
IBM ILOG JViews TGO V8.6

Context and Deployment
Descriptor

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

The application context...5
The concepts...6

Initializing a context..9
Using a deployment descriptor...10
Using the API...13

About internationalization..16

The context services..19
Type converter...21

URL access service...24

Image repository service..27

Synchronization strategy..29

Class manager...31

Data source manager..33

Blinking manager..34

Class loader...36

Monitoring service..37

Index..39

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R4

The application context

Explains what the application context and the deployment descriptor are, and how to use
them.

In this section

The concepts
Describes two key terms: context and deployment descriptor.

Initializing a context
Describes how to initialize a context either by loading a deployment descriptor file or through
the API.

About internationalization
Describes how to define a context locale and how to access the localized resources.

© Copyright IBM Corp. 1987, 2009 5

The concepts

IBM® ILOG® JViews TGO provides contextual information and services that can be shared
by a number of components in the broad sense of the term, that is, graphic components,
data sources, and adapters. This common information can be accessed through a class that
defines the application context, or in short, the context.

Context
The context encapsulates all common data and services in one object and provides access
to information that is usually defined as singletons or static data.

All JViews TGO components can access contextual information from this single entry point
called the context. In JViews TGO this idea of application context is similar to the Java™
BeansContext as defined in “Extensible Runtime Containment and Service Protocol for
JavaBeans™”. (For more information, see http://java.sun.com.) However, you do not have
to be familiar with the BeansContext API to understand the concept of context in JViews
TGO.

The context is defined by the IlpContext interface. This interface allows you to retrieve
contextual information such as the locale and properties, as well as a number of services
that are more than simple information providers. These services are the following:

♦ Type converter

♦ URL access service

♦ Image repository service

♦ Synchronization strategy

♦ Class manager

♦ Data Source manager

♦ Blinking manager

♦ Class Loader service

♦ Monitoring service

These services are described in detail in section The context services.

Generally, there is only one context per application. However, you can define multiple
contexts if your application is to run in a multiuser environment or if different services
should be accessible from various parts of the application. For more information, see Creating
a new context.

Deployment descriptor
The deployment descriptor is an XML file used to initialize an application context. It is tagged
with the XML element <deployment>. The context data and services to be initialized when
the application is launched are defined between the opening and closing tags.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R6

http://java.sun.com

The deployment descriptor represents an easier and faster alternative for configuring a
context than the API, as you do not have to write a single line of code nor recompile when
you make a change.

For details on how to write and load a deployment descriptor, see Writing a deployment
descriptor and How to load a deployment descriptor using the parse method.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 7

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R8

Initializing a context

Describes how to initialize a context either by loading a deployment descriptor file or through
the API.

In this section

Using a deployment descriptor
Describes how to initialize a context by loading a deployment descriptor file.

Using the API
Describes how to initialize a context by using the API.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 9

Using a deployment descriptor

It is strongly recommend that you use the deployment descriptor alternative as it enables
you to configure a context easily without having to write a single line of code. For more
information, seeWriting a deployment descriptor and How to load a deployment descriptor
using the parse method.

You can initialize the default context by loading a deployment descriptor when calling the
method IltSystem. There are several versions of the Init method, each with a different
number of parameters.

The version with no parameter will attempt to load a default deployment parser named
cpldeploy.xml by looking in the following places in this order:

1. The current directory

2. The user’s home directory

3. The user.home system property

4. The classpath

For more information, see the class IltSystem.

How to configure the default context through a deployment
descriptor

if (isApplet())
IltSystem.Init(this, "deploy.xml");

else
IltSystem.Init("deploy.xml");

You can only call IltSystem once, when you initialize the application for the first time. Any
further call to this method is discarded.

If the method IltSystem.Init has not been called before IltSystem.GetDefaultContext
is called, the latter will implicitly call IltSystem.Init() (the version with no parameter) to
initialize the default context. This has the following two effects, one a drawback and one a
feature:

♦ If you call an IltSystem.Initmethod with parameters, youmust make sure that instances
of classes using the default context are not created before IltSystem.Init is invoked.
For example these instances should not be created during static initialization.

♦ If you are working in an IDE, you can configure the default context by changing the default
deployment descriptor at design time. Your context will then be automatically loaded
when you instantiate the Beans at run time.

Writing a deployment descriptor
The deployment descriptor is defined by an XML file that describes how to initialize the
contextual information and services.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R10

Following is a basic example that shows you what a deployment descriptor file looks like.
For a more detailed description of its syntax, see the class IlpDeploymentParser.

