
IBM ILOG JViews Charts V8.6

Building Web Applications

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the Web technologies used in JViews Charts.....................................9
Overview..10

Thin client applications...11
Thin client application designs...12
Ajax-enabled components..13

Rich Web applications...15
Overview...16
Rich Web client...17
Applets...18
Java Web Start applications...19

Using DHTML-based JSF components to build Web applications......................21
Introduction..22

The architecture of JViews Charts Faces...23
About support for JViews Charts Faces...24
Servlet and component classes...25

The JViews Charts Faces component set...29
Creating simple views...31
Charts designer project..32
Data source binding in JViews Charts..33
Styling chart data with CSS..35
Image maps..36

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Installing interactors in a chart..38
Connecting a chart view to a message box..39
Setting the overview...40
The legend component...41
Mixing with standard JavaServer Faces components..42
Adding a popup menu..43
Styling the popup menu..45
Managing the session expiration..46

JavaScript objects...47

Contexts for actions on the view...49
Introduction...50
JavaServer Faces lifecycle context...51
Image servlet context...53

Integrating JViews Faces in your environment..55
JViews Faces configuration at JViews Framework level...56
Session persistence...58
Running JViews Faces components in JSR 168 portlets...59
Guide to using JViews components with ICEfaces..61

Settings for using JViews components in ICEfaces..62
Interoperability between JViews components and ICEfaces components..63
Push updates to JViews components...64
ICEfaces software in JViews...65

Supporting Facelets and Trinidad...66
Web Application Server support...67

Deploying an application as a DHTML-only thin client...69
JavaServer Faces components as opposed to DHTML thin client.......................................71

Thin client architecture...72

Chart servlet package...73

The IlvChartServlet class..75
Creating an IlvChartServletSupport...76
Handling sessions..77

The IlvChartServletSupport class..79
Overview...80
The image request...81
The image map request...82

Server actions..86

Adding support for custom image formats...87

Choosing the multithreading mode...88

Writing a basic server side application...91

B U I L D I N G W E B A P P L I C A T I O N S4

Example: The Basic Servlet..92
Installing and running the example...94
Implementing the server-side application...95
Creating the servlet..96
Creating the servlet support...97

DHTML thin-client support in JViews Framework...103
Overview of thin-client support...105

IBM® ILOG® JViews thin-client Web architecture..106

Getting started with the IBM® ILOG® JViews thin client..107

Installing and running the XML Grapher example..109

Developing the server...110

Developing the client..115
Overview of client-side development..117
The IlvView JavaScript component...118
The IlvOverview JavaScript component...121
The IlvLegend JavaScript component..123
The IlvButton JavaScript component..125
The IlvZoomTool JavaScript component..131
The IlvZoomInteractor JavaScript component..132
IlvPanInteractor..134
The IlvPanTool JavaScript component...135
The IlvMapInteractor and IlvMapRectInteractor JavaScript components...136
The Popup menu in JavaScript...137

Adding client/server interactions...138

Generating a client-side image map..140

The IlvManagerServlet class..143
Overview of the predefined servlet...144
The servlet requests and parameters...145
Multiple sessions..150
Multithreading issues..152

The IlvManagerServletSupport class..153

Controlling tiling..155
Tiling...156
Tile size..157
Cache mechanisms..158
Developing client-side tiling..159
Developing server-side tiling..161
Client-side caching...162
Server-side caching and the tile manager..163

B U I L D I N G W E B A P P L I C A T I O N S 5

Creating Rich Web Charts...165
Rich Web Charts..167
Introduction to Rich Web Charts...168
Supported graphical representations...169
View and data interactions...174
JViews Swing Charts and Rich Web Charts - features comparison...175
Requirements...176

Architecture overview...177
Introduction...178
Run-time process flow..180
Main classes...181

Getting started...183
Creating a JViews Charts project with the Designer..184
Creating a JSP page using Rich Web Charts...185
Setting up a data source..186
Defining client and server-side actions in response to user interactions..187
Configuring the client update interval...188
Deploying the Web application...189

How to...191
Add a Rich Web Charts to a JSP page..193
Configure the update interval...194
Set up interactions..195
Change the style sheet at run time...196
Update Chart data without refreshing the whole HTML page..197
Change the color of the data point under the mouse...199
Trigger a client-side action when picking a data point..200
Trigger a server-side action when picking a data point...201

The tag library..203
Introduction...205
The chart tag..207
The highlightInteractor tag..210
The infoViewInteractor tag..212
The panInteractor tag...213
The pickInteractor tag...214
The xScrollInteractor tag..216
The yScrollInteractor tag..217
The zoomInteractor tag..218

Client-side API...219
Globally available objects...220
Objects available in onhighlight event handler...221
Objects available in onpick event handler...222

B U I L D I N G W E B A P P L I C A T I O N S6

Server-side API..223
JSF UI components..224
RWChartInteractionEvent...227
Data source..228

Server configuration...229
Configuring the servlets...231

Introduction...232
Cache servlet..233
Data servlet...234
Resource servlet...235

Configuring the data source replication..237
Purging the history of events...238
Setting the parameters of the data source replication...239

Styling..241
Introduction...242
Styling the Chart component..243
Styling the data series..254
Property values..260
Unsupported CSS features..263
Identifying styling issues...264

Index..265

B U I L D I N G W E B A P P L I C A T I O N S 7

B U I L D I N G W E B A P P L I C A T I O N S8

Introducing the Web technologies used in
JViews Charts

This document provides information on how to deploy your application as an Internet-based
application. It discusses the two major categories of Internet applications: thin client
applications and rich Web applications.

In this section

Overview
Gives an overview of Internet-based applications.

Thin client applications
Describes thin client applications and use of JViews Faces components.

Rich Web applications
Introduces rich Web applications.

© Copyright IBM Corp. 1987, 2009 9

Overview

The versatility of Java™ deployment was one of the key factors driving the adoption of Java.
For many years, Java has been recognized for its multiplatform capabilities, for example,
running on both Microsoft® Windows® and Linux® . Java covers a wide spectrum of
execution environments, from traditional desktop environments to Internet-based applications.

B U I L D I N G W E B A P P L I C A T I O N S10

Thin client applications

Describes thin client applications and use of JViews Faces components.

In this section

Thin client application designs
Gives an overview of what thin client applications are.

Ajax-enabled components
Describes the use of Ajax-enabled JViews components in Web applications.

B U I L D I N G W E B A P P L I C A T I O N S 11

Thin client application designs

As their name implies, thin client applications deploy minimal code on the clients and rely
heavily on the server to deal with user interactions and to respond with corresponding
displays.

In such application designs, application deployment is transparent and updates are
immediately available to all users. Application management can be centralized on a few
localized servers. Thus it requires fewer administration resources and helps to maximize
the availability of the application.

Against these advantages, you must weigh the most common drawbacks, which are:

♦ The relatively slow reaction of the application to user input.

♦ Poor server scalability for handling a large user base.

♦ Poor to no offline capability.

♦ Lack of advanced interactive graphics: since the local processing power is not leveraged,
the user’s machine is used only to display Web pages.

JViews Charts provides advanced capabilities for such application designs. It relies on
JavaServer™ Faces (JSF) as the server-side component model and Dynamic HTML (DHTML)
as the client-side display technology. This combination facilitates development work and
provides easier integration with third-party components and tools.

Going beyond simple thin clients, JViews Charts thin client leverages the local execution
capabilities of JavaScript™ to provide an advanced user experience; for demanding
interactions, Asynchronous JavaScript And XML concepts, or Ajax, are applied.

B U I L D I N G W E B A P P L I C A T I O N S12

Ajax-enabled components

With JViews Charts Faces components and JavaScript™ you can develop a new generation
of highly responsive, highly interactive Web applications. The high responsiveness is
achievable through Ajax, which supports asynchronous and partial refreshes of a Web page.
A partial refresh means that when an interaction event fires, a Web server processes the
information and returns a response specific to the data it receives. The server does not send
back an entire page to the client of the Web application.

Why asynchronous? The client can continue processing while the server processes in the
background. A user can continue interacting with the client without noticing latency in the
response. The client does not have to wait for a response from the server before continuing,
as in the traditional synchronous approach.

See Using DHTML-based JSF components to build Web applications and Deploying an
application as a DHTML-only thin client for more information about these deployment
strategies.

B U I L D I N G W E B A P P L I C A T I O N S 13

B U I L D I N G W E B A P P L I C A T I O N S14

Rich Web applications

Introduces rich Web applications.

In this section

Overview
Gives an overview of what rich Web applications are.

Rich Web client
Introduces rich Web clients.

Applets
Introduces applets.

Java Web Start applications
Introduces Java™ Web Start applications.

B U I L D I N G W E B A P P L I C A T I O N S 15

Overview

In the last few years, rendering technologies such as Flash® or Scalable Vector Graphics
(SVG) have emerged to overcome some user interaction issues and display limitations found
with the DHTML rendering described in Thin client application designs. In parallel, the role
of the client has been promoted to further leverage local processing power through
JavaScript™ . The objective is to improve user experience on the client and scalability on
the server and has led to the Ajax concept.

In such designs, servers are partially offloaded to focus mainly on data handling and less
on screen generation.

JViews Charts helps you to develop such applications as:

♦ Rich Web Client

♦ Applets

♦ Java™ Web Start Applications

B U I L D I N G W E B A P P L I C A T I O N S16

Rich Web client

JViews Charts provides a set of JSF components that relies on Ajax technology and SVG for
rendering.

SVG is a W3C standard that allows for advanced drawings to be built by script on the client.
Such local execution capabilities allow for advanced interaction locally. Thus they offload
the servers and retain all other thin client advantages. The major issue with such an approach
is that the execution environment needs to support SVG either through a plug-in as in
Internet Explorer or natively as in FireFox.

See Creating Rich Web Charts for more information about this deployment strategy.

B U I L D I N G W E B A P P L I C A T I O N S 17

Applets

An applet is a traditional Java™ application that is wrapped as an applet and automatically
transferred by the server as needed.

Thus it retains the advantages of the thin client, provides more advanced user interactions,
and minimizes the server workload. The main drawbacks are that a Java virtual machine
needs to be installed in each execution environment and initial loading time can be long and
stressful for networks, since applications can be many megabytes.

When developing a JViews Charts application using this approach, see Developing with the
JViews Charts SDK.

B U I L D I N G W E B A P P L I C A T I O N S18

Java Web Start applications

Like applets, Java™ Web Start applications allow for traditional development techniques,
but applications have off-line capabilities and are cached locally in the execution environment.

They minimize start-up time and network bandwidth requirements, since servers only
distribute an application when updates are available. The major known drawback is the
need to install a Java Web Start environment that can be transparently streamed, but is
sometimes blocked by some network security policies.

When developing a JViews Charts application using this approach, see Developing with the
JViews Charts SDK and the Java Web Start documentation at
http://java.sun.com/products/javawebstart/developers.html.

B U I L D I N G W E B A P P L I C A T I O N S 19

http://java.sun.com/products/javawebstart/developers.html

B U I L D I N G W E B A P P L I C A T I O N S20

Using DHTML-based JSF components to
build Web applications

This section shows you how to use the components of IBM® ILOG® JViews Charts Faces
to create JavaServer™ Pages (JSP™) that are compliant with JavaServer Faces (JSF).

In this section

Introduction
Provides an overview of the JViews Charts Faces Components.

The architecture of JViews Charts Faces
Presents an overview of JViews Charts Faces architecture.

The JViews Charts Faces component set
Presents some examples to illustrate how to use the JViews Charts Faces components

JavaScript objects
Explains the creation of JavaScript objects corresponding to JViews Charts Faces components.

Contexts for actions on the view
Describes the contexts in which actions can be executed in response to interactions on the
view.

Integrating JViews Faces in your environment
Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

© Copyright IBM Corp. 1987, 2009 21

Introduction

JViews Charts Components are available as a set of classes and a tag library. A set of
renderers generate DHTML code for rendering the components. The components also use
servlet technology to generate images to be transferred to the client.

JViews Charts Faces provide Ajax-enabled components for developing highly responsive and
interactive Web applications.

B U I L D I N G W E B A P P L I C A T I O N S22

The architecture of JViews Charts Faces

Presents an overview of JViews Charts Faces architecture.

In this section

About support for JViews Charts Faces
Describes the components of JViews Charts Faces.

Servlet and component classes
Identifies servlet and component classes for generating the visual representation of the
component.

B U I L D I N G W E B A P P L I C A T I O N S 23

About support for JViews Charts Faces

JViews Charts Faces support is based on JavaServer Faces (JSF) technology and consists
of:

♦ The tag library (a set of JSP tags)

♦ A Java API

♦ A set of DHTML objects

The JSP tags are used to build JSP pages. Each tag represents a component and has a set
of attributes for configuring the component. The JViews Charts Faces component set includes:

♦ a chart

♦ an overview

♦ a legend

♦ a set of interactors

♦ a popup menu

Not all the components have a visual representation. An interactor, for example, is intended
only to be set on a chart view and has no visual representation.

When a tag is processed by the JSP engine, it is compiled into Java code that is executed to
produce the page content. The tag library produces DHTML objects. Each object can be
referenced by JavaScript code and can be modified on the client side without issuing a server
roundtrip.

♦ See the Release Notes for theWeb browsers and versions with which JViews Charts Faces
components are compatible.

B U I L D I N G W E B A P P L I C A T I O N S24

Servlet and component classes

JSF Components in JViews Charts uses servlet technology to produce the images that are
the visual representation of the component on the client side.

Faces view components

B U I L D I N G W E B A P P L I C A T I O N S 25

Faces interactors and other components

Faces servlet

Dedicated servlet, servlet support, and components are available to help create an application,
see Servlet and component classes.

B U I L D I N G W E B A P P L I C A T I O N S26

Servlet and component classes
DescriptionName

A dedicated IlvChart component.ilog.views.chart.faces.servlet.
IlvFacesChart

A dedicated IlvLegend component.ilog.views.chart.faces.servlet.
IlvFacesChartLegend

A dedicated chart overview that extends
IlvChart.

ilog.views.chart.faces.servlet.
IlvFacesChartOverview

A dedicated IlvChartServlet.ilog.views.chart.faces.servlet.
IlvFacesChartServlet

A dedicated IlvChartServletSupport.ilog.views.chart.faces.servlet.
IlvFacesChartServletSupport

A view component, extended to have DHTML
rendering that displays an IlvFacesChart.

ilog.views.chart.faces.dhtml.component.
IlvChartDHTMLView

An overview component, extended to have DHTML
rendering that displays an
IlvFacesChartOverview.

ilog.views.chart.faces.dhtml.component.
IlvChartDHTMLOverview

A legend component, extended to have DHTML
rendering that displays an
IlvFacesChartLegend.

ilog.views.chart.faces.dhtml.component.
IlvChartDHTMLLegend

An interactor that allows you to pan the view.ilog.views.chart.faces.interactor.
IlvChartPanInteractor

An interactor that allows you to execute an action
in the servlet context by clicking the image.

ilog.views.chart.faces.interactor.
IlvChartPickInteractor

An interactor that allows you to zoom the view.ilog.views.chart.faces.interactor.
IlvChartZoomInteractor

A contextual popup menu.ilog.views.faces.component.
IlvFacesContextualMenu

For more information about DHTML architecture, see DHTML thin-client support in JViews
Framework DHTML Thin-Client Support.

B U I L D I N G W E B A P P L I C A T I O N S 27

B U I L D I N G W E B A P P L I C A T I O N S28

The JViews Charts Faces component set

Presents some examples to illustrate how to use the JViews Charts Faces components

In this section

Creating simple views
Explains how to create various types of simple view.

Charts designer project
Presents an example using the Designer for JViews Charts.

Data source binding in JViews Charts
Presents examples of connecting data source components to chart components.

Styling chart data with CSS
Describes how to customize the chart data display using Cascading Style Sheets.

Image maps
Explains how to add an image map to an image on the client side.

Installing interactors in a chart
Describes how to install interactors in a chart.

Connecting a chart view to a message box
Describes how to connect a message box to a chartView.

Setting the overview
Describes how to attach an overview to a chartView.

B U I L D I N G W E B A P P L I C A T I O N S 29

The legend component
Describes how to connect a legend component to a chartView.

Mixing with standard JavaServer Faces components
Describes how to configure and access a chartView component using standard JavaServer
Faces components.

Adding a popup menu
Explains how to add a popup menu.

Styling the popup menu
Explains how to use CSS classes to set popup menu properties for styling purposes.

Managing the session expiration
Describes the implications of session expiration and how to keep a user session alive when
it is about to expire.

B U I L D I N G W E B A P P L I C A T I O N S30

Creating simple views

The view component is the central component of a JViews Faces application. All the other
components depend on or interact with this view. The first and simplest page that can be
made with a JViews Faces component is an empty view.

Creating a chart view
The first and simplest page that can be made with a JViews Charts Faces component is a
chart view showing the default built-in data set.

Creating an empty view
To specify an empty view:

<jvcf:chartView style="width:500px; height:300px;" />

This produces a 500 by 300 pixel chart.

Declaring the namespace
The namespace jvcf (for JViews Charts Faces) must be declared in the page as follows:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-chart-faces.tld"
prefix="jvcf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvcf:chartView width="500" height="500" />

B U I L D I N G W E B A P P L I C A T I O N S 31

Charts designer project

The easiest way to configure the style and the data source of a chart is to set a JViews Charts
Designer project to the chart view component. This is done with the data attribute of the
tag that points to an icpr file.

For more information about the Designer for JViews Charts, see Using the Designer.

<jvcf:chartView id="chart"
data="data/chart.icpr"
style="width:800;height:400" />

You can set the CSS stylesheet and data source separately.

B U I L D I N G W E B A P P L I C A T I O N S32

Data source binding in JViews Charts

If a project is not already set and you want to set a data source to a chart, a data source
component should be connected to the chart component in order to display something.

Using an XML file
An easy way to connect to a data source is to use an XML file.

<jvcf:chartView style="width:500 px; height:300 px;"
data="resources/data.xml" />

Using a value binding
Another way to specify a data source is to use a value binding. In this case, the data source
is provided by a bean property:

<jvcf:chartView [...] data="#{dataBean.dataSource}" />

The bean should then provide the data source through its getDataSource method:

public IlvDataSource getDataSource() {
if(source == null) {
IlvDataSource source = new IlvDefaultDataSource();
double x = {1, 3, 2, 4, 6, 5};
IlvDefaultDataSet dds = new IlvDefaultDataSet("Sample", x);
source.setDataSet(0, dds);

}
return source;

}

To use the value binding attribute, the bean must be declared in the faces-config.xml file
or the managed-beans.xml file:

<faces-config>
<managed-bean>
<description> A Data Bean </description>
<managed-bean-name>dataBean</managed-bean-name>
<managed-bean-class>DataBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
</faces-config>

For further information about these configuration files, see the JavaServer Faces
specifications.

B U I L D I N G W E B A P P L I C A T I O N S 33

http://java.sun.com/j2ee/javaserverfaces/reference/index.html

Creating a component in a managed bean
Another way to specify the data source is to create an IlvFacesChart component directly
in a managed bean:

<jvcf:chartView id="chart4"
style="width:500;height:300;"
chart="#{chartBean.chart}" />

Here the IlvFacesChart component is created directly by your bean instance and you can
set the data source in the bean code as shown in the bean getter:

public IlvChart getChart() {
try {
IlvFacesChart chart = new IlvFacesChart();
IlvDataSource source = new IlvDefaultDataSource();
double x[] = {1, 3, 2, 4, 6, 5, 10, 2, 3, 0};
IlvDefaultDataSet dds = new IlvDefaultDataSet("Sample", x);
source.setDataSet(0, dds);
chart.setDataSource(source);
return chart;

} catch (Exception e) {
e.printStackTrace();

}
return null;

}

The bean must be declared in the faces-config.xml or the managed-bean.xml file.

B U I L D I N G W E B A P P L I C A T I O N S34

Styling chart data with CSS

After you set the data source, you can customize the way it is displayed. You can use
Cascading Style Sheets (CSS) to style your data. CSS can be applied with a styleSheets
attribute:

<jvcf:chartView id="chart5" [...] styleSheets="data/styleSheet.css" />

The CSS file must be present in the data directory of the Web application. The style sheet
file specification can also be a value binding, that is, a value provided by a bean.

B U I L D I N G W E B A P P L I C A T I O N S 35

Image maps

The image map allows you to have images on the client-side with an attached map that points
out certain hot spots or clickable areas. A typical use case for image maps is for displaying
tooltips.

The role of the image map generator is to configure the attributes and JavaScript™ handlers
for each zone of the image map.

See IlvFacesChartImageMapGenerator and IlvIMapDefinition and the associated sample
Bank Account for details of how to implement an image map object in JViews Charts.

JViews Charts
Adding and displaying an image map
To add an image map and to display it, use the following code.

<jvcf:chartView [..] generateImageMap="true"
imageMapGenerator="#{chartBean.imapGenerator}"
imageMapVisible="true"/>

Showing or hiding an image map
You can use the JavaScript representation of the view to show or hide the image map.

<jvcf:chartView [..] id="view"/>
<jv:imageButton id="bImgMap"

[...]
onclick="view.setImageMapVisible(bImgMap.isSelected

())"
toggle="true"
message="Show/Hide Tooltips" />

Hiding an image map for use with interactors
The image map must be hidden to use interactors. The following code sample shows how
to hide the image map when another button in the same button group is clicked.

<jv:imageButton id="bZoom"

[...]
onclick="view.setInteractor(zoomInteractor)"

buttonGroupId="interactors"
message="Zoom" />

<jv:imageButton id="bImgMap"

[...]
onclick="view.setImageMapVisible(bImgMap.isSelected

())"
buttonGroupId="interactors"
doActionOnBGDeselect="true"
message="Show/Hide Tooltips" />

B U I L D I N G W E B A P P L I C A T I O N S36

When the image map is displayed, the current interactor is disabled.To use interactors,
the image map must be hidden.

Note:

See JavaScript objects for more details on the client-side representation of
JSF-compatible components.

B U I L D I N G W E B A P P L I C A T I O N S 37

Installing interactors in a chart

You can install interactors in the chart to allow interaction with the chart. For example,
install a zoom interactor:

<jvcf:chartView [...] interactorId="zoom" />
<jvcf:chartZoomInteractor id="zoom" />

You can zoom on the chart by clicking and dragging a rectangle. By default, the zoom
interactor only zooms along the x-axis. To zoom the chart freely or to constrain it along the
y-axis, use the XZoomAllowed and YZoomAllowed attributes. You can also customize the
appearance of the zoom interactor rectangle by using the lineWidth and lineColor
attributes. A pan interactor is also available to scroll a chartView. A message box component
can also be used to display messages originating from interactors and other components.

B U I L D I N G W E B A P P L I C A T I O N S38

Connecting a chart view to a message box

To connect a message box to a chartView, use the following code:

<jvcf:chartView [...] messageBoxId="messageBox"/>
<jv:messageBox id="messageBox" [...] />

The messages issued are now displayed in the message box.

B U I L D I N G W E B A P P L I C A T I O N S 39

Setting the overview

To assist navigation in a zoomed chart, you can attach an overview to a chartView. The
overview shows in a rectangle the visible part of the data displayed in the chartView. To
connect the overview to the chartView, you must use the viewId attribute of the overview:

<jvcf:chartView id="chart8" [...] />
<jvcf:chartOverview [...] viewId="chart8" />

The overview can also be customized by using the lineWidth or lineColor attributes.

B U I L D I N G W E B A P P L I C A T I O N S40

The legend component

A legend component is available to display the chart legend in a separate component:

<jvcf:chartLegend [...] viewId="chartView" [...] />

This component is connected to the main chart through the viewId attribute.

B U I L D I N G W E B A P P L I C A T I O N S 41

Mixing with standard JavaServer Faces components

You can also use standard JavaServer Faces components to configure and access your
chartView component. Here is an example of how to use an input text component to configure
the header and footer values of a chartView.

The following code uses the chart attribute value binding, so that the valueChangeListener
of an inputText can easily access the header of the IlvChart:

<jvcf:chartView [...] chart="#{chartBean.chart}" [...] />
<h:inputText value="#{chartBean.header}"

valueChangeListener="#{chartBean.setHeaderLabel}"/>

Here is the corresponding Java code:

public void setHeaderLabel(ValueChangeEvent evt) {
chart.setHeaderText((String) evt.getNewValue());

}

public Object getHeader() {
return header;

}

public void setHeader(Object object) {
header = object;

}

When issuing a submit request, the value change listener is called and changes the header
of the chart accordingly to the text entered in the inputText component.

B U I L D I N G W E B A P P L I C A T I O N S42

Adding a popup menu

The popup menu component allows you to display a static or contextual popup menu when
the application user right-clicks in the view.

For use of menus in Facelets environments, see also Supporting Facelets and Trinidad.

Popup menu tag in the view tag
Since the popup menu is attached to a view, its JSP™ tag must be enclosed in the JSP tag
of the view.

The popup menu can be contextual or static. The following examples show contextual popup
menu tags used in the view tag.

The following code is for JViews Charts.

<jvcf:chartView [...]>
<jvcf:chartContextualMenu [...]/>

</jvcf:chartView/>

Static popup menu
The menu displayed by the popup menu is static and fully on the client side.

To define a menu and menu items in JViews Charts use the menu, menuItem, and
menuSeparator tags as in the following example.

<jvcf:chartContextualMenu>
<jv:menu label="root">
<jv:menuItem label="Zoom ..."

onclick="zoomButton.doClick()"
image="images/zoomrect.gif" />

<jv:menuItem label="Pan ..."
onclick="panButton.doClick()"
image="images/pan.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Zoom In"

onclick="viewID.zoomInX()"
image="images/zoom.gif" />

<jv:menuItem label="Zoom Out"
onclick="viewID.zoomOutX()"
image="images/unzoom.gif"/>

<jv:menuItem label="Zoom to Fit"
onclick="viewID.zoomToFit()"
image="images/zoomfit.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Select"

actionListener="#{chartBean.action}"
image="images/arrow.gif"
invocationContext="IMAGE_SERVLET_CONTEXT" />

</jv:menu>
</jvcf:chartContextualMenu>

B U I L D I N G W E B A P P L I C A T I O N S 43

Contextual popup menu
The popup menu is dynamically generated on the server side by a menu factory depending
on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the application user triggers the popup menu.

JViews Charts
To specify the factory use the factory or the factoryClass attribute of the contextual popup
menu tag.

<jvcf:chartContextualMenu factory="#{bean.factory}" />
<jvcf:chartContextualMenu factoryClass="com.xyz.demo.DemoFactory" />

The factory must implement the IlvMenuFactory interface.

B U I L D I N G W E B A P P L I C A T I O N S44

Styling the popup menu

The popup menu is stylable by setting the following popup menu properties to a CSS class
name:

♦ ItemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following set of code examples shows CSS styling in a popup menu.

<html>
[...]

<style>
.menuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}
.menuItemHighlighted {
background: #057879;
color: white;

}
.menuItemDisabled {
background: #EEEEEE;
font-style: italic;
color: black;

}
</style>
[...]

Then continue with the code for a specific JViews Faces component.

For JViews Charts

[...]
<jvcf:chartContextualMenu itemStyleClass="menuItem"

itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

B U I L D I N G W E B A P P L I C A T I O N S 45

Managing the session expiration

The user session expires after a certain period of inactivity, usually defined in the Web
deployment descriptor.

