
IBM ILOG JViews Maps V8.6

ProgrammingwithJViewsMaps

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

IBM ILOG JViews Maps copyright

For further copyright information see <installdir> /license/notices.txt

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the main classes..9
Reader framework...10

Map layers and map styles...13
Introduction to layers and styles...14
Map layers for graphic objects..17
Composite layers..22
Label layer..23
Grid layers..24
Map scales and layer styles...26
Map attribute filters...27

Map-specific manager properties..29
Altitude management...31

Altitude management classes...32
Using the altitude provider property..33
Writing a raster reader for DEM data..36

The display preferences property...38
The data source property...41

Data source tree..42
Reloading all data sources..44

Map layer tree...45
Thread monitoring..47
Map labeling...49

Map labeling classes...50

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Using the IlvMapLabeler interface...51
The IlvMapLabelManager class..52
The IlvMapLabelFactory Interface...53

Areas of interest...55
Coordinate system...56
Persistent symbol model..57

Readers and writers..59
Overview of readers and writers...61
The pivot format reader and writer...62
Saved files..63
Saving and reloading a map...64
Map Export API..66
The shapefile reader and writer..69

The shapefile reader and writer classes...70
The shape data source...72
Classes for reading the shape format...74
Classes for writing the shape format...76
Shapefile load-on-demand..78
The IlvTiledShapeDataSource..81

The MID/MIF reader and writer..83
The MID/MIF classes..84
The MIDMIF data source..85
Classes for reading the MapInfo Interchange File format...86
Classes for rendering the MapInfo Interchange File format..88

The DTED file reader...91
The image file reader...93
The Oracle spatial reader and writer..97

The Oracle spatial reader and writer classes..98
Using the Oracle SDO data source...100
Using tiling and multithreading..101
Getting a list of layers..102
Relational model classes..103
Object relational model classes..106
Oracle SDO export..115

The GeoTIFF reader..116
The TIGER/Line reader..118
The DXF reader..121
The KML reader and writer...123

The KML reader and writer...124
Exporting KML files...126

The DEM/GTOPO30 reader...127
The Web Map Server reader..128
The SVG reader...130

I B M ® I L O G ® J V I E W S M A P S 8 . 64

Raster image management...131
Raster image management classes...132
The IlvRasterAbstractReader class..133
Image tiling and subsampling...134
Persistence of images..135
The IlvRasterMappedBuffer class..136
The IlvRasterProperties class..138

Graphical User Interface beans and interactors...139

Geodetic computation and date line wrapping..144

Utilities...145

Ellipsoid and geodetic datums...147
Modeling the earth..148

Ellipsoids...150

Geodetic datums...153

Map projections...157
Introducing map projections...158
Predefined projections..162
Projection methods and parameters...165
Creating a new projection...168

Spatial reference system..172

Creating a map application using the API...175
Overview..177

Creating data source objects...179
Data source..180
Vector data sources..181
Raster data sources...185

Using data sources...187
Overview...188
Integrating the data source...189
Layer styling considerations...191

Clearing map data...193

Developing a new data source...195

Printing...198

Overview of multithreading..199

Using threads in tile loaders..200

Using threads in data sources...201

I B M ® I L O G ® J V I E W S M A P S 8 . 6 5

Using the IlvThreadMonitor..202

Generic code sample for creating a map..203

Using readers...205
Code examples for using readers...206
The map loader..212
Developing a new reader..216
Optimizing the reader...221

Map GUI interactors..223

The See-Through interactor...225

Using the GUI beans...227
Map Overview...229
Area of Interest panel...231
Scale Bar..234
Scale Control Bar...236
Zoom Control panel..237
Legend panel..239
Coordinate System Editor..241
Display Preferences Editor...243
The Coordinate Viewer...245
The Map Layer Tree..247

The Map Layer Tree bean...248
The Dynamic Style Setting panel bean...250
The Map Style Property Sheet bean...251
Property editors...252

The Toolbar...257
Multithread Monitor...259
Coordinate Panel Factory...260
Compass..262
Using annotations...263
The Symbology Tree View bean...267

Overview...268
Adding the bean to an application...269
Symbology panel actions..270
Making the model persistent...271

Handling map features..273

Using load-on-demand...275
Load-on-demand..277
Structure of the tiling grid (indexed mode only)..281
Size of the tiling grid in indexed mode..283
Structure and size of the tiled layer (free mode only)...284
Displaying the state of tiles...285

I B M ® I L O G ® J V I E W S M A P S 8 . 66

Controlling load-on-demand...287
Managing errors and load-on-demand events..289
Caching tiles...290
Saving a tiled layer...291
Writing a new cache algorithm...292
Writing a tile loader for a custom data source..295
Load-on-demand for hierarchical data sources..297

Manipulating renderers...299
Overview...301
Overview of renderers..302
Creating a colored line renderer...304
Making a renderer persistent..306
Extending an existing renderer...307
Using CSS to customize the rendering process...309
Renderers and styling..317
Rendering with a geodetic computation...318

Handling spatial reference systems..321
Converting between two spatial reference systems...322
Converting coordinates between coordinate systems..324
Predefined math transformations...327
Transforming data...329
Adding Graphic Objects on Top of an Imported Map..332
Managing units...337

Pregenerating tiled images for a thin client..341

Integration...343
Overview of integration..344

Integrating with JViews Diagrammer...345
Overview...346
Using symbols and maps in the Designer for JViews Diagrammer..347
Integrating a JViews Diagrammer project into an application...348

Using symbols through the API...349
Overview of symbols..350
Storing symbols..351
Integrating symbols into an application..352
Populating the SDM model...353
Creating symbol groups...354

Using JViews Maps in SWT applications..355

Map data..356

Index..359

I B M ® I L O G ® J V I E W S M A P S 8 . 6 7

I B M ® I L O G ® J V I E W S M A P S 8 . 68

Introducing the main classes

Introduces the main classes of the JViews Maps library.

In this section

Reader framework
Describes the classes for reading data in the reader framework.

Map layers and map styles
Describes map layers and map styles.

Map-specific manager properties
Describes the classes available for managing various aspects of maps, such as altitude,
display, data sources, layers, threads, and labeling.

Readers and writers
Introduces you to the predefined reader/writer classes supplied with JViews Maps.

Raster image management
Describes the management of raster images including tile loading, subsampling, persistence,
and storage.

Graphical User Interface beans and interactors
Describes the classes for JavaBeans™ and interactors.

Geodetic computation and date line wrapping
Describes the class for geodetic calculations.

Utilities
Describes the class that provides utility methods.

© Copyright IBM Corp. 1987, 2009 9

Reader framework

Class diagram
The class diagram for the reader framework is shown in Reader Framework UML Diagram.

Reader Framework UML Diagram

JViewsMaps provides a set of classes that you can use to read data from various cartographic
data sources (files, databases, map servers, and so on), create map features, transform the
features into JViewsMaps graphic objects using renderers, and position them correctly onto
an existing map.

The IlvMapFeature class
The IlvMapFeature class in the package ilog.views.maps is the base class for map features.
This class allows you to read in data for cartographic display from source files. A map feature
can be, for example, a segment of road, an aerial image, the summit of a hill, or a digital
terrain model. For more information about this class, see Handling map features.

The IlvMapFeatureIterator interface
The IlvMapFeatureIterator interface in the package ilog.views.maps is the common
interface for readers. All the classes that implement this interface can be used to read

I B M ® I L O G ® J V I E W S M A P S 8 . 610

cartographic data, whatever the original format. JViews Maps provides a number of
predefined readers, all of which, implement this interface. These readers are described in
detail in Readers and writers.

The IlvFeatureRenderer interface
The IlvFeatureRenderer interface in the package ilog.views.maps is the common interface
for renderers. All the classes that implement this interface can be used to translate an
IlvMapFeature into a graphic object. JViews Maps provides a default class (
IlvDefaultFeatureRenderer) implementing this interface and being able to render most
of the IlvMapFeature returned by the JViews Maps predefined readers. A specific renderer
can also be provided by a reader (method IlvMapFeatureIterator.getDefaultRenderer
()).

The IlvMapStyle class
The IlvMapStyleclass is a base class for the style used with IlvMapGraphic graphic objects.
A single instance of IlvMapStyle can be shared by IlvMapGraphics that can read their
graphic (or other) attributes from the style.

The IlvMapStyle class should be used in conjunction with an IlvMapLayer. In this case, the
IlvMapLayer applies the style to the objects within that layer. This can be used to change
the appearance of a layer dynamically without reloading the map. Some attributes are layer
specific, such as, layer visibility, and layer transparency

The IlvMapGraphic interface
Graphic objects requiring that they read their graphic attributes from a IlvMapStyle, must
implement the IlvMapGraphic interface. Objects of this class are rendered with
IlvMapAreaRenderer, IlvMapPointRenderer, IlvMapCurveRenderer and
IlvMapTextRenderer. These renderers are used by the data sources provided by JViews
Maps.

The IlvMapDynamicStyle class
The package package-frame contains classes used to change dynamically the style of a layer
when the scale changes.

The IlvMapDynamicStyle associates an IlvMapStyle and a scale, and is used with a
IlvMapStyleController. If the controller is installed on the view of the map, it listens for
changes to the scale of the map and selects the appropriate style to apply to the appropriate
layer. This allows a map to have different appearances at different scales.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 11

I B M ® I L O G ® J V I E W S M A P S 8 . 612

Map layers and map styles

Describes map layers and map styles.

In this section

Introduction to layers and styles
Describes the classes provided for layers and styling.

Map layers for graphic objects
Describes the classes that provide map layers for graphic objects.

Composite layers
Describes the class that provides composite layers.

Label layer
Describes the class that provides label layers.

Grid layers
Describes the classes that provide grid layers.

Map scales and layer styles
Describes the facilities for map scales and layer styles.

Map attribute filters
Describes the facilities for map attribute filters.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 13

Introduction to layers and styles

The class diagram for layers and styles is shown in Layer and Style UML Diagram.

Layer and Style UML Diagram

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

About map layers
The IlvMapLayer class represents a map layer, that is, a cartographic theme. It associates
a style (IlvMapStyle or one of its subclasses) with an IlvManagerLayer containing graphic
objects.

Map Layers are arranged in a tree structure, and stored in the manager using the
IlvMapLayerTreeProperty, see Map layer tree.

Each map layer is attached to an IlvMapLayerTreeNode, which contains the necessary
information on parent and child layers. You can use this node to step through layer hierarchy
as follows:

I B M ® I L O G ® J V I E W S M A P S 8 . 614

String SVGpath = "C:/maps/map.svg";
IlvSVGDataSource source = new IlvSVGDataSource(SVGpath);
source.setManager(getView().getManager());
source.setDestinationBounds(lonMinRad,latMinRad,lonMaxRad,latMaxRad);

Alternatively you can use a tailored transformation by calling
IlvSVGDataSource.setInternalTransformation.

Note:

source.start();
IlvMapLayerTreeNode node = mapLayer.getNode();
for (int i = 0; i < node.getChildCount(); i++) {
IlvMapLayerTreeNode child=(IlvMapLayerTreeNode) node.getChildAt(i);
IlvMapLayer childLayer = (IlvMapLayer) node.getUserObject();
... do something with child layer

}

Most map layers are attached to a data source, which is responsible for populating the
manager layer with the correct graphic objects when the map data is loaded (possibly
on-demand-loading) and reprojection times. The exception to this rule is the composite layer.
Composite layers are only used to group a set of sub-layers and manage their styles using
attribute inheritance (See below).

About map styles
Every style in JViews Maps is a subclass of the base IlvMapStyle class.

This class provides access to a set of attributes, usually also accessible by a setter/getter
pair, depending on each style subclass.

For example, you can change the view visibility setting using on of the following:

style.setAttribute(IlvMapStyle.VISIBLE_IN_VIEW,Boolean.TRUE);

style.setVisibleInView(true);

You can catch any change in the map style by writing and registering a listener on it. For
example:

StyleListener listener = new StyleListener() {
public void styleChanged(StyleEvent event) {

if(IlvMapStyle.ALPHA.equals(event.getAttribute())) {
// ... do something when transparency changes

}
}

};
...
myStyle.addStyleListener(listener);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 15

Style hierarchy
Styles form a hierarchy and attribute values can be inherited through this hierarchy. If a
style attribute is inherited from a parent style, that parent attribute value is used when
displaying objects using that style.

Although not enforced in the API, it is recommended that you make the style hierarchy the
same as the map layer hierarchy. This can be done when the map layer is inserted in the
layer tree model:

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);
ltm.addChild(parentLayer, layer);
IlvMapStyle parentStyle = layer.getParent().getStyle();
IlvMapStyle childStyle = layer.getStyle();
childStyle.setParent(parentStyle);

Common styling properties
Whatever the type of layer, its style always has the following base properties.

Common Styling Properties
ContentsProperty name

Indicates whether the IlvManagerLayer is displayed on the map view.VISIBLE_IN_VIEW

Indicates whether the IlvManagerLayer is displayed on the map overview.VISIBLE_IN_OVERVIEW

Contains the IlvAttributeInfoProperty used to describe all object
properties. This is used to provide the list of possible property names

ATTRIBUTE_INFO

displayed in the label attribute check box. This attribute cannot be changed
by the user in the map layer tree panel.

Contains either a null value, or the name of the property used when labeling
this map layer (chosen usually in the list provided by the ATTRIBUTE_INFO
attribute).

LABEL_ATTRIBUTE

Indicates whether the attached map layer is placed on a normal or
superimposing plane. This should be used only for overlay layers such as
grids, labels, measures, and so on.

ALWAYS_ON_TOP

A logical name, used and displayed to group map layers in the legend.LEGEND_GROUP

An identifying name to group more than one layer on the same legend line.CATEGORY

The level of transparency of the manager layer.ALPHA

I B M ® I L O G ® J V I E W S M A P S 8 . 616

Map layers for graphic objects

The class diagram for map layers for graphic objects is shown in Layers for Graphic Objects
UML Diagram.

Layers for Graphic Objects UML Diagram

Most map layers are used to manage graphic objects created from map features imported
from various map data files. The styling options differ according to the content of each file
and the map features imported by the different readers. For example, you do not style a
polygon the same way you do an altitude raster image.

The IlvGeneralPathStyle class
The IlvGeneralPathStyle class is used for IlvMapGeneralPath stylable graphic objects.
Generally, most vectorial map renderers provide a setUsingGeneralPath method to allow
a choice between using general paths, which give a better aspect and capabilities, or regular
polygons, which provide better performance.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 17

General Path Styling Properties
ContentProperty name

Paint object used to fill the shape.FILL_PAINT

Paint object used when stroking the path.STROKE_PAINT

Boolean indicating whether the inside of the object is filled.FILL_ON

Boolean indicating whether the shape of the object is stroked.STROKE_ON

Boolean indicating whether the fill paint is adapted to the bounding rectangle of
the object.

PAINT_ABSOLUTE

Stroke width.STROKE_WIDTH

Boolean indicating whether the paint is zoomed according to the shape when the
object is zoomed.

PAINT_ZOOMED

Type of decoration applied to the ends of unclosed subpaths (see java.awt.
BasicStroke).

END_CAP

Type of decoration applied at the intersection of two path segments (see java.
awt.BasicStroke).

LINE_JOIN

Float table indicating how to make a dash pattern by alternating between opaque
and transparent sections (see java.awt.BasicStroke).

LINE_STYLE

Object used for stroking the path.This attribute is dependant on all stroke attributes
and is recomputed when one of them changes.This attribute is not visible in the
Map Layer Tree Panel.

STROKE

The IlvPolylineStyle class
The IlvPolylineStyle class is used for IlvMapPolyline stylable objects (non-filled polygons
or polylines).

I B M ® I L O G ® J V I E W S M A P S 8 . 618

Polyline Styling Properties
ContentProperty name

Color object used when drawing the polygon borders.FOREGROUND

Polygon borders line width.LINE_WIDTH

Type of decoration applied to the ends of unclosed subpaths (see java.awt.
BasicStroke).

END_CAP

Type of decoration applied at the intersection of two path segments (see java.
awt.BasicStroke).

LINE_JOIN

Float table indicating how to make a dash pattern by alternating between opaque
and transparent sections (see java.awt.BasicStroke).

LINE_STYLE

Additional IlvPathDecoration object used for stroking the polygon.DECORATION

Boolean indicating whether only the decoration is displayed.DECORATION_ONLY

Paint color of the decoration. By default (when this attribute is null), the
decoration is colored using the FOREGROUND attribute.

DECORATION_PAINT

The IlvGraphicPathStyle class
The IlvGraphicPathStyle class is a subclass of IlvPolylineStyle and so provides all the
attributes in The IlvPolylineStyle class. It provides the style for IlvMapGraphicPath objects
(filled polygon areas), by adding the following:

Graphic Path Styling Properties
ContentProperty name

Paint object used to fill the polygon area.PAINT

Boolean indicating whether the inside of the polygon is filled.DO_FILL

Boolean indicating whether the borders of the polygon are stroked.DO_STROKE

The IlvPointStyle class
The IlvPointStyle class controls the style of map point (IlvMapPoint) objects. It provides
the following attributes:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 19

Point Styling Properties
ContentProperty name

Color object used for displaying the point.FOREGROUND

The size of the marker.MARKER_SIZE

The type of marker to use.MARKER_TYPE

The IlvMapTextStyle class
The IlvMapTextStyle class controls the style of map stylable label objects (IlvMapText).
It provides the following attributes:

Map Text Styling Properties
ContentProperty name

Boolean indicating whether text should be specifically anti-aliased (even if
the view setting itself is different).

ANTIALIASING

The label attachment.ATTACHMENT

Paint object used to fill the characters of the text.FILL_PAINT

The label Font.FONT

Paint object used to draw the frame of the label.FRAME_PAINT

Spacing between the frame of the label and the text.INNER_MARGIN

Spacing between two lines of text.INTERLINE

The maximum height of the label.MAXIMUM_HEIGHT

The minimum height of the label.MINIMUM_HEIGHT

Paint object used to draw the shape of the text character.STROKE_PAINT

Paint object used to fill the frame of the label.BACKGROUND_PAINT

Alignment of the multi-line text.ALIGNMENT

The IlvRasterStyle class
The IlvRasterStyle class is used with IlvRasterIcon graphic objects, and provides
attributes to control the appearance of the image:

I B M ® I L O G ® J V I E W S M A P S 8 . 620

Raster Styling Properties
ContentProperty name

A Double percentage applied to the color model to make the entire image brighter
or darker. 0% gives a black image.

BRIGHTNESS

A Double percentage applied to the color model to increase the color difference.
0% gives a completely grey image.

CONTRAST

A Double percentage applied to the color model of the image to change the color
saturation. 0% gives a completely grey image.

SATURATION

The ColorModel object used to transform the pixel values of the image into RGBA
colors.

COLOR_MODEL

I B M ® I L O G ® J V I E W S M A P S 8 . 6 21

Composite layers

The IlvMapCompositeStyle class
The IlvMapCompositeStyle class does not define any additional attributes. Its attribute list
grows with its child list.

When adding a child style in a composite style, all the attributes of that child are added (if
they did not exist) into the parent style. Those values can then be inherited for each child
style – allowing the attributes for all children to be changed in one single place.

You can change the inheritance setting of each attribute by calling the setInherited(java.
lang.String, boolean) method.

I B M ® I L O G ® J V I E W S M A P S 8 . 622

Label layer

Label layers are created automatically on demand by the IlvMapLabeler property installed
on the manager when the LABEL_ATTRIBUTE style attribute is changed on a registered
layer.

The IlvMapLabelStyle class
The IlvMapLabelStyle class is used by the IlvMapAreaLabel, IlvMapLineLabel and
IlvMapPointLabel classes, and controls the labeling parameters:

Map Label Styling Properties
ContentProperty name

The Color used to display labels.FOREGROUND

The Font of the labels.LABEL_FONT

The Stroke object used to display label outlines (not visible to users).LABEL_STROKE

The Color of the label outline.OUTLINE_COLOR

Boolean indicating whether the outline is displayed.DRAW_OUTLINE

Boolean indicating whether areas too small to enclose their label are
labeled.

LABELLING_SMALL_AREAS

Boolean indicating whether labels on polygons follow those polygons
or are placed horizontally.

FOLLOW_PATH

I B M ® I L O G ® J V I E W S M A P S 8 . 6 23

Grid layers

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

The IlvAbstractBaseGrid class
The IlvAbstractBaseGrid base class has subclasses IlvMGRSGrid and IlvLatLonGrid. It
is a manager layer that, instead of drawing graphic objects (IlvGraphic instances) added
to it, displays a grid adapted to the current zoom level of the map.

This base grid also implements the IlvManagerViewDecoration interface, which allows you
to display the grid on the screen, but prevents it from being displayed on printed material.

The IlvMGRSGrid class
The IlvMGRSGrid class displays a set of auto-adaptive MGRS standard grids and labels on
top of a geographic view. This grid displays a list of Grid zones (either UPS or UTM zones),
and their sub grids (100000m, 10000m, 1000m). Each grid or sub-grid is labeled using the
standardized MGRS name for the current area.

You can create and add an MGRS grid on any geo-referenced manager view (that is, any
view that supports the IlvCoordinateSystemProperty). For example, to add an MGRS grid
containing all MGRS zones as a decoration of the view:

IlvMGRSGrid grid = new IlvMGRSGrid();
IlvMGRSGridZone.addAllZones(grid);
view.addViewDecoration(grid);

The IlvLatLonGrid class
The IlvLatLonGrid class displays a set of auto-adaptive grids and labels along latitude or
longitude lines on top of a geographic view. If the grid is auto-adaptive, the step between
each successive lat/lon line is dependant on the scale of the current view.

You can create and add an MGRS grid on any geo-referenced manager view (that is, any
view that supports the IlvCoordinateSystemProperty). For example, to create a lat/lon
grid layer:

view.getManager().addLayer(new IlvLatLonGrid()-1);

By default, the IlvLatLonGrid creates only the points at the corners of each grid square.
If you are using a coordinate system that transforms the map in a non-linear way (such as
Orthographic projection, UTM projection, and so on), you can increase the number of
intermediate points on each grid square in order to show a smoother version of the grid:

lgrid.setSmoothness(4);

I B M ® I L O G ® J V I E W S M A P S 8 . 624

Writing specific grids
The easiest way to implement your own grid system is to start with an empty MGRS grid
and then add your own zones to it. For examples of this, see the Map Builder GridManager
class.

Integrating grids into map layers
As the grids are implemented as manager layers, you only need to connect these to an
IlvMapLayer.

This map layer must be created, styled and integrated in the map layer tree model:

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(view.getManager());
IlvMapLayer mapInsertionLayer = new IlvMapLayer();
mapInsertionLayer.setStyle(new IlvGridStyle());
ltm.addChild(null, mapInsertionLayer);

Then you can integrate the grid manager layer into it:

mapInsertionLayer.insert(grid);

You can also use an IlvDelayedDecorationmanager layer to encapsulate the grid. Whenever
the user moves or zooms the grid rapidly, a simplified version of the grid is used, which
displays more quickly. When the user stops moving or zooming the grid, the full grid is
displayed:

IlvDelayedDecoration delayedGrid = new IlvDelayedDecoration(200);
delayedGrid.setDecoration(grid);

mapInsertionLayer.insert(delayedGrid);

The IlvGridStyle class
The IlvGridStyle class is used when displaying grids. It defines the following attributes:

Grid Styling Properties
ContentProperty name

The Color used to display grid lines.GRID_COLOR

The Font of grid labels.TEXT_FONT

The Color used to display grid labels.TEXT_COLOR

The Color of the outline of the grid labels.OUTLINE_COLOR

I B M ® I L O G ® J V I E W S M A P S 8 . 6 25

Map scales and layer styles

As a result of the use of the IlvMapStyleControllerProperty property of the manager (and
its underlying IlvMapStyleController), layer styles are dependant on the current scale of
the map. Every style attribute of a map layer can be different at different scales.

One of the most widely used attribute changes is the VISIBLE_IN_VIEW attribute, which is
used to show and hide different map layers at particular scales. Using the same mechanism,
your users can also change colors, line thickness, decorations and so on. Whenever the scale
changes, the scale controller can change the current map layer styles, if required. This
change of style usually triggers a view repaint, because the attributes of the objects have
changed.

Some objects also listen to these style changes in order to re-render themselves. For example,
if the color model of a raster style changes, all the images that depend on the style need to
be recreated.

You can add dynamic styles with API calls such as:

IlvMapStyleController themeControl=
IlvMapStyleControllerProperty.GetMapStyleController(view.getManager());

themeControl.addTheme(0.001,mapLayer,"new style");
themeControl.getStyle(mapLayer,0.001).setVisibleInView(true);

When you add dynamic styles, be careful to ensure that you still manage style inheritance.
When adding a new map layer into a parent layer, you can do this as follows:

IlvMapDynamicStyle []t=themeControl.getThemes(mapLayer);
for (int i = 0; i < t.length; i++) {

t[i].getStyle().setParent(parentLayer.getStyle());
}

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 626

Map attribute filters

A IlvMapAttributeFilter object is used to compute the value of a styling attribute from a
value found in an IlvGraphic instance. Typically, this value is retrieved from the
IlvFeatureAttributeProperty named property attached to a IlvGraphic object. To install
such a filter, you set it to an IlvMapStyle object.

The following example shows a custom filter class that defines the foreground of map graphic
objects according to their “VALUE” feature attribute.

/**
* Computes the foreground from a graphic's IlvFeatureAttribute
*/
class ColorAttributeFilter implements IlvMapAttributeFilter {
/**
* Method that returns the new color computed from the "VALUE"
* feature attribute. If DEFAULT_VALUE is returned, the style value on which

* the filter is installed will not be affected.
*/
public Object get(IlvGraphic g, String attributeName) {
if(IlvPolylineStyle.FOREGROUND.equals(attributeName)) {
IlvAttributeProperty p = (IlvAttributeProperty)
g.getNamedProperty(IlvAttributeProperty.NAME);

if(p == null)
return DEFAULT_VALUE;

Object o = p.getValue("VALUE");
Object ret = convertObjectToColor(o);
if(ret == null)
return DEFAULT_VALUE;

return ret;
}

}

The following code example shows how to install a custom filter class in a map layer style.

IlvMapAttributeFilter filter = new ColorAttributeFilter();
IlvMapLayer layer = getLayer();
IlvMapStyle style = layer.getStyle();
style.setAttributeFilter(filter);

Once the filter is installed, each request to retrieve an attribute value is passed to the get
method of the filter.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 27

I B M ® I L O G ® J V I E W S M A P S 8 . 628

Map-specific manager properties

Describes the classes available for managing various aspects of maps, such as altitude,
display, data sources, layers, threads, and labeling.

In this section

Altitude management
Describes the altitude management classes and the use of this property.

The display preferences property
Describes how to use the property and class provided for display preferences.

The data source property
Describes the data source classes and use of this property.

Map layer tree
Describes the class that provides the map layer tree model for style inheritance.

Thread monitoring
Describes the class that provides the thread facilities.

Map labeling
Describes the map labelling classes and the use of this property.

Areas of interest
Briefly describes the areas of interest property class.

Coordinate system
Briefly describes the coordinate system property class.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 29

Persistent symbol model
Describes the property used to make symbols persistent.

I B M ® I L O G ® J V I E W S M A P S 8 . 630

Altitude management

Describes the altitude management classes and the use of this property.

In this section

Altitude management classes
Provides general information and illustrates the classes for altitude management.

Using the altitude provider property
Explains how to use the property and class providing for accessing altitudes.

Writing a raster reader for DEM data
Explains how to develop code to read a new Digital Elevation Model (DEM) file format.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 31

Altitude management classes

The class diagram for altitude management is shown in AltitudeManagement UML Diagram.

Altitude Management UML Diagram

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 632

Using the altitude provider property

Terrain analysis computations are based on the IlvAltitudeProviderProperty of the
manager and its underlying IlvAltitudeProvider, which is responsible for providing
altitudes for each point on a map.

The IlvJMouseCoordinateViewer Bean uses altitude property information to provide altitude
information whenever the mouse is over an altitude providing map object. Many other
features of JViews Maps also use this information.

To access the altitude provider:

1. You can access the altitude provider by calling:

IlvAltitudeProvider provider =
IlvAltitudeProviderProperty.GetAltitudeProvider(manager);

If you do not set a specific provider to this property, this method creates or returns
an instance of IlvDefaultAltitudeProvider.

This provider supports GTOPO30 and DTED format data sources.

2. To integrate another Digital Elevation Model, which provides the graphic objects with
an IlvAltitudeDataSource property, see To retrieve the altitude attached to a
graphic object below.

If you have read an image containing elevation data with an IlvRasterAbstractReader, for
an example, seeWriting a raster reader for DEM data; you can reuse its altitude information
to provide altitude data by using an IlvRasterAltitudeDataSource instance.

To attach an altitude data source to a graphic object:

1. You first need to decide on the structure of the attribute property, for example, for a
property containing only altitude data:

IlvAttributeInfoProperty info = new IlvAttributeInfoProperty(
new String[] { "myAltitudeDataSourcePropertyName" },
new Class[] { IlvRasterAltitudeDataSource.class },
new boolean[] { true });

2. You can then reuse this structural information with different altitude data sources,
and set it as the graphic object property:

IlvFeatureAttribute value[] = { new
IlvRasterAltitudeDataSource(rasterImageReader, imageIndex) };
graphic.setNamedProperty(new IlvFeatureAttributeProperty(info, value);

If you use the default altitude management described inUsing the altitude provider property,
you can also retrieve the altitude attached to an object as described.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 33

To retrieve the altitude attached to a graphic object:

1. Get the attribute properties of the graphic object:

IlvAttributeProperty property = (IlvAttributeProperty)
graphic.getNamedProperty(IlvAttributeProperty.NAME);

2. You should find the altitude data source in that property:

IlvAltitudeDataSource ads =
(IlvAltitudeDataSource)property.getValue
("myAltitudeDataSourcePropertyName")
;

3. As the data source object provides only altitude information for a specific
latitude/longitude pair, you may need to transform the coordinates into latitude and
longitude. Here is an example that converts a mouse location into such a pair:

// transform the mouse point into manager coordinates
IlvPoint pt=new IlvPoint(mouseLocation.x,mouseLocation.y);
view.getTransformer().inverse(pt);
IlvProjectionUtil.invertY(pt);
try {
// compute the coordinate transformation from manager coordinates to

lat/
lon
IlvCoordinateSystem cs =

IlvCoordinateSystemProperty.GetCoordinateSystem(view.getManager());
IlvCoordinateTransformation ct =

IlvCoordinateTransformation.CreateTransformation(cs,

IlvGeographicCoordinateSystem.KERNEL);
// transform the point into lat/lon
IlvCoordinate c = new IlvCoordinate(pt.x, pt.y);
ct.transform(c, c);
// retrieve the altitude

} catch (IlvCoordinateTransformationException e) {
}

4. You can then obtain the altitude. You should check if its value is a valid double, because
the default data source and default provider of the manager return a Double.NaN value
when there is no altitude information available.

double alt = ads.getAltitude(c.x, c.y, 0);
if(!Double.isNaN(alt)){

return alt;
}

If the pixel values stored in the IlvRasterMappedBuffer are altitudes, you can use the
IlvRasterAltitudeDataSource class directly as the altitude provider.

Use the IlvRasterAltitudeDataSource class in the IlvFeatureAttributeProperty of every
image that the reader creates.

I B M ® I L O G ® J V I E W S M A P S 8 . 634

To set altitudes use:

♦ public IlvFeatureAttributeProperty getProperties(int imageIndex)
{
IlvAttributeInfoProperty info = new IlvAttributeInfoProperty(
new String[] { " myAltitudeDataSourcePropertyName" },
new Class[] { IlvRasterAltitudeDataSource.class },
new boolean[] { true });
IlvFeatureAttribute values[] = new IlvFeatureAttribute[] {
new IlvRasterAltitudeDataSource(this,imageIndex)
};
return new IlvFeatureAttributeProperty(info, values);
}

See also To attach an altitude data source to a graphic object.

You need to provide JViewsMaps with a way of knowing where the resulting image is placed.
This is done through two methods that return the transformation and coordinate system
used in the raster property boundaries.

To manage coordinates:

♦ Provide two methods as shown in the following example, which assumes that the
bounds are given in degrees.

private static IlvCoordinateTransformation INTERNAL =
IlvCoordinateTransformation.CreateTransformation

(IlvGeographicCoordinateSystem.KERNEL,
IlvGeographicCoordinateSystem.WGS84);

public IlvCoordinateSystem getCoordinateSystem() {
return INTERNAL.getTargetCS();
}

public IlvMathTransform getInternalTransformation(int imageIndex) {
return INTERNAL.getTransform();

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 35

Writing a raster reader for DEM data

To read a new Digital Elevation Model (DEM format), you should write a subclass of
IlvRasterAbstractReader with an addMap method. If you want to take advantage of map
load and save features, you have to manage the serialization of the reader, that is, provide
methods that perform the required functions.

To create the reader:

1. Load a list of raster DEM files as shown in the following example.

public class MyDEMReader extends IlvRasterAbstractReader {
// list of files to be read.
private ArrayList filenameList = new ArrayList();
/** default constructor */
public MyDEMReader() {
}

2. Write an addMap method to compute the IlvRasterProperties and
IlvRasterMappedBuffer attached to the file name, see Raster image management,
and then add this information to the list managed by the reader. As this step is heavily
dependent upon format, only a summary is provided here.

public void addMap(final String filename) throws IOException {
IlvRasterProperties loadingRaster = read/compute raster properties ...
IlvRasterMappedBuffer source= read/compute raster pixel values...
loadingRaster.setBaseName(filename);
// to retrieve the file name when serializing data.
addRaster(loadingRaster, source);
}

To use the map load and save features:

1. Serialize all the necessary information to rebuild the images - in this example, only
the filenames.

public void write(IlvOutputStream stream) throws IOException {
super.write(stream);
int imageCount = getImageCount();
for (int i = 0; i < imageCount; i++) {

IlvRasterProperties props=getRasterProperties(i);
stream.write("filename"+i,props.getBaseName());

}
}

2. Rebuild the reader from serialized data. Because the image data may have been saved
in an IMG file associated with the map, you should only read the filenames of the raster
DEM not the files themselves:

public MyDEMReader(IlvInputStream stream) throws IlvReadFileException {

super(stream);
try {

for(int count=0;true;count++) {

I B M ® I L O G ® J V I E W S M A P S 8 . 636

String filename = stream.readString("filename"+count);
filenameList.add(filename);

}
} catch (IlvReadFileException e1) {

// No more filenames to read
}

}

3. If the complete map data is saved, the raw image data is reconnected by standard
mechanisms. However, to reload files when the user has only saved the description
of the map and not its data, write a reload method:

public void reload(IlvThreadMonitoringData monitorInfo) {
super.reload(monitorInfo);
// clear all images
dispose();
// save the known filenames in a temporary array – the addMap

would
else add them again.

String[] filenames = (String[])filenameList.toArray(new String[0]
);

// clear the file name list
filenameList.clear();
for (int i = 0; i < filenames.length; i++) {

try {
// load each file
addMap(filenames[i]);
if (monitorInfo != null) {

// update the thread monitoring information, if
necessary

int percent = Math.round(i/(float)filenames.length
* 100);
monitorInfo.updateProgress(percent);

}
} catch (IOException e) {

new IlvExceptionMessage(e,null);
}

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 37

The display preferences property

Map display preferences are accessible through the IlvDisplayPreferencesProperty of
the manager and its underlying IlvDisplayPreferences, which is responsible for indicating
user preferences when displaying the map.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

The display preferences are used to share:

♦ The preferred unit and format to use for altitudes.

♦ The preferred unit and format to use for distances.

♦ The preferred coordinate formatter to use to show earth coordinates.

♦ An indication of whether geodetic computation is activated or not.

Display preferences access
You can access the display preferences by calling:

IlvDisplayPreferences pref =
IlvDisplayPreferencesProperty.GetDisplayPreferences(manager);

This method creates or returns the last instance set of IlvDisplayPreferences.

Display preferences uses
The IlvJMouseCoordinateViewer Bean uses preferences to format coordinates and altitude
information whenever the mouse moves over the map.

The IlvJAutomaticScaleBar also listens to this property in order to adapt the map distance
unit to the preferences of the application.

When creating measurements (or an IlvMapOrthodromyPath), a specific
IlvDistanceAttribute property is attached to contain the measurement length. This
property displays itself taking into account the preferred distance unit found in the
preferences.

The IlvCoordinatePanelFactory needs to retrieve a coordinate formatter to know how to
display the coordinates selected on the view, which can also edited by the user. You should
usually do this by retrieving the coordinate formatter of the current preferences:

IlvDisplayPreferences prefs =
IlvDisplayPreferencesProperty.GetDisplayPreferences(manager);
IlvCoordinateFormatter formatter= prefs.getCoordinateFormatter();
JPanel coordPicker=new
IlvCoordinatePanelFactory.CoordPointInputPanel(view,formatter);

I B M ® I L O G ® J V I E W S M A P S 8 . 638

Adding a listener to changes in display preferences
You can listen to changes in this property (such as those triggered by the Display Preference
Editor), by adding a named property listener on the manager:

manager.addNamedPropertyListener(new NamedPropertyListener() {
public void propertyChanged(NamedPropertyEvent event) {
if(event.getNewValue() instanceof IlvDisplayPreferencesProperty){
IlvDisplayPreferencesProperty

prop=(IlvDisplayPreferencesProperty)event.getNewValue();
IlvDisplayPreferences preferences=prop.getDisplayPreferences();
// manage the new preferences
...

}
}

});

Geodetic computation
All data sources should use the display preferences properties to adapt their rendering to
the activation of geodetic computation, which is an important user choice.

When geodetic computation is activated, every polygon-like map feature is rendered, through
the use of an IlvGeodeticPathComputation, into a series of orthodromies (see orthodromy
measure). Whenever a segment of the polygon has two extremities on different sides of the
screen, the polygon is cut into many areas, separated on the screen but representing the
same map feature.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 39

I B M ® I L O G ® J V I E W S M A P S 8 . 640

The data source property

Describes the data source classes and use of this property.

In this section

Data source tree
Describes the class that provides the data source property for a map.

Reloading all data sources
Describes the two ways to reload your data sources.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 41

Data source tree

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

IlvMapDataSourceProperty
The IlvMapDataSourceProperty class is a named property used to attach a
IlvMapDataSourceModel to an IlvManager.

IlvManagerThis data sourcemodel controls all data sources that you import into themanager.
It is also persistent data that is saved when you save the map.

Accessing the data source model
You can access the map data source model by calling:

IlvMapDataSourceModel dsm =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

Adding a listener
As the IlvMapDataSourceProperty is a named property of the manager, you can add a
listener that is called whenever the property as a whole is changed, for example:

manager.addNamedPropertyListener(new NamedPropertyListener() {
public void propertyChanged(NamedPropertyEvent event) {
if (event.getPropertyName().equals(IlvMapDataSourceProperty.NAME)) {
IlvMapDataSourceProperty p = (IlvMapDataSourceProperty)

event.getNewValue();
if (event.getType() == NamedPropertyEvent.PROPERTY_SET) {

...do something
}

}
}

});

Controlling data sources
You can allow users to edit and control individual data sources by adding an
IlvDataSourcePanel Bean to your application. See Using the GUI beans.

For more information about the data source tree, see Creating data source objects, Using
data sources, and Developing a new data source.

I B M ® I L O G ® J V I E W S M A P S 8 . 642

Although the Data Source Tree contains a Tree structure, JViews Maps uses only a
single level tree, resulting in a simpler data source list. Future versions, or user
applications, may use the full tree structure for advanced features.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 43

Reloading all data sources

If you have created an instance of IlvSDMEngine (even empty) in your manager.

To reload the data, you can simply write:

engine.loadData();

In case you do not want, or do not need, a symbol management utility, you can use the
following code to reload your data:

To reload without using an IlvSDMEngine

1. Retrieve the data source model root:

DefaultMutableTreeNode root = (DefaultMutableTreeNode) dsm.getRoot();

2. Retrieve the map layers attached to each of the data sources:

int count = root.getChildCount();
for (int i = 0; i < count; i++) {
DefaultMutableTreeNode node = (DefaultMutableTreeNode) root.getChildAt
(i);
IlvMapDataSource source = (IlvMapDataSource) node.getUserObject();
IlvMapLayer mlayer = source.getInsertionLayer();

3. Restart each data source ensuring that the tile manager updates the visible part of
the view for data sources containing tiled layers:

source.reset();
source.start();
IlvManagerLayer layer = mlayer.getManagerLayer();
if (layer instanceof IlvTiledLayer) {
((IlvTiledLayer) layer).getTileController().updateView(getView());

}

I B M ® I L O G ® J V I E W S M A P S 8 . 644

Map layer tree

The IlvMapLayerTreeProperty class stores an IlvMapLayerTreeModel.

This layer tree model controls the order and style inheritance of IlvMapLayer you add into
your manager. This model is also persistent data that is saved when you save the map.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

Accessing the map layer tree model
You can access the layer tree model by calling:

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);

Controlling the map layer tree
You can allow users to edit and control individual layer styles by adding an IlvLayerTree
Bean in your application, see Using the GUI beans.

Usually, applications only need to add layers with the addChild(ilog.views.maps.beans.
IlvMapLayer, ilog.views.maps.beans.IlvMapLayer) method, or remove them with the
removeChild(ilog.views.maps.beans.IlvMapLayer) method of the layer model.

For more information about the map layer tree, see Creating data source objects, Using
data sources, and Developing a new data source

Adding a listener for layer organization changes
Themap tree model is a subclass of DefaultTreeModel, so you can add a TreeModelListener
to your application to trap any change in the layer organization.

Adding a listener for tree structure changes
As the IlvMapLayerTreeProperty is also a named property of the manager, you can add a
listener that is called whenever the entire tree structure is changed, for example:

manager.addNamedPropertyListener(new NamedPropertyListener() {
public void propertyChanged(NamedPropertyEvent event) {
if (event.getPropertyName().equals(IlvMapLayerTreeProperty.NAME)) {
IlvMapLayerTreeProperty p = (IlvMapLayerTreeProperty)

event.getNewValue();
if (event.getType() == NamedPropertyEvent.PROPERTY_SET) {

...do something
}

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 45

}
});

Adding code to all layers
If your application needs to apply a piece of code to all layers, whatever their depth in the
tree, you should call the getEnumeration() method of the tree model, such as:

Enumeration e = ltm.getEnumeration();
while(e.hasMoreElements()) {
Object o = e.nextElement();
if(o instanceof IlvMapLayerTreeNode) {
IlvMapLayer layer =

(IlvMapLayer)((IlvMapLayerTreeNode)o).getUserObject();
... act on the layer

}
}

For example, the method clearAllObjects() in IlvMapLayerTreeModel calls the
removeAllObjects for each layer found.

I B M ® I L O G ® J V I E W S M A P S 8 . 646

Thread monitoring

The IlvThreadedActivityMonitorProperty class is a named property used to attach a
IlvThreadedActivityMonitor to an IlvManagerIlvManager.

This threaded monitor is a centralized object with which threads should register their
activities. The activities, that is, tasks, must also notify this controller of their progress.

All activity listeners registered with this controller are notified in turn of any activity progress.
The IlvThreadedActivityMonitorPanel is one such important listener. This Bean provides
the user with feedback on activities that are currently running, see Using the GUI beans.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

Accessing the threaded activity monitor
You can access the threaded activity monitor by calling:

IlvThreadedActivityMonitor mon =
IlvThreadedActivityMonitorProperty.GetThreadedActivityMonitor(manager);

Providing threaded activity information
It is the responsibility of each thread to register, update and un-register their activities to
provide the user with correct information on the background tasks that are running:

mon.updateActivityProgress(activityID,10,"doing something long");
... do something long that takes 10% of total time...
mon.updateActivityProgress(activityID,20,"doing another thing");
...

Setting the activity progress to 100% or un-registering the activity removes it from the list
currently managed by the monitor.

Registering objects as listeners
You can also register your own objects as listeners to changes in the activity monitor with
lines of code such as:

mon.addActivityListener(new IlvThreadedActivityMonitor.ActivityListener() {
public void activityChanged(ActivityEvent e) {

if(e.getEventType() ==
IlvThreadedActivityMonitor.ActivityEvent.ACTIVITY_REMOVED) {
... an activity just ended, do something.
}

});

I B M ® I L O G ® J V I E W S M A P S 8 . 6 47

I B M ® I L O G ® J V I E W S M A P S 8 . 648

Map labeling

Describes the map labelling classes and the use of this property.

In this section

Map labeling classes
Provides general information and illustrates the map labeling classes.

Using the IlvMapLabeler interface
Explains how to use the interface for labeling in maps.

The IlvMapLabelManager class
Describes the class for managing layers that are labeled and layers containing the labels.

The IlvMapLabelFactory Interface
Describes the factory for creating labels.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 49

Map labeling classes

The class diagram for map labeling is shown in Map Labeling UML Diagram.

Map Labeling UML Diagram

JViews Maps has a dynamic map labeling mechanism. When activated for a specified map
layer, all graphic objects of this layer are labeled in a separate thread. This ensures maximum
responsiveness of the GUI while performing the background layout. The labeling process is
done every time the user changes the view by zooming, scrolling, and so on.

I B M ® I L O G ® J V I E W S M A P S 8 . 650

Using the IlvMapLabeler interface

The entry point for the dynamic map labeling mechanism is the IlvMapLabelerIlvMap
interface. A class implementing this interface is responsible for managing labels for a given
IlvManagerIlv. The IlvMapLabelerPropertyIlvMapLabeler class is a named property used
to attach an IlvMapLabeler to an IlvManager. This map labeler handles all the data sources
imported into the manager. The model data is made persistent and saved when you save
the map.

You can access the map labeler by calling:

IlvMapLabeler labeler = IlvMapLabelerProperty.GetMapLabeler(manager);

If a specific labeler is not set for the property, this method creates or returns an instance
of IlvMapDefaultLabelerIlvMapDefault. This default labeler class automatically creates
and configures a map layer for labels and listens for changes to the layer structure attached
to the view. This allows the labeling to be updated when layer order changes. It also contains
an internal IlvMapLabelFactoryIlvMapLabel to create the appropriate labels for graphic
objects, according to the LABEL_ATTRIBUTE field of the IlvMapLayerIlvMap. For more
information about IlvMapLabelFactory, see The IlvMapLabelFactory Interface.

To add labels to a given map layer on your map:

1. Define the layer to be labeled:

IlvMapLayer layerToLabel;

2. Create a default IlvMapDefaultLabeler and set it on the manager:

IlvMapLabeler labeler =
IlvMapLabelerProperty.GetMapLabeler(manager);

3. Since this labeler has to interact with the view, you must indicate in which view it is
to display the labels:

4. Set the label attribute for the map layer to specify which attribute of the graphic
objects should be displayed as a label (check the available attributes in the file format
you read in):

5. Register the map layer to label with the labeler:

6. Finally, notify the labeling thread to compute labels for all the labeled layers:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 51

The IlvMapLabelManager class

The IlvMapDefaultLabelerIlvMapDefault class holds references to labeled layers (the
layers to be labeled) and label layers (the layers that display the labels). This class also holds
a reference to an IlvMapLabelManagerIlvMapLabelthat acts as a controller for label
rendering operations. The IlvMapLabelManager class monitors changes in the view (scrolling,
zooming...), creates labels for all the visible graphic objects in the view that require labeling,
and lays them out and draws them. This is all done in a separate thread so that user
interaction is not blocked. Basically, this class contains the JViews Maps rendering engine.

I B M ® I L O G ® J V I E W S M A P S 8 . 652

The IlvMapLabelFactory Interface

To create labels for graphic objects, the IlvMapLabelManagerIlvMapLabel class relies on
a label factory implementing the IlvMapLabelFactoryIlvMapLabel interface. Any object
implementing this interface is responsible for returning the appropriate
IlvMapLabelingLabelIlvMapLabeling instances for specified IlvGraphicIlv objects. This
is done by implementing the method:

labeler.setView(view);
layerToLabel.getStyle().setLabelAttribute("NAME");
labeler.addLayer(layerToLabel);
labeler.performLabeling();
public IlvMapLabelingLabel[] getGisLabel(IlvGraphic comp);

The default label factory performs the following tasks:

♦ It extracts an attribute from the specified IlvGraphicIlv object (according to the label
attribute in the IlvMapStyle of the IlvMapLayerIlvMap being labeled), and takes its
String representation as the text of the label.

♦ Then it creates the appropriate instance of the IlvMapLabelingLabelIlvMapLabeling
class, according to the kind of graphic object being labeled:

● IlvMapPointLabel for objects with an anchor point.

● IlvMapLineLabel for polyline objects (for example, label along the line).

● IlvMapAreaLabel for closed areas with a label placed within visible parts of the area.

The IlvMapLabelManagerIlvMapLabel uses this default implementation of the factory, but
you can provide your own implementation if you want to have fine control over what is
labeled, and how. To replace the default label factory with your own label factory:

IlvMapLabelFactory myLabelFactory = new myLabelFactory(); //Your own
implementation.

