
IBM ILOG JViews Maps V8.6

Introducing JViews Maps

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.



Copyright notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

IBM ILOG JViews Maps copyright

For further copyright information see  <installdir> /license/notices.txt

http://www.ibm.com/legal/copytrade.shtml


Table of contents

About JViews Maps....................................................................................................7
Overview......................................................................................................................................8

Cartography.................................................................................................................................9
What is a map?............................................................................................................................................10
Spatial reference systems............................................................................................................................11
Coordinate systems......................................................................................................................................12
Map projections............................................................................................................................................15
Map data formats.........................................................................................................................................19

The added value of JViews Maps ............................................................................................21
Overview.......................................................................................................................................................22
Display of complex maps..............................................................................................................................23
Performance.................................................................................................................................................24
Component libraries.....................................................................................................................................25
Map Builder..................................................................................................................................................26
Map preparation...........................................................................................................................................27
Advanced map animation.............................................................................................................................29

Typical uses of JViews Maps...................................................................................................31
Overview.......................................................................................................................................................32
General use..................................................................................................................................................34
Typical actions..............................................................................................................................................35

Developing with the SDKs........................................................................................................39

Basic concepts.........................................................................................................41

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S



Usage and design concepts.....................................................................................................43
Usage concepts............................................................................................................................................44
Design concepts...........................................................................................................................................45
Development approach................................................................................................................................46

Map preparation........................................................................................................................47
Overview.......................................................................................................................................................48
Importing map data......................................................................................................................................49
Merging........................................................................................................................................................51
Contextual information display.....................................................................................................................52
Coordinate system.......................................................................................................................................53
Grids, units, and measures...........................................................................................................................55
Export...........................................................................................................................................................57

Map animation...........................................................................................................................59
Overview.......................................................................................................................................................60
Performance.................................................................................................................................................61
Map manipulation components....................................................................................................................62
Symbology....................................................................................................................................................63

Architecture..............................................................................................................65
Overview....................................................................................................................................66

Populating the map...................................................................................................................67
Map data sources.........................................................................................................................................68
Diagram data sources..................................................................................................................................69
The SDM engine..........................................................................................................................................70

Styling........................................................................................................................................73
Overview.......................................................................................................................................................74
The map theme............................................................................................................................................75
JViews Diagrammer style sheets.................................................................................................................76
Symbols........................................................................................................................................................77
Graphics SDK for experts.............................................................................................................................78

Developing a dynamic map.....................................................................................79
Overview....................................................................................................................................80

The process flow.......................................................................................................................81
Overview.......................................................................................................................................................82
Defining a set of background maps..............................................................................................................84
Toolchain for an application without predefined background maps..............................................................86

Creating a map with the Map Builder......................................................................................87
Overview.......................................................................................................................................................88
Importing map data sources.........................................................................................................................89
Styling properties..........................................................................................................................................90
Setting preferences......................................................................................................................................91

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 64



Saving the map.............................................................................................................................................92

Handling symbols.....................................................................................................................93

Prototyping the application with the designer.......................................................................95

Index..........................................................................................................................97

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 5



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 66



About JViews Maps

Tells you about JViews Maps in general, describes background cartographic concepts and
presents the key benefits and some typical uses of JViews Maps.

In this section

Overview
Provides a short description of JViews Maps.

Cartography
Introduces the cartographic concepts that any mapping product must address.

The added value of JViews Maps
Presents the key benefits of JViews Maps.

Typical uses of JViews Maps
Gives examples of use of JViews Maps.

Developing with the SDKs
Explains how you can extend your development of maps with the software development kit.

© Copyright IBM Corp. 1987, 2009 7



Overview

This is your starting point for finding out about JViews Maps.

IBM® ILOG® JViews Maps is built on IBM® ILOG® JViews Diagrammer.

JViewsMaps comes with a set of easy-to-use GUI-based tools for rapidly developing dynamic
map applications and designing symbols to be placed on such background maps.

JViews Maps includes the rule-based presentation layer based on the Styling and Data
Mapping (SDM) features of IBM® ILOG® JViews Diagrammer. In purchasing JViews Maps
you not only acquire a full range of advanced mapping features, but also the versatile
look-and-feel configuration facilities and powerful graphics framework of JViews Diagrammer
for easily changing visual representations as internal application data changes.

You should read Before you start to understand the purpose and relationship of each tool.

This section looks at maps used as backgrounds to applications and provides information
about the IBM® ILOG® JViews Software Development Kits (SDKs).

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 68



Cartography

Introduces the cartographic concepts that any mapping product must address.

In this section

What is a map?
Presents the different categories of map.

Spatial reference systems
Introduces and illustrates what a spatial reference system is.

Coordinate systems
Introduces and illustrates coordinate systems.

Map projections
Presents and illustrates the different map projections.

Map data formats
Describes brieflymap data formats and links to more detailed information about map formats.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 9



What is a map?

In general, we all have experience of paper travel maps or electronic maps as found in
Google Maps™ or Google Earth™ . Unlike paper maps, electronic maps provide the ability
to display the data you need, the way you need it.

There are three main categories of map:

♦ Vectorial maps are a set of points, lines or areas and can contain additional data such as
road names. You can decide on the look and feel of the display.

♦ Raster maps as satellite views. These provide realistic views of the earth, but are often
heavy and can be confusing.

♦ Elevation maps that provide altitude information for any place on the globe.

All three categories can be mixed together in a single map display.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 610



Spatial reference systems

Different reference systems exist, but georeferencing services encompass the spatial
positioning of objects on the surface of the globe and the superimposition of data from
different sources. They provide a framework for modeling the earth.

The earth used to be modeled as a sphere, but in reality it has an irregular shape and the
modeling framework has to take into account the irregularities.

The earth modeled as an irregular shape

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 11



Coordinate systems

Real object coordinates can be expressed in different systems. The main systems are:

♦ Geographic coordinate system

♦ Geocentric coordinate system

♦ Projected coordinate system

Geographic coordinate system
In a geographic coordinate system, latitude and longitude are used and are represented by
two angles from the center of the earth:

♦ Latitude = south to north +90 or 90N = north pole, -90 or 90S = south pole, and 0 is on
the equator.

♦ Longitude = east to west. 0 is in England.

An example of coordinates using the geographic: longitude and latitude with optional altitude
is shown in Geographic coordinate system.

Geographic coordinate system

In a geographic coordinate system the angular distance is expressed in degrees and minutes,
for example, New York:

♦ Latitude 40 Degrees 59'N

♦ Longitude 73 Degrees 39'W

A geographic coordinate system is defined by:

♦ The unit system of coordinates (angular unit and linear unit).

♦ The prime meridian:

● For example, the Greenwich meridian.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 612



♦ The horizontal datum:

● A horizontal datum is used to represent the shape of the earth.

● The datum is defined by an ellipsoid (the default is a sphere) and a translation of the
ellipsoid (position of the ellipsoid relative to the center of the earth), see Horizontal
Datum:

Horizontal Datum

Geocentric coordinate system
An example of coordinates using the geocentric: three-axis Cartesian systemwith the center
of the earth as the origin is shown in Geocentric Coordinate System:

Geocentric Coordinate System

A three-axis Cartesian system is defined by:

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 13



♦ Its origin, the center of the earth.

♦ Its x-axis, which lies in the plane containing the equator and which is oriented towards
the Greenwich meridian.

♦ Its y-axis, which lies in the plane containing the equator and which is oriented towards
the longitude 90 Degrees East of Greenwich.