JViews objects are stored in the HTTP user session. For example, after the user session
expires, queries to update the image will fail.

The beforeSessionExpirationHandler property allows you to add a JavaScript™ handler
that will be invoked when the user session is about to expire.

For example, to keep the session alive as long as the browser page is open, use the following
code:

In JViews Charts

<jvcf:view [...] beforeSessionExpirationHandler="view.updateImage();" />

This example shows how to query an image and keep the user session alive.

Note the use of view, the implicit object that represents the view JavaScript proxy. The
internal timer is reset only by requests issued by IBM® ILOG® JViews objects. If the
application implements other requests that do not refresh the image, this timer could be
inaccurate. To reset the timer manually, use the following JavaScript code:

viewID.getObject().resetSessionExpirationTimer();

where viewID is the value of the id property of your view component.

The beforeSessionExpirationHandler is called two minutes before the actual
session expiration time.

Note:

B U I L D I N G W E B A P P L I C A T I O N S46

JavaScript objects

Each time a JViews Charts Faces component is created, a corresponding JavaScript object
is also created. You can access this object through a global JavaScript variable whose name
is the same as the id attribute of the tag. For example, the tag:

<jvcf:chartView id="chart9" [...] />

will be rendered as the following JavaScript code:

var chart9 = new IlvChartViewProxy ('chart9',' ...);

You can modify the object locally by using a set of methods attached to this object. For
further information about available JavaScript objects, see Javascript API.

For example, the following code defines two buttons that install respectively a zoom interactor
and a pan interactor on a chartView .

<jvf:imageButton [...] onclick="chart9.setInteractor(zoomInteractor)" />
<jvf:imageButton [...] onclick="chart9.setInteractor(panInteractor)" />
<jvcf:chartView id="chart9" [...] />

At rendering time, an IlvChartViewProxy JavaScript object is created that is accessible
through the chart JavaScript variable. Then, since zoomInteractor and panInteractor
JavaScript objects have been created in the same way, you can directly set one of these
interactors with the setInteractor method.

Additionally, the behavior of these JavaScript objects is to keep their state so that, if a submit
request is issued, the state of the object is sent to the server. This behavior makes sure that
the client and the server remain coherent.

B U I L D I N G W E B A P P L I C A T I O N S 47

B U I L D I N G W E B A P P L I C A T I O N S48

Contexts for actions on the view

Describes the contexts in which actions can be executed in response to interactions on the
view.

In this section

Introduction
Describes the JavaServer Faces lifecycle and image servlet contexts for actions on the view.

JavaServer Faces lifecycle context
Explains how to install a select object interactor and a listener in the JSF context.

Image servlet context
Describes the value change listener and interactor in the image servlet context.

B U I L D I N G W E B A P P L I C A T I O N S 49

Introduction

Actions executed in response to interactions on the view can be executed in two different
contexts: JavaServer Faces lifecycle or image servlet. The execution context can be configured
by setting the invocationContext attribute on the JSF interactor components.

The value change listeners registered in the interactor can determine whether they are
called in a JSF context or in an image servlet context with the following code.

Determining in Which Context a Value Change Listener is Called

IlvObjectSelectInteractor source =
(IlvObjectSelectInteractor)valueChangeEvent.getSource();

boolean jsfContext = source.getInvocationContext() ==
IlvDHTMLConstants.JSF_CONTEXT;

This section shows the differences between the two invocation contexts through the execution
of an action when a node is selected.

B U I L D I N G W E B A P P L I C A T I O N S50

JavaServer Faces lifecycle context

This topic shows you the JViews Faces code for installing a select object interactor and a
listener. It also shows you the Java™ code for writing a value-change event listener.

In JViews Charts
To highlight a point in a chart view, a chart select interactor must be installed on the chart
view. The value property of the interactor holds the IlvDataSetPoint that was clicked.
Thus, a valueChangeListener can be registered to handle the selection event.

Installing a chart select interactor and a listener

<jvcf:chartSelectInteractor id="selectInteractor"
valueChangeListener="#{demoBean.pointSelected}"

pickingMode="item"
invocationContext="JSF_CONTEXT">

<jvcf:chartView id="chart" interactorId="objSelect" [...] />

JSF_CONTEXT is the default value, so the invocationContext attribute could have
been omitted.

Note:

Java code of the value-change event
The Java code of the value change event listener is:

public void pointSelected(ValueChangeEvent evt) {
IlvDataSetPoint point = (IlvDataSetPoint) evt.getNewValue();

if (point != null) {

//The source of the event is the interactor
IlvObjectSelectInteractor interactor =

(IlvObjectSelectInteractor) evt.getSource();
//Retrieve the JSF view connected to the interactor

IlvChartDHTMLView jsfView = (IlvChartDHTMLView) interactor.getView();

//Retrieve the IlvChart wrapped by the JSF component.
IlvChart chart = jsfView.getChart();
//Set a pseudo class on the display point.
//A CSS rule like point:selected { ... }

//will customize the graphic representation of the point.

chart.setPseudoClasses(point.getDataSet(),
point.getIndex(),
new String[]{"selected"});

B U I L D I N G W E B A P P L I C A T I O N S 51

}

Note the following concerning the use of this approach:

♦ Since themethod is called during the JavaServer™ Faces lifecycle, there can be interaction
with other JSF components.

♦ The form is submitted, so the complete page is reloaded.

B U I L D I N G W E B A P P L I C A T I O N S52

Image servlet context

The image servlet uses the same value change listener as the JavaServer™ Faces lifecycle;
there is a slight difference in the interactor, which is shown in bold in the example.

Value change listener and interactor in image servlet context (JViews Charts)

<jvcf:chartSelectInteractor id="selectInteractor"
valueChangeListener="#{demoBean.pointSelected}"

invocationContext="IMAGE_SERVLET_CONTEXT">
pickingMode="item"

<jvcf:chartView id="chart" interactorId="objSelect" [...] />

In this mode the interactor queries an image update. The server fires the value change event
just before image generation.

This approach in JViews Charts:

♦ Avoids submitting the page and refreshes the image only.

♦ Is outside the JSF lifecycle, so no interaction with JSF components is possible beyond the
ability to retrieve the IlvChart object as shown in Java code of the value-change event.

B U I L D I N G W E B A P P L I C A T I O N S 53

B U I L D I N G W E B A P P L I C A T I O N S54

Integrating JViews Faces in your
environment

Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

In this section

JViews Faces configuration at JViews Framework level
Provides required and optional settings for JViews Faces configuration at the JViews
Framework level.

Session persistence
Explains how to disable session persistence.

Running JViews Faces components in JSR 168 portlets
Explains the JSR 168 requirements for JViews Faces components in portlets.

Guide to using JViews components with ICEfaces
Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

Supporting Facelets and Trinidad
Describes the mandatory actions required to make JViews Faces components compatible
with Facelets and Trinidad, plus optional actions to specify menus.

Web Application Server support
Describes the Web Application Servers supported for deploying JViews Web applications.

B U I L D I N G W E B A P P L I C A T I O N S 55

JViews Faces configuration at JViews Framework level

Required settings
The standard configuration needed by a JSF application in the web.xml of your application
server is as follows.

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The JViews Faces Framework needs two additional settings in order to execute correctly,
namely:

♦ JViews Controller Servlet

The JViews Controller Servlet is in charge of loading the various resources used by the
JViews Faces Framework implementation like JavaScript™ libraries, images and the like.
But more importantly it provides clients with the latest state of their views capabilities
as well as their dynamically generated images.

You must declare and map the JViews Controller Servlet. To do this, use the following
code.

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>ilog.views.faces.IlvFacesController</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/_contr/*</url-pattern>

</servlet-mapping>

♦ ilog.views.faces.CONTROLLER_PATH

This setting provides the users with the flexibility of defining a custom <url-pattern>
for the JViews Controller Servlet that will be appropriately communicated to the JViews
Faces Framework so that proper execution takes place.

You must set the ilog.views.faces.CONTROLLER_PATH context parameter which must
match the content of the <url-pattern> of the JViews Controller Servlet without the
wildcard part. For example, the following code would appear after the code for the JViews
Controller Servlet.

B U I L D I N G W E B A P P L I C A T I O N S56

<context-param>
<param-name>ilog.views.faces.CONTROLLER_PATH</param-name>
<param-value>/_contr</param-value>

</context-param>

Optional settings
The following optional setting is available in the JViews Faces Framework:

ilog.views.faces.CONTENT_LENGTH_ENABLED

The ilog.views.faces.CONTENT_LENGTH_ENABLED setting allows users to specify if the
underling servlet that is used to generate the client-side representation of the JViews Faces
Components is interacting with the client in a buffered mode or not. More specifically, it
enables the communication of the content length when the server responds to client requests.
This provides more optimal interaction between the client and the server.

For more insights see javax.servlet.ServletResponse.setContentLength and related
material on the Internet.

This setting is exposed through the context parameter facility and can be set as follows.

<context-param>
<param-name>ilog.views.faces.CONTENT_LENGTH_ENABLED</param-name>
<param-value>true</param-value>
</context-param>

Although optional, it is recommended to set this setting always to true.Note:

B U I L D I N G W E B A P P L I C A T I O N S 57

Session persistence

Web servers often implement a session persistence mechanism used typically for traditional
server clustering and failover techniques.

Often, the JViews Faces components are not serializable as they pertain to view-related
abstractions which typically cannot be persistent and are stored in the HTTP session.

In order to prevent the typical serialization warnings derived from this mismatch, you can
disable the session serialization mechanism for the JViews Faces based application.

To disable session persistence in TOMCAT at web application level:

1. Create a file context.xml and place it in the META-INF directory of your .war file.

2. Use a TOMCAT configuration setting to disable the session serialization mechanism.

<Context path="/your-application-path">
<Manager className="org.apache.catalina.session.StandardManager"

pathname=""/>
</Context>

Note: 1. All the JViews Faces samples already have this session serialization setting
disabled for TOMCAT at this level.

2. These settings apply to TOMCAT 6.0 and later.

To disable session persistence in TOMCAT at web server level:

♦ Modify the TOMCAT/conf/context.xml to use this as the Session Manager definition.

<Manager pathname=""/>

These settings apply to TOMCAT 6.0 and later.Note:

For more details on these settings see the TOMCAT configuration documentation.

For details on how to disable session serialization with your Web server, see the server’s
configuration documentation.

B U I L D I N G W E B A P P L I C A T I O N S58

Running JViews Faces components in JSR 168 portlets

See the Release Notes for supported JSF implementations and JSF Portlet bridge
combinations.

Note:

If you want to use JViews Faces components in a JSR 168 portlet environment, you first need
to check with your portal vendor whether JavaServer™ Faces components are supported.

Your Web application must be correctly configured. This section describes each of the steps
required to make JViews Faces components compatible with portlets.

JViews Faces components are automatically switched to portlet mode if the classes
of the portlet API are detected in the class path.

Note:

To avoid naming clashes between portlets, the JSR 168 specification requires content to be
generated that is unique to each portlet. Therefore, the generated variables used by JViews
Faces components must be prefixed by the portlet namespace.

Scripts prefixed by a namespace
Since JViews 8.1, the servlet filter IlvJSNamespaceFilter is no longer needed and must not
be set on the controller servlet.

JavaScript variables prefixed by a namespace
In portlet mode, the generated JavaScript™ variables are prefixed by the portlet namespace.
Thus, their usage in the JSP™ page is quite different.

In IBM® ILOG® JViews a JavaScript action is built on a managed bean by using the static
method encodeJavaScriptVariables of ilog.views.faces.IlvFacesUtil.

The parameter is the desired JavaScript action where the variables are declared with the $
{id} notation. For example:

IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${interactor})
");

where view and interactor represent JavaScript variables.

The result of calling this method is the final JavaScript action with namespace-encoded
variables.

The JViews Faces components that have JavaScript handlers need only to reference these
bean properties.

The following code examples show a more complete use of JavaScript actions in the JSP
page and the managed bean.

B U I L D I N G W E B A P P L I C A T I O N S 59

In JViews Charts
Using JavaScript actions in a JSP page

[...]
<jvcf:chartZoomInteractor id="zoom" [...] />
<jv:imageButton onclick="#{chartBean.setZoomAction}"/>
<jvcf:chartView id="chart" [...] />
[...]

Using JavaScript actions in a managed bean

public class ChartBean {
[...]
private String setZoomAction;
public ChartBean(){
setZoomAction =
IlvFacesUtil.encodeJavaScriptVariables("${chart}.setInteractor(${
zoom})");

}
public String getSetZoomAction(){
return setZoomAction;

}
[...]
}

Declaring the image servlet
In portlet mode, the servlet used to render the image must be declared:

In JViews Charts

<jvcf chartView [...] servlet=
"ilog.views.chart.faces.dhtml.servlet.IlvFacesChartServlet />"

Integrating JSF components into the portal
Depending on your portal implementation, integrating JSF components may require special
configuration that is conditioned by the application server, the JSF implementation, the
portlet-JSF bridge, and so on. Check with your portal vendor for what you need to do in this
configuration step.

B U I L D I N G W E B A P P L I C A T I O N S60

Guide to using JViews components with
ICEfaces

Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

In this section

Settings for using JViews components in ICEfaces
Describes the settings you need to use JViews JSF components with ICEfaces.

Interoperability between JViews components and ICEfaces components
Describes the interoperability between JViews components and ICEfaces components.

Push updates to JViews components
Describes the techniques for push updates (server-initiated rendering) with JViews
components.

ICEfaces software in JViews
Describes the ICEfaces binary files provided with JViews and lists the known issues.

B U I L D I N G W E B A P P L I C A T I O N S 61

Settings for using JViews components in ICEfaces

You are assumed to be familiar with Web application development using JSF technologies.
You need to have JViews 8.5 or above and ICEfaces 1.7.2 or above installed. You can go to
http://www.icefaces.org to download a more recent version of ICEfaces. If you use Eclipse™
, ICEfaces also has a plug-in for this environment.

Since JViews 8.5, JViews JSF components support ICEfaces completely. JViews requires the
standard request mode of ICEfaces. This is the mode in which ICEfaces interoperates with
third-party components. To set this mode, you need to add the following element to the
web.xml file of your Web application.

<context-param>
<param-name>com.icesoft.faces.standardRequestScope</param-name>
<param-value>true</param-value>

</context-param>

For other settings required by JViews JSF components, see JViews Faces configuration at
JViews Framework level.

B U I L D I N G W E B A P P L I C A T I O N S62

http://www.icefaces.org

Interoperability between JViews components and ICEfaces
components

JViews components and ICEfaces components are both JSF components. They can work
together both on the client side and on the server side.

On the client side, JViews JSF components are high-level Ajax-enabled JavaScript™ objects.
You can direct the behavior of JViews components by invoking their JavaScript methods.
For example, when you click an ICEfaces button you can update the contents of a JViews
view by calling its JavaScript method: updateImage().

On the server side, both JViews components and ICEfaces components can be bound to
managed beans. This allows you to exchange parameters and data between the managed
beans of JViews components and ICEfaces components.

B U I L D I N G W E B A P P L I C A T I O N S 63

Push updates to JViews components

One of the interesting features of ICEfaces is its server-initiated rendering. This technique
allows push updates to components rendered by Web browsers. This topic explains how to
make push updates to JViews components.

JViews components are Ajax-enabled components and their contents are generally GIF or
PNG images generated by JViews server-side servlet supports. There is no way to push
images directly to JViews components.

ICEfaces is able to push things such as HTML fragments and JavaScript™ code but not
images. However, you can use the ICEfaces push mechanism to notify client-side JViews
components that updates are available on the server. Then the JViews components can use
the Ajax mechanism to get the updated images. This approach is quite efficient in terms of
network traffic.

To notify client-side JViews components, you can use the ICEfaces server-initiated rendering
technique to push JavaScript code. The ICEfaces Ajax agent will receive and evaluate the
code. For example, you can put something like the following in JavaScript code.

<script type="text/javascript">chart.updateImage();</script>

This code tells a JViews chart component to update its contents.

For tips and tricks on how to push JViews components, look at the push example installed
with JViews Charts at <install-dir> /jviews-charts8.6/codefragments/jsf-charts-ice.

B U I L D I N G W E B A P P L I C A T I O N S64

ICEfaces software in JViews

ICEfaces binary files provided with JViews
ICEfaces binary files are included in the JViews distribution so that the integration code
samples can run out-of-the-box. ICEfaces jar files can be found under
<framework-install-dir>/lib/external. However, the full ICEfaces distribution is not
included.

To get a complete or more updated distribution, you can get ICEfaces source code at http:/
/www.icefaces.org.

Known ICEfaces issues
Issues may exist when using ICEfaces components with JViews components.

B U I L D I N G W E B A P P L I C A T I O N S 65

http://www.icefaces.org
http://www.icefaces.org

Supporting Facelets and Trinidad

If you want to use JViews Framework Faces components in a Facelets context, your Web
application must be correctly configured.

Compatibility with Facelets and Trinidad
To make JViews Framework Faces components compatible with Facelets and Trinidad:

♦ Edit the configuration files.

To see examples of correct settings for Facelets with Trinidad, look at the
faces-config.xml and web.xml files. If you want to use Facelets without Trinidad, look
at faces-config-std.xml and web-std.xml instead.

♦ Develop XHTML-based pages according to the tag library documentation.

All attributes and all tags except the menu tags listed in Contextual menus are supported
in Facelets.

If you are using custom tags, make sure you provide a custom.taglib.xml file that
describes your custom library and declare its XML namespace in the page.

♦ Make sure that your .war files (or your server default libraries) include the necessary
Facelets (and possibly Trinidad) jar files.

Code examples
For complete JViews Charts application examples configured for use with Facelets or Trinidad,
see <install-dir> /jviews-charts8.6/codefragments/jsf-chart-facelets/webpages/
index.xhtml.

Contextual menus
In a facelets context, you will be able to provide dynamic menus through the factory or
factoryClass attribute of a contextual menu object but you will not be able to use menu,
menuItem, or menuSeparator tag components directly in the page.

<... contextualMenu ... factoryClass="mydemo.somepackage.MenuFactory" />

For JViews Charts, the contextual menu element is chartContextualMenu.

Static menu
You will be able to bind a static menu (running the code of the factory only once), in addition
to dynamic menus, using the value attribute of the contextual menu element.

<... contextualMenu ... value="#{chartBean.menu}" />

B U I L D I N G W E B A P P L I C A T I O N S66

Web Application Server support

Apache Tomcat™ 6.0.14 is the reference Web Application Server (AS) shipped with IBM®
ILOG® JViews 8.6.

Other Web AS have been tested, including JBoss® AS 4.2.3.GA, IBM® WebSphere® 7.0,
and Oracle® Weblogic Server 10.3. The following sections give useful information you may
need when deploying JViews Web applications to one of these servers.

JBoss Application Server 4.2.3.GA

♦ JBoss AS 4.2.3.GA includes a JSF implementation. To avoid conflicts, you should not
include JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the .war file to avoid XML parsing exceptions.

♦ JBoss AS 4.2.3.GA does not support multipattern <servlet-mapping> elements in web.xml.
You should use multiple <servlet-mapping> elements with separate patterns.

IBM WebSphere 7.0

♦ WebSphere 7.0 includes a JSF implementation. To avoid conflicts, you should not include
JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the war file to avoid XML parsing exceptions.

♦ There is a known issue when deploying ICEfaces applications to WebSphere. See http://
jira.icefaces.org/browse/ICE-2330.

Oracle WebLogic Server 10.3

♦ You need to change the schema of your web.xml to 2.5.

♦ For the exception that the deferred EL expression is not allowed since
deferredSyntaxAllowedAsLiteral is false, you need to add <%@ page
deferredSyntaxAllowedAsLiteral="true" %> in the JSP page.

♦ In the Trinidad and Facelets samples, the TGO network view might not be shown; you
need to move the interactors out of the tr:panelTabbed component.

♦ For Trinidad demos with invalid PPR responses, the problem is caused by an invalid XML
response, which has been reported at https://issues.apache.org as JIRA issue
TRINIDAD-1170.

B U I L D I N G W E B A P P L I C A T I O N S 67

http://jira.icefaces.org/browse/ICE-2330
http://jira.icefaces.org/browse/ICE-2330
https://issues.apache.org

B U I L D I N G W E B A P P L I C A T I O N S68

Deploying an application as a DHTML-only
thin client

Describes how to deploy an application as a DHTML-only thin client.

In this section

JavaServer Faces components as opposed to DHTML thin client
Recommends the use of DHTML-based JavaServer™ Faces (JSF) technology rather than
DHTML-only thin-client technology.

Thin client architecture
Describes the thin client framework provided with the JViews Charts library.

Chart servlet package
Identifies the location of the classes used to build thin-client applications.

The IlvChartServlet class
The JViews Charts library provides a predefined lightweight servlet abstract class named
IlvChartServlet. This class is a subclass of the HttpServlet class from the Java servlet
API that automatically delegates the requests handling to an instance of
IlvChartServletSupport.

The IlvChartServletSupport class
Describes the use of the IlvChartServletSupport class in handling HTTP requests to
generate an image or an image map.

Server actions
Describes the definition of server-side actions using JViews Charts thin-client features.

© Copyright IBM Corp. 1987, 2009 69

Adding support for custom image formats
Describes how to add support for image formats other than JPEG and PNG.

Choosing the multithreading mode
Describes multithreading modes for JViews Charts components.

Writing a basic server side application
This section shows you the basic steps needed to create a simple server-side application
that loads data from a chart, and sends the images in response to a client request.

B U I L D I N G W E B A P P L I C A T I O N S70

JavaServer Faces components as opposed to DHTML thin client

When you build a DHTML-based Web application, you are recommended to base the
application on JavaServer™ Faces (JSF) technology.

Build your application with the techniques described inUsing DHTML-based JSF components
to build Web applications

JSF components in JViews Charts rely heavily on DHTML thin-client libraries, both on the
server and the client, so you need to be familiar with the topics discussed here to be able
to use the JSF components properly.

On the server side, the JSF components leverage the thin-client servlet to generate images
and other kinds of output for the client side. On the client side, the JSF components use
JavaScript™ classes of the DHTML thin client to provide Ajax features.

For a basic use of a JSF component, you probably do not need a full understanding of the
DHTML thin client. Advanced use requires you to have a reasonable knowledge of it.

In rare cases, such as environments where JSF is not available, you might need to rely solely
on the DHTML thin client.

B U I L D I N G W E B A P P L I C A T I O N S 71

Thin client architecture

The thin client framework provided with the JViews Charts library is based on the standard
Java™ Servlet technology. For more information on the Java Servlet technology, you can
visit the JavaSoft site at http://java.sun.com/products/servlet.

Publishing charts graphical representations of a data model through a web server typically
consists of using the JViews Charts library on the server side to build and handle the data
model and to generate the corresponding chart displays. Basically, this is performed by
means of a servlet that answers to the HTTP requests sent by a client, and delivers the
display of the charts to the client.

The default display outputs supported by the JViews Charts library are JPEG and PNG images.
In addition to this image output, a corresponding client-side imagemap can also be generated
to allow the user to add his own client-side interaction code.

B U I L D I N G W E B A P P L I C A T I O N S72

http://java.sun.com/products/servlet

Chart servlet package

All the classes needed to build thin-client applications are contained in the ilog.views.
chart.servlet package. The core classes of the framework are the abstract IlvChartServlet
and IlvChartServletSupport classes. These classes are responsible for handling the HTTP
requests received, and for sending the expected response according to the request
parameters.

Developing a server-side application for handling charts generation consists of creating a
servlet that produces an image of a chart to the client.

The image and image maps generation are performed by the IlvChartServletSupport class
according to the request parameters. The generation of the server-side charts consists of
propagating the HTTP requests received by your servlet to an IlvChartServletSupport
instance. This is typically implemented in the doGet(javax.servlet.http.
HttpServletRequest, javax.servlet.http.HttpServletResponse) (or doPost(javax.
servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)) method
of an HttpServlet subclass, like in the following code:

public void doGet(HttpServletRequest request,
HttpServletResponse response)

{
if (!getServletSupport().handleRequest(request, response)) {

// Handle requests other than chart image generation
doSomething(request, response);

}
}

Invoking the servlet support handleRequest(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse) method is automatically performed by the
IlvChartServlet class. This class can be used as the basis to develop your servlets, if you
are not adding server-side functionalities to an existing application.

B U I L D I N G W E B A P P L I C A T I O N S 73

Chart servlet classes relationships

The following figure shows you how the mechanism works:

B U I L D I N G W E B A P P L I C A T I O N S74

The IlvChartServlet class

The JViews Charts library provides a predefined lightweight servlet abstract class named
IlvChartServlet. This class is a subclass of the HttpServlet class from the Java servlet
API that automatically delegates the requests handling to an instance of
IlvChartServletSupport.

In this section

Creating an IlvChartServletSupport
Describes the creation of an IlvChartServletSupport subclass.

Handling sessions
Describes how to handle HTTP sessions using the IlvChartServlet class.

B U I L D I N G W E B A P P L I C A T I O N S 75

Creating an IlvChartServletSupport

This instance is created by the IlvChartServlet when the first request is received. Since
the IlvChartServletSupport class is abstract and should be subclassed, the instance is
created by the abstract createServletSupport() factory method, which has to be overridden
to return an instance of your own IlvChartServletSupport subclass.

B U I L D I N G W E B A P P L I C A T I O N S76

Handling sessions

The IlvChartServlet class supports the HTTP session concept by means of the
prepareSession(javax.servlet.http.HttpServletRequest)method. This method is called
at every request to allow the user to prepare and configure a session for his servlet.

Assume a servlet only uses one IlvChart instance shared between all the clients. If this
architecture works well in a read-only context, it does not work anymore if the data model
can be modified by the clients. Indeed, any modification of the chart data model made by a
client would be seen by all the clients. A solution is to create a session for every request.
You can then create one IlvChart connected to a specific data model and store it as a
parameter of the session. In this way, a chart is created for each session opened by a client
instead of being created for all the clients.

Another aspect to consider when you work with sessions is memory leak. When you bind a
chart as an attribute of an HttpSession, proper cleanup of the chart must occur when the
session is invalidated or expires. This allows the chart to be garbage collected or restored
to a pool of available charts, depending on your choice of strategies. Instead of binding the
chart directly to the session, use an instance of the IlvChartSessionAttribute as a proxy.

The following code extract shows how to use it:

IlvChart chart = null;
HttpSession session = request.getSession();
if (session.isNew()) {

chart = ... create new chart or fetch from pool ...
IlvChartSessionAttribute proxy = new IlvChartSessionAttribute(chart);
session.setAttribute(CHART_KEY, proxy);

} else {
IlvChartSessionAttribute proxy =
(IlvChartSessionAttribute)session.getAttribute(CHART_KEY);

if (proxy != null)
chart = proxy.getChart();

}
if (chart == null)

throw new ServletException("session problem");

B U I L D I N G W E B A P P L I C A T I O N S 77

B U I L D I N G W E B A P P L I C A T I O N S78

The IlvChartServletSupport class

Describes the use of the IlvChartServletSupport class in handling HTTP requests to
generate an image or an image map.

In this section

Overview
Introduces the IlcChartServletSupport class.

The image request
Describes the syntax and parameters of an image request.

