‘llli

IBM ILOG Diagram for .NET V2.0
Programming with IBM ILOG Diagram
for .NET Windows Formsand ASP.NET

Controls

June 2009

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

Programming with IBM ILOG Diagram for .NET Windows Forms and ASP.NET
-

Creating a Basic Diagram Programmatically 11
Displaying Diagrams in a Windows Forms Application. 15
Displaying Diagrams in aDiagram VIiewt 16
Controlling the Zoom Level in aDiagram View. 17
Scrolling inabDiagram VIieW 19
Showing the Whole View Content e e 20
Modifying the Appearance of aDiagram View, 20
Displaying a Grid in @aDiagram VIeW 21
Displaying Rulers in abDiagram VIEW 23
Using the Predefined Behavior of the Diagram View, 25
Displaying Diagrams in an ASP.NET Application 27
Displaying a Diagram in a Basic Web Application 28
Displaying Diagrams in a Diagram VIieWttt e 28
Controlling the Zoom Level inaDiagram VIiew ae 30
Showing the Whole View Content e e e e 32
Controlling the Image Generationt e 32

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 1

Image Map Generationt e 32

Handling User Input Eventin a Diagram VIeW.t e 35
Displaying a Diagram in an AJAX Web Application 37
Overview of the IBM ILOG Diagram for NET AJAX Framework 38
Displaying a Diagram in an AJAX Diagram View.ottt 38
TiliNg Mode. e 40
Using Predefined Interaction Tools in an AJAX Diagram View 41
Creating a New AJAX-enabled View Interactort 49
Using Predefined Graphic ObjJects. i e e 59
BasiC Shapes 60
PatnS . . 64
I Ag S, . o o e 69
TeXt ODJECTS . . .o 70
LiNK ODjeCtS . . o e 71
Specifying the Connection POINS e 72
Specifying the Link Shape 73
CuStomMIzINg the ArTOWS oo e 76
Customizing the Link AppearancCet e 77
AdAING TOXE . . ot 78
LiNK CroSSiNg . . . o ot 81
CONTIOlS o 82
The Control Classttt e e e e 82
BasiC CONtrOlS . . .o 84
Single Content CONtrolSo e 84
Multiple Content CoNtrolS.t 84
PaN IS . . 85
The Panel Class o e 85
Using Predefined Panels 89
SUDIAGIAM S . o 97
Graphic SYymbols 100
Scale ObJECES . . .ot e 102

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

The ScaleBase Class.t e e e 102

Linear SCaleso 106
Circular SCalES. . . . o e 106
GAUG S .« .ttt 107
User SYMbOIS . . oo 110
Common Graphic Objects Rendering Featuresc. .. 113
Styling Graphic Objects Using Fill, Stroke and Filter Classes 119
Filling and Stroking Graphic Objects. e 120
Editing Fill Objects Using the Fill Dialog BOX oot 128
Applying a Filter to a Graphic Object. e 129
Editing Filter Effects Using the Filter Dialog BOX 134
Displaying Textin aDiagramt e 137
Understanding Graphic Object Visibility 145
Using Graphic Object Preferred Size. e 149
Understanding Graphic Object EVents e i e 153
Understanding Graphic CoNntainerst e e e 157
Introduction to Graphic Containerst e e 157
Using the Predefined Graphic Containers. i 159
Understanding Coordinate Systems i 161
Overview of Existing Coordinate Systemst 161
Conversion Between Coordinate Systems i 165
Creating Diagrams with Nodes and Links e 167
Creating a Simple Diagram with Nodes and Links Programmatically 167
Introducing Link and Anchor Classes 171
Using Automatic Link Crossing DetectioninaGraph............. 175
Creating a New Class of Anchor. e 178
Handling Interactions in a Diagram View (WinForms) 181
Understanding Events Dispatching in a Diagram View (WinForms). 181

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 3

From the View to the Graphic Object. e 182

Dispatching Events to Graphic Objects 184
Stopping the Event Propagation i e e 188
Event Capture 189
Using Predefined Interaction Tools in a Diagram View 192
Setting an Interactor 0N a VIEW oot 193
Selection INTEractor 193
ZOOM INTEIACTON . . . o o et ettt e e e e e e e e 196
Rotate INteractor 196
Pan INteractor. 197
Rectangular Shapes Creation Interactor e 197
Polypoints Shape Creation Interactor e 199
Link Creation INteractorttt 201
Anchor Editing INteractor 204
Creating a New Interactor in a DiagramView (WinForms)cov... 204
Handling Selection in aDiagramt e 217
Managing Selected ObJectS 218
Listening to Selection EVeNnts. 219
Using Predefined Selection Graphic Objects 225
Styling Selection Graphic Objects 231
Creating Custom Selection Graphic Objects i 231
Building Diagrams and User Symbols Inside Visual Studio 235
Creating Diagrams and User Symbols Using Visual Studio 237
Adding Graphic Objects to Diagram or User Symbol. 241
Controlling the Zoom Level. e 244
Selecting Graphic ObjJects e 244
Moving, Resizing, Rotating and Aligning Graphic Objects 245
Changing Properties of Graphic Objects. i 248
Setting Text to a Graphic Object 252
Grouping Graphic ObJeCtS 253

4 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Manipulating Panels and Other Containers. 253

Controlling the Drawing Order of Graphic Objects oot 255
Inspecting the Structure of aDiagram. ... e 255
Showing and Hiding Objects e 256
Creating Complex Path Objects e 257
Cut, Copy and Paste e 259
Graph, Link and ANChors 259
Graph LayouUt 259
Importing Vector Graphics in SVGorIVNFormat 260
Printing a Diagramo 260
Diagram Designer Commandsttt e 261
XML Serialization 269
Serializing and Deserializing a Diagram in XML i i 270
Understanding the XML Serialization Mechanism 271
Customizing the XML Serialization i 277
Animating Graphic ObjJeCtS. e 293
ANIMAtioN OVEIVIBW.ottt e 294
Controlling Animation EXeCULION ot 294
ANImMating @ Property.o e e 295
Grouping ANIMatiONS 297
Using Animation as a TiMer e e 298
Animating a Graphic Object AlongaPath........ 299
ANIMaAtiON TYPES . ot 299
Creating a Custom ANIMation.ot e 300
Printing a Diagramo 303
Setting up a Print DOCUMENT.o e e 303
Using Predefined Printing Dialog BOXES oot 309
IMPorting SVG Files. . ..o 317
Improving the Design-Time Behavior of Your Graphic Object 325

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 5

Creating BPMN Diagramsottt e e e e 329

The BPMN Symbols 330
The BPMN EditOr . . .ot e e e 334
Localizing an IBM ILOG Diagram for .NET Application 335
Creating a Localization Project. e e 336
Translating the Resource Files. e 337
Creating the Satellite Assemblies i e i 337
N EX .o 1

6 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Programming with
IBM ILOG Diagram for .NET Windows
Forms and ASP.NET Controls

This section provides the essential programming information you need to build applications
with IBM® ILOG® Diagram for .NET. You will find information about key programming
concepts, as well as code samples and detailed explanations.

In This Section
Creating a Basic Diagram Programmatically
Explains how to create a basic diagram.
Displaying Diagrams in a Windows Forms Application
Describes how to display diagramsin a Windows® Forms Application.
Displaying Diagramsin an ASP.NET Application
Describes how to display diagramsin an ASPNET Application.
Using Predefined Graphic Objects
Presents the predefined graphic objects available in IBM ILOG Diagram for .NET.
Common Graphic Objects Rendering Features
Introduces the common features that affect the rendering of the graphic object.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 7

IBM

Syling Graphic Objects Using Fill, Sroke and Filter Classes
Describes how to paint graphic objects, apply and edit filter effects.
Displaying Text in a Diagram
Describes how to display basic or complex styled text inside a graphic object.
Under standing Graphic Object Visibility
Explains how to change the visibility of a graphic object.
Using Graphic Object Preferred Sze
Explains how to use the preferred size of graphic objects.
Under standing Graphic Object Events
Describes the events sent by the graphic objects.
Under standing Graphic Containers
Introduces the Graphic Containers.
Under standing Coordinate Systems
Describes the coordinate systemsin IBM ILOG Diagram for .NET.
Creating Diagrams with Nodes and Links
Explains how to create diagrams with nodes and links.
Handling Interactionsin a Diagram View (WinForms)

Explains how to create mouse and keyboard eventsin agraphic object andin a
WinForms diagram view .

Handling Selection in a Diagram
Explains how to handle selected objects in a diagram.
Building Diagrams and User Symbols Inside Visual Sudio
Introduces the Visual Studio .NET® Diagram Designer.
XML Serialization

Describes the XML serialization framework availablein
IBM ILOG Diagram for .NET.

Animating Graphic Objects

Explains how to use animation on graphic objects.
Printing a Diagram

Introduces the API that allows you to print diagrams.

Importing SVG Files
Explains how to import SVG documentsin a diagram.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Improving the Design-Time Behavior of Your Graphic Object

Explains how to improve the design-time behavior of the graphic objects that you
create.

Creating BPMN Diagrams

Describes how to create BPMN diagrams with IBM ILOG Diagram for .NET.
Localizing an IBM ILOG Diagram for .NET Application

Describes how to create alocalized version of IBM ILOG Diagram for .NET.
Using Graph Layout Algorithms

Illustrates the Graph Layout functionality delivered with
IBM ILOG Diagram for .NET.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

10

IBM

ILOG DIAGRAM FOR

.NET 2.0

PROGRAMMING

Creating a Basic Diagram
Programmatically

InIBM® ILOG® Diagram for .NET you can create a diagram by assembling graphic
objects. The graphic objects are subclasses of the GraphicObject class. The diagram itself is
agraphic object called container object because it contains other graphic objects. Containers
are subclasses of the abstract class GraphicContainer. The typical class used as the top
container of your diagram is the Group class which is a container object that simply displays
the graphic object it contains.

The following example shows how to create a diagram composed of three graphic objects: a
rectangle (Rect), an ellipse (Ellipse) and atext object (Text). Thethree objectsare added to a
Group object.

Group CreateDiagram/()

{
// Creates the Group object that contains
// the graphic objects that compose the diagram
Group diagram = new Group () ;

// Creates a rectangle object with text inside
Rect rect = new Rect (0, 0, 100, 100);
rect.Fill = new SolidFill (Color.Aquamarine) ;
rect.Text = "A rectangle";

rect.Radius = new Size2D (10, 10);

// Creates an Ellipse object filled with a linear gradient
Ellipse ellipse = new Ellipse (150, 0, 100, 100);

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 11

Creating a Basic Diagram Programmatically

12

IBM

ellipse.Stroke = new Stroke (Color.Blue, 3);

ellipse.Fill = new LinearGradientFill (
new Point2D (0, 0), new Point2D
Color.Blue, Color.Yellow) ;

// Creates a Text object
Text text = new Text (new Point2D (125,

text.VerticalAlignment

text.Font = new Font ("Helvetica",

// Adds the objects in

the diagram

diagram.Objects.AddRange (
{ rect, ellipse, text });

new GraphicObject []

return diagram;

}

Function CreateDiagram() As

Group

(o, 1),

120), "My First Diagram") ;
= VerticalTextAlignment .Bottom;
text .HorizontalAlignment = HorizontalTextAlignment.Center;

20);

Creates the Group object that contains

' the graphic objects that compose the diagram

Dim diagram As Group =

New Group

' Creates a rectangle object with text inside

Dim rect As Rect = New Rect (0, 0, 100,

100)

rect.Fill = New SolidFill (Color.Aquamarine)
rect.Text = "A rectangle"
rect.Radius = New Size2D (10, 10)

' Creates an Ellipse object filled with a linear gradient

Dim ellipse As Ellipse

ellipse.Stroke = New Stroke (Color.Blue,

= New Ellipse (150,

ellipse.Fill = New LinearGradientFill (

New Point2D(0, 0),
Color.Blue, Color

' Creates a Text object

Dim text As Text = New
text.VerticalAlignment

New Point2D (0,
.Yellow)

1),

0, 100, 100)

3)

Text (New Point2D (125, 120), "My First Diagram")
= VerticalTextAlignment.Bottom

text .HorizontalAlignment = HorizontalTextAlignment.Center

text.Font = New Font ("Helvetica", 20)

' Adds the objects in the diagram

diagram.Objects.AddRange (New GraphicObject () {rect, ellipse, text})

Return diagram
End Function

Hereisthe diagram you have just created:

ILOG DIAGRAM FOR

.NET 2.0

PROGRAMMING

IBM

A rectangle

My First Diagram

The diagram you have created can now be used in a Windows® Forms application through
the DiagramView class located in the |LOG.Diagrammer.Windows.Forms namespace. The
DiagramView classis the Windows Forms control for displaying and interacting with a
diagram in a Windows Forms application.

For more information, see Displaying Diagramsin a Windows Forms Application.

You can also display and interact with this diagram in a Web Form application using the
DiagramView or AjaxDiagramView. These classes are Web controls that you can embed in
an ASPNET or ASPNET Ajax application.

For more information, see Displaying Diagramsin an ASP.NET Application.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 13

Creating a Basic Diagram Programmatically

14 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying Diagrams in a Windows Forms
Application

IBM® ILOG® Diagram for .NET provides a Windows® Forms control to display diagrams

into Windows applications: the DiagramView class.

The DiagramView control isresponsible for drawing the view content and for dispatching

the input events to the displayed graphic objects or to aview interactor.

In addition to that, the DiagramView class has a selection mechanism to manage and

display selected objects.
In This Section
Displaying Diagramsin a Diagram View
Explains how to display diagramsin a diagram view.
Controlling the Zoom Level in a Diagram View
Describes how to control the zoom level.

Scrolling in a Diagram View
Describes how to use the scrolling feature.

Showing the Whole View Content
Describes how to show the entire view content.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

15

Displaying Diagrams in a Windows Forms Application

Modifying the Appearance of a Diagram View
Describes how to modify the appearance of a diagram view.
Displaying a Grid in a Diagram iew
Describes how to display agrid in adiagram view.
Displaying Rulersin a Diagram View
Describes how to display rulersin adiagram view.
Using the Predefined Behavior of the Diagram View
Ilustrates the predefined behaviors of the diagram view.
Related Sections
Handling Interactionsin a Diagram View (WinForms)

Explains how to handle mouse and keyboard eventsin a graphic object and in a
WinForms diagram view.

Handling Selection in a Diagram
Explains how to handle selected objects in a diagram.

Displaying Diagrams in a Diagram View

In order to display information, the DiagramView control must be connected to a graphic
container, an instance of the GraphicContainer class. The graphic container associated with
aDiagramView control can be set using the Content property of the DiagramView class.

The following example shows how to create a DiagramView displaying the content of a
Group that contains an Ellipse:

public class TestForm : Form

{

public TestForm() : base()
{
DiagramView view = new DiagramView() ;
view.Dock = System.Windows.Forms.DockStyle.Fill;
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add (ellipse) ;
view.Content = container;
Controls.Add (view) ;
Size = new Size (200, 200);

}

Public Class TestForm
Inherits Form

Public Sub New ()
MyBase .New

16 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Controlling the Zoom Level in a Diagram View

Dim view As DiagramView = New DiagramView

view.Dock = System.Windows.Forms.DockStyle.Fill

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add (ellipse)

view.Content = container

Controls.Add (view)

Size = New Size (200, 200)

End Sub
End Class

When the control is connected to a graphic container, it listens to events coming from the

container and is updated for each modification of the container. For example, when a new

graphic object is added to or removed from the graphic container, the control is updated to
display the new container content.

Note: The DiagramView only paints the content of the container it displays, not the
container itself. For thisreason, some properties set on the container will be ignored when
the container is connected to a DiagramView. For example, the opacity, or the local
transformation will be ignored.

Controlling the Zoom Level in a Diagram View

The Transform property of the DiagramView is used to control the affine transformation
applied to the view content. This transformation can be used to zoom in, zoom out, trandlate,
or rotate the diagram displayed by the view.

The following example shows how to set a zoom factor of 2 on the view:

public class TestForm : Form

{

public TestForm() : base()

{

}
}

DiagramView view = new DiagramView() ;

view.Dock = System.Windows.Forms.DockStyle.Fill;

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add (ellipse) ;

view.Content = container;

view.Transform = new Transform(2, 2, new Point2D (50, 50));
Controls.Add (view) ;

Size = new Size (200, 200);

Public Class TestForm
Inherits Form

Public Sub New ()

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 17

Displaying Diagrams in a Windows Forms Application

MyBase .New
Dim view As DiagramView New Diag
view.Dock System.Windows.Forms.D
Dim container As Group New Group
Dim ellipse As Ellipse New Ellip
container.Objects.Add (ellipse)
view.Content container
view.Transform = new Transform(2,
Controls.Add (view)
Size New Size (200,
End Sub
End Class

200)

ramView
ockStyle.Fill

se(0, 0, 100, 100)

2, new Point2D (50, 50)

Although the Transform property can be used to zoom in or zoom out the view, you may
want to use the following methods of DiagramView, which are easier to use:

Transformation Methods

becomes visible.

Method Description

Zoom Zooms or un-zooms the view.

Zoomln Zooms in the view.

ZoomOut Zooms out the view.

ShowAll Zooms or un-zooms the view so that all the view content

ShowAllinRectangle

Zooms or un-zooms the view so that all the view content fits
into the specified rectangle.

Translate Translates the view.

All these methods result in a change of the Transfor m property. For various reasons, you

may want to control the value of the Transform

property, for example to limit the zoom

factor. The DiagramView class has several propertiesthat help you control the Transform
property value. The following table lists the properties that can be used to control the

Transform property:

Property Description

MinimumZoom The minimum value

for the zoom.

MaximumZoom

The maximum value for the zoom.

KeepAspectRatio Indicates if the view

maintains the aspect ratio of its content.

18 IBM ILOG DIAGRAM FOR .NET 2.0

PROGRAMMING

Scrolling in a Diagram View

Each time the Transform property changes on the view, the TransformChanging and
TransformChanged events are sent. By means of these events, you can control and monitor
the affine transformation applied to the view.

The following example shows how to listen to the Transfor mChanging event to set aveto
when the transformation is not a scale;

DiagramView view = new DiagramView () ;
view.TransformChanging += new TransformChangeEventHandler (TransformChanging) ;

private void TransformChanging(object sender, TransformChangeEventArgs args)
{
if (largs.Transform.IsScale)
args.Cancel = true;
Dim view As New DiagramView
AddHandler view.TransformChanging, AddressOf Me.TransformChanging

Private Sub TransformChanging (ByVal sender As Object, ByVal args As
TransformChangeEventArgs)
If Not args.Transform.IsScale Then
args.Cancel = true
End If
End Sub

Scrolling in a Diagram View

When the DiagramView content is larger than the view, scroll bars can be displayed to
enable the scrolling inside the view content. The default behavior shows the scroll bars only
when they are needed, that is, when the bounds of the view content are larger than the view.

The following table lists the properties that can be used to control the scroll bars visibility
and behavior:

Scroll Bars Properties

Property Description

HScrollBar Gets or sets the visibility of the horizontal scroll bar.

VScrollBar Gets or sets the visibility of the vertical scroll bar.

InfiniteScroll Indicates whether infinite scrolling is allowed using the scroll
arrows.

InstantScroll Indicates whether scrolling the view using the scroll bar is
instantaneous.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 19

Displaying Diagrams in a Windows Forms Application

ContentMargins Gets or sets the margins used to enlarge the content bounds.

ContentBounds Gets or sets the bounds in which scrolling will be possible.

Changing the Scrolling Area

By default, the scrolling areais defined by the view content bounds. This allows you to
scroll into the whole view content. You may want to use another area, for example in order
to provide the scrolling in a portion of the view content bounds. To do this, use the
ContentBounds property of the DiagramView class. You can aso add margins to this area
by setting the ContentM ar gins property. Margins added by setting this property are
specified in pixels, whatever the zoom level is.

When the I nfiniteScroll property is set to true, it is possible to scroll out of the area defined
by the ContentBounds property by clicking the scroll arrows.

Showing the Whole View Content

The DiagramView has a special mode that always shows the entire view content. This mode
can be set by using the AutoSizeContent property. When this property is set to true, the
scroll bars are no longer active and it is not possible to change the affine transformation of
the view. In this mode, the view displays its content so that the area defined by the
ContentBounds property isfully visible.

To make the ContentBounds areafit into the view, the DiagramView uses the
AutoSizeContentMode property. When this property is set to ResizeM ode.Zoom, the
DiagramView zoomsits content by adjusting its Transform property. When the property is
set to ResizeM ode.Resize, the DiagramView resizes its content so that it fitsinto the view.

Modifying the Appearance of a Diagram View

20

The following tables show the appearance properties of the DiagramView control.

Appearance Properties

Property Description
Antialiasing Indicates whether the control uses anti-aliasing to display its
content.
BackColor The color used for the background of the control.
IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Grid in a Diagram View

Backgroundimage The image used for the background of the control.

BorderStyle The border style of the control.

Displaying a Grid in a Diagram View

The DiagramView class can display a grid below or above its graphic content. A gridisa
subclass of the Grid class. Its purpose isto draw graphic decorations such as dots or lines at
regular intervals to help positioning graphic objects. A Grid can be set by using the Grid
property of the DiagramView.

