute partial
in the business object. This attribute can be set programmatically using PartialAttribute.

How to create a partial network element
The following example illustrates how a network element is created using the attribute
partial via XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="partial">true</attribute>
<attribute name="type">NE</attribute>

</addObject>

Partial network elements are graphically represented by an icon located at the bottom left
of the network element base.

Partial network elements expanded and collapsed

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S140

Shortcut network elements

A shortcut network element is an abstraction denoting an object that is only a reference to
an existing network element. IltNetworkElement provides a new attribute,
ShortcutAttribute, whose value can be:

♦ IltShortcutAttributeType. STANDARD: The network element is a regular shortcut.

♦ IltShortcutAttributeType. DANGLING: The network element is a shortcut to an object
that is no longer available.

♦ null: The network element is not a shortcut

A network element can be defined as shortcut by setting the value of attribute shortcut in
the business object. This attribute can be set programmatically using IltNetworkElement.
ShortcutAttribute.

How to create a shortcut
The following example illustrates how a network element is created using the attribute
shortcut via XML.

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="shortcut">STANDARD</attribute>
<attribute name="type">NE</attribute>

</addObject>

Shortcut network elements are graphically represented by an icon located at the bottom
left of the network element base.

Standard shortcuts

Dangling shortcuts

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 141

Network element sizes

Network elements can be represented at various scales. The amount of information attached
to the network element is proportional to the size of the network element. Two sizes are
provided by default:

♦ The standard size, which displays the network element function, family, and label (in the
case of a symbolic representation) and which also supports icons reflecting changes in
states and alarms.

Standard size network element

♦ The small size, which displays only the network element type and label.

Small size network elements

Using the network element sizes in custom programming is shown in Customizing network
element types in the Styling documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S142

Representation of network elements in a table and in a tree

Objects of the IltNetworkElement class are represented in a table as follows:

Objects of the IltNetworkElement class are represented with other predefined business
objects in a tree as follows:

Customizing the representation of network elements
For information on how to customize the graphic representation of network elements, refer
to Customizing network elements.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 143

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S144

Links

Explains how to use IBM® ILOG® JViews TGO predefined business objects of type link in
your applications.

In this section

Classes overview
Lists the three types of link classes.

Links
Describes the attributes of the IltLink class and explains how to define a link in XML or how
to create a link with the API.

Link sets
Describes the IltLinkSet class and explains how to define a link set in XML or how to create
a link set with the API.

Link bundles
Describes the IltLinkBundle class and explains how to define a link bundle in XML or how
to create a link bundle with the API.

Representation of links in a network
Presents the various graphical representations that a link can have.

Representation of links in a table and in a tree
Shows how links are represented in a table and in a tree.

Link connection ports
Explains how you can customize the way links connect to nodes by using link connection
ports.

© Copyright IBM Corp. 1987, 2009 145

Link programming examples
Contains examples of how to create self-links, nested link sets, and links associated with
the BiSONET object state.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S146

Classes overview

A link is a physical connection between two network elements.

The complete hierarchy of predefined link business objects is as follows:

♦ Links : instances of the class IltLink

♦ Link sets: instances of the class IltLinkSet

♦ Link bundles: instances of the class IltLinkBundle

For a general introduction to predefined business objects, refer to section Introducing
business objects and data sources.

You can retrieve any of the above classes using the corresponding GetIlpClass method.
You can handle any instance of these classes as a simple IlpObject and get and set their
attributes with the generic methods getAttributeValue(ilog.cpl.model.IlpAttribute)
and setAttributeValue(ilog.cpl.model.IlpAttribute, java.lang.Object).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 147

Links

Link class
Links are used to display the transmission elements making up the network lines. They
feature the same dynamic display as network elements.

Links are predefined business objects of the class IltLink used to represent connections
between network resources.

The IltLink class defines the following attributes:

♦ Media—Indicates the physical medium connecting two network elements (fiber, for
example).

● Name: media

● Value class: IltLink.Media

● Attribute: IltLink.MediaAttribute

♦ Technology—Indicates the networking technology represented by the link (circuit
switching, for example).

● Name: technology

● Value class: IltLink.LinkTechnology

● Attribute: IltLink.TechnologyAttribute

The link technology is very similar to the link media. While the media represents the physical
connection (fiber, electrical, for example), the technology represents the various networking
technologies that a link can carry. For example, you may have two fiber links, one of them
being used for voice and the other one for data.

You can retrieve the class IltLink using its GetIlpClass() method. You can handle its
instances as simple IlpObject instances and set and get its attributes with the generic
methods getAttributeValue(java.lang.String) and setAttributeValue(java.lang.
String, java.lang.Object).

Loading a link defined in XML
This section shows how to load a link from an XML file in a data source. For detailed
information about data sources, see Data sources.

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below:

dataSource = new IltDefaultDataSource();
dataSource.parse("LinkXMLFile.xml");

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S148

How to define a link in XML
The following is an example of a link defined in XML format. For details about the XML
elements used in this example, see Elements in an XML data file .

<cpldata>
<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="family">OC12</attribute>
<attribute name="type">MD</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>200</x> <y>200</y>

</attribute>
</addObject>
<addObject id="NE2">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE2</attribute>
<attribute name="type">MD</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>400</x> <y>200</y>

</attribute>
</addObject>
<addObject id="NE1-NE2">
<class>ilog.tgo.model.IltLink</class>
<link> <from>NE1</from> <to>NE2</to> </link>
<attribute name="name">Link1</attribute>
<attribute name="media">Fiber</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltSONETObjectState">
<state>ActiveProtecting</state>
<protection>Exercisor</protection>

</attribute>
</addObject>

</cplData>

The following figure shows the link displayed in a network component:

Link displayed in a network component

Creating a link with the API
This section shows how to create a link through the API and how to add it to a data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 149

How to create a link with the API

IltNetworkElement ne1 = new IltNetworkElement("NE1",
IltNetworkElement.Type.MD,
new IltOSIObjectState());

ne1.setAttributeValue(IltObject.PositionAttribute,
new IlpPoint(200, 200));

IltNetworkElement ne2 = new IltNetworkElement("NE2",
IltNetworkElement.Type.MD,
new IltOSIObjectState());

ne2.setAttributeValue(IltObject.PositionAttribute,
new IlpPoint(400, 200));

IltSONETObjectState linkState = new
IltSONETObjectState(IltSONET.State.ActiveProtecting);

linkState.addProtection(IltSONET.End.From, IltSONET.Protection.Exercisor);
linkState.addProtection(IltSONET.End.To, IltSONET.Protection.Exercisor);
IltLink link = new IltLink (linkState, "Link1", IltLink.Media.Fiber);

IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.setLink(link.getIdentifier(), ne1.getIdentifier(),

ne2.getIdentifier());
List objs = new ArrayList();
objs.add(ne1);
objs.add(ne2);
objs.add(link);
dataSource.addObjects(objs);

The result looks like this:

Link displayed in a network component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S150

Link sets

Link set class
Link sets are predefined business objects of the class IltLinkSet used to represent a
collection of links between network resources, laid out in a specific order and with a specific
distance.

Link sets let you group together links between two nodes, so that the graph layout cannot
insert a link that is not in the link set between them or have them follow different paths.
You can fix the order of the links in the set and specify the distance that separates two links.

Link sets

Link sets can be nested. In other words, they can include other link sets, which in turn
can group a set of links.

Note:

The IltLinkSet class does not declare any specific attribute.

You can retrieve the class IltLinkSet using its GetIlpClass() method. You can handle its
instances as simple IlpObject instances and set and get its attributes with the generic
methods getAttributeValue(java.lang.String) and setAttributeValue(java.lang.
String, java.lang.Object).

Loading a link set defined in XML
This section shows how to load a link set from an XML file in a data source. For detailed
information about data sources, see Data sources.

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below:

dataSource = new IltDefaultDataSource();
dataSource.parse("LinkSetXMLFile.xml");

How to define a link set in XML
The following is an example of a link set defined in XML format. For details about the XML
elements used in this example, see Elements in an XML data file .

<addObject id="Link1">
<class>ilog.tgo.model.IltLink</class>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 151

<link> <from>Paris</from> <to>Berlin</to> </link>
<attribute name="name">1</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>
Active

</state>
</attribute>

</addObject>

<addObject id="Link2">
<class>ilog.tgo.model.IltLink</class>
<link> <from>Paris</from> <to>Berlin</to> </link>
<attribute name="name">2</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>
Active

</state>
</attribute>

</addObject>

<addObject id="linkSet12">
<class>ilog.tgo.model.IltLinkSet</class>
<link>
<from>Paris</from>
<to>Berlin</to>

</link>
<children>
<child>Link1</child>
<child>Link2</child>

</children>
</addObject>

The figure below shows the link set displayed in a network component:

Link set displayed in a network component

Creating a link set with the API
This section shows how to create a link set through the API and how to add it to a data
source.

How to create a link set with the API

IltNetworkElement paris = new IltNetworkElement("Paris",

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S152

IltNetworkElement.Type.NE, null);
paris.setFunction(IltNetworkElement.Function.SwitchCrossConnect);
paris.setPosition(new IlpPoint(120, 350));

IltNetworkElement berlin = new IltNetworkElement("Berlin",
IltNetworkElement.Type.NE, null);

berlin.setFunction(IltNetworkElement.Function.TransportCrossConnect);
berlin.setFamily(IltNetworkElement.Family.OC12);
berlin.setPosition(new IlpPoint(250, 350));

IltLink link1 = new IltLink(new IltSONETObjectState(IltSONET.State.Active),
"1", null);

IltLink link2 = new IltLink(new IltSONETObjectState(IltSONET.State.Active),
"2", null);

IltLinkSet linkSet = new IltLinkSet();
List objects = new ArrayList();
objects.add(paris);
objects.add(berlin);
objects.add(link1);
objects.add(link2);
objects.add(linkSet);
dataSource.setLink(link1.getIdentifier(), paris.getIdentifier(),

berlin.getIdentifier());
dataSource.setLink(link2.getIdentifier(), paris.getIdentifier(),

berlin.getIdentifier());
dataSource.setLink(linkSet.getIdentifier(), paris.getIdentifier(),

berlin.getIdentifier());
dataSource.setParent(link1.getIdentifier(), linkSet.getIdentifier());
dataSource.setParent(link2.getIdentifier(), linkSet.getIdentifier());
dataSource.addObjects(objects);

The result looks like this:

Link set displayed in a network component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 153

Link bundles

Link bundle class
Link bundles are predefined business objects of the class IltLinkBundle used to represent
a container with an overview object and a set of detail objects. They can hold any number
of links that all start at the same IltObject instance and all end at the same other IltObject
instance.

You can collapse a link bundle to show only a single link. The single link has an icon that,
when you click it, causes the link bundle to expand and show the child links

The default overview object has the normal link representation, with the same start object
and the same end object.

Here is how a link bundle looks in its collapsed state:

Collapsed link bundle

Here is how a link bundle looks in its expanded state:

Expanded link bundle

The IltLinkBundle class does not define any specific attribute. However, any attribute
defined in business class IltLink can be set in link bundle instances and will be graphically
represented in the link bundle overview.

You can retrieve the class IltLinkBundle using its GetIlpClass() method. You can handle
its instances as simple IlpObject instances and set and get its attributes with the generic
methods getAttributeValue(ilog.cpl.model.IlpAttribute) and setAttributeValue
(ilog.cpl.model.IlpAttribute, java.lang.Object).

Loading a link bundle defined in XML
This section shows how to load a link bundle from an XML file in a data source. For detailed
information about data sources, see Data sources.

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S154

dataSource = new IltDefaultDataSource();
dataSource.parse("LinkBundleXMLFile.xml");

How to define a link bundle in XML
The following is an example of a link bundle defined in XML format. For details about the
XML elements used in this example, see Elements in an XML data file .

<addObject id="Link1">
<class>ilog.tgo.model.IltLink</class>
<link> <from>Paris</from> <to>Berlin</to> </link>
<attribute name="name">1</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>
Active

</state>
</attribute>

</addObject>

<addObject id="Link2">
<class>ilog.tgo.model.IltLink</class>
<link> <from>Paris</from> <to>Berlin</to> </link>
<attribute name="name">2</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>
Active

</state>
</attribute>

</addObject>

<addObject id="linkBundle">
<class>ilog.tgo.model.IltLinkBundle</class>
<attribute name="name">Bundle</attribute>
<link>
<from>Paris</from>
<to>Berlin</to>

</link>
<children>
<child>Link1</child>
<child>Link2</child>

</children>
</addObject>

The figure below shows the link bundle displayed in a network component:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 155

Link bundle displayed in a network component

The following example shows you how to create a link bundle and set states that are
graphically represented when the link bundle is collapsed:

<addObject id="linkBundle">
<class>ilog.tgo.model.IltLinkBundle</class>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>
Active

</state>
</attribute>
<link>
<from>Oslo</from>
<to>Berlin</to>

</link>
<children>
<child>Link1</child>
<child>Link2</child>

</children>
</addObject>

Creating a link bundle with the API
This section shows how to create a link bundle through the API and how to add it to a data
source.

How to create a link bundle with the API

IltLink link1 = new IltLink(new IltSONETObjectState(IltSONET.State.Active),
"1", null);

IltLink link2 = new IltLink(new IltSONETObjectState(IltSONET.State.Active),
"2", null);

IltLinkBundle bundle = new IltLinkBundle();
bundle.setName("Bundle");
List objects = new ArrayList();
objects.add(paris);
objects.add(berlin);
objects.add(link1);
objects.add(link2);
objects.add(bundle);
dataSource.setLink(link1.getIdentifier(), paris.getIdentifier(),

berlin.getIdentifier());
dataSource.setLink(link2.getIdentifier(), paris.getIdentifier(),

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S156

berlin.getIdentifier());
dataSource.setLink(bundle.getIdentifier(), paris.getIdentifier(),

berlin.getIdentifier());
dataSource.setParent(link1.getIdentifier(), bundle.getIdentifier());
dataSource.setParent(link2.getIdentifier(), bundle.getIdentifier());
dataSource.addObjects(objects);

The result looks like this:

Link bundle displayed in a network component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 157

Representation of links in a network

As shown in the following figures, links can be represented in various colors and line types,
depending on the state they are in. Links can show an icon representing their secondary
state or have a label. They can also be displayed with an information cluster showing
associated alarms. For a reference list of link states, seeGraphical representation of SONET
primary states and Graphical representation of SONET secondary states.

These display modes apply to all kinds of link. Link representations can also display the link
physical medium (see Link media), its networking technology (see Link technology), its
orientation (see Oriented links), or whether this link is linked to itself (see Self-links).

Links disabled, inactive, and active states

Link with status icons

Link with label

Links showing media attribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S158

Links showing technology attribute

Generally, the label appears at the center of the link. When the link displays additional
information, such as the media icon or alarms, the label is moved either below that
information or to the right of it.

Link with alarm cluster

Link media
The link media is represented with an icon that appears at its center. The following table
lists the predefined media icons.

Link media representation
Media NameRepresetationLink Media

CNETCommunication network

FiberFiber

ElectricalElectrical

You can extend this small set of predefined link media using a dedicated API, which is
detailed in Customizing link media in the Styling documentation.

Link technology
The link technology is represented by an icon in the center of the link, and a corresponding
base color. The following table lists the predefined technology icons and colors.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 159

Link technology representation
Technology NameTechnologyRepresentationLink Technology

CircuitSwitchingSwitchingCircuit switching

ATM_FrameRelaySwitchingATM/Frame Relay

WirelessEdgeEdgeWireless Edge

IPIPIP

SONET_SDHTransportSONET/SDH

DWDM_OpticalTransportDWDM Optical

MultiLayerMultipleMulti Layer

OtherUnknownOther

As this table implies, the default representation uses icons to identify link technologies
graphically and colors to group similar technologies together. You can extend this small set
of predefined link technologies through the dedicated API or CSS, see Customizing links.
Note also that the link technology color is overridden by the primary state color defined by
the link object state.

Oriented links
Oriented links provide a representation for links with an arrow at one end or at both.

Link with an arrow

Link with two arrows

The presence or absence of arrows, as well as their graphical characteristics are driven by
dedicated CSS properties. (See table CSS properties applying to arrows on link base elements
in the Styling documentation.) By default, no arrow is displayed except in the case of links
that have an object state of type IltBiSONETObjectState. These links have arrows at both

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S160

ends with predefined graphical characteristics. For a reference list of the common double
SONET states, see Common pairs of SONET primary states .

Self-links
A self-link has both ends connected to the same network element.

Self-link

In a self-link, the origin and the destination are the same. See Link programming examples
for an example on how to create a self-link.

For information on how to customize the graphic representation of links, refer to Customizing
links.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 161

Representation of links in a table and in a tree

Objects of the IltLink class are represented in a table as follows:

Objects of the IltLink class are represented (with other predefined business objects) in a
tree as follows:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S162

Link connection ports

A connection port is the logical position where a link is attached to a node. Normally, this
position is automatically determined by the link layout algorithm. Link connection ports
provide a way to modify this behavior by forcing the links into a specific position that will
be taken into account by the graph layout algorithm.

By default, connection ports are not visible on a node. However, you can display them by
attaching to the view an interactor of type IltMakeLinkInteractor operating in pin mode.

Connection ports can be either directed or undirected. Links attached to a directed connection
port originate from a specific direction given by the port, and are drawn either vertically or
horizontally, depending on the direction. If the main segment of the link is neither horizontal
nor vertical, a short segment is added to the extremity of the link to compensate for this.
This is the normal behavior implemented by the direct link style of the link layout algorithm.
On the other hand, links coming from an undirected connection port can go in any direction,
defined randomly by the layout algorithm. In this case, no additional segment is appended
to their extremities.

These two types of connection port are illustrated in the following figures:

A node with four directed connection ports

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 163

A node with an undirected link connection port (at the center of the cloud)

A link connection port is defined by the following:

♦ The point on the node where the link should end. This point is specified with two floating
point values, fx and fy, ranging between 0 and 1. These are proportional values, relative
to the link connection rectangle.

The connection rectangle is generally represented by the bounding box of the
node, except for groups for which this connection rectangle can be the group
plinth.

Note:

● fx = 0 corresponds to the left side

● fx = 0.5 corresponds to the vertical center line

● fx = 1 corresponds to the right side

● fy = 0 corresponds to the top side

● fy = 0.5 corresponds to the horizontal center line

● fy = 1 corresponds to the bottom

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S164

When there is more than one link, and the connection port is a directed
one, the link bundling feature of the graph layout makes the link end in the
vicinity of this point, not exactly on it.

Note:

♦ The direction of the outgoing link. For directed link connection ports, this direction is
generally defined by IlvDirection. Top, IlvDirection. Bottom, IlvDirection. Left,
and IlvDirection. Right, depending on which side of the node the link starts from. For
undirected links, this value is IlvDirection. Center.

♦ Optionally, the distance between two links ending at the same link connection port.
Negative values are ignored. This option is generally used to override the distance between
two links set for the IltShortLinkLayout instance of a specific port.

When a link connection port is applied to a node, the target point is computed from the
values of fx, fy, and the link connection rectangle.

The class IltLinkPort is an enumeration type that defines the following values: Top, Bottom,
Left, Right, and Center. The first four values indicate that the link should connect to the
center point of the corresponding node side. For example, Left specifies that the link will
be attached to the center of the left side of the node. These values apply to directed link
ports. The last value, Center, applies to undirected link ports. These values can be customized
through CSS as illustrated in Customizing link port configuration in the Styling
documentation. You can create your own instances of IltLinkPort by providing specific
values to the fx, fy, and direction parameters.

Only the IltShortLinkLayout and IltLinkLayout (when set in short link mode) layout
algorithms implement link connection ports. When used in an JViews TGO network
component, these layouts use the following optional information through the
IltDefaultNodeSideFilter that is installed automatically:

♦ Each node can specify an array of pins as the linksPorts property. If no array is defined,
the following set of values is used by default: {IltLinkPort.Top, IltLinkPort.Bottom,
IltLinkPort.Left, IltLinkPort.Right}.

For information on how to configure link ports, refer to Customizing link port configuration
in the Styling documentation.

♦ Each link can specify the link port to which it will connect at both ends through the
fromPort and toPort properties. If no link port is defined, the layout algorithm will
select one among those that are allowed.

How to create link connection ports
1. Create an IltShortLinkLayout algorithm and attach it to the network component .

IltShortLinkLayout layout = new IltShortLinkLayout();
...
network.setLinkLayout(layout);

This layout algorithm allows you to handle link connection ports. You could also use
IltLinkLayout.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 165

2. Create new link connection ports using IltLinkPort.

...
IltLinkPort port1=
new IltLinkPort("Right, above middle",1.0f,0.2f,1,0,-1);

Customizing the representation of links
For information on how to configure the link connection ports, refer to Customizing link
port configuration in the Styling documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S166

Link programming examples

The same example using XML can be found in <installdir>/samples/network/links.

How to create a network
The network is created using the network component and the data source API, as illustrated
in the following code:

/**
* Execute the main part of the sample.
*/
void doSample (Container container) {
try {

// Initialize JTGO
// Read a deployment descriptor file to initialize JTGO services
if (isApplet())
IltSystem.Init(this, "deploy.xml");

else
IltSystem.Init("deploy.xml");

// Create a datasource
IltDefaultDataSource dataSource = new IltDefaultDataSource();
fillNetwork(dataSource);

// Create a network component
IlpNetwork networkComponent = new IlpNetwork();

// Connect network component to datasource
networkComponent.setDataSource(dataSource);

// Add view to the frame
container.add(networkComponent);

}
catch(Exception e){
e.printStackTrace();

}
}

How to add network elements and links to the network
The function fillNetwork creates network elements and links and adds these instances to
the given data source. Then the data source is linked to the network component.

/**
* Adds nodes and all kinds of links to the network.
*/
public void fillNetwork (IltDefaultDataSource dataSource) {
// Create the network elements.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 167

IltNetworkElement paris;
IltNetworkElement berlin;
IltNetworkElement oslo;
IltNetworkElement nwest;

paris =
new IltNetworkElement("Paris",

IltNetworkElement.Type.NE,
IltNetworkElement.Function.SwitchCrossConnect,
null,
new IltBellcoreObjectState());

berlin =
new IltNetworkElement("Berlin",

IltNetworkElement.Type.NE,
IltNetworkElement.Function.TransportCrossConnect,

IltNetworkElement.Family.OC12,
new IltBellcoreObjectState());

oslo =
new IltNetworkElement("Oslo",

IltNetworkElement.Type.NE,
IltNetworkElement.Function.Transport,
null,
new IltBellcoreObjectState());

nwest =
new IltNetworkElement("North West",

IltNetworkElement.Type.NMW,
new IltBellcoreObjectState());

// Place the network elements at the right location while inserting
// them in the network.
paris.setState(IltBellcore.State.EnabledActive);
paris.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(120,

365));
berlin.setState(IltBellcore.State.EnabledActive);
berlin.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(300,

250)
);

oslo.setState(IltBellcore.State.EnabledActive);
oslo.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(190,

100));
nwest.setState(IltBellcore.State.EnabledActive);
nwest.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(37, 40)

);

dataSource.addObject(paris);
dataSource.addObject(berlin);
dataSource.addObject(oslo);
dataSource.addObject(nwest);

// Add all kinds of links
addSelfLink(dataSource, paris);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S168

addBiSONETLinks(dataSource, oslo, nwest);
}

How to create a self-link
The addSelfLink method creates a self link to Paris with an associated state and an arrow.
Note that in self-links the "From" and "To" nodes are the same.

/**
* Adds a link with the given node as both its from and to end.
*/
public void addSelfLink (IltDefaultDataSource dataSource, IltObject node) {
IltLink link = new IltLink(new IltSONETObjectState(), null);
link.setState(IltSONET.State.Active);
dataSource.addObject(link);
dataSource.setLink(link.getIdentifier(),

node.getIdentifier(),
node.getIdentifier());

}

How to create links with BiSONET object states
The addBiSONETLinks method creates two links with an object state of type
IltBiSONETObjectState. The setReverseState method is used to set the state of the link
in the opposite direction.

/**
* Adds some bi-SONET links between the given nodes.
*/
public void addBiSONETLinks (IltDefaultDataSource dataSource,

IltObject node1,
IltObject node2) {

// Create a bi-SONET link.
IltBiSONETObjectState biState = new IltBiSONETObjectState();
IltLink link = new IltLink(biState);
// Set its two states.
biState.setState(IltSONET.State.TroubledProtected);
biState.setReverseState(IltSONET.State.Active);
dataSource.addObject(link);
dataSource.setLink(link.getIdentifier(),

node1.getIdentifier(),
node2.getIdentifier());

IltBiSONETObjectState biState2 = new IltBiSONETObjectState();
IltLink link2 = new IltLink(biState2);
biState2.setState(IltSONET.State.ActiveProtecting);
biState2.setReverseState(IltSONET.State.TroubledUnprotected);
dataSource.addObject(link2);
dataSource.setLink(link2.getIdentifier(),

node2.getIdentifier(),

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 169

node1.getIdentifier());
}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S170

Groups

Explains how to use IBM® ILOG® JViews TGO predefined business objects of type group
in your applications.

In this section

Group class
Describes the attributes of the IltGroup class.

Group shapes
Describes the three differents shapes of groups and the corresponding classes.

Loading a group defined in XML
Shows how to load a group from an XML file into a data source.

Creating a group with the API
Shows how to create groups using the JViews TGO API and add them to a data source.

Representation of groups in a table and in a tree
Shows how groups are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 171

Group class

Groups are predefined business objects of the class IltGroup that are used to represent a
set of network resources grouped logically or geographically. For a general introduction to
predefined business classes, see Introducing business objects and data sources.

The IltGroup class defines the following attributes:

♦ Icon—Specifies an image representing the group category:

● Name: icon

● Value class: IlSerializableImage

● Attribute: IltGroup.IconAttribute

♦ Shortcut—Indicates that the network element is only a reference to an existing network
element.

● Name: shortcut

● Value class: ilog.tgo.model.attribute.IltShortcutAttributeType

● Attribute: IltNetworkElement.ShortcutAttribute

There are three types of groups characterized by a different shape and defined by the
following IltGroup subclasses:

♦ IltPolyGroup,

♦ IltRectGroup, and

♦ IltLinearGroup

For more information, see Group shapes.

You can retrieve the class IltGroup using its GetIlpClass() method. You can handle its
instances as simple IlpObject instances and set and get its attributes with the generic
methods getAttributeValue(java.lang.String) and setAttributeValue(java.lang.
String, java.lang.Object).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S172

Group shapes

A group object can have one of the following three shapes:

Polygonal shape
Polygonal groups are defined by the class IltPolyGroup. Polygonal groups are very
useful for dividing a network into regions and associating those regions with topographic
zones visible on a map.

The shape of a polygonal group is defined by the class IlpPolygon. This class describes
a closed polyline made up of an array of points. This polyline can have any number of
sides.

Polygonal groups have a semitransparent background (through which a background
map can be seen) and a thick outline. When alarms or statuses are displayed, they are
grouped in an information cluster that is positioned at the center of the polygon, as
shown in the following figure. For more information, see Customizing the group
information cluster.

Polygonal group with information cluster

Rectangular shape
Rectangular groups are defined by the class IltRectGroup. Rectangular groups are
generally used to hold network elements located in the same place such as a site, a
building, or a city.

The shape of a rectangular group is defined by the class IlpRect, which describes a
rectangle. Rectangular groups can be resized to create any kind of rectangular container.

Rectangular groups are represented by opaque relief rectangles as shown in the following
figure. When alarms are displayed, they are grouped in an information cluster that is
positioned at the center of the rectangle. For more information, see Customizing the
group information cluster.

Rectangular group with information cluster

Linear shape
Linear groups are defined by the class IltLinearGroup.

Linear groups represent a linear collection of objects and can be used to display, for
example, all the repeaters between two line termination network elements.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 173

The shape of a linear group is defined by the class IlpPolyline. This class describes an
open polyline made up of an array of points.

When alarms or secondary states are displayed on a linear group, an information cluster
appears at the center of its median segment. The median segment is the segment
containing the midpoint of the shape.

Linear group with information cluster

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S174

Loading a group defined in XML

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below.

dataSource = new IltDefaultDataSource();
dataSource.parse("GroupXMLFile.xml");

For detailed information about data sources, see Data sources.