The image map request
Describes the syntax and parameters of an imagemap request and the process for generating
or customizing image maps..

B U I L D I N G W E B A P P L I C A T I O N S 79

Overview

The IlvChartServletSupport class responds to HTTP requests to generate an image from
an IlvChart. This class allows you to add the functionalities of the JViews Charts Servlet
framework into your existing servlets by invoking the handleRequest(javax.servlet.http.
HttpServletRequest, javax.servlet.http.HttpServletResponse) method from your
servlet doGet(javax.servlet.http.HttpServletRequest, javax.servlet.http.
HttpServletResponse) method.

The servlet support can respond to two different types of HTTP requests:

♦ image request

♦ image map request

B U I L D I N G W E B A P P L I C A T I O N S80

The image request

The image request produces either a JPEG or PNG image from the IlvChart. The syntax is:

myservlet?request=image
&width=width of the returned image
&height=height of the returned image
&format=output format of the returned image
[&bgcolor=image background color]
[&action=name of a server action]
[&comp=the chart component to dump]

The following table contains a detailed description of the parameters:

DescriptionParameter valueParameter name

Asks the servlet to generate an image.imagerequest

Width of the image.Integerwidth

Height of the image.Integerheight

Format of the resulting image.“JPEG” “PNG”format

The component to dump.“chart” “area” “legend”comp

The background color of the image.An hexadecimal color value as
“0xRRGGBB”

bgcolor

The action name to be executed on the servlet.Stringaction

For example, the following request will produce an image of size (300, 200) of an IlvChart
component as a PNG image:

myservlet?request=image&width=300&height=200&comp=chart&format=PNG

B U I L D I N G W E B A P P L I C A T I O N S 81

The image map request

The image map request produces a client-side image map associated with an image. The
image can be:

♦ Explicitly specified in the request (as a URL),

♦ Dynamically generated by the servlet. In this case, you should specify the parameters for
the image request in addition to the image map request parameters.

The syntax of the image map request is:

myservlet?request=imagemap
&width=width of the image
&height=height of the image
[&mapname=imagemap]
{[&image=URL of an image] | {
[&format=output format of the image]
[&comp=chart]
[&bgcolor=image background color]
[&action=name of a server action]}}

The following table contains a detailed description of the parameters:

DescriptionParameter valueParameter name

Ask the servlet to generate an image map.“imagemap”request

Width of the image.Integerwidth

Height of the image.Integerheight

The name of the map.The default value is “imagemap”.Stringmapname

The URL of an associated image. If this parameter is
not specified, then an image is automatically generated.

Stringimage

Format of the image automatically generated. This
parameter is required only if no image parameter has
been specified.

“JPEG”, “PNG”format

The component to dump. This optional parameter is
only taken into account if no image parameter has been
specified. The default value is “chart”.

“chart”, “area”, “legend”comp

The background color of the image.An hexadecimal color
value as “0xRRGGBB”

bgcolor

The action name to be executed on the servlet.Stringaction

For example, the following request asks for the servlet to generate both an image and an
image map:

http://host/servlet/myservlet?request=imagemap

B U I L D I N G W E B A P P L I C A T I O N S82

&width=400
&height=200
&format=JPEG

The resulting HTML code looks like:

<map name="imagemap">
<area shape="poly" coords="364,165 [...]" href="..." alt="..." title="...”>
...
</map>
<img usemap="#imagemap" width="400" height="330" src="/servlet/
myservlet?request=image&height=330&width=400&format=JPEG"" border=0>

The call generates an HTML code fragment containing a client-side image map definition
and an image. The contents of the image is then generated by another call to the servlet by
means of an image request.

Generating an image map
Image maps are images with an attached map that points out certain hot spots, or clickable
areas. In the JViews Charts library, a clickable area can be generated for specific data points
or whole data sets.

The image map generation is handled by the IlvChartServletSupport class, and performed
by means of an instance of the IlvImageMapBuilder class. This class is responsible for
generating the area tags of the image map according to a specified configuration. The
IlvImageMapBuilder instance used during the image map generation is retrieved with the
createImageMapBuilder(ilog.views.chart.servlet.IlvServletRequestParameters,
ilog.views.chart.IlvChart) factory method.

Area tags are generated according to a configuration that is defined by an instance of a
concrete implementation of the IlvIMapDefinition abstract class. A default implementation
of this class is provided by means of the IlvDefaultIMapDefinition class.

Since ILOG JViews 5.5, the IlvIMapDefinition interface has been modified
to extend the current image map support to IlvLegend components.

Warning:

Implementations based on the JViews 5.0 API must be modified to implement the
new IlvIMapDefintion.getAttributes(IlvLegendItem) method.

The map definition instance is retrieved by invoking the getIMapDefinition(ilog.views.
chart.servlet.IlvServletRequestParameters, ilog.views.chart.IlvChart) method.
By default, this method returns null leading to an empty image map area. You should
override this method to return an IlvIMapDefinition instance configured with the correct
attribute values of the area tags.

The IlvIMapDefinition abstract class also determines what the area tags represent: a
whole data set or specific data points. This is called themap definition type, and is specified
at construction time as a parameter to the IlvIMapDefinition constructor. This type can
be retrieved using the getType()method. A data points-based image map has the POINT_MAP
type and a data set-based image map has the DATASET_MAP type.

B U I L D I N G W E B A P P L I C A T I O N S 83

By default, the generated attributes of the area tags are SHAPE, COORDS, HREF, TITLE and
ALT.

Area tags attributes are handled through IlvIMapAttributes instances. This interface
defines the necessary methods to fetch the HREF, TITLE, ALT, and TARGET attributes values,
the SHAPE and COORDS attributes values being automatically generated. A default
implementation is provided by means of the IlvDefaultIMapAttributes class. This class
handles HREF and TITLE values separately (both can be null), and maps the values of the
ALT attribute to the values of the TITLE attribute.

The following example shows an IlvChartServletSupport subclass that overrides the
getIMapDefinition(ilog.views.chart.servlet.IlvServletRequestParameters, ilog.
views.chart.IlvChart)method to return an IlvDefaultIMapDefinition instance configured
with the POINT_MAP type and with specific HREF values for the HREF attributes:

protected IlvIMapDefinition getIMapDefinition(HttpServletRequest request,
IlvChart chart)

{
IlvIMapDefinition mapdef = null;
IlvDataSet dataSet = ...; // The data set for which we want map areas.
List hrefs = ...; // The list of href for the map area.
String[] hrefsValues = new String[hrefs.size()];
hrefsValues = (String[])hrefs.toArray(hrefsValues);

// Create attributes initialized with the contents of the hrefs list.
IlvIMapAttributes[] attrs = IlvDefaultIMapAttributes.create(hrefsValues);

try {
// Create a map definition that associates the data set with the
// area attributes.
mapdef =

new IlvDefaultIMapDefinition(new IlvDataSet[] {dataSet},
new IlvIMapAttributes[][]

{attrs});
} catch (IllegalArgumentException e) {

System.err.println("Cannot create map definition :" + e.getMessage())
;

}
return mapdef;
}

Customizing image maps
The IlvChartServletSupport class allows you to customize the image generation by means
of three methods:

♦ createImageMapBuilder(ilog.views.chart.servlet.IlvServletRequestParameters,
ilog.views.chart.IlvChart)

This method allows you to return an instance of your own IlvImageMapBuilder subclass.
This class is responsible for generating the image map HTML code fragment, that is:

● The area tags corresponding to the renderers, by means of the getRendererTags(ilog.
views.chart.servlet.IlvIMapDefinition) method.

B U I L D I N G W E B A P P L I C A T I O N S84

● The area tag corresponding to the chart header, by means of the getHeaderTag(ilog.
views.chart.servlet.IlvIMapAttributes) method.

● The area tag corresponding to the chart footer, by means of the getFooterTag(ilog.
views.chart.servlet.IlvIMapAttributes) method.

Each of these methods can be overridden if you need to perform additional actions.

♦ getIMapDefinition(ilog.views.chart.servlet.IlvServletRequestParameters,
ilog.views.chart.IlvChart)

This method should be overridden to return an IlvIMapDefinition instance configured
with area attributes.

♦ generateMapAreaTags(java.io.PrintWriter, ilog.views.chart.servlet.
IlvServletRequestParameters, ilog.views.chart.IlvChart)

This method is the core of the image map generation process. The default implementation
first creates an IlvImageMapBuilder instance invoking createImageMapBuilder. Then,
it generates the renderer area tags calling the IlvImageMapBuilder.getRendererTags
method, passing the IlvIMapDefinition instance returned by getIMapDefinition as
parameter.

The default implementation does not generate the header and footer tags.You have
to override the generateMapAreaTags method and explicitly call

Note:

IlvImageMapBuilder.getFooterTag and IlvImageMapBuilder.
getHeaderTag methods.

You can find a complete example showing the use of image map in <installdir>/
jviews-charts86/samples/servlet-chart-imgmap/srchtml/imgmap/ChartImageMap.java.

B U I L D I N G W E B A P P L I C A T I O N S 85

Server actions

The JViews Charts thin-client support gives you a simplified way to define new actions that
should take place on the server side. For example, suppose you want to allow the user to
change the legend visibility from its browser. Changing the legend visibility must be done
on the server side before a new image is generated. The notion of a "server-side action"
exists to perform such behavior. An action is defined by a name and a set of string parameters.

On the client side, you tell the server to execute an action by sending an image request with
the “action” parameter set. The value of this parameter is the action name concatenated
with an in-parenthesis-comma-separated list of the required parameters. For example, the
following request executes the LegendVisibilityAction action with the expected visibility
as a parameter:

On the server side, you detect that an action was requested and you execute the action
before the image is generated by implementing the IlvChartServerAction interface. To
listen for an action request from the client and execute the action on the server side, you
register the action with your instance of IlvChartServletSupport using the addServerAction
method.

Server actions can be executed at two different times: either when the request has been
just received before anything else, or just before the image is generated. In the first case,
the actions are executed in the request thread, allowing you to execute actions that would
typically be time-consuming and/or do not modify the visual appearance of the chart. In the
second case, the actions are executed in the event dispatch thread. You specify in which
thread an action should be executed by implementing the IlvChartServerAction.
getExecutingThread method.

For example, the corresponding implementation of the LegendVisibilityAction is:

class LegendVisibilityAction implements IlvChartServerAction
{

/** The action name. */
static final String ACTION_NAME = "LegendVisibilityAction";

public void actionPerformed(IlvChartServerActionEvent event)
throws ServletException

{
boolean visible =

Boolean.valueOf(
event.getParameters()[0]).booleanValue();

event.getChart().setLegendVisible(visible);
}

public int getExecutionThread()
{

return IlvChartServerAction.SWING_EVENT_THREAD;
}

}

B U I L D I N G W E B A P P L I C A T I O N S86

Adding support for custom image formats

The generation of the image in a specific format is performed bymeans of the image encoders.
The IlvChartServletSupport class defines the image encoder objects through the
IlvImageEncoder interface. This interface defines the behavior of a class that can encode
an image onto an HttpServletResponse. To generate JPEG and PNG images the JViews Charts
library provides two implementations of the IlvImageEncoder interface: the IlvJPEGEncoder
and IlvPNGEncoder classes.

To add support for another image format, follow these steps:

1. Write a new implementation of the IlvImageEncoder interface that encodes an image
in the given output format.

2. Register it on the IlvChartServletSupport class so that the new format can be
recognized as a supported format. Registering a new image encoder is done by means
of the following method: setImageEncoder(java.lang.String, ilog.views.chart.
servlet.IlvImageEncoder).

B U I L D I N G W E B A P P L I C A T I O N S 87

Choosing the multithreading mode

Charts components can be used in two modes, regarding multithreading. They differ in their
choice of which thread to use for executing the paint() operations.

The using event thread mode is suitable for Swing GUI applications. It causes all drawing
and all Swing API accesses to be performed in the AWT EventQueue thread. This is a Swing
requirement.

The current threadmode causes the drawing to be performed in the caller thread, regardless
whether it is the AWT EventQueue thread or not.

The current thread mode has some advantages for server-side processing, namely:

♦ It increases performance, especially on multiprocessor machines, to process every request
in its originating thread. (The AWT-Event thread can be executed on only one processor
at any time.)

♦ Better interoperability with Tomcat. (Some versions of Tomcat 5 do not terminate properly
upon request from the "shutdown" script when the AWT-Event thread has been in use.)

The drawback of the current thread mode is that it is unable to draw other JComponents
than IlvChart, IlvChart.Area, IlvLegend and IlvLegendItems, except for header and
footer: these can be drawn if they are JLabel instances.

To set the mode for all charts, use the static method IlvChart.setNoEventThreadUpdate.

If set to true, this method activates the current thread mode; if set to false, it activates
the using event thread mode.

To set the mode for an individual chart, use the method IlvChart.setUsingEventThread.

If set to true, it activates the using event threadmode; if set to false, it activates the current
thread mode.

The default in general is the using event thread mode. The default for JSF components is
the current thread mode. The default for an individual chart is according to the general
setting (getNoEventThreadUpdate()).

There are methods in the IlvChart class that can have two different behaviors, according
to the mode: using event thread or current thread mode. These methods are:

current thread modeusing event thread mode

paintCurrentThreadpaint

printCurrentThreadprint

paintToFOCurrentThreadpaintToFO

toImagetoImage

toPNGtoPNG

Other functionality, however, takes automatically into account the isUsingEventThread()
result.

B U I L D I N G W E B A P P L I C A T I O N S88

In any case, the IlvChartServletSupport base class handles all these threading issues for
you. It ensures that all the requests to modify a chart and to generate its image are moved
from the HTTP request thread onto the AWT event dispatch thread, as necessary. If you
need to extend the basic functionalities and plug your own mechanism, you must consider
this multithreading issue, and look at the services provided by the IlvServletUtil class.

B U I L D I N G W E B A P P L I C A T I O N S 89

B U I L D I N G W E B A P P L I C A T I O N S90

Writing a basic server side application

This section shows you the basic steps needed to create a simple server-side application
that loads data from a chart, and sends the images in response to a client request.

In this section

Example:The Basic Servlet
Presents an example of a servlet that loads data from a chart and sends images in response
to a client request.

Installing and running the example
Describes the steps involved in building, installing, and viewing the example on a Tomcat
server..

Implementing the server-side application
Presents an overview of the servlet example.

Creating the servlet
Presents the code to create the servlet.

Creating the servlet support
Identifies the parameters of the servlet request and describes how to create the servlet
support.

B U I L D I N G W E B A P P L I C A T I O N S 91

Example:The Basic Servlet

The Basic Serlvet example can be found in the <installdir>/jviews-charts86/samples/
servlet-chart-basic/srchtml/basicservlet/ directory.

This example shows you the various chart representations of the same data model according
to the user’s preferences set on the client:

A Simple Servlet example

The example offers the following possibilities:

♦ The chart can be either Cartesian or polar.

♦ The data model graphical representation can be chosen among area, polyline, bar, and
stairs.

♦ The output image format can be chosen among JPEG, PNG and SVG.

♦ The legend can be either visible or hidden.

The example is composed of the following files:

♦ The servlet that produces the images of chart representations of data loaded from an
XML file.

B U I L D I N G W E B A P P L I C A T I O N S92

<installdir>/jviews-charts86/samples/servlet-chart-basic/srchtml/basicservlet/
BasicServlet.java

♦ The starting HTML file.

<installdir>/jviews-charts86/samples/servlet-chart-basic/index.html

♦ The data file.

<installdir>/jviews-charts86/samples/servlet-chart-basic/webpages/data.xml

B U I L D I N G W E B A P P L I C A T I O N S 93

Installing and running the example

To be able to run, this example requires a Web server that supports servlets. The example
contains an ant script that allows you to easily build and install the example on a Tomcat
server, the official Reference Implementation for the Java Servlet and JavaServer Pages
technologies.

Here are the steps for running the example:

1. Go to the IBM ILOG JViews directory

<installdir>/jviews-charts86/samples/servlet-chart-basic

2. Execute the ant run entry:

ant run

3. Once the server is up and running, launch a Web browser and open the example page:

http://localhost:8080/basicservlet/index.html

B U I L D I N G W E B A P P L I C A T I O N S94

Implementing the server-side application

A typical server-side chart application is composed of two main parts:

♦ The application itself, which holds the data model(s) and the chart(s).

♦ A servlet, which produces images to the client.

Actually the servlet part consists of a servlet that handles HTTP requests, and of an
associated IlvChartServletSupport instance that handles the chart image generation.

To simplify the example, the application part is actually bundled in our
IlvChartServletSupport subclass that produces the images.

B U I L D I N G W E B A P P L I C A T I O N S 95

Creating the servlet

The servlet is the key element in a server-side application: it handles the requests sent by
the clients, and builds an appropriate response depending on the request type, delegating
the response to produce to an IlvChartServletSupport instance in the case of a chart
image request.

When you write a server-side application with the JViews Charts library, you have the choice
of using either your own javax.servlet.http.HttpServlet subclass (but in this case you
have to write the code required to delegate the chart image generation to an
IlvChartServletSupport instance), or the predefined and lightweight abstract
IlvChartServlet class (that automatically delegates the image generation to an
IlvChartServletSupport instance).

Since we do not want to add the chart generation capability to an existing application, we
will use directly an IlvChartServlet instance. Here is the code of our servlet:

public class BasicServlet extends IlvChartServlet
{

protected IlvChartServletSupport createServletSupport()
{

return new BasicSupport(getServletContext());
}

}

Subclassing IlvChartServlet mainly consists of providing an implementation of the
createServletSupport() abstract method. This method is responsible for creating the
IlvChartServletSupport instance used by the servlet to generate the images. Our
implementation creates a new SimpleSupport instance, passing the servlet context as
parameter to the constructor.

B U I L D I N G W E B A P P L I C A T I O N S96

Creating the servlet support

The IlvChartServletSupport class is the core class in the chart images generation process.
Its handleRequest(javax.servlet.http.HttpServletRequest, javax.servlet.http.
HttpServletResponse)method is automatically called by the servlet doGet(javax.servlet.
http.HttpServletRequest, javax.servlet.http.HttpServletResponse)method to handle
all the incoming requests. Basically, this method calls the prepareChart(ilog.views.chart.
servlet.IlvServletRequestParameters, ilog.views.chart.IlvChart) method (a hook
method that can be used to perform some chart initialization job), and generates the image
in the specified format. When subclassing IlvChartServletSupport, you have to override
the getChart(ilog.views.chart.servlet.IlvServletRequestParameters) abstractmethod
so that it returns the IlvChart object concerned by the request.

In our example, we want to be able to generate either a Cartesian or a polar chart, as well
as to choose the graphical representation of our data model. These user’s preferences will
be set using the parameters of the servlet request.

These parameters are shown in the following table:

ValueParameter

0 for Cartesian chartchartType

1 for polar chart

1 for polylinesrendererType

2 for areas

3 for bars

4 for stairs

In addition to these new parameters, we also need to specify the output format of the image.
We do not need to define a new parameter for this purpose because the
IlvChartServletSupport already defines a format parameter to the image request. We just
have to define a new parameter value (“SVG”) for the SVG format.

We also want to allow the user to change the legend visibility. This will be done by means
of a server action registered on the servlet. The action will take one parameter and set the
legend visibility according to the parameter value.

To create the servlet support:

1. Subclass IlvChartServletSupport and define the various constants used:

class BasicSupport extends IlvChartServletSupport
{

static final String DATAFILE = "data/data.xml";

/** The parameter values. */
static final String CHART_TYPE_PARAMETER = "chartType";
static final int CARTESIAN_CHART_TYPE = 0;
static final int POLAR_CHART_TYPE = 1;

B U I L D I N G W E B A P P L I C A T I O N S 97

static final String RENDERER_TYPE_PARAMETER ="rendererType";
static final int POLYLINE_TYPE = 1;
static final int AREA_TYPE = 2;
static final int BAR_TYPE = 3;
static final int STAIR_TYPE = 4;

/** The SVG format parameter value. */
static final String SVG_IMAGE_FORMAT = "SVG";

/** Rendering styles. */
static BasicStroke stroke = new BasicStroke(2);
static final IlvStyle[] styles = {

new IlvStyle(stroke, new Color(79,79,207), new Color
(175,207,239,128)),

new IlvStyle(stroke, new Color(143,15,15), new Color(207,111,143,
128))

};

/** The chart. */
protected IlvChart chart;

To avoid creating an IlvChart instance for each request, a unique IlvChart instance
will be used and held in the chart attribute.

2. Define the server action used to set the legend visibility:

static class LegendVisibilityAction implements IlvChartServerAction
{

/** The action name. */
static final String ACTION_NAME = "ChangeLegendVisibilityAction";

public void actionPerformed(IlvChartServerActionEvent event)
throws ServletException

{
boolean visible =

Boolean.valueOf(event.getParameters()[0]).booleanValue();

event.getChart().setLegendVisible(visible);
}
public int getExecutionThread()
{

return IlvChartServerAction.SWING_EVENT_THREAD;
}

}

The action parameter is retrieved from the IlvChartServerActionEvent, and the
legend visibility is set accordingly.

3. Write the code required to initialize a new SimpleSupport instance:

public BasicSupport(ServletContext context)

B U I L D I N G W E B A P P L I C A T I O N S98

{
// Create the chart.
chart = createChart(IlvChart.CARTESIAN);
// Create the data source containing the values. Data is
// read from an XML data file.
IlvXMLDataSource dataSource = new IlvXMLDataSource();
try {

dataSource.load(context.getRealPath(DATAFILE),
new IlvXMLDataReader());

} catch (Exception e) {
e.printStackTrace();

}
// Set the current charts data source.
chart.setDataSource(dataSource);
// Initialize the renderer styles.
chart.getRenderer(0).setStyles(styles);

}

Data is loaded from an XML data file using an IlvXMLDataSource instance that is
directly connected to the chart. The setDataSource(ilog.views.chart.data.
IlvDataSource) method automatically creates a chart renderer of the default type
and associates it with the new data source.

4. Provide an implementation of the getChart(ilog.views.chart.servlet.
IlvServletRequestParameters) method so that it returns the chart to dump. In our
case, this method simply returns the chart attribute:

protected IlvChart getChart(HttpServletRequest request,
IlvServletRequestParameters params)

throws ServletException
{

return chart;
}

5. Write the code that configures the chart and the renderers according to the user’s
preferences before generating the images. Preparing a chart before it is dumped as
an image is the role of the prepareChart(ilog.views.chart.servlet.
IlvServletRequestParameters, ilog.views.chart.IlvChart) method:

protected void prepareChart(HttpServletRequest request,
IlvChart chart)

throws ServletException
{

IlvServletRequestParameters params =
new IlvServletRequestParameters(request);

int chartType = 0;
try {

chartType = params.getInteger(CHART_TYPE_PARAMETER);
} catch (IlvParameterException pe) {

throw new ServletException("Chart type parameter missing or
badly initialized");

}
if (POLAR_CHART_TYPE == chartType) {

B U I L D I N G W E B A P P L I C A T I O N S 99

chart.setType(IlvChart.POLAR);
chart.getCoordinateSystem(0).setXCrossingValue(0);

} else
chart.setType(IlvChart.CARTESIAN);

int type;
try {

type = params.getInteger(RENDERER_TYPE_PARAMETER);
} catch (IlvParameterException pe) {

throw new ServletException("Renderer type missing or badly
initialized: ");

}
int rendererType;
switch (type) {

case POLYLINE_TYPE: rendererType = IlvChartRenderer.POLYLINE;break;

case AREA_TYPE : rendererType = IlvChartRenderer.AREA; break;

case BAR_TYPE : rendererType = IlvChartRenderer.BAR; break;

case STAIR_TYPE: rendererType = IlvChartRenderer.STAIR; break;

default:
throw new ServletException("Unknown renderer type: " + type)

;
}
chart.setRendererType(0, rendererType);
chart.getRenderer(0).setStyles(styles);

}

This method simply initializes the chart type according to the chartType request
parameter, and sets the renderer type according to the rendererType request
parameter.

6. Add the SVG generation.

Because SVG is not part of the image formats natively supported, our
IlvChartServletSupport subclass needs to handle the SVG generation by itself. This
is done by means of a new method, doGetSVG, and by overriding the
IlvChartSerlvetSupport.handleRequestmethod to call the doGetSVGmethod in the
case of an SVG image request.

public boolean handleRequest(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

if (request.getParameter(IMAGE_FORMAT_PARAM).equals(SVG_IMAGE_FORMAT)
) {

// Handle SVG generation.
IlvServletRequestParameters params =

new IlvServletRequestParameters(request);
// Execute actions to be run in the request thread.
executeAction(params, getChart(params),

IlvChartServerAction.REQUEST_THREAD);

B U I L D I N G W E B A P P L I C A T I O N S100

try {
doGetSVG(response, params);

} catch (ParserConfigurationException e) {
e.printStackTrace();
return false;

}
return true;

} else {
return super.handleRequest(request, response);

}
}

private void doGetSVG(HttpServletResponse response,
IlvServletRequestParameters params)

throws IOException, ServletException, ParserConfigurationException

{
...
IlvServletRunnable svgPrinter = new IlvServletRunnable()
{

public void run() throws ServletException
{

...
prepareChart(httpParams, chart);
executeAction(httpParams, chart, IlvChartServerAction.

SWING_EVENT_THREAD);
...
try {

// Draw the image.
Document document =

DocumentBuilderFactory.newInstance().
newDocumentBuilder().newDocument();

// Create an instance of the SVG generator.
SVGGraphics2D svgGenerator = new SVGGraphics2D

(document);
// Ask the test to render into the SVG Graphics2D

implementation.
comp.paint(svgGenerator);
...

} catch (Exception e) {
throw new ServletException(e.getMessage());

}
...

}
};
try {

IlvServletUtil.invokeAndWait(svgPrinter);
} catch (IOException x) {

x.printStackTrace();
}

}

B U I L D I N G W E B A P P L I C A T I O N S 101

Since an IlvChart is a Swing component, painting should be done in the Swing event thread.
To do so, we implement an IlvServletRunnable that generates the corresponding SVG
code. This runnable is then passed to the IlvServletUtil.invokeAndWait method to be
executed in the Swing event dispatch thread. The SVG generation is performed by painting
the chart in an SVGGraphics2D paint context, a specialized Graphics context that generates
SVG. This class is part of the Batik toolkit. More information about the Batik project can be
found at http://xml.apache.org/batik.

B U I L D I N G W E B A P P L I C A T I O N S102

http://xml.apache.org/batik

DHTML thin-client support in JViews
Framework

Describes the support for thin-client applications in JViews Framework.

In this section

Overview of thin-client support
Gives background information on the support for thin-client applications.

IBM® ILOG® JViews thin-client Web architecture
Describes how a thin-client application is structured.

Getting started with the IBM® ILOG® JViews thin client
Explains how to build the server and client sides of a thin-client application.

Installing and running the XML Grapher example
Explains how to install and run the XML Grapher example.

Developing the server
Describes the server side of a thin-client application and how to develop a server.

Developing the client
Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

Adding client/server interactions
Describes how to add interactions between the server side and the client side.

© Copyright IBM Corp. 1987, 2009 103

Generating a client-side image map
Describes how to generate an image map on the client side.

The IlvManagerServlet class
Describes the predefined servlet and how to use it.

The IlvManagerServletSupport class
Describes how to add thin-client support to a servlet.