<?xml version="1.0"?>
<deployment xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/deploy.xsd">

<urlAccess verbose="true">
<relativePath>data/images</relativePath>

</urlAccess>
<classManager>

<file>model.xml</file>
</classManager>

</deployment>

A deployment descriptor is delimited by the XML element <deployment>. This element can
contain a number of subelements each corresponding to the contextual information and
services as described in The concepts.

The elements that you can use to define your deployment descriptor in XML format can be
found in the XML schema file <installdir> /data/ilog/cpl/schema/deploy.xsd.

XML elements are not necessarily read in the order in which they appear in the file.
For example, the <urlAccess> element will be systematically read before the

Note:

<classManager> element even if it is placed after it in the deployment descriptor file.
Therefore, you can arrange these subelements in any order.

In the example, the deployment descriptor is composed of two subelements:

♦ The <urlAccess> element is read before the elements that potentially use it, that is,
elements that require files to be loaded (the <classManager>, for example).

♦ The <classManager> element includes a list of file elements that contain filenames. These
files are read in the order in which they appear in the file.

How to load a deployment descriptor using the parse method
Once you have created a context, you can initialize it from an XML deployment descriptor
using the parse method of IlpDeploymentParser.

The following example shows how to use this method to load a deployment descriptor:

IlpDefaultURLAccessService urlBootService = new IlpDefaultURLAccessService();
URL url = urlBootService.getFileLocation("deploy.xml");
IlpDeploymentParser parser = new IlpDeploymentParser(url);
IltDefaultContext context = new IltDefaultContext();
try {
parser.parse(null, context);

} catch (Exception e) {

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 11

e.printStackTrace();
}

In this code, IlpDefaultURLAccessService retrieves the URL to the deploy.xml file, then
a new context is created and passed to the parse method. Note that the first parameter of
the parse method is not used here.

Extending the deployment descriptor
If you want the deployment descriptor to perform specific initialization that is not part of
the JViews TGO contextual information and services, you can extend its XML format with
custom elements and write a handler to process these elements. Custom elements will be
passed to the handler as DOM elements.

Here is a very basic example of a deployment descriptor with only one custom element:

<?xml version="1.0"?>
<deployment xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/deploy.xsd">
<custom handlerClass="UserHandler"/>Joe Williams</custom>

</deployment>

Following is a basic handler class that sets the user name and stores it as a context property:

public class UserHandler implements IlpDeploymentParser.IlpCustomHandler {
public UserHandler() {}
public void handleCustomElement(Element customElement,
IlpDefaultContext context) {
String name = customElement.getTextTrim();
context.setProperty("userName",name);

}
}

The deployment parser processes <custom> elements in the order in which they appear,
after dealing with standard elements. It tries to load the Java™ class specified in the
handlerClass attribute and instantiate it using the default constructor. Then it calls the
method handleCustomElement(org.jdom.Element, ilog.cpl.service.IlpDefaultContext).

Note that the custom handler must implement IlpDeploymentParser.IlpCustomHandler
and provide a default constructor (with no parameter).

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R12

Using the API

In more complex cases—if you need to add your own properties or services to the context—you
will have to use the context API. For details, see Creating a new context and Modifying a
context.

You can use the context API in conjunction with a deployment descriptor. In other
words, you can extend the syntax of the deployment descriptor and process added

Note:

XML elements with a dedicated handler. For more information, see Extending the
deployment descriptor.

You can initialize the default context through the API IltDefaultContext, that is, the default
implementation of the interface IlpContext.

When you initialize the JViews TGO library (by calling IltSystem.Init), an instance of the
default context is created. You can retrieve it by using the method GetDefaultContext().
This method is invoked by the default constructor of classes using contextual information
and services (IltDefaultDataSource, for example).

How to retrieve the default context through the API

IlpContext context = IltSystem.GetDefaultContext();

Creating a new context
Generally, you are led to create new contexts when your application is to run in a multiuser
environment and you want each user to have his/her own context.

To create an instance of IltDefaultContext, simply call:

IltDefaultContext context = new IltDefaultContext();

To use this new context, you must pass the context parameter to the constructor of each
class making use of it in order to bypass the default context returned by GetDefaultContext
(). For example, to create a data source, you should not use the default constructor new
IltDefaultDataSource(), because using it would initialize the default context, but use
instead the constructor that takes a context as its parameter, that is, new
IltDefaultDataSource(context).

How to create and initialize a context through the API

IlpContext context = new IltDefaultContext();
context.addService (IlpTypeConverter.class, new
IlpDefaultTypeConverter(context));

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 13

Modifying a context
You may want to modify an existing context to add your own services or properties.

How to change a service in a context
You can add a service to a context or replace an existing service with a new one using the
addService method.