How to define a group in XML
The following is an example of a group defined in XML format. For details about the XML
elements used in this example, see Elements in an XML data file .

Depending on the group class, the shape of a group is defined either by IlpPolygon, IlpRect,
or IlpPolyline. See Group shapes for details.

<cplData>
<addObject id="RectGroup">
<class>ilog.tgo.model.IltRectGroup</class>
<attribute name="name">RectGroup</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRect">

<x>100</x> <y>200</y> <width>100</width> <height>50</height>
</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>Locked</administrative>
<operational>Enabled</operational>
<usage>Idle</usage>

</state>
<availability>PowerOff</availability>
<control>ReservedForTest</control>
<alarms>
<new severity="Critical">5</new>
<ack severity="Warning">12</ack>

</alarms>
</attribute>

</addObject>
<addObject id="PolyGroup">
<class>ilog.tgo.model.IltPolyGroup</class>
<attribute name="name">PolyGroup</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.views.IlpPolygon">
<point> <x>50.0</x> <y>20.0</y> </point>
<point> <x>140.0</x> <y>20.0</y> </point>
<point> <x>140.0</x> <y>100.0</y> </point>
<point> <x>90.0</x> <y>100.0</y> </point>
<point> <x>90.0</x> <y>140.0</y> </point>
<point> <x>20.0</x> <y>140.0</y> </point>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 175

<point> <x>20.0</x> <y>90.0</y> </point>
</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<secState>TestFailure</secState>
<procedural>Initializing</procedural>
<misc>HighTemperatureWarning</misc>
<performance state="Input">50</performance>
<alarms>
<new severity="Minor">3</new>
<ack severity="Warning">4</ack>

</alarms>
</attribute>

</addObject>
<addObject id="LinearGroup">
<class>ilog.tgo.model.IltLinearGroup</class>
<attribute name="name">LinearGroup</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.views.IlpPolyline">
<point> <x>350.0</x> <y>100.0</y> </point>
<point> <x>400.0</x> <y>100.0</y> </point>
<point> <x>420.0</x> <y>50.0</y> </point>
<point> <x>450.0</x> <y>50.0</y> </point>
</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledIdle</state>
<secState>Busy</secState>
<procedural>Initializing</procedural>
<misc>DoorAjar</misc>
<alarms>
<ack severity="Warning">2</ack>

</alarms>
</attribute>

</addObject>
</cplData>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S176

Creating a group with the API

Depending on the group class, the shape of a group is defined either by IlpPolygon, IlpRect,
or IlpPolyline. See Group shapes for details.

How to create a group with the API

IltRectGroup rectgroup = new IltRectGroup(new IltOSIObjectState(),
"RectGroup");

rectgroup.setAttributeValue(IltObject.PositionAttribute, new IlpRect(100, 200,

100, 50)
);

IltPolyGroup polygroup = new IltPolyGroup (new IltBellcoreObjectState(),
"PolyGroup");

polygroup.setAttributeValue(IltObject.PositionAttribute,
new IlpPolygon(new IlvPoint[] {

new IlvPoint(50, 20),
new IlvPoint(140, 20),
new IlvPoint(140, 100),
new IlvPoint(90, 100),
new IlvPoint(90, 140),
new IlvPoint(20, 140),
new IlvPoint(20, 90)
}));

IltLinearGroup lineargroup = new IltLinearGroup (new IltBellcoreObjectState()
,

"LinearGroup");
lineargroup.setAttributeValue(IltObject.PositionAttribute,

new IlpPolyline(new IlvPoint[] {
new IlvPoint(350, 100),
new IlvPoint(400, 100),
new IlvPoint(420, 50),
new IlvPoint(450, 50)
}));

IltDefaultDataSource dataSource = new IltDefaultDataSource();
dataSource.addObject(rectgroup);
dataSource.addObject(polygroup);
dataSource.addObject(lineargroup);

The group constructor has two arguments:

♦ A newly created IltObjectState from the class corresponding to the chosen standard.

♦ A name that is displayed at the center of the group representation.

In addition to the group name, an icon can be set to each group instance. This icon will be
displayed above the group label and plinth, if any. The following code extract shows how a
logo (logo.png) is set on one of the groups of the sample.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 177

IlpContext context = IltSystem.GetDefaultContext();
IlpImageRepository imageRep = context.getImageRepository();
Image groupImage = imageRep.getImage("logo.png");
group.setIcon(groupImage);

Here the image is obtained from a disk file.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S178

Representation of groups in a table and in a tree

Objects of the IltGroup class (IltPolyGroup, IltRectGroup, and IltLinearGroup) are
represented in a table as follows:

Objects of the IltGroup class (IltPolyGroup, IltRectGroup, and IltLinearGroup) are
represented in a tree as follows:

Customizing the representation of groups
For information on how to customize the graphic representation of groups, refer to
Customizing groups.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 179

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S180

Subnetworks

Explains how to use subnetworks in your applications.

In this section

About subnetworks
Describes subnetworks and how they are displayed.

Loading a subnetwork defined in XML
Shows how to load a subnetwork from an XML file in a data source.

Creating a subnetwork with the API
Shows how to create a subnetwork through the API and how to add it to a data source.

Representing alarms in expanded subnetworks
Describes the meaning of the visual elements used to represent alarms in a subnetwork.

© Copyright IBM Corp. 1987, 2009 181

About subnetworks

Subnetworks allow you to create applications that display a network inside another network.
They are created automatically by the IBM® ILOG® JViews TGO network component when
you define a containment relationship between objects in the data source.

A subnetwork can be defined as a node object with child objects in a network component.
It can be displayed either collapsed or expanded.

♦ In the collapsed state, the subnetwork is represented as a single object.

Collapsed subnetwork

♦ In the expanded state, the subnetwork is displayed with all the objects contained in it.

Expanded subnetwork

For information on how to customize the graphic representation of subnetworks, refer to
Customizing subnetworks.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S182

Loading a subnetwork defined in XML

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below:

dataSource = new IltDefaultDataSource();
dataSource.parse("SubnetworkXMLFile.xml");

For detailed information about data sources, see Data sources.

How to define a subnetwork in an XML file
The following is an example of a subnetwork defined in XML format. For details about the
XML elements used in this example, see Elements in an XML data file .

The example creates a network element with identifier SubNetwork1. This network element
is automatically interpreted by the network component as a subnetwork when you add the
containment relationship using the XML tag <parent>.

The example creates a network element as a subnetwork that contains two children objects
connected by a link.

♦ Add the subnetwork

<addObject id="SubNetwork1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">SubNetwork</attribute>
<attribute name="type">NMW</attribute>

</addObject>Add the subnetworks.

♦ Add the child objects

<addObject id="SubNode1">
<class>ilog.tgo.model.IltNetworkElement</class>
<parent>SubNetwork1</parent>
<attribute name="name">BSC1</attribute>
<attribute name="type">BSC</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>580</x> <y>80</y>

</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltAlarmObjectState">
<alarms>
<new severity="Warning">2</new>

</alarms>
</attribute>

</addObject>

<addObject id="SubNode2">

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 183

<class>ilog.tgo.model.IltNetworkElement</class>
<parent>SubNetwork1</parent>
<attribute name="name">BTS2</attribute>
<attribute name="type">BTS_Image</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>620</x> <y>180</y>

</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltOSIObjectState">
<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
<alarms>
<new severity="Warning">4</new>

</alarms>
<procedural>Reporting</procedural>
<repair>UnderRepair</repair>
<performance state="Output">150</performance>

</attribute>
</addObject>

♦ Create a link connecting the two child objects

<addObject id="SubNode1-SubNode2">
<class>ilog.tgo.model.IltLink</class>
<parent>SubNetwork1</parent>
<link> <from>SubNode1</from> <to>SubNode2</to> </link>
<attribute name="name">InternalLink</attribute>
<attribute name="media">null</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBiSONETObjectState">
<state>ActiveProtecting</state>

</attribute>
</addObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S184

Creating a subnetwork with the API

The following procedure creates the same subnetwork as in Loading a subnetwork defined
in XML but through coding.

1. Create the subnetwork

IltNetworkElement subNetwork1 = new IltNetworkElement("SubNetwork1");
subNetwork1.setName("SubNetwork");
subNetwork1.setType(IltNetworkElement.Type.NMW);

2. Create the first child objects

List children = new ArrayList();
IltNetworkElement subNode1 = new IltNetworkElement("SubNode1");
subNode1.setName("BSC1");
subNode1.setType(IltNetworkElement.Type.BSC);
subNode1.setPosition(new IlpPoint(580, 80));
IltAlarmObjectState alarmState = new IltAlarmObjectState();
IltAlarm.State alarms = (IltAlarm.State)alarmState.getAlarmState();
alarms.setNewAlarmCount(IltAlarm.Severity.Warning, 2);
subNode1.setObjectState(alarmState);
children.add(subNode1);

3. Add the first child object to the subnetwork

datasource.setParent(subNode1, subNetwork1);

4. Create the second child object

IltNetworkElement subNode2 = new IltNetworkElement("SubNode2");
subNode2.setName("BTS2");
subNode2.setType(IltNetworkElement.Type.BTS_Image);
subNode2.setPosition(new IlpPoint(620, 180));
IltOSIObjectState osiState =
new IltOSIObjectState(new IltOSI.State(IltOSI.State.Operational.Enabled,

IltOSI.State.Usage.Active,

IltOSI.State.Administrative.ShuttingDown));
IltAlarm.State alarms = (IltAlarm.State)osiState.getAlarmState();
alarms.setNewAlarmCount(IltAlarm.Severity.Warning, 4);
osiState.set(IltOSI.Procedural.Reporting);
osiState.set(IltOSI.Repair.UnderRepair);
osiState.set(IltPerformance.SecState.Output, new Float(150));
subNode2.setObjectState(ostate);
children.add(subNode2);

5. Add the second child to the subnetwork

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 185

datasource.setParent(subNode2, subNetwork1);

6. Create an internal link

IltLink link = new IltLink("SubNode1-SubNode2");
link.setName("InternalLink");
link.setMedia(null);
link.setObjectState(new

IltBiSONETObjectState(IltSONET.State.ActiveProtecting,

null));
children.add(link);

7. Add the link to the subnetwork

datasource.setParent(link, subNetwork1);

8. Add the link relationship

datasource.setLink(link, subNode1, subNode2);

9. Add all the objects to the data source

datasource.addObject(subNetwork1);
datasource.addObjects(children);

For a subnetwork to be properly displayed, the parent object must be customized as
a container node. Customization is achieved through CSS using the expansion
property. For details, refer to Customizing subnetworks.

Note:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S186

Representing alarms in expanded subnetworks

In a network view, the collapsed representation of a subnetwork corresponds to a standard
node. This means that the alarm representation conforms to the type of object, for example,
a network element or a polygon group. On the other hand, the expanded representation of
a subnetwork is always defined by a frame containing all the child objects. The expanded
representation can also display Raw and Impact alarm information. This is done in a way
that preserves the containment perception while not interfering with the individual alarm
representation of child objects.

Unlike other predefined business objects, the expanded subnetwork can occupy a large view
space, sometimes even larger than the visible area. This imposes some restrictions on the
standard graphical mapping of alarm information. Additionally, the subnetwork alarm
mapping cannot interfere with the alarm representation of the child objects while also being
consistent with the frame configuration defined by the user.

Subnetwork with impact alarm and solid color

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 187

Subnetwork with impact alarm and transparency

The alarm is represented as an internal frame surrounding all child objects within the
expanded subnetwork object. The following alarm information is mapped:

♦ Alarm Count Summary

Located in the top-right portion of the alarm frame, the alarm count summarizes
information about the highest severity new or outstanding alarm. It also displays the Not
Reporting and Loss of Connectivity abbreviations when applicable.

♦ Most Severe New Alarm

The internal area of the alarm frame maps the color of the most severe new alarm. When
there are no new alarms, this area automatically switches to the expanded subnetwork
background color.

♦ Most Severe Outstanding Alarm

The border around the alarm frame maps the color of the most severe outstanding alarm.
When there are no outstanding alarms, this border automatically switches to the expanded
subnetwork background color.

The subnetwork customization can influence the displaying of the alarm frame in two ways:

1. By defining the transparency level

2. By disabling completely the alarm mapping

The alarm frame transparency is supported in the same way as the background transparency:
if the subnetwork background (set through CSS property subnetworkBackground) has a
color with transparency, the alarm frame will automatically use the same alpha level,
leveraging the user’s customization. Please note that rendering transparency consumes
more CPU cycles due to color blending with the background and this might be noticeable
with larger subnetworks. Additionally, very low alpha levels (very transparent colors) might
affect the correct alarm perception. In the following example, the background color is set
to 50% transparent white, which will enable 50% transparency (7F) for the alarm frame:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S188

#MySubnetworkId {
subnetworkBackground: #7FFFFFFF;

}

The subnetwork frame type (set through CSS property subnetworkFrame) determines whether
the alarm frame is displayed or not. For TITLEBAR_FRAME and FILLED_RECTANGLE_FRAME
types, the alarm frame automatically appears when the subnetwork has an alarm. For type
NO_FRAME, the alarm frame never appears because there is no frame nor background for
this subnetwork frame type. Please note that the alarm frame visibility is also affected by
alarm CSS properties, more precisely by the properties alarmColorVisible,
alarmCountVisible, and alarmBorderVisible.

As expanded subnetworks are special containment objects, some alarm mappings do not
apply to them. For example, secondary alarm decorations and alarm balloons are not
supported, as it would be difficult for an operator to notice such decorations on large
subnetworks where they may not be visible at all. The complete list of special cases is:

♦ Alarm Balloon not mapped

♦ Secondary Alarm decorations not mapped

♦ Tool tip text not enabled by default

The tool tip can be enabled through CSS as follows:

#MySubnetworkId:expanded {
toolTipText: '@|alarmSummary("Default", "Description")';

}

Note that this code uses the alarmSummary CSS function to retrieve the default description
for alarms. It also uses the expanded pseudoclass to apply this CSS property only to the
expanded subnetwork. This pseudoclass enables different CSS styling for the collapsed and
expanded subnetworks. The following example illustrates how to customize different alarm
borders and alarm count fonts for expanded and collapsed representations:

#MySubnetworkId {
alarmBorderWidth: 2;
alarmCountFont: 'arial-bold-12';

}
#MySubnetworkId:expanded {
alarmBorderWidth: 4;
alarmCountFont: 'arial-bold-14';

}

Please refer to the Alarm states section for more details on alarms and how to customize
them.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 189

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S190

Shelves and cards

Explains how to create physical views of telecommunication equipment in the form of shelves
holding cards (shelf items), and cards holding ports and LEDs (card items).

In this section

Overview of classes
Lists the classes of predefined objects for shelves and cards.

Shelves
Describes the facilities available for shelves.

Shelf items
Describes the following shelf items: cards, empty slots, and card carriers.

Card items
Describes the following card items: LEDs and ports.

Representation of shelves and cards in a table and in a tree
Shows how shelves and cards are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 191

Overview of classes

The complete hierarchy of predefined business objects is as follows:

♦ Shelves: instances of the class IltShelf

♦ Cards: instances of the class IltCard

♦ Empty slots: instances of the class IltEmptySlot

♦ Card carriers: instances of the class IltCardCarrier

♦ Ports: instances of the class IltPort

♦ LEDs: instances of the class IltLed

For a general introduction to predefined business objects, refer to Introducing business
objects and data sources.

You can retrieve any of the above classes using the corresponding GetIlpClass method.
You can handle any instance of these classes as a simple IlpObject and get and set their
attributes with the generic methods getAttributeValue(java.lang.String) and
setAttributeValue(java.lang.String, java.lang.Object).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S192

Shelves

Describes the facilities available for shelves.

In this section

Overview of shelves
Provides details about the components of a shelf.

Shelf class
Describes the attributes of the IltShelf class.

Loading a shelf defined in XML
Shows how to load a shelf from an XML file in a data source.

Creating a shelf with the API
Shows how to create a shelf using the API and how to add it to the data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 193

Overview of shelves

A standard shelf is a rectangular frame made up of smaller rectangles (slots) placed side by
side in a line. Each slot is assigned a number (slot number) that graphically identifies the
slot in the shelf.

A complex shelf is a rectangular frame made up of an array of slots, each column being
assigned a number (slot numbering) that graphically identifies it within the shelf.

Each slot can hold one card object. There are three different types of card object: cards,
empty slots, and card carriers. Each of these types is described in this topic.

Although states and alarms can be associated with a shelf, it is not possible to display them
in the shelf graphic representation. This is not necessary since shelves are only holders of
shelf items. On the other hand, the states and alarms associated with shelf items can be
represented graphically.

It is possible to set a label for any shelf, but it will only be visible in the logical and tiny
representations. The symbolic representation does not display it.

For information on other styling capabilities available for shelves, refer to CSS properties
for the representation of shelves, card carriers, cards and ports .

Slots are numbered sequentially (slot numbering), starting from the initial index which is
passed as an argument to the constructor (logicalFirstIndex argument in most IltShelf
constructors). By default, the slot labels display the sequential numbers, but you can
customize them using cascading style sheets.

Slots in a shelf can be defined as fixed-width, where all slots have the same width, or
variable-width, where each slot has its width set individually. A slot is not displayed when
its width is set to zero, which breaks the sequence of the slot numbering. The width of the
slots can be defined either when constructing a shelf or by invoking the shelf API (method
setSlotSizes).

For array shelves, slot columns are numbered sequentially and both the horizontal and the
vertical dimensions can be defined as fixed-width or variable-width using an API similar to
standard linear shelves.

Since the shelf determines the size of the slots and consequently the size of the shelf items,
it is important to design it with the card objects that will be placed in the slots in mind. For
example, cards which contain card items such as ports and LEDs must be placed in slots
big enough to host them. In addition, even when using cards without ports and LEDs, small
shelves with tiny slots tend to overlap alarm representations and labels, which is confusing
for the end user.

The positioning point of a shelf is given by the PositionAttribute attribute (from class
IltObject); it is based on the IlpPoint object and defines its top left corner.

The slots of a shelf are accessed through a pair of XY indices defining a column (X index)
and a row (Y index). The top left slot is assigned the indices (0,0). The X index increases
horizontally from left to right and the Y index increases vertically from top to bottom. For
linear shelves, the Y index is handled automatically. Objects are placed on a shelf based on
X and Y slot indices plus an X and Y span, which defines how much the object will expand
over its neighboring slots. An X span of 2.0, for instance, determines that the object will
fully occupy the slot on its right.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S194

Shelf class

Shelves are predefined business objects of the class IltShelf that are top-level containers
in a hierarchy of predefined business objects used to model telecommunication equipment.

The IltShelf class defines the following attributes:

♦ Type—Specifies the category of a shelf. There is one predefined type of shelf, but you can
define new types.

Name: type

Value class: IltShelf.Type

Attribute: IltShelf.TypeAttribute

♦ Direction—Specifies the direction of a shelf. The possible values are IlpDirection.
Right, IlpDirection. Left, IlpDirection. Top or IlpDirection. Bottom. The default
value is Right, and corresponds to a shelf with slot numbers at the bottom. The shelf
direction affects the slot numbering (ascending or descending), but not the slot number
position, which is given by the setSlotNumsOnTop(boolean) method of the IltShelf
class.

Name: direction

Value class: IlpDirection

Attribute: IltShelf.DirectionAttribute

♦ Slot sizes—Specifies the width and height of each column and row of slots.

Name: slotSizes

Value class: IlpSlotSizes

Attribute: IltShelf.SlotSizesAttribute

♦ XSlotIndex—Specifies the initial number displayed to count the slots.

Name: xslotindex

Value class: java.lang.Integer

Attribute: IltShelf.XSlotIndexAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 195

Loading a shelf defined in XML

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as shown below.

IlpDataSource datasource = new IltDefaultDataSource();
datasource.parse("ShelfXMLFile.xml");

For detailed information about data sources, see Data sources.

How to define a shelf in XML
The following is an example of a shelf defined in XML format. For details about the XML
elements used in this example, see Elements in an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
</cplData>

The result looks like this:

An array shelf defined in an XML file

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S196

Creating a shelf with the API

All you have to do is create a shelf using the class IltShelf and add it to a data source, as
shown in the following example.

How to create a linear shelf with the API

IltShelf s1 = new IltShelf(10,//Number of slots in the shelf
20,//Width of all the slots in the shelf
100,//Height of all the slots in the shelf
0);//Value of the first slot number

IlpDataSource dataSource = new IltDefaultDataSource();
dataSource.addObject(s1);

The result looks like this:

A linear shelf without cards

How to create an array shelf with the API
The following code creates an empty 4x3 array shelf:

IltShelf s1 = new IltShelf(4,//Number of slots along the x axis
25,//Width of a slot on the x axis
3,//Number of slots along the y axis
30,//Width of a slot on the y axis
0);//Value of the first slot number

s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(50, 50));
IlpDataSource dataSource = new IltDefaultDataSource();
dataSource.addObject(s1);

The result looks like this:

An empty 4x3 array shelf with fixed-width slots

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 197

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S198

Shelf items

Describes the following shelf items: cards, empty slots, and card carriers.

In this section

Cards
Describes the facilities available for cards.

Empty slots
Describes the facilities available for empty slots.

Card carriers
Describes the facilities available for card carriers.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 199

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S200

Cards

Describes the facilities available for cards.

In this section

Overview of cards
Provides details about cards, like positioning, size, decorations.

Card class
Describes the attributes of the IltCard class.

Loading a card defined in XML
Shows how to load a card from an XML file in a data source.

Creating a card with the API
Shows how to create a card using the API and add it to the data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 201

Overview of cards

Like any IltShelfItem implementation, a card occupies a slot within a shelf. It is related
to the shelf in the same way as any of the other shelf items described in this section. It is
highly recommended to plan ahead the size of the shelves and the slot widths, based on the
size of the cards and card carriers that they will host.

When a card is rotated, either manually by a developer or automatically by the system
(following the rotation of a parent shelf, for instance), all its child card items are rotated
accordingly.

Cards can represent alarms and states graphically according to their associated state object,
in the same way as network elements can, through alarm balloons and colors corresponding
to the alarm severity. It is possible to define a customized background image for them.

A card is represented in the form of a rectangle occupying the whole slot area; it bears a
label, as well as status icons.

You can span a card over the neighboring slot by defining a span greater than 1 when
positioning it into the shelf. The positioning of objects on a shelf is defined by an object of
class IlpShelfItemPosition and defines the X and Y slots plus the X and Y spans.

When an object spans over other objects on the shelf, these objects are removed from the
shelf.

It is important to note that the slot index is not related to the slot numbering. The slot index
is used internally by the class IltShelf to manage slots and cannot be changed; the slot
numbering is defined by the user when creating a shelf and can be customized.

You should be careful when changing the orientation of a card, as it affects the positioning
of decorations such as label, status icons, and alarm balloon. The position of the decorations
around a card can be customized through properties.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S202

Card class

Cards are predefined business objects of the class IltCard and are the most widely used
shelf items. They can contain card item objects such as LEDs (IltLed class) and ports (
IltPort class).

The IltCard class defines the following attributes:

♦ Type—Specifies the category of a card. It is possible to define new types of card.

Name: type

Value class: IltCard.Type

Attribute: IltCard.TypeAttribute

♦ Direction—Specifies the direction of the card within the shelf. By default, the orientation
of a card is set to Top, which defines a card with a label placed vertically, status icons
placed at the bottom of the card, and the alarm balloon placed at the top of the card.

Name: direction

Value class: IlpDirection

Attribute: IltCard.DirectionAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 203

Loading a card defined in XML

For detailed information about data sources, see Data sources.

How to add a card to a shelf defined in XML
The following example extends the example presented in Loading a shelf defined in XML
and adds a card to the shelf. Note the tags <parent> and </parent>, which define the parent
object of the card. Note also that the positioning of an object in a shelf is given by an
IlpShelfItemPosition, which defines its slot indices and span.

For details about the XML elements used in this example, see Elements in an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
<addObject id="Card0">
<class>ilog.tgo.model.IltCard</class>
<parent>Shelf</parent>
<attribute name="name">Card0</attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>0</x> <y>0</y> <width>1</width> <height>1</height>

</attribute>
</addObject>
</cplData>

The result looks like this:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S204

An array shelf with a card from an XML file

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 205

Creating a card with the API

How to create a shelf with a card through the API

IlpDataSource dataSource = new IltDefaultDataSource();
// create shelf, set its position and add to datasources
IltShelf s1 = new IltShelf(3, 30, 90, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(20, 50));
dataSource.addObject(s1);

// create card, set its position (relative to the shelf slots) and
// add to datasources
IltCard c1 = new IltCard(null, "card");
c1.setAttributeValue(IltCard.PositionAttribute,

new IlpShelfItemPosition(0, 0, 1, 1));
dataSource.addObject(c1);

// set parent-child relationship
dataSource.setParent(c1.getIdentifier(), s1.getIdentifier());

The result looks like this:

A card in a shelf

How to associate cards with an array shelf by spanning slots
The following code illustrates cards associated with an array shelf through the use of slot
spanning.

// create datasource
IltDefaultDataSource dataSource = new IltDefaultDataSource();

// Create shelf
IltShelf s1 = new IltShelf(5, 20, 4, 25, 0);
s1.setAttributeValue(IltShelf.PositionAttribute,
new IlpPoint(50, 50));

dataSource.addObject(s1);

// Create cards
IltCard c1 = new IltCard(null, "c1");
c1.setAttributeValue(IltCard.PositionAttribute,

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S206

new IlpShelfItemPosition(0, 0, 2.8f, 1.9f));
dataSource.addObject(c1);
IltCard c2 = new IltCard(null, "c2");
c2.setAttributeValue(IltCard.PositionAttribute,
new IlpShelfItemPosition(0, 2, 2.8f, 1.9f));

dataSource.addObject(c2);
IltCard c3 = new IltCard(null, "c3");
c3.setAttributeValue(IltCard.PositionAttribute,
new IlpShelfItemPosition(3, 0, 1.8f, 3.9f));

dataSource.addObject(c3);

// create relationship
dataSource.setParent(c1.getIdentifier(), s1.getIdentifier());
dataSource.setParent(c2.getIdentifier(), s1.getIdentifier());
dataSource.setParent(c3.getIdentifier(), s1.getIdentifier());

The result looks like this:

An array shelf with spanned cards

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 207

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S208

Empty slots

Describes the facilities available for empty slots.

In this section

Overview of empty slots
Provides details about the use of empty slots.

Empty slot class
Describes the attributes of the IltEmptySlot class.

Loading an empty slot defined in XML
Shows how to load an empty slot from an XML file in a data source.

Creating an empty slot with the API
Shows how to create an empty slot using the API and add it to the data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 209

Overview of empty slots

An empty slot object can be placed within a free slot in the same way as a card. Graphically,
IltEmptySlot objects only differ from free slots by a dark grey label.

Empty slots can represent alarms and states graphically; however, their base representation
cannot be changed. In other words, a state that would induce a change in the graphic
representation of the object base is ignored.

You should associate an empty slot with a free slot if you want to manage this free slot in
some way. Unlike an empty slot, a regular free slot is not considered a business object and
cannot represent alarms or states by itself.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S210

Empty slot class

Empty slots are predefined business objects of the class IltEmptySlot, which extends the
class IltCard. IltEmptySlot, does not define any attribute, but inherits the TypeAttribute
attribute from its parent class and defines itself as a specific type of card.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 211

Loading an empty slot defined in XML

Loading an empty slot from an XML file is similar to loading a card, except for the business
object class defined between the <class> and </class> tags:

<class>ilog.tgo.model.IltEmptySlot</class>

How to load an empty slot defined in XML
The following sample uses the same XML file as in Loading a card defined in XML, to create
an empty slot. For details about the XML elements used in this example, see Elements in
an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
<addObject id="Card0">
<class>ilog.tgo.model.IltEmptySlot</class>
<parent>Shelf</parent>
<attribute name="name">Card0</attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>0</x> <y>0</y> <width>1</width> <height>1</height>

</attribute>
</addObject>
</cplData>

The result looks like this:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S212

An empty slot in a shelf

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 213

Creating an empty slot with the API

As the class IltEmptySlotextends the class IltCard, the API to create an empty slot instance
in a shelf is similar to the API for creating a card.

How to create an empty slot with the API
The following sample updates the sample in Creating a card with the API.

