
IBM ILOG JViews Diagrammer V8.6

Developing with the JViews
Diagrammer SDK

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the SDK...9
The diagram component...11
What is a diagram component..12
The Diagrammer class...13
The data source...15
The style sheets...16
The project...18
Managing the diagram..19

Styling and Data Mapping (SDM)...21
Overview...22
The SDM engine..24
The SDM data model...26
Renderers...27
The grapher..28
Interactors..29

Composite graphics and symbols...30

Graph layout..31

Maps...32

Developing applications...33
User interface components...34
Customizing the user interface components..36

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Deploying applications...37
Overview...38
Java AWT/Swing application..39
Java applets...40
Java Web Start...41
Web deployment...42
Eclipse/RCP...43

Using the Graphics Framework directly..45
Overview...46
Accessing and creating basic graphic objects..47
Storing graphic objects in layers...48
Organizing graphic objects into graphs..49
Composite graphics in Java code...50

Using and writing data models...51
Overview..53

Deciding your data model strategy..54

Implementing the behavior of data model objects...58

Connecting data sources to the diagram component...60

JavaBeans example..63
The Molecule example...64
The Atom, Bond, and Molecule classes...65
The Molecule model...67
The Phenol Molecule data source..69
Loading the Molecule into the diagram component..71

NonJavaBeans example: abstract model variant...73
The Tree Model example..74
The Swing JTree...75
The TreeSDMModel class..76
The TreeSDMNode class..77
The TreeSDMLink class..80
Loading the data model and style sheet into the diagram component...82

NonJavaBeans example: basic model variant..85
The second Tree Model example..86
The TreeSDMModel2 class..87
The TreeLink class..90
Loading the data model..91

Using a custom data model in the Designer...92

Handling XML data files in Java...93
Reading data..94

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 64

Writing data..95
Reading and writing custom XML formats..96

Content on demand...99
About content on demand..100
Concepts..101
Classes involved...104
Using content on demand..106
Content on demand and tiling systems..108

Using CSS syntax in the style sheet..109
Overview..110

The origins of CSS..111

The CSS syntax...113
Style rule..114
Selector..115
Declaration...117
Priority..118
Cascading..119
Inheritance..120

Applying CSS to Java objects..121
Overview...122
The CSS engine...123
The data model..124
CSS recursion..128
Expressions..130
Divergences from CSS2...135

Customizing general nodes in the style sheet...139
Overview...140
Controlling the node’s shape..141
Controlling the node’s skin...143
Controlling the node’s border...145
Controlling the node’s label..146
Controlling the node’s icon...148
Automatic resizing..149
Decorations..150

Customizing general links in the style sheet..151
Controlling the link’s look..152
Obtaining color effects..157
Controlling link decorations..158
Controlling arrows...161
Controlling extra effects..164
Summary of link properties..167

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 5

Using and adding renderers..171
About renderers...172

Using renderers in the style sheet...173
Enabling a renderer..174
Customizing a renderer..175
Using rendering properties on objects...176

Predefined renderers..177
Class summary...179
The Coloring renderer..180
The Decoration renderer..182
The Blinking renderer...184
The GrapherPin renderer...187
The GraphLayout renderer...189
The DrillDown renderer..193
The HalfZooming renderer...195
The InfoBalloon renderer..197
The Composite renderer..198
The Interactor renderer..200
The LabelLayout renderer..201
The Legend renderer..202
The LinkLayout renderer..205
The Map renderer...206
The StyleSheet renderer..208
The Map StyleSheet renderer..210
The SubGraph renderer...212
The SwimLanes renderer...214

Adding your own renderer..219
Writing a renderer class...220
Registering a renderer..221
Loading and customizing a renderer..222

The Flag renderer example...223
Overview...224
Header part..225
Bean properties..227
Private methods...228
Overloading methods of the Filter class...230
Integrating the Flag renderer..232
Possible enhancements..234

Configuring renderers in Java code..235
Overview...236
Accessing a renderer...237

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 66

Modifying a renderer..238
Setting new renderers..239

Support for renderers in the Designer..240

Using and writing interactors..241
Predefined interactors..242

Subclassing view interactors...244

Writing an object interactor..245
Writing a subclass of IlvObjectInteractor..246
Enabling a custom interactor..247
Connecting interactors to diagrams using listeners..248

Managing dynamic symbols..249
Introducing symbols...251
What is a symbol?..252
The advantages of symbols..253

Using symbols...255
Basic concepts...256
Loading palettes...258
Saving palettes...260

Advanced management of symbols and palettes..261
Palettes...263
Categories..264
Palette symbols..265
Palette parameters...266
Palette events...268
Palette manager...269
Palette manager events..270
Organizing symbols in categories..271

How to use a symbol in CSS..273

Using composite graphics...275
What is a composite graphic object?..276
Building composite nodes in CSS..277
Building composite graphics in Java...284

Printing..285

Using JViews products in Eclipse RCP applications..286

Performance enhancements...291
Global performance improvements...292

Optimizing the performance of JViews Framework...293

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 7

Introduction...295
Configuring the Java Virtual Machine...296
Minimizing JAR files...297
Choosing the best graphic object...298
Drawing performance in the view...302
Events and listeners...305
Interactors..308
Antialiasing...309
Transparency..310
Printing...311

Optimizing the performance of symbols...312

Optimizing the performance of diagrams...313
The Overview pane..315
Grids in a diagram..316
Rendering Done mode...317
Composite renderer..318
Load on demand..319
Content on demand..320
Adjusting modes...321
Detail level..322
Better SDM/Java transition...323

Optimizing the performance of dashboards...325
The Overview pane..326
Binary dashboard format..327

Optimizing the performance of Graph Layout..329
Introduction...330
Use layout only when needed..331
Layout of huge graphs..332
Speed of layout algorithms...333

Index..335

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 68

Introducing the SDK

Introduces the classes available in the SDK of IBM® ILOG® JViews Diagrammer, and the
features they offer for developing your application. The IBM® ILOG® JViews Diagrammer
Designer gives you a noncode route through the first phase of development, but you will
need to write code to complete and deploy your application. You can choose a code route
for all phases.

In this section

The diagram component
Describes the basic functions of the diagram component.

Styling and Data Mapping (SDM)
Describes the SDM package and its subpackages, which are used to define styling and data
mapping for the diagram component, but which can also be used to extend its basic
functionality.

Composite graphics and symbols
Introduces the Composite package and its subpackages, which provide composite nodes
that can be in layers.

Graph layout
Introduces the Graph Layout package and its subpackages, which are used for graph, link
and label layout.

Maps
Describes the maps feature which is available if you have purchased the IBM® ILOG®
JViews Maps product.

© Copyright IBM Corp. 1987, 2009 9

Developing applications
Describes the user interface components provided in IBM® ILOG® JViews Diagrammer and
how they may be customized.

Deploying applications
Contains information on deploying your IBM® ILOG® JViews Diagrammer applications.

Using the Graphics Framework directly
Provides pointers to using the lower-level API of JViews Framework in JViews Diagrammer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 610

The diagram component

Describes the basic functions of the diagram component.

In this section

What is a diagram component
Provides an overview of the diagram component, a panel containing graphic objects that
represent your business objects. The diagram component is organized as a graph of nodes
and links, and is a JavaBean™ for easy insertion into a graphic editor or monitoring
application.

The Diagrammer class
Explains the IlvDiagrammer class and its component classes.

The data source
Provides an overview of the two different types of data source: XML data source and JDBC
data source.

The style sheets
Explains the style sheet, a .css file that defines the way the objects of your data model will
be translated to graphic objects.

The project
Describes a project, which is the association of a style sheet with the data source that supplies
it data.

Managing the diagram
Describes the different methods of interacting with the diagram, controlling the view, laying
out the objects, and editing or printing it.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 11

What is a diagram component

The diagram component is a panel containing graphic objects that represent your business
objects, organized as a graph of nodes and links. It is a JavaBean™ for easy insertion into
a graphic editor or monitoring application.

The diagram component is designed to provide all the basic functionality that most
applications will need to display and edit diagrams. Its basic functions are described in this
section. Some applications, however, will need to extend the basic functionality, or to use
advanced functionality not directly accessible in the diagram component. These advanced
features are described in the later sections.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 612

The Diagrammer class

The diagram component is represented by the IlvDiagrammer class, which is in the main
IBM® ILOG® JViews Diagrammer package, ilog.views.diagrammer, see figure The
IlvDiagrammer class relationships.

The diagram component

The IlvDiagrammer class is a façade that gives easy access to the following underlying
facilities:

♦ The SDM (Stylable DataMapper) engine in the package ilog.views.sdm, which transforms
your application data into graphic objects on your screen, based on styling information
contained in one or more style sheets.

♦ A project, which gives access to the first style sheet and the data source for loading your
data.

♦ A grapher, which is a low-level object whose role is to manage the nodes and the links
and arrange them as a graph.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 13

♦ An SDM View (also in the SDM package), which displays the resulting diagram on the
screen.

♦ The Graph Layout package ilog.views.graphlayout, which contains advanced algorithms
used to place the nodes and to route the links of the graph. Several graph layout algorithms
are available, each adapted to a particular type of graph or to a particular application
domain. (Graph layout features are available only if you purchased a full
JViews Diagrammer license.)

♦ The Composite Graphics package ilog.views.graphic.composite, which lets you define
complex graphic objects from basic elements like shapes, text, and icons.

♦ The Application package ilog.views.diagrammer.application, which contains Swing
objects such as actions and toolbars that make it very easy to build a complete Swing
GUI around a diagram component. A prebuilt application is also available in the Application
package.

The IlvDiagrammer class relationships

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 614

The data source

The role of the data source is to load the data to display in the diagram, and possibly write
back the data if it has been modified.

There are the following predefined types of data source: XML data sources, which read data
from an XML file and JDBC data sources, which read data from a database through the JDBC
API.

The data source is represented by one of the following classes in the package ilog.views.
diagrammer.datasource:

♦ IlvXMLDataSource

♦ IlvJDBCDataSource

These classes are subclasses of IlvDiagrammerDataSource IlvDiagrammerDataSource.

An XML file (IlvXMLDataSource) can be in the required format, which is called diagram
format, or in a custom format, in which case XSLT files must be supplied for reading and
writing.

A database (IlvJDBCDataSource) must be JDBC-compliant. SQL is used to read and write
data.

Extra types of data source can be defined to read data from other sources.

To set the data source of a diagram component, you can use the setDataSource(ilog.
views.diagrammer.datasource.IlvDiagrammerDataSource) method. The following code
example shows how to use this method.

Setting an XML data source for the diagram component

IlvXMLDataSource dataSource = new IlvXMLDataSource();
dataSource.setDataURL(new URL("file:example.xml"));
diagrammer.setDataSource(dataSource);

Alternatively, you can set the data source and the style sheet at the same time by loading a
project file (see The project).

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 15

The style sheets

A style sheet is a .css file. It is referenced by a URL. The style sheet can load other style
sheets using the import statement. A style sheet controls the mapping of data to a graphic
representation through style rules conforming to the CSS level 2 syntax. It defines the way
the objects of your data model will be translated to graphic objects.

The SDM engine accepts cascading style sheets (CSS). Cascading style sheets can be used
to define several levels of customization. For example, different style sheets could be defined
for a whole company, a group, and an individual user.

You can either write a style sheet by hand or create it using the IBM® ILOG® JViews
Diagrammer Designer. For example, if your final application loads a custom data model,
you can still use the Designer to define the style of your diagram. All you need to do is to
create a sample XML file containing objects with the same properties as your real data.
Then, use the Designer to define the graphic style of your nodes and links. When you save
your project, the Designer will create three files: a project file (.idpr), an XML file containing
your sample data (.xml), and a CSS file containing all the styling information (.css). In your
final application, you will only use the CSS file as explained next, and load your real data
instead of the sample data used in the Designer.

Style sheets are usually suitable only for a particular data model. For example, if your data
model describes a workflow process, it will contain such objects as activities, transitions
between activities, and participants that carry on the activities. A style sheet for such a data
model will have rules that match these particular object types and their properties to define
the graphic look of the objects. So, a workflow style sheet will probably not work for another
data model, because the objects will not have the same types and properties.

To assign a style sheet to the diagram component in Java™ , call the method setStyleSheet
(java.net.URL). This method takes an array of Stringwith each element representing one
style sheet. The array simulates the cascading of style sheets, where the last style sheets
have a higher priority than the previous ones. The following code example shows an example
with only one style sheet.

Setting the style sheet of a diagram component

String[] styleSheet = new String[] { "file:example.css" };
engine.setStyleSheets(styleSheet);

Alternatively, you can set the data source and the style sheet at the same time by loading a
project file (see The project).

Style sheets can be cascaded, that is, concatenated with later style sheets having a higher
priority than earlier ones. To cascade style sheets, use the addStyleSheet(java.net.URL)
method, see the following code example.

Adding a cascaded style sheet to a diagram component

Diagrammer.addStyleSheet(new URL("file:cascaded.css"));

For details of the syntax of the style sheet and how to use it to customize nodes and links,
see Using CSS syntax in the style sheet.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 616

As well as the diagram component itself, you can customize its associated Swing user
interface components through the style sheet. See User interface components for more
details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 17

The project

The project is an association of a style sheet and a data source which supplies data. It groups
the inputs for a diagram. A project is saved as an XML file with the extension .idpr
(Diagrammer Project File).

Loading a project file is the recommended way to load a diagram in Java™ because it is the
quickest way. The following code example shows how to load a project into a diagram
component using the method setProject(ilog.views.diagrammer.project.
IlvDiagrammerProject, boolean).

Loading a project file into a diagram component

IlvDiagrammer diagrammer = new IlvDiagrammer();
diagrammer.setProject(new IlvDiagrammerProject(
new URL("file:myproject.idpr")), true);

//display the diagram

The project is represented by the IlvDiagrammerProject class, which is in the IBM® ILOG®
JViews Diagrammer package ilog.views.diagrammer.project. When a new project is
created, the style sheet and data source are both null.

The following code example shows how to create a new project file, set the style sheet and
data source, and save the file.

Creating a project file

IlvDiagrammerProject project = new IlvDiagrammerProject();
project.setStyleSheet(new URL("file:example.css"));
IlvXMLDataSource dataSource = new IlvXMLDataSource();
DataSource.setDataURL(new URL("file:example.xml"));
project.setDataSource(dataSource);
project.write(new URL("file:example.idpr"));

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 618

Managing the diagram

You can interact with the diagram, control the view, edit the diagram, apply a layout to the
objects, print the diagram by using the appropriate methods as described below.

Interacting with the diagram
The following methods determine which interactions are available to users of the diagram
component, that is, what happens when a user clicks:

♦ setZoomMode(boolean): the view can be zoomed in or out

♦ setPanMode(boolean): the view can be moved in any direction

♦ setSelectMode(boolean): objects can be selected/deselected

♦ setEditLabelMode(boolean): the label of a new object can be edited when it is created

Controlling the view
For scrolling, you can use the setScrollable(boolean) method to control the visibility of
the diagram scrollbars.

For zooming, you can use the following methods:

♦ The zoomIn() and zoomOut() methods to zoom the diagram in or out.

♦ The fitToContents() method to make the whole diagram visible.

♦ The resetZoom() method to reset the zoom factor to 1:1.

Editing the diagram
The IlvDiagrammer class provides full support for editing, that is, you have all the methods
necessary to create an editor based on the diagram component.:

♦ For selecting objects, the setSelected(java.lang.Object, boolean), isSelected(java.
lang.Object), selectAll(), deselectAll()methods control the set of selected objects.

♦ For editing objects, the cut(), copy(), paste(), delete(), duplicate(), addObject
(java.lang.Object, java.lang.Object), removeObject(java.lang.Object), group(),
ungroup(), methods and others let you edit the nodes and links.

♦ For editing object properties, the setObjectProperty(java.lang.Object, java.lang.
String, java.lang.Object) and getObjectProperty(java.lang.Object, java.lang.
String) methods let you edit property values.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 19

Laying out the objects
The layoutAllNodes() method applies the graph layout algorithm configured in the style
sheet to all the nodes of the diagram. The layoutSelectedNodes()method applies the layout
only to the selected nodes.

The layoutLinks() method applies the link layout algorithm configured in the style sheet
to all the links of the diagram

The setAutomaticLinkLayout(boolean) and setAutomaticNodeLayout(boolean)methods
cause the link (or node) layout to be applied automatically whenever the diagram is modified.

Printing the diagram
The methods print(boolean, boolean, ilog.views.diagrammer.IlvDiagrammer.
PrinterExceptionHandler), printToBitmap(java.io.File), pageSetup(), printPreview
(), setPrintArea() let you print all or part of the diagram.

Advanced methods
The methods of the IlvDiagrammer class let you achieve the most common tasks, but you
will often need to extend the diagram component, or access advanced functionality not
available directly in the IlvDiagrammer class.

For this reason, methods such as getEngine(), getView(), getSelectInteractor(),
getPrintingController() give you access to the low-level objects that implement advanced
features.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 620

Styling and Data Mapping (SDM)

Describes the SDM package and its subpackages, which are used to define styling and data
mapping for the diagram component, but which can also be used to extend its basic
functionality.

In this section

Overview
Presents an overview of the SDM package and its subpackages.

The SDM engine
Describes the SDM engine, which controls the data-to-graphics mapping.

The SDM data model
Describes the SDM data model, which is the interface that tells the SDM engine how to get
the data to be displayed.

Renderers
Briefly describes renderers, which apply the styles specified in the style sheets.

The grapher
Defines graphers, which can store graphic objects including general nodes, composite nodes,
and general links. They provide the infrastructure that is minimally necessary to draw a
graph.

Interactors
Describes interactors, which support the interaction between an end user and a diagram.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 21

Overview

The SDMpackage ilog.views.sdm and its subpackages contain the styling and data mapping
(SDM) classes. These classes are usually used internally by the diagram component, but
you may need to use these classes directly to extend its basic functionality.

The main entry point to the package is the class IlvSDMEngine. See the following diagram.

The SDM class relationships

The SDM subpackages are:

♦ ilog.views.sdm.event: The event-related classes of SDM.

♦ ilog.views.sdm.graphic: The specialized SDM graphic objects such as graphic factories
and the general node.

♦ ilog.views.sdm.interactor: The interactor-related classes.

♦ ilog.views.sdm.model: The predefined classes for data models.

♦ ilog.views.sdm.renderer and ilog.views.sdm.renderer.animation: The classes that
define the renderers available for styling. Other renderer subpackages are:

● ilog.views.sdm.renderer.graphlayout: The classes that configure the Graph Layout
capability, if you have purchased a full JViews Diagrammer license.

● ilog.views.sdm.renderer.maps: The classes that provide access to theMaps product,
if you have purchased it.

♦ ilog.views.sdm.servlet: A specialized servlet that gives easy access to styling and data
mapping in thin-client mode.

♦ ilog.views.sdm.swing: The JFC/Swing-based components for building a full GUI.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 622

♦ ilog.views.sdm.util: Utility classes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 23

The SDM engine

The SDM engine controls the data-to-graphics mapping.

There are four key elements in the data-to-graphics mapping process:

♦ A data model that interfaces to the data to display or edit. This data model is completely
independent of the GUI, and refers only to the business objects of your application.

♦ Renderers that style the diagram as a whole and the graphic objects in it.

♦ A grapher in which the graphic objects representing the data model are created.

♦ Interactors that permit user actions on graphic objects.

SDM data-to-graphics mapping

As shown in the above figure, the mapping between the data model and the graphical
representation is bidirectional:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 624

1. Data model to graphics: the rendering process is controlled by the style sheet, which
lets you tell the SDM engine how you want each particular kind of data object to be
displayed in the grapher. The rendering process is performed by specialized renderers.

♦ When the data model is loaded, the SDM engine explores it and creates graphic
objects representing the nodes and links defined by the data model in the grapher.

♦ When the state of an object in the data model changes, the SDM engine updates the
graphic object representing the modified data object. The object state may change
due to an external application event or after a direct edit of an object property by
the user.

2. Graphics to data model: the editing process relies on built-in editing facilities that act
directly on the underlying data model. The actions in an editing application are
implemented by interactors. For example:

♦ When the user moves a graphic object (for example, in an editor), the SDM engine
updates the geometric properties of the object in the data model.

♦ When the user expands or collapses a node (for example, in a navigation application),
the SDM engine updates the expand/collapse status of the object in the data model.

To access the SDM engine associated with a diagram component, use the getEngine()
method. Similarly, to access the SDM view associated with a diagram component, use the
getView() method. The following code example shows the use of these methods.

Getting the SDM engine and the SDM view

IlvSDMEngine engine = diagrammer.getEngine();
IlvSDMView view = diagrammer.getView();

You can also choose not to use the IlvDiagrammer class at all. Instead, you can create an
SDM engine (IlvSDMEngine instance) and an SDM view (IlvSDMView instance) yourself.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 25

The SDM data model

The SDM data model is the interface that tells the SDM engine how to get the data to be
displayed. The SDM data model is an abstract description of a set of nodes and links between
nodes. Nodes and links have a user-defined type (also called the “tag”), and a set of named
properties.

A default data model is supplied as class IlvDefaultSDMModel and you can also develop
your own data model.

The classes provided for data models are in the package ilog.views.sdm.model.

For a discussion of the available data model classes and advice on writing your own, see
Using and writing data models.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 626

Renderers

Renderers apply the styles specified in the style sheets. They have global properties for
styling the diagram and per-object properties for styling the objects in the diagram.

The predefined renderers for styling graphic objects are described in Using and adding
renderers.

That section also provides an example of adding your own renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 27

The grapher

Graphers can store graphic objects including general nodes, composite nodes, and general
links. They provide the infrastructure that is minimally necessary to draw a graph.

A grapher (IlvGrapher instance) is a JViews Framework object created by the IlvDiagrammer
instance. You may need to access the grapher to modify the graphic objects of the diagram
directly. The following code example shows how to access the grapher.

Accessing the grapher of a diagram component

IlvGrapher = diagrammer.getEngine().getGrapher();

For more details on graphers, see Graphers in The Essential JViews Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 628

Interactors

Interactors support the interaction between an end user and a diagram. Common
requirements are for zoom, pan, select, and object creation functions.

The predefined interactors are described in Using and writing interactors.

That section also provides an example of adding your own interactor.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 29

Composite graphics and symbols

The Composite package (ilog.views.graphic.composite) and its subpackages in JViews
Framework contain the Composite Graphics classes.

The main entry point to the package is the class IlvCompositeGraphic.

In IBM® ILOG® JViews Diagrammer, there is a specialized subclass, IlvSDMCompositeNode,
which provides composite nodes that can be in layers.

The Composite Graphics subpackages include:

♦ ilog.views.graphic.composite.layout: The layout managers for child elements of
composite graphics. There are three possible Layout Manager classes:

● IlvAttachmentLayout

● IlvCenteredLayout

● IlvStackerLayout

For a description of composite graphics in IBM® ILOG® JViews Diagrammer and an example,
see Using composite graphics.

A symbol is an abstraction of composite graphic that can be used only through style sheets,
see Managing dynamic symbols.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 630

Graph layout

The Graph Layout package ilog.views.graphlayout and its subpackages contain the classes
for graph layouts, and the related classes for link layout and label layout.

Each subpackage represents a layout algorithm or the property editor for the Bean properties
of a layout algorithm.

For a list of the layouts available in IBM® ILOG® JViews Diagrammer and various examples,
see Layout algorithms.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 31

Maps

IBM® ILOG® JViews Diagrammer allows you to load an IVL file and this can be a map. If
the IVL file contains projection data, IBM® ILOG® JViews Diagrammer can then place the
nodes according to their latitude and longitude properties.

The package ilog.views.sdm.renderer.maps gives access to IBM® ILOG® JViews Maps
for developing your own maps, if you have purchased this product.

The rendering of maps in a diagram is done by the Map renderer, IlvMapRenderer .

Optionally, the zooming policy of the nodes displayed on a map can be controlled by the
HalfZooming renderer, IlvHalfZoomingRenderer. which allows you to specify limits in
zooming in or out.

If you use a map, your data model should contain latitude and longitude attributes. These
attributes can have any names because you can map them to the names latitude and
longitude. For details of the formats for latitude and longitude, see The Map renderer.

Refer to the JViews Maps documentation for more information on the integration of JViews
Diagrammer with JViews Maps.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 632

Developing applications

Describes the user interface components provided in IBM® ILOG® JViews Diagrammer and
how they may be customized.

In this section

User interface components
Describes the ready-made user interface components of IBM® ILOG® JViews Diagrammer
that help you develop your applications.

Customizing the user interface components
Explains how the user interface components can be customized.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 33

User interface components

IBM® ILOG® JViews Diagrammer comes with a set of classes designed to ease the
development of Swing GUIs containing one or more IlvDiagrammer objects. These classes
are contained in the package ilog.views.diagrammer.application.

Actions
The class IlvDiagrammerAction is a base class for Swing Actions that act on an
IlvDiagrammer object. A set of predefined actions that call the main IlvDiagrammermethods
is provided.

Toolbars
The class IlvDiagrammerToolBar is a Swing JToolBar that accepts a set of
IlvDiagrammerAction instances. The subclasses IlvDiagrammerViewBar,
IlvDiagrammerEditBar have predefined actions to control and edit the diagram.

The class IlvDiagrammerPaletteBar is designed to be used for editing diagrams. You can
populate it with actions that create new nodes and links according to a set of sample objects.

Menus
The class IlvDiagrammerMenu is a Swing JMenu that accepts a set of IlvDiagrammerAction
instances. The subclasses IlvDiagrammerFileMenu, IlvDiagrammerEditMenu,
IlvDiagrammerOptionsMenu and IlvDiagrammerHelpMenu have predefined actions to control
and edit the diagram, and to set options and give access to Help for the application. The
class IlvDiagrammerMenuBar is a complete predefinedmenu bar containing all the predefined
menus.

Overview
The class IlvDiagrammerOverview displays a reduced view of a diagram. You can use it with
the zoom facility of a diagram component to control which part of a large diagram is visible.

Tree
The class IlvDiagrammerTree is a Swing JTree that displays the nodes and links contained
in the diagram’s data model. The tree is an alternative way to view and select the objects
in the diagram.

Property sheet
The class IlvDiagrammerPropertySheet is a Swing JTable that displays the properties of
the selected object of the diagram. Use the property sheet to view and edit the properties
of the objects in the data model.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 634

Table
The class IlvDiagrammerTable is a Swing JTable that displays the properties of all the
objects in the diagram. Use it to have a global view of the data model.

The Application class
The class IlvDiagrammerApplication is a complete Swing application that is built using
the components in the Application package. This class lets you view (and optionally edit)
one or more diagrams. The following code example shows how to launch the application by
invoking the java command on this class.

Launching a JViews Diagrammer application

java ilog.views.diagrammer.application.IlvDiagrammerApplication

The CLASSPATH environment variable must contain the JAR files for the IBM® ILOG®
JViews Diagrammer product and the JViews Framework package.

A JViews Diagrammer application can also be launched as an applet: specify
IlvDiagrammerApplication as the applet class in the HTML applet tag.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 35

Customizing the user interface components

You can customize all the JViews Diagrammer user interface components through the style
sheet. To enable styling of the user interface components, set the IlvDiagrammer property
styleApplicationComponents to true.

The following code example shows how to customize a tree, a property sheet, and a table.

Customizing user interface components

Diagrammer {
styleApplicationComponents : "true"; // enable styling of

// components.
}
DiagrammerTree {
rootLabel : "My Graph"; // set label of root item in tree

}
node:DiagrammerTree {
text : "@name"; // use "name" property as label of items in tree

}
node:DiagrammerPropertySheet:type {
editable : "false"; // set "type" property for all nodes read-only

}
node.activity:DiagrammerTable {
background : "yellow"; // set yellow background for "activity" nodes

// in table
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 636

Deploying applications

Contains information on deploying your IBM® ILOG® JViews Diagrammer applications.

In this section

Overview
Provides an overview of how to deploy your IBM® ILOG® JViews Diagrammer applications.

Java AWT/Swing application
Describes deploying your applications using Java™ AWT/Swing.

Java applets
Describes how to deploy your applications as Java™ applets.

Java Web Start
Describes deploying your applications using Java™ Web Start.

Web deployment
Describes how to deploy your applications for the Web.

Eclipse/RCP
Describes deploying your applications using Eclipse™ /RCP.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 37

Overview

JViews Diagrammer offers a set of components, classes and APIs making it possible to build
all sorts of graphical displays. The core Graphics Framework provides interactive
vector-graphics primitives that will have their own life cycle and can be displayed in a variety
of containers, including Swing or servlets. With Cascading Style Sheets (CSS) and SDM,
the creation of such graphic objects is automated and sophisticated displays are built more
easily. Most of the work needed to create specific visual representations is the same, whether
you decide to deploy your application with rich or thin-client technologies. What is really
important is to make sure that:

♦ You can control the integration of your visual components with the right containers.

♦ You have the kind of interactions you need for the application.

♦ You have the ability to package and deploy your work efficiently.

This section summarizes the main characteristics and tips of each deployment strategy.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 638

Java AWT/Swing application

This is the most traditional way to deploy JViews applications. All graphical styles and
interactions are available, and there are very few limitations. Traditionally, applications are
deployed using the IlvDiagrammer class (derived from a JComponent) or classes of the ilog.
views.diagrammer.application package. Note that the IlvDiagrammerApplication class
(derived from JApplet) is a top-level container that allows you to create either applications,
applets, or Java™ Web Start applications.

See Writing an application in Using the Designer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 39

Java applets

Basically, an applet is a Java™ application (a rich client) running inside a Web browser.
The main noticeable differences between applets and applications are the following:

♦ Applets do not have the same kind of top-level container (like a JFrame, for example).
Your Java code is not responsible for creating the main window, and your applets have
to live within the limits of the provided ContentPane.

♦ The code of the applet is usually invoked by a Web page downloaded from a remote Web
site and executed on demand.

♦ Unless your application is signed or your Java security policy has been extended, your
applets have limited access to local resources, such as files, printers, and so on. This
requires particular attention for dealing with security exceptions.

♦ Most of the time applet classes and resources need to be packaged as JAR files and need
to have a very clean access to their data, such as images or resource files.

Like other Java programs, a JViews application needs some particular attention to packaging
and use as an applet. If possible, we recommend you use the IlvDiagrammerApplication
class, which is already able to manage applets or applications. Most samples available in
the JViews Diagrammer distribution are packaged so they can work transparently as applets
or applications. If you decide to use lower-level containers, such as IlvDiagrammer, you will
need to take more care in the integration with the top-level containers.

Creating an applet
The IlvDiagrammer instance and its associated beans can be used in applets in exactly the
same way as in Swing applications. The only limitations are the restricted permissions in
applets, for example, it is not possible to save data files from an applet.

The IlvDiagrammerApplication class extends the Swing JApplet class, so it can be used
directly in an HTML applet tag. You can pass the command-line parameters as applet
parameters: the names of the parameters are the same, without the "-" prefix.

For an example of an applet application, see the Applet sample, which is available in the
directory <installdir>/jviews-diagrammer86/codefragments/applet.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 640

Java Web Start

A Java™ Web Start (JWS) application can be seen as an applet running outside a browser.
It allows you to have rich applications automatically downloaded, with great user experience.
Except for careful packaging and for the same security issues mentioned for applets, there
are no particular limitations for creating JWS applications with JViews Diagrammer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 41

Web deployment

Creating applications for the Web is substantially different from the rich-client approach.
It implies that most of the work is done on a remote server which sends ready-to-use images
and scripts to a Web client (understand an Internet browser). There are many variants but
the main idea is to receive and process HTTP requests on a server and, in return, to produce
the right image to be sent back to the browser. Even if there are many architectural
differences, the following aspects can be shared between rich and thin clients:

♦ Styling: responsible for transforming data into graphics, the styling rules can be the same
for rich and thin-client applications. For example, CSS files, symbols and Designer projects
can be used for both scenarios.

♦ Data model and connection with a data source: are the same and can benefit from the
same code for both deployment strategies.

♦ Graphical content: usually displayed in the background of a panel or as parts of a dynamic
symbol; graphical objects can be reused in both cases.

The main differences reside in the way the application behaves and how it is packaged. Thin
clients are usually driven by transactions and only partially support rich interactions. JViews
Diagrammer thin clients are based on the JavaServer™ Faces (JSF) and DHTML technologies.
Web pages containing visual components are created as (JSP) pages. The JSF-based
components (also known as JViews Diagrammer Faces) provide the following services:

♦ Display graphical content managed by Diagrammer classes and APIs. Data connection
and styling are preserved.

♦ Provide interactive views and overviews.

♦ Manage local interactions, such as pan, zoom, selection, popup menus.

♦ Minimize roundtrips when possible.

♦ Extensions can be written for extending both server-side and client-side components.

The use of these JSF and DHTML components is described in Building Web applications.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 642

Eclipse/RCP

It is possible to deploy graphic components created with JViews Diagrammer as Eclipse™
or RCP (Eclipse Rich Client Platform) plugins. As with the thin client approach, graphical
contents, styling, and connections to data sources can be reused under Eclipse. The main
challenge is to integrate graphical panels and manage interactions with the Eclipse
framework. Since Eclipse 3.0, making Swing-based code work within an Eclipse application
is possible with the SWT-AWT bridge. Located in the org.eclipse.swt.awt package, this
bridge offers a very simple interface between Eclipse and Swing widgets. Once a Swing
container has been created inside an SWT widget, all AWT/Java 2D™ primitives can be
invoked. Note that this bridge only works with JDK 1.5 and higher. In the samples directory,
you will find examples of such integration. The source code is provided, so you can make
the integration package evolve with your own requirements.

JViews Diagrammer also provides its own bridge, IlvSwingControl, to display diagrams
and dashboards inside Eclipse or RCP. For details, see Using JViews products in Eclipse
RCP applications.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 43

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 644

Using the Graphics Framework directly

Provides pointers to using the lower-level API of JViews Framework in JViews Diagrammer.

In this section

Overview
Provides an overview of the lower level features that you can access through the API of
JViews Framework.

Accessing and creating basic graphic objects
Provides information on the basic graphic objects provided in the JViews Framework, and
how to access and customize them.

Storing graphic objects in layers
Describes the class that stores graphic objects in layers.

Organizing graphic objects into graphs
Describes the class that organizes graphic objects into graphs.

Composite graphics in Java code
Describes the class for composite graphics.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 45

Overview

Instead of, or as well as, using the high-level JViews Diagrammer API, you can make use of
the lower-level API of JViews Framework.

A lower-level approach is appropriate only if you need to access low-level features directly
or to create objects as subclasses of existing ones. In general, you should not need to use
lower-level JavaBeans™ for GUI components or interactors; instead you are recommended
to use the supplied JViews Diagrammer JavaBeans, see JViews Diagrammer classes available
as beans in Using the Designer.

This section points you to the documentation available on each of the following lower-level
features:

♦ Basic graphic objects (rectangles, arcs, ellipses, and so on)

♦ Managers and their layers, for storing graphic objects and determining the display priority
(which objects appear in front of others)

♦ Graphers, for organizing graphic objects into graphs of nodes and links

♦ Composite graphics, for building more complex graphical representations than those
available with basic graphic objects

If you would like to read an introduction to JViews Framework in general or make use of a
tutorial, see Introducing IBM® ILOG® JViews Framework in The Essential JViews Framework
and Getting started with JViews Framework in The Essential JViews Framework respectively.

More advanced lower-level features, such as nested managers and graphers, and link shapes
and crossings, are described in Advanced Features of JViews Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 646

Accessing and creating basic graphic objects

The classes that represent basic graphic objects are listed in Graphic objects in The Essential
JViews Framework, which also gives information on how to use the supplied objects.

You can customize the supplied graphic objects in terms of colors, dimensions, and other
properties. If you need to assemble an object constructed from several basic objects, consider
using composite graphics instead, see Composite graphics in Java code.

You can also use compiled symbols generated by the Symbol Compiler from the palette
symbols designed with the Symbol Editor. For details, see Using compiled symbols at the
Graphic Framework level.

If you require a new graphic object that can be implemented by specializing a supplied
graphic object, or a completely new graphic object, you can create the required object by
subclassing. For an example, see Creating a new graphic object class in The Essential JViews
Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 47

Storing graphic objects in layers

The class that stores graphic objects in layers is IlvManager. It is compliant with the
JavaBeans™ standard.

For information about the use of this class and related classes and interfaces, see Managers
in The Essential JViews Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 648

Organizing graphic objects into graphs

The class that organizes nodes and links into graphs is IlvGrapher. It is compliant with the
JavaBeans™ standard.

For information about the use of this class and the classes and interfaces related to nodes
and links, see Graphers in The Essential JViews Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 49

Composite graphics in Java code

The base class for composite graphics is IlvCompositeGraphic.

The composite graphics facility allows you to combine basic graphic objects or existing
composite graphics as elements of a composite graphic. At a higher level, you can do this
in CSS, as described in Using composite graphics; at a lower level, you can do the same in
Java™ code, see Composite Graphics in The Essential JViews Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 650

Using and writing data models

Explains the data model classes available and how to write your own data model depending
on whether you want to load existing data or not and, if so, from which kind of data source.

In this section

Overview
Provides an overview of the concept of data model.

Deciding your data model strategy
Describes how to decide what your data model strategy should be, depending on the
characteristics of your existing business data and your requirements.

Implementing the behavior of data model objects
Presents the methods used to implement the behavior of data model objects.

Connecting data sources to the diagram component
Lists the ways to connect data sources to the diagram component.

JavaBeans example
Shows how to display a set of JavaBeans™ using IBM® ILOG® JViews Diagrammer.

NonJavaBeans example: abstract model variant
Describes how to display a set of Java™ objects that are not JavaBeans™ by subclassing
the abstract class IlvAbstractSDMModel.

NonJavaBeans example: basic model variant
Describes how to display a set of Java™ objects that are not JavaBeans™ by subclassing
the basic class IlvBasicSDMModel.

© Copyright IBM Corp. 1987, 2009 51

Using a custom data model in the Designer
Describes how to use a custom data model in the Designer, and what limitations apply if
you do.

Handling XML data files in Java
Explains how the class IlvSDMEngine allows you to read, write, and transform XML data.

Content on demand
Describes the content on demand feature.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 652

Overview

The term data model in IBM® ILOG® JViews Diagrammer refers to an interface that defines
methods to access a hierarchy of objects with properties. This does not necessarily imply
that business object types are represented by Java™ classes. If you have Java classes that
represent your business object types, you can implement the data model interface on top
of these; if you do not already have such Java classes, you can implement the data model
interface without them.

IBM® ILOG® JViews Diagrammer uses the data model for information about all the business
objects and creates graphic objects according to the model object states. Note that one
model object is represented by at most one graphic object.

Implementing a data model to interface with existing business objects does not mean that
you have to duplicate your data. You can implement an appropriate data model directly on
top of your existing data objects. To do this, you must write a class that implements the
IlvSDMModel interface. You can use the existing classes in the package ilog.views.sdm.
model as base classes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 53

Deciding your data model strategy

First you should decide which classes in the model package are appropriate, depending on
the characteristics of your existing business data and your requirements.