If you want to change the synchronization strategy to use regular Java™ synchronization
and not the default strategy that uses the event thread, write the following line:

context.addService(IlSynchronizationStrategy.class,
new IlSynchronizeOnLockStrategy());

The first parameter of the addService method is a class that defines the service to be
changed (usually this parameter is an interface because a service is generally defined by
an interface). The second parameter is an implementation of this service. In other words,
the second parameter is supposed to implement the class specified by the first parameter.

How to remove a service from a context
To remove a service from the context, you use the method removeService with a single
parameter to indicate the service to be removed:

context.removeService(IlSynchronizationStrategy.class)

The default context implementation allows you to store properties. The following methods
are available to help you handle the context properties:

♦ public void setProperty(String name, Object property) Sets the value of a property
in the context.

♦ public Object getProperty(String name) Returns the value of a property in the context
or null if the property is not defined.

♦ public Map getProperties() Returns the collection of all properties defined in the
context.

You can directly modify this Map by adding or removing your own context properties.

Creating a context in background
It is possible to initialize TGO in a background thread, which automatically invokes the
IltSystemmethod along with the creation of a new context. It also initializes the TGO static
resources that are usually only required at rendering time. This improves the graphic
component initialization time (usually done at the Event Dispatch thread) and also provides
some control over the initialized TGO static resources.

How to initialize TGO in background
When the JViews TGO application context is created (using the method IltSystem), many
predefined resources are initialized, such as alarm states and default values for severities.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R14

Other resources such as the different predefined object types are initialized on an as needed
basis, when they are first referenced by the application. This process takes time and can
slow down your application display time, for example, when you try to display a large number
of different predefined nodes for the first time.

You can prevent such slowdowns by warming up TGOwith an extended context initialization
that is carried out on a background thread by the IltSystemInitializer utility class. This
is useful for applications that perform time consuming tasks during startup and/or
initialization (such as establishing remote connections, waiting for user authentication, and
so on).

The IltSystemInitializer class creates the TGO application context (by internally invoking
the IltSystem.Init method) extending the initialization to some resources usually lazily
initialized by the rendering of predefined objects. This is done on a separate thread,
concurrently with the time consuming part of your application initialization.

The following example illustrates the process:

Before starting a routine that is time consuming, start the TGO initialization:

// Start initialization on a worker thread
IltSystemInitializer.Init("my/deployment/file.xml");

When you are ready to start your UI, check for correct TGO initialization and continue:

// Wait for TGO initialization
// This is a blocking method!
IltSystemInitializer.WaitInitialization();

// You can check for initialization errors
Throwable error = IlpSystemInitializer.GetError());

// The context is already initialized
// There is no need to invoke IltSystem.Init()
_context = IltSystem.GetDefaultContext();
_tree = new IlpTree(_context);

Note that this technique is useful when the IltSystemInitializer method executes in
parallel with a time consuming task.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 15

About internationalization

The context can also store locale information for internationalization. The locale can be
defined through the deployment descriptor or through the API.

How to define a context locale through the deployment descriptor
The following example illustrates how you can customize the context locale in the deployment
descriptor file:

<locale>
<language>fr</language>
<country>FR</country>

</locale>

where:

♦ language is a lowercase two-letter ISO-639 code.

♦ country is an uppercase two-letter ISO-3166 code.

See java.util.Locale for more information on locale arguments.

How to define a context locale through the API
The following code shows how to create a context with the French locale:

IlpContext context = new IltDefaultContext(Locale.FRENCH);

How to create a localized version of JViews TGO resources
By default, JViews TGO is localized for the en_US locale. To create a localized version for
another language, do the following:

1. Extract the following property files from jviews-tgo-all.jar:

♦ ilog/cpl/messages/EquipmentMessages.properties

♦ ilog/tgo/messages/JTGOMessages.properties

♦ ilog/cpl/messages/NetworkMessages.properties

♦ ilog/cpl/messages/TableMessages.properties

2. Create a new localized version of these files.

Observe the naming conventions for localized property files as defined in java.util.
PropertyResourceBundle.

3. Make sure that the localized files are accessible to JViews TGO by adding them to the
application classpath.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R16

How to access localized resources using the API
The following code extract shows how you can access the JViews TGO resource bundle and
retrieve its messages according to the locale that is currently set in your application context:

Locale locale = context.getLocale();
ResourceBundle bundle =

IlpI18NUtil.GetResourceBundle("ilog.tgo.messages.JTGOMessages", locale,
"JViews TGO");

String value = bundle.getString("ilog.tgo.Alarm_Critical");

How to access localized resources using CSS
You can also retrieve localized resources from a CSS configuration file.