IlpDataSource dataSource = new IltDefaultDataSource();
// create shelf, set its position and add to datasources
IltShelf s1 = new IltShelf(3, 30, 90, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(20, 50));
dataSource.addObject(s1);

// create empty slot, set its position (relative to the shelf slots) and
// add to datasources
IltEmptySlot c1 = new IltEmptySlot(null, "card");
c1.setAttributeValue(IltEmptySlot.PositionAttribute,
new IlpShelfItemPosition(0, 0, 1, 1));

dataSource.addObject(c1);

// set parent-child relationship
dataSource.setParent(c1.getIdentifier(), s1.getIdentifier());

The result looks like this:

An Empty Slot in a Shelf

How to create a shelf with two empty slots
The following code creates a shelf with two empty slots, one showing an alarm.

IltDefaultDataSource dataSource = new IltDefaultDataSource();
IltShelf s1 = new IltShelf(4, 20, 100, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(50, 50));
dataSource.addObject(s1);
IltEmptySlot e0 = new IltEmptySlot(null, "e0");
e0.setAttributeValue(IltEmptySlot.PositionAttribute,
new IlpShelfItemPosition(0, 0, 1, 1));

dataSource.addObject(e0);
IltEmptySlot e2 = new IltEmptySlot(new IltOSIObjectState(), "e2");

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S214

e2.setState(IltOSI.State.Administrative.Locked);
e2.getAlarmState().setNewAlarmCount(IltAlarm.Severity.Critical, 1);
e2.setAttributeValue(IltEmptySlot.PositionAttribute,
new IlpShelfItemPosition(2, 0, 1, 1));

dataSource.addObject(e2);
dataSource.setParent(e0.getIdentifier(), s1.getIdentifier());
dataSource.setParent(e2.getIdentifier(), s1.getIdentifier());

The result looks like this:

A shelf with two empty slots, one of them showing an alarm

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 215

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S216

Card carriers

Describes the facilities available for card carriers.

In this section

Overview of card carriers
Provides details about card carriers.

Card carrier class
Describes the attributes of the IltCardCarrier class.

Loading a card carrier defined in XML
Shows how to load a card carrier from an XML file in a data source.

Creating a card carrier with the API
Shows how to create a card carrier using the API and add it to the data source.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 217

Overview of card carriers

Like a card, a card carrier can represent alarms and states graphically, with alarm balloons
and colors defined by alarm severity. A card carrier is represented graphically as a rectangle
with two distinct areas: a fixed-size utility area to represent alarm states and decorations
and another area to represent equal-sized slots. (A card carrier does not support
variable-width slots or slots in an array, but it is possible to set child objects with span.) The
setBottomSpacing method allows you to customize the size of the utility area; the default
size value is 30.

You can set a label for a card carrier, but it will only be visible in the logical and tiny
representations, not in the symbolic representation.

The utility area can be distinguished from the cards of the card carrier through a more
marked 3D effect.

Shelf items are positioned within card carriers according to a single index. The index 0
denotes the slot at the opposite end of the utility area.

Like any other shelf item, you can set the direction of a card carrier. The default setting is
Top. When the direction is set to Right, for example, the utility area is displayed on the left
and the slots on the right.

Card carriers can appear very cramped when they concentrate lots of information in a small
space. Therefore, it is important to design the right size of object to be able to accommodate
all the graphic representations, such as secondary state icons, alarm balloons, and so forth.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S218

Card carrier class

Card carrier objects are predefined business objects of the class IltCardCarrier which is
also a container for shelf item objects. They allow you to associate more than one card with
a single slot.

The IltCardCarrier class defines the following attributes:

♦ Type—Specifies the category of a card carrier. There is one predefined type of card
carrier, but it is possible to define other types.

Name: type

Value class: IltCardCarrier.Type

Attribute: IltCardCarrier.TypeAttribute

♦ Slot Count—Specifies the number of slots for the card carrier

Name: slotCount

Value class: Integer

Attribute: IltCardCarrier.SlotCountAttribute

♦ Direction—Specifies the direction of a card carrier. The possible values are
IlpDirection.Right, IlpDirection.Left, IlpDirection.Top or IlpDirection.Bottom.
The default value is Top. The card carrier direction affects the decorations that are
attached to the object, such as label, alarm count and secondary states.

Name: direction

Value class: IlpDirection

Attribute: IltCardCarrier.DirectionAttribute

♦ Bottom Spacing—Specifies the size of the utility area in the card carrier, where the state
and alarm information is displayed. The default value is 30.

Name: bottomSpacing

Value class: Integer

Attribute: IltCardCarrier.BottomSpacingAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 219

Loading a card carrier defined in XML

For detailed information about data sources, see Data sources.

How to load a card carrier defined in XML
The following example creates a card carrier with a card and adds it to a shelf. Note the
tags <parent> and </parent>, which define the parent object of the card items, and the
attribute slotCount, which defines the number of slots for the card carrier.

The positioning of an object in a card carrier is given by an IlpPoint, not by an
IlpShelfItemPosition as in the shelf.

Note:

For details about the XML elements used in this example, see Elements in an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
<addObject id="Carrier">
<class>ilog.tgo.model.IltCardCarrier</class>
<parent>Shelf</parent>
<attribute name="name">Carrier</attribute>
<attribute name="slotCount" javaClass="java.lang.Integer">2</attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>1</x> <y>0</y> <width>2</width> <height>2</height>

</attribute>
</addObject>
<addObject id="Card">
<class>ilog.tgo.model.IltCard</class>
<parent>Carrier</parent>
<attribute name="name">Card</attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S220

<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>0</x> <y>1</y>

</attribute>
</addObject>
</cplData>

The result looks like this:

An array shelf with a card carrier and a card

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 221

Creating a card carrier with the API

When creating a card carrier from the API, you must specify the number of slots it uses.
This value is set in the constructor.

How to create a card carrier with the API
The following example shows how to create an empty card carrier with two free slots.

IltDefaultDataSource dataSource = new IltDefaultDataSource();
IltShelf s1 = new IltShelf(4, 20, 100, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(50, 50));
dataSource.addObject(s1);

IltCardCarrier cc1 = new IltCardCarrier(null, 2); // number of slots
cc1.setAttributeValue(IltCardCarrier.PositionAttribute,
new IlpShelfItemPosition(1, 0, 1, 1));

dataSource.addObject(cc1);

dataSource.setParent(cc1.getIdentifier(), s1.getIdentifier());

The result looks like this:

Shelf with a card carrier containing two free slots

How to create a shelf with two card carriers
The following code creates a shelf with two card carriers.

// Create a datasource
IltDefaultDataSource dataSource = new IltDefaultDataSource();

// create shelf, set its position and add to datasource
IltShelf s1 = new IltShelf(4, 20, 200, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(50, 50));
dataSource.addObject(s1);

// create card carrier 1, set its position (relative to s1)
// and add to datasource
IltCardCarrier cc1 = new IltCardCarrier(null, 2);
cc1.setAttributeValue(IltCardCarrier.PositionAttribute,

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S222

IlpShelfItemPosition(1, 0, 1, 1));
dataSource.addObject(cc1);

// create card carrier 2, set its position (relative to s1)
// and add to datasource
IltCardCarrier cc2 = new IltCardCarrier(null, 1);
cc2.setAttributeValue(IltCardCarrier.PositionAttribute,
new IlpShelfItemPosition(3, 0, 1, 1));

dataSource.addObject(cc2);

// create card 1, set its position (relative to cc1) and add
// to datasource
// note that the position is instance of IlpPoint, not
// IlpShelfItemPosition (card carriers require just one slot index and span)
IltCard c1 = new IltCard(null, "card1");
c1.setAttributeValue(IltCard.PositionAttribute, new IlpPoint(1, 1));
dataSource.addObject(c1);

// create card 2, set its position (relative to cc2) and add
// to datasource
IltCard c2 = new IltCard(null, "card2");
c2.setAttributeValue(IltCard.PositionAttribute, new IlpPoint(0, 1));
dataSource.addObject(c2);

// set relationship
dataSource.setParent(c1.getIdentifier(), cc1.getIdentifier());
dataSource.setParent(c2.getIdentifier(), cc2.getIdentifier());
dataSource.setParent(cc1.getIdentifier(), s1.getIdentifier());
dataSource.setParent(cc2.getIdentifier(), s1.getIdentifier());

The result looks like this:

Shelf with two card carriers

In this figure, the carrier of card1 has a free slot also. The second card carrier is fully
occupied by card2 only.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 223

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S224

Card items

Describes the following card items: LEDs and ports.

In this section

Overview of card items
Provides details about the positioning of card items.

Card item class
Describes the attributes of the IltCardItem class.

LEDs
Describes the facilities available for LEDs.

Ports
Describes the facilities available for ports.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 225

Overview of card items

Card items are placed inside a card item container (IltCard). Their positioning is relative
to the top left corner of the container. Regardless of the orientation of the container, the
top left corner constitutes the origin for positioning the card items; the X coordinate of card
items increases from left to right and the Y coordinate increases from top to bottom, with
regard to this origin.

The positioning point of a card item is its center point and is relative to the origin of the
card item container (top left corner).

When planning the size of shelves and slots, remember to take into account the child objects,
particularly the card and its card items.

IBM® ILOG® JViews TGO defines two types of card items: LEDs and ports.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S226

Card item class

The abstract class IltCardItem defines all the common characteristics of a business object
that can be associated with a card or any implementation of IltCard.

The IltCardItem class defines the following attributes:

♦ Type— Specifies the category of a card item. There are different predefined types of card
items in JViews TGO; all of them are described in this section.

Name: type

Value class: IltCardItem.Type

Attribute: IltCardItem.TypeAttribute

♦ Direction—Specifies the direction of the card item.

Name: direction

Value class: IlpDirection

Attribute: IltCardItem.DirectionAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 227

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S228

LEDs

Describes the facilities available for LEDs.

In this section

Overview of LEDs
Provides details about the use of LEDs.

LED class
Describes the attributes of the IltLed class.

Loading an LED defined in XML
Shows how to load an LED from an XML file in a data source.

Creating an LED with the API
Shows how to create an LED using the API and how to add it to the data source.

Predefined LED types
Lists the different types of LED and their graphic representation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 229

Overview of LEDs

An LED (Light Emitting Diode) is an object used to represent a state through a color. Most
types of equipment use LEDs as interfaces that give the user information on hardware and
software conditions. IBM® ILOG® JViews TGO provides an LED business object to help you
create real world items of equipment.

Although a state object can be associated with LEDs, it does not affect their graphic
representation. LEDs are not managed objects themselves; they help represent the state of
managed objects such as ports or cards.

Depending on the nature of the application, LEDs can be represented by a bitmap image or
by a vector graphic. Like a network element, the LED representation is set through the
TypeAttribute attribute assigned to the object represented by the LED.

To find all necessary information on the styling properties of LEDs, refer to Customizing
shelves and cards.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S230

LED class

LEDs are predefined business objects of the class IltLed, which defines a card item by
extending the IltCardItem abstract class.

The parent class IltCardItem defines the TypeAttribute, which is used to create several
different graphic representations for different instances of the same IltLed class.

The IltLed class defines the following attributes:

♦ Width—Specifies the width of the LED in its vector graphic representation

Name: width

Value class: java.lang.Float

Attribute: IltLed.WidthAttribute

♦ Height—Specifies the height of the LED in its vector graphic representation

Name: height

Value class: java.lang.Float

Attribute: IltLed.HeightAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 231

Loading an LED defined in XML

For detailed information about data sources, see Data sources.

How to add an LED to a card defined in XML
The following example extends the example in Loading a shelf defined in XML and adds an
LED to a card. For details about the XML elements used in this example, see Elements in
an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
<addObject id="Card">
<class>ilog.tgo.model.IltCard</class>
<parent>Shelf</parent>
<attribute name="name"></attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>0</x> <y>0</y> <width>3</width> <height>1</height>

</attribute>
</addObject>
<addObject id="Led">
<class>ilog.tgo.model.IltLed</class>
<parent>Card</parent>
<attribute name="name">Led</attribute>
<attribute name="type">Circular</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRelativePoint">
<x>70</x> <y>65</y>

</attribute>
</addObject>
</cplData>

The result looks like this:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S232

An array shelf with a card and an LED

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 233

Creating an LED with the API

When you create an LED with the API, you must provide its type, which can be set through
the constructor or through the setAttributeValue method.

How to create an LED with the API
The following sample shows how to create an LED of type Circular.

List objects = new ArrayList();
// create shelf identified as myShelf
IltShelf s1 = new IltShelf("myShelf");
s1.setSlotSizes(2,50,1,100);
objects.add(s1);

// create card
IltCard c1 = new IltCard(new IltOSIObjectState(), "card 1");
c1.setPosition(new IlpShelfItemPosition(0, 0, 1, 1));
objects.add(c1);

// create card item
IltLed l1 = new IltLed("myLed");
l1.setType(IltLed.Type.Circular);
l1.setPosition(new IlpRelativePoint(25,85));
objects.add(l1);

// add all objects to data source
datasource.addObjects(objects);

The result looks like this:

A shelf containing a card with an LED

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S234

Predefined LED types

There are several predefined LED types, using both bitmap and vector representations. You
can extend the predefined types and define new representations using either images or
drawers capable of creating vector images. For information on how to create new LED types,
see Customizing LED types.

LED types and their graphic representation
Graphic RepresentationLED Type

Circular

CircularShape

CircularFlat

Rectangular

RectangularShape

HardDisk A

HardDisk B

HardDiskPwr A

HardDiskPwr B

Power A

Power B

Among the LEDs listed in this table, IltLed.Type.Circular, IltLed.Type.CircularShape,
IltLed.Type.CircularFlat, IltLed.Type.Rectangular, and IltLed.Type.
RectangularShape are vector graphic representations; all the others are bitmap images.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 235

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S236

Ports

Describes the facilities available for ports.

In this section

Overview of ports
Provides details about the use of ports.

Port class
Describes the attributes of the IltPort class.

Loading a port defined in XML
Shows how to load a port from an XML file in a data source.

Creating a port with the API
Shows how to create a port using the API and how to add it to the data source.

Predefined port types
Lists the different types of port and their graphic representation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 237

Overview of ports

Most real world cards have a physical interface to connect them to other sets of equipment
or to a network. The connections are usually achieved through connectors or ports. IBM®
ILOG® JViews TGO provides port objects to represent connections between a card (IltCard)
and the external world.

Ports allow you to represent alarms and states graphically in the same way as network
elements do, with alarm balloons and colors depending on the alarm severity.

Depending on the nature of the application, ports can be represented by a bitmap image or
by a vector graphic. Like a network element, the port representation is set through the
TypeAttribute attribute assigned to the object represented by the port.

To find all necessary information on the styling properties of ports, refer to Customizing
shelves and cards.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S238

Port class

Ports are predefined business objects of the class IltPort, which defines a card item by
extending the IltCardItem abstract class to fit inside card objects.

The parent class IltCardItem defines the TypeAttribute, which is used to create different
graphic representations for different instances of the same IltLed class.

The IltPortclass does not define any specific attribute:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 239

Loading a port defined in XML

For detailed information about data sources, see Data sources.

How to add a port to a card defined in XML
The following example extends the example in Loading a shelf defined in XML and adds a
port to a card. For details about the XML elements used in this example, see Elements in
an XML data file .

<cplData>
<addObject id="Shelf">
<class>ilog.tgo.model.IltShelf</class>
<attribute name="name">Shelf</attribute>
<attribute name="slotSizes" javaClass="ilog.cpl.equipment.IlpSlotSizes">
<width>
<value>30</value>
<value>20</value>
<value>40</value>

</width>
<height>
<value>90</value>
<value>20</value>

</height>
</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>100</x> <y>50</y>

</attribute>
</addObject>
<addObject id="Card">
<class>ilog.tgo.model.IltCard</class>
<parent>Shelf</parent>
<attribute name="name"></attribute>
<attribute name="position"

javaClass="ilog.cpl.graphic.views.IlpShelfItemPosition">
<x>0</x> <y>0</y> <width>3</width> <height>1</height>

</attribute>
</addObject>
<addObject id="Port">
<class>ilog.tgo.model.IltPort</class>
<parent>Card</parent>
<attribute name="name">Port</attribute>
<attribute name="type">DB15_f</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRelativePoint">
<x>30</x> <y>65</y>

</attribute>
</addObject>
</cplData>

The result looks like this:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S240

An array shelf with a card and a port

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 241

Creating a port with the API

When you create a port with the API, you must provide its type, which can be set through
the constructor or through the setAttributeValue method.

How to create a port with the API
The following sample shows how to create a port of type Centronics_36f.

// Create a shelf, set its position and add to datasource
IltShelf s1 = new IltShelf(2, 65, 3, 20, 0);
s1.setAttributeValue(IltShelf.PositionAttribute, new IlpPoint(20, 50));
dataSource.addObject(s1);

// create a card, set its position (relative to s1) and
// add to datasource
IltCard c1 = new IltCard();
c1.setAttributeValue(IltCard.PositionAttribute,
new IlpShelfItemPosition(0, 1, 1, 1));

dataSource.addObject(c1);

// create shelf item, set its position (relative to c1) and
// add it to datasource
IltPort port = new IltPort("port", IltPort.Type.Centronics_36f, null);
port.setAttributeValue(IltPort.PositionAttribute,

new IlpRelativePoint(33, 10));
dataSource.addObject(port);

// set relationship
dataSource.setParent(port.getIdentifier(), c1.getIdentifier());
dataSource.setParent(c1.getIdentifier(), s1.getIdentifier());

The result looks like this:

A shelf containing a card with a port

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S242

Predefined port types

There are several predefined port types using both vector and bitmap representations. You
can also define new types using either images or drawers capable of creating vector images.

For information on how to create new port types, see Customizing port types.

All port types in the following table are image ports.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 243

Port types and their graphic representation
Graphic RepresentationPort Type

BNC_f

BNC_m

CardEdge_34f

Centronics_36f

Centronics_36m

Centronics_50f

Centronics_50m

Centronics_HP_36f

Centronics_HP_36m

Centronics_HP_50f

Centronics_HP_50m

Centronics_VHD_68f

Centronics_VHD_68m

Composed_13W3_f

Composed_13W3_m

DB_15f

DB_15m

DB_25f

DB_25m

DB_37f

DB_37m

DB_50f

DB_50m

DB_9f

DB_9m

DB_HD_15f

DB_HD_15m

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S244

Graphic RepresentationPort Type

DB_HP_50f

DB_HP_50m

DB_HP_68f

DB_HP_68m

DIN_4f

DIN_4m

DIN_5f

DIN_5m

DIN_6f

DIN_6m

DIN_8f

DIN_8m

ExternalPower_f

ExternalPower_m

FDD_Power_f

FDD_Power_m

HDD_Power_f

HDD_Power_m

HoodedPower_f

HoodedPower_m

IDC_34f

IDC_34m

IDC_40f

IDC_40m

IDC_50f

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 245

Graphic RepresentationPort Type

IDC_50m

IDC_68

IEEE_1394_4f

IEEE_1394_4m

IEEE_1394_6f

IEEE_1394_6m

LFH_60f

LFH_60m

RJ45_f

RJ45_m

SC_Fiber_f

SC_Fiber_m

SCA_80f

SCA_80m

ST_Fiber_f

ST_Fiber_m

TwoProngPower_f

TwoProngPower_m

USB_A_f

USB_A_m

USB_B_f

USB_B_m

V35_f

V35_m

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S246

Representation of shelves and cards in a table and in a tree

Representing objects in a table
Objects of the IltShelf class are represented in a table as follows.

Objects of classes IltCard and IltEmptySlot are represented in a table as follows.

Objects of the class IltPortare represented in a table as follows.

Objects of the class IltLed are represented in a table as follows.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 247

Representing objects in a tree
Objects of the classes IltShelf, IltCard, IltPort, and IltLed are represented in a tree
as follows.

Customizing the representation of shelves and cards
For information on how to customize the graphic representation of shelves and cards, refer
to Customizing port types.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S248

BTS (Base Transceiver Station)

Explains how to use IBM® ILOG® JViews TGO predefined business objects of type BTS in
your applications.

In this section

BTS Class
Describes the IltBTS class and its components.

Loading a BTS object defined in XML
Shows how to load a BTS object from an XML file into a data source.

Creating a BTS object with the API
Explains how to create an IltBTS object using the JViews TGO API and how to add it to a
data source.

Representation of BTS objects in a table and in a tree
Shows how BTS objects are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 249

BTS Class

A BTS is a predefined business object of the class IltBTS that you can directly insert in a
JViews TGO data source to represent graphically base transceiver stations in any of the
graphic components connected to the data source. For a general introduction to predefined
business classes, see Introducing business objects and data sources.

The IltBTS class does not define any specific attribute.

You can retrieve the class IltBTS using its GetIlpClass() method. You can handle its
instances as simple IlpObject instances and set and get its attributes with the generic
methods getAttributeValue(java.lang.String) and setAttributeValue(ilog.cpl.
model.IlpAttribute, java.lang.Object).

An IltBTS is made up of two types of object:

♦ IltBTSAntenna objects, which represent cellular transmitting and receiving antennas.

♦ An IltNetworkElement object, which represents the BTS item of electronic equipment
carrying the antennas. For details, see Network elements.

The antennas and the item of electronic equipment constitute the detail objects of the IltBTS
container object.

Antennas
An IltBTS object enables you to represent the antenna coverage of each cell in a cellular
system. A cell corresponds to a limited geographic zone.

An antenna is an instance of the class IltBTSAntenna.

The IltBTSAntenna class defines the following attributes:

♦ Power—Indicates the power of the antenna in watts

Name: power

Value class: java.lang.Integer

Attribute: IltBTSAntenna.PowerAttribute

♦ Beam direction—Indicates the beam direction of the antenna in degrees

Name: beamDirection

Value class: java.lang.Integer

Attribute: IltBTSAntenna.BeamDirectionAttribute

♦ Beam width—Indicates the beam width of the antenna, in degrees

Name: beamWidth

Value class: java.lang.integer

Attribute: IltBTSAntenna.BeamWidthAttribute

The graphic representation of an antenna includes:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S250

♦ An arrow line. The direction of the line corresponds to the beam direction and its length
is proportional to the power of the antenna.

♦ An arc. The span of the arc corresponds to the beam width and the radius of the arc is
proportional to the power of the antenna.

For a given power value, the length of the arrow line and the radius of the arc
may differ. This is to allow for more flexibility in the graphic representation.

Note:

You can choose to display both the arrow line and the arc, or only one of them.

BTS equipment
A base transceiver station can be made up of an item of electronic equipment carrying the
cellular antennas. An item of BTS equipment is an instance of an IltNetworkElement of
type IltNetworkElement.Type. BTSEquipment. For details on network elements, seeNetwork
elements.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 251

Loading a BTS object defined in XML

All you have to do is create a data source using the default data source implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source as shown below:

dataSource = new IltDefaultDataSource();
dataSource.parse("BTSXMLFile.xml");

For detailed information about data sources, see Data sources.

How to define a BTS object in XML
The following is an example of a BTS object defined in XML format. For details about the
XML elements used in this example, see Elements in an XML data file .

<cplData>
<addObject id="bts1" container="true">
<class>ilog.tgo.model.IltBTS</class>
<attribute name="name">BTS 1</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>200</x>
<y>200</y>

</attribute>
</addObject>
<addObject id="BTSEquipment">
<class>ilog.tgo.model.IltNetworkElement</class>
<parent>bts1</parent>
<attribute name="name">BTSEquipment</attribute>
<attribute name="type">BTSEquipment</attribute>

</addObject>
<addObject id="antenna1">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>
<attribute name="name">BTS Antenna 1</attribute>
<attribute name="beamDirection">0</attribute>
<attribute name="power">100</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
<addObject id="antenna2">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>
<attribute name="name">BTS Antenna 2</attribute>
<attribute name="beamDirection">60</attribute>
<attribute name="power">50</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
<addObject id="antenna3">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S252

<attribute name="name">BTS Antenna 3</attribute>
<attribute name="beamDirection">120</attribute>
<attribute name="power">80</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
<addObject id="antenna4">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>
<attribute name="name">BTS Antenna 4</attribute>
<attribute name="beamDirection">180</attribute>
<attribute name="power">20</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
<addObject id="antenna5">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>
<attribute name="name">BTS Antenna 5</attribute>
<attribute name="beamDirection">240</attribute>
<attribute name="power">70</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
<addObject id="antenna6">
<class>ilog.tgo.model.IltBTSAntenna</class>
<parent>bts1</parent>
<attribute name="name">BTS Antenna 6</attribute>
<attribute name="beamDirection">300</attribute>
<attribute name="power">50</attribute>
<attribute name="beamWidth">60</attribute>

</addObject>
</cplData>

The result looks like this:

A BTS as defined in XML

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 253

Creating a BTS object with the API

How to create an IltBTS object
To create an IltBTS object and add it to a data source:

♦ Initialize JViews TGO.

IltSystem.Init() ;

♦ Instantiate one or more antennas.

IltBTSAntenna antenna1 = new IltBTSAntenna("A1",//label
new IltBellcoreObjectState(),//state
0,//beam direction
100,//power
60);//beam width

IltBTSAntenna antenna2 = new IltBTSAntenna("A2",new
IltBellcoreObjectState(),60,50,60);

IltBTSAntenna antenna3 = new IltBTSAntenna("A3",new
IltBellcoreObjectState(),120,80,60);

IltBTSAntenna antenna4 = new IltBTSAntenna("A4",new
IltBellcoreObjectState(),180,20,60);

IltBTSAntenna antenna5 = new IltBTSAntenna("A5",new
IltBellcoreObjectState(),240,70,60);

IltBTSAntenna antenna6 = new IltBTSAntenna("A6",new
IltBellcoreObjectState(),300,50,60);

♦ Instantiate an item of BTS equipment (optional).

IltNetworkElement btsEquipment = new IltNetworkElement("bts
equipment",IltNetworkElement.Type.BTSEquipment,new
IltBellcoreObjectState());

♦ Instantiate the BTS container.

IltBTS bts = new IltBTS("BTS",null,null);
bts.setPosition(new IlpPoint(500,200));

♦ Create a data source for IltObject instances and define the parent-child relationships.

IltDataSource dataSource = new IltDefaultDataSource();
dataSource.setParent(btsEquipment,bts);
dataSource.setParent(antenna1,bts);
dataSource.setParent(antenna2,bts);
dataSource.setParent(antenna3,bts);
dataSource.setParent(antenna4,bts);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S254

dataSource.setParent(antenna5,bts);
dataSource.setParent(antenna6,bts);

♦ Add the BTS to the data source.

dataSource.addObject(bts);
dataSource.addObject(btsEquipment);
dataSource.addObject(antenna1);
dataSource.addObject(antenna2);
dataSource.addObject(antenna3);
dataSource.addObject(antenna4);
dataSource.addObject(antenna5);
dataSource.addObject(antenna6);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 255

Representation of BTS objects in a table and in a tree

Objects of the IltBTS class are represented in a table as follows:

Objects of the IltBTSAntenna class are represented in a table as follows:

Objects of classes IltBTS and IltBTSAntenna are represented (with other predefined business
objects) in a tree as follows:

Customizing the representation of BTS
For information on how to customize the graphic representation of BTS, refer to Customizing
BTS.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S256

Off-page connectors

Explains how to use predefined business objects of type off-page connector in your
applications.

In this section

Off-page connector class
Describes the IltOffPageConnector class and its attributes.

Loading an off-page connector defined in XML
Shows how to load an off-page connector from an XML file into a data source.

Creating an off-page connector with the API
Shows how to create an off-page connector through the API and how to add it to a data
source.

Representation of off-page connectors in a network
Shows the graphical representation of the different types of off-page connectors.

Representation of off-page connectors in a table and in a tree
Shows how off-page connectors are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 257

Off-page connector class

Off-page connectors can be inserted in a network to replace nodes. They are used to indicate
that the link continues in a network part that is outside of the current view.

An off-page connector can be associated with information used to:

♦ display the corresponding view,

♦ indicate visually on which neighbor view the object represented by the off-page connector
is located.

Off-page connectors are predefined business objects of the class IltOffPageConnector For
a general introduction to predefined business classes, see Introducing business objects and
data sources.

You can retrieve the class IltOffPageConnector using its GetIlpClass() method.