♦ Its z-axis, which corresponds to the polar axis and which is oriented northwards.

A geocentric coordinate system is defined by:

♦ The unit system of coordinates (linear units) on the axes.

♦ The horizontal datum.

Projected coordinate system
A projected coordinate system is a representation of the earth on a 2-D surface. Units are
attached to each axis of a coordinate system. For example, for geographic coordinates:

♦ x- and y-coordinates expressed in degrees

♦ z-coordinate expressed in meters

A kernel unit is defined for each type of unit.

♦ Length in meters

♦ Angles in radians

Coordinate systems are used to display maps and a map projection is used to reduce the
dimensions to two. A projected coordinate system is defined by:

♦ The associated geographic coordinate system

♦ The projection

♦ The unit system of projected coordinates

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 614



Map projections

The Earth is a globe and displaying it on a plane requires complex mathematical
transformations known as projections. Map projections are attempts to portray the surface
of the earth or a portion of the earth on a flat surface. Some distortions of conformality,
distance, direction, scale, and area always result from this process. Some projectionsminimize
distortions in some of these properties at the expense of maximizing errors in others. Some
projections are attempts to only moderately distort all of these properties. Map projections
convert geographic points, represented by a longitude and a latitude, to Cartesian coordinates
in a planar coordinate system.

♦ Cylindrical projections are precise around the equator

Cylindrical projection

♦ Conic projections are good for regions other than the equator

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 15



Conic projection

♦ Azimuthal projections are used for regions around the Poles

Azimuthal projection

You use a particular projection depending on the area of the globe that interests you.
Mercator preserves the heading and is useful for navigation. Lambert (conic) distorts distance.
Lambert 1 is used for Northern France and Lambert 2 for Southern France.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 616



Equidistant cylindrical projection

Lambert conformal conic projection

Lambert azimuthal equal area projection

The ideal characteristics for a projection would be:

♦ Meridians and parallels crossing at right angles

♦ Converging meridians

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 17



♦ Equidistant parallels

♦ The shortest distance between two points is represented by a straight line

♦ Surface areas are represented by a constant ratio

♦ Surface contours have an accurate representation

♦ The whole projection is based on a uniform scale

The perfect projection does not exist, so you have to choose the best suited to your needs,
depending on the main properties of your application and the geographic areas used in your
application.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 618



Map data formats

There are many types of map data formats that can be read into a map. Many of these are
governed by cartographic Standards.

JViews Maps handles a large number of these formats. See Data formats.

JViews Maps also allows you to import (read from) and export (write to...) specific raster,
vector, and database formats.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 19



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 620



The added value of JViews Maps

Presents the key benefits of JViews Maps.

In this section

Overview
Gives an overview of the benefits of JViews Maps.

Display of complex maps
Explains why JViews Maps can display complex maps.

Performance
Explains why JViews Maps brings performance.

Component libraries
Describes the advantages of component libraries.

Map Builder
Describes the advantages of the Map Builder.

Map preparation
Describes the map data formats that are handled by JViews Maps.

Advanced map animation
Presents more advanced features for map animation.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 21



Overview

IBM® ILOG® JViews Maps is the solution for delivering asset-management map displays.
Its completely open API is designed to hide the complexity of building such displays by
handling all the lower-level mapping engine functionality. You can concentrate on the data
you want to display, rather than map formats, projections, spatial reference systems, huge
data sets, and so on.

JViewsMaps provides a unique combination of advanced technology support and in particular:

♦ High performance background maps for zooming, panning, rotating, and so on ...

♦ Advanced overlays as symbols that can, for example, change state according to specific
sensors.

Using the JViews Maps advanced technology you can mix rich background maps with
interactive foreground objects. A mixture of the two is required by most if not all supervision
applications needed to monitor assets within their earthly context (town map, country map,
or building floor plans). Refer to Before you start to understand the purpose and relationship
of background maps and the overlay parts of JViews Maps.

In general, Geographical Information Systems (GIS) focus on map creation, such as placing
news roads or buildings on a map, andmap distribution across servers and networks. JViews
Maps effectively complements GIS by reusing GIS data and by allowing for fast and efficient
applications that permit quick background map development.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 622



Display of complex maps

JViews Maps can display complex maps with numerous overlaid entities due to:

♦ Advanced rendering techniques

♦ Smart data loading capabilities

♦ Multithreaded components

There is a full spectrum of map display capabilities, including the most popular data format
readers and writers, geodesic computations such as projections, ellipsoids, and datum, and
hundreds of predefined coordinate systems. JViews Maps lets you load maps quickly and
create and animate multilayered and multiscale maps with user-defined visual
representations. This is achieved by styling properties such as colors or transparency.

Multithreaded components mean that lengthy operations happen in the background so that
the application is never frozen waiting for a computation to end. Users can continue working
on others tasks and see the results when they are ready. It also greatly helps to improve the
perceived performance.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 23



Performance

One of the most striking features is the accelerated performance that leverages
load-on-demand and pixel-on-demand for handling very large data sets while minimizing
memory footprint. Map labels contribute to easily readable displays. JViewsMaps has efficient
redraw options and the standard set of interactions such as panning, zooming, selecting,
and annotating.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 624



Component libraries

JViews Maps contains component libraries and not ready made tools with a defined feature
set. This means that users can easily:

♦ Modify or extend any existing features and behavior to fit their needs.

♦ Design the application to fit their architecture and their specific needs.

This flexibility is important for freedom of choice in new application development and also
allows the enrichment and extension of legacy applications.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 25



Map Builder

The Map Builder is built from the libraries and is delivered in the source code. Although the
Map Builder is a tool for defining the background maps of an application, it also serves three
other functions important for getting started with the product quickly:

♦ Map preparation tool: Using theMap Builder you can prepare a map that mixes different
data sources (satellite, intelligence, transportation networks, …) and specify what you
want to see, when you want to see it, and how you want to see it. This means that you
always get a meaningful display, for example, you do not need to see streets at worldwide
level.

♦ SDK exploration: The Map Builder offers an easy way to accelerate your evaluation of
the wide variety of features offered by the SDK.

♦ Jump starting development: The Map Builder is delivered as source code and built
using IBM® ILOG® JViews Maps SDKs. If you want, you can reuse code fragments in
your final application.

With the Map Builder, you have access to multiple coordinates and measuring unit systems;
contextual grids in Longitude and Latitude or the Military Grid Reference System (MGRS)
with minimized memory and CPU footprint.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 626



Map preparation

JViews Maps offers the fusion of vector, raster, and terrain elevation data. The data is
reprocessed on-the-fly allowing you to mix and match map data whatever its storage
parameters are.

You can display contextual information by separating different contexts onto different layers,
since different information is visible at different zoom levels if you use the zoom-sensitive
look and feel. JViews Maps provides multilayered and scaled maps. You can define your own
theme for a map by configuring individual layers differently.

Data formats
JViews Maps allows you to import many different map formats.