To do so, use the CSS function 'resource' (IlpResourceFunction) as illustrated below:

object."ilog.tgo.model.IltAlarm/perceivedSeverity"[perceivedSeverity=Critical]

{
label : '@|resource("ilog.tgo.messages.JTGOMessages",

"ilog.tgo.Alarm_Critical", "Critical")';
}

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 17

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R18

The context services

Describes the IBM® ILOG® JViews TGO context services in detail and how to customize
them.

In this section

Type converter
Describes how to use the type converter service and how to customize it.

URL access service
Describes how to use the URL access service and how to customize it.

Image repository service
Describes how to use the image repository service and how to customize it.

Synchronization strategy
Describes how to use the synchronization strategy and how to customize it.

Class manager
Describes how to use the class manager and how to customize it.

Data source manager
Describes how to use the data source manager and how to customize it.

Blinking manager
Describes how to use the blinking manager and how to customize it.

Class loader
Describes how to use the class loader service and how to customize it.

© Copyright IBM Corp. 1987, 2009 19

Monitoring service
Describes how to use the monitoring service and how to customize it.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R20

Type converter

The type converter service defined by the interface IlpTypeConverter is mainly used to
read and write XML files that contain data source information. All the attributes of business
objects are converted using this service. Refer to Type conversion in the Business Objects
and Data Sources documentation for more information.

The main methods of the IlpTypeConverter interface are the following:

♦ createJavaInstance(Class type, String value). Creates a Java™ instance from a
class type. The value is initialized with the supplied string value. IlEnum, dates, colors
and fonts are specifically supported. Icons are also specifically supported to add a full
path to the icon name. All Java basic types and any Java class which has a string
constructor are supported.

♦ String createStringValue(Class type, Object value). Creates a String value from
a general Java Object. This method produces string values that can be used in an XML
file. Specifically, dates, colors, and fonts produce strings that are correctly formatted for
use in data storage XML files. Any types that are not specifically handled will return the
result of calling toString() on the value.

By default, the type converter service is implemented by the class IlpDefaultTypeConverter.
This class can convert basic classes into Strings or Strings into basic classes. It handles the
following basic types by default:

♦ java.lang.Byte

♦ java.lang.Character

♦ java.lang.Double

♦ java.lang.Float

♦ java.lang.Integer

♦ java.lang.Long

♦ java.lang.Short

♦ java.lang.String

♦ java.awt.Color

♦ java.awt.Image

♦ java.awt.Font

♦ javax.swing.SwingConstants

♦ javax.swing.KeyStroke

♦ ilog.util.IlEnum

♦ ilog.util.Date

♦ ilog.cpl.graphic.IlpGraphicRenderer

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 21

♦ ilog.cpl.interactor.IlpInteractor

The default type converter implementation uses the following two mechanisms to convert
values from String to instance and instance to String:

1. A String-based constructor: This mechanism looks in the target class using the reflection
API to retrieve a String-based constructor. This constructor is then used to convert
String values to instances of a given class. Conversely, when converting instance values
to String values, the method toString is used. The easiest way to automatically convert
a user class using the default type converter implementation is to provide both a
String-based constructor and a toString method in the user class.

2. Property editors: The default type converter implementation also allows you to register
property editors (see java.beans.PropertyEditor) for a given class. You can register
your own property editor using the following method:

IlpDefaultTypeConverter.registerEditor (Class targetType, Class editorClass)

The property editor for the following classes must not be overridden: Date, Boolean,
Color, Font, IlpPoint, IlpRect and IlpShelfItemPosition. The default type converter
class implements a specific treatment for these classes which cannot be overridden.

When a default context instance is created, it is initialized with a type converter that is an
instance of IlpDefaultTypeConverter. You can change this configuration through the
deployment descriptor file or through the API.

How to initialize the type converter service through the deployment
descriptor file
You can initialize the type converter service in the deployment descriptor file using the tag
<typeConverter> as follows:

[<typeConverter javaClass="class name"/>]

where the javaClass indicates the name of a Java class that implements the
IlpTypeConverter interface.

The following example illustrates the customization of the type converter service through
the deployment descriptor:

<?xml version="1.0"?>
<deployment xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/deploy.xsd">
<typeConverter javaClass = "package.MyTypeConverter" />

</deployment>

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R22

How to initialize the type converter service using the API

IlpDefaultContext context = ...
IlpTypeConverter converter = new IlpDefaultTypeConverter(context);
context.addService(IlpTypeConverter.class, converter);

How to use the type converter service through the API

IlpTypeConverter converter = context.getTypeConverter();
Integer value = (Integer) converter.createJavaInstance(Integer.class, "10");

and

Integer value = ...;
String valueString = converter.createStringValue(null, value);

The default type converter can be extended to support complex XML types (made up of
several XML tags) through the interface IlpSAXSerializable. For more information, refer
to Complex types.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 23

URL access service

The URL access service is defined by the interface IlpURLAccessService.