The following example shows how to set a Grid that displays vertical and horizontal lines
with a spacing of 100 pixels on a DiagramView:

DiagramView view = new DiagramView() ;
Grid g = new Grid();
g.HorizontalSpacing = 100f;
g.VerticalSpacing = 100f;
g.GridStyle = GridStyle.Lines;
g.HorizontalLineColor = Color.Blue;
g.VerticalLineColor = Color.Blue;
view.Grid = g;

Dim view as New DiagramView ()

Dim g as New Grid()
.HorizontalSpacing = 100f
.VerticalSpacing = 100f

.GridStyle = GridStyle.Lines
.HorizontalLineColor = Color.Blue
.VerticalLineColor = Color.Blue
iew.Grid = g

< QuQuuua

Setting the Grid Style

The style of the grid is controlled by the GridStyle property. This property can take the
following values:

Grid Styles

Property Description

GridStyle.Dots Displays the grid with dots.
GridStyle.Lines Displays the grid using lines.

l Note: The GridStyle property can be set to a combination of the values listed above.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 21

Displaying Diagrams in a Windows Forms Application

Depending on the grid style used, several properties can be used to customize the grid
drawing. The following table shows alist of those properties:

Grid Appearance Properties

Property Description

DotColor The color for the grid dots.
DotSize The size for the grid dots.
HorizontalLineColor The color for horizontal grid lines.
HorizontalLineStyle The style for horizontal grid lines.
HorizontalLineWidth The width for horizontal grid lines.
VerticalLineColor The color for vertical grid lines.
VerticalLineStyle The style for vertical grid lines.
VerticalLineWidth The width for vertical grid lines.

The following example shows how to set a Grid that displays dots, vertical and horizontal
lines with a spacing of 100 pixels on a DiagramView:

DiagramView view = new DiagramView() ;

Grid g = new Grid();

.HorizontalSpacing = 100f;

.VerticalSpacing = 100f;

.GridStyle = GridStyle.Lines|GridStyle.Dots;
.HorizontalLineColor = Color.Blue;
.VerticalLineColor = Color.Blue;

.DotColor = Color.Red;

.DotSize = 3f;

view.Grid = g;

Dim view As DiagramView = New DiagramView

Dim g As Grid = New Grid

g.HorizontalSpacing = 100!

g.VerticalSpacing = 100!

g.GridStyle = (GridStyle.Lines Or GridStyle.Dots)
g.HorizontalLineColor = Color.Blue
g.VerticalLineColor = Color.Blue
9
g
v

QuQuuuuuuua

.DotColor = Color.Red
.DotSize
iew.Grid

3!
g

Setting the Grid Geometry

Whatever the grid styleis, agrid displays decorations at regular intervals. To specify the grid
intervals, use the Horizontal Spacing and Vertical Spacing properties. You can aso specify
the origin point of the grid by setting the Origin property.

22 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying Rulers in a Diagram View

The following example shows how to display dots each 10 pixels, with agrid origin point set
to the point of coordinates (1, 1):

DiagramView view = new DiagramView () ;
Grid g = new Grid();
g.HorizontalSpacing = 10f;
g.VerticalSpacing = 10f;
g.GridStyle = GridStyle.Dots;
g.DotColor = Color.Red;
g.0rigin = new Point2D(1, 1);
view.Grid = g;

Dim view as New DiagramView ()
Dim g as New Grid()
g.HorizontalSpacing = 10f
g.VerticalSpacing = 10f
g.GridStyle = GridStyle.Dots
g.DotColor = Color.Red
g.0rigin = New Point2D(1, 1)
view.Grid = g

Using Grid to Snap Coordinates

When the Active property of the Grid is set to true, the grid is used by the DiagramView
during interactions to snap points coordinate onto grid points. This feature is very useful to
position and align graphic objects.

The method called to snap pointsis the Snap method. It ismainly called by the SnapToPoint
method.

Displaying Rulers in a Diagram View

A ruler isascaethat displaysticks and labels at regular intervalsto help positioning graphic
objects. It also shows the pointer location, aswell as an area of interest. Here is an example
of an horizonta ruler:

|DII | I|5?I | I|1?q L 150 200 250 300 350 400 450 |5?q | I|5?q I|

Horizontal and vertical rulers are respectively implemented by the DiagramHRuler and
DiagramV Ruler classes.

A DiagramView embeds both an horizontal and a vertical ruler. To show therulersin the
DiagramView, use the DiagramView.HRuler and DiagramView.VRuler properties. Note
that you can connect other rulers to the same view by creating them and setting their
DiagramRuler.DiagramView property. Here is a picture showing aview with itsrulers

displayed:

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 23

Displaying Diagrams in a Windows Forms Application

24

_|I:IIIII|5II:IIII|‘“I:u|II1IIII|2II:“:IIII|.l
[=1

The following example shows how to set up rulersin aDiagramView:

DiagramView view = new DiagramView () ;
view.HRuler = RulerVisibility.Visible;
view.VRuler = RulerVisibility.Visible;
Dim view as New DiagramView ()

view.HRuler = RulerVisibility.Visible
view.VRuler = RulerVisibility.Visible

Styling the Rulers

When using the internal rulers of the DiagramView, use the following properties of
DiagramView to style the rulers:

Property Description
HRuler Indicates whether the horizontal ruler is visible or not.
VRuler Indicates whether the vertical ruler is visible or not.

RulerBackColor

Gets or set the background color of the rulers.

RulerTextColor

Gets or set the text color of the rulers.

RulerTickColor

Gets or set the ticks color of the rulers.

RulerUnit

Gets or set the unit of the rulers.

RulerSelectionVisible

Indicates whether the selection is displayed in the rulers.

RulerSelectionColor

Gets or set the color of the rulers selection area.

RulerMarkerColor

Gets or set the color of the rulers marker.

IBM

To style external rulers, see the DiagramRuler class in the reference manual.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using the Predefined Behavior of the Diagram View

Using the Predefined Behavior of the Diagram View

A DiagramView has the following predefined behavior.

Zooming In and Out

In the DiagramView, an application user can zoom in or out by using the mouse wheel
while pressing the CTRL key. The zoom factor applied when the mouse wheel isused is
defined by the DefaultM ouseWheel ZoomFactor property.

This feature can be disabled by setting the WheelZoom property of the DiagramView to
false. In addition, minimum and maximum zoom values can be controlled by setting the
MinimumZoom and MaximumZoom properties.

I Note: This behavior isautomatically disabled when the AutoS zeContent property is set to
true.

Tooltips

Tooltips appear in the DiagramView when the mouse hovers a graphic object that has
tooltip information defined on it. Set the ShowObjectTool Tips property of the
DiagramView to false to disable tooltipsin the control.

I Note: Some view interactors may disable tooltips.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 25

Displaying Diagrams in a Windows Forms Application

26 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Displaying Diagrams in an ASP.NET
Application

IBM® ILOG® Diagram for .NET provides two WebForm controlsto display diagramsinto
ASPNET 2.0 applications: DiagramView and AjaxDiagramView classes.

The DiagramView Web control isabasic ASPNET 2.0 control responsible for displaying
diagramsin a basic Web application. It supports image map generation and limited
interactions.

The AjaxDiagramView Web control is an advanced ASPNET 2.0 control that extends the
basic functionalities of the DiagramView class. It adds support for rich client-side user
interaction and image tiling.

In This Section
Displaying a Diagramin a Basic Web Application
Explains the ready-to-use Web diagram view.
Displaying a Diagram in an AJAX Web Application
Explains the ready-to-use AJAX Web diagram view.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 27

Displaying Diagrams in an ASP.NET Application

Displaying a Diagram in a Basic Web Application

The DiagramView Web control is abasic ASPNET 2.0 control responsible for displaying
diagramsin a basic Web application. It supports image map generation and limited
interactions. In addition, the DiagramView class has a selection mechanism to manage and
display selected objects.

In This Section
Displaying Diagramsin a Diagram View
Explains how to display a diagram in a Web diagram view.
Controlling the Zoom Level in a Diagram View
Explains how to control the zooming factor in a Web diagram view.
Showing the Whole View Content
Explains how to display the whole diagram in a Web diagram view.
Controlling the Image Generation
Explains how to control the image generation.
Image Map Generation
Explains how to generate an image map in a Web diagram view.
Handling User Input Event in a Diagram View
Explains how to handle input eventsin a Web diagram view.
Related Section
Creating your First IBM ILOG Diagram for .NET AJAX Web Ste

Walks you through the process of creating your first IBM ILOG Diagram AJAX Web
Site.

Displaying Diagrams in a Diagram View

In order to display information, the DiagramView Web control must be connected to a
graphic container, an instance of the GraphicContainer class. The graphic container
associated with a DiagramView Web control can be set using the Content property of the
DiagramView class.

The following example shows how to create a Page containing a DiagramView displaying
the content of a Group that contains an Ellipse:

Thepefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

28 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in a Basic Web Application

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server"s

<title>My First Diagram</titles>
</head>
<body>

<form id="forml" runat="server'"s>

<div>

<ccl:DiagramView ID="DiagramViewl" runat="server" BorderColor="Black"
BorderStyle="Solid"
BorderWidth="1px" ContentSessionId="DiagramViewlContent"

Height="200px" Width="300px" />

</divs>

</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load (object sender, EventArgs e)
{
if (!IsPostBack) ({
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add (ellipse) ;
DiagramViewl.Content = container;

}
The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic

Public Class _Default
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add (ellipse)
DiagramViewl.Content = container

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 29

Displaying Diagrams in an ASP.NET Application

30

IBM

End If
End Sub
End Class

While the DiagramView Web control is responsible for drawing the view content, it
actually delegates the image generation to a specialized HttpHandler implementation
which retrieves the graphic container from a cache. By default, the cache used isthe Session,
and the ID used to store the graphic container in the session must be set using the
ContentSessionld property of the DiagramView class.

Controlling the Zoom Level in a Diagram View

The Transform property of the DiagramView is used to control the affine transformation
applied to the view content. This transformation can be used to zoom in, zoom out, trandl ate,
or rotate the diagram displayed by the view.

The following example shows how to set a zoom factor of 2 on the view:

Thepefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0org/1999/xhtml" >
<head runat="server"s>

<title>Untitled Page</titles
</head>
<body>

<form id="forml" runat="server">

<divs>

<ccl:DiagramView ID="DiagramViewl" runat="server" BorderColor="Black"
BorderStyle="Solid"
BorderWidth="1px" ContentSessionId="DiagramViewlContent"

Height="200px" Width="300px" />

</div>

</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in a Basic Web Application

public partial class Default : System.Web.UI.Page
{
protected void Page Init (object sender, EventArgs e)
DiagramViewl.Transform = new Transform(2, 2, new Point2D(50, 50));
if (!IsPostBack) {
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;
DiagramViewl.Content = container;

}
The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer

Public Class _Default
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal e As EventArgs)
DiagramViewl.Transform = new Transform(2, 2, new Point2D (50, 50))
If Not IsPostBack Then
Dim container As Group = New Group
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add (ellipse)
DiagramViewl.Content = container
End If
End Sub
End Class

Although the Transfor m property can be used to zoom in or out the view, you may prefer to
use the following methods of DiagramView, which are easier to use:

Transformation Methods:

Method Description

Zoom Zooms in or zooms out the view.

Zoomlin Zooms in the view.

ZoomOut Zooms out the view.

ShowAll Zooms in or zooms out the view so that all the view content

becomes visible.

ShowAllinRectangle Zooms in or zooms out the view so that all the view content
fits into the specified rectangle.

Translate Translates the view.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 31

Displaying Diagrams in an ASP.NET Application

All these methods results in a change of the Transform property. For various reasons you
may want to control the value of the Transfor m property, for example if you want to limit
the zoom factor. The DiagramView class has several propertiesthat help you control the
Transform property value. The following table lists the properties that can be used to
control the Transform property:

Property Description

MinimumZoom The minimum value for the zoom.

MaximumZoom The maximum value for the zoom.

KeepAspectRatio Indicates whether the view maintains the aspect ratio of its
content.

Each time the Transfor m property changes on the view, the TransformChanging and
TransformChanged events are sent. Using those events, you can control and monitor the
affine transformation applied to the view.

Showing the Whole View Content

The DiagramView hasaspecial mode that always showsthe entire view content. This mode
can be set by using the AutoSizeContent property. When this property is set totrue, itisno
longer possible to change the affine transformation of the view. In this mode, the view
displays its content so that the area defined by the ContentBounds property isfully visible.

To make the ContentBounds areafit into the view, the DiagramView usesthe
AutoSizeContentM ode property. When this property is set to ResizeM ode.Zoom, the
DiagramView zooms its content by adjusting its Transform property. When the property is
set to ResizeM ode.Resize, the DiagramView resizes its content so that it fitsinto the view.

Controlling the Image Generation

The following table shows the image-related properties of the DiagramView Web control.

Property Description

ImageFormat The format of the generated image.

Image Map Generation

The DiagramView Web control allows you to generate an image map to add a basic level of
interactivity to a diagram image by means of the RenderlmageMap property. When the
property is set to true, the DiagramView Web control processes every objectsin its graphic
container to build an image map of the displayed hierarchy.

32 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in a Basic Web Application

By default, an AREA tag is generated for every objects. The AREA Tooltip isinitialized to
the object tooltip and the SHAPE AREA attribute isinitialized to the transformed bounding
box of the object.

This default behavior can be customized thanks to the QueryMapArea event of the
DiagramView class. This event is raised when a graphic object is processed to query the
map area information in order to generate the corresponding AREA tag.

The QueryMapAreaEventArgs class provides datato the Quer yM apAr ea event and enables
you to provide the following information:

[_The AREA tooltip, by means of the Tool Tip property.
[_The AREA href, by means of the HRef property.

[—Jome extra attributes, for example a " onmouseover" JavaScript event handler, by means
of the ExtraAttributes property.

[—_The AREA geometry, by means of the Geometry property. By default, it isthe
transformed bounding box of the object in view coordinates.

You can prevent the generation of an AREA tag by means of the Cancel property of the
QueryMapAreaEventArgs class. When this property istrue, the current object is skipped
and no areatag is generated for it.

Note: As mentioned above, the default behavior setsthe tooltip attribute of the AREA tag to
the object tooltip if the Tool Tip property of the QueryMapAreaEventArgsis null. When
the Tool Tip property is set to Sring.Empty, the default behavior is disabled.

The following example shows how to handle the QueryM apArea event. It displaysa
rotated rectangle that links to the IBM Web site and displays atooltip. It also changes the
text of a SPAN element when the mouse moves over the diamond thanks to the
ExtraAttributes property of the QueryMapAreEventArgs.

TheDefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server'">

<title>Untitled Page</title>
</head>

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 33

Displaying Diagrams in an ASP.NET Application

<body>
<form id="forml" runat="server">
<div>
<ccl:DiagramView ID="DiagramViewl" runat="server"
RenderImageMap="true" BorderColor="Black" BorderStyle="Solid"
BorderWidth="1px" ContentSessionId="DiagramViewlContent"
Height="200px" Width="300px" OnQueryMapArea="DiagramViewl QueryMapArea" />
Move the mouse pointer over the diamond.</spans>
</divs>
</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer;

using System.Drawing;

public partial class _Default : System.Web.UI.Page
{
protected void Page Init (object sender, EventArgs e)
if (!IsPostBack) {

Group container = new Group () ;
Rect rect = new Rect (100, 50, 100, 100);
rect.Transform = new Transform (45, new Point2D(150, 100));
rect.Stroke = new Stroke (Color.LightSteelBlue) ;
rect.Fill = new SolidFill (Color.LightBlue) ;
container.Objects.Add (rect) ;
DiagramViewl.Content = container;

}

protected void DiagramViewl QueryMapArea (object sender,
ILOG.Diagrammer.Web.UI.QueryMapAreaEventArgs e) {
e.HRef = "http://www.ibm.com";
e.ToolTip = "Click to visit IBM !";
e.ExtraAttributes = "
onmouseover=\"document .getElementById ('message') .innerText='Go to IBM web
site';return true;\""+
" onmouseout=\"document .getElementById('message') .innerText="+
"'Move the mouse pointer over the diamond.';return true;\"";

}
The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer

Imports System.Drawing

Public Class _Default
Inherits System.Web.UI.Page

34 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in a Basic Web Application

Protected Sub Page Init (ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim rect As Rect = New Rect (100, 50, 100, 100)
rect.Transform = New Transform(45, New Point2D (150, 100))
rect.Stroke = New Stroke (Color.LightSteelBlue)
rect.Fill = New SolidFill (Color.LightBlue)
container.Objects.Add (rect)
DiagramViewl.Content = container
End If
End Sub

Protected Sub DiagramViewl QueryMapArea (ByVal sender As Object, _

ByVal e As
ILOG.Diagrammer.Web.UI.QueryMapAreaEventArgs)
e.HRef = "http://www.ibm.com"
e.ToolTip = "Click to visit IBM !"

e.ExtraAttributes = "
onmouseover=""document .getElementById ('message') .innerText='Go to IBM web
site';return true;"""+ _
" onmouseout=""document.getElementById('message') .innerText="+_
"'Move the mouse pointer over the diamond.';return true;"""
End Sub
End Class

Handling User Input Event in a Diagram View

The DiagramView Web control provides a simple way to handle user input events by means
of the Click event of the DiagramView class. This event is raised when the user clicks on
the view. You can then perform some post-processing in response to the click event.

The following example shows how to handle Click event to change the color of the objects
targeted by the click. Animage map is generated to provide tooltips.

TheDefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server"s

<title>Untitled Page</title>
</head>
<body>

<form id="forml" runat="server'"s>

<div>
<ccl:DiagramView ID="DiagramViewl" runat="server"
RenderImageMap="true" BorderColor="Black" BorderStyle="Solid"
BorderWidth="1px" ContentSessionId="DiagramViewlContent"

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 35

Displaying Diagrams in an ASP.NET Application

Height="200px" Width="300px" OnClick="DiagramViewl Click" />

</div>
</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer;

using System.Drawing;

public partial class Default : System.Web.UI.Page

{

protected void Page Init (object sender, EventArgs e)

if (!IsPostBack) {
Group container = new Group() ;

Rect rect = new Rect (100, 50, 100, 100);

rect.ToolTip = "Click Me!";

rect.Transform = new Transform (45, new Point2D(150, 100));
rect.Stroke = new Stroke (Color.LightSteelBlue) ;
rect.Fill = new SolidFill (Color.LightBlue) ;

container.Objects.Add (rect) ;

rect = new Rect (100, 50, 100, 100);
rect.ToolTip = "Click Me!";

rect.Stroke = new Stroke (Color.Salmon) ;
rect.Fill = new SolidFill (Color.Coral) ;
container.Objects.Add (rect) ;
DiagramViewl.Content = container;

}

protected void DiagramViewl Click (object sender,

ImageClickEventArgs e)

Shape hittest = DiagramViewl.HitTestSelectable (new Point(e.X, e.Y))

Shape;
if (hittest != null) {
Color ¢ = ((SolidFill)hittest.Fill) .Color;
int r = (c.R + 20) % 255;
int g = (c.G + 20) % 255;

int b = (¢.B + 20) % 255;

Color newColor = Color.FromArgb(r, g, b);

((SolidFill)hittest.Fill) .Color = newColor;

}
The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer

Imports System.Drawing

Public Class _Default

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

Inherits System.Web.UI.Page

Protected Sub Page Init (ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim rect As Rect = New Rect (100, 50, 100, 100)
rect.ToolTip = "Click Me!"
rect.Transform = New Transform(45, New Point2D (150, 100))
rect.Stroke = New Stroke (Color.LightSteelBlue)
rect.Fill = New SolidFill (Color.LightBlue)
container.Objects.Add (rect)
rect = New Rect (100, 50, 100, 100)
rect.ToolTip = "Click Me!"
rect.Stroke = New Stroke (Color.Salmon)
rect.Fill = New SolidFill (Color.Coral)
container.Objects.Add (rect)
DiagramViewl.Content = container
End If
End Sub

Protected Sub DiagramViewl Click(ByVal sender As Object, ByVal e As
ImageClickEventArgs)
Dim hittest As Shape = TryCast (DiagramViewl.HitTestSelectable(_
New Point (e.X, e.Y)), Shape)
If Not (hittest Is Nothing) Then
Dim ¢ As Color = CType(hittest.Fill, SolidFill) .Color

Dim r As Integer = (c.R + 20) Mod 255
Dim g As Integer = (c.G + 20) Mod 255
Dim b As Integer = (c.B + 20) Mod 255

Dim newColor As Color = Color.FromArgb(r, g, b)
CType (hittest.Fill, SolidFill).Color = newColor
End If
End Sub
End Class

Displaying a Diagram in an AJAX Web Application

IBM® ILOG® Diagram for .NET comes with a set of classes that enables to build
AJAX-enabled Web applications that provide rich client-side user interaction and a better
user experience.