//Get the map labeler.
IlvMapLabeler labeler =

IlvMapLabelerProperty.GetMapLabeler(manager);

//Set the factory, if the labeler is an IlvMapDefaultLabeler instance.
if(labeler instanceof IlvMapDefaultLabeler) {

IlvMapDefaultLabeler dflt = (IlvMapDefaultLabeler)labeler;
dflt.setLabelFactory(myLabelFactory);

}

Controlling renderer parameters
When you implement your own IlvMapLabelFactory, you can specify a set of layout and
rendering parameters for each instance of IlvMapLabelingLabel that you create in the
constructor.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 53

For more information about these parameters, see the IlvMapPointLabel, IlvMapLineLabel,
and IlvMapAreaLabel classes.

I B M ® I L O G ® J V I E W S M A P S 8 . 654

Areas of interest

The IlvAreasOfInterestProperty class is a named property used to store areas of interest
in an IlvManager.

For more information on this property see Area of Interest panel.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 55

Coordinate system

The IlvCoordinateSystemProperty class is a named property used to store the geographic
or coordinate system in which the map should be displayed. It can be different from the
individual data source coordinate system in which case JViews Maps will automatically
perform a reprojection of the data.

See the relevant data source documentation in the Readers and Writers section, for more
information.

See Coordinate System Editor for examples of use.

I B M ® I L O G ® J V I E W S M A P S 8 . 656

Persistent symbol model

The IlvPersistentSDMModelProperty class is a named property used to make the symbols
added through the IlvSymbologyTreeView API persistent. It is not compatible with the
JViews Diagrammer designer way of symbol persistence through an xml description in a
separate file.

See Making the model persistent.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 57

I B M ® I L O G ® J V I E W S M A P S 8 . 658

Readers and writers

Introduces you to the predefined reader/writer classes supplied with JViews Maps.

In this section

Overview of readers and writers
Presents the predefined reader/writer classes supplied with JViews Maps.

The pivot format reader and writer
Describes the classes for the pivot format reader and writer.

Saved files
Describes the files saved for a map.

Saving and reloading a map
Explains how to save and reload a map.

Map Export API
Describes the API for exporting map data.

The shapefile reader and writer
Describes the shapefile reader and writer classes and data sources.

The MID/MIF reader and writer
Describes the MID/MIF reading and rendering classes and data sources.

The DTED file reader
Describes the Digital Terrain Elevation Data (DTED®) read format.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 59

The image file reader
Describes a generic image file reader.

The Oracle spatial reader and writer
Describes the Oracle® reader and writer classes, using data sources, how to use tiling,
multithreading and exporting to an SDO database.

The GeoTIFF reader
Describes the classes that allow you to read GEO TIFF files.

The TIGER/Line reader
Describes the TIGER/Line® reader for maps related to US census data.

The DXF reader
Explains how to read DXF files.

The KML reader and writer
Describes the KML reader and writer and exporting KML files.

The DEM/GTOPO30 reader
Explains how to read GTOPO30 files.

The Web Map Server reader
Explains how to read images from a Web Map Server (WMS).

The SVG reader
Explains how to read SVG files.

I B M ® I L O G ® J V I E W S M A P S 8 . 660

Overview of readers and writers

The predefined reader/writer classes supplied with JViewsMaps are defined in subpackages
of the ilog.views.maps.format package.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 61

The pivot format reader and writer

The class diagram for the pivot format reader and writer is shown in Pivot Format Reader
and Writer UML Diagram.

Pivot Format Reader and Writer UML Diagram

I B M ® I L O G ® J V I E W S M A P S 8 . 662

Saved files

Saving a map can produce two files:

♦ Amandatory.ivl file, containing all information about the map and all map objects (unless
only the theme is saved, see Saving and reloading a map).

♦ An.img file, containing the map raster data in a proprietary format for fast access when
reloading. This file is not produced if the map does not contain an image.

The .ivl file
The .ivl format is the standard IBM® ILOG® JViews file format used to save an IlvManager
object, see Saving and reading in The Essential JViews Framework. The file basically contains:

♦ The IlvManagerLayers of the manager, which themselves contain all of the graphic
objects.

♦ All additional IlvNamedProperty objects attached to the IlvManagerLayers.

For example, in JViews Maps 8.1, the entire map model, and all related information, is stored
in the IlvManager as named properties, seeMap-specific manager properties, and saved in
the .ivl file.

The .img File
To deliver the map reload performance currently achieved by JViews Maps, raster data for
image objects is not saved in the .ivl file because this would slow down the .ivl file read
time. Instead, all raster data is saved in a separate .img file. When reloading the map, this
file can be mapped directly in memory (if allowed by the operating system) for fast access
and virtually no parsing time.

Note that if the map does not contain an image, no .img file is generated with the .ivl file.

Finally, the .ivl and .img file extensions are defined by the Map Builder, but you are free
to use the API to give any filename you want to the map you are saving. It is up to you to be
consistent between the saving and loading processes.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 63

Saving and reloading a map

In JViews Maps 8.1, maps can be saved in the proprietary .ivl file format. This is basically
the regular IBM® ILOG® JViews format slightly modified to improve the loading performance
of maps containing large amounts of raster data.

To save a map:

1. Create an IlvMapOutputStream object from a filename. This class extends the
IlvOutputStream (see Input/output operations in The Essential JViews Framework)
and provides the option of not saving the layers (and hence the graphic objects)
contained in an IlvManager. You can choose to write the file in binary format, which
is more compact, or in ASCII format, which is more readable.

String mapFilename = "myMap.ivl";
boolean binary = false;
IlvMapOutputStream mapOutput = new IlvMapOutputStream(mapFilename, binary)
;

Note that when using the above IlvMapOutputStream constructor, the name of the
image file (see The .img File) is inferred from the specified map filename, by adding
the .img extension or by replacing the ivl extension by .img. You can also create the
IlvMapOutputStreamwith a different constructor, specifying a java.io.OutputStream
to save the map contents to, and a different filename for the .img file. In this case,
you must use the appropriate matching constructor of IlvMapInputStream when
loading the map, see the reloading a map procedure below for more information.

2. Optionally:

Save only the map theme. When reloading a theme file only, all IlvMapDataSource
instances of the model are started again so that they can read data from their original
files and reconstruct the map. This is useful if the original data sources (ESRI Shape,
DTED® and so on) are available when reloading the .ivl file (when working on the
same machine for example, or on the same network if data formats are stored on a
networked resource). The file produced is small, typically only a few tens of KB:

mapOutput.setWritingObjects(false);

Conversely, if you plan on distributing the map without the original data sources, or
if you want to achieve higher reload performance, you should consider saving all the
data in the file:

mapOutput.setWritingObjects(true);

3. Write the manager to the IlvMapOutputStream and clean up the remaining resources:

try {
mapOutput.write(manager);

} catch (IOException ex) {
// handle I/O exception here...…

}

To reload a map:

1. First, it is best is to clear the current manager, see Clearing map data.

I B M ® I L O G ® J V I E W S M A P S 8 . 664

2. Create an IlvMapInputStream and use it to read the map file. This takes care of
reconnecting read data with the corresponding read map model (data sources, map
layers and so on).

String mapFilename = "myMap.ivl";
IlvMapInputStream mapInputStream = new IlvMapInputStream (mapFilename);
try {

mapInputStream.read(manager);
} catch (Exception ex) {

// handle reading exceptions here
}

Note that when using the above IlvMapInputStream constructor, the .img file that
goes with the .ivl file (passed to IlvMapInputStream) must be in the same directory
as the .ivl file or the stream will not be able to find it, leading to missing images on
the map.

If you choose to specify a different name for the .img file when saving the map (see
Saving and reloading a map), you must also specify the filename to the
IlvMapInputStream using the appropriate constructor as follows:

String ivlFilename = "myMap.ivl";
String imgFilename = "myImgFilename.img";

//Create the input stream for the .ivl file.
FileInputStream fis = new FileInputStream(ivlFilename);

//Create the IlvMapInputstream and specify the image file name.
IlvMapInputStream mapInputStream = new IlvMapInputStream(fis, imgFilename)
;

//Read the map as described previously.
try {
mapInputStream.read(manager);
} catch (Exception ex) {

// Handle reading exceptions here.
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 65

Map Export API

The map export API makes it easier for the user to export a part of a map to different output
formats.

Class for exporting selected map features
The main class is the IlvMapExportManager. This class is responsible for exporting selected
map features of a map through specified export plugins known as IlvMapExportManager.
IlvMapExporter implementations.

Exporters
IlvMapExportManager.IlvMapExporter is an interface that defines the expected methods
of any object capable of writing map features in sequence.

Two kind of exporters can be set on the IlvMapExportManager:

♦ A vectorial exporter, which handles all vectorial map features when exporting a map.

♦ A raster exporter, which handles map features containing raster data.

They are set by calling the methods setVectorialExporter(ilog.views.maps.export.
IlvMapExportManager.IlvMapExporter) and setRasterExporter(ilog.views.maps.export.
IlvMapExportManager.IlvMapExporter) on an IlvMapExportManager instance.

A region of export can also be set on the IlvMapExportManager so that map features outside
this region are not exported.

Once the two exporters of a IlvMapExportManager object are properly set and configured,
an array of IlvMapLayer instances of the map may be exported with the method
exportMapLayers(ilog.views.maps.beans.IlvMapLayer[]).

The IlvMapExportDialog class
The IlvMapExportDialog is a user-friendly dialog box class that lets the user choose:

♦ The exporters to use (from a list of registered exporters)

♦ A list of map layers to export

♦ A region of interest for the export

I B M ® I L O G ® J V I E W S M A P S 8 . 666

Export Map Dialog Box

Vectorial and raster exporters are registered with this dialog box through the methods
registerVectorExporter(ilog.views.maps.export.IlvMapExportManager.
IlvMapExporter) and registerRasterExporter(ilog.views.maps.export.
IlvMapExportManager.IlvMapExporter), and similarly are removed by calling
unregisterVectorExporter(ilog.views.maps.export.IlvMapExportManager.
IlvMapExporter) and unregisterRasterExporter(ilog.views.maps.export.
IlvMapExportManager.IlvMapExporter) methods.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 67

I B M ® I L O G ® J V I E W S M A P S 8 . 668

The shapefile reader and writer

Describes the shapefile reader and writer classes and data sources.

In this section

The shapefile reader and writer classes
Describes the classes for shapefile reading and writing.

The shape data source
Describes the data source for reading shapefiles.

Classes for reading the shape format
Describes the classes for reading shapefiles.

Classes for writing the shape format
Describes the classes for writing shapefiles.

Shapefile load-on-demand
Describes the classes for loading shapefiles on demand.

The IlvTiledShapeDataSource
Describes the data source for shapefiles with tiling and load-on-demand.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 69

The shapefile reader and writer classes

The class diagram for the shapefile reader and writer is shown in Shapefile Reader and
Writer UML Diagram.

Shapefile Reader and Writer UML Diagram

These classes are based on the Shapefile Specifications listed in the ESRI (Environmental
Systems Research Institute) document: ESRI Shapefile Technical Specifications -
An ESRI White Paper - July 1998.

The Shapefile format is the exchange format for vector maps of the ESRI. This format
supports polygons, arcs, lines, and points. Each Shapefile contains one single theme, meaning
that all the objects in the file are of the same type (either line, point, polygon, or another
type of object). In the Shapefile format, a theme is essentially described with four different
files:

♦ A shapefile (.shp) contains the geometry of the objects.

♦ A Dbase file (.dbf) contains the attributes of the objects.

I B M ® I L O G ® J V I E W S M A P S 8 . 670

♦ An index file (.shx) contains the index and sizes of the objects of the .shp file.

♦ A spatial index file (.idx) contains tiling information. This file is JViews Maps package
specific, and is used to performload-on-demand on Shapefiles.

This format does not contain information concerning the coordinate system used to reference
the position of the graphic objects. Objects in Shapefiles are often positioned within a
geographic coordinate system (IlvGeographicCoordinateSystem), but this is far from being
the rule.

The Shapefile format comprises the following classes:

♦ The shape data source

♦ Classes for reading the shape format

♦ Classes for writing the shape format

♦ Shapefile load-on-demand

The complete source code for an ESRI shapefile demonstration can be found at <installdir>
/jviews-maps86/samples/shape/index.html

I B M ® I L O G ® J V I E W S M A P S 8 . 6 71

The shape data source

The IlvShapeDataSource class is a specialized data source that reads ESRI shapefiles.

Reading Shapefiles
The easiest way of reading shapefiles is to use the dedicated data source:

// Create the data source
IlvShapeDataSource source = new IlvShapeDataSource(fileName);
// affect the manager
source.setManager(manager);
// start the data source.
try {
source.start();

} catch (Exception e) {
e.printStackTrace();

}

In this example, the data source is simply invoked and started. You have to use the
setManager(ilog.views.IlvManager)method to specify themanager into which the graphic
objects are inserted. Graphic objects are instances of IlvMapPolyline, IlvMapGraphicPath
or IlvMapPoint, depending on the feature contained in the shapefile. Additionally, the data
source creates an IlvMapLayer. You can specify a IlvMapStyle to change the rendering of
the graphic objects in this layer.

Filtering Shapefiles
If the shape file you read has an associated dbf file, you can filter a subset of the file content
through the setfilter method. For example, the following code will only load the records
which have a "NAME" property with a value "usa".

source.setFilter(new IlvSplitEqualsFilter("NAME", "usa", true);

Modifying graphic object rendering
The following example shows how to modify the rendering of the graphic objects produced
by this data source by changing the style of the IlvMapLayer of the data source.

// create the data source
IlvShapeDataSource source = new IlvShapeDataSource(fileName);
source.setManager(manager);
// Assuming that the geometry of the shape file are areas.
IlvGraphicPathStyle style = new IlvGraphicPathStyle();
source.getInsertionLayer().setStyle(style);
style.setPaint(Color.blue);
try {
source.start();

} catch (Exception e) {

I B M ® I L O G ® J V I E W S M A P S 8 . 672

e.printStackTrace();
}

If you are not sure of the type of objects contained in the shape file, you can use the
setAttribute method on the layer style, for example:

IlvMapLayer layer = source.getInsertionLayer();
layer.getStyle().setAttribute(IlvPolylineStyle.FOREGROUND,Color.black);
layer.getStyle().setAttribute(IlvPolylineStyle.BACKGROUND,new

Color(1,1,0.8f));

I B M ® I L O G ® J V I E W S M A P S 8 . 6 73

Classes for reading the shape format

The ilog.views.maps.format.shapefile package includes the following classes:

♦ IlvShapeFileReader

This class implements the IlvMapFeatureIterator interface and allows you to read .
shp, .dbf and .shx files. Since Shapefiles provide no information on the projection system
used, this reader is not georeferenced. This reader uses the two specialized readers
described below. Its getNextFeature()getNextmethodmerges the information generated
by these specialized readers into a single map feature.

♦ IlvSHPReader

This class implements the IlvMapFeatureIterator interface. This reader only reads .
shp files.

♦ IlvDBFReader: reads .dbf files.

♦ IlvShapeFileIndex: reads .shx files.

♦ IlvShapeSpatialIndex: reads maps spatial index .idx files.

The IlvSHPReader class
The geometries stored in Shapefiles are not necessarily 2-D objects. Each point that makes
up a shape object can be associated with measurements, or with measurements and an
elevation.

Measurements are stored in an attribute of type IlvAttributeArray, which itself is stored
in the map feature attribute of index 0.

The following are the shape types that are associated with measurements:

♦ POINTZ

♦ POLYLINEZ

♦ POLYGONZ

♦ MULTIPOINTZ

♦ POINTM

♦ POLYLINEM

♦ POLYGONM

♦ MULTIPOINTM

Elevations are stored in an attribute of type IlvAttributeArray, which itself is stored in
the map feature attribute of index 1.

The following are the shape types that are associated with measurements and elevations:

♦ POINTZ

I B M ® I L O G ® J V I E W S M A P S 8 . 674

♦ POLYLINEZ

♦ POLYGONZ

♦ MULTIPOINTZ

Since the JViews Maps package does not have a predefined geometry to represent shape
objects of type MULTIPATCH, which are essentially used for 3-D rendering, these are ignored.
It is possible, however, to modify this behavior by subtyping the class IlvShapeSHPReader.
Since shape objects are read in protected methods, modifying the reader to include new
geometries requires minimal effort.

The IlvDBFReader class
This reader is used exclusively for reading a file of the .dbf format. It can be used to iterate
over a file as follows:

try {
IlvDBFReader reader = new IlvDBFReader("myFile.dbf");
IlvFeatureAttributeProperty attributes = reader.getNextRecord();
while (attributes != null) {
// Process attributes.
...
attributes = reader.getNextRecord();
}

} catch (Exception e) {
e.printStackTrace();

}

If the reader has been created from a file and not from a URL, you can access map feature
attributes directly by specifying their record number:

reader.readRecord(index);

The IlvShapeFileReader class
This reader reads the .shp file storing geometries and the .dbf file storing attributes
simultaneously, and merges the information into a single IlvMapFeature object.

It can be instantiated in one of three ways:

♦ By specifying the name of the .dbf and .shp files.

♦ By specifying the URL of these two files.

♦ By specifying an IlvDBFReader and IlvSHPReader object directly.

This is useful, for example, when using a derived IlvSHPReader object.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 75

Classes for writing the shape format

The ilog.views.maps.format.shapefile package contains the following classes for writing
Shapefiles.

The class IlvSHPWriter is used to generate the geometry and index parts of a Shapefile (.
shp and .shx files), while the IlvDBFWriter is used to write the attribute file (.dbf extension).

Like with feature iterator, writing map features to a Shapefile consists of writing repeatedly
map features using the methods writeFeature(ilog.views.maps.IlvMapFeature) and
writeAttributes(ilog.views.maps.IlvFeatureAttributeProperty), then call the close
() method of writers to flush the data and write the headers.

The IlvSHPWriter class
The IlvSHPWriter class manages the writing of geometries to a Shapefile, with the creation
of the Shapefile index that allows direct access to Shapefile records.

The following example shows how to use this class to write the contents of a feature iterator
to a file foo.shp, creating the index file at the same time.

try {
IlvSHPWriter shpwriter = new IlvSHPWriter("foo.shp",

"foo.shx");
// Loop on features.
IlvMapFeature feature = iterator.getNextFeature();
while (feature != null) {
shpwriter.writeFeature(feature);
feature = iterator.getNextFeature();

}
shpwriter.close();

} catch (IOException e) {
// Error processing.
e.printStackTrace();

}

The Shapefile format defines a header that can be completed only once all data is
written. For this reason, it is mandatory to call the close() method of the shape writer
once all data is written, so that the header is updated.

Note:

The IlvDBFWriter and IlvDBFAttributeInfo classes
The IlvDBFWriter and IlvDBFAttributeInfo classes manage the writing of DBase III+
files (.dbf files). These files contain records corresponding to attributes of geometries
contained within a Shapefile.

As .dbf files need records with fixed-size fields, it is important to choose a field size that is
large enough to contain all data of a field, as well as a size small enough not to waste data.

I B M ® I L O G ® J V I E W S M A P S 8 . 676

The goal of the class IlvDBFAttributeInfo is to complement IlvAttributeInfoProperty
for the definition of record fields.

The following example shows how to write the contents of an iterator to a set of .shp, .shx
and .dbf files:

try {
// Create the SHP writer.
IlvSHPWriter shpwriter = new IlvSHPWriter("foo.shp", "foo.shx");

// Read the first feature.
IlvMapFeature feature = iterator.getNextFeature();

// Create the DBF Writer.
IlvDBFAttributeInfo info =

new IlvDBFAttributeInfo(feature.getAttributeInfo());

IlvDBFWriter dbfwriter = new IlvDBFWriter(info,
"foo.dbf");

// Loop on features.
while (feature != null) {
shpwriter.writeFeature(feature);
dbfwriter.writeAttributes(feature.getAttributes());
feature = iterator.getNextFeature();

}
shpwriter.close();
dbfwriter.close();

} catch (IOException e) {
// Error processing.
e.printStackTrace();

}

Once again, the writers must be closed to write the headers correctly.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 77

Shapefile load-on-demand

TheMaps package provides classes to perform load-on-demand on Shapefiles. This is achieved
by the use of specific spatial index files. These files, usually having an .idx extension, store
relations between tiles and object identifiers that belong to these tiles. A class and a tool
example are provided to generate these spatial index files. A generic tile loader is also
provided to minimize the amount of code needed to implement the load-on-demand
mechanism using Shapefiles.

The load-on-demand mechanism involves two classes in addition to the shape reader and
the dbf reader: the IlvShapeFileIndex class and the IlvShapeSpatialIndex class. A utility
class is also provided to generate the spatial index for a given Shapefile: the
IlvShapeFileTiler class.

The mechanism used to store and retrieve objects by tiles is illustrated in the following
diagram:

The Spatial Index file holds objects identifiers for each tile. Objects identifiers are their
ordinal place in the IndexFile. Geometries are retrieved in the Shapefile using the IndexFile.
In the following example, the tile [2, 1] (tiles indices begin at 0) contains identifiers 2, 5 and
9 referring to the geometries g2 g5 and g9.

The classes used to perform load-on-demand on the Shapefiles are the following:

♦ The IlvShapeFileIndex Class

♦ The IlvShapeSpatialIndex Class

♦ The IlvShapeFileTiler Class

♦ The IlvShapeFileTileLoader Class

I B M ® I L O G ® J V I E W S M A P S 8 . 678

The IlvShapeFileIndex Class
This class allows you to directly access geometries in a Shapefile. The spatial index and the
Shapefile must correspond to the same theme:

// Open the index file.
IlvShapeFileIndex index = new IlvShapeFileIndex("example.shx");
// Open the corresponding Shapefile.
IlvSHPReader shape = new IlvSHPReader("example.shp");
// Retrieve the feature for each index.
int count = index.getRecordCount();
for(int i = 0; i < count; i++)

IlvMapFeature f = shape.getFeatureAt(i);

The IlvShapeSpatialIndex Class
This class stores tile information: tile size and count, and identifiers of the objects belonging
to each tile. To retrieve objects from a tile specified by its row and column, use the
getIdArray(int, int) method:

// Open the spatial index file.
IlvShapeSpatialIndex spatialIndex =

new IlvShapeSpatialIndex("example.shx");
// Loop on all columns and rows.
for(int c = 0; c < spatialindex.getColumnCount(); c++) {

for(int r = 0; r < spatialindex.getRowCount(); r++) {
// Retrieve the IDs of objects belonging to the tile at row ‘r’ and
// column ‘c’.
int[] ids = spatialindex.getIdArray(c, r);
// Loop on these IDs and get the corresponding map feature.
for(int i =0; i < ids.length; i++) {

IlvMapFeature f = shape.getFeatureAt(i);
}

}
}

The IlvShapeFileTiler Class
This class is used to generate tiling information from a given Shapefile. To use this class
you have to provide the Shapefile to tile, the SpatialIndexFile to write to, and either the tile
size or the number of rows and columns.

IlvShapeFileTiler.CreateShapeSpatialIndex("example.shp",
"example.idx",

5., 10.);

The above code extract produces a SpatialIndexFile named example.idx with a tile size
of width 5 and height 10.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 79

IlvShapeFileTiler.CreateShapeSpatialIndex("example.shp",
"example.idx",
20, 30);

The above code extract produces a SpatialIndexFile of 600 tiles, 20 columns and 30 rows.

I B M ® I L O G ® J V I E W S M A P S 8 . 680

The IlvTiledShapeDataSource

The IlvTiledShapeDataSource is the tiled version of the IlvShapeDataSource. This means
that it takes advantage of the tiling and load-on-demandmechanism. To read a tiled shapefile
with such a data source, you can use the following code:

IlvTiledShapeDataSource source = new IlvTiledShapeDataSource(fileName);
source.setManager(getManager());
try {
source.start();

} catch (Exception e) {
e.printStackTrace();

}

The IlvShapeFileTileLoader Class
This class implements load-on-demand for tiled Shapefiles. When associated with an
IlvTiledLayer, this class automatically handles tile loading if the Shapefile file name, the
IndexFile file name, and the SpatialIndexFile file name are provided. An optional Dbase file
name can also be provided to load object attributes.

IlvShapeFileTileLoader tileLoader =
new IlvShapeFileTileLoader("example.shp",

"example.dbf", // Or null if attributes loading

// is not wanted.
"example.shx",
"example.idx");

IlvTiledLayer tiledLayer = new IlvTiledLayer(new IlvRect(), null,
IlvTileController.FREE);

tiledLayer.setTileLoader(tileLoader);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 81

I B M ® I L O G ® J V I E W S M A P S 8 . 682

The MID/MIF reader and writer

Describes the MID/MIF reading and rendering classes and data sources.

In this section

The MID/MIF classes
Describes the classes for reading MID/MIF files.

The MIDMIF data source
Describes the data source for MIDMIF files.

Classes for reading the MapInfo Interchange File format
Describes the classes provided for reading MIF format files.

Classes for rendering the MapInfo Interchange File format
Describes the classes provided for rendering MIF format files.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 83

The MID/MIF classes

The class diagram for the mid/mif reader is shown in MID/MIF Reader UML Diagram.

MID/MIF Reader UML Diagram

This section describes the ilog.views.maps.format.midmif package, which allows you to
read files provided in the MapInfo Interchange File (MIF) format.

AMapInfo Interchange Format consists of aMIF file containing the geometries and rendering
attributes, and a MID file containing the attributes attached to each geometry.

The MIF file is an ASCII text file that describes the geometry data associated with rendering
attributes such as pen and brush styles, font, and color that should be used to transform
geometries into graphic objects. The reader classes provided with the JViews Maps package
allow you to use either the information contained in the MIF file or your own rendering
attributes.

The MID file contains attributes, which are nongraphical additional information associated
with the geometries contained in the MIF file.

The MID/MIF Reader contains the following classes:

♦ The MIDMIF data source

♦ Classes for reading the MapInfo Interchange File format

♦ Classes for rendering the MapInfo Interchange File format

♦ Coordinate System Support

I B M ® I L O G ® J V I E W S M A P S 8 . 684

The MIDMIF data source

The IlvMIDMIFDataSource class is a specialized data source that reads MIDMIF files. It
wraps all MIDMIF file rendering processes.

IlvMIDMIFDataSource source = new IlvMIDMIFDataSource(filename);
source.setManager(manager);
source.start();

The IlvMIFDMIFDataSource produces a IlvMapLayer for objects having the same geometries
and similar graphic attributes. If, however, aMIDMIF file contains lines whose color attributes
are different, for example, red and blue, two layers are created, one for the blue lines and
one for the red lines.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 85

Classes for reading the MapInfo Interchange File format

The JViews Maps package provides all the necessary classes to read data provided in the
MapInfo Interchange File (MIF) format. In addition to these classes, the JViewsMaps package
also provides the IlvGraphic classes needed to render specific MIF objects.

The classes used to read MapInfo Interchange files are the following:

♦ The IlvMIDMIFReader class

♦ The IlvMIFReader class

♦ The IlvMIDReader class

The IlvMIDMIFReader class
This class reads both MIF file and MID file by providing a MIF file name and a MID file
name. If the MID file name is set to null, no attribute is loaded. If the MID file name
corresponds to a valid MID file, the attributes are read from the file and attached to the
IlvMapFeature returned by the reader.

IlvMIDMIFReader reader = new IlvMIDMIFReader("example.mif", "example.mid");
IlvMapFeature feature = reader.getNextFeature();
while(feature != null)

feature = reader.getNextFeature();

The IlvMIFReader class
This is the class that reads a single MIF file, providing a MIF file name or a reader to the
constructor. You can then iterate to obtain the IlvMapFeatures of the file, but you can also
obtain information about the MIF file you are reading, such as:

♦ The IlvAttributeInfoProperty, which defines the name and the classes of the attributes
that can be found in the associated MID file.

♦ The default feature renderer suitable to render the geometries contained in this file.

♦ The character encoding used in this file.

♦ The coordinate system in which the geometries of the file are expressed.

Note that the coordinate system returned by the reader can be null even if the MapInfo
specifications consider the geometries to be in the Geographic coordinate system if none is
specified in the MIF file.

IlvMIFReader reader =
new IlvMIFReader("example.mif");

IlvAttributeInfoProperty info = reader.getAttributeInfo();
if(info != null) {

System.out.println("Attributes info : ");
for(int i = 0; i < info.getAttributesCount(); i++) {

System.out.println("Name " + info.getAttributeName(i));
System.out.println("Class " + info.getAttributeClass(i));

I B M ® I L O G ® J V I E W S M A P S 8 . 686

}
}
IlvCoordinateSystem cs = reader.getCoordinateSystem();
if(cs != null)

System.out.println("The coordinate system is " + cs.getName());
else

System.out.println("Assuming a geographic coordinate system");
String encoding = reader.getCharset();
System.out.println("Char set is " + encoding);

The IlvMIDReader class
This class reads a MID file. You must have previously opened the corresponding MIF file,
in order to build the second argument of the MID reader (IlvAttributeInfoProperty) that
is provided in the MIF file.

IlvMIFReader reader =
new IlvMIFReader("example.mif");

IlvAttributeInfoProperty info = reader.getAttributeInfo();
IlvMIDReader mid = new IlvMIDReader("example.mid", info);
IlvFeatureAttributeProperty prop = mid.getNextRecord();
while(prop != null)

prop = mid.getNextRecord();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 87

Classes for rendering the MapInfo Interchange File format

Since the MIF file can contain rendering information, the JViews Maps package provides
classes to use this rendering information directly. This includes a ready-to-use
IlvFeatureRenderer suitable to render geometries found in the MIF file and a factory to
create IlvMapLineRenderingStyle.

In addition to these rendering classes, the JViews Maps package also provides a set of
specific IlvGraphic objects to display the MID/MIF geometries. These IlvGraphic objects
are needed by the MID/MIF specifications but can also be used outside a MID/MIF context.

The IlvMIFFeatureRenderer Class
This class is a subclass of the IlvDefaultFeatureRenderer that dispatches on the appropriate
renderer with the rendering styles found in the MIF file. This is the IlvFeatureRenderer
returned by the getDefaultFeatureRenderer() method of the IlvMIFReader class. The
rendering styles found in the MIF file are attached to the IlvMapFeature as properties by
the reader and interpreted in the renderer.

The IlvMIFPenFactory Class
This class is a factory to create an IlvMapLineRenderingStyle by specifying a MID/MIF
pattern identifier.

The IlvMIFCoordinateSystemFactory Class
This class is a factory to translate a MID/MIF coordinate system into a Maps coordinate
system.

Specialized Graphics
The IlvGraphic objects needed to render MID/MIF geometries include the following classes:

♦ IlvDecoratedPath: A general path supporting decorations. A decoration is a drawing
that follows the path of the graphic. These decorations can be clipped against the clip
region of the java.awt.Graphics to provide high performance drawing.

♦ IlvMapLabel: A label able to display multiline text. This label supports interline spacing.

♦ IlvFontMarkerA graphic object able to display a character of a given font as the marker
point. This object is usually used with a symbol font that provides cartographic symbology.

Coordinate System Support
Along with objects and attribute information, MIF files also contain information on the
coordinate system used to store the graphic objects of a defined file.

The possible coordinate systems in MID/MIF are the following:

I B M ® I L O G ® J V I E W S M A P S 8 . 688

♦ Earth: a coordinate systemwhere coordinates are expressed within a projected coordinate
system. See List of Supported MID/MIF Projections for the list of supported projections.

♦ NonEarth: a coordinate systemwhere coordinates are expressed in a specified unit. When
such a file is encountered, the coordinate system is set to null, and the getUnit()method
returns the unit defined in the file.

♦ Layout: a coordinate system corresponding to coordinates on a sheet of paper. When
such a file is encountered, the coordinate system is set to null, and the getUnit()method
returns the unit defined in the file.

♦ Table: a coordinate system corresponding to an open table in MapInfo. This coordinate
system is not supported in the JViews Maps package.

♦ Window: a coordinate system corresponding to an open window in MapInfo. This
coordinate system is not supported in the JViews Maps package.

The JViews Maps package fully supports projected coordinates defined in a MID/MIF file.
The supported projections are listed in List of Supported MID/MIF Projections:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 89

List of Supported MID/MIF Projections
Corresponding ProjectionNameMID/MIF

Projection
Number

IlvAlbersEqualAreaProjectionAlbers Equal-Area Conic9

IlvAzimuthalEquidistantProjectionAzimuthal Equidistant5

IlvCylindricalEqualAreaProjectionCylindrical Equal Area2

IlvEckert4ProjectionEckert IV14

IlvEckert6ProjectionEckert VI15

IlvMercatorProjectionGall17

IlvObliqueMercatorProjectionHotine Oblique Mercator7

IlvLambertAzimuthalEqualAreaProjectionLambert Azimuthal Equal Area4

IlvLambertConformalConicProjectionLambert Conformal Conic3

IlvLambertConformalConicProjectionLambert Conformal Conic19

(modified for Belgium 1972)

Not a projection. An
IlvGeographicCoordinateSystem is used.

Longitude/Latitude1

IlvMercatorProjectionMercator10

IlvMillerCylindrical ProjectionMiller Cylindrical11

IlvMollweideProjectionMollweide13

IlvPolyconicProjectionPolyconic27

IlvRobinsonProjectionRobinson12

IlvSinusoidalProjectionSinusoidal16

IlvStereographicProjectionStereographic20

IlvTransverseMercatorProjectionTransverse Mercator8

JViews Maps supports all ellipsoids and nearly all datums from MapInfo (see the MID/MIF
file format specification for the full list of ellipsoids and datums).

The MIF format specification allows user datum definition, with either 3 or 7 parameters.
As the JViews Maps package does not support 7-parameter datum yet, definitions of

Note:

7- parameter datum is decoded as 3-parameter datum, skipping the rotations and scale
part of datum definitions.

I B M ® I L O G ® J V I E W S M A P S 8 . 690

The DTED file reader

You can use the DTED® file reader to read Digital Terrain Elevation Data (DTED format)
files. The DTED read format is a map format for representing terrain elevations published
by the U.S. National Imagery and Mapping Agency (NIMA). The DTED files contain digital
terrain models as rasters. A raster is a georeferenced grid containing a value in each of its
cells. In the case of DTED, and a digital terrain model in general, the value indicates the
average elevation in the cell. However, this value can indicate any other attribute: surface
temperature, surface pressure, nitrogen rating of the soil, and so on.

The DTED reader provided in this package is based on the specification document
MIL-PRF-89020A of 19 April 1996. DTED files are available with various precision levels,
called DTED0, DTED1, and DTED2. A DTED file contains a digital terrain model raster that
covers a zone of one degree by one degree. The cell size of the raster depends on the DTED
level:

♦ DTED0 provides raw data (approximately 30 to 40 KB for a file).

♦ DTED1 provides data that is more detailed.

♦ DTED2 is the most precise level. It has surface cells that are nine times smaller than
those of DTED1. At this degree of precision, a DTED file is enormous (several megabytes).

The complete source code for a DTED demonstration can be found at

<installdir> /jviews-maps86/samples/dted/index.html.

The DTED raster reader
The following code shows how to use an IlvRasterDTEDReader to load a single DTED file
using the IlvMapDataSource:

IlvRasterDTEDReader r = new IlvRasterDTEDReader();
try {
r.addMap(filename);

} catch (IOException e1) {
e1.printStackTrace();

}
IlvMapDataSource source =
IlvRasterDataSourceFactory.buildImageDataSource(manager, r, null);
try {
source.start();

} catch (Exception e) {
e.printStackTrace();

}

The following code shows how to read a set of DTED files using an
IlvTiledRasterDataSource. This produces an IlvMapLayer containing an IlvTiledLayer
holding the tiles.

IlvRasterDTEDReader r = new IlvRasterDTEDReader();
try {
r.addMap(filename);

} catch (IOException e) {

I B M ® I L O G ® J V I E W S M A P S 8 . 6 91

e.printStackTrace();
}
IlvMapDataSource source =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager, r, true, true,
null);
try {
source.start();

} catch (Exception e) {
e.printStackTrace();

}

Classes for reading the DTED format
The main class for reading DTED formats is IlvDTEDReader. This class implements the
IlvMapFeatureIterator interface and returns only one IlvMapFeature object, which is the
raster corresponding to the digital terrain model (DTM) stored in the file. The geometry of
this map feature is of type IlvMapRaster. The map feature has no attribute. The projection
of the reader is the source projection of the DTED data, that is, the geographic projection.

The IlvDTEDLayer class defines load-on-demand for the DTED format. Load-on-demand is
implemented on a DTED-level basis from the corresponding file name or URL. In other
words, the size of a tile in a JViews Maps tiled layer corresponds to the size of a DTED tile.
This specific implementation of load-on-demand works exclusively with maps drawn with
the geographic projection. Specifying a URL allows you to access one of the NIMA CDs
directly from their web site. For an example, see the DTED demonstration at the following
location:

<installdir> /jviews-maps86/samples/dted/index.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 692

The image file reader

The formats handled by the generic image file reader, which are GIF, PNG and JPEG, are
supported by the Java™ Platform, Standard Edition. An image coded in one of these formats
does not contain any geo-referencing information, so this information has to be known before
loading this kind of image. This is also true for TIFF images that do not contain GeoTIFF
tags. Below you can find a description of the IlvRasterBasicImageReader, the
IlvImageReader class and IlvImageTileLoader class.

The IlvRasterBasicImageReader class
The IlvRasterBasicImageReader class is a GIF, JPG, PNG or TIFF reader that creates
reprojectable, stylable, and pixel-on-demand images.

Creating an image reader
You need first to create an image reader, and add the image file to be read:

IlvRasterBasicImageReader imageReader = new IlvRasterBasicImageReader();
imageReader.addMap(gifFile);

As these images have no longitude or latitude information, you need to geo-reference this
image. The easiest way to do this is to set the image bounds in longitude and latitude. This
obviously works only for images that have a spatial coverage along lines of longitude and
latitude. For advanced management of more complex images, the Map Builder provides an
image transformation model that manages reprojection and image interpolation
(ImageControlModel class).

In the example below, you set the image to cover the entire earth:

imageReader.setImageBounds(0,-Math.PI,Math.PI/2,Math.PI,-Math.PI/2);

Creating a data source
Once you have created the reader, you need to create a data source, which should be
integrated into the manager properties:

IlvMapDataSource imageDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,imageReader,true,t
rue,null);
IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);
dataSourceModel.insert(imageDataSource);

Reading the data
You can then start reading your data:

dataSourceModel.start();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 93

Starting the data source creates the necessary tiled layers, tile managers and IlvRasterIcon
instances to manage the pixel-on-demand feature and the progressive display of the new
geo-referenced image.

You can also create a subsampled preview of an image, using code such as:

int iconWidth=imageReader.getRasterProperties(0).getNumColumns();
int iconHeight=imageReader.getRasterProperties(0).getNumLines();
Image image =
Toolkit.getDefaultToolkit().createImage(iReader.getTileLoader(0).getScaledImage
Producer(subsampling, new IlvRect(0, 0, iconWidth, iconHeight)));

The IlvImageReader class
If you do not need image the reprojection, styling or pixel-on-demand features, but simply
want to insert and geo-reference a single GIF, JPG or PNG image, you can use the
IlvImageReader class.

If you use this class, the images created are not compatible with the data source and
map layer management.

Note:

This class implements the IlvMapFeatureIterator interface. It returns only one
IlvMapFeature object, which is the image stored in the file.

The geometry of this map feature is of type IlvMapImage. The map feature has no attributes.
To use this reader you have to provide a file name and the coordinates of this image.

// The image is known to be at 77 degrees 30 seconds east
// and 10 degrees north for the upper left corner.
// Lower right corner is at 82 degrees 30 seconds east
// and 5 degrees north.
IlvCoordinate ul = new IlvCoordinate(77.5, 10);
IlvCoordinate lr = new IlvCoordinate(82.5, 5);
IlvImageReader reader = new IlvImageReader("image.jpg", ul, lr);
IlvMapFeature feature = reader.getNextFeature();
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
// Image is known to be in the geographic coordinate system.
IlvCoordinateTransformation tr

= new IlvCoordinateTransformation(IlvGeographicCoordinateSystem.WGS84,

IlvGeographicCoordinateSystem.WGS84,

new IlvMapAffineTransform());
IlvGraphic g = renderer.makeGraphic(feature, tr);
manager.addObject(g, false);

The IlvImageTileLoader class
If you do not need image reprojection, styling or pixel-on-demand features, but have access
to a set of images, you can use the IlvImageTileLoader class.

I B M ® I L O G ® J V I E W S M A P S 8 . 694

If you use this class, the images created are not compatible with the data source and
map layer management.This information is provided for compatibility with older versions
of JViews.

Note:

This class is used to read a set of images that are part of a larger image. This tile loader
allows an application to load only the images that are visible at a given time, each image
corresponding to a tile. Each file must be named so that it is possible to construct its file
name knowing the row index and column index of the corresponding tile. To use this tile
loader, you must provide the information needed to reconstruct the file name for a given
tile: a pattern that matches the file naming scheme and two formatting strings.

IlvImageTileLoader loader = new IlvImageTileLoader(String pattern,
String rowFormatString,
String colFormatString);

The pattern argument must contain one ‘%r’ and one ‘%c’ conversion specifier. The %r
conversion specifier is used to convert the row index of the tile, and the %c conversion
specifier is used to convert the column index of the tile. These conversion parameters are
replaced accordingly with the rowFormatString and the colFormatString parameters. This
format string is used to construct two java.text.DecimalFormat strings.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 95

I B M ® I L O G ® J V I E W S M A P S 8 . 696

The Oracle spatial reader and writer

Describes the Oracle® reader and writer classes, using data sources, how to use tiling,
multithreading and exporting to an SDO database.

In this section

The Oracle spatial reader and writer classes
Describes the Oracle® spatial reader and writer classes.

Using the Oracle SDO data source
Explains how to use the Oracle® SDO data source to read a map.

Using tiling and multithreading
Explains how to use tiling and multithreading.

Getting a list of layers
Describes how to get a list of layers.

Relational model classes
Describes the classes for reading and writing data stored in an Oracle® spatial relational
model database.

Object relational model classes
Describes the classes for reading and writing data stored in an Oracle® spatial object
relational database.

Oracle SDO export
Describes how to use the Map Export API to export part of a map to an SDO database.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 97

The Oracle spatial reader and writer classes

The class diagram for the Oracle® spatial reader and writer is shown in Oracle Spatial
Reader and Writer UML Diagram.

Oracle Spatial Reader and Writer UML Diagram

Oracle SDO, or Oracle Spatial, is the spatial extension of Oracle in its version 7.3. This
extension has been renamed to Spatial Cartridge in the version 8.0 and has been renamed
again to Oracle Spatial in the version 8i.

The classes are based on the relational implementation of Oracle Spatial available since
Oracle 7.3. It contains classes that facilitate the use of map data (stored in an Oracle
database) in an IBM® ILOG® JViews application. Oracle Spatial allows you to store
georeferenced objects in an Oracle database and to perform spatial queries, such as getting
the list of objects that intersect a specific polygon.

Oracle has written two implementations of Oracle Spatial:

♦ An implementation based on relational tables, available since Oracle 7.3.

♦ An implementation based on the Object Relational model, available since Oracle 8i, which
also contains the relational implementation of Oracle Spatial.

The Oracle reader of JViews Maps supports reading and writing data in the relational and
the object relational model of Oracle Spatial through two different packages:

♦ The package ilog.views.maps.format.oracle contains classes to read and write Oracle
Spatial Relational model.

♦ The package ilog.views.maps.format.oracle.objectmodel contains classes to read
and write Oracle Spatial Object Relational model.

I B M ® I L O G ® J V I E W S M A P S 8 . 698

The Oracle Spatial Reader and Writer comprises the following classes:

♦ Using the Oracle SDO data source

♦ Relational model classes

♦ Object relational model classes

♦ Oracle SDO export

The complete source code for an Oracle Reader demonstration can be found at <installdir>
/jviews-maps86/samples/oracle/index.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 99

Using the Oracle SDO data source

The IlvSDODataSource class is an IlvMapDataSource for reading georeferenced objects
from an Oracle® SDO (formerly Oracle Spatial) database. It relies on the Oracle SDO API
that was introduced in former versions of the JViews Maps product, but wraps up all
operations (connecting to database, reading features, rendering them to graphic objects)
in a more convenient way.

To read a map stored in an Oracle SDO database:

1. Create a connection to the Oracle database:

String url = "jdbc:oracle:thin:@hostMachine:1529:mySID";
String userName="login";
String password="pass";
IlvSDOConnection connection = new IlvSDOConnection(url,userName,password)
;
connection.createConnection();

2. Create a data source with this connection as a parameter:

// Assume we want to read from an object model Oracle database (not
relational)
boolean isObjectModel = true;

// we want to fetch layer "MY_LAYER_GEOMETRY"
IlvSDODataSource SDODataSource =
new IlvSDODataSource(connection, isObjectModel , "MY_LAYER_GEOMETRY");

To get a list of layers, see Getting a list of layers.

3. Set parameters on this data source to use load-on-demand:

boolean useTiling = true;
int rowCount = 5;
int columnCount = 5;
SDODataSource.setTilingParameters(useTiling, rowCount, columnCount);

4. Connect this data source to the manager of the view:

SDODataSource.setManager(getView().getManager());

5. Insert the data source into the data source tree. You first need to retrieve the data
source model from the property of the manager:

IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);
dataSourceModel.insert(SDODataSource);

6. Finally, start the Oracle SDO data source:

SDODataSource.start();

I B M ® I L O G ® J V I E W S M A P S 8 . 6100

Using tiling and multithreading

To benefit from IBM® ILOG® JViews Maps advanced image tiling capabilities and
multithreading, use IlvTiledRasterDataSource in the place of IlvSDODataSource

This assumes that you want to load an SDO layer containing raster objects,
SDO_GEORASTER.

Note:

To use a tiled data source:

1. Instantiate a IlvRasterSDOReaderIlvRasterSDOReader object.

This class extends IlvRasterAbstractReaderIlvRasterAbstractReader and holds a
list of raster elements. It fetches the following elements from the Oracle® DB

IlvSDOConnection SDOConnection; // the connection to your Oracle DB
String layerName; // the name of the oracle layer containing SDO_GEORASTER
... // Initialize your connection.
IlvRasterSDOReader sdoReader = new
IlvRasterSDOReader(SDOConnection,layerName);

2. Create an IlvTiledRasterDataSourceIlvTiledRasterDataSource backed by the reader.

IlvTiledRasterDataSource tiledSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(
view.getManager(), sdoReader, true,true, null);

3. Configure the raster datasource, and call the start()method to start data production.

tiledSource.setManager(view.getManager());
tiledSource.start();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 101

Getting a list of layers

To get a list of layers available in the Oracle® database, you can do the following:

♦ For a relational model:

♦ For an object model:

String[] layersList =
IlvSDOUtil.GetAllLayers(connection.getConnection(),connection.getUser());
layersList = IlvObjectSDOUtil.GetAllLayers(connection.getConnection(),
connection.getUser(), true);

I B M ® I L O G ® J V I E W S M A P S 8 . 6102

Relational model classes

Classes for reading data from an Oracle spatial relational model
database
The reader classes for Oracle® SDO relational model (package ilog.views.maps.format.
oracle) are:

♦ IlvSDOFeatureIterator for converting Oracle Spatial layer data into IlvMapFeature
objects.

♦ IlvSDOLayer for implementing load-on-demand for Oracle Spatial data.

♦ IlvSDOTileLoader abstract class for defining Oracle queries for the IlvSDOLayer. An
optimized subclass, IlvDefaultSDOTileLoader is used by IlvSDOLayer.

The IlvSDOFeatureIterator class
The IlvSDOFeatureIterator class reads data from the result of an SQL query to a relational
Oracle Spatial layer and converts them into IlvMapFeature objects. JViewsMaps applications
can handle Oracle Spatial data using this class in a transparent manner.

The following example of Java™ code performs a query, loading data from an Oracle Spatial
layer named ROADS_SDOGEOM. It includes classes from the java.sql package:

String query = "SELECT * FROM ROADS_SDOGEOM ORDER BY 1, 2, 4 ";
Statement statement = getConnection().createStatement();
ResultSet resultSet = statement.executeQuery(query);
IlvSDOFeatureIterator iterator = new IlvSDOFeatureIterator(resultSet);

The connection variable is a java.sql.Connection object.

The query orders the result using the following three criteria, which must be given in the
order indicated:

1. GID (Geometric ID)

2. ESEQ (Element Sequence)

3. SEQ (Row Sequence)

This ordering is necessary for the IlvSDOFeatureIterator to work correctly.Note:

The ResultSet of any query to an Oracle Spatial layer can be used to initialize an
IlvSDOFeatureIterator, but all the SDO columns must be in the resultSet (columns
defining the GID, ESEQ, ETYPE, SEQ, and the coordinates).

The features returned by this iterator have no attributes. However, the GID of the Oracle
Spatial geometry is used as the identifier of each feature and this identifier can be used to
retrieve additional attributes from the database. See the method getId().

I B M ® I L O G ® J V I E W S M A P S 8 . 6 103

The IlvSDOLayer class
This class implements load-on-demand for a relational Oracle Spatial data source. The default
implementation takes an Oracle Spatial layer for which a spatial indexation has been
performed and reads its content with a tiling equivalent to the Oracle Spatial tiling.