There are five levels of data model implementation, each appropriate for certain situations:

1. No use of existing data.

There are three possible situations:

♦ You do not have existing data that you want to display and you will create your
diagram(s) from scratch.

♦ You have existing data, but you want to duplicate it before displaying it, and it does
not matter how the data will be represented in memory.

♦ You have exported your data to an XML file, and you want to read in the XML data.

In these cases, use the default SDM model implementation, IlvDefaultSDMModel.

The nodes and the links of the default model are instances of the classes
IlvDefaultSDMNode and IlvDefaultSDMLink. These objects have an arbitrary set of
user-defined properties, so the default model can represent all kinds of objects.

2. Display existing data in a database.

Your data is stored in a database, and you want to display it but not modify it directly
in the diagram component.

The model package provides a specific SDMmodel for this case: IlvJDBCSDMModel. This
model uses the JDBC™ API to access the database. All you need to do is configure the
model with the database URL, the names of the tables containing the nodes and links,
and a few other parameters.

3. Existing JavaBeans™ .

You have existing data stored in classes which conform to the JavaBeans standard: there
are accessor methods (get and set) for each Bean property.

In this case, use the class IlvJavaBeanSDMModel. This model uses your JavaBeans as
the nodes and links of a graph, so there is no duplication or additional memory
consumption. The properties of nodes and links are read and written using the JavaBeans
API. All you have to do is supply the set of JavaBeans that will make up your graph. For
an example, see JavaBeans example.

4. Existing Java™ classes that are not JavaBeans or existing data but no Java classes.

For example, you already have an implementation of a Swing JTree model that represents
your data and you want to display the contents of the tree without duplicating data.

One of the following applies:

♦ You have existing data represented by Java classes that are not JavaBeans.

♦ You want to display data that is not already represented in memory by Java classes.

In such cases, there are two possible approaches:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 654

♦ Use the class IlvAbstractSDMModel, and wrap your objects into new objects that
implement the IlvSDMNode and IlvSDMLink interfaces. This requires an extra object
allocation because of the indirection, but allows you to make use of the predefined
interfaces for nodes and links. For an example, see NonJavaBeans example: abstract
model variant.

♦ Subclass the basic model, IlvBasicSDMModel, and implement the methods that list
the objects and retrieve the properties of each object. This requires more work but
is more open, and may be preferable if all objects already exist. For an example, see
NonJavaBeans example: basic model variant.

The following table summarizes the strategies described in this section.

Summary of data model strategies
Recommended ClassData Characteristics

IlvDefaultSDMModelNew or from XML

IlvJDBCSDMModelDatabase (display only)

IlvJavaBeanSDMModelJavaBeans

IlvAbstractSDMModelJava classes or other existing objects (for example, Swing)

IlvBasicSDMModel

If the graphic objects are to be moved interactively, SDM tries to store the new object
locations as x,y properties in the model. However, the model can refuse to set the x,y
properties, for example when it is a read-only model. To cope with such a case, the SDM
library provides a metadata system that manages new properties as if they were stored in
the true model.

To enable metadata, call ilog.views.sdm.IlvSDMEngine.setMetadataEnabled(true).
Metadata is saved only in XML files. Other persistant mechanisms are responsible for saving
metadata if they need to.

The default model does not need metadata.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 55

The SDM Model class relationships

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 656

The abstract SDM Model class relationships

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 57

Implementing the behavior of data model objects

The methods that implement the possible behavior of data model objects are supplied as
the IlvSDMModel interface. Various supplied data model classes implement different subsets
of these methods.

The methods in the interface recognize links as distinct from other objects and allow for
parent-child relationships to implement a hierarchical model. Each data model object has
a unique identifier (ID), a nonunique tag, and various properties (attributes). For links, the
From and To properties store the end points. The monitoring of changes is available through
a listener mechanism.

Methods for navigating among nodes and links
The three following methods navigate the model object tree.

♦ getObjects() returns the enumeration of all top-level objects.

♦ getChildren(java.lang.Object) returns all the children of the given model object.

♦ getParent(java.lang.Object) returns the parent of the given object in the model tree,
or null if the object is at the top level.

When a model object is a link, the following methods apply:

♦ isLink(java.lang.Object) returns true if the given parameter is a link. The model must
be prepared to return valid values on getFrom and getTo calls on a link.

♦ getFrom(java.lang.Object) returns the model object that is the source of the given
link.

♦ getTo(java.lang.Object) returns the model object that is the destination of the given
link.

Methods for retrieving ID, tag, and properties
The following methods give information on a model object:

♦ getID(java.lang.Object) returns the unique ID (a String) associated with the object.
IDs are used to define the references from a link to its source and destination nodes.

♦ getObject(java.lang.String) returns the model object associated with the given ID.

♦ getTag(java.lang.Object) returns the tag of a model object. The tag is a String that
describes the type of the model object. Several objects may share the same tag. For
example, the tag is the name of the XML element in an XML data file.

♦ getObjectPropertyNames(java.lang.Object) returns a String array that represents all
the defined properties for this object.

♦ getObjectProperty(java.lang.Object, java.lang.String) returns an object
representing the value of the given property on the given object.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 658

Methods for implementing listeners
The model is dynamic: it can change itself. To keep the graphical display consistent with
the model state, there is a listener mechanism that sends events when a modification occurs
in the model.

♦ [addSDMModelListener(ilog.views.sdm.event.SDMModelListener)|
removeSDMModelListener(ilog.views.sdm.event.SDMModelListener)] manages a
listener list for model events. A model event should be fired when the model hierarchy
or a model object property is changed.

♦ [addSDMPropertyChangeListener(ilog.views.sdm.event.SDMPropertyChangeListener)|
removeSDMPropertyChangeListener(ilog.views.sdm.event.
SDMPropertyChangeListener)] manages a listener list for property change events. A
property change event should be fired when a model object property is changed.

Methods for editable models
All the editable methods are meant to be implemented if the model predicate isEditable
() returns true.

The following methods modify the model hierarchy:

♦ createNode(java.lang.String) and createLink(java.lang.String) create, respectively,
a node and a link. The argument represents the object tag. These methods return a model
object.

♦ addObject(java.lang.Object, java.lang.Object, java.lang.Object) adds the first
argument to the model below the second one (or at the top level if the second argument
is null), and before the third argument (or at the end if the third argument is null).

♦ removeObject(java.lang.Object) removes the given object from the model.

♦ clear() removes all objects at once.

The following model methods change object properties:

♦ setFrom(java.lang.Object, java.lang.Object) and setTo(java.lang.Object, java.
lang.Object) modify the source and destination objects of a link. The first argument is
the link; the second one is the new end point.

♦ setObjectProperty(java.lang.Object, java.lang.String, java.lang.Object)
changes a model object property. The first argument is the model object, the second one
is the property name, and the third one is the property value.

♦ setID(java.lang.Object, java.lang.String) allows you to change the ID of a model
object. It is wise to call this method before adding the object to the model to make sure
that there is always a unique, stable ID for each model object.

♦ isAdjusting() and setAdjusting(boolean) can be used to warn the model that several
properties are about to be changed.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 59

Connecting data sources to the diagram component

A diagram component (IlvDiagrammer instance) has an associated SDM engine instance.
By default, the SDM engine is connected to the default SDM model.

There are several ways for you to load data into a diagram component:

♦ XML data source

♦ JDBC data source

♦ Flat file data source

♦ In-memory data source

♦ Custom data model

XML data source
The simplest way of loading data into an IlvDiagrammer instance is to load an XML file
containing the descriptions of the objects to add to the model.

If you have available an XML file in diagram format, you can load it directly in the Designer
without needing to write any Java™ code.

The data model implementation is class IlvDefaultSDMModelwith user-defined types (tags)
read from the XML file.

To load an XML file and display its contents in Java code, use:

diagrammer.getEngine().setXMLFile("file:example.xml");

For details of the advanced uses of XML, see Handling XML data files in Java.

JDBC data source
You can load a JDBC™ -compliant database into the Designer without needing to write any
Java code. For an example, see Importing data from a database in Using the Designer.

The data model implementation is class IlvJDBCSDMModelwith no user-defined types.

Flat file data source
You can load data from a flat file, for example, a comma-separated values (CSV) file, into
the Designer without needing to write any Java code. For an example, see Importing data
from a flat file in Using the Designer.

The data model implementation is class IlvDefaultSDMModel with no user-defined types.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 660

In-memory data source
If you use the in-memory data source, you effectively load a basic data model and you can
extend it in the Designer without needing to write any Java code.

The initial data model implementation is class IlvDefaultSDMModel and you can add
user-defined types in the Designer.

Custom data model
If you have written custom data model classes, you can assign the data model to the SDM
engine of an IlvDiagrammer instance as follows:

IlvSDMModel sdmModel = new MyModel();
diagrammer.getEngine().setModel(sdmModel);

The data model implementation is user-defined.

See also Using a custom data model in the Designer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 61

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 662

JavaBeans example

Shows how to display a set of JavaBeans™ using IBM® ILOG® JViews Diagrammer.

In this section

The Molecule example
Presents an example that displays a chemical molecule.

The Atom, Bond, and Molecule classes
Describes the classes used to represent atoms, bonds, and molecules.

The Molecule model
Describes the class used to connect the Atom, Bond, and Molecule classes to the diagram
component.

The Phenol Molecule data source
Describes the class used to represent a data source that contains a Phenol molecule.

Loading the Molecule into the diagram component
Shows how to define a project file that loads the Molecule data source.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 63

The Molecule example

The molecule example displays a chemical molecule. The atoms are the nodes of the graph
and the bonds between the atoms are the links of the graph, see the following figure.

The Molecule example: Phenol

The example is supplied with IBM® ILOG® JViews Diagrammer in the directory
<installdir>/jviews-diagrammer86/codefragments/datamodel/molecule.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 664

The Atom, Bond, and Molecule classes

The atoms and the bonds are represented in the application by the Java ™ classes Atom and
Bond. These classes obey the JavaBeans™ conventions, for example, the Atom class has a
property called symbolwhich represents the abbreviated symbol of the element; this property
can be accessed through the methods setSymbol and getSymbol.

The Atom class
The following code example shows part of the Atom class.

Bean property in the Atom class

/**
* A class that represents an atom.
*/
public class Atom
{

...

private String symbol;

public String getSymbol()
{
return symbol;

}

public void setSymbol(String symbol)
{
this.symbol = symbol;

}

}

The Atom class has also a name property (the name of the element) , and an id property,
which identifies the atom in the molecule.

The Bond class
The Bond class has two properties firstAtom and secondAtom which contain the identifiers
of the two atoms linked by the bond, and also a type property which can have the values
single or double.

The Molecule class
A molecule is represented by an instance of the class Molecule. A molecule contains a list
of atoms and a list of bonds.

The following code example shows the Molecule class.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 65

Arrays of objects in the Molecule class

public class Molecule
{
private ArrayList atoms = new ArrayList();
private ArrayList bonds = new ArrayList();

public Atom[] getAtoms()
{
return (Atom[]) atoms.toArray(new Atom[0]);

}

public Bond[] getBonds()
{
return (Bond[]) bonds.toArray(new Bond[0]);

}

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 666

The Molecule model

To connect the existing classes Atom, Bond and Molecule to the diagram component, you
need to write a custom SDMmodel. Since there are already JavaBeans™ that represent the
nodes and links of the graph (the Atom and Bond classes), the easiest solution is to write a
subclass of IlvJavaBeanSDMModel. This subclass is called MoleculeModel.

The following code example shows the MoleculeModel class.

public class MoleculeModel extends IlvJavaBeanSDMModel
{

This class represents a molecule, so you can store an instance of the Molecule class as
follows:

private Molecule molecule;

The constructor takes the molecule as a parameter. The constructor must also initialize the
model to know which Bean property holds the node identifier and which Bean properties
hold the link ends.

The following code example shows the constructor.

public MoleculeModel(Molecule molecule)
{
this.molecule = molecule;
setIDProperty("id");
setFromProperty("firstAtom");
setToProperty("secondAtom");

}

The call to setIDProperty tells the superclass IlvJavaBeanSDMModel that it can use the id
property (through the setId and getId methods of the Atom class) to set and retrieve the
identifier of a node.

The calls to setFromProperty and setToProperty tell the superclass which properties
represent the two end nodes of a link. For example, to retrieve the source node of a link (a
Bond instance), the model will call getFirstAtom on the Bond instance.

The model needs to retrieve all the nodes and links of the graph, that is the Atom and Bond
objects of the molecule.

The following code example shows the getObjects method, which retrieves the objects.

public Enumeration getObjects()
{
Vector v = new Vector();
Atom[] atoms = molecule.getAtoms();
for (int i = 0; i < atoms.length; i++) {
v.add(atoms[i]);

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 67

Bond[] bonds = molecule.getBonds();
for (int i = 0; i < bonds.length; i++) {
v.add(bonds[i]);

}
return v.elements();

}

The model must be able to differentiate between nodes and links.

The following code example shows the isLinksmethod, which returns true for Bond objects
and false for Atom objects.

public boolean isLink(Object obj)
{
return obj instanceof Bond;

}
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 668

The Phenol Molecule data source

The classes and methods of the Molecule example represent a molecule so that the diagram
component can display it. To display a specific molecule, you need to load the Molecule
instance from a data source.

The following code example shows a data source that contains a Phenol molecule. This class
is a subclass of IlvDiagrammerDataSource.

public class PhenolMoleculeDataSource extends IlvDiagrammerDataSource
{ ...

The Read method
To load a data source into a diagram component, call its read method, which is shown in
the following code example.

public void read(IlvDiagrammer diagrammer) throws IlvDiagrammerException
{
Molecule phenol = Molecule.createPhenolMolecule();
MoleculeModel model = new MoleculeModel(phenol);
diagrammer.getEngine().setModel(model);

}

The code lines in the read method are as follows:

1. Create the phenol Molecule instance with a static method for this purpose.

2. Wrap the Molecule instance into the molecule model.

3. Load the new model into the diagram component.

Empty methods
The data source class has other methods which must be implemented because they are
abstract, but they do nothing. The following code example shows these methods.

Implementation of unused abstract methods

public void write(IlvDiagrammer diagrammer)
throws IlvDiagrammerException

{
}

protected void serializeImpl(Element element)
throws IlvDiagrammerException

{
}

protected void deserializeImpl(Element element)

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 69

throws IlvDiagrammerException
{
}

The write method is not needed because the molecule data cannot be written.

The serialize method is not needed because there is no need to write any additional
information to define the data source in a project file.

The deserialize method is not needed because there is no need to read any additional
information to load the data source from a project file.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 670

Loading the Molecule into the diagram component

You must define a project file to tell the diagram component to use the data source. The
project file is an XML file called phenol-molecule.idpr. This file contains the class name
of the data source, and also the path of the style sheet used to represent the molecule.

The following code example shows the project file contents.

The project file for the Molecule example

<diagrammer style="molecule.css">
<datasource class="PhenolMoleculeDataSource"/>

</diagrammer>

To display the molecule, you can simply load the project file into the diagram component as
follows:

Diagrammer.setDataFile(new URL("file:phenol-molecule.idpr"));

The sample uses the prebuilt class IlvDiagrammerApplication, so you do not
see the call to setDataFile. Instead the project file is passed as a command-line
argument to the application.

Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 71

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 672

NonJavaBeans example: abstract model
variant

Describes how to display a set of Java™ objects that are not JavaBeans™ by subclassing
the abstract class IlvAbstractSDMModel.

In this section

The Tree Model example
Presents an example that displays the contents of a Swing JTree object as a graph.

The Swing JTree
Explains how to create a Swing JTree object.

The TreeSDMModel class
Describes how to write a data model that transforms the tree data into an SDM model.

The TreeSDMNode class
Describes the TreeSDMNode class, which represents the nodes of the graph.

The TreeSDMLink class
Describes the TreeSDMLink class, which represents the links of the graph.

Loading the data model and style sheet into the diagram component
Shows how to load the data model and style sheet into the diagram component.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 73

The Tree Model example

The TreeModel example displays the contents of a Swing JTree object as a graph. The nodes
of the graph are the items in the tree (also called tree nodes), and the links of the graph
represent the parent-child relationships between the items., see the following figure.

The Tree Model example: Swing JTree

This example uses the base class IlvAbstractSDMModel and implements nodes and links
using the IlvSDMNode and IlvSDMLink interfaces, for the following reasons:

♦ The nodes to be represented (the tree nodes) are existing Java™ objects, but they are
not JavaBeans™ .

♦ The links do not exist as Java objects; you need to create them.

The example is supplied with IBM® ILOG® JViews Diagrammer in the directory
<installdir>/jviews-diagrammer86/codefragments/datamodel/treemodel .

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 674

The Swing JTree

The data to be displayed is the contents of a Swing JTree. The example simply uses the
contents of a default JTree, which contains names of various colors, sports and food. You
create the JTree object as shown in the following code example.

TreeModel treeModel = new JTree().getModel();

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 75

The TreeSDMModel class

To display the data model of a tree in a diagram component, you must write a data model
that transforms the tree data into an SDMmodel. In this example, the model is implemented
by the class TreeSDMModel, which is a subclass of IlvAbstractSDMModel. Its definition is as
shown in the following code example.

public class TreeSDMModel extends IlvAbstractSDMModel
{
...

Root of the tree
The nodes of the graph will be represented by instances of a class TreeSDMNode. The
TreeSDMModel class creates a node that represents the root of the tree, and keeps a reference
to it as shown in the following code example.

private TreeSDMNode root;

public TreeSDMModel(TreeModel treeModel)
{
root = new TreeSDMNode(treeModel, null, treeModel.getRoot());

}

When asked to return the top-level objects of the graph, the getObjectsmethod just returns
a single element: the root of the tree, as shown in the following code example.

public Enumeration getObjects()
{
Vector v = new Vector();
v.addElement(root);
return v.elements();

}

Model is not editable
The clearmethod must be implemented, but it will never be called since the TreeSDMModel
class in this example represents a model that is not editable. The following code example
shows the method implementation.

public void clear()
{
// Nothing, this model is immutable.

}
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 676

The TreeSDMNode class

The class TreeSDMNode represents the nodes of the graph. Its definition is as shown in the
following code example.

public class TreeSDMNode implements IlvSDMNode
{

Data stored
Each node in the graph (graphic object) has a reference to the corresponding node in the
tree (model object). References to the parent node (graphic object) and the tree model are
also needed. The children of the node are stored in a vector.

Keeping track of the data: current node, parent, children, and model

private TreeSDMNode parent;
private TreeModel treeModel;
private Object treeNode;
private Vector children;

public TreeSDMNode(TreeModel treeModel, TreeSDMNode parent, Object treeNode)
{
this.parent = parent;
this.treeModel = treeModel;
this.treeNode = treeNode;

createChildren();
}

Children vector
Note that the constructor calls the method createChildren. This method traverses the tree
model and creates a TreeSDMNode instance for each item in the tree. In addition, it creates
an instance of TreeSDMLink to draw a link between the parent node and each child node.

Creating the child nodes and links (graphic objects)

private void createChildren()
{
children = new Vector();

// scan all the children of the root tree node, and create
// a TreeSDMNode for each:
//
int count = treeModel.getChildCount(treeNode);
for(int i = 0; i < count; i++){
Object childTreeNode = treeModel.getChild(treeNode, i);

// Create the TreeSDMNode. Note that this will recursively create

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 77

// the SDM nodes for all sub-nodes.
//
TreeSDMNode childSDMNode = new TreeSDMNode(treeModel, this, childTreeNode)

;
children.addElement(childSDMNode);

// Create a parent/child link:
//
TreeSDMLink childSDMLink = new TreeSDMLink(this, childSDMNode);
children.addElement(childSDMLink);

}
}

Implementation of the IlvSDMNode interface
The following methods are the implementations of the methods belonging to the IlvSDMNode
interface, which are inherited by TreeSDMNode.

The getTag method returns the type (or “tag”) of the node. In this example, the type is
treenode.

Retrieving the node type: the getTag method

public String getTag()

{
return "treenode";

}

The getIDmethod returns the identifier of the node. The identifier of a node is its hash code.

Retrieving the node ID: the getID method

public String getID()
{

return String.valueOf(hashCode());
}

The getChildrenmethod returns the children of the node, which are stored in the children
data member.

Retrieving the child objects: the getChildren method

public Enumeration getChildren()

{
return children.elements();

}

The getParent method returns the parent node of the current node.

Retrieving the parent object: the getParent method

public IlvSDMNode getParent()

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 678

{
return parent;

}

The getProperty and getPropertyNamesmethods must be implemented to give the diagram
component access to the properties of the node. In this example, there is support for two
properties, userObject and CSSclass:

♦ The userObject property returns the sample food, color, and sports names.

♦ The CSSclass property returns the type of item: food, color, or sport.

Retrieving a property: the getProperty method

public Object getProperty(String property)
{
if(treeNode instanceof DefaultMutableTreeNode){
if(property.equals("userObject")){
return ((DefaultMutableTreeNode)treeNode).getUserObject();

}
if(property.equals("CSSclass") && ((DefaultMutableTreeNode)treeNode).

getParent() != null){
return ((DefaultMutableTreeNode)((DefaultMutableTreeNode)treeNode).

getParent()).getUserObject();
}

}
return null;

}

The getPropertyNames method retrieves the two property names.

Retrieving property names: the getPropertyNames method

public String[] getPropertyNames()
{
if(treeNode instanceof DefaultMutableTreeNode)
return new String[] { "userObject", "CSSclass" };

else
return new String[0];

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 79

The TreeSDMLink class

The class TreeSDMLink represents the links of the graph. Its definition is as shown in the
following code example.

public class TreeSDMLink implements IlvSDMLink
{
...

The link implementation can therefore make use of all the predefined methods of the
IlvSDMLink interface.

Data Stored
Each link has a reference to a parent node and a child node, which can be retrieved using
the getFrom() and getTo() methods, see the following code example.

Keeping track of link data: parent and child

private TreeSDMNode parent, child;

public TreeSDMLink(TreeSDMNode parent, TreeSDMNode child)
{
this.parent = parent;
this.child = child;

}

public IlvSDMNode getFrom()
{
return parent;

}

public IlvSDMNode getTo()
{
return child;

}

Implementation of the IlvSDMNode interface
The IlvSDMLink interface inherits from the IlvSDMNode interface and so the same methods
must be implemented as for a node.

The tag (type) of links is treelink. and this value can be retrieved using the getTagmethod,
see the following code example.

public String getTag()
{

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 680

return "treelink";
}

The remaining methods are mostly empty, since in this example links have no properties.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 81

Loading the data model and style sheet into the diagram component

The Tree Model sample is a subclass of IlvDiagrammerApplication. It therefore has the
full application facilities as described in Customizing the predefined application.

The Data model
To load the TreeSDMModel object, the sample overrides the createDiagrammer() method to
perform extra operations, see the following code example.

protected IlvDiagrammer createDiagrammer()
{
// Create a default tree model. The JTree creates one
// if you don't specify a model: let's use it.
//
TreeModel treeModel = new JTree().getModel();

// Create the IlvDiagrammer instance.
//
IlvDiagrammer diagrammer = super.createDiagrammer();

// Create a default tree model. The JTree creates one

The sample creates an instance of TreeSDMModel, giving it a default tree model as a
parameter, see the following code example.

// Create the Tree -> SDM model adapter.
//
TreeSDMModel sdmModel = new TreeSDMModel(treeModel);

The sample then gets the SDM engine for the IlvDiagrammer instance and sets the data
model to the TreeSDMModel instance, as shown in the following code example.

// Tell the IlvDiagrammer to use this model:
//
diagrammer.getEngine().setModel(sdmModel);

return diagrammer;
}

The style sheet
The style sheet used to display the tree model is located in
<installdir>/jviews-diagrammer86/codefragments/datamodel/treemodel/data.

To load the style sheet, you pass the relative path to the sample as a startup argument.

public TreeModelDemo()

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 682

{
super(new String[]{
"-title", "Tree Model Demo",
"-style", "data/tree.css",

});
}

The style sheet specifies a Tree layout in Radial mode with various parameters, in the two
rules shown in the following code example.

SDM {
GraphLayout : "Tree" ;

}

GraphLayout {
flowDirection : "Bottom";
layoutMode : "RADIAL";
globalLinkStyle : "ORTHOGONAL_STYLE";
position : "300,200";
parentChildOffset : "10";
siblingOffset : "10";

}

The style sheet also specifies the colors of the various objects.

Note that the CSSclass property of the TreeSDMNode class is recognized automatically by
the CSS engine as specifying a CSS class because of its name, and therefore the values of
this attribute can be used directly in rules. This allows you to set colors at the level of types
of object with a simple syntax, see the following code example.

node.food {
fillColor2 : "lightgreen" ;
}

// node.treenode[userObject='food'] node.treenode {
// fillColor2 : "lightgreen" ;
// }

The comment lines show the alternative, longer way to set the color for food objects. This
longer way relies on a parent-child construct in CSS for Java. Note that the parent-child
construct is not supported in the Designer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 83

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 684

NonJavaBeans example: basic model variant

Describes how to display a set of Java™ objects that are not JavaBeans™ by subclassing
the basic class IlvBasicSDMModel.

In this section

The second Tree Model example
Presents another example that adapts the Swing JTree model to an SDM model.

The TreeSDMModel2 class
Describes the TreeSDMModel2 class, which transforms the tree data into an SDM model.

The TreeLink class
Describes the TreeLink class, which holds references to the parent and child tree nodes.

Loading the data model
Shows how to load the data model for this example.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 85

The second Tree Model example

This section makes use of the same example as for the IlvAbstractSDMModel variant, which
involves adapting a Swing JTree model to an SDMmodel. Therefore, for a description of the
common parts, see the subsections of that example as follows:

♦ Example description, see The Tree Model example

♦ Style sheet description, see The style sheet

♦ How to load the data model and style sheet, see Loading the data model and style sheet
into the diagram component

The remaining subsections that follow describe the data model implementation for this
variant.

The example is supplied with IBM® ILOG® JViews Diagrammer in the directory
<installdir>/jviews-diagrammer86/codefragments/datamodel/treemodel2.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 686

The TreeSDMModel2 class

To display the data model of a tree in a diagram component, you must write a data model
that transforms the tree data into an SDMmodel. In this example, the model is implemented
by a subclass of IlvBasicSDMModel, as shown in the following code example.

public class TreeSDMModel2 extends IlvBasicSDMModel
{
...

This SDM model will use the tree nodes taken from the JTree model directly, instead of
implementing a new class to represent the nodes of the graph. This approach has the
advantage of saving one object allocation for each node.

However, a new class is needed for the links, because there is no object that represents a
parent-child relationship in a JTree model.

Reference to the tree model
The TreeSDMModel2 class keeps a reference to the tree model, as shown in the following
code example.

private TreeModel treeModel;
private ArrayList links = new ArrayList();

public TreeSDMModel2(TreeModel treeModel)
{
this.treeModel = treeModel;

createLinks(treeModel.getRoot());
}

Method for creating links
The createLinks method creates the parent-child links and stores them in a list, as shown
in the following code example.

private void createLinks(Object treeNode)
{
for(int i = 0; i < treeModel.getChildCount(treeNode); i++){
Object childNode = treeModel.getChild(treeNode, i);
links.add(new TreeLink(treeNode, childNode));

createLinks(childNode);
}

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 87

Method for retrieving all nodes and links
The getObjects method (shown in the following code example) returns all the nodes of the
tree recursively, and also returns the links that have been created in the constructor. Note
that, in this variant, the data model is flat, that is, the tree hierarchy does not translate into
subgraphs, so all nodes and links are at the same level in the SDM model.

Retrieving nodes and links

public Enumeration getObjects()
{
Vector v = new Vector();

getTreeNodes(treeModel.getRoot(), v);

for (int i = 0; i < links.size(); i++) {
v.addElement(links.get(i));

}

return v.elements();
}

private void getTreeNodes(Object parentNode, Vector v)
{
v.addElement(parentNode);
for(int i = 0; i < treeModel.getChildCount(parentNode); i++){
getTreeNodes(treeModel.getChild(parentNode, i), v);

}
}

Methods of the SDM model interface
The methods of the SDM model interface are implemented directly in the subclass of
IlvBasicSDMModel, instead of being implemented in the node and link classes, see the
following code example.

Implementing the SDM model interface

public String getTag(Object obj)
{
if(isLink(obj))
return "treelink";

else
return "treenode";

}

public boolean isLink(Object obj)
{
return obj instanceof TreeLink;

}

public Object getFrom(Object link)
{

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 688

return ((TreeLink)link).getParentNode();
}

public Object getTo(Object link)
{
return ((TreeLink)link).getChildNode();

}

public Object getObjectProperty(Object object, String property)
{
if(object instanceof DefaultMutableTreeNode){
if(property.equals("userObject")){
return ((DefaultMutableTreeNode)object).getUserObject();

}
if(property.equals("CSSclass") &&

((DefaultMutableTreeNode)object).getParent() != null){
return
((DefaultMutableTreeNode)((DefaultMutableTreeNode)object).

getParent()).getUserObject();
}

}
return null;

}

public String[] getObjectPropertyNames(Object object)
{
if(object instanceof DefaultMutableTreeNode)
return new String[] { "userObject", "CSSclass" };

else
return new String[0];

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 89

The TreeLink class

The links are represented by instances of a very simple class that just holds references to
the parent and child tree nodes, see the following code example.

public class TreeLink
{
private Object parentNode;
private Object childNode;

public TreeLink(Object parentNode, Object childNode)
{
this.parentNode = parentNode;
this.childNode = childNode;

}

public Object getParentNode()
{
return parentNode;

}

public Object getChildNode()
{
return childNode;

}
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 690

Loading the data model

Most of the code in the sample is the same as in the first variant; the only difference is the
way the model is created, see the following code example.

// Create the Tree -> SDM model adapter.
//

TreeSDMModel2 sdmModel = new TreeSDMModel2(treeModel);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 91

Using a custom data model in the Designer

You can make use of a custom data model in the Designer but certain limitations apply.

The way to prepare a custom data model for use in the Designer is to export it to XML

Exporting your data model
The data model needs to be available in XML format, preferably diagram format, for the
Designer to load it. You can either write the XML file manually or generate it from the Java™
classes in Java code.

If you have XML data that is not in diagram format, see Handling XML data files in Java.

Loading the XML file
You can create a project file for an exported XML file and its associated style sheet in Java
code (see The Phenol Molecule data source). You can load the project file in Java code as
well, see Loading the Molecule into the diagram component. Once you have a project file,
you can also open it in the Designer to style the nodes and links interactively in Style Editing
Mode. If the custom data model is read-only, you will not be able to edit the model in Diagram
Editing Mode.

Writing your application
Your application will be based on the style sheet and on your Java classes. If you saved the
style sheet in the Designer, then it applies styles to the node and link classes used for graphic
representation by the Designer instead of to your Java classes. Therefore, your application
will need to adapt the style sheet to your Java classes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 692

Handling XML data files in Java

Explains how the class IlvSDMEngine allows you to read, write, and transform XML data.

In this section

Reading data
Shows several methods of reading the data from an XML file.

Writing data
Shows several methods of writing the contents of the data model to an XML file.

Reading and writing custom XML formats
Describes how to read and write data using a custom XML format.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 93

Reading data

There are several ways available to read an XML file:

♦ Call the method setXMLFile(java.lang.String).

♦ Call the method readXML(java.io.InputStream) to read XML data from an input stream.

♦ Call the method readDOM(org.w3c.dom.Document) to read data directly from a DOM tree.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 694

Writing data

There are several ways available to write the contents of the data model to an XML file:

♦ Call the method writeXML(java.lang.String) , specifying the filename:

myEngine.writeXML("output.xml");

♦ Call the method writeXML(java.io.OutputStream) to write XML data to an output
stream.

♦ Call the method writeDOM(org.w3c.dom.Document) to write data directly to a DOM tree.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 95

Reading and writing custom XML formats

It is possible to read and write data in any XML format. To do this, you have two solutions:

♦ Transform the XML format to the IBM® ILOG® JViews Diagrammer SDM format using
XSLT transformations

♦ Write a subclass of the utility class IlvXMLConnector

Using XSLT
XSLT is the simplest solution for reading and writing custom XML formats, because it
requires no Java™ coding. This solution is easier to apply when the structure of the custom
XML format is relatively close to the required structure.

For documentation and resources on XSLT, see the W3C web site (http://www.w3c.org).
Proceed as follows:

1. Write two XSLT files: one that will convert an XML document from the custom format
to the SDM format (for reading), and another one that will convert a document from
the SDM format to the custom format (for writing).

2. Create an instance of the class IlvXSLConnector (a subclass of IlvXMLConnector),
specifying the two XSLT files. To do this through the style sheet add a rule with the
following structure:

XMLConnector{
class : "ilog.views.sdm.util.IlvXSLConnector";
inputTemplates : "url(custom2sdm.xsl)";
outputTemplates : "url(sdm2custom.xsl)";

}

where the two XSLT files are custom2sdm.xsl (for reading), and sdm2custom.xsl for
writing.

Note that the two XSLT files must be written so that no information is lost, that is, the two
transformations should be the exact inverse of one another. If the custom XML format
contains information that is not useful for IBM® ILOG® JViews Diagrammer purposes or
that cannot be translated easily, this information can be stored as metadata (see Metadata
in the XML data file in Using the Designer).

It is possible to specify only one transformation. For example, you may specify only the input
templates file if you read only custom XML files, but never modify and write them back.

Subclassing the XML connector
There may be cases when you will not be able to write XSL transformations between the
custom XML format and the SDM format, usually because the structures are too different
and the XSLT language does not allow you to implement the transformation.

In such cases, proceed as follows:

1. Write a subclass of IlvXMLConnector.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 696

http://www.w3c.org

2. Create an instance of your custom XML connector in the style sheet, by writing a rule
with the following structure:

XMLConnector{
class : "my.package.MyConnector";

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 97

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 698

Content on demand

Describes the content on demand feature.

In this section

About content on demand
Describes the purpose and use cases of the content on demand feature.

Concepts
Describes the concepts involved in content on demand.

Classes involved
Describes the classes used by the content on demand feature.

Using content on demand
Explains how to implement the content on demand feature.

Content on demand and tiling systems
Describes what makes the difference between tiling systems and content on demand feature.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 99

About content on demand

The content on demand feature allows an SDM model to delay the loading of its objects
content in order to save resources. Unlike a tiling system, content on demand requires that
all the objects be present in the model. The objects can be hollow. Assuming that hollow
model objects have low memory and time footprints, content on demand allows you to fill
them on demand and empty them when they are no more needed. Content on demand sends
a notification when the content of a set of objects needs to be loaded, and, optionally, when
it can be unloaded.

Content on demand addresses two main use cases:

♦ Models that are time-consuming in terms of loading, and applications that are slow at
start up. The lazy loading of content speeds the start up of the Diagrammer application
because the model and the graphic representation of the model objects are light and
simple. Objects are filled on demand, and the customization and rendering time is used
only for the requested objects.

♦ Fat models that need to load content for a subset of objects only. Typically, only the
objects that are visible in the main view should be fully loaded. When panning or zooming,
the content of newly visible objects is loaded and the content of non visible objects can
be unloaded, which keeps the model memory footprint to a minimum.

The classes of the content on demand feature are located in the package ilog.views.sdm.
modeltools. The entry point is the class IlvContentController.

A content on demand sample is available in
<installdir>/jviews-diagrammer86/samples/diagrammer/content-on-demand.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6100

Concepts

The content on demand feature operates at the granularity of SDM model objects. Content
on demand makes use of the following concepts.

Content controller
The content controller maintains a state for each model object. A model object can be in
one of three states:

♦ locked The object content is loaded and in use.

♦ loaded The object content is loaded, but not locked. It is considered as cached and will
be unloaded when the cache is full.

♦ unloaded The object content is not loaded.

The state changes after events, such as a user request, a zoom or a pan change (in fact
visible area changes), have taken place. The controller then sends a notification to explicitly
load or unload a set of objects.

Usually, the lifecycle of an object content is: unloaded, then locked, then loaded, then
potentially back to unloaded.

The cache is virtual. The object content is held in the SDM model. When the state changes
to loaded, this simply means that the content remains in the model. As a matter of fact, the
SDM model implements the cache for the object content, and the controller manages this
cache.

The controller contains the states of the objects as well as a handler that processes the load
and unload commands.

Cache size tuning
Extreme values for the cache size have a radical impact on the content on demand behavior.

♦ Null (0) cache size: The objects are either in use (locked) or unloaded. Use this value to
minimize the memory footprint.

♦ Infinite cache size: The objects are loaded when needed but never unloaded. This is a
pure lazy load behavior.

For other cache size values, the objects are loaded when locked and remain in the cache
until they are flushed (FIFO way) to keep the average memory size close to constant. Note
that when objects are requested to be locked, they are loaded before the cache is purged
to avoid unloading an object that is going to be locked again. This means that the cache can
temporarily be larger that the expected size.

Locking requests
A locking request is an event sent to the controller to lock, load or unload objects. There
are two types of event:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 101

♦ Area events The controller is requested to lock all objects that intersect a given area. A
mode indicates whether previously locked objects should remain locked or should be
unlocked, that is, loaded (default). Typically, the area may be computed from the visible
part of the main view in order to load all visible objects.

♦ Set events The user sends a request to the controller to lock, load, or unload a given set
of objects. For example, a drill-down mechanism loads the content of the selected object.

Both types of event are non exclusive: An area event may be followed by a set event, and
conversely.

Notifications
The controller does not know by itself how to load the content of SDM model objects. On
request, it calls a handler, IlvContentHandler, that performs the load and unload actions
by upgrading the SDMmodel. Then, the usual SDMmodel notifications take over to customize
and refresh the graphic representations.

A load event is sent when the object state changes from unloaded to locked or loaded.

An unload event is sent when the object state changes from locked or loaded to unloaded.

No notification is sent when the state changes between loaded and locked.

Multithreading
The handler is able to work asynchronously, that is, if the controller asks to load an object,
the handler marks the object as locked while the object may be loaded in a separate thread.
In any case, the handler must notify the SDMmodel when the action is complete. The locking
requests are synchronized, so that the handler holds the controller synchronization lock
until completion of the event.

SDM model changes
The controller is aware of SDM model structural changes when:

♦ IlvSDMEngine.setModel() sets a new model: All the objects are unloaded without
notification to the handler.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6102

♦ The SDM model deletes an object: The object is unloaded in the controller without
notification to the handler.

To summarize, the controller forgets about the obselete objects of the model.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 103

Classes involved

The content on demand feature involves the following classes:

The IlvContentController class
The IlvContentController class defines the following methods:

♦ setSDMEngine(IlvSDMEngine engine) Sets the SDM engine to work on.

♦ setContentHandler(IlvContentHandler handler) Sets the handler.

♦ setCacheSize(int size) Sets the cache size.

Methods to send requests
♦ lockArea(IlvRect area, int mode) Locks the objects that intersect with the given
rectangle. The mode indicates the status of previously locked objects. The allowed values
are:

● IlvContentHandler.OVERRIDE Previously locked objects are unlocked.

● IlvContentHandler.AUGMENT Previously locked objects remain locked.