This framework is based on the ASPNET AJAX extension. It requires by default the NET
Framework 3.5 SDK. In case you want to target a.NET Framework 2.0 web application and
ASPNET AJAX 1.0, IBM ILOG Diagram for .NET 2.0 providesthe
ILOG.Diagrammer.Web.Ajax10.dll assembly which has a dependency with ASPNET
AJAX 1.0. Note that in this case, the IBM ILOG Diagram for .NET 2.0 Project Templates
cannot be used and the web controls must be added manually to the Visual Studio Toolbox.

The IBM ILOG Diagram for NET AJAX components support the following browsers:
[Microsoft Internet Explorer 6
[Microsoft Internet Explorer 7

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 37

Displaying Diagrams in an ASP.NET Application

38

IBM

Hirefox 1.5
Hirefox 2.0
[Hirefox 3.0
In This Section
Overview of the IBM ILOG Diagram for .NET AJAX Framework
A brief introduction to the IBM ILOG Diagram for NET AJAX.
Displaying a Diagram in an AJAX Diagram View
Explains how to show adiagram in an AJAX diagram view.
Tiling Mode
Explains how to using the tiling mode in an AJAX diagram view.
Using Predefined Interaction Tools in an AJAX Diagram View
Explains how to use the predefined interactorsin an AJAX diagram view.

Creating a New AJAX-enabled View Interactor
Explains how to create a new AJAX-enabled view interactor.

Overview of the IBM ILOG Diagram for .NET AJAX Framework

The IBM® ILOG® Diagram for .NET AJAX framework consists on a set of server-side
ASPNET components and JavaScript components based on the Microsoft ASPNET 2.0
AJAX extension. This extension provides AJAX capabilitiesto ASPNET 2.0 applications
by means of server-side ASPNET Web controls and JavaScript classes. It enables postback
partial-refresh thanks to the UpdatePanel control, an asynchronous communication layer
and provides an object oriented JavaScript library. For more information about the Microsoft
ASPNET 2.0 AJAX extension, see http://ajax.asp.net.

The IBM ILOG Diagram for NET AJAX framework supports optimized refreshes when
panning or zooming thanksto atiled-based cache mechanism, rich user interaction by means
of client-side interaction tools (editing capabilities like links or objects creation), client-side
selection (with asynchronous contextual information).

Displaying a Diagram in an AJAX Diagram View

Displaying adiagram in an AJAX-enabled ASPNET application isthe purpose of the AJAX
diagram view component defined by the AjaxDiagramView class of the
ILOG.Diagrammer.Web.UI namespace. This class inherits from DiagramView and as such
inherits from al the features supported by it (see Displaying Diagramsin a Diagram View
for acomplete list of the features provided by the DiagramView class). It aso implements
the | ScriptControl interface of the System.Web.Ul namespace that allowsyou to add client
capabilities to a Web server control by means of JavaScript components.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

The following example shows how to create a Page containing an AjaxDiagramView Web
control displaying the content of a Group that contains an Ellipse:

Thepefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmlll.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server"s

<title>Untitled Page</title>
</head>
<body>

<form id="forml" runat="server">
<asp:ScriptManager ID="ScriptManagerl" runat="server" />
<divs>
<asp:UpdatePanel ID="UpdatePanell" runat="server"s
<ContentTemplate>
<ccl:AjaxDiagramView ID="DiagramViewl" runat="server" Width="300px"
Height="200px" ContentSessionId="DiagramViewlContents"/>
</ContentTemplate>
</asp:UpdatePanel >
</div>
</form>

</body>
</html>

The C# code-behind file:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using ILOG.Diagrammer.Graphic;

public partial class Default : System.Web.UI.Page

{

protected void Page Init (object sender, EventArgs e)
{
if (!IsPostBack) {
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;
DiagramViewl.Content = container;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 39

Displaying Diagrams in an ASP.NET Application

See Also

40

IBM

The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic

Public Class _Default
Inherits System.Web.UI.Page

Protected Sub Page Init (ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add (ellipse)
DiagramViewl.Content = container
End If
End Sub
End Class

Creating your First IBM ILOG Diagram for .NET AJAX Web Site

Tiling Mode

The default behavior of the AjaxDiagramView isto display its content in one image. While
this behavior addresses most of the use cases, it may not be optimal in the case where the
content is big and contains akind of static layer in the background composed of objects that
do not change (appearance or geometry) in the lifecycle of the application, and some objects
that are displayed over it whose representation may changein the application lifecycle (a
kind of dynamic layer). A typical example isthe case of a map in the background with
symbols whose appearance may change displayed over it.

The AjaxDiagramView Web control supports an advanced, tiled-based refresh mode that
specifically addresses this use case by optimizing the display of the static content. In this
mode, the AjaxDiagramView Web control handles two graphic container: one for the static
layer (represented by the StaticContent property) and a second one for the dynamic layer
(represented by the Content property).

This tiled-based refresh mode is activated by means of the ImageTiling property. When this
property istrue, the static content is considered as a grid where each cell (or tile) is drawn
independently and asynchronously from the others. This grid structure allows a better user
experience when panning or zooming the view giving a progressive load effect.

Thetilesizeis by default 256 pixelsin both directions. You can change the size by means of
the TileSize property of the AjaxDiagramView class.

You can find a complete example that illustrates this feature in the
Samples\QuickStart\ImageTiling directory.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

Using Predefined Interaction Tools in an AJAX Diagram View

This section explains how to use the predefined AJAX-enabled interaction tools provided in
theIBM® ILOG® Diagram for .NET product.

The AjaxDiagramView Web control supports rich client-side user interactions by means of
AJAX-enabled interaction tools. AJAX interaction tools are called view interactors.

Setting an Interactor on an AjaxDiagramView

View interactors are provided as a set of classes and are defined by the Viewlnteractor class
of the ILOG.Diagrammer.Web.UI namespace. Thisis the base class for view interactor
implementations.

The Viewl nteractor class extends the ASPNET 2.0 AJAX Extender Control classto add
client behavior to an associated AjaxDiagramView Web control viathe
ILOG.Diagrammer.Web.Ul .ViewBehavior JavaScript class. For more information on the
Extender Control class, see http://ajax.asp.net.

In order to be used, an interactor must be set on aview. When an interactor is set on aview,
all input events coming to the client-side representation of the AjaxDiagramView in the
browser are forwarded to the JavaScript counterpart of the view interactor. Setting an
interactor can be done either declaratively in the ASPX file, or programmatically in the
code-behind file using the Interactor property of the AjaxDiagramView class.

The following example shows how to set a selection interactor on an AJAX diagram view
Web control declaratively:

<body>
<form id="forml" runat="server'"s
<asp:ScriptManager ID="ScriptManagerl" runat="server" />
<div>
<asp:UpdatePanel ID="UpdatePanell" runat="server"s
<ContentTemplate>
<ccl:AjaxDiagramView ID="DiagramViewl" runat="server" Width="300px"
Height="200px" ContentSessionId="DiagramViewlContents"/>
<ccl:SelectInteractor ID="SelectInteractorl" runat="server"
TargetControlID="DiagramViewl" />
</ContentTemplate>
</asp:UpdatePanel>
</divs>
</form>
</body>

The predefined AJAX-enabled view interactors available in the
IBM ILOG Diagram for .NET library are:

[—Felection Interactor
[—Zoom Interactor

[—Pan Interactor (support tiled-based cache mechanism)

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 41

Displaying Diagrams in an ASP.NET Application

42

IBM

[Graphic Object Creation Interactor (links and nodes)

Note: In the following sections, the interactor classes refer all to the
ILOG.Diagrammer.Web.UI namespace.

Selection Interactor

The selection interactor is defined by the Selectlnteractor class and its JavaScript
counterpart isthe | L OG.Diagrammer.Web.Ul .SelectBehavior JavaScript class. It allows
you to select and move graphic objects displayed in a DiagramView.

Selecting a Graphic Object
There are several waysto select graphic objects depending on what you want to do:

[Single selection: to select only one graphic object, click the object with the left mouse
button.

[Multiple selection on a per-object basis: to select several graphic objects one at atime,

pressthe CTRL or Shift key and click with the left mouse button the graphic objects you
want to select.

The multi selection capability is available provided it has been enabled on the view by
means of the AjaxDiagramView.MultipleSelection property which is t rue by default.

[Areaselection: to select all the graphic objects that intersect a given area, move the
mouse pointer to an empty area of the view, press the left mouse button and drag the
mouse to define the areawhile keeping the left mouse button pressed. When the selection
areais as expected, release the mouse button. The selection interactor supports two kind
of selection area, either viaarectangular area (the default mode) or via a freehand path,
by means of the Selectionl nter actor.AreaSelectionM ode property.

[Clear the selection: to deselect all the objects current selected, click an empty area of the
view with the left mouse button.

[Deselect an object: to deselect one particular object from the current selection, pressthe
CTRL modifier and click with the left mouse button the graphic object to deselect.

When agraphic object is selected, a semi-transparent filled rectangle is displayed on top of
the selected abject. The appearance of this rectangle can be customized by means of the
SelectionAnchor Color, SelectionColor, SelectionFillOn and SelectionStrokeWidth
properties of the AjaxDiagramView class.

Moving a Graphic Object
The selection interactor allows you to move one or several graphic objectsin the view:

[_To move one object: click the graphic object and drag the mouse to a new position.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

[_To move several objects: select the objects to move using one of the selection types
described in Select a Graphic Object. Click the selected graphic objects and drag the
mouse to a new position.

Resizing a Grapic Object

The selection interactor allows you to resize a graphic object in the view. To resize agraphic
object click the graphic object to select it, then drag a selection handle (each at one corner of
the selection object) to adjust its size. The resizing capability is available provided it has
been enabled on the view by means of the AjaxDiagramView.ResizeSelection property.

Changing the Connection Points of a Link

The selection interactor allows you to change the connection points of alink. To change the
selection points of alink click the link to select it, then drag a connection handle (one at each
link extremity) over the destination node. When the mouse moves over a destination node,
the available anchors are displayed. Move the dragged handle over the sel ected anchor and
release the mouse button.

Deleting a Graphic Object
The selection interactor allows you to delete one or several graphic objectsin the view:

[_To delete one object: click the graphic object and pressthe DELETE key.

[_To delete several objects: select the objects to delete using one of the selection types
described in Select a Graphic Object and press the DELETE key.

Providing Contextual Information to the Client

The Selectl nteractor class alows you to provide contextual information to the client
asynchronously when a selection occurs. To implement such behavior, you have to
implement the following instructions:

—Subscribe to the QuerySel ectionData of the AjaxDiagramView class. Thisevent israised
on the server to fetch information related to the current selection in order to post them
back to the client. Data must be provided as a key-value pair where the key is the name
of the property and the value is the value of the property. On the client, the dictionary is
represented as a JavaScript object, each property in the dictionary being represented asa
field of this object and accessible viathe value of the property key.

[Define a JavaScript function in your ASPX that will receive the data of the
QuerySelectionData event and set the ClientSel ectionCallback property of the
AjaxDiagramView control to the name of thisfunction. Thisfunction will beinvokedin
response to a selection and the data is accessible from the callback Argumentsfield of
the function parameter.

The following example shows how to handle the QuerySelectionData event to display the
bounding box of the currently selected object.

Thepefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 43

Displaying Diagrams in an ASP.NET Application

Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmlll/DTD/xhtmlll.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server'"s
<title>Untitled Page</titles
</head>
<body>
<script type="text/javascript"s
function onSelection (args) {
var msg = "";
if (args.callbackArguments) {
var bounds = args.callbackArguments.bounds;

msg = "["+ bounds.x+", "+bounds.y+", "+bounds.w+", "+bounds.h+"]";
msg = "Selected Object Bounds : " + msg;

} else {
msg = "No selection.";

}

document .getElementById ("message") .innerText = msg;
1
</scripts>
<form id="forml" runat="server"s
<asp:ScriptManager ID="ScriptManagerl" runat="server" />
<divs>
<asp:UpdatePanel ID="UpdatePanell" runat="server"s
<ContentTemplate>
<ccl:AjaxDiagramView ID="DiagramViewl" runat="server"
ClientSelectionCallback="onSelection" Width="300px" Height="200px"
ContentSessionId="DiagramViewlContents"
OnQuerySelectionData="DiagramViewl QuerySelectionData"/>
<ccl:SelectInteractor ID="SelectInteractorl" runat="server"
TargetControlID="DiagramViewl" />

</ContentTemplate>
</asp:UpdatePanel>
</divs>
</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer;

using System.Drawing;

public partial class _Default : System.Web.UI.Page

{

protected void Page_Init (object sender, EventArgs e)

{

44 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

if (!IsPostBack) {
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
ellipse.Fill = new SolidFill (Color.Coral) ;
container.Objects.Add (ellipse) ;
Rect rect = new Rect (60, 80, 90, 50);
rect.Fill = new SolidFill (Color.LawnGreen) ;
container.Objects.Add (rect) ;
DiagramViewl.Content = container;
}
}
protected void DiagramViewl QuerySelectionData (object sender,
ILOG.Diagrammer.Web.UI.QuerySelectionDataEventArgs args) {
GraphicObject obj = args.SelectedObject;
args.Properties["bounds"] = obj.Bounds;

}
The VB.NET code-behind file:

Imports System

Imports System.Web

Imports System.Web.UI

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer

Imports System.Drawing

Public Class _Default
Inherits System.Web.UI.Page

Protected Sub Page Init (ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
ellipse.Fill = New SolidFill (Color.Coral)
container.Objects.Add (ellipse)
Dim rect As Rect = New Rect (60, 80, 90, 50)
rect.Fill = New SolidFill (Color.LawnGreen)
container.Objects.Add (rect)
DiagramViewl.Content = container
End If
End Sub

Protected Sub DiagramViewl QuerySelectionData (ByVal sender As Object, _
ByVal args As ILOG.Diagrammer.Web.UI.QuerySelectionDataEventArgs)
Dim obj As GraphicObject = args.SelectedObject
args.Properties ("bounds") = obj.Bounds
End Sub
End Class

Zoom Interactor

The zoom interactor is defined by the Zoomlnteractor class and its JavaScript counterpart is
thelL OG.Diagrammer.Web.Ul.ZoomBehavior JavaScript class. It enablesyou to zoomin
or zoom out a particular area of aview:

[—Zoom in: to zoom in an area of a view, drag arectangle corresponding to the areato
zoom and release the mouse button to perform the zoom.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 45

Displaying Diagrams in an ASP.NET Application

[—Zoom out: to zoom out the view, press the Shift key and drag a rectangle corresponding
to the area into which the current visible area should appear after the zooming-out
operation.

Itis possibleto cancel the current operation pressing the ESC key while dragging the mouse
to define the rectangular areato zoom.

Pan Interactor

Theinteractor used to pan aview is defined by the Panlnteractor class and its JavaScript
counterpart isthe | L OG.Diagrammer.Web.Ul .PanBehavior JavaScript class.

To pan aview, press the left mouse button on the view and drag the mouse to display the
new visible area.

It is possible to cancel the current operation by pressing the ESC key while dragging the
mouse to define the new visible area.

Graphic Object Creation Interactor

Theinteractor used to create graphic objectsis defined by the M akeObjectInteractor class
and its JavaScript counterpart isthe | LOG.Diagrammer.Web.Ul.M akeObjectBehavior
JavaScript class.

This class allows you to create graphic objects by defining the object bounds on the
client-side which are then post back to the server to effectively create the object.

The M akeObjectl nteractor supports two different modes: the link mode and the graphic
object mode viathe LinkMode property. When this property is set to true, the interactor is
configured to create links.

Creating links
To create alink, process with the following steps:

[On the server, subscribe to the MakeLink event of the M akeObjectInteractor. This
event is raised to query the creation of anew link viathe Link property of the
MakeLinkEventArgs event argument. Note that the link size and location are
automatically initialized by the interactor and should not be done by the event handler.

[On the client, press the left mouse button on the starting point of the link (it can be an
empty area or a graphic object) and drag the mouse to the ending point of the link (it can
be an empty area or a graphic object) then release the mouse button.

By default, when a source or destination graphic object exists for the link, the interactor
automatically connectsthe link. You can change this behavior by means of the AutoConnect
property of the MakeL inkEventArgs. When this property isfalse, the link is not connected
and the user isresponsible for connecting it.

Creating objects
To create graphic objects, proceed through the following steps:

46 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Displaying a Diagram in an AJAX Web Application

[On the server, subscribe to the MakeObject event of the MakeObjectlnteractor class.
Thisevent is raised to query the creation of a new object viathe GraphicObject property
of the MakeObjectEventArgs event argument. Note that the object size and location are
automatically initialized by the interactor and should not be done by the event handler.

[On the client, define the bounds of the object to create pressing the left mouse button and
drag the mouse to define a rectangle of the expected size then rel ease the mouse button.

The following example shows how to handle the MakeObject and MakeLink events:
Thepefault.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<%@ Register Assembly="ILOG.Diagrammer.Web, Version=1.6.0.0, Culture=neutral,
PublicKeyToken=7906592bc7cc7340"
Namespace="ILOG.Diagrammer.Web.UI" TagPrefix="ccl" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmlll.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server'">
<title>Untitled Page</title>
</head>
<body>
<form id="forml" runat="server"s
<asp:ScriptManager ID="ScriptManagerl" runat="server" />

<divs>
<asp:UpdatePanel ID="UpdatePanell" runat="server"s
<Triggerss>
<asp:AsyncPostBackTrigger ControlID="MakeObjectInteractorl" />
</Triggers>

<ContentTemplate>
<ccl:AjaxDiagramView ID="DiagramViewl" runat="server" Width="300px"
Height="200px" ContentSessionId="DiagramViewlContents" />
<ccl:MakeObjectInteractor ID="MakeObjectInteractorl" runat="server"
TargetControlID="DiagramViewl" OnMakeLink="MakeObjectInteractorl MakeLink"
OnMakeObject="MakeObjectInteractorl MakeObject" />
<asp:CheckBox ID="CheckBoxl" runat="server" AutoPostBack="True"
OnCheckedChanged="CheckBox1l_ CheckedChanged"
Text="Create Links" />
</ContentTemplate>
</asp:UpdatePanel>
</divs>
</form>
</body>
</html>

The C# code-behind file:

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer;

using System.Drawing;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 47

Displaying Diagrams in an ASP.NET Application

public partial class _Default : System.Web.UI.Page

{

protected void Page_Init (object sender, EventArgs e)

{

}

if (!IsPostBack) {
Group container = new Group() ;
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
ellipse.Fill = new SolidFill (Color.Coral) ;
container.Objects.Add(ellipse) ;
Rect rect = new Rect (60, 80, 90, 50);
rect.Fill = new SolidFill (Color.LawnGreen) ;
container.Objects.Add (rect) ;
DiagramViewl.Content = container;

protected void MakeObjectInteractorl_MakeObject (object sender,

}

ILOG.Diagrammer.Web.UI.MakeObjectEventArgs args) {
Ellipse ellipse = new Ellipse(0, 0, 100, 100);
ellipse.Fill = new SolidFill (Color.Coral) ;
args.GraphicObject = ellipse;

protected void CheckBoxl CheckedChanged (object sender, EventArgs e)

}

MakeObjectInteractorl.LinkMode = CheckBoxl.Checked;

protected void MakeObjectInteractorl MakeLink (object sender,

}

ILOG.Diagrammer.Web.UI.MakeLinkEventArgs args) {
Link link = new Link() ;
link.Stroke = new Stroke (Color.Black, 2f);
args.Link = link;

The VB.NET code-behind file:

Imports
Imports
Imports
Imports
Imports
Imports

System

System.Web
System.Web.UI
ILOG.Diagrammer.Graphic
ILOG.Diagrammer
System.Drawing

Public Class _Default
Inherits System.Web.UI.Page

Protected Sub Page Init (ByVal sender As Object, ByVal e As EventArgs)
If Not IsPostBack Then
Dim container As Group = New Group
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)

ellipse.Fill = New SolidFill (Color.Coral)
container.Objects.Add (ellipse)
Dim rect As Rect = New Rect (60, 80, 90, 50)
rect.Fill = New SolidFill (Color.LawnGreen)
container.Objects.Add (rect)
DiagramViewl.Content = container

End If

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

{

Displaying a Diagram in an AJAX Web Application

End Sub

Protected Sub MakeObjectInteractorl MakeObject (ByVal sender As Object, _
ByVal args As ILOG.Diagrammer.Web.UI.MakeObjectEventArgs)
Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
ellipse.Fill = New SolidFill (Color.Coral)
args.GraphicObject = ellipse
End Sub

Protected Sub CheckBoxl CheckedChanged (ByVal sender As Object, _
ByVal e As EventArgs)
MakeObjectInteractorl.LinkMode = CheckBoxl.Checked
End Sub

Protected Sub MakeObjectInteractorl MakeLink (ByVal sender As Object, _
ByVal args As ILOG.Diagrammer.Web.UI.MakeLinkEventArgs)
Dim link As Link = New Link
link.Stroke = New Stroke (Color.Black, 2F)
args.Link = link
End Sub
End Class

Creating a New AJAX-enabled View Interactor

The AjaxDiagramView Web control supports rich client-side user interactions by means of
AJAX-enabled view interactors.