Controlling tiling
Describes how to control tiling on the client side and the server side.

B U I L D I N G W E B A P P L I C A T I O N S104

Overview of thin-client support

The IBM® ILOG® JViews class library can be used on the client side where you develop
Java™ applets or applications. It can also be used on the server side. Some Web browser
applications require that the client stay very light, with most of the functionality residing in
the server. The thin-client support in IBM® ILOG® JViews Framework allows you to create
such applications easily. You can use the power of the IBM® ILOG® JViews class library to
build complex two-dimensional representations on the Web server and use the Dynamic
HTML thin-client support of your Web browser to display and interact with the images
created by the server.

B U I L D I N G W E B A P P L I C A T I O N S 105

IBM® ILOG® JViews thin-client Web architecture

The IBM® ILOG® JViews thin-client support is based on the Java™ servlet technology.
Servlets are Java programs that run on a web server. They act as a middle layer between
HTTP requests coming from a Web browser or other HTTP clients such as applets or
applications and the application or databases on the web server. The job of the servlet is to
read and interpret HTTP requests coming from an HTTP client program and to generate a
resulting document that in most cases is an HTML page.

For more information about servlet technology, you can visit the JavaSoft™ site http://
java.sun.com/products/servlet.

You will also find their information about the web servers supporting Java servlets.

For the predefined types of IBM® ILOG® JViews clients, the content created by the servlet
is primarily a JPEG image. On the client side, user interactions with the image are managed
by code in Dynamic HTML scripts.

Creating a web application with IBM® ILOG® JViews consists of using the IBM®
ILOG® JViews library on the server side to create complex two-dimensional displays based
on application data that resides on the server. A servlet will answer HTTP requests from a
client and deliver images to this client, as illustrated in the following figure.

Client-Server Display Interaction

IBM® ILOG® JViews Framework thin-client support contains the following:

♦ An abstract servlet class that can generate JPEG images from an IBM® ILOG® JViews
display.

♦ A set of Dynamic HTML scripts written in JavaScript™ that will be used on the client
side to display and interact with the image created on the server side.

Creating an IBM® ILOG® JViews thin-client application consists of developing the server
side and developing the client side.

B U I L D I N G W E B A P P L I C A T I O N S106

http://java.sun.com/products/servlet
http://java.sun.com/products/servlet

Getting started with the IBM® ILOG® JViews thin client

The XML Grapher example shows how to build the server side and also how to create a
Dynamic HTML client.

The XML Grapher example is available at <installdir> /jviews-framework8.6/samples/
xmlgrapher.

This example allows you to display a network of interconnected cities on top of the map in
a thin-client context.

The XML Grapher Example

The XML Grapher example is composed of the following pieces:

♦ An IBM® ILOG® JViews component that can read an XML file describing a set of
interconnected cities and display them on top of a map as shown in the picture above.

This component is located in the following files:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
XmlGrapher.java

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
GrapherNode.java

♦ Some example XML files for the component, located in <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/data

♦ A servlet that can produce JPEG images from the component described above.

The servlet is located in:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

♦ A Dynamic HTML client composed of:

● The HTML starting page: <installdir> /jviews-framework86/samples/xmlgrapher/
webpages/dhtml/index.html

B U I L D I N G W E B A P P L I C A T I O N S 107

● The set of JavaScript™ Dynamic HTML components, located in: <installdir> /
jviews-framework86/lib/thinclient/javascript

● Some images required for the example, located in: <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/dhtml/images

B U I L D I N G W E B A P P L I C A T I O N S108

Installing and running the XML Grapher example

This sample is compatible with the browsers and browser versions listed in the Release
notes under Requirements for running thin-client applications. The example contains aWAR
(Web ARchive) file that allows you to install the example easily on any server that supports
the Servlet API 2.1 or later.

For your convenience, theWAR file has already been installed for you on the Apache Tomcat™
Web server that is supplied with the IBM® ILOG® JViews installation. Tomcat is the official
reference implementation of the Servlet and JSP™ specifications. If you are already using
an up-to-date Web or application server, there is a good chance that it already has everything
you need. You can check the latest list of servers that support servlets at: http://java.sun.com/
products/servlet/industry.html.

To be able to run, this example requires a Web server and a Web browser that supports
Dynamic HTML (for the DHTML client).

To run the example on the TOMCAT web server supplied with the IBM® ILOG® JViews
installation:

1. Set the JAVA_HOME environment variable to point to your Java™ Platform, Standard
Edition installation.

2. Go to the TOMCAT bin directory located in

<installdir>/jviews-framework86/tools/apache-tomcat-6.0.14/bin

3. Depending on your system, run the startup.bat or startup.sh script to run the
Apache Tomcat™ server.

4. To see the example, launch a Web browser and open the page:

http://localhost:8080/xmlgrapher/index.html

You must use localhost instead of the name of your machine.
Otherwise, the sample applet may not be able to connect to the servlet.

Note:

The Web page gives you access to two different clients: a Dynamic HTML client and a thin
Java client.

The IBM® ILOG® JViews servlets can run with the headless support that is built-in since
Java SE 1.4, without an X server. For more information on this feature, refer to the Java SE
Release Notes.

B U I L D I N G W E B A P P L I C A T I O N S 109

http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/industry.html
http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Developing the server

The server side of an IBM® ILOG® JViews thin-client application is composed of two main
parts: the IBM® ILOG® JViews application itself, which can be any type of complex
two-dimensional display built on top of the IBM® ILOG® JViews API, and a Servlet that
produces JPEG images to the client.

The way the server side is built in the XML Grapher example helps in analyzing these parts.

The XML Grapher server
In the XML Grapher example, a graph of nodes and links is displayed on top of a map. This
IBM® ILOG® JViews application is defined in the file XmlGrapher.java, located in
<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

This part of the example contains only standard IBM® ILOG® JViews code and is
therefore not explained in detail.You will only see how the class is used to create the

Note:

example. The application on the server side really depends on the type of information
you want to display anyway.

The XmlGrapher class
The XmlGrapher class is a simple subclass of the IBM® ILOG® JViews IlvManagerView
class.

The main functionality of this small component is to read an XML file describing nodes and
links and to create an IBM® ILOG® JViews grapher that represents those nodes and links
on top of a map. This is done in the method:

public void setNetwork(URL url)

The XML file contains information on the map and the bitmap file of the map. It contains a
list of nodes, including the position, or location, of each node and information on links. In
the example, the position, or location, is described by using x-y coordinates. In a real mapping
application, the IBM® ILOG® JViews Maps API allows you to use geographical projections.

The setNetworkmethod parses the XML file, creates the map, and places the nodes and the
links on top of the map. It also applies an orthogonal link layout algorithm to lay out the
links automatically.

You can look at an XML example file in <install-dir> /jviews-framework86/samples/
xmlgrapher/webpages/data.

The servlet
Once the application is built, you need to create a servlet that produces images of the
application to a client. IBM® ILOG® JViews Framework provides a predefined servlet to

B U I L D I N G W E B A P P L I C A T I O N S110

achieve this task. The predefined servlet class is named IlvManagerServlet. This class can
be found in the package ilog.views.servlet.

The servlet created for the XML Grapher example is very simple. To understand in depth
how the servlet works, read The IlvManagerServlet class. The servlet for the XML Grapher
example is located in the file: <installdir> /jviews-framework86/samples/xmlgrapher/
src/xmlgrapher/servlet/XmlGrapherServlet.java .

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;

import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
private XmlGrapher xmlGrapher;

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException
{
super.init(config);
xmlGrapher = new XmlGrapher();
String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null) {
xmlfile = config.getServletContext().getRealPath("/data/world.xml");
xmlfile = "file:" + xmlfile;

}
try {
xmlGrapher.setNetwork(new URL(xmlfile));

} catch (MalformedURLException ex) {
}
setVerbose(true);

}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}

B U I L D I N G W E B A P P L I C A T I O N S 111

}

The import statements:

import javax.servlet.*;
import javax.servlet.http.*;

are required to use the Java Servlet API.

The import statements:

import ilog.views.*;
import ilog.views.servlet.*;

are required for using IBM® ILOG® JViews and the IBM® ILOG® JViews servlet support.

The import statement:

import demo.xmlgrapher.*;

is required for the XML Grapher class.

The IlvManagerServlet. class is an abstract Java™ class subclass of the HTTPServlet class
from the Java servlet API. The XmlGrapherServlet inherits from the IlvManagerServlet
class and defines only three methods.

The init method
This method initializes the servlet by creating an XmlGrapher object:

public void init(ServletConfig config) throws ServletException
{

xmlGrapher = new XmlGrapher();
...

Then an XML file is read by the XmlGrapher object using the setNetwork method:

String xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile

= config.getServletContext().
getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

B U I L D I N G W E B A P P L I C A T I O N S112

The XML file can be specified in the configuration of the servlet. By default, the file world.
xml is used.

The getManagerView method
The getManagerViewmethod is the only abstract method of the IlvManagerServlet class
and should return an IlvManagerView that will be used to generate the image. Here the
XmlGrapher object is returned.

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

The getMaxZoomLevel Method
This method allows you to fix the user’s maximum zoom level on the client side. Here we
overwrite the method to return a larger value.

As you have seen, creating the servlet is very simple. This servlet can now answer HTTP
requests from a client by sending JPEG images. If you have installed the example, you can
try the following HTTP request:

http://localhost:8080/xmlgrapher/
demo.xmlgrapher.servlet.XmlGrapherServlet?request=image

&format=JPEG&bbox=0,0,512,512
&width=400
&height=200
&layer=Cities,Links,background%20Map

This produces the following image:

Generated Bitmap Image

This request asks the servlet named demo.xmlgrapher.servlet.XmlGrapherServlet to
produce an image of size 400 x 200 showing the area (0, 0, 512, 512) of the manager with
the layers “Cities,” “Links,” and “Background Map” visible.

B U I L D I N G W E B A P P L I C A T I O N S 113

In most cases, you do not have to know the servlet parameters because the Dynamic HTML
objects or the Java™ classes provided by IBM® ILOG® JViews for the client side will take
care of the HTTP requests for you.

This example is a very simple servlet. This servlet uses the same IlvManagerView instance
for all clients; this means that every client will see the same data. For more complex usage
of the IlvManagerServlet classes, read The IlvManagerServlet class.

B U I L D I N G W E B A P P L I C A T I O N S114

Developing the client

Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

In this section

Overview of client-side development
Describes how Dynamic HTML influences client-side development.

The IlvView JavaScript component
Describes the IlvView component.

The IlvOverview JavaScript component
Describes the IlvOverview component.

The IlvLegend JavaScript component
Describes the IlvLegend component.

The IlvButton JavaScript component
Describes the IlvButton component.

The IlvZoomTool JavaScript component
Describes the IlvZoomTool component.

The IlvZoomInteractor JavaScript component
Describes the IlvZoomInteractor component.

IlvPanInteractor
Describes the IlvPanInteractor component.

B U I L D I N G W E B A P P L I C A T I O N S 115

The IlvPanTool JavaScript component
Describes the IlvPanTool component.

The IlvMapInteractor and IlvMapRectInteractor JavaScript components
Describes the IlvMapInteractor and IlvMapRectInteractor components.

The Popup menu in JavaScript
Describes the JavaScript component for the popup menu.

B U I L D I N G W E B A P P L I C A T I O N S116

Overview of client-side development

After creating the server (see Developing the server), you can create the client side. The
IBM® ILOG® JViews thin-client support allows you to build a DHTML client easily. The
static nature of HTML limits the interactivity of web pages. Dynamic HTML allows you to
create more interactive and engaging web pages. It gives content providers new controls
and allows them to manipulate the contents of HTML pages through scripting.

IBM® ILOG® JViews provides a set of Dynamic HTML components written in JavaScript™
that allows you to build your DHTML pages very easily. The JavaScript files are located in
<installdir> /jviews-framework86/lib/thinclient/javascript.

This sample is compatible with the browsers and browser versions listed in the
Release notes under Requirements for running thin-client applications.

Important:

The Dynamic HTML client for the XML Grapher example includes most of the DHTML
components. The full HTML file for the XML Grapher example is located in <installdir>
/jviews-framework86/samples/xmlgrapher/index.html.

The full reference documentation of each component can be found in the JavaScript Reference
Manual located in <installdir> /jviews-framework86/doc/html/en-US/refjsf/html/
index.html.

B U I L D I N G W E B A P P L I C A T I O N S 117

The IlvView JavaScript component

The IlvView component (located in the IlvView.js file) is the main component. This
component queries the servlet and displays the resulting image.

To use this component, you need to include the following JavaScript™ files: IlvUtil.js ,
IlvView.js , the files for the superclasses of IlvView: IlvAbstractView.js,
IlvResizableView.js, and IlvEmptyView.js, and IlvGlassView.js.

Instead of including the individual .js files of each component, you can add the file
framework.js which is located in <installdir> /jviews-framework86/lib/thinclient/
framework/framework.js

This file is a concatenation of all the .js files required for doing DHML thin client in the
Framework.

Here is a simple HTML page that creates an instance of IlvView:

HTML code

<html>
<head>
<META HTTP-EQUIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>
<script TYPE="text/javascript">

function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload=”IlvObject.callDispose()”

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

B U I L D I N G W E B A P P L I C A T I O N S118

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.toHTML()

</script>
</body>
</hmtl>

This example starts by importing some JavaScript files:

<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>

In the body of the page, the example creates an IlvView object located in (40, 40) on the
HTML page. The size is 440 x 270. This view displays images produced by the servlet
XmlGrapherServlet. Note the toHTML method that creates the HTML necessary for the
component.

This example also defines two JavaScript functions:

♦ The init function, called on the onload event of the page, initializes the IlvView by
calling its init method.

♦ The handleResize function, called on the onresize event of the page, will reload the
page if the browser is Netscape Communicator 4 or higher. This is necessary for a correct
resizing of Dynamic HTML content on Communicator.

The global IlvObject.callDispose() function must be called in the onunload
event of the HTML page.This function disposes of all resources acquired by the JViews
DHTML components.

Note:

Once the image is loaded from the server, the page now looks like this:

B U I L D I N G W E B A P P L I C A T I O N S 119

Generated HTML Page

B U I L D I N G W E B A P P L I C A T I O N S120

The IlvOverview JavaScript component

The IlvOverview component (located in the IlvOverview.js) file shows an overview of the
manager. An IlvOverview is linked to an IlvView component. By default, the IlvOverview
queries the server to obtain an image of the global area and displays it. Once the overview
is visible, a rectangle corresponding to the area visible in the main view is drawn on top of
the overview. You can move this rectangle to change the area visible in the main view.

Here is the body of the previous example with an IlvOverview component. Note that you
cannot move the rectangle of the overview now because the complete area is visible in the
main view. You will be able to do that later when the zooming functionality is added.

The lines added are in bold.Note:

<body onload="init()" onunload=”IlvObject.callDispose()”
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

view.toHTML()
overview.toHTML()

</script>

Compared to the previous example, there is a new import statement for IlvOverview.js:

<script TYPE="text/javascript" src="script/IlvOverview.js"></script>

An IlvOverview object located in (x+w+50, y+4) with a size of 120 x 70 was created:

var overview = new IlvOverview(x+w+50, y+4, 120, 70, view)

The following line sets the color of the draggable rectangle:

B U I L D I N G W E B A P P L I C A T I O N S 121

overview.setColor(’white’)

The page looks now like this:

B U I L D I N G W E B A P P L I C A T I O N S122

The IlvLegend JavaScript component

You can add an IlvLegend component to the page. The IlvLegend component shows a list
of layers that are available on the server side, and allows you to turn the visibility of a layer
on and off.

To use the IlvLegend, you must first include the IlvLegend.js file.

<script TYPE="text/javascript" src="IlvLegend.js"></script>

The body of the HTML file now looks like this:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);

view.toHTML()
overview.toHTML()
legend.toHTML()
</script>
</body>

You should see the following page:

B U I L D I N G W E B A P P L I C A T I O N S 123

The visibility of layers can now be turned on and off.

B U I L D I N G W E B A P P L I C A T I O N S124

The IlvButton JavaScript component

The IlvButton component is a simple button that allows you to call some JavaScript™ code
by clicking it. You can add some buttons to the page to zoom in and out.

In addition to buttons, you can add some Dynamic HTML panels to create a frame around
the main view. A Dynamic HTML panel is an area of the page that can contain some HTML.
Creating a panel is done using the class IlvHTMLPanel, defined in the IlvUtil.js file.

The body of the page is now:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff" >

<script>

//position of the main view

var y = 40
var x = 40
var h = 270
var w = 440

// Creates a frame around the main view
var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft =new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

B U I L D I N G W E B A P P L I C A T I O N S 125

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)
var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

var border = new IlvHTMLPanel(’’)
border.setBounds(x+w+45, y, 130, h)
border.setVisible(true)
border.setBackgroundColor(’#09a5a5’)

var secondBorder = new IlvHTMLPanel(’’)
secondBorder.setBounds(x+w+47, y+2, 128, h-2)
secondBorder.setVisible(true)
secondBorder.setBackgroundColor(’#21d6d6’)

// message panel
var messagePanel = new IlvHTMLPanel(’’)
messagePanel.setBounds(x, y+h+20, w, 25)
messagePanel.setVisible(true)
messagePanel.setBackgroundColor(’#21d6d6’)
IlvButton.defaultMessagePanel = messagePanel;

// IBM® ILOG® logo
var logo = new IlvHTMLPanel(’’)
logo.setBounds(x+w+95, y+h+10, 85, 40)
logo.setVisible(true)

IlvButton.defaultInfoPanel = messagePanel;

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.setMessagePanel(messagePanel)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)
overview.setMessagePanel(messagePanel)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);
// Some buttons for navigation
var topbutton, bottombutton, rightbutton, leftbutton

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)

B U I L D I N G W E B A P P L I C A T I O N S126

topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

// Buttons to zoom in and out
var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

view.toHTML()
overview.toHTML()
legend.toHTML()
topbutton.toHTML()
bottombutton.toHTML()
leftbutton.toHTML()
rightbutton.toHTML()
zoomoutbutton.toHTML()
zoominbutton.toHTML()

</script>
</body>
</hmtl>

The page now looks like this:

B U I L D I N G W E B A P P L I C A T I O N S 127

A frame around the page was created by the following lines:

var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft=new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

B U I L D I N G W E B A P P L I C A T I O N S128

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)

var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

This creates four DHTML panels for the corners, four additional panels for the sides, and a
panel for the background. The corners and the sides of the frame are composed of simple
GIF images.

Four buttons to pan south, north, east, and west have been added by the lines:

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)
topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

A button is defined by its position and size, two images, the main image and the rollover
image, and a piece of JavaScript to be executed when the button is clicked.

Note that in order to pan to the north, you use the panNorth method of IlvView.

Two additional buttons have been created to zoom in and out, by the lines:

var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

B U I L D I N G W E B A P P L I C A T I O N S 129

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

Each button has a message property. The message will be automatically displayed in the
status window of the browser when the mouse is over the button. The message can also be
displayed in an additional panel. This is why the line:

IlvButton.defaultInfoPanel=messagePanel

tells you that messages of buttons will also be displayed in the DHTML message panel.

B U I L D I N G W E B A P P L I C A T I O N S130

The IlvZoomTool JavaScript component

The IlvZoomTool component is a DHTML component that shows a set of buttons. Each
button corresponds to a zoom level; clicking the button will zoom the view to this zoom level.
The button corresponding to the current zoom level is visually different from others so that
you can tell what the current zoom level is. The component can be vertical or horizontal,
and the images of the buttons can be customized.

To add the component, add the following lines to the page:

<script TYPE="text/javascript" src="script/IlvZoomTool.js"></script>

This line imports the script.

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

var zoomtool = new IlvZoomTool(x+w+25, y+15, 25, h-30, 10 , view)
zoomtool.setOrientation(’Vertical’)
zoomtool.upImage = ’images/button.gif’
zoomtool.rolloverUpImage = ’images/buttonh.gif’
zoomtool.downImage = ’images/button.gif’
zoomtool.rolloverDownImage = ’images/buttonh.gif’
zoomtool.currentImage = ’images/center.gif’
zoomtool.rolloverCurrentImage = ’images/centerh.gif’

zommtool.toHTML()

The page now looks like this, with the vertical zoom tool on the right of the main view:

B U I L D I N G W E B A P P L I C A T I O N S 131

The IlvZoomInteractor JavaScript component

The IlvZoomInteractor allows direct interaction with the image; it allows the user to select
an area on the image to zoom this area. Installing an interactor on the view is simple: you
need only create the interactor and set it to the view:

var zoomInteractor = new IlvZoomInteractor()
view.setInteractor(zoomInteractor)

In the example, you add a button that will install the interactor. To do this, add the following
lines to the page:

<script TYPE="text/javascript"
src="script/IlvInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvDragRectangleInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvZoomInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvInteractorButton.js"></script>

To use the interactor, you have to import three JavaScript™ files: IlvInteractor.js,
IlvDragRectangleInteractor.js, and IlvZoomInteractor.js. This is because the
IlvZoomInteractor component is a subclass of the IlvDragRectangleInteractor component.

Then you add the following lines to the body of the page:

var zoomInteractor = new IlvZoomInteractor()
zoomInteractor.setLineWidth(1)
zoomInteractor.setColor(’#00ffff’)

...

var zoomrectbutton

zoomrectbutton=new IlvInteractorButton(x+w+50, y+90, 112, 24,
’images/zoomrect.gif’, zoomInteractor,

view)
zoomrectbutton.setRolloverImage(’images/zoomrecth.gif’)
zoomrectbutton.setMessage(’click to set zoom mode’)
zoomrectbutton.setToolTipText(’Zoom Mode’)

...

zoomrectbutton.toHTML()

This results in the following page:

B U I L D I N G W E B A P P L I C A T I O N S132

You can now click the “Select Zoom Area” button to install the interactor and then select
an area to zoom in.

B U I L D I N G W E B A P P L I C A T I O N S 133

IlvPanInteractor

The IlvPanInteractor component allows the user to click in the main view to pan the view.
Just as for the IlvZoomInteractor, use the setInteractormethod of IlvView to install the
interactor. In the example, add another button that will install this interactor (see The
IlvZoomInteractor JavaScript component). You will now be able to switch from the “Pan”
mode and the “Zoom” mode.

To be able to use the component, import the corresponding JavaScript™ file:

<script TYPE="text/javascript"
src="script/IlvPanInteractor.js"></script>

Then add the following lines to the body of the page:

var panInteractor = new IlvPanInteractor()
panbutton=new IlvInteractorButton(x+w+50, y+110, 63, 22, ’images/pan.gif’,

panInteractor, view)
panbutton.setRolloverImage(’images/panh.gif’)
panbutton.setMessage(’click to set pan mode’)
panbutton.setToolTipText(’Pan Mode’)
...

panbutton.toHTML()

The page now has one additional button labelled “Pan View”:

The example is now complete; it uses most of the DHTML components provided by IBM®
ILOG® JViews.

B U I L D I N G W E B A P P L I C A T I O N S134

The IlvPanTool JavaScript component

The IlvPanTool component (located in the IlvPanTool.js file) is a component that allows
panning of the view in all directions. You create the component in this way:

var pantool = new IlvPanTool(10, 10, view)
pantool.toHTML()

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

This component looks like this:

B U I L D I N G W E B A P P L I C A T I O N S 135

The IlvMapInteractor and IlvMapRectInteractor JavaScript components

The IlvMapInteractor and IlvMapRectInteractor components are two additional interactors
that can be used to perform an action on the server side when a point or an area of the
image is selected by the client. These interactors and how to use them are described in
detail in Adding client/server interactions.

B U I L D I N G W E B A P P L I C A T I O N S136

The Popup menu in JavaScript

The popup menu component is attached to the main view. This popup menu in JavaScript™
is triggered by a right-click in the view.

To use the popup menu, you must first include the following scripts.

The popup menu can be contextual or static.

Static popup menu
The menu is static, that is, not conditioned by the context in which it is called, and is defined
in the HTML file by using IlvMenu and IlvMenuItem instances. The menu is a pure client-side
object and there is no roundtrip to the server to generate the menu.

Contextual popup menu
The popup menu is dynamically generated by the server depending on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the user triggered the popup menu.

On the client side, you need only declare the popup menu and set it on the view.

The factory must implement the IlvMenuFactory interface.

Styling the popup menu
You can style the popup menu by setting a CSS class name in the following properties:

♦ itemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following example shows how to use CSS to style the popup menu.

B U I L D I N G W E B A P P L I C A T I O N S 137

Adding client/server interactions

Overview of actions on the server and client sides
The IBM® ILOG® JViews thin-client support gives you a simplified way to define new actions
that should take place on the server side. For example, suppose you want to allow the user
to delete a graphic object that appears on the generated image. Part of this action—clicking
the image to select the object—must be done on the client side. The destruction of the object
must be done on the server side before a new image is generated. The notion of “server-side
action” exists to perform such behavior. An action is defined by a name and a set of string
parameters.

Actions on the client side
In a dynamic HTML client, you tell the server to perform an action using the performAction
method of the IlvView JavaScript™ component.

Here is an example that asks the server side to execute the action “delete” with coordinate
parameters, assuming that view is an IlvView:

var x = 100;
var y = 50;
var params = new Array();
params[0]=x;
params[1]=y;
view.performAction(“delete”, params);
In a thin-Java client the system is the same:
float x = 100f;
float y = 50f;
String[] params = new String[2];
params[0] = Float.toString(x);
params[1] = Float.toString(y);
view.performAction(“delete”, params);

The performAction method will ask the server for a new image. In the image request,
additional parameters are added so that the server side can execute the action. Thus, the
performAction call results in only one client/server round-trip.

Note that predefined interactors are provided to help you define new actions on the client
side. They are explained in Predefined interactors.

Actions on the server side
On the server side, you need to detect that an action was requested and execute the action.
This is done using the interface ServerActionListener.

To be able to listen and execute an action on the server side, you simply add an action
listener to your servlet. In the performAction method of the listener, you check the action
name and perform the action.

B U I L D I N G W E B A P P L I C A T I O N S138

For the “delete” action, we would add the following lines of code in the init method of the
servlet:

addServerActionListener(new ServerActionListener() {
public void actionPerformed(ServerActionEvent e) throws ServletException
{
if (e.getActionName().equals("delete")) {
IlvPoint p = e.getPointParameter(0);
// find object under this point and delete it if there is one.

}
}

});

The ServerActionEvent object can give you all necessary information about the action, the
name, and its parameters.

Predefined interactors
Two predefined interactors are provided to help you create new actions: IlvMapInteractor
and IlvMapRectInteractor.

IlvMapInteractor allows the user to click in the map; it will ask the server to execute an
action, with the coordinates of the clicked point passed as parameters. The second interactor
is almost the same except that the user selects an area of the image instead of clicking on
it.

B U I L D I N G W E B A P P L I C A T I O N S 139

Generating a client-side image map

If you are creating a Dynamic HTML client, the IBM® ILOG® JViews thin-client support
allows you to create a client-side image map. Image maps are images with an attached map
that points out hot spots, or clickable areas. In the IBM® ILOG® JViews thin-client support,
a clickable area can be generated for each graphic object of the manager.