The following example creates an IlvSDOLayer on an Oracle Spatial layer named ROADS:

IlvSDOConnection connection = new IlvSDOConnection(url, userName, password);
IlvSDOLayer layer = new IlvSDOLayer(connection, "ROADS");
manager.addLayer(layer,-1);

The IlvSDOTileLoader class
This class offers additional possibilities when retrieving data from an Oracle Spatial database.
These possibilities are meant as a supplement to the default behavior of IlvSDOLayer. For
example, you may want to add filters to a layer or to have a tiling definition that is different
than the Oracle tiling.

The example in the file <installdir> /jviews-maps86/samples/oracle/index.htmlshows
how to implement a subclass IlvSDOTileLoader that uses spatial queries to retrieve data
for a JViews Maps tile.

The IlvDefaultSDOTileLoader class
This class is a subclass of IlvSDOTileLoader and is used by the IlvSDOLayer. It has some
optimizations. For example, the setTileGroupingCount(short) method allows you to set
the number of tiles that are grouped in one unique query to the database. In fact, each tile
corresponds to a Spatial Query. If you have an average of n tiles to load each time you want
to load on demand, you should use setTileGroupingCount(n), where all the n queries are
grouped into one unique query that is sent to the database.

If you want to handle special operations on each IlvMapFeature retrieved in
Load-On-Demand with the IlvSDOLayer layer, you have to subclass the

Note:

IlvDefaultSDOTileLoader in order to override the getFeatureIterator()
method. In this method, you have to return an instance of a subclass of
IlvSDOFeatureIterator where you have overridden the getNextFeature()
method (inside which you can perform your specific operations on each
IlvMapFeature returned by the layer). Finally, you have to set your subclass of
IlvDefaultSDOTileLoader as the tile loader of the layer.

Class for writing data to an Oracle spatial relational model database
The IlvSDOWriter class allows you to write map features into a relational Oracle Spatial
database.

The IlvSDOWriter class
The IlvSDOWriter class can write any IlvMapFeatureIterator whose features have a
geometry supported by the relational model of Oracle Spatial and write them to the database
as in the following example:

I B M ® I L O G ® J V I E W S M A P S 8 . 6104

IlvSDOWriter writer =
new IlvSDOWriter(connection.getConnection()

"MyLayer",
16,
new IlvCoordinate(-360d, 90d),
new IlvCoordinate(360d, -90d));

// Creating a source feature iterator.
IlvShapeFileReader reader = new IlvShapeFileReader(...);
// Dumping its content to the Oracle layer.
writer.writeFeatureIterator(reader);

The write() method of the IlvSDOWriter does not write the attributes of the features. If
you want to write the attributes of the features, you can subtype the writeFeature()method
of the IlvSDOWriter, after calling super.writeFeature(feature).

The geometries supported by the Oracle Spatial writer are:

♦ IlvMapPoint

♦ IlvMapLineString

♦ IlvMapPolygon

♦ IlvMapMultiPoint

♦ IlvMapMultiCurve for geometries composed of multiple line strings.

♦ IlvMapMultiArea for geometries composed of multiple polygons.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 105

Object relational model classes

Since version 8.1.7, Oracle® Spatial allows spatial data to be georeferenced. Geometries
can be georeferenced by associating a spatial reference ID (SRID) to each geometry.
Coordinate systems associated to these SRIDs are defined in the table MDSYS.CS_SRS.

JViews Maps can import these reference systems using their OpenGIS WKT (Well Known
Text) specifications, found in the MDSYS.CS_SRS table. If your data is not georeferenced,
there is no need to change anything. The JViews Maps classes in the objectmodel package
handle both georeferenced and nongeoreferenced data.

For more information, see the Oracle Spatial documentation (Coordinate Systems section)
and Handling spatial reference systems.

Classes for reading data from an Oracle Spatial object relational
model database
The reader classes for Oracle Spatial object relational model included in the package ilog.
views.maps.format.oracle.objectmodel are:

♦ IlvObjectSDOFeatureIterator for converting Oracle Spatial layer data into
IlvMapFeature Objects.

♦ IlvObjectSDOLayerMetaData and IlvObjectSDODimElement for representing metadata
information for a given Spatial Layer.

♦ IlvObjectSDOKeyExtractor and IlvDefaultObjectSDOKeyExtractor for an optimized
use of the load-on-demand.

♦ IlvObjectSDOLayer for implementing the load-on-demand for object Oracle Spatial data.

♦ IlvDefaultObjectSDOTileLoader, an optimized subclass of IlvSDOTileLoader is used
by IlvObjectSDOLayer.

The IlvObjectSDOFeatureIterator class
This class reads data from the result of an SQL query to a relational Oracle Spatial layer
and converts the data into IlvMapFeature objects. The JViews Maps package applications
can handle Oracle Spatial data using this class in a transparent way. The following example
performs a query, loading data from an Oracle Spatial layer named ROADS:

IlvSDOConnection connection = new IlvSDOConnection(url,
userName,
password);

connection.createConnection();
IlvObjectSDOFeatureIterator iterator =

new IlvObjectSDOFeatureIterator(connection.getConnection(),
"select * from ROADS",
// The name of the geometry column.
"GEOMETRY",

// No key ID.
null,
// Name of the x-ordinates column.

I B M ® I L O G ® J V I E W S M A P S 8 . 6106

"X",
// Name of the y-ordinates column.
"Y");

The result set of any query to an Oracle Spatial layer can be used to initialize an
IlvObjectSDOFeatureIterator, but the column containing the geometry must be in the
result set.

The features returned by the iterator can have attributes and coordinate systems attached.

♦ Attributes: they can be retrieved by means of the method getAttributes().

Any column of the layer that can be interpreted as a String, a float number, or an integer
number is translated into attributes and set in the returned map feature. Moreover, if
you instantiate the feature iterator with an ID name, the value of these features can be
used to retrieve additional attributes (if any) from the database. See the getId()method.

This ID is used in the library essentially for load-on-demand optimization. If you give an
ID name when instantiating the iterator, a large geometry that covers more than one tile
is loaded just once.

If you ignore the ID name, the load() method of each covered tile fully loads the large
geometry.

♦ Coordinate Systems: they can be retrieved by means of the getCoordinateSystem()
method. This coordinate system is the interpretation of the Well Known Text contained
in the MDSYS.CS_SRS table corresponding to the SDO_SRID attached to the geometry
read by the iterator. The interpretation is performed by the ilog.views.maps.srs.wkt
package.

This behavior can be bypassed by using setCoordinateSystem(ilog.views.maps.srs.
coordsys.IlvCoordinateSystem). For example, if you call this method, the coordinate
system passed as a parameter is assigned to all the map features returned by the iterator.

The Oracle SRID of the geometry that has been currently read by the iterator can be
obtained by the getCurrentSRID().

The IlvObjectSDOLayerMetaData and IlvObjectSDODimElement
classes
These two classes correspond to two data structures defined in Oracle Spatial.

The IlvObjectSDOLayerMetaData class corresponds to the data contained in each row of
the (XXX_)SDO_GEOM_METADATA view. This view contains information, calledmetadata, about
Spatial layers. Each Spatial user has the following views available in the schema associated
with that user (in Oracle 8.1.6+):

♦ USER_SDO_GEOM_METADATA

Contains metadata information for all spatial tables owned by the user (schema). This is
the only view that the user must keep up-to-date. For instance, the close() method of
IlvObjectSDOWriter updates this view.

♦ ALL_SDO_GEOM_METADATA

Contains metadata information for all spatial tables on which the user has SELECT
permission.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 107

♦ DBA_SDO_GEOM_METADATA

Contains metadata information for all spatial tables on which the user has SELECT
permission (if the user has the DBA role).

Each metadata view has the following definition:

TABLE_NAME VARCHAR2(32),
COLUMN_NAME VARCHAR2(32),
DIMINFO MDSYS.SDO_DIM_ARRAY,
SRID NUMBER

In addition, the ALL_SDO_GEOM_METADATA and DBA_SDO_GEOM_METADATA views have an OWNER
column identifying the schema that owns the table specified in TABLE_NAME.

You do not need to build metadata by hand: the IlvObjectSDOUtil method can help you
retrieve the metadata directly from the database. For instance, if a Spatial layer is called
ROADS, then you can retrieve its metadata as follows:

IlvObjectSDOLayerMetaData metadata =
IlvObjectSDOUtil.GetLayerMetaData(connection.getConnection()

"ROADS",
// You can pass the geometry column name as null: the first
// metadata row that matches the layer name “ROADS” is then
// returned.

null,
// You can pass the metadata view name as null: the default
// is "(USER_)SDO_GEOM_METADATA".

null,
// You can pass the owner name as null: the name of the
// current user is then taken as the owner name.

null);

The IlvObjectSDOLayerMetaData class is then composed of the following elements that
match the (XXX_)SDO_GEOM_METADATA view: the table name (the name of the Spatial layer),
the geometry column name (called COLUMN_NAME in the view, the name of the column of type
MDSYS.SDO_GEOMETRY), the owner name, the optional SRID if the Spatial layer is
georeferenced, and an array of IlvObjectSDODimElement (called DIMINFO in the view).

The IlvObjectSDODimElement corresponds to the MDSYS.SDO_DIM_ELEMENT data type. The
MDSYS.SDO_DIM_ELEMENT data type is defined in Oracle as:

Create Type SDO_DIM_ELEMENT as OBJECT (
SDO_DIMNAME VARCHAR2(64),
SDO_LB NUMBER,
SDO_UB NUMBER,
SDO_TOLERANCE NUMBER);

The DIM element data type describes, for each Spatial Layer, its extent for each dimension.
For instance, for typical two-dimensional geometries, the DIM element array of the metadata
table has two entries. The first entry describes the first dimension (x, longitude), the second
one describes the second dimension (y, latitude).

I B M ® I L O G ® J V I E W S M A P S 8 . 6108

In the DIM element array of the metadata table, the elements are supposed to be
ordered. For example, the first element of the array is considered as the first dimension
of the layer, and so on.

Note:

The IlvObjectSDOKeyExtractor and
IlvDefaultObjectSDOKeyExtractor classes
The IlvObjectSDOKeyExtractor class is an interface associated with feature iterators and
tile loaders. Its main purpose is to associate an object with the map feature read by the
iterator or the tile loader.

This object is supposed to be unique, so that the next time the feature iterator meets the
object, it is not process the geometry in the corresponding row, considering that this geometry
has already been loaded.

The goal is to avoid multiple loading of the same geometry. This interface extracts a key
from a ResultSet using the extractKey(java.sql.ResultSet)method. The object returned
can be extracted from one Table column or multiple columns as soon as it constitutes a
unique object.

Example of Multiple Loading in Load-On-demand

The red rectangle belongs to the tile (2, 2) and (2, 3). When the load method of the tile (2,
2) is called, it loads the rectangle. When the load method of the tile (2, 3) is called, the
rectangle is loaded again as soon as it intersects with this tile too, and the tile loader has
no way to know that this geometry has already been loaded. You can avoid this by using the
IlvObjectSDOKeyExtractor class.

The IlvDefaultObjectSDOKeyExtractor is a default class that implements the key extraction
behavior from one Table column. For example, given the previous schema let us suppose
that the Spatial Layer is the following:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 109

GEOMETRY MDSYS.SDO_GEOMETRY,
ID NUMBER

The ID column does not need to be described in Oracle as a key, when it contains
unique values.

Note:

The IlvDefaultObjectSDOKeyExtractor used with this layer can be easily obtained in the
following way:

IlvDefaultObjectSDOKeyExtractor extractor =
new IlvDefaultObjectSDOKeyExtractor("ID");

Then, this extractor can be associated with an IlvObjectSDOLayer, or an
IlvDefaultObjectSDOTileLoader.

IlvObjectSDOLayer layer =
new IlvObjectSDOLayer(connection,

IlvObjectSDOUtil.GetLayerMetaData(...),
1000,
1000,
"X",
"Y",
extractor, // used here
null);

The IlvObjectSDOLayer class
This class implements load-on-demand for an object Oracle Spatial data source. The default
implementation takes an Oracle Spatial layer for which a spatial indexation has been
performed and reads its content.

The following example creates an IlvObjectSDOLayer on an Oracle Spatial layer named
ROADS:

IlvSDOConnection connection = new IlvSDOConnection(url,
userName,
password);

connection.createConnection();
IlvObjectSDOLayer layer =

new IlvObjectSDOLayer(connection,
// The name of the SDO layer.
"ROADS",
// Width of a tile in the database
// coordinate system.
1500,
// Height of a tile in the database
// coordinate system.
1500,

// Special handling of ID.
null //Is not required.

I B M ® I L O G ® J V I E W S M A P S 8 . 6110

);
manager.addLayer(layer,-1);

The IlvDefaultObjectSDOTileLoader class
This class is a subclass of IlvSDOTileLoader and is used by the IlvObjectSDOLayer. It has
some optimizations.

For example, the method setTileGroupingCount(short) allows you to set the number of
tiles that are grouped in one unique query to the database. In fact, each tile corresponds to
a Spatial Query, and if you have an average of n tiles to load each time you want to load on
demand, you should use setTileGroupingCount(n), where all the n queries are grouped
into one unique query that is sent to the database once.

If you want to handle some special operations on each IlvMapFeature retrieved in
load-on-demand with the IlvObjectSDOLayer layer, you have to subclass the

Note:

IlvDefaultObjectSDOTileLoader in order to override the getFeatureIterator
method. In this method, you have to return an instance of a subclass of
IlvObjectSDOFeatureIterator where you have overridden the getNextFeature
method (inside which you can perform your specific operations on each
IlvMapFeature returned by the layer). Finally, you have to set your subclass of
IlvDefaultObjectSDOTileLoader as the tile loader of the layer.

Another interesting method of this class is the setRequestParameters(java.lang.String,
java.lang.String, java.lang.String, java.lang.String, java.lang.String, int)
method.

This method allows you, for instance, to set the spatial operator used to query the layer.
The default operator is SDO_FILTER.

Tiles shows a Spatial layer using a fixed tiling of level 2. The red rectangle is the area queried
by the tile loader. If the SDO_FILTER operator is used (default case), all the geometries
belonging to the Oracle Spatial Tiles intersecting with the red rectangle fit the request. In
the case of Tiles, all the geometries belonging to the tiles (2,2), (2,3), (3,2), and (3,3), for
example the line, the point, the triangle, the circle, and the rectangle are retrieved.

You may not want to retrieve the geometries that do not explicitly intersect with the red
rectangle (for example, the circle and the rectangle geometries here). In this case, you have
two choices.

♦ The first choice is to keep the SDO_FILTER operator and to use the setClippingRequest
(boolean) method in order to let the tile loader perform a bounding box clipping check.

♦ The second choice is to use another spatial operator in Oracle which is SDO_RELATE.
This operator is to be used with the following parameters: "querytype=window
mask=anyinteract". This way, the setClippingRequest() is not needed anymore so that
all the retrieved geometries are the ones that intersect with the red rectangle, for example
the point, the triangle, and the line in Tiles.

Finally, note that the SDO_RELATE Spatial operator is slower than the SDO_FILTER operator.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 111

Tiles

Class for writing data to an Oracle Spatial object relational model
database
This section presents the IlvObjectSDOWriter class, which allows you to write map features
into an Object Oracle Spatial database.

The class IlvObjectSDOWriter can write any IlvMapFeature or any IlvMapFeatureIterator
whose features have a geometry supported by Oracle Spatial 8i (vectorial geometries) and
write them to the database as in the following example:

IlvSDOConnection connection = new IlvSDOConnection(url,
userName,
password);

connection.createConnection();
IlvObjectSDOWriter writer =

new IlvObjectSDOWriter(connection.getConnection(),
"MyLayer", // Layer name.
"GEOMETRY", // Geometry column.
"X", // X ordinate name.
"Y", // Y ordinate name.
true // Create table.

);
IlvShapeFileReader reader = new IlvShapeFileReader("foo.shp",null);
int saved_objects_count = writer.writeFeatureIterator(reader,

false, // No attributes
null);// No SRID

I B M ® I L O G ® J V I E W S M A P S 8 . 6112

writer.close(0.0, // Tolerance
null);// No SRID

In the case of the Oracle Spatial Object Model, some auxiliary tables, like the (USER_)
SDO_GEOM_METADATA view, need to be updated. It is very important to call the method

Note:

IlvObjectSDOWriter.close() once the data has been written through the write
() method, so that the database is kept up-to-date.

The writeFeature(ilog.views.maps.IlvMapFeature, boolean, java.lang.Long)method
of the IlvObjectSDOWriter can also write the attributes of the feature.

Themethod writeFeature(ilog.views.maps.IlvMapFeature, boolean, java.lang.Long)
has a second argument that can be set to true to save the attributes of the specified map
feature. This requires that the map feature has an IlvAttributeInfoProperty correctly
set, describing the attributes that match the Oracle Spatial layer column names. This also
requires that map feature has an IlvFeatureAttributeProperty
IlvFeatureAttributeProperty that fits its IlvAttributeInfoProperty and has correct
values.

For instance, if you have an Oracle Spatial layer called ROADS that has the following
description in the database:

TypeNull?Name

MDSYS.SDO_GEOMETRYGEOMETRY

VARCHAR2(512)TYPE_DESC

The third argument of the writeFeature() method allows you to set the SDO_SRID value
of the written SDO_GEOMETRY. The value of the SDO_SRID is exactly one of the SRID
values of the MDSYS.CS_SRS table, and it represents the corresponding coordinate system
for the written geometry.

The following code extract shows how to write features with a unique attribute into the
database:

IlvSDOConnection connection = new IlvSDOConnection(url,
userName,
password);

connection.createConnection();
IlvObjectSDOWriter writer =

new IlvObjectSDOWriter(connection.getConnection(),
"myLayer",
"GEOMETRY", "X", "Y", false);

java.lang.String[] names = new String[1];
names[0] = "ATTRIBUTE_NAME";
java.lang.Class[] classes = new Class[1];
classes[0] = java.lang.String.class;
boolean[] nullable = new boolean[1];
nullable[0] = true;
// Creates the attribute info.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 113

IlvAttributeInfoProperty info =
new IlvAttributeInfoProperty(names, classes, nullable);

// Sets the attribute to feature.
IlvFeatureAttribute[] attributes = new IlvFeatureAttribute[1];
attributes[0] = new IlvStringAttribute("MY FOO TYPE");
IlvFeatureAttributeProperty prop =

new IlvFeatureAttributeProperty(info,attributes);
feature.setAttributeInfo(info);
feature.setAttributes(prop);

// Writes the feature.
try {

writer.writeFeature(feature,true, null); // no SRID
} catch (java.sql.SQLException e) {

// Error.
e.printStackTrace();

}
writer.close(0.0, null); // no SRID

The writer can update rows in the SDO layer. This is based on a key mechanism, where the
row(s) having the value of the given key are updated. The update is done through the
following methods from the IlvObjectSDOWriter class:

♦ updateFeatureAttributes(ilog.views.maps.IlvFeatureAttributeProperty, int)
based on an attribute property where you have to give the position of the key in the
attribute list and you can update more than one column at the same time.

♦ updateFeatureAttribute(java.lang.String, ilog.views.maps.IlvFeatureAttribute,
java.lang.String, ilog.views.maps.IlvFeatureAttribute) where you update just
one column (the new value is the attributeToUpdate passed as argument) given a key
attribute.

All the subclasses of IlvMapGeometry except IlvMapText, IlvMapImage,
and IlvMapRaster are supported by the object model writer.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6114

Oracle SDO export

In addition to the IlvSDOWriter and IlvObjectSDOWriter classes used to store georeferenced
objects to an Oracle® database (see The Oracle spatial reader and writer classes), you can
export part of a map to a SDO database using the map export API (seeMap Export API). To
do so, you just need to set an IlvSDOExporter as the vectorial exporter on the
IlvMapExportManager.

IlvMapExportManager exportManager = new IlvMapExportManager();
IlvSDOExporter SDOExporter = new IlvSDOExporter();
exportManager.setVectorialExporter(SDOExporter);

// configure SDO export (connection parameters)
SDOExporter.showConfigurationDialog(null);

// Set the region of the map to export (here we assume that the map is
// in IlvGeographicCoordinateSystem.KERNEL system, i.e. in radians)
exportManager.setExportRegion(-Math.PI,-Math.PI/2, Math.PI,Math.PI/2);

// Export selected map layers of the map (assuming that mapLayersToExport is
an array of
// IlvMapLayer instances)
exportManager.exportMapLayers(mapLayersToExport);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 115

The GeoTIFF reader

The GeoTIFF reader (see GeoTIFF format) is based on some extension packages such as
Batik Apache™ TIFF Reader, an open source API included in the JViews Maps jar files.

The GeoTIFF format is an extension of the TIFF (Tagged Image File Format) format. The
TIFF format is an image file format that allows tags to be inserted in the file. These tags
give information about the image contained in the file, such as the resolution, the number
of samples per pixel, and so on. The GeoTIFF extension adds specific cartographic tags that
give geographic information about the image contained in the file, such as the coordinate
system in which the image is represented, and the location of the image in this coordinate
system.

The official TIFF specification can be found at:

http://partners.adobe.com/asn/developer/pdfs.tn/TIFF6.pdf

More information about the GeoTIFF format can be found at:

http://www.remotesensing.org/geotiff/geotiff.html

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

The IlvRasterGeoTiffReader class
The IlvRasterGeoTiffReader class is a GeoTIFF file reader that creates reprojectable,
stylable, and pixel-on-demand images.

Creating an image reader
You need first to create an image reader, and then add the image file to be read:

IlvRasterGeoTiffReader imageReader = new IlvRasterGeoTiffReader();
imageReader.addMap(tiffFile);

The geo-reference information is decoded from the GeoTIFF file, by means of an
IlvGeotiffReader.

Creating a data source
Once you have created the reader, you need to create a data source, which should be linked
with the manager properties by inserting it into the data source tree:

IlvMapDataSource imageDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,imageReader,true,t
rue,null);
IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);
dataSourceModel.insert(imageDataSource);

Reading the data
You can then start reading your data:

I B M ® I L O G ® J V I E W S M A P S 8 . 6116

http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
http://www.remotesensing.org/geotiff/geotiff.html

dataSourceModel.start();

Starting the data source creates the necessary tiled layers, tile managers, and IlvRasterIcon
instances to manage the pixel-on-demand feature and the progressive display of the
geo-referenced image.

The IlvGeotiffReader class
The IlvGeotiffReader class implements the IlvMapFeatureIterator interface. The
getNextFeature() method returns an IlvMapImage geometry which contains a TIFFImage
object. The TIFF image can then be rendered by the IlvDefaultImageRenderer to produce
an IlvIcon, or be transformed by data sources into a tiled IlvRasterIcon.

The TIFF reader can take two parameters as arguments: the TIFF file name and a file that
contains a connection between the tag describing the coordinate system used by the image
and the corresponding WKT string. The reader retrieves the coordinate system of the image
in a WKT format if the image contains the appropriate tag, and then retrieves the
IlvCoordinateSystem through the IlvWKTCoordinateSystemDictionary class. This
coordinate system is then available through the getCoordinateSystem(int) method.

The default constructor, however, only takes the TIFF file name parameter and uses an
internal WKT file (wktdictionary.txt) found in IBM® ILOG® JViews jar files.

The reader can be used in the same way as any reader that conforms to the Maps reader
framework:

IlvGeotiffReader reader = new IlvGeotiffReader(tiffFile);
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
IlvCoordinateSystem coordSys = reader.getCoordinateSystem();
if (coordSys != null)

manager.setNamedProperty(new IlvCoordinateSystemProperty(coordSys));
else

manager.removeNamedProperty(IlvCoordinateSystemProperty.NAME);
IlvCoordinateTransformation tr =

IlvCoordinateTransformation.CreateTransformation(coordSys, coordSys);
IlvGraphic g = renderer.makeGraphic(f, tr);
manager.addObject(g, false);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 117

The TIGER/Line reader

The acronym TIGER® comes from Topologically Integrated Geographic Encoding and
Referencing, which is the name for the system and digital database developed at the U.S.
Census Bureau to support its mapping needs for the Decennial Census and other Bureau
programs.

The TIGER/Line files are a digital database of geographic features, such as roads, railroads,
rivers, lakes, legal boundaries, census statistical boundaries, and so on, covering the entire
United States. The data base contains information about these features, such as, their
location in latitude and longitude, the name of the feature, the type of feature, address
ranges for most streets, the geographic relationship to other features, and other related
information. TIGER/Line® files are a public product created from the TIGER database of
the Census Bureau.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

The IlvTigerDataSource class
The IlvTigerDataSource class is a data source that reads TIGER/Line files. This data source
is filtered so that only selected features can be read from the file, the others being ignored.
These features can be supplied in code as an array of strings or can be retrieved from a
IlvFeatureSelectorPanel configured with the TigerFeaturesEN.txt file. This file contains
the list of the Census Feature Class Codes (CFCCs) and a description of the corresponding
features. Use the following lines to supply the CFCCs in the code:

try {
IlvTigerDataSource source = new IlvTigerDataSource(filename);
source.setManager(manager);
source.setCFCCCodeList(new String[]{"A41"});
source.start();

} catch (Exception e) {
e.printStackTrace();

}

To retrieve the CFCC codes from an IlvFeatureSelectiorPanel, you can use the following
code, which creates, instantiates and starts a TIGER/Line data source with the selected
features:

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
final IlvFeatureSelectorPanel spanel = new IlvFeatureSelectorPanel(manager,
"TigerFeaturesEN.txt");
JButton button = new JButton("OK");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Vector src = new Vector();
IlvFeatureSelectorPanel.Feature[] features = spanel.getSelectedFeatures();
ArrayList cfccCodes = new ArrayList();
if (features != null) {
for (int j = 0; j < features.length; j++) {

I B M ® I L O G ® J V I E W S M A P S 8 . 6118

IlvFeatureSelectorPanel.Feature currentFeature = features[j];
IlvFeatureSelectorPanel.Feature currentChild;
int nChildren = currentFeature.getChildCount();
if (nChildren != 0) {// major

for (int i = 0; i < currentFeature.getChildCount(); i++) {
currentChild = (IlvFeatureSelectorPanel.Feature) currentFeature.

getChildAt(i);
cfccCodes.add(currentChild.getMajorCode() + currentChild.getMinorCode

());
}
} else {
cfccCodes.add(currentFeature.getMajorCode() + currentFeature.getMinorCode

());
}
}
}
String[] s = (String[])cfccCodes.toArray(new String[0]);
try {
source = new IlvTigerDataSource(filename);
source.setManager(manager);
source.setCFCCCodeList(s);
source.start();

} catch (Exception e1) {
e1.printStackTrace(); }

}});
panel.add(button, BorderLayout.SOUTH);
JScrollPane pane = new JScrollPane(spanel);
panel.add(pane, BorderLayout.CENTER);
JFrame f = new JFrame();
f.getContentPane().add(panel);
f.pack();
f.setVisible(true);

The IlvTigerReader class
The IlvTigerReader class reads TIGER/Line files. It can be used independently, but it is
usually created through the use of a IlvTigerDataSource. The method recordMatches
(ilog.views.maps.IlvFeatureAttributeProperty) can be overridden to select features
to be read or discarded by the TIGER/Line reader.

File file = new File(filename);
IlvTigerReader reader =
new IlvTigerReader(file.toURL().toExternalForm()) {
public boolean recordMatches(IlvFeatureAttributeProperty properties) {
if(properties == null)
return false;
return properties.getAttribute("CFCC").toString().equals("A41") ;

}
};

IlvMapFeature f = null;
IlvCoordinateSystem source = IlvGeographicCoordinateSystem.WGS84;
IlvCoordinateSystem dst = IlvGeographicCoordinateSystem.WGS84;
IlvCoordinateTransformation tr = IlvCoordinateTransformation.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 119

CreateTransformation(source, dst);
while ((f = reader.getNextFeature()) != null) {
IlvGraphic g = reader.getDefaultFeatureRenderer().makeGraphic(f, tr);
manager.addObject(g, false);

}

List of CFCC codes
See http://www.census.gov/geo/www/tiger.

I B M ® I L O G ® J V I E W S M A P S 8 . 6120

http://www.census.gov/geo/www/tiger

The DXF reader

There are two ways of reading DXF format files:

♦ Using an IlvMapDXFReader instance directly. In this case, you must write all of the code
required to render the DXF features into graphic objects, and then add them to the
manager.

The IlvMapDXFReader class reads DXF features from a specified DXF file or catalog. It
implements the IlvMapFeatureIterator interface to iterate over the read features.

♦ Using an IlvDXFDataSource. This is a convenient way of performing all the above
operations at once and is more integrated with the data model of the map.

The IlvDXFDataSource class provides a convenient way of creating a set of layers
containing DXF data in a manager. You can also georeference the geographic objects to
create, as DXF datasets are usually non-georeferenced.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

To read the DXF features and create vector data using the DXF readerobject:

1. Create an IlvMapDXFReader instance from the path of the DXF file:

String DXFpath = " C:/maps/DXF/map.dxf";
IlvMapDXFReader reader = new IlvMapDXFReader(DXFpath);

2. Set the transformation to use to render DXF, for example:

reader.setDestinationBounds(new Rectangle2D.Double
(lonMinRad,latMinRad,lonMaxRad,latMaxRad));

3. Get the default DXF renderer:

IlvFeatureRenderer renderer = reader. getDefaultFeatureRenderer ();

4. Iterate over the features, render them, and assign them to a manager:

IlvMapFeature feature = reader.getNextFeature();
while(feature != null) {
// Render map feature into graphic object
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object on the first layer of the manager
manager.addObject(graphic, 0, false);
feature = reader.getNextFeature();

}

To read DXF features and create vector data using the DXF data source:

1. Create an IlvDXFDataSource:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 121

String DXFpath = " C:/maps/DXF_0606_ed8/DXFT";
IlvDXFDataSource source = new IlvDXFDataSource(DXFpath);

2. Connect this data source with the manager of the view:

source.setManager(manager);

3. Set the transformation to use to render DXF into geo-referenced objects, for example:

source.setDestinationBounds(lonMinRad,latMinRad,lonMaxRad,latMaxRad);

Alternatively you can use a tailored transformation through the use of:
setInternalTransformation(ilog.views.maps.srs.coordtrans.IlvMathTransform).

4. Start the DXF data source:

source.start();

I B M ® I L O G ® J V I E W S M A P S 8 . 6122

The KML reader and writer

Describes the KML reader and writer and exporting KML files.

In this section

The KML reader and writer
Describes the reader and writer for KML and KMZ files.

Exporting KML files
Describes how to export map data to a KML or KMZ file.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 123

The KML reader and writer

There are two ways of reading KML/ KMZ files:

♦ Using an IlvKMLReader instance directly. In this case, you must write all the code required
to render the KML features into graphic objects, and then add them to the manager.

This class reads KML features from a specified KML file or catalog. It implements the
IlvMapFeatureIterator interface to iterate over the read features.

♦ Using an IlvKMLDataSource. This is a convenient way of performing all the above
operations at once and is more integrated with the data model of the map.

The IlvKMLDataSource class provides a convenient way of creating a set of layers
containing KML data in a manager.

The source code for the Map Builder demonstration, which contains all the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

To read KML features and create vector data using the IlvKMLReader object:

1. Create an IlvKMLReader instance from the path of the KML catalog:

String KMLpath = " C:/maps/KML/places.kmz";
IlvKMLReader reader = new IlvKMLReader(KMLpath);

2. Create a default renderer:

IlvFeatureRenderer renderer = new IlvDefaultFeatureRenderer();

3. Iterate over the features, render them with an appropriate IlvFeatureRenderer, and
assign them to a manager:

IlvMapFeature feature = reader.getNextFeature();
while(feature != null) {
// Render map feature into the graphic object.
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object on the first layer of the manager.
manager.addObject(graphic, 0, false);
feature = reader.getNextFeature();

}

To read KML features and create vector data using the IlvKMLDataSource:

1. Create an IlvKMLDataSource:

String KMLpath = "C:/maps/KML_0606_ed8/KMLT";
IlvKMLDataSource source = new IlvKMLDataSource(KMLpath);

2. Connect this data source to the manager of the view:

source.setManager(getView().getManager());

3. Start the KML data source:

I B M ® I L O G ® J V I E W S M A P S 8 . 6124

source.start();

JViews Maps does not support KML styles. This is because JViews Maps styles are
made for layers whereas KML styles are made for individual objects and are therefore
not compatible.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 125

Exporting KML files

You can export part of a map to a KML (or KMZ) file using the Map Export API (see Map
Export API). To do so, set an IlvKMLExporter as the vectorial exporter on the
IlvMapExportManager. You can also use the raster exporter, if you want to export an overlaid
image.

♦ If you set a KML file name, all images used inside that file are saved at the same location,
with names such as image0.png.

♦ If you set a file name that ends with .kmz, all the files are zipped into a single kmz file:

IlvMapExportManager exportManager = new IlvMapExportManager();
IlvKMLExporter KMLExporter = new IlvKMLExporter();
exportManager.setVectorialExporter(KMLExporter);
exportManager.setRasterExporter(KMLExporter);

// Configure KML export (file name).
KMLExporter.setFileName("export.kml");

// Set the region of the map to export.
exportManager.setExportRegion(-Math.PI,-Math.PI/2, Math.PI,Math.PI/2);

// Export selected map layers of the map.
IlvMapLayer mapLayersToExport[]={/* table of map layers to export*/...};
exportManager.exportMapLayers(mapLayersToExport);

I B M ® I L O G ® J V I E W S M A P S 8 . 6126

The DEM/GTOPO30 reader

GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc
seconds (approximately 1 kilometer). It covers the full extent of latitude from 90 degrees
south to 90 degrees north, and the full extent of longitude from 180 degrees west to 180
degrees east. The vertical units represent elevation in meters above mean sea level. In the
DEM, ocean areas have been masked as "no data" and have been assigned a value of -9999.

A full sample of a GTOPO30 database can be downloaded from:
http://edcdaac.usgs.gov/gtopo30/gtopo30.asp.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

The IlvGTopo30Reader class is a file reader that creates reprojectable, stylable and
pixel-on-demand images that can provide altitude data.

To create images:

1. First create an image reader and add the image file you want to be read:

IlvGTopo30Reader imageReader = new IlvGTopo30Reader();
imageReader.addMap(gtopoFile);

2. Create a data source and link it with the manager properties by inserting it into the
data source tree:

IlvMapDataSource imageDataSource = IlvRasterDataSourceFactory.
buildTiledImageDataSource(manager,imageReader,true,true,null);

IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

dataSourceModel.insert(imageDataSource);

3. Start reading your data:

dataSourceModel.start();

Starting the data source creates the necessary tiled layers, tile managers and IlvRasterIcon
instances to manage the pixel-on-demand feature and the progressive display of the
geo-referenced image.

This icon associates altitude properties that can be used as altitude data sources, see Using
the altitude provider property.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 127

http://edcdaac.usgs.gov/gtopo30/gtopo30.asp

The Web Map Server reader

The OpenGIS® Web Map Service (WMS standard) Implementation Specification produces
maps of spatially referenced data dynamically from geographic information. This international
standard defines a map to be a portrayal of geographic information as a digital image file
suitable for display on a computer screen. The OpenGIS standard provides three operations
(GetCapabilities, GetMap, and GetFeatureInfo) in support of the creation and display of
registered and superimposed map-like views of information that come simultaneously from
multiple remote and heterogeneous sources. For more information about the OpenGIS
standard, see http://www.opengeospatial.org/.

There are two ways of reading images from a Web Map Server (WMS):

♦ Using an IlvWMSReader instance directly. In this case, you must write all the code required
to render the WMS features into graphic objects and add them to the manager.

♦ Using an IlvWMSDataSource. This is a convenient way of performing all the above
operations at once and is more integrated with the data model of the map.

The source code for the Map Builder demonstration, which contains all the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

The IlvWMSReader class reads image features from a specified Web Map Server URL. It
implements the IlvMapFeatureIterator interface to iterate over the read features.

The IlvWMSDataSource class provides a convenient way of creating a set of layers containing
images retrieved from a Web Map Server in a manager.

To read WMS features from a Web Map Server using the IlvWMSReader class and
create raster data:

1. Create an IlvWMSReader instance from a server URL. A WMS server URL can be the
full http WMS request for capabilities, or at least the WMS request URL for this server.
This information is dependent on the server itself and is usually available in the server's
documentation. For instance :

URL url = new URL("http://wms.jpl.nasa.gov/wms.
cgi?request=GetCapabilities"); // "http://wms.jpl.nasa.gov/wms.cgi" will
work as well
IlvWMSReader reader = new IlvWMSReader(url);

2. Set the name of the layers to be rendered. The layer names can be retrieved from the
server capabilities:

String[] layers = reader.getAvailableLayers();
reader.setLayerNames(new String[]{layers[0]});

3. Set the transformation to use to render WMS images, for example:

IlvCoordinateSystem cs = IlvCoordinateSystemProperty.
GetCoordinateSystem(manager);

reader.setTransformation(IlvCoordinateTransformation.CreateTransformation

I B M ® I L O G ® J V I E W S M A P S 8 . 6128

http://www.opengeospatial.org/

(cs, IlvGeographicCoordinateSystem.KERNEL));

4. Iterate over the features, render them with an appropriate IlvFeatureRenderer, and
assign them to a manager:

IlvMapFeature feature = reader.getNextFeature();
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
while(feature != null) {
// Render the map feature into a graphic object.
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object to the first layer of the manager.
manager.addObject(graphic, 0, false);
feature = reader.getNextFeature();

}

To read WMS features using the IlvWMSDataSource class :

1. Create an IlvWMSDataSource instance from a server URL. A WMS server URL can be
the full http WMS request for capabilities, or at least the WMS request URL for this
server. This information is dependent on the server itself and is usually available in
the server's documentation. For instance:

URL url = new URL("http://wms.jpl.nasa.gov/wms.
cgi?request=GetCapabilities"); // "http://wms.jpl.nasa.gov/wms.cgi" will
work as well
IlvWMSDataSource source = new IlvWMSDataSource(url);

2. Set the layers to be retrieved:

IlvWMSReader reader = source.getReader();
String[] layers = reader.getAvailableLayers();
source.setLayers(new String[]{layers[0]});

3. Optionally set tiling parameters, to enable load-on-demand and better image resolution
when zooming in:

source.setTilingParameters(true,5,5);

4. Connect this data source with the manager of the view:

source.setManager(manager);

5. Finally, start the WMS data source:

source.start();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 129

The SVG reader

There are two ways of reading SVG files:

♦ Use an IlvMapSVGReader instance directly. When you use IlvMapSVGReader, you must
write all of the code required to render the SVG features into graphic objects, and to add
them to the manager.

This class reads SVG features from a specified SVG file or catalog. It implements the
IlvMapFeatureIterator interface to iterate over the features to be read.

♦ Use an IlvSVGDataSource. This is a convenient way of performing all of the above
operations at once. Using IlvSVGDataSource is better integrated with the data model of
the map.

The IlvSVGDataSource class provides a convenient way to create a set of layers containing
SVG data in a manager.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

To read SVG features and create vector data:

1. Create a new IlvMapSVGReader instance using the path to the SVG catalog.

2. Set the transformation to use to render the SVG data. The following code example
shows an specimen transformation:

3. retrieve the default SVG renderer.

4. Iterate over the features, render them, and assign them to a manager:

String SVGpath = " C:/maps/SVG/map.svg";
IlvMapSVGReader reader = new IlvMapSVGReader(SVGpath);
reader.setDestinationBounds(lonMinRad,latMinRad,lonMaxRad,latMaxRad);
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
IlvMapFeature feature = reader.getNextFeature();
while(feature != null) {
// Render map feature into a graphic object
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object to the first layer of the manager
manager.addObject(graphic, 0, false);
feature = reader.getNextFeature();

}

To read SVG features and create vector data:

1. Create a new IlvSVGDataSource instance.

2. Connect this data source with the manager of the view.

3. Set the transformation to render the SVG data into geo-referenced objects.

4. Start the SVG data source.

I B M ® I L O G ® J V I E W S M A P S 8 . 6130

Raster image management

Describes the management of raster images including tile loading, subsampling, persistence,
and storage.

In this section

Raster image management classes
Describes the classes for managing raster images.

The IlvRasterAbstractReader class
Describes the main class for readers of raster image formats.

Image tiling and subsampling
Describes the method for tile loading and subsampling of raster image data.

Persistence of images
Describes the facilities for persistence of raster image data.

The IlvRasterMappedBuffer class
Describes the class for buffering raster data.

The IlvRasterProperties class
Describes the class for storing raster image information.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 131

Raster image management classes

The class diagram for raster image management is shown in Raster Image Management
UML Diagram.

Raster Image Management UML Diagram

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 6132

The IlvRasterAbstractReader class

The IlvRasterAbstractReader class contains the methods for all readers of raster image
formats. It contains a built-in tiling mechanism for tiling the image to be displayed.

Geo-referenced image list
The IlvRasterAbstractReader class is an abstract class that handles an indexed list of
geo-referenced images. Each image consists of two objects:

♦ The raster data (the pixel table values) that are managed by an IlvRasterMappedBuffer
.

♦ The raster properties (color model, size, location, and so on) that are stored in an
IlvRasterProperties.

Subclasses should provide a method (often called addImage) that creates both an
IlvRasterProperties and an IlvRasterMappedBuffer and adds them to the list using the
addRaster method.

Projection transformation
The IlvRasterAbstractReader needs the projection of the original raster and the projection
to use in the view. From these it can dynamically (on-demand) compute every pixel visible
in the tile to be loaded. Sub-classes must implement getInternalTransformation(int) in
order to provide the coordinate system in which the original data is stored. As the
getLowerRightCorner() and getUpperLeftCorner() methods return the
IlvRasterProperties bounds, these bounds must be provided in the same coordinate
system.

Image metadata
Image metadata subclasses also have to implement the getProperties(int) method to
provide the IlvFeatureAttributeProperty attached to each of the images.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 133

Image tiling and subsampling

Image data is loaded asynchronously (potentially in another thread) into the view using the
tile loading mechanism of the getTileLoader(int, boolean) method, which returns an
IlvRasterTileLoader.

The tile loader is created through the createRasterTileLoader(ilog.views.maps.raster.
IlvRasterProperties, ilog.views.maps.raster.IlvRasterMappedBuffer, int, boolean)
method, which you can override if you want to implement a specific mechanism (for example,
to load some of the file content on demand). By default, this method returns either an
IlvRasterSubsamplingLoader or an IlvRasterTileLoader according to the value of the
subsampling parameter.

The getDefaultFeatureRenderer() method returns an IlvRasterImageRenderer that
creates an IlvRasterIcon linked to the IlvRasterTileLoader.

The loader getScaledImageProducer(int, ilog.views.IlvRect) method can be invoked
by the IlvRasterIcon when the zoom factor changes, or when a styling parameter changes
the image properties (such as the color model) in order to recreate the Java™ Image object
displayed on the view.

I B M ® I L O G ® J V I E W S M A P S 8 . 6134

Persistence of images

The base reader is made persistent through the implementation of the IlvPersistentObject
interface. This implies implementing a specific constructor (to retrieve data from an input
stream) and writing methods.

To manage dataless persistence, it is also necessary to implement a reload method, able to
read the raw files from serialized information (such as file names), see Writing a raster
reader for DEM data.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 135

The IlvRasterMappedBuffer class

The IlvRasterMappedBuffer class manages raster data for readers. It uses temporary files
to store the data when it is not needed.

The buffer stores a table of [width x height] pixel values. Pixel values can use different
primitive types, such as byte, short or integer values. The pixel value type must be
compatible with the color model of the associated IlvRasterProperties object. The buffer
is backed up by two mechanism to reduce memory consumption:

♦ Memory mapped temporary files: image data is saved in a temporary file that is then
mapped in memory (as in the case of the java.nio.MappedByteBuffer class), giving
access times close to those of direct memory storage.

♦ Random access files: image data is saved in a temporary file. When a pixel value needs
to be read, it is accessed through a java.io.RandomAccessFile.

If machine dependant constraints prevent the memory mappedmechanism from succeeding
(on 32 bits machines, for example, this happens when more than 2-4GB of images have been
loaded), the random access file mechanism is put in place immediately.

The IlvRasterTemporaryFileManager class handles temporary files. The temporary file
folder can become cluttered, for example, after an application has been interrupted brutally
by errors, exceptions, or even debugging session stops. To clean the temporary file folder,
you can call:

IlvRasterTemporaryFileManager.removeAllFiles();

This call searches for all temporary files created by JViews Maps applications and try to
remove them. Temporary files that are in use, for example, if another application is running,
are not removed.

When using the IlvRasterMappedBuffer class in non-signed applets, the creation
of temporary files is forbidden. Before loading the data into the model (usually through

Note:

an addMap call), the application must change the memory policy management to avoid
the creation of temporary files. This is done using:

IlvRasterMappedBuffer.setDefaultMemoryPolicy(IlvRasterMappedBuffer.
USE_MEMORY);

With this call, all operations use direct memory to store pixel data. An alternative
solution is to sign the applet to allow temporary file creation.

You can even improve this mechanism by providing a Just In Time (JIT) loader. Instead of
loading and filling the image bytes at creation, you can provide an instance of JITLoader,
that loads the image bytes only when the image is about to be displayed. For example:

IlvRasterMappedBuffer.JITDataLoader jitLoader = new
IlvRasterMappedBuffer.JITDataLoader() {

public void loadData(IlvRasterMappedBuffer source, IlvRasterProperties
properties) {

I B M ® I L O G ® J V I E W S M A P S 8 . 6136

System.out.println("loading "+properties.getBaseName());
// load the data...

}
public void unloadData(IlvRasterMappedBuffer source,

IlvRasterProperties properties) {
// raz the stored bytes.

source.setBytes(new byte[0]);
}

};
source.setLoader(jitLoader);

If your memory policy is USE_MAP, and you use a JIT loader (or a raster format that internally
uses one, such as GeoTIFF, DTED® or CADRG), you should be aware that the loading will
first happen in memory. To save load time, the creation of the disk-mapped memory will
happen in a background thread. This means that the memory necessary to store the image
pixels will be kept for some time in the JVM™ , until the disk map is ready to use. In some
cases, for example when your application loads lots of large images at the same time, this
can lead to out of memory errors, which are by default ignored (the image load restarts
again after some time). See also callJITLoaderIfNecessary and
setLoadRetryingOnOutOfMemory for more control on this.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 137

The IlvRasterProperties class

The IlvRasterProperties class collects information about the raster image to be tiled and
the image to be displayed. This information comprises:

♦ The raster bounds (coherent with the coordinate system chosen).

♦ The pixel density (in most cases, this is the ratio between image size and pixel count in
each direction).

♦ The number of blocks in the raster and the number of pixels in a line and in a column of
a block. (usually 1).

♦ The ordering of the pixels in the lines and columns of a block.

♦ The size that the destination tiles of the raster should adopt.

♦ The number of pixels the raster has in both directions.

♦ The transparent pixel value (if any).

♦ The ColorModel to use with the image.

To create and setup raster properties, you can write, for example:

IlvAdjustableDelegateColorModel csm=new
IlvAdjustableDelegateColorModel(myColorModel);
IlvRasterProperties p=new IlvRasterProperties(csm);
p.setX(xmin);
p.setY(ymax);
p.setWidth(xmax-xmin);
p.setHeight(ymin-ymax);
p.setColumnPixelCount(nbCols);
p.setLinePixelCount(nbRows);
p.setTransparentColorIndex(noDataValue);
p.setHorizontalPixelDensity(p.getWidth() / p.getColumnPixelCount());
p.setVerticalPixelDensity(p.getHeight() / p.getLinePixelCount());

In the example above, the IlvAdjustableDelegateColorModel is needed to provide
brightness, saturation and contrast settings for the user.

If the variables xmin/xmax and ymin/ymax are in longitudes, latitudes in radians, and the
attached coordinate system is IlvGeographicCoordinateSystem, the reader uses theWGS84
transformation to be coherent with these raster properties.

IlvCoordinateTransformation.CreateTransformation(
IlvGeographicCoordinateSystem.KERNEL,
IlvGeographicCoordinateSystem.WGS84).getTransform();

I B M ® I L O G ® J V I E W S M A P S 8 . 6138

Graphical User Interface beans and interactors

JViewsMaps provides a number of Graphical User Interface (GUI) JavaBeans™ components
that you can use to build your own application. These components are either Bean-like or
interactor-like.

Bean-like components are the standard bricks from which the main application window
should be composed. These components are ready to put into an Integrated Development
Environment (IDE), which means that you can import and use them in any JavaBeans IDE
compliant editor without writing a single line of code. The Beans included in the JViews
Maps package provide the basic features with which to view and navigate through a map.

Interactor-like components are usually associated with action buttons on the toolbar and
trigger an action when you interact with the view (for example, putting additional data on
the map or creating additional Beans).

For more information about Beans and interactors, see Using the GUI beans and Map GUI
interactors.

For more information about how to use the Beans in an IDE, see Creating a simple applet
using IBM® ILOG® JViews Beans in The Essential JViews Framework.

The Beans and interactors are listed in GUI Beans and Interactors.

GUI Beans and Interactors
DescriptionClassPackage\Bean

ilog.views.maps.beans

Displays an
overview of a

IlvJOverviewMap Overview

map in a
manager
view.

Displays
selected

IlvJAreaOfInterestPanelArea of Interest
Panel

areas of a
map of
particular
interest, which
you can select
and redisplay.

Displays the
black and

IlvJAutomaticScaleBarScale Bar

yellow scale
bars below a
manager
view.