An interactor makes it possible to handle user'sinput in an AjaxDiagramView. When an
interactor is set on aview, all input events received by the client-side view component (that
is, al input events that occur in the browser on the view) are forwarded to the interactor
which will then handle the events to accomplish its task.

This section explains how to create a new AJAX-enabled view interactor.

Note: The following example extends and usesthe ASP.NET 2.0 AJAX library and therefore
assumes the knowledge of this technology is known. In particular, creating a new
Extender Control is a prerequisite to understand this example.

Requirements

To write anew interactor, the first step is to define what the interactor should do wheniit is
set on aview.

The example shows a basic interactor that displays contextual information in aspan HTML
element when the mouse moves over an object and changesits color whenit is clicked. The
information is fetched asynchronoudly.

The reguirements to implement thisinteraction are:

[The information must be processed asynchronously.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 49

Displaying Diagrams in an ASP.NET Application

[_The new color must be processed synchronously since it requires an update of the image.

[Theid of the span element must be specified on the server and known on the client.

Creating the Interactor

To handle input eventsin aview, you have to create an interactor class. The base class for
interactors is the ViewlInteractor class which defines the basic functionalities and servicesto

handle input eventsin an AjaxDiagramView.

In order to know the span element that displays the information, the interactor defines the
M sgElement| D property to store the element | d.

The following example shows the class definition as well as the M sgElement| D property.

using System;

using System.Web;

using System.Web.UI;

using ILOG.Diagrammer.Web.UI;

public class MyInteractor : ViewInteractor

{

private string _msgElementId;

[IDReferenceProperty ()]
public string MsgElementID {
get {

return msgElementId ?? string.Empty;

set {

}

_msgElementId = value;

}
Imports System
Imports System.Web

Imports System.Web.UI
Imports ILOG.Diagrammer.Web.UI

Public Class MyInteractor
Inherits ViewInteractor

Private msgElementId As String

<IDReferenceProperty () >

Public Property MnglemthID() As String

Get

If Not (_msgElementId Is Nothing) Then

Return _msgElementId
Else
Return String.Empty
End If
End Get
Set
_msgElementId = value
End Set
End Property
End Class

50 IBM ILOG DIAGRAM FOR .NET 2.0

— PROGRAMMING

Displaying a Diagram in an AJAX Web Application

Inheriting the ViewInteractor Base Class
When subclassing the Viewl nter actor, you must implement the following method:

[_CreateScriptBehaviorDescriptor abstract method of the Viewl nteractor classto return a
ScriptBehavior Descriptor instance that definesthe instance of the client behavior type.
In this example, the ScriptBehavior Descriptor isinitialized with the
MySample.Mylnteractor behavior type and the ClientI D of the target control.

You may also have to override the following methods:

[ConfigureScriptDescriptor to configure the ScriptBehavior Descriptor instance created
in the method above to define the client behavior's properties. Client behavior's
properties are declared to the script descriptor by means of the AddProperty method of
the ScriptBehavior Descriptor class. In this example, the M sgElement| D property is
added to the script descriptor to initialize the corresponding client behavior's property.
Overriding this method is not required if you do not have any properties to add.

[GetScriptReferences to pass the location of the script library that defines the client
behavior type, in this example MyBehavior. js, which iswritten later in this section.

protected override ScriptBehaviorDescriptor
CreateScriptBehaviorDescriptor (Control targetControl)
return new ScriptBehaviorDescriptor ("MySample.MyBehavior",
targetControl.ClientID) ;

}

protected override void ConfigureScriptDescriptor (ScriptBehaviorDescriptor
descriptor) {
base.ConfigureScriptDescriptor (descriptor) ;
descriptor.AddProperty ("messageElementId", MsgElementID) ;

}

protected override System.Collections.Generic.IEnumerable<ScriptReferences
GetScriptReferences () {
IEnumerable<ScriptReference> references = base.GetScriptReferences() ;
List<ScriptReference> list = new List<ScriptReferences> (references) ;
list.Add (new ScriptReference (ResolveClientUrl ("MyBehavior.js"))) ;
return list;
}
Protected Overloads Overrides Function CreateScriptBehaviorDescriptor (ByVal
targetControl As Control) As ScriptBehaviorDescriptor
Return New ScriptBehaviorDescriptor ("MySample.MyBehavior",
targetControl.ClientID)
End Function

Protected Overloads Overrides Sub ConfigureScriptDescriptor (ByVal descriptor As
ScriptBehaviorDescriptor)

MyBase.ConfigureScriptDescriptor (descriptor)

descriptor.AddProperty ("messageElementId", MsgElementID)
End Sub

Protected Overrides Function GetScriptReferences() As IEnumerable (Of
ScriptReference)

Dim references As IEnumerable (Of ScriptReference)

references = MyBase.GetScriptReferences ()

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 51

Displaying Diagrams in an ASP.NET Application

Dim list As New List (Of ScriptReference) (references)
list.Add (New ScriptReference (ResolveClientUrl ("FocusBehavior.js")))
Return list;

End Function

Processing the Interaction on the Server

A view interactor can process the result of interactions in two ways depending on whether
the client behavior sent an asynchronous callback or a synchronous postback.

In case of an asynchronous callback has been sent, the Viewl nteractor class, which
implements the | CallbackEventHandler interface, defines the Rai seCallbackEvent
method. This method should be overridden by subclasses to implement the expected
behavior.

In case of a synchronous postback has been sent, the Viewl nteractor class, which
implements the | PostBack EventHandler interface, defines the Rai sePostBackEvent
method. This method should be overridden by subclasses to implement the expected
behavior.

In this example, the interactor overrides the RaiseCallback EventHandler to get the
contextual information of the clicked object and send it back to the server. Note that the data
related to the client-side event is sent to the server asa JSON string and therefore requiresto
be deserialized first. Then a hit test is performed to get the clicked object. The result isthen
the object tooltip.

protected override void RaiseCallbackEvent (string eventArgument)
JavaScriptSerializer serializer = new JavaScriptSerializer();
IDictionary param = serializer.DeserializeObject (eventArgument) as

IDictionary;
if (param != null) {
DiagramView view = View;
int mouseX = (int)param["x"];
int mouseY = (int)param["y"];
GraphicObject obj = view.HitTestSelectable (new Point (mouseX, mouseY)) ;
if (obj != null) {

_callbackResult = obj.ToolTip;
}
\ }
Protected Overloads Overrides Sub RaiseCallbackEvent (ByVal eventArgument As
String)
Dim serializer As JavaScriptSerializer = New JavaScriptSerializer
Dim param As IDictionary = CType(serializer.DeserializeObject (eventArgument),
IDictionary)
If Not (param Is Nothing) Then
Dim view As DiagramView = View
Dim mouseX As Integer = CType(param("x"), Integer)
Dim mouseY As Integer = CType(param("y"), Integer)
Dim obj As GraphicObject = view.HitTestSelectable (New Point (mouseX, mouseY))
If Not (obj Is Nothing) Then
_callbackResult = obj.ToolTip
End If
End If
End Sub

52 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

It also overrides the RaisePostBack EventHandler method to change the Fill property of
the clicked object. Similarly to the RaiseCallback EventHandler method, the
RaisePostBack EventHandler receives the client-side event data as a JSON string and
therefore requiresit is deserialized first. Then ahit test is performed to get the clicked object
and its Fill property is changed.

protected override void RaisePostBackEvent (string eventArgument) {

JavaScriptSerializer serializer = new JavaScriptSerializer();
IDictionary param = serializer.DeserializeObject (eventArgument) as

IDictionary;
if (param != null) {
DiagramView view = View;
int mouseX = (int)param["x"];
int mouseY = (int)param["y"];
Shape obj = view.HitTestSelectable (new Point (mouseX, mouseY)) as Shape;
if (obj != null) {

SolidFill £ill = (SolidFill)obj.Fill;
Color ¢ = fill.Color;
Color newColor = Color.FromArgb((c.R + 25) % 255, (c.G + 25) % 255,
(c.B + 25) % 255);
fill.Color = newColor;
1

}

}
Protected Overloads Overrides Sub RaisePostBackEvent (ByVal eventArgument As
String)
Dim serializer As JavaScriptSerializer = New JavaScriptSerializer
Dim param As IDictionary = CType(serializer.DeserializeObject (eventArgument),
IDictionary)
If Not (param Is Nothing) Then

Dim view As DiagramView = View

Dim mouseX As Integer = CType(param("x"), Integer)
Dim mouseY As Integer = CType(param("y"), Integer)
Dim obj As Shape = TryCast (view.HitTestSelectable(_
New Point (mouseX, mouseY)), Shape)

If Not (obj Is Nothing) Then
Dim fill As SolidFill = CType(obj.Fill, SolidFill)
Dim ¢ As Color = fill.Color
Dim newColor As Color = Color.FromArgb((c.R + 25) Mod 255, _
(c.G + 25) Mod 255,

(c.B + 25) Mod 255)
fill.Color = newColor
End If
End If
End Sub

Creating the Client-side Behavior

The client behavior of aview interactor is defined by the
ILOG.Diagrammer.Web.Ul.ViewBehavior JavaScript class. This class defines the basic
functionalities required to handle input eventsin an AjaxDiagramView and to
communicate with the server-side control.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 53

Displaying Diagrams in an ASP.NET Application

The client behavior in this example therefore inherits from ViewBehavior and definesthe
messageElementld property that corresponds to the M sgElement| D property of the
Myl nteractor class.

Note that since the interactor GetScriptReferences method specifiesthe MyBehavior.js
file as the JavaScript file that contains the client behavior, all the JavaScript code bel ow
should bein amMyBehavior.js file.

The following example shows the client behavior class definition:
Type.registerNamespace ('MySample') ;

MySample.MyBehavior = function(element) {
MySample.MyBehavior.initializeBase (this, [element]);
this. messageElementId = null;
this._timer = null;

}
MySample.MyBehavior.prototype = {

initialize : function() {
MySample.MyBehavior.callBaseMethod (this, 'initialize');
}

dispose : function() {
MySample.MyBehavior.callBaseMethod (this, 'dispose');
1

get messageElementId : function() {
return this._messageElementId;
}

set messageElementId : function(value) ({
this. messageElementId = value;
}

}

MySample.MyBehavior.registerClass ('MySample.MyBehavior',
ILOG.Diagrammer.Web.UI.ViewBehavior) ;

Handling Input Events on the Client

Handling input eventsin an AjaxDiagramView is done by listening the events of the
browser DOM. In this example, the interactor needs to listen to the mousemove and
mousedown events and therefore defines the onMouseDown and onMouseMove event
handlers and associates them with the corresponding events. The new implementation of the
initialize () and dispose () methodsare:
initialize : function() {
MySample.MyBehavior.callBaseMethod (this, 'initialize');

$addHandlers (this.get element (), {'mousedown': this.onMouseDown,
'mousemove': this.onMouseMove},

this) ;

}

dispose : function() {

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

$clearHandlers (this.get element ()) ;
MySample.MyBehavior.callBaseMethod (this, 'dispose');

b

Initiating a Postback From the Client Behavior

The ViewBehavior JavaScript class enablesto initiate postback from an interactor by means
of thedoprostBack () method. Thismethod initiates a postback passing optional parameters
to the server view interactor control.

In this example, the interactor initiates a postback on the mousedown event to change the
color of the clicked object. The following example shows the code of the onMouseDown
method:

onMouseDown : function(e) ({
if (e.button == Sys.UI.MouseButton.leftButton) ({
var p = {'x':e.offsetX, 'y':e.offsetY };
this.doPostBack (p) ;
e.preventDefault () ;

}
b

Initiating a Callback From the Client Behavior

In addition to the postback facility, the ViewBehavior class enablesto initiate asynchronous
callback from an interactor by means of the callserverasync () method. This methods
initiates an asynchronous communication between the client behavior and the server view
interactor control. The response of the server control is handled in the
onCallbackReceived method which must be overridden in the subclass to process the
received information.

In this example, the interactor initiates an asynchronous callback when the mouse movesto
get information on the possible hovered object. In order to reduce the number of requests, it
uses atimer that is reset as soon as the mouse moves again. The following example shows
the code of the onMouseMove and onCallbackReceived methods:

onMouseMove : function(e) ({

var p = {'x':e.offsetX, 'y':e.offsetY };

this.clearTimer () ;

var inter = this;

this. timer = setTimeout (function() {
inter.callServerAsync (p) ;
inter.clearTimer () ;

}, 250) ;

e.preventDefault () ;

b

onCallbackReceived : function(args) {
var elt = document.getElementById(this.get messageElementId()) ;
if (elt)
elt.innerText = args;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 55

Displaying Diagrams in an ASP.NET Application

Here is the complete source code of the client behavior:

// JScript File
Type.registerNamespace ('MySample') ;

MySample.MyBehavior = function(element) {

MySample.MyBehavior.initializeBase (this, [element]);

this. messageElementId = null;
this. timer = null;

}

MySample.MyBehavior.prototype = {
initialize : function() {
MySample.MyBehavior.callBaseMethod (this, 'initialize');
SaddHandlers (this.get_element (), {‘mousedown‘: this.onMouseDown,
'mousemove’' : this.onMouseMove},
this) ;
}
dispose : function() {
SclearHandlers (this.get_element ()) ;
MySample.MyBehavior.callBaseMethod (this, 'dispose');
¥
get_messageElementId : function() {
return this. messageElementId;
1
set_messageElementId : function(value) {
this. messageElementId = value;
1
onMouseDown : function(e)
if (e.button == Sys.UI.MouseButton.leftButton) {

var p = {'x':e.offsetX, 'y':e.offsetY };

this.doPostBack (p) ;
e.preventDefault () ;

b

onMouseMove : function(e)

var p = {'x':e.offsetX, 'y':e.offsetY };

this.clearTimer () ;

var inter = this;

this. timer = setTimeout (function() {
inter.callServerAsync (p) ;
inter.clearTimer () ;

}, 250);

e.preventDefault () ;

b

onCallbackReceived : function(args) {

var elt = document.getElementById(this.get messageElementId()) ;

if (elt)
elt.innerText = args;

56 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying a Diagram in an AJAX Web Application

clearTimer : function()
if (this. timer) {
clearTimeout (this. timer) ;
this._timer = null;

}

MySample.MyBehavior.registerClass ('MySample.MyBehavior',
ILOG.Diagrammer.Web.UI.ViewBehavior) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 57

Displaying Diagrams in an ASP.NET Application

58 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Using Predefined Graphic Objects

This section presents the predefined graphic objects availablein

IBM® ILOG® Diagram for .NET. A complete set of graphic objectsis provided, from basic
shapes such as rectangles, ellipses to complex objects such as predefined gauges or charts.
This section describes also the various graphic objects that are container objects (graphic
objects containing other objects). By combining those predefined graphic objects you will
be able to create new graphic objects that you can reuse through your application.

In This Section
Basic Shapes

Explains the ready-to-use graphic objects that represent basic shapes such as
rectangle, ellipse, polyline, and so on.

Paths
Introduces the Path object, a graphic object for displaying any type of shape.
Images
Introduces the Image class.
Text Objects
Introduces graphic objects that display text.
Link Objects
Introducesthe Link class, agraphic object for creating links between nodes.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 59

Using Predefined Graphic Objects

Controls

Introduces the Control class.
Panels

Introduces the Panel class and its subclasses.
Subdiagrams

Introduces the SubDiagram class.
Graphic Symbols

Introduces the GraphicSymbol class.
Scale Objects

Introduces the CircularScale and LinearScal e classes.
Gauges

Introduces predefined graphic objects for dashboard displays.

User Symbols

Introduces the UserSymbol class, a composite graphic object that can be created using
Visual Studio .NET.

Related Sections
Displaying Text in a Diagram
Describes how to display basic or complex styled text inside a graphic object.
Building Diagrams and User Symbols Inside Visual Sudio
Introduces the Visual Studio .NET® Diagram Designer.
Creating a Smple Diagram with Nodes and Links Programmatically
Explains the code needed to create a simple diagram.

Basic Shapes
IBM® ILOG® Diagram for .NET provides a number of ready-to-use graphic objects that

represent basic shapes. The following shapes are available: Circle, Ellipse, Rect, Arc, Pie,
Line, Polyline, Polygon, BezierCurve, Curve, ClosedCurve, Basic2DShape and Path.

60 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Basic Shapes

The following illustration shows some of the basic shapes:

All the basic shapes inherit from the Shape class and share the following common
properties:

C_Hill: describes how the interior of the shape is painted.
[—Ftroke: defines how the outline of the shape is painted.

The Rect class displays arectangle. The following example creates a Rect object and shows
how to specify the Fill and Stroke properties:

Rect rectangle = new Rect (0, 0, 100, 100);
rectangle.Radius = new Size2D (10, 10);
rectangle.Fill = new SolidFill (Color.LightBlue) ;
rectangle.Stroke = new Stroke (Color.Black, 2);
Dim rectangle As Rect = New Rect (0, 0, 100, 100)
rectangle.Radius = New Size2D (10, 10)
rectangle.Fill = New SolidFill (Color.LightBlue)
rectangle.Stroke = New Stroke (Color.Black, 2)

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 61

Using Predefined Graphic Objects

The following image shows the rendered rectangle:

To learn more about the Fill and Stroke properties of abasic shape, see Filling and Sroking
Graphic Objects.

Like other graphic objects, the basic shapes share anumber of propertiesthat are common to
all graphic objects, like displaying text inside the graphic object or specifying opacity for the
object. To learn more about those properties see Common Graphic Objects Rendering
Features.

Basic Shapes With the Geometry Defined by a Rectangle

Some of the basic shapes such as the Rect, Ellipse, Pie, Arc and Basic2D Shape objects have
their geometry defined by arectangle.

They all inherit from the same abstract base class, BoundedShape, and they share the
Rectangle property that represents the rectangle that defines their bounds. For example, for
an ellipse object, the Rectangle property defines the area where the ellipseis painted.

The following example shows how to create an Ellipse object and how to specify the
Rectangle property.

Ellipse ellipse = new Ellipse();

ellipse.Rectangle = new Rectangle2D(10, 10, 100, 60);
ellipse.Fill = new SolidFill (Color.LightBlue) ;
ellipse.Stroke = new Stroke(Color.Black, 2);

Dim ellipse As Ellipse = New Ellipse
ellipse.Rectangle = New Rectangle2D(10, 10, 100, 60)
ellipse.Fill = New SolidFill (Color.LightBlue)
ellipse.Stroke = New Stroke(Color.Black, 2)

62 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Basic Shapes

The following image shows the rendered ellipse:

Basic Shapes With the Geometry Defined by a Set of Points

Some of the basic shapes such as Polyline, Polygon, BezierCurve, Curve or ClosedCurve
have their geometry defined by a set of points. They all inherit from the same abstract base
class, PolyPoints, and share the following properties:

[Points: indicates the set of points that define the geometry of the shape.
[IsClosed: indicatesif the shape is closed or not.
[CanEditPoints: indicates if the points can be modified by a mouse interaction.

The following example shows how to create a Polyline object and how to specify the Points
property.

Polyline polyline = new Polyline();
polyline.Points.AddRange (new Point2D[] ({
new Point2D(0,0),
new Point2D (100, 10),
new Point2D(200,0),
new Point2D(300,10)
1)
polyline.Stroke = new Stroke (Color.Black, 2, DashStyle.Dash) ;
Dim polyline As Polyline = New Polyline
polyline.Points.AddRange (New Point2D() { _
New Point2D(0, 0), _
New Point2D (100, 10),
New Point2D (200, 0), _
New Point2D (300, 10)})
polyline.Stroke = New Stroke (Color.Black, 2, DashStyle.Dash)

The following image shows the rendered polyline:

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 63

Using Predefined Graphic Objects

The Path Object

The Path object is abasic shape that enables you to draw complex curves and shapes. To
learn more about the Path object see The Path Object.

The Basic2DShape Object

The Basic2D Shape object is a convenient graphic object that can display a predefined set of
shapes. You specify the shape of the object through the ShapeType property. You can choose
among different shapes: rectangle, ellipse, pentagon, arrow, star, and so on. The
ControlValue property is afloating point value that allows you to modify the shape
depending on the shape type. For example, for acrossit allows you to control the thickness
of the cross.

The following illustration shows the possible shapes of the Basic2DShape class:

O AC
QOAOL
W+

The Path object is a graphic object that allows you to display any kind of shape.

Paths

The geometry of the Path object is defined by the PathData object. The PathData containsa
collection of segments; each segment in this collection represents a segment of the path.

64 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Paths

Segments can be lines, arcs, bezier or quadratic bezier segments. It is also possible to create

compound paths (a path with multiple subpaths) to obtain effects such as "donut holes".

The following example shows how to create a Path object.