Vector formats:

♦ ESRI Shape (see Shapefile format)

♦ TIGER/Line

♦ DXF (see DXF format) files (.dxf)

♦ KML and KML Zipped (KMZ) formats (.kml, .kmz) (see KML/ KMZ)

♦ MapInfo MIF/MID (see MIF file)

♦ SVG files (.svg)

Raster formats:

♦ GeoTIFF (see GeoTIFF format)

♦ GIF

♦ JPG

♦ PNG

♦ TIF/TIFF files

♦ Images from a Web Map Server (see WMS standard)

Databases:

♦ Oracle® (see Oracle Spatial)

Terrain elevation:

♦ NIMA DTED® 0, 1, and 2 (see DTED format)

♦ GTOPO30 DEM

The products offer facilities for exporting various vector, raster, and database formats:

♦ Vector: ESRI Shape

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 27



♦ Raster: GeoTIFF

♦ Database: Oracle®

GIS transformations
Dynamic geodesic management is provided through:

♦ 1944 predefined coordinate systems (projection, ellipsoid, and datum parameters)

♦ 27 predefined projections plus user-defined

♦ 58 ellipsoid forms plus user-defined

♦ Molodenski DATUM

♦ Well Known Text (WKT) parsing

Contextual grids are supplied as:

♦ Longitude and latitude

♦ Military Grid Reference System (MGRS) (rather like the Universal Transverse Mercator
(UTM) system)

JViews Maps offers multiple coordinate systems and the management of multiple units of
measurement.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 628



Advanced map animation

The use of a background map and symbols that can be moved in real time across the map,
and which can be panned, zoomed and so on, provide advanced map animation features.

There are graphics editing facilities provided by the Symbol Editor for JViews Diagrammer
to help you create your own custom symbols, see Using the Symbol Editor.

Optimized performance
Modern applications often require large map data sets as satellite and Unmanned Aerial
Vehicles (UAV) views or exhaustive transportation networks to realistically depict situations.

JViews Maps is optimized to efficiently handle such large data sets to provide video-like
performance while minimizing memory requirements.

For example, by leveraging load-on-demand and dynamic data subsampling, the memory
footprint is minimized, even though the data contains millions of objects. Display performance
is based on disk and RAM caching as well as advanced quadtree rendering and automated
clipping and tiling. This performance not only provides a better experience for the user, but
also saves processing time for other application CPU intensive tasks.

You will be impressed by the reactivity of the interactive zooming and panning, the storage
and navigation facilities for Areas of Interest, and the map rotation capability for GPS-like
application development.

Symbology
JViews Mapsleverages the rule-based presentation layer of JViews Diagrammer to update
the appearance and position of assets when underlying application data, such as status or
positions, evolve. You can create your own symbology and manipulate vector, raster, and
complex objects. Symbols support hierarchical logical grouping. See the JViews Diagrammer
document Using the Symbol Editor for details of how to create your own symbols.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 29



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 630



Typical uses of JViews Maps

Gives examples of use of JViews Maps.

In this section

Overview
Describes the application fields of JViews Maps.

General use
Gives general tips for using JViews Maps.

Typical actions
Describes typical actions when creating maps.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 31



Overview

You can use JViews Maps for:

♦ Network management systems

The network elements are georeferenced and displayed on digital maps. JViews Maps
manages the type of map to be displayed and displays meaningful data at each zoom
level. Overviews display high level networks (summaries) with continent or country maps
underneath. Network operators can drill down into more detailed views: they zoom in on
a specific region or even on a city, where they can see the network details. In these cases,
JViews Maps loads more precise maps that are more convenient for city-level views.

The following figure shows an example of part of a network.

Network management system example

♦ Supply Chain Management, Transportation

Company assets such as trucks, warehouses, and customer sites are displayed on maps
to make the supply chain more readily appreciated. Warehouses can be displayed as
symbols upon maps and routes can be displayed as links or as precise road-routes.

The following figure shows an example of part of a network.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 632



Supply Chain Management transportation example

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 33



General use

JViewsMaps canmanage accurate map data and projections for asset mapping applications.
Such applications need to combine map data coming from various sources to display the
operations.

JViews Maps has the flexibility and high performance necessary for fast response time.
Typically, you would want to read in the map data, create a map theme and then place and
animate symbols on the background map. You can use your own predefined theme and apply
it to different sets of data.

In the Map Builder, you can read the data and apply the theme in an easy-to-use
point-and-click editor. You can also save your map application, making the configuration
settings persistent. Data and theme can be saved separately.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 634



Typical actions

Reading the Data
You import different data sources into a map to provide different views of the data contained
in the map. Each data source is associated with a different map layer.

For example, you might start with a shape file, to provide an uncomplicated view of the
world as a backdrop.

World map in an application

Then you could refine the esthetic representation of the map by importing a GeoTIFF format
map of the world.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 35



World map in GeoTIFF format

Street level views can be added from GeoTIFF format and ESRI/Shapefile format data
sources.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 636



Street data in Los Angeles from an ESRI/Shape data source

An example of the series of typical data source types outlined here can be found in An
example map in Using the Map Builder .

That particular example is based on North America and Los Angeles in particular, but you
could equally well import your own data sources for other parts of the world.

JViews Maps is supplied with the Map Data disk, which includes general map formats that
can be distributed free.

Themes and styling
For each map layer you can decide its look and feel in terms of its color, thickness
transparency, and so on, and you can define settings for specific zoom levels so that the
look and feel changes when users zoom in and out. The look and feel of each layer and its
zoom triggers represent a map theme. This is used to visualize only meaningful information
for each context.

Placing symbols
Symbols can be created using the Symbol Editor and added to maps using the Designer for
JViews Diagrammer.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 37



You can then load the Designer project file that contains the background map developed
with the Map Builder and the Symbols added with the Designer, and load it into your
application. For more information about symbols, see the JViews Diagrammer document
Using the Symbol Editor.

The Tools for the job
IBM® ILOG® provides a sample application, theMap Builder , that includes the data reading
and writing facilities and the layer styling facilities for building theme in a point-and-click
editor. The sample code is accessible and you can easily customize it.

The product also includes the Designer for JViews Diagrammer. The Designer is a
point-and-click editor used for writing style rules that control the styling of nodes on the
map.

You can switch easily between these tools to hone your application. Typically, you use the
Map Builder to speed up application development time by reading in the data sources in
different formats and then creating the map theme by styling the layers. Then you would
switch to the Designer to write style rules to change the appearance of nodes depending on
certain conditions and to design symbols to represent nodes on the map.

If you need more than these easy-to-use GUIs have to offer, there is a full-featured SDK for
refining and customizing your application. In addition to the general mapping API of JViews
Maps, you have access to the Styling and Data Mapping (SDM) package of the JViews
Diagrammer API for the styling of nodes to place on a background map, and the whole of
the JViews Framework API with its powerful graphics framework. You have full control over
what you do.

Key Strengths of JViews Maps
In the application, the up-to-date data can be displayed against the background map with
the appropriate symbols correctly positioned.

The key strengths of JViews Maps make it ideal for asset-mapping applications.

♦ Components, such as beans, readers, map displays, andmap views, are easily customizable
to adapt to your needs. Your existing system architecture can be maintained.

♦ Performance allows for almost instantaneous zooming in and out and the system can
manage huge amounts of data.

♦ Animated symbols can show the movement of resources on the map.

Since the map data and the map theme can be saved separately, the map theme can be used
to style maps for different regions so that they have the same color scheme and visual
properties. The final user can then reuse this theme and apply it to the appropriate data
source at run time.

Map applications built with JViewsMaps can be an essential part of a decision support center
whether on or offline.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 638



Developing with the SDKs

You may have specific requirements in your application that cannot be satisfied by the
pre-defined behavior of the Map Builder or the Designer alone. For example, if your
application requires specialized interactions or if you need to implement the data model
interface to connect to your application data.

The SDK offers you a comprehensive API to use or extend the Java™ classes involved in the
creation of your map-based application. You can basically access all the entities involved in
your application, enrich them with new behavior, or modify predefined behavior. See the
Programmer's documentation for more detailed information.