It turns relative URLs into absolute URLs or pathnames and can be used to deploy applications
and applets without hard coding pathnames or URLs.

More specifically, it can be used to access configuration files, data source files, and resource
files.

IlpURLAccessServiceprovides the method getFileLocation(java.lang.String) which
returns the URL of a file in the path, or null if the file is not found.

This method takes as its parameter a relative URL or pathname as follows:

public java.net.URL getFileLocation (String filename);

Optionally, this service also provides the method getFileLocation with two optional
parameters which specify whether the file shall be searched for in the CLASSPATH
(directories and jars) or not, as follows:

public java.net.URL getFileLocation (String filename,
boolean searchClassPathFirst,
boolean searchClassPathLast)

How to initialize the URL access service through the deployment
descriptor file
The URL access service can be initialized in the deployment descriptor file using the tag
<urlAccess>.

[<urlAccess [verbose="bool"] [documentBase="xxx"]>
[<relativePath>xxx</relativePath>]*
[<absolutePath>xxx</absolutePath>]*

</urlAccess>]

For:

♦ documentBase: set the base URL.

♦ <relativePath>: add a path relative to the document base.

♦ <absolutePath>: add an absolute path.

How to customize the URL access service through the deployment
descriptor
The following example illustrates the customization of the URL access service through the
deployment descriptor:

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R24

<urlAccess>
<!-- Add relative path to sample root directory -->
<relativePath>../..</relativePath>

</urlAccess>

How to use the URL access service in an application
The following code extract shows you how you can use the URL access service in your
application:

IlpContext context = IltSystem.GetDefaultContext();
IlpNetwork networkComponent = new IlpNetwork(context);

IlpURLAccessService urlService = context.getURLAccessService();
URL url = urlService.getFileLocation("europe.ivl");
if (url != null) {
networkComponent.addBackgroundURL(url);

} else {
System.err.println("Background file could not be found.");

}

By default, the URL access service is implemented by the class IlpDefaultURLAccessService.
This default implementation uses one base URL that is usually defined according to the
deployment model:

♦ Applets use setDocumentBase to register their base URL.

♦ Applications can also use setDocumentBase to register their base URL but, by default,
they use the current directory. Please be aware that, in the case of a web application,
the current directory might not be the root directory of the web application. Instead, it
may be the directory of the JVM booted from by the web server. So, it is necessary to add
relative paths to properly access the files in the root web application directory.

You can specify additional paths to the locations to be searched for a given filename. These
additional paths can be:

♦ Paths relative to the document base. You set them using the method addRelative.

♦ Absolute paths. You set them using the method addAbsolute.

♦ JAR files defined by a URL relative to the document base. You set them using the method
addRelative with a JAR filename as parameter.

♦ JAR files defined by an absolute URL. You set them using the method addAbsolute with
a JAR filename as parameter.

How to use the URL access service through the API
The following example illustrates the use of the URL access service through the API:

IlpDefaultURLAccessService accessService = new IltDefaultURLAccessService();

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 25

accessService.setDocumentBase(new URL("file:C:/myfiles/"));
accessService.addRelative("myname/");
acesssService.addAbsolute(new URL("file://nfs/shared/resources/"));
accessService.addRelative("my.jar");
accessService.addAbsolute(new URL("file://nfs/shared/resources.jar"));

A call to getFileLocation("myresource") will return one of the following URLs:

file:C:/myfiles/myname/myresource
file://nfs/shared/resources/myresource
jar:file:C:/myfiles/my.jar!/myresource
jar:file://nfs/shared/resources.jar!/myresource

For details about the file URL syntax, refer to http://www.w3.org/Addressing/rfc1738.txt.

For details about the jar URL syntax, refer to http://java.sun.com/javase/6/docs/api/java/
net/JarURLConnection.html.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R26

http://www.w3.org/Addressing/rfc1738.txt
http://java.sun.com/javase/6/docs/api/java/net/JarURLConnection.html
http://java.sun.com/javase/6/docs/api/java/net/JarURLConnection.html

Image repository service

The image repository service is defined by the interface IlpImageRepository. It is used to
load all JViews TGO images. This service will return the requested image if it is already in
the repository. Otherwise, it will use the URL access service to locate the image. If the image
cannot be found, a default image is returned.

The image repository serves two main purposes:

1. It matches an image and the file location of this image.

2. It provides memory management, that is, reuse of images that have already been loaded.

By keeping one reusable instance of an image in a repository, the image does not need
to be loaded in memory multiple times.

The IlpImageRepositoryinterface provides five methods to manage the image repository:

♦ getImage(java.lang.String). Gets an image by location. The location is described in
the form of a string presenting the relative path of the image. If the image is not already
in the repository, it will be retrieved from the given location (as resolved by the URL
access service).