Path path = new Path() ;
path.Fill = new SolidFill (Color.Blue) ;
path.Stroke = new Stroke(Color.Red, 2);

path.Data.AddSegment (new StartSegment (110, 20));
path.Data.AddSegment (new ArcSegment (new Point2D(210,120),

new Size2D(100,100), 90, false, true));
path.Data.AddSegment (new LineSegment (110, 220));

path.Data.AddSegment (new BezierSegment (110, 220, 110, 120, 10, 120));

path.Data.AddSegment (new CloseSegment ()) ;

Dim path As Path = New Path

path.Fill = New SolidFill (Color.Blue)

path.Stroke = New Stroke(Color.Red, 2)

path.Data.AddSegment (New StartSegment (110, 20))

path.Data.AddSegment (New ArcSegment (New Point2D (210, 120), _
New Size2D (100, 100), 90, False, True))

path.Data.AddSegment (New LineSegment (110, 220))

path.Data.AddSegment (New BezierSegment (110, 220, 110, 120, 10, 120))

path.Data.AddSegment (New CloseSegment)

The Path object you have just created should look like the following one.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

65

Using Predefined Graphic Objects

The segments that can be specified in the PathData objects are subclasses of the

PathSegment class:

Class Properties Description

StartSegment Point (Point2D) Starts a new subpath at the given point coordinate
specified by the Point property.

LineSegment Point (Point2D) Draws a line from the current point to the coordinate
specified by the Point property.

CloseSegment Closes the current subpath by drawing a straight
line from the current point to the initial point of the
current subpath.

BezierSegment Point1(Point2D) Draws a cubic Bézier curve from the current point to

Point2(Point2D) point Point3 using Point1 as the control point at the
Point3(Point2D) beginning of the curve and Point2 as the control
point at the end of the curve.

QuadraticBezierSegment Point1(Point2D) Draws a quadratic Bézier curve from the current

Point2 (Point2D) point to point Point2 using Pointl as the control
point.

ArcSegment Point (Point2D), Draws an elliptical arc from the current point to the

Size(Point2D), point specified by the Point property. The size and

XRotation(double) | orientation of the ellipse are defined by two radii

LargeArc (bool) (Size property) and an XRotation, which indicates

SweepFlag(bool) how the ellipse as a whole is rotated with respect to
the current coordinate system.

The geometry of the Path object can also be specified through a formatted string that
specifiesthe segments. The format of this string isthe same format specified by the Scalable
Vector Graphics (SVG) "path data" format. Thisformat isa set of commands followed by
parameters.

66 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

The commands are the following:

Paths

Command

Name

Parameters

Description

M (absolute)
m (relative)

moveto

(xy)+

Starts a new subpath at the given (x,y) coordinate.
M (uppercase) indicates that absolute coordinates
will follow; m (lowercase) indicates that relative
coordinates will follow. If a relative moveto (m)
appears as the first element of the path, then it is
treated as a pair of absolute coordinates. If a
moveto is followed by multiple pairs of coordinates,
the subsequent pairs are treated as implicit lineto
commands.

Zor

closepath

none

Closes the current subpath by drawing a straight
line from the current point to the intial point of the
current subpath.

L (absolute)
| (relative)

lineto

xy)+

Draws a line from the current point to the given (X,y)
coordinate which becomes the new current point. L
(uppercase) indicates that absolute coordinates will
follow; | (lowercase) indicates that relative
coordinates will follow. A number of coordinates
pairs may be specified to draw a polyline. At the end
of the command, the new current point is set to the
final set of the provided coordinates.

H (absolute)
h (relative)

horizontal lineto

X+

Draws a horizontal line from the current point (cpx,
cpy) to (X, cpy). H (uppercase) indicates that
absolute coordinates will follow; h (lowercase)
indicates that relative coordinates will follow.
Multiple x values can be provided (although usually
this does not make sense). At the end of the
command, the new current point becomes (x, cpy)
for the final value of x.

V (absolute)
v (relative)

vertical lineto

y+

Draws a vertical line from the current point (cpx,
cpy) to (cpx, y). V (uppercase) indicates that
absolute coordinates will follow; v (lowercase)
indicates that relative coordinates will follow.
Multiple y values can be provided (although usually
this does not make sense). At the end of the
command, the new current point becomes (cpx, Yy)
for the final value of y.

IBM

ILOG DIAGRAM FOR

.NET 2.0 —

PROGRAMMING 67

Using Predefined Graphic Objects

68

Command

Name

Parameters

Description

C (absolute)
c (relative)

curveto

(x1ylx2y2xy)+

Draws a cubic Bézier curve from the current point to
(x,y) using (x1,y1) as the control point at the
beginning of the curve and (x2,y2) as the control
point at the end of the curve. C (uppercase)
indicates that absolute coordinates will follow; c
(lowercase) indicates that relative coordinates will
follow. Multiple sets of coordinates may be specified
to draw a polybézier. At the end of the command,
the new current point becomes the final (x,y)
coordinate pair used in the polybézier.

S (absolute)
s (relative)

shorthand/
smooth curveto

(x2y2 x y)+

Draws a cubic Bézier curve from the current point to
(x,y). The first control point is assumed to be the
reflection of the second control point on the previous
command relative to the current point. (If there is no
previous command or if the previous command was
notaC, c, Sors, itis assumed that the first control
point is coincident with the current point.) (x2,y2) is
the second control point (that is, the control point at
the end of the curve). S (uppercase) indicates that
absolute coordinates will follow; s (lowercase)
indicates that relative coordinates will follow.
Multiple sets of coordinates may be specified to
draw a polybézier. At the end of the command, the
new current point becomes the final (x,y) coordinate
pair used in the polybézier.

Q (absolute)
g (relative)

quadratic Bézier
Curvetoxxx

(x1ylxy)+

Draws a quadratic Bézier curve from the current
point to (x,y) using (x1,y1) as the control point. Q
(uppercase) indicates that absolute coordinates will
follow; g (lowercase) indicates that relative
coordinates will follow. Multiple sets of coordinates
may be specified to draw a polybézier. At the end of
the command, the new current point becomes the
final (x,y) coordinate pair used in the polybézier.

IBM

ILOG DIAGRAM FOR

.NET 2.0 —

PROGRAMMING

Images

Command Name Parameters Description

T (absolute) | Shorthand/ (xy)+ Draws a quadratic Bézier curve from the current

t (relative) smooth point to (x,y). The control point is assumed to be the
quadratic Bézier reflection of the control point on the previous
curveto command relative to the current point. (If there is no

previous command or if the previous command was
notaQ, g, T ort, itis assumed that the control point
is coincident with the current point.) T (uppercase)
indicates that absolute coordinates will follow; t
(lowercase) indicates that relative coordinates will
follow. At the end of the command, the new current
point becomes the final (x,y) coordinate pair used in
the polybézier.

A (absolute) | elliptical arc (rx ry x-axis- Draws an elliptical arc from the current point to (X,
a (relative) rotation y). The size and orientation of the ellipse are defined
large-arc-flag by two radii (rx, ry) and an x-axis-rotation, which
sweep-flag x y)+ |indicates how the ellipse as a whole is rotated with
respect to the current coordinate system. The center
(cx, cy) of the ellipse is calculated automatically to
satisfy the constraints imposed by other parameters.
large-arc-flag and sweepflag contribute to the
automatic calculations and help determine how the
arc is drawn.
The path we have created in the previous example can a so be created through the following
code:
Path path = new Path() ;
path.Fill = new SolidFill (Color.Blue) ;
path.Stroke = new Stroke(Color.Red, 2);
path.Data.SetGeometry("M110 20A100 100 90 0 1 210 120L110 220C110 220 110 120
10 120z");
Dim path As Path = New Path
path.Fill = New SolidFill (Color.Blue)
path.Stroke = New Stroke(Color.Red, 2)
path.Data.SetGeometry ("M110 20A100 100 90 0 1 210 120L110 220C110 220 110 120
10 120z")
Images

IBM

The Image object isagraphic object that can display various types of images. The object can
display raster images such as GIF, JPEG, PNG, BMP and all the bitmap formats supported by
the .NET Framework®.

It can also display vector graphics that can be specified by a graphic object or an SVG or
IVN file.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 69

Using Predefined Graphic Objects

To display araster image use the Systemlmage property. Thisis the property that specified
the .NET Framework® I mage to display.

To display vector graphics use the GraphicObject property.

The content displayed by the Image object can also be specified by the ImageUri property
that represents a URI to the raster or vector content.

The areawhere the image is displayed is specified by the Rectangle property. Within this
rectangle the image may be scaled with various fitting options specified by the
KeepAspectRatio and Slice properties.

The following example shows how to create an |mage object:

Image img = new Image() ;

img.Rectangle = new Rectangle2D(0, 0, 100, 100);
img.KeepAspectRatio = AspectRatioAlignment.XMidYMid;
img.ImageUri = new Uri ("http://www.ibm.com/logo.gif") ;
Dim img As Image = New Image

img.Rectangle = New Rectangle2D(0, 0, 100, 100)
img.KeepAspectRatio = AspectRatioAlignment.XMidyYMid
img.ImageUri = New Uri ("http://www.ibm.com/logo.gif")

Text Objects

70 IBM

IBM® ILOG® Diagram for .NET allows you to display text in adiagram in different ways.

All graphic objects can display text by means of the Text property of the GraphicObject
class. Through the TextA ppearance property you can control the appearance of the text
within the graphic object in terms of color, font and alignment.

To display text, you can also use the following classes:

[Text: to display a styled text aligned around an anchor point.
[TextOnPath: to display atext along a path.

The following illustration shows Text and TextOnPath objects.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Link Objects

fa

{7
2
@
L

R

ammer for NET

For more information on displaying text in a diagram see Displaying Text in a Diagram.

Link Objects
A Link isagraphic object used to draw a connection between two other graphic objects.
Links are useful to build graphs like flow chart diagrams or business process diagrams.

TheLink classisasubclass of PolyPoints. The link looks like a sequence of straight or
curved segments between two objects.

In This Section
Soecifying the Connection Points
Explains how to connect aLink.
Soecifying the Link Shape
Explains how to customize the Link shape.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 71

Using Predefined Graphic Objects

72

IBM

Customizing the Arrows
Explains how to customize the start and end arrows of aLink.
Customizing the Link Appearance
Explains how to customize the Link appearance.
Adding Text
Explains how to add text on aLink.
Link Crossing
Explains how to enable link crossings.
Related Sections
Creating a Smple Diagram with Nodes and Links Programmatically
Explains the code needed to create a simple diagram.
Introducing Link and Anchor Classes
Explains the basic principles of the classes that are used to create graphs.

Specifying the Connection Points

To connect alink between two graphic objects use the StartAnchor and EndAnchor
properties. The values of these properties are Anchor objects contained in the collection
stored in the Anchors property of the start or end object. When alink is connected to a
graphic object, the start or end point is determined by the anchor. If the graphic object is
moved or resized, the connection point will be recomputed automatically.

The following illustration shows an example of alink connected to graphic objects at both

extremities.
End Mode

Start Mode

A link can also be disconnected (that is, not connected to any graphic object) at one or both
extremities. In that case, the start or end point is determined by the StartPoint or EndPoint
property, respectively.

The following illustration shows an example of alink whose end is not connected.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Link Objects

Start Node

Specifying the Link Shape

The LinkShape property controls the shape of the link. The type of this property isthe
LinkShapeType enumeration, and these are the possible values:

[Hraight: the link is a straight line between the start point and the end point.

[Orthogonal: the link shape is computed automatically to a sequence of vertical or
horizontal segments. There can be 2 to 5 segments, depending on the connection points
and the bounds of the graphic objects to which the link is connected.

The following illustration shows the possible shapes of an orthogonal link.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 73

Using Predefined Graphic Objects

-
)

'

]

. .
)
C—

Note: When LinkShape is Orthogonal and if the CanEditOrthogonal Shape property is
true, it is possible to modify the link shape interactively, while keeping the link
orthogonal, asillustrated in the following picture.

C P

L 1

[Oblique: thelink shape is a sequence of one horizontal/vertical segment, one 45-degrees
segment, and another vertical/horizontal segment.

74 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Link Objects

[Hree: thelink shapeis determined by the Points property, as for a PolyPoints object.

S VAV B

The shape of the link can be further customized using the Radius, Curved and CurveTension
properties.

When the Radius property is set to a positive value, the bends of the link are replaced by
arcs of circle of the specified radius. The following illustration shows an example of an
orthogonal link with aradius of 10.

_

The Curved, Cardinal Spline and CurveTension properties can be used to create curved
links. If Curved istrue, the segments of the link are replaced by a Bezier spline.

If CardinalSplineistrue, the curveisacardina spline that goes through al the points of
thelink. If Cardinal Splineisfalse, the curveisaBezier splinethat starts at the start point of
thelink, then goes through the middle points of the link segments, and finally ends at the end
point of thelink.

The CurveTension property can be used to adjust the shape of the curve by modifying the
control points of the Bezier spline.

The following illustration shows examples of curved links.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 75

Using Predefined Graphic Objects

S

Curved = falza

L

Curved = true Curved = trua
CardinalSpline = false CardinglSpline = false
CurveTension =1 CurveTension = 0.5
Curved = true Curved = trua
CardinalSpline = trua CardinalSpline = trua
CurveTension =05 CurvaTension = 0.3

Customizing the Arrows

By default, alink has one arrow at its end.

You can customize the start or end arrows using the StartArrow and EndArrow properties.
The values of these properties are instances of the LinkArrow abstract class, which has two

predefined subclass, CapArrow and ShapeArrow.

Cap Arrows

The CapArrow classis used to draw standard filled or open arrows. Since these arrows are
drawn directly by the .NET Framework®, thisis the most efficient choice when you do not

need a special arrow shape.

76 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Link Objects

In the following illustration the link has its SartArrow property set to a CapArrow object
whose Filled property isfalse, and its EndArrow property set to a CapArrow object
whose Filled property istrue.

—

The size of the arrow can be changed using the Size property of the CapArrow object.

Shape Arrows

The ShapeArrow class can be used when you need other arrow shapes than the standard
filled and open arrows. The ShapeArrow class draws a Shape graphic object (or one of its
subclasses: Rect, Ellipse, and so on) as the arrow of alink. In most cases, the shape of the
arrow is specified through the Shape property of the ShapeArrow object.

The example below shows the predefined arrow shapes.

Aorw =
Open -
————— Sunken ——J>
—_— Curved ——>
Dimond ——»
—— Square —— |
Circle)
Star £

It is possible to define custom arrow shapes by setting the CustomShape property of the
ShapeArrow to any Shape graphic object.

The size, color and stroke of the arrow can be changed using the Size, Fill and Stroke
properties of the ShapeArrow object.

Customizing the Link Appearance

AstheLink classisasubclass of Shape, the Stroke property can be used to customize the
way thelink is drawn. For example, you can use the Fill property of the stroke to change the
color of the link and the Width property to modify the thickness of the link.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 77

Using Predefined Graphic Objects

Stroke Width = 6, Stroke Fill = Blue

Additional customizations can be applied by using the FillEffect, BorderStroke and
BevelBorder properties.

The FillEffect property defines a graphic effect. The value is a LinkFillEffect enumeration
and the following illustration shows the possible values.

FillEffact = Pipe

>

FillEffact = Meon

>

The Border Stroke property specifies a Stroke object that is used to draw a border around
thelink path.

BorderStroke : Fill = Red, Width = 2

The BevelBorder property specifiesa 3D "bevel” border.

>

BevelBorder = true

Adding Text

Links can have a number of text items associated with them. The text items are defined by
objects of type LinkTextltem and are added or removed using the collection contained in the
Textltems property.

78 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Link Objects

The text of each text item is set using the Text property of the Link Text|tem object.

I Note: You can use the Text property of the link to set or get the text of the first text item.

Text Position

The position of the text item along the path of the link is defined by the Position and
PositionType properties.

_If PositionType is Relative, the Position property isinterpreted as arelative position
along the path. For example 0.5 means the middle of the link, 0.33 means athird of the
link length, and so on.

[_If PositionType is AbsoluteFromSart, AbsoluteFromEnd or AbsoluteFromMiddle,

the Position property is interpreted as a fixed offset (in pixels) from the start, the end or
the middle of the link.

PasitionType = AbsoluteFromStan Text R
Pasition =0

PositionType = AbsoluteFromEnd Text .
Fasition = 50

PaositionType = AbsoluteFrombiddle Text ,
Pasition = 10

PasitionType = Ralativa Tend

Pasition = 0.25

L

Text Alignment

The Parallel Alignment property determines the alignment of the text, parallel to the link
path, relative to the text position. The parallel aignment can have the following values:

[Hart: the start of the text is aligned with the position.
[Middle: the middle of the text is aligned with the position.
[End: the end of the text is aligned with the position.

The example below shows the effects of the different values.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 79

Using Predefined Graphic Objects

80

Stan
FositionType = AbsoluleFromStart >
FarallelAlignment = Start

Middle

FositionType = AbsoluteFromMiddle
Parallel&lignment = Middle

L

FositionType = AbsoluteFromEnd
Farallelalignment = End

End

The Orthogonal Alignment property determines the alignment of the text orthogonally to the
direction of the link path. The parallel alignment can have the following values:

[eft: thetext is placed on the left of the link path, looking towards the end of the link.
[CTenter: thetext is centered on the link path.
[Right: the text is placed on the right of the link path, looking towards the end of the link.

The example below shows the effects of the different values.

Lot

Center

L

Right
When the Orthogonal Alignment is L eft or Right, the Distance property determinesthe

distance between the link path and the text.

Text Rotation

If the AutoRotate property of the Link Textltem object istrue, the text is rotated to follow
the direction of the link segment, asin the following illustration.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Link Objects

Text1 —|

Zre |

PE‘-IK?

N

Itisalso possible to rotate each text item to afixed angle using the Rotation property of the
LinkTextltem object. The value of this property isin degrees.

If AutoRotateistrue and Rotation is non-0, the Rotation value is added to the automatic
rotation angle.

Text Appearance

To customize the appearance of the text, including font, color and rendering hints use the
TextAppearance property of the Link Textltem. For more information on the properties of
the TextAppearance object see Displaying Text in a Graphic Object.

Note: The Margins property of the TextAppearance is taken into account when aligning
the text itemon the link. For example, if Orthogonal Alignment is Left, with a Distance of
0, andif Marginsis 3 pixelsin all directions, the text will be drawn 3 pixels away from the
link.

Link/Text Intersections

The CutAtText property of the Link specifies whether the link path must be cut when it
intersects atext item. By default, the property istrue.

Link Crossing

When links cross in a diagram, the crossings can be highlighted by drawing the link with a
special shape at the crossing point. This shape can be customized using the CrossingStyle
and CrossingSize properties of the Link. See Using Automatic Link Crossing Detectionin a
Graph for more information on how to enable and customize link crossing detection.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 81

Using Predefined Graphic Objects

Controls

Controls are containers whose geometry is defined by arectangular areain which children
will be placed. The base class for controlsis the Control class. Controls add graphic
decorations such as a border or a background and can implement specific behaviors.

In This Section
The Control Class
Explains the basics of the Control class.
Basic Controls
Explains the basic controls.
Sngle Content Controls
Explains the basics of the ContentControl class.

Multiple Content Controls
Explains the basics of the ObjectsControl class.

The Control Class

Control isthe base classfor controlsin IBM® ILOG® Diagram for .NET. Controls are
containers whose geometry is defined by arectangular areain which children will be placed.
Controls Overview

The Control classisan abstract class that has three different types of subclasseslisted in the
following table:

Super Class Description Examples

Control Controls that do not have children. | HScrollBar, VScrollBar

ContentControl Controls with a single child. Button, ScrollViewer, ViewPort

ObjectsControl Controls with several children. DockPanel, Canvas, GridPanel,
StackPanel

For details about the classes DockPanel, Canvas, GridPanel and StackPanel, see Panels.

82 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Controls

The following illustration shows the available controls:

i

Vertical scroll bar

Buttan

|
|

Horizontal scroll bar

CellD0 | CellO1 | CellD2

Cell10 | Cell1,1 | Cell12

Cell20 | Cell21 | Cell22

GridPanel

Control Geometry

Top
Left
% | 3|
DockPanel ScrollViewer
Rect 1
Rect 1
Rect3
Rect 2 Rect4
Canvas StackPanel

ViewPort

The geometry of the control is given by the Rectangle property. This geometry can be
restricted by specifying a minimum and a maximum size using the Control.MinimumSize
and Control.Maximumsize properties.

Control Appearance

The Control class has the Control.Background property that can be used to change the
control background.

The Control class has the Control.Foreground property that can be used to change the
control foreground.

IBM ILOG DIAGRAM FOR

.NET 2.0 —

PROGRAMMING 83

Using Predefined Graphic Objects

The Control.Visual Styles property defines whether the control should use visual stylesto
draw itself. By default, this value inherits from the control parent. Note that only controls
supporting visual styleswill be affected by changing thisvalue. An example of control using
visua stylesisthe Button class.

Basic Controls

The only controls provided that do not have children are the HScrollBar and V Scrol|Bar
controls. The appearance, behavior, and API of these controls are the same that can be found
on the Windows® Forms scroll bars.

The scroll bar values can be changed using the ScrollBar.Minimum, ScrollBar.Maximum,
and ScrollBar.Value properties. The ScrollBar.ValueChanged event is raised when the scroll
bar value changes.

Single Content Controls

The base class for controls that contains asingle child is the abstract ContentControl class.
The ContentControl.Content property is used to get and set the control content, which can
be any graphic object. The ContentControl.ContentMargins property can be used to change
the margins around the control content.