SDK layers in JViews Maps

All JViews libraries are built on top of the Java 2D™ and Swing libraries, with no
platform-specific code. This means that applications developed with JViews Maps run on
any platform that supports Java™ .

On top of this low-level layer is the JViews Framework layer, which includes among others
efficient data structures, prebuilt user interaction services, and a printing facility.

Above JViews Framework is IBM® ILOG® JViews Maps, which provides a wide range of
map manipulation and display services. It is built on the data structures and I/O facilities of
JViews Framework.

At the same level, there is JViews Diagrammer, which provides a wide variety of displays
consisting of custom graphic objects that are data-aware. This means that the graphic objects
in the display can change their appearance as the underlying data model changes. For
example, a graphic object that represents a vehicle can have its color change if its status
field changes.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 39



The JViews Diagrammer SDK is needed when you display interactive objects on top of your
maps (the symbols), whereas the IBM® ILOG® JViews Maps SDK handles the background
map manipulations.

IBM® ILOG® JViews Diagrammer uses a Model-View-Controller (MVC) architecture that
will be very familiar to Java™ programmers used to the Swing structure. Its purpose is to
separate the data model from the views and connect the two with a rule-based style manager
that controls the look of the objects based on the data values.

JViews Diagrammer calls this mechanism Styling and Data Mapping (SDM). It is used by
JViews Maps to store and manipulate any interactive object that appears on top of a map.

Thus, JViews Maps uses two distinct data structures:

♦ One for storing the map data that is relatively static (such as definitions for roads and
boundaries).

♦ SDM for storing information about the custom objects of an application.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 640



Basic concepts

Introduces you to the important concepts and features of JViews Maps

In this section

Usage and design concepts
This section gives a brief explanation of what IBM® ILOG® JViews Maps is designed to do
from the perspective of a user, the design concepts that support the approach, and how to
get started with your project.

Map preparation
Describes the steps involved in the preparation of a map.

Map animation
Describes the ways in which you can animate a map.

© Copyright IBM Corp. 1987, 2009 41



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 642



Usage and design concepts

This section gives a brief explanation of what IBM® ILOG® JViews Maps is designed to do
from the perspective of a user, the design concepts that support the approach, and how to
get started with your project.

In this section

Usage concepts
Describes the usage of JViews Maps.

Design concepts
Lists the advantages of JViews Maps in terms of design.

Development approach
Presents the two possible ways to approach the development of maps.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 43



Usage concepts

IBM® ILOG® JViews Maps is designed to help you to create map displays or build any
application that uses maps.

It was designed to be used as follows:

1. Import the map data and design the look and feel. IBM® ILOG® JViews Maps can read
map data frommultiple map file formats and storage locations and merge it into a single
view. You can then transform the map into a new projection, add styling, and create a
customized theme to reuse with other maps.

2. Animate your map. You can zoom, pan and load new map data with minimum delay. You
can also add and move symbols that have been added to your map using Designer for
JViews Diagrammer. IBM® ILOG® JViews Maps can move large datasets in seconds
and, because of its multithreaded design, it keeps running while performing multiple
memory and CPU-intensive tasks.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 644



Design concepts

The design of JViews Maps delivers:

♦ Productivity, through high-level components and numerous off-the-shelf features that
enable you to build advanced prototypes in just days or weeks.

♦ Flexibility, from the use of advanced design patterns and a Model-View-Controller (MVC)
architecture. JViews Maps is a pure object-oriented toolset built for Java™ developers.

♦ Ease of integration: JViews Maps is based on standards such as Java2 and XML, and on
cartographic Standard map formats. It is a development toolkit built with an open
architecture that facilitates integration with third-party solutions and allows you to create
new map-enabled applications easily or enrich your legacy systems.

♦ Optimized performance and a minimized memory footprint: JViews Maps can display
large data sets in seconds without interrupting the system.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 45



Development approach

The way you use JViews Maps depends on your requirements. If the map area is decided at
run time, you can use the API to read and style map data.

♦ For importing map data during application execution, use the SDK components and
user-interface elements:

● Beans defining numerous GUI features.

● Map Builder, a fully functional map preparation application, supplied with source code
for you to customize and use in your own applications.

● Numerous demos, once again supplied as source code, and focusing on discrete
features.

● An open API allowing full customization.

♦ When a map area is known in advance, use the Map Builder to prepare it beforehand.
JViews Maps provides a prepared map as output containing either the map description
only or all of the map data packed in a single file. The prepared map can be called in the
final application with just a single line of code.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 646



Map preparation

Describes the steps involved in the preparation of a map.

In this section

Overview
Summarizes the procedure for preparing a map.

Importing map data
Explains how to prepare a map by importing data.

Merging
Explains the possibilities of merging different map data formats.

Contextual information display
Explains how to customize the display of map information.

Coordinate system
Describes the coordinate systems and their possible transformations.

Grids, units, and measures
Describes the grid systems, units, and measures supported by JViews Maps.

Export
Lists the export options of a map.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 47



Overview

To prepare a map you import and merge maps and map data into a single view. You can
decide what to make visible, when and how, style the data into a theme, transform the map
according to the required projection, and apply unit and measure preferences. You can also
export the map, if required.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 648



Importing map data

You create newmaps by exploiting the data contained in your existing electronic maps. Also,
you can update your new map by importing additional map data at anytime during map
preparation or at run time and without interrupting the system.

Map data model properties
JViews Maps integrates the various map data sources using a set of properties that define
the way your map will display and react to run-time changes.

Properties
By default, JViews Maps embeds the following properties into a working map:

♦ The coordinate system, including ellipsoid and datum, to use to display the map.

♦ Ground and altitude measuring units such as meters or feet, but also the preferred way
to display coordinates, such as Degrees Minutes Seconds (DMS).

♦ A data source list, specifying where map data comes from.

♦ A layer tree, arranging the diverse data sources and settings into layers.

♦ A styling theme, defining the colors, thickness, visibility, and so on, of each layer,
depending on the scale factor.

♦ A list of areas of interest.

Extending and changing properties
The map properties can be extended or changed at any time during map preparation or final
application execution. For example, you can implement applications to allow for a change
of map projection or data source at run time.

About readers
Readers are provided that read map data in its native format, that is, without any need for
preprocessing.

Formats supported
Readers can read a wide range of file formats containing the map and map data such as
geometry and topology. Supported File Formats shows the supported file formats:

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 49



Supported File Formats
Non-GeoreferencedGeoreferencedTypes

DXF format files (.dxf)ESRI Shapefile formatfiles (.shp)Vector

TIGER/Line (.RTx)

MapInfo (.mif, .mid)

GIF, JPG, PNG, TIFGeoTIFF format(.tif)Raster

Images from a Web Map Server.

Regular IBM® ILOG®  JViews Maps files (.ivl)Vector & Raster

KML/ KMZ files (.kml, .kmz)

SVG files

NIMA DTED format 0/1/2Terrain Elevation

GTOPO30 DEM

Oracle SpatialOracle®  SpatialDatabases

Additionally, you can use the open APIs to import other map formats.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 650



Merging

JViews Maps can merge vector, raster, and elevation data from multiple map file formats
and storage locations. You can prepare a map using georeferenced data (that is, systems
defining projection, ellipsoid, and/or datum information), and non-georeferencedmap assets.
For example, you can create a map with a UTM projection, import data from a CADRG map
(with an Arc projection), a shape file based on a Lambert projection, and overlay these with
a JPEG image. JViewsMaps performs a reverse projection on the data sources into a common
system such as Longitude/Latitude. The support offered is as follows:

♦ All georeferencing systems are supported. (The list of more than 1900 reference systems
in WKT format is easily accessible).