To create a client side image map:

♦ Define the image map on the server side

♦ Use the image map on the client side

Define the image map on the server side
The servlet provided by IBM® ILOG® JViews (IlvManagerServlet) is able to generate an
image map for your IBM® ILOG® JViews application, but it is likely that you do not want
to generate a clickable area for every graphic object. On the server side, you will then have
to tell the manager servlet which IBM® ILOG® JViews layer and which graphic object are
part of the image map generation. For both layer and graphic object, this is done by setting
a property on them.

On a layer, assuming that the variable manager is an IlvManager, you will do:

manager.getManagerLayer(index).setProperty(IlvManagerServlet.
ImageMapAreaGeneratorProperty, Boolean.TRUE);

On a graphic object you can do almost the same thing, but the value of the property must
be an instance of the class IlvImageMapAreaGenerator. This class is responsible for
generating the AREA part of the image map.

Note that the same instance of IlvImageMapAreaGenerator can be used for all graphic
objects.

By default, IlvImageMapAreaGenerator will generate a rectangular area with no HREF in
it. You will have to subclass it to generate an HREF for your graphic object.

Here is an example that creates a custom IlvImageMapAreaGenerator and sets it on some
objects:

IlvGraphic object1, object2;
....
IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
String href;
// place here code the
// computes the URL depending on the graphic object
return href;

}

};

B U I L D I N G W E B A P P L I C A T I O N S140

object1.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

object2.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

The HREF can be a URL to which the browser will jump when the area is clicked, but it can
also be a call to a JavaScript™ method.

For example, in the XML Grapher example, you can define the generator like this:

IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateALT(IlvManagerView v, IlvGraphic obj) {
return ((GrapherNode)obj).getLabel();

}

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
return "javascript:doSomething(’"+

((GrapherNode)obj).getLabel()+"’)";
}

};

In this example, the HREF generated is a call to the JavaScript method doSomething. You
will have to define this method in the HTML page.

For more information about customizing an area, see the IlvImageMapAreaGenerator class
in the Java API Reference Manual.

Use the image map on the client side
To tell the Dynamic HTML client to generate a client-side image map, you only need to set
the imageMap property of the IlvView JavaScript™ component to true:

var view = new IlvView(40, 40, 300, 400);
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’);
view.setGenerateImageMap(true);

When this is done, the IlvView component will ask the servlet to generate the image map.

To make the image map visible, there are two possibilities. You can:

♦ Directly call the showImageMap method of IlvView:

view.showImageMap();

♦ Use the IlvImageMapInteractor class. This class is a simple interactor that will show
the image map when installed and hide it when de-installed.

B U I L D I N G W E B A P P L I C A T I O N S 141

B U I L D I N G W E B A P P L I C A T I O N S142

The IlvManagerServlet class

Describes the predefined servlet and how to use it.

In this section

Overview of the predefined servlet
Presents the predefined servlet.

The servlet requests and parameters
Presents the requests to which the servlet can respond and the parameters they take.

Multiple sessions
Describes the need for multiple sessions and gives an example.

Multithreading issues
Describes the use of single-thread and multithread versions of servlets and resulting
synchronization requirements.

B U I L D I N G W E B A P P L I C A T I O N S 143

Overview of the predefined servlet

Developing the server side of a thin-client application consists of creating a servlet that can
produce an image to the client. IBM® ILOG® JViews Framework provides a predefined
servlet to achieve this task. The predefined servlet class is named IlvManagerServlet. This
class can be found in the package ilog.views.servlet.

The IlvManagerServlet class is an abstract Java™ subclass of the HTTPServlet class from
the Java servlet API.

B U I L D I N G W E B A P P L I C A T I O N S144

The servlet requests and parameters

The servlet can respond to three different types of HTTP requests, the “image” request, the
“image map” request, and the “capabilities” request. The image request will return an image
from the IBM® ILOG® JViews manager. The capabilities request will return information to
the client, such as the layers available in the manager and the global area of the manager.
This information allows the client to know the capabilities of the servlet in order to build
the image request. When developing the client side of your application, you will use the
DHTML scripts or the JavaBeans™ provided by IBM® ILOG® JViews; both will create the
HTTP request for you, so you do not really need to write the HTTP request yourself.

The image request
The image request produces a JPEG image from the manager. The request has the following
syntax, assuming that myservlet is the name of the servlet:

http://host/myservlet?request=image
&bbox=x,y,width,height (area in the manager coordinate system)
&width=width of the returned image
&height=height of the returned image
&layer=comma separated list of layers
&format=JPEG
&bgcolor=0xFFFFFF

Here is a list of parameters and their meanings.

Parameters of the IlvManagerServlet
DescriptionParameter ValueParameter Name

Asks the servlet to generate an image.imagerequest

The area of the manager that will be displayed in
the image. The first two values are the upper left

Float, Float, Float, Floatbbox

B U I L D I N G W E B A P P L I C A T I O N S 145

DescriptionParameter ValueParameter Name

corner of the area. The last two values are the
width and height of the area.

Width of the resulting image.Integerwidth

Height of the resulting image.Integerheight

The format of the resulting image.JPEGformat

The layers of the IlvManager that will be visible.Comma-separated list of
strings. For example: Cities,
Roads

layer

The background color of the resulting image.This
parameter is optional.

0xrrggbb

For example, 0xffffff for
white

bgcolor

Specifies an action to be executed on the server
before the image is generated.

actionName(param1, param2)action

The following request will produce a JPEG image of size (250, 250) showing the area
(0, 0, 1000, 1000) of the manager; only the layers named “Cities” and “Roads” will be visible:

http://host/myservlet?request=image
&bbox=0,0,1000,1000
&width=250
&height=250
&layer=Cities,Roads
&format=JPEG

The capabilities request
The capabilities request produces information to the client. This request returns information
on the manager.

The capabilities request has the following syntax:

http://host/myservlet?request=capabilities
&format=(html|octet-stream)

[&onload= <a string>]

The request parameter set to capabilities instead of image tells the servlet to return the
capabilities information. The format parameter tells which format should be returned.

The result can be of two different formats, HTML or Octet stream.

B U I L D I N G W E B A P P L I C A T I O N S146

HTML format
The HTML format is used when the client is a Dynamic HTML client. In this case, the result
is a empty HTML page that contains some JavaScript™ code. The JavaScript code is executed
on the client side, and some information variables are then available.

<html>
<head>
<script language="JavaScript">
var minx=0.0;
var miny=0.0;
var maxx=1024.0;
var maxy=512.0;
var themes=new Array();
var overviewthemes=new Array();
themes[0]="a layer name";
overviewthemes[0]=true;
themes[1]="another layer";
overviewthemes[1]=true;
themes[2]="a third layer";
overviewthemes[2]=true;
var maxZoom=6;
</script>
</head>
<body>
</body>
</html>

The variables minx, miny, maxx, maxy are defining the global area of the manager that can
be queried. The themes variable is the list of layers available on the server side. The
overviewthemes variable tells if a layer should be visible in the overview window. The
maxZoom variable is the maximum level of zoom the application should perform.

The onload parameter allows you to specify a String that is used for the onload event of the
generated HTML page. When an onload parameter is specified, the body tag of the HTML
page is the following:

<body onLoad="+onload+">

Octet-stream format
The octet-stream format is used when the client is a Java™ applet. In this case, the result
is a stream of octets. The data is produced using a java.io.DataOutput and can be read
using a java.io.DataInput. It is organized as follows:

Float: left coordinate of manager’s bounding box.
Float: top coordinate of manager’s bounding box.
Float: right coordinate of manager’s bounding box.
Float: bottom coordinate of manager’s bounding box.
Int: number of layers.

for each layer:

B U I L D I N G W E B A P P L I C A T I O N S 147

String (UTF format): name of the layer.
Boolean: is the layer an overview layer.

Float: Maximum zoom level

You see that this format gives the same type of information as the HTML format. Once again,
you do not need to decode or read these formats. The client-side components provided by
IBM® ILOG® JViews will do that for you.

The image map request
The image map request produces an image and a client-side image map. The parameters
for this request are the same as for the image request except that the request parameter
must have the value imagemap.

For example, the following code to the servlet:

http://host/myservlet?request=imagemap
&width=400
&height=200
&bbox=0,0,500,500
&format=JPEG
&layer=Cities,Links,background%20Map

will produce something like:

<html>
<body>
<map name="imagemap">
<area shape="rect" coords="242,81,261,83" href="..." >
....
</map>
<img usemap="#imagemap" width="400" height="200"
src="myservlet?request=image&layer=Cities,Links,background%20Map&width=400
&format=JPEG&bbox=0,0,500,500&height=200" border=0>

</body>
</html>

The call generates an HTML document containing the client-side image map and an image.
The contents of the image are then generated by another call to the servlet.

The graphic objects that are taken into account when generating the map can be specified
as well as the shape of the clickable area and what appends when you click on it. All this is
explained in Generating a client-side image map.

The image map request has two additional optional parameters:

♦ The mapname parameter allows you to specify the name of the map. The default name is
imagemap.

♦ The onload parameter allows you to specify a String that is used for the onload event of
the generated HTML page. When an onload parameter is specified, the body tag of the
HTML page is the following:

B U I L D I N G W E B A P P L I C A T I O N S148

<body onLoad="+onload+">

B U I L D I N G W E B A P P L I C A T I O N S 149

Multiple sessions

The XML Grapher is a very simple example that creates a single manager view for the servlet.
This means that all calls to the servlet (that is, all clients) are looking at the same view. This
is fine when the same data is used for all clients but in some applications—for example,
when you want to allow the user to edit the graphic representation—you might want to have
a view (and thus a manager) for each client. In this case, you might use the notion of HTTP
sessions. You can then create a view and a manager and store them as parameters of the
session.

Here is a slightly modified version of the XML Grapher servlet using sessions:

package demo.xmlgrapher.servlet;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;
import ilog.views.*;
import ilog.views.servlet.*;
import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
String xmlfile;

public void init(ServletConfig config)
throws ServletException

{

xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile = config.getServletContext().

getRealPath("/data/world.xml");
setVerbose(true);

}

protected void prepareSession(HttpServletRequest request)
{
HttpSession session = request.getSession();
if (session.isNew()) {

XmlGrapher xmlGrapher = new XmlGrapher();
try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}
session.putValue("IlvManagerView", xmlGrapher);

}
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{

B U I L D I N G W E B A P P L I C A T I O N S150

HttpSession session = request.getSession(false);
if (session!= null)
return (IlvManagerView)session.getValue("IlvManagerView");

else
throw new ServletException("session problem");

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}
}

The init method does not create any XmlGrapher object any more. Instead, the
prepareSession method (which has a default empty implementation) is overwritten to get
the HTTP session. If this is a new session, an XmlGrapher object is created and stored as a
parameter of the session. The getManagerViewmethod returns the XmlGrapher object stored
in the session.

B U I L D I N G W E B A P P L I C A T I O N S 151

Multithreading issues

The IlvManagerServlet class does not implement the SingleThreadModel interface from
the Servlet API, so you can create servlets that use the multithread or single-thread model.

If your servlet implements the SingleThreadModel interface, then you do not have to deal
with concurrent access to your servlet. The servlet will be thread safe. However, this interface
does not prevent synchronization problems that result from servlets accessing shared
resources such as static class variables or classes outside the scope of the servlet.

If your servlet does not implement the SingleThreadModel interface, then you might have
to be concerned with concurrent access to the servlet. All basic operations done by the
IlvManagerServlet on the IlvManagerView are already synchronized. This means that you
will have to take care of concurrent access only if you are doing additional actions on the
IlvManagerView. In this case you can define a locking object and use the getLock method
of the IlvManagerServlet. Each request handling is implemented in the following way:

... reads the request parameters ...

synchronized(getLock(request)) {
IlvManagerView view = getManagerView(request);

... handle the request ...
}

By default, the getLockmethod returns a new object each time. This means that the section
is not synchronized.

B U I L D I N G W E B A P P L I C A T I O N S152

The IlvManagerServletSupport class

The IlvManagerServlet class used in the XMLGrapher example gives an easy way to create
a servlet that supports the IBM® ILOG® JViews thin-client protocol. Using the
IlvManagerServlet class is an easy way to create a servlet but has one main drawback.
You cannot add the support for the IBM® ILOG® JViews thin-client protocol to an existing
servlet since the IlvManagerServlet class derives from the HttpServlet class. The
IlvManagerServletSupport class will allow you to do this. This class has the same API as
the IlvManagerServlet but is not a servlet (that is, it does not derive from the HttpServlet
class). You can thus create your own servlet and an instance of the IlvManagerServlet
support class in this servlet to handle the requests coming from the IBM® ILOG® JViews
client side.

Thin-client support in the XML Grapher example
In the XML Grapher example, the code of the servlet can be rewritten using the
IlvManagerServletSupport class as follows:

package demo.xmlgrapher.servlet;

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;
import java.io.*;
import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends HttpServlet
{
IlvManagerServletSupport servletSupport ;

class MySupport extends IlvManagerServletSupport {

private XmlGrapher xmlGrapher;

public MySupport(ServletConfig config) {
super();
xmlGrapher = new XmlGrapher();

String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null)
xmlfile = config.getServletContext().getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

B U I L D I N G W E B A P P L I C A T I O N S 153

setVerbose(true);
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException {
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view) {

return 30;
}

}

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException {
servletSupport = new MySupport(config);

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
if (!servletSupport.handleRequest(request, response))
throw new ServletException("unknow request type");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
doGet(request, response);

}

}

This code creates a new servlet class, XmlGrapherServlet, that derives directly from the
HttpServlet class. The doGet method passes the requests to an instance of the
IlvManagerServletSupport class.

Specifying fixed zoom levels on the client side
Override the following method of the IlvManagerServletSupport class to specify the zoom
levels that must be used on the client side:

public double[] getZoomLevels(HttpServletRequest request, IlvManagerView view)

In this case, the maximum zoom level is not used.

B U I L D I N G W E B A P P L I C A T I O N S154

Controlling tiling

Describes how to control tiling on the client side and the server side.

In this section

Tiling
Explains what tiling is and its advantages.

Tile size
Explains tile size and its implications for performance and caching.

Cache mechanisms
Explains the cache mechanisms you can apply.

Developing client-side tiling
Describes how to develop the code on the client side if you use tiling.

Developing server-side tiling
Describes how to develop the code on the server side if you use tiling.

Client-side caching
Describes how to develop code for caching on the client side by managing HTTP headers.

Server-side caching and the tile manager
Describes how to develop code for caching on the server side by using a tile manager.

B U I L D I N G W E B A P P L I C A T I O N S 155

Tiling

The static layers are represented by a grid of images of a fixed size. These fixed-size images
are referred to as tiles. Dynamic layers are represented by a single image with a transparent
background overlaying the view.

A static layer is not supposed to change during the application lifecycle and so can be
generated once only. Typically, a static layer is the background of the view, such as a
background map.

A dynamic layer contains objects, such as symbols, that can move and change their graphic
representation.

Dynamic layers must be placed on top of a static layer. Otherwise, they are not
displayed.

Note:

The advantages of a tiled view are continuous panning and the capability of caching tiles.
On the client side this avoids a roundtrip to the server and gives a better response time. On
the server side it allows the server to receive the request, retrieve the image, and respond
with the image without having to generate it. Not having to generate the image for the
response is especially advantageous in complex applications.

B U I L D I N G W E B A P P L I C A T I O N S156

Tile size

The size of the tile determines the number of tiles needed to cover the view.

The tile size must be carefully chosen because it can have a considerable and potentially
critical impact on performance. The larger the number of tiles needed because of their size
relative to the size of the view to be covered, the more simultaneous requests to be addressed
to the image servlet. There will also be more graphic objects to manage on the client side.

If a server-side caching mechanism is implemented, such as pregenerated tiles, the size
must be consistent with the configuration of the server-side caching mechanism. See
IlvTileManager for more details about server-side caching mechanisms.

B U I L D I N G W E B A P P L I C A T I O N S 157

Cache mechanisms

Since tiles in static layers are not subject to change, they can be cached on the client side
to be reused directly without the need for a server roundtrip.

You can consider several possible caching strategies on the server side:

♦ No caching: the server generates the images each time they are requested.

♦ Dynamic caching: the server can cache every generated tile, for example in the file system.
This strategy allows you to have a quicker response for popular tiles and to limit the size
of the cache.

♦ Pregeneration: a partial or complete set of tiles for specific zoom levels can be
pregenerated and returned directly by the server without need of dynamic generation.

To manage the cache efficiently on the client and the server, the zoom levels must be fixed.
If there is a free choice of what zoom level to apply, the probability of the client retrieving
a cached tile is severely limited.

See Specifying fixed zoom levels on the client side for how to specify the zoom levels.

B U I L D I N G W E B A P P L I C A T I O N S158

Developing client-side tiling

The API of the IlvTileView class is very similar to IlvView. To use the tiled view, import
IlvTiledView.js instead of IlvView.js.

To instantiate an IlvTiledView object, proceed as with IlvView, but the class takes an
additional argument that defines the tile size as shown in the following XML example.

<html>
<head>
<META HTTP-EQIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQIV="pRAGMA" CONTENT="No-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvTiledView.js"></script>
<script TYPE="text/javascript">
function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload="IlvObject.callDispose()"

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

//tile size
var t = 256

//Main view
var view = new IlvView(x,y,w,h,t)
view.setRequestURL('/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet')
view.toHTML()
</script>

</body>
</html>

B U I L D I N G W E B A P P L I C A T I O N S 159

B U I L D I N G W E B A P P L I C A T I O N S160

Developing server-side tiling

The tile manager stores and retrieves static and dynamic layers. See In Server-side caching
and the tile manager for a description of the tile manager and Tiling for what is meant by
static and dynamic layers in the context of tiling.

The list of dynamic layers is computed by the following method of the
IlvManagerServletSupport class:

public IlvManagerLayer[] getDynamicLayers(HttpServletRequest request,
IlvManagerView view)

The default implementation of this method classifies the layers according to the value
returned by the getTripleBufferedLayerCount() method. If the layer index is greater or
equal to this value, the layer is dynamic. If not, it is a static layer. You can override this
method to determine which are the dynamic layers in a different way.

B U I L D I N G W E B A P P L I C A T I O N S 161

Client-side caching

HTTP headers are sent with the tile image to control the caching of tiles on the client side.

There are two ways of specifying expiry data for tiles on the client side.

♦ Override the following method of IlvManagerServletSupport:

public long getExpirationDate(HttpServletRequest request)

This method returns the expiry date in milliseconds of tile lifespan in the client-side cache.

♦ Override the protected method:

void setImageResponseCachePolicy(HttpServletRequest request,
HttpServletResponse response);

This method sends the HTTP headers to the client, so that the server instructs the client
how to cache the tiles.

See RFC 2616 on HTTP/1.1 for a full description of HTTP headers.

You need to take the following cases into account:

1. The normal image request: you should prevent caching in this case.

2. The tile image request, which is identified by the tile request parameter: this type of
request can be cached on the client.

B U I L D I N G W E B A P P L I C A T I O N S162

Server-side caching and the tile manager

Use IlvTileManager to manage caching on the server side.

Static or dynamic layers can be used in conjunction with tiled views on the client side.

Static layers can be cached or pregenerated on the server. Cached tiles are part of layers
that are not expected to change within the application lifecycle, as, for example, in a
background map. Cached tiles can be retrieved through a tile manager.

Dynamic layers are likely to change between requests to the server, such as labeling or
network display.

The tile manager, an instance of IlvTileManager, stores and retrieves tiles on the server
side. IlvManagerServlet can take advantage of such a tile manager if one is installed on
the servlet.

When an image request is received by the servlet, if a tile that matches the current request
is managed by the tile manager, it will return this cached tile instead of generating a new
image from IlvManagerView. If a tile is not yet managed by the tile manager, generate the
image from IlvManagerView and ask the tile manager to manage it for future access.

When IlvManagerServletSupport responds to an image request, it uses the tile manager
as follows:

if (useTileManager(request)) {
IlvTileManager tm = getTileManager(request);
if (tm != null) {
Object key = getKey(request);
BufferedImage image = tm.getImage(key);
if (image == null) {
image = doGenerateImageImpl(...);
tm.putImage(key, image);
}
return image;
}
}
return doGenerateImageImpl(...);

The tile manager is invoked by default if the request contains a parameter of the form
tile=true. If the request contains such a parameter, useTileManager(javax.servlet.
http.HttpServletRequest)will return true. You can override the useTileManagermethod
to call the tile manager in other situations.

If a tile manager is installed, it will be retrieved and a key object will be constructed from
the request to reference the tile. Then, an attempt is made to retrieve a tile from the tile
manager. If the attempt is successful, the tile is returned as the response to the request.

If no tile is retrieved, an image will be constructed through the normal image generation
process. This image is passed to the tile manager for use in future retrievals.

The tile manager is not installed by default in an IlvManagerServletSupport object. You
need to subclass it to install a tile manager.

The method to override is getTileManager(javax.servlet.http.HttpServletRequest).
By default, this method returns null.

B U I L D I N G W E B A P P L I C A T I O N S 163

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

return null;
}

A default implementation of the tile manager is supplied. This implementation stores tiles
on disk. You can use it to develop your own implementation of the getTileManagermethod.

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

ServletContext context = request.getSession().getServletContext();
IlvTileManager tileManager = (IlvTileManager)context.getAttribute

("tileManagerKey");
if(tileManager == null) {
tileManager = new IlvFileTileManager(getBase(), getMaxCacheSize(),
getMinCacheSize());
context.setAttribute("tileManagerKey", tileManager);

}
return tileManager;

}

In this implementation you need to provide:

♦ The base directory where the tiles are written.

♦ The maximum size allowed for the cache.

♦ The size to which the cache will be reduced by removing files when the maximum size is
reached.

When the maximum size is reached, the cache is considered to be full and files will be
removed to reduce the size of the cache to the level indicated.

The tile manager is stored and retrieved from the ServletContext, so that the same tile
manager is used for the same application. You can use a different strategy for storing and
retrieving the tile manager.

You can also customize the reading and writing of tiles and the name of the file that is
generated for each tile. This default implementation of the tile manager constructs a file
name of the form x_y_width_height.jpg, where x, y, width, and height are the manager
coordinates of the image request passed as the bbox attribute of the request.

This file is stored in and retrieved from the base directory provided when the
IlvFileTileManager is constructed. This customization can be performed through the
IlvFileTileURLFactory, which is responsible for building a URL from the key that identifies
the tile. The default key is a Rectangle2D.Double object, which is created from the bbox
parameter of the request.

B U I L D I N G W E B A P P L I C A T I O N S164

Creating Rich Web Charts

The Rich Web Charts component is made of Rich Web Client and Server components that
are used to display charts and interact with them.

In this section

Rich Web Charts
Describes the Rich Web Charts component.

Architecture overview
Provides an overview of the architecture of a Rich Web Charts application.

Getting started
This section provides a walkthrough of the basic steps required to create and deploy a Rich
Web Charts application.

How to...
This section shows you how to use more of the features of the Rich Web Charts application.

The tag library
Describes the JSP tag library of the Rich Webs Charts component.

Client-side API
In response to user actions on the client-side, either on the chart component or any other
JSF component, it is possible to use some JavaScript code to perform operations. For that
purpose the Rich Web Charts client provides some JavaScript objects that are available in
the scripting scope. This section identifies which objects are available for scripting, depending
on the execution context.

© Copyright IBM Corp. 1987, 2009 165

Server-side API
This section lists the APIs that are available and relevant when developing managed beans,
listeners or data sources on the server side for a Rich Web Charts component.

Server configuration
In this section you will learn how to configure the Rich Web Charts server.

Styling
Describes the use of cascaded style sheets to control the appearance of the Rich Web Charts.

B U I L D I N G W E B A P P L I C A T I O N S166

Rich Web Charts

Describes the Rich Web Charts component.

In this section

Introduction to Rich Web Charts
Identifies the main features of the Rich Web Charts component.

Supported graphical representations
Identifies the Cartesian charts supported by the Rich Web Charts component.

View and data interactions
Describes the available view and data interactions.

JViews Swing Charts and Rich Web Charts - features comparison
Compares the features between JViews Swing Charts and Rich Web Charts components

Requirements
Identifies the requirements necessary to use the Rich Web Charts component.

B U I L D I N G W E B A P P L I C A T I O N S 167

Introduction to Rich Web Charts

The Rich Web Charts component has the following main characteristics:

♦ Provide rich and responsive interactions and displays on the Web client going beyond
HTML and raster rendering.

♦ Provide high scalability on the server side.

♦ Are compatible with IBM® ILOG® JViews Charts. The Rich Web Charts component is
able to read project files and style sheets generated by the JViews Charts Designer and
to connect to the JViews Charts IlvDataSource.

The server-side components are based on the JavaServer™ Faces (JSF) technology and are
available through JavaServer Pages (JSP™) tags.

The Rich Web Charts server combines the JSP page content with the style sheet to generate
Scalable Vector Graphics (SVG) and JavaScript™ logic that is executed on the Web client
to build the chart display and handle user interactions.

The Rich Web Charts client retrieves data and data updates from the server and creates or
updates the chart in SVG. Only the chart display is redrawn, the remainder of the page does
not need to be refreshed. The user may also continue his work with the chart while data is
retrieved in the background.

Interactions with the chart display - such as zooming, scrolling and panning - are executed
in SVG and handled directly on the Web client. The absence of server roundtrip and the
local rendering in SVG result in an improved user experience, both in terms of look and feel
and response time.

The Rich Web Charts component offers you the following main features:

♦ Supported graphical representations

♦ View and data interactions

♦ Data source connectivity

♦ Stylable components

B U I L D I N G W E B A P P L I C A T I O N S168

Supported graphical representations

The Rich Web Charts component supports Cartesian charts with seven rendering types and
all their subtypes:

♦ Polyline

♦ Bar

♦ Scatter

B U I L D I N G W E B A P P L I C A T I O N S 169

♦ Pie

♦ Area

B U I L D I N G W E B A P P L I C A T I O N S170

♦ Stair

♦ High-Low

B U I L D I N G W E B A P P L I C A T I O N S 171

♦ Bubble

In addition to that, you can combine the different rendering types into a single chart using
the so called Combo rendering type.

B U I L D I N G W E B A P P L I C A T I O N S172

B U I L D I N G W E B A P P L I C A T I O N S 173

View and data interactions

The following interactions are available on the chart view:

♦ Zoom in (CTRL+Mouse drag)

♦ Zoom out (Shift+Mouse drag)

♦ Scroll (Arrow keys)

♦ Pan (Secondary mouse button drag)

For details on how to configure the view interactions see The tag library.

Data interactions
You can trigger client-side or server-side actions when:

♦ Hovering a data point (also known as highlighting)

♦ Clicking a data point (also known as picking)

Client-side actions typically use the client-side JavaScript API to retrieve information on the
data involved in the interaction and transform or display additional information about it.

Server-side actions are JSF actions that typically allow you to change the server-side
configuration of the chart component, in particular the style sheet and the data source, or
to navigate from one page to another one.

For details on how to configure the data interactions see The tag library.

Data source connectivity
The Rich Web Charts component can connect to any JViews Charts data source. The server
listens to the data source modifications. When requested, the server sends the changes in
XML to the client that updates its display accordingly. The client queries data updates either
at regular intervals, or on request.

The data source to connect to can be specified:

♦ by a project file generated with the Designer,

♦ by an instance of an IlvDataSource, referenced by a managed bean property.

For details on how to define the data source to connect to, see The chart tag.