Existing concrete subclasses of the ContentControl class are:
[_Button : Displays acommon button.
[ViewPort : Displaysits content or a portion of it with a specific transformation.

[_BcrollViewer : Allows you to scroll the control content.

Multiple Content Controls

The base class for controls that contains multiple children is the abstract ObjectsControl
class. The ObjectsControl.Objects property is used to access the control children.

The only subclass of ObjectsControl isthe Panel class, which is described in Panels.

84 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Panels

Panels

IBM

Panels are graphic objects that control the size and dimensions of their children.
IBM® ILOG® Diagram for .NET provides a number of predefined panels aswell as the
ability to construct custom panels. Panels can be nested to build complex structures.

In This Section
The Panel class
Explains the basics of the Panel class.
Using Predefined Panels
Describes the predefined panels.

The Panel class

Panel isthe base class for graphic objects that provide layout support in

IBM® ILOG® Diagram for .NET. A panel is arectangular container in which children are
laid out. To layout children means to set their size and position inside the panel area. The
following illustration shows avertical StackPanel, apanel that stacksits children one on top
of the other.

Rect 1

Rect 2

Fanel Elements
Stack Pansel —— Bect 3

Rect 4

Populating Panels

The Panel class has an Objects property that can be used to access the panel children. The
following example shows how to create a SackPanel with several children:

StackPanel panel = new StackPanel () ;

Rect rectl = new Rect (0, 0, 100, 30);
rectl.Text = "Rect 1";

Rect rect2 = new Rect (0, 0, 100, 30);
rect2.Text = "Rect 2";

Rect rectl = new Rect (0, 0, 100, 30);

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 85

Using Predefined Graphic Objects

86

IBM

rect3d.Text = "Rect 3";
Rect rectl = new Rect (0, 0, 100, 30);
rect4.Text = "Rect 4";

panel.Objects.Add (rectl
panel .Objects.Add (rect2
panel.Objects.Add (rect3
panel .Objects.Add (rect4
Dim panel As StackPanel = New StackPanel

Dim rectl As Rect = New Rect (0, 0, 100, 30)

)
)
)
)

7
7
7
7

rectl.Text = "Rect 1"
Dim rect2 As Rect = New Rect (0, 0, 100, 30)
rect2.Text = "Rect 2"
Dim rectl As Rect = New Rect (0, 0, 100, 30)
rect3.Text = "Rect 3"
Dim rectl As Rect = New Rect (0, 0, 100, 30)
rect4.Text = "Rect 4"

panel .Objects.Add (rectl

panel.Objects.Add (rect2

panel .Objects.Add (rect3
(

)
)
)
panel.Objects.Add (rect4)

Defining Appearance Properties

The Panel class defines some common properties that can be used to customize its
appearance.

Border

The border of the panel is drawn as arectangle around the layout area. The Border property
allows you to specify a Stroke to draw the border of the panel. Margins can be added
between the border and the layout area by specifying the BorderMargins property. If you
want to change the border shape and draw arounded rectangle, use the CornerRadius
property.

Background

The Background property alows you to specify a Fill to draw the panel background.

Thefollowing illustration shows avertical SackPanel with arounded border and a gradient
fill as background:

r© ™
Rect 1
Rect 2
Rect 3
Rect 4
L A

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Panels

Layout Properties

The Panel class also defines some properties that can be used to customize the layout. Those
properties are used by most of the Panel subclasses.

Margins

While defining the layout, it is possible to add margins around the children bounds. The
Panel class defines the ItemsMargins property that can be used to set the same margins on
each element of the panel. In addition, the SetMargins method can be used to set the margin
of a specific element. In this case, both margins are added during the layout.

Alignments

Each element of the panel has vertical and horizontal alignment. The horizontal aignment
specifies how the element isresized in the horizontal direction during the layout; the vertical
alignment specifies how the element isresized in the vertical direction.

You can get and set the horizontal and vertical alignments by using the following methods:
GetHorizontal Alignment, SetHorizontal Alignment, GetVertical Alignment, and
SetVertical Alignment.

The horizontal alignment is defined by the Horizontal Alignment enumeration. The
following table lists the different values of this enumeration:

Value Description

Left The element is aligned to the left. The element size is defined by the
element itself.

Right The element is aligned to the right. The element size is defined by the
element itself.

Center The element is horizontally centered. The element size is defined by
the element itself.

Stretch The element is stretched in the horizontal direction to fit the size
defined by the panel. The element size is defined by the panel. This is
the default value.

The vertical alignment is defined by the Vertical Alignment enumeration. The following
table lists the different values of this enumeration:

Value Description

Top The element is aligned to the top. The element size is defined by the
element itself.

Bottom The element is aligned to the bottom. The element size is defined by
the element itself.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 87

Using Predefined Graphic Objects

88

Value Description

Center The element is vertically centered. The element size is defined by the
element itself.

Stretch The element is stretched in the vertical direction to fit the size defined
by the panel. The element size is defined by the panel. This is the
default value.

Most of the Panel subclasses use either the horizontal alignment, or the vertical alignment,
or both. For example, avertical StackPanel uses only the horizontal alignment to layout its
elements, whereas a horizontal Stack Panel uses only the vertical alignment. The following
illustration shows avertical SackPanel where the first element hasits horizontal alignment
set to Horizontal Alignment.L eft, the second element to Horizontal Alignment.Right, the
third element to Horizontal Alignment.Center, and the last element to
HorizontalAlignment.Stretch:

Rect 1

Rect 2

Rect 2

Rect 4

The following table lists the different types of panel and for each type it indicates the
corresponding alignment:

Type o Panel Use Horizontal Alignment |Use Vertical Alignment

Canvas No No

StackPanel Yes, for vertical stack panels. | Yes, for horizontal stack panels.

GridPanel Yes Yes

DockPanel Yes, for vertical elements. Yes, for horizontal elements.
IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Panels

Using Graphic Object Preferred Size

Depending on the type of panel you use, an element may have its size constrained or not by
its panel. When element size is not constrained by the panel, it is defined by the element
itself. Inthis case, if the AutoSize property of the element is set to true, the element can take
its preferred size, given by the GetPreferredSize method. If the AutoSize property is set to
false, the element keepsits original size.

The default behavior of the GetPreferredSize method is to return the size needed for the
graphic object to fully display its Text property. Graphic objects that need a different size
may change this behavior. For example, the preferred height of avertical SackPanel isthe
sum of the heights of its elements.

For more details on the preferred sizes of the existing panels, see Using Graphic Object
Preferred Sze.

Positioning Elements

The layout area of the panel is given by the ClientRectangle property. The left upper
coordinate of this areais always the point (0, 0). To place its elementsinside this area, the
panel sets the bounds of each element by calling the SetChildBounds method.

Optimizing Layout

The Panel automatically updates the layout when it appearsto be invalid. The layout can be
invalid for different reasons: the panel has been resized, or elements have been added to or
removed from the panel.

For the seek of performance, it may be useful to temporarily disable the layout mechanism.
Use the SuspendL ayout method to suspend the layout and the Resumel ayout method to
resume it.

Using Predefined Panels

IBM® ILOG® Diagram for .NET includes a comprehensive set of panel implementations
that enable many complex layouts. These derived classes expose properties and methods
that allow you to create the most standard user interface scenarios. If you cannot find achild
arrangement behavior that meets your needs, you can create new layouts.

The Canvas Class

The Canvas class enables absol ute positioning of contents according to x and y coordinates.
Elements are positioned relatively to the upper |eft corner of the layout area. Elements can
be attached to a border of the panel using the SetAnchor method. When an element is
attached to the Canvas, the distance between the element bounds and the attached border
remains constant when the panel gets resized.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 89

Using Predefined Graphic Objects

The following illustration shows a Canvas with two buttons.

The buttons below are are attached to the bottom
and right borders of this panel

L Ok | (Cancel ‘|
\

The following example shows how to create a Canvas with a Rect object attached to the
right border of the Canvas:

Canvas panel = new Canvas();

panel .Rectangle = new Rectangle2D(0, 0, 500, 200);
Rect rectl = new Rect (300, 100, 100, 30);
rectl.Text = "Rect 1";

panel.Objects.Add (rectl) ;

panel.SetAnchor (rectl, AnchorStyle.Right) ;

Dim panel As Canvas = New Canvas

panel .Rectangle = New Rectangle2D(0, 0, 500, 200)
Dim rectl As Rect = New Rect (300, 100, 100, 30)
rectl.Text = "Rect 1"

panel.Objects.Add (rectl)

panel.SetAnchor (rectl, AnchorStyle.Right)

The StackPanel Class

The StackPanel class stacks elements to an assigned direction. The Orientation property can
be used to control content flow. The default value for this property is Vertical. When the
SackPanel isvertical, it usesthe horizontal alignment of its elementsto layout them. When
the StackPanel is horizontal, it uses the vertical alignment of its elementsto layout them.

The following illustration shows a vertical StackPanel where the first element has its
horizontal alignment set to Horizontal Alignment.L eft, the second element to
HorizontalAlignment.Right, thethird element to Horizontal Alignment.Center, and
the last element to Horizontal Alignment.Sretch:

90 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Rect 1

Rect 2

Rect 3

Rect 4

Panels

When the flow of elements exceeds the panel size, the SackPanel can display its elements
on several rowsif the FlowLayout property has been set to true. The following illustration

shows a vertical StackPanel with the FlowL ayout set to true.

Rect 1 Rect 4

Rect 2

Rect 3

Note: When the FlowLayout property is set to true, the Vertical Alignment.Stretch and

I Horizontal Alignment.Stretch alignments can no longer be used.

The following example shows how to create a StackPanel with four Rect objects stacked

vertically.

StackPanel panel = new StackPanel () ;

panel .Rectangle = new Rectangle2D(0, 0, 200, 200);
Rect rectl new Rect () ;

rectl.Text "Rect 1";

rectl.Fill = new SolidFill (Color.Aqua) ;
rectl.TextAppearance.Margins = new Margins (10) ;
rectl.AutoSize = true;

panel .Objects.Add (rectl) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

91

Using Predefined Graphic Objects

Rect rect2 = new Rect();

rect2.Text = "Rect 2";

rect2.Fill = new SolidFill (Color.Aqua) ;
rect2.TextAppearance.Margins = new Margins (10) ;
rect2.AutoSize = true;
panel.Objects.Add (rect2) ;

Rect rect3 = new Rect () ;

rect3d.Text = "Rect 3";

rect3.Fill = new SolidFill (Color.Aqua) ;
rect3.TextAppearance.Margins = new Margins (10) ;
rect3.AutoSize = true;
panel.Objects.Add (rect3) ;

Rect rect4 = new Rect () ;

rect4.Text = "Rect 4";

rect4.Fill = new SolidFill (Color.Aqua) ;
rect4.TextAppearance.Margins = new Margins (10) ;
rect4 .AutoSize = true;
panel.Objects.Add (rect4) ;

Dim panel As StackPanel = New StackPanel
panel.Rectangle = New Rectangle2D(0, 0, 200, 200)
Dim rectl As Rect = New Rect

rectl.Text = "Rect 1"

rectl.Fill = New SolidFill (Color.Aqua)
rectl.TextAppearance.Margins = New Margins (10)
rectl.AutoSize = true

panel.Objects.Add (rectl)

Dim rect2 As Rect = New Rect

rect2.Text = "Rect 2"

rect2.Fill = New SolidFill (Color.Aqua)
rect2.TextAppearance.Margins = New Margins (10)
rect2.AutoSize = true

panel.Objects.Add (rect2)

Dim rect3 As Rect = New Rect

rect3.Text = "Rect 3"

rect3.Fill = New SolidFill (Color.Aqua)
rect3.TextAppearance.Margins = New Margins (10)
rect3.AutoSize = true

panel.Objects.Add (rect3)

Dim rect4 As Rect = New Rect

rect4.Text = "Rect 4"

rect4.Fill = New SolidFill (Color.Aqua)
rect4.TextAppearance.Margins = New Margins (10)
rect4 .AutoSize = true

panel.Objects.Add (rect4)

92 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Panels

The user interface you have just created should look like the following illustration:

Rect 1

Rect 2

Rect 3

Rect 4

The GridPanel Class

A grid panel is composed of rows and columns that create a set of grid cellsin which

elements are positioned.

The rows and columns of the GridPanel object can be accessed through the Rows and
Columns properties. Each row or column of the GridPanel is an instance of the

GridElement class.

The GridElement class has a size and a policy that indicates how the grid element should
manage its size. The sizing policy is defined by the UnitType property. The following table
lists the possible values for this property:

Value

Description

GridUnitType.Fixed

The grid element has a fixed size.

GridUnitType.AutoFixed

The grid element has a fixed size which depends on the
graphic objects it contains. The grid element size is
dynamically adjusted when its contents changes.

GridUnitType.Elastic

The grid element has a size that depends on the remaining
space in the GridPanel after measuring the fixed elements.
The Size property represents a percentage of space allocated
to this element. This is the default value.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 93

Using Predefined Graphic Objects

The following example creates a GridPanel with three rows and three columns. The second
row and column have their UnitType property set to GridUnitType.Elastic:

GridPanel panel = new GridPanel () ;

panel.Rows.Add (new GridElement (GridUnitType.Fixed, 50));
panel .Rows.Add (new GridElement (GridUnitType.Elastic, 100));
panel.Rows.Add (new GridElement (GridUnitType.Fixed, 50));
panel.Columns.Add (new GridElement (GridUnitType.Fixed, 50));
panel.Columns.Add (new GridElement (GridUnitType.Elastic, 100));
panel.Columns.Add (new GridElement (GridUnitType.Fixed, 50));
Dim panel As GridPanel = New GridPanel

panel .Rows.Add (New GridElement (GridUnitType.Fixed, 50))
panel.Rows.Add (New GridElement (GridUnitType.Elastic, 100))
panel .Rows.Add (New GridElement (GridUnitType.Fixed, 50))
panel.Columns.Add (New GridElement (GridUnitType.Fixed, 50))
panel.Columns.Add (New GridElement (GridUnitType.Elastic, 100))
panel.Columns.Add (New GridElement (GridUnitType.Fixed, 50))

To specify in which row or column an element should be placed, use the SetRow and
SetColumn methods. Elements can span across multiple rows or columns using the
SetRowSpan and SetColumnSpan methods.

Notes:
1. Several elements can share the same grid cell.
2. Elementswhose row or column is negative can be positioned using absolute positioning.

The GridPané class uses both horizontal and vertical alignments of its elementsto place
them into grid cells.

Thefollowing example shows how to create a GridPanel with two rows and two columnsin
which Rect objects are placed:

GridPanel panel = new GridPanel () ;
panel.Rows.Add (new GridElement ()) ;
panel .Rows.Add (new GridElement ()) ;
panel.Columns.Add (new GridElement ()) ;
panel.Columns.Add (new GridElement ()) ;
Rect rectl = new Rect();

rectl.Text = "Rect 1";
panel.SetObjectAt (rectl, 0, 0);

panel .Objects.Add (rectl) ;

Rect rect2 = new Rect();

rect2.Text = "Rect 2";
panel.SetObjectAt (rect2, 0, 1);

panel .Objects.Add (rect2) ;

Rect rect3 = new Rect();

rect3d.Text = "Rect 3";
panel.SetObjectAt (rect3, 1, 0);

panel .Objects.Add (rect3) ;

Rect rect4 = new Rect();

rect4.Text = "Rect 4";

94 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Panels

panel.SetObjectAt (rect4, 1, 1);
panel.Objects.Add (rect4) ;

Dim panel As GridPanel = New GridPanel
panel.Rows.Add (New GridElement)
panel .Rows.Add (New GridElement)
panel.Columns.Add (New GridElement)
panel.Columns.Add (New GridElement)
Dim rectl As Rect = New Rect
rectl.Text = "Rect 1"
panel.SetObjectAt (rectl, 0, 0)
panel .Objects.Add (rectl)

Dim rect2 As Rect = New Rect
rect2.Text = "Rect 2"
panel.SetObjectAt (rect2, 0, 1)
panel .Objects.Add (rect2)

Dim rect3 As Rect = New Rect
rect3.Text = "Rect 3"
panel.SetObjectAt (rect3, 1, 0)
panel .Objects.Add (rect3)

Dim rect4 As Rect = New Rect
rect4.Text = "Rect 4"
panel.SetObjectAt (rect4, 1, 1)
panel .Objects.Add (rect4)

The application you have just created looks like the following illustration:

Rect 1 Rect 2

Rect3 Rect 4

The DockPanel Class

The DockPanel class positions elements along the borders of its layout area. Elements can
be docked to the l€ft, right, top or bottom of the panel, or they can fill the remaining area.
During the layout, the Dock Panel uses the horizontal alignment of its elements docked to
the top or bottom, the vertical alignment of its elements docked to the left or right, and both
the horizontal and vertical alignments of elements that fill the remaining area.

The following illustration shows a Dock Panel.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 95

Using Predefined Graphic Objects

Dock = Top, Honzontal Aignment = Stretch

Dock = Top, Honzontal &lignment = Right

Dock = Left, Diock = Fill,
Wertical Alignment = Stretch Both Horizontal Alignment and Yertical Alignment = Stretch

Dock = Bottom, Honzontal Alignment = Stretch

To get or set the dock style of an element, use the GetDock and SetDock methods.

The following example shows how to create a DockPanel with two Rect objects: one
docked to the top and one that fills the remaining area:

DockPanel panel = new DockPanel () ;

panel.Rectangle = new Rectangle2D(0, 0, 300, 300);

Rect rectl = new Rect (0, 0, 100, 30);

rectl.Text = "Rect 1";

panel .Objects.Add (rectl) ;

panel.SetDock (rectl, ILOG.Diagrammer.Graphic.DockStyle.Top) ;
Rect rect2 = new Rect();

rect2.Text = "Rect 2";

panel .Objects.Add (rect2) ;

panel.SetDock (rect2, ILOG.Diagrammer.Graphic.DockStyle.Fill) ;
Dim panel As DockPanel = New DockPanel

panel.Rectangle = New Rectangle2D(0, 0, 300, 300)

Dim rectl As Rect = New Rect (0, 0, 100, 30)

rectl.Text = "Rect 1"

panel .Objects.Add (rectl)

panel.SetDock (rectl, ILOG.Diagrammer.Graphic.DockStyle.Top)
Dim rect2 As Rect = New Rect

rect2.Text = "Rect 2"

panel .Objects.Add (rect2)

panel.SetDock (rect2, ILOG.Diagrammer.Graphic.DockStyle.Fill)

96 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Subdiagrams

Note: Elements whose dock style is DockStyle.None can be positioned using absolute
positioning.

Subdiagrams

The SubDiagram classis used to create nested diagrams, that is, diagrams contained in other
diagrams.You can a so create nested diagrams using other graphic containers like the Group
or the Canvas class, but the SubDiagram class provides the following additional
capabilities:

[—inh-place expand and collapse

—gerolling

[—dustomizable title bar

[—dustomizable icons

The following illustration shows two SubDiagram objects. The first object is expanded and
the second one is collapsed.

K% Expanded Sub-Diagram mﬁl
—a J
L { Collapsed Sub-
J Diagram

Creating and Populating a SubDiagram

The SubDiagram classis agraphic container. The children of the container are defined by
the SubDiagramObjects property.

The following example shows how to create a simple subdiagram containing two basic
shapes:

SubDiagram subDiagram = new SubDiagram() ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 97

Using Predefined Graphic Objects

Rect rectl = new Rect (10, 10, 80, 30);
subDiagram. SubDiagramObjects.Add (rectl) ;

Rect rect2 = new Rect (100, 100, 80, 30);
subDiagram. SubDiagramObjects.Add (rect2) ;

Dim subDiagram As SubDiagram = New SubDiagram
Dim rectl As Rect = New Rect (10, 10, 80, 30)
subDiagram. SubDiagramObjects.Add (rectl)

Dim rect2 As Rect = New Rect (100, 100, 80, 30)
subDiagram. SubDiagramObjects.Add (rect2)

Expanding and Collapsing a SubDiagram

A SubDiagram isinitially expanded, which meansthat its children are visible. It can be
collapsed by setting the Expanded property to false. Once the subdiagram is collapsed, its
children are no longer visible and only a reduced rectangular shape is drawn.

Customizing the Expanded Appearance

An expanded subdiagram consists of atitle bar and arectangular areawhere the children are
displayed.
Thetitle bar isinitially located at the top of the subdiagram, although this position can be

modified using the TitlePosition property. If the title bar is placed on the left or on the right,
thetitle text is automatically rotated by 90 degrees.

Thetitle bar contains three optional components. atext area, a button used to collapse the
subdiagram, and an icon.

Thetitle text can be changed using the TitleText property, and the appearance of the text can
be customized through the TitleTextAppearance.(see Displaying Text in a Diagram for a
description of the TextAppearance class).

The default collapse button displays a“minus’ sign. You can customize the collapse button
using the CollapseButton property.

The icon can be set using the Expandedicon property. By default, no icon is displayed. See
Subdiagram Icons and Buttons for details on how to customize the button and the icon.

The background and the border of the title bar can be changed using the TitleBackground
and TitleBorder properties.