The IltOffPageConnectorclass defines the following attribute:

♦ Type—Specifies the category of off-page connector. It is possible to define new types of
off-page connectors.

Name: type

Value class: IltOffPageConnector.Type

Attribute: IltOffPageConnector.TypeAttribute

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S258

Loading an off-page connector defined in XML

All you have to do is create a data source using the default data source implementation
defined by IltDefaultDataSource and pass the XML file to the parse method of the data
source, as follows:

dataSource = new IltDefaultDataSource();
dataSource.parse("OffPageConnectorXMLFile.xml");

For detailed information about data sources, see Data sources.

How to define an off-page connector in XML
The following is an example of an off-page connector defined in XML format. For details
about the XML elements used in this example, see Elements in an XML data file .

<addObject id="Region B">
<class>ilog.tgo.model.IltOffPageConnector</class>
<attribute name="name">Region B</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>480</x> <y>200</y>

</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltOSIObjectState">
<alarms>
<new severity="Warning">4</new>

</alarms>
</attribute>

</addObject>

An off-page connector only displays alarm states to the exclusion of any other states such
as primary states, secondary states, or statuses.

The following figure shows an off-page connector displayed in a network component:

Off-page connector displayed in a network component

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 259

Creating an off-page connector with the API

The following example shows how to create an off-page connector and add it to a network
component.

How to create an off-page connector with the API

IltDefaultDataSource dataSource = new IltDefaultDataSource();
IltOffPageConnector opc = new IltOffPageConnection("Region B");
IlpPoint center = new IlpPoint(190, 190);
opc.setPosition(center);
datasource.addObject(opc);}

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S260

Representation of off-page connectors in a network

Off-page connectors (OPC) can have different graphic representations according to the value
of their attribute type. By default, IBM® ILOG® JViews TGO provides the following OPC
types and representations:

OPC types and their representation
DescriptionRepresentationType

Standard off-page connectorStandard

Generic managed entityManaged

Single entity currently managed by the systemSingleManaged

Multiple entities currently managed by the systemMultipleManaged

Generic entities not managed by the systemUnmanaged

Single entity currently not managed by the systemSingleUnmanaged

Multiple entities currently not managed by the systemMultipleUnmanaged

The off-page connector type can be set to the object through XML or through the API. Refer
to the class ilog.tgo.model. IltOffPageConnector for more information.

You can customize the graphic representation of an off-page connector type by registering
a new base renderer (see ilog.tgo.graphic.renderer.IltOPCBaseRenderer). This base
renderer is registered in the JViews TGO default settings (see ilog.tgo.resource.
IltSettings. SetValue(java.lang.Object, java.lang.Object)). Besides the predefined
base renderers, you can also register base renderers based on images or on any IlvGraphic
class, including SVG support.

For details about how to create new off-page connector types, refer to Customizing new
off-page connector types.

Customizing the representation of off-page connectors
For information on how to customize the graphic representation of off-page connectors,
refer to Customizing off-page connectors.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 261

Representation of off-page connectors in a table and in a tree

Like network elements, ports and LEDs, off-page connectors are represented in the tree
and table components with a reduced version of the type representation.

Objects of the IltOffPageConnector class are represented in a table as follows:

Objects of the IltOffPageConnector class are represented in a tree as follows:

Customizing the representation of off-page connectors
For information on how to customize the graphic representation of off-page connectors,
refer to Customizing off-page connectors.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S262

Alarms

Explains how to use predefined business objects of type alarm in your applications.

In this section

Alarm object class
Describes the IltAlarm class and its attributes.

Loading an alarm defined in XML
Shows how to load an alarm from an XML file into a data source.

Creating an alarm with the API
Shows how to create an alarm using the JViews TGO API and add it to a data source.

Representation of alarms in a network
Explains that alarms cannot be represented in a network.

Representation of alarms in a table and in a tree
Shows how alarms are represented in a table and in a tree.

© Copyright IBM Corp. 1987, 2009 263

Alarm object class

Alarms are predefined business objects of the class ilog.tgo.model.IltAlarm, that you
can directly insert in an IBM® ILOG® JViews TGO data source and represent graphically
in a table or tree component connected to the data source.

Unlike the other predefined business objects, alarms are not managed objects but they are
closely related to them, since they reflect alarm conditions affecting managed objects.

The IltAlarm class defines the following attributes:

Attributes of IltAlarm
DescriptionValue ClassAttribute Name

Identifier of the system used by the author of
the last modification of the acknowledged state.

StringackSystemId

Date of the last modification of the
acknowledged state.

java.util.DateackTime

Identifier of the author of the last modification
of the acknowledged state.

StringackUserId

Additional information about the alarm.StringadditionalText

The acknowledged state of the alarm.BooleanalarmAckState

Date of the last modification of alarm attribute
values.

java.util.DatealarmChangedTime

Date when the perceived severity of the alarm
was changed to Cleared.

java.util.DatealarmClearedTime

Date when the alarm was raised.java.util.DatealarmRaisedTime

The type of alarm.IltAlarm.
AlarmType

alarmType

The list of changed attributes.ObjectattributesChanges

The backup status. Indicates whether the
managed object has a backup object.

BooleanbackedUpStatus

Distinguished name of the backup object.StringbackUpObject

Identifier of the system used by the author of
the last request to clear the alarm.

StringclearSystemId

Identifier of the author of the last request to
clear the alarm.

StringclearUserId

List of comments.Objectcomments

The correlated notifications. This attribute
identifies a set of notifications to which this
notification is considered to be correlated.

ObjectcorrelatedNotifications

Fake attribute used to make it possible to
display the alarm object in one column of a

graphicRepresentation

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S264

DescriptionValue ClassAttribute Name

table. This attribute cannot be set a value
directly.

Managed object class of the managed object
instance in which the alarm occurred.

StringmanagedObjectClass

The managed object instance in which the
alarm occurred. See Setting the alarm counters.

StringmanagedObjectInstance

The attributes that are monitored.ObjectmonitoredAttributes

Identifier of the notification that carries the alarm
information.

StringnotificationId

The perceived severity of the alarm. It indicates
the relative level of urgency for operator
attention.

IltAlarmSeverityperceivedSeverity

Values are defined in IltAlarm.Severity
for raw alarms, and in IltAlarm.
ImpactSeverity for impact alarms.

The perceived severity is used to determine the
color of the alarm icon in table and tree
components.

The probable cause of the alarm.IltAlarm.
ProbableCause

probableCause

The proposed repair actions.StringproposedRepairActions

The specific problem.StringspecificProblem

Provides more information on the alarm than
probableCause.

The distinguished name of the system that
detected the network event and generated the
notificationl

StringsystemDN

The information about the threshold.ObjectthresholdInfo

The trend indication.IltAlarm.
TrendIndication

trendIndication

This attribute indicates whether the observed
condition is getting better, worse, or is
unchanged.

The attributes with the Java™ class Object may be populated with objects of any type.Note:

You can retrieve the class IltAlarm using its GetIlpClass() method. You can handle its
instances as simple GetIlpClass() instances and set and get its attributes with the generic
methods getAttributeValue(java.lang.String) and setAttributeValue(ilog.cpl.
model.IlpAttribute, java.lang.Object).

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 265

The class IltAlarm also provides convenience methods, such as getPerceivedSeverity()
and setPerceivedSeverity(ilog.tgo.model.IltAlarmSeverity), that you can use directly
to access each individual predefined attribute of the class.

The perceived severity of raw alarms is of type IltAlarmSeverity, whereas the perceived
severity of impact alarms is of type IltAlarm, IltAlarm.ImpactSeverity. JViews TGO
provides the following predefined severities that are statically allocated and stored in static
data members of IltAlarm:

For raw alarms, the available severity values are the following:

♦ IltAlarm.Severity. Critical

♦ Major

♦ Minor

♦ Warning

♦ Unknown

♦ Cleared

For impact alarms, the available severity values are the following:

♦ IltAlarm.ImpactSeverity. CriticalHigh

♦ IltAlarm.ImpactSeverity. CriticalLow

♦ IltAlarm.ImpactSeverity. MajorHigh

♦ IltAlarm.ImpactSeverity. MajorLow

♦ IltAlarm.ImpactSeverity. MinorHigh

♦ IltAlarm.ImpactSeverity. MinorLow

♦ IltAlarm.ImpactSeverity. WarningHigh

♦ IltAlarm.ImpactSeverity. WarningLow

♦ IltAlarm.ImpactSeverity. Unknown

♦ IltAlarm.ImpactSeverity. Cleared

You can define other severities to extend the default alarm model. For details, refer to
Customizing alarm severities in the Styling documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S266

Loading an alarm defined in XML

All you have to do is create a data source using the data source default implementation
defined by IltDefaultDataSource and pass the XML file to be read to its parsemethod, as
follows:

dataSource = new IltDefaultDataSource();
dataSource.parse("AlarmXMLFile.xml");

For detailed information about data sources, see section Data sources.

How to define an alarm in XML
The following is an example of an alarm defined in XML format. For details about the XML
elements used in this example, see table Elements in an XML data file .

In this example, the first alarm object (alarm 1) is an acknowledged raw alarm with a
perceived severity level of Warning, and affecting the managed object Router1. The second
alarm object (alarm 2) is a nonacknowledged impact alarm with a perceived severity level
of MajorHigh, and affecting the managed object Gateway1.

<cplData>
<addObject id="alarm 1">
<class>ilog.tgo.model.IltAlarm</class>
<attribute name="notificationId">alarm 1</attribute>
<attribute name="alarmAckState">true</attribute>
<attribute name="ackSystemId">leipzig</attribute>
<attribute name="ackUserId">leibniz</attribute>
<attribute name="ackTime">Mon, 05 Jan 2004 13:33:25 GMT+0430</attribute>
<attribute name="alarmRaisedTime">Mon, 05 Jan 2004 13:30:12 GMT+0430</

attribute>
<attribute name="managedObjectInstance"

javaClass="java.lang.String">Router1</attribute>
<attribute name="alarmType"></attribute>
<attribute name="perceivedSeverity">Raw.Warning</attribute>
<attribute name="probableCause">0</attribute>
</addObject>
<addObject id="alarm 2">
<class>ilog.tgo.model.IltAlarm</class>
<attribute name="notificationId">alarm 2</attribute>
<attribute name="alarmAckState">false</attribute>
<attribute name="alarmRaisedTime">Mon, 05 Jan 2004 13:54:52 GMT+0430</

attribute>
<attribute name="managedObjectInstance"

javaClass="java.lang.String">Gateway1</attribute>
<attribute name="perceivedSeverity">Impact.MajorHigh</attribute>
<attribute name="probableCause">303</attribute>
</addObject>
</cplData>

The following figure shows the two alarms displayed in a table component:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 267

Alarms Displayed in a Table Component

The attribute managedObjectInstance may be of any Java™ class. To benefit from the
automatic consolidation of alarm states from individual alarms, use the same value as the
object identifier of the corresponding managed object. See Setting the alarm counters.

To set a value in XML, specify the Java class of the value. For well-known classes, use:

<attribute name="comments" javaClass="java.lang.String">comment</attribute>.

For other specific classes, the XML format will be the same but the classes must conform
to the JViews TGO type converter constraints.

For details about the well-known classes and the type converter, refer to Type converter in
the Context and Deployment Descriptor documentation.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S268

Creating an alarm with the API

All you have to do is create a new alarm using the class IltAlarm and add it to a data source,
as follows:

How to create an alarm through the API

IltAlarm alarm = new IltAlarm("alarm 1");
alarm.setAttributeValue(IltAlarm.PerceivedSeverityAttribute,IltAlarm.Severity.
W
arning);
alarm.setAttributeValue(IltAlarm.AlarmAckStateAttribute,Boolean.FALSE);
alarm.setAttributeValue(IltAlarm.ProbableCauseAttribute,

IltAlarm.ProbableCause.ExcessiveBitErrorRate);
alarm.setAttributeValue(IltAlarm.ManagedObjectInstanceAttribute, new
String("Router1"));
alarm.setAttributeValue(IltAlarm.AlarmRaisedTimeAttribute, new Date());

IltDataSource dataSource = new IltDefaultDataSource();
dataSource.addObject(alarm);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 269

Representation of alarms in a network

Objects of the IltAlarm class have no representation in a network. Alarms are instead
represented aggregated in alarm states. See Alarm states for more details.

By default, business objects of the class IltAlarm are filtered out by the network and
equipment adapters. This behavior is controlled by the property excludedClasses

Note:

of classes ilog.cpl.network.IlpNetworkAdapter and ilog.cpl.quipment.
IlpEquipmentAdapter.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S270

Representation of alarms in a table and in a tree

In the table component, each alarm object is represented as a row, with columns
corresponding to attributes of the alarm object. The graphicalRepresentation attribute
displays raw alarms with a tiny round rectangle alarm balloon, and impact alarms with a
tiny alarm cloud. See the following figure.

Objects of the class IltAlarm are represented in a table as follows:

In the tree component, each alarm object is represented as a node. The graphical
representation is the same as in the table component. See the following figure.

Objects of the class IltAlarm are represented in a tree as follows:

Customizing the representation of alarms
For information on how to customize the graphic representation of alarms, see Customizing
alarms.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 271

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S272

Lookup tables for state visuals

Provides tables showing the default graphical representations of the dictionaries of states
available in IBM® ILOG® JViews TGO.

In this section

The OSI state dictionary visuals
Describes the eight primary states of a telecom object and the five groups of secondary
states in the OSI state dictionary.

The Bellcore state dictionary visuals
Describes the three primary states and various secondary states of the Bellcore state
dictionary.

The SNMP state dictionary visuals
Describes the five primary states and 40 secondary states of the SNMP state dictionary.

The Misc state dictionary visuals
Describes the secondary states of the Misc state dictionary, which are used to complement
those of the other state dictionaries.

The Performance state dictionary visuals
Describes the secondary states of the Performance state dictionary.

The SAN state dictionary visuals
Describes the secondary states of the SAN state dictionary.

The SONET state dictionary visuals
Describes the six primary states and six secondary states of the SONET state dictionary.

© Copyright IBM Corp. 1987, 2009 273

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S274

The OSI state dictionary visuals

Describes the eight primary states of a telecom object and the five groups of secondary
states in the OSI state dictionary.

In this section

Graphical representation of the OSI primary states
Illustrates the graphical representation of the eight legal OSI primary states.

Graphical representation of OSI secondary states
Provides the graphical representations of OSI secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 275

Graphical representation of the OSI primary states

These states are represented graphically in three different ways:

♦ The appearance of the object base changes (hatched around the perimeter, flat base, or
base in relief).

♦ An icon appears in the top left corner of the object base.

♦ Both changes occur.

The table illustrates these changes on a node element. The same graphical representations
are used for links, groups, and cards. Note that the primary state of empty slots is not
represented graphically.

Graphical representation of the eight valid OSI primary states
CommentIcon Properties (IltSettings)VisualPrimary

State
OSI State Value

The resource is not
available or depends

OSSOperational:
Disabled

Usage: Idle
upon another source
that is not available.

Administrative:
Unlocked

The resource is not
available and is

OSI.State.Administrative.Locked.IconOSSOperational:
Disabled

Usage: Idle
administratively
prohibited from
performing user
services.

Administrative:
Locked

The resource is
available for use and

NTOperational:
Enabled

Usage: Idle
has the capacity to
accept services from
another source.Administrative:

Unlocked

The resource is
available but is

OSI.State.Administrative.Locked.IconNTOperational:
Enabled

Usage: Idle
administratively
prohibited from
performing user
services.

Administrative:
Locked

The resource is
available for use and

CTOperational:
Enabled

Usage: Active
has the capacity to

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S276

CommentIcon Properties (IltSettings)VisualPrimary
State

OSI State Value

accept services from
another source.

Administrative:
Unlocked

The resource is
administratively

OSI.State.Administrative.Locked.IconCTOperational:
Enabled

Usage: Active
permitted to existing
users only; it is
shedding traffic.Administrative:

Shutting down

The resource is in use
with no spare
capacity.

OSI.State.Usage.Busy.IconCTOperational:
Enabled

Usage: Busy

Administrative:
Unlocked

The resource is in use
with no spare

OSI.State.Usage.Busy.Icon

OSI.State.Administrative.Locked.Icon

CTOperational:
Enabled

Usage: Busy
capacity; it is
shedding traffic.

Administrative:
Shutting down

The resource is in an
indeterminate state

Other
combinations

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 277

Graphical representation of OSI secondary states

Secondary states are almost always represented graphically by adding an icon to the top
left corner of the object base element. The only exception is for the “Not Installed” Availability
state, which is denoted by a change in the base element visual (as shown in table Other OSI
secondary state representations).

How to read the When Applicable column
The meaningful representation of the OSI secondary states depends on the eight valid OSI
primary states. These primary states are grouped in three categories:Out Of Service (OOS),
In Service and Carrying Traffic (CT), and In Service and Carrying No Traffic (NT).

♦ Out Of Service (OOS):

● Operational: Disabled, Usage: Idle, Administrative: Unlocked

● Operational: Disabled, Usage: Idle, Administrative: Locked

♦ In Service, Carrying No Traffic (NT):

● Operational: Enabled, Usage: Idle, Administrative: Unlocked

● Operational: Enabled, Usage: Idle, Administrative: Locked

♦ In Service, Carrying Traffic (CT):

● Operational: Enabled, Usage: Active, Administrative: Unlocked

● Operational: Enabled, Usage: Active, Administrative: Shutting down

● Operational: Enabled, Usage: Busy, Administrative: Unlocked

● Operational: Enabled, Usage: Busy, Administrative: Shutting down

Secondary state names
In Icon-based representations of OSI secondary states , the symbolic name Secondary State
Definition that appears after each Secondary State Name corresponds to the static secondary
state definition. For example, the In Test secondary state is defined by InTest, which
corresponds to the static definition InTest.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must include the secondary state group, the secondary state definition, and the primary
state. For example:

♦ OSI.Repair.UnderRepair.OOS.Icon

where:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S278

● Repair is one of the five OSI secondary state groups

● UnderRepair is the secondary state definition of the “Under Repair” secondary state
(the only secondary state in the Repair group)

● OOS is the corresponding OSI primary state group (Out Of Service)

For more information on how to use global settings to modify the OSI secondary state icons,
see Customizing the OSI state system.

Icon-based representations of OSI secondary states
CommentWhen

Applicable: OOS, NT,
CT

Secondary State Name

Secondary State
Definition

Procedural Secondary State

Resource requires initialization before it
can be made available.

Initialization Required

InitializationRequired

Resource is being initialized.Initializing

Initializing

Resource is initialized and test results are
being returned.

Reporting

Reporting

Resource is terminating.Terminating

Terminating

Availability Secondary State

Service is degraded.This could adversely
affect the usage state.

Degraded

Degraded

The resource cannot operate because
some other resource of which it depends

Dependency

Dependency (i.e. a resource not represented by the
same managed object) is unavailable. For
example, a device is not accessible
because its controller is powered off. The
operational state is Disabled.

Resource is subject to a fault that prevents
it from being used. In most cases, this

Failed

Failed secondary state is coupled with an alarm,

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 279

CommentWhen

Applicable: OOS, NT,
CT

Secondary State Name

Secondary State
Definition

an outstanding alarm, or a loss of
connectivity.

Resource is undergoing test.In Test

InTest

Log is full. Log service has been made
unavailable.

Log Full

LogFull

Resource is not installed.See Table
A.3

Not Installed

NotInstalled

Service has been made unavailable
because of an ongoing time schedule.

Off Duty

OffDuty

The resource requires a routine operation
to be performed to place it online and

Off Line

OffLine make it available for use. The operation
may be manual or automatic, or both. The
operational state is Disabled.

Resource requires power, but is not
powered. Most often, this resource is

Power Off

PowerOff coupled with an alarm, an outstanding
alarm, or a loss of connectivity.

Control Secondary State

This value indicates whether a manager
has administratively restricted a particular

Part of Services Locked

PartOfServicesLocked part of a service from the user(s) of a
resource. The administrative state is
Unlocked. Examples are: incoming service
barred, outgoing service barred, write
locked by media, read locked.

Resource is reserved for test.Reserved for Test

ReservedForTest

Resource is currently under test.Subject to Test

SubjectToTest

The service has been administratively
suspended to users of the resource. The

Suspended

Suspended resource may retain knowledge of the
current users and/or request for usage,
depending on the managed object class
definition, but it does not resume
performing services until the suspended

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S280

CommentWhen

Applicable: OOS, NT,
CT

Secondary State Name

Secondary State
Definition

condition is revoked. The administrative
state is Unlocked.

Standby Secondary State

The backup resource is not providing
service and cannot immediately take over
the role of the primary resource.

Cold Standby

ColdStandby

The backup resource is not providing
service, but can immediately take over the
role of the primary resource.

Hot Standby

HotStandby

The backup resource has been put into
service. (It currently takes over the role of
a primary resource.)

Providing Service

ProvidingService

The backup resource is not providing
service, but can immediately or within a

Warm Standby

WarmStandby short delay take over the role of the
primary resource. (Data is mirrored to the
backup resource at regular intervals.)

Repair Secondary State

Includes Under repair only. Outstanding alarm secondary states are considered as alarm representation
cases and are represented as such.

Resource is currently under repair.Under Repair

UnderRepair

Other OSI secondary state representations
CommentVisual

(OOS only)

Secondary State Name

Secondary State Definition

Availability Secondary State

Resource is not installed, is installed
improperly, or is incompletely installed.

Not Installed

NotInstalled

All other OSI primary state combinations indicate that the object is in an indeterminate
state. In this case, the OSI secondary states are not applicable to the object.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 281

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S282

The Bellcore state dictionary visuals

Describes the three primary states and various secondary states of the Bellcore state
dictionary.

In this section

Graphical representation of the Bellcore primary states
Illustrates the graphical representation of the three Bellcore primary states.

Graphical representation of the Bellcore secondary states
Provides the graphical representations of Bellcore secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 283

Graphical representation of the Bellcore primary states

These graphical representations are based on the base element states introduced in
Introducing business objects and data sources. The same graphical representations are used
for links, groups, and cards. Note that the primary state of empty slots is not represented
graphically.

These states are represented graphically by a change in the appearance of the object base
(hatched around the perimeter, flat base, or base in relief).

Graphical representation of Bellcore primary states
VisualBellcore State Value

Disabled/Idle

Enabled/Idle

Enabled/Active

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S284

Graphical representation of the Bellcore secondary states

Secondary states are almost always represented graphically by adding an icon to the top
left corner of the object base element.

The only exceptions concern the “Unassigned,” “Unequipped,” and “Pre-Post Service”
secondary states for which the OOS representations are denoted by a main change in the
base element visual (as shown in table Other representations of Bellcore secondary states).

How to read the When Applicable column
The meaningful representation of the secondary states depends on the current Bellcore
primary state set to the telecom object. The Bellcore primary states are the following:

♦ OOS—Disabled/Idle

♦ NT—Enabled/Idle

♦ CT—Enabled/Active

The “When Applicable” column in table Icon-based representations of Bellcore secondary
states lists the graphic representation of the Bellcore secondary states for a given primary
state. A blank entry indicates that the secondary state has no meaning in that particular
primary state.

Secondary state names
In Icon-based representations of Bellcore secondary states , the symbolic name “Secondary
State Definition” that appears after each “Secondary State Name” corresponds to the
static secondary state definition. For example, the “Inhibit In Progress” secondary state is
defined by InhibitInProgress, which corresponds to the static definition
InhibitInProgress.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must include the secondary state definition and the primary state. For example:

♦ Bellcore.SecState.IdleTransmit.NT.Icon

where:

● IdleTransmit is the secondary state definition of the “Idle Transmit” secondary state

● NT is the corresponding Bellcore primary state (Enabled/Idle)

For more information on how to use global settings to modify the Bellcore secondary state
icons, see Customizing the Bellcore state system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 285

Icon-based representations of Bellcore secondary states
CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

No outgoing traffic is allowed
on the entity. The restriction is

Blocked

Blocked imposed by the far-end
network element.

The entity is currently in use
and has no spare operating

Busy

Busy capacity for further usage
demand.

The entity is about to back up
another entity and is

Cold Standby

ColdStandby synchronized with the
backed-up entity. It requires
initialization before it can take
over.

This load-sharing entity has
assumed the load of its mate
entity in addition to its own.

Combined

Combined

Diagnostic activity that affects
the service is currently being
performed on the entity.

Diagnostic

Diagnostic

Subscribed service has been
disconnected, but still exists

Disconnected

Disconnected in the database with a specific
intercept treatment.

Service-affecting exercise is
currently being performed on
the entity.

Exercise

Exercise

The associated transport
facility is OOS.

Facility Failure

FacilityFailure

The processor at an
associated far-end network
element is OOS.

Far End Processor Outage

FarEndProcessorOutage

The entity is OOS because it
is faulty.

Fault

Fault

The entity has been manually
forced into the In Service state

Forced

Forced from an Out Of Service state

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S286

CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

that occurred under the
normal procedure.

The entity is to back up
another entity and is

Hot Standby

HotStandby synchronized with the
backed-up entity. It does not
require initialization before it
can take over.

The entity is available to
provide service, but is not
currently used.

Idle

Idle

Applicable to bidirectional
termination points only. The

Idle Receive

IdleReceive receiving direction is not
cross-connected.

Applicable to bidirectional
termination points only. The

Idle Transmit

IdleTransmit transmission direction is not
cross-connected.

The entity is waiting for users
to terminate before
transitioning to OOS.

Inhibit In Progress

InhibitInProgress

No outgoing traffic is allowed
on the entity. This restriction

Locked Out

LockedOut may be imposed for
maintenance reasons.

A loopback activity is being
performed on the entity.

Loopback Test

LoopbackTest

The entity has been manually
removed from service for
maintenance activity.

Maintenance

Maintenance

Normal trouble detection
function is not provided for the

Maintenance Limited

MaintenanceLimited entity because of defects
developed in the entity or in
an associated entity.

The entity is installed with
improper equipment or circuit

Mismatch Of Equipment

MismatchOfEquipment

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 287

CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

pack, or the correct equipment
has improper attributes.

The entity has reached a
monitored performance level
considered as abnormal.

Monitor

Monitor

The entity has no more
storage capacity for capturing

Overflow

Overflow additional information. In this
state, the entity is read-only.

The performance monitoring
function of the entity has been
temporarily suspended.

Performance Monitor Inhibited

PerformanceMonitorInhibited

The entity is abnormal or OOS
because there is a defect in
the power supply.

Power

Power

The entity has been manually
removed from service for the

See Other
representations

Pre-Post Service

PrePostService pre/post-service administration
activity.

of Bellcore
secondary
states

The entity is inhibited from
protection release.

Protection Release Inhibited

ProtectionReleaseInhibited

A protection switching
exercise is currently running
on the entity.

Protection Switch Exercise

ProtectionSwitchExercise

The regular protected entity is
inhibited from switching to
protection.

Protection Switch Inhibited

ProtectionSwitchInhibited

The entity is OOS due to a
Layer-2 or higher protocol
violation.

Protocol

Protocol

The redundant (backup,
protecting) entity is currently

Providing Service

ProvidingService providing service. This value
is mutually exclusive of
cold-standby, warm-standby,
and hot-standby. It is
equivalent to the Working
secondary state.

The entity has been removed
from service because of

Rearrangement

Rearrangement

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S288

CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

physical and/or logical
rearrangement activity.

The entity is a special
(red-lined) circuit.

Red Lined

RedLined

Software download activity is
currently being performed on
the entity.

Software Downloading

SoftwareDownloading

Software transfer is inhibited
on the entity.

Software Transfer Inhibited

SoftwareTransferInhibited

Only software transfer is
allowed on the entity.

Software Transfer Only

SoftwareTransferOnly

Software upload activity is
currently being performed on
the entity.

Software Uploading

SoftwareUploading

The standby entity is inhibited
from taking over the role of the
backed-up entity.

Standby Inhibited

StandbyInhibited

Indicates the state of a
protection system, for

Standby Switched

StandbySwitched example, switched on to
provide service.

The associated support
entities are absent.

Supported Entity Absent

SupportedEntityAbsent

The entity is currently
supporting other entities.

Supported Entity Exists

SupportedEntityExists

The associated supporting
entities are absent.

Supporting Entity Absent

SupportingEntityAbsent

There is an outage on the
supporting entity.

Supporting Entity Outage

SupportingEntityOutage

The associated supporting
entity has swapped to a spare
(backup) entity.