♦ getImageLocation(java.awt.Image). Gets the location string associated with an image
in the repository. This method searches the repository for the specified image and returns
the location of the image if it is found or null otherwise.

♦ getImageLocations(). Gets a list of all the image locations currently in the repository.

♦ getImageURL(java.awt.Image). Gets the location of an image in the repository as a URL.
This method searches the repository for the specified image and returns the location of
the image as a URL if it is found or null otherwise.

♦ removeImage(java.lang.String). Removes an image from the repository.

How to use the image repository service through the API
The following code extract shows you how you can use this service in your application:

IlpContext context = IltSystem.GetDefaultContext();
IlpImageRepository repository = context.getImageRepository();
Image img = repository.getImage("ilog/tgo/check.png");

By default, the image repository service is implemented by the class
IltDefaultImageRepository.

How to customize the image repository service through the API
The following code extract shows you how you can customize the context to use your own
image repository implementation:

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 27

context.addService(IlpImageRepository.class, myImageRepository);

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R28

Synchronization strategy

The synchronization strategy, named after the strategy design pattern, is defined by the
class IlSynchronizationStrategy. It makes it possible to access shared resources
simultaneously with a choice of synchronization schemes.

The IlSynchronizationStrategy class provides five methods to manage synchronized
access to resources:

♦ SetDefault(ilog.mt.IlSynchronizationStrategy). Defines the default strategy to use.
The default locking behavior of an application can be changed just by changing this
default.

♦ GetDefault(). Gets the default synchronization strategy to use.

♦ synchronizeRun(java.lang.Runnable, java.lang.Object). Synchronizes the current
thread and calls run on the specified Runnable object. Depending on the implementation
of the strategy, the synchronization may be global (such as in a Swing application), or
may use the object passed as the lock parameter to synchronize on.

♦ readLock(java.lang.Runnable, java.lang.Object). Acquires a read lock for the current
thread and calls run on the specified Runnable object. Some implementations may not
support read/write locks. For this reason, the default implementation will call the
synchronizeRun method.

♦ writeLock(java.lang.Runnable, java.lang.Object)._Acquires a write lock for the
current thread and calls run on the specified Runnable object. Some implementations
may not support read/write locks. For this reason, the default implementation will call
the synchronizeRun method.

How to use the synchronization strategy through the API
The following code extract shows you how you can use the synchronization strategy in your
application:

IlpContext context = IltSystem.GetDefaultContext();
IlSynchronizationStrategy strategy = context.getSynchronizationStrategy();
Runnable task = new Runnable() {
public void run() {
...
}

}
IlpNetwork networkComponent = new IlpNetwork(context);
strategy.writeLock(task, networkComponent.getModel());

JViews TGO provides two standard implementations of this service:

♦ IlSwingThreadSyncStrategy for Swing-based applications

♦ IlSynchronizeOnLockStrategy to synchronize on a mutex

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 29

How to customize the synchronization strategy through the
deployment descriptor
The default synchronization strategy service can be customized through the deployment
descriptor file using the tag <synchronizationStrategy>.

[<synchronizationStrategy type="application"|"servlet"/>]

where type:

♦ application creates a synchronization strategy for Swing-based applications using the
IlSwingThreadSyncStrategy class.

♦ servlet creates a synchronization strategy for servlet applications using the
IlSynchronizeOnLockStrategy class.

The following code extract shows you how you can customize the synchronization strategy
through the API:

How to customize the synchronization strategy through the API
The only thing you can do through the API is to change the synchronization strategy used
in the context.

IlpDefaultContext context = ...
IlSynchronizationStrategy strategy = new IlSwingThreadSyncStrategy();
context.addService(IlSynchronizationStrategy.class, strategy);

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R30

Class manager

The class manager is defined by the interface IlpClassManager. It handles a hierarchy of
business classes. Some of the classes stored in the class manager can be loaded dynamically
from a file where they are defined. For details, see Business class manager API .

The IlpClassManager interface provides five methods to manage a class hierarchy:

♦ getRootClasses() Returns the root classes of the model in a collection of IlpClass
instances. Root classes are classes that do not inherit from another class.

♦ getClass(String name) Returns the class called name or null if this class does not exist.

♦ getClasses() Returns the classes of the model as a collection.

♦ hasClass(IlpClass aClass) Returns true if the given class belongs to this model.

♦ hasClass(String name) Returns whether a class with the given name is registered in the
manager.