Controls the
numerical

IlvJMapScaleControlScale Control Bar

value of the
map scale, for

I B M ® I L O G ® J V I E W S M A P S 8 . 6 139

DescriptionClassPackage\Bean

example:
1/100,000.

Displays a
slider type

IlvJAdvancedZoomControlZoom Control
Panel

zoom control
in the
Overview
Panel.

Displays a list
of map

IlvMapLegendPanelLegend Panel

elements and
an
explanation of
what each
element
represents.

Displays a
panel for

IlvJCoordinateSystemEditorPanelCoordinate
System Editor
Panel viewing and

editing
coordinate
systems.

Displays a
panel for

IlvJDisplayPreferencesEditorPanelDisplay
Preferences
Editor Panel viewing and

editing Bean
preferences
such as the
scale bar and
coordinate
viewer.

Displays the
mouse

IlvJMouseCoordinateViewerCoordinate
Viewer

coordinates
when the
mouse is on
top of a
manager view
displaying a
map.

Displays a
panel for

IlvLayerTreePanelMap Layer Tree
Panel

editing a map
layer tree.

Displays a set
of data

IlvDataSourcePanelData Source Tree

I B M ® I L O G ® J V I E W S M A P S 8 . 6140

DescriptionClassPackage\Bean

sources as a
tree.

Displays a
compass that

IlvJCompassCompass

shows the
direction of
the
geographic or
cartographic
north of a map
displayed in a
manager
view.

Displays a
toolbar which

IlvMapAnnotationToolBarAnnotation
toolbar

allows the
creation of
map
annotations.

Displays a
customizable

IlvJMapsManagerViewControlBarIlvJMapsManagerViewControlBarMaps toolbar

toolbar for
maps
applications.

ilog.views.swing

Displays a
customizable

IlvManagerViewControlBarToolbar

toolbar to
which buttons
can be added.

Displays the
progress of

IlvThreadedActivityMonitorPanelMultithread
Monitor

managed,
multiple
threaded
activities.

ilog.views.maps.projection

Enables
editing of

IlvAlphaPropertyEditorAlpha Property
Editor

layer
transparency.

Displays a
color model

IlvColorModelPropertyEditorColor Model
Property Editor

I B M ® I L O G ® J V I E W S M A P S 8 . 6 141

DescriptionClassPackage\Bean

property
editor.

Controls the
brightness,

IlvPercentPropertyEditorPercent Property
Editor

saturation,
and contrast
of a map.

Displays an
editor for

IlvLatitudeEditorLatitude Editor

editing latitude
values in
degrees,
minutes and
seconds.

Displays an
editor for

IlvLongitudeEditorLongitude Editor

editing
longitude
values in
degrees,
minutes and
seconds.

Generates a
GUI that

IlvCoordinatePanelFactoryCoordinate Panel
Factory

enables
selection of a
rectangle or
point on a
map.

ilog.views.maps.propertysheet

Provides
editing

IlvMapStylePropertySheetMap Style
Property Sheet

support for the
map layer
properties.

ilog.views.maps.interactor

Drags the
map around

IlvMapPanInteractorMap Pan

the manager
view to the
position
required.

Zooms in on
an area of a

IlvMapZoomInteractorZoom Rectangle

map
contained

I B M ® I L O G ® J V I E W S M A P S 8 . 6142

DescriptionClassPackage\Bean

within a
rectangle
drawn by the
user.

Enables
interactive

IlvManagerViewRotateInteractorManager View
Rotate Interactor

rotation of a
view.

Magnifies part
of a manager

IlvMagnifyInteractorMagnify Interactor

view when the
mouse is
dragged over
it.

Zooms in and
out

IlvContinuousZoomInteractorContinuous Zoom
Interactor

continuously
while the
mouse is
pressed.

See through
some layers
interactively.

IlvSeeThroughInteractorSee Through
Interactor

ilog.views.maps.measures

Displays a line
drawn on a

IlvMakeMeasureInteractorDistance
Measuring

map. The line
is the shortest
path between
2 points on
the surface of
the earth
(orthodromy).

I B M ® I L O G ® J V I E W S M A P S 8 . 6 143

Geodetic computation and date line wrapping

The IlvGeodeticComputationIlvGeodetic class is useful for calculating distances, azimuths,
and point coordinates. Calculations of this kind are needed to compute the shortest distance
between two objects positioned on the globe, to draw the shortest trajectory of a plane, to
obtain the current distance of a plane to its destination, and so on. Computations of class
IlvGeodeticComputation are very useful when JViews Maps objects have to be placed or
moved with precision over a given geographic map to simulate real-world scenarios. Geodetic
computations include date line wrapping.

I B M ® I L O G ® J V I E W S M A P S 8 . 6144

Utilities

The IlvMapUtil class contains a set of static utility methods:

♦ Geometric methods, such as intersection computation.

♦ Resources access methods.

♦ Generic computations on the view, such as scale.

♦ Garbage collecting method.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 145

I B M ® I L O G ® J V I E W S M A P S 8 . 6146

Ellipsoid and geodetic datums

Explains how the earth is modeled and the use of ellipsoids, geodetic datums, map projections,
and coordinate systems.

In this section

Modeling the earth
Describes how the Earth is modeled.

Ellipsoids
Describes the ellipsoids and explains how they are used to model the Earth. Also gives a list
of the predefined ellipsoids that are supplied with the JViews Maps projection package.

Geodetic datums
Explains the use of geodetic datums of various kinds.

Map projections
Tells you all about map projections.

Spatial reference system
Explains how the spatial reference system in JViews Maps has reference attributes that are
coordinates and explains the various coordinate systems.

© Copyright IBM Corp. 1987, 2009 147

Modeling the earth

The surface of the Earth is complex, even if the topography is removed so that only the geoid
(the gravity surface approximating to mean sea level) is taken as the shape of the Earth. In
fact, because of Earth’s internal composition, which leads to local gravity anomalies, the
geoid is very irregular. Therefore, the most widely used model of the Earth approximates
the geoid to an oblated ellipsoid (the spheroid), or even simpler, a sphere.

Model of the earth

Of course since the use of an ellipsoid is an approximation, there is no universal ellipsoid
that fits the geoid everywhere. For a given location, the best fitting ellipsoid can have
different dimensions compared to other locations. That is why a large number of ellipsoids
are used in maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6148

Area of best fit

Defining an ellipsoid is not sufficient. It is also necessary to define the spatial relationship
(position and orientation) between the ellipsoid and the geoid. This is achieved through the
definition of a geodetic datum, or horizontal datum, giving the position and the orientation
of the ellipsoid relative to the center of the Earth.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 149

Ellipsoids

Overview of ellipsoids
Ellipsoids are used to represent the shape of the Earth. For many applications, and especially
in small-scale mapping (typically world maps), the Earth can be represented as a sphere.

Most of the projections supplied in the ilog.views.maps.projection package assume by
default that the Earth is a sphere with a radius of approximately 6371 kilometers. However,
because the Earth rotates on its axis, it is slightly flattened at the poles, and is therefore
better approximated by an ellipsoid rotating on the polar axis. Ellipsoidal projections are
used for accurate, large-scale maps and flat coordinate systems. However, in very large
scale maps, representing a continent or the whole planet, it is recommended that you use
spherical projections. Indeed, the elliptical form of most of the projections in the projection
package is accurate only for a few degrees of latitude or longitude around the projection
center.

Defining new ellipsoids
Ellipsoids can be described by many parameters. The ellipsoids provided in the JViewsMaps
package are defined by two parameters:

♦ The equatorial radius or semi-major axis (a) of the ellipsoid.

♦ The eccentricity squared of the ellipsoid.

If the eccentricity squared is null, the ellipsoid is a sphere.

Defining a spherical ellipsoid
If only one parameter is provided, the ellipsoid is assumed to be a sphere. The following
example defines a sphere with a radius of 6 000 kilometers (6000000 meters).

IlvEllipsoid ellipsoid = new IlvEllipsoid(6000000D);

Most of the mapping applications use the ellipsoid IlvEllipsoid.SPHERE that defines a
sphere having dimensions very close to those of the Earth. Generally, the selected ellipsoid
should be as close as possible to the actual shape of the Earth as far as the region to be
represented is concerned. The radius of the sphere is expressed in meters.

The following example defines an ellipsoid with an equatorial radius of 6000 kilometers and
an eccentricity squared of 0.0067:

IlvEllipsoid ellipsoid = new IlvEllipsoid(6000000D,0.0067D);

If you prefer to provide some other parameter than the eccentricity squared, you can use
the conversion methods provided by the IlvEllipsoid class.

The following example defines an ellipsoid with an equatorial radius of 6000 kilometers and
a polar radius of 5900 kilometers:

I B M ® I L O G ® J V I E W S M A P S 8 . 6150

IlvEllipsoid ellipsoid = new IlvEllipsoid(6000000D,
IlvEllipsoid.ESFromPolarRadius(6000000D, 5900000D));

The polar radius is converted to an eccentricity squared value with the ESFromPolarRadius
() method.

The class IlvEllipsoid provides the following conversion methods for polar radius and
flattening:

♦ ESFromPolarRadius(double, double).

♦ ESFromFlattening(double).

Predefined ellipsoids
The IlvEllipsoidCollection class manages lists of predefined ellipsoids. A list of predefined
ellipsoids, or kernel collection, can be retrieved using the method GetKernelCollection().

Ellipsoid collections are read from XML files containing the ellipsoid definitions. The
Document Type Definition (DTD) for these definition files is as follows:

<!DOCTYPE ellipsoid-list [
<!ELEMENT ellipsoid EMPTY>
<!ATTLIST ellipsoid

a CDATA #IMPLIED
b CDATA #IMPLIED
invf CDATA #IMPLIED
name CDATA #REQUIRED
comment CDATA #IMPLIED

>

<!ELEMENT ellipsoid-ref EMPTY>
<!ATTLIST ellipsoid-ref

ref CDATA #REQUIRED
id CDATA #REQUIRED

>

<!ELEMENT ellipsoid-list (ellipsoid|ellipsoid-ref)* >
]>

In an ellipsoid definition file, you can find:

♦ An ellipsoid

Defined either by its name, or by its semi-major axis a and inverse flattening invf, or its
semi-major axis a and semi-minor axis b.

♦ An alias for an ellipsoid

Defined in the kernel collection of Maps. For an alias, the required information is the id
of the ellipsoid (the name used to retrieve the ellipsoid) and the name of the ellipsoid in
the kernel. When retrieving an ellipsoid alias from a collection, the ellipsoid is searched
for using its id as a key, while the name of the returned ellipsoid is the one defined in
the kernel collection.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 151

The following XML file defines the Clarke 1880 ellipsoid, modified for IGN. This ellipsoid
will be available as “Clarke 1880 (IGN)”. Then you must set “WGS 1984” as an alias for the
kernel “WGS 84” ellipsoid:

<ellipsoid-list>
<ellipsoid name="Clarke 1880 (IGN)"

comment="Clarke 1880 (Modified for IGN)"
a="6378249.2"
invf="293.4660213"

/>

<ellipsoid-ref id="WGS 1984"
ref="WGS84"

/>

</ellipsoid-list>

I B M ® I L O G ® J V I E W S M A P S 8 . 6152

Geodetic datums

Datums
Geodetic datums (or “horizontal datums”) help in the process of approximation of the Earth
surface by providing a translation and an optional rotation of an ellipsoid relative to an
arbitrary center of Earth. These translation and rotation parameters are called the “to
WGS84” parameters, with reference to the WGS84 datum that defines no translation and
no definition.

Themost used datums specify only a translation from the center of the Earth and no rotations.
That is why JViews Maps does not provide standard support for datums with rotations,
though it is possible to use them in coordinate transformations. See the section Affine
Transform.

Defining a new horizontal datum
JViews Maps supports the definition of three-parameter datums, that is datums defined by
the shift on three axes. This kind of datum is represented by the IlvHorizontalShiftDatum
class.

A horizontal shift datum is defined by the following elements:

♦ Its name

The name should be set to null in case it is not defined.

♦ The area of definition

This is a String describing the area of use of the datum.

♦ A default ellipsoid

Although the datums can be used with different ellipsoids, they were designed to work
with this specific ellipsoid.

♦ The three-axis shift parameters (expressed in meters)

To define a new horizontal shift datum, initialize a new instance with the three parameters,
as follows:

IlvHorizontalDatum datum =
new IlvHorizontalShiftDatum("European 1979","Mean for europe",

IlvEllipsoidCollection.GetKernelCollection().getEllipsoid("intl"),
86, -98, -119)

Predefined datums
The IlvHorizontalDatumCollection class manages lists of predefined horizontal datums.
The list of predefined datums in the JViews Maps package, or kernel collection, can be
retrieved using the GetKernelCollection() method.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 153

Like Ellipsoid collections, horizontal datum collections are read from XML files containing
the definitions. The DTD for these definition files is as follows:

<!DOCTYPE datum-list [
<!ELEMENT datum EMPTY>
<!ATTLIST datum

name CDATA #REQUIRED
region CDATA #IMPLIED
ellipsoid CDATA #REQUIRED
dx CDATA #REQUIRED
dy CDATA #REQUIRED
dz CDATA #REQUIRED
ex CDATA #IMPLIED
ey CDATA #IMPLIED
ez CDATA #IMPLIED
ppm CDATA #IMPLIED

>

<!ELEMENT datum-ref EMPTY>
<!ATTLIST datum-ref

ref CDATA #REQUIRED
id CDATA #REQUIRED

>

<!ELEMENT datum-list (datum|datum-ref)* >
]>

In a horizontal datum definition file, you can find:

♦ A horizontal datum

Defined by its name and its parameters. The required parameters are the ellipsoid to be
used with this datum and the three-axis shifts dx, dy and dz. Note that you can define the
parameters for seven-parameter datums, but the ex, ey, ez and ppm fields are not used
in the current version of JViews Maps.

♦ An alias for a horizontal datum

Defined in the kernel collection of Maps. For an alias, the required information is the id
of the datum and the reference of the datum. When retrieving a datum alias from a
collection, the datum is searched for using its id as a key, while the name of the returned
datum is the one defined in the kernel collection.

The following XML file defines the Afgooye datum, while setting an alias for the NAD 27
datum

<datum-list>
<datum name="Afgooye"

region="Somalia"
ellipsoid="krass"
dx="-43"
dy="-163"
dz="-45"

/>

I B M ® I L O G ® J V I E W S M A P S 8 . 6154

<datum-ref id="NAD27"
ref="NAD27 (CONUS)"

/>
</datum-list>

JViews Maps comes with a default list of datums. Over time, many datums were tuned
for given regions of use, while keeping the same name. This causes many datums to

Note:

have the same name but different parameters. In applications where strict conformance
to some datums is needed, you should use your own datum definition instead of relying
on the list provided in JViews Maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 155

I B M ® I L O G ® J V I E W S M A P S 8 . 6156

Map projections

Tells you all about map projections.

In this section

Introducing map projections
Describes map projections and gives diagrams illustrating the different categories.

Predefined projections
Lists the predefined projections available with information on the category and characteristics
of each projection.

Projection methods and parameters
Describes projection methods and parameters.

Creating a new projection
Shows how to extend the JViews Maps projection package with your own projections.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 157

Introducing map projections

A map is a projected representation of the Earth, or part of it, on a flat surface, which can
be a piece of paper or a computer screen. Since the Earth has an ellipsoidal shape, it is best
represented as a “globe”, and attempts to portray it by projecting its points onto a flat
surface always result in some form of distortion in the regions that are far from the projection
center. In other words, it is impossible to faithfully represent all the properties of the Earth,
such as distances, shapes, and directions, on the same map. To minimize distortion, many
different types of projections have been developed over the years. While certain projections
preserve distances, others maintain shapes or angles. When creating a map, you have to
choose the projection system that is best suited to the area to be represented or to the
particular interests that your map application is designed for.

Projections can be classified into three main categories:

♦ Cylindrical projections

♦ Conic projections

♦ Azimuthal projections

Projections can also be:

♦ Equal area or conformal projections

Cylindrical projections
A cylindrical projection is obtained by wrapping a large, flat plane around the globe to form
a cylinder. In the following figure, the cylinder is tangential to the equator. The closer the
zone of tangency the less the distortion.

A cylindrical projection (1)

I B M ® I L O G ® J V I E W S M A P S 8 . 6158

The position of the cylinder can be changed. For example, in a transverse cylindrical
projection, the cylinder is tangential to a meridian.

A cylindrical projection (2)

Conic projections
A conic projection transfers the image of the globe to a cone that forms either a secant or
a tangent with the surface of the Earth.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 159

Examples of conic projections

Azimuthal projections
With azimuthal projections, also called planar projections, the spherical globe is projected
onto a flat surface.

An azimuthal projection

I B M ® I L O G ® J V I E W S M A P S 8 . 6160

Equal area or conformal projections
All map projections show some kind of distortion in the areas that are far from the projection
center. Depending on the kind of projection used, the distortion may be of angle, area, shape,
size, distance, or scale. In this respect, projections fall into two main categories, Equal Area
and Conformal.

♦ Equal area projections maintain a true ratio between the various areas represented on
the map.

♦ Conformal projections preserve angles, and locally also preserve shapes.

Other projections have properties that are worth noting, such as maintaining the distances
measured from the center of the projection (azimuthal equidistant projection). Others offer
a good compromise between angular distortion and distortion of the area.

Projections should therefore be configured and selected according to the areas to be
represented (for example, it is impossible to represent the polar regions with the Mercator
projection) and the domains they apply to (navigational or air-route applications, small-scale
or large-scale maps, and so on). Navigational applications, for example, generally use
conformal projections.

For more information on map projections, refer to these books:

♦ Map Projections - A Working Manual (Snyder, 1987)

♦ An Album of Map Projections (Snyder and Voxland, 1989)

I B M ® I L O G ® J V I E W S M A P S 8 . 6 161

Predefined projections

The following table provides a list of the predefined projections that are available.

I B M ® I L O G ® J V I E W S M A P S 8 . 6162

Equal AreaConformalClassificationProjection name

YesNoConicAlbers Equal Area

NoNoAzimuthalAzimuthal Equidistant Projection

NoNoCylindricalCassini

YesNoCylindricalCylindrical Equal Area

also known as:

♦ Lambert Cylindrical Equal Area

♦ Behrmann

♦ Gall Orthographic

♦ Peters

YesNoPseudo CylindricalEckert IV

YesNoPseudo CylindricalEckert VI

NoNoCylindricalEquidistant Cylindrical

also known as:

♦ EquiRectangular

♦ Plate Carré

NoYesConicFrench Lambert

--N/AGeographic

NoNoAzimuthalGnomonic

YesNoAzimuthalLambert Azimuthal Equal Area

also known as:

♦ Lorgna

♦ Zenithal Equal Area

♦ Zenithal Equivalent

NoYesConicLambert Conformal Conic

YesNoConicLambert Equal Area Conic

NoYesCylindricalMercator

also known as:

♦ Wright

NoNoCylindricalMiller Cylindrical

I B M ® I L O G ® J V I E W S M A P S 8 . 6 163

Equal AreaConformalClassificationProjection name

Mollweide YesNoPseudo Cylindrical

also known as:

♦ Homolographic

♦ Babinet

♦ Elliptical

NoYesCylindricalOblique Mercator

also known as:

♦ Hotine Oblique Mercator

NoNoAzimuthalOrthographic

NoNoPolyconicPolyconic

NoNoPseudo CylindricalRobinson

YesNoPseudo CylindricalSinusoidal

also known as:

♦ Sanson-Flamsteed

♦ Mercator Equal-Area

NoYesAzimuthalStereographic

NoYesCylindricalTransverse Mercator

also known as:

♦ Gauss Conformal

♦ Gauss-Krüger

♦ Transverse Cylindrical
Orthomorphic

NoYesAzimuthalUniversal Polar Stereographic

NoYesCylindricalUniversal Transverse Mercator

YesNoPseudo CylindricalWagner IV

I B M ® I L O G ® J V I E W S M A P S 8 . 6164

Projection methods and parameters

Forward and inverse methods
Projections are implemented using the forward and inverse methods:

♦ The forward(ilog.views.maps.IlvCoordinate) method converts a geographic point,
defined by a longitude and a latitude, to its Cartesian coordinates.

♦ The inverse(ilog.views.maps.IlvCoordinate)method converts Cartesian coordinates
to a latitude and a longitude.

These methods can throw exceptions of two different types that both inherit from the class
IlvProjectionException:

♦ The IlvUnsupportedProjectionFeature exception is thrown when a feature that is not
implemented is called. It originates from the following actions:

● When trying to perform a forward projection on a nonspherical ellipsoid when the
projection does not support nonspherical ellipsoids
(IlsEquidistantCylindricalProjection for example).

● When trying to inverse a projection that cannot be reversed.

♦ The IlvToleranceConditionException exception is thrownwhen an error occurs during
computation.

To know whether these features are implemented in the projection you are using, use the
methods isEllipsoidEnabled() and isInverseEnabled().

Projection parameters
You can set the following parameters for a projection:

♦ The ellipsoid that specifies the figure of the Earth.

For more information on ellipsoids, refer to section Ellipsoids.

Each projection is associated with an ellipsoid. By default, most of the projections use
the ellipsoid SPHERE. Only some specific projections, such as the Universal Transverse
Mercator or the Universal Polar Stereographic, use a nonspherical ellipsoid by default.

You will obtain more accurate projections using an appropriate ellipsoid, especially with
large scale maps. Note, however, that computations are more complex and slower than
when using a sphere.

To specify the ellipsoid you want to use for a projection, use the method setEllipsoid
(ilog.views.maps.projection.IlvEllipsoid).

IlvProjection projection = new IlvMercatorProjection();
projection.setEllipsoid(IlvEllipsoid.WGS84);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 165

You can either use a static member of the class IlvEllipsoid, which defines a number
of commonly used ellipsoids, or create your own ellipsoid as explained in the section
Defining new ellipsoids. You can also use one of the predefined ellipsoids listed in the
section Predefined ellipsoids.

♦ The unit converter that specifies the measurement unit in which Cartesian coordinates
should be expressed.

♦ The central meridian and the central parallel of the projection.

These parameters can be set with the setLLCenter(double, double)method. Projections
produce less distortion near their center.

♦ The offset applied to the Cartesian coordinates, also called false easting and false northing.
These parameters can be set with the method setXYOffset(ilog.views.maps.
IlvCoordinate). The offset can be used in conjunction with the unit converters to control
the range of projected coordinates for a region. For example, the range of the region may
be set so that the region fits into a square of size 200 x 200. In JViews Maps applications,
the range of the data is not an issue, since a transformer can be automatically applied to
fit all the graphics contained in an IlvManager into a window. Therefore, false easting
and false northing are mainly used to adapt a projection to geographic data that has
already been projected using a Cartesian offset.

You can also:

♦ Specify whether the coordinates are geodetic (the default value) or geocentric using the
setGeocentric(boolean) method.

The geocentric latitude of a point is defined by the angle formed by a line joining the
point to the center of the Earth and the equatorial plane, whereas the geodetic (or
geographic) latitude of a point is defined by the angle formed by the vertical line passing
through this point and the equatorial plane. The two values differ since the Earth is not
exactly a sphere but rather an ellipsoid. Both latitudes are related through the relation
tan phiG = (1 - e ^ 2) tan phi where e is the eccentricity of the ellipsoid used to
model the shape of the Earth.

If an application handles geocentric data, this parameter must be set. Most of the available
cartographic data available is expressed with geographic latitudes.

♦ Specify whether the projection uses longitude reduction, that is, forces longitude to be
in the range [-PI;PI] or accepts any longitude, using the method
setUsingLongitudeReduction(boolean).

I B M ® I L O G ® J V I E W S M A P S 8 . 6166

The above parameters are common to all the projections. They can be set with the API of
the class IlvProjection, which is the base class of all the projections in the package. Some
projections have additional specific parameters. For example, secant latitudes can be specified
for a conic projection, or the latitude of the true scale can be specified for most cylindrical
projections. For more information, refer to the documentation of the API for each projection.

Projection utilities
The class IlvProjectionUtil provides conversion utilities to convert radians to degrees
and degrees to radians.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 167

Creating a new projection

The procedure is based on an example that implements a simplified version of the Mercator
projection. The complete code for this example can be found in the following file:

Mercator example.

Defining a new projection class
1. To define a new class, you must first import the projection library located in the

package ilog.views.maps.projection.

The complete source code of the examples presented in the next sections can be found
in the following file:Mercator example.

2. Your projection class must extend the class IlvProjection, which is the base class
for all the projections in the package.

import ilog.views.maps.projection.*;
import ilog.views.maps.*;

class MercatorProjection
extends IlvProjection

Writing the constructor

♦ You must call the constructor of the superclass IlvProjection.

MercatorProjection()
{

super(true, true, IlvProjection.CONFORMAL);
}

This constructor takes the following three arguments:

♦ The first argument is a boolean value specifying whether the projection supports
nonspherical ellipsoids. In our example, this argument is set to true since the
projection supports the equations for these ellipsoids.

♦ The second argument is a boolean value indicating whether the projection supports
an inverse method. In our example, this argument is set to true since the projection
supports an inverse method.

♦ The third argument is an int value that indicates the geometric properties of the
projection. In our example, this argument is IlvProjection.CONFORMAL since the
Mercator projection is conformal.

Writing the Forward Projection
Before writing the forward()method for the Mercator projection, you must be familiar with
the IlvProjection.forward() method.

I B M ® I L O G ® J V I E W S M A P S 8 . 6168

The IlvProjection.forward() public method is called by the user to project data. This
method prepares data for projection computation and scales it appropriately. It then redirects
the calls to either one of the eforward or sForward protected methods which are defined in
the projection subclass (the Mercator class in our example). In most cases, the forward
method should not be overridden.

The forward(ilog.views.maps.IlvCoordinate) method does the following:

1. It adjusts the latitude, if the coordinates are geocentric.

2. It adjusts the longitude to the central meridian of the projection.

3. It adjusts the longitude to the range [-PI;PI], if longitude reduction is used (the
default value).

4. It calls either the method sForward(ilog.views.maps.IlvCoordinate) or eForward
(ilog.views.maps.IlvCoordinate) depending on whether the Earth is represented
as a sphere or as an ellipsoid.

5. Adjusts the projected data to the dimensions of the ellipsoid and to the Cartesian
offset, and converts it to the selected measurement unit.

Projecting data from a sphere
The sforward() protected method implements the projection of a sphere.

Since the appropriate scaling is actually carried out by the method IlvProjection.forward
(), the sForward() method always assumes that the radius of the sphere is 1.

In the example, the Mercator projection is the projection of a sphere onto a cylinder that is
tangential to the equator. The x coordinate is equal to the longitude because it is assumed
that the radius of the sphere is 1, and longitude is expressed in radians. In this case, you do
not need to change the x value of ll.

Because the Mercator projection cannot show regions near the poles, the exception
IlvToleranceConditionException is thrown if the latitude is too close to PI/2.

♦ Apply the equation to compute the y-coordinate of the projected data.

protected void sForward(IlvCoordinate ll)
throws IlvToleranceConditionException

{
if (Math.abs(Math.abs(ll.y) - Math.PI / 2D) <= 1e-10D)

throw new IlvToleranceConditionException();

ll.y = Math.log(Math.tan(Math.PI / 4D + .5D * ll.y));
}

Projecting data from an ellipsoid
The eforward() protected method is called by the IlvProjection.forward() method if
data is projected from a nonspherical ellipsoid.

♦ It is not necessary for you to implement the eForward() method for your projection.
If you are projecting data from a nonspherical ellipsoid and if the projection you are
using does not support this kind of ellipsoid, the forward() method will throw the
exception IlvUnsupportedProjectionFeature. In this case, you can use any spherical

I B M ® I L O G ® J V I E W S M A P S 8 . 6 169

ellipsoid or create an equivalent sphere using the appropriate conversion methods of
the class IlvEllipsoid.

The eForward()method is slightly more complex than the sForward()method although
their formulas are equivalent if getEllipsoid().getE() returns 0.

protected void eForward(IlvCoordinate ll)
throws IlvToleranceConditionException

{
if (Math.abs(Math.abs(ll.y) - Math.PI / 2D) <= 1e-10D)

throw new IlvToleranceConditionException();

double e = Math.sqrt(getEllipsoid().getES());

double sinphi = e * Math.sin(ll.y);
ll.y = Math.tan (.5D * (Math.PI/2D - ll.y)) /

Math.pow((1D - sinphi) / (1D + sinphi),
.5D * e);

ll.y = -Math.log(ll.y);
}

Writing the inverse projection
Before writing the inverse() method for the Mercator projection, you should be familiar
with the inverse(ilog.views.maps.IlvCoordinate) method.

The IlvProjection.inverse()method prepares the data for inversion and processes it for
the appropriate offset. In most cases, you should not have to override the IlvProjection.
inverse() method.

This method does the following:

1. Suppresses the offset produced by the Cartesian coordinates and converts these
coordinates to meters.

2. Reverts the coordinates to their geographic values and applies them to a standard
ellipsoid with a semi-major axis of value 1.

3. Calls the method sInverse() or eInverse() depending on whether the ellipsoid is a
sphere or not.

4. Adds the value of the central meridian to the longitude and adjusts the longitude to
the range [-PI;PI] if longitude reduction is used (the default value).

5. Converts the latitude if the coordinates are geocentric.

Inverse projection onto a sphere
The inverse projection onto a sphere is performed via the sInverse(ilog.views.maps.
IlvCoordinate) method.

1. It is not necessary for you to implement the sInverse() method. If you call the
IlvProjection.inverse()method for a projection that does not support the inverse
() method, the exception IlvUnsupportedProjectionFeature will be thrown.

I B M ® I L O G ® J V I E W S M A P S 8 . 6170

2. The sInverse() method can throw the exception IlvToleranceConditionException
like all the forward methods. But since the inverse equation of the Mercator projection
is defined for all the possible values, this method does not throw any exceptions.

3. As with the sForward()method, the projection does not modify the x value, therefore,
the inverse equation is applied only to the y value.

protected void sInverse(IlvCoordinate xy)
{
xy.y = Math.PI/2D - 2D * Math.atan(Math.exp(-xy.y));

}

Inverse projection onto an ellipsoid
The inverse projection onto an ellipsoid is performed via the eInverse(ilog.views.maps.
IlvCoordinate) method.

This method assumes that the value of the semi-major axis of the ellipsoid is 1.

♦ In the particular case of the Mercator projection, the implementation of this method
is more complex for an ellipsoid than for a sphere. It requires iterations and might
fail, since there is no simple analytical inverse equation of the Mercator projection
from a nonspherical ellipsoid.

protected void eInverse(IlvCoordinate xy)
throws IlvToleranceConditionException

{
double ts = Math.exp(- xy.y);
double e = Math.sqrt(getEllipsoid().getES());
double eccnth = .5D * e;

double Phi = Math.PI/2D - 2D * Math.atan(ts);
int i = 15;
double dphi;
do {
double con = e * Math.sin (Phi);
dphi = Math.PI/2D - 2D * Math.atan(ts * Math.pow((1D - con) /

(1D + con), eccnth)) - Phi;
Phi += dphi;

} while ((Math.abs(dphi) > 1e-10D) && (--i != 0));
if (i <= 0)
throw new IlvToleranceConditionException("non-convergent inverse

phi2");
xy.y = Phi;

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 171

Spatial reference system

Spatial Reference Systems (SRS) are a way to link coordinates to a reference, so that objects
whose coordinates are expressed in different systems can be displayed in the samemanager.

JViews Maps features, or generally speaking graphic objects on maps, are representation
of real objects. These map features have to be linked to real-life objects, and this is performed
by attaching the attributes to the map features. These attributes can be a location, a time,
or any descriptive quality or quantity. For example, you can describe the position of a
restaurant either using its coordinates (The restaurant coordinates are 2D28’30’’E,
48D59’05’’N), or a description (The restaurant is at the crossing of X and Y streets, on the
same walkway as the cafe). This link between objects and their real life counterpart is called
a reference system.

Coordinate system base class
The JViews Maps supports Spatial Reference Systems where the reference attributes are
coordinates. The abstract class IlvCoordinateSystem serves as base class for all the
coordinate systems.

An IlvCoordinateSystem is defined by:

♦ A optional name.

♦ An array of IlvUnit defining the units to be used on each axis.

♦ An array of String defining the name of each axis.

♦ The dimension of the coordinates in use in the system are defined by the number of axes.

There are three major classes of coordinate systems useful for mapping software:

♦ Geocentric Coordinate System

Represents coordinates in a three-axes Cartesian system, whose origin is the center of
Earth. This coordinate system is mainly used in datum conversion.

♦ Geographic Coordinate System

Represents the coordinates specified by angles on an ellipsoid (longitude and latitude).
An optional height above the ellipsoid can be used here. For example, this is the standard
longitude and latitude given by GPS.

♦ Projected Coordinate System

Represents the coordinates of the Earth on a 2-D surface. There are as many projected
coordinate systems as the number of existing projections. Projecting coordinates on a
2-D surface is mandatory to display data on a map. As the projection process introduces
some errors, not all projections are well suited to represent an area on Earth. For more
information, see Map projections.

I B M ® I L O G ® J V I E W S M A P S 8 . 6172

Geocentric Coordinate System
The IlvGeocentricCoordinateSystem class defines a geocentric coordinate system, that
is, a three-dimensional Cartesian system. The origin point of this Cartesian system is the
center of the Earth.

The axes are perpendicular and defined as follows:

♦ the x-axis lies in the plane containing the equator, and has positive values towards the
Greenwich meridian

♦ the y-axis lies also in the plane containing the equator, and is positive towards the
longitude 90 degrees east of Greenwich

♦ the z-axis corresponds to the polar axis, and is positive northwards

The geocentric coordinate system

Coordinates in a geocentric coordinate system are expressed in linear units along the axis.

The geocentric coordinate system is mostly used as the base reference system from which
geographic and projected coordinates are derived. For example, geodetic datums (horizontal
datum) are defined by the shift, rotate and scaling parameters to convert a geocentric
coordinate system to a reference geocentric coordinate system (in most cases, the WGS84
datum).

Geographic Coordinate System
The IlvGeographicCoordinateSystem class defines an ellipsoidal coordinate system where
coordinates are specified as latitude and longitude on an ellipsoid, with an optional third
coordinate which represents the ellipsoidal height (altitude above the ellipsoid).

♦ Longitude is specified in angular units from the prime meridian of the coordinate system.
By convention, coordinates less than 180 degrees east of the prime meridian are positive,
coordinates more than -180 degrees west are negative.

♦ Latitude is specified in angular units from the equator. By convention, northward latitudes
are positive and southward coordinates are negative.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 173

♦ The convention for representing the poles are longitude set to 0 and latitude set to 90
degrees for the north pole or -90 degrees for the south pole.

The geographic coordinate system

Projected Coordinate System
The geographic and geocentric coordinate systems are not well suited to display maps, since
these coordinate systems definemap features in a three dimensional world. Before displaying
objects, the dimension of coordinates must be reduced to 2. This is performed using map
projections (see Map projections).

A projected coordinate system includes all the parameters that allow you to describe a
coordinate system in which each planar coordinate is computed from geographic coordinates
using a mathematical function. These include:

♦ The reference geographic coordinate system (the surface modeling the Earth).

♦ The mathematical transformation itself (the projection).

I B M ® I L O G ® J V I E W S M A P S 8 . 6174

Creating a map application using the API

Describes how to create a map using the API.

In this section

Overview
Presents the JViews Maps API.

Creating data source objects
Describes how to create data source objects for vector and raster data sources.

Using data sources
Describes how to use data sources.

Clearing map data
Explains how to clear map data.

Developing a new data source
Describes how to write to a data source

Printing
Describes the classes provided for printing maps.

Overview of multithreading
Describes the use of multithreading.

Using threads in tile loaders
Explains how to load tiles asynchronously in separate threads for performance reasons.

© Copyright IBM Corp. 1987, 2009 175

Using threads in data sources
Explains how to start a data source in a separate thread so that you can check when it has
started.

Using the IlvThreadMonitor
Explains how to monitor tasks running in separate threads.

Generic code sample for creating a map
Explains how to create a basic map using a generic code sample.

Using readers
Describes the predefined readers, the map loader for supported (predefined) formats, and
how to write a new reader.

Map GUI interactors
Contains information about the GUI map interactors on the Map Builder toolbar.

The See-Through interactor
Describes the see-through interactor.

Using the GUI beans
Describes the JavaBeans™ for GUIs with maps.

Handling map features
Describes map features and how they are handled.

Using load-on-demand
Describes load-on-demand and how to use it.

Manipulating renderers
Describes the attributes of graphic objects that will be displayed and the use of renderers
to transform map features to graphic objects.

Handling spatial reference systems
Describes various conversions.

Pregenerating tiled images for a thin client
Describes a class for thin clients.

I B M ® I L O G ® J V I E W S M A P S 8 . 6176

Overview

The JViews Maps API is a fully documented class library that you can customize and extend
to meet your application requirements. For more detailed information on how the JViews
Maps library is structured, see Introducing the main classes.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 177

I B M ® I L O G ® J V I E W S M A P S 8 . 6178

Creating data source objects

Describes how to create data source objects for vector and raster data sources.

In this section

Data source
Explains what a data source is in the context of maps.

Vector data sources
Describes how to create data source objects for any of the following files: ESRI Shapefile,
MID/MIF, TIGER/Line® , DXF (AutoCAD), KML or KMZ, SVG.

Raster data sources
Describes the common API for raster (image data sources.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 179

Data source

A data source is an object that connects a feature iterator, a renderer, and a map layer.

A data source uses the feature iterator to get global data information, such as the coordinate
system and bounding box, and the list of map features to parse. Then it uses the renderer
to create graphic objects. Finally, it uses the layer to manage the order and style of those
objects.

In class terms, a data source is a class that connects an IlvMapReusableFeatureIterator,
an IlvFeatureRenderer and an IlvMapLayer. It uses the iterator object to get global data
information, such as the coordinate system and bounding box, and the list of IlvMapFeature
objects to parse. Then it uses the renderer object to create graphic objects. Finally it uses
the layer object to manage the order and style of the graphic objects.

I B M ® I L O G ® J V I E W S M A P S 8 . 6180

Vector data sources

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

ESRI shapefile
When you create a Shapefile format data source the shapefiles can be loaded with or without
the tiling mechanism. When using tiling, the data is loaded in a background thread.

The complete source code for an ESRI shapefile demonstration can be found at <installdir>
/jviews-maps86/shape/mapbuilder/index.html

Loading a shapefile using tiling
To load a shapefile using tiling, use the following code:

IlvTiledShapeDataSource tiledSource = new
IlvTiledShapeDataSource(shpFileName,true);

If the shapefile does not have a tiling index file, you can create the index file as follows:

IlvShapeFileTiler tiler = new IlvShapeFileTiler(shpFileName, shxFileName,
indexFileName, tileWidth, tileHeight);
while(tiler.getNextFeature() != null) {
tiler.addInfo();

}
tiler.close();

The resulting index file, which is used in the reader, can be set with a call to:

tiledSource.setIdxFilename(idxFileName);

Loading a shapefile without using tiling
To load a shapefile without using tiling, use the following code:

IlvShapeDataSource shpDataSource = new IlvShapeDataSource(shpFileName, true);

MID/MIF
To create a MID/MIF file data source, use the following code:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 181

IlvMapDataSource source = new IlvMIDMIFDataSource(fileName);
source.setManager(getView().getManager());

TIGER/Line
To create a TIGER/Line data source, use the following code:

IlvTigerDataSource source = new IlvTigerDataSource(fileName);
source.setManager(getView().getManager());

TIGER/Line® data contains many different features. You can select the features to import
into your map by choosing the CFCC codes of the features you want:

source.setCFCCCodeList(CFCCCodes);

DXF (AutoCAD)
The DXF format (Drawing Interchange Format) is the interchange format for AutoCAD. This
format supports vector graphics (polygons, arcs, lines, points...) and layers.

The specifications of the various releases of the DXF format can be found at the following
URL: http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5129239.

For details of the limitations with a DXF data source, refer to Drawing Exchange Format
(DXF) in the section on managers in The Essential JViews Framework.

To create a DXF data source, use the following code:

IlvDXFDataSource source = new IlvDXFDataSource("C:/maps/DXF/maps.dxf");
source.setManager(getView().getManager());

You must then setup the transformation you want to use to read DXF.

If you want to transform the DXF extent into the latitude/longitude range provided, call:

source.setDestinationBounds(lonMinRad,latMinRad,lonMaxRad,latMaxRad);

If you want to use a more complex transformation (such as reprojection), call:

IlvMathTransform mathTransform =…/create mathematical transformation
source.setInternalTransformation(mathTransform);

An example of how to create a complex transformation is given in the Map Builder
demonstration, through use of the DXFControlModel class.

I B M ® I L O G ® J V I E W S M A P S 8 . 6182

http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5129239

KML or KMZ
KML/ KMZ is an XML-based numerical map format containing both vectorial and raster
information. KML is published by Google™ , for use in their Google Earth© Product.

You can find more information at http://earth.google.com/kml/kml_intro.html.

JViews Maps supports import of the KML elements shown in KML element support:

KML element support
SupportElement

Geometric Shapes, Location.Placemarks

Points, Lines, Polygons.Geometry

Ground Overlays.Image Overlays

No Support.Styles

Documents, Folders, Geometry Collections.Grouping Mechanisms

Locations.Network Links

KML files can refer to other files, either locally or through a network link URL. KMZ is a
zipped file containing a single doc.xml entry and a set of auxiliary files, such as images or
icons.

To create a KML data source, use the following code:

IlvKMLDataSource source = new IlvKMLDataSource("C:/maps/KML/places.kmz");
source.setManager(getView().getManager());

SVG
SVG (Scalable Vector Graphic) is a language for describing two-dimensional graphics and
graphical applications in XML. The specifications of the SVG format can be found at http:/
/www.w3.org/Graphics/SVG.

The JViews Maps SVG reader is based on features in IBM® ILOG® JViews Framework.
These features are described in the section on Scalable Vector Graphics in The Advanced
JViews Framework.

The JViews Maps SVG reader ignores the following SVG elements:

♦ Images defined through the image element.

♦ Text defined through the text-path element.

All the other elements, including text elements, are transformed into IlvMapGeneralPath
instances.

The graphic styles in the resulting map are rendered to look as close as possible to the
original version. However, the styles created are limited to the data available for styling
such an object.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 183

http://earth.google.com/kml/kml_intro.html
http://www.w3.org/Graphics/SVG
http://www.w3.org/Graphics/SVG

To create an SVG data source, use the following code:

IlvSVGDataSource source = new IlvSVGDataSource("C:/maps/SVG/maps.svg");
source.setManager(getView().getManager());

You then need to setup the transformation you want to use to read SVG. To transform the
SVG extent into the latitude/longitude range provided, call:

source.setDestinationBounds(lonMinRad,latMinRad,lonMaxRad,latMaxRad);

To use a more complex transformations such as reprojection, call:

IlvMathTransform mathTransform = //create mathematical transformation
source.setInternalTransformation(mathTransform);

An example of how to create a complex transformation using of the ControlModel example
class can be found at <installdir> /jviews-maps86/samples/mapbuilder/index.html

I B M ® I L O G ® J V I E W S M A P S 8 . 6184

Raster data sources

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

All raster (image) data sources have a common API. To create your data source, you need
to create an IlvRasterAbstractReader for the type of data to be read, and then use this
reader to build a tiled image data source.

Raster reader classes
The raster reader classes for the different image formats are as follows.

GEOTIFF
IlvRasterGeoTiffReader
DTED
IlvRasterDTEDReader
GTOPO30
IlvGTopo30Reader
Non-geo-referenced images(*)
IlvRasterBasicImageReader
Images from OpenGIS compliant Web Map Servers
IlvWMSReader

(*) Non georeferenced images must be geo-referenced, see Georeferencing a
nongeoreferenced image.

Creating a raster reader
To create a raster reader and add all image files to be read you can, for example, use the
following code:

Creating a tiled data source
To create a data source for the reader:

IlvRasterDTEDReader reader = new IlvRasterDTEDReader();
for(int i=0;i<fileName.length;i++) {
reader.addMap(fileName[i]);

}
IlvMapDataSource DTEDDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,reader,true,true,n
ull);
DTEDDataSource.setName("name in data source panel");

The IlvTiledRasterDataSource returned by the IlvRasterDataSourceFactory executes
image reading in a background thread.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 185

Georeferencing a nongeoreferenced image
To georeference a nongeoreferenced image, you can set the longitude and latitude image
bounds:

reader.setImageBounds(0,-Math.PI,Math.PI/2,Math.PI,-Math.PI/2);

Alternatively, you can compute a more complex mathematical transformation and set it on
the reader:

reader.setInternalTransformation(trans);

The non georeferenced image reader does not support multiple calls to addMap.Note:

Images from OpenGIS-compliant Web Map Servers
This section gives information about the OpenGIS® Web Map Server (WMS standard). This
International Standard specifies the behavior of a service that produces spatially referenced
maps dynamically from geographic information. It specifies operations to retrieve a
description of the maps offered by a server and to query a server about features displayed
on a map. The standard is not applicable to the retrieval of actual feature data or coverage
data values, but is applicable to pictorial renderings of maps in a graphical format. These
capabilities are provided by a Web Feature and Web Coverage Service.

In a basic WMS, only a limited number of predefined styles can be applied to features. The
mechanism that enables users to define their own styles is defined in the OGC Styled Layer
Descriptor Implementation Specification. An SLD-enabled WMS retrieves feature data from
a Web Feature Service and applies explicit styling information provided by the user in order
to render a map.

The ISO/TC 211 also defines a standard for Web Map Servers, see ISO 19128.

Importing a WMS image
JViews Maps supports the import of images from a WMS server.

To create a WMS data source, use the following code:

URL url = new URL("http://geo.compusult.net/scripts/mapman.dll?
Name=weather&REQUEST=GetCapabilities");

IlvWMSReader reader = new IlvWMSReader(url);
IlvWMSDataSource source = new IlvWMSDataSource(reader);
source.setManager(manager);

I B M ® I L O G ® J V I E W S M A P S 8 . 6186

http://eden.ign.fr/std/iso_19128

Using data sources

Describes how to use data sources.

In this section

Overview
Describes the main phases involved in using data sources.

Integrating the data source
Explains how to integrate a data source.

Layer styling considerations
Describes how to manage layer styles correctly.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 187

Overview

Once you have created your data source (see Creating data source objects), integrate it with
the manager properties by:

♦ Inserting it into the data source tree.

♦ Inserting the associated map layer into the map layer tree.

You can then use layer styling methods to change the styles. Additionally, at some point,
the creation of all graphic objects must be started (usually in a background thread).

I B M ® I L O G ® J V I E W S M A P S 8 . 6188

Integrating the data source

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

To integrate the data source and map layer with the manager properties:

1. Insert the data source into the data source tree. You first need to retrieve the data
source model from the property of the manager:

IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);
dataSourceModel.insert(source);

2. Once all data sources have been inserted, you can start loading the data source model
by starting all data sources of this model recursively:

dataSourceModel.start();

Alternatively, you can start each data source when you want it by calling.

source.start();

3. You should also retrieve (and possibly setup) the map layer attached to the data source,
for example:

IlvMapLayer layer = dataSource.getInsertionLayer();
layer.setName("name in layer tree panel");

Other settings can be done at this stage, such as changing the layer style.

layer.getStyle().setAttribute(IlvPolylineStyle.FOREGROUND,Color.black);
layer.getStyle().setAttribute(IlvPolylineStyle.BACKGROUND,new
Color(1,1,1,0.25f));

4. Insert the layer into the map layer tree of the manager. You first need to retrieve the
layer tree model from the property of the manager. Here you can arrange the layer
structure by selecting the parent layer as appropriate.