Stylable components
The Rich Web Charts component can be configured with JViews Charts style sheets. For
details on how to specify the style sheet, see The chart tag.

The current version of the Rich Web Charts component has some limitations in its feature
set and consequently some of the CSS properties and selectors are not supported.

For more details see Styling.

B U I L D I N G W E B A P P L I C A T I O N S174

JViews Swing Charts and Rich Web Charts - features comparison

This section compares the features between JViews Swing Charts and Rich Web Charts
components. The following table lists the features that are available from JViews Swing
Charts when you use the Rich Web Charts component.

The feature list is based on the information provided in the section Basic Concepts in
Introducing JViews Charts.

Rich Web ChartsJViews Swing ChartsFeature

2D2D, 3DDisplays

SVG-based RenderersJava2D-based RenderersData Display

IlvDataSourceIlvDataSourceData Model

CartesianCartesian, Radar, Polar, PieType

Polyline, Bar, Scatter, ComboPolyline, Bar, Area, Bubble, High Low, Scatter,
Stair, Combo, Treemap

Representation

AvailableAvailableArea

HTML Tags in the JSP pageSwing Components in the Chart ComponentHeader/Footer

One abscissa and one ordinateOne abscissa, one or several ordinateAxis

RectangularRectangular, CircularScale

AvailableAvailableGrid

AvailableAvailableLegend

Data IndicatorsData Indicators, Annotations, Labels, ImagesDecoration

AvailableAvailableDrawing Order

Zoom, X/Y Scroll, Pan,
Highlight-Point, Information-View,
Pick Data Points

Zoom, X/Y Scroll, Pan, Highlight-Point,
Information-View, Pick Data Points,Local Pan,
Local Reshape, Local Zoom, Edit-Point, Action

Interactors

For details on the exact supported features set, refer to Styling.

B U I L D I N G W E B A P P L I C A T I O N S 175

Requirements

This section contains the requirements necessary to use the Rich Web Charts component.

Client
The Rich Web Charts component requires on the client an HTTP 1.1 user agent that is able
to interpret HTML 4.0 and SVG 1.0 or higher. The user agent must support embed tag to
include SVG and provides Ajax functionalities through an XMLHttpRequest object.

The Rich Web Charts component is supported on the following user agents:

♦ Internet Explorer 6.0 or 7.0 with Adobe™ SVG Viewer 3.x

♦ Firefox 2.0 or 3.0

Server
The Rich Web Charts component is based on Servlets and JavaServer Faces technologies
and requires an HTTP 1.1 Web Application Server that supports Servlet version 2.3 and JSF
version 1.1 or later.

The Rich Web Charts component is supported on all servers that fulfill the above
requirements, it has been tested and is working with the following JSF implementations:

♦ Sun JSF 1.1 Reference Implementation

♦ Sun JSF 1.2 Reference Implementation

♦ MyFaces 1.1.5

Proxy
The Rich Web Charts component requires the use of HTTP 1.1, and will thus support only
HTTP 1.1 proxies.

B U I L D I N G W E B A P P L I C A T I O N S176

Architecture overview

Provides an overview of the architecture of a Rich Web Charts application.

In this section

Introduction
Explains the organization of a Rich Web Charts application.

Run-time process flow
Identifies the actions performed by the Web client at run time.

Main classes
Identifies the main classes involved on the Web server and Web client.

B U I L D I N G W E B A P P L I C A T I O N S 177

Introduction

A Rich Web Charts application is organized according to a two-tier or three-tier approach
and is composed as follows:

♦ the Web client, which stores the chart data, performs all the graphical rendering and
handles user interactions,

♦ the Web container, which provides the Web client with a dynamic SVG document
configured from JSP tags and a style sheet. It also provides the client with the chart data
from an IlvDataSource,

♦ optionally a back-end, which provides the contents of the data source to the
IlvDataSource.

Rich Web Charts application shows the different elements of a Rich Web Charts application:

Rich Web Charts application

B U I L D I N G W E B A P P L I C A T I O N S178

The Web container holds the definition of the Rich Web Charts application:

♦ myStyle.css is an IBM® ILOG® JViews Charts style sheet.

♦ myDataSource is an IlvDataSource, that may optionally retrieve its contents from an
external data source.

♦ myChart.jsp is a JSP page containing a chart tag that references myStyle.css and
myDataSource.

The Web container also contains the following servlets:

♦ Faces Servlet – implementing the JSF specifications, it renders the JSP pages as HTML,
SVG and JavaScript and handles the server-side actions.

♦ Cache Servlet – is an internal cache required to workaround Web client specific issues.
It provides the Web client with a dynamic SVG document.

♦ Resource Servlet – provides the Web client with server-side resources such as JavaScript
code.

♦ Data Servlet – maintains an history of data source changes. It handles client requests for
data and data updates.

B U I L D I N G W E B A P P L I C A T I O N S 179

Run-time process flow

At run time, the Web client performs the following actions:

♦ Accesses the JSP page that contains the chart . In response, the server:

● builds the HTML page that is returned to the client,

● renders the chart tags and the style sheet as an SVG document enriched with JavaScript
code. This document is then passed to the Cache Servlet for future retrievals made by
the client.

♦ Retrieves the SVG document from the Cache Servlet and the JavaScript resources

from the Resource Servlet .

♦ Renders the chart component and starts handling user interactions.

♦ Retrieves the data source contents from the Data Servlet and renders the data in
SVG. This is performed asynchronously.

From now on, the Web client:

♦ Periodically retrieves the data source changes from the Data Servlet and renders
the changes in SVG. This is performed asynchronously.

♦ Handles user interaction with the chart view and updates the view - with no round-trip
to the server.

♦ Handles user interactions with the chart data.

Regarding interactions with chart data:Note:

♦ Client-side actions are performed locally.

♦ Server-side actions are performed according to the JSF specifications, submitting
the HTML form. This can either be done synchronously following the whole JSF
lifecycle or asynchronously using an Ajax submit if the submitted action does not
require any JSF component to re-render.

B U I L D I N G W E B A P P L I C A T I O N S180

Main classes

Class diagram shows the main classes involved on the Web server and Web client.

Class diagram

On the Web server:

♦ IlvRWChart is the JSF UI Component that describes the chart. It is rendered into an SVG
document.

♦ IlvDataSource contains the data model used by the chart. It is replicated on the Web
client side.

On the Web client:

♦ IlvDataSource contains the data model used by the chart. It is a replication of the
server-side IlvDataSource.

♦ IlvChart is the view part of the chart component. It renders the data model in the SVG
document and handles the user interactions.

For more information on the client-side classes, see Client-side API. For more information
on the server-side classes, see Server-side API.

B U I L D I N G W E B A P P L I C A T I O N S 181

B U I L D I N G W E B A P P L I C A T I O N S182

Getting started

This section provides a walkthrough of the basic steps required to create and deploy a Rich
Web Charts application.

In this section

Creating a JViews Charts project with the Designer
Presents an overview of how to use the Designer to create a JViews Chart project.

Creating a JSP page using Rich Web Charts
Presents an overview of how to create a JSP page using Rich Web Charts.

Setting up a data source
Presents an overview of the use of IlvDataSource for data.

Defining client and server-side actions in response to user interactions
Presents an overview of how to define client and server-side actions to execute in response
to events.

Configuring the client update interval
Presents an overview of the configuration of the client update interval.

Deploying the Web application
Presents an overview of the configuration of the Web application deployment.

B U I L D I N G W E B A P P L I C A T I O N S 183

Creating a JViews Charts project with the Designer

By using the Designer, you can define the styling and the data connection of your chart in
a JViews Charts project (see Using the Designer). When you save the project you get a project
file (with the .icpr extension) and a style sheet file (with the .css extension). These files
are used in the next step to configure the Rich Web Charts component.

The Rich Web Charts component supports a subset of the features available in the Designer.
For more details, see Styling.

B U I L D I N G W E B A P P L I C A T I O N S184

Creating a JSP page using Rich Web Charts

Use a Web application development environment to create a JSP page. The page may mix
one or more Rich Web Charts components with other third party JSF components.

The chart tag defines an area where a chart component is rendered along with the styling
and data source to use. It may reference the project file previously created, as follows:

?request=image&format=PNG&width=400&height=300&action=LegendVisibili
tyAction(true)
<jvrc:chart width="450px" height="300px" value="project.icpr"/>

For more details on how to add a chart component in a JSP page, see Add a Rich Web Charts
to a JSP page.

You can use optional interactors tags to customize the view interactions, such as zooming,
scrolling and panning. For details on how to use these tags, see Set up interactions.

B U I L D I N G W E B A P P L I C A T I O N S 185

Setting up a data source

Optionally, instead of getting its data connection information from a Designer project file,
the Rich Web Charts component can be configured to access an instance of IlvDataSource.
You can use this option in one of the following cases:

♦ you need more flexibility to define where data is queried,

♦ you need other components of the JSP page to access the data source, to modify its
contents,

♦ you use a custom IlvDataSource.

In these cases, the instance of IlvDataSource must be provided through a server-side
managed bean property and bound to the jvrc:chart tag, as follows:

<jvrc:chart width="450px" height="300px"
value="#{myServerSideBean.dataSource}"

For more details on how to reference an IlvDataSource, see Add a Rich Web Charts to a
JSP page.

For more details on the data source API, see Data source.

B U I L D I N G W E B A P P L I C A T I O N S186

Defining client and server-side actions in response to user interactions

The highlightInteractor and pickInteractor tags fire events when the user respectively
goes over a data point or selects it. In response to these events, you can define client-side
actions that will be executed.

Additionally, with the jvrc:pickInteractor tag you can register JSF server-side actions to
be executed in the JSF lifecycle.

For more details, see Trigger a client-side action when picking a data point and Trigger a
server-side action when picking a data point.

B U I L D I N G W E B A P P L I C A T I O N S 187

Configuring the client update interval

The data source contents may change at run time. In this case, you must:

1. define the client update interval and set the corresponding attribute in the chart tag,

2. set the server configuration accordingly.

For more details, see Configure the update interval and Configuring the data source
replication.

B U I L D I N G W E B A P P L I C A T I O N S188

Deploying the Web application

You need to configure the deployment of the Web application to:

♦ register the Rich Web Charts Servlets,

♦ declare the managed beans, if any,

♦ set up other server configuration parameters.

For more details on how to set up the Web application deployment descriptor for the Rich
Web Charts, see Server configuration.

Now the application is ready to be deployed and accessed from an HTML/SVG user agent.

B U I L D I N G W E B A P P L I C A T I O N S 189

B U I L D I N G W E B A P P L I C A T I O N S190

How to...

This section shows you how to use more of the features of the Rich Web Charts application.

In this section

Add a Rich Web Charts to a JSP page
Describes how to add a Rich Web Charts component to a JSP page.

Configure the update interval
Describes how to configure the update interval.

Set up interactions
Describes how to add a new interaction.

Change the style sheet at run time
Describes how to change the style sheet used by the Rich Web Charts component at run
time.

Update Chart data without refreshing the whole HTML page
Describes how to update data while avoiding a refresh of the full HTML page.

Change the color of the data point under the mouse
Describes how to change the color of a data point under the mouse pointer.

Trigger a client-side action when picking a data point
Describes how to trigger a client-side action when picking a data point by installing a pick
interactor on your Rich Webs Charts component.

B U I L D I N G W E B A P P L I C A T I O N S 191

Trigger a server-side action when picking a data point
Describes how to trigger a server-side action when picking a data point by installing a pick
interactor on your Rich Webs Charts component.

B U I L D I N G W E B A P P L I C A T I O N S192

Add a Rich Web Charts to a JSP page

The RichWeb Charts component is available as a JSF component and thus can be used inside
a JSP page.

For example, if you have the following JSP page using JSF:

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<html>
<body>
<f:view>
<h:form id="form">
<h:commandButton value="Submit"

action="#{myServerSideBean.performAction}">
</h:form>

</f:view>
</body>

</html>

you can add a Rich Web Charts component by doing the following:

1. include the following Tag Library import statement at the top of the JSP file:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-chart-faces-rwc.tld"
prefix="jvrc"%>

2. add a chart tag inside the h:form tag:

<jvrc:chart id="thechart" width="450px" height="300px"
value="project.icpr"/>

The HTML page generated from this JSP page will contain the chart described by the
project.icpr file displayed as SVG.. The chart will be displayed in an area that is 450 pixel
wide by 300 pixel tall.

Alternatively, the value attribute can reference an instance of IlvDataSource available on
the server-side Bean as follows:

<jvrc:chart id="thechart" width="450px" height="300px"
value="#{myServerSideBean.dataSource}"
stylesheet="style.css"/>

As you can see, the JViews Charts style sheet used to style the chart is specified in a
stylesheet attribute.

For the detailed description of the attributes on the jvrc:chart tag, see The tag library.

B U I L D I N G W E B A P P L I C A T I O N S 193

Configure the update interval

In case the IlvDataSource (either referenced directly by the value attribute or through an
.icpr project) values on the Web server are regularly updated, you may want that your Rich
Web Charts application automatically displays the new values.

For that, you have to add an updateInterval attribute on the chart tag specifying the time
in seconds the client has to wait between two requests sent to the server to update data.
For more details on the updateInterval attribute, see The tag library.

In order to obtain the best performances, check the server configuration to fit the update
interval on the Web client. For more details, see Configuring the data source replication.

B U I L D I N G W E B A P P L I C A T I O N S194

Set up interactions

As illustrated in the section The tag library, several interactors are available on the chart
tag.

If you want to provide a new interaction, you need to add the corresponding tag as a child
of your jvrc:chart tag, as follows:

<jvrc:chart id="thechart" width="450px" height="300px"
value="project.icpr">

<jvrc:zoomInteractor/>
</jvrc:chart>

The zoomInteractor tag allows the user to zoom in or out the chart area.

The same procedure can be followed for other interactors. If there is a conflict between two
interactors, the last interactor defined will take precedence.

In any case, interactors defined in the JSP page take precedence over interactors defined
in the style sheet associated with the chart tag.

B U I L D I N G W E B A P P L I C A T I O N S 195

Change the style sheet at run time

To change the style sheet used by the Rich Web Charts component at run time, you can
simply rely on the JSF mechanism by using a chart tag configured as follows:

<jvrc:chart id="thechart" width="450px" height="300px"
value="#{myServerSideBean.dataSource}"
stylesheet="#{myServerSideBean.stylesheet}"/>

The server-side Bean would look like the following:

public class MyServerSideBean {
private String stylesheet;

public String getStylesheet() {
return stylesheet;

}

public void setStylesheet(String sheet) {
stylesheet = sheet;

}
}

In the JSF framework, such a server-side Bean can be registered as a managed bean in the
faces-config.xml file of your application as follows:

<managed-bean>
<description>myServerSideBean</description>
<managed-bean-name>myServerSideBean</managed-bean-name>
<managed-bean-class>mypackage.MyServerSideBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

On the JSP page, you can use a JSF combo-box component to change the style sheet so that
the new style is reflected on the chart component:

<h:selectOneMenu value="#{myServerSideBean.stylesheet}">
<f:selectItem itemLabel="css 1"

itemValue="/data/stylesheet1.css" />
<f:selectItem itemLabel="css 2"

itemValue="/data/stylesheet2.css" />
</h:selectOneMenu>

When the page is submitted, the JSF combo-box updates the style sheet property of the
Bean. During the rendering process, the chart component will use the updated value of this
property.

B U I L D I N G W E B A P P L I C A T I O N S196

Update Chart data without refreshing the whole HTML page

In Change the style sheet at run time we have seen how to change a parameter of the Chart
using JSF. However, in some cases you may want to avoid going through the whole JSF
lifecycle and prevent the refresh of the whole HTML page.

Since chart data is provided by a separate Servlet (see Architecture overview), it is possible
to avoid the full refresh when a JSF action modifies the contents of the IlvDataSource
instance on the server. For example, this is the case when you use the updateInterval
attribute on chart tag. However, this automatic refresh does not respond to a client request
and no new information can be sent from the client to the server during that process.

When you want to send information from the client to the server, asynchronously and without
refreshing the whole HTML page, you have to use the JSF framework by submitting the
information using an Ajax methodology instead of the regular JSF submit.

For example, if you want to tell the server to add a new IlvDataSet to the displayed
IlvDataSource and then update the client representation, you can proceed as follows:

Have in the JSP page a JSF component that allows the user to add a new data set:

<h:commandButton action="#{myServerSideBean.addDataSet}"
value="Add a Data Set "/>

with MyServerSideBean defined as follows:

public class MyServerSideBean {
private IlvDataSource dataSource = new IlvDefaultDataSource();

public IlvDataSource getDataSource() {
return dataSource;

}

void public addDataSet() {
dataSource.addDataSet(new IlvDefaultDataSet());

}
}

However, if you leave the button as-is, the form will be submitted going through the whole
lifecycle. During the lifecycle, the server-side Bean adds the IlvDataSet and the JSF will
regenerate the whole HTML page. In order to do it through an Ajax request, you must follow
these four steps:

1. Add a Faces listener to the faces-config.xml of your application. This listener handles
Ajax requests:

<lifecycle>
<phase-listener>

ilog.views.chart.rwc.faces.internal.lifecycle.IlvRWAjaxRequestHandler
</phase-listener>

</lifecycle>

B U I L D I N G W E B A P P L I C A T I O N S 197

2. Add a client-side listener to the button (that adds the data set) to submit the form
using the Ajax methodoly when the user clicks the button:

<h:commandButton …
onclick="IlvAjaxUtil.submitForm(this, updateDataSource) "/>

3. Make sure the client-side data is updated after the form has been submitted (and thus
the IlvDataSet has been added on the server):

<script>
// refresh the data of the <jvrc:chart> with the id
// 'thechart'
function updateDataSource() {

thechart.updateDataSource();
}

</script>

4. Make sure to disable the standard behavior of the button for submitting the form by
binding it to a special instance of HtmlCommandButton class that does not automatically
submit the form:

<h:commandButton …
binding="#{myServerSideBean.noSubmitButton}"/>

with MyServerSideBean getNoSubmitButton method returning an instance of
IlvFacesNoSubmitButton:

public class MyServerSideBean {
// …
private HtmlCommandButton button =

new IlvFacesNoSubmitButton();

public HtmlCommandButton getNoSubmitButton() {
return button;

}
public void setNoSubmitButton(HtmlCommandButton b) {

button = b;
}

}

This process allows the IlvDataSource instance on the server to be updated with a new
IlvDataSet on a client-side request. Then, the client side is updated with the new data,
without refreshing the whole set of components.

B U I L D I N G W E B A P P L I C A T I O N S198

Change the color of the data point under the mouse

If you need to change the color of the data point under the mouse pointer you can use a
highlightInteractor tag, as follows:

<jvrc:highlightInteractor style="fill:red"/>

This allows you to set the primary color of the data point under the mouse pointer to red
when going over it. To set the secondary color you can use the stroke property instead or
in conjunction with the fill property.

The style attribute accepts the following SVG properties: fill, stroke, fill-opacity,
stroke-opacity, stroke-width and all properties that allow you to configure the stroke.

For information on other highlightInteractor tag attributes, see The tag library.

B U I L D I N G W E B A P P L I C A T I O N S 199

Trigger a client-side action when picking a data point

To trigger a client-side action when picking a data point, you need to install a pick interactor
on your Rich Web Charts component.

<jvrc:chart id="thechart" width="450px" height="300px"
value="project.icpr">

<jvrc:pickInteractor
onpick="alert(pickedPoint.getXData()+' '

+pickedPoint.getYData())"/>
</jvrc:chart>

In the onpick event handler, the pickedPoint object is available to get information on the
picked point.

See Client-side API for more details on the API available for client-side event handlers.

B U I L D I N G W E B A P P L I C A T I O N S200

Trigger a server-side action when picking a data point

To trigger a server-side action when picking a data point, you need to install a pick interactor
on your Rich Web Charts component.

<jvrc:chart id="thechart" width="450px" height="300px"
value="project.icpr">

<jvrc:pickInteractor
actionListener="#{myServerSideBean.actionPerformed}"/>

</jvrc:chart>

The actionPerformed is a method of myServerSideBean that takes as parameter an
RWChartInteractionEvent instance.

The following code sample shows an example of the actionPerformed method:

public void actionPerformed(RWChartInteractionEvent event) {
IlvDataSetPoint point = event.getPoint();
IlvDataSet dataSet = point.getDataSet();
IlvDataSource dataSource = event.getChart().getDataSource();
// Some action

}

Alternatively, the listening method can take javax.faces.event.ActionEvent type as
parameter in order to be shared with other JSF components. For example:

public void actionPerformed(ActionEvent event) {
// does some action common to all components
if (event instanceof RWChartInteractionEvent) {
RWChartInteractionEvent evt = (RWChartInteractionEvent)event;
// does some additional action for Chart

}
}

The server-side actions set above will be triggered during a full JSF lifecycle request, leading
to the full refresh of the HTML page. If the server-side action does not need to refresh the
client directly, you can perform the server-side action using the Ajax methodology instead
of the regular JSF submit. To do this, proceed as follows:

1. Add a client-side action that will be in charge of submitting the action to the server
in an asynchronous manner:

<jvr:pickInteractor … onpick="IlvAjaxUtil.submitForm(this, oncompleted)
"/>

The oncompleted parmeter is optional. This can be a function in charge of doing some
client-side actions when the server-side action is executed (see Update Chart data
without refreshing the whole HTML page).

B U I L D I N G W E B A P P L I C A T I O N S 201

2. Add a Faces listener to the faces-config.xml file of your application. This listener
handles Ajax requests:

<lifecycle>
<phase-listener>

ilog.views.chart.rwc.faces.internal.lifecycle.IlvRWAjaxRequestHandler
</phase-listener>

</lifecycle>

Server-side Ajax actions can also be fired when moving the mouse cursor over the
chart by using the same methodology on the highlightInteractor.

For information on other pickInteractor tag attributes see The tag library.

B U I L D I N G W E B A P P L I C A T I O N S202

The tag library

Describes the JSP tag library of the Rich Webs Charts component.

In this section

Introduction
Introduces the JSP tag library.

The chart tag
Describes the attributes and default values of the chart tag.

The highlightInteractor tag
Describes the attributes and default values of the highlightInteractor tag.

The infoViewInteractor tag
Describes the attributes and default values of the infoViewInteractor tag.

The panInteractor tag
Describes the attributes and default values of the panInteractor tag.

The pickInteractor tag
Describes the attributes and default values of the pickInteractor tag.

The xScrollInteractor tag
Describes the xScrollInteractor tag.

The yScrollInteractor tag
Describes the yScrollInteractor tag.

B U I L D I N G W E B A P P L I C A T I O N S 203

The zoomInteractor tag
Describes the attributes and default values of the zoomInteractor tag.

B U I L D I N G W E B A P P L I C A T I O N S204

Introduction

The Rich Web Charts component consists in a JSP tag library. If you want to use this tag
library in your page, you need to insert the following code:

<%@ taglib uri="http://www.ilog.com/jviews/tlds/jviews-chart-faces-rwc.tld"
prefix="jvrc" %>

Note that jvrc is the declared prefix. If you want to use a tag of this library in the JSP page,
you must prefix it by jvrc:

Using a tag of the declared tag library with the prefix jvrc

<jvrc:chart [...] />

Rich Web Charts tag hierarchy

f:actionListener is a tag of the JavaServer Faces reference implementation.Note:

In the following pages you are going to find more detailed information about the Rich Web
Charts tags:

♦ The chart tag

B U I L D I N G W E B A P P L I C A T I O N S 205

♦ The highlightInteractor tag

♦ The infoViewInteractor tag

♦ The panInteractor tag

♦ The pickInteractor tag

♦ The xScrollInteractor tag

♦ The yScrollInteractor tag

♦ The zoomInteractor tag

B U I L D I N G W E B A P P L I C A T I O N S206

The chart tag

This tag declares a chart which is using SVG to render itself inside an HTML page. Interactors
can be registered as subtags to allow interactions on this chart.

Default valueRequiredName

Not applicableYesheight

Not applicableYeswidth

trueNokeepVisibleWindow

nullNostylesheet

0NoupdateInterval

Not applicableYesvalue

DEFAULT_RESIZING_POLICYNoresizingPolicy

height
Specifies the height of the chart. The value can be postfixed by a CSS unit.

Typical height attribute uses

<jvrc:chart height="300" [...] />
<jvrc:chart height="300px" [...] />
<jvrc:chart height="100%" [...] />

This attribute is required.

width
Specifies the width of the chart. The value can be postfixed by CSS unit.

Typical width attribute uses

<jvrc:chart width="300" [...] />
<jvrc:chart width="300px" [...] />
<jvrc:chart width="100%" [...] />

This attribute is required.

keepVisibleWindow
Specifies whether the visible window should be reused by the client when a new JSF request
occurs. The default value is true. When a JavaServer Faces request is issued, for example
when a server-side action is triggered, the current visible window is sent to the server. When
this attribute is set to true, this visible window is sent back to the client to retrieve the same

B U I L D I N G W E B A P P L I C A T I O N S 207

view state before the request. In some cases, for example when the data source has changed,
the visible windowmust not be sent back to the client. In this case, set the attribute to false.

A more flexible method consists in binding this property to a Bean property to dynamically
change its value.

Bind the keepVisibleWindow property

<jvrc:chart [...] keepVisibleWindow="#{bean.keepVisibleWindow}" />

stylesheet
Specifies the URL to a chart style sheet. If the value attribute contains a URL to a Designer
project that already defines a style sheet, the style sheet specified by this attribute will
override the style sheet specified in the project.

If the value attribute contains a binding to an IlvDataSource instance, the stylesheet
attribute must be set otherwise the chart uses the default styling.

updateInterval
Specifies the interval in seconds between two data update requests sent to the server. When
the value is 0, it means that only the initial data request will be made. The default value is
0.

value
Specifies the URL to a Designer project or a value expression to an IlvDataSource instance.

Using a Charts Designer project

<jvrc:chart [...] value="data/chart.icpr" />

As you can see in Using a Charts Designer project, the chart uses the data source and the
style sheet specified in the project.

Using an IlvDataSource instance

<jvrc:chart [...] value="#{bean.datasource}" />

The chart uses the specified data source. Use the stylesheet attribute to specify a style sheet
for the chart. bean is a JavaServer Faces managed bean and datasource a property of this
bean of type IlvDataSource.

This attribute is required.

resizingPolicy
Allows you to specify which resizing policy will be used on the chart when the browser
window is resized and the chart size depends on the browser window (specified with
percentages, see the description of the width attribute). The default policy
(DEFAULT_RESIZING_POLICY) is such that the visible range remains the same regardless
the size of the chart. The RANGE_RESIZING_POLICY value makes sure that when the chart

B U I L D I N G W E B A P P L I C A T I O N S208

is resized the visible range is reduced accordingly. This is valid if the chart is not in
autoVisibleRange mode (see Axis properties).

This attribute is not required.

B U I L D I N G W E B A P P L I C A T I O N S 209

The highlightInteractor tag

This tag declares an interactor that fires client or serve-side actions when the mouse cursor
is over a point. For client-side actions, the JavaScript code contained in the onhighlight
attribute will be called when the mouse is over a data point according to the mode set in
the highlighMode attribute. For server-side actions configured using the action or
actionListener attributes, only asynchronous submissions are supported to avoid blocking
user interactions. Refer to Trigger a server-side action when picking a data point to see how
to perform an asynchronous server-side action.