How to retrieve information about business class
IltNetworkElement
The following code extract shows how to retrieve information about the business class
IltNetworkElement:

IlpContext context = IltSystem.GetDefaultContext();
IlpClassManager classMgr = context.getClassManager();
IlpClass bclass = classMgr.getClass("ilog.tgo.model.IltNetworkElement");

By default, the class manager service is implemented by the class IltDefaultClassManager.
This default implementation stores dynamic classes, makes it possible to load classes from
XML files and creates dynamic classes to represent JavaBean™ classes using introspection.

The default class manager service can be customized through the deployment descriptor
file using the tag <classManager>.

All the files listed in the classManager scope are loaded in the default class manager
implementation, and are therefore recognized as business classes within the application
context.

How to customize the default class manager through the
deployment descriptor
The following example is an extract of <installdir>/samples/table/customClasses/
deploy.xml and illustrates how you can customize your class manager in the deployment
descriptor file:

<classManager>
<!-- Register custom classes -->

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 31

<file>customClasses.xml</file>
</classManager>

where <file> is the business class file that will be loaded in the class manager at initialization
time.

How to initialize the class manager service through the API
The following code extract shows how to intialize the Class Manager service through the
API:

IlpDefaultContext context = ...;
// Create a new class manager instance
IltDefaultClassManager classMgr = new IltDefaultClassManager();

// Set the new service in the context
context.addService(IlpClassManager.class, classMgr);

How to customize the class manager service through the API
The following code extract shows how to customize the Class Manager service through the
API:

// Load a model file in the class manager. To do this, the class manager
// needs to use two services: type converter, URL access service - which can
// be retrieved from the context
try {
classMgr.parse("model.xml", context.getTypeConverter(),

context.getURLAccessService());
}

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R32

Data source manager

The data source manager defined by the interface IlpDataSourceManager provides access
to the data sources that it handles.

It provides the following methods:

♦ getDataSources() Returns the data sources created in the context of this data source
manager.

♦ hasDataSource(IlpDataSource aDataSource) Returns true if the given data source
belongs to this manager.

By default, the data source manager is implemented by the class
IlpDefaultDataSourceManager. This default implementation maintains a collection of data
sources which are referenced throughweak references that do not prevent garbage collection.

How to use the data source manager through the API

IlpContext context = ...
IlpDataSourceManager dsMgr = context.getDataSourceManager();

or

IlpDataSourceManager dsMgr = (IlpDataSourceMananger)
context.getService(IlpDataSourceManager.class);

How to Customize the Data Source Manager Through the API

IlpDefaultContext context = ...
IlpDataSourceManager dsMgr = MyDataSourceManager();
context.addService(IlpDataSourceManager.class, dsMgr);

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 33

Blinking manager

The blinking manager, defined by the interface IlpBlinkingManager, manages the blinking
of colors.

The IlpBlinkingManager interface provides six methods to manage the blinking of colors:

♦ addColor(IlpBlinkingColor color) Adds a blinking color to an object. A blinking color
must be added to a blinking manager for the object to blink.

♦ removeColor(IlpBlinkingColor color) Removes the blinking color from the object.

♦ setOnPeriod(long onPeriod) Sets the default duration, in milliseconds, of the period
the color is on.

♦ setOffPeriod(long offPeriod) Sets the default duration, in milliseconds, of the period
the color is off.

♦ getOnPeriod() Returns the default duration, in milliseconds, of the period the color is
on.

♦ getOffPeriod() Returns the default duration, in milliseconds, of the period the color is
off.

How to customize the blinking manager service through the
deployment descriptor
The following code extract shows how to customize the on and off periods of blinking colors
in the blinking manager.

[<blinkingManager>
<onPeriod>111</onPeriod>
<offPeriod>111</offPeriod>

</blinkingManager>]

where:

♦ <onPeriod> sets the duration, in miliseconds, of the period when the color is on.

♦ <offPeriod> sets the duration, in miliseconds, of the period when the color is off.

How to customize the blinking manager through the API

IlpContext context = IltSystem.GetDefaultContext();
IlpBlinkingManager blinkingMgr = context.getBlinkingManager();
blinkingMgr.setOnPeriod(1000);
blinkingMgr.setOffPeriod(500);

The on/off periods in this example are used for IlpBlinkingColor instances that do not
have their own on/off periods defined.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R34

By default, the blinking manager service is implemented by the class
IltDefaultBlinkingManager.

The default blinking manager service can be customized through the deployment descriptor
file using the tag <blinkingManager>.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 35

Class loader

The Class Loader service is defined by the interface IlpClassLoaderService.