Supporting Entity Swapped

SupportingEntitySwapped

Any attempt to establish
connection to or from the

Suspend Both

SuspendBoth entity is administratively

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 289

CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

inhibited for non-maintenance
reasons.

Any attempt to establish a
connection with the entity is

Suspend Origination

SuspendOrigination administratively prohibited for
non-maintenance reasons.
The consequences are the
same as disabled, which is
used for maintenance.

Any attempt to establish a
connection with the entity is

Suspend Termination

SuspendTermination administratively prohibited for
non-maintenance reasons.
The consequences are the
same as disabled, which is
used for maintenance.

The entity is removed from
service due to switching
system activities.

Switched System Activity

SwitchedSystemActivity

When applied to a termination
point, the receiving signal is

Terminated-Both

Terminated-Both terminated and an insertion
word is transmitted instead of
the normal signal.

When applied to a termination
point, the receiving signal is
terminated.

Terminated-From

Terminated-From

When applied to a termination
point, an insertion word is

Terminated-To

Terminated-To transmitted instead of the
normal signal.

Test activity, other than
loopback, diagnostic, and

Test

Test exercise, is currently being
performed on the entity.

The object is OOS due to a
test failure.

Test Failure

TestFailure

The load sharing entity has
transferred its normal load
responsibility to its mate entity.

Transferred

Transferred

The entity is to back up
another entity and gets

Warm Standby

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S290

CommentWhen

Applicable: OOS, NT, CT

Secondary State Name

Secondary State
Definition

WarmStandby synchronized with the backed
up entity at regular intervals.
It does not require initialization
before it can take over.

The redundant (backup,
protecting) entity is currently

Working

Working providing service. This value
is mutually exclusive of
cold-standby, warm-standby,
and hot-standby.

Other representations of Bellcore secondary states
CommentVisual (OOS only)Secondary State Name

Secondary State
Definition

The entity has been manually removed from
service for the pre/post-service administration
activity.

Pre-Post Service

PrePostService

The entity has not been assigned the required
provisioning data. No service or maintenance is

Unassigned

Unassigned permitted in this state since the necessary data
has not been assigned.

The equipment entity has not been equipped with
the necessary hardware or the software entity has
not been loaded with the necessary data or code.

Unequipped

Unequipped

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 291

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S292

The SNMP state dictionary visuals

Describes the five primary states and 40 secondary states of the SNMP state dictionary.

In this section

Graphical representation of SNMP primary states
Illustrates the graphical representation of the SNMP primary states.

Graphical representation of SNMP secondary states
Illustrates the graphical representation of the SNMP secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 293

Graphical representation of SNMP primary states

Graphical representation of SNMP primary states
CommentIcon Properties

(IltSettings)
VisualSNMP State

Value

The resource is operable and
available.

Up

The resource is not available.Down

The resource is undergoing a test.SNMP.State.Testing.IconTesting

The resource is not available and is
administratively prohibited from
performing user services.

SNMP.State.Shutdown.IconShutdown

The resource is subject to a fault that
prevents it from being used.

SNMP.State.Failed.IconFailed

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S294

Graphical representation of SNMP secondary states

Secondary state names
In table Graphical representation of SNMP secondary states, the symbolic name “Secondary
State Definition” that appears after each “Secondary State Name” corresponds to the
static secondary state definition. For example, the “In Octets” secondary state is defined by
InOctets, which corresponds to the static definition InOctets.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
()must include the secondary state group, the secondary state definition, and the decoration
type. For example:

♦ SNMP.Interface.InOctets.Gauge

♦ SNMP.UDP.InDatagrams.Chart

where:

● Interface and UDP are two of the seven possible secondary state groups

● InOctets and InDatagrams are the secondary state definitions of the “In Octets” and
“In Datagrams” secondary states

● Gauge and Chart are the decoration types defined by the IltDecorationType class

For more information on how to use global settings to modify the SNMP secondary state
icons, see Customizing the SNMP state system.

Graphical representation of SNMP secondary states
CommentGraphic Frame FilesGraphicSecondary State

Name

Secondary State
Definition

Interface Group

Total number of
octets received in

ilt_in_octets1

ilt_in_octets2

In Octets

InOctets the interface,
including framing
characters.

ilt_chart_in_octets1

ilt_chart_in_octets2

The number of
subnetwork unicast

ilt_in_ucastpkts1

ilt_in_ucastpkts2

In Subnetwork Unicast
Packets

InUcastPkts
packets delivered to

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 295

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

a higher-layer
protocol.

ilt_chart_in_

ilt_chart_in_ucastpkts2

The number of
non-unicast packets

ilt_in_nucastpkts1

ilt_in_nucastpkts2

In Non-Unicast Packets

InNUcastPkts delivered to a
higher-layer
protocol.

ilt_chart_in_nucastpkts1

ilt_chart_in_nucastpkts2

The number of
inbound packets

ilt_in_discards1

ilt_in_discards2

In Discards

InDiscards that were chosen to
be discarded, evenilt_chart_in_discards1
though no errors
had been detected,ilt_chart_in_discards2
to prevent their
being deliverable to
a higher-layer
protocol.

The number of
inbound packets

ilt_in_errors1

ilt_in_errors2

In Errors

InErrors that contained
errors, preventingilt_chart_in_errors1
them from being
deliverable to ailt_chart_in_errors2
higher-layer
protocol.

The number of
packets received

ilt_in_unknown_protos1

ilt_in_unknown_protos2

In Unknown Protocol

InUnknownProtos through the
interface that were
discarded because

ilt_chart_in_unknown_protos1

of an unknown orilt_chart_in_unknown_protos2
unsupported
protocol.

Total number of
octets transmitted

ilt_out_octets1

ilt_out_octets2

Out Octets

OutOctets from the interface,
including framing
characters.

ilt_chart_out_octets1

ilt_chart_out_octets2

The total number of
packets that

ilt_out_ucastpkts1

ilt_out_ucastpkts2

Out Unicast Packets

OutUcastPkts higher-level

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S296

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

protocols requested
be transmitted to a

ilt_chart_out_ucastpkts1

ilt_chart_out_ucastpkts2 subnetwork-unicast
address, including
those that were
discarded or not
sent.

The total number of
packets that

ilt_out_nucastpkts1

ilt_out_nucastpkts2

Out Non-Unicast Packets

OutNUcastPkts higher-level
protocols requestedilt_chart_out_nucastpkts1
be transmitted to a
non-unicastilt_chart_out_nucastpkts2
address, including
those that were
discarded or not
sent.

The number of
outbound packets

ilt_out_discards1

ilt_out_discards2

Out Discards

OutDiscards that were chosen to
be discarded evenilt_chart_out_discards1
though no errors
had been detectedilt_chart_out_discards2
to prevent them
being transmitted.

The number of
outbound packets

ilt_out_errors1

ilt_out_errors2

Out Errors

OutErrors that could not be
transmitted because
of errors.

ilt_chart_out_errors1

ilt_chart_out_errors2

IP Group

The total number of
input datagrams

ilt_ip_inreceives1

ilt_ip_inreceives2

In Receives

InReceives received from
interfaces, includingilt_chart_ip_inreceives1
those received in
error.ilt_chart_ip_inreceives2

The number of input
datagrams

ilt_ip_inhdrerrors1

ilt_ip_inhdrerrors2

In Header Errors

InHdrErrors discarded due to

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 297

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

errors in their IP
headers.

ilt_chart_ip_inhdrerrors1

ilt_chart_ip_inhdrerrors2

The number of input
datagrams

ilt_ip_inaddrerrors1

ilt_ip_inaddrerrors2

In Address Errors

InAddrError discarded because
the IP address inilt_chart_ip_inaddrerrors1
their IP header
destination field wasilt_chart_ip_inaddrerrors2
not a valid address
to be received at
this entity.

The number of input
datagrams for which

ilt_ip_forwdatagrams1

ilt_ip_forwdatagrams2

Forwarded Datagrams

ForwDatagrams this entity was not
their final IPilt_chart_ip_forwdatagrams1
destination,.As a
result, an attemptilt_chart_ip_forwdatagrams2
was made to find a
route to forward
them to that final
destination.

The number of
locally addressed

ilt_ip_unknownprotos1

ilt_ip_unknownprotos2

In Unknown Protocols

InUnknownProtos datagrams received
successfully, butilt_chart_ip_unknownprotos1
discarded because
of an unknown orilt_chart_ip_unknownprotos2
unsupported
protocol.

The number of input
IP datagrams for

ilt_ip_indiscards1

ilt_ip_indiscards2

In Discards

InDiscards which no problems
were encounteredilt_chart_ip_indiscards1
to prevent them
being processed,ilt_chart_ip_indiscards2
but which were
discarded.

The total number of
input datagrams

ilt_ip_indelivers1

ilt_ip_indelivers2

In Delivers

InDelivers successfully
delivered to IP userilt_chart_ip_indelivers1

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S298

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

protocols (including
ICMP).

ilt_chart_ip_indelivers2

The total number of
IP datagrams that

ilt_ip_outrequests1

ilt_ip_outrequests2

Out Requests

OutRequests local IP user
protocols (including
ICMP) supplied to

ilt_chart_ip_outrequests1

ilt_chart_ip_outrequests2 IP in requests for
transmission.

The number of
output IP datagrams

ilt_ip_outdiscards1

ilt_ip_outdiscards2

Out Discards

OutDiscards for which no
problem was
encountered to

ilt_chart_ip_outdiscards1

ilt_chart_ip_outdiscards2 prevent their
transmission to their
destination, but
which were
discarded.

The number of IP
datagrams

ilt_ip_noroutes1

ilt_ip_noroutes2

Out No Routes

OutNoRoutes discarded because
no route could be
found to transmit

ilt_chart_ip_noroutes1

ilt_chart_ip_noroutes2 them to their
destination.

The indication of
whether this entity

SNMP.IP.Forwarding.Icon

(IltSettings)

Forwarding

Forwarding is acting as an IP
gateway for
forwarding
datagrams received
by this entity, but
not addressed to it.

ICMP Group

The total number of
ICMP messages

ilt_icmp_inmsgs1

ilt_icmp_inmsgs2

In Messages

InMsgs that the entity
received.ilt_chart_icmp_inmsgs1

ilt_chart_icmp_inmsgs2

The number of
ICMP messages

ilt_icmp_inerrors1

ilt_icmp_inerrors2

In Errors

InErrors

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 299

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

ilt_chart_icmp_inerrors1 that the entity
received, but
determined asilt_chart_icmp_inerrors2

having
ICMP-specific
errors.

The total number of
ICMP messages

ilt_icmp_outmsgs1

ilt_icmp_outmsgs2

Out Messages

OutMsgs that this entity
attempted to send.ilt_chart_icmp_outmsgs1

ilt_chart_icmp_outmsgs2

The number of
ICMP messages

ilt_icmp_outerrors1

ilt_icmp_outerrors2

Out Errors

OutErrors that this entity did
not send due to
problems, such as

ilt_chart_icmp_outerrors1

ilt_chart_icmp_outerrors2 a lack of buffers,
discovered within
ICMP.

TCP Group

The number of TCP
connections

ilt_tcp_current1

ilt_tcp_current2

Current Established

CurrentEstablished currently
established.ilt_chart_tcp_current1

ilt_chart_tcp_current2

The total number of
segments received,

ilt_tcp_insegs1

ilt_tcp_insegs2

In Segments

InSegs including those
received in error.ilt_chart_tcp_insegs1

ilt_chart_tcp_insegs2

The total number of
segments sent,

ilt_tcp_outsegs1

ilt_tcp_outsegs2

Out Segments

OutSegs including those on
current connections,
but excluding those

ilt_chart_tcp_outsegs1

ilt_chart_tcp_outsegs2 containing only
retransmitted
octets.

The total number of
segments received

ilt_tcp_inerrors1

ilt_tcp_inerrors2

In Errors

InErrors

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S300

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

ilt_chart_tcp_inerrors1 in error (for
example, bad TCP
checksums).ilt_chart_tcp_inerrors2

The total number of
segments

ilt_tcp_retransmitted1

ilt_tcp_retransmitted2

Retransmitted Segments

RetranSegs retransmitted; that
is, the number of
TCP segments

ilt_chart_tcp_retransmitted1

ilt_chart_tcp_retransmitted2 transmitted
containing one or
more previously
transmitted octets.

UDP Group

The total number of
UDP delivered
datagrams.

ilt_udp_indatagrams1

ilt_udp_indatagrams2

In Datagrams

InDatagrams

ilt_chart_udp_indatagrams1

ilt_chart_udp_indatagrams2

The number of
received UDP

ilt_udp_inerrors1

ilt_udp_inerrors2

In Errors

InErrors datagrams that
could not be
delivered for

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 301

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

ilt_chart_udp_inerrors1 reasons other than
the lack of an
application at the
destination port.

ilt_chart_udp_inerrors2

The total number of
UDP datagrams
sent from this entity.

ilt_udp_outdatagrams1

ilt_udp_outdatagrams2

Out Datagrams

OutDatagrams

ilt_chart_udp_outdatagrams1

ilt_chart_udp_outdatagrams2

EGP Group

The number of EGP
messages received
without error.

ilt_egp_inmsgs1

ilt_egp_inmsgs2

In Messages

InMsgs

ilt_chart_egp_inmsgs1

ilt_chart_egp_inmsgs2

The number of EGP
messages received

ilt_egp_inerrors1

ilt_egp_inerrors2

In Errors

InErrors that proved to be in
error.ilt_chart_egp_inerrors1

ilt_chart_egp_inerrors2

The total number of
locally generated
EGP messages.

ilt_egp_outmsgs1

ilt_egp_outmsgs2

Out Messages

OutMsgs

ilt_chart_egp_outmsgs1

ilt_chart_egp_outmsgs2

The number of
locally generated

ilt_egp_outerrors1

ilt_egp_outerrors2

Out Errors

OutErrors EGP messages not
sent due to
resource limitations

ilt_chart_egp_outerrors1

ilt_chart_egp_outerrors2 within an EGP
entity.

SNMP Group

The total number of
messages delivered

ilt_snmp_inpkts1

ilt_snmp_inpkts2

In Packets

InPkts to the SNMP entity

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S302

CommentGraphic Frame FilesGraphicSecondary State
Name

Secondary State
Definition

from the transport
service.

ilt_chart_snmp_inpkts1

ilt_chart_snmp_inpkts2

The total number of
SNMP messages

ilt_snmp_outpkts1

ilt_snmp_outpkts2

Out Packets

OutPkts that were passed
from the SNMP
protocol entity to the
transport service.

ilt_chart_snmp_outpkts1

ilt_chart_snmp_outpkts2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 303

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S304

The Misc state dictionary visuals

Describes the secondary states of the Misc state dictionary, which are used to complement
those of the other state dictionaries.

In this section

Graphical representation of Misc secondary states
Provides the graphical representations of Misc secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 305

Graphical representation of Misc secondary states

Misc secondary states are always represented graphically by adding an icon to the top left
corner of the object base element.

State applicability
Unlike other state systems, table Icon-based representations of Misc secondary states does
not specify the conditions in which the secondary states are applicable when they are
combined with primary states. Use of these secondary states depends on the specific
situations and the network technologies used for building the network. As a consequence,
precise rules governing their usage are defined at the individual application level.

Secondary state names
In table Icon-based representations of Misc secondary states , the symbolic name “Secondary
State Symbol” that appears after each “Secondary State Name” corresponds to the static
secondary state definition. For example, the “Mismatched Card” secondary state is defined
by MismatchedCard, which corresponds to the static definition MismatchedCard.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must only include the secondary state definition. For example:

♦ Misc.SecState.UnknownCard.Icon

where:

● UnknownCard is the secondary state definition of the “Unknown Card” secondary
state

For more information on how to use global settings to modify the Misc secondary state icons,
see Customizing the Miscellaneous state system.

Icon-based representations of Misc secondary states
CommentIconSecondary State Name

Secondary State Definition

Customers expressed concern regarding vandalism.Door Ajar

DoorAjar

In hot weather, large numbers of minor alarms are
generated due to high temperatures. The concern is

High Temperature Warning

HighTemperatureWarning that the craft may miss a potentially important minor
alarm embedded in the high temperature minor alarms.

In cold weather, large numbers of minor alarms are
generated due to low temperatures. The concern is

Low Temperature Warning

LowTemperatureWarning

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S306

CommentIconSecondary State Name

Secondary State Definition

that the craft may miss a potentially important minor
alarm embedded in the low temperature minor alarms.

A mismatched card is reported.Mismatched Card

MismatchedCard

The entity is subject to removal.Plan to Remove

PlanToRemove

Software downloading activity is being performed.Software Download

SoftwareDownload

The software limit has been exceeded.Software Limit Exceeded

SoftwareLimitExceeded

Software uploading activity is being performed.Software Upload

SoftwareUpload

Provides high-level notification of a failed test.Test Failed

TestFailed

Provides high-level notification of a succesful test.Test Passed

TestPassed

Threshold crossing of some entity performance or
operational data is reported.

Threshold Crossing

ThresholdCrossing

The resource is currently under repair.Under Repair

UnderRepair

An unknown card is required or accessed.Unknown Card

UnknownCard

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 307

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S308

The Performance state dictionary visuals

Describes the secondary states of the Performance state dictionary.

In this section

Graphical representation of Performance secondary states
Provides the graphical representations of Performance secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 309

Graphical representation of Performance secondary states

Secondary state names
In table Gauge and chart-based representations of Performance states, the symbolic name
“Secondary State Definition” that appears after each “Secondary State Name”
corresponds to the static state definition. For example, the “Out Gb” secondary state is
defined by Out_Gb, which corresponds to the static definition Out_Gb.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must include the secondary state definition and the decoration type. For example:

♦ Performance.SecState.In_Kb.Gauge

♦ Performance.SecState.Temperature.Chart

where:

● In_Kb and Temperature are the secondary state definitions of the “In Kb” and
“Temperature” performance secondary states

● Gauge and Chart are the decoration types defined by the IltDecorationType class

For more information on how to use global settings to modify the Performance secondary
state icons, see Customizing the Performance State System.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S310

Gauge and chart-based representations of Performance states
CommentGraphic Frame FilesGraphicSecondary

State Name

Secondary
State
Definition

A generic state for modeling any input.Input-gauge1Input

Input Input-gauge2

Input-chart1

Input-chart2

A state for modeling any input of data in
bytes.

In-gauge1

In-gauge2

In

In

In-chart1

In-chart2

A state for modeling any input of data in
kilobytes.

In_Kb-gauge1

In_Kb-gauge2

In Kb

In_Kb

In_Kb-chart1

In_Kb-chart2

A state for modeling any input of data in
megabytes.

In_Mb-gauge1

In_Mb-gauge2

In Mb

In_Mb

In_Mb-chart1

In_Mb-chart2

A state for modeling any input of data in
gigabytes.

In_Gb-gauge1

In_Gb-gauge2

In Gb

In_Gb

In_Gb-chart1

In_Gb-chart2

A generic state for modeling any output.Output-gauge1Output

Output Output-gauge2

Output-chart1

Output-chart2

A state for modeling any output of data in
bytes.

Out-gauge1

Out-gauge2

Out

Out

Out-chart1

Out-chart2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 311

CommentGraphic Frame FilesGraphicSecondary
State Name

Secondary
State
Definition

Out Kb A state for modeling any output of data in
kilobytes.

Out_Kb-gauge1

Out_Kb-gauge2Out_Kb

Out_Kb-chart1

Out_Mb-chart2

A state for modeling any output of data in
megabytes.

Out_Mb-gauge1

Out_Mb-gauge2

Out Mb

Out_Mb

Out_Mb-chart1

Out_Mb-chart2

A state for modeling any output of data in
gigabytes.

Out_Gb-gauge1

Out_Gb-gauge2

Out Gb

Out_Gb

Out_Gb-chart1

Out_Gb-chart2

A state for representing the portion of a
document that has already printed out.

Print-gauge1

Print-gauge2

Print

Print

Print-chart1

Print-chart2

A state for representing any numeric value.Generic-gauge1Generic

Generic Generic-gauge2

Generic-chart1

Generic-chart2

A state for representing the power or
voltage of an item of equipment.

Power-gauge1

Power-gauge2

Power

Power

Power-chart1

Power-chart2

A state for representing the temperature
of an item of equipment.

Temperature-gauge1

Temperature-gauge2

Temperature

Temperature

Temperature-chart1

Temperature-chart2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S312

CommentGraphic Frame FilesGraphicSecondary
State Name

Secondary
State
Definition

Bandwidth A generic state for modeling the bandwidth.Bandwidth-gauge1

Bandwidth Bandwidth-gauge2

Bandwidth-chart1

Bandwidth-chart2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 313

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S314

The SAN state dictionary visuals

Describes the secondary states of the SAN state dictionary.

In this section

Graphical representation of SAN secondary states
Provides the graphical representations of SAN secondary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 315

Graphical representation of SAN secondary states

Secondary state names
In table Gauge and chart based representations of SAN secondary states , the symbolic
name “Secondary State Definition” that appears after each “Secondary State Name”
corresponds to the static state definition. For example, the “Back Recovery” secondary state
is defined by BackRecovery, which corresponds to the static definition BackRecovery.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must include the secondary state definition and the decoration type. For example:

♦ SAN.SecState.LostData.Gauge

♦ SAN.SecState.IO.Chart

where:

● LostData and IO are the secondary state definitions of the “Lost Data” and “I/O” SAN
secondary states

● Gauge and Chart are the decoration types defined by the IltDecorationType class

For more information on how to use global settings to modify the SAN secondary state icons,
see Customizing the SAN state system.

Gauge and chart based representations of SAN secondary states
CommentGraphic Frame FilesGraphicSecondary State Name

Secondary State
Definition

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S316

CommentGraphic Frame FilesGraphicSecondary State Name

Secondary State
Definition

A state to model
allocated storage space.

Allocated-gauge1

Allocated-gauge2

Allocated

Allocated

Allocated-chart1

Allocated-chart2

A state to model
available storage space.

Available-gauge1

Available-gauge2

Available

Available

Available-chart1

Available-chart2

A state to model back
recovery.

BackRecovery-gauge1

BackRecovery-gauge2

Back Recovery

BackRecovery

BackRecovery-chart1

BackRecovery-chart2

A state to model
bandwidth.

Bandwidth-gauge1

In_Mb-gauge2

Bandwidth

BandWidth

Bandwidth-chart1

Bandwidth-chart2

A state to model storage
capacity.

Capacity-gauge1

Capacity-gauge2

Capacity

Capacity

Capacity-chart1

Capacity-chart2

A state to model storage
capacity utilization.

CapacityUtilization-gauge1

CapacityUtilization-gauge2

Capacity Utilization

CapacityUtilization

CapacityUtilization-chart1

CapacityUtilization-chart2

A state to model CPU
power.

CPU-gauge1

CPU-gauge2

CPU Power

CPU

CPU-chart1

CPU-chart2

A state to model data
access delays.

DataAccessDelay-gauge1

DataAccessDelay-gauge2

Data Access Delay

DataAccessDelay

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 317

CommentGraphic Frame FilesGraphicSecondary State Name

Secondary State
Definition

DataAccessDelay-chart1

DataAccessDelay-chart2

A state to model disk
fragmentation.

Fragmentation-gauge1

Fragmentation-gauge2

Fragmentation

Fragmentation

Fragmentation-chart1

Fragmentation-chart2

A state to model I/O.IO-gauge1I/O

IO IO-gauge2

IO-chart1

IO-chart2

A state to model lost
data.

LostData-gauge1

LostData-gauge2

Lost Data

LostData

LostData-chart1

LostData-chart2

A state to model disk
usage.

Usage-gauge1

Usage-gauge2

Usage

Usage

Usage-chart1

Usage-chart2

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S318

The SONET state dictionary visuals

Describes the six primary states and six secondary states of the SONET state dictionary.

In this section

Graphical representation of SONET primary states
Illustrates the graphical representation of the SONET primary states.

Graphical representation of SONET secondary states
Illustrates the graphical representation of the SONET secondary states, or protection switch
request indicators.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 319

Graphical representation of SONET primary states

Common pairs of SONET primary states describes the graphical representations of the
common double SONET states.

SONET primary states are rendered graphically by changes in the base colors, line styles,
and relief.

State names
In these tables, the symbolic name “Link State Symbol” that appears after each primary
state name corresponds to the last part of the variable name holding the state. For example,
the “ActiveProtecting” state, which has ActiveProtecting for symbol, has the variable
ActiveProtecting associated with it in the library.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S320

Graphical representation of SONET primary states
Link BaseLink State

Link State Symbol

Disabled

Disabled

Inactive

Inactive

Active

Active

Active and protecting

ActiveProtecting

Troubled and protected

TroubledProtected

Troubled and unprotected

TroubledUnprotected

Common pairs of SONET primary states
Link BaseLink State

Link State Symbols

Disabled in both directions

Disabled

Disabled

Disabled in one direction, active in the other direction

Disabled

Active

Inactive in both directions

Inactive

Inactive

Inactive in one direction, active in the other direction

Inactive

Active

Active in both directions

Active

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 321

Link BaseLink State

Link State Symbols

Active

Troubled and protected in one direction, active in the other direction

TroubledProtected

Active

Active and protecting in both directions

ActiveProtecting

ActiveProtecting

Active and protecting in one direction, inactive in the other direction

ActiveProtecting

Inactive

Troubled and protected in both directions

TroubledProtected

TroubledProtected

Troubled and protected in one direction, inactive in the other direction

TroubledProtected

Inactive

Troubled and protected in one direction, troubled and unprotected in the other
direction

TroubledProtected

TroubledUnprotected

Troubled and unprotected in both directions

TroubledUnprotected

TroubledUnprotected

Troubled and unprotected in one direction, active in the other direction

TroubledUnprotected

Active

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S322

Graphical representation of SONET secondary states

The protection switch indicators are always represented by icons that appear near the end
of the link on which they are set.

Secondary state names
In Icon-based representations of SONET secondary states, the symbolic name “Secondary
State Definition” that appears after each “Secondary State Name” corresponds to the
static secondary state definition. For example, the “Manual Switch” secondary state is
defined by ManualSwitch, which corresponds to the static definition ManualSwitch.

Secondary state icons
It is possible to change the icon associated with a secondary state by using global settings,
see Using global settings. The icon property name to be used with IltSettings.SetValue
() must only include the secondary state definition. For example:

♦ SONET.Protection.ManualSwitch.Icon

where:

● ManualSwitch is the secondary state definition of the “Manual Switch” state

For more information on how to use global settings to modify the SONET secondary state
icons, see Customizing the SONET state system.

Icon-based representations of SONET secondary states
CommentIconSecondary State Name

Secondary State Definition

Facility is currently undergoing test.Exercisor

Exercisor

Forced protection switch request has been triggered.Forced switch

ForcedSwitch

No traffic is allowed on the facility.This restriction may
be imposed for maintenance reasons.

Locked

Locked

Manual protection switch request has been triggered.Manual switch

ManualSwitch

Pending protection switch request.Pending

Pending

Waiting for the facility service to be restored.Wait-to-restore

WaitToRestore

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 323

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S324

States

Introduces the visual dictionaries that are used for displaying state changes in predefined
telecom business objects. Also introduces the object state classes and explains how to set
states to predefined business objects.

In this section

Graphical representations of predefined business object states
Presents the visual cues used to represent states or alarms on predefined business objects.

State dictionaries: an overview
Introduces each state dictionary as well as the concepts of primary and secondary states.

The OSI state dictionary
Describes the states and statuses that are defined in the OSI state dictionary.

The Bellcore state dictionary
Describes the states that are defined in the Bellcore state dictionary.

The SNMP state dictionary
Describes the states that are defined in the SNMP state dictionary.

Miscellaneous states: the Misc state dictionary
Provides information and pointers to the Misc secondary state dictionary.

Performance states: the Performance state dictionary
Provides information and pointers to the Performance secondary state dictionary.

SAN states: the SAN state dictionary
Provides information and pointers to the SAN secondary state dictionary.

© Copyright IBM Corp. 1987, 2009 325

Link states: the SONET state dictionary
Describes the SONET primary and secondary states associated with links.

Alarm states
Describes the characteristics of graphical representations of telecom object alarm conditions.
Also explains how to define an alarm state with the API and in XML.

Trap states
Describes the different trap types with their graphical representation and explains how to
define trap states with the API and in XML.