♦ For non-georeferenced map assets such as GIF and JPEG files, JViews Maps provides
components and user interfaces that use calibration and georeferencing mechanisms.

♦ Images using unknown projections can be calibrated using a polynomial interpolation.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 51



Contextual information display

Imported maps contain a vast amount of data that needs to be organized and presented in
a way that is easily understood and suitable for its intended purpose. For example, you may
want to create a map in which you can zoom smoothly from a small scale view to large scale
view while displaying only information relevant to each particular zoom level. To do this,
data sets need to be associated, displayed, changed, hidden, and so on. Additionally, you
will want to use styling properties, such as color and transparency, to make the information
easy to understand. JViews Maps uses layers and styling to achieve these goals.

Layers
JViews Maps defines a recursive hierarchy for map data. For example, you can define:

♦ One folder or layer for all roads with subfolders or distinct layers for motorways, major
roads, streets.

♦ One folder or layer for public transport with subfolders or distinct layers for airports,
railway stations, bus stations, and so on.

JViews Maps allows you to zoom from worldwide views down to a street level view using
different data sets, but presenting a smooth transition to the end user.

Importing data into layers
Data is imported to populate layers as follows:

♦ Automatically:

● When you import a map or map data, it is automatically assigned to a layer.

● When you loadmultilayeredmaps such as a TIGER/Line vector map, one layer is created
for each original feature set. This allows the data to be more easily understood and
styled when it is loaded.

♦ Manually through the GUI, such as when you create an orthodromy measure.

♦ Programatically or manually. You can define the map-layer structure to fit your needs
and map the different data sources into them. This approach is part of the map theme
definition in which you state:

● What map data is to be displayed.

● When the data should be displayed, for example, you can display motorways on country
scale views and streets at the city levels.

● How the data is displayed, for example, the color, transparency, and line thickness.

Styling
Styling enables you to change colors, transparency, and so on to enable the data to be better
understood. You can define styles for all objects in a particular layer or layer tree.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 652



Coordinate system

JViews Maps can transform coordinates delivered by one geodetic system to those based
on another. For example, you can transform coordinates from a satellite-based system to
those based on the national geodetic system of a particular country. Additionally you can
set the ellipsoid and the datum you require.

Projections
JViews Maps supports the following projections:

CassiniAzimuthal Equidistant

Lambert Equal AreaAlbers Equal Area

French LambertLambert Conformal Conic

Eckert 4Cylindrical equal Area

Equidistant CylindricalEckert 6

GnomonicGeographic

MercatorLambert Azimuthal Equal Area

MollweideMiller Cylindrical

OrthographicOblique Mercator

RobinsonPolyconic

StereographicSinusoidal

Universal Polar StereographicPolar Stereographic

Universal Transverse MercatorTransverse Mercator

User definedWagner 4

The projection system is flexible and extensible. For example, you can develop your own
specific projection algorithms and integrate them with the product.

Ellipsoid
Each projection system supports configurable ellipsoids:

♦ CPM (The ellipsoid specified by the French Weights and Measures Commission
("Commission des Poids et Mesures" in 1799)

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 53



♦ SGS85 (The ellipsoid used in the Soviet Geodetic System 85)

♦ SPHERE (A spherical ellipsoid representing the earth)

♦ WGS1960, WGS1966, WGS1972, WGS1984

♦ One of the 60 other predefined ellipsoids

♦ User defined

You can define your own ellipsoids, entering the major axis and inverse flattening values.

Datum
JViews Maps comes with more than 200 predefined datum.

Transformation
For accuracy up to a meter, IBM® ILOG® JViews Maps provides the following DATUM
transformation method:

♦ Molodensky (three parameters)

Custom Transformation
You can develop your own DATUM algorithm. APIs allow access to the data model and return
computational results for display.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 654



Grids, units, and measures

JViews Maps allows you to overlay grid systems and set your preferred units and measures.

Grid systems
Predefined grids are provided for:

♦ Longitude and latitude

♦ The UTM/MGRS reference system

Adaptable grids
The grids are called adaptable grids because they adapt to the zoom level to ensure that
there is always something meaningful on the screen.

There is no impact on memory and little on performance. JViews Maps uses optimized
parameters including, for example, delayed drawings. In this case, a simplified grid is
displayed during zooming and panning, with only the 20 lines needed drawn on the view.
When the view stops moving, it displays the more refined grid and labels.

Units
JViews Maps supports different units, including:

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 55



MeterKilometer

CentimeterDecimeter

International Nautical MileMillimeter

International FootInternational Inch

International Statute MileInternational Yard

International ChainInternational Fathom

U.S. Surveyor's InchInternational Link

U.S. Surveyor's YardU.S. Surveyor's Foot

U.S. Surveyor's Statute MileU.S. Surveyor's Chain

Indian FootIndian Yard

Indian Chain

Extending Units
You can extend the supported units for linear and angular measurements.

Different measuring units can be used for distances and altitudes.

Working units can de changed dynamically, with conversion computed by a set of provided
components.

Measuring
JViews Maps provides off-the-shelf components and end-user interactors for orthodromy
measurements of distance and bearing.

Distances can be measured in the supported units and changed dynamically.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 656



Export

Once prepared, a map can be exported as:

♦ A map theme with pointers to the original data sets. This avoids data duplication, since
all map data is read from its original data stores.

♦ Amap theme andmap data, which improves loading time andmakes sharing maps easier.
All the map data is stored in a single proprietary map format to provide very fast loading
times. This file format is documented and can be easily extended to include your application
data.

♦ ESRI (see Shapefile format) files (.shp) for vectorial information.

♦ GeoTIFF format files for raster map information for integration with external map software.

♦ Oracle Spatial database.

♦ KML/ KMZ (Google Earth™ format) files to visualize or share the map on top of the 3D
maps provided by this tool.

Open APIs are provided for exporting specific map formats.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 57



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 658



Map animation

Describes the ways in which you can animate a map.

In this section

Overview
Provides a brief overview of how you can animate a map.

Performance
Lists the techniques used to optimize the performance of maps.

Map manipulation components
Lists the components that are available for advanced map manipulation.

Symbology
Explains how to use symbols on maps.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 59



Overview

Map animation allows you to perform such tasks as rotating a map, zooming in for more
detail, and loading more data without compromising system performance. You can also add
symbols to your map, but this must be done outside the Map Builder using Designer for
JViews Diagrammer.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 660



Performance

To provide the required performance for importing and rendering map data JViews Maps
leverages the following techniques:

♦ Optimized hierarchical quadtree rendering engine

♦ Double and Triple buffering

♦ Load on demand and hard-disk and RAM caching

♦ Raster and vector map tiling

♦ Raster map subsampling

♦ Multithreaded environment

The results:

♦ Display time when opening the prepared map: 2 seconds

♦ Required RAM for display: 16MB, or only 6% of the map data size

♦ Zooming in and out: 64 frames per second (FPS) with only 50% CPU usage

♦ Panning: maximum 220 FPS with only 30% CPU

♦ Rotating Map: 40 FPS

♦ Map reprojection: 5 seconds

♦ Moving overlaid symbols:

♦ 30 FPS for 1,000 objects

♦ 5 FPS for 15,000 objects

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 61



Map manipulation components

JViews Maps provides numerous advanced components for map manipulation including:

♦ Interactive zooming with progressive information display

♦ Optimized panning

♦ Storage and navigation of Areas of Interest

♦ Map rotation

♦ Synchronized overviews

♦ Current map scale

♦ Zoom to area or layer, or fit to zoom

♦ Layer, map data, and symbol trees

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 662



Symbology

There are facilities for advanced symbology management (creation and animation)

Libraries
You can create specific symbology libraries by:

♦ Creating iconic symbols, like airports or military camps, based on either raster, vector,
or composite graphical elements.