It enables JViews TGO to load classes used in the definition of the business model and in
the styling of the components and objects. This is performed with a class loader that is
different from the default class loader provided by the Java™ framework. By default, it is
done with the class loader service defined by the class IlpDefaultClassLoaderService
which tries to load classes in the following order:

1. Using the thread context class loader

2. Using the class loader used to load this service

3. Using the system class loader

IlpClassLoaderService provides themethod loadClass(java.lang.String)which returns
the Java class that corresponds to the given class name. If the class name cannot be loaded,
this method should throw a ClassNotFoundException.

public Class loadClass (String name) throws ClassNotFoundException

How to initialize the class loader service through the deployment
descriptor file
You can initialize the class loader service in the deployment descriptor file using the tag
<classLoader> as follows:

[<classLoader javaClass="class name"/>]

where javaClass indicates the name of a Java class that implements the
IlpClassLoaderService interface.

The following example illustrates the customization of the class loader service through the
deployment descriptor:

<?xml version="1.0"?>
<deployment xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/deploy.xsd">
<classLoader javaClass = "package.MyClassLoader" />

</deployment>

How to Initialize the Class Loader Service Through the API

IlpDefaultContext context = ...
IlpClassLoaderService service = new MyClassLoaderService();

context.addService(IlpClassLoaderService.class, service);

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R36

Monitoring service

The Monitoring Service is defined by the interface IlpMonitoringService.

It provides a facility for developers to register and monitor time-consuming activities, so
that all interested parties can be aware of and appropriately act upon these activities and
their progress.

The Monitoring Service makes use of the IBM® ILOG® JViews Maps activity monitoring
API by exposing an instance of IlvThreadedActivityMonitor that is associated with each
IlpContext for a given IlpGraphicComponent. This IlvThreadedActivityMonitor instance
can be used to register activities and track their progress.

For more details on the use of the IlvThreadedActivityMonitor and related API, see Thread
monitoring.

To see how to use the Monitoring Service, look at the Editor sample for the the Network
Component at <installdir> /samples/network/editor/index.html .

All access to the underlying IlvThreadedActivityMonitor should be made through
the Monitoring Service (IlpMonitoringService.getActivityMonitor). This
means that the IlvThreadedActivityMonitorProperty is not supported.

Note:

How to configure the monitoring service through the deployment
descriptor
The Monitoring Service is configured through the deployment descriptor. You can specify
implementations of the IlvThreadedActivityMonitor.ActivityListener that will be added
automatically to the underlying IlvThreadedActivityMonitor of the Monitoring Service,
in the order in which they are specified in the deployment descriptor.

<monitoring>
<activityListeners>
<activityListener javaClass="ActivityListenerOne"/>
<activityListener javaClass="ActivityListenerTwo"/>

</activityListeners>
</monitoring>

ActivityListenerOne will be added to the IlvThreadedActivityMonitor before
ActivityListenerTwo.

Check the XML schema file of the deployment descriptor at file://data/ilog/cpl/schema/
deploy.xsd to know how to place the XML tag <monitoring> for the Monitoring Service in
the deployment descriptor.

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R 37

C O N T E X T A N D D E P L O Y M E N T D E S C R I P T O R38

A
application context 6

B
blinking manager

customizing 34

C
class manager

customizing 31, 32
default 31
initializing 31

context
creating 13
default 13
definition 6
initializing 9
locale 16
modifying 14
services 14

D
data source manager 33

customizing 33
using 33

deployment descriptor 6
context locale 16
default context 10
extending 12
modifying the syntax 12
using 10
writing 10
XML format 10

I
IlpContext interface 6
IlpDataSourceManager interface 33
IlpDefaultBlinkingManager class 34
IlpDefaultDataSource Manager class 33

IlpDefaultTypeConverter class 21
IlpDeploymentParser class 10
IlpDeploymentParser.IlpCustomHandler interface
12
IlpImageRepository interface 27
IlpSAXSerializable interface 23
IlpURLAccessService interface 24
IlSwingThreadSyncStrategy class 29, 30
IlSynchronizeOnLockStrategy class 30
IlSynchronizeOnLockStrategy</code> class 29
IltDefaultClassManager class 31
IltDefaultContext class 13
IltDefaultImageRepository class 27
IltNetworkElement class 31
IltSynchronizationStrategy class 29
IltSystem class 10
IltSystemInitializer class 14
image repository service

customizing 27
using 27

S
synchronization strategy

customizing 29, 30
using 29

T
type converter 21

changing the default 22
property editors 21
string values 21
string-based constructor 21
using 23

U
URL access service 24

customizing 24
initializing 24
using 24

© Copyright IBM Corp. 1987, 2009 39

I N D E X

Index

	Table of contents
	The application context
	The concepts
	Initializing a context
	Using a deployment descriptor
	Using the API

	About internationalization

	The context services
	Type converter
	URL access service
	Image repository service
	Synchronization strategy
	Class manager
	Data source manager
	Blinking manager
	Class loader
	Monitoring service

	Index