The class ilog.views.sdm.modeltools.IlvVisibleAreaListener provides a view listener
that locks automatically the visible area of an SDM view.

♦ processObjects(Object[] objects, int action) Locks, loads, or unloads the given
objects, according to the action value, which can be one of:

● IlvContentHandler.LOCK Lock action.

● IlvContentHandler.UNLOCK Unlock action (once unlocked, objects can be unloaded
at any time).

● IlvContentHandler.UNLOAD Unload action.

♦ processObjects(Enumeration objects, int action) Similar to the previous method
but objects are defined in an Enumeration.

♦ processObjects(Iterator objects, int action) Similar to the previous method but
objects are defined in an Iterator.

♦ processAllObjects(int action) Similar to the previous method but operates on all
objects.

All these methods are synchronized and return an integer which represents the number of
objects that have switched to the requested state.

Methods to retrieve the current state of an object
The following method retrieves the current state (LOCK/UNLOCK/UNLOAD) of an object in
the controller. Depending on the handler implementation (typically, if actions are performed
in a different thread), the state may differ from reality, for example, a content is not yet
available although the state is LOCK.

♦ int getObjectStatus(Object obj) Returns the current state of the given object.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6104

Other methods of the IlvContentController class:

♦ IlvSDMEngine getSDMEngine() Returns the SDM engine.

♦ IlvContentHandler getContentHandler() Returns the content handler.

♦ void setNotificationEnabled(boolean on) If on is false, the handler is not notified.

♦ boolean isNotificationEnabled() Returns whether notifications are enabled.

♦ int getLockedCount() Returns the number of locked objects.

♦ int getLoadedCount() Returns the number of objects in the cache.

The IlvContentHandler interface
The IlvContentHandler interface defines the following methods:

♦ loadContent(IlvContentControler source, Object[] objs) Loads the content of the
given objects into the SDM model.

♦ unloadContent(IlvContentControler source, Object[] objs) Unloads the content
of the given objects into the SDM model.

The source argument indicates the controller that sends the request.

The IlvVisibleAreaListener class
The IlvVisibleAreaListener class computes the visible area of a view as it changes and
sends it as a request to the controller. The constructor takes the controller as parameter.
To start listening to the visible area changes on a view, call the method:

♦ installListener(IlvManagerView target) Installs a transformer listener.

Example of use:

IlvVisibleAreaListener l = new IlvVisibleAreaListener(contentControler);
l.installListener(contentControler.getSDMEngine().getReferenceView());

The method requestAreaToLock can be subclassed to control the area to lock, as follows:

♦ int requestAreaToLock(IlvRect area) Called when the view transformer has changed.
The default implementation simply calls the controller method lockArea(area, OVERRIDE)
and returns the number of objects that have been loaded.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 105

Using content on demand

The content controller needs to be associated with an SDM engine and a handler.

Using the content on demand feature involves the following steps:

To use the content on demand feature:

1. Associate the content controller with the SDM engine and the handler.

_controller = new IlvContentController();
_controller.setSDMEngine(diagrammer.getEngine());
_controller.setContentHandler(new ContentHandler());

private class ContentHandler extends IlvContentHandler() {
// here we load/unload objects
private void loadObject(Object node, boolean load) {
if (load) {
model.setObjectProperty(node, CONTENT, ...);

} else {
// unload values
model.setObjectProperty(node, CONTENT, null);

}
}

// callback for loading content
public void loadContent(IlvContentController source, Object[] objects)

{
// prevent too much notifications
diagrammer.setAdjusting(true);
// loop over objects to load
for (int i=0; i<objects.length; i++) {
loadObject(objects[i], true);

}
diagrammer.setAdjusting(false);

}

// callback for unloading content
public void unloadContent(IlvContentController source, Object[]

objects) {
diagrammer.setAdjusting(true);
for (int i=0; i<objects.length; i++) {
loadObject(objects[i], false);

}
diagrammer.setAdjusting(false);

}
}

}

2. Optionally, change the cache value using the setCacheSize(int size) method.

You can adjust the cache size according to the desired behavior. The default value is
infinite, which means that all loaded content is never unloaded.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6106

_controller.setCacheSize(1024);

3. Install a view listener that will send requests to the controller.

IlvVisibleAreaListener l = new IlvVisibleAreaListener(contentControler);
l.installListener(contentControler.getSDMEngine().getReferenceView());

4. Now navigate in the view to automatically load or unload objects.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 107

Content on demand and tiling systems

The content on demand feature is similar to a tiling system, such as ilog.views.tiling,
with the following major differences:

♦ The granularity of content on demand is an SDM model object, not a tile. However, it is
possible to implement a tiling behavior outside the controller. For example, when the
handler is asked to load an object, all the objects of the same group can be loaded as
well.

♦ Content on demand does not create objects, it loads and unloads content. In other words,
the controller knows only about the objects currently in the SDM model.

♦ The user has the possibility to load or unload objects that are not in the visible area.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6108

Using CSS syntax in the style sheet

Gives an introduction to the CSS (cascading style sheets) standard in general and to the
extension, called CSS for Java, which is used in IBM® ILOG® JViews Diagrammer, and then
describes how you can customize nodes and links to give a variety of visual effects

In this section

Overview
Provides an overview to the CSS style sheets used in IBM® ILOG® JViews Diagrammer.

The origins of CSS
Presents a short history of cascading style sheets (CSS).

The CSS syntax
Describes the syntax used in cascading style sheets.

Applying CSS to Java objects
Shows how to apply the CSS to Java™ objects.

Customizing general nodes in the style sheet
Shows how to customize general nodes in the style sheet.

Customizing general links in the style sheet
Shows how to customize general links in the style sheet to affect its colors, borders, ends
and joins, decorations, arrows, and hooks.

© Copyright IBM Corp. 1987, 2009 109

Overview

The style sheet syntax conforms to the CSS2 (Cascading Style Sheet level 2) specification
with a few divergences.

The general format of a style rule in a style sheet is therefore:

selector {
declaration1;
declaration2;

...
}

For visualization purposes, the selector applies to objects in the data model, and is used for
pattern-matching; the declarations apply to the corresponding graphic objects, and are used
for rendering.

A declaration has the form:

propertyName : value ;

An example of a style rule is:

node.person[sex="female"]{
fillColor2 : "red";
personLegend : "Female";

}

This rule makes all nodes representing female persons red, and sets the legend for such
nodes to the word Female.

This section introduces and describes CSS briefly and then explains in more detail the version
of CSS used in IBM® ILOG® JViews Diagrammer and typical uses of CSS for customizing
nodes and links.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6110

The origins of CSS

Cascading style sheets (CSS) are a powerful mechanism to customize HTML rendering inside
a Web browser. The CSS2 specification comes from the W3C, and has now reached the
status of a W3C recommendation. See http://www.w3.org/TR/REC-CSS2/.

The CSS syntax is a great improvement over the .Xdefault resource mechanism of the X
Window System. The basic idea remains the same: matching a pattern and setting resource
values. CSS is devoted to HTML rendering, matching HTML tags and setting style values.
XML is another CSS target, especially as used within the SVG (Scalable Vector Graphics)
recommendation from the W3C.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 111

http://www.w3.org/TR/REC-CSS2/

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6112

The CSS syntax

Describes the syntax used in cascading style sheets.

In this section

Style rule
Describes style rules, as used in CSS documents.

Selector
Describes selectors, as used in CSS documents.

Declaration
Describes declarations, as used in CSS documents.

Priority
Describes priority, as used in CSS documents.

Cascading
Defines cascading in CSS documents.

Inheritance
Describes inheritance in CSS documents.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 113

Style rule

A CSS document (a style sheet) consists of a set of style rules

A CSS document (a style sheet) consists of a set of style rules. Each style rule starts with a
selector and is followed by a declaration block enclosed by curly braces. The selector defines
a pattern, and the declarations are applied to the objects that match the pattern.

The basic example below shows how to apply the color red to all emphasis elements in the
HTML document.

em { color : red ; }

where em is the selector, and “color : red ;” is a declaration.

It is possible to group several rules with the same declarations. Use a comma “,” to separate
the selectors. For example:

em, b { color : red ; }

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6114

Selector

The W3C states that “A selector represents a structure. This structure can be understood
for instance as a condition that determines which elements in the document tree are matched
by this selector, or as a flat description of the HTML or XML fragment corresponding to that
structure.”

Examples of selectors:

♦ H3

♦ P.footer

♦ TABLE#bigtable > TR

♦ TABLE#bigtable TD

♦ node

♦ node[x="2"]

♦ node:selected

♦ node#subgraph1 > #id2

A selector is composed of one or more simple selectors.

Examples of simple selectors:

♦ H3

♦ P.footer

♦ TABLE#bigtable

♦ TR

♦ node

♦ node[x="2"]

♦ node:selected

♦ #id2

A simple selector is made of minimal building blocks.

Examples of minimal building blocks of selectors:

♦ H3

♦ .footer

♦ node

♦ [x="2"]

♦ :selected

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 115

♦ #id2

When two or more simple selectors are aggregated into a selector, they are separated by
combinators. A combinator is a single character which semantics is described in the following
table. Extra spaces are ignored.

Combinator symbols
MeaningTransition

Matches an F element that is a descendant of an E elementE F

Matches an F element that is a child of an E elementE > F

Matches an F element immediately preceded by an E elementE + F

The minimal building blocks of a selector are listed in the following table. For an explanation
of the Specificity column, see Priority.

Minimal building blocks of a selector
SpecificityMatching RuleBuilding Block

0-0-1Matches any element of type ee

1-0-0Matches any element with an ID equal to myid#myid

0-1-0Matches any element with class myclass.myclass

0-1-0Matches any element with pseudo-class myclass:myclass

0-1-0Matches any element with the myattr attribute that exists and <> null[myattr]

0-1-0Matches any element whose myattr attribute value is exactly equal
to warning

[myattr=”warning”]

0-1-0Matches any element whose myattr attribute value is a list of
space-separated values, one of which is exactly equal to warning

[myattr~=”warning”]

0-0-0Matches any element*

For example, the following line:

P.pastoral.marine { color : green ; size : 10pt ; }

matches <P class="pastoral marine old">, sets the color of the paragraph to green, and
sets the font size to 10.

All rules start and end with an implicit “ * ” pattern. This means that a selector can match
anywhere inside the hierarchy.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6116

Declaration

Declarations are key-value couples. The separator is a colon (:). Each declaration is terminated
by a semicolon (;).

The key should represent a predefined graphic attribute (foreground, size, font, and so
forth) and the value is a literal whose type depends on the key (such as red, 10pt, or serif).
All key-value pairs are String. It is recommended that you quote values with quotation marks
" " or single quote marks ' ' when the values contain nonalphanumeric characters.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 117

Priority

The priority of the rules depends on their relative specificity. Specificity is computed as
three numbers, a-b-c (in a number system with a large base). The number of ID building
blocks in the selector gives the first number a, the number of classes, pseudo-classes and
attributes gives b, and the number of element types gives c.

The examples in the following table are in priority order, with the most specific first.

Priority Order Example
SpecificitySelector

“2-1-0”#title > #author.full

“1-0-0”#title

“0-2-2”P.intro P.citation

“0-1-3”UL OL LI.red

When two rules give the same specificity number, the order of appearance gives the priority
(the last seen overrides previous rules).

Priority is used as follows: first the declarations of all rules that match the same objects are
merged, and then the priority is applied only if there is a conflict (same key value) within
the merged declaration block.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6118

Cascading

Cascading consists of supplying several sources for the style.

In HTML environments there are three sources: the browser, the user, and the document.
Cascading fixes another weight according to the source of the style. Document style takes
precedence over user style, which takes precedence over browser style when the specificity
number is the same.

There are two more tokens, !important and inherit. They are used to alter the cascading
priority inside declarations.

A style sheet can also import other sheets (internal cascading). The syntax is:

@import "[url]" ;

Import statements must precede the first rule in a style sheet. Priorities of the imported
rules are computed as if the rules replaced the import statements. Here is an example of
import:

@import "common.css" ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 119

Inheritance

The main principle of CSS is the inheritance of declarations. Once the rules are checked
against the source document, the matched declarations are sorted according to the priority
order of the rules. The declarations are merged, with higher priority settings overriding
lower ones in case of conflict.

The resulting set of key-value pairs represents all the declarations that the style sheet applies
to a particular document.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6120

Applying CSS to Java objects

Shows how to apply the CSS to Java™ objects.

In this section

Overview
Provides an overview of how to map the CSS mechanism to the hierarchy of Java™ objects

The CSS engine
Describes the CSS engine and what it does at load time and at run time.

The data model
Describes the input data model and the information it supplies to the CSS engine.

CSS recursion
Explains recursion in CSS documents.

Expressions
Explains expressions in CSS documents.

Divergences from CSS2
Describes the differences between the CSS2 syntax and the style sheets used in IBM®
ILOG® JViews Diagrammer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 121

Overview

The CSS selector mechanism was designed to match elements in HTML or XML documents.
It can also be used to match a hierarchy of Java™ objects accessible from a model interface.
In this context, the CSS level 2 recommendation is transposed for the Java language and
used to set Bean properties according to the Java object hierarchy and state.

In applying CSS to Java objects, the term model objects is used as the equivalent of the term
elements in the W3C recommendation.

The CSS declarations for eachmodel object are sorted and used according to the application
that controls the CSS engine. The declarations represent property settings on a target object.
The target object concerned depends on the way the CSS engine is used.

IBM® ILOG® JViews Diagrammer uses CSS declarations to create and customize one graphic
object for each object in the data model, and to create and customize renderers according
to user settings.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6122

The CSS engine

The CSS engine has different responsibilities at load time and at run time:

♦ At load time: creating and customizing graphic objects and renderers

♦ At run time: customizing the graphic objects according to model changes

Usually the left side of a declaration represents a Bean property of the graphic object. The
right side is a literal and, if it needs type conversion, the Java method setAsText is invoked
on the Property Editor associated with the Bean property.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 123

The data model

The input data model represents the seed of the “CSS for Java™ ” engine. It provides three
important kinds of information to the CSS engine, required to resolve the selectors:

♦ The tree structure of objects, which will be exploited by selector transitions.

♦ Object type, ID, and tag (or user-defined type), which match element type, ID, and CSS
classes. IDs and types are strings; CSS classes are words separated by a space character.
ID is not required to be unique, although it is wise to assume so.

♦ Attribute, which matches an attribute of the same name in an attribute condition within
the selector.

The target object is the graphic object associated with the model object. The declarations
change property values of the graphic object that corresponds to the matching model object,
thereby customizing the graphic appearance given by the rendering.

In IBM® ILOG® JViews Diagrammer the target object is an IlvGraphic instance (see
Graphic objects in The Essential JViews Framework, for information about IlvGraphic
objects) or a composite graphic.

Object types and attribute matching
The following code example shows a rule that matches the object of class (type)
test_Vehicle, with the attribute model equal to sport, and sets the property icon of the
graphic object associated with this object (defined elsewhere) to sport-car.gif.

test_Vehicle[model=sport] {icon : "sport-car.gif";}

Attribute matching can be used to add dynamic behavior: a PropertyChange event occurring
on the model can activate the CSS engine to set new property values on the graphic objects.

The following code example shows a rule that changes the color of any object of CSS class
computer whenever the model attribute state is set to down.

.computer[state = down] {color : "gray"}

Object identifiers and CSS classes
The Java model provides a getID(java.lang.Object) method which represents the ID of
a model object. This ID can be checked against the # selector of a rule.

If there is a single CSS class in the selector, it is resolved with the getTag(java.lang.
Object) method in the model.

Additional CSS classes can be set for an object in a property called CSSclass. The engine
automatically merges the result of getTag with the value of the CSSclass property.

CSS classes are not necessarily related to data model semantics; they are devices to add to
the pattern-matching capabilities in the style sheet. An object belongs to only one class (its

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6124

type) but can belong to several (or no) CSS classes. A check on a CSS class is for its presence
or absence. Therefore a CSS class can be seen as an attribute without a value.

By default, an XML element name is defined as a CSS class. If, for example, a simple XML
file contains the element names root and leaf, then the following code example shows how
to change the color of leaf nodes to an RGB color specification.

node.leaf {
fillColor1 : 255,198,202 ;
foreground : 153,40,100 ;

}

The RGB color specification shown for the foreground (border) color is magenta.

Class name
The class property is a reserved keyword indicating the class name of the generated graphic
object. Obviously the class declaration is applied only when there is a creation request. If
the model state is changed, the graphic objects are customized by applying only new
declarations coming from new matching rules of the style sheet. The class declaration is
then simply ignored.

To change the class, you must remove the model object and add it again.

The right side of a class declaration may be:

♦ The class name, loaded with the system class loader. For example:

link {
class : ilog.views.sdm.graphic.IlvGeneralLink;
foreground : red;

}

There are two supplied base classes: IlvGeneralLink for links (see Customizing general
links in the style sheet) and IlvGeneralNode for nodes (see Customizing general nodes
in the style sheet).

♦ A factory (interface IlvRectangularObjectFactory). The factory requires an IlvRect
object which should be present in the declarations. This rectangle will be passed as a
parameter of the factory. For example:

node {
class : ilog.views.interactor.IlvMakeFilledRectangleInteractor;
IlvRect : 0,0,100,200;

}

There is a factory for most of the available graphic components. See IlvGraphicFactories
for more details.

♦ A pathname to a file. The class name is forwarded to the Beans library (method java.
beans.Beans.instantiate) so a serialized Bean is suitable. For example:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 125

link {
class : data.beans.gauge;
foreground : red;

}

When beanName is used as a serialized object name, the given beanName is converted to
a resource pathname and a trailing .ser suffix is added. An attempt is made to load a
serialized object from that resource.

In this example, Beans.instantiatewould try to read a serialized object from the resource
data/beans/gauge.ser.

Pseudo-classes and pseudo-elements
Pseudo-classes are the minimal building blocks of a selector which match model objects
according to an external context. The syntax is like a CSS class but with a colon instead of
a dot. For example, node:selected matches a node only if the node is selected. The user
agent can resolve this pseudo-class at run time according to the state of each node.

A pseudo-class has the same specificity as a CSS class.

Pseudo-elements are metaclasses, like pseudo-classes, but match document structure instead
of the user agent state.

Model indirection
The right side of a declaration resolves to a literal that is determined at run time by a Property
Editor. However, if the literal is prefixed by @, the remainder of the string is interpreted as
a model attribute name. The declaration takes the value from the model object, as shown
in the following code example.

node { label : "@caption" ; title : "CSS rocks" ;}

The label property will be set to the value of the attribute called caption in the model. If
the specified atribute does not exist for the object, it is searched for recursively in the model
ascendancy. The title property will be set to the literal CSS rocks.

Such indirection is also used in the opposite direction, that is, to retrieve the name of the
model attribute that controls a graphic property. This allows user interactions to modify the
data model correctly. Two special names, @_ID and @_TAG, represent values returned by the
model method calls getID(java.lang.Object) and getTag(java.lang.Object) getTag
respectively.

Resolving URLs
Sometimes declaration values are URLs relative to the style sheet location. A special
construct, standard in CSS level2, allows you to create a URL from the base URL of the
current style sheet. For example:

imageURL : url(images/icon.gif) ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6126

This declaration extends the path of the current style sheet URL with images/icon.gif.
This construct is very useful for creating a style sheet with images located relative to it,
because the URL remains valid even if the style sheet is cascaded or imported elsewhere.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 127

CSS recursion

You are likely to want to specify a Java™ object as the value of a declaration. A simple
convention allows you to recurse in the style sheet, that is, to define a new Java object which
has the same style sheet but is unrelated to the current data model.

@# construct
Prefix the value with @# to create new Beans when required as shown in the following code
example.

Creating a bean in a declaration

form {
date : "@#dateBean" ;
title : "CSS rules" ;

}
Subobject#dateBean {

class : ’java.util.Date’ ;
time : ’23849291’ ;

}

The @# operator extends the current data model by adding a dummy model object as the
child of the current object. The object ID of the dummy object is the remainder of the string,
beyond the @# operator. The type of the dummy object is Subobject. The dummy object
inherits CSS classes and attributes from its parent.

The CSS engine creates and customizes a new subobject according to the declarations it
finds for the dummy object. This means, in particular, that the Java class of the subobject
is determined by the value of the class property. The newly created subobject becomes the
value of the @# expression. In the declarations for the subobject, attribute references through
the @ operator refer to the attributes of the parent object.

Once the subobject is completed, the previous model is restored so that normal processing
is resumed.

In code example Creating a bean in a declaration, a java.util.Date object is created, with
the time property set to 23849291. This new object is assigned to the date property of the
form object.

@= and @+ constructs
There are two refinements of the @#ID operator:

♦ '@=ID'

Using @=ID instead of @#ID shares the instance. The first time the declaration is resolved,
the object is created as with the @# operator. But for all subsequent access to the same
value, @=IDwill return the same instance, the one created the first time, without applying
the rules. Note that all instances created with @=are cleared when a new style sheet is
applied.

♦ '@+ID'

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6128

Using @+ID instead of @#ID avoids useless creation. Basically @+ID customizes only the
object currently assigned to the property, unless it does not exist or its class is not the
same as the one defined in the #ID rule. In this case, the object is first created, then
customized, and then assigned to the property, the same as with an @# construct.

The need for these refinements arises from a performance issue. The @#operator creates a
new object each time a declaration is resolved. Usually a declaration is applied whenever a
property changes. Under certain circumstances, the creation of objects may lead to expensive
processing, so IBM® ILOG® JViews Diagrammer provides an optional mechanism tominimize
the creation of objects during property changes.

@| construct
A CSS declaration value starting with @| is interpreted as an expression (see Expressions).

@ construct
A CSS declaration value that is exactly @ means cancel the property setting made in a
previous rule. This construct is useful to prevent a property from being modified, especially
when the default value is unknown. For example:

Canceling a property setting

node {
width : 23 ;

}

node.fixed {
width : @ ;

}

These two rules say that the width property value should be set to 23, unless the node has
the CSS class fixed. Without the @ ability, the default value of width would have to be
written down in the CSS.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 129

Expressions

The value in a CSS declaration is usually a literal. However, it is possible to write an
expression in place of a literal.

If the value begins with @|, then the remainder of the value is processed as an expression.

The syntax of the expressions, after the @| prefix, is close to the Java™ syntax. The expression
type can be arithmetic (type int, long, float, or double), Boolean, or String. Examples:

@|3+2*5 -> 13
@|true&&(true||!true) -> true
@|start+end -> "startend"

An expression can refer to model attributes. The syntax is the usual one:

@|@speed/100+@drift -> 1/100 of the value of speed plus the value of drift , where speed
and drift are attributes of the current object.

'@|"name is: " + @name'-> "name is: Bob", if the value of current object attribute name
is "Bob." Note the use of quotes to keep the space characters. You could use the backslash
(\) character instead, directly preceding the space characters to retain them. The backslah
works to quote any character that directly follows it. Use of the backslash character makes
sure that the character thus quoted is not interpreted by the expression parser.

The standard functions abs(), acos(), asin(), atan(), ceil(), cos(), exp(), floor(), log
(), pi, rint(), round(), sin(), sqrt(), and tan() are accepted, as in, for example:

@|3+sin(pi/2) -> 4

There are some default functions in the ilog.views.sdm.renderer package: concat, int,
long, float, double. The first one concatenates its parameters as String; the others evaluate
basic numerical expressions (only the four operators +, -, *, / are allowed).

If the CSS engine encounters an error while it is resolving an expression, it silently ignores
the declaration.

Custom functions
Users of CSS for Java can register their own functions, which can be part of an expression.
A custom function must implement IlvSDMCSSFunction. This is an abstract class, but
technically you should consider it just like an interface.

The signature of the main method is as follows:

public Object call(Object[] args, Class type, IlvSDMEngine engine,
Object node, Object target, Object closure);

♦ When a function is evaluated, the parameters are first resolved as subexpressions. Then
the final values of parameters are passed to the args array.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6130

♦ The parameter type is the expected type of the function, when known. A null value is
possible. Implementation should take care to return an object of this type; otherwise the
conversion will only be performed if it can be (that is, if it is a simple conversion between
primitive types or to String).

♦ The parameters engine, node, and target are determined at invocation time as follows:
engine is the current SDM engine, node is the current model object being customized,
and target is the graphic object being customized. Not all functions need these parameters
(see, for example, code example Calling the custom function Average).

♦ The parameter closure allows the caller to retrieve the context on exit from the method.

If an error occurs during the call, the exception will be reported and the current property
setting will be canceled.

The following code example gives an example of a function that computes the average value
of its parameters.

Custom function example: average of parameters

import ilog.views.sdm.renderer.IlvSDMCSSFunction;
import.ilog.views.sdm.IlvSDMEngine;

public class Average extends IlvSDMCSSFunction {
//default contructor
public Average() { }

// Returns 'avrg'
public String getName() {

return "avrg";
}

// Returns ','
public String getDelimiters() {

return ",";
}

// Returns the average of arguments.
public Object call(Object[] args, Class type, IlvSDMEngine engine,

Object node, Object target) {
// Assume only double, for the sake of simplicity.
double result = 0d;
for (int i=0; i<args.length; i++) {

if (args[i] != null) {
result += Double.parseDouble(args[i].toString());

}
}
result /= args.length;
return new Double(result);

}
}

The following code example shows an example of how to call a custom function, where the
custom function is the Average class, which has the return value avrg. Note that this function
does not require information from the engine.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 131

Calling the custom function Average

node {
width : @|avrg(@param1,@param2);

}

The following code example gives an example of a CSS function for SDM, which returns the
graphic object (IlvGraphic) associated with the object whose ID is specified as argument.

Custom function example: Get Graphic Object From ID

class SDMGetGraphic extends IlvSDMCSSFunction {

public SDMGetGraphic() {
}

public String getName() {
return "getGraphicFromId";

}

public Object call(Object[] args, Class type, IlvSDMEngine engine,
Object node, Object target) {

if (args.length < 1)
throw new IllegalArgumentException("getGraphicFrom Id needs an id");

String id = (String)args[0];
IlvSDMModel model = engine.getModel();
Object ref = model.getObject(id);
if (ref == null)
return null;

IlvGraphic graphic = engine.getGraphic(ref,true);
return graphic;

}

public Feedback[] invert(Object[] args, Object value,
IlvSDMEngine engine,
Object node) {

return null;
}

}

The following code example shows an example of calling the getGraphicFromId function to
return the graphic object associated with the current object. Note that this function does
require information from the engine to retrieve the current object and its associated graphic
object.

Calling the custom function GetGraphicFromId

graphic : @|getGraphicFromId(@__ID) ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6132

Registering custom functions
You must register custom functions before using them in a style sheet.

To register a function, you can simply call registerFunction in ilog.views.sdm.renderer.
IlvStyleSheetRenderer (given an IlvSDMEngine, use IlvRendererUtil.getRenderer to
find the active instance of IlvStyleSheetRenderer).

It is also possible to register a function in the style sheet, provided that the function is a
JavaBean™ . You can set the property functionList to the list of custom functions, as class
names separated by commas. This property is available in the IlvStyleSheetRenderer class.
The following code example shows an example.

Registering a list of custom functions

StyleSheet {
functionList : "myPackage.RevertFunction,tests.RandomFunction";

}

Expert feature: inverting expressions
In very special situations, expressions must be inverted. For example, if there is a rule:

node {
x : @|log(@X) ;

}

and the representation of the node is moved horizontally, then the attribute named X in the
model should be updated according to the expression and the new x value (here: X = 10^x).

If you can modify a representation object in the interface, the model attributes described
in the style sheet may change. When the style sheet maps a property to an attribute directly,
as in:

label : @name ;

the update is automatic. But if the mapping is realized through a function, as in:

label : @|concat(name is: ,@name) ;

then the function must be able to invert its operation (here, if the string evaluates to: “name
is: Bob”, then the inverse function should set the name attribute to "Bob").

In this release, expressions cannot be inverted. However custom functions can be
inverted, using the invert method.

Note:

Custom functions can be inverted using the invert method, which is defined as follows:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 133

public Feedback[] invert(Object[] args, Object value, IlvSDMEngine engine,
Object target)

The parameters args, engine, target have the same meaning as in call. The parameter
value is the final value, and the method returns an array of couples (name, value). The name
is the attribute name, and value is the value to set for this attribute. The result is an array
when there are several attributes to update.

If a function cannot be inverted, then a null value should be returned.

The following code example shows how the Average function implements the invertmethod.

The Invert function for updating the data model from the style sheet

public Feedback[] invert(Object[] args, Object value, IlvSDMEngine engine,
Object target) {

ArrayList result = new ArrayList();
//The simplest to do is to set all attributes to the same final value.
for (int i=0; i<args.length; i++) {

// assume there is only @ construct.
String att = args[i].toString();
// Skip ’@’, which is the first character.
att = att.substring(1);
//Create and fill Feedback structure.
Feedback f = new IlvSDMCSSFunction.Feedback();
f.property = att;
f.value = value;
// Record feedback.
result.add(f);

}
// Convert to Feedback[].
return result.toArray(new IlvSDMCSSFunction.Feedback[result.size()]);

}

As you see in this example, there are two assumptions in the implementation of invert for
Average:

♦ All attributes are set to the same value, which is the average value.

♦ Parameters of the Average function must be attributes only.

Most functions are difficult (sometimes even impossible) to invert. They usually need a
compromise to support a minimum operation. But remember that invert needs to be
implemented only when the interface allows you to modify the rendered object in such a
way that the style sheet change needs to be reflected in the data model. Usually it is better
to modify the model directly.

The default functions try at best to deliver a sensible result for invert. They accept model
indirection (that is, @name) but no recursive calls to other functions.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6134

Divergences from CSS2

Java™ objects are not HTML documents. The CSS2 syntax remains, so that a CSS editor
can still be used to create the style sheet. However, the differences lead to adaptations of
the CSS mechanism so that its power can be fully exploited and to some specific behavior.

Cascading
Cascading is explicit: the API offers a means of cascading style sheets. However, the
!important and inherit tags are not supported for the sake of simplicity.

Pseudo-classes and pseudo-elements
The pseudo-class construct is fully implemented and used to represent renderer-specific
states or GUI items. The list of predefined pseudo-classes and where they are used is as
follows:

♦ init (is automatically enabled at creation time only. :init rules are not used if the bean
is customized only)

♦ selected (any renderer)

♦ collapsed or expanded (expandCollapseRenderer)

♦ <renderer_name>, for example, legendRenderer (to specify that the rule applies only to
rendering properties and not graphic object properties)

♦ renderer (to specify a property belonging to a renderer, as opposed to one with the same
name belonging to the graphic object)

♦ tree (Workflow Modeler)

♦ table (Workflow Modeler)

You can add custom pseudo-classes with the method IlvSDMEngine:setPseudoClasses.

The CSS2 predefined pseudo-elements and pseudo-classes (:link, :hover, and so forth) are
not implemented because they have no meaning in Java.

Attribute matching
The attribute pattern in CSS2makes the following checks for strings: presence [att], equality
[att=val], and inclusion [att~=val] . The |= operator is disabled.

For Java objects, there are the following numeric comparators >, >=, <>, <=, <, with the usual
semantics.

There are also equal and not-equal comparators which make the distinction between string
comparison and numerical comparison:

♦ Equal: "A==B" is true if and only if A and B are numerically equal (for example, 10 ==
10.0); use "=" to test the equality of two Strings.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 135

♦ Not-equal: "A~B" is true if and only if A and B are two different Strings (for example,
"10" ~ "10.0"); use "<>" to test the inequality of two numbers.

Operators available in the attribute selectors
Applicable ToMeaningOperator

stringspresentA

stringsequalsA=val

stringsnot equalsA~val

stringscontains the wordA~=val

numbersequalsA==val

numbersnot equalsA<>val

numbersless thanA<val

numbersless than or equalsA<=val

numbersgreater thanA>val

numbersgreater than or equalsA>=val

Syntax enhancement
CSS for Java requires the use of quotation marks when a token contains special characters,
such as dot (.), colon (:), at sign (@), number sign (also known as hash sign, #), space (),
and so on.

Quotes can be used almost everywhere, in particular to delimit a declaration value, an
element type, or a CSS class with reserved characters.

The closing “;” is optional.

Null value
Sometimes it makes sense to specify a null value in a declaration. By convention, null is a
zero-length string '' or "". For example:

node.not-handled {
class : '' ;

}

When a null class name is specified, no object is created at all, and no error is reported as
it would be for a malformed class name.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6136

The notation '' is also used to denote a null array for properties expecting an array of values.

Empty string
The null syntax does not allow you to specify an empty string in the style sheet. Instead, you
can create an empty string, as shown in the following code example.

node {
label : @#emptyString ;

}

Subobject#emptyString {
class : 'java.lang.String';

}

Better still, you can use the sharing mechanism to avoid the creation of several strings. The
@= construct will create the empty string the first time only and will then reuse the same
instance for all other occurrences of @#emptyString, see Sharing an empty string .

Sharing an empty string

node {
label : @=emptyString ;

}

Subobject#emptyString {
class : 'java.lang.String';

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 137

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6138

Customizing general nodes in the style sheet

Shows how to customize general nodes in the style sheet.

In this section

Overview
Provides some preliminary information for customizing the display of nodes.

Controlling the node’s shape
Describes the basic shapes available for general nodes.

Controlling the node’s skin
Describes the properties that control the node's skin.

Controlling the node’s border
Describes the properties used to control the node's border.

Controlling the node’s label
Lists the features used to control the node's label.

Controlling the node’s icon
Describes the properties used to control a node's icon.

Automatic resizing
Describes the properties used to control automatic resizing of a node.

Decorations
Describes the properties used to add decoration to a node.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 139

Overview

To customize the display of nodes, start by setting default properties at the highest level,
which is the node level.

Example of default properties for nodes

node {
class : ilog.views.sdm.graphic.IlvGeneralNode ;
shapeType : RoundRectangle ;
shapeWidth : 15 ;
borderWidth : 2 ;
foreground : 153,0,153 ; // dark magenta - border color
fillColor1 : 198,226,255; // slate grey - inner color

}

In the customizer for a node, you can customize the node’s shape, skin, border, icon, label,
and decorations.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6140

Controlling the node’s shape

The basic shape of the general node is controlled by the shapeType property. The possible
values are as listed in the following table.

Available shape types for a node
shapeType : “Rectangle”;

shapeType : “RoundRectangle”;

shapeType : “Ellipse”;

shapeType : “Diamond”;

shapeType : “TriangleUp”;

shapeType : “TriangleDown”;

shapeType : “TriangleLeft”;

shapeType : “TriangleRight”;

shapeType : “Marker”;

If needed, you can set the shape of the node directly through the setShape method. This
lets you use any custom shape. You can specify a custom shapes in any of the following ways:

♦ By referring to an SVG file in the style sheet:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 141

node {
shape : "url(myCustomShape.svg)";

}

♦ In Java code:

IlvGeneralPath myShape = new IlvGeneralPath(...);
generalNode.setShape(myShape);

The horizontal and vertical sizes of the shape are controlled through the properties
shapeWidth, shapeHeight, and shapeAspectRatio.

There are basically two policies to set the width and height of the shape:

♦ You can set the properties shapeWidth and shapeHeight. In this case the aspect ratio of
the shape will not be preserved. For example:

node {
class : "ilog.views.sdm.graphic.IlvGeneralNode";
shapeType : "RoundRectangle";
shapeWidth : "100";
shapeHeight : "50";

}

♦ You can set the property shapeWidth to the desired width and the property
shapeAspectRatio to the desired width/height ratio. For example:

node {
class : "ilog.views.sdm.graphic.IlvGeneralNode";
shapeType : "RoundRectangle";
shapeWidth : "100";
shapeAspectRatio : "2";

}

If you change the shape width in another rule, the aspect ratio will be preserved.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6142

Controlling the node’s skin

The following properties control the way colors are used in the shape: fillStyle, fillColor1,
fillColor2, fillStart, fillEnd, fillAngle, and fillTexture.

The fillStyle property specifies the type of Paint object used to fill the shape. The possible
values are as listed:

fillStyle : “SOLID_COLOR”;

fillStyle : “LINEAR_GRADIENT”;

fillStyle : “RADIAL_GRADIENT”;

fillStyle : “TEXTURE”;

The fillColor1 and fillColor2 properties specify the colors used:

♦ In SOLID_COLOR mode, the shape is filled with fillColor1.

♦ In LINEAR_GRADIENT and RADIAL_GRADIENT modes, the gradient starts with fillColor1
and ends with fillColor2:

fillStyle : “LINEAR_GRADIENT”;

fillColor1 : “blue”;

fillColor2 : “red”;

fillStyle : “RADIAL_GRADIENT”;

fillColor1 : “blue”;

fillColor2 : “red”;

In LINEAR_GRADIENT and RADIAL_GRADIENTmodes, the fillStart, fillEnd, and fillAngle
properties define the geometry of the gradient. A gradient is defined by two points called
P1 and P2. The following figures explain the meaning of the properties.

The following figure shows the geometry for a linear gradient.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 143

Linear gradient

Note that the linear gradient is always in “reflect” mode, so the colors go back and forth
from fillColor1 to fillColor2 outside the (P1, P2) segment.

The following figure shows the geometry for a radial gradient.

Radial gradient

The fillTexture property specifies the URL of an image file to use as a texture in TEXTURE
mode.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6144

Controlling the node’s border

The stroke (that is, the border) of the shape is controlled by the properties strokeColor,
strokeWidth, strokeDashArray, strokeEndCaps, strokeLineJoins, strokeMiterLimit,
and strokeDashPhase.

The strokeColor property sets the color used to paint the stroke.

The other properties are used to create an instance of java.awt.BasicStroke:

♦ strokeWidth specifies the width of the stroke.

♦ strokeDashArray is used to create dashed or dotted strokes. It is an array of floating-point
values that specify the lengths of the alternate painted and transparent segments.

♦ strokeEndCaps specifies the shape of the ends of the dash segments.

♦ strokeLineJoins and strokeMiterLimit specify how the stroke looks at the angles
between two segments.

The following code example shows how to create a blue dashed stroke, with rounded segment
ends, visible segments that have a length of 4, and transparent segments that have a length
of 2, in the style sheet.

Styling rule for the border (stroke) of a node

node {
strokeColor : "blue";
strokeDashArray : "4,2";
strokeEndCaps : "CAP_ROUNDS";

}

For more details of the stroke-related properties, see the documentation of the BasicStroke
class in the Java™ documentation.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 145

Controlling the node’s label

You can make use of the following features for a label on a node:

♦ Label string

♦ Multiline label

♦ Label position

♦ Autowrap

♦ Truncation

♦ Zoom

♦ Label font, color, and anti-aliasing

Label string
The label property controls the string displayed by the node’s label.

You can set the label to the empty string ("") if you do not want to display any label on the
node.

Multiline label
A label can have several lines. To define a multiline label, simply put newline (‘\n’) characters
in the value of the label property to separate the lines.

The alignment of multiline labels is controlled by the property labelAlignment, which can
take the values Left (left-aligned), Center (centered), or Right (right-aligned).

The spacing between the lines of multiline labels is controlled by the property lineSpacing.