♦ Implementing a basic editor GUI and managing symbol rendering.

Using the specific SDM Renderer, symbols can be natively georeferenced. You can:

♦ Drag and drop symbols onto a map.

♦ Take full control using the APIs for creation, deletion, and fast animation.

Every symbol is moveable, selectable, and editable. Additionally, symbol groups can be
collapsed, expanded, grouped, and ungrouped. There are symbol editing facilities to help
you create your own custom symbols, see the JViews Diagrammer document Using the
Symbol Editor.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 63



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 664



Architecture

Presents the different components of the product and what they are used for.

In this section

Overview
Lists the architectural components of JViews Maps.

Populating the map
This section describes how business data is imported and handled in map displays. A map
application makes use of the data connectivity and styling features of JViews Diagrammer
for the foreground symbols, but not the background map data.

Styling
Explains the principle of styling in JViews Maps.

© Copyright IBM Corp. 1987, 2009 65



Overview

JViews Maps includes the following parts of other IBM® ILOG® visualization products:

♦ Styling and Data Mapping of JViews Diagrammer

♦ JViews Framework

This section describes the relationship between the features managed by these products for
creating dynamic map applications.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 666



Populating the map

This section describes how business data is imported and handled in map displays. A map
application makes use of the data connectivity and styling features of JViews Diagrammer
for the foreground symbols, but not the background map data.

In this section

Map data sources
Describes the specificities of map data sources.

Diagram data sources
Describes the specificities of diagram data sources.

The SDM engine
Explains what the SDM engine is about.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 67



Map data sources

A map data source is the preferred way to connect your application to georeferenced data
sets. A map data source connects a feature iterator, a renderer, and a map layer, see
Connecting a Feature Iterator with a Renderer and a Map Layer.

Connecting a Feature Iterator with a Renderer and a Map Layer

The feature iterator is an object that iterates through the features of a map to obtain the
data for the map overall. The features include the coordinates, the bounding box, and other
features to be parsed.

The renderer is used to create the graphic objects that will represent the data model objects
in the map.

Each data source is associated with a particular map layer, which manages the order and
the style of the objects.

Specific map data sources are dedicated to accepting specific types of map format. See Data
formats for a list of formats.

The Map Builder provides menu commands to import and export specific types of map data
through an easy-to-use GUI. The SDK provides specialized interfaces for reading and writing
map data of the supported types and for setting the appropriate data source.

The management of the graphic objects and their properties is part of the JViews Framework
and is explained in detail in Managers and Graphic objects in The Essential JViews
Framework.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 668



Diagram data sources

The styling and data mapping facilities of JViews Diagrammer allow you to connect to data
sources and to style their representations.

The role of the diagram data source is to load the data to display in the diagram, and possibly
write back the data if it has been modified.

There are the following predefined types of data source: flat files (in the Designer only),
XML, and JDBC.

When you cannot use flat files, XML, or JDBC, you can always connect the data model to
your data by implementing the data model interface in Java™ .

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 69



The SDM engine

The SDM engine is one of the most important pieces of JViews Diagrammer as it controls
the data-to-graphics mapping. There are four key elements in the data-to-graphics mapping
process:

♦ A data model that interfaces to the data to display or edit. This data model is completely
independent of the GUI, and refers only to the business objects of your application.

♦ Renderers that style the diagram as a whole and the graphic objects in it. Renderers
apply the styles specified in the style sheets.

♦ A grapher in which the graphic objects representing the data model are created as nodes
and links. It provides the infrastructure that is minimally necessary to draw a diagram.

♦ Interactors that permit user actions on graphic objects. Common requirements are for
zoom, pan, select, and object creation functions.

An example of the SDM Engine and the Data-to-Graphics Mapping is shown in The SDM
Engine and the Data-to-Graphics Mapping.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 670



The SDM Engine and the Data-to-Graphics Mapping

As shown in The SDM Engine and the Data-to-Graphics Mapping, the mapping between the
data model and the graphical representation is bidirectional:

♦ Data model to graphics: the rendering process is controlled by the style sheet, which lets
you tell the SDM engine how you want each particular kind of data object to be displayed
in the grapher. The rendering process is performed by specialized renderers.

● When the data model is loaded, the SDM engine explores it and creates graphic objects
representing the nodes and links defined by the data model in the grapher.

● When the state of an object in the data model changes, the SDM engine updates the
graphic object representing the modified data object.

♦ Graphics to data model: the editing process relies on built-in editing facilities that act
directly on the underlying data model. The actions in an editing application are
implemented by interactors. For example:

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 71



● When the user moves a graphic object (for example, in an editor), the SDM engine
updates the geometric properties of the object in the data model.

● When the user expands or collapses a node (for example, in a navigation application),
the SDM engine updates the expand/collapse status of the object in the data model.

The Data Model Interface
The SDM data model is the interface that tells the SDM engine how to get the data to be
displayed. The SDM data model is an abstract description of a set of nodes and links between
nodes. Nodes and links have a user-defined type (also called the tag), and a set of named
properties.

JViews Diagrammer provides prebuilt data models, and you can implement the data model
interface to connect your data.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 672



Styling

Explains the principle of styling in JViews Maps.

In this section

Overview
Explains in a few words how styling is achieved in JViews Maps.

The map theme
Describes what a map theme consists of.

JViews Diagrammer style sheets
Explains the principle of style sheets.

Symbols
Explains the use of symbols in maps.

Graphics SDK for experts
Explains how to make an advanced use of graphics through the JViews Framework SDK.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 73



Overview

Styling is a key feature in IBM® ILOG®mapping products. In JViews Maps, styling of maps
is achieved through properties associated with layers. In JViews Diagrammer, styling is
applied through CSS style rules written to a style sheet.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 674



The map theme

The map theme is the sum of all the style sets defined in the map layers.

In addition to data sources, most layers also contain styling information, for example, about
grids, labels, terrain analysis, measurements. See Themes and styling for more details about
styling in maps.

Most map layers are used to manage graphic objects created from map features imported
from various map data files. The styling options differ according to the content of each file
and the map features imported by the different readers.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 75



JViews Diagrammer style sheets

Styling in JViews Diagrammer involves the following constructs:

♦ Style rules

♦ Composite graphics

♦ Backgrounds

JViews Diagrammer style rules
The StyleSheet renderer applies a style sheet to a data model. The style sheet contains style
rules in CSS2 format that describe how the objects in the data model are displayed in the
diagram.

A style rule consists of two parts:

♦ The condition part called the selector applies to the data model, and is used for
pattern-matching.

♦ The action part called the declarations applies to the corresponding graphic objects, and
is used for rendering.

When designing a notation, you create many style rules, each of them matching a particular
case in the data model. You define rules that apply to objects represented as nodes, and
rules that apply to objects represented as links.