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);
ltm.addChild(parent, layer);

You can reuse the same parent layer for different data sources, possibly retrieving it
from the tree model:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 189

IlvMapLayer parent = ltm.findChildLayer(null,"my parent");
if(parent==null) {
parent = new IlvMapLayer();
parent.setName("my parent");
IlvMapCompositeStyle parentStyle= new IlvMapCompositeStyle();
parent.setStyle(parentStyle);
ltm.addChild(null, parent);

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6190

Layer styling considerations

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

Managing the style parent
To provide style inheritance (accessible in the Layer Tree Panel), the parent layer style must
be a composite style, and you need to manage the style parent on its own:

IlvMapStyle childStyle=layer.getStyle();
childStyle.setParent(parent.getStyle());

Using dynamic styles
When the application uses dynamic styles, you need to access the style controller property
of the manager:

IlvMapStyleController themeController =
IlvMapStyleControllerProperty.GetMapStyleController(manager);

With the controller, you can decide on specific style settings for scale intervals. For example,
to change the layer visibility:

themeController.addTheme(1/100000.0,source.getInsertionLayer(),"Visible");
themeController.getStyle(source.getInsertionLayer(),1/
100000.0).setVisibleInView(true);
themeController.getStyle(source.getInsertionLayer(),1/
100000.0).setVisibleInOverview(false);

If you use multiple dynamic styles, you have to take care of style inheritance in a slightly
more complex way because more than one style is used:

IlvMapDynamicStyle []t=themeController.getThemes(layer);
for (int i = 0; i < t.length; i++) {
t[i].getStyle().setParent(parent.getStyle());

}

Once this is done, you can apply the style you want to use for the current scale of the view:

themeController.updateTheme(view,layer);

Alternatively, you can setup the theme for all layers in one single call:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 191

themeController.updateCurrentTheme();

Layer ordering
With multithreading data sources, it is often impossible to predict the order in which the
underlying manager layers are created. The manager layer order determines which graphic
objects are on top of the map or in the background. When data sources have been created
and inserted, you can arrange the manager layer order to be coherent with the map layer
tree organization, with a call to:

ltm.arrangeLayers();

I B M ® I L O G ® J V I E W S M A P S 8 . 6192

Clearing map data

When creating data sources andmap layers, many different manager properties are modified
and refer to the data structures needed to manage the map at its different scales.
Furthermore, many graphic objects and manager layers are created in the IlvManager
object. You may later want to clear the data.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

To clear the map data entirely:

1. Stop all potential threaded image loaders by looking for IlvThreadedTileLoader
which may still be running:

for (int il=0;il<manager.getLayersCount();il++) {
IlvManagerLayer layer = manager.getManagerLayer(il);
if (layer instanceof IlvTiledLayer) {
IlvTileLoader loader = ((IlvTiledLayer) layer).getTileLoader();
if (loader instanceof IlvThreadedTileLoader) {
((IlvThreadedTileLoader) loader).dispose();

}
}

}

2. Clear the map layer model by removing all manager layers and graphic objects:

IlvMapLayerTreeModel model =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);
model.clearAllObjects();
while (manager.getLayersCount() > 0) {
manager.removeLayer(0, false);
}
manager.removeNamedProperty(IlvMapLayerTreeProperty.NAME);

3. Clear the data source model:

manager.removeNamedProperty(IlvMapDataSourceProperty.NAME);

4. Clear the area of interest model:

manager.removeNamedProperty(IlvAreasOfInterestProperty.NAME);

5. Clear the style controller:

manager.removeNamedProperty(IlvMapStyleControllerProperty.NAME);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 193

6. Remove all temporary raster files. JViews Maps relies on a memory mapped data file
for quick access to raster pixel data. Temporary files are not removed when applications
exit abnormally, and they remain in the temporary directory forever unless removed.
To prevent this, the IlvRasterTemporaryFileManager class provides a method to
remove all temporary files created by JViews Maps that are no longer in use:

IlvRasterTemporaryFileManager.removeAllFiles();

I B M ® I L O G ® J V I E W S M A P S 8 . 6194

Developing a new data source

Understanding the data source backup paradigm
The base class IlvMapDataSource includes a fallback mechanism to allow map reprojection
and export even when associated source data (file, network path, database connection...) is
not available at the time the map needs to be manipulated. For that mechanism to operate,
a subclass of IlvMapDataSource must override the method isSourceDataAvailable() and
perform appropriate checks on related data availability.

If this method returns false, the IlvMapDataSource tries to perform operations on the map
(change of coordinate system, export) from the current map objects instead of reading them
from the original source data. Note that this may lead to loss of precision or even data as
this is the expected behavior when chaining-up several non-invertible projections.

Another way to force the use of a backup data source is by setting a flag using the method
setForceUsingBackupDataSource(boolean). This will result in much faster operations (such
as reprojection) as the source data is not read back from its original format. However, as
mentioned above, this leads to potential precision or data loss.

Should you need to access these backup data sources of a given data source directly, you
can do so by calling getBackupDataSources(). It returns an array of data sources of the
class IlvGraphicLayerDataSource.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

Renderer management
Unless you need specific rendering, you should use the base IlvMapDataSource class renderer
management, which either finds the renderer associated with the
IlvMapReusableFeatureIterator or creates a new IlvDefaultFeatureRenderer.

Layer management
By default, the base IlvMapDataSource class layer manager creates a map layer when
needed, and connects it to the manager (by creating an IlvManagerLayer).

Usually, the only layer management method you have to rewrite is the initInsertionLayer
(ilog.views.maps.beans.IlvMapLayer) method, when you need to create a tiled layer
instead of a standard IlvManagerLayer:

protected void initInsertionLayer(IlvMapLayer layer) {
layer.insert(new IlvTiledLayer(new IlvRect(), null,

IlvTileController.FREE));
}

If you want your data source to manage more than a single map layer you may have to write
more complex layer management code, or create a subclass of the
IlvHierarchicalDataSource.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 195

Data tiling
It you have a data format or readers that support tiles, you may have to create the tiles and
tile loaders in a specific startmethod. Here is an example used in the shapefile data source:

public void start() throws Exception
{
// construct a tiled shape tile loader
IlvShapeFileTileLoader tileLoader = new IlvShapeFileTileLoader(shp, dbf,shx,

idx);
tileLoader.setCoordinateSystem(getCoordinateSystem());

tileLoader.setFeatureRenderer(getFeatureRenderer());
// create a threaded tile loader to load the shape data on a background thread.

IlvTiledLayer tiledLayer = (IlvTiledLayer)getInsertionLayer().
getManagerLayer();

IlvThreadedTileLoader threadedLoader = new IlvThreadedTileLoader(tileLoader,

true);
tiledLayer.setTileLoader(threadedLoader);
...
// for each tile known by the tile loader
for (int i = ...) {
for (int j = ...) {
// Compute projected tilebounds, ie the bounds of the tile in the manager

coordinates
IlvRect r = IlvMapUtil.computeTransformedBounds(...);
Point2D.Double ul = new Point2D.Double(r.getX(), r.getY());
Point2D.Double lr = new Point2D.Double(r.getX() + r.getWidth(), r.getY

()
+ r.getHeight());
tiledLayer.getTileController().addTile(new IlvMapFreeTile(ul, lr,

tiledLayer.getTileController(), i, j));
}

}
}

Feature management
The IlvMapReusableFeatureIterator is a subinterface of IlvMapFeatureIterator. It adds
to the base interface the capability to restart the iteration more than once. This is necessary
when, for example, projection parameters have changed and the data source needs to render
all the graphic objects again. This is also used for load-on-demand or save/reloadmechanisms.

You can transform a feature iterator (such as for readers written for a previous version of
JViewsMaps) into a reusable feature iterator by using the IlvMapDelegateFeatureIterator
abstract class. For example, the code below uses the feature iterator returned by an
IlvMapLoader:

I B M ® I L O G ® J V I E W S M A P S 8 . 6196

String fileName="some file name";
public IlvMapReusableFeatureIterator getFeatureIterator() {

return new IlvMapDelegateFeatureIterator() {
public void restart() {

IlvMapLoader loader = new IlvMapLoader(null);
try {

setDelegate(loader.makeFeatureIterator(fileName));
} catch (IOException e) {

e.printStackTrace();
}

}
};

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 197

Printing

IBM® ILOG® JViews Maps provides specialized printing classes derived from the JViews
Framework printing classes. These classes are use to print a map with or without a legend.
The printing of the legend can be configured in the map configuration tab of the setup dialog.

To print a map, do the following:

// construct a new IlvMapPrintingController for the given view.
IlvMapPrintingController controller = new IlvMapPrintingController(view);
// configure the document
IlvPrintableDocument document = controller.getDocument();
document.setName(<Name of the Document>);
document.setAuthor(controller.getPrinterJob().getUserName());
document.setPageFormat(controller.getPrinterJob().defaultPage());

At this point, you can do one of the following:

♦ Access the print preview screen

// print preview
controller.printPreview(frame);

♦ Access the setup dialog

// print setup
controller.setupDialog(frame, true, true);

♦ Access the printing window

// print
controller.print(true);

For more information, see the section on The Generic Printing Framework in The Advanced
JViews Framework.

I B M ® I L O G ® J V I E W S M A P S 8 . 6198

Overview of multithreading

Heavy tasks are performed in threads to prevent the application GUI from freezing. Some
of the threads are hidden, others can be controlled.

Use of threads in the Map Builder
All Map Builder import tasks are performed in separate threads to ensure GUI responsiveness.
This means that you can open a batch of files of different formats without having to wait for
the current file to finish being imported. This is basically achieved by calling the start
methods of the associated data sources in a dedicated thread.

Use of threads in map labelling
The map labelling mechanism in JViews Maps is implemented in a background thread so
that the user can continuously zoom, pan, and scroll the view without being slowed down
by the sometimes CPU-intensive layout algorithms.

As soon as user interaction with the view stops, a timer starts. If no further change occurs
in the view within a certain length of time (a few hundreds of milliseconds typically), the
label layout process starts in the dedicated background thread. If it does not finish before
the view changes again, the current task is canceled so that the next one can start as soon
as possible.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 199

Using threads in tile loaders

When tiles are displayed on a view, the tile loading is performed for the IlvTiledLayers by
an IlvTileLoader, mainly through the call of the load(ilog.views.tiling.IlvTile)
method. Up until JViews Maps 8.1, this was performed in the Swing thread, which could
cause GUI freezes because the code could be CPU intensive.

You can execute the tile loading code in separate threads by means of the
IlvThreadedTileLoader class. This class implements the IlvTileLoader interface, and acts
as a wrapper for a delegate IlvTileLoader executing the tile loading code.

Internally, an IlvThreadedTileLoader object holds a queue in which load and release calls
(from the IlvTileController on the IlvThreadedTileLoader) are stacked, and processed
as soon as possible by a dedicated thread. This way, all tile loading is performed
asynchronously and the application remains responsive even if tens of megabytes of data
are loaded for display on the view.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

The following code sample shows how to use an IlvThreadedTileLoader that encapsulates
another tile loader:

IlvTiledLayer tiledLayer;
// this is the tile loader that performs the real loading, such as
IlvShapeFileTileLoader
IlvTileLoader tileLoader;

// Create a threaded tile loader that encapsulates the previous one
IlvThreadedTileLoader threadedTileLoader =

new IlvThreadedTileLoader(tileLoader,true);

// Configure this threaded tile loader :

// set the minimum java thread priority for loading tiles
threadedTileLoader.setThreadPriority(Thread.MIN_PRIORITY);

// set to repaint the view after each tile is loaded
threadedTileLoader.setRepaintPolicy(IlvThreadedTileLoader.REPAINT_AFTER_EACH_TI
LE);

// Set this threaded tile loader on the IlvTiledLayer
tiledLayer.setTileLoader(threadedTileLoader);

I B M ® I L O G ® J V I E W S M A P S 8 . 6200

Using threads in data sources

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

The IlvTiledRasterDataSource, performs its start method in a separate thread if called
from the Swing event dispatch thread. This is useful to know if you want to wait for the start
method to finish. To do this, call the start() method of the IlvTiledRasterDataSource
from a different thread to the event thread to be sure it has completed as it returns.

For instance, to ensure that an IlvRasterDTEDDataSource has completed its start method,
you could use the following code.

IlvMapDataSource DTEDDataSource;
...
// create reading thread
Thread loader = new Thread() {

public void run() {
DTEDDataSource.start();

}
};
// start reading thread
loader.start();
// wait for the thread to complete
loader.join();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 201

Using the IlvThreadMonitor

IlvThreadedActivityMonitor is a class that monitors the progress of several tasks running
in separate threads.

These tasks first register with this monitor through the registerThreadedActivity(java.
lang.Object)method, and then notify the monitor of any progress they make by calling the
updateActivityProgress(java.lang.Object, int, java.lang.String)method. Eventually,
a task can be removed from the list by calling unregisterThreadedActivity(java.lang.
Object) method. A task that reports a progress reading of one hundred percent is
automatically unregistered from the monitor.

In its turn, the monitor notifies any registered listeners of the progress being made by the
monitored tasks.MultithreadMonitor shows the IlvThreadedActivityMonitorPanel class,
which is a Swing component implementing the IlvThreadedActivityMonitor.
ActivityListener interface. It displays progress bars for monitored activities.

Multithread Monitor

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /86/samples/mapbuilder/index.html

If you want to display the progress of your own threaded tasks on this
IlvThreadedActivityMonitorPanel, here are the basic actions you should take:

IlvManagerView view; // the main view of the application

// Get the manager of this view (provided that it was set somewhere before)
IlvManager manager = view.getManager();

// Get the activity monitor associated with this manager
IlvThreadedActivityMonitor monitor =
IlvThreadedActivityMonitorProperty.GetThreadedActivityMonitor(manager);
if (monitor != null) {
// Notify the monitor of the progress of this activity
monitor.updateActivityProgress(this,100,null);
};

For further information about this bean, see Multithread Monitor.

I B M ® I L O G ® J V I E W S M A P S 8 . 6202

Generic code sample for creating a map

The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/GenericReader.java

1. Instantiate the reader. In this example, you are using the IlvShapeReader.

try
{

featureIterator = new IlvShapeFileReader(shapeFileName, dbfFileName)
;
}
catch (IOException e)
{

System.err.println("IOError while instantiating reader");
}

2. Retrieve the feature renderer from the reader.dted.

IlvFeatureRenderer renderer =
featureIterator.getDefaultFeatureRenderer();

3. Create coordinate transformation.

IlvCoordinateTransformation identity = IlvCoordinateTransformation.
CreateTransformation(null, null);

4. Retrieve the first map feature.

IlvMapFeature feature = null;
try
{

feature = featureIterator.getNextFeature();
}
catch (IOException io)
{

System.err.println("IOExeption while getting next feature"
+io.getMessage());

}
// Loop on all the available map features.
while (feature != null)
{
try {

5. Create the graphic object representing the map feature.

IlvGraphic graphic = renderer.makeGraphic(feature, identity);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 203

6. Add the graphic object to the manager.

manager.addObject(graphic, layerIndex, false);

7. Handle exceptions.

} catch (IlvMapRenderException e)
{
// Should not occur: renderer provided by the feature iterator.
System.out.println("Rendering Exception " + e.getMessage());
} catch (IlvCoordinateTransformationException cte) {
System.err.println("Coordinate transformation exeception " + cte.getMessage
());
}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6204

Using readers

Describes the predefined readers, the map loader for supported (predefined) formats, and
how to write a new reader.

In this section

Code examples for using readers
Gives an example for each predefined reader.

The map loader
Describes the loader for a map in any supported file format.

Developing a new reader
Describes how to write a new reader for map data.

Optimizing the reader
Describes how to optimize a new reader to improve performance.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 205

Code examples for using readers

For more information on the predefined readers, see Readers and writers.

The Shapefile reader
The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/ShapeReader.java.

/**
* Simple file reader for ESRI shape file format.
* Attributes are read from the dbf file.
*/
public void loadFile(String shapeFileName, String dbfFileName)
throws IOException,

IlvMapRenderException,
IlvCoordinateTransformationException {

IlvShapeFileReader reader = null;
// Instantiate a new reader.
try {
reader = new IlvShapeFileReader(shapeFileName, dbfFileName);

} catch (IOException e) {
e.printStackTrace();

}
// Retrieve the default feature renderer.
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();

// Coordinate Transformation from IlvGeographicCoordinateSystem.WGS84
// to IlvGeographicCoordinateSystem.WGS84 (no transformation)
IlvCoordinateSystem sourceCoordinateSystem =

IlvGeographicCoordinateSystem.WGS84;
IlvCoordinateSystem targetCoordinateSystem =

IlvGeographicCoordinateSystem.WGS84;
IlvCoordinateTransformation transform =

IlvCoordinateTransformation.CreateTransformation
(sourceCoordinateSystem, targetCoordinateSystem);

IlvMapFeature mapFeature;
// Loop on all map features.
while ((mapFeature = reader.getNextFeature()) != null) {
IlvGraphic graphic = renderer.makeGraphic(mapFeature, transform);
if (mapFeature.getAttributes() != null)
graphic.setNamedProperty(mapFeature.getAttributes().copy());

// IlvGraphic has to be stored in an IlvManager.
manager.addObject(graphic, false);

}
}

/**
* Create a Shape load-on-demand layer.
*/

I B M ® I L O G ® J V I E W S M A P S 8 . 6206

public void loadLOD(String shpFileName,
String dbfFileName,
String shxFileName,
String idxFileName)

throws IOException {

// Instantiate tile loader.
IlvShapeFileTileLoader shpTileLoader = new IlvShapeFileTileLoader(

shpFileName,
dbfFileName,
shxFileName,
idxFileName);

// instantiate tiled layer.
IlvTiledLayer tiledLayer =

new IlvTiledLayer(shpTileLoader.getTileOrigin());
// Affect tile loader.
tiledLayer.setTileLoader(shpTileLoader);
// Add the layer to the IlvManager.
manager.addLayer(tiledLayer, 0);
// Fit to tile 0, 0.
tiledLayer.fitTransformerToTile(view, 0, 0);

}

The MID/MIF reader
The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/MIDMIFReader.java.

/**
* Example of how to use the MIDMIF reader package.
*/
public class MIDMIFReader {
IlvManager manager = new IlvManager();

/**
* Load a MIDMIF file by providing the MIF file name and the MID file name.

*/
public void loadMIDMIF(String mif, String mid)
throws IlvMapFormatException,

IOException,
IlvMapRenderException,
IlvCoordinateTransformationException {

// Create the MIDMIF reader.
IlvMapFeatureIterator reader = new IlvMIDMIFReader(mif, mid);
// Retrieve the default renderer.
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
// Initialize the coordinate transformation.
IlvCoordinateSystem managerCS =

IlvCoordinateSystemProperty.GetCoordinateSystem(manager);
// The MIDMIF file can contain coordinate system information.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 207

IlvCoordinateSystem fileCS = reader.getCoordinateSystem();
if ((managerCS == null) && (fileCS != null))
manager.setNamedProperty(new IlvCoordinateSystemProperty(fileCS));

// Create the transformation accordingly.
IlvCoordinateTransformation tr =

IlvCoordinateTransformation.CreateTransformation(fileCS, managerCS)
;

// Retrieve the first feature.
IlvMapFeature f = reader.getNextFeature();
int layersCount = manager.getLayersCount();
manager.setContentsAdjusting(true);
while (f != null) {
// Create graphic object.
IlvGraphic g = renderer.makeGraphic(f, tr);
if (g != null) {
// Add it to the manager.
manager.addObject(g, layersCount, false);
// Retrieve attributes.
IlvFeatureAttributeProperty ap = f.getAttributes();
if (ap != null) {
// Copy the attributes into the graphic, if any.
g.setNamedProperty(ap.copy());

}
}
// Loop on all features.
f = reader.getNextFeature();

}
}

The DTED file reader
The complete source code for the DTED® file reader example can be found in the following
file:

<installdir> /jviews-maps86/codefragments/readers/src/DTEDReader.java.

/**
* Example of how to use the DTED reader package.
*/
public class DTEDReader {
IlvManager manager = new IlvManager();
IlvManagerView view = new IlvManagerView(manager);

/**
* Loads a single DTED tile.
*/
public IlvGraphic loadSingleFrame(String fileName)
throws IlvMapFormatException,

FileNotFoundException,
IOException,
IlvMapRenderException,
IlvCoordinateTransformationException {

// Instantiate the reader.

I B M ® I L O G ® J V I E W S M A P S 8 . 6208

IlvDTEDReader reader = new IlvDTEDReader(fileName);
// Retrieve the unique feature.
IlvMapFeature feature = reader.getNextFeature();
// Retrieve the image renderer.
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
// Transformation.
IlvGeographicCoordinateSystem gcs = IlvGeographicCoordinateSystem.WGS84;
IlvCoordinateTransformation tr =

IlvCoordinateTransformation.CreateTransformation
(feature.getCoordinateSystem(),gcs);

// Make the graphic object to be inserted in a IlvManager.
IlvGraphic graphic = renderer.makeGraphic(feature, tr);
// Returns it.
return graphic;

}

private int level = 0;

/**
* Create a load-on-demand DTED layer providing the directory name.
*/
public void makeLODLayer(String dirName) {
// New DTED layer.
IlvDTEDLayer layer = new IlvDTEDLayer(dirName, level);
// Add it to the manager.
manager.addLayer(layer, -1);
// Center on tile (0, 0).
layer.fitTransformerToTile(view, 0, 0);

}

public static void main(String a[]) {
javax.swing.SwingUtilities.invokeLater(
new Runnable() {
public void run() {
DTEDReader reader = new DTEDReader();
try {
reader.loadSingleFrame(a[0]);

} catch (IlvMapFormatException e) {
e.printStackTrace();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (IlvMapRenderException e) {
e.printStackTrace();

} catch (IlvCoordinateTransformationException e) {
e.printStackTrace();

}
}

}
);
}

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 209

The image file reader
The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/ImageReader.java.

/**
* Example showing how to use the Image reader package.
*/
public class ImageReader {
IlvManager manager = new IlvManager();

/**
* Load a single image. Upper left and lower right coordinates
* have to be provided.
*/

public void loadImage(String imageName, IlvCoordinate ul, IlvCoordinate lr)

throws IlvMapFormatException,
FileNotFoundException,
IOException,
IlvMapRenderException,
IlvCoordinateTransformationException {

// Create image reader.
IlvImageReader reader = new IlvImageReader(imageName, ul, lr);
// Retrieve the unique feature.
IlvMapFeature feature = reader.getNextFeature();
// Retrieve the default renderer.
IlvFeatureRenderer renderer = reader.getDefaultFeatureRenderer();
// No reprojection for images.
IlvCoordinateTransformation tr =
new IlvCoordinateTransformation(IlvGeographicCoordinateSystem.WGS84,

IlvGeographicCoordinateSystem.WGS84,
new IlvMapAffineTransform());

// Create the graphic object.
IlvGraphic graphic = renderer.makeGraphic(feature, tr);

}

/**
* Create a load-on-demand image layer.
* The pattern, colFmt, rowFmt are used to retreive the image file name
* from the tile coordinates
*/
public void loadLOD(IlvRect tileOrigin,

String pattern,
String colFmt,
String rowFmt)

{
// Create the tile loader.
IlvImageTileLoader tileLoader = new IlvImageTileLoader(pattern,

colFmt,
rowFmt);

// Create the tiled layer.

I B M ® I L O G ® J V I E W S M A P S 8 . 6210

IlvTiledLayer tiledLayer = new IlvTiledLayer(tileOrigin);
// Affect the tile loader to the tiled layer.
tiledLayer.setTileLoader(tileLoader);
// Add the layer into the manager.
manager.addLayer(tiledLayer, -1);

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 211

The map loader

The package ilog.views.maps.format provides the class IlvMapLoader that you can use
to load in a very simple way any file format for which JViews Maps provides a predefined
reader (Shapefile, DTED® , andMID/MIF). These predefined readers are described at length
in Readers and writers.

Loading a predefined map format
To load a predefined map format, use the load(java.lang.String) method. This method
first tries to determine the file format according to the naming rules set forth in the
specifications of the different formats, and initializes the appropriate reader. The method
then loads the map into the manager associated with the map loader.

The following example shows how to import a .shp file (Shapefile format) into a JViews
Maps manager using the map loader:

IlvMapLoader loader = new IlvMapLoader(manager);
try {
loader.load("myShapeFile.shp");

} catch (IlvMapFormatException e) {
// Occurs if there is a format error in the file.
e.printStackTrace();

} catch (IOException e) {
// Occurs if there is another IO error.
e.printStackTrace();

}

A complete example of how to import a file using the map loader and save it in the .ilv
format can be found in the following file:

<installdir> /jviews-maps86/codefragments/use_map_loader/src/UseMapLoader.java

Loading nongeoreferenced files
When you load a map into a JViews Maps manager using the map loader, this map is
automatically displayed in the coordinate system associated with the manager provided that
the format of the source data is georeferenced. The IlvMapFeatureIterator interface has
an isGeoreferenced() method that you can use to know whether a file is georeferenced.
Most of the cartographic files are georeferenced. This is the case for files of the DTED
format. Some other cartographic formats, such as Shapefile, are not georeferenced.

When loading data from a file that is not georeferenced, and in the absence of any other
indications, the map loader is unable to reproject the source data within the target coordinate
system (the one associated with the manager).

If you load several source files of the Shapefile format whose projection is unknown
in the same manager, objects are positioned correctly. However, if you try to import

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6212

data of another format in the manager, the relative position of objects from different
source formats are inaccurate.

If you read a file whose format is not georeferenced, but you know the coordinate system
in which the data is expressed, you can provide this information to the IlvMapLoader using
the setDefaultCoordinateSystem(ilog.views.maps.srs.coordsys.IlvCoordinateSystem)
method.

The following example shows how to import a Shapefile whose projection is known to be
geographic into a manager that is in a Mercator projected coordinate system:

// Initialize the manager for the mercator projection.
IlvProjection p = new IlvMercatorProjection();
IlvProjectedCoordinateSystem pcs =

new IlvProjectedCoordinateSystem("mercator", p);
IlvCoordinateSystemProperty csProperty =

new IlvCoordinateSystemProperty(pcs);
manager.setNamedProperty(csProperty);

// Create a map loader.
IlvMapLoader mapLoader = new IlvMapLoader(manager);

// Load other data.
....

// Load a Shapefile expressed in geographic coordinate system. mapLoader.
setDefaultCoordinateSystem(IlvGeographicCoordinateSystem.WGS84);
mapLoader.load("myShapeFile.shp");

Specifying a renderer
If you want an IlvMapLoader object to use a specific renderer, specify it as the second
argument of its load(ilog.views.maps.IlvMapFeatureIterator, ilog.views.maps.
IlvFeatureRenderer) method, as shown below:

IlvFeatureRenderer renderer = new IlvDefaultCurveRenderer();
mapLoader.load(myIterator, renderer);
IlvMapLoader mapLoader = new IlvMapLoader(manager);

The file <installdir> /jviews-maps86/codefragments/renderer/src/Viewer.java shows
how to use specific renderers with a map loader reading data that has the Shapefile format.
For specific renderers, see the examples provided in Creating a colored line renderer and
Extending an existing renderer.

Executing this file loads the following two files into the viewer:

♦ The <installdir>/doc/usermansrc/maps/renderer/HYLINE.SHP file defines contour
lines for the region of Manila (Philippines). The HYLNVAL attribute holds the elevation
associated with each contour line. Colors are applied to contour lines using the default

I B M ® I L O G ® J V I E W S M A P S 8 . 6 213

elevation color model supplied with JViews Maps. See IlvIntervalColorModel.
MakeElevationColorModel.

♦ The <installdir>/doc/usermansrc/maps/renderer/PPPOINT.SHP file defines points
representing populated areas in the region of Manila (Philippines). The PPPTNAME attribute
holds the name of the town, if it is known. In this case, this name appears next to the
IlvMarker object that represents the town.

Attaching attributes to graphic objects
The map loader can automatically attach attributes to the graphic objects that it creates
when it loads a map. For this, use the setAttachingAttributes(boolean)method, as shown
in the following example:

IlvMapLoader loader = new IlvMapLoader(manager);
loader.setAttachingAttributes(true);
try {
loader.load("myShapeFile.shp");

} catch (IlvMapFormatException e) {
// Occurs if there is a format error in the file.
e.printStackTrace();

} catch (IOException e) {
// Occurs if there is an other IO error.
e.printStackTrace();

}

Extending the IlvMapLoader class
This section shows how to subtype the IlvMapLoader class so that it can recognize a file
format other than the JViews Maps predefined formats.

The method makeFeatureIterator(java.lang.String) of this class creates the reader that
recognizes the format of the file specified as its parameter. In the following example, the
IlvMapLoader class is derived and the method overridden so that it can recognize the format
of the polyline file presented in the section Developing a new reader and initialize the
appropriate reader. It is assumed that the file has the .pol extension.

public class MyMapLoader extends IlvMapLoader
{
/**
* Constructor.
*/
public MyMapLoader(IlvManager manager) {
super(manager);

}
/**
* Overrides the makeFeatureIterator method from super class.
*/
public IlvMapFeatureIterator makeFeatureIterator(String fileName)
throws IOException
{

I B M ® I L O G ® J V I E W S M A P S 8 . 6214

// Does superclass know the format of provided file?
IlvMapFeatureIterator result = super.makeFeatureIterator(fileName);
// If not, try with the polygon reader.
if (result == null) {
// Test extension.
int length = fileName.length();
// .pol are polylines files.
if (length > 4) {
String suffix = fileName.substring(length - 4);
if (suffix.toLowerCase().equals(".pol")) {
try {
return new OptimizedPolylineReader(fileName);

} catch (IlvMapFormatException e) {
return null;

}
}

}
}
return result;

}

The makeFeatureIterator method first attempts to get an IlvMapFeatureIterator from
its superclass. If the file is not recognized, it tries to determine whether the file extension
provided (in this example, .pol) corresponds to that of the file to be read. If the result of
the test is true, it creates the appropriate reader, which in this case is the optimized reader
created in Optimizing the reader.

If the file does not contain a header, an IlvMapFormatException is thrown and the method
returns the null pointer to indicate that it was not able to identify the file format.

The complete source code for this customized map loader can be found in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/MyMapLoader.java

I B M ® I L O G ® J V I E W S M A P S 8 . 6 215

Developing a new reader

In addition to the predefined readers available in JViews Maps, you can write your own
reader and customize it.

This section contains an example of an IlvMapFeatureIterator that you can use to read
polylines that were saved in an ASCII file.

The classes that implement the IlvMapFeatureIterator interface are not
necessarily file readers. They can also iterate, for example, over the result of a query
to a map server.

Note:

The file to be read
The ASCII file to be read has been created especially for this example. Its format is very
simple and its specifications are as follows:

♦ It has a header specifying its format.

♦ There is one pair of coordinates (latitude and longitude) per line. These coordinates are
expressed in degrees.

♦ Lines can contain comments. These comments, when they exist, are merged to form an
attribute.

♦ Polylines are separated by a blank line.

♦ The file has the .pol extension.

The ASCII file is shown below:

ascii polylines
-1.0 40.0 A 1x1 degree rectangle centered on the
1.0 40.0 (0,39) point
1.0 38.0
-1.0 38.0
-1.0 40.0

0.0 90.0 A meridian extending from the North pole to the South pole
0.0 -90.0

The reader
This section shows the reader you can use to read this polyline file.

The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/newreader/src/SimplePolylineReader.java

I B M ® I L O G ® J V I E W S M A P S 8 . 6216

Only the portions of code that require comments are reproduced here.Note:

As shown below, the SimplePolylineReader implements the IlvMapFeatureIterator
interface:

class SimplePolygonReader implements IlvMapFeatureIterator
{
... member variables ...
/**
* Constructor
*/
public SimplePolygonReader (String fileName) throws FileNotFoundException
{
Initializing member variables
}
... methods ...
}

The georeferencing methods
Since latitude and longitude in the polyline file are expressed in degrees, the coordinate
system is geographic. This is why the isGeoreferenced() method returns true and the
getCoordinateSystem() method returns IlvGeographicCoordinateSystem.WGS84. The
getCoordinateSystemmethod would return null if the projection of the file to be read was
unknown. See the description of the isGeoreferencedmethod in The IlvMapFeatureIterator
interface.

public boolean isGeoreferenced()
{
return true;

}
public IlvCoordinateSystem getCoordinateSystem()
{
return IlvGeographicCoordinateSystem.WGS84;

}

Bounding box methods
Because of the data format, the bounding box of the polyline cannot be retrieved until the
data has been read. Here, the methods getUpperLeftCorner() and getLowerRightCorner
() return null to indicate that these points are not known. Another option is to read the
data, place it in an array, and then compute the bounding box.

public IlvCoordinate getLowerRightCorner()
{

I B M ® I L O G ® J V I E W S M A P S 8 . 6 217

return null;
}

Rendering methods
The getDefaultFeatureRenderer() method must return a renderer able to transform into
graphic objects all the map features read by this feature iterator. The
IlvDefaultCurveRenderer can process map features whose geometry is of type
IlvMapLineString.

public IlvFeatureRenderer getDefaultFeatureRenderer()
{
return new IlvDefaultCurveRenderer();

}

If the geometries of the returned map features are not predefined but instead are instances
of a derived class, or if the map feature attributes store drawing parameters to be used in
rendering operations such as color or line width, it is necessary to provide renderers that
can process these attributes or derived geometries. See the section Creating a colored line
renderer.

The getNextFeature method
The getNextFeature() method reads the geometry of a map feature and creates an
IlvMapFeature object that will hold all the information required to process the geometry.
The geometry read in the code example that follows is an IlvMapLineString, which is the
class to define polyline geometries.

public IlvMapFeature getNextFeature()
throws IOException

{
return readPolyline();

}

The polyline points are read by the private method readPolyline. This method reads each
line in the file to extract the coordinates of the points and the related comments, if any.

It is broken up as follows:

1. A geometry of the type IlvMapLineString is created, which will be associated with the
map feature.

private IlvMapFeature readPolyline()
throws IOException

{
// Concatenates all the comment lines.
StringBuffer buffer = new StringBuffer();
// Reads the current map feature.
IlvMapFeature feature = new IlvMapFeature();

I B M ® I L O G ® J V I E W S M A P S 8 . 6218

// Reads the current line string geometry.
IlvMapLineString geometry = new IlvMapLineString();

2. The points making up this line string are read and the related comment is stored as an
attribute.

// Stores the line of text that is read.
String line;

// Reads a line.
while ((line = file.readLine()) != null) {
[...]

3. The longitude coordinate values are read. Note that an exception of type
IlvMapFormatException is thrown if a format error is detected while reading.

// Process longitude.
IlvCoordinate c = new IlvCoordinate();

if (tokenizer.hasMoreElements() == false)
throw new IlvMapFormatException("Longitude coordinate expected");

try {
currentToken = (String)tokenizer.nextElement();
c.x = decimalParser.parse(currentToken).doubleValue();

} catch (ParseException e) {
throw new IlvMapFormatException("Error while parsing longitude");

}

These comments also apply to latitude coordinates.

4. Each point read from the file is added to the line string geometry.

// Add this point to geometry.
geometry.addPoint(c);
[...]

5. The following if statement tests whether the end of the file has been reached. In this
case, the getNextFeature method should return a null pointer.

// End of file.
if ((line == null) && (geometry.getPointCount() == 0))
return null;

6. The geometry is associated with the map feature.

// Initialize the map feature.
feature.setGeometry(geometry);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 219

7. The comments are extracted to form attributes, which are associated with the map
feature. The attributeInfo object, which is shared by the attributes of the map features,
was initialized in the reader’s constructor.

// Set attribute.
IlvStringAttribute[] attribute = new IlvStringAttribute[1];
if (buffer.length() > 0) {
attribute[0] = new IlvStringAttribute();
attribute[0].setString(buffer.toString());

} else {
attribute[0] = null;

}
feature.setAttributeInfo(attributeInfo);
feature.setAttributes(new IlvFeatureAttributeProperty(attributeInfo,

attribute));

8. The read map feature is returned.

// Returns the read map feature.
return feature;

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6220

Optimizing the reader

The polyline reader presented in the sectionDeveloping a new reader is not the best because
it generates a large number of temporary objects. What happens is that each time a polyline
is read, a list, and hence memory, is allocated to store its points. If the number of polylines
in the file is very high, this might cause memory to become fragmented and also the frequent
running of the garbage collector, thus impairing performance.

To improve performance, the simple polyline reader can be optimized so that the
IlvMapFeatureIterator always returns the same instance of IlvMapFeature. The list for
storing the points will be allocated only once--when these points are read for the first time.
During subsequent readings, the list will be reallocated only if necessary. To make this
possible, the map feature returned by the getNextFeature() method is volatile, meaning
that its geometry and attributes must be used before the method is called again. All the
readers provided in the JViews Maps library that implement the IlvMapFeatureIterator
interface work this way.

The complete source code for this optimized reader example can be found in the following
file:

<installdir> /jviews-maps86/codefragments/newreader/src/
OptimizedPolylineReader.java

The readPolylinemethod of the class OptimizedPolylineReader resets the points making
up the IlvMapLineString geometry to 0. Note that this geometry is now a field of the class.

geometry.removeAll();

The points of each polyline read are stored in a coordinate buffer. New instances of
IlvCoordinate are created only if the polyline being read has more points than each of the
polylines previously read.

if (currentPointNum < oldPointNum) {
// Use an IlvCoordinate that was already allocated.
c = (IlvCoordinate)points.elementAt(currentPointNum);

} else {
c = new IlvCoordinate();
points.addElement(c);

}

Once the x,y coordinates of a polyline point are read, this point is added to the geometry.
Geometries are implemented in such a way that the addPoint method does not reallocate
memory if one of the previously read geometries had at least as many points as the current
geometry that is being read.

geometry.addPoint(c);

Also, the geometry attributes are stored as fields of the OptimizedPolylineReader class
and modified in the readPolyline method.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 221

if (buffer.length() > 0) {
stringAttribute.setString(buffer.toString());
attributeProperty.setAttribute(0,stringAttribute);

} else {
attributeProperty.setAttribute(0,null);

}
feature.setAttributes(attributeProperty);

I B M ® I L O G ® J V I E W S M A P S 8 . 6222

Map GUI interactors

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

Pan

The IlvMapPanInteractor allows the user to pan a manager view by pressing and holding
the space key. Once installed, it is always available.

To create this interactor and attach it to a IlvManagerView, you can use the following code:

IlvManagerView view = ...
...
IlvMapPanInteractor pan = new IlvMapPanInteractor();
pan.setView(view);

Zoom rectangle

The IlvMapZoomInteractor allows the user to select and zoom in on a rectangle in a manager
view. The Zoom Rectangle interactor includes the Zoom In and Zoom Out interactors. It also
provides simple click zoom and unzoom interactions.To create this interactor, you can use
the following code:

IlvMapZoomInteractor interactor = new IlvMapZoomInteractor();
view.setInteractor(interactor);

Continuous zoom

The IlvContinuousZoomInteractor allows the user to continuously zoom into or out from
a map by pressing and holding a mouse button. The zoom center, that is, the point in a map
that will be zoomed on, is the point in the map where the mouse is clicked. By default,
pressing the left button zooms into the zoom center, pressing the right mouse button zooms
out from the zoom center. When you drag the mouse the current zoom activity is paused
and the map is panned to follow mouse displacement.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 223

This interactor also redirects mouse wheel actions. After this interactor is activated, the
user scrolls the mouse wheel backwards to zoom in, and forwards to zoom out.

The delay and zoom factor can be configured for each interactor instance.

IlvContinuousZoomInteractor interactor = new IlvContinuousZoomInteractor();
interactor.setContinuousZoomFactor(factor);
interactor.setPeriod(period);
view.setInteractor(interactor);

To activate this interactor, use the following code:

Rotate

The IlvManagerViewRotateInteractor allows the user to rotate the entire content of a
manager view. Various modes are available, such as immediate rotation, delayed rotation,
and key controlled rotation.

To create this interactor, you can use the following code:

IlvManagerView view = …;
...
IlvManagerViewRotateInteractor interactor = new

IlvManagerViewRotateInteractor();
interactor.setMode(IlvManagerViewRotateInteractor.DYNAMIC_CONTINUOUS_MODE);
view.setInteractor(interactor);

Distance measuring

The IlvMakeMeasureInteractor allows the user to draw a line on a map in a manager view
and automatically display the distance represented by the line on the map.

final IlvMakeMeasureInteractor measure = new IlvMakeMeasureInteractor();
JButton b = new JButton();

b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
view.setInteractor(measure);

}
});

To create a IlvMakeMeasureInteractoryou can use the following code:

I B M ® I L O G ® J V I E W S M A P S 8 . 6224

The See-Through interactor

The IlvSeeThroughInteractor allows the user to temporarily see a part of a map
independently from the current layer visibility states. This means that users can interactively
reveal layers beneath a layer over which the mouse is pressed.

With this interactor, the user drags a square over the map, which displays the layers
registered for this interactor. IlvSeeThroughConfigurationPanel is provided as a default
configuration tool to interactively select layers in a Swing GUI.

IlvSeeThroughInteractor seeThrough = new IlvSeeThroughInteractor();
// configure the interactor
IlvSeeThroughConfigurationPanel panel = new

IlvSeeThroughConfigurationPanel(manager, seeThrough);
JOptionPane pane = new JOptionPane();
pane.setMessage(panel);
JDialog dialog = pane.createDialog(view, title);
panel.update();
dialog.setVisible(true);
// attach to the view.
view.setInteractor(seeThrough);

To create this interactor and attach it to an IlvManagerView, use the following code:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 225

I B M ® I L O G ® J V I E W S M A P S 8 . 6226

Using the GUI beans

Describes the JavaBeans™ for GUIs with maps.

In this section

Map Overview
Describes the Map Overview bean available for GUIs with maps.

Area of Interest panel
Describes the Area of Interest panel bean available for GUIs with maps.

Scale Bar
Describes the Scale Bar bean available for GUIs with maps.

Scale Control Bar
Describes the Scale Control Bar bean available for GUIs with maps.

Zoom Control panel
Describes the Zoom Control panel bean available for GUIs with maps.

Legend panel
Describes the Legend panel bean available for GUIs with maps.

Coordinate System Editor
Describes the Coordinate System Editor bean available for GUIs with maps.

Display Preferences Editor
Describes the Display Preferences Editor bean available for GUIs with maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 227

The Coordinate Viewer
Describes the Coordinate Viewer bean available for GUIs with maps.

The Map Layer Tree
Describes the Map Layer Tree beans and property editors

The Toolbar
Describes the Toolbar bean available for GUIs with maps.

Multithread Monitor
Describes the Multithread Monitor bean available for GUIs with maps.

Coordinate Panel Factory
Describes the Coordinate Panel Factory bean available for GUIs with maps.

Compass
Describes the Compass bean available for GUIs with maps.

Using annotations
Explains how to use the Annotations Toolbar bean available for GUIs with maps.

The Symbology Tree View bean
Describes the Symbology Tree View bean and how to use it.

I B M ® I L O G ® J V I E W S M A P S 8 . 6228

Map Overview

The Map Overview bean is represented by the IlvJOverview class. The Map Overview bean
displays a representation of a target manager view and enables users to navigate to an area
of the view that is of particular interest.

An example of the Map Overview panel is shown in Overview panel .

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

Overview panel

Including the bean in an application
To include the Map Overview bean in your application, write the following lines of code:

IlvJOverview overview = new IlvJOverview();
overview.setView(view);

Adding the bean to a Swing component
Then add it into a swing component:

panel.add(overview, BorderLayout.CENTER);

You should also make sure that the size of your overview remains the same regardless of
any Swing layout constraints applied. To do this, use lines such as the following:

overview.setSize(200, 100);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 229

overview.setPreferredSize(overview.getSize());
overview.setMinimumSize(overview.getSize());

Customizing interactions and capabilities
You can customize the way users interact with the overview, and with the capabilities of the
control rectangle as follows:

♦ To change the way the interactor is drawn:

overview.setDrawingStyle(IlvManagerMagViewInteractor.Wire);
overview.setLineWidth(3);
overview.setResizeHandleSize(6);

♦ To allow users to resize the overview:

overview.setResizingAllowed(true);

♦ To make sure the visible area of the view always remains inside the overview window:

overview.setAutoTranslating(true);

♦ To maintain a constant zoom ratio between the overview and the view:

overview.setAutoZooming(true);

♦ You can improve the performance of your application by limiting the overview refresh
rate:

overview.getOverviewView().setRepaintSkipThreshold(500);

I B M ® I L O G ® J V I E W S M A P S 8 . 6230

Area of Interest panel

The Area of Interest panel bean is represented by the IlvJAreaOfInterestPanel class. The
Area of Interest panel bean enables users to select and display frequently used areas of a
map.

An example of the Area of Interest panel is shown in Area of Interest panel.

Area of Interest panel

Including the bean in an application
To include the Area of Interest panel bean in your application, write the following line of
code:

IlvJAreaOfInterestPanel areaPanel = new IlvJAreaOfInterestPanel(view, true,
true, true);

The first boolean value indicates whether users can add areas of interest, the second boolean
allows them to remove areas of interest, and the third boolean allows them to rename areas
of interest.

Adding the bean to a Swing container
You then have to insert the bean into your swing user interface:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 231

panel.add(areaPanel, BorderLayout.CENTER);

The Area of Interest panel bean then attaches itself and listens to the
IlvAreasOfInterestProperty property of the manager of the view. Whenever an area is
added to the underlying IlvAreaOfInterestVector, its name and preview icon are displayed
on the Area of Interest panel bean.

Managing the Area of Interest and preview images
This panel also provides interesting static utility methods to manage the preview images
and the creation of the area of interest.

To create an area for everything visible on the view (this is the method usually called when
clicking the New Area of Interest button), you can insert the following lines of code in
your application:

IlvAreaOfInterest
currentArea=IlvJAreaOfInterestPanel.createLocationFromView(view,64,false);
currentArea.setName("Current Area");

If you want the users to provide the area name themselves (by means of a dialog box popup)
use:

IlvAreaOfInterest
currentArea=IlvJAreaOfInterestPanel.createLocationFromView(view,64,true);

This bean also provides a method that updates the area of interest preview icon with what
would be visible with the current map settings and contents:

IlvJAreaOfInterestPanel.refreshPreview(view,area,maxDimension);

For example:

♦ To create an area for Europe bounds:

IlvRect rectangle=new
IlvRect((float)Math.toRadians(15),(float)Math.toRadians(35),(float)Math.toRa
dians(45),(float)Math.toRadians(25));
IlvAreaOfInterest europe=new IlvAreaOfInterest("Europe",rectangle,0,null);

♦ To update its preview image:

IlvJAreaOfInterestPanel.refreshPreview(view,europe,64);

♦ You would then have to add the area to the property of the manager for proper
management by the Area of Interest bean:

IlvAreaOfInterestVector

I B M ® I L O G ® J V I E W S M A P S 8 . 6232

areas=IlvAreasOfInterestProperty.GetAreasOfInterest(view.getManager());
areas.addElement(europe);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 233

Scale Bar

The Scale Bar bean is represented by the IlvJAutomaticScaleBar class. This bean enables
users to estimate distances using the displayed scale bar.

An example of the Scale Bar is shown in Scale Bar .

Scale Bar

Including the bean in an application
To include the Scale Bar bean in your application, write the following lines of code:

IlvJAutomaticScaleBar graphicScale = new IlvJAutomaticScaleBar();
graphicScale.setView(view);

Adding the bean to a Swing container
You can then add this bean into your Swing hierarchy.

panel.add(graphicScale, BorderLayout.SOUTH);

The Scale Bar bean then attaches itself and listens to the IlvDisplayPreferencesProperty
property of the manager of the view. Whenever the underlying IlvDisplayPreferences are
changed (see Display Preferences Editor), the units used to display distances change.

You can also force the scale bar bean to use specific units, regardless of the
IlvDisplayPreferencesProperty settings, by calling the setFarUnit(ilog.views.maps.
IlvLinearUnit) and setNearUnit(ilog.views.maps.IlvLinearUnit) methods in your
application code.

Changing the appearance of the scale bar
The following controls change the appearance of the scale bar:

♦ To set the margins between the scale bar and the border of the component:

♦ To set the text spacing between the scale text and the scale bar:

graphicScale.setMarginHeight(2);
graphicScale.setMarginWidth(2);
graphicScale.setTextSpacing(2);

♦ To set the style used to draw the scale bar (double or single scale – alternate colors or
not):

I B M ® I L O G ® J V I E W S M A P S 8 . 6234

graphicScale.setScaleStyle(IlvScaleBar.DOUBLE_DASH_SCALE_EVEN);

♦ To change the way labels are displayed:

graphicScale.setScaleTextMode(IlvScaleBar.THREE_LABELS);

♦ To set the height of the scale bar:

graphicScale.setScaleHeight(10);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 235

Scale Control Bar

The Scale Control Bar bean is represented by the IlvJMapScaleControl class. This bean

enables users to see the scale of the map. The button also enables users to control the
scale interactively by entering a new setting.

An example of the Scale Control Bar is shown in Scale Control Bar.

Scale Control Bar

Including the bean in an application
To include the Scale Control Bar bean in your application, write the following lines of code:

IlvJMapScaleControl scaleControl = new IlvJMapScaleControl();
scaleControl.setView(view);

Adding the bean to a Swing container
You can then add this bean in your Swing hierarchy.

panel.add(scaleControl, BorderLayout.SOUTH);

The Scale Control Bar bean then attaches itself and listens for scale changes for the view
in order to update the displayed scale.

Customizing the appearance and behavior
You can prevent users from entering changes to the map scale by means of this bean (this
makes the Control Scale button disappear) using:

scaleControl.setAllowScaleEdition(false);

If the way the scale is presented is not appropriate for your needs, many tools are provided
to change the prefix (“1/”), suffix, or even the number formatter:

scaleControl.setPrefix(null);
scaleControl.setSuffix("th");
scaleControl.setScaleFormat(new DecimalFormat());

I B M ® I L O G ® J V I E W S M A P S 8 . 6236

Zoom Control panel

The Zoom Control panel bean is represented by the IlvJAdvancedZoomControl class. This
bean enables users to zoom in and zoom out on a map at a rate determined by the
displacement of the pointer.

An example of the Zoom Control panel is shown in Zoom Control panel .

Zoom Control panel

Including the bean in an application
To include the Zoom Control panel in your application, write the following lines of code:

IlvJAdvancedZoomControl zoomer = new IlvJAdvancedZoomControl();
zoomer.setView(view);

Adding the bean to a Swing container
You can then add this bean to a Swing container:

panel.add(zoomer, BorderLayout.WEST);

Customizing the appearance and behavior
This bean can be presented in horizontal or vertical layout, using:

zoomer.setOrientation(SwingConstants.VERTICAL);

By default, this bean zooms in or out of the view at a maximum rate of 6% every 40ms. You
can change these default values to better suit your needs using, for example:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 237

zoomer.setMaxZoomingRatio(1.1);
zoomer.setZoomDelay(100);

I B M ® I L O G ® J V I E W S M A P S 8 . 6238

Legend panel

The Legend panel bean is represented by the IlvMapLegendPanel class. This bean enables
users to create a legend to define map elements.