Managing states
Explains how to change and withdraw the states associated with JViews TGO objects, by
showing how to use the state dictionaries.

Defining states in XML
Explains how to define object states in the XML format and load them in a data source.

Information window
Shows how secondary states are represented in a telecom object depending on their number.

System window
Shows how the presence of system attributes is represented in a telecom object.

Customizing the representation of states and alarms
Provides a pointer to the section of the documentation which explains how to customize the
representation of states and alarms.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S326

Graphical representations of predefined business object states

IBM® ILOG® JViews TGO provides a comprehensive, user-friendly interface designed to
illustrate changes in network telecom equipment states.

Within this framework, JViews TGO includes a wide range of visual techniques to identify
changes in equipment states and alarms. These visual cues are a combination of:

♦ Several base representations for network elements, links, and cards.

The following illustration shows a network element in three of the fundamental states,
namely Out Of Service (OOS), In service but carrying No Traffic (NT), and In service and
Carrying Traffic (CT).

Network management workstation in different states

♦ Variable visual parameters for links and regions (thickness, line style, color, pattern).

Links showing disabled, inactive, and active states

♦ Sets of decorations (icons, labels, balloons, gauges).

Network elements and links with icons

In addition, a number of graphical properties have been developed to notify the
telecommunication network operator that alarms are present. When a new alarm is detected
on an element, four visual cues are added to its graphical representation:

♦ An alarm counter is displayed in the network element base

♦ An alarm balloon appears above the network element displaying another alarm count.

♦ The object base turns a vibrant color (red, orange, or yellow) depending on the alarm
severity.

♦ A colored outline is associated with the object base.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 327

A network element in three different alarm states

Passive devices
Predefined business objects that do not have a specific object state are considered as passive
devices. These devices do not report information about their current states and alarms.
Passive devices are graphically represented with an icon located at the same position as
alarm counts in the case of alarms.

The passive icon is displayed when the object is in its regular representation, but it is hidden
when the network element is collapsed. The following example illustrates the use of passive
devices with network elements.

How to use passive devices

object."ilog.tgo.model.IltNetworkElement" {
collapsed: true;
passiveIconVisible: false;

}
object."ilog.tgo.model.IltNetworkElement":selected {
collapsed: false;
passiveIconVisible: true;

}

The result is shown in the following images:

Passive device expanded

Passive device collapsed (passive icon not visible)

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S328

State dictionaries: an overview

To group graphic operations for displaying states and to make sets of relevant states available,
JViews TGO provides several state dictionaries based on worldwide standards. JViews TGO
associates with each state in a dictionary the drawing mode of the telecom object holding
that state. Therefore, the drawing is updated when the state of the graphic object is modified.
This association between a state and a graphic drawing is detailed throughout this section.

The dictionaries available in the JViews TGO library are presented with their definitions and
icons. The development of these dictionaries is based on current telecom standards combined
with hands-on experience.

♦ The OSI state dictionary is based on the standard ISO/IEC 10164-2, ITU-T X.731: State
Management Function.

♦ The Bellcore state dictionary is based on Bellcore GR-1093: Generic State Requirements
for Network Elements.

♦ The SNMP state dictionary is based on RFC 1213: Management Information Base for
Network Management of TCP/IP based internets: MIB-II.

♦ The SONET state dictionary is dedicated to the states of reporting transport links.

♦ TheMisc state dictionary includes additional states that are absent from other standards,
but are useful to several network operators.

♦ The Performance state dictionary includes additional states that are absent from other
standards, but are useful to model numeric values such as performance indicators or
service levels.

♦ The SAN state dictionary includes additional states that are absent from other standards,
but are useful to model numeric values such as storage indicators.

♦ The Alarm state dictionary is the state model proposed by JViews TGO to display the set
of alarms assigned to a telecom object.

♦ The Trap state dictionary is the state model proposed by JViews TGO and based on RFC
1157 – A Simple Network Management Protocol (SNMP) – to display the set of traps
assigned to a telecom object.

Reference tables for the graphical representations of these state dictionaries are contained
in Lookup tables for state visuals.

Primary and secondary states
The OSI, Bellcore, SNMP and SONET state dictionaries all contain the notion of primary
and secondary states. The difference between a primary and a secondary state is that a
telecom object will usually carry one and only one primary state, whereas it can carry a
number of secondary states.

Dictionary nomenclatures
While the dictionaries described in the following sections contain the notion of primary and
secondary states, the terms traditionally used to describe them are not always the same.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 329

♦ The Bellcore and SNMP dictionaries use the terms ‘primary state’ and ‘secondary state.’

♦ The OSI dictionary uses the terms ‘state’ and ‘status.’

♦ The SONET dictionary ties the notion of ‘secondary state’ to protection switch request
indicators.

For our purposes, we will use the terms primary state and secondary state in a generic
sense.

Primary states allowing secondary states
The applicability of secondary states in the OSI and Bellcore models depends on primary
states. Most secondary states can be set on a telecom object only if the object is already in
a predefined state. For instance, the OSI Power-Off status can be set only on an object that
is out-of-service, that is, with the OSI Disabled primary state.

The three conditions that determine whether a given secondary state applies to a telecom
object are:

♦ Out Of Service (OOS)

♦ In service, Carrying No Traffic (NT)

♦ In service, Carrying Traffic (CT)

These conditions represent a combination of primary states in all state dictionaries.

The applicability of secondary states on given primary states can be seen in Icon-based
representations of OSI secondary states .

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S330

The OSI state dictionary

The OSI state dictionary is based on the OSI SMF 10164-2 standard, which defines the
primary state of a telecom object as a combination of three values, and also introduces a
number of statuses.

OSI states
An OSI state is a triplet including the following states:

♦ Operational, which can be one of the following:

● Disabled

● Enabled

♦ Usage, which can be one of the following:

● Idle

● Active

● Busy

♦ Administrative, which can be one of the following:

● Unlocked

● Shutting Down

● Locked

Valid OSI states
While the OSI state system definition above allows 18 combinations of states (2x3x3), only
eight of them are meaningful and thus legal. These are:

1. Operational: Disabled; Usage: Idle; Administrative: Unlocked

2. Operational: Disabled; Usage: Idle; Administrative: Locked

3. Operational: Enabled; Usage: Idle; Administrative: Unlocked

4. Operational: Enabled; Usage: Idle; Administrative: Locked

5. Operational: Enabled; Usage: Active; Administrative: Unlocked

6. Operational: Enabled; Usage: Active; Administrative: Shutting down

7. Operational: Enabled; Usage: Busy; Administrative: Unlocked

8. Operational: Enabled; Usage: Busy; Administrative: Shutting down

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 331

OSI statuses
In addition to the states already mentioned, the OSI SMF standard includes a status property,
which is used to complement the primary state. JViews TGO provides a comprehensive set
of status values for which a graphical interpretation is available. This status set is divided
into five groups:

♦ Procedural is used to report whether the managed object has been properly or improperly
initialized or is finally reporting.

♦ Availability is used to determine the availability status of the managed object.

♦ Control is used to determine if a managed object is reserved for test or subject to test.

♦ Standby is used to identify a managed resource that does not provide a service, but which
can immediately take over the role of a primary resource.

♦ Repair is used to determine whether the managed resource is under repair.

The OSI states and statuses are individually described in the following reference tables:

♦ Graphical representation of the eight valid OSI primary states

♦ Icon-based representations of OSI secondary states

♦ Other OSI secondary state representations

For information on how to customize OSI states, refer to Customizing the OSI state system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S332

The Bellcore state dictionary

In the Bellcore state dictionary, a primary state is defined as holding one of the following
values:

♦ Disabled/Idle

♦ Enabled/Idle

♦ Enabled/Active

The Bellcore dictionary also includes numerous secondary states. All of the secondary states,
in addition to the primary states, are individually described in the following reference tables:

♦ Graphical representation of Bellcore primary states .

♦ Icon-based representations of Bellcore secondary states .

♦ Other representations of Bellcore secondary states

For information on how to customize Bellcore states, refer to Customizing the Bellcore state
system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 333

The SNMP state dictionary

The SNMP state dictionary is based on RFC 1213 - Management Information Base for
Network Management of TCP/IP-based internets - MIB-II. This document defines a
management information base, which is organized in nine groups:

♦ System Provides general information about the managed system.

♦ Interfaces Provides generic information about the physical interfaces of the entity,
including configuration information and statistics on the events occurring at each interface.

♦ IP Contains information relevant to the implementation and operation of IP at a node.

♦ ICMP Contains information relevant to the implementation and operation of ICMP at a
node.

♦ TCP Contains information relevant to the implementation and operation of TCP at a node.

♦ UDP Contains information relevant to the implementation and operation of UDP at a
node.

♦ EGP Contains information relevant to the implementation and operation of EGP at a
node;

♦ Transmission Contains objects that provide details about the underlying transmission
medium for each interface on a system;

♦ SNMP Contains information relevant to the implementation and operation of SNMP.

Primary state
In the SNMP State Dictionary, the primary state is based on the valid combinations of the
Administrative and Operational Status, as they are defined in the Interfaces Group. This
primary state holds one of the following values:

♦ Up Administrative Status is Up/Operational Status is Up

♦ Down Administrative Status is Down/Operational Status is Down

♦ Testing Administrative Status is Testing/Operational Status is Testing

♦ Failed Administrative Status is Up/Operational Status is Down

♦ Shutdown Administrative Status is Down/Operational Status is Up

You can extend this primary state to take into account your own state definitions and their
associated representations. More information on extensions is provided in Customizing
object states.

For visuals, see Graphical representation of SNMP primary states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S334

Secondary states
The SNMP State Dictionary also includes numerous secondary states. The secondary states
are divided according to the group where they are referenced in MIB-II.

Most of the variables defined in MIB-II are counters, holding a numeric value ranging from
0 to 232-1. The valid interval for the SNMP secondary numeric states can be configured,
using the IltLimitedNumericState API. The graphic representation of each state can be
configured as a Gauge, Counter or Chart. Customization is explained in detail in .

The valid interval for the SNMP secondary numeric states can be configured, as shown in
this code extract:

IltSNMP.Interface.InDiscards.setMaxValue (new Float (100.0));

For visuals, see Graphical representation of SNMP secondary states.

For information on how to customize SNMP states, refer to Customizing the SNMP state
system.

System group
As well as defining the secondary states, which are represented graphically as gauges or
charts, MIB-II also defines a group called System. This group is responsible for storing
general information (such as location, contact person, and description) about the object
being managed.

In the SNMP State Dictionary, this group is represented by a set of attributes. The attributes
present in an object are mapped graphically to a window called System window. (See System
window.)

Attributes can be added to the System Group and represented in the System window with
their values. More information on this extension is provided in Creating a new attribute in
the System group.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 335

Miscellaneous states: the Misc state dictionary

The Misc State Dictionary provides secondary state values that can be used to complement
OSI, Bellcore or SNMP standards. The secondary states included in this dictionary are often
used in telecom network supervision applications.

This dictionary can be extended by the JViews TGO user to take into account his own state
definitions and their associated icons. More information about extensions is provided in
Customizing the secondary state icons.

All of the Misc states are individually described in the reference table Icon-based
representations of Misc secondary states .

For information on how to customize Miscellaneous states, refer to Customizing the
Miscellaneous state system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S336

Performance states: the Performance state dictionary

The Performance State Dictionary provides secondary state values that can be used to
complement any other standard state system such as OSI, Bellcore, SNMP, or SONET. The
secondary states included in this dictionary can be used to model and represent any state
with a numeric value. For example, any numeric value corresponding to performance
information or a service level can be modeled using this state system. Any secondary state
in the Performance State Dictionary can be represented graphically by a gauge, a chart or
a numeric counter.

The Performance secondary numeric states hold a numeric value ranging from 0 to 2^32-1.
The valid interval for the Performance secondary numeric states can be configured through
the IltLimitedNumericState API. The graphic representation of each state can also be
configured as a gauge, chart or counter.

Customization is explained in detail in Customizing the Performance State System.

The valid interval for the Performance secondary numeric states can be configured, as shown
in this code extract:

IltPerformance.SecState.In.setMaxValue(new Integer(100));

This dictionary can be extended by the JViews TGO user to take into account his own state
definitions and their associated decorations. More information about extensions is provided
in Creating new Performance secondary states.

All of the Performance states are individually described in the reference table Gauge and
chart-based representations of Performance states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 337

SAN states: the SAN state dictionary

The SAN (Storage Area Network) State Dictionary provides secondary state values that can
be used to complement any other standard state system such as OSI, Bellcore, SNMP or
SONET. The secondary states included in this dictionary can be used to model and represent
any state with a numeric value. For instance, any numeric value corresponding to SAN
information can be modeled using this state system. Any secondary state in the SAN State
Dictionary can be represented graphically by a gauge, a chart, or a numeric counter.

The SAN secondary numeric states hold a numeric value ranging from 0 to 2^32-1. You can
configure the valid interval for the SAN secondary numeric states using the
IltLimitedNumericState API. You can also configure the graphic representation of each
state as a gauge, chart or counter.

Customization is explained in detail in Customizing the SAN state system.

The valid interval for the SAN secondary numeric states can be configured, as shown in this
code extract:

IltSAN.SecState.Allocated.setMaxValue(new Integer(100));

This dictionary can be extended by the JViews TGO user to take into account his own state
definitions and their associated decorations. More information about extensions is provided
in Creating new SAN secondary states.

All of the SAN states are individually described in the reference table Gauge and chart based
representations of SAN secondary states .

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S338

Link states: the SONET state dictionary

The SONET State Dictionary groups states and indicators that are used most often to display
transport links with the protection process. Such link state graphics are useful only in
applications in which the end user must be informed about link states and protection
switching information (as in a fiber transport network, for example).

This state system should not always be used, for the following reasons:

♦ The states are not necessarily adapted to the specific application case. For example, you
may want to ignore the issue regarding the protection facility.

♦ In some network representation cases, you may decide not to use these graphics, since
they might interfere with other managed object state graphics.

Primary states
The SONET State Dictionary includes a certain number of primary states involving changes
in the drawing of the link base.

Although this set of states is independent of OSI or Bellcore standards, it shares the following
common subset with the following three main states:

♦ Disabled: the facility is Out Of Service (OOS).

♦ Inactive: the working facility is in service, carrying No Traffic (NT).

♦ Active: the working facility is in service, Carrying Traffic (CT).

The other states determine the state of the link in relation to the usage and state of the
protection facility:

♦ Active and Protecting: the working facility is carrying traffic and the protection facility
is enabled.

♦ Troubled and Protected: the working facility is troubled (failure conditions are reported)
and the protection facility is active (the failure conditions triggered the protection switch).

♦ Troubled and Unprotected: the working facility is troubled and the protection facility is
unable to protect.

Secondary states
The SONET State Dictionary includes a number of secondary states, or protection switch
request indicators, that deal with the protection process. These states can be applied either
at both link ends or at one link end only. Programming such states is explained in Setting
link states.

You can extend the list of the SONET secondary states to take into account your own state
definitions and their associated icons. More details about extensions are provided in
Customizing the SONET state system.

The SONET primary and secondary states are described individually in the following reference
tables:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 339

♦ Graphical representation of SONET primary states

♦ Common pairs of SONET primary states

♦ Icon-based representations of SONET secondary states

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S340

Alarm states

Describes the characteristics of graphical representations of telecom object alarm conditions.
Also explains how to define an alarm state with the API and in XML.

In this section

Graphical representation of alarm conditions
Describes the characteristics of graphical representations of telecom object alarm conditions.

Setting the alarm counters
Describes the different approaches to set alarm counters.

Defining alarm states with the API
Explains how to set alarm states using the API.

Loading alarm states in XML
Provides a pointer on how to load alarm states in XML.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 341

Graphical representation of alarm conditions

The network component provides a graphical representation for the alarm state of managed
objects. New raw alarms are represented by a round rectangle alarm balloon; new impact
alarms are represented by an impact alarm cloud. In addition, a secondary alarm state
representation is provided for cases when an object has both impact and raw alarms.

Representation of alarm states in a network

Graphical cues for alarm states
The main graphical cues for alarms are:

♦ A color associated with the object base element (the alarm coding color scheme is
illustrated in Raw alarm color coding scheme).

♦ An alarm count summary displayed on the object base element (the contents of the
summary is explained below).

♦ A colored alarm balloon displaying also an alarm count summary.

♦ A colored outline displayed around the object base element.

♦ A secondary state icon for the secondary alarm state (see Primary and secondary states.)

Alarm state details
Alarms can be either new or acknowledged. The term outstanding alarms includes both new
and acknowledged alarms.

The graphical representation of a telecom object alarm condition shows the number and
highest severity of new alarms and the number and highest severity of outstanding alarms
in the following manner:

♦ The color of the base element and the color of the alarm balloon are those associated
with the most severe new alarm (see Raw alarm color coding scheme).

♦ The color of the outline around the base element is the one associated with the most
severe outstanding alarm.

♦ The alarm count summary in the base element displays the number of outstanding alarms.

♦ The alarm count in the alarm balloon displays the number of new alarms.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S342

Alarm count summary
An alarm count summary displays the number and highest severity of new or outstanding
alarms. It is composed of:

♦ A number indicating the amount of most severe new or outstanding alarms.

♦ One or more letters indicating the highest severity of new or outstanding alarms (see
Raw alarm color coding scheme).

♦ An optional icon to represent the highest severity of new or outstanding alarms.

♦ A plus sign indicating that there are also less severe new or outstanding alarms.

Primary and secondary alarm states
A telecom object can have raw and impact alarms at the same time, which introduces the
concepts of primary and secondary alarm states. The primary alarm state has a more detailed
representation than the secondary alarm state. By default, the primary alarm state is the
raw alarm state.

The primary alarm state is identified by the following:

♦ The color of the base element and the color of the alarm balloon, which correspond to
the most severe new alarm.

♦ The shape of the alarm balloon.

♦ The color of the outline of the base element, which corresponds to the most severe
outstanding alarm.

♦ The alarm count summary in the base element displaying the number of outstanding
alarms.

♦ The alarm count in the alarm balloon displaying the number of new alarms.

The secondary alarm state is identified by the following:

♦ The secondary alarm state icon.

LEFT: primary alarm state for raw alarms. RIGHT: primary alarm state for impact
alarms

Alarm severity coding
JViews TGO provides two types of alarms: raw and impact alarms.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 343

Raw alarms have a range of six severity levels, including the Cleared severity. These levels
and their associated color and short text are shown in Raw alarm color coding scheme.

Raw alarm color coding scheme
TextColorSeverity

CRedCritical

MRedMajor

mOrangeMinor

wYellowWarning

uGreyUnknown

Not representedNot representedCleared

The Cleared severity is never represented in alarm states.Note:

Impact alarms have a range of ten severity levels, including the Cleared severity. These
levels and their associated color, short text and icon are shown in Impact alarm color coding
scheme.

Impact alarm color coding scheme
IconTextColorSeverity

!!RedCritical High

!RedCritical Low

!!RedMajor High

!RedMajor Low

!!OrangeMinor High

!OrangeMinor Low

!!YellowWarning High

!YellowWarning Low

!GreyUnknown

Not representedNot representedNot representedCleared

The Cleared severity is never represented in alarm states.Note:

You can extend the default severity levels of raw and impact alarms. You can add new severity
levels and associate them with a color and label. Functions for extending severity levels, as
well as examples, are provided in Customizing alarm severities.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S344

Alarm state graphical representations provides some alarm state examples and their
associated visual representations.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 345

Alarm state graphical representations
CommentVisual in

Table
and Tree

Visual in Network

and Equipment

Alarm State
Values

The resource has one new critical alarm.New Critical

The resource has one new critical alarm,
plus less severe new alarms, and one
acknowledged critical alarm.

Outstanding Critical

The resource has one new major alarm, plus
less severe new alarms.

New Major

The resource has one new minor alarm.New Minor

The resource has two acknowledged minor
alarms, plus acknowledged less severe
alarms.

Acknowledged Minor

The resource has three new warning alarms,
plus two acknowledged warning alarms.

Outstanding Warning

The resource has a new unknown alarm.New Unknown

The resource has a new critical high impact
alarm; the primary alarm state is for impact
alarms.

New Critical High
Impact

The resource has some impact alarms; the
primary alarm state is for raw alarms.

Impact Alarms

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S346

CommentVisual in
Table
and Tree

Visual in Network

and Equipment

Alarm State
Values

New Minor Low
Impact and Raw
Alarms

The resource has a new minor low impact
alarm and some raw alarms; the primary
alarm state is for impact alarms.

The alarm collection process has been shut
down or alarm counts are not reliable.

Loss of Connectivity

Alarm reporting has been suspended
because the resource was purposely taken
offline, for example for repairs.

Not Reporting

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 347

Setting the alarm counters

JViews TGO offers two approaches to setting the alarm counters:

♦ The back end computes the alarm state counters

♦ JViews TGO computes alarm state counters

It is possible to combine the two computation models, having JViews TGO compute the alarm
counters for some managed objects and the back end for the other managed objects.

The back end computes the alarm state counters
To set the counters:

1. Remove from the data source all alarms related to the managed object.

2. Set the computedFromAlarmList property of the alarm state to false.

3. Retrieve the counters from the back end and set the values in the alarm state.

To update the counter values according to changes in the back end:

1. Subscribe to the notification of alarm counter changes by the back end.

2. Update the alarm counter in the alarm state according to the back-end notifications.

JViews TGO computes alarm state counters
JViews TGO can compute alarm state counters for a given managed object based on the list
of alarms for this object.

To set the counters:

1. Use an IltDefaultDataSource for the data source.

2. Set the computedFromAlarmList property of the alarm state to true.

3. Retrieve the list of alarms for the managed object and create the corresponding IltAlarm
objects. In the IltAlarm objects, set the managedObjectInstance attribute value to the
object identifier of the managed object.

4. Add the IltAlarm objects in the same data source as the IltObject corresponding to
the managed object.

To update the alarm state according to changes in the back end:

1. Subscribe to the notification of alarms and alarm list changes for the object.

2. Add, remove or update the IltAlarm business objects according to the changes.

The handlingAlarmReferences property of IltDefaultDataSource controls whether the
alarm state consolidation occurs or not in a given data source. By default the consolidation
is active.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S348

Combining alarm counter computation models
You can have JViews TGO compute the alarm counters for some managed objects, and the
back end compute the counters for the other managed objects. You can also switch from
one computation model to the other for a given managed object.

The concurrent use of the two models on the same managed object would result in
inconsistent and inaccurate counters. Use IltAlarm.State.

Note:

setComputedFromAlarmList to switch between the two modes. When the alarm
counters are computed from the associated list of alarms, attempts to change the alarm
counters directly with the alarm state APIs would trigger an IllegalStateException.
Instead, update the associated IltAlarm objects.

How to switch from alarm counters computed by the back end to
alarm counters computed by JViews TGO
1. Unsubscribe to the notification of alarm counter changes by the back end.

2. Disable the automatic alarm counter computation of the alarm state using the method
IltAlarm.State.setComputedFromAlarmList. This will reset the counters to zero.

3. Retrieve the list of alarms for the managed object and create the corresponding IltAlarm
objects. In the IltAlarm, set the ManagedObjectInstanceAttribute value to the object
identifier of the managed object.

4. Add the IltAlarm objects in the same data source as the IltObject corresponding to
the managed object.

5. Subscribe to alarm list change notifications by the back end.

6. Add, remove or update IltAlarm objects according to the back-end notifications.

How to switch from alarm counters computed by JViews TGO to
alarm counters computed by the back end
1. Unsubscribe to the notification of alarm list changes by the back end.

2. Remove from the data source all the alarms related to the managed object.

3. Enable the automatic alarm counter computation of the alarm state using the method
IltAlarm.State.setComputedFromAlarmList. This will reset the counters to zero

4. Retrieve the counters from the back end and set the values in the alarm state.

5. Subscribe to the notification of alarm counter changes by the back end.

6. Update the alarm counters in the alarm state according to the back-end notifications.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 349

Defining alarm states with the API

Alarms carried by telecom objects are described in the same way as states. Alarms are held
by one of the IltObjectState object attributes and are modeled using an instance of the
class IltAlarm.State, which is a subclass of IltState. The alarm state object includes the
following information:

♦ For each alarm severity:

● The number of new alarms of this severity

● The number of acknowledged alarms of this severity

♦ Boolean indicators for special conditions:

● Not Reporting: the equipment has ceased reporting alarms.

● Loss of Connectivity: the connection with the equipment has been lost, thus making
the recorded number of alarms unreliable.

The alarm model is the same for most of the existing object state classes. When the alarm
information is based on the alarm model, you can retrieve this information by calling the
method IltObject.getAlarmState().

How to set alarm counters
The API for managing alarms is directly available from the IltObject class.

The following code line retrieves the object state corresponding to the alarms for an object
named paris.

IltAlarm.State alarms = paris.getAlarmState();

The following code line shows how to set the count of new alarms to the object.

alarms.setNewAlarmCount(IltAlarm.Severity.Critical, 2);

To set the count of acknowledged alarms, use the following code:

alarms.setAcknowledgedAlarmCount(IltAlarm.Severity.Critical, 2);

Alarms can be set either directly, as shown above, or incrementally, as in the following code
where a new critical alarm is added to the same network element.

How to set alarms incrementally

alarms.addNewAlarm(IltAlarm.Severity.Critical);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S350

System.out.println("Critical alarms on Paris: "
+ alarms.getNewAlarmCount(IltAlarm.Severity.Critical));

The printed output is the following:

Critical alarms on Paris: 3 new

How to set special alarm statuses
Special alarm statuses are set and unset using dedicated APIs.

To switch to the loss-of-connectivity mode, use the following:

alarms.setLossOfConnectivity(true);

To switch to the not-reporting mode, use the following:

alarms.setNotReporting(true);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 351

Loading alarm states in XML

For details on how to load alarm states in XML, refer to Alarm states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S352

Trap states

JViews TGO provides another concept of alarm that is based on RFC 1157 - A Simple Network
Management Protocol (SNMP). Basically, a trap represents something unusual that occurs
in an object. Traps, as well as alarms, are represented graphically using the alarm balloon
and alarm count decorations. The graphical cues described in the Graphical cues for alarm
states are also valid when representing traps. Another similarity with alarms is the concept
of new, acknowledged and outstanding traps, which were explained in Alarm state details.

Trap type coding
JViews TGO provides the following range of trap types and their associated graphic
representations. These types are based on the generic traps defined in RFC 1157.

Trap color coding scheme
LetterColorType

LFRedLink Failure

AFRedAuthentication Failure

CSBlueCold Start

WSOrangeWarm Start

NLYellowEGP Neighbor Loss

You can add new trap types and associate themwith a color and label. Functions for extending
traps, as well as examples, are provided in Customizing trap types.

Trap state graphical representations illustrates some alarm status examples and their
associated visual representations.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 353

Trap state graphical representations
CommentVisualTrap Status

The resource has received a link failure trap.New Link Failure

The resource has received one new link failure trap,
plus other less severe new traps.

New Link Failure

The resource has received one new link failure trap,
plus other less severe new traps.

Acknowledged Cold Start

The resource has acknowledged link failure traps, as
well as new EGP neighbor loss traps.

Acknowledged Link Failure traps
and New Neighbor loss traps

Trap types
JViews TGO defines five trap types based on RFC 1157; they are the elements of the IltTrap.
Type enumeration. These instances of IltTrap.Type are statically allocated and are stored
in static data members of IltTrap.

Available severity values are:

♦ IltTrap.Type. LinkFailure

♦ IltTrap.Type. AuthenticationFailure

♦ IltTrap.Type. EGPNeighborLoss

♦ IltTrap.Type. ColdStart

♦ IltTrap.Type. WarmStart

Other types can be defined to extend the default trap model. See Customizing trap types
for an explanation of how to do this.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S354

Defining trap states with the API
Traps carried by telecom objects are described in the same way as states. Traps are held
by one of the IltObjectState object attributes and are modeled using an instance of the
class IltTrap.State, which is a subclass of IltState.

Make sure output of the apilink is IltTrap.State

For each trap type, the alarm object includes the following information:

♦ the number of new traps

♦ the number of acknowledged traps.

The trap model is the alarm representation for SNMP-based objects. To retrieve the
information about traps, you should use the method IltObject. getTrapState().

The following code shows how traps are managed on the paris network element. The API
for managing traps is directly available from the IltObject class.