The style rules are usually defined from the most generic to the most specific. The generic
rules usually create the base symbol for each type of object. The more specific rules add
new shapes, or change graphics properties for the symbol defined in the generic rule.

The style rules are also used to specify the options of a diagram. Such rules have no selector
and the declarations customize the way the options operate.

The Designer for JViews Diagrammer is perfectly suited for creating style sheets that define
the look-and-feel of diagrams. Within the Designer, styling takes place, but the CSS syntax
is largely hidden: selectors are defined in a natural-language editor and declarations are
defined by setting graphic properties through panels called Styling Customizers. The style
sheet generated by the Designer can be loaded into your application at run time.

Backgrounds and maps
For applications that require a geographic map as a background, you can install a map
renderer on your diagram that uses the IBM® ILOG® JViews Maps facilities to read map
formats—vector or raster—and to display nodes according to their latitude and longitude.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 676



Symbols

Symbols are moving objects on top of a background map.

You should use the Map Builder to create a map, and then load the map into the Designer
for JViews Diagrammer and add nodes or links to the model. You can then select which
symbols should represent your model. If your symbols are all known at design time, you can
also prepare and specify them in the Map Builder. In this case, you should not use the
Designer.

The Symbol Editor for JViews Diagrammer provides a way to design your own set of rich
symbols. Symbols can be nested to reuse simpler symbols within more complex ones. Style
rules are bundled within symbols and the symbols themselves are grouped into palettes.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 77



Graphics SDK for experts

The JViews Framework SDK is used to manage graphic objects. You need to be comfortable
with writing Java™ code to use this SDK. There is no user-friendly GUI to help you out,
although some classes are available as JavaBeans™ for use in your favorite IDE. See
Framework classes available as JavaBeans(TM) in The Essential JViews Framework.

The following summarizes the main features of handling graphic objects. The mapping
products do not have wrapped classes of their own to do this, so if you write your own code
you will have to use JViews Framework directly.

For map applications, the supplied source code of the Map Builder shows you how to do
this. The easiest way is to adapt the Map Builder code to the needs of your application.

An IlvManager object is the data structure that contains graphic objects, such as rectangle,
polylines, and so on.

The base class for graphic objects is IlvGraphic.

Graphic objects can be stored in the manager. The manager is composed of several storage
areas called layers and you can specify in which layer an object is to be stored. Objects in
a higher layer are displayed in front of objects in lower layers. A layer is an instance of the
class IlvManagerLayer.

Do not confuse the storage layer in JViews Framework with the map layer, which is
used mainly for styling.

Note:

Graphic objects stored in a manager can be displayed in several views. A view is an instance
of the class IlvManagerView. This class is a subclass of the AWT class java.awt.Container.

IlvGrapher is a manager that contains nodes and links. Nodes can be any type of graphic
object. (Links are instances of the class IlvLinkImage.) A graphic object becomes a node
of a graph if it is added to the grapher by the addNodemethod. (A link must be added by the
addLinkmethod.) When a node is removed from a grapher, all the links that come from and
go to this node are also removed. When changing the position of a node, the connection
points of the links are automatically recomputed.

IlvGraphic is the abstract base class of graphic objects managed by an instance of
IlvManager.

The extensive graphics API of JViews Framework does far more than the basic management
of graphic objects. It is a powerful tool for customizing and refining Java™ development.
The mapping products give you access to the full JJViews Framework. For example, JViews
Framework also includes APIs for deploying thin-client applications.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 678



Developing a dynamic map

Describes the overall process flow for creating applications with background maps that end
users can pan and zoom and which display overlaid graphics depicting managed entities.

In this section

Overview
Gives a brief overview of how to develop a dynamic map.

The process flow
Explains the process of building a map.

Creating a map with the Map Builder
Describes the steps involved in creating a map with the Map Builder

Handling symbols
Explains how to create symbols to be used on maps.

Prototyping the application with the designer
Explains how to make use of the Designer for JViews Diagrammer to rapidly create a
prototype for an application.

© Copyright IBM Corp. 1987, 2009 79



Overview

This section shows the overall process flow for creating a dynamic map. It introduces you
to the GUI-based tools that handle specialized aspects of the process and the powerful SDKs
that give you the possibility of full and open customization.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 680



The process flow

Explains the process of building a map.

In this section

Overview
Illustrates with a diagram the process of building a map.

Defining a set of background maps
Explains how to define background maps with the Map Builder or with the SDK.

Toolchain for an application without predefined background maps
Explains the tools involved in creating an application without predefined background maps.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 81



Overview

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 682



The Map Building Process

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 83



Defining a set of background maps

If you want to define a set of background maps to use later in your application, it is best to
start with the Map Builder. If the Map Builder does not contain what you need, you can
extend the code of the sample with the SDK.

Using the Map Builder
The Map Builder is a ready made sample for preparing and styling maps. You can use this
sample code as is or customize it. The Map Builder supports the following types of map:

♦ TIFF file-based interchange format for georeferenced raster imagery (.tif) (see GeoTIFF
format )

♦ Non-Georeferenced image file (.gif, .jpg, .png, .tif)

♦ Environmental Systems Research Institute (ESRI) (see Shapefile format) (.shp)

♦ MapInfo Interchange Format (.mif) (see MIF file )

♦ Topologically Integrated Geographic Encoding and Referencing system ( see TIGER/Line)
files (.rt*)

♦ Drawing Interchange Format (AutoCAD DXF format) files (.dxf)

♦ Google Earth™ Keyhole Markup Language (KML) and KML Zipped (KMZ) formats (.kml,
.kmz)( see KML/ KMZ)

♦ Digital Terrain Elevation Data 0, 1 and 2 (see DTED format)

♦ Global Topographic Data DEM (see GTOPO30)

♦ Oracle Spatial

♦ Web Map Server (WMS standard) images

♦ Scalable Vector Graphic (.SVG) files

It supports the following coordinate systems:

♦ Geographical

♦ Albers Equal Area

♦ Azimuthal Equidistant

♦ Cassini

♦ Cylindrical Equal Area

♦ Eckert IV and Eckert VI

♦ Equidistant Cylindrical Projection

♦ French Lambert

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 684



♦ Gnomonic

♦ Lambert Azimuthal Equal Area, Lambert Conformal Conic, and Lambert Equal Area Conic

♦ Mercator, Oblique Mercator, and Transverse Mercator

♦ Miller Cylindrical

♦ Mollweide

♦ Orthographic

♦ Polyconic

♦ Robinson

♦ Sinusoidal

♦ Stereographic

♦ Universal Polar Stereographic and Universal Transverse Mercator

♦ Wagner IV

See Creating a map with the Map Builder for how to prepare a map using one of these format
and coordinate systems.

Extending the Map Builder with the SDK
You can extend the Map Builder code through the SDK to integrate a different format or
coordinate system. The following sample shows you how to do that:

Extending the Map Builder

See also Developing a new data source and Developing a new reader in Programming with
JViews Maps.

You can then prepare the map as indicated in Creating a map with the Map Builder.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 85



Toolchain for an application without predefined background maps

The simplest flow, but not necessarily the easiest approach, is to use the SDK to develop an
application that reads and styles map data. You will need to feel comfortable using the Java™
API and syntax. See Developing with the SDKs for more information.

When you have processed your map data, you can add symbology with the Designer for
JViews Diagrammer to design symbols to place on the map. You can do this through an
easy-to-use point-and-click GUI. See Creating a Symbol with the Symbol Editor.

See Handling symbols for more about adding symbology to a map.