Label position
The labelPosition property controls the placement of the label relative to the shape. This
property can take the values defined by the interface IlvDirection. For example, setting
labelPosition to Top places the label above the shape. Center places the label inside the
shape. The default position is Bottom..

The spacing between the shape and the label is controlled by the property labelSpacing.

Autowrap
If the labelMode property is set to WORD_WRAP, the label is automatically cut into several
lines to fit into the width of the shape.

You can choose the characters where a break due to word wrapping is allowed by setting
wordWrapChars. In autowrapmode, the newline characters contained in the label are ignored.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6146

The property labelMargin controls the margin to leave between the border of the shape
and the label when word wrapping is active:

♦ If the label is inside the shape, the label is kept narrower than the shape by two times
the margin.

♦ If the label is outside the shape, the label is allowed to be wider than the shape by two
times the margin.

Truncation
If the labelMode property is set to TRUNCATE, the label is automatically truncated to fit into
the width of the shape. This is different from autowrap mode: the label is not cut into several
lines, but simply truncated, and the truncated label always has a single line.

The property labelMargin controls the margin to leave between the border of the shape
and the (truncated) label, as in WORD_WRAP mode.

The end of the label is replaced by the string "..." (You can change this suffix using the
method setTruncatedLabelSuffix.

Zoom
If the labelZoomable property is set to "true", the label grows when the view is zoomed in
and shrinks when the view is zoomed out. If the labelZoomable property is set to "false",
the label size stays constant.

You can choose to make the label invisible when the view is zoomed in or out past a certain
zoom level. The property minLabelZoom specifies the minimum zoom level past which the
label will no longer be visible when zooming out. The property maxLabelZoom specifies the
maximum zoom level past which the label will no longer be visible when zooming in.

The labelScaleFactor lets you apply a scale factor to the label.

Label font, color, and anti-aliasing
The properties labelFont and labelColor control the font and color of the label.

The property labelAntialiasing determines whether the label should be drawn using
anti-aliasing or not.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 147

Controlling the node’s icon

To display an icon inside the shape, set the property icon to the URL of the icon to display.

You can define the icon URL in the style sheet as:

♦ An image file in any format supported by the Java™ VM:

node {
icon : "url(myIcon.jpg)";

}

♦ An SVG file:

node {
icon : "url(myIcon.svg)";

}

♦ An IBM® ILOG® JViews prototype:

node {
shape : "url(myPrototypeLibrary.ivl#myPrototype)";

}

Set the icon property to the empty string if you do not want an icon.

The icon is always displayed inside the shape (or centered on top of the marker if the shape
type is Marker).

If the label is inside the shape (labelPosition : "Center"), the position of the icon relative
to the label is controlled by the property iconPosition, which can be set to any direction
defined by the interface IlvDirection. For example, iconPosition : "Left" places the
icon to the left of the label.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6148

Automatic resizing

The general node can automatically compute the size of its shape according to the size of
the labels and the icon.

You can control autoresizing in the vertical and horizontal directions independently through
the properties horizontalAutoResizeMode and verticalAutoResizeMode. These properties
accept the following values:

Autoresize is disabled.NO_AUTO_RESIZE

The node is allowed to grow in the specified direction, but not to shrink.EXPAND_ONLY

The node is allowed to shrink in the specified direction, but not to grow.SHRINK_ONLY

The node is allowed to expand or to shrink as needed.EXPAND_OR_SHRINK

If horizontal autoresizing and word wrapping are used at the same time, the general node
cannot use the size of the label to compute the shape’s width because word wrapping uses
the shape’s width to cut lines. In this case, the label will be word wrapped such that its
bounding box is approximately square.

You can control howmuch space will be left between the border of the shape and its contents
(label and icon) using the properties horizontalAutoResizeMargin and
verticalAutoResizeMargin.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 149

Decorations

The general node can display “decoration” graphics in its top-left corner. Decorations are
small graphic objects used to represent the state of an object. For example, you could use
an icon to show that an error has occurred during the processing of a workflow activity.

To add a decoration to a node, set the decorations property. The value of the property is
an array of IlvGraphic objects.

The following code example shows a style sheet extract that adds a decoration which is an
IlvShadowLabel object.

Adding a decoration to a node in the style sheet

node[status="error"] {
decorations[0] : "@Subobject#errorDecoration";

}
Subobject#errorDecoration {

class : "ilog.views.sdm.graphic.IlvGraphicFactories$ShadowLabel";
IlvRect : "0,00,20,20";
label : "E";
foreground : "red" ;
background : "white" ;

}

You can add up to three decorations to a node. The decorations are always displayed in the
upper-left corner of the node. The upper-left corner of the first decoration is aligned with
the upper-left corner of the node. If several decorations are used, the subsequent decorations
are shifted to the right.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6150

Customizing general links in the style sheet

Shows how to customize general links in the style sheet to affect its colors, borders, ends
and joins, decorations, arrows, and hooks.

In this section

Controlling the link’s look
Lists the different ways that links can be customized.

Obtaining color effects
Describes the properties used to control color effects in links.

Controlling link decorations
Describes the properties used to control decoration in links

Controlling arrows
Describes the properties used to control arrow effects in links

Controlling extra effects
Lists the used used to control extra effects in links.

Summary of link properties
Summarizes the properties used to control links

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 151

Controlling the link’s look

Controlling the link’s look involves:

♦ Modes

♦ Adding a border

♦ Different border effects

♦ Line (stroke) ends and joins

♦ Curves

♦ Dashes

In the description of each of these items, the figure shows three possible customizations
and the code that follows the figure shows the style sheet setting for each customization in
the same order.

Modes
The link has three major different looks, associated with the property mode. For the first and
second looks, the foreground property sets the main color.

Three possible link modes

Basic link settings and three possible modes
link {

lineWidth : 10
foreground : pink ;

}

link.top {
mode : MODE_UNICOLOR ;

}

link.center {
mode : MODE_GRADIENT ;

}

link.bottom {
mode : MODE_TEXTURE ;
texture : 'file:/home/kaplan/JViews30/\

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6152

bin/composer/images/textures/wood2.gif' ;
}

Adding a border
A border is painted when the borderWidth property is greater than 0, its default value. The
default border color is black, and two other properties control the line style (for example,
dashes).

Three possible link borders

Basic link properties and three possible borders
link {

lineWidth : 10 ;
foreground : 144,238,144 ;
endCap : CAP_BUTT ;

}

link.top {
borderWidth : 4 ;
borderUpColor : red ;

}

link.center {
borderWidth : 4 ;
borderUpColor : gray ;
borderStyle : 10,5 ;

}

link.bottom {
borderWidth : 2 ;

}

Different border effects
The border can have two colors: one for the upper edge and one for the lower edge.

Using two colors in link borders

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 153

Rounded two-color links
link {

lineWidth : 10 ;
endCap : CAP_ROUND ;
lineJoin : JOIN_ROUND ;
borderWidth : 4 ;
borderUpColor : white ;
borderDownColor : black ;
mode : MODE_UNICOLOR ;

}

link.top {
foreground : pink ;

}

link.center {
foreground : orange ;
borderStyle : 10,10 ;

}

link.bottom {
borderUpColor : yellow ;
borderDownColor : blue ;
foreground : 30, 200, 50 ;

}

Line (stroke) ends and joins
IlvGeneralLink inherits from IlvPolylineLinkImage. The default stroke parameters are
JOIN_MITER and CAP_SQUARE. A miter join is a sharp join formed by extending one edge of
each link. You can change the end cap and join styles, as shown in the following figure.

Three possible end and join style combinations

Basic link properties and three possible end and join combinations

link {
lineWidth : 10 ;
foreground : 154,154,255 ;
borderWidth : 2 ;

}

link.top {
endCap : CAP_ROUND ;
lineJoin : JOIN_ROUND ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6154

}

link.center {
endCap : CAP_BUTT ;
lineJoin : JOIN_MITER ;

}

link.bottom {
endCap : CAP_SQUARE ;
lineJoin : JOIN_BEVEL ;

}

Curves
The curved property uses the link points to feed a Bezier function which renders a curved
link. Intermediate points show the path for the Bezier computation. With two points, a
standard deviation applies, that is, at 1/4 before the end of the link. The curved value is a
floating-point value between 0f and 1f. A value of 0means no curve at all (the default), and
a value of 1 means the sharpest curve. Use a value of 0.65f for an attractive curve, see the
following figure.

An attractively curved link

Basic line properties and a curve in three different line styles

link {
lineWidth : 10 ;
endCap : CAP_ROUND ;
lineJoin : JOIN_ROUND ;
foreground : 255,218,185 ;
borderWidth : 2 ;
curved : 0.65 ;

}

link.top {
mode : MODE_UNICOLOR ;

}

link.center {
endCap : CAP_SQUARE ;
lineStyle : 10,20 ;

}

link.bottom {
borderStyle : 1,10 ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 155

borderWidth : 6 ;
}

Dashes
Dashes provide interesting effects when combined with endCap values. Dashes are controlled
by the lineStyle property. They are expressed as a float array. Alternate entries in the array
represent lengths of the opaque and transparent segments of the dashes. Note that the
lineStyle specification is not affected by zooming.

Note that the dash specification also applies to the border (as shown in the following figure)
unless the borderStyle property overrides it (not shown).

Three uses of dashes for links

Basic link properties and three links with dashes (one a curve)
link {

lineWidth : 10 ;
endCap : CAP_BUTT ;
lineJoin : JOIN_ROUND ;
borderWidth : 2 ;

}

link.top {
foreground : #55BEF3 ;
lineStyle : 1,15 ;

}

link.center {
foreground : orange ;
lineStyle : 10,8,20,8 ;

}

link.bottom {
foreground : red ;
mode : MODE_UNICOLOR ;
endCap : CAP_BUTT ;
lineStyle : 4,4 ;
curved : 0.65 ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6156

Obtaining color effects

The alternateColor property gives the link a striped appearance. The length of each stripe
is equal to the thickness of the link by default. You can specify a different stripe length with
the lineStyle property.

The lineStylePhase property sets the initial offset. If no lineStyle is specified, the phase
is proportional to twice the line width. In the following example, the bottom link starts the
alternate color one segment later than the top one.

Three curved links with stripes

Striped links
link {

lineWidth : 10 ;
foreground : yellow ;
endCap : CAP_BUTT ;
lineJoin : JOIN_ROUND ;
alternateColor : darkGray ;
borderWidth : 2 ;
curved : 0.65 ;
}

link.top {

}

link.center {
lineStyle : 4,3 ;

}

link.bottom {
mode : MODE_UNICOLOR ;
lineStylePhase : 1 ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 157

Controlling link decorations

IlvGeneralLink allows you to place an IlvGraphic object onto a link, at a relative position.
You can place the decoration above the link or beside the link (the default).

Note that the syntax to enter the decorationPosition value is an array. You can enter all
the values at once as a comma-separated list of values or enter the array elements one by
one.

Another array property, decorationOptions, alters the way in which the decoration is
displayed. This property is a bit set of values, so you can specify several options at the same
time using the vertical bar operator | as follows:

♦ DECORATION_FIXED_SIZE: If set, the decoration will not zoom.

♦ DECORATION_ROTATE: If set, the decoration is rotated to follow the link shape.

♦ DECORATION_ANIMATE: If set, the decoration will move along the link. The speed is defined
by the property animateSpeed.

♦ DECORATION_NOTHING: Means default values (zoomable, no rotation, no animation).

To place the decoration over the link, set the option DECORATION_OVER , then set additional
options to control the position of the decoration with respect to the center of the link:

♦ DECORATION_ANCHOR_TOP: Shifts the decoration below the link at the center.

♦ DECORATION_ANCHOR_BOTTOM: Shifts the decoration above the link at the center.

♦ DECORATION_ANCHOR_LEFT: Shifts the decoration to the right of the link at the center.

♦ DECORATION_ANCHOR_RIGHT: Shifts the decoration to the left of the link at the center.

It is possible to mix options: DECORATION_ANCHOR_TOP|DECORATION_ANCHOR_LEFT places the
top-left corner of the decoration at the link center. The default behavior places the center
of the decoration at the center of the link, and you can apply an offset with the x, y values
for the decoration bounding box.

The following figure shows three decorations, one is a label and two are icons on the same
link.

Decorations on Links

Decorations on links

link {
foreground : #55BEF3 ;
lineWidth : 10 ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6158

endCap : CAP_ROUND ;
lineJoin : JOIN_ROUND ;
borderWidth : 2 ;

}

link.top {

decorations[0] : @#label ;
decorationPositions : 0.9 ;

}

link.center {
visible : false

}

link.bottom {
decorations[0] : @#smiley ;
decorations[1] : @#smiley ;

decorationOptions[0] : DECORATION_OVER ;
decorationOptions[1] : DECORATION_OVER|DECORATION_ANCHOR_TOP ;

decorationPositions : 0.25,0.75 ;
}

Subobject#label {
class :\ 'ilog.views.sdm.graphic.

IlvGraphicFactories$ZoomableLabel' ;
label : "smile!" ;
antialiasing : true ;
leftMargin : 5 ;
rightMargin : 5 ;
topMargin : 5 ;
bottomMargin : 5 ;
foreground : white ;
borderOn : true ;
stroke : @=stroke ;
strokePaint : @=borderPaint ;
backgroundOn : true ;
backgroundPaint : @=bgPaint ;

}

// border is cyan
Subobject#borderPaint {

class : ilog.views.sdm.graphic.IlvPaint ;
color : cyan ;

}

// background is blue
Subobject#bgPaint {

class : ilog.views.sdm.graphic.IlvPaint ;
color : blue ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 159

// stroke for the text
Subobject#stroke {

class : ilog.views.sdm.graphic.IlvBasicStroke ;
lineWidth : 1 ;

}

// smiley icon
Subobject#smiley {
class : "ilog.views.sdm.graphic.\

IlvGraphicFactories$Icon"
IlvRect : 0,0,12,12 ;
imageLocation : file:smiley.gif ;

}

Note the convenient property called label that quickly accesses the first decoration
implementing the IlvLabelInterface. If no decoration is found, a simple IlvZoomableLabel
is created at the first available slot of the current decorations array.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6160

Controlling arrows

You can set one of four modes on a link to represent an arrow:

♦ The ARROW_FILL mode value (the default) draws a filled triangular arrowhead.

♦ The ARROW_OPEN mode value draws a two-winged arrow.

♦ The ARROW_GRADIENTmode value shows an oriented link by smoothly varying the luminosity
along the link. The link appears darker near the source object and brighter near the
destination object.

♦ The ARROW_DECORATION mode value delegates the task of displaying the arrow to one of
the link decorations.

Drawing an arrow
In the first two modes, the arrowPosition property controls the position of the arrowhead
along the link. Its value is a floating-point value between 0 and 1. A value of 0 means the
start of the link, and 1 means the end (the default). The arrow direction is obviously aligned
with the link segment to which it is attached.

The property arrowRatio controls the size of the arrow, which is proportional to the link
width. A floating-point value of 0.5 means the arrow has the same size as the link. The default
value, 1, means the arrow is twice the link width. This property only makes sense for the
first two arrow modes.

The default color for an arrow is black, but you can set a different color with the property
arrowColor.

Arrowheads and direction

Basic link properties and three ways to show direction

link {
lineWidth : 10 ;
endCap : CAP_BUTT ;
lineJoin : JOIN_ROUND ;
foreground : 255,130,171 ;
borderWidth : 2 ;
oriented : true ;

}

link.top {
arrowMode : ARROW_GRADIENT ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 161

link.center {
mode : MODE_UNICOLOR ;
arrowPosition : 1f ;
arrowMode : ARROW_FILL ;

}

link.bottom {
arrowColor : #A3056E ;
arrowPosition : .2 ;
arrowMode : ARROW_OPEN ;

}

Using a decoration as an arrowhead
The ARROW_DECORATION mode value delegates the responsibility for showing an arrow to a
decoration.

IlvGeneralLink can help display a particular kind of arrow, for example, the kind used in
UML drawings.

The arrowhead is a simple shape (such as a circle, triangle, or diamond), located at the end
of the link. The link does not overlap the shape, nor go to the middle of the shape, nor change
at all. Whatever the direction of the last link segment touching the target node, the shape
is always toward the link. Since the decorations are IlvGraphic objects, that is, basically
rectangular objects, this special mode gives better results with orthogonal links.

You can only use this mode if the following conditions are met:

♦ The arrowMode property is set to ARROW_DECORATION.

♦ One of the link decorations has its position set to 1.

♦ This decoration sets the option DECORATION_OVER.

♦ This decoration sets one of the options DECORATION_xxx_RETRACT_AT_END,

where xxx can be FULL, HALF, or NO.

The following figure shows an example of two links in ARROW_DECORATION mode, connected
to a square node. The horizontal link is ended by a circle; the line continues to the middle
of the circle. The vertical link is ended by a diamond; the line stops at the beginning of the
diamond.

Two decoration arrowheads

The following code example shows the styling rules used to generate the node, links and
arrowheads.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6162

Decorations as arrowheads on links to a node

/////////////
// A very simple node
node {
class : ilog.views.sdm.graphic.IlvGeneralNode
fillColor1 : pink;
foreground : gray;

}

////////////
// Link definition

link {
class : ilog.views.sdm.graphic.IlvGeneralLink;
oriented : true;
decorations[1] : @=arrow; // see Subobject#arrow
decorationPositions[1] : 1;
decorationOptions[1] : 'DECORATION_OVER|DECORATION_HALF_RETRACT_AT_END';
arrowMode : ARROW_DECORATION;
label : @id;
lineWidth : 1.5;
endCap : CAP_BUTT;
foreground : black;

}

Subobject#arrow {
class : ilog.views.sdm.graphic.IlvGraphicFactories$Ellipse;

IlvRect : 0,0,10,10; // a circle
}

///////////////
// The vertical link inherits from "link { ... }" rule, and
// overwrites some options

#link2 {
decorations[1] : @=arrow2; // see Subobject#arrow2
decorationOptions[1] : 'DECORATION_OVER|DECORATION_FULL_RETRACT_AT_END';

}

Subobject#arrow2 {
class : ilog.views.sdm.graphic.IlvGraphicFactories$Marker;

IlvRect : 5,5,5,5;
type : 2; // a diamond

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 163

Controlling extra effects

The extra effects available for a link are:

♦ Waves

♦ Animation

♦ Zoom

♦ Neon effect and road effect

Waves
The wave effect is very effective for representing a wireless connection. The wave
specification consists of two numbers: the wave amplitude and its period, in pixels. The
property type is a String where two integers separated by “/” represent, respectively,
amplitude and period. The effect renders best with straight lines but remains compatible
with any shape.

The wave effect can also be mixed with dashes, border, arrow, and so on.

The wave effect for a link with a border

Basic link properties and the wave property

link {
lineWidth : 10 ;
endCap : CAP_ROUND ;
lineJoin : JOIN_ROUND ;
foreground : 238,174,238 ;
borderWidth : 2 ;

}

link.top {
visible : false ;

}

link.center {
borderWidth : 2 ;
wave : 20/30 ;

}

link.bottom {

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6164

visible : false ;
}

Animation
You can animate a link with dashes (see the lineStyle property) or alternate colors (see
the alternateColor property). The animation consists of incrementing the lineStylePhase
value at regular intervals, so that the pattern is shifted at each animation frame. The current
implementation updates the pattern every 500 ms.

The animateSpeed property controls animation of the link and how much the phase is
incremented. If the value is 0, the animation is stopped. Otherwise, the valuemust be between
0f and 1f, and represents a fraction of dash pattern length. For example, 0.1 means that
ten frames pass before you see the first frame again. Note that 0.9 represents the same
increment but in the backward direction.

Zoom
IlvGeneralLink inherits from IlvLinkImage, and keeps its zoom behavior. In particular,
the maximumLineWidth property sets the maximum size of the line. Also, the link is zoomable
only if one edge node is zoomable. Note that the link border thickness does not zoom. The
border line style and the link line style follow the zoom level of the link.

Neon effect and road effect
MODE_NEON is a minor mode which is a variation of MODE_GRADIENT. It displays the link with
transparent colors, giving a glowing effect (this works best with larger links and with darker
backgrounds). The border is automatically disabled in this mode. An example of using Neon
mode is to mark link selection, as shown in the top link in figureThe wave effect for a link
with a border. (The second link shows the same link when it is not selected.)

Previous examples already demonstrated some of the many possibilities that the link
appearance offers. By combining some of the properties, you can achieve some fancy effects,
such as the “road” link in figure The wave effect for a link with a border, where the large
border is the same gray color as the link foreground, and the white alternateColor looks
like the middle line of a road.

The neon effect

Selected (neon) and not selected links, and a road link

link {
lineWidth : 10 ;
lineJoin : JOIN_ROUND ;
endCap : CAP_ROUND ;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 165

foreground : 255,181,197 ;
}

link.top {
mode : MODE_NEON ;
lineWidth : 20 ;

}

link.center {
borderWidth : 1 ;

}

link.bottom {
mode : MODE_UNICOLOR;
endCap : CAP_BUTT ;
lineWidth : 15 ;
foreground : darkGray ;
lineStyle : 20,10;
lineStylePhase : 5 ;
alternateColor : white ;
borderWidth : 12 ;
borderUpColor : darkGray ;
curved : 0.65 ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6166

Summary of link properties

The following table lists all available properties of IlvGeneralLink and their descriptions.

IlvGeneralLink properties
CommentDefaultEffectTypeProperty Name

Segment colors are
foreground and

nullalternate
colored
segments

ColoralternateColor

alternateColor. Segments
are the width of the link unless
the lineStyle property is
specified.

Sets the arrow color; the default
is black.

Color.blackcolor of
arrow

ColorarrowColor

ARROW_FILL gives a filled
triangular shape, ARROW_OPEN

ARROW_FILLstyle of
arrow

intarrowMode

gives a 2-arms shape, and
ARROW_GRADIENT gives a
lighter color near the target. Set
oriented to enable an arrow.
ARROW_DECORATION delegates
the display of the arrow to a
decoration.

ARROW_FILL and
ARROW_OPEN modes only. It

1fposition of
arrow

floatarrowPosition

sets the position of the arrow
along the link. The default is 1f,
that is, at the target of the link.
When exactly at 1f, the link is
not painted until the very end,
so it does not overlap the link.

ARROW_FILL and
ARROW_OPEN modes only. It

1frelative size
of the arrow

floatarrowRatio

sets the size of the arrow
according to the link width. The
ratio value is multiplied by twice

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 167

CommentDefaultEffectTypeProperty Name

the link width to obtain the arrow
size.

The down side color of the
border.

nullborder
down color

ColorborderDownColor

Overrides lineStyle if
defined.

nulldash stylefloat []borderStyle

Overrides lineStylePhase
only when borderStyle is
defined.

0fdash offsetfloatborderStylePhase

The color of the border. If
borderDownColor is

nullborder colorColorborderUpColor

specified, it affects only the
upside border of the link.

The width of the link border.0fborder
width

floatborderWidth

Inner points are Bezier control
points. For 2 points, a standard

0fcurved linesfloatcurved

deviation is applied. Values
below 0f and over 1f are
ignored. Set to 0 to disable
curves, use 0.65 for best results.

Style sheet entry can be a @#
construct that generates an

nullputs
IlvGraphic
onto the link

ilog.views.IlvGraphic[]decorations

IlvGraphic (works only with
an indexed setter) .

Values are between 0.0 and 1.0.nullsets relative
location of

float[]decorationPositions

the
decorations

Options are:
DECORATION_NOTHING for

nulldisplays
options for
decorations

int[]decorationOptions

default, an OR-ed set of
DECORATION_ANIMATE to
enable animation according to
animateSpeed value,
DECORATION_ROTATE to rotate
the decoration according to the
link shape, or
DECORATION_FIXED_SIZE to

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6168

CommentDefaultEffectTypeProperty Name

prevent the decoration from
zooming. For a decoration over
the link, use
DECORATION_OVER and
DECORATION_ANCHOR_
[TOP|BOTTOM|LEFT|RIGHT]
to set the position of the
decoration with respect to the
link center. DECORATION_
[FULL | HALF | NO]
_RETRACT_AT_END] is used in
ARROW_DECORATION special
mode to display the decoration
at the end of the link.

See IlvStroke.CAP_SQUARElink
termination

intendCap

(and
dashes)
style

Value may be a decimal triple,
#-form, or any of the standard

nullmain colorjava.awt.Colorforeground

Java™ colors, for example,
12,55,200, #E023B3, cyan.
No alpha is allowed.

Convenient property to access
the first decoration that is a

nulllink labelStringlabel

label. If none is found, an
IlvZoomableLabel is created

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 169

CommentDefaultEffectTypeProperty Name

at the first available slot in the
decoration array.

See IlvStroke.JOIN_MITERcorner styleintlineJoin

See IlvLinkImage.nulldash stylefloat []lineStyle

See IlvLinkImage.0fdash offsetfloatlineStylePhase

The width of the link (border
excluded).

0fline widthfloatlineWidth

The minimum width of the link.0fzoom min.
width

floatminimumLineWidth

See IlvLinkImage.0fzoom max.
width

floatmaximumLineWidth

MODE_UNICOLOR displays the
foreground color;

MODE_GRADIENTmain lookintmode

MODE_GRADIENT displays a
brightness gradient derived from
the foreground, giving the look
of a pipe; MODE_NEON displays
a transparent gradient derived
from the foreground, giving the
look of a flashy neon; and
MODE_TEXTURE displays the
texture from the texture
property.

True enables an arrow.falseflagbooleanoriented

The texture for MODE_TEXTURE.
The property editor expects a

nulltextureIlvTexturetexture

URL to build the texture, so use
the string representation of a
URL in the style sheet to set this
property.

trueshow the
link

booleanvisible

First part is the amplitude,
second part is the period. It
works best with direct lines.

0/0wavy strokeStringwave

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6170

Using and adding renderers

Explains what a renderer is and how to enable and customize one, lists all predefined
renderers with their properties, and gives examples of writing your own renderer in Java™
code and integrating it through Java code or through the style sheet.

In this section

About renderers
Provides background information on renderers.

Using renderers in the style sheet
Shows how to define renderers in the style sheet.

Predefined renderers
Describes the predefined renderers provided in IBM® ILOG® JViews Diagrammer. The
following predefined SDM renderers are described, with their global properties and their
rendering properties if any

Adding your own renderer
Explains how to extend the rendering features of SDM. Shows how to add your own renderer.

The Flag renderer example
Provides an example of a custom renderer that displays a flag on the node that remains
visible even if the object is hidden.

Configuring renderers in Java code
Shows how to customize a renderer using Java™ .

Support for renderers in the Designer
Lists the renderers supported in the Designer.

© Copyright IBM Corp. 1987, 2009 171

About renderers

A renderer is a Java™ class that helps to manage the graphical representation of your
business data.

ILOG JViews Diagrammer supplies many predefined renderers. Several renderers are usually
active at the same time.

The StyleSheet renderer is responsible for creating and customizing graphical objects and
is always active. The GraphLayout renderer applies a layout algorithm and is often active.

Other renderers are created by the SDM engine if they are explicitly enabled in the style
sheet.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6172

Using renderers in the style sheet

Shows how to define renderers in the style sheet.

In this section

Enabling a renderer
Describes how to enable a renderer in the style sheet.

Customizing a renderer
Describes how to customize a renderer in the style sheet.

Using rendering properties on objects
Provides information on customizing the behavior of a renderer on specific objects.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 173

Enabling a renderer

To enable a renderer, simply set the declaration <renderer-name> : true ; in a style rule
with a selector that matches SDM.

The following code example shows a style rule that enables the Decoration and LinkLayout
renderers.

SDM {
Decoration : true;
LinkLayout : true;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6174

Customizing a renderer

To customize one of the renderers, you write a style rule with a selector that is the renderer
name and declarations that set properties of the renderer. Each renderer is implemented
by a JavaBean™ , and you can set any property of the Bean in the style rule.

For example, the LinkLayout renderer is implemented by the class IlvLinkLayoutRenderer.
This class defines a property called performingLayoutOnZoom which requires the layout
algorithm to be reapplied each time the view is zoomed in or out. The following code example
shows a style rule that customizes the LinkLayout renderer to reapply the layout algorithm
in this way.

Customizing a renderer in the style sheet

LinkLayout {
performingLayoutOnZoom : true;

}

Some renderers have a “default” property that you can set directly in the SDM rule instead
of setting it in the renderer’s customization rule. For example, the default parameter of the
GraphLayout renderer is the name of the layout algorithm to apply. The following code
example shows how to customize this renderer directly in the SDM rule.

Customizing a renderer directly

SDM {
GraphLayout : "Hierarchical";

}

Direct customization in the SDM rule is a shortcut for the longer way, which is shown in the
following code example.

Customizing a renderer the longer way

SDM {
GraphLayout : true;

}
GraphLayout {

graphLayout : "Hierarchical";
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 175

Using rendering properties on objects

In addition to the general rules for renderers, you can write specific rules to customize the
behavior of a renderer on a per-object basis through rendering properties. Rendering
properties can be seen as additional properties of the graphic objects which you can set to
tell a renderer how it should handle a particular object.

For example, the GraphLayout renderer defines a rendering property called Fixed. When
this property is set to true, the GraphLayout renderer will keep the position of the object
unchanged. The following code example shows a style rule that sets the Fixed property.

Customizing the layout of a type of node

node.participant {
shapeType : "Ellipse";
Fixed : "true";

}

This rule says that the nodes of type participant must not be moved when a graph layout
is applied. As you can see, you can mix “real” properties of graphic objects (such as
shapeType) with rendering properties (such as Fixed).

By convention, most rendering properties start with an uppercase letter, whereas
the properties of graphic objects start with a lowercase letter.

Important:

The following predefined renderers do not have rendering properties:

♦ Coloring

♦ Decoration

♦ LabelLayout

♦ Legend

If a rendering property conflicts with a graphic object property (which should generally not
happen), you can use the pseudo-class construct to restrict a rule to a specified renderer.
As an example, suppose you have written a custom graphic object which also has a property
called Fixed. The following code example shows a style rule which specifies that the property
is to be set only in the renderer (not in the custom graphic object).

Setting a renderer property for a graphic object

node.participant:renderer {
Fixed : "true";

}

The pseudo-class renderer is interpreted as the renderer which has the property called
Fixed.

The pseudo-class specification can also be the name of the renderer with an initial lowercase
letter, for example, graphLayoutRenderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6176

Predefined renderers

Describes the predefined renderers provided in IBM® ILOG® JViews Diagrammer. The
following predefined SDM renderers are described, with their global properties and their
rendering properties if any

In this section

Class summary
Presents an overview of the predefined renderers and their class relationships.

The Coloring renderer
Describes the Coloring renderer.

The Decoration renderer
Describes the Decoration renderer.

The Blinking renderer
Describes the Blinking renderer.

The GrapherPin renderer
Describes the GrapherPin renderer.

The GraphLayout renderer
Describes the GraphLayout renderer.

The DrillDown renderer
Describes the DrillDown renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 177

The HalfZooming renderer
Describes the HalfZooming renderer.

The InfoBalloon renderer
Describes the InfoBalloon renderer.

The Composite renderer
Describes the Composite renderer.

The Interactor renderer
Describes the Interactor renderer.

The LabelLayout renderer
Describes the LabelLayout renderer.

The Legend renderer
Describes the Legend renderer.

The LinkLayout renderer
Describes the LinkLayout renderer.

The Map renderer
Describes the Map renderer.

The StyleSheet renderer
Describes the StyleSheet renderer.

The Map StyleSheet renderer
Describes the Map StyleSheet renderer.

The SubGraph renderer
Describes the SubGraph renderer.

The SwimLanes renderer
Describes the SwimLanes renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6178

Class summary

This section describes the following predefined SDM renderers with their global properties
and their rendering properties if any.

Predefined renderers class relationships

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 179

The Coloring renderer

The Coloring renderer allocates colors automatically to nodes or links or both, depending
on one of their properties. This is useful when you want to represent objects with different
colors depending on a given property, but you do not know in advance how many different
values the property will take. There are two ways to set colors.

With the first way, you use the custom function called coloring of the Coloring renderer
which returns the color mapped to the model property value. The following code example
shows a style rule that sets the foreground color according to the level of the node.

Using a custom function to set coloring in the style sheet

node[level] {
foreground : @|coloring(level);

}

This rule states that all nodes that define the level property will be visualized with the
foreground property set to a color computed according to the level value. Objects with
the same level value will have the same color.

With the second way, you use the two properties colorProperty and indexProperty of the
Coloring renderer. These properties can be set to achieve a similar, although more global,
behavior, as shown in the following code example.

Using the Coloring renderer to set global coloring

Coloring {
colorProperty : foreground;
indexProperty : level;

}

This rule sets the foreground property for all nodes that have the level property.

The first way is preferred since the object selectors can be more specific than the coloring
renderer global setting.

The following table lists the properties of the Coloring renderer:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6180

Global properties of the Coloring renderer
DescriptionDefaultTypeProperty

The alpha value (that is, the transparency) of the allocated colors.1.0floatalpha

The brightness of the allocated colors.1.0floatbrightness

The color property to set on the graphic objects.“foreground”StringcolorProperty

The hue with which the color allocation algorithm will start.0.0floathue

The object property used as an index to allocate colors.nullStringindexProperty

The saturation of the allocated colors.1.0floatsaturation

The Coloring renderer does not have any per-object rendering properties.

See the class IlvColoringRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 181

The Decoration renderer

The Decoration renderer lets you add graphic objects in addition to the objects that represent
the nodes and links, and change the background color or texture. You can use the Decoration
renderer to display additional information such as titles or annotation labels. The objects
you add are static: they cannot change in response to model object states.

You can load decoration objects from a .ivl file or define them in the style sheet, as follows:

1. Give a name to each decoration.

2. Attach the decorationNames property of the Decoration renderer to all the names
collected at step 1.

3. Add a style rule for each decoration, where the selector is an ID with the decoration
name, and the declarations are what are needed to create and customize the decoration.

The following code example shows style rules that add a title and an image to the diagram.

Adding a title and image to the diagram with the Decoration renderer

SDM {
Decoration : true ;
}

Decoration {
decorationNames : 'title,logo' ;
}

#title {
class : "ilog.views.sdm.graphic.IlvGraphicFactories$ShadowLabel";
IlvRect : '5,5,100,20';
font : "dialog-18-bold";
foreground : black;
background : white ;
label : 'The main window.';

}

#logo {
class : "ilog.views.sdm.graphic.IlvGraphicFactories$Icon";
IlvRect : '5,35,20,20';
imageLocation : url(images/company.gif);

}

The following table lists the properties of the Decoration renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6182

Global properties of the Decoration renderer
DescriptionDefaultTypeProperty

The view background color, as defined in
IlvManagerView.

whiteColorbackground

Sets a URL that points to a .ivl, .svg, .svgz, or .
dxf file. The file contains graphic objects that are
added to the diagram.

URLbackgroundFile

The view background pattern, as defined in
IlvManagerView.

URLbackgroundPatternLocation

The names of the style rules that define the decoration
objects.

nullString[]decorationNames

The Decoration renderer does not define any per-object rendering properties.

See the class IlvDecorationRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 183

The Blinking renderer

The Blinking renderer offers a convenient API to obtain color or visibility blinking on graphic
objects. It allows you to specify a uniform timing for all graphic objects with visibility blinking:

SDM {
Blinking : "true";

}
Blinking {

onPeriod : 1000; // Every second
offPeriod : 1000; // Every second

}

The blinking can be defined in CSS in different ways:

♦ Toggling between colors

The classes IlvBlinkingColor and IlvBlinkingMultiColor represent blinking colors.
They can be used as Color for various properties of graphic objects that support blinking.

The following example illustrates how to specify a blinking color in CSS:

@|blinkinColor(color1,color2)
@|blinkinColor(color1,color2,color1Timing,color2Timing)
Bcolor1Timing/color2Timimg[color1/color2]
Btiming[color1/color2/color3/...]

The first two lines work only when the Blinking renderer is installed. The first line creates
a blinking color with the timings for the color taken from the Blinking renderer. The
second and third lines are essentially equivalent. The fourth line creates a blinking color
with multiple subcolors. Note that the Blinking renderer only enables the appropriate
syntax, but it is not necessary for the blinking effect. The third and the fourth lines work
even when no Blinking renderer is installed.

Here is a concrete example:

Color blinking
node {

class: "ilog.views.sdm.graphic.IlvGeneralNode";
label: "@name";
// toggles from red to black (2 states)
fillColor1: "B1000/1000[red/black]";
// toggles from red to yellow (2 states)
fillColor2: "@|blinkingColor(red,yellow)";
// toggles from black to transparent red to yellow (3 states)
labelColor: "B500[black/#aaff0000/yellow]";

}

♦ Toggling between paints

The classes IlvBlinkingPaint and IlvBlinkingMultiPaint represent blinking paints.
They can be used as Paint for various properties of graphic objects that support blinking.
Blinking paints work even when no Blinking renderer is installed.

The following example illustrates how to specify a blinking paint in CSS:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6184

Paint blinking
node {

class: "ilog.views.graphic.IlvGeneralPath";
fillPaint: "@=fillPaint";
fillOn: "true";

}
Subobject#fillPaint {

class: "ilog.views.util.java2d.IlvBlinkingPaint
(onPaint,offPaint,onPeriod,offPeriod)";

onPaint: "@#onPaint";
offPaint: "@#offPaint";
onPeriod: "1000";
offPeriod: "1000";

}
Subobject#onPaint {

class: "java.awt.GradientPaint(point1,color1,point2,color2)";
point1: "0.0,0.0";
color1: "white";
point2: "72.0,72.0";
color2: "255,0,51";

}
Subobject#offPaint {

class: "java.awt.GradientPaint(point1,color1,point2,color2)";
point1: "0.0,0.0";
color1: "255,0,51";
point2: "72.0,72.0";
color2: "white";

}

♦ Toggling the visibility

The renderer property ToggleVisibility switches the visibility of the whole object
periodically. The blinking timings are taken from the Blinking renderer, therefore this
specification works only when the Blinking renderer is installed and enabled.

Visibility blinking

node {
class: "ilog.views.sdm.graphic.IlvGeneralNode";
ToggleVisibility: "true";

}

When you use this specification, the visibility is toggled with the same timings for all the
objects. You can also specify individual timings per node; this does not require the
Blinking renderer to be installed. It is illustrated in the following example:

node {
class: "ilog.views.sdm.graphic.IlvGeneralNode";
blinkingOnPeriod: 1000;
blinkingOffPeriod: 1000;

}

The following table lists the global properties of the Blinking renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 185

Global properties of the Blinking renderer
DescriptionDefaultTypeProperty

The duration, in milliseconds, of the first color specified in the
blinkingColor function, or of the visible period when
ToggleVisibility is set to true.

1000intonPeriod

The duration, in milliseconds, of the second color specified in the
blinkingColor function, or of the invisible period when
ToggleVisibility is set to true.

1000intoffPeriod

The following table lists the per-object properties of the Blinking renderer.