How to set traps directly
The following code line retrieves the object state corresponding to the alarms for Paris:

IltTrap.State alarms = paris.getTrapState();

The following code line shows how to set new alarms on the object.

alarms.setNewAlarmCount(IltTrap.Type.LinkFailure, 2);

To set acknowledged traps, use the following code:

alarms.setAcknowledgedAlarmCount(IltTrap.Type.LinkFailure, 2);

Traps can be set either directly as shown above, or incrementally as in the following code
sample, where a new Link Failure trap is added to the same network element.

How to set traps incrementally

alarms.addNewAlarm(IltTrap.Type.LinkFailure);
System.out.println("Link Failure traps on Paris: "

+ alarms.getNewAlarmCount(IltTrap.Type.LinkFailure));

The printed output is the following:

Link Failure traps on Paris: 3 new

Defining trap states in XML
For details on how to load alarm states in XML, refer to Trap states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 355

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S356

Managing states

Explains how to change and withdraw the states associated with JViews TGO objects, by
showing how to use the state dictionaries.

In this section

State values, state classes, and state systems
Introduces the object state classes and explains the naming principles of the states listed
in the dictionaries.

Object states
Provides a class diagram of the object states classes and lists the dictionaries associated
with each object state.

The object state classes
Describes how states are structured and named using the OSI, Bellcore, SNMP,Misc, SONET,
Alarm, and Trap object state classes.

Modifying states and statuses
Provides examples illustrating how to manage the states and statuses for network elements
and links.

Accessing and removing states
Explains how to access and how to remove states with the API.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 357

State values, state classes, and state systems

The Java™ classes introduced by JViews TGO to implement the concepts in state models are
IltState and IltStateSystem.

State classes are subclasses of IltState. Their instances are the state values that will be
used to describe the state and alarm condition of a telecom object. Examples of state values
are: the primary state of a telecom object, each of its secondary states, or its alarm state.

The state dictionaries are embodied by instances of IltStateSystem, which gather the
related state classes as nested classes.

JViews TGO includes seven state systems:

♦ IltOSI is the gathering class for the OSI state dictionary. The classes nested in IltOSI
are:

● IltOSI.State This class implements the OSI primary states. Its instances are triplets,
with a member of each of:

- IltOSI.State.Operational

- IltOSI.State.Usage

- IltOSI.State.Administrative

● IltOSI.Procedural, IltOSI.Availability, IltOSI.Control, IltOSI.Standby, and
IltOSI.Repair These classes implement the OSI secondary states.

♦ IltBellcore is the gathering class for the Bellcore state dictionary. The classes nested
in IltBellcore are:

● IltBellcore.State This class implements the Bellcore primary states.

● IltBellcore.SecState This class implements the Bellcore secondary states.

♦ IltSNMP is the gathering class for the SNMP state dictionary. The classes nested in
IltSNMP are:

● IltSNMP.State This class implements the SNMP primary state and its values.

● IltSNMP.Interface This class contains the definition of the MIB-II Interface Group
states.

● IltSNMP.IP This class contains the definition of the states present in the MIB-II IP
Group.

● IltSNMP.TCP This class contains the definition of the states present in the MIB-II TCP
Group.

● IltSNMP.UDP This class contains the definition of the states present in the MIB-II
UDP Group.

● IltSNMP.EGP This class contains the definition of the states present in the MIB-II EGP
Group.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S358

● IltSNMP.ICMP This class contains the definition of the states present in the MIB-II
ICMP Group.

● IltSNMP.SNMP This class contains the definition of the states present in the MIB-II
SNMP Group.

● IltSNMP.System This class models the MIB-II System Group.

♦ IltSONET is the gathering class for the SONET state dictionary. The classes nested in
IltSONET are:

● IltSONET.State This class implements the SONET primary states.

● IltSONET.Protection This class implements the SONET secondary states, also called
protection switch request indicators.

♦ IltMisc is the gathering class for the Misc state dictionary. The only class nested in
IltMisc is:

● IltMisc.SecState This class implements the additional secondary states brought
in by the Misc state dictionary.

♦ IltPerformance is the gathering class for the Performance state dictionary. The only
class nested in IltPerformance is:

● IltPerformance.SecState This class implements the additional secondary states
brought in by the Performance state dictionary.

♦ IltSAN is the gathering class for the SAN state dictionary. The only class nested in IltSAN
is:

● IltSAN.SecState This class implements the additional secondary states brought in
by the SAN state dictionary.

♦ IltAlarm is the gathering class for the Alarm state dictionary. The classes nested in
IltAlarm are:

● IltAlarm.State This class implements the alarm state of an object, with the number
of new and acknowledged alarms of each severity, plus the Not Reporting and Loss
Of Connectivity conditions.

● IltAlarm.Severity This class is not a state class. It is an extensible enumeration
implementing the raw alarm severities known to JViews TGO.

● IltAlarm.ImpactSeverity This class is not a state class. It is an extensible enumeration
implementing the impact alarm severities known to JViews TGO.

♦ IltTrap is the gathering class for the Trap state dictionary. The classes nested in IltTrap
are:

● IltTrap.State This class implements the trap state of an object, with the number
of new and acknowledged traps for each type of trap.

● IltTrap.Type This class represents the enumeration with the traps known to JViews
TGO.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 359

Composite state values, such as the OSI primary state triplet, or the Alarm collection of
integers and Boolean values, are normal Java™ objects. All other state values are statically
allocated Java objects implementing symbolic state values. They include:

♦ The operational, usage, and administrative components of the OSI primary state.

♦ The Bellcore, SONET, and SNMP primary states.

♦ The OSI, Bellcore, SNMP, SONET, Performance, and Misc secondary states.

The names of the static data members storing the state values are listed in the tables in
Lookup tables for state visuals.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S360

Object states

The state of a telecom object is described by an IltObjectState instance stored in the
telecom object. This instance is called the object state of the telecom object. It contains
state values corresponding to the primary state, the secondary states, and the alarm or trap
state of the telecom object.

When the object state is modified to reflect a change in the telecom equipment state, the
graphic representation of the telecom object is automatically recomputed and redisplayed.

Object state classes
There are seven subclasses of IltObjectState in JViews TGO. Subclasses are based on the
OSI, Bellcore, SNMP and SONET state systems as illustrated in the figure that follows.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 361

Object state classes

This figure shows that each type of object state can hold states and alarms. Alarms
systematically complement states with the class IltAlarmObjectState, dedicated to the
objects to which only alarms, and no states, are assigned. This figure also shows that each
type of object state can hold states and traps. Traps systematically complement states with

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S362

the class IltTrapObjectState, dedicated to the objects to which only traps, and no states,
are assigned.

Depending on the state systems (OSI, Bellcore, SNMP, SONET, Alarm, Trap, Misc) that
compose the object state, state modeling is performed differently. For example, there are
three state attributes in the SONET state system, whereas there are only two in the other
state systems. The terminology employed, as well as the structure of the state models
themselves, is developed in the next section.

Dictionaries and object states
To choose the set of state dictionaries used to describe the state and alarm condition of a
telecom object, select a subclass of IltObjectState to store the object state. The seven
subclasses of IltObjectState are listed below with the state dictionaries that they gather.

♦ IltOSIObjectState OSI, SAN, Alarm, Performance, and Misc dictionaries.

♦ IltBellcoreObjectState Bellcore, SAN, Alarm, Performance, and Misc dictionaries.

♦ IltSNMPObjectState SNMP, SAN, Trap, Performance, and Misc dictionaries.

♦ IltSONETObjectState and IltBiSONETObjectState SONET, SAN, Alarm, and
Performance dictionaries.

♦ IltAlarmObjectState Alarm dictionary only.

♦ IltTrapObjectState Trap dictionary only.

The object state system is supplied as an argument to the constructor of the telecom business
object, as in the following code example.

How to supply the state system to the business object

IltNetworkElement berlin =
new IltNetworkElement

("Berlin",
IltNetworkElement.Type.NE,
IltNetworkElement.Function.TransportCrossConnect,
IltNetworkElement.Family.OC12,
new IltBellcoreObjectState());

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 363

The object state classes

The OSI-based object state class
IltOSIObjectState is an object state class that provides an OSI primary state, a set of
secondary states to be taken from the OSI, Misc, and Performance state dictionaries, and
an alarm state from the Alarm state dictionary.

An instance of IltOSIObjectState thus holds:

♦ The object primary state as an instance of IltOSI.State

♦ The object IltOSI.Controlsecondary states as a list of state values which can be instances
of IltOSI.Procedural, IltOSI.Availability, IltOSI.Control, IltOSI.Standby, IltOSI.
Repair, IltSAN.SecState, IltMisc.SecState, or IltPerformance.SecState.

♦ The object alarms as an instance of IltAlarm.State.

The Bellcore-based object state class
IltBellcoreObjectState is an object state class that provides a Bellcore primary state, a
set of secondary states to be taken from the Bellcore, Performance, and Misc state
dictionaries, and an alarm state from the Alarm state dictionary.

An instance of IltBellcoreObjectState thus holds:

♦ The object primary state as an instance of IltBellcore.State

♦ The object secondary states as a list of state values that can be instances of IltBellcore.
SecState, IltSAN.SecState, IltMisc.SecState, or IltPerformance.SecState

♦ The alarms of the object as an instance of IltAlarm.State.

The SNMP-based object state class
IltSNMPObjectState is an object state class that provides an SNMP primary state, a set of
secondary states to be taken from the SNMP, Performance and Misc state dictionaries, and
a trap state from the Trap state dictionary.

An instance of IltSNMPObjectState thus holds:

♦ The object primary state as an instance of IltSNMP.State

♦ The object secondary states as a list of state values that can be instances of
IltLimitedNumericState, IltSAN.SecState, IltMisc.SecState or IltPerformance.
SecState.

♦ The alarms of the object as an instance of IltTrap.State.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S364

The SONET-based object state class
IltSONETObjectState and IltBiSONETObjectState are object state classes that provide
one or two SONET primary states respectively, two sets of protection switch request
indicators, a secondary state taken from the Performance state dictionary if needed and one
alarm state. They are dedicated to links, typically links in SONET rings.

An instance of IltSONETObjectState thus holds:

♦ The link primary state as an instance of IltSONET.State

♦ The protection switch request indicators that have been set on one end of the link, as a
list of instances of IltSONET.Protection

♦ The protection switch request indicators that have been set on the other end of the link,
as a second list of instances of IltSONET.Protection

♦ The object secondary states as a list of state values that are instances of IltSAN.SecState
or IltPerformance.SecState.

♦ The link alarms as an instance of IltAlarm.State

An instance of IltBiSONETObjectState holds:

♦ A second instance of IltSONET.State, to store the state of the link in the reverse direction.

On a link with a BiSONET object state, the inherited primary state is considered to be the
state of the direct direction and is graphically represented by the inner part of the link base
and the “to” arrow. The reverse state is represented by the outer part of the link base and
the “from” arrow.

The Alarm-only object state class
IltAlarmObjectState is an object state class that provides only an alarm state from the
Alarm state dictionary. It is intended for objects with no states.

An instance of IltAlarmObjectState thus holds only an instance of IltAlarm.State.

The Trap-only object state class
IltTrapObjectState is an object state class that provides only a trap state from the Trap
state dictionary. It is intended for objects with no states.

An instance of IltTrapObjectState thus holds only an instance of IltTrap.State.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 365

Modifying states and statuses

Setting a network element state in the OSI state system
The following code shows how to modify the usage state of the neast node and set it to the
active value:

neast.setState(IltOSI.State.Usage.Active);

The Active symbol is the name of a global variable that contains a state value. This value
is an instance of the IltOSI.State.Usage class (which is itself an IltState subclass).

Setting network element states in the Bellcore state system
The following code fragment shows how to change the primary state of the berlin node to
EnabledActive and how to set the Busy secondary state on this node:

berlin.setState(IltBellcore.State.EnabledActive);
berlin.setState(IltBellcore.SecState.Busy);

Note that the use of the functional interface is the same for all the telecom object classes
and the state systems.

Setting network element states in the SNMP state system
The following code fragment shows how to change the primary state of the berlin node to
Shutdown and how to set the Interface.InOctets secondary state on this node. This code
is an extract from the snmp sample in the distribution.

How to change the primary state of a node and set the secondary
state

berlin.setState(IltSNMP.State.Shutdown);
berlin.setState (IltMisc.SecState.TestFailed);
berlin.set (IltSNMP.Interface.InOctets, new Integer (123));

In the SNMP state dictionary, most of the states have numeric values. In order to set the
values for these states you can use either IltSNMPObjectState or IltObject. Both of these
APIs provide methods to set and retrieve the value of a numeric state.

♦ set(ilog.tgo.model.IltState, java.lang.Object) sets the value of the given state.

♦ get(ilog.tgo.model.IltState) returns the value of the given state.

Besides the numeric and Boolean states present in the SNMP state dictionary, there is also
a set of information that is related to the system being managed and that is defined in the
MIB-II System Group. The information in the group is displayed in a System window
(explained in detail in System window). The graphical representation of this information is

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S366

an icon that, when clicked, opens the System window containing the list of all the attributes
set in the telecom object. For information regarding the insertion of new attributes, see
Creating a new attribute in the System group.

The following code extract shows how to change the values of the attributes defined by the
System Group.

How to change the attribute values defined by the system group

IltSNMPObjectState objstate = (IltSNMPObjectState) berlin.getObjectState();
IltSNMP.SystemInfo sysinfo = objstate.getSystemInfo();
Sysinfo.setDescription ("Berlin station");
Sysinfo.setContact ("John Doe");

Setting link states
In this example, we modify the berlin_west link, which uses the SONET state system.

How to set link states

berlin_west.setState(IltSONET.State.Active);

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 367

Accessing and removing states

In addition to the API used to assert states, another API is available for accessing and
removing states. Most of the functions for accessing states are available from the class
IltObject.

For example, the Boolean predicate hasState can be used to verify whether the telecom
object is in a given state. In all the following examples, neast is the variable that contains
the network element North East.

neast.hasState(IltOSI.State.Usage.Idle);

Sometimes, specific accesses are granted using the functional interfaces on the classes
IltObjectState and IltState. The following code shows how to access the state object
and then set the accessors for retrieving a given state.

How to access a atate object and set accessors for retrieving a
state

IltOSIObjectState osiObjectState =
(IltOSIObjectState)neast.getObjectState();

IltOSI.State osiState = osiObjectState.getState();
osiState.getOperationalState();
osiState.getUsageState();
osiState.getAdministrativeState();

When primary or secondary states are added, the same functional interface is used, but with
different consequences. The primary state is unique (in the OSI state system, it is a triplet;
in the Bellcore state system, it is a single value), as opposed to secondary states (for example,
the values associated with theMisc dictionary can be added without limitation). Consequently,
when the member function setState is used, this function replaces the primary state,
although it adds one more secondary state. There are two ways to remove states created in
this way:

♦ You can use the clearStatemember function, which removes secondary states or resets
the primary state to its default value.

♦ You can use the resetState member function, which removes all the secondary states
and resets the primary state to its default value.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S368

Defining states in XML

Explains how to define object states in the XML format and load them in a data source.

In this section

Overview
Explains the use of a data source to load objects with states defined in XML.

OSI states
Describes the XML elements that you can use in the OSI state system.

Bellcore states
Describes the XML elements that you can use in the Bellcore state system.

SNMP states
Describes the XML elements that you can use in the SNMP state system.

Miscellaneous states
Describes the XML elements that you can use in the Miscellaneous state system.

Performance states
Describes the XML elements that you can use to read and write Performance states.

SAN states
Describes the XML elements that you can use in the SAN state system.

SONET states
Describes the XML elements that you can use in the SONET state system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 369

BiSONET states
Describes the XML elements that you can use in the BiSONET state system.

Alarm states
Describes the XML elements that you can use in the Alarm state system.

Trap states
Describes the XML elements that you can use in the Trap state system.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S370

Overview

To load objects with states defined in the XML format, all you have to do is create a data
source using the data source default implementation defined by IltDefaultDataSource and
pass the XML file containing the object description to the parse method of the data source,
as shown below:

dataSource = new IltDefaultDataSource();
dataSource.parse("OSIXMLFile.xml");

To define states when you add predefined business objects to the data source, set the value
of attribute objectState to one of the JViews TGO object states:

♦ IltOSIObjectState

♦ IltBellcoreObjectState

♦ IltSNMPObjectState

♦ IltSONETObjectState

♦ IltBiSONETObjectState

♦ IltAlarmObjectState

♦ IltTrapObjectState

How to create a predefined business object with states and alarms
using XML
The following example shows an XML extract that you can load in a data source to create
a rectangular group. States and alarms can be set in this object by declaring the value of
attribute objectState when adding the business object:

<addObject id="RectGroup">
<class>ilog.tgo.model.IltRectGroup</class>
<attribute name="name">RectGroup</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRect">

<x>489</x> <y>356</y> <width>80</width> <height>60</height>
</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>Locked</administrative>
<operational>Enabled</operational>
<usage>Idle</usage>

</state>
<availability>PowerOff</availability>
<control>ReservedForTest</control>
<alarms>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 371

<new severity="Raw.Critical">5</new>
<ack severity="Raw.Warning">12</ack>

</alarms>
</attribute>

</addObject>

How to set states and alarms to an existing object using XML
The following example shows how to set the states and alarms of an object that already
exists in the data source. You can achieve this by using the XML tag <updateObject> to
modify the attribute objectState:

<updateObject id="RectGroup">
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Busy</usage>

</state>
<availability>PowerOff</availability>
<misc>HighTemperatureWarning</misc>
<alarms>
<new severity="Raw.Critical">2</new>

</alarms>
</attribute>

</updateObject>

The <attribute> tag is used to modify the value of an attribute in a business object. When
you use it to modify the value of attribute objectState, the old object state definition is
completely replaced by the new one.

JViews TGO also provides support to update the object state of a predefined business object
to allow you to perform incremental changes. This support is made available through the
tag <updateState>:

Within an <updateState> block, you can modify the states, alarms and traps present in the
business object state, adding and removing states, adding, removing and setting alarms and
traps.

How to update states and alarms incrementally using XML

<updateObject id="NE1">
<updateState>
<state>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
<procedural operation="remove">Initializing</procedural>
<misc operation="remove">DoorAjar</misc>
<alarms>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S372

<new severity="Raw.Critical" operation="set">2</new>
<new severity="Raw.Major" operation="add">1</new>
<ack severity="Raw.Warning" operation="remove">5</ack>

</alarms>
</updateState>

</updateObject>

The tables in this section list, for each state system, the XML elements that you can use to
describe states in the XML format.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 373

OSI states

The class IltOSIObjectStateSAXInfo is the XML serialization class that allows you to read
and write OSI object states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the OSI state system
DescriptionPossible ValuesAttributesXML Element

OSI Administrative stateLocked, Unlocked,
ShuttingDown

<administrative>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Operational stateEnabled, Disabled<operational>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Usage stateIdle, Active, Busy<usage>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Procedural statusInitializationRequired,
Initializing, Reporting,
Terminating

<procedural>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S374

DescriptionPossible ValuesAttributesXML Element

state.This attribute is used within
an <updateState> element.

OSI Availability statusDegraded, Dependency,
Failed, InTest, LogFull,

<availability>

NotInstalled, OffDuty,
OffLine, PowerOff

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Control statusPartOfServicesLocked,
ReservedForTest,
SubjectToTest, Suspended

<control>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Stand-by statusInStandby<standby>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object
state.This attribute is used within
an <updateState> element.

OSI Repair statusUnderRepair<repair>

This attribute is optional. It
specifies whether the state

add, removeoperation

should be added to/removed from
the object state. The default
value is add indicating that the
state will be set in the object

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 375

DescriptionPossible ValuesAttributesXML Element

state.This attribute is used within
an <updateState> element.

How to add a network element with OSI states defined in XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE1</attribute>
<attribute name="family">OC12</attribute>
<attribute name="type">MD</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>68</x> <y>61</y>

</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
<procedural>Reporting</procedural>
<repair>UnderRepair</repair>

</attribute>
</addObject>

How to set OSI states to an existing object using XML
The following example shows how to set OSI states to an object that already exists in the
data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

<updateObject id="RectGroup">
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Busy</usage>

</state>
<availability>PowerOff</availability>
<procedural>Terminating</procedural>

</attribute>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S376

How to update OSI states incrementally using XML

<updateObject id="RectGroup">
<updateState>
<state>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
<procedural operation="remove">Initializing</procedural>
<availability>InTest</availability>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 377

Bellcore states

The class IltBellcoreObjectStateSAXInfo is the XML serialization class that allows you
to read and write Bellcore object states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the Bellcore state system
DescriptionPossible ValuesAttributesXML

Element

BellCore primary stateDisabledIdle, EnabledIdle,
EnabledActive

None<state>

BellCore secondary
states

Blocked, Busy, ColdStandby,
Combined, Diagnostic, Disabled,

<secState>

Disconnected, Exercise,
FacilityFailure,
FarEndProcessorOutage, Fault,
Forced, HotStandby, Idle,
IdleReceive, IdleTransmit,
InhibitInProgress, LockedOut,
LoopbackTest, Maintenance,
MaintenanceLimited,
MismatchOfEquipmen, Monitor,
Overflow,
PerformanceMonitorInhibited, Power,
PrePostService,
ProtectionReleaseInhibited,
ProtectionSwitchExercise,
ProtectionSwitchInhibited, Protocol,
Rearrangement, RedLined,
SoftwareDownloading,
SoftwareTransferInhibited,
SoftwareTransferOnly,
SoftwareUploading, StandbyInhibited,
StandbySwitched,
SupportedEntityAbsent,
SupportedEntityExists,
SupportingEntityOutage,
SupportingEntitySwapped,
SuspendBoth, SuspendOrigination,
SuspendTermination,
SwitchedSystemActivity,
TerminatedBoth, TerminatedFrom,
TerminatedTo, Test,
TestFailure,Transferred, Unassigned,
Unequipped, Working

This attribute is optional.
It specifies whether the

add, removeoperation

state should be added

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S378

DescriptionPossible ValuesAttributesXML
Element

to/removed from the
object state. The default
value is add indicating
that the state will be set
in the object state. This
attribute is used within
an <updateState>
element.

How to add a network element with Bellcore states defined in XML

<addObject id="NE3">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE3</attribute>
<attribute name="type">Router</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>151</x> <y>512</y>

</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<secState>TestFailure</secState>

</attribute>
</addObject>

How to set Bellcore states to an existing object using XML
The following example shows how to set Bellcore states to an object that already exists in
the data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

<updateObject id="NE1">
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<secState>Blocked</secState>
<secState>Busy</secState>

</attribute>
</updateObject>

How to update Bellcore states incrementally using XML

<updateObject id="NE1">
<updateState>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 379

<state>EnabledIdle</state>
<secState operation="remove">Blocked</secState>
<secState operation="remove">Busy</secState>
<secState>HotStandby</secState>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S380

SNMP states

The class IltSNMPObjectStateSAXInfo is the XML serialization class that allows you to read
and write SNMP object states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the SNMP state system
DescriptionPossible ValuesAttributesXML

Element

SNMP primary stateDown, Failed, Shutdown,
Testing, Up

None<state>

This attribute is mandatory. It defines
the secondary state that will be set.

InOctets, InUcastPkts,
InDiscards, InErrors,

state<interface>

InUnknownProtos,
OutOctets,OutUcastPkts,
OutNUcastPkts,
OutDiscards, OutErrors

This attribute is optional. It defines
whether the state value is an array or
not.

true or falseisArray

This attribute is optional. When
describing array values, each value in

java.lang.Floatvalue

the array is enclosed in a <value>
element.

This attribute is optional. It defines the
value of the state. The default value
is java.lang.Float.

javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 381

DescriptionPossible ValuesAttributesXML
Element

This attribute is used within an
<updateState> element.

See <interface>InReceives,
InHdrErrors,InAddrError,

state<ip>

ForwDatagrams,
InUnknownProtos,
InDiscards, InDelivers,
OutRequests, OutDiscards,
OutNoRoutes, Forwarding

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

See <interface>InMsgs, InErrors,
OutMsgs, OutErrors

state<icmp>

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

See <interface>CurrentEstablished,
InSegs, OutSegs,
InErrors, RetranSegs

state<tcp>

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S382

DescriptionPossible ValuesAttributesXML
Element

default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

See <interface>InDatagrams, InErrors,
OutDatagrams

state<udp>

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

See <interface>InMsgs, InErrors,
OutMsgs, OutErrors

state<egp>

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

See <interface>InPkts, OutPktsstate<snmp>

See <interface>true or falseisArray

See <interface>java.lang.Floatvalue

See <interface>javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 383

DescriptionPossible ValuesAttributesXML
Element

This attribute is used within an
<updateState> element.

Defines the system information for the
object. It can be used to define the

None<system>

system attributes, such as location,
description, contact.

How to add a group with SNMP states defined in XML

<addObject id="RectGroup">
<class>ilog.tgo.model.IltRectGroup</class>
<attribute name="name">RectGroup</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpRect">

<x>489</x> <y>356</y> <width>80</width> <height>60</height>
</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSNMPObjectState">

<state>Down</state>
<ip state="InDiscards">50</ip>
<ip state="Forwarding" javaClass="java.lang.Boolean">true</ip>
<interface state="InOctets" isArray="true" javaClass="java.lang.Integer">

<value>50</value>
<value>70</value>
<value>58</value>
<value>60</value>
<value>58</value>
<value>62</value>

</interface>
</attribute>

</addObject>

How to set SNMP states to an existing object using XML
The following example shows how to set SNMP states to an object that already exists in the
data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

<updateObject id="NE1">
<attribute name="objectState" javaClass="ilog.tgo.model.IltSNMPObjectState">

<state>Up</state>
<interface state="InOctets">100</interface>
<ip state="InDiscards">50</ip>
<system>
<attribute name="location">San Francisco</attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S384

<attribute name="description">Test machine</attribute>
</system>

</attribute>
</updateObject>

How to update SNMP states incrementally using XML

<updateObject id="NE1">
<updateState>
<state>Up</state>
<interface state="InOctets">80</interface>
<ip state="InDiscards" operation="remove"/>
<system>
<attribute name="location">Los Angeles</attribute>
<attribute name="description" null="true"/>

</system>
</updateState>

</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 385

Miscellaneous states

The class IltObjectStateSAXInfo is the XML serialization class that allows you to read and
write miscellaneous states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the Miscellaneous state system
DescriptionPossible ValuesAttributesXML

Element

Miscellaneous stateSoftwareUpload,
SoftwareDownload,

<misc>

SoftwareLimitExceeded,
MismatchedCard, UnknownCard,
DoorAjar,
LowTemperatureWarning,
HighTemperatureWarning,
TestPassed, TestFailed,
ThresholdCrossing,
PlanToRemove, UnderRepair

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the
state will be set in the object state.
This attribute is used within an
<updateState> element.

How to add a network element with Miscellaneous states defined
in XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>68</x> <y>61</y>

</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Active</usage>

</state>
<misc>LowTemperatureWarning</misc>
<misc>DoorAjar</misc>

</attribute>
</addObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S386

How to set Miscellaneous states to an existing object using XML
The following example shows how to set miscellaneous states to an object that already exists
in the data source. You can achieve this by using the XML tag <updateObject> to modify
the attribute objectState:

<updateObject id="NE1">
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<misc>DoorAjar</misc>

</attribute>
</updateObject>

How to update Miscellaneous states incrementally using XML

<updateObject id="NE1">
<updateState>
<misc operation="remove">DoorAjar</misc>
<misc>LowTemperatureWarning</misc>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 387

Performance states

The class IltObjectStateSAXInfo is the XML serialization class that allows you to read and
write Performance states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the Performance state system
DescriptionPossible ValuesAttributesXML Element

SAN stateInput, In, In_Kb,
In_Mb, In_Gb,

state<performance>

Output, Out,
Out_Kb, Out_Mb,
Out_Gb, Print,
Generic, Power,
Temperature,
Bandwidth

This attribute is optional. It defines whether
the state value is an array or not.

true or falseisArray

This attribute is optional. When describing
array values, each value in the array is
enclosed in an element.

java.lang.Floatvalue

This attribute is optional. It defines the
value of the state. The default value is
java.lang.Float.

javaClass

This attribute is optional. It specifies
whether the state should be added

add, removeoperation

to/removed from the object state. The
default value is add indicating that the state
will be set in the object state.This attribute
is used within an <updateState>
element.