You need to integrate the Designer project file into the application that you developed with
the SDK. The integration requires a short piece of uncomplicated Java code. See the sample
Loading maps and symbols with JViews Diagrammer.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 686



Creating a map with the Map Builder

Describes the steps involved in creating a map with the Map Builder

In this section

Overview
Lists the basic steps to create a map with the Map Builder.

Importing map data sources
Describes the various options of importing map data.

Styling properties
Describes the styling properties applicable to map layers.

Setting preferences
Lists the type of preferences that you can set when creating a map.

Saving the map
Describes the different save options of a map.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 87



Overview

The basic steps for creating a map with the Map Builder are:

1. Import a series of map formats.

2. Style the properties of the map.

3. Set your preferences for various functions.

4. Save the look and feel of the map or save the look and feel and the map data.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 688



Importing map data sources

You can import data in different formats to build up the map to use in your application. See
Map data in Programming with JViews Maps for a list of Web sites where you can download
data from.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 89



Styling properties

TheMap Builder has a Property Sheet for assigning values to layer style properties and thus
styling the different layers of the map. The properties available depend on the format
imported on a particular layer. The scope of properties covers the following types:

♦ Boolean values

♦ Options in a list

♦ Free text

♦ Values that can be set through editors, such as the Color Editor or the Paint Editor.

Layers can be organized in hierarchies, where parent layers contain sublayers. Sublayers
can be set to inherit the properties of their parent or can be set to be independent and
override the properties of their parent.

Layers can be set to be shown or hidden. The ability to hide layers from the end user can
be useful when you want to retain control of some construction layers.

Dynamic styling allows you to map property values to a specific scale level. The values
change as you cross the scale threshold to another layer.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 690



Setting preferences

You can set your preferences for particular functions such as the preferred projection, or
the preferred way to display distances, altitudes, or coordinates.

These functions, such as coordinates or projection, are used directly by various Beans
supplied in the product.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 91



Saving the map

You can save the styling of the map by saving the map theme. In this case, the map is rebuilt
at load time by reading the data source again.

If you want to save the map data as well as the look and feel, you can save the map theme
and the data.

If you want to use the map outside the Map Builder, you can export map layers in Shape
format, GeoTIFF format, or use the KML/ KMZ export bridge or an Oracle Spatial server.
You can also use the JViews SDKs, since maps prepared using the Map Builder can be read
by applications developed with JViews.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 692



Handling symbols

You can create symbols for display on a map using the new Symbol Editor.

The symbols are stored in a palette and then reused in the Designer for JViews Diagrammer
or any other end-user application. The dedicated Symbol Editor can be used for configuring
the symbols you have chosen to represent your nodes. See Symbols in Using the Designer
for JViews Diagrammer for more about using symbols. The following figure shows an example
of symbol creation using the Symbol Editor.

Creating a Symbol with the Symbol Editor

You can add symbols on a map with the Map Builder, but this feature is usually for
demonstration purposes and prototyping only. You can load a map developed with the Map
Builder or directly in the API as a background for an application developed with JViews
Diagrammer. The easiest way to do this is to use the Symbol Editor and the Designer for
JViews Diagrammer.

To load a map developed with the Map Builder or directly in the API as a background
for an application developed with JViews Diagrammer:

1. Edit the map with the Map Builder and then save it.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 93



2. Create your symbols and assemble them with existing ones to create palettes. You can
then prototype your application in the Designer.

3. Open Designer, use the map as the backdrop, add nodes or links to the model, design
them, and then save the whole as a diagrammer project.

4. Load the diagrammer project in your application.

For more information, see Using the Designer.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 694



Prototyping the application with the designer

If you are starting a project and you want to prototype your application rapidly, you will
probably adopt the fastest way of populating the data model.

JViews Diagrammer offers a prebuilt in-memory data model that you can populate manually
in the Designer or programmatically, or that can be populated from XML or text (CSV) files
through data sources. Another prebuilt data model is available that can be populated from
a database using the JDBC data source. If you can use JDBC, XML, or a flat file, you can
directly import your data into the Designer.

When you consider services for populating and setting up the map diagram, there are two
cases:

♦ If your application data is compliant with one of the JViews Diagrammer data sources,
you can easily populate the data model using the data source facility or using the API.

♦ If your application data is not compliant with one of the JViews Diagrammer data sources,
you should probably create a sample of your data in an XML file or in Microsoft® Excel®
, to emulate your data.

As soon as you can populate the data model, you can display the map diagram using the
default style sheet. Then you can define your own styling to create specific representations.

When you develop the operational application, you can still use the in-memory data model
and one of the data sources provided with JViews Diagrammer. This may imply that your
application can generate an XML file that JViews Diagrammer can read or that you use
XSL-T to transform your application's XML format.

If your application data is in an object model, you can implement the data model interface
of JViews Diagrammer to map your object model closely to the data model of JViews
Diagrammer. This approach requires more development, but it prevents any data duplication,
and ensures perfect synchronization between the data and the graphics.

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 6 95



I B M ®  I L O G ®  J V I E W S  M A P S  8 . 696



B
background 76

C
Cartesian

geocentric coordinate system 13
coordinate systems

geocentric 13
geographic 12
projected 14

coordinates
angular and linear units 12
unit system 12

CSS2 76

D
data source 69
datum

horizontal 12
declarations 76

E
earth

modeling framework 11
editing process 70

F
formats for maps 76

G
generic rules 76
geocentric

coordinate system 13
geographic

coordinate system 12
geographic map 76
georeferencing

spatial reference systems 11
Greenwich

meridian 12

H
horizontal datum 12

I
IlvGrapher class 78
IlvGraphic class 78
IlvManager class 78
IlvManagerLayer class 78
IlvManagerView class 78

L
lists 32

M
map 10
map renderer 76
meridian

Greenwich 12
prime 12

N
nesting composite graphics 77

O
options 76

P
projected

coordinate system 14

R
renderers 70
rendering process 70

S
SDM engine 70
selector 76
specific rules 76
style rule 76

T
tag 72

© Copyright IBM Corp. 1987, 2009 97

I N D E X

Index



U
unit system

angular and linear 12
user-defined type 72

I B M ®  I L O G ®  J V I E W S  M A P S  8 . 698


	Table of contents
	About JViews Maps
	Overview
	Cartography
	What is a map?
	Spatial reference systems
	Coordinate systems
	Map projections
	Map data formats

	The added value of JViews Maps 
	Overview
	Display of complex maps
	Performance
	Component libraries
	Map Builder
	Map preparation
	Advanced map animation

	Typical uses of JViews Maps
	Overview
	General use
	Typical actions

	Developing with the SDKs

	Basic concepts
	Usage and design concepts
	Usage concepts
	Design concepts
	Development approach

	Map preparation
	Overview
	Importing map data
	Merging
	Contextual information display
	Coordinate system
	Grids, units, and measures
	Export

	Map animation
	Overview
	Performance
	Map manipulation components
	Symbology


	Architecture
	Overview
	Populating the map
	Map data sources
	Diagram data sources
	The SDM engine

	Styling
	Overview
	The map theme
	JViews Diagrammer style sheets
	Symbols
	Graphics SDK for experts


	Developing a dynamic map
	Overview
	The process flow
	Overview
	Defining a set of background maps
	Toolchain for an application without predefined background maps

	Creating a map with the Map Builder
	Overview
	Importing map data sources
	Styling properties
	Setting preferences
	Saving the map

	Handling symbols
	Prototyping the application with the designer

	Index