An example of the Legend panel bean is shown in Legend panel bean .

Legend panel bean

Including the bean in an application
To include the Legend panel bean in your application, write the following lines of code:

IlvMapLegendPanel legend = new IlvMapLegendPanel();
legend.setView(view);

Adding the bean to a Swing container
You can then add this bean into the Swing hierarchy of your application:

panel.add(legend, BorderLayout.EAST);

The Legend panel bean then attaches itself and listens to the IlvMapLayerTreeProperty
property of the manager of the view. Whenever a layer is changed in the underlying
IlvMapLayerTreeModel, the legend updates itself.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 239

Customizing the appearance and behavior
If you do not want an automatic JScrollPane around your legend, you can use:

IlvMapLegend legend = new IlvMapLegend ();
legend.setView(view);

The Legend panel uses the properties of maplayers to retrieve the IlvMapStyle.CATEGORY
and IlvMapStyle.LEGEND_GROUP string properties (for details of these properties, see
Common styling properties).

By default (when these values are null), each map layer has its own line in the legend. The
user can override this by setting identical values in the Category or Legend Group fields.

Layers are ordered according to their legend group (all layers with the same legend group
are displayed together, inside the same frame).

When layers share the same legend group and category, they are displayed on a single
legend line – possibly with more than one legend caption to display all the different aspects
this legend item can have.

I B M ® I L O G ® J V I E W S M A P S 8 . 6240

Coordinate System Editor

The Coordinate SystemEditor bean is represented by the IlvJCoordinateSystemEditorPanel
class. This bean enables users to set the coordinate system used to display a map view.

An example of the Coordinate System Editor is shown in Coordinate System Editor .

Coordinate System Editor

Including the bean in an application
To include the Coordinate System Editor in your application, you first need to create the
panel:

IlvJCoordinateSystemEditorPanel csPanel = new
IlvJCoordinateSystemEditorPanel();

To display the current coordinate system of the view in the bean, retrieve the
IlvCoordinateSystemProperty property:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 241

csPanel.setCoordinateSystem(IlvCoordinateSystemProperty.GetCoordinateSystem
(vie
w.getManager()));

Then, you should add a listener to the bean that updates the coordinate system of the view
when the bean changes, retrieving the new value selected by the user:

csPanel.addCoordinateSystemChangeListener(new PropertyChangeListener() {
public void propertyChange(PropertyChangeEvent evt) {

view.getManager().setNamedProperty(new
IlvCoordinateSystemProperty(csPanel.getCoordinateSystem()));
}

});

Adding the bean to a Swing hierarchy
You can then add this bean to your Swing hierarchy.

panel.add(dataSourcePanel, BorderLayout.CENTER);

Customizing the appearance and behavior
To configure the Coordinate System Editor as a simple projection choice combo-box, you
can disable the Advanced Property panels. For example:

csPanel.setAdvancedPanelsVisible(false);
csPanel.setAdvancedCheckBoxVisible(false);

I B M ® I L O G ® J V I E W S M A P S 8 . 6242

Display Preferences Editor

The Display Preferences Editor bean is represented by the
IlvJDisplayPreferencesEditorPanel class. This bean enables users to set a map view to
the units of their choice.

An example of the Display Preferences Editor is shown in Display Preferences Editor .

Display Preferences Editor

Including the bean in an application
To include the Display Preferences Editor bean in your application, you first need to create
the panel:

IlvJDisplayPreferencesEditorPanel prefsPanel = new
IlvJDisplayPreferencesEditorPanel();

Set the current preference properties of the view in the bean:

prefsPanel.setDisplayPreferences(IlvDisplayPreferencesProperty.GetDisplayPrefer
ences(view.getManager()));

Then, you can add a listener on the bean that changes the view preferences when the user
changes a preference:

prefsPanel.addDisplayPreferencesChangeListener(new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent e) {
IlvDisplayPreferences system = (IlvDisplayPreferences) e.getNewValue();
view.getManager().setNamedProperty(new

IlvDisplayPreferencesProperty(system));
}

});

Adding the bean to a Swing hierarchy
You can then add this bean to your Swing hierarchy.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 243

panel.add(prefsPanel, BorderLayout.WEST);

Using the API to define bean items
You can also use the API to define the distance or altitude units, date line wrapping or the
coordinate formatter selected in the bean with the setAltitudeUnit(ilog.views.maps.
IlvLinearUnit) setDistanceUnit(ilog.views.maps.IlvLinearUnit),
setUsingGeodeticComputation(boolean) or setCoordinateFormatter(ilog.views.maps.
IlvCoordinateFormatter) methods.

I B M ® I L O G ® J V I E W S M A P S 8 . 6244

The Coordinate Viewer

The Coordinate Viewer bean is represented by the IlvJMouseCoordinateViewer class. This
bean displays the current coordinates of the mouse when it is moved over a map view.

An example of the Coordinate Viewer is shown in Coordinate Viewer .

Coordinate Viewer

Including the bean in an application
To include the Coordinate Viewer bean in your application, write the following lines of code:

IlvJMouseCoordinateViewer coordViewer = new IlvJMouseCoordinateViewer();
coordViewer.setView(view);

Adding the bean to a Swing hierarchy
You can then add this bean to your Swing hierarchy.

panel.add(coordViewer, BorderLayout.SOUTH);

The Coordinate Viewer bean then attaches aMouseMotion Listener to the view and displays
the information according to the properties of the manager:

♦ The IlvCoordinateSystemPropertyEditor is used to transform screen location coordinates
into longitude/latitude information.

♦ The IlvAltitudeProviderProperty is used to retrieve the altitude at that
longitude/latitude location, if available.

The coordinates and altitude are then transformed into human readable strings using
IlvDisplayPreferencesProperty unit management and formatters.

Depending on the coordinate formatter, latitude/longitude/altitude may not be the only
fields. For example, a UTM coordinate system displays the zone, zone number, easting and
northing information. The Coordinate Viewer uses JLabel HTML capabilities to display the
different parts of the coordinates as an HTML table.

Customizing the appearance
You can configure the appearance of the bean using, for example:

coordViewer.setHtmlTableProperties("border=1 cellpadding=0 cellspacing=0");

I B M ® I L O G ® J V I E W S M A P S 8 . 6 245

I B M ® I L O G ® J V I E W S M A P S 8 . 6246

The Map Layer Tree

Describes the Map Layer Tree beans and property editors

In this section

The Map Layer Tree bean
Describes the Map Layer Tree panel bean available for GUIs with maps.

The Dynamic Style Setting panel bean
Describes the Dynamic Style Setting panel bean available for GUIs with maps.

The Map Style Property Sheet bean
Describes the Map Style Property Sheet bean available for GUIs with maps.

Property editors
Describes the properties editors for beans available for GUIs with maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 247

The Map Layer Tree bean

The Map Layer Tree panel bean is represented by the IlvLayerTreePanel class. The Map
Layer Tree bean displays the layer tree, the Map Style Property Sheet bean and a number
of other beans that are accessed from this panel.

An example of the Map Layer Tree panel is shown in Map Layer Tree panel .

Map Layer Tree panel

Including the bean in an application
To include the Map Layer Tree panel bean in your application, write the following lines of
code:

IlvLayerTreePanel layerTreePanel = new IlvLayerTreePanel();
layerTreePanel.setView(view);

I B M ® I L O G ® J V I E W S M A P S 8 . 6248

Adding the bean to a Swing container
You can then add this bean to your Swing hierarchy.

panel.add(layerTreePanel, BorderLayout.WEST);

The Map Layer Tree panel bean then attaches itself and listens to the
IlvMapLayerTreeProperty property of the specified manager. Whenever a layer is added
or changed in the underlying IlvMapLayerTreeModel, its name is added to the tree, and the
layer style properties (such as colors or view visibilities) are made available for modification
in the lower part of the panel.

The Map Layer Tree panel also attaches itself to the selection mechanism of the manager
in order to select the layer when a graphical map object is selected.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 249

The Dynamic Style Setting panel bean

The Dynamic Style Setting panel bean is represented by the IlvMapDynamicStylePanel
class.

An example of the Dynamic Style Setting panel is shown in Dynamic Style Setting panel .

Dynamic Style Setting panel

The Dynamic Style Setting panel displays the different styles a layer can have at different
zoom factors. The gray bar furthest to the left is the default style (used for the finer/higher
zoom levels of a map) – the other dynamic style settings are represented by alternating
yellow and white bars. Users can also use the panel to set the map scale by clicking on the
dynamic styles bar.

Accessing and updating the panel
You should not need to create a Dynamic Style Setting panel directly. You can access the
Style Setting panel of the Map Layer Tree panel using the getThemePanel method.

This panel is attached to the IlvMapStyleControllerProperty property of the manager
(and its underlying IlvMapStyleController). It is updated when the user adds/deletes

dynamic styles (using the and buttons, see Dynamic Style Setting panel), or when
you add dynamic styles with API calls such as:

IlvMapStyleController themeControl = IlvMapStyleControllerProperty.
GetMapStyleController(view.getManager());

themeControl.addTheme(0.001,mapLayer,"new style");
themeControl.getStyle(mapLayer,0.001).setVisibleInView(true);

I B M ® I L O G ® J V I E W S M A P S 8 . 6250

The Map Style Property Sheet bean

TheMap Style Property Sheet bean is represented by the IlvMapStylePropertySheet class.

An example of the Map Style Property Sheet is shown in Map Style Property Sheet .

Map Style Property Sheet

When a layer is selected, this property sheet is updated with a property list depending on
the associated map style.

You do not need to create a Map Style Property Sheet directly. You can access the Map Style
Property Sheet of the Map Layer Tree panel using the getMapStylePropertySheetmethod.

By using IlvMapStyleBeanInfo.setAdvancedMode(false), you can limit the
list of properties displayed in the Map Style Property Sheet to a restricted list, depending
on the class of the map style used.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 251

Property editors

Most of the properties are integers, Booleans (true/false choices) or raw text. Some properties
however need a more specific property editor.

JViews Maps does not call the constructor for any of the editors. It uses the standard Java™
BeanInfomapping instead. For example, the IlvMapStyle class has the property alpha and
the IlvMapStyleBeanInfo class returns the list of editable properties and associates an
IlvAlphaPropertyEditor for that property. The IlvMapStylePropertySheet class uses this
information to create the correct editor (using Java reflection).

Alpha Property Editor
The Alpha Property Editor is represented by the IlvAlphaPropertyEditor class.

An example of the Alpha Property Editor is shown in Alpha Property Editor .

Alpha Property Editor

To include the Alpha Property Editor in a new bean, place the following lines in the associated
BeanInfo class:

...
PropertyDescriptor alpha = new PropertyDescriptor("alpha",IlvMapStyle.class);
alpha.setPropertyEditorClass(IlvAlphaPropertyEditor.class);

...

Color Model Property Editor
The Color Model Property Editor is represented by the IlvColorModelPropertyEditor class.
This property editor enables you to set, for example, the colors for different altitudes in a
map that contains altitude data.

An example of the Color Model Property Editor is shown in Color Model Property Editor .

I B M ® I L O G ® J V I E W S M A P S 8 . 6252

Color Model Property Editor

The Color Model Property Editor is implemented in a similar way to the Alpha Property
Editor and is used for IlvRasterStyle map styles.

To include the Color Model Property Editor in a new bean, use the following lines in a
BeanInfo class:

PropertyDescriptor colorModel = new
PropertyDescriptor("colorModel",IlvRasterStyle.class);
...
colorModel.setPropertyEditorClass(IlvColorModelPropertyEditor.class);
...

Color Property Editor
The Color Property Editor enables you to set the color of the map outlines. An example of
the Color Property Editor is shown in Color Property Editor .

I B M ® I L O G ® J V I E W S M A P S 8 . 6 253

Color Property Editor

The Color Property Editor bean is implemented in a similar way to the other editors and is
used in the IlvGeneralPathStyle and IlvPolylineStyle map styles.

Paint Property Editor
The Paint Property Editor enables you to set the map fill color.

An example of the Paint Property Editor is shown in Paint Property Editor .

I B M ® I L O G ® J V I E W S M A P S 8 . 6254

Paint Property Editor

The Paint Property Editor bean is implemented in a similar way to the other editors and is
used in the IlvGeneralPathStyle and IlvPolylineStyle map styles.

Percent Property Editor
The Percent Property Editor is represented by the IlvPercentPropertyEditor class. This
property editor enables you to set the brightness, saturation, and contrast of the displayed
map.

An example of the Percent Property Editor is shown in Percent Property Editor .

I B M ® I L O G ® J V I E W S M A P S 8 . 6 255

Percent Property Editor

The Percent Property Editor is implemented in a similar way to the other editors and is used
in the IlvRasterStyle map styles.

To include the Percent Property Editor in a new bean, use the following lines in a BeanInfo
class:

...

I B M ® I L O G ® J V I E W S M A P S 8 . 6256

The Toolbar

The Toolbar bean is represented by the IlvJMapsManagerViewControlBar class. This is a
subclass of the framework class IlvJManagerViewControlBar.

An example of the Toolbar is shown in Toolbar .

Toolbar

Including the bean in an application
To include the Toolbar bean in your application, write the following lines of code:

PropertyDescriptor brightness = new PropertyDescriptor("brightness",
IlvRasterStyle.class);
...
brightness.setPropertyEditorClass(IlvPercentPropertyEditor.class);
IlvJMapsManagerViewControlBar toolbar = new IlvJMapsManagerViewControlBar();
toolbar.setView(view);

Adding the bean to a Swing container
These lines create a standard IBM® ILOG® JViews interactor toolbar that you need to
integrate into your Swing GUI:

panel.add(toolbar, BorderLayout.NORTH);

Customizing the toolbar
For JViews Maps use, you may want to add more interactors or buttons to this toolbar.

Replacing an interactor
You can replace standard interactors with better-tailored interactors, such as the
IlvMapZoomInteractor, with lines of code such as:

IlvMapZoomInteractor zi = new IlvMapZoomInteractor();
// chose the way the rectangle is drawn when rotation exists
zi.setRotationAllowed(true);
// when zoom is selected, it stays, contrary to default JViews.
zi.setPermanent(true);
//to change from default zoom interactor
toolbar.setZoomViewInteractor(zi);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 257

Adding a new interactor
You may want to add a completely new interactor:

IlvManagerViewInteractor interactor = …;
JToggleButton interactorButton = new JToggleButton(interactorIcon);

You have to add a listener to set or pop this interactor when the toggle button is selected:

interactorButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

if(interactorButton.isSelected()){
// set the interactor
view.setInteractor(interactor);
// and make sure the view has focus, in case the interactor manages

keyboard accelerators
view.requestFocus();

} else if (view.getInteractor()==interactor){
// pop the interactor
view.popInteractor();

}
}

});

You also need to pop this interactor when another one is selected:

InteractorListener interactorListener = new InteractorListener() {
public void interactorChanged(InteractorChangedEvent event) {

boolean isMyInteractor = (event.getNewValue() == interactor);
if (interactorButton.isSelected() != isMyInteractor) {
interactorButton.setSelected(isMyInteractor);

}
}

};
view.addInteractorListener(interactorListener);

Then, you can add the interactor button to the toolbar:

toolbar.add(interactorButton);

I B M ® I L O G ® J V I E W S M A P S 8 . 6258

Multithread Monitor

The Multithread Monitor bean is represented by the IlvThreadedActivityMonitorPanel
class. This bean displays the completion status of tasks in progress.

An example of the Multithread Monitor is shown in Multithread Monitor .

Multithread Monitor

To include the MultithreadMonitor bean in your application, you first need to get the thread
monitoring model for the manager:

IlvThreadedActivityMonitor mon =
IlvThreadedActivityMonitorProperty.GetThreadedActivityMonitor(manager);

Then you can create the bean:

IlvThreadedActivityMonitorPanel monitor = new
IlvThreadedActivityMonitorPanel(mon);

You can then add this bean to your Swing hierarchy.

panel.add(monitor, BorderLayout.SOUTH);

The bean attaches itself to the IlvThreadedActivityMonitor of the manager. It can be
updated whenever a new activity is registered or updated in this model by using lines such
as:

mon.updateActivityProgress(myActivity,10,"Doing something...");
...
mon.unregisterThreadedActivity(myActivity);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 259

Coordinate Panel Factory

The Coordinate Panel Factory bean is represented by the IlvCoordinatePanelFactory
class. This bean is used in the Symbol Definition Window and in the terrain analysis features,
but can be used whenever the application needs the user to point to a single coordinate or
a rectangular area.

An example of the Coordinate Panel Factory for the input of a rectangular set of coordinates

is shown in Multithread Monitor .

Coordinate Panel Factory

Including the bean in an application
To include the Coordinate Panel Factory bean in your application, you need a coordinate
formatter (to determine how coordinates are displayed). You can, for example, retrieve the
preferred coordinate formatter for the manager:

IlvDisplayPreferences
prefs=IlvDisplayPreferencesProperty.GetDisplayPreferences(manager);
IlvCoordinateFormatter formatter=prefs.getCoordinateFormatter();

Then you can create a bean to input single point coordinates:

pointInputPanel = IlvCoordinatePanelFactory.createCoordPointInputPanel(view,
formatter);

Or you can create a panel to input a rectangular zone:

rectInputPanel = IlvCoordinatePanelFactory.createCoordRectangleInputPanel
(view,formatter);

You may then have to set the initial values:

pointInputPanel.setLatLon(Math.toRadians(22.5),Math.toRadians(12));

And add a listener that is invoked when the user enters or selects coordinates:

I B M ® I L O G ® J V I E W S M A P S 8 . 6260

PropertyChangeListener listener= ...;
pointInputPanel.addPropertyChangeListener(listener);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 261

Compass

The Compass bean is represented by the IlvJCompass class. This bean displays a compass
indicating the geographic or cartographic north of the map.

An example of the Compass is shown in Multithread Monitor .

Compass

Including the bean in an application
To include the Compass bean in your application, write the following lines of code:

IlvJCompass compass = new IlvJCompass();
compass.setView(view);

The Compass bean then listens to view transformation changes, and check the rotation value
to display north direction.

Customizing the appearance
You can customize many parts displayed on the compass such as:

♦ The appearance of the compass needle:

compass.setCartographicNeedleStyle(IlvCompass.NEEDLE_STYLE_CROSS);

♦ The colors used:

compass.setCartographicBackground(Color.blue);
compass.setCartographicForeground(Color.gray);

I B M ® I L O G ® J V I E W S M A P S 8 . 6262

Using annotations

The Annotations Toolbar bean is represented by the IlvMapAnnotationToolBar class. You
can annotate maps using predefined annotations created by the Annotations Toolbar. The
toolbar can be used interactively to add a point, polyline, or polygon annotation. An example
of the Annotations Toolbar is shown in Annotations toolbar.

Annotations toolbar

An annotation is a drawing made on the top of a map to describe or provide additional
information about a specific zone of a map. Annotations are labeled and are projected with
respect to the coordinate system of the map, which is stored in the manager as an
IlvCoordinateSystemProperty. In JViews Maps, annotations are dedicated IlvGraphic
objects. Labels can be displayed to provide text information and are labeled using the JViews
Maps labeling mechanism.

The Annotations Toolbar bean is an extension of JToolBar.

To include the bean in an application:

1. To include the Annotations Toolbar bean in your application, write the following lines
of code:

IlvMapAnnotationToolBar annotations =new IlvMapAnnotationToolBar();
annotations.setView(view);

The toolbar is ready for interactive creation of annotation objects. You can also add
annotations to a map using the API. The objects used to display annotations are
specialized IlvGraphics.

2. You can customize certain properties of the Annotations Toolbar using the following
code:

// Set the size of the buttons.
annotations.setButtonSize(new Dimension(25, 25));
// Prevent the toolbar being dragged elsewhere.
annotations.setFloatable(false);

3. If you want your annotations to be managed as nodes, in order to make it possible for
you to create link annotations, you need to indicate it through:

annotations.setGrapherMode(true);

4. Create the annotation as an IlvMapAnnotationToolBar.MapMarker:

5.
IlvPoint p = new IlvPoint(10, 50);
IlvMapAnnotationToolBar.MapMarker m = new

IlvMapAnnotationToolBar.MapMarker(p);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 263

These graphic objects are stored in an IlvGraphicLayerDataSource. The
IlvMapAnnotationModel class can provide such a data source.

6. Get the IlvGraphicLayerDataSource data source:

IlvMapAnnotationModel model =
IlvMapAnnotationProperty.GetMapAnnotationModel(manager);

IlvGraphicLayerDataSource dataSource = model.getDataSource(manager,
"TEST");

String name = "TEST" + " Annotation";
dataSource.getInsertionLayer().setName(name);
dataSource.add(m,

IlvCoordinateSystemProperty.GetCoordinateSystem(manager));

7. Set the style for the layer in which the annotation is to be inserted. The following piece
of code also sets the label attribute so that the annotation is labeled accordingly:

if (dataSource.getInsertionLayer().getStyle() == null) {
IlvMapStyle style = new IlvPointStyle();
style.setAttributeInfo(IlvMapAnnotationModel.info);
style.setLabelAttribute(IlvMapAnnotationModel.info.getAttributeName

(0));
dataSource.getInsertionLayer().setStyle(style);

}
IlvPointStyle ps =

(IlvPointStyle)dataSource.getInsertionLayer().getStyle();
m.setStyle(ps);
ps.setSize(5);
ps.setType(IlvMarker.IlvMarkerFilledDiamond);
ps.setForeground(Color.pink);

8. Attach the feature attribute property; the string A Label will be displayed as the
annotation label:

String s = "A Label";
IlvFeatureAttributeProperty properties = new

IlvFeatureAttributeProperty(IlvMapAnnotationModel.info,
new IlvFeatureAttribute[] { new IlvStringAttribute(s)});

m.setNamedProperty(properties);

9. Start the data source to add the annotation to the manager. The labeler may also need
to be started:

try {

manager.setInsertionLayer(dataSource.getInsertionLayer().
getManagerLayer().

getIndex());
dataSource.start();

} catch (Exception e) {
e.printStackTrace();

I B M ® I L O G ® J V I E W S M A P S 8 . 6264

}
IlvMapLabeler labeler = IlvMapLabelerProperty.GetMapLabeler(manager)

;
labeler.setView(view);
labeler.addLayer(dataSource.getInsertionLayer());
labeler.performLabeling();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 265

I B M ® I L O G ® J V I E W S M A P S 8 . 6266

The Symbology Tree View bean

Describes the Symbology Tree View bean and how to use it.

In this section

Overview
Describes the Symbology Tree View bean.

Adding the bean to an application
Explains how to add the Symbology Tree View bean to your application.

Symbology panel actions
Provides code for symbology panel actions.

Making the model persistent
Describes embedding SDM model information inside a map file.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 267

Overview

The Symbology Tree View bean is represented by the IlvSymbologyTreeView class. This
bean displays the symbol hierarchy of the current map.

The following figure shows an example of the symbol hierarchy.

Symbology Tree View

I B M ® I L O G ® J V I E W S M A P S 8 . 6268

Adding the bean to an application

To include the Symbology Tree View bean in your application:

1. Create an IlvSDMEngine:

IlvSDMEngine engine = new IlvSDMEngine();
engine.setGrapher((IlvGrapher)view.getManager());
engine.setReferenceView(view);

2. Provide the Cascading Style Sheet for the SDM engine to use:

engine.setStyleSheets(new String[]{"myfile.css"});

3. Create a Symbology Tree View for the SDM engine:

IlvSymbologyTreeView symbPanel = new IlvSymbologyTreeView(engine);

4. Add this bean to your Swing hierarchy:

panel.add(symbPanel, BorderLayout.SOUTH);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 269

Symbology panel actions

You can change the structure of your symbol model using the Symbology Tree View toolbar
or a shortcut menu. You can add and remove symbols or groups, but also edit the symbols,
groups or the symbology itself. To do this you must implement the
IlvSymbologyTreeViewActions interface and set it on the Symbology Panel:

symbPanel.setSymbologyTreeViewActions(new MySymbologyTreeViewActions());

The action class should provide the methods invoked by the Symbology Tree View User
Interface in order to modify the symbology engine according to the requirements of your
application. It should also provide any User Interface specific to editing symbols and groups.

The action classes are also responsible for managing symbol model persistence, symbol drag
and drop and location picking on the map.

For examples of custom tree view actions see <installdir> /jviews-maps86/samples/
mapbuilder/src/utils/sdm/CombinedTreeViewActions.java.

I B M ® I L O G ® J V I E W S M A P S 8 . 6270

Making the model persistent

Making a symbol model persistent means providing a way to embed SDMmodel information
inside a map file.

This can be done through the IlvPersistentSDMNodeFactory interface and the
IlvPersistentSDMModelProperty manager property.

You should not use this feature if you intend to use JViews Diagrammer Designer with your
map, as it stores and sets up symbol model differently, in separated xml files. You should
use an IlvMapStyleSheetRenderer if you want to take advantage of this feature. If you do
not, the manager layers that will be used to place your symbols may not be instances of the
IlvMapStyleSheetRenderer.IlvMapSymbolManagerLayer class, which means that the
graphical representation of the symbols will be saved separately in the ivl file, causing its
duplication when you read the map back.

The persistent SDM model property
This class is a named property that will be attached to a manager, and trigger the saving
and reading of an engine model inside an IVL file.

Example of use:

IlvPersistentSDMModelProperty property =
IlvPersistentSDMModelProperty.GetPersistentSDMModel
(engine,factory,listenToChanges);

This call will register the property on the engine’s manager. It will be saved (like every
named property) when the manager gets saved, and will invoke an internal IlvXMLConnector
that will save the XML content of the engine model as a string.

At read time, this property requires the use a node factory to create SDM nodes in the engine
model, detailed below.

If you use this call with listenToChanges set to true, you can register this property for an
engine before reading the map IVL file. The listener attached will ensure that the factory
and engine used when reading the property get replaced by the ones you specify before the
data is read.

If you do not do this, internal XML data will be read, and you will have to attach the engine
manually later.

The persistent SDM Node factory
The principal purpose of the IlvPersistentSDMNodeFactory interface is to provide a way
for model nodes to be created when you read the model data back in. Usually creating a
symbol is dependent on some application so this interface also includes methods to manage
that persistent context.

The following provides a simple code example which can help you to write your own factory.

public class SampleFactory implements IlvPersistentSDMNodeFactory {
static public class SampleContext extends IlvPersistentObject {
// some implementation of a persistent object ...
}
IlvPersistentObject _factoryPersistentContext;

public IlvPersistentObject getPersistentContext() {

I B M ® I L O G ® J V I E W S M A P S 8 . 6 271

// the persistent context should be created or updated at this point.
_factoryPersistentContext=new SampleContext();
_factoryPersistentContext.setSomeData(this.getSomeData());
return _factoryPersistentContext;

}

public boolean isPropertyIgnored(IlvSDMModel model, Object node, String name)
{
// ignore the “data” property
if(“data”.equals(name)) return true;
return false;
}

public Object newSymbol(String tag) {
// we will create default SDM nodes
IlvDefaultSDMNode node=new IlvDefaultSDMNode(tag);
// configure the node, for example
node.setProperty("data", this.getSomeData());
return node;
}

public void setPersistentContext(IlvPersistentObject context) {
// the local information should be updated with what was stored in the

context
this.setSomeData(context.getSomeData());
}

For other examples of custom IlvPersistentSDMNodeFactory see <installdir> /
jviews-maps86/samples/mapbuilder/src/utils/sdm/CombinedTreeViewActions.java
and IlvPersistentSDMNodeFactory see <installdir> /jviews-maps86/samples/
mapbuilder/src/utils/sdm/PaletteSymbologyTreeViewActions.java.

I B M ® I L O G ® J V I E W S M A P S 8 . 6272

Handling map features

A map feature is an object that represents cartographic data as it was read from its source
file. A map feature holds three main information fields: Its geometry, the coordinate system
in which its geometry is expressed, and its attributes. If the map feature is a town, for
example, its attributes can be its name and the number of inhabitants. A map feature is
completely independent of the way it will be graphically represented in the application.
Thus, a point marking the summit of a hill might very well be represented with graphic
objects as diverse as a cross, a circle, or an icon.

A map feature carries the following information:

♦ Map Feature Geometry

♦ Map Feature Attributes

♦ The coordinate system in which the geometry is expressed. For details on coordinate
systems, see Handling spatial reference systems.

Map Feature Geometry
Each map feature has a geometry. The geometry of a map feature is information relating to
its shape and position.

In JViews Maps, map feature geometries are defined by the IlvMapGeometry class in the
ilog.views.maps package. The package ilog.views.maps.geometry supplies a number of
predefined geometries which are modeled on the “Simple Map Features” geometry
specifications defined by the OpenGIS Consortium to insure interoperability between
Geographic Information Systems (GIS). Note, however, that the classes in this package are
not strictly equivalent to this model in terms of functionality. They provide simplified features
and are mainly drawing oriented. Nevertheless, using these classes greatly facilitates the
conversion of data coming from a map server, such as Oracle Spatial, for example.

This package also contains additional geometries for handling images, rasters, and text
more easily and can be extended with new geometries.

Map Feature Attributes
Each map feature can also have attributes. If the map feature is a town, its attributes can
be its name, or the number of inhabitants. Attributes can be used, for example, for graphical
rendering. In the section Creating a colored line renderer, the color of polylines representing
contour lines on a map is defined by the elevation attribute.

Attributes belong to the class IlvFeatureAttribute. They are stored in the following two
classes of the ilog.views.maps package:

♦ IlvAttributeInfoProperty, which defines the attribute properties, such as name, type,
mandatory, or optional characters.

♦ IlvFeatureAttributeProperty, which contains the values of these attributes.

The following code example lists the attributes of an IlvMapFeature object and displays
them on the screen:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 273

public void dumpAttributes(IlvMapFeature feature)
{
IlvAttributeInfoProperty info = feature.getAttributeInfo();
IlvFeatureAttributeProperty attributes = feature.getAttributes();

// Attributes are not mandatory in a feature.
if ((info == null) || (attributes == null)) {
System.out.println("This feature has no attribute");
return;

}

for (int i = 0; i < info.getAttributesCount(); i++) {
String name = info.getAttributeName(i);
IlvFeatureAttribute attribute = attributes.getAttribute(i);
System.out.println("The attribute " + name +

" takes the value " + attribute.toString());
}

}

The attributes are of different types, according to whether they represent whole numbers,
floating-point values, character strings, and so on. The predefined attributes, all of the
IlvFeatureAttribute class, are in the ilog.views.maps.attribute package.

I B M ® I L O G ® J V I E W S M A P S 8 . 6274

Using load-on-demand

Describes load-on-demand and how to use it.

In this section

Load-on-demand
Describes the classes for load-on-demand.

Structure of the tiling grid (indexed mode only)
Explains what a tiled layer is and how it relates to load-on-demand.

Size of the tiling grid in indexed mode
Describes how to size a tiling grid in indexed mode.

Structure and size of the tiled layer (free mode only)
Describes how to size the tiled layer in free mode.

Displaying the state of tiles
Describes how to display the state of the tiles in a tiled layer.

Controlling load-on-demand
Describes different ways of controlling load-on-demand.

Managing errors and load-on-demand events
Describes the management of errors and other events.

Caching tiles
Describes the tile cache and how to use it.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 275

Saving a tiled layer
Describes layer parameters and the impact on saving tiles.

Writing a new cache algorithm
Describes how to write a custom cache algorithm.

Writing a tile loader for a custom data source
Describes how to write a tile loader for load-on-demand.

Load-on-demand for hierarchical data sources
Describes how to write a custom data source with load-on-demand facilities.

I B M ® I L O G ® J V I E W S M A P S 8 . 6276

Load-on-demand

JViews Maps offers a mechanism that lets you load into memory only the data that you want
to display in a manager view. This mechanism, known as load-on-demand, is extremely
valuable, especially when very large maps are concerned. Consider a database storing maps
of the whole world with a scale of 1/25,000. If these maps were scanned with a resolution
of 300 DPI, the required storage space would be as follows:

♦ 654 kilobytes for 1 square kilometer

♦ 64 megabytes for 100 square kilometers

♦ Approximately 310 terabytes for the whole world

Given the volume of this data, it is crucial to have a load-on-demand mechanism that will
load and display only the portion of a map of direct interest.

The IlvTiledLayer Class
The IlvTiledLayerIlvTi extends the IlvManagerLayer class and allows the loading of large
sets of data, for example, large maps. It is divided into a number of rectangular areas called
tiles (organized into grid cells or into a list of specified areas) and provides a notification
mechanism to load only the graphic objects that are required by the application, because a
tile is visible in one of the views of the manager or because it has been explicitly required
by the application.

An IlvTiledLayer is associated with three important objects:

♦ An IlvTileController, which manages the tile events.

♦ An IlvTileLoader, which loads the tiles from a data source.

♦ An IlvTileCache, which manages the cache and deletes the unused tiles.

When an IlvTiledLayer is saved into an .ivl file, it does not save the graphic objects it
contains. It saves its tiling parameters (loader, cache, tile controller, tiling structure).

The IlvTileController Class
The IlvTileController class manages the load-on-demandmechanism. It divides the space
into a number of rectangular areas called tiles, in two different fashions according to its
mode:

♦ In indexed mode, tiles are distributed on a regular grid defined by its origin rectangle.
A tile is then referenced by its line and column indices. All tiles have the same height and
width, and are automatically created as needed by the IlvTileController, according to
the visible parts of the tiled layer in the manager views.

♦ In free mode, however, the IlvTileController holds a list of IlvFreeTile instances
that need to be created and then added to the tile controller. These tiles can have different
sizes and locations, and can also overlap.

The tiling mode for an IlvTileController is set at creation time and can not be modified
afterwards.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 277

Each time a tile becomes visible in a view of the manager to which it is attached, the tile
controller notifies a loader (called tile loader) to load the data attached to this tile. A cache
releases the invisible tiles (called the cached tiles) when it is necessary to free memory.

The IlvTileLoader Interface
The IlvTileLoader interface is used to load a tile for an IlvTileController or an
IlvTiledLayer.

The following example shows a tile loader that fills a tile with a generated list of graphic
objects.

The file is: <installdir> /jviews-maps86/codefragments/srs/src/Sample2.java

class SimpleTileLoader
implements IlvTileLoader

{
public void load(IlvTile tile)
{
IlvRect rect = new IlvRect();
tile.boundingBox(rect);
IlvPoint p = new IlvPoint();
p.x = rect.x;
for (int i = 0; i < 10; i++) {
p.y = rect.y;
for (int j = 0; j < 10; j++) {
tile.addObject(new IlvMarker(p, IlvMarker.IlvMarkerPlus),

null);
p.y += rect.height / 10;

}
p.x += rect.width / 10;

}
tile.loadComplete();

}
public void release(IlvTile tile)
{
tile.deleteAll();

}

public boolean isPersistent()
{
return false;

}

public void write(IlvOutputStream stream)
{
// do nothing

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6278

The IlvTileCache Class
The IlvTileCache class is used to manage the cached tiles of one or more tile controllers.
A cached tile is a tile that is not visible in any view and that is not locked by any application
object. An IlvTileCache object releases the cached tiles to free memory when necessary.

The IlvTile Class
A tile represents an elementary rectangular area that is loaded or released when needed
by the application. Tiles are managed by an IlvTileController.

In most cases, the tile controller will be associated with an IlvTiledLayer. This means that
the tiles represent areas that must be filled with graphic objects when they become visible
due to the user of the application scrolling or zooming on a view.

More sophisticated applications can use a tile controller without attaching it to a layer, for
example, to load data that is needed to process an area that becomes visible.

For example, to define a geographic coordinate system expressing latitude and longitude
with grads, instead of degrees, you can use the following code:

IlvAngularUnit unit = IlvAngularUnit.GRAD;
IlvGeographicCoordinateSystem gcs =

new IlvGeographicCoordinateSystem("My coordsys",
IlvHorizontalShiftDatum.WGS84,

IlvMeridian.GREENWICH,
unit,
null); // No altitude

// A transformation from WGS84 geographic coordinate system
// with degrees as unit to our own coordinate system:
IlvCoordinateTransformation ct =

IlvCoordinateTransformation.CreateTransformation(
IlvGeographicCoordinateSystem.WGS84,
gcs);

// Example of conversion.
double lambda = IlvAngularUnit.DEGREE.toRadians(-45D);
double phi = IlvAngularUnit.DEGREE.toRadians(30D);
IlvCoordinate coord = new IlvCoordinate(lambda,phi);

// Convert coordinate, letting the transformation allocate the
// result.
IlvCoordinate result = ct.transform(coord,null);

System.out.println("The expression of point 45W 30N is ");
System.out.println("x = " + coord.x + " grad");
System.out.println("y = " + coord.y + " grad");

I B M ® I L O G ® J V I E W S M A P S 8 . 6 279

The IlvFreeTile Class
This class is similar to the IlvTile, except that instead of being part of a regular grid (and
therefore indexed by line and column), its bounds can be freely specified. This is particularly
useful when overlapping areas are needed, for example, in case of a projected map. Note
that although IlvFreeTile is a subclass of IlvTile (for compatibility reasons), the member
variables row and column are not relevant in terms of tile location. They are used to locate
a superclass IlvTile instance on a grid, but given that IlvFreeTile objects have bounds
of their own, there is no need for line and column properties.

I B M ® I L O G ® J V I E W S M A P S 8 . 6280

Structure of the tiling grid (indexed mode only)

A tiled layer is a type of manager layer specifically designed to support load-on-demand. If
the IlvTileController associated with this layer works in indexedmode, the layer is divided
into a set of rectangular tiles of identical size that form a tiling grid (note that a constructor
of IlvTiledLayer takes a mode as a parameter).

Tiling grid in indexed mode

The tiling grid is defined by its origin tile that is located at the intersection of the row and
column of index 0, see Tiling grid in indexed mode.

The other tiles in the grid are identified by their column and row number, starting from the
origin tile. The following code example displays the status of the tile that is at the intersection
of column 10 and row 5:

public static void displayTileStatus(IlvTiledLayer layer) {
IlvTile tile = layer.getTileController().getTile(10, 5);
if(tile == null)
System.out.println("The tile is not loaded yet");

else {
int status = tile.getStatus();
if(status == IlvTile.LOCKED)
System.out.println("The tile is locked");

else if(status == IlvTile.CACHED)
System.out.println("The tile is cached");

else

I B M ® I L O G ® J V I E W S M A P S 8 . 6 281

System.out.println("The tile is empty");
}

}

You can see in the above code example that the getTile(int, int)method can sometimes
return a null value. Because the potential number of tiles can be very great—the number of
tiles is even virtually infinite—the IlvTile objects are allocated only if the tile is loaded or
is in the cache.

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/lod/src/TileStatus.java.

I B M ® I L O G ® J V I E W S M A P S 8 . 6282

Size of the tiling grid in indexed mode

You can set the size of the tiling grid using the following method:

setSize(ilog.views.IlvRect)

The rectangle that delimits the tiling grid is expressed in the manager coordinates. Only
the tiles that intersect with this rectangle can be loaded. You can see an example of a tiling
grid whose size has been defined in the debug view illustrated in Load-on-demand debug
view.

The tiling parameters introduced in this section (size of the tiles, origin tile, and size of
the tiling grid) can be configured for each tiled layer in a manager. This allows you to

Note:

have in the same manager large-tile layers containing objects displayed at a small
scale and small-tile layers containing objects displayed at a large scale.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 283

Structure and size of the tiled layer (free mode only)

When the IlvTiledLayer is set to free mode (or its associated IlvTileController), the
structure is not a grid (unlike indexed mode described in Structure of the tiling grid (indexed
mode only)), but a list of rectangular areas that must be added to the IlvTileController.

Tiled layer in free mode

These areas can have any bounds and can even overlap.

The size of the tiled layer is simply the union of all tile bounds.

I B M ® I L O G ® J V I E W S M A P S 8 . 6284

Displaying the state of tiles

You can create a debug view to display the state of the tiles in a tiled layer using the following
method:

setDebugView(ilog.views.IlvManagerView)

As its name suggests, this debug view is particularly useful for debugging operations when
implementing load-on-demand for a new cartographic format.

A tile can have three different states. It can be:

♦ Empty, meaning that its objects are not loaded into memory.

♦ Loaded, meaning that its objects are loaded into memory and visible.

♦ Cached, meaning that its objects are loaded into memory but not visible.

The debug view is of the IlvManagerView type, and must be attached to a tiled layer. The
debug view does not increment nor decrement the tile lock counters. This is the role of the
tile controller. It just displays the tiles in color according to their state, as in Load-on-demand
debug view.

Load-on-demand debug view

I B M ® I L O G ® J V I E W S M A P S 8 . 6 285

The tiles whose lock counter is greater than 1 appear in blue. They are visible in at least
one view. The tiles whose counter equals to 0 appear in yellow. They are cached. The white
tiles are not loaded.

In the previous example, an IlvManagerMagViewInteractor was associated with the debug
view. It is this interactor that displays a little yellow square inside the blue tile. The square
shows the zone displayed by the main view.

The following is an example of code that creates a debug view for a layer.

public static void createDebugView(IlvTiledLayer layer) {
IlvManagerView view = new IlvManagerView(layer.getManager());
layer.setDebugView(view);

// Create a swing frame to display this debug view.
JFrame frame = new JFrame("Debug View");
frame.setLayout(new BorderLayout());
frame.add(BorderLayout.CENTER, view);
view.setAutoFitToContents(true);
frame.setSize(200, 200);
frame.setVisible(true);

}

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/lod/src/DebugView.java

I B M ® I L O G ® J V I E W S M A P S 8 . 6286

Controlling load-on-demand

Using visibility filters to control load-on-demand
If you do not want to use the dynamic styles provided by the IlvMapStyleController class,
you can use scale visibility filters to control the display of tiles in a manager layer.

When a scale visibility filter has been set for a tiled layer, this layer will be displayed if the
scale factor set for its manager view is within specified scale limits. Otherwise, it will be
hidden. When a tiled layer is visible because the zoom factor of the manager view allows it,
visible tiles are automatically locked and thus loaded into memory. In the same way, when
a tiled layer is hidden because the zoom level of its view exceeds a certain value, all the
locks set on visible tiles are released and the tiles are removed.

Scale visibility filters are generally used to activate load-on-demand for zoom factors between
a minimum and a maximum scale value. Let us consider a map scanned with a scale of
1/1,000,000, you can set visibility filters so that its layer is visible for scale factors ranging
from 1/2,500,000 to 1/500,00.

Setting tile locking filters
You can use the IlvTileLockFilter class to dynamically prevent a tile from being loaded
when it becomes visible in a view. To do so, you associate an IlvTileLockFilter object
with a tile controller using the following method:

setLockFilter(ilog.views.tiling.IlvTileLockFilter)

If the tile controller possesses a lock filter, it calls the method isLockAllowed(ilog.views.
tiling.IlvTileController, ilog.views.IlvManagerView) of the lock filter each time a
tile becomes visible in a view. If this method returns false, the counter of the tile is not
incremented.

Using a lock filter, you can prevent the loading of data displayed at a small scale (when a
map is zoomed out greatly, for example) while leaving the tiles that were already loaded
visible.

Loading tiles using the API
The load-on-demand mechanism is event-driven in that cartographic data is loaded or
unloaded following user’s actions, such as zooming or panning. You can, however, use the
lockTile() method for example—to preload a tile corresponding to a map zone that is
visited frequently or to prevent the tile from being unloaded.

The lockTile() method shown below increments the tile lock counter:

lockTile(int, int, java.lang.Object)

If the tile lock counter is equal to zero, the tile is loaded into memory and will not be unloaded
as long as the lock is not released—with the IlvTileController.unlockTile method, for
example.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 287

Updating all the visible tiles in a view
Sometimes you may need to update immediately all the tiles that are currently viewed by
an IlvManagerView. You can then use the updateView(ilog.views.IlvManagerView)
method. It can be useful when you reactivate a view that was ignored until then by the
load-on-demand mechanism.

I B M ® I L O G ® J V I E W S M A P S 8 . 6288

Managing errors and load-on-demand events

The load-on-demand mechanism might generate errors when the map cannot be entirely
loaded due to memory problems, absence of data, loss of connection to a server and so on.
Graphic applications must catch these errors to inform the user that the map being viewed
is not complete.

To be notified of these events, and any other events related to load-on-demand, you can set
a TileListener to an instance of the IlvTileController class. This listener is notified of
all changes to the tiles, for example, the beginning or end of loading, moving tiles into the
cache, or out of the cache for reuse, loading errors, and so on.

The following example displays all the events related to load-on-demand:

lodLayer.getTileController().addTileListener(new TileListener() {
public void tileChanged(TileEvent e) {
System.err.print(e);

}
});

By default, the tile controller displays a message on the screen if an error occurs while a
tile is being loaded. You can deactivate this behavior using the following method:

setPrintingErrors(boolean)

The different types of events sent to the tile listeners are the following:

♦ TILE_ABOUT_TO_LOAD Triggered when a tile is about to be loaded into memory.

♦ TILE_LOADED Triggered when a tile has been loaded into memory.

♦ TILE_CACHED Triggered when a tile that is no longer being used is stored in the cache.

♦ TILE_RETRIEVED Triggered when the counter of a tile stored in the cache is incremented
again. The tile can no longer be unloaded.

♦ TILE_RELEASED Triggered when a tile is completely freed.

♦ ERROR Triggered when an error occurs while a tile is being processed. In this case, the
getThrowable()method of TileEvent allows you to know the exception or the error that
caused the problem.

♦ CONTROLLER_DISPOSED Triggered when the tile controller is deactivated. For example, if
you remove its associated tiled layer from a manager.

♦ NO_CHANGE Triggered when the last event in a series of events is processed.

When an event in a view causes an action to be performed on a tile, the tile controller notifies
the tile listener of the action. If this event provokes a series of transitional events, these are
transmitted to the listener as a group. Therefore, modifying a scale factor can cause new
tiles to be loaded and other tiles to be cached. Grouping events allows an action to be
performed only when all the transitional events it causes are completed. The isAdjusting
() method of the class TileEvent returns true if the event is part of a series of events. The
NO_CHANGE event is sent once the last event in a series is processed and the isAdjustmentEnd
() method returns true.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 289

Caching tiles

The tile cache is the place where tiles whose lock counter has returned to 0 are stored. The
tiles in the cache are eligible for unloading if memory is needed for loading new tiles.

The cache can be shared among several layers, which means that loading a tile in a layer
can cause that tile to be unloaded in another layer.

The IlvDefaultTileCache class implements a cache algorithm consisting of a simple LRU
(Least Recently Used) structure that unloads first the tiles that have been visited the least
recently.

You can, however, implement another algorithm that will be more efficient with respect to
the specific nature of your application. Here are a few criteria you might take into account
when implementing a new backup cache algorithm.

♦ Unload first the tiles that require a larger number of pan or zoom operations to be reached
from the current position.

♦ Unload first the tiles that have taken the longest to load.

♦ Unload first the tiles that contain the largest number of graphic objects.

An example of a simplified cache algorithm is given in Writing a new cache algorithm.

I B M ® I L O G ® J V I E W S M A P S 8 . 6290

Saving a tiled layer

A layer has a number of associated parameters. Some parameters such as named properties,
visibility filters, and names are common to all layers, whether they are tiled layers or just
normal layers. Other parameters are specific to tiled layers. These are the tiling parameters,
the lock filter and the tile loader, introduced in the previous sections.

Unlike normal layers, when you save a tiled layer to an .ivl file, only its attached parameters
are saved with the layer, not the objects it holds.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 291

Writing a new cache algorithm

This section explains how to write a custom cache algorithm to meet specific application
requirements. The example in this section is a simplified version of the class
IlvDefaultTileCache provided in the JViews Maps library.

The complete source code for this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/lod/src/SimpleTileCache.java

The class SimpleTileCache extends the class IlvTileCache.

public class SimpleTileCache
extends IlvTileCache

{

cacheSize defines the maximum number of tiles that can be stored in the cache.