Per-object properties of the Blinking renderer
DescriptionDefaultTypeProperty

If the value of this property is true, the graphic representation will
toggle the visibility.

falsebooleanToggleVisibility

See the class IlvBlinkingRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6186

The GrapherPin renderer

The GrapherPin renderer defines the exact positions where links will be connected to the
nodes of the graph. For example, the following code example shows a rule which declares
that a node of tag split has three connection points: one at the top of the node’s bounding
rectangle, one on the left, and another one on the right.

Specifying link connection points in the style sheet

node.split {
GrapherPin[0] : "Top";
GrapherPin[1] : "Left";
GrapherPin[2] : "Right";

}

Other rules can then make use of the connection points defined to specify where different
types of links are to be connected. For example, the following code example shows a rule
that connects all links of tag transition whose condition property is true from the right
of the source node to the top of the destination node.

Specifying how the ends of a transition link are connected

link.transition[condition="true"] {
FromPin : "2"; // pin #2 = Right (see node.split rule)
ToPin : "0"; // pin #0 = Top (see node.split rule)

}

The grapher pins are taken into account during editing when you create a new link or when
you reconnect an existing link. They are displayed as small circles during the interaction.

The GrapherPin renderer does not have any global properties.

The following table lists the per-object rendering properties of the GrapherPin renderer.

Per-object properties of the GrapherPin renderer
DescriptionDefaultTypeProperty

The grapher pin to which the link will be connected on the source
node. The value of the property is the index n of the

intFromPin

GrapherPin[n] property of the node, and the GrapherPin[
n] entry specifies the connection point.

The grapher pin of index n for this node. The value of the
property can be either a position relative to the node’s bounding

position, or
x,y

GrapherPin[n]

box (for example: Top, BottomLeft) or an x, y couple,

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 187

DescriptionDefaultTypeProperty

indicating the relative X and Y offsets of the grapher pin (0 = left
or top, 1 = bottom or right, 0.5 = center).

The grapher pin to which the link will be connected on the
destination node. The value of the property is the index n of the
GrapherPin[n] property of the node.

intToPin

For more details, see the class IlvGrapherPinRenderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6188

The GraphLayout renderer

The GraphLayout renderer lets you apply an automatic layout algorithm to the nodes of the
graph. The layout algorithm can be any of the algorithmsmade available by the Graph Layout
capability.

The graph layout algorithm will be applied once when the data model is loaded, and also
every time a new object is dynamically added to the model. The algorithm can be temporarily
disabled and then re-enabled.

The following table lists the properties of the GraphLayout renderer.

Global properties of the GraphLayout renderer
DescriptionDefaultTypeProperty

Specifies whether the links should be connected
to the shape of the node or to the bounding box

falsebooleanconnectingLinksToShape

of the node (including the label). Connection to
the shape is possible if the node is an
IlvGeneralNode object, and does not take the
label into account if it is outside the shape.

Enables/disables the graph layout algorithm.truebooleanenabled

Specifies which algorithm to apply.You can use
the full class name, for example:

nullIlvGraphLayoutgraphLayout

IlvHierarchicalLayout

or an abbreviated name (for example,
Hierarchical).

Tells the renderer to perform an incremental
layout (if the selected algorithm is a hierarchical

falsebooleanincrementalLayout

layout). If this property is true, all the nodes that
are not selected will be marked for incremental
layout. As a result, the layout will try to keep these
nodes at their current position in the hierarchy,
and place the selected nodes regardless of their
current position. Note that this is related to a
partial layout, but is not exactly the same. In
particular, nodes that are not selected may still
be moved slightly after an incremental layout. See

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 189

DescriptionDefaultTypeProperty

IlvHierarchicalLayout for a complete
description of incremental layout.

Tells the renderer to lay out only the selected
objects. Objects that are not selected are marked
as fixed before the layout.

falsebooleanpartialLayout

Specifies whether the new positions of the nodes
must be saved to the data model after the layout
is applied.

falsebooleansavingNodePositions

Setting properties of IlvGraphLayout objects
You can set any property of the IlvGraphLayout subclass corresponding to the selected
layout algorithm. The following code example shows an example of some typical rules.

Typical graph layout rules

SDM {
GraphLayout : "Hierarchical";

}

GraphLayout {
enabled : "false";
globalLinkStyle : "ORTHOGONAL_LINKS";
flowDirection : "Bottom";

}

In this example, enabled is a property of the GraphLayout renderer itself, but
globalLinkStyle and flowDirection are properties of the IlvHierarchicalLayout object
used by the renderer.

The properties of each layout algorithm are fully explained in the Using Graph Layout
Algorithms. The properties of the IlvGraphLayout subclasses conform to the JavaBeans™
conventions: if a class has a pair of methods called setMyProp (with a single parameter) and
getMyProp (without parameters), then you can set the property myProp in the style sheet.

If the value of the property is an enumeration of integer values defined by static member
variables of the class, you can use the name of the variable alone, or the variable name

Note:

prefixed by the class name alone, or the variable name prefixed by the fully qualified
class name. For example, these declarations are all valid:

globalLinkStyle : "ORTHOGONAL_LINKS";

globalLinkStyle : "ORTHOGONAL_LINKS";

globalLinkStyle : "IlvHierarchicalLayout.ORTHOGONAL_LINKS";

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6190

globalLinkStyle :
"ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout.ORTHOGONAL_LINKS";

The following table lists the per-object rendering properties of the GraphLayout renderer:

Per-object properties of the GraphLayout renderer
DescriptionDefaultTypeProperty

Lets you define a different graph layout algorithm for each
subgraph. If one is not specified, the same algorithm is
applied recursively to all subgraphs.

nullIlvGraphLayoutGraphLayout

Deprecated, replaced by ClusterIdn/aStringLayoutCluster

Deprecated, replaced by Fixed.falseStringLayoutFixed

Lets you apply the algorithm to different groups of objects,
one group after the other.

nullStringLayoutGroup

If true, the object is ignored by the layout.falsebooleanLayoutIgnored

Deprecated, replaced by StarCenter.falsebooleanLayoutStarCenter

For Circular Layout only: A list of cluster identifiers (at
least one) to which a node belongs. For example, the

n/aStringClusterId

ClusterId value "cluster3" means that the node belongs
to the cluster with this identifier; the ClusterId value
"cluster3,2" means that the node belongs to the
cluster cluster3 and has the order index "2"; the
ClusterId value "cluster3,2;cluster5,3" means
that the node belongs to two clusters, cluster3 and
cluster5, and has the order index "2" on the first cluster
and the order index "3" on the second cluster.

It is mandatory to specify a value for the node to be
managed by the circular layout.

For Circular Layout only: If true, the object is placed at
the center of a star configuration.

falsebooleanStarCenter

If true, the node is not moved by the graph layout (for
links, the link is not reshaped).

falsebooleanFixed

Setting node or link parameters on graph layout objects
You can set any parameter of a graph layout algorithm that applies to a particular node or
link in the style sheet. Such a parameter is defined by a method of the form:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 191

setMyParam(Object node, <type> value);

or

setMyParam(Object link, <type> value);

Node or link parameters are set in the style sheet as follows:

node {
MyParam : "value";

}

The name of the property is the name of the method, without the set prefix. Note that node
and link parameters are capitalized, unlike Bean properties.

For example, the hierarchical layout defines a setFromPortSidemethod that lets you choose
which side of the origin node a given link will be connected to. The signature of the method
is:

setFromPortSide(Object link, int side);

In the style sheet, you can set this parameter as follows:

link {
FromPortSide : “WEST”;

}

The value of the property can be any simple type (integer, String, float), or it can be the
name of a public constant defined by the graph layout class, for example, WEST , which is
defined in the class IlvHierarchicalLayout.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6192

The DrillDown renderer

The DrillDown renderer allows you to display more and more objects as you zoom in the
view. The objects are dispatched to different manager layers with visibility filters, which
are configured according to the object property DrillDownZoom. All the objects with the
same drill-down zoom are placed in a manager layer that is visible only when the view’s
zoom level is greater than the drill-down zoom.

The following code extract illustrates how to enable the DrillDown renderer:

SDM {
DrillDown: "true";

}

The following table lists the global properties of the DrillDown renderer.

Global properties of the DrillDown renderer
DescriptionDefaultTypeProperty

Specifies whether an icon should be displayed in the top-left
corner of the view to alert the user that some objects are not

falsebooleanshowingIndicator

visible at the current zoom level. The indicator disappears when
the user zooms in enough to make all objects visible.

The following code extract shows how to configure the DrillDown renderer global property:

DrillDown {
showingIndicator: "true";

}

The following table lists the per-object properties of the DrillDown renderer.

Per-object properties of the DrillDown renderer
DescriptionDefaultTypeProperty

Specifies the zoom level above which the objects become visible.0doubleDrillDownZoom

The following code extract illustrates how to specify the drill down zoom level for objects
based on data model properties. In this scenario, links become visible according to the data
model property distance:

Specifying drill down zoom levels

link[distance>="1000"] {
DrillDownZoom : "0";

}
link[distance<"1000"] {
DrillDownZoom : "2";

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 193

}
link[distance<"100"] {
DrillDownZoom : "4";

}
link[distance<"10"] {
DrillDownZoom : "8";

}

See the class IlvDrillDownRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6194

The HalfZooming renderer

The HalfZooming renderer lets you control the way your graphic objects will grow or shrink
when you zoom in or out. You can specify the following parameters:

♦ Maximum zoom level above which the objects will stop growing; their size will stay fixed
past this zoom level.

♦ Minimum zoom level below which the objects will not be drawn any more; they will be
replaced by gray boxes, or will keep a fixed size.

You can also specify an initial zoom factor by which the minimum and maximum zoom levels
will be multiplied.

The following table lists the properties of the HalfZooming renderer.

Global properties of the HalfZooming renderer
DescriptionDefaultTypeProperty

Specifies the alpha globally for all objects.1.0doublealpha

If true, the nodes are drawn as gray boxes when the
zoom level is below the minimum zoom, and the gray

truebooleangrayedWhenUnzoomed

boxes zoom out normally. If false, the nodes simply stop
zooming out and keep the same size.

Specifies the initial zoom globally for all objects.1.0doubleinitialZoom

Specifies the maximum zoom globally for all objects.1.0doublemaxZoom

Specifies the minimum zoom globally for all objects.1.0doubleminZoom

The background (the fill color) of the boxes displayed
instead of zoomed out objects.

greyColorunzoomedBackground

The foreground (the border color) of the boxes displayed
instead of zoomed out objects.

blackColorunzoomedForeground

The following table lists the per-object rendering properties of the HalfZooming renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 195

Per-object properties of the HalfZooming renderer
DescriptionDefaultTypeProperty

Overrides alpha for a given object.doubleAlpha

Overrides initialZoom for a given object.doubleInitialZoom

Overrides maxZoom for a given object.doubleMaxZoom

Overrides minZoom for a given object.doubleMinZoom

Overrides unzoomedBackground for a given object.ColorUnzoomedBackground

Overrides unzoomedForeground for a given object.ColorUnzoomedForeground

See the class IlvHalfZoomingRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6196

The InfoBalloon renderer

The InfoBalloon renderer displays information about a node or a link when the user clicks
in it. The information is displayed in a customizable popup window called a balloon.

The contents of the balloon are specified through strings that have the following format:

"line1,First Title: ,prop1;line2,Second Title: ,prop2;..."

where prop1, prop2, and so on are the names of the object’s properties for which values are
to be displayed.

The following table lists the properties of the InfoBalloon renderer.

Global properties of the InfoBalloon renderer
DescriptionDefaultTypeProperty

Specifies the contents of the balloon globally for all the links.StringlinkBalloonLines

Specifies the contents of the balloon globally for all the nodes.StringnodeBalloonLines

Sets the prototype(s) that represents the balloon.Stringprototype

The following table lists the per-object rendering properties of the InfoBalloon renderer.

Per-object properties of the InfoBalloon renderer
DescriptionDefaultTypeProperty

Specifies the contents of the balloon for a particular object. Overrides
nodeBalloonLines or linkBalloonLines.

StringInfoBalloonLines

See the class IlvInfoBalloonRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 197

The Composite renderer

The Composite renderer provides support for symbols and composite graphics to represent
nodes and links. In particular, it allows you to:

♦ Perform Swing actions on predefined gestures defined for any child of a composite graphic.

♦ Define which child the links connect to.

The following code extract illustrates how to enable the Composite renderer:

SDM {
Composite: "true";

}

The following table lists the per-object properties of the Composite renderer.

Per-object properties of the Composite renderer
DescriptionDefaultTypeProperty

Specifies the index used with the indexed property
children of composite graphics. The links connect to

-1intLinkConnectionRectangle

the nearest edge of the bounding box of the child at the
position defined by this property.This property is defined
on the objects of type node.

Specifies the name of a decoration in a composite
graphic, which is used to connect the origin of a link.This
property is defined on the objects of type link.

nullStringFromCompositePin

Connects the origin to this position of the decoration.
This property is defined on the objects of type link.

CenterStringFromCompositePinPosition

Specifies the name of a decoration in a composite
graphic, which is used to connect the destination of a
link. This property is defined on the objects of type link.

nullStringToCompositePin

Connects the destination to this position of the decoration.
This property is defined on the objects of type link.

CenterStringToCompositePinPosition

The following code extract illustrates how to configure the link connection rectangle:

node {
LinkConnectionRectangle: 0;

}

The following code extract illustrates how to specify the decoration to be used to connect
links:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6198

link {
FromCompositePin:"decoration"; // use the name defined above
FromCompositePinPosition:"Center";
ToCompositePin:"decoration"; // use the name defined above
ToCompositePinPosition:"Center";

}

See the class IlvCompositeRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 199

The Interactor renderer

The Interactor renderer is a base class for all renderers that attach object interactors to
graphic objects. This renderer can also be used directly to install an object interactor specified
in the style sheet.

The following table lists the properties of the Interactor renderer.

Global properties of the Interactor renderer
DescriptionDefaultTypeProperty

Specifies the class name of the object interactor to attach to all the graphic
objects.

nullStringinteractor

The following table lists the per-object rendering properties of the Interactor renderer.

Per-object properties of the Interactor renderer
DescriptionDefaultTypeProperty

Specifies the class name of the object interactor to attach
to a particular graphic object. Overrides the interactor
property.

nullStringInteractor

Specifies whether mouse motion events are dispatched
in addition to mouse click events.

falsebooleanprocessMouseMoveEvent

See the class IlvInteractorRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6200

The LabelLayout renderer

The LabelLayout renderer performs a label layout algorithm. It is useful when the graphic
objects that represent the data model have labels and you want to minimize the overlap of
these labels with other labels or other graphic objects. The algorithm will try to move the
labels around their original position (for node labels) or along their link (for link labels) to
minimize the overlaps.

The LabelLayout renderer uses the classes of the package ilog.views.graphlayout.
labellayout, available since IBM® ILOG® JViews 5.0. The label layout algorithm applied
is the "simulated annealing" algorithm.

The following table lists the properties of the LabelLayout renderer.

Global properties of the LabelLayout renderer
DescriptionDefaultTypeProperty

Enables/disables the label layout algorithm.truebooleanenabled

If true, the labels of IlvGeneralLink
objects will be laid out. If false, general link
labels are left unchanged.

truebooleanlayoutOfGeneralLinkLabelsEnabled

If true, the labels of IlvGeneralNode
objects will be laid out. If false, general
node labels are left unchanged.

truebooleanlayoutOfGeneralNodeLabelsEnabled

The LabelLayout renderer does not have any per-object rendering properties.

You can set any property of the IlvAnnealingLabelLayout object used by this renderer.
For details see Setting properties of IlvGraphLayout objects.

See the class IlvLabelLayoutRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 201

The Legend renderer

The Legend renderer displays a legend box explaining the look of the graphic objects. The
legend is generated using an index property. For each object, the value of the index property
is queried. If no object with the same value is already shown in the legend, a new entry is
added.

Each entry consists of a copy of the graphic object and a label displaying the value of the
property for this graphic object.

The legend can be contained in the same view as the generated graph, or it can be in a
separate frame.

The legend can contain several columns, each corresponding to a different index property.

The graphic objects in the legend can be customized separately, using the pseudoclass
legend.

For example, the following code example shows how to set the same color for all the links
in the legend.

link:legend {
foreground : "green";

}

The following table lists the properties of the Legend renderer.

Global properties of the Legend renderer
DescriptionDefaultTypeProperty

The background color of the legend box.whiteColorbackground

If true, each entry has a check box that lets the
user show or hide the corresponding graphic
objects.

truebooleancheckBoxesVisible

The border color of the legend box.blackColorforeground

Specifies the object property to use as an index.
You can specify several properties, separated by

nullStringindexProperty

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6202

DescriptionDefaultTypeProperty

commas. Each index property will be displayed in
a separate column of the legend.

If true, the legend box is contained in the diagram.
Otherwise, it is displayed in a separate frame.

truebooleaninlaid

The margin around the legend elements.5intinsideMargin

The font used for the labels of the entries.FontlabelFont

Specifies whether the labels must be zoomable.falsebooleanlabelsZoomable

The manager layer in which the legend box will be
added.

30intlayer

Hides or shows the legend.truebooleanlegendVisible

If true, the legend items zoom together with the
view. If false, the legend items do not zoom; they

true if inlaid,
false if not
inlaid

booleanlegendZooming

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 203

DescriptionDefaultTypeProperty

always keep the same size when the diagram is
zoomed in or out.

The length of links in each column of the legend.50float[]linksLength

The width of links in each column of the legend.
Zero means the same width as in the diagram.

0float[]linksWidth

The maximum number of entries for each column.10intmaxEntries

The margin around the legend.5intoutsideMargin

The position where the legend will be placed in the
diagram.

BottomLeftintposition

The delay (in milliseconds) before showing the
legend after scrolling the diagram.

200intscrollDelay

If true, the legend entries are sorted
alphabetically. If false, the entries appear in the
same order as in the data model.

truebooleansortingEntries

The spacing between the elements of the legend.5intspacing

Specifies the title(s) of the column(s).You can pass
several values, separated by commas.

nullStringtitle

The font used for the titles of the columns.FonttitleFont

If true, the legend is dynamically updated when
a property of an object changes in the data model.

falsebooleanupdateOnPropertyChange

The horizontal offset of the legend relative to the
border of the diagram.

0floatxOffset

The vertical offset of the legend relative to the
border of the diagram.

0floatyOffset

The Legend renderer does not define any per-object rendering properties.

See the class IlvLegendRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6204

The LinkLayout renderer

The LinkLayout renderer is a subclass of the GraphLayout renderer which is specialized to
apply a link layout algorithm.

The following table lists the properties of the LinkLayout renderer (in addition to the
properties of the GraphLayout renderer).

Global properties of the LinkLayout renderer
DescriptionDefaultTypeProperty

If false, no link connector is installed by the link layout
algorithm.

truebooleanaddingLinkConnectors

If true, and if a GraphLayout renderer is present and
configured to use a hierarchical layout algorithm, then

falsebooleanhierarchical

the link layout will be performed by the hierarchical
layout.

If true, the link layout is reapplied when the view is
zoomed in or out.

falsebooleanperformingLayoutOnZoom

The following table lists the per-object rendering properties of the LinkLayout renderer.

Per-object properties of the LinkLayout renderer
DescriptionDefaultTypeProperty

If this property is specified, it tells the link layout algorithm
to try to connect links to the specified side of their destination

0intNodeSideForDestination

node. The possible values are defined by the class
IlvDirection.

If this property is specified, it tells the link layout algorithm
to try to connect links to the specified side of their origin

0intNodeSideForOrigin

node. The possible values are defined by the class
IlvDirection.

You can set any property of the IlvLinkLayout object used by this renderer. For details,
see Setting properties of IlvGraphLayout objects

See also Setting node or link parameters on graph layout objects.

See the class IlvLinkLayoutRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 205

The Map renderer

The Map renderer displays a background map behind the graph and automatically places
geo-referenced objects on top of this map. You need to have the product JViewsMaps installed
with a valid license to be able to use this renderer.

The map is specified as the URL of an IVL file that will be loaded into the diagram. This IVL
file can contain any cartographic information supported by IBM® ILOG® JViewsMaps, such
as vectorial or raster maps read from various cartographic formats, load-on-demand readers,
and so on. The IVL file should also contain the definition of a projection. This projection
information will be used to place the objects on the map according to their latitude and
longitude.

The following table lists the properties of the Map renderer.

Global properties of the Map renderer
DescriptionDefaultTypeProperty

If true, the region of interest is computed automatically
from the positions of the nodes contained in the data model.

falsebooleanautoRegionOfInterest

The URL of the IVL file containing the map and the
projection.

nullStringmap

The “region of interest” on the map. This is useful to center
on or zoom to a particular region of a larger map. The
rectangle is in latitude and longitude coordinates (radians).

nullIlvRectregionOfInterest

The margin remaining around the objects when the region
of interest is computed automatically. The margin is

5floatregionOfInterestMargin

expressed as a percentage of the width of the bounding
box of the objects.

The following table lists the per-object rendering properties of the Map renderer.

Per-object properties of the Map renderer
DescriptionDefaultTypeProperty

The latitude of the object.doublelatitude

The longitude of the object.doublelongitude

Performs a fit-to-contents each time the diagram is reloaded.truebooleanfitToContentsAllowed

The latitude and longitude can be specified in several formats:

♦ As a floating-point value, in which case the value is the latitude or longitude expressed
in radians.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6206

♦ In degrees/minutes/seconds, as a string of the form xx D xx ’ xx " L, where L is one of
the following: N (north), S (south), W (west) or E (east). The string will be converted to
radians.

♦ As a string matching one of the formats registered in the Maps package.

The latitude and longitude of the objects are usually stored in the data model. If the
style sheet does not specify any values for the latitude and longitude properties, these

Note:

properties will be read directly from the data model. Most of the time, the style sheet
will be used only to translate the names of the data object properties holding the latitude
and longitude, if needed. For example, if your data model has properties named LAT
and LONG, you will write a rule like this in the style sheet:

node {
latitude : "@LAT";
longitude : "@LONG";

}

See the class IlvMapRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 207

The StyleSheet renderer

The StyleSheet renderer is the default renderer. The StyleSheet renderer is always enabled.

The StyleSheet renderer implements the basic creation of graphic objects. For each object
in the data model, the StyleSheet renderer looks up all the style rules that match the object
and creates the graphic object specified by the declarations of these rules.

The following table lists the properties of the StyleSheet renderer.

Global properties of the StyleSheet renderer
DescriptionDefaultTypeProperty

Prints selected debug information.0intdebugMask

Sets cascading style sheets.This property is usually set on
the SDM engine rather than directly on the StyleSheet
renderer.

nullString[]styleSheets

Specifies if a link connector should be installed on the nodes
to connect the links to the sides of the nodes, rather than
to their centers.

truebooleanlinkConnectorEnabled

If false, no link connector is installed by the style sheet
renderer.

truebooleanaddingLinkConnectors

Specifies the default layer in which the nodes will be added.10intnodesLayer

Specifies the default layer in which the links will be added.9intlinksLayer

The following table lists the per-object rendering properties of the StyleSheet renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6208

Per-object properties of the StyleSheet renderer
DescriptionDefaultTypeProperty

The position of the object’s location relative to its bounding
box (for example, TopLeft will place the object so that its
upper-left corner is located at the x, y position).

CenterintAnchor

Overrides nodesLayer or linksLayer for a specific object.intLayer

Defines the link connector set on the nodes of the graph.
By default, an IlvSDMLinkConnector object is used.

IlvLinkConnectorLinkConnector

Deprecated, replaced by the IlvGraphic property
toolTipText.

nullStringToolTipText

The horizontal coordinate of the object.floatx

The vertical coordinate of the object.floaty

The width of the object. If the width is not specified in the
style sheet file, and if it is specified in the data model XML

intwidth

file, the value contained in the XML file will be used. See
IlvSDMRenderer.getGraphicProperty for details.

The height of the object. If the height is not specified in the
style sheet file, and if it is specified in the data model XML

intheight

file, the value contained in the XML file will be used. See
IlvSDMRenderer.getGraphicProperty for details.

See the class IlvStyleSheetRenderer for more details.

The StyleSheet renderer is always present, but you must explicitly declare changes in the
style sheet if some properties are to be modified. shows a style rule which instructs the
StyleSheet renderer to print debug information about all the declarations being processed.

Debugging the style sheet

StyleSheet {
debugMask : "DECL_MASK|DECL_VALUE_MASK" ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 209

The Map StyleSheet renderer

The Map StyleSheet renderer is a specific version of The StyleSheet renderer. You need to
have IBM® ILOG® JViewsMaps installed with a valid license to be able to use this renderer.

The Map StyleSheet renderer wraps the node and link layers into an IlvMapLayer object.
This is done in order for them to be managed by the maps layer tree. For example, this
allows the following:

♦ Interactive raising and lowering of layers.

♦ Indication that the layers are always on top of the map background.

In a JViews Maps application you have to enable the Map StyleSheet renderer using Java™
code before you make any use of a style sheet. The following code example shows how to
replace the StyleSheet renderer:

// replace the stylesheet renderer with map rendererclass.
IlvRendererUtil.addRendererAlias(
IlvRendererUtil.getRendererAlias(IlvStyleSheetRenderer.class.getName()),
IlvMapStyleSheetRenderer.class.getName());

The Map StyleSheet renderer provides exactly the same properties as the StyleSheet
Renderer. However, any use of the nodesLayer, linksLayer or Layer properties will be
overridden by theMap Layer tree order. The following table lists theMap StyleSheet renderer
properties.

The Map StyleSheet renderer global properties
DescriptionDefaultTypeProperty

Prints selected debug information.0intdebugMask

Sets cascading style sheets. This property is usually set
on the SDM engine rather than directly on the StyleSheet
renderer.

nullString[]styleSheets

Specifies if a link connector should be installed to connect
the links to the sides of the nodes, rather than to their
centers.

truebooleanlinkConnectorEnabled

If false, no link connector is installed by the style sheet
renderer.

truebooleanaddingLinkConnectors

The following table lists the Map StyleSheet renderer per-object rendering properties.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6210

The Map StyleSheet renderer per-object proprieties
DescriptionDefaultTypeProperty

The position of the object's location relative to its bounding
box (for example, Top Left? will place the object so that
its upper-left corner is located at the x, y position).

CenterintAnchor

Defines the link connector set on the nodes of the graph.
By default, an IlvSDMLinkConnector object is used.

IlvLinkConnectorLinkConnector

Deprecated, replaced by the IlvGraphic property,
toolTipText.

nullStringToolTipText

The horizontal coordinate of the object.floatx

The vertical coordinate of the object.floaty

The width of the object. If the width is not specified in the
style sheet file, and if it is specified in the data model XML

intwidth

file, the value contained in the XML file will be used. See
IlvSDMRenderer for details.

The height of the object. If the height is not specified in
the style sheet file, and if it is specified in the data model

intheight

XML file, the value contained in the XML file will be used.
See getGraphicProperty for details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 211

The SubGraph renderer

The SubGraph renderer displays subgraphs of the data model as expandable and collapsible
nodes. This renderer is useful if the data model is hierarchical, that is, if it contains nodes
that have subnodes and sublinks.

An expandable node can be in one of two states: expanded or collapsed. When it is expanded,
its subobjects are visible, and a frame is displayed around them. When the expandable node
is collapsed, its subobjects are hidden, and the collapsed node looks like a simple node. You
can customize the look of the frame and of the collapsed node in the style sheet.

An expandable node can be collapsed and re-expanded interactively by clicking in the icon
displayed in its upper-left corner.

The following table lists the properties of the SubGraph renderer.

Global properties of the SubGraph renderer
DescriptionDefaultTypeProperty

When set to true, the graphic objects inside a
collapsed subgraph are created only the first time the

falsebooleanloadOnDemand

subgraph is expanded. This can be used to reduce
the startup time of an application.

If true, the state of subgraphs (expanded or
collapsed) can be saved to the data model.

falsebooleansavingExpandedState

Allows/forbids the selection of subnodes and sublinks
in an expanded node.

truebooleansubObjectsSelectionAllowed

The following table lists the per-object rendering properties of the SubGraph renderer.

Per-object properties of the SubGraph renderer
DescriptionDefaultTypeProperty

This property determines whether a node
becomes a subgraph. If the value is true, the

truebooleanExpandable

node is represented as a subgraph that can have
children. If the value is false, the node is
represented as a standard node and its potential
children are displayed at the root level.

Specifies a custom graphic object for the frame.
You can set this property to the special value

IlvGraphicFrameGraphic

“default” to use a default manager frame
(displayed as a rectangle with a title bar).

Sets the margins between the frame and the
subobjects. If a single value is specified, it is used

10float, or
float,float,float,float

FrameMargin

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6212

DescriptionDefaultTypeProperty

for the four sides. If four values are specified,
they represent the left, top, right, and bottom
margins.

Sets the initial state of the expandable node.truebooleanInitiallyExpanded

Specifies a custom graphic object for the
“collapse” icon.

IlvGraphicMinusGraphic

Specifies the position of the “collapse” icon in the
node’s bounding box.The possible values are
defined by the class IlvDirection.

TopLeftintMinusGraphicPosition

Specifies a custom graphic object for the
“expand” icon.

IlvGraphicPlusGraphic

Specifies the position of the “expand” icon in the
node’s bounding box.The possible values are
defined by the class IlvDirection.

TopLeftintPlusGraphicPosition

For compatibility with previous versions of IBM® ILOG® JViews, the name
ExpandCollapse may be used in the style sheet instead of the name SubGraph.
The two names are equivalent.

Note:

See the class IlvSubGraphRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 213

The SwimLanes renderer

The SwimLanes renderer displays vertical or horizontal stripes in the background of the
diagram. Swim lanes are used to represent logical groups of nodes. For example, in a
workflow process, each swim lane could represent a department of a company, and the
activities executed within each department would be placed in the corresponding swim lane.

Swim lanes are represented graphically by vertical or horizontal rectangles that cover the
whole view. Each swim lane rectangle contains (geometrically) all the nodes that belong to
the swim lane. Each swim lane has a different color which can be automatically generated
or customized through the style sheet. Each swim lane also has a title.

The SwimLanes renderer can be used alone, but it is most often used in conjunction with a
GraphLayout renderer configured to use a hierarchical layout algorithm, because the
hierarchical layout has the ability to automatically arrange the nodes of the hierarchy
according to the swim lanes to which they belong.

The hierarchical layout ensures that the swim lanes do not overlap, but if no hierarchical
layout is applied, or if the nodes are moved after the layout is applied, the swim lanes may
overlap.

There are two versions of the SwimLanes renderer, corresponding to two different
implementations. The first one, IlvSwimLaneRenderer, is a basic implementation of swim
lanes, internally managed by the renderer. The second one, IlvLaneRenderer, differs from
the first one in several ways:

♦ Each lane is the graphical representation of a dedicated object in the data model. The
advantage of this new implementation is that the properties of the lanes (position, size,
label...) can be stored in the data model.

♦ IlvLaneRenderer supports hierarchical swim lanes, that is, lanes containing sub-lanes.
Lane containers are sometimes called “pools”.

♦ Interactions are different (see IlvLaneRenderer below).

To select one version of the renderer or the other, specify the following in the SDM rule:

SDM {
SwimLanes : true;
}

or

SDM {
Lanes : true;
}

IlvLaneRenderer is used in the BPMN modeler.

IlvSwimLanesRenderer
Swim lanes are computed according to the value of the SwimLaneConstraints property in
the style sheet. The value of this property is examined for each node, and a swim lane is

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6214

created for each different value. Note that this is the same property as the one used by the
GraphLayout renderer, which makes sure that the GraphLayout and SwimLanes renderers
group nodes into swim lanes in the same way.

For example, the following code example defines two swim lanes: one representing the R&D
department of a company, and another one representing the Sales department.

node.activity[department=”R&D”] {
SwimLaneConstraint : “R&D Department”;

}
node.activity[department=”Sales”] {

SwimLaneConstraint : “Sales Department”;
}

With these rules, the diagram will be divided into two swim lanes with different colors, and
these will have the titles “R&D Department” and “Sales Department”.

The following table lists the properties of the SwimLanes renderer.

Global properties of the SwimLanes renderer
DescriptionDefaultTypeProperty

The alpha value (that is to say the transparency) of the allocated
colors.

0.5floatalpha

The brightness of the allocated colors.0.8floatbrightness

Can be used to create default swim lanes in an empty diagram.
The string is a comma-separated list containing the titles of the
default swim lanes.

nullStringdefaultSwimLanes

Allows you to drag a node from one swim lane to another.truebooleandraggingEnabled

The hue with which the color allocation algorithm will start.0.2floathue

The index of the manager layer in which the swim lane graphics
will be added.

0intlayer

The margin between two adjacent swim lanes.5intmargin

The saturation of the allocated colors.0.5floatsaturation

The following table lists the per-object rendering properties of the SwimLanes renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 215

Per-object properties of the SwimLanes renderer
DescriptionDefaultTypeProperty

Defines the swim lane to which the node belongs.nullObjectSwimLaneConstraint

Lets you customize the graphic object used to represent
the swim lane. By default, an IlvGeneralNode is used.

nullIlvGraphicSwimLaneGraphic

Lets you customize the title of the swim lane. By default,
the title is the value of the SwimLaneConstraint property.

nullStringSwimLaneLabel

Lets you customize the color of the swim lane. By default,
the colors are allocated automatically, based on the hue,
saturation, brightness, and alpha properties of the renderer.

nullColorSwimLaneColor

You should set the SwimLaneGraphic, SwimLaneColor, and SwimLaneLabel properties on all
nodes. Although the SwimLane Renderer makes use of only the first node in a swim lane to
set these properties, you may not find it easy to keep track of which node is the first node.

See the class IlvSwimLanesRenderer for more details.

IlvLaneRenderer
The Lane Renderer defines properties to customize the created lanes.

The following table lists the properties of a lane.

Lane properties
DescriptionDefaultTypeProperty

Default length of the lanes, that is, the width if the lanes are
horizontal, or the height if they are vertical.

500floatdefaultLength

Default size of the lanes, that is, the height if the lanes are horizontal,
or the width if they are vertical.

100floatdefaultSize

Lane orientation.truebooleanhorizontal

Margin between the objects inside the lane and the edges of the
lane.

5floatmargin

Minimum spacing between adjacent lanes.10floatspacing

If the lanes are horizontal, this property changes the offset between
the left side of a sublane and the left side of the parent lane. This
offset is used to leave room for a label.

0floatsublaneOffset

To create a lane, the style sheet rule that matches the lane object must contain the declaration
LaneName:<name>, where <name> is the name of the lane. If this rule also creates an

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6216

IlvGraphic that implements ilog.views.IlvLabelInterface, then this graphic will be the
label of the lane and will appear in front of the lane. In general, the class of the lane graphic
representation is ilog.views.sdm.graphic.IlvDefaultLaneGraphic, which displays vertical
labels for horizontal lanes. In addition to LaneName, two more properties are then interpreted:

Lane additional properties
DescriptionDefaultTypeProperty

Sets the matching node as a lane (or a pool) and defines its name.""stringLaneName

Overrides the lane default length.defaultLengthfloatLaneLength

Overrides the lane default size.defaultSizefloatLaneSize

Following is an example of a lane specification in the style sheet:

node.Pool, node.Lane {
// These properties define the look of pools and lanes.
// The IlvDefaultLaneGraphic is a subclass of IlvGeneralNode
// that can display its label vertically (when the lane is horizontal).
//
class : "ilog.views.sdm.graphic.IlvDefaultLaneGraphic";
shapeType : "Rectangle";
fillStyle : "SOLID_COLOR";
strokeWidth : "1";
horizontal : "true";
label : "@Name";
toolTipText : "@Name";
labelPosition : "Center";
labelSpacing : "5";
minLabelZoom : "0";

// This property identifies the object as a Pool or a Lane,
// and tells the Lane renderer that it must handle it.
//
LaneName : "@Name";

Anchor : "TopLeft";
// Tell the link layout to preserve pools/lanes.
LayoutFixed : "true";

}

The following property can be set on any node to state that it belongs to a lane.

DescriptionDefaultTypeProperty

Sets the matching object in the named lane.""stringLane

Example:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 217

node[lane] {
Lane : "@lane";

}

This rule states that all nodes that define an attribute "lane" are assigned to the lane with
the "lane" attribute value.

Lane Behavior
When editing is allowed, a lane has the following behaviors:

♦ Nodes inside the lane can be moved anywhere. The pools and lanes resize automatically
to adjust to the new node positions. Note that, to remove an object from a lane, all you
need to do is remove the Lane property from the node.

♦ The lane can be manually resized: When the mouse is close to a lane edge, a resize cursor
appears, which indicates that the lane can be resized if the mouse is pressed down.

See the class IlvLaneRenderer for more details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6218

Adding your own renderer

Explains how to extend the rendering features of SDM. Shows how to add your own renderer.

In this section

Writing a renderer class
Describes how to write a renderer class.

Registering a renderer
Shows how to register the renderer class in the style sheet.

Loading and customizing a renderer
Shows how to load and customize the registered renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 219

Writing a renderer class

SDM renderers are instances of subclasses of IlvSDMRenderer. Instead of creating an
instance of this class, you can write a subclass of the Filter class, IlvFilterSDMRenderer,
which is the base class for renderers that modify the style sheet rendering without completely
replacing it.

Graph Layout renderers are subclasses of IlvGraphLayoutRenderer . For specific examples,
see Using Graph Layout algorithms.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6220

Registering a renderer

Once you have written the renderer class, you must register it in the style sheet. To do this,
you can set the Renderers property in the SDM customization rule. The following code
example shows the general form of the declaration.

The SDM customization rule

SDM {
Renderers : "MyRendererName=my.package.MyRenderer";

}

In this declaration of the Renderers property,MyRendererName is the name that you will use
to customize your renderer; my.package.MyRenderer is the full class name of your renderer
class.

This declaration causes addRendererAlias(java.lang.String, java.lang.String), to be
called. The other way to register a renderer is to call this method directly in your Java™
code.

If you register the renderer in the stylesheet, then registering, loading and customizing can
be seen as a single integration step.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 221

Loading and customizing a renderer

Once the renderer is registered in the style sheet, you can load and customize it by adding
to the style sheet. The following code example shows the property to set to load the renderer
and the general form of customization declarations (highlighted).

Renderer rules

SDM {
Renderers : "MyRendererName=my.package.MyRenderer";
MyRendererName : "true";

}
MyRendererName {

property1 : "value1";
property2 : "value2";

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6222

The Flag renderer example

Provides an example of a custom renderer that displays a flag on the node that remains
visible even if the object is hidden.

In this section

Overview
Provides an overview of the example.

Header part
Describes the FlagRenderer class as used in this example.

Bean properties
Describes the Bean properties as used in this example.

Private methods
Describes the private methods of the FlagRenderer class as used in this example.

Overloading methods of the Filter class
Describes overloading in the FlagRenderer class.

Integrating the Flag renderer
Shows how to integrate the new Flag renderer.

Possible enhancements
Describes enhancements that could be made to the Flag renderer example.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 223

Overview

The Flag Renderer example addresses a typical graphical need that can be answered with
an SDM renderer. The need is to set a decoration on a node that will always be visible, for
example, if the state of a model object changes and it needs to catch the user’s attention.
The renderer must display a flag on the node such that the flag remains visible even if the
object is hidden by another graphic object.