Default valueRequiredName

nullNoaction

nullNoactionListener

falseNoimmediate

HIGHLIGHT_POINTNohighlightMode

nullNomarker

nullNoonhighlight

NEARESTPOINT_PICKINGNopickingMode

nullNostyle

action
Method binding representing the application action to invoke when this component is
activated by the user. The expression must evaluate to a public method that takes no
parameters and returns a String (the logical outcome) which is passed to the navigation
handler for this application.

actionListener
Method binding representing an action listener method that will be notified when this
component is activated by the user.

The expression must evaluate to a public method that takes an javax.faces.event.
ActionEvent parameter, with a return type of void.

immediate
This flag indicates that if this component is activated by the user, notifications should be
delivered immediately to the interested listeners and actions, that is, during the Apply
Request Values phase, rather than waiting the Invoke Application phase.

The default value is false.

B U I L D I N G W E B A P P L I C A T I O N S210

highlightMode
Set the highlight mode of this interactor.

If set to HIGHLIGHT_POINT, an event is sent whenever the mouse enters and leaves a display
point.

If set to HIGHLIGHT_SERIES, an event is sent only if the new display point does not belong
to the same data set as the previously highlighted point.

The default mode is HIGHLIGHT_POINT.

marker
The marker to be displayed on the chart data point or series when the mouse pointer is over
a data point. Valid values are CIRCLE, CROSS, DIAMOND, PLUS, TRIANGLE, SQUARE.

onhighlight
The JavaScript code executed on the client when a point is highlighted.

pickingMode
Set the picking mode of this interactor.

The picking mode defines how to retrieve the picked data point. Two modes are supported:

♦ NEARESTPOINT_PICKING: retrieves the data point closest to the picking point.

♦ ITEM_PICKING: retrieves the data point that contains the picking point.

The default mode is NEARESTPOINT_PICKING.

style
The inline SVG style applied on the client side to the chart data point or series when an
event is fired by the interactor.

Use of style attribute to highlight the point with red color

<jvrc:chart [...] >
<jvrc:highlightInteractor style="color:red" />

</jvrc:chart>

The style attribute accepts the following SVG properties: fill, stroke, fill-opacity,
stroke-opacity, stroke-width and all properties that allow you to configure the stroke.

For more details on these SVG properties, you can refer to the following URLs:

♦ http://www.w3.org/TR/SVG10/painting.html#FillProperties

♦ http://www.w3.org/TR/SVG10/painting.html#StrokeProperties

B U I L D I N G W E B A P P L I C A T I O N S 211

http://www.w3.org/TR/SVG10/painting.html#FillProperties
http://www.w3.org/TR/SVG10/painting.html#StrokeProperties

The infoViewInteractor tag

This tag declares an interactor that displays an information tooltip when the mouse pointer
is over a chart data point.

Default valueRequiredName

falseNofollowMouse

NEARESTPOINT_PICKINGNopickingMode

followMouse
Specifies whether the info view follows the mouse moves. The default value is false.

pickingMode
Set the picking mode of this interactor.

The picking mode defines how to retrieve the picked data point. Two modes are supported:

♦ NEARESTPOINT_PICKING: retrieves the data point closest to the picking point.

♦ ITEM_PICKING: retrieves the data point that contains the picking point.

The default mode is NEARESTPOINT_PICKING.

B U I L D I N G W E B A P P L I C A T I O N S212

The panInteractor tag

This tag declares an interactor to pan the chart area using the right mouse button.

Default valueRequiredName

trueNoxAxisAllowed

falseNoyAxisAllowed

xAxisAllowed
Specifies whether panning along the X-axis is allowed. The default value is true.

yAxisAllowed
Specifies whether panning along the Y-axis is allowed. The default value is false.

B U I L D I N G W E B A P P L I C A T I O N S 213

The pickInteractor tag

This tag declares an interactor that fires an event when a point is picked using the left mouse
button.

This tag declares an interactor that fires client or server-side actions when a point is picked
using the left mouse button. For client-side actions, the JavaScript code contained in the
onpick attribute will be called when a point is picked. The server-side actions configured
using the action or actionListener attributes are submitted by default in a full JSF lifecycle.
If asynchronous submission is needed, see Trigger a server-side action when picking a data
point.

Default valueRequiredName

nullNoaction

nullNoactionListener

falseNoimmediate

nullNomarker

nullNoonpick

ITEM_PICKINGNopickingMode

nullNostyle

action
Method binding representing the application action to invoke when this component is
activated by the user. The expression must evaluate to a public method that takes no
parameters and returns a String (the logical outcome) which is passed to the navigation
handler for this application.

actionListener
Method binding representing an action listener method that will be notified when this
component is activated by the user.

The expression must evaluate to a public method that takes an javax.faces.event.
ActionEvent parameter, with a return type of void.

immediate
This flag indicates that if this component is activated by the user, notifications should be
delivered immediately to the interested listeners and actions, that is, during the Apply
Request Values phase, rather than waiting the Invoke Application phase.

The default value is false.

B U I L D I N G W E B A P P L I C A T I O N S214

marker
Specifies the marker to set on the client side on the chart data point or series when an event
is fired by the interactor.

onpick
The JavaScript code executed on the client when a point is picked.

pickingMode
Set the picking mode of this interactor.

The picking mode defines how to retrieve the picked data point. Two modes are supported:

♦ NEARESTPOINT_PICKING: retrieves the data point closest to the picking point.

♦ ITEM_PICKING: retrieves the data point that contains the picking point.

The default mode is ITEM_PICKING.

style
Specifies the inline SVG style applied on the client side to the chart data point or series
when an event is fired by the interactor.

Use of style attribute to highlight the picked point with red color

<jvrc:chart [...] >
<jvrc:pickInteractor style="color:red" />

</jvrc:chart>

The style attribute accepts the following SVG properties: fill, stroke, fill-opacity,
stroke-opacity, stroke-width and all properties that allow you to configure the stroke.

For more details on these SVG properties, you can refer to the following URLs:

♦ http://www.w3.org/TR/SVG10/painting.html#FillProperties

♦ http://www.w3.org/TR/SVG10/painting.html#StrokeProperties

B U I L D I N G W E B A P P L I C A T I O N S 215

http://www.w3.org/TR/SVG10/painting.html#FillProperties
http://www.w3.org/TR/SVG10/painting.html#StrokeProperties

The xScrollInteractor tag

This tag declares an interactor that handles the scroll along the x-axis. The left-arrow key
scrolls the chart to the right. The right-arrow key scrolls the chart to the left.

B U I L D I N G W E B A P P L I C A T I O N S216

The yScrollInteractor tag

This tag declares an interactor that handles the scroll along the y-axis. The up-arrow key
scrolls the chart down. The down-arrow key scrolls the chart up.

B U I L D I N G W E B A P P L I C A T I O N S 217

The zoomInteractor tag

This tag declares an interactor to zoom in (CTRL+mouse drag) or zoom out (Shift+mouse
drag) a chart area.

Default valueRequiredName

trueNoxAxisAllowed

falseNoyAxisAllowed

trueNozoomOutAllowed

xAxisAllowed
Specifies whether zooming along the x-axis is allowed. The default value is true.

yAxisAllowed
Specifies whether zooming along the y-axis is allowed. The default value is false.

zoomOutAllowed
Specifies whether zooming out is allowed. The default value is true.

B U I L D I N G W E B A P P L I C A T I O N S218

Client-side API

In response to user actions on the client-side, either on the chart component or any other
JSF component, it is possible to use some JavaScript code to perform operations. For that
purpose the Rich Web Charts client provides some JavaScript objects that are available in
the scripting scope. This section identifies which objects are available for scripting, depending
on the execution context.

In this section

Globally available objects
Identifies the globally available JavaScript objects.

Objects available in onhighlight event handler
Identifies the JavaScript objects available in the onhighlight event handler.

Objects available in onpick event handler
Identifies the JavaScript objects available in the onpick event handler.

B U I L D I N G W E B A P P L I C A T I O N S 219

Globally available objects

For each chart tag in the JSP page, a corresponding JavaScript variable of type IlvChart
is created. This variable takes the name of the value of the id attribute.

The variable is defined and available before the onload event is fired.

For example, if you have:

<jvrc:chart id="thechart" … />

you can access the IlvChart instance as follows:

thechart.scroll(10, 0);

In this particular example, you ask the IlvChart instance to scroll the abscissa range by
10, which means that if that axis was previously ranging from 0 to 20, it is now ranging from
10 to 30.

The IlvChart instance allows you to scroll, zoom in/out the area, ask for an update of the
chart data.

Globally available objects on the client side

B U I L D I N G W E B A P P L I C A T I O N S220

Objects available in onhighlight event handler

The following variables are available in the context of the onhighlight event handler of the
highlightInteractor tag:

DescriptionTypeVariable name

The data point whose highlight state was modified.IlvDataSetPointhighlightedPoint

The new data point highlight state.BooleanisHighlighted

The SVG event at the origin of the action.UIEventevt

The following example shows how to display a dialog box with the y value of the data point
under the mouse pointer:

<jvrc:highlightInteractor
onhighlight="if (isHighlighted)

alert(highlihlightedPoint.getYDate())"/>

B U I L D I N G W E B A P P L I C A T I O N S 221

Objects available in onpick event handler

The following variables are available in the context of the onpick event handler of the
pickInteractor tag:

DescriptionTypeVariable name

The data point that was picked.IlvDataSetPointpickedPoint

The SVG event at the origin of the action.UIEventevt

B U I L D I N G W E B A P P L I C A T I O N S222

Server-side API

This section lists the APIs that are available and relevant when developing managed beans,
listeners or data sources on the server side for a Rich Web Charts component.

In this section

JSF UI components
Lists the JSF tags and the corresponding JSF UI components.

RWChartInteractionEvent
Describes the RWCChartInteractionEvent class.

Data source
Describes the server-side data source for a chart.

B U I L D I N G W E B A P P L I C A T I O N S 223

JSF UI components

The following table lists the JSF tags and the corresponding JSF UI Components.

B U I L D I N G W E B A P P L I C A T I O N S224

UI componentJSF tag

IlvRWChartchart

IlvRWChartHighLightInteractorhighlightInteractor

IlvRWChartInfoViewInteractorinfoViewInteractor

IlvRWChartPanInteractorpanInteractor

IlvRWChartPickInteractorpickInteractor

IlvRWChartXScrollInteractorxScrollInteractor

IlvRWChartYScrollInteractoryScrollInteractor

IlvRWChartZoomInteractorzoomInteractor

B U I L D I N G W E B A P P L I C A T I O N S 225

JSF UI components relationships

B U I L D I N G W E B A P P L I C A T I O N S226

RWChartInteractionEvent

RWChartInteractionEvent is a subclass of javax.faces.event.ActionEvent. It provides
the data set point involved in the interaction.

This event is delivered to an ActionListener or a RWChartInteractionListener registered
with a pickInteractor tag.

For an example of how to use such an event, see Trigger a server-side action when picking
a data point.

B U I L D I N G W E B A P P L I C A T I O N S 227

Data source

The server-side data source for a chart may be any instance of IlvDataSource. It may be
created automatically from the information contained in a project file of the Designer, or
you may instantiate it in a managed bean and reference it on the chart tag.

You will find more information on data sources in:

♦ Data model in Introducing JViews Charts

♦ Using the Data Model in Developing with the SDK

For an example of how to retrieve the data source into a RWChartInteractionListener, see
Trigger a server-side action when picking a data point.

B U I L D I N G W E B A P P L I C A T I O N S228

Server configuration

In this section you will learn how to configure the Rich Web Charts server.

In this section

Configuring the servlets
In this section you will learn how to configure the servlets required for the execution of a
Web application using Rich Web Charts.

Configuring the data source replication
In a Rich Web Charts application the chart data source is replicated from the server to the
clients. In this section, you will learn what the replication mechanism consists of, how to
configure it, and how its configuration relates to the update interval of the client.

B U I L D I N G W E B A P P L I C A T I O N S 229

B U I L D I N G W E B A P P L I C A T I O N S230

Configuring the servlets

In this section you will learn how to configure the servlets required for the execution of a
Web application using Rich Web Charts.

In this section

Introduction
Describes the requirements to configure the servlets required for the execution of a Web
application using Rich Web Charts.

Cache servlet
Describes the steps to configure the cache servlet.

Data servlet
Describes how to configure the data servlet.

Resource servlet
Describes how to configure the resource servlet.

B U I L D I N G W E B A P P L I C A T I O N S 231

Introduction

In this section you will learn how to configure the servlets required for the execution of a
Web application using Rich Web Charts. These settings are specified in the file web.xml
which is the deployment descriptor for the Web application.

For a complete example, see <installdir>/jviews-charts86/samples/rwc-chart-stock/
web.xml.

The following servlets are required:

♦ JavaServer Faces implementation servlet

♦ Rich Web Charts cache servlet

♦ Rich Web Charts data servlet

♦ Rich Web Charts resource servlet

The configuration of the JavaServer Faces servlet is not covered in this document. Please
consult the documentation for the implementation you are currently using.

In addition to the servlets, the following initialization parameters must be set in the Web
deployment descriptor:

DescriptionMandatoryName

The mapping path for the cache servlet.Yesilog.views.chart.rwc.
CACHE_SERVLET_MAPPING

The mapping path for the data servlet.Yeslog.views.chart.rwc.
DATA_SERVLET_MAPPING

The mapping path for the resource
servlet.

Yesilog.views.chart.rwc.
RESOURCE_SERVLET_MAPPING

B U I L D I N G W E B A P P L I C A T I O N S232

Cache servlet

To configure the cache servlet, go through the following steps:

1. Declare the servlet.

<servlet>
<servlet-name>Cache Servlet</servlet-name>
<servlet-class>
ilog.views.chart.rwc.faces.internal.servlet.IlvRWCacheServlet

</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

2. Define the URL mapping for the servlet.

The URL-pattern must be reflected in the mapping path for the servlet, as described
in the next step.

<servlet-mapping>
<servlet-name>Cache Servlet</servlet-name>
<url-pattern>/cache/*</url-pattern>

</servlet-mapping>

3. Set the mapping path for the servlet.

The servlet mapping path must match the URL mapping defined for the servlet. For
example, if the URL mapping is /cache/*, you must set the corresponding servlet
mapping to: cache.

Example:

<context-param>
<param-name>ilog.views.chart.rwc.CACHE_SERVLET_MAPPING</param-name>
<param-value>cache</param-value>

</context-param>

B U I L D I N G W E B A P P L I C A T I O N S 233

Data servlet

To configure the data servlet, follow the same procedure as described in Cache servlet.

Example:

<servlet>
<servlet-name>Data Servlet</servlet-name>
<servlet-class>
ilog.views.chart.rwc.data.IlvDataServlet

</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Data Servlet</servlet-name>
<url-pattern>/data/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>ilog.views.chart.rwc.DATA_SERVLET_MAPPING</param-name>
<param-value>data</param-value>

</context-param>

B U I L D I N G W E B A P P L I C A T I O N S234

Resource servlet

To configure the data servlet, follow the same procedure as described in Cache servlet.

Example:

<servlet>
<servlet-name>Resource Servlet</servlet-name>
<servlet-class>
ilog.views.chart.rwc.resource.IlvResourceServlet

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Resource Servlet</servlet-name>
<url-pattern>/resource/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>
ilog.views.chart.rwc.RESOURCE_SERVLET_MAPPING

</param-name>
<param-value>resource</param-value>

</context-param>

B U I L D I N G W E B A P P L I C A T I O N S 235

B U I L D I N G W E B A P P L I C A T I O N S236

Configuring the data source replication

In a Rich Web Charts application the chart data source is replicated from the server to the
clients. In this section, you will learn what the replication mechanism consists of, how to
configure it, and how its configuration relates to the update interval of the client.

In this section

Purging the history of events
Identifies the conditions under which the history of events in a data source is purged.

Setting the parameters of the data source replication
Describes different scenarios for adjusting the parameters of the data source replication.

B U I L D I N G W E B A P P L I C A T I O N S 237

Purging the history of events

For each Rich Web Charts component used in an application, the server maintains a history
of the events that occurred in the data source associated with the chart component. This
history is used to provide the data changes that occurred between two client updates:

♦ The first time the client connects to the server it retrieves the content from the data
source.

♦ Each time it connects afterwards, the client retrieves the changes that occurred in the
data source since the last connection.

To prevent the history from consuming excessive server resources, a purge mechanism is
made available. You can control the purge mechanism by using the following parameters:

Default valueDescriptionMandatoryName

600000ms, that
is: 10 minutes

Defines a purge condition,
that is checked to true when

Noilog.views.chart.rwc.
EVENT_AGE_THRESHOLD

the history contains events
older than this limit.The value
is in milliseconds.

2000Defines a purge condition,
that is checked to true when

Noilog.views.chart.rwc.
EVENT_COUNT_THRESHOLD

the number of events in the
history exceeds this limit.

60000ms, that is:
1 minute

The minimum amount of time
between successive

Noilog.views.chart.rwc.
PURGE_INTERVAL

verifications of the purge
conditions. The value is in
milliseconds.

The purge is performed whenever one of the above conditions is true. The purge removes
the oldest events that exceed the most constraining threshold.

B U I L D I N G W E B A P P L I C A T I O N S238

Setting the parameters of the data source replication

The parameters of the data source replication are Web application initialization parameters
that are defined in the web.xml file which is the Web deployment descriptor for the Web
application.

These parameters must be adjusted according to the client update interval and the rate of
updates of the data source.

You are going to see how to set the parameters of the data source replication in three
different cases:

Case 1: General
In the general case, proceed as follows:

1. Specify the update interval of the clients: updateInterval. This is the same value that
you use for the updateInterval attribute of the JSF tag chart.

To ensure that the server holds enough data, the history must store at least the changes
for twice the duration of the update interval:

2. The event age threshold must be at least 2 * updateInterval. You may want to choose
higher values to be more tolerant with the client ability to connect to the server.

3. Determine the maximum number of updates of the data source that could occur during
2*updateInterval: this is the minimum value for the event count threshold.

The purge interval allows you to control howmuch the history may exceed the thresholds.

4. Set the purge interval to 20% of the update interval. This value allows the history to
exceed the thresholds by 10%.

Example:

For an application that uses a single chart, with an update interval of 2 minutes, and a data
source that can have a maximum of 100 updates per minute, you should use the following
parameter values in the Web deployment descriptor:

[...]
<context-param>
<!-- The event age threshold should allow for twice

the update interval: 2*2 minutes.
That is: 240000 ms. -->

<param-name>ilog.views.chart.rwc. EVENT_AGE_THRESHOLD</param-name>
<param-value>240000</param-value>

</context-param>
<context-param>
<!-- The event count threshold should hold the maximum number

of updates during twice the update interval:
(2*2 minutes) * (100 updates/minute) = 400. -->

<param-name>ilog.views.chart.rwc.EVENT_COUNT_THRESHOLD</param-name>
<param-value>400</param-value>

</context-param>

B U I L D I N G W E B A P P L I C A T I O N S 239

<context-param>
<!-- A purge interval that allows for 10% of threshold excess:

(2*2 minutes) * 0.10 = 0.4 minutes.
That is: 24000 ms. -->

<param-name>ilog.views.chart.rwc.PURGE_INTERVAL</param-name>
<param-value>24000</param-value>

</context-param>
[...]

Case 2: Web application with several chart components
The parameters of data source replication are shared by all chart components of a single
Web application. Hence, when using several charts in a single Web application, you should
use:

♦ the largest update interval of all charts,

♦ the largest number of updates of all data sources,

when performing the calculation of the parameters of the data source replication using the
steps listed in Case 1.

Case 3: Web application with cyclic data sets
When using a data source with a cyclic data set, each data point you add provokes a complete
update of the data set. It is more efficient to send the latest content of the data set to the
client, instead of sending each modification. To do so, you can disable the history by setting
all parameters to zero.

Example:

[...]
<!-- Disable the event history. -->
<context-param>
<param-name>ilog.views.chart.rwc.EVENT_AGE_THRESHOLD</param-name>
<param-value>0</param-value>

</context-param>
<context-param>
<param-name>ilog.views.chart.rwc.EVENT_COUNT_THRESHOLD</param-name>
<param-value>0</param-value>

</context-param>
<context-param>
<param-name>ilog.views.chart.rwc.PURGE_INTERVAL</param-name>
<param-value>0</param-value>

</context-param>
[...]

B U I L D I N G W E B A P P L I C A T I O N S240

Styling

Describes the use of cascaded style sheets to control the appearance of the Rich Web Charts.

In this section

Introduction
Introduces the use of cascaded style sheets to control the appearance of the Rich Web
Charts.

Styling the Chart component
Describes the supported CSS properties used to configure the appearance of the Rich Web
Charts component.

Styling the data series
Describes the supported CSS properties used to configure the appearance of data series in
the Rich Web Charts component.

Property values
Describes the level of support for the following types of objects which can be used as a CSS
property value: data indicator, numerical graduation type, paint, stroke, zoom interactor.

Unsupported CSS features
Lists the CSS features that are not supported.

Identifying styling issues
Describes what to do if the chart is not as you expected.

B U I L D I N G W E B A P P L I C A T I O N S 241

Introduction

The appearance of the Rich Web Charts can be controlled with cascaded style sheets (CSS).

To create a cascaded style sheet for the Rich Web Charts, you can either:

♦ re-use an existing style sheet created for the IBM® ILOG® JViews Charts component,

or

♦ author new style sheets using the Designer. See Using the Designer.

Most of the features from the IBM® ILOG® JViews Charts cascaded style sheets are
supported by the Rich Web Charts. However, a few properties and property values are not
supported. The following sections describe in detail the elements that are in the IBM®
ILOG® JViews Charts cascaded style sheet and are supported by the Rich Web Charts:

♦ Styling the Chart component

♦ Styling the data series

♦ Property values

♦ Unsupported CSS features

♦ Identifying styling issues

For information on how to reference a style sheet into a Rich Web Charts component see
Add a Rich Web Charts to a JSP page.

B U I L D I N G W E B A P P L I C A T I O N S242

Styling the Chart component

This section describes the supported CSS properties used to configure the appearance of
the RichWeb Charts component. The properties are arranged according to the CSS selectors
to which they can be applied. For each selector you will find two tables, as follows:

♦ The first table lists:

● the selector as it appears in a CSS,

● the name of the corresponding style rule as it appears in the English-localized Designer.

♦ The second table lists:

● the name of the property as it appears in a CSS file and in the Styling Properties view
of the Designer,

● the location and property name as it appears in the Styling Customizer of the
English-localized Designer,

● whether the property is supported or not.

For a description of the selectors, the properties and their effect, see Styling the Chart
Component in Developing with the SDK.

Chart general properties
Selector for the Chart general properties

Name of the style rule in the DesignerCSS selector

Options > Chart General Propertieschart

Chart general properties
SupportProperty name in the Styling

Customizer of the Designer
CSS property

No3D View > 3D3d

YesAppearance > Frame >
Anti-aliasing

antiAliasing

YesAppearance > Text > Anti-aliasingantiAliasingText

YesAppearance > Frame >
Background

background

Yes. See also PaintAppearance > Frame >
Background

backgroundPaint

NoAppearance > Frame > Borderborder

NoNot applicabledataSource

YesMenu Chart/Image Decorationdecorations

B U I L D I N G W E B A P P L I C A T I O N S 243

SupportProperty name in the Styling
Customizer of the Designer

CSS property

Instances of IlvDataIndicator
are supported. Instances of

Note:

IlvThresholdIndicator are
not supported. See Data indicator
for details on the level of support
for IlvDataIndicator.

NoNot applicabledefaultColors

NoNot applicabledynamicStyling

YesAppearance > Text > Fontfont

NoNot applicablefooter

NoFooter > Text > TextfooterText

YesAppearance > Frame >
Foreground

foreground

NoNot applicableheader

NoHeader > Text > TextheaderText

YesInteractions > Interactorsinteractors

Instances of
IlvChartHighlightInteractor,

Note:

IlvChartInfoViewInteractor,
IlvChartPanInteractor,
IlvChartPickInteractor,
IlvChartXScrollInteractor,
IlvChartYScrollInteractor,
IlvChartZoomInteractor are
supported. In the Designer these
correspond to: Highlight, InfoView,
Pan, Pick, XScroll, YScroll and Zoom.
See Zoom interactor for details on the
level of support for
IlvChartZoomInteractor.

YesPositionlegendPosition

B U I L D I N G W E B A P P L I C A T I O N S244

SupportProperty name in the Styling
Customizer of the Designer

CSS property

The following CSS property values
are supported: North_Bottom,

Note:The property is
located in the Styling

Note:

North_West, West, South_West,Customizer of the
South_Top, South_East, East,Designer when the
North_East. In the Designer these
correspond to all Docked values.

option Legend is
selected in the Style
Rules tree pane.

YesNot applicablelegendVisible

YesAppearance > Frame > Opaqueopaque

NoNot applicableoptimizedRepaint

YesAppearance > Plotting Area >
Plotting Area Background

plotAreaBackground

The property is
located in the Styling

Note:

Customizer of the
Designer when the
option Chart Area is
selected in the Style
Rules tree pane.

YesSeries Rendering > Projector
reversed

projectorReversed

YesSeries Rendering >
Representation

renderingType

The following CSS property values
are supported: BAR,

Note:

STACKED_BAR,
STACKED100_BAR,
SUPERIMPOSED_BAR,
STACKED_POLYLINE,
STACKED100_POLYLINE,
SUPERIMPOSED_POLYLINE,
SCATTER, AREA,

B U I L D I N G W E B A P P L I C A T I O N S 245

SupportProperty name in the Styling
Customizer of the Designer

CSS property

STACKED_AREA,
STACKED100_AREA, STAIR,
STACKED_STAIR,
SUMMED_STAIR,
STACKED100_STAIR, BUBBLE,
HILO, CANDLE, HLOC,
HILO_ARROW, HILO_STICK,
PIE, COMBO. In the Designer
these correspond to: Bar, Polyline,
Scatter, Area, Stair, High-Low and
Pie representations, and the
Combined representation using
the supported representations.

NoAppearance > Text > Scale when
resizing

scalingFont

YesNot applicablescrollRatio

YesNot applicableshiftScroll

YesSeries Rendering > Chart Typetype

The following CSS property values
are supported: CARTESIAN and

Note:

PIE. In the Designer these

B U I L D I N G W E B A P P L I C A T I O N S246

SupportProperty name in the Styling
Customizer of the Designer

CSS property

correspond to: Cartesian chart and
Pie chart types.