How to add a network element with Performance states defined
in XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>68</x> <y>61</y>

</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S388

<usage>Active</usage>
</state>
<performance state="In_Kb" isArray="true" javaClass="java.lang.Integer">
<value>50</value>
<value>70</value>
<value>58</value>
<value>60</value>
<value>58</value>
<value>62</value>
<value>54</value>
<value>24</value>
<value>56</value>
<value>85</value>
<value>58</value>
<value>65</value>
<value>12</value>
<value>35</value>

</performance>
<performance state="Input">200</performance>

</attribute>
</addObject>

How to set Performance states to an existing object using XML
The following example shows how to set Performance states to an object that already exists
in the data source. You can achieve this by using the XML tag <updateObject> to modify
the attribute objectState:

<updateObject id="NE1">
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<performance state="Input">200</performance>

</attribute>
</updateObject>

How to update Performance states incrementally using XML

<updateObject id="NE1">
<updateState>
<performance state="Input" operation="remove"/>
<performance state="Bandwidth">50</performance>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 389

SAN states

The class IltObjectStateSAXInfo is the XML serialization class that allows you to read and
write SAN states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the SAN state system
DescriptionPossible ValuesAttributesXML

Element

SAN stateIO, Allocated,
Available,

state<SAN>

BackRecovery,
Bandwidth, Capacity,
CapacityUtilization,
CPU, DataAccessDelay,
Fragmentation,
LostData, Usage

This attribute is optional. It defines whether the
state value is an array or not.

true or falseisArray

This attribute is optional.When describing array
values, each value in the array is enclosed in
an element.

java.lang.Floatvalue

This attribute is optional. It defines the value of
the state. The default value is java.lang.
Float.

javaClass

This attribute is optional. It specifies whether
the state should be added to/removed from the

add, removeoperation

object state.The default value is add indicating
that the state will be set in the object state.This
attribute is used within an <updateState>
element.

How to add a network element with SAN states defined in XML

<addObject id="NE1">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>68</x> <y>61</y>

</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<administrative>ShuttingDown</administrative>
<operational>Enabled</operational>
<usage>Active</usage>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S390

</state>
<SAN state="Bandwidth" isArray="true" javaClass="java.lang.Integer">
<value>50</value>
<value>70</value>
<value>30</value>

</SAN>
</attribute>

</addObject>

How to set SAN states to an existing object using XML
The following example shows how to set SAN states to an object that already exists in the
data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

<updateObject id="NE1">
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<SAN state="Allocated">88</SAN>

</attribute>
</updateObject>

How to update SAN states incrementally using XML

<updateObject id="NE1">
<updateState>
<SAN state="Allocated" operation="remove"/>
<SAN state="Fragmentation">75</SAN>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 391

SONET states

The class IltSONETObjectStateSAXInfo is the XML serialization class that allows you to
read and write SONET states in the XML format.

The following table describes the XML elements that can be used:

XML elements in the SONET state system
DescriptionPossible ValuesAttributesXML Element

SONET primary stateDisabled, Inactive,
Active,

None<state>

ActiveProtecting,
TroubledProtected,
TroubledUnprotected

SONET protection stateExercisor, ForcedSwitch,
Locked, ManualSwitch,
Pending, WaitToRestore

<protection>

This is an optional attribute. It defines
whether the protection is set in the

true or falsefrom

“from” end point of the link. By default,
the value is true.

This is an optional attribute. It defines
whether the protection is set in the “to”

true or falseto

end point of the link. By default, the
value is true.

How to add a link with a SONET state defined in XML

<addObject id="Link1">
<class>ilog.tgo.model.IltLink</class>
<link> <from>PolyGroup</from> <to>NE3</to> </link>
<attribute name="name">Link1</attribute>
<attribute name="media">Fiber</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>Active</state>
<protection from="true">Exercisor</protection>
<protection to="true">Locked</protection>

</attribute>
</addObject>

How to set SONET states to an existing object using XML
The following example shows how to set SONET states to an object that already exists in
the data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S392

<updateObject id="Link1">
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>Active</state>
<protection from="true" to="false">Exercisor</protection>
<protection>Locked</protection>

</attribute>
</updateObject>

How to update SONET states incrementally using XML

<updateObject id="Link1">
<updateState>
<protection from="false" to="true">Exercisor</protection>
<protection from="false" to="false">Locked</protection>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 393

BiSONET states

The class IltBiSONETObjectStateSAXInfo is the XML serialization class that allows you to
read and write BiSONET states in the XML format.

The following table describes the XML elements that can be used:

XML elements in the BiSONET state system
DescriptionPossible ValuesAttributesXML Element

BiSONET primary stateDisabled, Inactive,
Active, ActiveProtecting,

None<state>

TroubledProtected,
TroubledUnprotected

BiSONET reverse stateDisabled, Inactive,
Active, ActiveProtecting,

None<reverseState>

TroubledProtected,
TroubledUnprotected

BiSONET protection stateExercisor, ForcedSwitch,
Locked, ManualSwitch,
Pending, WaitToRestore

<protection>

This is an optional attribute. It
defines whether the protection is

true or falsefrom

set in the “from” end point of the
link. By default, the value is true.

This is an optional attribute. It
defines whether the protection is

true or falseto

set in the “to” end point of the link.
By default, the value is true.

How to add a link with a BiSONET state defined in XML

<addObject id="Link1">
<class>ilog.tgo.model.IltLink</class>
<link> <from>PolyGroup</from> <to>NE3</to> </link>
<attribute name="name">Link1</attribute>
<attribute name="media">Fiber</attribute>
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBiSONETObjectState">
<state>Active</state>
<reverseState>ActiveProtecting</reverseState>
<protection from="true">Exercisor</protection>
<protection to="true">Locked</protection>

</attribute>
</addObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S394

How to set BiSONET states to an existing object using XML
The following example shows how to set BiSONET states to an object that already exists in
the data source. You can achieve this by using the XML tag <updateObject> to modify the
attribute objectState:

<updateObject id="Link1">
<attribute name="objectState"

javaClass="ilog.tgo.model.IltBiSONETObjectState">
<state>Active</state>
<reverseState>ActiveProtecting</reverseState>
<protection from="true" to="false">Exercisor</protection>
<protection>Locked</protection>

</attribute>
</updateObject>

How to update BiSONET states incrementally using XML

<updateObject id="Link1">
<updateState>
<reverseState>TroubledProtected</reverseState>
<protection from="false" to="true">Exercisor</protection>
<protection from="false" to="false">Locked</protection>

</updateState>
</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 395

Alarm states

The class IltAlarmObjectStateSAXInfo is the XML serialization class that allows you to
read and write alarm states in the XML format.

The following table describes the XML elements that can be used.

XML elements in the Alarm state system
DescriptionPossible ValuesAttributesXML

Element

Delimits alarm state definition<alarms>

This is an optional attribute. It
defines whether the managed object

true or falsenotReporting

is currently not reporting its alarm
state.

This is an optional attribute. It
defines whether the managed object
is currently without connectivity.

true or falselossOfConnectivity

Structural element that lets you
specify new alarms for an object

<new>

This attribute is mandatory. It defines
the severity of the new alarm to be
set.

Raw.Critical, Raw.
Major, Raw.Minor, Raw.
Warning or Raw.Unknown

severity

Impact.CriticalHigh,
Impact.CriticalLow,
Impact.MajorHigh,
Impact.MajorLow,
Impact.MinorHigh,
Impact.MinorLow,
Impact.WarningHigh,
Impact.WarningLow or
Impact.Unknown

This attribute is optional. It specifies
whether the alarm should be set,

set, add, removeoperation

added to or removed from the object
state. The default value is set
indicating that the alarm will be set
in the object state. This attribute is

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S396

DescriptionPossible ValuesAttributesXML
Element

used within an <updateState>
element.

Structural element that lets you
specify acknowledged alarms for an
object

<ack>

This attribute is mandatory. It defines
the severity of the acknowledged
alarm to be set.

Raw.Critical, Raw.
Major, Raw.Minor, Raw.
Warning or Raw.Unknown

severity

Impact.CriticalHigh,
Impact.CriticalLow,
Impact.MajorHigh,
Impact.MajorLow,
Impact.MinorHigh,
Impact.MinorLow,
Impact.WarningHigh,
Impact.WarningLow or
Impact.Unknown

This attribute is optional. It specifies
whether the alarm should be set,

set, add, removeoperation

added to or removed from the object
state. The default value is set
indicating that the alarm will be set
in the object state. This attribute is
used within an <updateState>
element.

How to add a network element and a link with alarms defined in
XML

<addObject id="NE2">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE2</attribute>
<attribute name="type">Mainframe</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>229</x> <y>126</y>

</attribute>
<attribute name="objectState"
javaClass="ilog.tgo.model.IltBellcoreObjectState">
<state>EnabledActive</state>
<alarms>
<new severity="Raw.Critical">5</new>
<ack severity="Impact.WarningLow">2</ack>

</alarms>
</attribute>

</addObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 397

<addObject id="Link2">
<class>ilog.tgo.model.IltLink</class>
<link> <from>PolyGroup</from> <to>NE3</to> </link>
<attribute name="name">Link2</attribute>
<attribute name="media">Fiber</attribute>
<attribute name="objectState" javaClass="ilog.tgo.model.IltSONETObjectState">

<state>Active</state>
<alarms notReporting="true" />

</attribute>
</addObject>

How to set alarms to an existing object using XML
The following example shows how to set alarms to an object that already exists in the data
source. You can achieve this by using the XML tag <updateObject> to modify the attribute
objectState:

<updateObject id="NE1">
<attribute name="objectState" javaClass="ilog.tgo.model.IltOSIObjectState">

<state>
<operational>Disabled</operational>
<usage>Idle</usage>
<administrative>Unlocked</administrative>

</state>
<alarms>
<new severity="Raw.Critical">2</new>
<new severity="Raw.Warning">1</new>
<ack severity="Raw.Minor">3</ack>

</alarms>
</attribute>

</updateObject>

How to update alarms incrementally using XML

<updateObject id="NE1">
<updateState>
<alarms>
<new severity="Raw.Critical" operation="remove">1</new>
<new severity="Raw.Warning" operation="add">1</new>
<ack severity="Raw.Critical" operation="add">1</ack>
<ack severity="Raw.Minor" operation="remove">3</ack>

</alarms>
</updateState>

</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S398

Trap states

The class IltTrapObjectStateSAXInfo is the XML serialization class that allows you to read
and write traps in the XML format.

The following table describes the XML elements that can be used.

XML elements in the Trap state system
DescriptionPossible ValuesAttributesXML

Element

Delimits trap state definitionNone<traps>

Structural element that lets you specify new
traps for an object

<new>

This attribute is mandatory. It defines the type
of the new trap to be set.

ColdStart, WarmStart,
LinkFailure,

type

AuthenticationFailure,
EGPNeighborLoss

This attribute is optional. It specifies whether
the trap should be set, added to or removed

set, add, removeoperation

from the object state. The default value is set
indicating that the trap will be set in the object
state. This attribute is used within an
<updateState> element.

Structural element that lets you specify
acknowledged traps for an object

<ack>

This attribute is mandatory. It defines the
severity of the acknowledged trap to be set.

ColdStart, WarmStart,
LinkFailure,

type

AuthenticationFailure,
EGPNeighborLoss

This attribute is optional. It specifies whether
the trap should be set, added to or removed

set, add, removeoperation

from the object state. The default value is set
indicating that the trap will be set in the object
state. This attribute is used within an
<updateState> element.

How to aAdd a network element with traps defined in XML

<addObject id="NE2">
<class>ilog.tgo.model.IltNetworkElement</class>
<attribute name="name">NE2</attribute>
<attribute name="type">Mainframe</attribute>
<attribute name="position" javaClass="ilog.cpl.graphic.IlpPoint">
<x>229</x> <y>126</y>

</attribute>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 399

<attribute name="objectState" javaClass="ilog.tgo.model.IltSNMPObjectState">

<state>Up</state>
<traps>
<new type="LinkFailure">5</new>
<ack type="AuthenticationFailure">2</ack>

</traps>
</attribute>

</addObject>

How to set traps to an existing object using XML
The following example shows how to set traps to an object that already exists in the data
source. You can achieve this by using the XML tag <updateObject> to modify the attribute
objectState:

<updateObject id="NE1">
<attribute name="objectState" javaClass="ilog.tgo.model.IltSNMPObjectState">

<state>Up</state>
<traps>
<new type="LinkFailure">2</new>
<ack type="AuthenticationFailure">3</ack>

</traps>
</attribute>

</updateObject>

How to update traps incrementally using XML

<updateObject id="NE1">
<updateState>
<traps>
<new type="ColdStart">1</new>
<new type="LinkFailure" operation="remove">1</new>
<new type="AuthenticationFailure" operation="add">1</new>
<ack severity="LinkFailure" operation="add">1</ack>
<ack severity="AuthenticationFailure" operation="remove">3</ack>

</traps>
</updateState>

</updateObject>

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S400

Information window

In most cases, secondary states are displayed as small icons in the top left corner of the
base or plinth of the telecom object graphic.

When an object holds several such secondary states, they are represented as follows:

♦ Two secondary state icons can be displayed simultaneously as in the figure below:

♦ When three or more secondary states are to be displayed, an Information icon replaces
the secondary state icons as shown in the figure below:

♦ This icon provides an interactor, used to expand an information box that provides a list
of existing secondary states when you click with the left mouse button (see the following
figure):

This interactor is an object interactor. As such it is active only if the view interactor
set to the view delegates events to object interactors. To have a view interactor

Note:

delegate event processing to an object interactor, use the method
setUsingObjectInteractor(boolean) of the class IlpViewInteractor.

♦ Once the Information window is displayed, the rectangle that encompasses the Information
icon becomes transparent and remains so until any new secondary state change is notified

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 401

to the telecom object. After the Information window has been closed (by clicking on the
Information icon with the left mouse button), the Information icon looks like this:

The display of a collection of secondary states is replaced with the display of an information
icon when there are more than a threshold number of icons; the default is two icons. The
information window representation as well as the threshold number of icons can be
customized through CSS. For details on using CSS to customize information windows, refer
to .

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S402

System window

In the SNMP State Dictionary there is a group called System, which is responsible for storing
information about the system being managed. This group is based on the MIB-II System
Group that contains attributes such as description, location, and contact. The SystemWindow
represents this information graphically, listing the contents of the attributes in a textual
format.

♦ When there are attributes present in the object, the System icon is present as shown in
the figure below:

♦ This icon provides an interactor, used to expand a System window that provides a list of
existing attributes when you click the icon (see the following figure):

This interactor is an object interactor. As such, it is active only if the view interactor set
to the view delegates events to object interactors. To have a view interactor delegate

Note:

event processing to an object interactor, use the method
setUsingObjectInteractor(boolean) of the class IlpViewInteractor.

♦ Once the System window is displayed, the System icon background becomes gray and
remains so until notification of an attribute change is sent to the telecom object. After
the System window has been closed (by clicking the System icon), the System icon looks
like this:

You can customize the way the System attributes are presented in the System Window, as
well as add new attributes. For more information, see Adding a user-defined business
attribute to the system window.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 403

Customizing the representation of states and alarms

For information on how to customize the graphic representation of states and alarms, refer
to Customizing object states.

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S404

A
alarms 25

class 264
color coding 271
count 343
creating with the API 269, 350
customizing 271, 404
defined in XML 267, 396
graphical cues 342
in a table 271
in a tree 271
in subnetworks 187
loading 267
object 350
properties 26
representation 187, 271
severity 343
states 342, 343

B
Bellcore

graphical representations 284
in XML 378
primary states 284
secondary states 404

Bellcore State Dictionary 333
visuals 284

BiSONETObjectState class 169
BTS (Base Transceiver Station) 23

antennas 250
class 250
creating with the API 254
customizing 256
defined in XML 252
equipment 251
loading 252
representation in a table 256
representation in a tree 256

business class manager 66
business classes 11, 44

predefined 30
business model 44

API 58
defining in XML 48
dynamic classes 48, 68, 72
integrating 45
loading 56

business objects 44
adding 97, 98
defining 101
removing 99

C
card carriers 218

class 219
creating with the API 222
defined in XML 220
definition 218
loading 220

card items 226
class 227

cards 20, 202
class 203
creating with the API 206
customizing 248
defined in XML 204
loading 204
representation in a table 247
representation in a tree 247

cluster network element 122
complex types 51

D
data sources 12

API 82
batches 106
implementing 110

© Copyright IBM Corp. 1987, 2009 405

I N D E X

Index

parsing 108
writing 108

E
empty slots 210

class 211
creating with the API 214
defined in XML 212
graphic representation 214
loading 212

G
groups

class 172
creating with the API 177
customizing 179
defined in XML 175
loading 175
representation in a table 179
representation in a tree 179
shapes 173

I
IlpAbstractClass class 59
IlpAttribute interface 62
IlpAttributeGroup interface 63
IlpAttributeValueChangeSupport interface 75
IlpAttributeValueHolder interface 63
IlpAttributeValueProvider interface 64
IlpBeansAttribute class 62
IlpBeansClass class 59
IlpBeansObject class 60, 97
IlpChild interface 104
IlpClass interface 44, 59
IlpClassManager interface 66
IlpComputedAttribute class 62, 64
IlpContainer interface 104
IlpDataSource interface 81, 82
IlpDataSourceLoader class 108
IlpDataSourceOutput class 108, 109
IlpDefaultAttribute class 62
IlpDefaultAttributeGroup class 63
IlpDefaultClass class 30, 59
IlpDefaultClassManager class 66
IlpDefaultDataSource class 108
IlpDefaultObject class 30
IlpExtendedAttributeGroup class 63
IlpLink interface 101, 104
IlpLinkExtremity interface 104
IlpMakeLinkInteractor class 163
IlpMutableAttributeGroup interface 63
IlpMutableClass interface 59
IlpMutableDataSource interface 82
IlpObject interface 44, 60, 81
IlpObjectReferenceAttribute class 62
IlpObjectSupport class 60

IlpPolyline class 173
IlpRect class 173
IlpReferenceAttribute class 62
IlpSAXSerializable interface 51
IlpShelfItemPosition class 202
IlpStaticAttribute class 62
IltAlarm class 358
IltAlarm.ImpactSeverity class 358
IltAlarm.Severity class 358
IltAlarm.State class 358, 364, 365
IltAlarmObjectState class 361, 365
IltBellcore class 358
IltBellcore.SecState class 364
IltBellcore.State class 364
IltBellcoreObjectState class 364
IltBiSONETObjectState class 160, 365
IltBTS class 30, 250
IltBTSAntenna class 30, 250
IltCard class 30, 203
IltCardCarrier class 219
IltCardItem class 227
IltDefaultDataSource class 82, 98, 110
IltEmptySlot class 211
IltGroup class 30, 172
IltLed class 30, 203, 231
IltLed.Type class 235
IltLimitedNumericState class 338, 364
IltLinearGroup class 173
IltLink class 30, 148, 151, 154
IltLinkBundle class 30
IltLinkLayout class 163
IltLinkPort class 163
IltLinkSet class 30
IltMisc class 358
IltMisc.SecState class 358, 364
IltNetworkElement class 30, 41, 116, 250
IltObject class 34, 38, 154, 368
IltObjectInfo class 41
IltObjectState class 350, 361, 368
IltOffPageConnector class 30, 258
IltOSI class 358
IltOSI.Availability class 364
IltOSI.Procedural class 364
IltOSI.Repair class 364
IltOSI.Standby class 364
IltOSI.State class 364
IltPerformance class 358
IltPolygon class 173
IltPolyGroup class 173
IltPort class 30, 203, 238, 239
IltRectGroup class 173
IltSAN class 358
IltShelf class 30, 195

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S406

IltShelfItem class 202
IltShortLinkLayout class 163
IltSNMP class 358
IltSNMP.EGP class 358
IltSNMP.ICMP class 358
IltSNMP.Interface class 358
IltSNMP.IP class 358
IltSNMP.SNMP class 358
IltSNMP.State class 358, 364
IltSNMP.System class 358
IltSNMP.TCP class 358
IltSNMP.UDP class 358
IltSNMPObjectState class 364
IltSONET class 358
IltSONET.Protection class 358, 365
IltSONET.State class 358, 365
IltSONETObjectState class 365
IltSONETObjectStateSAXInfo class 392
IltState class 350, 358, 368
IltStateSystem class 358
IltTrap class 358
IltTrap.State class 358, 364, 365
IltTrap.Type class 358
IltTrapObjectState class 361, 365

J
JavaBeans

design patterns 68

L
LED (Light Emitting Diode) 230

class 231
creating with the API 234
defined in XML 232
loading 232
predefined 235

link bundles
class 154
creating with the API 156
defined in XML 154
loading 154

link sets 151
class 151
creating with the API 152
defined in XML 151
loading 151

links 148
class 148
connection ports 163
creating with the API 149
customizing 161
defined in XML 148
graphical representations 158
link media 159
loading 148
network element 367

oriented 160
programming 167
representation in a table 162
representation in a tree 162
self-links 161

M
Misc State Dictionary 336

icons 404
Miscellaneous states

in XML 386

N
network elements 14, 116

creating 120
customizing 143
defined in XML 118
families 139
functions 135
groups 17
links 16
loading 118
partial 14, 140
representation 122
representation in a table 143
representation in a tree 143
shortcuts 15, 141
sizes 142
subnetworks 19
types 122

O
object states 358

Bellcore 364
defining in XML 371
dictionaries 363
information window 401
OSI 364

off-page connectors 24, 258
class 258
creating with the API 260
customizing 261, 262
defined in XML 259
loading 259
representation in a table 262
representation in a tree 262

OSI
graphical representations 276
in XML 374
object states 364

OSI State Dictionary 276, 331

P
Performance State Dictionary 337
Performance states

in XML 388
ports 20, 238

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S 407

class 239
creating with the API 242
defined in XML 240
graphical representation 187
loading 240
predefined 243

predefined business classes 30
extending 39, 54, 75

predefined business objects
adding 96
attributes 34
BTS 250
card carriers 218
card items 226
cards 20, 202
computed attributes 38
empty slots 210
graphical representations 327
groups 172
LEDs 20, 230
links 16
network elements 14, 116
off-page connectors 24, 258
passive devices 328
ports 20, 238
shelves 20, 194
subnetworks 182

S
SAN

in XML 390
SAN State Dictionary 338

visuals 316
shelves 20, 194

cards 202
class 195
creating with the API 197
customizing 248
defined in XML 196
empty slots 210
loading 196
representation in a table 247
representation in a tree 247

SNMP
graphical representations 295, 404
in XML 381

SNMP State Dictionary 334
system window 403

SONET
graphical representations 320, 323
in XML 392

SONET State Dictionary 339
secondary state 339, 404
visuals 320

state dictionaries 329
Bellcore 333

Misc 336
OSI 331
Performance 337
primary states 329
SAN 338
secondary states 329
SNMP 334
SONET 339

states 26
alarm 26, 342
base elements 26
classes 358
customizing 404
modifiers 26
systems 358
trap 353
values 358

subnetworks 19, 182
creating with the API 185
customizing 182
defined in XML 183
loading 183
representing alarms 187

T
traps

color coding 271
graphical representations 271
in XML 399
states 353
types 353, 354
values 355

B U S I N E S S O B J E C T S A N D D A T A S O U R C E S408

	Table of contents
	Introducing business objects and data sources
	Overview
	Business model and business classes
	Data sources
	Predefined business objects
	Network elements
	Links
	Groups
	Subnetworks
	Shelves, cards, ports, and LEDs
	Base Transceiver Stations (BTS)
	Off-page connectors
	Alarms

	States
	Predefined business classes
	Overview of the predefined business classes
	Attributes of predefined business objects
	Computed attributes based on the object state
	Extending predefined business classes

	The business model
	Business model, business classes, and business objects
	Integrating the business model with the back end
	Defining the business model in XML
	Defining a dynamic class in XML
	Extending a predefined business class in XML
	Loading the business model

	Business model API
	Class overview
	Business class API
	Business object API
	Attribute API

	Business class manager API
	Defining the business model from JavaBeans classes
	Defining the business model with dynamic classes
	Defining a dynamic class using the API
	Extending a predefined business class using the API

	Data sources
	About data sources
	Data source API
	Adding business objects from XML
	Reading an XML file into a data source
	Writing the data source content to XML
	Adding predefined business objects

	Adding business objects from JavaBeans
	Adding dynamic business objects
	Defining business object relationships
	Grouping changes in batches
	Advanced parsing and writing of a data source
	Implementing a new data source

	Network elements
	Network element class
	Loading a network element defined in XML
	Creating a network element with the API
	Representation of network elements in a network
	Network element types
	Network element functions
	Network element families
	Partial network elements
	Shortcut network elements
	Network element sizes

	Representation of network elements in a table and in a tree

	Links
	Classes overview
	Links
	Link sets
	Link bundles
	Representation of links in a network
	Representation of links in a table and in a tree
	Link connection ports
	Link programming examples

	Groups
	Group class
	Group shapes
	Loading a group defined in XML
	Creating a group with the API
	Representation of groups in a table and in a tree

	Subnetworks
	About subnetworks
	Loading a subnetwork defined in XML
	Creating a subnetwork with the API
	Representing alarms in expanded subnetworks

	Shelves and cards
	Overview of classes
	Shelves
	Overview of shelves
	Shelf class
	Loading a shelf defined in XML
	Creating a shelf with the API

	Shelf items
	Cards
	Overview of cards
	Card class
	Loading a card defined in XML
	Creating a card with the API

	Empty slots
	Overview of empty slots
	Empty slot class
	Loading an empty slot defined in XML
	Creating an empty slot with the API

	Card carriers
	Overview of card carriers
	Card carrier class
	Loading a card carrier defined in XML
	Creating a card carrier with the API

	Card items
	Overview of card items
	Card item class
	LEDs
	Overview of LEDs
	LED class
	Loading an LED defined in XML
	Creating an LED with the API
	Predefined LED types

	Ports
	Overview of ports
	Port class
	Loading a port defined in XML
	Creating a port with the API
	Predefined port types

	Representation of shelves and cards in a table and in a tree

	BTS (Base Transceiver Station)
	BTS Class
	Loading a BTS object defined in XML
	Creating a BTS object with the API
	Representation of BTS objects in a table and in a tree

	Off-page connectors
	Off-page connector class
	Loading an off-page connector defined in XML
	Creating an off-page connector with the API
	Representation of off-page connectors in a network
	Representation of off-page connectors in a table and in a tree

	Alarms
	Alarm object class
	Loading an alarm defined in XML
	Creating an alarm with the API
	Representation of alarms in a network
	Representation of alarms in a table and in a tree

	Lookup tables for state visuals
	The OSI state dictionary visuals
	Graphical representation of the OSI primary states
	Graphical representation of OSI secondary states

	The Bellcore state dictionary visuals
	Graphical representation of the Bellcore primary states
	Graphical representation of the Bellcore secondary states

	The SNMP state dictionary visuals
	Graphical representation of SNMP primary states
	Graphical representation of SNMP secondary states

	The Misc state dictionary visuals
	Graphical representation of Misc secondary states

	The Performance state dictionary visuals
	Graphical representation of Performance secondary states

	The SAN state dictionary visuals
	Graphical representation of SAN secondary states

	The SONET state dictionary visuals
	Graphical representation of SONET primary states
	Graphical representation of SONET secondary states

	States
	Graphical representations of predefined business object states
	State dictionaries: an overview
	The OSI state dictionary
	The Bellcore state dictionary
	The SNMP state dictionary
	Miscellaneous states: the Misc state dictionary
	Performance states: the Performance state dictionary
	SAN states: the SAN state dictionary
	Link states: the SONET state dictionary
	Alarm states
	Graphical representation of alarm conditions
	Setting the alarm counters
	Defining alarm states with the API
	Loading alarm states in XML

	Trap states
	Managing states
	State values, state classes, and state systems
	Object states
	The object state classes
	Modifying states and statuses
	Accessing and removing states

	Defining states in XML
	Overview
	OSI states
	Bellcore states
	SNMP states
	Miscellaneous states
	Performance states
	SAN states
	SONET states
	BiSONET states
	Alarm states
	Trap states

	Information window
	System window
	Customizing the representation of states and alarms

	Index