The source code of the Flag renderer example is supplied in the
<installdir>/jviews-diagrammer86/codefragments/renderer directory and described
in this section.

The following figure shows an example of a flag on a node, as it would be displayed by the
Flag renderer.

An example of a flag displayed by the Flag renderer

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6224

Header part

The class FlagRenderer extends IlvFilterSDMRenderer, so it does not need to redefine all
unused renderer methods.

The following code example shows the packages imported and the class declaration.

The statements for the class

package tutorial;
import ilog.views.sdm.*;
import ilog.views.sdm.model.*;
import ilog.views.sdm.graphic.*;
import ilog.views.sdm.renderer.*;

import ilog.views.*;
import ilog.views.graphic.*;
/**
* The class <code>FlagRenderer</code> is a filtering renderer that
* sticks various IlvGraphic (the flags) to a node. Flags are located
* in a separate layer, typically over all other layers to have them
* always visible.

* <P>This renderer defines the following graphic properties:
*
* Flag: an IlvGraphic that represents the decorations<\LI>
* <\UL>
* */
public class FlagRenderer extends IlvFilterSDMRenderer
{

The following code example shows the internal variables and the constructors.

Internal variables and constructors

private int _flagLayer = 20;
static final String[] REND_CLASS = {"renderer", "flagRenderer" };
static final String FLAG = "Flag";
static final String FLAG_GRAPHICS = "Flag-graphic";
//////////////////////
// constructors

/**
* Creates a new flag renderer for a specified
* filtered renderer.
*/
public FlagRenderer(IlvSDMRenderer renderer) {
super(renderer);

}

/**
* Creates a new flag renderer with a <code>null</code>
* filtered renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 225

*/
public FlagRenderer(){
this(null);

}

The internal variables are as follows:

♦ _flagLayer is the layer where the flags will be added.

♦ REND_CLASS is the CSS pseudo-class of this renderer, for use in the style sheet.

♦ The other constants set string literals.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6226

Bean properties

The Bean properties allow you to customize the renderer.

In this example, you need to change only the flag layer value. The setter and getter methods
are shown in the following code example.

Setter and getter methods for the Bean property Flag Layer

/////////////////////////
// Bean properties

/**
* Sets flag layer. Default is 20.
* */
public void setFlagLayer(int v) {

_flagLayer = v;
}

/*
* Returns flag layer.
* @see setDebugMask
*/
public int getFlagLayer() {

return _flagLayer;
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 227

Private methods

The following private methods of the Flag Renderer handle the flag on a node:

♦ checkNode

♦ cleanNode

♦ moveNode

The following code example shows the code for checkNode.

Checking for a flag

//////////////
// local method

The checkNode method fetches the graphic property to see if a flag is defined
for the node in its current state.

// manage graphic props
private void checkNode(IlvSDMEngine engine, Object obj,

IlvGraphic graphic) {
Object rawFlag = IlvRendererUtil.getGraphicProperty(engine, obj,

FLAG, REND_CLASS, null);
if (rawFlag != null && rawFlag instanceof IlvGraphic) {

IlvGraphic g = (IlvGraphic) rawFlag;
// set flag location at top left corner
IlvRect r = graphic.boundingBox(null);
g.move(r.x, r.y);
// add object
engine.getGrapher().addObject(g, _flagLayer, true);
// save flag in the graphic itself
graphic.addProperty(FLAG_GRAPHICS, g);

}
}

The checkNode method checks if a flag is requested and renders the flag if necessary by
adding it at the top left of the object.

The following code example shows the code for cleanNode.

Removing a flag

// remove previous flag
private void cleanNode(IlvSDMEngine engine, IlvGraphic graphic) {

// get the flag object from the source
Object previous = graphic.getProperty(FLAG_GRAPHICS);
if (previous != null) {

// remove it and clear the property
engine.getGrapher().removeObject((IlvGraphic)previous,true);
graphic.removeProperty(FLAG_GRAPHICS);

}
}

The cleanNode method is used to remove the flag when it is no longer needed.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6228

The following code example shows the code for moveNode.

Moving the flag with the node

// adjust flag position
private void moveNode(IlvRect newBBox, IlvGraphic flag) {

if (flag == null)
return;

flag.move(newBBox.x, newBBox.y);
}

The moveNode method is used to move only the flag, according to the new bounding box of
the node on which it appears.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 229

Overloading methods of the Filter class

The Flag Renderer overloads the following IlvFilterSDMRenderer methods:

♦ addNodeGraphic(ilog.views.sdm.IlvSDMEngine, java.lang.Object, ilog.views.
IlvGraphic, boolean)

♦ propertiesChanged(log.views.sdm.IlvSDMEngine, java.lang.Object, java.util.
Collection, ilog.views.IlvGraphic)

♦ removeNodeGraphic(ilog.views.sdm.IlvSDMEngine, java.lang.Object, ilog.views.
IlvGraphic, boolean)

♦ nodeGraphicBBoxChanged(ilog.views.sdm.IlvSDMEngine, java.lang.Object, ilog.
views.IlvGraphic, ilog.views.IlvRect, ilog.views.IlvRect, java.lang.String
[])

The overloaded methods start by calling super, which calls the superclass method of the
same name before processing the flag.

Creating the flag

/**
* Creates flag.
* */
public void addNodeGraphic(IlvSDMEngine engine,

java.lang.Object node,
IlvGraphic graphic,

boolean redraw) {
super.addNodeGraphic(engine,node,graphic,redraw);
checkNode(engine, node, graphic);
}

The addNodeGraphic method creates the flag when a new node is added.

Cleaning and re-creating a flag

/**
* Recreates flag.
* */
public void propertyChanged(IlvSDMEngine engine,

java.lang.Object object,
java.lang.String propertyName,
java.lang.Object oldValue,
java.lang.Object newValue,

IlvGraphic graphic) {
super.propertyChanged(engine,object,propertyName,
oldValue,newValue,graphic);
if (!engine.getModel().isLink(object)) {

cleanNode(engine, graphic);
checkNode(engine, object, graphic);
}

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6230

A property changemay or may not change the flag. Therefore, the propertyChangedmethod
clears the flag and re-creates it.

Clearing a flag

/**
* Clears flag.
* */
public void removeNodeGraphic(IlvSDMEngine engine,

java.lang.Object node,
IlvGraphic graphic,

boolean redraw){
super.removeNodeGraphic(engine, node, graphic, redraw);
cleanNode(engine, graphic);

}

The removeNodeGraphic method clears the flag when a node is removed.

Moving the flag with the node

/**
* Adjusts flag position.
* */
public void nodeGraphicBBoxChanged(IlvSDMEngine engine,

java.lang.Object node,
IlvGraphic graphic,
IlvRect oldBBox,
IlvRect newBBox,
java.lang.String[] pseudoClasses) {

super.nodeGraphicBBoxChanged(engine,node,graphic,
oldBBox,newBBox,pseudoClasses);

moveNode(newBBox,(IlvGraphic)graphic.getProperty(FLAG_GRAPHICS)
);

}

The nodeGraphicBBoxChanged method is called when the bounding box of the node is
changed. Note that no property change event is sent, although x and y may change.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 231

Integrating the Flag renderer

There are two ways to integrate a new renderer:

♦ Declare the renderer

♦ Register the renderer

Declare the renderer
For maximum efficiency, declare the flag renderer in the style sheet.

In this example, there is a specific rule to create the flag if the model object matches a
particular state. The Flag renderer fetches the graphic property Flag from the rule to get
the IlvGraphic object that will represent the flag, in this case the label “ALARM HERE”.

The following code example shows the style rules needed.

The style rules for the flag

node[state=alarm] {
Flag : @#alarm

}

Subobject#alarm {
class : 'ilog.views.sdm.graphic.

IlvGraphicFactories$ZoomableLabel' ;
label : "ALARM HERE" ;
antialiasing : true ;
leftMargin : 5 ;
rightMargin : 5 ;
topMargin : 5 ;
bottomMargin : 5 ;
foreground : red ;

}

node {
Flag : ’’ ;

}

The rules operate as follows:

1. The first rule sets an indirection to create the IlvGraphic object when it is needed.

2. The second rule creates the flag as a simple red label.

3. The third rule clears the flag when the node reverts to its normal state. The default
value for the flag is then null.

Register the renderer
The simplest way to integrate a renderer is to register the renderer so that it will be
understood when the style sheet is read.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6232

To register a renderer, just call the static method addRendererAlias(java.lang.String,
java.lang.String), in the class IlvRendererUtil.. You must do this before you load a style
sheet. The following code example shows the code line (highlighted) for the Flag Renderer.

Registering the Flag renderer in Java™ code

public static void main(String[] args) {
IlvRendererUtil.addRendererAlias("Flag", "tutorial.FlagRenderer");
SDMViewer v = new SDMViewer();
v.init(args);

}

The arguments of the method are as follows:

♦ First argument: the symbolic name used in the style sheet

♦ Second argument: the fully qualified class name of the renderer, which will be dynamically
loaded when needed

After being registered, the Flag renderer is ready to use in a style sheet, like any other
renderer. The following code example shows a simple example of rules that use it.

Simple style rules for a registered Flag renderer

SDM {
Flag : true ;

}
Flag {

flagLayer : 30 ;
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 233

Possible enhancements

The Flag renderer example is deliberately kept simple. You couldmake various enhancements,
for example, the following:

♦ Visibility

If a node changes its visibility, the flag remains visible. This may seem to be what is
wanted at first sight, because the flag is raised even if the node is not present. However,
a dangling flag seems strange. Therefore, a better implementation is to listen to the
IlvManager. property changes on its objects, and then set the visibility of the flag
according to the visibility of the node.

♦ Position

You can position the flag somwhere other than the top-left corner. For example, you can
set the flag location as an offset when you create it, and use another graphic property,
FlagAnchor, to set the position of the corner of the node to which the flag is to be attached.

♦ Several flags

You can add several flags to the same node. Make sure that you control the layout of the
flags so that they operate in a coherent way.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6234

Configuring renderers in Java code

Shows how to customize a renderer using Java™ .

In this section

Overview
Presents an overview of customizing renderers using Java™ .

Accessing a renderer
Describes the method used to access renderers.

Modifying a renderer
Explains how to modify a renderer.

Setting new renderers
Describes the method used to set a new renderer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 235

Overview

The simplest and preferred way to customize renderers is through the style sheet, as
explained in Using renderers in the style sheet. There are situations, however, where it is
necessary to access and modify renderers dynamically while the application is running. For
example, you may want to disable the LinkLayout renderer temporarily and re-enable it
later without reloading a new style sheet, which would re-create all the graphic objects.
This section explains how to do this in your Java™ code.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6236

Accessing a renderer

You can access renderers by calling the method getRenderer() of the class IlvSDMEngine.

This method returns the first element of the list of renderers attached to the SDM engine.
All but the last element of this list are instances of subclasses of IlvFilterSDMRenderer.
You can retrieve the next element of the list by calling the method getFilteredRenderer
(). The last element of the list is usually the StyleSheet renderer, which is an instance of
the class IlvStyleSheetRenderer.

To make it easier to retrieve a particular renderer, the class IlvRendererUtil provides a
static method getRenderer(ilog.views.sdm.IlvSDMEngine, java.lang.String) that looks
up a renderer by its name in the chained list.

The following code example shows how to retrieve the LinkLayout renderer.

Retrieving a renderer in Java™ code (symbolic name)

IlvSDMEngine engine = ...;
IlvLinkLayoutRenderer r = (IlvLinkLayoutRenderer)

IlvRendererUtil.getRenderer(engine, "LinkLayout");

The name passed to the getRenderermethod can be either the symbolic name of the renderer
(the name that is used in the style sheet) as shown in Retrieving a renderer in Java™ code
(symbolic name) or the full class name of the renderer as shown in the following code
example.

Retrieving a renderer in Java code (class name)

IlvSDMEngine engine = ...;
IlvLinkLayoutRenderer r = (IlvLinkLayoutRenderer)

IlvRendererUtil.getRenderer(engine,
IlvLinkLayoutRenderer.class.getName());

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 237

Modifying a renderer

Once you have retrieved the reference to the renderer object, you can simply call its methods
to modify it. For example, the following code example shows how to disable and re-enable
the LinkLayout renderer.

Disabling and re-enabling the LinkLayout renderer in Java™ code

IlvLinkLayoutRenderer r = ...;
r.setEnabled(false);
...
r.setEnabled(true);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6238

Setting new renderers

The renderers are usually chained by the method getFilteredRenderer. The first one is
returned by the method getRenderer(). If the first renderer must be changed, just call the
method setRenderer(ilog.views.sdm.renderer.IlvSDMRenderer), specifying the new
renderer.

For example, the following code example shows how to add a renderer to the front of the
chained list.

Adding a renderer in Java™ code

public void prependRenderer(IlvSDMEngine engine,
IlvFilterSDMRenderer newRenderer) {

IlvSDMRenderer previous = engine.getRenderer();
newRenderer.setFilteredRenderer(previous);
engine.setRenderer(newRenderer);

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 239

Support for renderers in the Designer

The following table shows which renderers can be customized in the Designer.

Renderers supported in the Designer
Supported?Renderer Name

NoAnimation

NoColoring

Nocustom renderer

NoDecoration

NoGrapherPin

YesGraphLayout

YesHalfZooming

YesInfoBalloon

NoInteractor

NoLabelLayout

YesLegend

YesLinkLayout

YesMap

YesSubgraph

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6240

Using and writing interactors

Explains what an interactor is and how to enable and customize one, lists all predefined
interactors, and gives examples of writing your own interactor in Java™ code and integrating
it through Java code or through the style sheet.

In this section

Predefined interactors
Lists the predefined interactors provided in IBM® ILOG® JViews Diagrammer, and their
relationships.

Subclassing view interactors
Shows how to subclass view interactors.

Writing an object interactor
Describes the steps involved in writing an object interactor.

© Copyright IBM Corp. 1987, 2009 241

Predefined interactors

An interactor is a Java™ class that manages the behavior of an object in response to an
event. IBM® ILOG® JViews Diagrammer supplies various predefined interactors.

There are two types of interactor: view and object. You can control the default interactor
settings through the style sheet.

Predefined Interactors Class Relationships

View interactors
View interactors affect the display in general. The view interactors of JViews Framework
are available in IBM® ILOG® JViews Diagrammer to manage the zoom and pan facilities,
and the selection and creation of general nodes and general links. These interactors are in
the ilog.views.interactor package.

There are two object creation interactors for SDM objects:

♦ IlvMakeSDMNodeInteractor creates a new node in the data model.

♦ IlvMakeSDMLinkInteractor, creates a new link in the data model.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6242

These interactors create an object as a copy of a supplied “model” object. For JViews
Diagrammer applications, you can use the palette bar class (IlvDiagrammerPaletteBar)
to set up a palette of model objects from which to create objects in a diagram.

There is also another interactor for new SDM objects:

♦ IlvEditSDMLabelInteractor allows you to edit the label of a new object as soon as it is
created.

Object interactors
An object interactor is local to the graphic object. That means it is possible to specify this
type of interactor in the style sheet. There is a renderer called Interactor which fetches
the Interactor graphic property from the style sheet to attach an object interactor to the
graphic object. The value of this graphic property is the name of a class that subclasses
IlvObjectInteractor. The object interactor is then free to do whatever it wants, starting
from the graphic object. For example, the InfoBalloon renderer subclasses the Interactor
renderer to display an enhanced tooltip.

Declaring a default interactor
You can enable the Interactor renderer in the style sheet. You can also define a default
object interactor for all nodes and links, see the following code example:

The Interactor renderer and a default interactor in the style sheet

SDM {
Interactor : true ;

}
Interactor {

interactor : "MyDefaultInteractor" ;
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 243

Subclassing view interactors

You can subclass the IlvMakeSDMNodeInteractor and the IlvMakeSDMLinkInteractor to
control when a link is created between two nodes, or to perform custom actions when links
or nodes are created.

For example, to create a link only between certain types of node, you can subclass
IlvMakeSDMLinkInteractor and override the acceptOrigin and acceptDestinationmethods,
see the following code example:

Subclassing the IlvMakeSDMLinkInteractor

public class ValidatingLinkInteractor extends IlvMakeSDMLinkInteractor
{

protected boolean acceptOrigin(IlvPoint p, IlvGraphic fromNode) {
Object o = getEngine().getObject(fromNode);
if("false".equals(getEngine().getModel().getObjectProperty(o, "okForOrigin")

))
return false;
return super.acceptOrigin(p, fromNode);

}

protected boolean acceptDestination(IlvPoint p, IlvGraphic toNode) {
Object o = getEngine().getObject(toNode);
if("false".equals(getEngine().getModel().getObjectProperty(o,

"okForDestination")))
return false;
return super.acceptDestination(p, toNode);

}
}

In this example, a node whose property "okForOrigin" is false is not accepted as the origin
of a link, and a node whose property "okForDestination" is false is not accepted as the
destination of a link.

You can also set custom properties when a node or a link is created by overriding
setNodeProperties or setLinkProperties. For example, to prompt the user for the "name"
property of a node as it is created, you can subclass IlvMakeSDMNodeInteractor and override
setNodePorperties as follows:

Subclassing the IlvMakeSDMNodeInteractor

public class PromptingNodeInteractor extends IlvMakeSDMNodeInteractor
{
protected void setNodeProperties(IlvSDMModel model, Object node) {
String label = JOptionPane.showInputDialog(getManagerView(), "Name:");
if(label != null)
model.setObjectProperty(node, "name", label);

}
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6244

Writing an object interactor

Describes the steps involved in writing an object interactor.

In this section

Writing a subclass of IlvObjectInteractor
Shows how to write a subclass of an interactor.

Enabling a custom interactor
Describes how to enable the custom interactor.

Connecting interactors to diagrams using listeners
Shows how to connect the custom interactor to the diagram.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 245

Writing a subclass of IlvObjectInteractor

The following code example shows an outline of the code in SwitchInteractor to illustrate
a typical interactor.

A typical interactor in Java™ code

public class SwitchInteractor extends ilog.views.IlvObjectInteractor {

/**
* Callback when user clicks a graphic object
* */
public boolean processEvent(IlvGraphic obj,

java.awt.AWTEvent event,
IlvObjectInteractorContext context) {

if (obj.getGraphicBag() instanceof IlvGrapher) {
// find sdm engine
IlvSDMEngine engine = IlvSDMEngine.getSDMEngine(

(IlvGrapher)obj.getGraphicBag())
;

// find object model
if (engine != null) {

Object modelObject = engine.getObject(obj);
// cast and do whatever is needed here
...
// event has been processed
return true;

}
}
// event has not been processed
return false;

}
}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6246

Enabling a custom interactor

Before you can enable a custom interactor in the style sheet, you must enable the Interactor
renderer. You then specify the Interactor graphic property to override the default interactor
for the objects in the selector. The following code example shows how to specify an interactor
for switchable nodes.

Attaching a custom interactor to an object type in the style sheet

SDM {
Interactor : true ;

}

...

node.switchable {
Interactor : ’SwitchInteractor’ ;

}

A custom interactor such as SwitchInteractor will not be available in the Designer.Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 247

Connecting interactors to diagrams using listeners

In the Designer you can pass the status of a push_state interactor in a node to a Designer
property. For information on how to do this, see Linking predefined interactors to parameters
inUsing the Designer. To customize the application behavior, use a Java™ listener to provoke
custom behavior in your application when the node is clicked. The following code sample
shows how to do so:

A listener to follow changes in diagram property values

/**
* Listener for user interaction. Assume that in the style sheet
* there is a
* mapping:
* push_state : "@state";
*/
public class ModelListener implements SDMPropertyChangeListener {
/*
* @see ilog.views.sdm.event.SDMPropertyChangeListener#propertyChanged(
* ilog.views.sdm.event.SDMPropertyChangeEvent)
*/
public void propertyChanged(SDMPropertyChangeEvent event) {
String propertyName = event.getPropertyName();
Object target = event.getObject();
String value = event.getNewValue().toString();

if ("state".equals(propertyName)) {
// push interactor has modified the model
// invoke callback
performSomeAction(target, value);

}
}
}

...

//Usage:
IlvDiagrammer diag;
diag = new IlvDiagrammer();
diag.getEngine().getModel().addSDMPropertyChangeListener(new

ModelListener());

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6248

Managing dynamic symbols

Shows symbol and composite graphic features, as well as how to manipulate symbols and
composite graphics programmatically.

In this section

Introducing symbols
Explains symbols, their advantages, and how to use them.

Using symbols
Shows how to use symbols.

Advanced management of symbols and palettes
Addresses advanced users who wish to create symbols in memory by themselves without
loading an existing palette from a JAR file.

How to use a symbol in CSS
Describes how to declare and use symbols in CSS documents.

Using composite graphics
Shows how to use composite graphics in your diagrams.

© Copyright IBM Corp. 1987, 2009 249

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6250

Introducing symbols

Explains symbols, their advantages, and how to use them.

In this section

What is a symbol?
Provides an overview of symbols in IBM® ILOG® JViews Diagrammer.

The advantages of symbols
Lists the advantages of symbols and the benefits that they provide.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 251

What is a symbol?

A symbol is a collection of graphic objects, parameters and conditions used to give a dynamic
representation of changing data.

A CSS file is used to store the information necessary to represent a symbol, including the
type and position of shapes, text, IVL files, images, and other symbols used to make up the
symbol. Symbol data is stored inside the palette file structure. Palettes are stored in standard
Java™ .jar archive files. Once created, a symbol is manipulated either by being imported
into other IBM® ILOG® JViews products such as the Designer, the Dashboard Editor, or
directly using the IBM® ILOG® JViews Java API.

Elements inside a symbol can be static to represent specific information or dynamic to
display status according to values extracted from external data sources. For example, you
can use a PNG image showing a network structure and add elements which change color
to show bandwidth on hubs in the network. Other examples of uses for symbols are:

♦ Indicators on a map, such as weather conditions, interesting locations or vehicle
information.

♦ Gauges, sliders or vue-meters on a dashboard.

♦ Status indicators and alarms in a SCADA application.

Symbols contain interactors. An interactor listens for mouse events in a symbol, it uses the
mouse movement to change the value of a symbol parameter. Changes to parameters result
in changes to the graphic element to which they are bound. Using interactors you create
symbols that react to user input such as:

♦ A slider or dial to control sound volume.

♦ Buttons to enable or disable options in a graphic equalizer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6252

The advantages of symbols

Symbols are reusable. They can be easily integrated into multiple GUI user applications. To
make reuse easier, symbols are organized in categories stored in palettes. A palette is a
container from which symbols can be selected and added to other symbols or applications
using IBM® ILOG® JViews Diagrammer Symbol Editor, IBM® ILOG® JViews Diagrammer
or IBM® ILOG® JViews Diagrammer Dashboard Editor. This is done graphically by dragging
and dropping a symbol from an open palette in the GUI editor to a drawing area in the
application.

IBM® ILOG® supplies GUI components used to create symbol, diagram and dashboard
editing applications. To display a palette, the content of an IlvPalette is displayed in Java™
Swing IlvPaletteViewer instance. Three predefined types of viewer are provided.

An application that deals with several open palettes uses the IlvPaletteManager component.
IlvPaletteManager contains several IlvPalette instances. An IlvPaletteManager is
linkable to a IlvPaletteManagerViewer instance. This allows the user to select and display
the current selected palette.

Symbols offer the following advantages:

♦ A predefined look and behavior

♦ Easy to create using the Symbol Editor

♦ Easy integration in application

♦ Highly customizable

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 253

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6254

Using symbols

Shows how to use symbols.

In this section

Basic concepts
Provides an overview of symbols and their classes.

Loading palettes
Explains symbol palettes and how to load them.

Saving palettes
Shows how to save symbol palettes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 255

Basic concepts

A symbol is made up from graphic elements, parameters, conditions and vector or bitmap
images. Each graphic element has attributes which define its look and feel. A symbol is
defined by the IlvPaletteSymbol class. This class defines a symbol. It contains all information
necessary for CSS to create instances of the symbol in a GUI application.

Symbol palette classes available in IBM® ILOG® JViews Diagrammer

An IlvPaletteSymbol instance contains the following:

♦ The CSS that describes the symbol. This includes graphic element definitions and symbol
conditions.

♦ The class name. This acts as the entry point in the CSS.

♦ The symbol parameters.

A palette (IlvPalette) is a collection of palette symbols (IlvPaletteSymbol). A palette
symbol represents the definition of the symbol. Instances of the symbol based on the same
definition may occur in the diagrammer application. An instance of a symbol has a symbol
descriptor (IlvSymbolDescriptor) which helps find the palette symbol that corresponds
to this instance.

Inside a palette, the symbols are organized in a hierarchy of categories (
IlvPaletteCategory). Each palette has at least a root category.

The category path and the symbol name identify a symbol within a palette. For example,
Symbols.Controls.Dial corresponds to the Dial symbol inside the subcategory Controls of
the root category Symbols.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6256

Part of the palette symbol definition indicates which parameters are defined for the symbol.
Symbols can have a different behavior or appearance depending on the actual parameter
values of the symbol instance. The palette symbol contains the definition of the formal
parameter (IlvPaletteSymbolParameter), while the actual value of a parameter can be
queried using IlvSymbolDescriptor for each instance of the symbol.

Finally, the palette manager (IlvPaletteManager) manages a collection of palettes. The
palette manager is only needed when you want to load or save palettes dynamically in the
user file system. If you need to load only one fixed palette, it is more convenient to put the
palette on the class path and load the palette as resources of the application. This is explained
in the next section.

An IlvPaletteManager must be attached to an IBM® ILOG® JViews Diagrammer
Designer application to follow the currently loaded palettes.

Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 257

Loading palettes

A palette is a JAR file. The content of the palette is described in an XML file, palette.xml,
which defines the hierarchy of symbols and categories. The JAR file also contains
subdirectories which store the following:

♦ Images used by the palette symbols

♦ The CSS file describing the symbols

♦ Additional resources

The following figure shows the structure of a palette JAR file.

The palette structure

There are two main scenarios when loading a palette:

♦ Scenario 1: The application uses a fixed set of symbols from a palette. In this case, the
easiest way is to put the palette on the class path. No palette manager is needed. This
also works for (unsigned) applets.

♦ Scenario 2: The application uses a variable set of palettes. The application allows you
to dynamically load palettes from the user file system at any time. In this case, a palette
manager is needed, since only a palette manager can load palettes that are not on the
class path. Symbol applications developed as applets must be signed for them to be able
to load palettes from the user machine.

To load a palette in Scenario 1:

1. Make sure the palette.jar file is in the class path.

2. Create a palette:

new IlvPalette();

3. Load the palette data from the .jar file.

You need to know the path to the palette description. For example, the description of
the palette lib/palettes/jviews-palette-shared-symbols-8.6.jar is in ilog/
views/palettes/shared/palette.xml. You see the path when you look at the palette
in the Symbol Editor.

palette.load(getClass().getResource(pathToPaletteXML));

Now you have an IlvPalette object filled with the palette data.

4. Retrieve a symbol from the palette by specifying its category and name path.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6258

IlvPaletteSymbol psymbol = palette.getSymbol("Symbols.Controls.Dial");

To load a palette in Scenario 2:

1. The palette.jar must be somewhere on the file system. It does not have to be on the
class path. The file system must be accessible, that is, if the application is an applet,
it must be signed to access the user’s file system.

2. Load the palette through the palette manager:

IlvPalette[] palettes = myIlvPaletteManager.load(new URL("file://c:/
myPalette.jar"));

Since the .jar file can contain multiple palettes, an array of palettes is returned. These
palettes are also added to the palette manager.

3. Retrieve a symbol from the palette by specifying its category and name path, like in
scenario 1.

For example, if the palettes array contains only one palette:

IlvPaletteSymbol psymbol = palettes[0].getSymbol("Symbols.Controls.Dial")
;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 259

Saving palettes

Saving a palette on the file system can be done through the palette manager. The palette
manager first saves the palette hierarchy in a working directory and then packages the
working directory into a .jar file.

To save a palette:

1. Specify the working directory:

myIlvPaletteManager.setWorkingDirectory(new File("/tmp"));

2. Save the palette in the current directory:

myIlvPaletteManager.save(palette, new File("myPalette.jar"));

When a palette is saved, symbol resources, such as images which were imported from outside
the palette .jar file are copied into it. Links to these resources are updated accordingly.
Therefore, the resulting file myPalette.jar is self-contained, that is, it does no longer contain
any reference to external files.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6260

Advanced management of symbols and
palettes

Addresses advanced users who wish to create symbols in memory by themselves without
loading an existing palette from a JAR file.

In this section

Palettes
Describes the classes used to create and modify palettes.

Categories
Describes categories, the logical units used to organize symbols.

Palette symbols
Shows how to use palette symbols.

Palette parameters
Shows how to use palette parameters.

Palette events
Describes the classes used to track palette events.

Palette manager
Shows how to add a palette to a palette manager.

Palette manager events
Describes the classes used to track palette manager events.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 261

Organizing symbols in categories
Presents an example that shows how to organize symbols in palette categories.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6262

Palettes

A palette is a collection of symbols that are organized into categories.

Palettes are defined by the IlvPalette class. You need to create a category in the palette
and set it as the root category to be able to add symbols and other categories.

An IlvPalette instance contains the name, description and icon properties. These String
properties are designed to be set for a specific locale.

The following example shows how to create some new palettes:

IlvPalette p1 = new IlvPalette();
IlvPalette p2 = new IlvPalette();
IlvPalette p3 = new IlvPalette();

p1.setDefaultLocale(Locale.FRENCH);
p1.setName("Voitures");

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 263

Categories

Categories are the logical units used to organize symbols.

The category is defined by the IlvPaletteCategory class. As well as symbols, a category
can contain other sub-categories. You thus organize symbols in a tree of logical groups. You
add a category to a symbol palette by calling:

//Create a new root category
String categoryID = "root";
IlvPaletteCategory rootCategory = new IlvPaletteCategory(categoryID);

//Add the root category to the palette
palette.setRoot(rootCategory);
rootCategory.setName(categoryID);

//Add a subcategory to the root category
IlvPaletteCategory subcategory = palette.addCategory(rootCategory,
"subCategory");
subcategory.setName("subcategory");

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6264

Palette symbols

An IlvPaletteSymbol can only exist within a palette.

You need first to create an IlvPalette, then set its root category (and more categories if
needed), and finally add the symbol to a category in the palette:

IlvPalette palette = new IlvPalette();
palette.setRootCategory("Root");
IlvPaletteSymbol psymbol = palette.addSymbol(palette.getRoot(),"symbol1");

The symbol needs a CSS file and other resources.

You must make sure that the CSS file and the resource files are in the class path; otherwise,
you must use the IlvPaletteManager.

Assuming that all the required files are in the class path:

psymbol.setName("Symbol");
psymbol.setClassName("Symbol");
psymbol.addResource(css);
psymbol.setCSSResourceName(css);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 265

Palette parameters

Parameters contain values associated with a symbol. A parameter is bound to a graphic
element to cause a transformation, that is, a change in the elements aspect to represent a
change in data. For example, an icon that changes color to show an alert.

Parameters are set on a symbol using instances of IlvPaletteSymbolParameter. This class
contains the definition of one parameter. You add a parameter to a symbol by calling:

//Create a new palette
IlvPalette palette = new IlvPalette();
palette.setName(name);
palette.setDescription(french, descr);

//Create a root category for the palette
String categoryID = "root";
IlvPaletteCategory rootCategory = new IlvPaletteCategory(categoryID);
palette.setRoot(rootCategory);
rootCategory.setName(categoryID);

//Create a new symbol
String symbolID = "symbol1";
IlvPaletteSymbol s = palette.addSymbol(rootCategory, symbolID);
s.setName(symbolID);

//Create a new parameter
IlvPaletteSymbolParameter p2 = new IlvPaletteSymbolParameter();
p.setID("progress");
p.setName("progress");
p.setValue(new Integer(0));

//Add the parameter to a symbol
s.addParameter(p);

Parameters can accept any value or only an allowed set of values, such as “wait”, “attention”,
“go”, or 1, 2, 3. The description of the allowed values for a parameter is set using the
IlvPaletteSymbolParameterValueSet class. You set allowed values for a class by calling:

//Create a new value set
String vsetID = "vset1";
IlvPaletteSymbolParameterValueSet vset = new
IlvPaletteSymbolParameterValueSet(vsetID);
vset.setName(vsetID);
vset.setType("Integer");

vset.setValues(new int[] { 1, 2, 3 });
vset.setValueName(0, "one");
vset.setValueName(1, "two");
vset.setValueName(2, "three");

//Add the value set to a palette

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6266

palette.setValueSet(vset);

//Create a new parameter
IlvPaletteSymbolParameter p = new IlvPaletteSymbolParameter();
p.setID("progress");
p.setName("progress");
p.setValue(null);

//Add the value set to a parameter
p.setType("set");
p.setValueSet(vset);

Please note that the CSS of the symbol must be consistent with the parameters of the symbol.
For example, if you wished to use the file Dial.css (in ilog/views/palettes/shared/symbols/
Dial.css), you would need to define the parameters name and value for the symbol, as
Dial.css refers to these parameters:

s.addParameter(
new IlvPaletteSymbolParameter("value", new Double(0), "double", null));

s.addParameter(
new IlvPaletteSymbolParameter("name", "DefaultName", "string", null));

...

The parameters constitute the visible interface of the symbol. They hide the internals of the
CSS, so that it is only through the parameters that you can modify the symbol.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 267

Palette events

When a symbol or a category is added in a palette, a PaletteEvent is fired to notify external
objects.

IBM® ILOG® supplies the following classes to track palette events:

♦ PaletteListener - an interface for receiving PaletteEvents.

♦ PaletteAdapter - the default implementation of PaletteListener.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6268

Palette manager

The following code example shows how to add palettes to an IlvPaletteManager instance.

IlvPalette p1 = new IlvPalette();
IlvPalette p2 = new IlvPalette();
IlvPalette p3 = new IlvPalette();
IlvPaletteManager pm = new IlvPaletteManager();
pm.add(p1);
pm.add(p2);
pm.add(p3);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 269

Palette manager events

When a palette is added or removed from an IlvPaletteManager instance, a
PaletteManagerEvent is fired.

IBM® ILOG® supplies the following classes to track palette events:

♦ PaletteManagerListener - an interface for receiving PaletteManagerEvents.

♦ PaletteManagerAdapter - the default implementation of PaletteManagerListener.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6270

Organizing symbols in categories

The following example shows how to create symbols and organize them in palette categories.
The example is divided into two steps:

1. Set the root category in a new palette.

IlvPalette palette = new IlvPalette();
palette.setName(¨myPalette¨);
palette.setDescription(¨multiple traffic signals¨);
palette.setPackageName("roadsigns/ ");
//Create and set the root category
IlvPaletteCategory root = new IlvPaletteCategory(rootID);
root.setName("symbols");
palette.setRoot(root);

2. Set a hierarchy of categories in a palette.

//The first categories under the root.
IlvPaletteCategory c1 = palette.addCategory(root, id1);
c1.setName("category 1");
c1.setLongDescription("The first category that contains…");

IlvPaletteCategory c2 = palette.addCategory(root, id2);
c2.setName("category 2");
c2.setLongDescription("The second category that contains…");

//Now create sub categories in the first ones.
IlvPaletteCategory c101 = new IlvPaletteCategory(id101);
c101.setName("category 101");
c1.add(c101);
IlvPaletteCategory c102 = new IlvPaletteCategory(id102);
c102.setName("category 102");
c1.add(c102);

IlvPaletteCategory c201 = new IlvPaletteCategory(id201);
c201.setName("category 201");
c2.add(c201);

//Finally, create some symbols in different categories.

IlvPaletteSymbol s100 = palette.addSymbol(c1, ids101);
s.setName("s100");
s.setCSSResourceName(css100);
s.setClassName(className100);
s.setIconResourceName(resdir + "icon.gif");
s.addResource(resourceURL1);
s.addResource(resourceURL2);

IlvPaletteSymbol s1010 = palette.addSymbol(c101, ids1010);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 271

IlvPaletteSymbol s1011 = palette.addSymbol(c101, ids1011);

IlvPaletteSymbol s1020 = palette.addSymbol(c102, ids1020);
IlvPaletteSymbol s200 = palette.addSymbol(c2, ids200);
IlvPaletteSymbol s201 = palette.addSymbol(c2, ids201);
IlvPaletteSymbol s202 = palette.addSymbol(c2, ids202);
IlvPaletteSymbol s2010 = palette.addSymbol(c201, ids2010);

The Symbol Editor helps you create symbols and palettes very easily and intuitively.Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6272

How to use a symbol in CSS

A symbol is used in a cascading style sheet (CSS) just like any other class. The symbol
parameters are declared with the class in the CSS. The only difference is that the class
declaration has another syntax:

class : @|symbolResource(<resource file>, <entry point>);

where:

♦ <resource file> is the path to a CSS file inside the palette, which must be reachable
from the class path through java.lang.ClassLoader.getResource().

♦ <entry point> is the entry point in the CSS file, usually "Symbol".

Example:

node {
class :

"@|symbolResource(ilog/views/palettes/shared/symbols/Rectangular.css,Symbol)
";

name : "no-name" ;
}

If the palette is not in the class path, it can be specified as an extra argument of the "class"
declaration:

class : @|symbolResource(<resource file>, <entry point>, <package name>,
<content file>, <palette URL>);

where:

♦ <package name> is the symbol package name in the palette.

♦ <content file> is the path of the palette content, usually palette.xml.

♦ <palette URL> is the URL of the palette.

Example:

node {
class :

"@|symbolResource(ilog/views/palettes/shared/symbols/
Rectangular.css,Symbol,Symbols.Basic.Rectangular,ilog/views/palettes/shared/

palette.xml,file:data/palettes/jviews-palette-shared-symbols.jar)";
name : "no-name" ;

}

The symbol reference is resolved through getResource() first. The full version of the "class"
declaration, which contains the palette URL, is needed only for editing purposes when the

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 273

palette is not yet in the class path. For deployed applications, it is recommended to rely on
the class path version, which means adding all the palettes in use in the class path.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6274

Using composite graphics

Shows how to use composite graphics in your diagrams.

In this section

What is a composite graphic object?
Provides a short overview of the Composite Graphics capability in IBM® ILOG® JViews
Diagrammer and describes the Composite Graphics classes.

Building composite nodes in CSS
Shows how to build a composite node in the style sheet.

Building composite graphics in Java
Shows how to build a composite node using Java™ .

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 275

What is a composite graphic object?

The Composite Graphics capability consists of a set of classes that help you to combine
simple graphic objects to build more complex graphic objects according to one of several
possible layouts. You can modify a composite graphic object dynamically to add or remove
child elements. This facility supports nested composite graphics in which a child element is
itself a composite graphic object.

In IBM® ILOG® JViews Diagrammer, a Composite Graphic object is an instance of
IlvSDMCompositeNode. This class is in the SDM package but it is a subclass of
IlvCompositeGraphic which is a JViews Framework class, see the following class diagram.

Composite graphics classes available in IBM® ILOG® JViews Diagrammer

A composite graphic is made up of child graphics, which are positioned according to a
composite layout by a Layout Manager, IlvLayoutManager .