NoNot applicablevisible

Chart area
Selector for Chart area

Name of the style rule in the DesignerCSS selector

Options > Chart AreachartArea

Chart area properties
SupportProperty name in the Styling Customizer of

the Designer
CSS property

YesAppearance > Colors > Backgroundbackground

Yes. See also PaintAppearance > Colors > BackgroundbackgroundPaint

NoAppearance > Colors > Borderborder

NoNot applicablebottomMargin

YesAppearance > Plotting Area > FilledfilledPlottingArea

YesAppearance > Colors > Fontfont

YesAppearance > Colors > Foregroundforeground

NoNot applicableleftMargin

YesAppearance > Marginsmargins

YesAppearance > Colors > Opaqueopaque

Yes. See also PaintAppearance > Plotting Area > Plotting Area BackgroundplotBackground

YesNot applicableplotStyle

NoNot applicablerightMargin

Grids
Selectors for grids

Name of the style rule in the DesignerCSS selector

B U I L D I N G W E B A P P L I C A T I O N S 247

Name of the style rule in the DesignerCSS selector

Options > GridschartGrid

Options > Grids > X GridchartGrid[axisIndex="-1"]

Options > Grids > Y GridchartGrid[axisIndex="0"]

Options > Grids > X Grid#xGrid

Options > Grids > Y Grid#yGrid

Grids properties
SupportProperty name in the Styling Customizer of the

Designer
CSS property

YesAppearance > Visibility > Drawing orderdrawOrder

YesAppearance > Major lines > VisiblemajorLineVisible

Yes. See also PaintAppearance > Major lines > ColormajorPaint

Yes. See also StrokeAppearance > Major lines > StrokemajorStroke

YesAppearance > Minor lines > VisibleminorLineVisible

Yes. See also PaintAppearance > Minor lines > ColorminorPaint

Yes. See also StrokeAppearance > Minor lines > StrokeminorStroke

YesNot applicablevisible

Legend
Selector for legend

Name of the style rule in the DesignerCSS selector

Options > LegendchartLegend

Legend properties
SupportProperty name in the Styling Customizer of the

Designer
CSS property

YesAppearance > Symbol > Anti-aliasingantiAliasing

YesAppearance > Text > Anti-aliasingantiAliasingText

YesAppearance > Frame > Backgroundbackground

NoAppearance > Frame > Borderborder

NoPosition > Floatingfloating

NoPosition > FloatingfloatingLayoutDirection

NoPosition > FloatingfollowChartResize

B U I L D I N G W E B A P P L I C A T I O N S248

SupportProperty name in the Styling Customizer of the
Designer

CSS property

font YesAppearance > Text > Font

YesAppearance > Text > Colorforeground

YesAppearance > Symbol > SpacingsymbolTextSpacing

NoNot applicableinteractive

NoNot applicablelocation

NoNot applicablemovable

YesAppearance > Frame > OpaquepaintingBackground

YesAppearance > Symbol > DimensionsymbolSize

YesNot applicabletitle

YesAppearance > Frame > Backgroundtransparency

Scales
Selectors for scales

Name of the style rule in the DesignerCSS selector

Options > ScaleschartScale

Options > Scales > X ScalechartScale[axisIndex="-1"]

Options > Scales > Y ScalechartScale[axisIndex="0"]

Options > Scales > X Scale#xScale

Options > Scales > Y Scale#yScale

Scales properties
SupportProperty name in the

Styling Customizer of
the Designer

CSS property

NoNot applicableannotations

YesScale > Appearance >
Auto-crossing

autoCrossing

NoLabels > Multiline labels >
Auto wrapping

autoWrapping

Yes. See also StrokeScale > Appearance > Axis
stroke

axisStroke

YesScale > Appearance > Axis
visible

axisVisible

B U I L D I N G W E B A P P L I C A T I O N S 249

SupportProperty name in the
Styling Customizer of
the Designer

CSS property

category No

YesScale > Appearance >
Auto-crossing > Value

crossingValue

YesNot applicabledrawOrder

YesScale > Appearance > Colorforeground

NoLabels > Multiline labels >
Label alignment

labelAlignment

YesLabels > Appearance >
Color

labelColor

YesLabels > Appearance > FontlabelFont

YesLabels > Appearance >
Offset

labelOffset

YesLabels > Appearance >
Rotation

labelRotation

YesLabels > Appearance >
Show scale labels

labelVisible

YesScale > Ticks > Major ticks
size

majorTickSize

YesScale > Ticks > Show major
ticks

majorTickVisible

YesScale > Ticks > Minor ticks
size

minorTickSize

YesScale > Ticks > Show minor
ticks

minorTickVisible

YesLabels > Overlapping rules
> Skipping mode

skipLabelMode

YesLabels > Overlapping rules
> Skip overlapping labels

skippingLabel

YesAxis > GraduationsstepsDefinition

Instances of
IlvCategoryStepsDefinition,

Note:

IlvTimeStepsDefinition,
IlvDefaultStepsDefinition
are supported. The corresponding

B U I L D I N G W E B A P P L I C A T I O N S250

SupportProperty name in the
Styling Customizer of
the Designer

CSS property

graduation types in the Designer are:
Category, Time, Numerical. See
Numerical graduation type for details

B U I L D I N G W E B A P P L I C A T I O N S 251

SupportProperty name in the
Styling Customizer of
the Designer

CSS property

on the support level of
IlvDefaultStepsDefinition.

NoNot applicabletickLayout

YesTitles > Appearance > Titletitle

YesTitles > Appearance > OffsettitleOffset

YesTitles > Appearance >
Placement

titlePlacement

YesTitles > Appearance >
Rotation

titleRotation

YesScale > Appearance >
Visible

visible

Axis
Selectors for axis

Name of the style rule in the DesignerCSS selector

Options > ScaleschartScale axis

Options > Scales > X ScalechartScale[axisIndex="-1"] axis

Options > Scales > Y ScalechartScale[axisIndex="0"] axis

Options > Scales > X Scale#xScale axis

Options > Scales > Y Scale#yScale axis

Axis properties
SupportProperty name in Styling Customizer of the DesignerCSS property

YesAxis > Ranges > Automatic Data RangeautoDataRange

YesAxis > Ranges > Automatic Visible RangeautoVisibleRange

YesAxis > Ranges > Automatic Data Range > MindataMin

YesAxis > Ranges > Automatic Data Range > MaxdataMax

YesAxis > Ranges > Reverse Axisreversed

YesAxis > Ranges > Automatic Visible Range > MinvisibleMin

B U I L D I N G W E B A P P L I C A T I O N S252

SupportProperty name in Styling Customizer of the DesignerCSS property

visibleMax YesAxis > Ranges > Automatic Visible Range > Min

NoAxis > Graduations > TransformerTransformer

B U I L D I N G W E B A P P L I C A T I O N S 253

Styling the data series

This section describes the supported CSS properties used to configure the appearance of
data series in the Rich Web Charts component. The properties are arranged according to
the CSS selectors to which they can be applied. For each selector you will find two tables,
as follows:

♦ The first table lists:

● the CSS type and CSS attributes usable in the selectors, as they appear in a CSS,

● the name of the corresponding style rule as it appears in the English-localized Designer.

♦ The following tables list:

● the name of the property as it appears in a CSS file and in the Styling Properties view
of the Designer,

● the location and property name as it appears in the Styling Customizer of the
English-localized Designer,

● whether the property is supported or not.

For a description of the selectors, the properties and their effect, see Styling the data series
in Developing with the SDK.

B U I L D I N G W E B A P P L I C A T I O N S254

Series
Selector components for series

Name of the style rule in the DesignerCSS attributesCSS type

seriesname, indexseries

Series properties available for all renderers
SupportProperty name in the Styling

Customizer of the Designer
CSS property

NoData Labels > Default Labeling > Modelabeling

NoData Labels > Default Labeling > LayoutlabelLayout

YesSeries > Appearance > Visiblevisible

YesSeries > Appearance > Visible in LegendvisibleInLegend

NoNot applicableannotation

Yes. See also PaintSeries > Appearance > Primary colorcolor1

Yes. See also PaintSeries > Appearance > Secondary colorcolor2

YesSeries > Appearance > Line/Contour
Stroke > End Cap

endcap

YesSeries > Appearance > Line/Contour
Stroke > Line Join

lineJoin

YesSeries > Appearance > Line/Contour
Stroke > Line Style

lineStyle

YesSeries > Appearance > Line/Contour
Stroke > Line Width

lineWidth

YesNot applicablemiterLimit

YesSeries Rendering > Appearance >
Representation

renderingType

The following CSS property
values are supported: BAR,

Note:
The property is located in
the Styling Customizer of the

Note:
STACKED_BAR,

Designer when the option STACKED100_BAR,
Chart General Properties is SUPERIMPOSED_BAR,
selected in the Style Rules
tree pane.

STACKED_POLYLINE,
STACKED100_POLYLINE,
SUPERIMPOSED_POLYLINE,
SCATTER, AREA,
STACKED_AREA,

B U I L D I N G W E B A P P L I C A T I O N S 255

SupportProperty name in the Styling
Customizer of the Designer

CSS property

STACKED100_AREA, STAIR,
STACKED_STAIR,
SUMMED_STAIR,
STACKED100_STAIR,
BUBBLE, HILO, CANDLE,
HLOC, HILO_ARROW,
HILO_STICK. In the Designer
these correspond to: Bar,

B U I L D I N G W E B A P P L I C A T I O N S256

SupportProperty name in the Styling
Customizer of the Designer

CSS property

Polyline, Scatter, Area, Stair and
High-Low representations.

Yes. See also StrokeSeries > Appearance > Line/Contour
Stroke

stroke

YesNot applicablestyle

Series properties available for bar renderers
SupportProperty name in the Styling

Customizer of the Designer
CSS property

No. autotransparency is
always on

Not applicableautoTransparency

NoNot applicableoverlap

NoNot applicablewidthPercent

Series properties available for bubble renderers
SupportProperty name in the Styling Customizer of the DesignerCSS property

YesSeries > Marker > Typemarker

YesSeries > BubblesminSize

YesSeries > BubblesmaxSize

Series properties available for high-low renderers
SupportProperty name in the Styling Customizer of the DesignerCSS property

NoNot applicableoverlap

NoNot applicablewidthPercent

Series properties available for pie chart renderers
SupportProperty name in the Styling Customizer of the DesignerCSS property

YesNot applicableholeSize

YesSeries > Appearance > Line/Contour StrokestrokeOn

Series properties available for polyline renderers
SupportProperty name in the Styling Customizer

of the Designer
CSS property

B U I L D I N G W E B A P P L I C A T I O N S 257

SupportProperty name in the Styling Customizer
of the Designer

CSS property

No. autotransparency is
always on

Not applicableautoTransparency

YesSeries > Marker > Typemarker

YesSeries > Marker > SizemarkerSize

Series properties available for scatter chart renderers
SupportProperty name in the Styling Customizer of the DesignerCSS property

YesSeries > Marker > Typemarker

YesSeries > Marker > SizemarkerSize

Point
Selector components for point

Name of the style rule in
the Designer

CSS attributesCSS type

pointindex, label, x, y, seriesIndex,
seriesName

point

For series: index, nameseries > point

Not applicableFor point: index, label,
x, y

Point properties
SupportProperty name in the Styling Customizer of the

Designer
CSS property

NoNot applicableannotation

Yes. See also PaintData Points > Appearance > Primary colorcolor1

Yes. See also PaintData Points > Appearance > Secondary colorcolor2

YesData Points > Appearance > Line/Contour Stroke > End Capendcap

NoData Labels > Default Labeling > Modelabeling

NoData Labels > Default Labeling > LayoutlabelLayout

YesData Points > Appearance > Line/Contour Stroke > Line JoinlineJoin

YesData Points > Appearance > Line/Contour Stroke > Line StylelineStyle

YesData Points > Appearance > Line/Contour Stroke > Line WidthlineWidth

YesData Points > Marker > Typemarker

B U I L D I N G W E B A P P L I C A T I O N S258

SupportProperty name in the Styling Customizer of the
Designer

CSS property

miterLimit YesNot applicable

Yes. See also StrokeData Points > Appearance > Line/Contour Strokestroke

YesData Points > Appearance > Visiblevisible

B U I L D I N G W E B A P P L I C A T I O N S 259

Property values

This section describes in detail the level of support for the following types of objects which
can be used as a CSS property value:

♦ Data indicator

♦ Numerical graduation type

♦ Paint

♦ Stroke

♦ Zoom interactor

For Data Indicator, Numerical Graduation Type and Zoom Interactor, you will find two
tables, as follows:

The first table lists:

♦ the supported values for the class property, as they appear in a CSS

♦ the location in the Designer where such a value can be created or configured.

The second table lists:

♦ the name of the property as it appears in a CSS file and in the Styling Properties view of
the Designer,

♦ the location and property name as it appears in the Styling Customizer of the
English-localized Designer,

♦ whether the property is supported or not.

B U I L D I N G W E B A P P L I C A T I O N S260

Data indicator
Supported class for data indicator

Location in the DesignerCSS 'class' property

Menu Chart/X-Range, Y-Range, X-Value,
Y-Value Data Indicator; Data Window
Indicator

IlvDataIndicator(int, ilog.views.chart.
IlvDataInterval, java.lang.String)

IlvDataIndicator(int, ilog.views.chart.
IlvDataWindow, java.lang.String)

IlvDataIndicator(int, double, java.lang.
String)

Data indicator properties
SupportLocation in the DesignerCSS property

YesNot applicableaxisIndex

YesData > Domain Definition > X-Range, Y-RangedataWindow

NoNot applicablelabelRenderer

YesData > Domain Definition > X-Range or Y-Rangerange

YesAppearance > Lines and Colorsstyle

Appearance > Text

YesAppearance > Text > Labeltext

YesData > Domain Definition > Valuevalue

Numerical graduation type
Supported class for numerical graduation type

Location in the DesignerCSS 'class' property

Axis > Graduations > Numerical Steps ConfigurationIlvDefaultStepsDefinition

Numerical graduation type properties
SupportProperty name in the Styling Customizer of the DesignerCSS property

NoNot applicableautoMode

NoNot applicableautoNumberFormat

YesAutomatic Step Unit CalculationautoStepUnit

YesAutomatic Substep Unit CalculationautoSubStepUnit

NoNot applicablenumberFormat

YesAutomatic Step Unit Calculation > Step UnitstepUnit

B U I L D I N G W E B A P P L I C A T I O N S 261

SupportProperty name in the Styling Customizer of the DesignerCSS property

subStepCount NoNot applicable

YesAutomatic Substep Unit Calculation > Steps UnitsubStepUnit

Paint
Properties that accept a java.awt.Paint value support the following classes:

♦ java.awt.Color

♦ java.awt.GradientPaint

♦ ilog.views.util.java2d. IlvLinearGradientPaint

♦ ilog.views.util.java2d. IlvRadialGradientPaint

Other classes, including ilog.views.util.java2d. IlvTexture and ilog.views.util.java2d.
IlvPattern, are not supported.

Stroke
Properties that accept a java.awt.Stroke value support the following class: java.awt.
BasicStroke.

Zoom interactor
Supported class for zoom interactor

Location in the DesignerCSS 'class' property

Interactions > SettingsIlvChartZoomInteractor

Zoom interactor properties
SupportProperty name in the Styling Customizer of the DesignerCSS property

NoAnimation stepsanimationStep

YesZoom along the x-axisXZoomAllowed

YesZoom along the y-axisYZoomAllowed

YesZoom out allowedzoomOutAllowed

B U I L D I N G W E B A P P L I C A T I O N S262

Unsupported CSS features

The following CSS features are not supported:

♦ CSS expressions

♦ CSS functions (with the exception of the @|interactors and @|decorations functions)

♦ selectors using pseudo-classes

♦ selectors using CSS classes

♦ selectors using transitions of type E > F or E + F

♦ the 'Any element' selector: *

♦ empty selector

For more details on CSS expressions and functions, see Expressions in Developing with the
SDK.

For more details on selectors see Selector in Developing with the SDK.

B U I L D I N G W E B A P P L I C A T I O N S 263

Identifying styling issues

If the chart is not as you expected, you should do the following:

1. Check the style sheet with the Designer.

♦ If the chart does not look like as you expect in the Designer, it will not display properly
in the Rich Web Charts.

♦ Use theMessages view of the Designer to make sure the style sheet syntax is correct.

2. Check the web application log file for messages regarding styling features.

B U I L D I N G W E B A P P L I C A T I O N S264

A
adding and displaying an image map

JSF 36
Ajax

JavaScript objects for JViews Charts Faces
components 47

Ajax-enabled applications
JavaScript 69

Ajax-enabled components
JSF 22, 29

API
client-side 219
server-side 223

architecture
main classes 181
overview 178
run-time process flow 180

C
Cascaded Style Sheets 242
charts

server-side application 95
Charts Faces components, creating 29
chartView components

creating 29
using with JavaServer Faces 42

chartView tag 29
components, servlet and classes 25
configuring each image map zone

image map generator with JSF technology
36

contextual popup menu
dynamic HTML component 137
dynamic HTML component on the client side
137
dynamic HTML component on the server side
137
JSF 44

JSF adding 43
createServletSupport method

IlvChartServlet class 76
CSS

styling a data source 35
unsupported features 263

D
data source

setting up 186
dataSourceId attribute 33
dynamic HTML components

contextual popup menu 137
contextual popup menu on the client side 137
contextual popup menu on the server side
137
IlvMenu 137
IlvMenuItem 137
prerequisite scripts for popupmenu
component 137
static popup menu 137

dynamic HTML popup menu
styling 137

dynamic menus 66

E
empty view 31
Examples

the simple servlet 92

F
Facelets 66
faces-config.xml 33, 34

G
getChart method

IlvChartServletSupport class 97
getDataSource method 33

© Copyright IBM Corp. 1987, 2009 265

I N D E X

Index

H
handleRequest method

IlvChartServletSupport class 73, 80
hiding an image map

JSF 36
hot spots

JSF image map 36
http

//www.w3.org/TR/SVG10/painting.html#FillProperties
211
//www.w3.org/TR/SVG10/painting.html#StrokeProperties
211

I
IlvChart class 77, 181
IlvChart interface 53
IlvChartDHTMLLegend class 25
IlvChartDHTMLOverview class 25
IlvChartDHTMLView class 25
IlvChartPanInteractor class 25
IlvChartPickInteractor class 25
IlvChartServlet class 73
IlvChartServletSupport class 73, 75
IlvChartViewProxy class 47
IlvChartZoomInteractor class 25
IlvDataIndicator class 243
IlvDataSetPoint 50
IlvDataSetPoint class 51, 221, 222
IlvDataSource class 168, 181, 228
IlvDiagrammer interface 53
IlvFacesChart class 25
IlvFacesChartImageMapGenerator class 36
IlvFacesChartLegend class 25
IlvFacesChartOverview class 25
IlvFacesChartServlet class 25
IlvFacesChartServletSupport class 25
IlvFacesContextualMenu class 25
IlvHierarchyChart interface 53
IlvHierarchyNode interface 51
IlvImageEncoder class 87
IlvImageMapAreaGenerator class 36
IlvIMapDefinition class 36
IlvJPEGEncoder class 87
IlvManagerView interface 53
IlvMenu dynamic HTML component 137
IlvMenuFactory interface 44, 137
IlvMenuItem dynamic HTML component 137
IlvPNGEncoder class 87
IlvRWChart class 181, 224
IlvRWChartHighLightInteractor class 224
IlvRWChartInfoViewInteractor class 224
IlvRWChartPanInteractor class 224
IlvRWChartPickInteractor class 224
IlvRWChartXScrollInteractor class 224
IlvRWChartYScrollInteractor class 224

IlvRWChartZoomInteractor class 224
IlvSDMImageMapAreaGenerator class 36
IlvSDMNode interface 51
IlvThresholdIndicator class 243
image

adding support for custom formats 87
encoders 87
JPEG 72
PNG 72

image map
adding and displaying with JSF technology
36
JSF 36

image map generator
configuring each zone with JSF 36

image server
declaring in portlet mode 60

image servlet
interactions 53
value change listener 53

interactions
executing in image servlet context 53
executing in JSF lifecycle 50, 51

interactors
JSF image map 36

interactors, installing in chart 38

J
Java class

ilog/views/chart/data/IlvDataSetPoint.html
50

JavaScript
Ajax features 69

JavaScript action
in managed bean 59
namespace-encoded variables 59
notation 59
variables 59

JavaScript objects 47
JavaScript variables

action 59
portlet namespace 59

JSF 22, 168
components and portlets 59
hiding an image map 36
image map hot spots 36
interactors and image map 36
showing an image map 36

JSF components
integrating into portal 60

JSF image map
adding 36

JSF lifecycle
interactions 50, 51
value change listener 50, 51

JSF menu factory

B U I L D I N G W E B A P P L I C A T I O N S266

contextual popup menu 44
JSF popup menu

adding a contextual 43
contextual 44
contextual menu factory 44
static 43
styling 45

JSP 22, 168
JSP Page 185
JSR 168

portlets 59
jv

menu tag 43
menuItem tag 43
menuSeparator tag 43

JViews Charts Faces
Ajax-enabled components 22, 29

JViews Charts project 184
JViews Swing Charts

features comparison 175
jvrc

chart tag 178, 185, 188, 194, 197, 224
highlightInteractor tag 187, 199, 224
infoViewInteractor tag 224
panInteractor tag 224
pickInteractor tag 187, 202, 224
xScrollInteractor tag 224
yScrollInteractor tag 224
zoomInteractor tag 195, 224

L
legend component, displaying 41

M
managed bean

JavaScript action 59
managed-beans.xml 33, 34
menu binding

static 66
menus

dynamic 66
message box, connecting chart view 39

N
namespace

JavaScript variables in portlets 59
portlet 59
scripts in portlets 59

namespace-encoded variables
JavaScript action 59

notation
JavaScript action 59

O
onhighlight 221
onpick 222
overview component, setting 40

P
popup menu

prerequisite scripts for dynamic HTML
component 137

portal
integrating JSF components 60

portlets
and JSF components 59
declaring image server 60
JSR 168 59
namespace 59

prepareChart method
IlvChartServletSupport class 97

prepareSession method
IlvChartServlet class 77

R
refjavacharts

ilog/views/chart/data/IlvDataSetPoint.html
51

request
HTTP 72
image 80
image map 80

requirements
client 176
server 176

Rich Web Charts
getting started 183
introducing 168
main features 168
styling 242

S
script

ant 94
scripts

portlet namespace 59
Server configuration 229
servlet

a simple application 91
cache 178, 233
creating 96
creating the support 97
data 234
developing a server-side application 73
faces 178
resource 235

sessions
handling 77

setDataSource method
IlvChart class 98

setImageEncoder method
IlvChartServletSupport class 87

setInteractor method 47
showing an image map

B U I L D I N G W E B A P P L I C A T I O N S 267

JSF 36
simple view 31
static menu 66
static popup menu

dynamic HTML component 137
JSF 43

styleSheets attribute 35
styling

dynamic HTML popup menu 137
JSF popup menu 45

SVG 168

T
Tag Library 205

chart 207
highlightInteractor 210
infoViewInteractor 212
panInteractor 213
pickInteractor 214
xScrollInteractor 216
yScrollInteractor 217
zoomInteractor 218

thin client 72
Tomcat server 94
Trinidad 66

U
update interval 188, 194
user interactions 187, 195

V
value change listener

image servlet 53
JSF lifecycle 50, 51

view
empty 31
simple 31

X
XMLDataSource tag 33

B U I L D I N G W E B A P P L I C A T I O N S268

	Table of contents
	Introducing the Web technologies used in JViews Charts
	Overview
	Thin client applications
	Thin client application designs
	Ajax-enabled components

	Rich Web applications
	Overview
	Rich Web client
	Applets
	Java Web Start applications

	Using DHTML-based JSF components to build Web applications
	Introduction
	The architecture of JViews Charts Faces
	About support for JViews Charts Faces
	Servlet and component classes

	The JViews Charts Faces component set
	Creating simple views
	Charts designer project
	Data source binding in JViews Charts
	Styling chart data with CSS
	Image maps
	Installing interactors in a chart
	Connecting a chart view to a message box
	Setting the overview
	The legend component
	Mixing with standard JavaServer Faces components
	Adding a popup menu
	Styling the popup menu
	Managing the session expiration

	JavaScript objects
	Contexts for actions on the view
	Introduction
	JavaServer Faces lifecycle context
	Image servlet context

	Integrating JViews Faces in your environment
	JViews Faces configuration at JViews Framework level
	Session persistence
	Running JViews Faces components in JSR 168 portlets
	Guide to using JViews components with ICEfaces
	Settings for using JViews components in ICEfaces
	Interoperability between JViews components and ICEfaces components
	Push updates to JViews components
	ICEfaces software in JViews

	Supporting Facelets and Trinidad
	Web Application Server support

	Deploying an application as a DHTML-only thin client
	JavaServer Faces components as opposed to DHTML thin client
	Thin client architecture
	Chart servlet package
	The IlvChartServlet class
	Creating an IlvChartServletSupport
	Handling sessions

	The IlvChartServletSupport class
	Overview
	The image request
	The image map request

	Server actions
	Adding support for custom image formats
	Choosing the multithreading mode
	Writing a basic server side application
	Example: The Basic Servlet
	Installing and running the example
	Implementing the server-side application
	Creating the servlet
	Creating the servlet support

	DHTML thin-client support in JViews Framework
	Overview of thin-client support
	IBM® ILOG® JViews thin-client Web architecture
	Getting started with the IBM® ILOG® JViews thin client
	Installing and running the XML Grapher example
	Developing the server
	Developing the client
	Overview of client-side development
	The IlvView JavaScript component
	The IlvOverview JavaScript component
	The IlvLegend JavaScript component
	The IlvButton JavaScript component
	The IlvZoomTool JavaScript component
	The IlvZoomInteractor JavaScript component
	IlvPanInteractor
	The IlvPanTool JavaScript component
	The IlvMapInteractor and IlvMapRectInteractor JavaScript components
	The Popup menu in JavaScript

	Adding client/server interactions
	Generating a client-side image map
	The IlvManagerServlet class
	Overview of the predefined servlet
	The servlet requests and parameters
	Multiple sessions
	Multithreading issues

	The IlvManagerServletSupport class
	Controlling tiling
	Tiling
	Tile size
	Cache mechanisms
	Developing client-side tiling
	Developing server-side tiling
	Client-side caching
	Server-side caching and the tile manager

	Creating Rich Web Charts
	Rich Web Charts
	Introduction to Rich Web Charts
	Supported graphical representations
	View and data interactions
	JViews Swing Charts and Rich Web Charts - features comparison
	Requirements

	Architecture overview
	Introduction
	Run-time process flow
	Main classes

	Getting started
	Creating a JViews Charts project with the Designer
	Creating a JSP page using Rich Web Charts
	Setting up a data source
	Defining client and server-side actions in response to user interactions
	Configuring the client update interval
	Deploying the Web application

	How to...
	Add a Rich Web Charts to a JSP page
	Configure the update interval
	Set up interactions
	Change the style sheet at run time
	Update Chart data without refreshing the whole HTML page
	Change the color of the data point under the mouse
	Trigger a client-side action when picking a data point
	Trigger a server-side action when picking a data point

	The tag library
	Introduction
	The chart tag
	The highlightInteractor tag
	The infoViewInteractor tag
	The panInteractor tag
	The pickInteractor tag
	The xScrollInteractor tag
	The yScrollInteractor tag
	The zoomInteractor tag

	Client-side API
	Globally available objects
	Objects available in onhighlight event handler
	Objects available in onpick event handler

	Server-side API
	JSF UI components
	RWChartInteractionEvent
	Data source

	Server configuration
	Configuring the servlets
	Introduction
	Cache servlet
	Data servlet
	Resource servlet

	Configuring the data source replication
	Purging the history of events
	Setting the parameters of the data source replication

	Styling
	Introduction
	Styling the Chart component
	Styling the data series
	Property values
	Unsupported CSS features
	Identifying styling issues

	Index