// default cache size
private int cacheSize = 5;
// To Store the tiles
transient private Vector tiles = new Vector();

The following constructor creates an instance of the default cache with the specified size
(in this example, 5).

public SimpleTileCache(int size)
{
cacheSize = size;

}

The following constructor reads the cache from the provided input stream. Caches created
using this constructor implement the IlvPersistentObject interface and can thus be saved
with an IlvTiledLayer object.

public SimpleTileCache(IlvInputStream stream)
throws IlvReadFileException
{
cacheSize = stream.readInt("size");

}

The write() method writes the cache to an output stream.

public void write(IlvOutputStream stream)
throws IOException

{
super.write(stream);

I B M ® I L O G ® J V I E W S M A P S 8 . 6292

stream.write("size", cacheSize);
}

The following method belongs to the IlvTileCache interface. It is called when a tile is
cached. In this implementation, the tile is added at the end of the internal tile list.

public void tileCached(IlvTile tile)
{
tiles.addElement(tile);

}

The following method belongs to the IlvTileCache interface. It is called when a tile is
removed from the cache and locked again. With this implementation, the tile is removed
from the internal tile list.

public void tileRetrieved(IlvTile tile)
{
tiles.removeElement(tile);

}

The following method belongs to the IlvTileCache interface. It is called when a tile is about
to be loaded. With this implementation, if the number of tiles in the cache exceeds the cache
size, the least recently used tiles, at the top the internal tile list, will be unloaded to make
room for new tiles.

public void tileAboutToLoad(IlvTile tile)
{
int toRemove = tiles.size() - cacheSize;
if (toRemove <= 0)
return;

for (int i = toRemove; i > 0; i--) {
IlvTile current = (IlvTile) tiles.elementAt(0);
tiles.removeElementAt(0);
releaseTile(current);

}
}

The following method belongs to the IlvTileCache interface. It is called when a tiled layer
is taken out of the manager to remove the tiles managed by its tile controller from the cache.

public void controllerDisposed(IlvTileController controller)
{
int i = 0;
while (i < tiles.size()) {
IlvTile tile = (IlvTile) tiles.elementAt(i);
if (tile.getController() == controller)
tiles.removeElementAt(i);

else
i++;

I B M ® I L O G ® J V I E W S M A P S 8 . 6 293

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6294

Writing a tile loader for a custom data source

To implement load-on-demand for a new data source, all you have to do is write a specific
tile loader that implements the IlvTileLoader or the IlvMapTileLoader interface. Notice,
however, that for the predefined map formats supplied with JViews Maps, load-on-demand
has been implemented in a subclass of IlvTiledLayer that defines both the tile loader (as
a private class) and the tiling parameters appropriate for the concerned format. The
IlvMapTileLoader class and the predefined formats are described in Readers and writers.

For your tile loader to be fully efficient, the following requirements should be satisfied:

♦ You should be able to determine which objects are to be loaded on the tile. These objects
can be read from a file whose name is known, or be the result of a query to a cartographic
database.

♦ You should be able to have a direct random access to data.

♦ The size of the data to be loaded should be in proportion to the size of the tiles to allow
fast loading. For example, raster images with a size of 100x100 are faster to load than
images with a size of 6000x6000.

The following example of a tile loader simulates the loading of two graphic objects, a rectangle
and a label.

Its load() method takes the tile to be loaded as its parameter. It generates the graphic
objects to be displayed within the tile and adds them to the tiled layer by calling the tile.
addObject() method. When loading is complete, it calls the tile.loadComplete method to
notify the listeners that the data in the tile is ready for use.

public class LodLoader implements IlvTileLoader
{
[...]

public void load(IlvTile tile) throws Exception
{
IlvRect bbox = new IlvRect();
tile.boundingBox(bbox);

// Add a rectangle inside the tile bounding box
tile.addObject(new IlvRectangle(bbox),null);

// Add text
String text = this.layerName +
" (" + tile.getColumn() + "," + tile.getRow() + ")";

IlvPoint textCenter = new IlvPoint(bbox.x + bbox.width / 2,
bbox.y + bbox.height / 2);

tile.addObject(new IlvLabel(textCenter,text),null);

tile.loadComplete();
}
[...]

Its release() method is invoked when the tile cache releases a tile. The tile.deleteAll
method clears the tile.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 295

/**
* Releases the objects on this tile.
*/
public void release(IlvTile tile)
{
tile.deleteAll();

}

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/lod/src/LodLoader.java

I B M ® I L O G ® J V I E W S M A P S 8 . 6296

Load-on-demand for hierarchical data sources

To write a new IlvMapDataSource for a format of your own using the load-on-demand
mechanism, you should inherit from the IlvTilableDataSource class. This class performs
all of the steps required to create the appropriate tiles, and to configure tiled layers to make
efficient use of load-on-demand. You can choose the number of rows and columns into which
to divide the map, or even deactivate the tiling mechanism if you prefer. However, you need
to implement two abstract methods:

protected abstract void createTiledLayers();
protected IlvMapRegionOfInterestIterator createTiledIterator(IlvMapLayer
layer);

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

Creating tiled layers
The createTiledLayers()method is called by the start()method of the IlvMapDataSource.
Its role is to create the tiled layers that make up this data source. For example, if your data
source sorts map features into different layers, all of the tiled layers must be created by this
method.

Here is a sample implementation of this method:

protected void createTiledLayers() {
// get the insertion layer of this datasource (i.e. the ‘root’ layer
// of this data source, potentially containing children layers)
IlvMapLayer mapLayer = getInsertionLayer();

// Create a tiled layer to associated with this IlvMapLayer (refer to the
chapter
// on tiled layers)
IlvTiledLayer currentTiledLayer = new IlvTiledLayer(new IlvRect(),new
IlvDefaultTileCache(),IlvTileController.FREE);

// associate this layer with the IlvMapLayer
mapLayer.insert(currentTiledLayer);

}

Reading map features
The createTiledIterator(ilog.views.maps.beans.IlvMapLayer)method returns a feature
iterator over map features located in a specified region of interest. The tile loaders of the
layers use this iterator to load the tiles when they become available on screen. That is, they
read the map features of the tiles in the region of interest only.

Here is a basic implementation of this method:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 297

protected IlvMapRegionOfInterestIterator createTiledIterator(IlvMapLayer layer)

throws IOException {
// IlvMapLayer mapLayer = getInsertionLayer();
if (layer != mapLayer) {
// the layer in parameter has nothing to do with this data source
return null;

}
// Create your region of interest feature iterator here,
// basically an iterator over map features in specified region
MyRegionOfInterestIterator iterator = new MyRegionOfInterestIterator();

// configure it as needed (we assume that ther is a ‘configure’ method here

for
// clarity purposes)
iterator.configure();

// return it
return iterator;

}

If multiple tiled layers are created by the createTiledLayers() method in Creating tiled
layers, a different iterator might be returned for each layer (hence the layer parameter in
the createTiledIterator() method), see Data tiling.

I B M ® I L O G ® J V I E W S M A P S 8 . 6298

Manipulating renderers

Describes the attributes of graphic objects that will be displayed and the use of renderers
to transform map features to graphic objects.

In this section

Overview
Explains how to attach properties to graphic objects for the purpose of rendering these
objects.

Overview of renderers
Explains what renderers are and how to use them.

Creating a colored line renderer
Shows how to write a new renderer that displays colored polylines from the numeric value
of an attribute whose name is known.

Making a renderer persistent
Describes how to make a renderer persistent.

Extending an existing renderer
Describes how to extend existing renderers.

Using CSS to customize the rendering process
Describes how to use CSS for customizing the rendering process.

Renderers and styling
Describes styling with predefined renderers and data sources.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 299

Rendering with a geodetic computation
Describes renderers that offer geodetic computations.

I B M ® I L O G ® J V I E W S M A P S 8 . 6300

Overview

Attaching attributes to graphic objects
In JViews Maps, you can attach properties to IlvGraphic objects using the class
IlvNamedProperty of the ilog.views package, thereby saving the properties in an .ivl file
together with the related object.

The IlvFeatureAttributeProperty class, which stores all the attributes of a map feature,
inherits from the IlvNamedProperty class and can therefore be attached to any graphic
object.

The following code example attaches an IlvFeatureAttributeProperty object to an object
of the IlvGraphic class:

IlvFeatureAttributeProperty attributes = feature.getAttributes();
graphic.setNamedProperty(attributes.copy());

Note that in this example, a copy of the attribute property is made. The reason for this is
that map features, along with their geometry and attributes, are volatile and get lost when
another map feature is read. For more information about map feature volatility, see The
IlvMapFeatureIterator interface.

To access the attributes that have been attached to a graphic object, you can use the following
code:

IlvFeatureAttributeProperty attributes = (IlvFeatureAttributeProperty)
graphic.getNamedProperty(IlvFeatureAttributeProperty.NAME);

To save information specific to an application that cannot be saved using the predefined
named properties supplied in the ilog.views.maps package, you can write specially named
properties as explained in Advanced Features of JViews Framework.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 301

Overview of renderers

A renderer is an object that is used to transform a map feature into a graphic object of the
class IlvGraphic or one of its subclasses.

A renderer must implement the IlvFeatureRenderer interface, which is supplied in the
ilog.views.maps package. To transform a given map feature into a graphic object, you use
its makeGraphic method:

IlvGraphic makeGraphic(IlvMapFeature feature,
IlvCoordinateTransformation tr);

The second argument, tr, allows you to specify a coordinate transformation. A typical way
of constructing such a transformation is to call IlvCoordinateTransformation.
CreateTransformation with feature.getCoordinateSystem as its first parameter (the
Source coordinate system) and the coordinate system set on the Manager (through
IlvCoordinateSystemProperty) as second parameter (the Target coordinate system). For
information about coordinate systems and coordinate transformations, see Converting
coordinates between coordinate systems.

JViews Maps includes a set of default renderers for each one of the geometry types available
in the library. These renderers can be found in the package ilog.views.maps.rendering.
The IlvMapPointRenderer, for example, transforms a map feature whose geometry is a
point into an object of the type IlvMapMarker. The library also provides a global default
renderer of the type IlvDefaultFeatureRenderer, which you can use to translate any map
feature whose geometry is one of the predefined geometries. This renderer is in the ilog.
views.maps package.

The following code example shows how to transform a map feature whose geometry is of
the type IlvMapLineString into green polylines with a thickness of four pixels if the scale
is greater than 1/1,000,000. These polylines could be, for example, the segments of a country’s
border.

IlvMapLineRenderingStyle style = new IlvMapLineRenderingStyle(); style.
setForeground(Color.green);
style.setLineWidth(4);
style.setScale(1f/1000000f);

IlvDefaultCurveRenderer renderer = new IlvDefaultCurveRenderer(); renderer.
setLineRenderingStyle(style);

try {
// Identity transformation.
IlvCoordinateTransformation identity = IlvCoordinateTransformation.

CreateTransformation(null, null);
IlvGraphic graphic = renderer.makeGraphic(feature, identity);

// Adding the graphic object into a manager.
manager.addObject(graphic, layerIndex, true);

} catch (IlvMapRenderException e) {
// Might occur if the geometry is not a curve.
System.out.println("This renderer can’t translate the map feature");

I B M ® I L O G ® J V I E W S M A P S 8 . 6302

System.out.println(e.getMessage());
} catch (IlvCoordinateTransformationException te) {
// Might occur if the coordinate transformation could not be
// performed.
System.out.println("This renderer could not transform the geometry");
System.out.println(te.getMessage());

}

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/RendererSample.java

I B M ® I L O G ® J V I E W S M A P S 8 . 6 303

Creating a colored line renderer

The complete source code example for this renderer can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/ColorLineRenderer.java.

Suppose that you want to display contour lines of different elevations with different colors.
A simple solution would consist of indexing a color using the elevation value by means of a
java.awt.image.ColorModel. More generally, it would be useful to have a renderer class
that applies a color to graphic objects, such as lines, polygons, or text, by using any of the
attributes associated with a map feature.

The makeGraphic method in the ColorLineRenderer class builds an IlvPolyline graphic
object from the interface IlvMapMultiPointInterface. This interface is common to all
geometries composed of a set of points.

public IlvGraphic makeGraphic(IlvMapFeature feature,
IlvCoordinateTransformation tr)

throws IlvMapRenderException, IlvCoordinateTransformationException
{
// Check that this geometry can be processed.
IlvMapMultiPointInterface multiPoint;
try {
multiPoint = (IlvMapMultiPointInterface)feature.getGeometry();

} catch (Exception e) {
throw new IlvMapRenderException("not a multipoint geometry");

}

// Check that something has to be done.
int pointCount = multiPoint.getPointCount();
if (pointCount == 0)
return null;

// Allocate polyline point array.
IlvPoint p[] = new IlvPoint[pointCount];

// Convert points.
for (int i = 0; i < pointCount ; i++) {
p[i] = new IlvPoint();
IlvProjectionUtil.ToViews(tr,

multiPoint.getPoint(i),
p[i]);

}
// Create the graphic object, without duplicating the p[] array.
IlvPolyline poly = new IlvPolyline(p, false);
[...]

The map feature coordinates must be converted to the manager coordinate system. This
conversion implies a change of orientation of the y-axis since cartographic data coordinate
systems have the positive portion of their y-axis oriented upward, whereas the manager has
it oriented downward. It might also imply a coordinate transformation by changing the
source coordinate system of the data into a target coordinate system. In our example, the
ToViews(ilog.views.maps.IlvCoordinate, ilog.views.IlvPoint, ilog.views.maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6304

projection.IlvProjection, ilog.views.maps.projection.IlvProjection)method both
transforms the coordinates, if necessary, and corrects the orientation of the y-axis. Note
that the IlvCoordinateTransformation can be identity by setting the source (feature.
getCoordinateSystem()) and target coordinate systems to null, especially if the source
data is not georeferenced (that is, its projection is not known), or does not need to be
transformed. For further information about coordinate systems, see Handling spatial
reference systems.

Once the graphic object is created, the attribute value for coloring the lines using a color
model is retrieved, as shown below:

int colorIndex = 0;
// Get attribute list.
IlvFeatureAttributeProperty attributeList = feature.getAttributes();
if (attributeList != null) {
try {
IlvFeatureAttribute attribute = null;
attribute = attributeList.getAttribute(myAttributeName);
if (attribute instanceof IlvIntegerAttribute)
colorIndex = ((IlvIntegerAttribute)attribute).getValue();

else if (attribute instanceof IlvDoubleAttribute)
colorIndex = (int)((IlvDoubleAttribute)attribute).getValue();

} catch (IllegalArgumentException e) {
// No attribute found.
colorIndex = 0;

}
}
Color color = new Color(myColorModel.getRed(colorIndex),

myColorModel.getGreen(colorIndex),
myColorModel.getBlue(colorIndex));

// Sets the color of graphic.
poly.setForeground(color);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 305

Making a renderer persistent

There are certain situations where you might want to save a renderer. When you work in
load-on-demand mode, for example, only the parameters necessary for loading the graphic
objects in the layer are saved, not the objects themselves. Load-on-demand is described in
Using load-on-demand.

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/ColorLineRenderer.java

If the graphic objects are created using a specific renderer, you must save that renderer to
render the objects in the same way the next time they are loaded. The class IlvSDOLayer,
for example, lets you specify a renderer (setFeatureRenderer(ilog.views.maps.
IlvFeatureRenderer) that will be saved with the layer.

The ColorLineRenderer presented in the section Creating a colored line renderer derives
from the IlvFeatureRenderer interface, which extends IlvPersistentObject and can thus
be saved.

/**
* Writes this to specified stream.
*/
public void write(IlvOutputStream stream)
throws java.io.IOException
{
stream.write("attributeName",myAttributeName);
if (myColorModel instanceof IlvPersistentObject)
stream.write("colorModel",(IlvPersistentObject)myColorModel);

else
System.err.println("Warning : colormodel not saved");

}
public ColorLineRenderer(IlvInputStream stream)
throws IlvReadFileException
{
myAttributeName = stream.readString("attributeName");
try {
myColorModel = (ColorModel)stream.readPersistentObject("colorModel");

} catch (IlvFieldNotFoundException e) {
// Get default colormodel
myColorModel = IlvIntervalColorModel.MakeElevationColorModel();

}
}

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6306

Extending an existing renderer

Most of the time, you do not have to create a totally new renderer. You can use one of the
default renderers that are supplied in the package and tailor it to your needs.

This section shows how to extend an IlvDefaultPointRenderer to add text of the type
IlvLabel next to the point of the feature being rendered. It also shows the use of
IlvMapRenderingStyle which are the classes used by the renderers in order to customize
them. For instance, in this code example, the color of the labels generated by the renderer
is obtained through the IlvMapPointRenderingStyle of the IlvDefaultPointRenderer.

The complete source code for the example in this section can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/MarkerTextRenderer.java.

The text is stored in an attribute whose name is provided for the class MarkerTextRenderer.
When this text exists, it is returned with the marker generated by the superclass of the
renderer; otherwise only the marker is returned.

public IlvGraphic makeGraphic(IlvMapFeature feature,
IlvCoordinateTransformation tr)

throws IlvMapRenderException, IlvCoordinateTransformationException
{
// Let the super class create the marker.
IlvMarker marker = (IlvMarker)super.makeGraphic(feature, tr);

// Create label if needed.
IlvLabel label = null;
IlvFeatureAttributeProperty attributeList = feature.getAttributes();
if (attributeList != null) {
try {
IlvFeatureAttribute attribute = null;
attribute = attributeList.getAttribute(myAttributeName);
if (attribute != null)
label = new IlvLabel(marker.getPoint(), attribute.toString());

} catch (IllegalArgumentException e) {
label = null;

}
}

// Case no label: return marker.
if (label == null) {
return marker;

}
// Else generate a graphic set containing the marker as the label.
else {
// Make this label of the same color than the marker.
label.setForeground(getPointRenderingStyle().getMarkerColor());

IlvGraphicSet set = new IlvGraphicSet();
set.addObject(marker, false);
set.addObject(label, false);
return set;

I B M ® I L O G ® J V I E W S M A P S 8 . 6 307

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6308

Using CSS to customize the rendering process

Usually, renderers can be customized by means of their own Java™ API. For example, to
obtain blue lines, you can use IlvDefaultCurveRenderer and call the setForegroundmethod
of its IlvMapLineRenderingStyle. To customize a renderer easily and quickly, you can also
use the IlvMapCSSRenderer class, which is an IlvDefaultFeatureRenderer (it can render
any known IlvMapGeometry).

This feature is difficult to use with map layers having their own style. It leads to a
situation in which each object style can be defined in two ways.

Note:

For more information about CSS, see Using CSS Syntax in the Style Sheet, in IBM® ILOG®
JViews Diagrammer, Developing with the SDK.

Cascading style sheets
For its customization, the IlvMapCSSRenderer class uses cascading style sheets, or CSS
files. The customization is done so that for the same Java code you can have different style
sheets, that is, different rendering aspects.

Basically, a style sheet is a set of rules. For more details on the structure of the CSS, refer
to Using CSS Syntax in the Style Sheet, in IBM® ILOG® JViews Diagrammer, Developing
with the SDK.

The complete source code of this example can be found in the following files:

<installdir> /jviews-maps86/codefragments/renderer/src/CSSRenderer.java

<installdir> /jviews-maps86/codefragments/renderer/data/style.css.

Here is how to use the IlvMapCSSRenderer class. Imagine, for example, that you have a
shapefile data file, roads.shp, and you need to render the roads in red. Here is the simplest
way to do it by means of a CSS:

IlvMapCSSRenderer cssRenderer =
new IlvMapCSSRenderer(null, //use as default renderer

"roads",
new String[] { "simple.css"});

IlvMapLoader loader = new IlvMapLoader(manager);
IlvMapFeatureIterator iterator = loader.makeFeatureIterator("roads.shp");

loader.load(iterator, cssRenderer);

and the simple.css file would be:

#roadsLinesStyle {
class : 'ilog.views.maps.rendering.IlvMapLineRenderingStyle';
foreground : red;

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 309

roads {
class : 'ilog.views.maps.rendering.IlvDefaultCurveRenderer';
lineRenderingStyle : @=roadsLinesStyle;

}

Later in this section, all the content of the corsica.css file contained in the CSS demo
(<installdir>/JViews Maps86/samples/css/data) is examined and explained.

Customizing the CSS renderers
The following extracts of CSS code show how the user can customize the CSS renderer.

♦ Set the debug mask to 0, so that no debug information will be printed. The maximum
debug information is obtained by setting the debug mask to 65535.

#IlvMapCSSRenderer {
styleSheetDebugMask : 0;

}

♦ Customize the rendering of the airports.shp shapefile which contains Point geometries.
Use an IlvLabeledPointRendererIlvLabeled.

#airportsPointStyle {
class : 'ilog.views.maps.rendering.IlvMapPointRenderingStyle';
markerSize : 8;
markerType : 'FilledDiamond|Square';
markerColor : #99ffee04;

}

#airPortsTextStyle {
class : 'ilog.views.maps.rendering.IlvMapTextRenderingStyle';
backgroundPaint : yellow;
framePaint : green;
innerMargin : 2;
maximumHeight :20;
minimumHeight : 15;
scale : 0.0000025;
antialiasing : true;

}

airports {
class : "ilog.views.maps.labelling.IlvLabeledPointRenderer";
attributeNames : nam;
pointRenderingStyle : @=airportsPointStyle;
textRenderingStyle : @=airPortsTextStyle;

}

♦ Create an instance of IlvLabeledPointRenderer, customize it and use it to render the
shapefile. It is equivalent to the following Java code:

IlvMapPointRenderingStyle pStyle = new IlvMapPointRenderingStyle();

I B M ® I L O G ® J V I E W S M A P S 8 . 6310

pStyle.setMarkerSize(8);
pStyle.setMarkerType(IlvMarker.IlvMarkerFilledDiamond |

IlvMarker.IlvMarkerSquare);
pStyle.setMarkerColor(new java.awt.Color(255, 238, 4, 153));
// The #99ffee04 color notation has the same syntaxe as HTML,
// the first 2 digits after the # represent the alpha channel.
IlvMapTextRenderingStyle tStyle = new IlvMapTextRenderingStyle();
tStyle.setBackgroundPaint(Color.yellow);
tStyle.setFramePaint(Color.green);
tStyle.setInnerMargin(2);
tStyle.setMaximumHeight(20);
tStyle.setMinimumHeight(15);
tStyle.setScale(0.0000025);
tStyle.setAntialiasing(true);
IlvLabeledPointRenderer labelRender =

new IlvLabeledPointRenderer();
labelRenderer.setAttributeNames (new String[] {"nam"});
labelRenderer.setPointRenderingStyle(pStyle);
labelRenderer.setTextRenderingStyle(tStyle);

♦ Create an IlvDefaultCurveRenderer to render the coastlines.shp shapefile that contains
Line geometries:

#coastlinesStyle {
class : 'ilog.views.maps.rendering.IlvMapLineRenderingStyle';
foreground : black;
lineWidthZoomed : true;
lineWidth : 2;
lineStyle : 4.2,4.3;
lineJoin : JOIN_BEVEL;
endCap : Cap_Round;

}

coastlines {
class : 'ilog.views.maps.rendering.IlvDefaultCurveRenderer';
lineRenderingStyle : @=coastlinesStyle;

}

Note: 1. In the previous code extract the class keyword was used to tell the renderer to
instantiate the corresponding class and to use it. Here an ilog.views.maps.
rendering.IlvMapLineRenderingStyle class is instantiated to customize
an instance of the ilog.views.maps.rendering.
IlvDefaultCurveRenderer class.

2. You can assign a float array to the lineStyle keyword, as well as some
predefined values such as Dash, Dot, and so on. Moreover, values assigned to
the LineStyle, lineJoin and endCap are not case sensitive.

♦ Create an IlvLabeledPointRenderer to render the cities.shp shapefile that contains
Point geometries:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 311

#citiesPointStyle {
class : ilog.views.maps.rendering.IlvMapPointRenderingStyle ;
markerSize : 3;
markerType : FilledCircle;
markerColor : blue

}

#col1 {
class : 'java.awt.Color(red, green, blue)' ;
red : 0;
green : 0;
blue : 200;

}

#col2 {
class : 'java.awt.Color(red, green, blue, transparency)' ;
red : 150;
green : 200;
blue : 255;
transparency : 180;

}

#citiesLabel {
class : ilog.views.maps.rendering.IlvMapTextRenderingStyle ;
backgroundPaint : @=col2;
labelFillColor : black;
framePaint : @=col1;
innerMargin : 2;
maximumHeight :15;
minimumHeight : 10;
antialiased : true;
scale : 0.0000025;

}

cities {
class : ilog.views.maps.labelling.IlvLabeledPointRenderer;
attributeNames : NAME,txt;
rejectedValues : UNK;
pointRenderingStyle : @=citiesPointStyle;
textRenderingStyle : @=citiesLabel;

}

Notice here the syntax of the #col1 node. This shows how you can instantiate any kind
of objects using the CSS. You just have to provide the class keyword in the node scope
and link it to the definition of the constructor which is given with all the necessary
parameters: class : 'java.awt.Color(red, green, blue)'.

You can see here that an AWT Color with its three channels is constructed: red, green,
and blue. To construct the Color, you have to provide the values of each parameter given
in the list. For example, here it is 0 for red, 0 for green, and 200 for blue.

♦ Create an IlvRailroadRenderer to render the roads.shp shapefile that contains Line
geometries. The IlvRailroadRenderer is a renderer provided with its source code in the

I B M ® I L O G ® J V I E W S M A P S 8 . 6312

CSS demo. It is designed to render line geometries as roads or railroads. Note that, using
the CSS, you can even customize your own renderer:

#col3 {
class : 'java.awt.Color(red, green, blue, transparency)' ;
red : 220;
green : 10;
blue : 10;
transparency : 100;

}

#roadsAttributes {
class : 'ilog.views.maps.graphic.IlvRailroadAttributes';
drawingTies : false;
background : @=col3;
railColor : #66ff0000;
railSpacing : 1;
maximumRailSpacing : 1;
scale : 0.000000025;

}

roads {
class : 'ilog.views.maps.rendering.IlvRailroadRenderer';
attributes : @=roadsAttributes;

}

♦ Create an IlvDefaultAreaRenderer to render the builtareas.shp shapefile that contains
Polygon geometries:

#pattern1 {
class : 'ilog.views.util.java2d.IlvPattern(type, foreground, background)

';
type: THICK_DIAGONAL_GRID;
foreground: gray;
background: wheat;

}

#builtareasLineStyle {
class : 'ilog.views.maps.rendering.IlvMapLineRenderingStyle';
foreground : maroon;
lineWidthZoomed : true;
lineWidth : 2;
lineJoin : join_Miter;
endCap : CAP_Round;

}

#builtareasAreaStyle {
class : 'ilog.views.maps.rendering.IlvMapAreaRenderingStyle';
fillingObject : true;
fillPattern : @=pattern1;
drawingStroke : true;
lineRenderingStyle : @=builtareasLineStyle;

}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 313

builtareas {
class : 'ilog.views.maps.rendering.IlvDefaultAreaRenderer';
usingGeneralPath : true;
areaRenderingStyle : @=builtareasAreaStyle;

}

You can see here how to create an instance of IlvPattern and use it for the rendering
process. The Java code corresponding to this CSS part of code is the following:

IlvPattern pattern1 =
new IlvPattern(IlvPattern.THICK_DIAGONAL_GRID,

Color.gray,
new Color(245,222,179));

IlvMapLineRenderingStyle builtareasLineStyle = new
IlvMapLineRenderingStyle();

builtareasLineStyle.setForeground(new Color(128, 0, 0));
builtareasLineStyle.setLineWidthZoomed(true);
builtareasLineStyle.setLineWidth(2);
builtareasLineStyle.setLineJoin(BasicStroke.JOIN_MITER);
builtareasLineStyle.setEndCap(BasicStroke.CAP_ROUND);
IlvMapAreaRenderingStyle builtareasAreaStyle = new

IlvMapAreaRenderingStyle();
builtareasAreaStyle.setFillingObject(true);
builtareasAreaStyle.setFillPattern(pattern1);
builtareasAreaStyle.setDrawingStroke(true);
builtareasAreaStyle.setLineRenderingStyle(builtareasLineStyle);

IlvDefaultAreaRenderer builtareas = new IlvDefaultAreaRenderer();
builtareas.setUsingGeneralPath(true);
builtareas.setAreaRenderingStyle(builtareasAreaStyle);

♦ Create an IlvRailroadRenderer to render the railroads.shp shapefile that contains Line
geometries:

#railRoadStyle {
class : 'ilog.views.maps.graphic.IlvRailroadAttributes';
railSpacing : 1;
scale : 0.00000025;
maximumRailSpacing : 1;
tieWidth : 3;
maximumTieWidth : 3;
tieSpacing : 4;
slantingLimit : 15;
railColor : green;
tieColor : #ff40ff40;

}

railroads {
class : 'ilog.views.maps.rendering.IlvRailroadRenderer';
attributes : @=railRoadStyle;
dummy[0] : "@#col1";
dummy[1] : "@#col2";

I B M ® I L O G ® J V I E W S M A P S 8 . 6314

dummy[2] : "@#col3";
}

Another interesting aspect of this part of the CSS code is the manipulation of indexed
properties, called dummy here. The IlvRailroadRenderer class defines a dummy attribute
member, which is an array of String (String[]).

To customize this array by using the CSS, you need to:

1. Define the get/set methods according to the Java Beans specifications.

Here is the part of the code of IlvRailroadRenderer that declares these methods:

public Color getDummy(int i)
{
return _dummy[i];

}

public Color[] getDummy()
{
return _dummy;

}

public void setDummy(Color[] val)
{
_dummy = val;

}

public void setDummy(int i, Color val)
{
_dummy[i] = val;

}

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/
IlvRailroadRenderer.java.

In our example, the number of dummy colors is limited
to 3.

Note:

2. Define the descriptor in the BeanInfo class, IlvRailroadRendererbeanInfo:

public class IlvRailroadRendererBeanInfo
extends SimpleBeanInfo

{
private final static Class beanClass = IlvRailroadRenderer.class;

public PropertyDescriptor[] getPropertyDescriptors()
{
try {

I B M ® I L O G ® J V I E W S M A P S 8 . 6 315

PropertyDescriptor[] properties = {
new PropertyDescriptor("attributes", beanClass),
new IndexedPropertyDescriptor("dummy", beanClass)

// The dummy indexed property.
};
return properties;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}

}

The complete source code of this example can be found in the following file:

<installdir> /jviews-maps86/codefragments/renderer/src/
IlvRailroadRendererBeanInfo.java.

3. Define indexed properties in your CSS file by using the @# syntax.

You can define a unique CSS file for all your CSS renderers. But each time you
instantiate the CSS renderer, the long CSS file is parsed, and depending on the size

Note:

of the CSS file, it can be time consuming. In this case, you can cut your CSS file into
smaller CSS files to avoid the performance drop.

For more information about CSS, see Using CSS Syntax in the Style Sheet in IBM® ILOG®
JViews Diagrammer, Developing with the SDK.

I B M ® I L O G ® J V I E W S M A P S 8 . 6316

Renderers and styling

Some predefined renderers produce IlvGraphic objects, which are instances of the
IlvMapGraphic class. These renderers include IlvMapAreaRenderer, IlvMapPointRenderer,
IlvMapCurveRenderer and IlvMapTextRenderer. The graphic objects produced by these
renders can be styled by means of an IlvMapStyle object. The predefined data sources
provided by JViews Maps use these renderers and make it possible to change the style of a
layer without reloading the entire map.

The following code creates an IlvShapeDataSource and sets an IlvMapAreaRenderer to
render the feature read by the data source. The fill color is set to red. A button is created
whose action sets the color of the map to blue simply by changing the Paint attribute of the
layer.

IlvShapeDataSource ds = new IlvShapeDataSource(shapeFile);
ds.setManager(view.getManager());
IlvMapAreaRenderer renderer = new IlvMapAreaRenderer(false, false);
IlvGraphicPathStyle style = new IlvGraphicPathStyle();
ds.getInsertionLayer().setStyle(style);
style.setFilling(true);
style.setPaint(Color.red);
ds.setFeatureRenderer(renderer);

JButton b = new JButton();
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
IlvGraphicPathStyle style = ((IlvGraphicPathStyle)ds.getInsertionLayer

().getStyle();
style.setPaint(Color.blue);
view.repaint();
}
});

I B M ® I L O G ® J V I E W S M A P S 8 . 6 317

Rendering with a geodetic computation

The IlvMapAreaRenderer and IlvMapCurveRenderer provide a geodetic computation option.
Geodetic computation includes date line wrapping and reprojection of features that go
outside of the projection limits.

To create a renderer that performs geodetic computations, just pass true to the specified
argument:

IlvShapeDataSource ds = new IlvShapeDataSource(shapeFile);
ds.setManager(view.getManager());
// perform geodetic computations
IlvMapAreaRenderer renderer = new IlvMapAreaRenderer(false, true);
ds.setFeatureRenderer(renderer);

The figures show geodetic computation with and without date line wrapping:

Geodetic computation with date line wrapping

I B M ® I L O G ® J V I E W S M A P S 8 . 6318

Geodetic computation without date line wrapping

I B M ® I L O G ® J V I E W S M A P S 8 . 6 319

I B M ® I L O G ® J V I E W S M A P S 8 . 6320

Handling spatial reference systems

Describes various conversions.

In this section

Converting between two spatial reference systems
Describes how to convert between spatial reference systems by means of mathematical
transformations.

Converting coordinates between coordinate systems
Describes how to convert between one coordinate system and another.

Predefined math transformations
Describes the predefined math transformations available.

Transforming data
Helps you get started with coordinate transformations and coordinate systems.

Adding Graphic Objects on Top of an Imported Map
Shows how to import an .ivlmap file whose coordinate system is known into a JViewsMaps
manager, and how to lay graphic objects over that map.

Managing units
Describes the classes for managing units.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 321

Converting between two spatial reference systems

The conversion between two Spatial Reference Systems (SRS) is performed by a coordinate
transformation, that is, a mathematical transformation or a chain of mathematical
transformations.

For example, when superimposing Global Positioning System (GPS) points (expressed in
longitude and latitude) on a state map (where coordinates are expressed in meters, in UTM
projection), the GPS coordinates are expressed in a geographic coordinate system, while
the state map coordinates are in a projected coordinate system. Once the SRS for each data
source is known, the JViewsMaps package is able to construct a mathematical transformation
to convert from one coordinate system to another.

SRS and coordinate transformations are mainly used for two purposes.

The first one is to render the pipeline of the reader framework, and the main steps are:

1. Defining the source SRS

The SRS of source data is often stored in the reader or in the feature of the iterator that
is used. If not, the reader provides the setSourceCoordinateSystem() method. The
SRS of source data is stored in map features returned by the iterator.

2. Defining the target SRS

The SRS of target data is optional. In fact, the rendering mechanism only needs a
coordinate transformation. Before rendering your graphic objects, you have to create
the coordinate transformation once.

3. Creating the coordinate transformation

If no coordinate transformation is needed, the rendering can be performed using an
identity transformation.

4. Iterating on map features provided by the iterator, and rendering them.

The second one is to position free data, (without the renderers, you create the coordinate
of the graphic object yourself), and the main steps are nearly the same:

1. Defining the source SRS.

2. Defining the target SRS.

3. Creating the coordinate transformation.

4. Transforming each coordinate manually.

The following packages define some useful SRS to be used with maps:

♦ ilog.views.maps.srs.coordsys

Contains coordinate systems and related classes.

♦ ilog.views.maps.srs.coordtrans

Defines the transformations between coordinate systems.

♦ ilog.views.maps.srs.wkt

I B M ® I L O G ® J V I E W S M A P S 8 . 6322

Defines factories and utility classes to convert coordinate systems to and from Open GIS
Well-Known Text (WKT) specifications.

♦ ilog.views.maps.projection

Defines projections used in projected coordinate systems.

The projection package also contains the definition of ellipsoids and geodetic
datum (horizontal datum), even when these are not specific to projections and

Note:

are used by the coordsys package. This is to keep the backward compatibility
with JViews Maps versions prior to 5.0, where only projected coordinate systems
were handled through the use of projections.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 323

Converting coordinates between coordinate systems

Once coordinate systems are defined, there must be someway to convert from one coordinate
system to another. This is done using coordinate transformations, defined in the package
ilog.views.maps.srs.coordtrans.

Overview of the coordinate transformations
As soon as you work with different coordinate systems and datums, you need to be able to
convert from one to another. When working with coordinate systems, this can be performed
using functions.

The coordinate transformations, as defined by the ilog.views.maps.srs.coordtrans.
IlvCoordinateTransformation class, contain the information that allows you to manipulate
them:

♦ The source coordinate system

♦ The target coordinate system

♦ The Math Transform to convert coordinates from one to another

In addition to that, all the coordinate transformations implement the following methods:

♦ IlvCoordinate transform(ilog.views.maps.IlvCoordinate, ilog.views.maps.
IlvCoordinate)

This method is the basic one. It transforms the source coordinate, storing the result in
result, or in a newly allocated coordinate if result is null. The method returns the
transformed point.

♦ IlvCoordinate[] transform(ilog.views.maps.IlvCoordinate[], ilog.views.maps.
IlvCoordinate[])

This is the vectorized version of the previous method. This allows the transformations to
convert a whole batch of coordinates, possibly allowing some optimizations to be
performed.

♦ Optionally, transformations can implement the getInverse() method that returns an
inverse transformation.

The following sections describe the predefined built in transformations of JViews Maps, and
provide some examples of the transformation package.

Transformation paths
To transform the coordinates from one coordinate system to another, mathematical functions
are needed. These mathematical functions can be either simple straight forward functions,
or more complicated transformations. The JViewsMaps package includes themost elementary
transformations (or transformation steps) used for coordinate conversions, and these are
available in the ilog.views.maps.srs.coordtrans package.

The chaining of elementary transformations from one coordinate system to another is called
a transformation path.

I B M ® I L O G ® J V I E W S M A P S 8 . 6324

The static method CreateTransformation(ilog.views.maps.srs.coordsys.
IlvCoordinateSystem, ilog.views.maps.srs.coordsys.IlvCoordinateSystem) from the
class IlvCoordinateTransformation can automatically create transformation paths from
coordinate systems of the ilog.views.maps.srs.coordsys package. To find the
transformation paths created, refer to the following figure:

Transformation paths

Example
Convert from the following projected coordinate system:

♦ Projection: Lambert Azimuthal Conformal Conic

♦ Datum: NTF (Nouvelle Triangulation de la France)

♦ Associated geographic coordinate system based on Clark 1880 ellipsoid, IGN modified.

to the following one:

♦ Projection: Mercator

♦ Datum: European 1960

♦ Associated geographic coordinate system: International.

The transformation path selected by CreateTransformation() will be:

1. Projection transformation from Lambert to geographic NTF/Clark1880

2. Molodensky conversion from NTF/Clark1880 to European 1960/International systems

3. Projection transformation from geographic European 1960/International to Mercator.

At each step, the relevant unit conversion is added by using the affine transforms.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 325

Note that this path is not the only existing path. It is also possible to convert from geographic
coordinates to geocentric coordinates, in which case the transformation path would be:

1. Projection transformation from Lambert to geographic NTF/Clark1880

2. Geocentric transform to geocentric NTF coordinates

3. Affine transform to convert from NTF to European 1960 coordinates

4. Geocentric transform from European 1960 to geographic coordinates

5. Projection transformation from geographic European 1960/International to Mercator.

I B M ® I L O G ® J V I E W S M A P S 8 . 6326

Predefined math transformations

Abridged Molodensky Transform
The standard way to convert coordinates from one datum to another is to convert first the
coordinates to geocentric coordinates, apply the datum shift and rotation parameters, and
then convert them back to geographic coordinates.

As an alternative to this transform, the IlvAbridgedMoldenskyTransform class implements
directly a transform derived directly from the Moldensky formulas. The Abridged form of
these formulas are quite satisfactory for three-parameter transformations.

This transform can work on either 2-D (only latitude and longitude are modified), or 3-D
(the ellipsoidal height of coordinates is also modified).

Affine Transform
Affine transforms are commonly used in coordinate transformation. An affine transform is
simply defined by a 4x4 double values matrix, and are applied to coordinates by multiplying
them as if they were one 1x4 matrix.

Affine transforms are mainly used in JViews Maps for unit conversions in a transformation
path.

Another use of affine transforms is to use them to implement Bursa Wolf transformations.
The Bursa Wolf transformation is applied to geocentric coordinates to model a
seven-parameter datum change. A seven-parameter datum is defined by the dX, dY, dZ axis
shifts, the eX, eY, eZ rotations around the axis, and a scale factor expressed in parts per
million. The matrix to use for Bursa Wolf transformation is:

Concatenated Transform
There are some cases where a straightforward mathematical function cannot be found to
convert from one coordinate system to another. In those cases, some elementary
transformations can be chained to build the full transformation. This is typically the case
when converting from a projected coordinate system P1 to another one P2, using different
datums: first you need to convert coordinates from P1 to the geographic coordinate system,
then apply a datum conversion on these coordinate systems, and then convert them to the
final coordinate system P2.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 327

The IlvConcatenatedTransform class allows multiple transformation steps to be chained
and used as a unique transformation.

Geocentric Transform
The function used to convert from geocentric to ellipsoid and the function used to convert
from ellipsoid to geocentric are grouped together in the IlvGeocentricTransform class.
Actually, the transformation is performed by specialized versions of this class:

♦ IlvGeocentricTransform.GeocentricEllipsoidal

converts geocentric coordinates (x, y, z) to ellipsoidal (or geographic) coordinates (lon,
lat, H)

♦ IlvGeocentricTransform.EllipsoidalGeocentric

converts ellipsoidal coordinates (lon, lat, H) to geocentric coordinates (x, y, z)

Projection Transform
The IlvProjectionTransform class implements a transformation in which an IlvProjection
is used to convert coordinates from geographic coordinates to a projected coordinate system,
and vice versa.

This transform encapsulates a projection, and uses the forward(ilog.views.maps.
IlvCoordinate) method if the transformation is a forward transformation, or the inverse
(ilog.views.maps.IlvCoordinate) method if the transformation is an inverse
transformation.

I B M ® I L O G ® J V I E W S M A P S 8 . 6328

Transforming data

This section is based on a simple example that illustrates the basic operations required to
define the coordinate systems, and shows how to use the coordinate transformations back
and forth.

The complete source code of the example on which this section is based can be found in the
following file:

<installdir> /jviews-maps86/codefragments/srs/src/Sample1.java.

Example overview
The Sample1.java file contains a very simple program that shows how to convert coordinates
from geographic coordinates to a projected coordinate system, using a Mercator projection.

This class has only a static main()method, in which the coordinate systems are instantiated
and the coordinate is transformed.

Choosing a source and a destination coordinate system
As our example uses coordinate systems and transformation, the relevant packages must
be imported, as well as the projection package for the Mercator projection definition:

import ilog.views.maps.*;
import ilog.views.maps.srs.coordsys.*;
import ilog.views.maps.srs.coordtrans.*;
import ilog.views.maps.projection.*;

The first important step is to define the source and the target coordinate systems.

For the source coordinate system, some latitude and longitude coordinates expressed in
degrees are needed. This is the kind of coordinate defined in a geographic coordinate system.
In this example, the WGS84 coordinate is used. The WGS84 geographic coordinate system
defines ellipsoidal coordinates over the standard WGS84 ellipsoid.

IlvCoordinateSystem sourceCS = IlvGeographicCoordinateSystem.WGS84;

Now these coordinates must be changed to Mercator coordinates. Then you can create a
new projected coordinate system using theMercator projection to express coordinates. Note
that the Mercator projection should use exactly the same geodetic parameters as theWGS84
geographic coordinate system. The latter is passed as the geographic coordinate system of
the projected coordinate system.

IlvCoordinateSystem targetCS =
new IlvProjectedCoordinateSystem("Mercator",

IlvGeographicCoordinateSystem.WGS84,
new IlvMercatorProjection(),
IlvLinearUnit.METER,

I B M ® I L O G ® J V I E W S M A P S 8 . 6 329

"X", // The X axis name
"Y"); // The Y axis name

Transforming coordinates
In order to transform the coordinates, you need an IlvCoordinateTransformation. This is
performed by calling the automatic transformation creation method:

IlvCoordinateTransformation CT =
IlvCoordinateTransformation.CreateTransformation(sourceCS, targetCS);

To convert coordinates, you just have to store the coordinates in an IlvCoordinate, and
then call the transform() method of the coordinate transformation.

// The coordinate to convert : 45W, 30N
IlvCoordinate coord = new IlvCoordinate(-45D, 30D);

try {
coord = CT.transform(coord,

coord); // put the result in coord
}
catch (IlvCoordinateTransformationException e) {

System.out.println("Transformation exception for this data");
}

The transform() method takes two parameters: the first one is the source coordinate to
transform, the second one is an IlvCoordinate to hold the result of the transformation.
When this second parameter is null, a new IlvCoordinate is allocated and used. Themethod
returns the result coordinate.

Of course, as in this example, it is possible to use the same IlvCoordinate as source and
destination.

Note that the IlvCoordinateTransformation.transform() method may throw different
kinds of exception if the transformation process leads to mathematical errors or overflows.
Most of the time, when those methods are thrown, the transformation is not defined at the
specified point.

Displaying the result
The result of the transformation is now stored in the coord variable. In the following code
example, the result is expressed in meters, which is the default measurement unit.

System.out.println("The Mercator coordinates of 45W 30N is ");
System.out.println("x = " + (int) coord.x + " m");
System.out.println("y = " + (int) coord.y + " m");

I B M ® I L O G ® J V I E W S M A P S 8 . 6330

It does not make much sense to interpret these values as distances since the center
of the projection is far from the projected point, and projections do not maintain distances
on a large scale

Note:

Getting the inverse transformation
At this point, the methodology to convert from geographic coordinates to Mercator
coordinates is available.

To convert coordinates from Mercator back to geographic, use the getInverse() method,
which returns the inverse transformation, if any.

// Get the inverse transformation.
IlvCoordinateTransformation invCT = CT.getInverse();

// Transform the point.
try {
coord = invCT.transform(coord,

coord); // put the result in coord
}
catch (IlvCoordinateTransformationException e) {
System.out.println("TransformationException exception for this data");

}

Printing geographic coordinates
To print geographic coordinates, you can use the toDMS(double, boolean) conversion
method from the IlvAngularUnit class. This method converts an angle specified by a double
value in a unit to DMS encoding.

For example, IlvAngularUnit.DEGREE.toDMS() converts an angle specified in degrees to
DMS.

System.out.println("The inverse projection is "
+ IlvAngularUnit.DEGREE.toDMS(coord.x,false)
+ " "
+ IlvAngularUnit.DEGREE.toDMS(coord.y,true));

I B M ® I L O G ® J V I E W S M A P S 8 . 6 331

Adding Graphic Objects on Top of an Imported Map

This section is based on an example that loads a map of the USA projected with a Lambert
Azimuthal Equal Area projection into a manager, and adds cities on top of the map. The
geographic coordinates indicated by the mouse pointer as well as the name of the cities
pointed to are displayed in text fields at the bottom of the window. This section also gives
information about the instantiating and the parameterization of a projected coordinate
system, describes how to convert data from geographic coordinates to this projected
coordinate system, and how to use a view interactor.

The complete source code for this example can be found in the following file:

The purpose of this example is to give a tutorial on how to use coordinate
transformations. It does not use JViews Maps beans such as

Note:

IlvJMouseCoordinateViewer, to integrate with a data source or for map layer
management.

Initializing coordinate systems
Since you need to convert from geographic coordinates to projected coordinates and vice
versa, you need to keep an instance of these transformations. This is performed by means
of the createTransformations() method.

First, initialize an instance of the projection used in the coordinate system of the imported
map. In this example, the usa.ivl file is in Lambert Azimuthal Equal Area projection.

The projection parameters are:

Lambert Azimuthal Equal AreaName of the Projection

100DWCentral Meridian

40DNCentral parallel

Meters (the default value)Measurement unit

0 (the default value)Offset

For more information on projection parameters see the section Projection parameters.

private void createTransformations()
{
// Create the projection.
IlvProjection projection = new IlvLambertAzimuthalEqualAreaProjection();
projection.setEllipsoid(IlvEllipsoid.SPHERE);
try {

double centralMeridian = IlvAngularUnit.RADIAN.fromDMS("100DW");
double centralParallel = IlvAngularUnit.RADIAN.fromDMS("40DN");
projection.setCentralMeridian(centralMeridian);

I B M ® I L O G ® J V I E W S M A P S 8 . 6332

projection.setCentralParallel(centralParallel);
} catch (IllegalArgumentException e) {
System.out.println("wrong string passed to "

+ "IlvAngularUnit.RADIAN.fromDMS");
System.out.println("unable to create the projection for the file"

+ "usa.ivl");
System.exit(0);

}

Note that projection parameters are always specified using kernel units. In this case, the
central meridian and parallel have to be specified in radians. Use the method
IlvAngularUnit.RADIAN.fromDMS() to achieve this goal.

Once the Lambert Azimuthal projection has been initialized, you only have to create the
corresponding projected coordinate system:

// Create the projected coordinate system.
IlvProjectedCoordinateSystem projectedCS =
new IlvProjectedCoordinateSystem("Lambert Azimutal Equal Area",

projection);

You also create a geographic coordinate system whose ellipsoid is a simple sphere:

// Create the geographic coordinate system.
IlvGeographicCoordinateSystem geoCS =

new IlvGeographicCoordinateSystem(IlvHorizontalShiftDatum.SPHERE_WGS84,
IlvMeridian.GREENWICH);

Finally, create the coordinate transformation and store also the inverse transformation for
future quick reference:

// A coordinate transform.
geo2projCT =
IlvCoordinateTransformation.CreateTransformation(geoCS,projectedCS);
// The inverse transform.
proj2geoCT = geo2projCT.getInverse();

Adding cities
The addCitites()method adds a number of cities on top of the imported map of the United
States:

private void addCities()
{
addCity("Washington", "39D11'N", "76D51W");
addCity("New York", "40D59'N", "73D39'W");
addCity("Miami", "25D58'N", "80D02'W");
addCity("San Francisco", "37D44'N", "122D20'W");
addCity("Seattle", "47D51'N", "122D01'W");

I B M ® I L O G ® J V I E W S M A P S 8 . 6 333

addCity("Denvers", "39D50'N", "104D53'W");
}

The coordinate conversion is performed in the addCity() method.