Each child can be an IlvGraphic object or itself an IlvCompositeGraphic object.

There are three possible Layout classes:

♦ IlvAttachmentLayout

♦ IlvCenteredLayout

♦ IlvStackerLayout

These classes are in the package ilog.views.graphic.composite.layout.

IlvSDMCompositeNode can have child graphics in different layers; this feature allows you
to keep one child always on top.

In IBM® ILOG® JViews Diagrammer, you can create composite graphic objects through
the style sheet, because the CSS for Java syntax has been extended to handle composite
graphics concepts.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6276

Building composite nodes in CSS

This section explains how to style nodes as composite graphics by building a composite
graphic directly in the style sheet.

If you follow the steps given in this section, you will obtain the composite graphic shown in
the following figure.

The example composite graphic

Note that this composite graphic itself contains composite graphics.

This composite graphic will be used to represent nodes of a specific user-defined type.

The data to be displayed comes from the XML file shown in the following code example.

The example XML data file

<?xml version="1.0" encoding="UTF-8"?>
<SDM>
<MyNode >
<property name="x">100</property>
<property name="y">100</property>
<property name="label">Composite Graphic</property>
<property name="alarm">Balloon</property>

</MyNode>
</SDM>

There is just one node defined, with user-defined type MyNode.

The x and y properties give the location of the node.

Each of the other properties will be styled as a child of a composite graphic.

To build composite nodes in CSS:

1. Enable Composite Graphics

To make use of composite graphics in the style sheet, enable the Composite Graphics
capability in the SDM rule, as follows:

SDM {
Composite:true;

}

2. Customize some objects as composite graphics

Add rules to customize objects with the user-defined type MyNode as composite graphics,
as follows:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 277

node.MyNode {
class:'ilog.views.sdm.graphic.IlvSDMCompositeNode';
children[0]:@+Rectangle;

}
Subobject#Rectangle {

class:'ilog.views.graphic.IlvRectangle';
width:40;
height:40;
fillOn:true;
background:blue;

}

A composite graphic in IBM® ILOG® JViews Diagrammer is an instance of the class
IlvSDMCompositeNode. It always has at least one child element. This first child has
index 0 in the children array. In this example, the first child is created as an
IlvRectangle object. It is defined with the ID Rectangle in a separate rule.

At this stage, the MyNode node would be displayed by the SDM engine as shown in the
following figure.

A composite node with only the first child element

3. Add a decorated child

To display the label attribute of the MyNode object, add another child element to the
MyNode rule as shown in the following code example.

node.MyNode {
class:'ilog.views.sdm.graphic.IlvSDMCompositeNode';
layout:@+AttachmentLayout;
children[0]:@+Rectangle;
children[1]:@+Label;
constraints[1]:@=attachmentLabel;

}

...

Subobject#AttachmentLayout {
class:'ilog.views.graphic.composite.layout.IlvAttachmentLayout';

}

Subobject#Label {
class:'ilog.views.graphic.IlvText';
label:@label;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6278

Subobject#attachmentLabel {
class:'ilog.views.graphic.composite.layout.IlvAttachmentConstraint';
hotSpot:TopCenter;
anchor:BottomCenter;

}

This second child has index 1 in the children array. In this example, the second child
is created as an IlvText object. It is defined with the ID Label in a separate rule.

Once there is a further child, you need to specify which layout to use. In this case, the
Attachment Layout is appropriate because it is the most general. You also need to add
a constraint to specify how the second child is attached to the first. The index of the
constraints array must correspond to the index of the children array.

For an Attachment Constraint, you must specify the following properties in a separate
rule:

♦ hotSpot, which is the point on the subsequent child object by which it is attached

♦ anchor, which is the point on the first child to which the subsequent child is attached

At this stage, the MyNode node would be displayed by the SDM engine as shown in
figure A composite node with only the first child element.

Note that an Attachment can be shared and so the CSS construct @= is used in the
MyNode rule. Child graphics cannot be shared and so they are created with the CSS
construct @+.

You must NOT use the @# construct to define composite graphics.
Only the @+ and @= constructs are allowed. Using @# may lead to
a wrong or inconsistent layout.

Warning:

A composite node with two child elements

The top center of the second child (IlvText object) is anchored to the bottom center
of the first child (IlvRectangle object).

The Attachment Layout provides nine possible attachment locations, as shown in the
following figure.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 279

Possible attachment locations

4. Add an Aligned Nested Composite Graphic

To add the three little rectangles at the top right corner of the blue rectangle, you
need to add a child which is itself a composite graphic.

First define the three rectangles with IDs Rect1, Rect2, and Rect3, as shown in the
following code example. These are the simple graphic objects which make up the
nested composite graphic.

Subobject#Rect1 {
class:'ilog.views.graphic.IlvRectangle';
width:5;
height:5;
background:red;
fillOn:true;

}
Subobject#Rect2 {

class:'ilog.views.graphic.IlvRectangle';
width:5;
height:5;
background:yellow;
fillOn:true;

}
Subobject#Rect3 {

class:'ilog.views.graphic.IlvRectangle';
width:5;
height:5;
background:green;
fillOn:true;

}

Next add another child element to the MyNode rule as shown in the following code
example.

node.MyNode {

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6280

...
children[2]:@+Rectangles;

...
constraints[2]:@=attachmentRectangles;

}

...

Subobject#Rectangles {
class:'ilog.views.sdm.graphic.IlvSDMCompositeNode';
layout:@+StackerLayout;
children[0]:@+Rect1;
children[1]:@+Rect2;
children[2]:@+Rect3;

}
Subobject#attachmentRectangles {

class : "ilog.views.graphic.composite.layout.IlvAttachmentConstraint"
;
hotSpot:BottomLeft;
anchor:TopRight;

}
Subobject#StackerLayout {

class:'ilog.views.graphic.composite.layout.IlvStackerLayout';
}

This third child has index 2 in the children array. It is composite graphic, that is, an
IlvSDMCompositeNode. object and it is defined with the ID Rectangles in a separate
rule.

In the Subobject#Rectangles rule, you need to specify which layout to use for the
three children. In this case, the Stacker Layout is appropriate because a Stacker Layout
is used to align graphics, either horizontally or vertically. The graphics to be aligned
horizontally in this example are the children of the composite node.

You also need to add a constraint to the MyNode rule to specify how the third child is
attached to the first. In this example, the bottom left of the third child
(IlvSDMCompositeNode object) is anchored to the top right of the first child
(IlvRectangle object).

At this stage, the MyNode node would be displayed by the SDM engine as shown in the
following figure.

A composite node with three child elements, one a composite

5. Add a Centered Nested Composite Graphic

Finally, add an information balloon to display the alarm attribute.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 281

To add the information balloon with its text, you need to add another child which is
itself a composite graphic.

First define the ellipse shape and the label with IDs Ellipse, and BalloonLabel, as
shown in the following code example. These are the simple graphic objects which
make up the nested composite graphic.

Subobject#Ellipse {
class:'ilog.views.graphic.IlvEllipse';
background:yellow;
fillOn:true;

}
Subobject#BalloonLabel {

class:'ilog.views.graphic.IlvText';
label:@alarm;

}

Next add another child element to the MyNode rule as shown in the following code
example.

node.MyNode {
...
children[3]:@+Balloon;
...
constraints[3]:@=attachmentBalloon;

}
...
Subobject#Balloon {

class:'ilog.views.sdm.graphic.IlvSDMCompositeNode';
layout:@+CenteredLayout;
children[0]:@+Ellipse;
children[1]:@+BalloonLabel;

}
Subobject#CenteredLayout {

class:'ilog.views.graphic.composite.layout.IlvCenteredLayout';
insets:5,5,5,5;

}

Subobject#attachmentBalloon {
class:'ilog.views.graphic.composite.layout.IlvAttachmentConstraint';
hotSpot:BottomCenter;
anchor:TopLeft;

}

This fourth child has index 3 in the children array. It is a composite graphic, that is,
an IlvSDMCompositeNode. object and it is defined with the ID Balloon in a separate
rule.

In the Subobject#Balloon rule, you need to specify which layout to use for the two
children. In this case, the Centered Layout is appropriate because a Centered Layout
is used to center one graphic on another. A Centered Layout displays an outer graphic
(the child at index 0) around an inner graphic (the child at index 1). The four insets

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6282

specify the pixel distances from each edge of the bounding box of the outer graphic.
Note that the two child objects maintain their relative position when the composite
graphic is resized.

You also need to add a constraint to the MyNode rule to specify how the fourth child is
attached to the first. In this example, the bottom center of the fourth child
(IlvSDMCompositeNode object) is anchored to the top left of the first child
(IlvRectangle object).

At this stage, the MyNode node would be displayed by the SDM engine as shown in
figure The example composite graphic, as required.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 283

Building composite graphics in Java

You can also build composite graphics in Java™ code using the JViews Framework classes
in the ilog.views.graphic.composite package.

To see the same example as the one in Building composite nodes in CSS but built with the
JViews Framework classes instead, see Composite Graphics in The Essential JViews
Framework.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6284

Printing

Printing facilities are fully predefined in the class IlvDiagrammerApplication . The use of
these facilities in an application is explained in Printing the diagram from an
IlvDiagrammerApplication instance in Using the Designer.

If you require more sophisticated printing facilities, you can retrieve the view, the grapher,
and the printing controller for the diagram component and customize the printing framework.
Note that the view and grapher are available at the SDM engine level. Therefore, proceed
as follows:

1. Retrieve the SDM engine for the diagram component. You do this with the method
getEngine():

myEngine = myDiagrammer.getEngine();

2. Retrieve the view and the grapher from the engine. You do this with the methods
getReferenceView() and getGrapher():

myView = myEngine.getReferenceView();
myGrapher = myEngine.getGrapher();

3. Retrieve the printing controller for the diagram component. You do this with the
method getPrintingController().

myDiagrammer.getPrintingController();

4. You can now customize the printing framework work as described in Printing framework
for manager content in the Advanced Features of JViews Framework.

© Copyright IBM Corp. 1987, 2009 285

Using JViews products in Eclipse RCP applications

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic shows you how to display
diagrams and dashboards embedded in an SWT window.

Installing the JViews runtime plugin
IBM® ILOG® JViews Diagrammer provides jar files in the form of a pre-packaged Eclipse
plugin. The name of this package is ilog.views.eclipse.diagrammer.runtime.

In order to install the IBM® ILOG® JViews Eclipse plugins, you need to install from the
local site as shown below.

For Eclipse 3.3:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates/Find And Install.

3. In the Install/Update dialog box, click Search for new features to install.

4. Define a New Local Site with the directory <installdir>/jviews-framework86/tools/
ilog.views.eclipse.update.site.

5. Select the features you want to install.

For Eclipse 3.4:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates and select the Available Software tab.

3. Add a new local site: ClickAdd Site, then Local and specify the directory <installdir>/
jviews-framework86/tools/ilog.views.eclipse.update.site

4. Select the features you want to install, and press the Install button.

This installation also installs some examples. See Installing and using Eclipse samples for
more information.

In your applications, you need the ilog.views.eclipse.diagrammer.runtime plugin and
its dependencies:

♦ ilog.views.eclipse.diagrammer.runtime

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

Providing access to class loaders
Many services in JViews need to look up a resource. Since the classical way to provide access
to resources is a classloader, JViews uses classloaders for this purpose. But in Eclipse/RCP
applications, each plugin corresponds to a classloader, and the JViews classloader sees only
its own resources, not the application resources. To fix this problem, you can register plugin

© Copyright IBM Corp. 1987, 2009286

classloaders with JViews through the IlvClassLoaderUtil.registerClassLoader function.
Each resource lookup then considers the registered classloaders and, if the plugins are
configured accordingly, also considers the dependencies of the registered classloaders.

The code for doing this is usually located in a plugin activator class. For example:

public class MyPluginActivator extends AbstractUIPlugin
{

/**
* This method is called upon plugin activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
IlvClassLoaderUtil.registerClassLoader(getClass().getClassLoader());

}

/**
* This method is called when the plugin is stopped
*/
public void stop(BundleContext context) throws Exception {
super.stop(context);
IlvClassLoaderUtil.unregisterClassLoader(getClass().getClassLoader());

}

}

The overriding of stop() is necessary so that, when the plugin gets unloaded, JViews gets
notified about the plugin that is going to stop and can drop references to its resources or
instances of its classes. The activator plugin is usually also the place where IlvProductUtil.
registerApplication is called. See section Before you start deploying an application for
an example.

The bridge between AWT/Swing and SWT
The bridge between the AWT/Swing windowing system and the SWT windowing system
consists of an IlvSwingControl class that encapsulates a Swing JComponent in an SWT
widget. This class allows you to use IlvDiagrammer, IlvJScrollManagerView, or
IlvJManagerViewPanel objects in an SWTwindow, together with other SWT or JFace controls.

The following code shows how to create a bridge object:

Composite parent = ...;
IlvDiagrammer diagrammer = new IlvDiagrammer();
ControlSWTdiagrammer = new IlvSwingControl(parent, SWT.NONE, diagrammer);

At the JViews Framework level, the bridge between the AWT/Swing windowing system
and the SWT windowing system consists of an IlvSwingControl class that encapsulates a
Swing JComponent in an SWT widget. This class allows you to use IlvManager or
IlvJManagerViewPanel objects in an SWTwindow, together with other SWT or JFace controls.

The following code shows how to create a bridge object at the JViews Framework level:

Composite parent = ...;
IlvManagerView mgrView = ...;

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 287

IlvJManagerViewPanel jmgrView = new IlvJManagerViewPanel(mgrView);
ControlSWTview = new IlvSwingControl(parent, SWT.NONE, jmgrView);

Using IlvSwingControl instead of the native SWT_AWT class has the following benefits:

♦ Simplicity: it is easier to use, since you do not have to worry about the details of the
Component hierarchy (see http://java.sun.com/javase/6/docs/api/java/awt/Component.html).

♦ Portability: IlvSwingControl also works on platforms that do not have SWT_AWT, like
X11/Motif® and MacOS® X 10.4.

♦ Less flickering: on Linux®/Gtk, flickering is reduced.

♦ Popup menus: popup menus can be positioned on each Component inside the AWT
component hierarchy. For details of components, see
http://java.sun.com/javase/6/docs/api/java/awt/Component.html.

♦ Better size management: the size management between SWT and AWT (LayoutManager)
is integrated.

♦ Focus: it provides a workaround for a focus problem onMicrosoft®Windows® platforms.

The IlvSwingControl bridge is not supported on all platforms. It is only supported
on Windows, UNIX® with X11 (Linux, Solaris™, AIX®, HP-UX®), and MacOS X 10.4
or later.

Note:

The IlvSwingControl bridge does not support arbitrary JComponents. Essentially,
components that provide text editing are not supported. See IlvSwingControl for
a precise description of the limitations.

Threading modes
You can handle the SWT-Swing user interface events in one or two threads.

Single-thread mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

♦ Two-thread mode

The SWT events are handled in the SWT event thread and AWT/Swing events are handled
in the AWT/Swing event thread. This is the default mode.

You can switch between the two threads by using the SWT method Display.asyncExec
() and the AWT method EventQueue.invokeLater().

If your application uses this mode, you must be careful to:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6288

http://java.sun.com/javase/6/docs/api/java/awt/Component.html
http://java.sun.com/javase/6/docs/api/java/awt/Component.html

● Make API calls on SWT widgets only in the SWT event thread. Otherwise, you will get
SWTExceptions of type ERROR_THREAD_INVALID_ACCESS.

● Make API calls on JComponents, which include IlvDiagrammer,
IlvJScrollManagerView, and IlvJManagerViewPanel, only in the AWT/Swing event
thread. Otherwise, you risk deadlocks.

At the JViews Framework level, make API calls on JComponents, which include
IlvManager and IlvJManagerViewPanel, only in the AWT/Swing event thread.
Otherwise, you risk deadlocks.

♦ Single-thread mode

In single-thread mode, SWT and AWT/Swing events are handled in the same thread.

Single-thread mode reduces the risk of producing deadlocks.

Enable this mode by calling setAWTThreadRedirect or enableAWTThreadRedirect()
early during initialization.

The following example shows how to enable single-thread mode:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

If you are using JComponents other than IlvDiagrammer, IlvJScrollManagerView, and
IlvJManagerViewPanel in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread() .

At the JViews Framework level, if you are using JComponents other than IlvManager
and IlvJManagerViewPanel in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() (see http://
java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()) or
SwingUtilities.isEventDispatchThread() (see http://java.sun.com/javase/6/docs/api/
javax/swing/SwingUtilities.html#isEventDispatchThread().)

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 289

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6290

Performance enhancements

Provides hints to improve the performance of an application.

In this section

Global performance improvements
Explains how to improve the global performance of your application.

Optimizing the performance of JViews Framework
Describes how to optimize the performance of your Framework application.

Optimizing the performance of symbols
Shows how to improve the performance of your symbols.

Optimizing the performance of diagrams
Shows you how to improve the performance of your diagrams.

Optimizing the performance of dashboards
Explains how to improve the efficiency of your dashboards.

Optimizing the performance of Graph Layout
Describes how to optimize the performance of the graph layout algorithm used by your
application.

© Copyright IBM Corp. 1987, 2009 291

Global performance improvements

IBM® ILOG® JViews is a comprehensive set of Java™ components, tools and libraries for
creating diagram-based editing, visualization, supervision and monitoring tools.

To stop memory copy slowing down the Java Virtual Machine for you custom application,
the initial heap size must be set to the amount of memory used when the application is
running in its cruise state. This maximum heap size is computed either by using the API or
through a profiling tool. A list of profiling tools can be found at
http://www.java-source.net/open-source/profilers.

You set the initial and final heap size using the -Xmx and -Xms command line parameters for
the JVM™ . For example, to set the minimum heap size to 130 megabytes and maximum
heap size to 150 megabytes, using the following arguments:

java -Xmx150m -Xms130m -jar myApp.jar

If you open a dashboard diagram stored in binary format, you do not need to set the heap
size of the virtual machine to be so large. For more information see the Binary dashboard
format.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6292

http://http://www.java-source.net/open-source/profilers

Optimizing the performance of JViews
Framework

Describes how to optimize the performance of your Framework application.

In this section

Introduction
Briefly describes why the application performance would need to be optimized.

Configuring the Java Virtual Machine
Describes how to configure the Java™ Virtual Machine

Minimizing JAR files
Explains how to minimize the JAR files.

Choosing the best graphic object
Explains how to choose the best graphic object depending on the requirements of your
application.

Drawing performance in the view
Describes how to speed up the drawing in the view

Events and listeners
Explains how to design events and listeners for better performance.

Interactors
Provides hints to improve the performance related to the use of interactors.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 293

Antialiasing
Provides hints to improve the performance related to the antialiasing mode.

Transparency
Provides hints to improve the performance related to the transparency feature.

Printing
Provides hints to improve the performance related to the printing feature.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6294

Introduction

If your application displays and manipulates only small data sets or graphs, you don't need
to worry about performance optimizations. However, an application that handles large data
sets must balance between memory, speed and feature set A rich feature set often means
largememory and slow speed. Using cachingmechanismsmay increase the speed but needs
more memory. If the application uses too much memory and at the same time reacts too
slow for your large data set, then you should consider reducing the features of the data set.
JViews Framework includes some features and programming techniques that increase the
speed and reduce the memory at the same time, however, not all features can be applied to
every application.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 295

Configuring the Java Virtual Machine

IBM® ILOG® JViews allows you to create Java™ applications. As a rule of thumb, it is
recommended to run the application with the latest release of the Java Virtual Machine.
History has shown that past Java Virtual Machines JRE™ 1.3, JRE 1.4, and JRE 1.5 have
increased the performance with each release. Therefore, the latest release is usually the
fastest one.

To stop memory garbage collection that slows down the Java Virtual Machine for
your custom application:

1. Set the initial heap size to the amount of memory used when the application is running
in its cruise state.

This maximum heap size is computed either by using the API or through a profiling
tool. A list of profiling tools can be found at .

2. Set the initial and final heap size using the -Xmx and -Xms command line parameters
for the JVM™ .

For example, to set the minimum heap size to 130 megabytes and maximum heap size
to 150 megabytes, use the following arguments: java -Xmx150m -Xms130m -jar
myApp.jar

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6296

http://www.java-source.net/open-source/profilers

Minimizing JAR files

IBM® ILOG® JViews provides several large JAR files for your application. If your application
is an applet, you probably want to reduce the size of the JAR file, because your applet does
not require all classes contained in the JAR files.

1. Unpack the JAR file.

2. Remove the unused classes.

3. Create a new JAR file with only the remaining used classes.

Various commercial tools can help you reduce the JAR files automatically:

♦ DashO: http://www.preemptive.com

♦ JShrink: http://www.e-t.com/jshrink.html

♦ ProGuard: http://proguard.sourceforge.net

♦ JoGa: http://www.nq4.de/

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 297

http://www.preemptive.com
http://www.e-t.com/jshrink.html
http://proguard.sourceforge.net
http://www.nq4.de/

Choosing the best graphic object

The JViews Framework contains several predefined IlvGraphic subclasses. They have
different features and memory/speed characteristics. However, in some cases the best choice
is to program a custom graphic object for your application, since the predefined graphic
objects has a large generic set of features that may not be needed in your application.

Text objects
The classes IlvLabel, IlvZoomableLabel and IlvText can be used to display text. IlvLabel
is the fastest and lightest text object, but it is not zoomable or rotatable and does not support
multiple lines of text. If has very few features. IlvZoomableLabel is zoomable, rotatable
and supports multiple lines of text. It paints the glyphs with gradient or texture paints.
Hence it paints relatively slow and uses plenty of memory. IlvText is in many cases much
faster than IlvZoomableLabel but it only supports uniform colors to draw the text glyphs.
It supports attributed text (underline, strike-through, and so on) and multiline-wrapping. In
most cases, IlvText is better than IlvZoomableLabel, although it uses plenty of memory.

Advanced
features

(attributed
text, line

wrapping)

MultilineBackground
Rectangle Fill

& Stroke

Glyph
Fill

Zoomable
Rotatable

Memory
usage

DrawClass
name

NoNoNoColorNoVery lightFastestIlvLabel

NoYesYesPaintYesHeavySlowIlvZoomableLabel

YesYesYesColorYesHeavyMedium
Fast

IlvText

The drawing speed of IlvLabel, IlvText and IlvZoomableLable is faster if antialiasing is
disabled. If the speed is critical, then it is better to switch the antialiasing off:

label.setAntialiasing(false);

IlvText and IlvZoomableLable are designed as general purpose classes, hence they have
many features and require more memory. If memory is critical and there are many text or
label objects, and if only few features of these objects need to be customizable, then it is
better to implement a lightweight text class that contains only these few features. The
implementation of the lightweight text class can delegate to a temporary allocated IlvText
on the fly. An example of this mechanism is shown in the code example
<installdir>/jviews-framework86/codefragments/lighttext.

Shape objects
IlvGeneralPath is a generic object that can be used to draw any filled or stroked shape.
However, some specialized classes for particular shapes exist and are much faster and use
less memory. These specialized classes have less features than IlvGeneralPath, for instance
they do not support custom strokes.

♦ IlvLine to draw a straight line,

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6298

♦ IlvPolyline to draw a sequence of straight line segments,

♦ IlvSpline to draw a sequence of spline segments,

♦ IlvRectangle to draw a filled or stroked rectangle, optionally with rounded corners,

♦ IlvPolygon to draw a filled or stroked polygon,

♦ IlvArc to draw a partial circle, annulus or pie,

♦ IlvEllipse to draw a filled or stroked full circle or ellipse.

If these classes fit the need of your application, we recommend to use them instead of
IlvGeneralPath.

Icons and images
IBM® ILOG® JViews allows you to load GIF, JPG, PNG images, and, with limitations, also
SVG and DXF images. GIF, JPG and PNG are bitmap formats that are loaded into IlvIcon.
SVG and DXF are vector formats that can be loaded into an IlvGraphicSet (for example,
in JViews Diagrammer via get. When zooming bitmaps, you loose drawing quality. For
instance, a magnified bitmap may appear blurred. This effect does not occur with vector
formats; they can be zoomed freely. However, vector formats use more memory and may
be drawn slower than bitmaps. Assume you have 10000 nodes displaying an image consisting
of 3 rectangles and 4 circles. If you load this image as bitmap, it is shared among all 10000
nodes automatically. If you load the image as SVG or DFX file, you have 10000 instances of
IlvGraphicSet, each containing 3 rectangles and 4 circles: overall 30000 rectangles and
40000 circles. Therefore, implementing these nodes with SVG or DXF files will require much
more memory then implementing them with bitmap images. Note that many external SVG
tools produce non-optimized SVG code that can be very complex. These tools are suited to
create an image that is used one time, but they may not be suitable to produce images that
are replicated 10000 times in 10000 nodes. Therefore, if SVG is used inside a large number
of nodes, we recommend to fine-tune and to simplify the SVG, or to use bitmap images
instead. To overcome the quality loss in zoomed bitmaps, IlvIcon has a high quality rendering
mode (setHighQualityRendering). However, this drawing mode is very time consuming. If
you need to display many icons, it is recommended to disable the high quality rendering
mode to improve the performance.

For JViews Diagrammer IlvGeneralNode uses internally IlvIcon when needed,
and it sets them by default in slow high quality rendering mode. To disable this effect,
call

Note:

IlvGeneralNode.High_Quality_Icons = false;

before the first IlvGeneralNode is allocated, that is, at the beginning of your
application.

Links
IBM® ILOG® JViews offers many link classes to connect nodes in a diagram. The simplest
link class is IlvLinkImage, the most complex, feature-rich and slow link class is

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 299

IlvGeneralLink from JViews Diagrammer. In terms of features, memory and speed, the
following equation holds:

IlvLinkImage << IlvPolylineLinkImage < IlvEnhancedPolylineLinkImage <<
IlvSimpleLink (Diagrammer) << IlvGeneralLink (Diagrammer)

If your application uses many links, it is recommended to use the lightest possible link that
has the features that you need:

♦ IlvLinkImage is suitable as straight link with simple arrowhead and uniform color. Do
not use it if you want to apply the automatic graph layout algorithms that reshape links
available with JViews Diagrammer.

♦ IlvPolylineLinkImage is a link with bend points. It has a simple arrowhead, a uniform
color, and can be used in all graph layouts.

♦ IlvEnhancedPolylineLinkImage has all features of IlvPolylineLinkImage. Additionally,
it can display a simple backward arrowhead, has an orthogonal and bundle mode and
can display tunnel/bridge crossings.

♦ IlvSimpleLink is an IlvEnhancedPolylineLinkImage that supports property notifications
that are sometimes necessary in SDM.

♦ IlvGeneralLink has all features of IlvSimpleLink, but enables arbitrary decorations
and labels, and various nonuniform colors.

♦ IlvCompositeLink does not fit into this feature hierarchy as it has not all the features of
the previously mentioned links. It can be composed by using one of the previously
mentioned links. In terms of memory, IlvCompositeLink is the most heavy link. In terms
of speed, it depends on the part it is composed of.

If you use the IlvClippingLinkConnector and want to improve the speed, always use a
subclass of IlvPolicyAwareLinkImage (for example, IlvEnhancedPolylineLinkImage,
IlvSimpleLink, or IlvGeneralLink) because the link connector can cache the clip points
for these classes but not for the other link classes. If the clip points are not cached, they
must be recalculated on the fly when drawing the link, and this can be slow.

If the quadtree is enabled, then zoomable links are drawn and manipulated faster than
nonzoomable links (see zoomable). If your application uses many links, it is recommended
to use zoomable links. Note that IlvGeneralLink is not zoomable, and other links are
zoomable only if their end nodes are zoomable. If your application needs to display a huge
number of links, it is recommended to use only nodes and link that are zoomable. In particular,
if you use tunnel/bridge crossing shapes (of IlvEnhancedPolylineLinkImage, IlvSimpleLink,
and IlvGeneralLink) you should use zoomable links because in these cases the crossings
of links must be calculated on the fly. The quadtree helps to determine these crossings, but
this works only if the quadtree is enabled and the links are zoomable. If the quadtree must
be disabled or if you must use a large number of nonzoomable links, it is recommended to
disable the tunnel/bridge crossing shapes.

Nested managers and graphers
Whenmanagers (IlvManager) or graphers (IlvGrapher) are nested in a hierarchy, the larger
the depth of this hierarchy, the smaller the performance. Avoid nested graphs with an
extremely high (hundreds or more) nesting depth.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6300

When you have nested graphers, you can have intergraph links, that is, links with end nodes
in different graphers. Intergraph links are often less efficient than normal links with end
nodes in the same grapher, since when calculating the geometry of the link, the different
transformers of the different graphers need to be taken into account. You can optimize the
speed by avoiding intergraph links and by structuring your diagram in a way so that only
normal links are necessary.

Implementing a custom graphic object
The most effective way to optimize speed and memory usage is to implement a custom
graphic class that contains exactly the features that are needed by your application. This
reduces the memory, because your custom graphic needs to store only those parameters
that are variable in your application. As opposed to the generic predefined graphic classes,
all other facilities (such as colors, paints, strokes, and so on) can be hard-wired if they do
not need to be variable in your application. Since hard-wired facilities don't need to be stored
per object, they need no memory.

There are two strategies to implement a graphic object that has multiple states and that
need to be drawn in a different way:

♦ compose an IlvGraphicSet or IlvCompositeGraphic with multiple subobjects such as
IlvRectangle, IlvEllipse, IlvText and rearrange these subobjects depending on the
state. It may make subobjects visible or invisible depending on the state.

♦ create a custom graphic that simply displays different bitmap images depending on the
state. There is only one bitmap image needed per state.

If you have many objects but only few states, the second strategy uses in many cases less
memory because the images can be shared among all the objects, while the first strategy
requires individual subobjects for each main object. The predefined class IlvMultipleIcon
helps to implement the second strategy.

When implementing a custom graphic, you should optimize the following methods for speed
as they are used quite frequently:

♦ boundingBox

♦ contains

♦ draw

♦ zoomable

If heavy computations are needed inside boundingBox(IlvTransformer), consider
implementing a cache that maps the transformer to the bounding box. The bounding box
cache must be invalidated whenever the real bounds of the object change, for instance when
any object parameter changes by affecting the size or position of the object. If the transformer
is not in the cache, the bounding box must be recomputed. However, if the transformer is
already in the cache, the bounding box can be retrieved from the cache, which speeds up
the operation.

For more information on how to implement custom graphic objects see Creating a new
graphic object class. The sample <installdir>/jviews-framework86/samples/graphics
shows how to create a custom graphic object. The code example
<installdir>/jviews-framework86/codefragments/lighttext shows how to create a light
custom text object.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 301

Drawing performance in the view

Sometimes the drawing performance is still not sufficient despite a careful selection of object
classes. This may in particular happen if you display a huge number of objects in multiple
views. Since after each change, each view must be drawn, the drawing performance may
be a bottleneck. In general, the best way to improve the drawing performance is to display
only one view. However, a very common scenario is to have a main view and an overview.

Redraw sessions
Whenever any object change, the view must be redrawn, to display the objects correctly. If
many objects change at the same time, it is better to perform only one redraw at the end
instead of many redraw after each object. This can be achieved with a redraw session:

manager.initReDraws();
try {

...many objects change, but redraw is supressed now ...
} finally {
// redraw the views
manager.reDrawViews();

}

For details, see Optimizing drawing tasks.

Buffering the view
You can use one of the predefined view buffering techniques. A buffered view is drawn faster
than each individual object contained in the view. On the other hand, updating the buffer
may be slow, therefore buffering is better if objects change only rarely.

♦ Double buffering (setDoubleBuffering) should be used to buffer the entire view. It
improves scrolling performance in optimized view translation mode
(setOptimizedTranslation). For details, see Managing double buffering.

♦ Triple buffering (setTripleBufferedLayerCount) can be used to buffer the first few
layers of a view. This is useful if moving objects are drawn in front of a static background.
The layers 0 to n may contain the background, and the layers n+1, n+2 and so on contain
the moving objects. It improves the overall drawing performance since the layer 1 to n
are quickly copied from the buffer bitmap. However, the memory consumption increases
by one additional in-memory bitmap of the size of the view. For details, see Triple buffering
layers.

♦ Layer caches (setLayerCached) can be used for the same reason, if the static layers that
never change are not in a continuous range from 1 to n. Each cached layer requires an
additional in-memory bitmap. It can be combined with triple buffering: if the static layers
are 0, 1, 2, 3, 5, and 7, then use triple buffering for layer 0-3, and a layer cache for layer
5 and layer 7. If you use individual layer caches for layer 0-3, it would require more bitmap
buffers than when combining these layers by triple buffering. For details, see Caching
layers.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6302

Optimizing the overview
The overview is a secondary view that is typically be used to navigate in the main view. The
overview usually displays the entire manager in a demagnified way. The overview is a
performance bottleneck because:

♦ it needs to all many objects

♦ it needs to fit the view whenever the manager contents changes

When displaying a huge number of objects, the overview may consume so much time that
the application becomes unresponsive. On the other hand, the display of the overview in
many situations does not need to be very precise. This can be used to improve the
performance:

♦ the overview does not need to be refreshed as often as the main view. Use the repaint
skip mechanism (setRepaintSkipThreshold) to refresh the overview only every couple
of seconds.

♦ you may consider to disable blinking for the overview (setBlinkingMode). Blinking objects
require periodical drawing of the view, which is the more time consuming the more objects
are displayed.

♦ if you implement your own graphic objects, then modify the draw method (draw) to draw
only small rectangles when the view is demagnified. Drawing rectangles is faster than
drawing nodes in full detail. At large demagnification, these details are anyway not visible.
By checking the zoom factor of the input transformer of the draw method, you can easily
decide whether the object needs to be drawn in full detail or only approximately as
rectangle. An example of this technique can be found in the code example
<installdir>/jviews-framework86/codefragments/lighttext.

Blinking
IBM® ILOG® JViews supports blinking objects, blinking colors and blinking actions (see
Blinking of graphic objects). An object that blinks needs to periodically be drawn. Here are
several hints to improve the performance:

♦ Do not use any kind of blinking if it is not necessary.

♦ If you have blinking objects, ensure that all objects use the same blinking timing. In this
case, all objects are drawn at the same time, which is more efficient than when different
objects are periodically drawn at different times.

♦ Enable blinking only in the main view. Disable blinking for secondary views such as the
overview. See setBlinkingMode.

♦ Blinking actions can modify objects periodically in an arbitrary way, which can be very
inefficient. Avoid blinking actions that modify the bounding box of the graphic objects.

♦ Consider using the IlvExpensiveDrawingRepaintManager in combination with blinking.
Blinking periodically repaints regions of the view. The default RepaintManager has a
simple strategy to combine regions that need repaint. The
IlvExpensiveDrawingRepaintManager has an advanced strategy that is optimized in case
the repaint of individual graphic objects is very expensive.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 303

Grid and background pattern
When the grid is enabled in a manager view, it consumes a lot of graphic resources. To
improve performance do not enable the grid in your view. You disable the grid by calling
setGrid.

Views can also have background pattern. Similar to the grid, they consume a lot of graphic
resources. You disable background pattern by calling setBackgroundPatternLocation.

The drawing of the view is most efficient if the background of the view is drawn just with a
uniform color, without grid or background pattern.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6304

Events and listeners

IBM® ILOG® JViews supports various types of events and allows applications to add listeners
to react on events. In many cases, these custom event listeners are the performance
bottleneck, not the IBM® ILOG® JViews internal code. Therefore it is necessary to design
the listener code carefully and to avoid to install too many listeners.

Adjusting sessions
Most IBM® ILOG® JViews events support an adjusting flag: large changes in the data may
trigger a sequence of events, and the adjusting flag indicates that all events belong to the
same sequence. This allows you to implement listeners so that inexpensive operations are
done for each single event, and expensive operations are only done at the end of the sequence
of events. All IBM® ILOG® JViews internal listeners are designed in this manner, and it is
recommended that you use the same design principle for your own listeners if possible.

If your application performs large changes in the manager, then we recommend to use
adjusting sessions in the following way:

manager.setContentsAdjusting(true);
try {
... add, remove, move a lot of objects...

} finally {
manager.setContentsAdjusting(false);

}

All events fired inside this adjusting session have the adjusting flag enabled, hence all
listeners supporting the adjusting flag will be executed in optimized way. For more
information, see Listener for the content of the manager.

If your application selects or deselects a large set of objects, use selection adjusting sessions
in a similar way:

manager.setSelectionAdjusting(true);
try {
... select or deselect a lot of objects...

} finally {
manager.setSelectionAdjusting(false);

}

It is very common to combine adjusting sessions and redraw sessions:Note:

manager.setContentsAdjusting(true);
manager.initReDraws();
try {
... add, remove, move a lot of objects...

} finally {
manager.setContentsAdjusting(false);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 305

manager.reDrawViews();
}

If you use JViews Diagrammer, you don't need to use the low level API
IlvManager.setContentsAdjusting but should use the higher-level API instead:
IlvDiagrammer.setAdjusting and IlvSDMEngine.setAdjusting. These higher level API
will automatically manipulate the contents adjusting and selection adjusting flag of the
manager.

Implementing listeners for adjusting sessions
If you need to implement an event listener, it is recommended to perform quick tasks inside
adjusting sessions and slow tasks only at the end of adjusting sessions. This ensures that
the slow tasks are not performed too often and don't slow down the entire application. Here
is a typical scheme for a listener:

listener = new ManagerContentChangedListener() {
int numAdditions = 0;
int numRemovals = 0;
public void contentsChanged(ManagerContentChangedEvent evt) {
if (evt.isAdjusting()) {
// inside an event series: quick operation, e.g. updating a counter
switch (evt.getType()) {
case ManagerContentChangedEvent.OBJECT_ADDED:
numAdditions++;
break;

case ManagerContentChangedEvent.OBJECT_REMOVED:
numRemovals++;
break;

}
} else (evt.getType() == ManagerContentChangedEvent.ADJUSTMENT_END) {
// at the end of the series: can do a slow operation
reorganizeSomeData(numAdditions, numRemovals);
numAdditions = numRemovals = 0;

} else {
// outside a series of events, need to do the full operation immediately

switch (evt.getType()) {
case ManagerContentChangedEvent.OBJECT_ADDED:
reorganizeSomeData(1, 0);
break;

case ManagerContentChangedEvent.OBJECT_REMOVED:
reorganizeSomeData(0, 1);
break;

}
}

}

Dispatch listeners
If you implement your own graphic object, then sometimes you want to perform some code
when the graphic object itself is selected. You could register the graphic object itself as a
selection listener, but when you add 1000 objects of this kind to a manager, the manager

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6306

will have 1000 selection listeners. In this case it is more efficient to use a dispatch listener:
one listener for all 1000 objects, that dispatches the event to the selected object. IBM®
ILOG® JViews contains an abstract auxiliary class IlvManagerSelectionDispatcher that
is suitable to implement such a dispatch listener.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 307

Interactors

Opaque interaction mode
The select interactor (IlvSelectInteractor) and some other interactors that are able to
move or reshape objects (for example, IlvPolyPointsEdition, IlvReshapeSelection,
IlvMoveRectangleInteractor and its subclasses) have an opaque mode. The opaque mode
means that the users sees the full graphic object while it moves or changes. If the opaque
mode is switched off, the user sees only a ghost drawing of the object until the interaction
is finished (for example, until the user releases the mouse button when dragging). Drawing
ghosts is more efficient than drawing opaque objects, in particular if a large number of
objects moves. To improve performance, call setOpaqueMove(false) or setOpaqueMode
(false) on any interactor that supports opaque modes.