Thetitle bar can be completely hidden by setting the TitleVisible property to false.

The ExpandedBackground and ExpandedBorder properties define the overall background
and border of the subdiagram, that is, the background visible beneath the children and the
border that surrounds the children area and the title bar.

The ExpandedRadius property changes the corner radius of the expanded subdiagram
border.

98 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Subdiagrams

Customizing the Collapsed Appearance

The collapsed subdiagram consists of arectangle (usually small) which contains three
optional components: atext, a button used to expand the subdiagram, and an icon.

The text can be changed using the CollapsedText property, and the appearance of the text
can be customized through the CollapsedTextA ppearance.(see Displaying Text ina Diagram
for a description of the TextAppear ance class).

The default expand button displays a“plus’ sign. You can customize the expand button
using the ExpandButton property.

Theicon can be set using the Collapsedicon property. By default, no iconis displayed. See
Subdiagram I cons and Buttons for details on how to customize the button and the icon.

The background and the border of the collapsed subdiagram can be changed using the
CollapsedBackground and CollapsedBorder properties

The CollapsedRadius property changes the corner radius of the collapsed subdiagram
border.

Subdiagram Icons and Buttons

The CollapseButton, ExpandButton, Expanded| con and Collapsedl con properties accept
values that are instances of the SubDiagramlcon class. This class describes the image, the
size, the position and the visibility of a button or an icon displayed in a subdiagram.

The Image property specifies the image of the button or icon. The value of this property isa
string that can be:

A URI, forexample “file://C:/work/images/button.png”, (the URI can point to
abitmap file or an SVG file);

[astring containing any IBM ILOG Diagram for .NET graphic object, serialized to XML
(thisismainly used when you edit a SubDiagram object in Visual Studio or in the
Diagram Editor).

The Dock, Horizontal Alignment, Vertical Alignment and Margins properties define the
position of the button or icon. The meaning of these propertiesis the same asin the
DockPanel class (see The Panel class and The DockPanel Class).

Note: For an expanded subdiagram, the position is defined relative to thetitle bar, not to
the whole subdiagram object.

The Size property lets you resize the image of abutton or icon. If the sizeis o, 0 (whichis
the default value), the image will have its default size.

You can hide a button or icon by setting its Visible property to false.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 99

Using Predefined Graphic Objects

The Color property can be used to change the color of abutton or icon, but note that this
works only for vector images (that is, SVG filesor IBM ILOG Diagram for .NET graphic
objects), and that only thefill color of the first Shape child contained in the graphic object
will be changed.

Scrolling

The SubDiagram supports scrolling: if the bounds of the children are larger that the bounds
of the subdiagram, a vertical and/or a horizontal scrollbar will be displayed to let you scroll
the visible area of the subdiagram. The visibility of the scrollbarsis controlled by the
HScrolIBar and V ScrollBar properties. If needed, you can adjust the scrolling position using
the ContentOrigin property.

AutoBounds Mode

If the AutoBounds property is set to t rue, the subdiagram will automatically adjust its
position and its size to fit the bounds of its children (taking into account the ContentMargins
property). In that case, scrolling is disabled.

Graph Layout

The SubDiagram container supports graph layout. If a graph layout algorithm is specified
on an ancestor container (through the GraphLayout and/or LinkLayout properties), this
graph layout can be applied recursively to the content of the subdiagram. A specific graph
layout algorithm can be set on the subdiagram using its own GraphL ayout and/or

LinkL ayout properties, in which case the local algorithm is applied to the subdiagram
instead of the inherited layout.

When a graph layout algorithm is applied to a subdiagram, the children of the subdiagram
are automatically translated so that the top-left corner of the children bounds corresponds to
the top-left corner of the subdiagram. Moreover, if the AutoSizeAfterGraphLayout property
is true, the size of the subdiagram is also adjusted to match the bounds of its children.

Graphic Symbols

A simple way to create new graphical representation isto create a graphic symbol. A graphic
symbol isaset of graphic objects that act as a single graphic object.

To create a graphic symbol, use an instance of the GraphicSymbol class and add other
graphic objectsto it through the Objects property. The GraphicSymboal classisvery similar
to the Group class that also allows you to group objects together. The Group classis mainly
used to create logical group of graphic objects or to represent a complex diagram. The main
difference between a Group and a GraphicSymbol is about selection. When you use the

100 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Graphic Symbols

selection tools, the graphic symbol can be selected only as awhole. It is hot possible to
select individual graphic objects that compose the graphic symboal. If you need to create a
basic new graphic representation you can use the GraphicSymboal class; if you need to
create a more complex graphic object that contains new properties and some specific logic,
then you should create a user symbol.

For more information on the User Symbol class see User Symboals.

The following example shows how to create a graphic symbol by assembling two basic
shapes:

GraphicSymbol symbol = new GraphicSymbol () ;

Basic2DShape triangle = new Basic2DShape (15f, OF, 80F, 70F);
triangle.ShapeType = Basic2DShapeType.Triangle;
triangle.ControlValue = 0.5F;

triangle.Fill = new SolidFill (Color.Blue) ;

Rect rectangle = new Rect (0f, 20F, 130F, 40F);
rectangle.Fill = new SolidFill (Color.Gray) ;
rectangle.Stroke = new Stroke (Color.Red) ;

symbol.Objects.AddRange (new GraphicObject[] { rectangle, triangle });
Dim symbol As GraphicSymbol = New GraphicSymbol

Dim triangle As Basic2DShape = New Basic2DShape (15F, OF, 80F, 70F)
triangle.ShapeType = Basic2DShapeType.Triangle

triangle.Controlvalue = 0.5F

triangle.Fill = New SolidFill (Color.Blue)

Dim rectangle As Rect = New Rect (0OF, 20F, 130F, 40F)
rectangle.Fill = New SolidFill (Color.Gray)
rectangle.Stroke = New Stroke (Color.Red)

symbol .Objects.AddRange (New GraphicObject () {rectangle, triangle})

The graphic symbol you have just created should look like the following one.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 101

Using Predefined Graphic Objects

Scale Objects

A scaleisagraphic object that draws a sequence of small lines (ticks) with labelsalong a
base line. Scales are typically used to build symbols representing gauges and charts. The
following illustration shows examples of scales.

0 10 20 30 40 50 &0 70 80 90100
|I|IIIII|III|IIIII|I|

||||I|I|||||||I|I||||
00md0s 1000
Wmils5=
00m30s 100 0 50 8o
W mds=] 5
1m0 s
El1m15 ¥ =
m15 =
10
01m30s = =
01 m45 s & §
12midds 1

There are two types of scales: linear scales represented by the class Linear Scale, and
circular scales represented by the class Circular Scale. These two classes have a common
base class, ScaleBase, which implements most of the common properties and behavior.

In This Section
The ScaleBase Class
Describes the properties common to linear and circular scales.
Linear Scales
Describes the LinearScale class.
Circular Scales
Describes the CircularScale class.

The ScaleBase Class

This section explains the common properties and behavior provided by the ScaleBase class.

102 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Scale Objects

A scale consists of
A base line that can be a straight segment or an élliptical arc.

A sequence of small lines, orthogonal to the base line, called the ticks. There are two
types of ticks: major ticks and minor ticks.

A sequence of labels, drawn next to the major ticks.
Scale Range and Tick Intervals
The range of the scale is defined by the Minimum and Maximum properties.
The number and the positions of the ticks are controlled by the MajorTicklnterval,
MinorTicklnterval, AutoMgjorTicks and AutoMinorTicks properties.

If AutoMajorTicksistrue, theinterval between major ticks is computed automatically
according to the scale range. Otherwise, the interval between major ticksis specified by the
MajorTicklnterval.

Note: Theinterval is specified in the same value units as the Minimum and Maximum
properties. For instance, if Minimum is 0 and Maximum is 1000, setting
MajorTickl nterval to 100 will create 10 major tick intervals (that is., 11 major ticks).

The interval between minor ticksis controlled by the AutoMinor Ticks and
Minor Ticklnterval in the same way.

If MajorTicklnterval isset to 0 and AutoMajor Ticksisfalse, no ticks are displayed
(either major or minor).

If MinorTickinterval issetto 0 and AutoMinor Ticksisfalse, no minor ticks are displayed
(but major ticks are displayed normally).

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 103

Using Predefined Graphic Objects

104

IBM

The following illustration shows some examples of range and tick interval settings:

Diefault settings 0 10 20 30 40 50 &0 7O 80 S0 100
I I I I IR I I I N

Minimum =1

Maximum = 11 1 2 3 4 &5 6 7 8 9% 10 1

AutoMinorTicks = false
MinarTickinterval =0 l l l l l l l l l l l

Minimum =10 _

Maximum = 130 10 40 70 100 130
AutoMajor/MinorTicks =false |, |+ 4+ | v o+ |+ o+
MajorTickintersal = 30

MinarTicklnterval = 10

Tick Size

The MajorTickSize and MinorTickSize properties can be used to change the length of the
tick segments. If Major TickSize/Minor TickSize is set to 0, no major/minor ticks are

displayed.
Scale Labels
Labels are displayed near each major tick.

The Label Type property determines the text of the labels. This property is of type
Scalel abel Type and these are the possible values:

[Mumeric: The labels display the numeric values corresponding to each tick. The
L abel Format property can be used to format the values.

[_DateTime: The value corresponding to each tick is considered as a number of seconds. It
is converted to a DateTime object which is then formatted using the L abel For mat
property.

[Discrete: The labels are specified explicitly using the Labels property. For example, if
Labels containsthe string "A", "B", "C", thefirst tick will have thelabel "A", the second
tick will have the label "B" and the third tick will have the label "C". If the Labels
property contains fewer elements than the number of ticks, the remaining ticks have no
label. If the Labels property contains more elements than the number of ticks, the
remaining elements are ignored.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Scale Objects

The L abelFormat property can be used to customize the formatting of the labels (when
LabelTypeis Numeric or DateTime). The possible format strings are defined by the .NET
Framework® composite formatting feature. The format can be asimple format string (for
example, "G", "F2", "000", "mm:ss"), or a complete format item (for example "{ 0,10:F2}")
(if the format isasimple string, it is automatically surrounded by "{0:" and "}" to form a
complete format item).

The following illustration shows some typical examples of label formats:

0.00 2000 4000 6000 8000 100.00
LabelFarmat = F2 [P P P N P P P A |

o QK. 10K 20K 30K 40K 50K 60K 70K B0 90K 100K
LabalFormat=0"K [P I A P A A

LabeType = DataTime Om 0= Om20s Omdds Tm 0= Tm20s 1m4dds
|_3|:_-3|F3r-|-|3-[=-n'-n'3'3'|||||||||||||||||||||

Seethe .NET Framework® documentation for details on Composite Formatting.

The font, color and alignment of the labels are controlled by the L abel A ppearance property.
This property is of type TextAppearance. For more details on the TextAppear ance object,
see Displaying Text in a Diagram.

The Label Distance property controls the distance between the end of the major tick linesand
the label.

Labels can be rotated using the AutoRotatel abels and Label Rotation properties. If
AutoRotatel abelsistrue, the labels are rotated automatically to be orthogonal to the tick
lines. LabelRotation can be used to specify afixed angle (in degrees) by which the labels
must be rotated. Both properties can be specified at the same time, in which case the

L abelRotation angleis added to the automatic angle.

Finally, the SkipOverlappingL abels property specifies that the scale can skip (that is, not
draw) some |abels to make sure that they do not overlap. This property istrue by default, it
can be set to false to make sure that al labels are drawn.

Logarithmic Scales

L ogarithmic scales are scales where each mgjor tick interval represents avalueinterval that
isn timesthe previous major interval. To create alogarithmic scale, set its LogBase property
to the desired n value. The most commonly used log baseis 10, but any positive number can
be used.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 105

Using Predefined Graphic Objects

The following illustration shows an example of alogarithmic scale where LogBase = 10:

1 10 100 1000 10000

I_I_I_I_I_I.U.I.I_I_I_LLLU.I.I_I_I_I_I_I.I-U.I_I_I_I_LI.LUJ

When LogBase is non-0, the Minimum and M aximum values of the scale are
automatically adjusted to the closest power or the log base, and the tick intervals are
computed automatically, so the AutoMajorTicks, AutoMinorTicks, MgorTicklnterval and
MinorTicklnterval properties are ignored.

Linear Scales

This section describes the properties specific to the LinearScale class.

Linear Scale Geometry

The base line of alinear scale is a straight line segment, defined by its StartPoint and
EndPoint properties. Linear scales can take any direction: horizontal, vertical or ablique.
The minimum value corresponds to the start point, and the maximum value corresponds to
the end point.

0 10 20 30 40 30 60 TO 8D 50D 100

/

Pt ErdPurint

L

Tick Direction

The direction of the ticks of alinear scaleis controlled by the TickDirection property, and
the possible values are;

[1eft: The ticks are on the | eft of the base line, when looking towards the end point. For
example, if the scaleis horizontal, with the end point on the right of the start point, then
theticks are above the scale.

[Right: Theticksare on theright of the base line, when looking towards the end point. For
example, if the scaleis horizontal, with the end point on the right of the start point, then
theticks are below the scale.

Circular Scales

This section describes the properties specific to the CircularScale class.

106 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Gauges

Circular Scale Geometry

The base line of acircular scaleisan elliptica arc, defined by its Rectangle, StartAngle and
SweepAngle properties.

Swaeplngle

Startfngle

Tick Direction

The direction of the ticks of acircular scaleis controlled by the TickDirection property, and
the possible values are:

[Qutside: Theticks are outside the elliptical arc.
[Inside: Theticksareinsidethe elliptical arc.

Gauges

IBM® ILOG® Diagram for .NET offers predefined graphic objects that can be used for
dashboard applications. These graphic objects are grouped in the ILOG.Diagrammer.Gauges
namespace. This namespace contains several types of circular and linear gauges, various
buttons, check boxes and knobs, several clocks with various styles. It aso contains a basic
chart object for displaying bar chart, pie or donut chart.

The following illustration shows some of the circular gauges and knobs.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 107

Using Predefined Graphic Objects

PlasticGauge DoubleGauge

" L]

v
-",-'l' .
'
/ ,
@
VistaGauge Vistakinob
TwistRoundGauge TwistGauge TwistKnob

108 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Gauges

The following illustration shows some linear gauges and other useful objects:

BlackLinearGauge
BlzckProgrezsBar

{ min max J

MacGauge

. min max
MacLinearGauge

L Button v 6 [Checkbox

Os¥Button BlackRadioButton O=XCheckBox

IBM ILOG DIAGRAM FOR .NET 2.0

@

Themometar

PROGRAMMING

CylnderGauge

TwstLinearGauge

109

Using Predefined Graphic Objects

The following illustration shows some clock and chart objects:

70 |
604
2
= O
ki 03
30 1 4
20
O5
101
S R
A Tiny Chart
worldClock TinyChart
I Hl
=2
3
4
]
A Tiny Chart
TwistClock TinyChart

User Symbols

IBM® ILOG® Diagram for .NET alows you to easily create new graphic objects by
combining existing graphic object. Although you can create anew graphic object by code by
subclassing the GraphicObject class, the recommended way for creating a new graphic
object isto create a"user symbol". A "user symbol" is a subclass of the UserSymbol class.
You do not directly create a User Symbol by code, instead you can use the Diagram
Designer of IBM ILOG Diagram for .NET that allows you to create your user symbol by
assembling predefined graphic objects (or other user symbols that you have previously

110 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

User Symbols

created) using a point-and-click editor. The Diagram Designer of

IBM ILOG Diagram for .NET isafully functional graphical editor integrated inside Visual
Studio that will automatically generate the code corresponding to the user symbol that you
assembl e in the editor, thus you do not need to code the appearance of your symbol. Since
the Diagram Designer isincorporated inside Visual Studio, you will be able to code and
debug the logic of your symbol using your favorite .NET language and the

IBM ILOG Diagram for .NET API.

The tutorial Creating your First IBM ILOG Diagram for NET Windows Forms Application
will step you through the creation of your first user symbol. You should also refer to
Building Diagrams and User Symbols Inside Visual Sudio to learn more about the Diagram
Designer.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 111

Using Predefined Graphic Objects

112 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Common Graphic Objects Rendering
Features

The graphic objects of IBM® ILOG® Diagram for .NET are subclasses of the
GraphicObject class and share a number of common features that affect the rendering of the
graphic object. These features are introduced in this section.

Visibility
Any graphic object can be made invisible through the Visibility property. The visibility of a
graphic object can have three values:
[Visible: the object isvisible. Thisisthe default value.

[Hidden: the object is not visible but the areawhere the graphic object is displayed is till
taken into account by the parent container to compute its size.

[Collapsed: the object is not visible but not taken into account by its parent.

For more information on visibility options see Under standing Graphic Object Visibility.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 113

Common Graphic Objects Rendering Features

Opacity

Any graphic object can be made partially transparent through the Opacity property. When
thevalueisO0, the object is completely transparent and thus not visible at all. When the value
is 1, the object is completely opaque.

Note: In order to display a semi-transparent object, in most cases the graphic object is
rendered in a temporary bitmap before rendered on the screen. Displaying a
semi-transparent graphic object is time and memory consuming.

An alternative to the graphic object opacity is to use the Opacity property of the Fill object
used to paint the graphic object, but the result my not be the same. The following illustration
shows the same rectangle with various opacity values:

oacity - 1 Opacite - 0.5 Opacity : 1
pacity paciy Fill Opacity : 0.5
Stroke Opacity: 05

For more information on how to paint a graphic object see Filling and Sroking Graphic
Objects.

Image Filter

IBM ILOG Diagram for .NET allows you to change the appearance of a graphic object by
specifying image filter effects on a graphic object.

A Filter object can be specified on each graphic object through the Filter property of the
GraphicObject class. A filter consists of a sequence of filter operations on an image, such as
blur or lighting effect, and produces an image that can be used as the input for the next
operation. The following illustration shows the same graphic object with three different
image filters.

114 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Drop shadow

Emboss

For more information see Applying a Filter to a Graphic Object.

Text and Text Appearance

IBM

You can display text in any graphic object using the Text property of the GraphicObject
class. The TextAppearance property allows you to control the layout and rendering options
of the text inside the graphic object. The following image displays various graphic objects

with text.

Text can be T Text can be
displayed in any displayed in any
graphic object Qrapnic oDpect graphic object
_Textcar! ba

Text can ba dlsplay't_ad in any
displayad in any graphic object Tetenhe
graphic object displayad in any
graphic object
Text can ba | axt can be
displayed in anygr_. Text can be | i
displayad in any displayed o any
graphic object hic ols
Text can be E%g
displayed in any o= g
hic obiact Text can be b0
SERTIEaRE displayed in_ Eﬁ_g 2
FsF

ILOG DIAGRAM FOR

.NET 2.0 —

PROGRAMMING

115

Common Graphic Objects Rendering Features

For moreinformation on how to display text in adiagram see Displaying Text in a Diagram.

Transform

Each graphic object can be rotated, zoomed, trandated or skewed by specifying an affine
transformation through the Transform property.

Such a coordinate transformation can be represented by a 3-row by 3-column matrix with an
implicit lastrowof [00 1].

This matrix transforms source coordinates (x,y) into destination coordinates (x',y") by
considering them as a column vector and multiplying the coordinate vector by the matrix
according to the following process:

1 [ml1l ml12 dx] [x] [mll*x + ml2*y + dx]
] = [m2l m22 dy] [y 1 = [m21l*x + m22*y + dy]
] [0 0 11 [01] [1 1

]

The following example creates a rectangle rotated by 45 degrees.

Rect CreateRotatedRectangle ()

{
Rect rectangle = new Rect (0, 0, 100, 100);
rectangle.Fill = new SolidFill (Color.Gray) ;
Transform t = Transform.Identity;
t = t.RotateAt (45, new Point2D(50,50)) ;
rectangle.Transform = t;
return rectangle;

}

Function CreateRotatedRectangle() As Rect
Dim rectangle As Rect = New Rect (0, 0, 100, 100)
rectangle.Fill = New SolidFill (Color.Gray)
Dim t As Transform = Transform.Identity
t = t.RotateAt (45, New Point2D (50, 50))
rectangle.Transform = t
Return rectangle

End Function

For more information on coordinate systems and transformations see Under standing
Coordinate Systems.

Clipping
Any graphic object can be clipped by any shape. A clipping path on agraphic object restricts

the region to which the graphic object can be painted. All the drawings that are outside the
region bounded by the currently active clipping path are not drawn.

116 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

You can specify aclipping path by creating a ClipPath object and set it through the Clip
property of the GraphicObject class.

The following example creates a group containing a rectangle and acircle. The group itself
is clipped with a clipping path that is an ellipse.