First, this method converts the DMS coordinates specified as string to degrees, in order to
have the longitude and latitude coordinates of each point:

private void addCity(String cityName, String lat, String lon)
{
try {
double latitude = IlvAngularUnit.DEGREE.fromDMS(lat);
double longitude = IlvAngularUnit.DEGREE.fromDMS(lon);
IlvCoordinate coordinate = new IlvCoordinate(longitude,

latitude);

Then, it computes the projected coordinates by applying the forward coordinate
transformation. If the coordinates cannot be transformed (for example, because the tolerance
conditions have been exceeded), the transformation may throw an exception. This is why
the code is contained inside a try/catch block.

The IlvProjectionUtil.invertY()method is then called to invert the y-coordinate: in the
JViews Maps manager coordinate system, the y-axis is oriented downwards, whereas, in the
projection coordinate system, it is oriented upwards.

geo2projCT.transform(coordinate,coordinate);
IlvPoint p = new IlvPoint((float)coordinate.x,

(float)coordinate.y);
IlvProjectionUtil.invertY(p);

Note also that a new IlvPoint is allocated here. It will be used to create graphic objects
(an IlvMarker) to represent the city. This graphic object is added to Layer #1 of the manager
(Layer #0 contains the boundaries of the USA).

IlvMarker marker = new IlvMarker(p, IlvMarker.IlvMarkerFilledDiamond);
marker.setSize(4);
marker.setForeground(Color.red);
manager.addObject(marker, 1, false);
marker.setName(cityName);

} catch (IlvCoordinateTransformationException e) {
e.printStackTrace();

}

Setting the view interactor
In order to track mouse position, a view interactor is used. This is performed by means of
the setViewInteractor() method.

First, create a selection interactor that will be used to select cities on the map. This interactor
is configured so that multiple selections are not allowed, and the map cannot be modified,
which means that the user will not be able to move cities around the map. The interactor is
associated with the view. Note also that the elements making up Layer #0 (that is, borders)
cannot be selected either.

I B M ® I L O G ® J V I E W S M A P S 8 . 6334

private void setViewInteractor()
{
IlvSelectInteractor interactor = new IlvSelectInteractor();
interactor.setDragAllowed(false);
interactor.setEditionAllowed(false);
interactor.setMoveAllowed(false);
interactor.setMultipleSelectionMode(false);
manager.setSelectable(0, false);
mgrview.pushInteractor(interactor);

Then, add a listener to the interactor that will display the longitude and the latitude indicated
by the mouse in the appropriate text field. To compute the latitude and the longitude, apply
the inverse transformation computed previously. The result returned by this method is
formatted with the IlvAngularUnit.DEGREE.toDMS() method.

// Display the position of the mouse.
interactor.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseMoved(MouseEvent e) {
// Get the point in manager coordinates.
IlvTransformer t = mgrview.getTransformer();
IlvPoint p = new IlvPoint(e.getX(), e.getY());
t.inverse(p);
IlvProjectionUtil.invertY(p);
// Display the mouse position.
try {
IlvCoordinate c = new IlvCoordinate(p.x,p.y);
proj2geoCT.transform(c,c);
llField.setText(IlvAngularUnit.DEGREE.toDMS(c.x,false)

+ " " +
IlvAngularUnit.DEGREE.toDMS(c.x,true));

} catch (IlvCoordinateTransformationException ex) {
System.out.println("Unable to inverse this point " +

ex.getMessage());
}

}
});

Finally, add a listener to the manager. This listener will display the name of the selected
city in the appropriate text field.

manager.addManagerSelectionListener(new ManagerSelectionListener(){
public void selectionChanged(ManagerSelectionChangedEvent e) {
IlvGraphic g = e.getGraphic();
if (g == null)
return;

String name = g.getName();
if (name != null)

cityField.setText(name);
}

});

I B M ® I L O G ® J V I E W S M A P S 8 . 6 335

After you have compiled your sample, the map shown in Setting a view interactor should
appear on the screen:

Setting a view interactor

I B M ® I L O G ® J V I E W S M A P S 8 . 6336

Managing units

The management of units is performed by using three classes included in the ilog.views.
maps package:

♦ IlvUnit

♦ IlvAngularUnit to measure angles.

♦ IlvLinearUnit to measure lengths.

These classes deprecate the former ilog.views.maps.IlvUnitConverter, which did not
make a clear distinction between units to measure angles and distances.

Units are simply reference systems to measure physical quantity. By convention, a kernel
unit is defined for each type of unit. For angles, the kernel units are radians, and for lengths,
the kernel units are meters. This allows an easy conversion between any derived units.

Units are attached to each axis of a coordinate system. This means that inside a coordinate
system, you can have each ordinate expressed in different coordinates. For example, with
geographic coordinate, you can have the x- and y-ordinates expressed in degrees, while the
z-ordinate (corresponding for example to the ellipsoid height) is expressed in meters. Usually,
in a coordinate system, the same unit is used to measure all physical quantities that are
alike (for example, degrees for all angles).

The complete source code of the example can be found in the following file:

<installdir> /jviews-maps86/codefragments/srs/src/Sample3.java.

Predefined units
The package contains a list of predefined units, to measure both lengths and angles. A
predefined unit is referenced by its abbreviation. To access a predefined unit converter, you
can use either the static instance of the relevant class, or the static method
GetRegisteredUnit(java.lang.String).

See the following tables for a list of the predefined angular and linear units supplied with
JViews Maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 337

Predefined angular units
ToKernelFull NameAbbreviation

1.0Radianrad

PI / 180Degreedeg

PI / 200Gradgrad

Predefined linear units
ToKernelFull NameAbbreviation

1000.0Kilometerkm

1.0Meterm

0.1Decimeterdm

0.01Centimetercm

0.0010Millimetermm

1852.0International Nautical Milekmi

0.0254International Inchin

0.3048International Footft

0.9144International Yardyd

1609.344International Statute Milemi

1.8288International Fathomfath

20.1168International Chainch

0.201168International Linklink

0.025400050800101603U.S. Surveyor’s Inchus-in

0.304800609601219U.S. Surveyor’s Footus-ft

0.914401828803658U.S. Surveyor’s Yardus-yd

20.11684023368047U.S. Surveyor’s Chainus-ch

1609.347218694437U.S. Surveyor’s Statute Mileus-mi

0.91439523Indian Yardind-yd

0.30479841Indian Footind-ft

20.11669506Indian Chainind-ch

Defining units
The IlvUnit class is the superclass of all the units.The JViews Maps package provides two
specialized versions of this class:

♦ IlvLinearUnit

I B M ® I L O G ® J V I E W S M A P S 8 . 6338

For units measuring length.

♦ IlvAngularUnit

For units measuring angles.

To define a new unit, you can create a new instance of these two classes specifying three
parameters:

♦ The factor of conversion to kernel units (the number of kernel units necessary to define
one unit).

♦ The abbreviation for your unit.

♦ The full name of the unit.

For example, the following code creates a new instance of IlvLinearUnit to convert meters
to feet (assuming than 1 ft = 0.3048 meters):

IlvLinearUnit unit = new IlvLinearUnit(0.3048,
"ft",
"International foot");

Using units
Units can be used for simple conversion between values, or in a coordinate system. Various
standard units are defined in the built-in unit classes of the JViews Maps package. These
units can be retrieved by using either predefined static members of the classes IlvLinearUnit
and IlvAngularUnit (these are the most used units), or the GetRegisteredUnit(java.lang.
String) method.

Simple unit conversion
For example, to convert meters to feet you can use either the static definition of feet as
follows:

IlvLinearUnit unit = IlvLinearUnit.FT;
double meters = 100D;
double feet = unit.fromMeters(meters);
System.out.println("100 m = " + feet + " ft");
// The following is also valid, as the kernel unit for lengths
// is the meter.
double other_feet = unit.fromKernel(meters);
System.out.println("100 m = " + feet + " ft");

or the registered version:

IlvUnit unit = IlvUnit.GetRegisteredUnit("ft");
double meters = 100D;
double feet = unit.fromKernel(meters);
System.out.println("100 m = " + feet + " ft");

I B M ® I L O G ® J V I E W S M A P S 8 . 6 339

For standard conversion of units, the IlvUnit class defines the following methods:

♦ The toKernel(double) method converts from the unit to the kernel unit.

♦ The fromKernel(double) method converts from kernel unit to the specific unit.

In addition, the IlvLinearUnit class (respectively IlvAngularUnit) defines the toMeters
(double) and fromMeters(double) methods (respectively toRadians and fromRadians
methods) for applications that need explicit method calls.

Units in coordinate systems
Units are part of the definition of coordinate systems, which means that all the coordinate
systems have to be constructed with units for axis. Once the unit is defined for a coordinate
system, the transformation factory is able to automatically add subsequent affine transforms
to convert coordinates in the transformation path.

I B M ® I L O G ® J V I E W S M A P S 8 . 6340

Pregenerating tiled images for a thin client

The IlvManagerTiler class is a utility class that renders a map, saved to a specified location
on the disk at different scale levels, as tiled images. These images can be used to fill the
cache of a thin-client server application. Offline tile generation speeds up the initial response
time of the server, as it does not need to create and cache the images when clients request
them. It increases the server scalability for the same reason.

The first step to generate tiled images for a map is to ensure that the Thin Client Parameters
have been set in the map, see Setting Thin Client Parameters in JViews Maps Using the Map
Builder. What the map builder does is that is to add two IlvNamedProperty instances to the
map. The names of these properties are defined in the IlvMapTileGen
IlvMapTileGeneratorConstants class as constants:

♦ TILE_SIZE_PROPERTY is the name of the property that holds the size of the tiles that
will be generated. The size is measure in pixels. An example value is 256 pixels.

♦ SCALE_LEVELS_PROPERTY PROPERTY is the name of the property that holds an array
of double values representing the different scales at which the map should be rendered
using tiles.

If these parameters are not set in the map, you must specify them explicitly in the
createTiles() method call. Then, you must create an IlvManagerTiler instance and call
the createTiles(java.lang.String, ilog.views.IlvRect, java.io.File, long)method
with the appropriate parameters using the following code:

IlvManagerTiler tiler = new IlvManagerTiler();
long maximumDiskSpace = 10000000; // 10 Mbytes
String mapFilename = "MyMap.ivl";
File outputFolder = new File("output");
tiler.createTiles(mapFilename,null, outputFolder, maximumDiskSpace);
// Null is passed as the region so as not to limit the tiling process.

Remember that generating tiles for a map covering a large region, with several scale levels,
and without specifying an area of interest, can easily lead to millions of tiles being created.
This may require several Gigabytes of memory and in some cases may take a long time to
complete.

To avoid this:

♦ Specify a reasonable disk space limit. The process stops as soon as the limit is reached.

and/or

♦ Target regions that are likely to be requested by thin clients and only generate images
for these regions.

A graphical tool to interactively generate tiles is provided as a code sample in: <installdir>
/jviews-maps86/samples/tilegeneration/src/TileGenerator.java.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 341

Only map layers with the thin client background property set to true in their
style will be rendered as tiled images. Dynamic layers such as labeling layers should
not be marked as background layers, as they are dynamically generated by the servlet.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6342

Integration

Describes how to integrate maps and symbols into an application.

In this section

Overview of integration
Describes the main actions needed to integrate maps and symbols into an application.

Integrating with JViews Diagrammer
Describes the tools available for integrating maps and symbols into applications that use
both JViews Maps and JViews Diagrammer.

Using symbols through the API
Describes symbols and explains how to use them.

Using JViews Maps in SWT applications
Describes how to implement an Eclipse® RCP (SWT) application that uses JViews Maps.

© Copyright IBM Corp. 1987, 2009 343

Overview of integration

To integrate maps and symbols into an application, you need to:

♦ Edit your map using the JViews Map Builder.

♦ Edit your symbol design using Designer for JViews Diagrammer.

♦ Integrate background maps from the JViews Map Builder into the Designer for JViews
Diagrammer.

♦ Integrate symbol styles from the Designer for JViews Diagrammer into the JViews Map
Builder.

♦ Integrate a JViews Diagrammer project into an application.

You can also use the API and Beans to build an application based on a JViews Diagrammer
model and styling, and then add any additional mapping capabilities such as scale display,
reprojection, dynamic importation of maps and so on.

I B M ® I L O G ® J V I E W S M A P S 8 . 6344

Integrating with JViews Diagrammer

Describes the tools available for integrating maps and symbols into applications that use
both JViews Maps and JViews Diagrammer.

In this section

Overview
Presents the tools (GUIs) available for integrating maps and symbols into applications.

Using symbols and maps in the Designer for JViews Diagrammer
Describes how to use the Designer for JViews Diagrammer for map integration.

Integrating a JViews Diagrammer project into an application
Describes a project file and how to create one and use it for loading diagrams.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 345

Overview

To get the best from the JViews Maps and JViews Diagrammer technologies, you can use
two tools:

♦ The Map Builder, to create dynamic maps (See Using the Map Builder).

♦ The Designer for JViews Diagrammer, to connect with data and style symbols (See Using
the Designer).

You can use either of these tools to display maps and symbols, but you can only design Maps
with the Map Builder, and Symbols with the Designer for JViews Diagrammer.

I B M ® I L O G ® J V I E W S M A P S 8 . 6346

Using symbols and maps in the Designer for JViews Diagrammer

The Designer for JViews Diagrammer provides features to style, import, and export the
symbol data model and the rendering mechanism. It also includes an option that gives access
to the same kind of graphic objects as the default Basic Symbols in the Map Builder. See
“Predefined Renderers” in Developing with the JViews Diagrammer SDK.

The Designer for JViews Diagrammer includes an option that can import any IVL file saved
by the Map Builder and use it as a background image of the current diagram, (see The Map
Renderer in Developing with the JViews Diagrammer SDK). You can activate this option at
any time and provide it with the name of the IVL file.

The Designer for JViews Diagrammer Wizard is a powerful tool that allows you to use maps
by selecting a Georeferenced Diagram option when you create a new diagram application.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 347

Integrating a JViews Diagrammer project into an application

A project is an association of a style sheet and a data source which supplies data. It groups
the inputs for a diagram. A project is saved as an XML file with the extension .idpr (JViews
Diagrammer Project File).

Loading a project file is the recommended way to load a diagram in Java™ because it is the
quickest way. The following code sample shows how to load a project into a diagram
component using the method setProject(ilog.views.diagrammer.project.
IlvDiagrammerProject, boolean).

IlvDiagrammer diagrammer = new IlvDiagrammer();
diagrammer.setProject(new IlvDiagrammerProject(
new URL("file:myproject.idpr"));

//Display the diagram.

The project is represented by the IlvDiagrammerProject class, which is in the IBM® ILOG®
JViews Diagrammer package ilog.views.diagrammer.project. When a new project is
created, the style sheet and data source are both null.

The following example shows how to create a new project file, set the style sheet and data
source, and save the file.

IlvDiagrammerProject project = new IlvDiagrammerProject();
project.setStyleSheet(new URL("file:example.css"));
IlvXMLDataSource dataSource = new IlvXMLDataSource();
dataSource.setDataURL(new URL("file:example.xml"));
project.setDataSource(dataSource);
project.write(new URL("file:example.idpr"));

I B M ® I L O G ® J V I E W S M A P S 8 . 6348

Using symbols through the API

Describes symbols and explains how to use them.

In this section

Overview of symbols
Defines symbols and explains how they are used.

Storing symbols
Describes a model that can store symbols.

Integrating symbols into an application
Describes how to integrate symbols.

Populating the SDM model
Describes how to populate the SDM model with symbols.

Creating symbol groups
Describes how to create a symbol group and add a symbol node to it.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 349

Overview of symbols

Symbols are based on JViews Diagrammer technology.

Symbols are nodes of a JViews Diagrammer data model. They are rendered into a graphical
view with styling information contained in a Cascading Style Sheet.

See also “Basic Concepts” in Introducing JViews Diagrammer.

I B M ® I L O G ® J V I E W S M A P S 8 . 6350

Storing symbols

You can use a default SDM Model to store your symbols such as:

IlvSDMEngine engine = new IlvSDMEngine();
engine.setGrapher((IlvGrapher)view.getManager());
engine.setReferenceView(view);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 351

Integrating symbols into an application

The simplest way to integrate symbols into a map application is to provide a Cascading Style
Sheet (see “Styling” in Introducing JViews Diagrammer) that describes the symbol rendering,
and then use the API to populate the SDM model, for example:

// set the rendering style sheet
engine.setStyleSheets(new String[]{"myfile.css"});

You can also use any technique described in “User Interactions” in Introducing JViews
Diagrammer to integrate your own symbol data model, possibly through an XML stream or
data base connection.

I B M ® I L O G ® J V I E W S M A P S 8 . 6352

Populating the SDM model

You can populate the SDM model using the API, for example:

Object symbolNode = engine.getModel().createNode("symbol");
engine.getModel().addObject(symbolNode, null, null);
...
engine.getModel().setObjectProperty(symbolNode,
"longitude", new Double(Math.toRadians(44)));
engine.getModel().setObjectProperty(symbolNode,
"latitude", new Double(Math.toRadians(-105)));
...

I B M ® I L O G ® J V I E W S M A P S 8 . 6 353

Creating symbol groups

You can also create a symbol group, and add the newly created node to the group:

Object symbolGroup = engine.getModel().createNode("group");
Object symbolNode = engine.getModel().createNode("symbol");
engine.getModel().addObject(symbolGroup, null, null);//Add the group itself.
engine.getModel().addObject(symbolNode, symbolGroup, null);//Add the symbol
to the group

I B M ® I L O G ® J V I E W S M A P S 8 . 6354

Using JViews Maps in SWT applications

The Standard Widget Toolkit (SWT) is the windowing toolkit of the Eclipse® development
environment and the Eclipse Rich Client Platform (RCP).

An Eclipse RCP application with JViews Maps is implemented in the same way as a Swing
application. Additional considerations are explained in Using JViews Diagrammer in SWT
Applications in Developing with the JViews Diagrammer SDK.

Installing the JViews runtime plugin
IBM® ILOG® JViews Maps provides jar files in the form of a pre-packaged Eclipse plugin.
The name of this package is ilog.views.eclipse.maps.runtime.

In order to install the Eclipse plugins, you need to install from the local site as shown below.

For Eclipse 3.3:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates/Find And Install.

3. In the Install/Update dialog box, click Search for new features to install.

4. Define a New Local Site with the directory <installdir>/jviews-framework86/tools/
ilog.views.eclipse.update.site.

5. Select the features you want to install.

For Eclipse 3.4:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates and select the Available Software tab.

3. Add a new local site: ClickAdd Site, then Local and specify the directory <installdir>/
jviews-framework86/tools/ilog.views.eclipse.update.site

4. Select the features you want to install, and press the Install button.

In your applications, you need the ilog.views.eclipse.maps.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.maps.runtime

♦ ilog.views.eclipse.diagrammer.runtime (optional)

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

I B M ® I L O G ® J V I E W S M A P S 8 . 6 355

Map data

The following provides as list of suggested free sources for downloading map data.

DTED0

Web linkCoverage

http://geoengine.nima.mil/muse-cgi-bin/rast_roam.cgiWorldwide elevation

ESRI shape

Alternative web linkWeb linkCoverage

http://www.bluemarblegeo.com/
products/
worldmapdata.php?op=download

http://en.wikipedia.org/wiki/
Global_Administrative_Unit_Layers_(GAUL)

Worldwide map of
countries

(a lower resolution map)

http://www.nationalatlas.gov/mld/timeznp.htmlUS time zones

http://www.census.gov/geo/www/
cob/st2000.html#shp

http://www.nationalatlas.gov/mld/statesp.htmlUS states

http://www.nationalatlas.gov/mld/countyp.htmlUS counties

http://www.census.gov/geo/www/
cob/z52000.html for 5 digits

http://www.census.gov/geo/www/cob/
z32000.html for 3 digits

US ZIP codes

ESRI shape or TIGER/Line

Web linkCoverage

http://www.census.gov/geo/www/tiger/USA

GeoTIFF, JPG or PNG

Web linkCoverage

http://www.unearthedoutdoors.net/global_data/
true_marble/download

Worldwide

http://
neo.sci.gsfc.nasa.gov/
Search.html

http://earthobservatory.nasa.gov/Features/
BlueMarble/

with a download mirror at

Worldwide satellite map
from NASA

© Copyright IBM Corp. 1987, 2009356

http://geoengine.nima.mil/muse-cgi-bin/rast_roam.cgi
http://www.bluemarblegeo.com/products/worldmapdata.php?op=download
http://www.bluemarblegeo.com/products/worldmapdata.php?op=download
http://www.bluemarblegeo.com/products/worldmapdata.php?op=download
http://en.wikipedia.org/wiki/Global_Administrative_Unit_Layers_(GAUL)
http://en.wikipedia.org/wiki/Global_Administrative_Unit_Layers_(GAUL)
http://www.nationalatlas.gov/mld/timeznp.html
http://www.census.gov/geo/www/cob/st2000.html#shp
http://www.census.gov/geo/www/cob/st2000.html#shp
http://www.nationalatlas.gov/mld/statesp.html
http://www.nationalatlas.gov/mld/countyp.html
http://www.census.gov/geo/www/cob/z52000.html
http://www.census.gov/geo/www/cob/z52000.html
http://www.census.gov/geo/www/cob/z32000.html
http://www.census.gov/geo/www/cob/z32000.html
http://www.census.gov/geo/www/tiger/
http://www.unearthedoutdoors.net/global_data/true_marble/download
http://www.unearthedoutdoors.net/global_data/true_marble/download
http://neo.sci.gsfc.nasa.gov/Search.html
http://neo.sci.gsfc.nasa.gov/Search.html
http://neo.sci.gsfc.nasa.gov/Search.html
http://earthobservatory.nasa.gov/Features/BlueMarble/
http://earthobservatory.nasa.gov/Features/BlueMarble/

Web linkCoverage

(a lower resolution map)http://mirrors.arsc.edu/nasa/world_500m/

GTOPO30

Web linkCoverage

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.htmlWorldwide elevation

VMAP0

Web linkCoverage

http://geoengine.nga.mil/geospatial/SW_TOOLS/NIMAMUSE/webinter/vmap0_legend.htmlWorldwide

Other data sources

♦ http://www.nationalatlas.gov/atlasftp.html

♦ http://www.census.gov/geo/www/cob/bdy_files.html

♦ http://data.geocomm.com/catalog/US/group21.html

I B M ® I L O G ® J V I E W S M A P S 8 . 6 357

http://mirrors.arsc.edu/nasa/world_500m/
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://geoengine.nga.mil/geospatial/SW_TOOLS/NIMAMUSE/webinter/vmap0_legend.html
http://www.nationalatlas.gov/atlasftp.html
http://www.census.gov/geo/www/cob/bdy_files.html
http://data.geocomm.com/catalog/US/group21.html

I B M ® I L O G ® J V I E W S M A P S 8 . 6358

Symbols
.img file 63
.ivl file 63, 277

A
addMap method 36
Alpha Property Editor 252
altitude provider property 33
annotations 263

bean, customizing 263
Area of Interest Panel bean 231
attributes 106
azimuthal projections 160

B
beans

Area of Interest Panel 231
Compass 262
Coordinate Panel Factory 260
Coordinate System Editor 241
Coordinate Viewer 245
Display Preferences Editor 243
Dynamic Style Setting Panel 250
Legend Panel 239
Map Layer Tree Panel 248
Map Overview 229
Map Style Property Sheet 251
Multithread Monitor 259
Scale Bar 234
Scale Control Bar 236
Toolbar 257
Zoom Control Panel 237

C
cache algorithm 290, 292
Cartesian offset 165
Cascading Style Sheet 309, 350, 352
central

meridian 165

parallel 165
CFCC 118, 120
Color Model Property Editor 252
Color Property Editor 253
Compass bean 262

customizing 262
conformal projections 161
conic projections 159
controlling renderer parameters 53
Coordinate Panel Factory bean 260
coordinate system

geocentric 172
geographic 172
projected 172

Coordinate System Editor
bean 241
customizing 242

coordinate systems 106, 324
Coordinate Viewer bean 245
createTiles method 341
cylindrical projections 158

D
data source 179

backup paradigm 195
definition 180
ESRI shapefile 181
KML 183
KMZ 183
layer management 195
load-on-demand 297
map feature management 196
MID/MIF 85, 181
Oracle SDO 100
raster 185
renderer management 195
shape 72
shapefile, load-on-demand 81

© Copyright IBM Corp. 1987, 2009 359

I N D E X

Index

SVG 183
threads 201
TIGER 118
TIGER/Line 182
tiled, creating 185
tiling 195
tree 187
using 187
vector 181
writing 195

data sources 356
date line warping 144
datums, predefined 153
DEM raster reader 36
Designer, Diagrammer 345
Diagrammer Designer

maps, using 347
symbols, using 347

Diagrammer integration 345
Display Preferences Editor bean 243
display preferences property 38
DTED

format 91
load-on-demand 92
reader 91

dummy 310
DXF

reader 121
Dynamic Style Setting Panel bean 250
dynamic styles 191

E
Eclipse Rich Client Platform

runtime plugin 355
editors

Alpha Property 252
Color Model Property 252
Color Property 253
Paint Property 254
Percent Property 255

eForward method
IlvProjection class 169

eInverse method
IlvProjection class 171

ellipsoids 150, 165
eccentricity squared 150
equatorial radius 150
overview 150
parameters 150
predefined 150
setting 165
spherical 150

equal area projections 161
ESFromFlattening method

IlvEllipsoid class 150
ESFromPolarRadius method

IlvEllipsoid class 150
ESRI shapefile 181

data source 181
loading 181

exceptions
IlvToleranceConditionException 165, 169, 170
IlvUnsupportedProjectionFeature 165, 169

export
API 66
KML 126
KMZ 126
map features 66
Oracle SDO 115

Export Map dialog 66
exportMapLayers) method 66

F
feature attribute 264
files, exporting KML 126
forward method

IlvProjection class 165, 168
forward projections 168

G
geo-referenced

data 212
image 186

geocentric coordinates 165
geodetic

computation 39, 144
renderers for 318

datums 153
defining a New Horizontal 153

geodetic coordinates 165
GeoTIFF

format 116
reader 116

getLowerRightCorner method
IlvMapFeatureIterator interface 217

getNextFeature method
IlvMapFeatureIterator interface 221
IlvShapeReader class 74

getProjection method
IlvMapFeatureIterator interface 217

GetRegisteredUnit method 337
getTile method

IlvTileController class 281
getUpperLeftCorner method

IlvMapFeatureIterator interface 217
graphic object layers 17
grid

adaptive 24
integrating into map layers 25
latitude longitude 24
layers 24
MGRS 24

I B M ® I L O G ® J V I E W S M A P S 8 . 6360

styling 25
writing 25

GTOPO30
format 127
reader 127
tiling 127

H
hierarchy, styles 16

I
Iabel attribute 264
IlvAbstractBaseGrid class 24
IlvAdjustableDelegateColorModel class 138
IlvAlphaPropertyEditor class 252
IlvAltitudeDataSource property 33
IlvAltitudeProvider class 33
IlvAltitudeProviderProperty class 33, 245
IlvAngularUnit class 338
IlvAreaOfInterestVector class 231
IlvAreasOfInterestProperty 231
IlvAreasOfInterestProperty class 231
IlvAttributeArray class 74
IlvAttributeInfoProperty class 76, 86, 87, 112, 273
IlvColorModelPropertyEditor class 252
IlvContinuousZoomInteractor class 223
IlvCoordinatePanelFactory class 38, 260
IlvCoordinateSystem class 117
IlvCoordinateSystemProperty 263
IlvCoordinateSystemProperty class 24, 241, 245, 302
IlvDBFReader class 75
IlvDefaultAltitudeProvider class 33
IlvDefaultCurveRenderer class 309, 310
IlvDefaultFeatureRenderer class 11, 88, 195, 302,
309
IlvDefaultImageRenderer class 117
IlvDefaultObjectSDOKeyExtractor class 106
IlvDefaultObjectSDOTileLoader class 106
IlvDefaultSDOTileLoader class 103
IlvDefaultTileCache class 290
IlvDelayedDecoration class 25
IlvDiagrammerProject class 348
IlvDisplayPreferences class 38, 234
IlvDisplayPreferencesProperty class 38, 234, 245
IlvDTEDLayer class 92
IlvDTEDReader class 92
IlvDXFDataSource 121
IlvEllipsoid class

ESFromFlattening method 150
ESFromPolarRadius method 150

IlvFeatureAttribute class 273
IlvFeatureAttributeProperty class 27, 34, 112, 133,
273, 301
IlvFeatureRenderer class 180, 195
IlvFeatureRenderer interface 11, 302

makeGraphic method 302

IlvFeatureSelectorPanel class 118
IlvFreeTile class 277, 279, 280
IlvGeneralPathStyle class 17, 253, 254
IlvGeodeticComputation class 144
IlvGeodeticPathComputation class 39
IlvGeographicCoordinateSystem class 138
IlvGeoTiffReader class 116
IlvGeotiffReader class 117
IlvGraphic 263, 301
IlvGraphic class 27, 53
IlvGraphic object 317
IlvGraphicLayerDataSource 263
IlvGraphicPathStyle class 19
IlvGridStyle class 25
IlvGTopo30Reader class 127, 185
IlvHierarchicalDataSource class 195
IlvImageReader class 93, 94
IlvImageTileLoader class 93, 94
IlvJAdvancedZoomControl class 237
IlvJAreaOfInterestPanel class 231
IlvJAutomaticScaleBar class 38, 234
IlvJCompass class 262
IlvJCoordinateSystemEditorPanel class 241
IlvJDisplayPreferencesEditorPanel class 243
IlvJMapScaleControl class 236
IlvJMapsManagerViewControlBar class 257
IlvJMouseCoordinateViewer class 33, 38, 245
IlvJOverview class 229
IlvKMLDataSource 124
IlvKMLDataSource instance 124
IlvKMLExporter 126
IlvKMLMapExportManager 126
IlvKMLReader 124
IlvKMLReader instance 124
IlvLabeledPointRenderer class 310
IlvLatLonGrid class 24
IlvLayerTreePanel class 248
IlvLinearUnit class 338
IlvMakeMeasureInteractor class 224
IlvManager class 47, 51, 64, 193
IlvManagerLayer class 14, 63, 195, 277
IlvManagerMagViewInteractor class 285
IlvManagerTile class 341
IlvManagerView class 223, 285, 288
IlvManagerViewDecoration interface 24
IlvManagerViewRotateInteractor class 223, 224
IlvMapAnnotationModel class 263
IlvMapAnnotationToolBar class 263
IlvMapAnnotationToolBar.MapMarker 263
IlvMapAreaLabel class 23, 53
IlvMapAttributeFilter class 27
IlvMapCompositeStyle class 22
IlvMapCSSRenderer class 309
IlvMapCurveRenderer class 11, 317, 318
IlvMapDataSource class 64, 91, 100, 181, 195, 297

I B M ® I L O G ® J V I E W S M A P S 8 . 6 361

IlvMapDataSourceModel class 42
IlvMapDataSourceProperty class 42
IlvMapDefaultLabeler class 51, 52
IlvMapDelegateFeatureIterator class 196
IlvMapDXFDataSource 121
IlvMapDXFReader 121
IlvMapDynamicStyle class 11
IlvMapDynamicStylePanel class 250
IlvMapExportDialog class 66
IlvMapExporter class 66
IlvMapExportManager class 66, 115
IlvMapFeature class 10, 11, 75, 103, 112, 195, 273
IlvMapFeatureIterator 121
IlvMapFeatureIterator class 196
IlvMapFeatureIterator interface 10, 74, 92, 94, 104,
112, 117, 124, 128, 196, 212, 214, 216, 221

getLowerRightCorner method 217
getNextFeature method 221
getProjection method 217
getUpperLeftCorner method 217
isGeoreferenced method 212, 217

IlvMapFeatureRenderer 124, 128
IlvMapGeneralPath class 17
IlvMapGeometry class 273, 309
IlvMapGraphic class 11, 317, 318
IlvMapGraphic interface 11
IlvMapGraphic object 11
IlvMapGraphicPath class 72
IlvMapImage class 117
IlvMapInputStream class 64
IlvMapLabeler class 23
IlvMapLabeler interface 51
IlvMapLabelerProperty class 51
IlvMapLabelFactory class 51, 53
IlvMapLabelFactory interface 53
IlvMapLabelingLabel class 53
IlvMapLabelManager class 52, 53
IlvMapLabelStyle class 23
IlvMapLayer class 11, 14, 25, 45, 51, 53, 66, 72, 85,
91, 180, 195
IlvMapLayerTreeModel class 45, 46, 239, 249
IlvMapLayerTreeNode class 14
IlvMapLayerTreeProperty class 14, 45, 239, 249
IlvMapLegendPanel class 239
IlvMapLineLabel class 23, 53
IlvMapLineRenderingStyle class 309
IlvMapLineString class 302
IlvMapLoader class 196, 212, 213, 214

load method 212
makeFeatureIterator method 214
setAttachingAttributes method 214
setDefaultSourceProjection method 212

IlvMapMarker class 302
IlvMapOrthodromyPath class 38
IlvMapOutputStream class 64

IlvMapPanInteractor class 223
IlvMapPoint class 19, 72, 104
IlvMapPointLabel class 23, 53
IlvMapPointRenderer class 11, 302, 317
IlvMapPolyline class 18, 72
IlvMapRaster class 92, 94
IlvMapReusableFeatureIterator class 180, 195, 196
IlvMapStyle class 11, 14, 15, 27, 53, 72, 252, 317
IlvMapStyleBeanInfo class 252
IlvMapStyleController class 11, 26, 250, 287
IlvMapStyleControllerProperty class 26, 250
IlvMapStylePropertySheet class 251, 252
IlvMapText class 20
IlvMapTextRenderer class 11, 317
IlvMapTextStyle class 20
IlvMapUtil class 145
IlvMapZoomInteractor class 223, 257
IlvMGRSGrid class 24
IlvMIDMIFDataSource class 85
IlvMIDMIFReader class 86
IlvMIDReader class 87
IlvMIFCoordinateSystemFactory class 88
IlvMIFFeatureRenderer class 88
IlvMIFPenFactory class 88
IlvMIFReader class 86
IlvNamedProperty class 63, 301
IlvObjectSDODimElement class 106
IlvObjectSDOFeatureIterator class 106
IlvObjectSDOKeyExtractor class 106
IlvObjectSDOLaerMetaData class 106
IlvObjectSDOLayer class 106
IlvObjectSDOWriter class 115
IlvOutputStream class 64
IlvPaintPropertyEditor class 254
IlvPercentPropertyEditor class 255
IlvPersistentObject interface 135, 292
IlvPointStyle class 19
IlvPolylineStyle class 18, 19, 253, 254
IlvProjection class

eForward method 169
eInverse method 171
forward method 165, 168
inverse method 165, 170
isEllipsoidEnabled method 165
isInverseEnabled class 165
setEllipsoid method 165
setGeocentric method 165
setLLCenter method 165
setUsingLongitudeReduction method 165
setXYOffset method 165
sForward method 169
sInverse method 170

IlvProjectionException class 165
IlvProjectionUtil class 167

I B M ® I L O G ® J V I E W S M A P S 8 . 6362

IlvRasterAbstractReader class 33, 36, 101, 133,
185
IlvRasterAltitudeDataSource class 33, 34
IlvRasterBasicImageReader class 93, 185
IlvRasterDataSourceFactory class 185
IlvRasterDTEDDataSource class 201
IlvRasterDTEDReader class 91, 185
IlvRasterGeoTiffReader class 116, 185
IlvRasterIcon class 20, 116, 117, 134
IlvRasterIcon instance 127
IlvRasterImageRenderer class 134
IlvRasterMappedBuffer class 34, 36, 133, 136
IlvRasterProperties class 36, 133, 136, 138
IlvRasterSDOReader class 101
IlvRasterStyle class 20, 252, 255
IlvRasterSubsamplingLoader class 134
IlvRasterTemporaryFileManager class 136, 193
IlvRasterTileLoader class 134
IlvSDMEngine class 44
IlvSDODataSource class 100
IlvSDOExporter class 115
IlvSDOFeatureIterator class 103
IlvSDOLayer class 103, 104
IlvSDOTileLoader class 103, 104, 106
IlvSDOWriter class 104, 115
IlvSeeThroughConfigurationPanel class 225
IlvSeeThroughInteractor class 225
IlvShapeDataSource class 72, 81, 181, 317
IlvShapeDBFReader class

readRecord method 75
IlvShapeFileIndex class 74, 78
IlvShapeFileReader class 74, 75
IlvShapeFileTiler class 181
IlvShapeReader class

getNextFeature method 74
IlvShapeSpatialIndex class 74, 78
IlvSHPReader class 74, 75
IlvThreadedActivityMonitor class 47, 202, 259
IlvThreadedActivityMonitorPanel class 47, 202, 259
IlvThreadedActivityMonitorProperty class 47
IlvThreadedTileLoader class 193, 200
IlvThreadMonitor class 202
IlvTigerDataSource class 118, 119, 182
IlvTigerReader class 119
IlvTilableDataSource class 297
IlvTile class 280
IlvTileCache class 277
IlvTileController class 200, 277, 278, 279, 281, 284,
289

getTile method 281
lockTile method 287
setPrintingErrors method 289
setSize method 283
unlockTile method 287

IlvTiledLayer class 81, 91, 277, 278, 279, 281, 284, 295

setDebugView method 285
IlvTiledLayers class 200
IlvTiledRasterDataSource class 91, 101, 185, 201
IlvTiledShapeDataSource class 81, 181
IlvTileLayer class 277
IlvTileLoader class 200, 277, 295
IlvTileLockFilter class 287

isLockAllowed method 287
IlvTileRasterDataSource class 201
IlvToleranceConditionException class 165, 169, 170
IlvUnsupportedProjectionFeature class 165
IlvUnsupportedProjectionFeature exception 169
IlvWKTCoordinateSystemDictionary class 117
IlvWMSReader class 128
image

importing WMS 186
persistence 135
reader 93

images
from Web Map Servers 186

importing WMS images 186
integration, introducing 345
interactors

continuous zoom 223
distance measuring 224
pan 223
rotate 223
see through 225
zoom rectangle 223

inverse method
IlvProjection class 165, 170

inverse projections 170, 171
writing 169

isEllipsoidEnabled method
IlvProjection class 165

isGeoreferenced method
IlvMapFeatureIterator interface 212, 217

isInverseEnabled class
IlvProjection class 165

isLockAllowed method
IlvTileLockFilter class 287

IVL, file 347

J
JITLoader 136

K
KML

data source 183
exporting 126
reader 124
writer 124

KMZ
data source 183
exporting 126

I B M ® I L O G ® J V I E W S M A P S 8 . 6 363

L
label

layer 23
styling 23

labeling maps 50
Layer Tree Panel 191
layers 13, 14, 22

graphic objects 17
grid 24
label 23
management 195
ordering 192
scales 26
styles 26
styling 191
tiled, creating 297

Legend Panel bean 239
load method

IlvMapLoader class 212
load-on-demand 277

DTED 92
for custom data source 297
implementing for new data source 295
managing errors 289
managing events 289
scale visibility filters 287
shapefile 81

loading
ESRI shapefile 181
map 212

lockTile method
IlvTileController class 287

M
makeFeatureIterator method

IlvMapLoader class 214
makeGraphic method

IlvFeatureRenderer interface 302
map

export, API 66, 126
loading 212
saving 64

Map Builder 345
use of threads in 199

map data 356
world level maps 356

map data, clearing 193
map feature attributes

attaching to objects 301
saving 301

map feature management 196
map features

attributes 273
exporting 66
geometry 273

reading 297
map labeling 50
map labeling, use of threads in 199
Map Layer Tree Panel bean 248
map loader 212

and predefined readers 212
attaching attributes to objects 214
extending 214
georeferenced data 212
using specific renderers 213

Map Overview bean 229
map readers

creating 216
IlvDBFReader class 75
IlvShapeFileReader class 75
IlvSHPReader class 74
optimized 221

Map Style Property Sheet bean 251
MGRS 24
MID/MIF data source 85, 181
monitor

multithread 202
thread 202

Multithread Monitor bean 202, 259
multithreading 101, 199

O
OpenGIS standard 186
Oracle SDO 98

data source 100
export 115
writer 104

P
Paint Property Editor 254
parameters, controlling renderer 53
path

graphic 19
styling 17, 19

Percent Property Editor 255
persistence, image 135
pivot, reader 62
point, styling 19
polyline, styling 18
projection parameters

Cartesian offset 165
central meridian 165
central parallel 165
ellipsoid 165
geocentric coordinates 165
geodetic coordinates 165
longitude reduction 165
unit converter 165

projections
azimuthal 160
conformal 161

I B M ® I L O G ® J V I E W S M A P S 8 . 6364

conic 159
conversion utilities 167
cylindrical 158
defining new 168
equal area 161
overview 157
parameters 165

properties
altitude provider 33
display preferences 38
styles 16
styling, grid 25
styling, label 23
styling, path 17
styling, point 19
styling, polyline 18
styling, raster 20
styling, text 20

Property Editors 252

R
raster

data source 185
management 131
reader 36, 185
styling 20

reader
DEM 36
DTED 91
DXF 121
GeoTIFF 116
GTOPO30 127
image 93
KML 124
pivot 62
raster 36, 185
raster,creating 185
TIGER 119
WMS 128

readRecord method
IlvShapeDBFReader class 75

registerRasterExporter method 66
registerVectorExporter method 66
renderers

controlling parameters of 53
default 302
extending 307
geodetic computation 318
making persistent 306
management 195
overview 302
styling 317

runtime plugin 355

S
saving, maps 64

Scale Bar bean 234
changing appearance of 234

Scale Control Bar
bean 236
customizing 236

scales, layer styles 26
SDM Model 351, 352, 353
setAttachingAttributes method

IlvMapLoader class 214
setDebugView method

IlvTiledLayer class 285
setDefaultSourceProjection method

IlvMapLoader class 212
setEllipsoid method

IlvProjection class 165
setGeocentric method

IlvProjection class 165
setLLCenter method

IlvProjection class 165
setPrintingErrors method

IlvTileController class 289
setRasterExporter() method 66
setSize method

IlvTileController class 283
setUsingLongitudeReduction method

IlvProjection class 165
setVectorialExporter() method 66
setXYOffset method

IlvProjection class 165
sForward method

IlvProjection class 169
shapefile 181

data source 72
introducing 70
reading 72

sInverse method
IlvProjection class 170

source data
backup paradigm 195

spatial reference systems 172
converting 322
creating the coordinate transformation 322
defining the source 322
defining the target 322

spherical ellipsoids, defining 150
standard, OpenGIS 186
style sheet 309
styles 13, 14

dynamic 191
hierarchy 16
inheritance 191
properties 16
using 15

styling
graphic path 19

I B M ® I L O G ® J V I E W S M A P S 8 . 6 365

layers 191
sub-sampling 134
SVG

data source 183
Swing

adding Area of Interest Panel to 231
adding Coordinate System Editor to 242
adding Coordinate Viewer to 245
adding Display Preferences Editor to 243
adding Legend Panel to 239
adding Map Layer Tree Panel to 249
adding Map Overview Panel to 229
adding Scale Bar to 234
adding Scale Control Bar to 236
adding Toolbar to 257
adding Zoom Control Panel to 237

Symbology Panel bean 351
symbols

groups 354
integrating into an application 352
SDM model 351
storing 351

T
text, styling 20
thin client, generating tiled images 341
thread monitor 202
threads

in tile loaders 200
monitor 202
using in data sources 201
using in Map Builder 199
using in map labelling 199

TIGER
data source 118
reader 119

TIGER/Line data source 182
tile loaders, threads 200
tiled images, generating for thin client 341
tiled layers 281

creating 297
saving 291

tiles
cache 290
cached 285
displaying state of 285
empty 285
listeners 289
loaded 285
loading via the API 287
lock counters 285
scale visibility filters 287
setting lock filters 287

tiling 101, 131, 134, 195, 277, 279
ESRI shapefile data source 181
GTOPO30 127

tiling grid
free mode 284
indexed mode 281

Toolbar
adding an interactor 258
customizing 257
replacing an interactor 257

Toolbar bean 257
transform

abridged Molodensky 327
affine 327
concatenated 327
geocentric 328
projection 328

tree
data source 187
map layer 187

U
unit

converters 165
defining 338
management 337
predefined 337
using 339

unlockTile method
IlvTileController class 287

unregisterRasterExporter method 66
unregisterVectorExporter method 66
UPS 24
utilities 145
UTM 24, 245

V
vector data source 181

W
Web Map Servers, images from 186
WMS

image, importing 186
reader 128

writer
KML 124

writers, Oracle SDO 104

Z
Zoom Control Panel

bean 237
customizing 237

I B M ® I L O G ® J V I E W S M A P S 8 . 6366

	Table of contents
	Introducing the main classes
	Reader framework
	Map layers and map styles
	Introduction to layers and styles
	Map layers for graphic objects
	Composite layers
	Label layer
	Grid layers
	Map scales and layer styles
	Map attribute filters

	Map-specific manager properties
	Altitude management
	Altitude management classes
	Using the altitude provider property
	Writing a raster reader for DEM data

	The display preferences property
	The data source property
	Data source tree
	Reloading all data sources

	Map layer tree
	Thread monitoring
	Map labeling
	Map labeling classes
	Using the IlvMapLabeler interface
	The IlvMapLabelManager class
	The IlvMapLabelFactory Interface

	Areas of interest
	Coordinate system
	Persistent symbol model

	Readers and writers
	Overview of readers and writers
	The pivot format reader and writer
	Saved files
	Saving and reloading a map
	Map Export API
	The shapefile reader and writer
	The shapefile reader and writer classes
	The shape data source
	Classes for reading the shape format
	Classes for writing the shape format
	Shapefile load-on-demand
	The IlvTiledShapeDataSource

	The MID/MIF reader and writer
	The MID/MIF classes
	The MIDMIF data source
	Classes for reading the MapInfo Interchange File format
	Classes for rendering the MapInfo Interchange File format

	The DTED file reader
	The image file reader
	The Oracle spatial reader and writer
	The Oracle spatial reader and writer classes
	Using the Oracle SDO data source
	Using tiling and multithreading
	Getting a list of layers
	Relational model classes
	Object relational model classes
	Oracle SDO export

	The GeoTIFF reader
	The TIGER/Line reader
	The DXF reader
	The KML reader and writer
	The KML reader and writer
	Exporting KML files

	The DEM/GTOPO30 reader
	The Web Map Server reader
	The SVG reader

	Raster image management
	Raster image management classes
	The IlvRasterAbstractReader class
	Image tiling and subsampling
	Persistence of images
	The IlvRasterMappedBuffer class
	The IlvRasterProperties class

	Graphical User Interface beans and interactors
	Geodetic computation and date line wrapping
	Utilities

	Ellipsoid and geodetic datums
	Modeling the earth
	Ellipsoids
	Geodetic datums
	Map projections
	Introducing map projections
	Predefined projections
	Projection methods and parameters
	Creating a new projection

	Spatial reference system

	Creating a map application using the API
	Overview
	Creating data source objects
	Data source
	Vector data sources
	Raster data sources

	Using data sources
	Overview
	Integrating the data source
	Layer styling considerations

	Clearing map data
	Developing a new data source
	Printing
	Overview of multithreading
	Using threads in tile loaders
	Using threads in data sources
	Using the IlvThreadMonitor
	Generic code sample for creating a map
	Using readers
	Code examples for using readers
	The map loader
	Developing a new reader
	Optimizing the reader

	Map GUI interactors
	The See-Through interactor
	Using the GUI beans
	Map Overview
	Area of Interest panel
	Scale Bar
	Scale Control Bar
	Zoom Control panel
	Legend panel
	Coordinate System Editor
	Display Preferences Editor
	The Coordinate Viewer
	The Map Layer Tree
	The Map Layer Tree bean
	The Dynamic Style Setting panel bean
	The Map Style Property Sheet bean
	Property editors

	The Toolbar
	Multithread Monitor
	Coordinate Panel Factory
	Compass
	Using annotations
	The Symbology Tree View bean
	Overview
	Adding the bean to an application
	Symbology panel actions
	Making the model persistent

	Handling map features
	Using load-on-demand
	Load-on-demand
	Structure of the tiling grid (indexed mode only)
	Size of the tiling grid in indexed mode
	Structure and size of the tiled layer (free mode only)
	Displaying the state of tiles
	Controlling load-on-demand
	Managing errors and load-on-demand events
	Caching tiles
	Saving a tiled layer
	Writing a new cache algorithm
	Writing a tile loader for a custom data source
	Load-on-demand for hierarchical data sources

	Manipulating renderers
	Overview
	Overview of renderers
	Creating a colored line renderer
	Making a renderer persistent
	Extending an existing renderer
	Using CSS to customize the rendering process
	Renderers and styling
	Rendering with a geodetic computation

	Handling spatial reference systems
	Converting between two spatial reference systems
	Converting coordinates between coordinate systems
	Predefined math transformations
	Transforming data
	Adding Graphic Objects on Top of an Imported Map
	Managing units

	Pregenerating tiled images for a thin client

	Integration
	Overview of integration
	Integrating with JViews Diagrammer
	Overview
	Using symbols and maps in the Designer for JViews Diagrammer
	Integrating a JViews Diagrammer project into an application

	Using symbols through the API
	Overview of symbols
	Storing symbols
	Integrating symbols into an application
	Populating the SDM model
	Creating symbol groups

	Using JViews Maps in SWT applications

	Map data
	Index