Hit-test
A very frequent operation is to determine which object is located at a given position. It is
used by the select interactor to find the selected object. However, sometimes it is also used
during every mouse movement. One example is when graphic objects have tooltips. The
tooltip manager must determine during mouse movements which object is under the mouse
pointer, in order to display the correct tooltip. Another example is when the objects have
object interactors, and the system must determine which object interactor should receive
the events.

The quadtree is a data structure to optimize the hit-test. Each manager layer can have a
quadtree. The quadtree is enabled by default in optimized mode, and an application that
contains a large number of graphic objects should not disable the quadtree nor switch to
unoptimized mode.

The quadtree optimizes the hit-test only for zoomable objects, that is, zoomable returns true
(see Zoomable and nonzoomable objects). If your application uses a large number of objects,
we strongly recommend that you use zoomable objects. The hit test for nonzoomable objects
is considerably slower than for zoomable objects.

Tooltips
Tooltips are handled by the IlvToolTipManager central manager. When a view is registered
at the tooltip manager, the tooltip manager analyses for every mouse movement which
tooltip must appear. This can slow down all mouse movements. If you use many objects and
have nonzoomable objects or have the quadtree disabled, the mouse movement may become
too slow. In this case, try avoid using tooltips. The following code example shows how to do
this on a specific manager view:

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {
IlvToolTipManager.unregisterView(dashDiag.getView());

}
});

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6308

Antialiasing

Antialiasing changes the pixels along the edges of a line into varying shades of gray or
in-between color in order to make the edge appear smoother. In JViews Framework,
antialiasing is available for graphic objects containing text, such as labels and scales. Disable
antialiasing to improve performance at the cost of a small reduction in presentation level.
This can be done by calling setAntialiasing(false) in the following classes and their
subclasses

♦ IlvReliefLabel

♦ IlvScale

♦ IlvShadowLabel

♦ IlvLabel

♦ IlvTextPath

♦ IlvFilledLabel

♦ IlvZoomableLabel

♦ IlvText

♦ IlvCircularScale

♦ IlvRectangularScale

♦ IlvManagerView

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 309

Transparency

Manager layers can be drawn transparent. The following classes (and their subclasses)
support transparency per object.

♦ IlvIcon

♦ IlvGeneralPath

♦ IlvGraphicSet

♦ IlvFullZoomingGraphic

♦ IlvHalfZoomingGraphic

♦ IlvEnhancedPolylineLinkImage

Transparency has two potential problems:

♦ The drawing speed is considerably slower, therefore transparency should be avoided if
there are plenty of objects.

♦ The spool size when printing the contents of a view may become very large.

If these problems affect your application, we recommend to avoid transparency. If the
drawing speed is fast enough and only the large spool size causes problems, one possible
solution is to disable transparency only during printing. In this case, the printout might
differ from the display in the view, but the spool size remains small. If you cannot disable
transparency but only very few objects are transparent, consider drawing the transparent
region into an opaque offscreen buffer and print the opaque buffer instead of the transparent
objects to reduce the spool size. Refer to Printing for further performance hints related to
printing.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6310

Printing

IBM® ILOG® JViews printing capabilities relies on the printing mechanism of the Sun™
JVM™ . In some situations, the Sun JVM generates big spool files that reduce printing
performance drastically. (The problem was identified and registered as bug 4314221 in the
Sun bugs database). Large printer spool sizes are usually the result of the Java 2D™ printing
API using the raster pipeline instead of the default PDL pipeline. The printing API makes
this switch automatically if any rendering on the page requires bitmap operations. This
includes transparency and gradient paints. Therefore, the developer should avoid the
following rendering features to ensure that the default PDL printing pipeline is used and
spool sizes are reduced:

♦ Avoid transparency: draw only shapes and text with no alpha component. Do not draw
images that have an alpha channel.

♦ Avoid gradients and bitmap paints: use only solid color paints.

JavaSoft™ has documented additional tips and ideas for optimizing the printing in:

♦ The JavaSoft Java2D tutorial at http://java.sun.com/docs/books/tutorial/2d/printing/
index.html.

♦ The Java2D FAQ at http://java.sun.com/products/java-media/2D/forDevelopers/
java2dfaq.html.

Some of these optimizations are:

♦ Do not use a PCL or a PostScript printer. If you have to use transparencies or gradients,
try to print your document to a printer which is not a PCL or a Post Script?.

♦ Reduce the resolution of the printer, for example, use 300 DPI instead of 600 DPI.

♦ If you must use alpha, use this technique to avoid full-page rasterization:

1. Draw the non-opaque colors into an opaque off-screen image.

2. Redraw the image with alpha into an opaque image.

3. Draw the opaque image into a PrinterGraphics.

For example, in the case of a transparent bitmap you will have better performance if the
actual bitmap drawn on the printer is an opaque bitmap built from the background and
the transparent original bitmap (that is, build the transparent result before hand and
send that result to the printer).

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 311

http://java.sun.com/docs/books/tutorial/2d/printing/index.html
http://java.sun.com/docs/books/tutorial/2d/printing/index.html
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html

Optimizing the performance of symbols

Light symbols use the minimum amount of objects, parameters, conditions and interactors
necessary to display an understandable message. Use the following guidelines to create
symbols with the smallest memory footprint:

♦ Use as few objects as possible.

♦ Use a static background.

♦ Use light (PNG) images.

♦ Use the visibility option.

♦ Avoid transparency.

♦ Avoid complicated gradients.

♦ Avoid thick lines.

♦ Turn antialiasing off.

♦ Turn fraction metrics off.

Rendering operations take up a lot of CPU time. The fastest and lightest symbols are made
by changing the visibility setting for a collection of PNG images.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6312

Optimizing the performance of diagrams

Shows you how to improve the performance of your diagrams.

In this section

The Overview pane
Describes the Overview pane and its use in optimizing diagrams.

Grids in a diagram
Describes the use of grids in a diagram.

Rendering Done mode
Describes the Rendering Done mode in the SDM engine.

Composite renderer
Shows how to disable composite rendering in the SDM engine.

Load on demand
Shows how to set the load-on-demand mode in the SDM engine.

Content on demand
Shows how to set the content-on-demand mode in the SDM engine.

Adjusting modes
Shows how to use adjusting modes in the SDM engine.

Detail level
Shows how to set the levels of detail for displaying nodes and links in the SDM engine.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 313

Better SDM/Java transition
Shows how to disconnect SDM to improve performance.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6314

The Overview pane

Each time a change happens in a diagram, only the area in the diagram that has been
changed is refreshed. However, the whole diagram in the Overview pane has to be repainted,
causing a large performance reduction. The overview pane is represented by an
IlvDiagrammerOverview object. This pane is to be used when you design your Diagrammer
or Dashboard application. Using the Overview pane in a run time application can reduce
performance. This is particularly true when you use dynamic symbols.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 315

Grids in a diagram

When the grid is enabled in JViews Diagrammer applications, it consumes a lot of graphic
resources. To improve performance do not enable the grid in your diagram. In the Designer
GUI, the grid can be enabled or disabled using the Viewmenu. You disable the grid by calling
clearing the grid in the IlvManagerView. The following code example shows how to clear
the grid:

IlvSDMEngine e = dashDiag.getEngine();
e.getReferenceView().setGrid(null);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6316

Rendering Done mode

In the SDM engine, the rendering process is controlled by a CSS style sheet, which lets you
tell the SDM engine how you want each particular kind of data object to be displayed in the
grapher. When the data model is loaded, the SDM engine explores it and creates graphic
objects representing the nodes and links defined by the data model in the grapher. When
the state of an object in the data model changes, the SDM engine updates the graphic object
representing the modified data object. The object state may change due to an external
application event or after a direct edit of an object property by the user. A property is a
named characteristic of a graphic object to which you can assign values.

To improve performance while changing a model property, disable rendering done mode.
This is especially beneficial for renderers that perform post-processing; such as link layout.

The following code example shows how to disable rendering done mode in the SDM engine.

IlvSDMEngine e = dashDiag.getEngine();
int old = e.getRenderingDoneMode();
try {
e.setRenderingDoneMode(e.NEVER);
// modify model here, without set adjusting
...

} finally {
e.setRenderingDoneMode(old);

}

Setting rendering done mode to IlvSDMEngine.NEVER does not prevent the graphic
from being customized.

Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 317

Composite renderer

Composite rendering manages interaction and smart link connections, that is, the link ports,
and the link connection rectangle for composite graphic and symbols. When dealing with
basic non-interactive symbols, disabling composite rendering relieves the renderer toolchain
and improves performance.

To disable composite rendering, set the Composite option in the SDM section of the initial
stylesheet to false.

SDM {
Map : "false" ;
LinkLayout : "true" ;
Composite : "false" ;
GraphLayout : "false" ;
HalfZooming : "false" ;

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6318

Load on demand

Using load on demand mode in the IlvSubGraphRenderer class, subnodes of a collapsed
subgraph are created only when the subgraph is first expanded. This technique usually gives
better startup times, at the expense of a slower expansion. The following code example
shows how to set load-on-demand mode.

IlvDiagrammer diagrammer;

...

IlvSDMEngine engine = diagrammer.getEngine();
IlvSubGraphRenderer renderer = (IlvSubGraphRenderer)
IlvRendererUtil.getRenderer(engine, IlvRendererUtil.SubGraph);

renderer.setLoadOnDemand(true);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 319

Content on demand

The content on demand feature allows an SDM model to delay the loading of its object
content in order to save resources. This assumes that empty model objects have lowmemory
and time footprints, and are rendered with cheap graphic objects. Content on demand allows
you to fill them when required and empty them when they are no longer needed.

The classes of the content on demand feature are located in the package ilog.views.sdm.
modeltools. The entry point is the class IlvContentController.

Typically, content on demand is associated with a zoom listener. This allows the supervision
of a map that contains a huge number of empty objects. Starting at a certain threshold,
when the user zooms in, only the visible objects are filled. Objects outside the area of interest
remain unloaded.

A content on demand sample is available in
<installdir>/jviews-diagrammer86/samples/diagrammer/content-on-demand/index.html.
For more information, see Content on demand.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6320

Adjusting modes

IBM® ILOG® JViews Diagrammer applications use the SDM to calculate changes in the
model. By default, after changes are calculated and validated in the SDM, the graphic objects
effected by these changes are recalculated.

To render this process in the IlvSDMEngine more efficient, call IlvSDMEngine.
setAdjustingMode(true). The SDM will then process all the modifications at once. You
open an adjusting sequence by calling IlvSDMEngine.setAdjustingMode(true). To close
an adjusting sequence, call IlvSDMEngine.setAdjustingMode(false).

Alternatively, you can close the adjusting sequence using IlvSDMEngine.clearAdjusting
(). This method also validates the model changes, but prevents SDM from processing the
modifications. Use it only if you are sure the model changes do not impact the display in
any way.

The following code example shows how to use adjusting modes:

IlvSDMEngine engine = ... ;

try {
engine.setAdjusting(true);

// perform changes on diag model, i.e. engine.getModel()

} finally {
// commit changes
engine.setAdjusting(false);
// or commit silently:
//engine.clearAdjusting();

}

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 321

Detail level

Style rules allow you to define three different levels of detail for displaying the nodes and
links in a diagram: high (default), medium, low.

For example, you could define the following information to be displayed for each detail level:

♦ level: the nodes have a fill and a label

♦ medium level: the nodes have no fill but they have a label

♦ low level: the nodes have no fill and no label

A low level of detail allows you to speed the rendering of the diagram. The following code
example shows how to set the level of detail to low.

IlvDiagrammer diagrammer;

...

IlvSDMEngine engine = diagrammer.getEngine();
engine.setDetailLevel(engine.LOW_DETAIL_LEVEL);;
...

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6322

Better SDM/Java transition

SDM manages the graphic objects according to the model state and style specification. To
improve the performance or to execute tasks that are outside the SDM scope, you may need
to tackle the grapher directly. In most cases, you will need to disconnect SDM so that it
does not interfere and undo your actions.

To disconnect SDM, invoke the following method:

IlvSDMEngine.plugAllListeners(false);

This call will remove all SDM listeners set on the model, the view, and the manager. Without
listeners, SDM does not react to modifications and you can safely perform actions on graphic
objects and on the SDM model. The mapping between the SDM model and the graphic
objects still works (IlvSDMEngine.getGraphic()) as well as most of the other SDM utility
functions.

You can reconnect the SDM engine using IlvSDMEngine.plugAllListeners(true), but be
aware that the engine will not catch up automatically the modifications that occurred while
it was disconnected. To synchronize again the view with the model, each modified object
should be refreshed manually.

For a finer control over SDM listeners, there are specific methods for each type of listener.
See

♦ plugManagerListener

♦ plugViewListener

♦ plugSelectionListener

♦ plugModelListener

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 323

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6324

Optimizing the performance of dashboards

Explains how to improve the efficiency of your dashboards.

In this section

The Overview pane
Describes the Overview pane in the Dashboard Editor.

Binary dashboard format
Explains the two dashboard file formats.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 325

The Overview pane

The Overview pane in Dashboard Editor displays all symbols and background objects present
in the current dashboard diagram. Each time a change happens in a dashboard diagram,
only the area in the diagram that has been changed is refreshed. However, the whole diagram
in the Overview pane has to be repainted, causing a large performance reduction.

The overview pane is represented by an IlvDiagrammerOverview object. To improve
performance, do not add an IlvDiagrammerOverview in your Dashboard Editor application.

In the DashboardEditor sample application, the Overview pane is added when you call
DashboardEditor.createRightArea().

Note:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6326

Binary dashboard format

Dashboard Editor supports two different dashboard file formats:

♦ XML - stored in .idbd files.

♦ Binary - stored in .idbin files.

A dashboard in XML format is 8 times the size of a binary format file and takes 5 times as
long to load. Using binary format decreases the amount of parsing and data conversion to
be performed by Dashboard Editor.

A binary file is read into Dashboard Editor without using an XML parser or a document
object model, which reduces memory use significantly.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 327

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6328

Optimizing the performance of Graph Layout

Describes how to optimize the performance of the graph layout algorithm used by your
application.

In this section

Introduction
Briefly describes how the application performance can be optimized.

Use layout only when needed
Explains how to avoid unnecessary executions of the layout to improve performance.

Layout of huge graphs
Provides some hints on how to deal with huge graphs.

Speed of layout algorithms
Describes the speed of the different layout algorithms.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 329

Introduction

If your application displays and manipulates only small graphs, you don't need to worry
about performance optimizations. Some layout algorithms are designed for medium sized
graphs, and only few algorithms are available for huge graphs. Graph layout is in general
a complex task that often uses heuristics to solve NP-hard problems (problems that cannot
be easily solved from a computational point of view). Different heuristics have different
speed characteristics.

Graph layout places the nodes and routes the links. If moving nodes and reshaping links is
slow, graph layout cannot be fast. Therefore, it is important to know the performance hints
described in Optimizing the performance of JViews Framework in addition to those hints
that are related to graph layout.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6330

Use layout only when needed

The graph layout algorithm is most likely the most complex part of your application. Hence
it might also be the slowest part of your application. Therefore it is useful to design the
application so that graph layout is used only when needed. For instance, the application
could offer a button that triggers layout, so that the graph layout does not need to run
continuously during all interactions.

Graph layout places the nodes and routes the links. If moving nodes and reshaping links is
slow, graph layout cannot be fast. Therefore, it is important to know the performance hints
described in theOptimizing the performance of JViews Framework in addition to those hints
that are related to graph layout.

Orthogonal links without link layout
If your application requires orthogonal link shapes, you might be tempted to use a link layout
in automatic layout mode. This has the effect that the layout is triggered whenever a node
moves. However, if you have too many links, a full automatic link layout will be too slow. An
alternative way to ensure orthogonal links is to use the orthogonal mode of
IlvEnhancedPolylineLinkImage (and its subclasses). This mode will ensure that the link
shape remains orthogonal, without analyzing all links to reduce link crossings and overlaps.
Therefore it can be more efficient than running link layout in autolayout mode. To enable
the orthogonal mode on a link, call:

enhancedLinkImage.setOrthogonal(true);

Automatic layout
If youmust use automatic layout (setAutoLayout), be aware that layout is triggered whenever
any event is fired indicating a change of the graph. In this case, it is important to optimize
the events by using adjusting sessions as explained in Events and listeners. This avoids that
a sequence of changes triggers many layouts and ensures that the layout is only called once
at the end of the sequence of changes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 331

Layout of huge graphs

Different graph layout algorithms can handle different graph sizes. As a rule of thumb:

♦ IlvGridLayout, IlvBusLayout, and IlvTreeLayout can handle huge graphs.

♦ IlvHierarchicalLayout can handle medium sized graphs that don't have too many links.

♦ IlvUniformLengthEdgesLayout is the slowest algorithm and is not suitable for huge
graphs.

More details are given in Speed of layout algorithms .

Don't show all links
The tree layout can handle very huge graphs. If you have a very huge graph with links, the
recommended way is to show only a spanning tree of the graph and hide the other links.
The spanning tree can be laid out with the tree layout.

Design your application to use interactions to make the user is aware of the hidden links.
For example, selecting one node may highlight all nodes that are reachable from this node
via hidden or visible links. This is even more ergonomic than displaying all the links at the
same time, since the user's eyes cannot trace links if too many are displayed at the same
time.

The code example
<installdir>/jviews-diagrammer86/codefragments/graphlayout/filterlinks/nocss
shows how this strategy can be implemented.

Cluster into subgraphs and collapse
Sometimes, graphs have meaningful cluster information. For instance, a graph of people
can be clustered according to nationality, or according to families. Each cluster can be
represented as a nested subgraph (IlvGrapher) that can be collapsed and expanded.

The advantage of subgraphs is having a faster layout when they are collapsed, since a faster
layout does not need to lay out the inner of the clusters. The diagram also becomes more
comprehensible if only those details of interest are shown and the less interesting subgraphs
are collapsed. On the other hand, if all subgraphs are expanded, the layout may become
slow if the nesting depth of subgraphs is too high. When dealing with very large graphs, a
carefully designed clustering into nested subgraphs can help to improve the user experience
of the application.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6332

Speed of layout algorithms

The speed of the graph layout algorithms depend on the type of graph and on the layout
parameters. Some layouts are very slow for specific types of graphs. Some layouts are fast
in general but become slow for specific layout parameter settings. The speed of all layouts
depends also on the performance of the nodes and links that are used. If you use nodes
classes with a very inefficient implementation for moving the nodes, or link classes with a
very inefficient implementation for reshaping the links, then the layout algorithm will also
be slow, since it moves nodes and reshapes links.

Layout customization interfaces
Several layout algorithms support customization interfaces such as IlvNodeBoxInterface,
IlvNodeSideFilter, IlvLinkConnectionBoxInterface or IlvLinkClipInterface. When
you use these interfaces, the layout algorithm jumps into your code. Be careful when
implementing these interfaces, so that they do not decrease the performance of the layout
algorithm.

Tree layout
Tree Layout is in general very fast and can handle huge graphs, as long as none of the
automatic tip over modes are used.

♦ The layout mode FREE and LEVEL are the fastest modes.

♦ The radial layout modes are a bit slower, but usually still fast enough for very large graphs.

♦ The tip over layout modes are slow and should only be used for small graphs.

For details, see Tree Layout (TL).

Hierarchical layout
The speed of hierarchical layout depends on the density of the graph. Hierarchical layout
can handle very large graphs that have only few links, but it might be too slow for smaller
graphs that have a huge amount of links.

The speed and quality of the hierarchical layout also depends on the number of constraints:
The fewer constraints, the more freedom the layout has to place nodes and the faster the
layout is. In particular, you should avoid unsatisfiable constraint conflicts, because detecting
these conflicts is very slow.

For details, see Hierarchical Layout (HL).

Grid layout
Grid layout is in general very fast and can handle huge graphs. However, in layout mode
TILE_TO_MATRIX, the speed depends on the grid mesh size (the distance between gridlines).
The smaller the grid mesh size, the slower the layout. In the other layout modes, the grid
mesh size has no influence on the performance.

For details, see Grid layout (GL).

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 333

Link layout
The speed of link layout depends on the number of links. It is suitable for small and medium
size graphs. If the graph has too many links, see section Orthogonal links without link layout.

In layout mode LONG_LINKS (or when using the IlvLongLinkLayout) the layout speed depends
on the grid mesh size (the distance between gridlines). The smaller the grid mesh size, the
slower the layout. Additionally, the exhaustive search mode (setExhaustiveSearching) of
IlvLongLinkLayout should be avoided, because it is very slow.

For details, see Link layout (LL).

Uniform length edges layout
To fit a variety of needs, the algorithm provides three optional modes: incremental,
non-incremental and fast multilevel. The later is the fastest for medium and large graphs.
For more details on these modes, see Layout mode .

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6334

Symbols
!important token 119

A
abstract methods

unused 69
accessing

renderer 237
adding

border in SDM general link 153
decorations to general node 150
renderer 219

adding a decoration 150
adding categories 264
addObject method

IlvSDMModel interface 59
addSDMModelListener method

IlvSDMModel interface 59
addSDMPropertyChangeListener method

IlvSDMModel interface 59
aligning graphics 280
alternateColor property 157
anchor 278
animation

SDM general link 165
anti-aliasing

label 147
applying

CSS to Java objects 121
approach

lower-level 46
area events, content on demand 101
arrow

by a decoration 162
decoration 162
drawing 161

attachment
anchor 278

hotspot 278
Attachment Constraint 278
Attachment Layout 278
Attachment layout 276
attribute matching

CSS2 syntax 135
autowrap

label 146

B
basic graphic objects 47
Bean

creating new 128
library 125
property 123, 175, 227

Bezier curve 155
Blinking renderer 184
border

adding in SDM general link 153

C
cascading

CSS syntax 119
CSS2 syntax 135

categories 256
adding to palette 264

Centered Layout 281
Centered layout 276
centering graphics 281
class declaration in CSS 125
class loader 286
class property name 125
clear method 76

IlvSDMModel interface 59
collapsed nodes 212
color

label 147
Coloring renderer 180
comparing

© Copyright IBM Corp. 1987, 2009 335

I N D E X

Index

attribute patterns 135
composite

Attachment constraint 278
Attachment Layout 278
Attachment layout 276
Centered layout 276
nested 280
Stacker 280
Stacker layout 276

composite graphics facility 50
composite layout 276
Composite renderer 198
configuring

renderer by code 235
content on demand 100, 106

area events 101
cache size 101
lock, load, unload 101
multithreading 102
notifications 102
set events 101
tiling systems 108

controlling
SDM general node icon 148
SDM general node label 146
SDM general node shape 141, 143, 152, 157,
158, 161, 164

converting
data model to graphic object 24

createChildren method 77
createLink method

IlvSDMModel interface 59
createNode method

IlvSDMModel interface 59
creating

new Bean 128
renderer 219
SDM engine 24
SDM general node 139

creating palettes 263
CSS

applying to Java objects 121
cascading syntax 119
class declaration 125
class property name 125
classes and ID 124
declaration 117
engine in SDM 123
inheritance 120
origins 111
parent-child construct 82
priority 118
recursion 128
selector 115
sharing an object 278

subobject 128
use 16
XML elements 124

CSS class in the data model 82
CSS engine

CSS class 82
CSS for Java

composite graphics 276
CSS for Java engine 124
CSS syntax

divergences from CSS2 135
CSS2 syntax 135

attribute matching 135
cascading 135
empty string 137
enhancement 136
null value 136
pseudo-classes 126, 135
pseudo-elements 126
pseudoelements 135

CSSclass attribute name 82
CSSclass property 124
curves

SDM general link 155
custom functions

in expressions 130
registering 133

custom SDM model
JavaBeans 67

custom shape 141
customizing

renderer 175
SDM general link 151

D
dashes

SDM general link 156
data model

dynamic 59
editable 59
indirection 126
information 58
listeners 58, 59
navigating 58
not editable 76
writing 60

data to graphics 24
declaration

CSS syntax 117
decoration

adding 150
as arrow 162
SDM general node 150

Decoration renderer 182
default interactor 243
deploying applications 38

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6336

diagram component 12
DOM tree 95
drawing

arrow 161
DrillDown renderer 193
dynamic data model 59

E
Eclipse Rich Client Platform 286

class loader 286
runtime plugin 286

editable data model 59
elements of a composite graphic 50
empty string

CSS2 syntax 137
enableAWTThreadRedirect method

IlvEventThreadUtil class 288
end cap 154
errors in CSS 130
EventQueue class

isDispatchThread method 288
example

link, adding a border 153
link, alternating colors 157
link, drawing an arrow 161
link, major appearance 152
link, mixing decoration options 158
link, modifying curve 155
link, modifying dash specification 156
link, setting a wave effect 164
setting shape size 141
using a renderer 174

ExpandCollapse renderer 212
expressions 129

css 130
inverting 133

F
font

label 147
functionList property 133
functions

custom 130
standard 130

G
general node

label position 146
label string 146
multiline labels 146

getChildren method
IlvSDMModel interface 58

getFilteredRenderer method
IlvFilterSDMRenderer class 237

getFrom method
IlvSDMModel interface 58

getID method

IlvSDMModel interface 58, 124, 126
getObject method

IlvSDMModel interface 58
getObjectProperty method

IlvSDMModel interface 58
getObjectPropertyNames method

IlvSDMModel interface 58
getObjects method 76

IlvSDMModel interface 58
getParent method

IlvSDMModel interface 58
getRenderer method

IlvRendererUtil class 237
IlvSDMEngine class 237

getTag method
IlvSDMModel interface 58, 124, 126

getTo method
IlvSDMModel interface 58

GrapherPin renderer 187
graphic object

creating 47
graphic objects

basic 47
GraphLayout renderer 175, 176, 189, 205

H
HalfZooming renderer 195
hotSpot 278

I
icon

general node 148
ID

and CSS classes 124
of model object 58

IlvBasicSDMModel class 54, 87, 88
IlvColoringRenderer class 180
IlvDecorationRenderer class 182
IlvDefaultSDMLink class 54
IlvDefaultSDMModel class 54, 60, 61
IlvDefaultSDMNode class 54
IlvEventThreadUtil class

enableAWTThreadRedirect method 288
setAWTThreadRedirect method 288

IlvFilterSDMRenderer class 220, 225, 237
getFilteredRenderer method 237

IlvGrapherPinRenderer class 187
IlvGraphic class 124, 150
IlvGraphicFactories class 125
IlvGraphLayout class 190, 191
IlvHalfZoomingRenderer class 195
IlvHierarchicalLayout class 190
IlvInfoBalloonRenderer class 197
IlvInteractorRenderer class 200
IlvJavaBeanSDMModel class 54, 60
IlvLabelInterface interface 158

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 337

IlvLabelLayoutRenderer class 201
IlvLegendRenderer class 202
IlvLinkLayoutRenderer class 175, 205, 214
IlvMakeSDMLinkInteractor class 242, 244
IlvMakeSDMNodeInteractor class 242, 244
IlvMapRenderer class 206
IlvObjectInteractor class 243
IlvPalette 256
IlvPalette class 263
IlvPaletteCategory 264
IlvPaletteCategory class 256
IlvPaletteManager class 256
IlvPaletteSymbol class 256
IlvPolylineLinkImage class 154
IlvRect class 125
IlvRendererUtil class 237

getRenderer method 237
IlvSDMEngine class

getRenderer method 237
readDOM method 94
readXML method 94
writeDOM method 95
writeXML method 95

IlvSDMModel interface
addObject method 59
addSDMModelListener method 59
addSDMPropertyChangeListener method 59
clear method 59
createLink method 59
createNode method 59
getChildren method 58
getFrom method 58
getID method 58, 124, 126
getObject method 58
getObjectProperty method 58
getObjectPropertyNames method 58
getObjects method 58
getParent method 58
getTag method 58, 124, 126
getTo method 58
isAdjusting method 59
isLink method 58
removeObject method 59
removeSDMModelListener method 59
removeSDMPropertyChangeListenermethod
59
setAdjusting method 59
setFrom method 59
setID method 59
setObjectProperty method 59
setTo method 59

IlvSDMRenderer class 220
IlvShadowLabel class 150
IlvStyleSheetRenderer class 208, 237
IlvSubGraphRenderer class 212

IlvSwingControl class 286
IlvSwingUtil class

isDispatchThread method 288
IlvXMLConnector class 96
IlvZoomableLabel class 158
import statement 119
InfoBalloon renderer 197, 243
information on model objects 58
inherit token 119
inheritance

CSS syntax 120
of declarations 120

insets in composite graphic 281
interactor

default 243
renderer 243

Interactor graphic property 247
Interactor renderer 247
inverting expressions 133
isAdjusting method

IlvSDMModel interface 59
isDispatchThread method

EventQueue class 288
IlvSwingUtil class 288

isEventDispatchThread method
SwingUtilities class 288

isLink method
IlvSDMModel interface 58

J
JApplet (Swing) 40
JavaBeans 175, 190
JavaBeans (lower-level) 48, 49
JavaBeans conventions 65
join 154
JTree 75

L
label

anti-aliasing 147
autowrap 146
color 147
font 147
general node 146
truncation 147
zoom 147

label position 146
label string 146
LabelLayout renderer 201
Lane Renderer 216
layers

in composite graphics 276
layout

of composite 276
Layout Managers

in composite graphics 276

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6338

Legend renderer 202
LINEAR_GRADIENT mode 143
lineStyle property 156
link 58

end cap 154
join 154
methods 58

LinkLayout renderer 175, 205, 237, 238
links

striped 157
listeners 58, 59
literal

css declaration 123
loading palettes 258
loading, content on demand 101
locking, content on demand 101
lower-level approach 46

M
Map renderer 206
Map StyleSheet renderer 210
maps integration 32
methods

clear 76
createChildren 77

miter join 154
model indirection 126
model object

ID 58, 124
object tag 58
properties 58

model property name 126
modes

SDM general link 152
modifying 238
multiline label 146
multithreading, content on demand 102

N
navigating

data model 58
nested composite graphic 280
node 58

custom shape 141
notification, content on demand 102
null value

CSS2 syntax 136

O
object

data model to graphic 24
object interactors 242
object tag

of model object 58

P
palette 256

creating 263
events 268
loading 258
parameters 266
saving 260

palette manager 256, 269
palette manager events 270
palette symbols 256
PaletteEvent 268
parent-child construct in CSS 82
printing controller 285
printing framework

customizing 285
priority

CSS syntax 118
priority in display 46
properties

CSSclass 124
in a sheet 34
in a table 35
of model object 58
renderer 176
SDM general link 167

pseudo-classes 135
CSS2 syntax 126, 135

pseudo-elements
CSS2 syntax 126, 135

pseudoclass 176

R
Radial mode (Tree layout) 82
RADIAL_GRADIENT mode 143
RCP 286
readDOM method

IlvSDMEngine class 94
reading

custom XML formats 96
custom XML formats using XSLT 96
XML data file 93

readXML method
IlvSDMEngine class 94

recursion
CSS 128

registering
custom functions 133

removeObject method
IlvSDMModel interface 59

removeSDMModelListener method
IlvSDMModel interface 59

removeSDMPropertyChangeListener method
IlvSDMModel interface 59

renderer 238
accessing 237
adding a new 219
configuring by code 235
customizing 175

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 339

modifying 238
properties 176
setting new 239
using 173

resizing
general node 149
SDM general node 149

resolving
URL 126

root of the tree 76
rule

specificity 118
style 114

runtime plugin 286

S
saving palettes 260
Scalable Vector Graphics (SVG)

supported/unsupported CSS properties 288
SDM engine

creating 24
SDM general link 167

adding border 153
animation 165
curves 155
customizing 151
dashes 156
modes 152
stroke 154
summary of properties 167
wave effect 164
zoom 165

SDM general node
automatic resizing 149
controlling icon 148
controlling label 146
controlling shape 141, 143, 152, 157, 158, 161,
164
creating 139
decorations 150

SDM model 76
selector

CSS syntax 115
set events, content on demand 101
setAdjusting method

IlvSDMModel interface 59
setAWTThreadRedirect method

IlvEventThreadUtil class 288
setFrom method

IlvSDMModel interface 59
setID method

IlvSDMModel interface 59
setObjectProperty method

IlvSDMModel interface 59
setting

new renderer 239

setTo method
IlvSDMModel interface 59

shape
general node 141, 143, 152, 157, 158, 161, 164

shared object in CSS 278
sharing 137
specificity 118
Stacker Layout 280
Stacker layout 276
standard functions

in expressions 130
Standard Widget Toolkit 286
striped links 157
stroke

SDM general link 154
style rule 114
style sheet 16

changing properties 208
StyleSheet renderer 172, 237
subclassing a graphic object 47
subclassing the XML connector 96
SubGraph renderer 212
subgraphs 212
subobject 128
swim lanes 214
SwimLanes renderer 214
Swing JApplet 40
Swing JTree 75
SwingUtilities class

isEventDispatchThread method 288
symbols

in CSS 273
syntax enhancement

CSS2 syntax 136

T
tag 26
TEXTURE mode 143
tiling systems, content on demand 108
tokens

cascading priority 119
Tree layout 82
TreeSDMNode class 77
truncation

label 147

U
unloading, content on demand 101
URL

resolving 126
user-defined type 26

example in CSS 277

V
view interactors 242

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6340

W
wave

in SDM general link 164
web deployment 42
writeDOM method

IlvSDMEngine class 95
writeXML method

IlvSDMEngine class 95
writing

custom XML formats 96
custom XML formats using XSLT 96
data model 60
XML data file 95

X
XML data file

custom formats 96
custom formats using XSLT 96
reading 93
subclassing the XML connector 96
writing 95

XML element name in CSS 124
XSLT format 96

Z
zoom

label 147
SDM general link 165

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 341

	Table of contents
	Introducing the SDK
	The diagram component
	What is a diagram component
	The Diagrammer class
	The data source
	The style sheets
	The project
	Managing the diagram

	Styling and Data Mapping (SDM)
	Overview
	The SDM engine
	The SDM data model
	Renderers
	The grapher
	Interactors

	Composite graphics and symbols
	Graph layout
	Maps
	Developing applications
	User interface components
	Customizing the user interface components

	Deploying applications
	Overview
	Java AWT/Swing application
	Java applets
	Java Web Start
	Web deployment
	Eclipse/RCP

	Using the Graphics Framework directly
	Overview
	Accessing and creating basic graphic objects
	Storing graphic objects in layers
	Organizing graphic objects into graphs
	Composite graphics in Java code

	Using and writing data models
	Overview
	Deciding your data model strategy
	Implementing the behavior of data model objects
	Connecting data sources to the diagram component
	JavaBeans example
	The Molecule example
	The Atom, Bond, and Molecule classes
	The Molecule model
	The Phenol Molecule data source
	Loading the Molecule into the diagram component

	NonJavaBeans example: abstract model variant
	The Tree Model example
	The Swing JTree
	The TreeSDMModel class
	The TreeSDMNode class
	The TreeSDMLink class
	Loading the data model and style sheet into the diagram component

	NonJavaBeans example: basic model variant
	The second Tree Model example
	The TreeSDMModel2 class
	The TreeLink class
	Loading the data model

	Using a custom data model in the Designer
	Handling XML data files in Java
	Reading data
	Writing data
	Reading and writing custom XML formats

	Content on demand
	About content on demand
	Concepts
	Classes involved
	Using content on demand
	Content on demand and tiling systems

	Using CSS syntax in the style sheet
	Overview
	The origins of CSS
	The CSS syntax
	Style rule
	Selector
	Declaration
	Priority
	Cascading
	Inheritance

	Applying CSS to Java objects
	Overview
	The CSS engine
	The data model
	CSS recursion
	Expressions
	Divergences from CSS2

	Customizing general nodes in the style sheet
	Overview
	Controlling the node’s shape
	Controlling the node’s skin
	Controlling the node’s border
	Controlling the node’s label
	Controlling the node’s icon
	Automatic resizing
	Decorations

	Customizing general links in the style sheet
	Controlling the link’s look
	Obtaining color effects
	Controlling link decorations
	Controlling arrows
	Controlling extra effects
	Summary of link properties

	Using and adding renderers
	About renderers
	Using renderers in the style sheet
	Enabling a renderer
	Customizing a renderer
	Using rendering properties on objects

	Predefined renderers
	Class summary
	The Coloring renderer
	The Decoration renderer
	The Blinking renderer
	The GrapherPin renderer
	The GraphLayout renderer
	The DrillDown renderer
	The HalfZooming renderer
	The InfoBalloon renderer
	The Composite renderer
	The Interactor renderer
	The LabelLayout renderer
	The Legend renderer
	The LinkLayout renderer
	The Map renderer
	The StyleSheet renderer
	The Map StyleSheet renderer
	The SubGraph renderer
	The SwimLanes renderer

	Adding your own renderer
	Writing a renderer class
	Registering a renderer
	Loading and customizing a renderer

	The Flag renderer example
	Overview
	Header part
	Bean properties
	Private methods
	Overloading methods of the Filter class
	Integrating the Flag renderer
	Possible enhancements

	Configuring renderers in Java code
	Overview
	Accessing a renderer
	Modifying a renderer
	Setting new renderers

	Support for renderers in the Designer

	Using and writing interactors
	Predefined interactors
	Subclassing view interactors
	Writing an object interactor
	Writing a subclass of IlvObjectInteractor
	Enabling a custom interactor
	Connecting interactors to diagrams using listeners

	Managing dynamic symbols
	Introducing symbols
	What is a symbol?
	The advantages of symbols

	Using symbols
	Basic concepts
	Loading palettes
	Saving palettes

	Advanced management of symbols and palettes
	Palettes
	Categories
	Palette symbols
	Palette parameters
	Palette events
	Palette manager
	Palette manager events
	Organizing symbols in categories

	How to use a symbol in CSS
	Using composite graphics
	What is a composite graphic object?
	Building composite nodes in CSS
	Building composite graphics in Java

	Printing
	Using JViews products in Eclipse RCP applications
	Performance enhancements
	Global performance improvements
	Optimizing the performance of JViews Framework
	Introduction
	Configuring the Java Virtual Machine
	Minimizing JAR files
	Choosing the best graphic object
	Drawing performance in the view
	Events and listeners
	Interactors
	Antialiasing
	Transparency
	Printing

	Optimizing the performance of symbols
	Optimizing the performance of diagrams
	The Overview pane
	Grids in a diagram
	Rendering Done mode
	Composite renderer
	Load on demand
	Content on demand
	Adjusting modes
	Detail level
	Better SDM/Java transition

	Optimizing the performance of dashboards
	The Overview pane
	Binary dashboard format

	Optimizing the performance of Graph Layout
	Introduction
	Use layout only when needed
	Layout of huge graphs
	Speed of layout algorithms

	Index