Group group = new Group () ;

Rect rect = new Rect (0,0, 200,200);
rect.Fill = new SolidFill (Color.Blue) ;
Circle circle = new Circle (100,100, 50);
circle.Fill = new SolidFill (Color.Black) ;
group.Objects.Add (rect) ;
group.Objects.Add (circle) ;

// clip with an ellipse
ClipPath clip = new ClipPath();
clip.Path.AddEllipse (new Rectangle2D(0, 50, 200, 100));

group.Clip = clip;

Dim group As Group = New Group

Dim rect As Rect = New Rect (0, 0, 200, 200)
rect.Fill = New SolidFill (Color.Blue)

Dim circle As Circle = New Circle (100, 100, 50)
circle.Fill = New SolidFill (Color.Black)
group.Objects.Add (rect)

group.Objects.Add (circle)

' clip with an ellipse

Dim clip As ClipPath = New ClipPath
clip.Path.AddEllipse (New Rectangle2D(0, 50, 200, 100))
group.Clip = clip

The group you have just created should produce the following result:

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 117

Common Graphic Objects Rendering Features

118 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Styling Graphic Objects Using Fill, Stroke
and Filter Classes

IBM® ILOG® Diagram for .NET library provides the Fill and Stroke classes that allow you
to paint most of the graphic objects. By means of the Filter classit is also possible to apply

filter effects on those objects.
In This Section
Filling and Sroking Graphic Objects
Describes how to paint the interior and the outline of graphic objects.

Editing Fill Objects Using the Fill Dialog Box
Describes how to edit aFill object using the predefined dialog box.

Applying a Filter to a Graphic Object
Describes how to apply filter effects to graphic objects.

Editing Filter Effects Using the Filter Dialog Box
Describes how edit the filter effects of a graphic object using the predefined dialog
box.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 119

Styling Graphic Objects Using Fill, Stroke and Filter Classes

Filling and Stroking Graphic Objects

All basic shapes of IBM® ILOG® Diagram for .NET such as circles, elipses, rectangles,
polygons and more generally most of the graphic objects of the library can befilled and
stroked. Filling an object means painting the interior of its shape while stroking an object
means painting the outline of the shape.

To paint a graphic object use the Fill classand all its subclasses.

These classes alow you to paint the interior or the outline of a shape with asimple color, a
texture defined by araster image, various kinds of gradients or a predefined set of hatches.

To paint the outline of a shape use the Stroke class.

The Stroke class allows you to paint the outline of a shape with aline or athick line with
dashes. The Stroke class itself contains a Fill object to specify how the outline is painted.

Painting the Interior of a Shape

You can paint agraphic object by means of the Fill class and all its subclasses. These classes
allow you to paint theinterior or the outline of a shape with asimple color, atexture defined
by araster image, different types of gradients or a predefined set of hatches.

For example, aFill object is used to paint the interior of an ellipse or the foreground of a
text.

Painting with a Solid Color

A SolidFill object is used to paint an areawith a solid Color. The SolidFill object can be
created by specifying a Color object or the red, green and blue components.

The following example shows how to paint an Ellipse object with a SolidFill.

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
S0lidFill myFill = new SolidFill (Color.Blue) ;
ellipse.Fill = myFill;

Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
Dim myFill As SolidFill = New SolidFill (Color.Blue)
ellipse.Fill = myFill

120 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Filling and Stroking Graphic Objects

Thisis how the Ellipse object looks like.

Painting with a Linear Gradient
A LinearGradientFill allows you to paint an areawith agradient allong aline.

The P1 and P2. properties define the start and end point of the line. The two points define the
axis of the gradient and allow you to create a gradient with any type of angle.

By default, P1 and P2 are specified in the coordinate space of the object, this means that a
point of (0, 0) corresponds to the top-left corner of the object bounding area while a val ue of
(1, 1) corresponds to the bottom-right corner.

The linear gradient can have two or more colors. The start and end colors of the gradient are
defined by the StartColor and EndColor property. Additional colors between P1 and P2 can
be specified by adding a GradientStop object to the gradient through the GradientStops

property. A GradientSop holds the color and the location of this color between P1 and P2.

The following example shows how to create a horizontal linear gradient from red to blue and
how to use it to fill a Rect object.

Rect rectangle = new Rect (0, 0, 100, 100);
LinearGradientFill myFill = new LinearGradientFill();
myFill.P1 = new Point2D(0, 0);

myFill.P2 = new Point2D(1, 0);

myFill.StartColor = Color.Red;

myFill.EndColor = Color.Blue;

rectangle.Fill = myFill;

Dim rectangle As Rect = New Rect (0, 0, 100, 100)

Dim myFill As LinearGradientFill = New LinearGradientFill
myFill.P1 = New Point2D(0, 0)

myFill.P2 = New Point2D(1, 0)

myFill.StartColor = Color.Red

myFill.EndColor = Color.Blue

rectangle.Fill = myFill

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 121

Styling Graphic Objects Using Fill, Stroke and Filter Classes

This code will produce the following result:

This following example shows how to create alinear gradient with additional gradient
colors. The P1 and P2 properties are set so that the gradient line starts at the top-left corner
and ends at the bottom-right corner:

Rect rectangle = new Rect (0, 0, 100, 100);
LinearGradientFill myFill = new LinearGradientFill () ;
myFill.P1 = new Point2D(0, 0);
myFill.P2 = new Point2D(1, 1);
myFill.StartColor = Color.Red;
myFill.EndColor = Color.Blue;
myFill.GradientStops.AddRange (

new GradientStopl[]

new GradientStop (Color.White, 0.25f),
new GradientStop (Color.Orange, 0.75f) });

rectangle.Fill = myFill;
Dim rectangle As Rect = New Rect (0, 0, 100, 100)
Dim myFill As LinearGradientFill = New LinearGradientFill
myFill.P1 = New Point2D(0, 0)
myFill.P2 = New Point2D(1, 1)
myFill.StartColor = Color.Red
myFill.EndColor = Color.Blue
myFill.GradientStops.AddRange (_

New GradientStop() { _

New GradientStop(Color.White, 0.25F), _
New GradientStop (Color.Orange, 0.75F)})

rectangle.Fill = myFill

This code will produce the following result:

122 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Filling and Stroking Graphic Objects

The following illustration shows the axis and the gradient stops in the previous gradient.

Start Color

End Color

Painting with a Path Gradient

A PathGradientFill allows you to paint an area with a gradient from the outline of a path to
the center of the path. The following illustration shows various path gradients.

PathGradientFill can have various shapes defined by the GradientShape property, such as

ellipsg, circle or rectangle. When the PathGradientFill is used to fill agraphic object, the
shape can be the one of the graphic object itself.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 123

Styling Graphic Objects Using Fill, Stroke and Filter Classes

The start and end colors of the gradient are defined by the StartColor and EndCol or
properties. The SartColor will be used for the outline of the shape and the EndColor for
the center of the shape. By means of the GradientStops property, you can add additional
colors between the outline and the center by adding GradientStop object to the gradient. A
GradientSop holds the color and the location of this color between the outline and the
center.

It is possible to change the location of the center of the gradient through the CenterPoint
property.

Painting with a Texture

A TextureFill allows you to paint an area with an image. You specify the image through the
Image property. TextureFill contains a predefined set of images for texture representing
various things such as wood, granite, marble and so on. Theimagefills the areato paint
according to the Bounds property. This property defines the location and size of thetilesto
be painted. Thetiling theoretically extends a series of such rectanglesto infinity in X and Y
(positive and negative), with rectangles starting at (x + m*width, y + n*height) for each
possible integer value for m and n. When the value of CoordinateSpace property is
ObjectBBox (which is the default value), the value of the Bounds property must be
interpreted in the coordinate system of the graphic object being painted. In this coordinate
system (0, 0) is mapped to the top-left corner of the graphic object and (1, 1) to the
bottom-right corner of the graphic object. When the Bounds property is (0, O, 1, 1) the
image is stretched to fit the graphic object bounding box.

The following example fills a Rect object with a TextureFill:

Rect rectangle = new Rect (0, 0, 100, 100);
TextureFill myFill = new TextureFill();
myFill.Bounds = new Rectangle2D(0, 0, 1, 1);
myFill.Image = TextureFill.Woodl;

rectangle.Fill = myFill;

return rectangle;

Dim rectangle As Rect = New Rect (0, 0, 100, 100)
Dim myFill As TextureFill = New TextureFill
myFill.Bounds = New Rectangle2D(0, 0, 1, 1)
myFill.Image = TextureFill.Woodl

rectangle.Fill = myFill

Return rectangle

124 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Filling and Stroking Graphic Objects

This code will produce the following result:

Painting with Hatches

A HatchFill alows you to paint an areawith a predefined set of hatches. The hatch styleis
specified by the HatchStyle property. ForeColor represents the color of the hatch and
BackColor the color of the background.

The following example shows how to create a rectangle filled with a HatchFill:

Rect rectangle = new Rect (0, 0, 100, 100);
HatchFill myFill = new HatchFill() ;
myFill.BackColor = Color.LightBlue;
myFill.ForeColor = Color.Red;

myFill.HatchStyle = HatchStyle.BackwardDiagonal;
rectangle.Fill = myFill;

return rectangle;

Dim rectangle As Rect = New Rect (0, 0, 100, 100)
Dim myFill As HatchFill = New HatchFill
myFill.BackColor = Color.LightBlue
myFill.ForeColor = Color.Red

myFill.HatchStyle = HatchStyle.BackwardDiagonal
rectangle.Fill = myFill

Return rectangle

This code will produce the following result:

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 125

Styling Graphic Objects Using Fill, Stroke and Filter Classes

Common Fill Features

Fill Opacity

Each Fill subclass allows you to specify opacity through the Opacity property. The value of
the opacity can be from 0 to 1. Value O means that the fill is completely transparent, value 1
means that the fill is completely opague. If acolor is specified in the Fill object as an apha
value, then the opacity of the color is multiplied with the opacity of thefill.

Note: The opacity of thefill is different from the opacity of a graphic object (Opacity
property of GraphicObject). It is more efficient to use the opacity of thefill than the opacity
of the graphic object.

Immutable Fill

By default, aFill object is mutable. When you modify the properties of the Fill object, for
example the colors of agradient, every graphic object that uses this Fill object is notified
and repainted. Any Fill object can be madeimmutable by calling the Freeze method. If aFill
object is not mutable, an exception will be thrown if you try to change a property. The
advantage of having a Fill object non mutableisthat graphic objects using thisfill no longer
need to listen to changes of thefill. Thisimplies better performances and less memory
consumption.

Painting the Outline of a Shape

The Stroke object contains all the information necessary to paint the outline of a shape. In a
Stroke object you find:

A Fill object that represents the color, gradient or texture used to paint the outline of the
shape specified by the Fill property.

[_Thethickness of the outline specified by the Width property.

[_The ahility to draw dashed lines though the DashStyle, DashOffset, DashPattern and
DashCap properties.

The following example shows how to create a stroked rectangle with dashed lines:

Rect CreateRectangleWithStroke ()

{

new Rect (320F, 150F, 200F, 130F);
new SolidFill (Color.WhiteSmoke) ;

Rect rect
rect.Fill

// Create the Stroke object

Stroke stroke = new Stroke() ;

stroke.DashCap = DashCap.Triangle;
stroke.DashStyle = DashStyle.Dash;
stroke.Fill = new SolidFill (Color.LightBlue) ;
stroke.Width = 6F;

126 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Filling and Stroking Graphic Objects

// Sets the stroke in the rect
rect.Stroke = stroke;

return rect;

}

Function CreateRectangleWithStroke () As Rect

Dim rect As Rect = New Rect (320F, 150F, 200F, 130F)
rect.Fill = New SolidFill (Color.WhiteSmoke)

' create the Stroke object

Dim stroke As Stroke = New Stroke
stroke.DashCap = DashCap.Triangle
stroke.DashStyle = DashStyle.Dash
stroke.Fill = New SolidFill (Color.LightBlue)
stroke.Width = 6F

' Sets the stroke in the rect
rect.Stroke = stroke

Return rect
End Function

The code produces the following resullt:

Immutable Stroke

By default, a Stroke object is mutable. When you modify the properties of the Stroke, for
example the line width, every graphic object that uses this Stroke is notified and repainted.
Any Stroke object can be made immutable by calling the Freeze method. If a Stroke object
isnot mutable, an exception will bethrown if you try to change a property. The advantage of
having a Stroke object non mutable is that graphic objects using this stroke no longer need
to listen to changes of the stroke. Thisimplies better performances and |ess memory
consumption.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 127

Styling Graphic Objects Using Fill, Stroke and Filter Classes

Editing Fill Objects Using the Fill Dialog Box

InIBM® ILOG® Diagram for .NET the interior of a shapeis painted using a Fill object.
Subclasses of the Fill class are the SolidFill, to paint with asolid color, LinearGradientFill
and PathGradientFill to paint with a gradient, TextureFill to paint with atexture and
HatchFill to paint hatches.

IBM ILOG Diagram for .NET provides a predefined dialog box that allows you to edit aFill
object and choose between the various posibilities. This dialog box is defined by the class
FillDialog located in the IL OG.Diagrammer.Windows.Forms namespace. The following
illustration shows the dialog box editing alinear gradient:

Fill Editor
Solid | Pattem | Texture | Gradient | Advanced
Type: Linear v
Colors
() Twocolors (¥) Custom
—0 O o T[]
| | Distribute
Opacity: NPT
Effects Preview
[Knofn | [ok | [Cancel |

The dialog box proposes several tabs to select the type of fill. Optionally, an Advanced tab
allows you to modify all the properties of the Fill object through a property sheet.

Hereisamethod that edits afill through the dialog box:

Fill EditFill(Fill £i11)

// Create the dialog
FillDialog dialog = new FillDialog() ;

// Specify the fill to edit

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Applying a Filter to a Graphic Object

if (£ill != null)
dialog.Fill = fill;

// Show the dialog
if (dialog.ShowDialog() == System.Windows.Forms.DialogResult.OK)

// Returns the resulting fill
return dialog.Fill;

// In other cases returns the old fill
return f£ill;
1
Function EditFill (ByVval fill As Fill) As Fill
' Create the dialog
Dim dialog As FillDialog = New FillDialog

' Specify the fill to edit

If Not (fill Is Nothing) Then
dialog.Fill = fill

End If

' Show the dialog

If dialog.ShowDialog = System.Windows.Forms.DialogResult.OK Then
' returns the resulting fill
Return dialog.Fill

End If

' In other case return the old fill

Return fill

End Function

Applying a Filter to a Graphic Object

For each graphic object you can apply filter effects that consist of a series of graphic
operations that are applied to the origina drawing of the graphic object and produce a
modified graphical result. When afilter effect is specified on a graphic object, the result of
thefilter effect is rendered on the target device instead of the original rendering of the
graphic object.

The following illustration shows the process:

Apply Filter Effects { \
| J = I /

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 129

Styling Graphic Objects Using Fill, Stroke and Filter Classes

A filter effect on agraphic object is specified using the Filter class. You can set afilter effect
through the Filter property of the GraphicObject class.

The filter effects that can be applied are inspired from those defined in the Scalable Vector
Graphics (SVG) specification of the W3C.

A Filter object consists of aseries of filter operations. Each operation performsasingle
fundamental graphical operation such asablur or alighting effect and produces aresulting
image that can be used as the input for the next operation. The class FilterEffect is the
abstract base class for these operations.

Source graphic and the source al pha are two important notions.

The source graphic represents the initial drawing of the graphic object to which thefilter is
applied.

The source alpha represents only the apha channel of the source graphics.

The variousfilter primitive operations are defined by the foll owing subclasses of the
Filter Effect class:

[HeBlend: Thisfilter composites two images together using commonly used imaging
software blending modes.

[—HeColorMatrix: Appliesamatrix transformation to the RGBA colors and a phavalues of
every pixel of the input image.

—_HFeComponentTransfer: Applies acomponent-wise remapping of every pixel of the input
image and can be used for operations like brightness adjustment, contrast adjustment,
color balance or threshold.

[_HeComposite: Thisfilter performsthe combination of the two input images pixel-wisein
image space using one of the Porter-Duff composition operations. over, in, atop, out, Xor.
Additionally, a component-wise arithmetic operation (with the result clamped between
[0..1]) can be applied.

—HFeConvolveMatrix: applies amatrix convolution filter effect. A convolution combines
pixelsin the input image with neighboring pixels to produce a resulting image.

[HeDiffuseLighting: Thisfilter primitive lights an image using the a pha channel asa
bump map. The resulting imageis an RGBA opaque image based on the light color with
alpha= 1.0 everywhere. The lighting cal culation follows the standard diffuse component
of the Phong lighting model.

_HeDisplacementMap: Thisfilter primitive uses the pixels values from the second image
to displace the image from the first input image.

[HeFlood: Thisfilter primitive creates arectangle filled with a specified color and opacity.

[HeGaussianBlur: Thisfilter primitive performs a Gaussian blur on the input image.

130 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Applying a Filter to a Graphic Object

[Helmage: Thisfilter primitive refers to another graphic object or raster image, whichis
rendered into an RGBA raster and becomes the result of the filter primitive.

[HeMerge: Thisfilter primitive merges input image layers on top of each other using the
over operator.

—_#eMorphology: This filter primitive performs fattening or thinning of artwork. It is
particularly useful for fattening or thinning an alpha channel.

[HeOffset: Thisfilter primitive offsets the input image relative to its current position in the
image space by the specified vector.

[HeSpecularLighting: Thisfilter primitive lights a source graphic using the a pha channel
as abump map. The resulting image is an RGBA image based on the light color. The
lighting calculation follows the standard specular component of the Phong lighting
model.

[HeTile: Thisfilter primitivefills atarget rectangle with arepeated, tiled pattern of an
input image.

[HeTurbulence: Thisfilter primitive creates an image using the Perlin turbulence function.
It enables the synthesis of artificial textures like clouds or marble. For adetailed
description of the Perlin turbulence function, see Texturing and Modeling, Ebert et a,
AP Professional, 1994,

The Filter and Filter Effect classes are located in the ILOG.Diagrammer namespace,
subclasses of the Filter Effect class arein the ILOG.Diagrammer.Filters.

An Example of Filter Effect

The following example shows how to create an embossing and a drop shadow effect.

// Create the filter
Filter filter = new Filter();
filter.FilterRegion = new Rectangle2D(0f, 0f, 1.2f, 1.2f);

// Gaussian blur on source alpha
FeGaussianBlur blur = new FeGaussianBlur (4f, 4f);
blur.In = new FeSourceAlphal() ;

// Offset the blur by 4,4
FeOffset offsetBlur = new FeOffset (4f, 4f);
offsetBlur.In = blur;

// Lighting on blur
FeSpecularLighting lighting

= new FeSpecularLighting(5f, 0.9f, 20f, new DistantLight (225, 30,
Color.White)) ;

// Limit lighting to non zero source alpha

FeComposite feCompositel = new FeComposite (CompositionOperator.In);
feCompositel.Inputs.Add(lighting) ;

feCompositel.Inputs.Add (new FeSourceAlphal()) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 131

Styling Graphic Objects Using Fill, Stroke and Filter Classes

// Compose lighting and source graphic

FeComposite feComposite2 = new FeComposite (CompositionOperator.Arithmetic) ;
feComposite2.K2 = 1F;

feComposite2.K3 = 1F;

feComposite2.Inputs.Add (new FeSourceGraphic()) ;

feComposite2.Inputs.Add (feCompositel) ;

// Merge the result and the shadow
FeMerge feMerge = new FeMerge () ;
feMerge.Inputs.Add (offsetBlur) ;
feMerge. Inputs.Add (feComposite2) ;

// Add effects in the filter

filter.Effects.Add (blur) ;

filter.Effects.Add(offsetBlur) ;
filter.Effects.Add(lighting) ;
filter.Effects.Add(feCompositel) ;

filter.Effects.Add (feComposite2) ;

filter.Effects.Add (feMerge) ;

' Create the filter

Dim filter As Filter = New Filter

filter.FilterRegion = New Rectangle2D(0F, OF, 1.2F, 1.2F)

' Gaussian blur on source alpha
Dim blur As FeGaussianBlur = New FeGaussianBlur (4F, 4F)
blur.In = New FeSourceAlpha

' Offset the blur by 4,4
Dim offsetBlur As FeOffset = New FeOffset (4F, 4F)
offsetBlur.In = blur

' Lighting on blur
Dim lighting As FeSpecularLighting = _

New FeSpecularLighting(5F, 0.9F, 20F, New DistantLight (225, 30,
Color.White))

' Limit lighting to non zero source alpha

Dim feCompositel As FeComposite = New FeComposite (CompositionOperator.In)
feCompositel.Inputs.Add (lighting)

feCompositel.Inputs.Add (New FeSourceAlphal())

' Compose lighting and source graphic

Dim feComposite2 As FeComposite = New
FeComposite (CompositionOperator.Arithmetic)
feComposite2.K2 = 1F

feComposite2.K3 = 1F
feComposite2.Inputs.Add (New FeSourceGraphic())
feComposite2.Inputs.Add (feCompositel)

' Merge the result and the shadow
Dim feMerge As FeMerge = New FeMerge
feMerge. Inputs.Add (offsetBlur)
feMerge. Inputs.Add (feComposite2)

' Add effects in the filter

filter.Effects.Add (blur)
filter.Effects.Add (offsetBlur)

132 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Applying a Filter to a Graphic Object

filter.Effects.Add (lighting)
filter.Effects.Add (feCompositel)
filter.Effects.Add (feComposite2)
filter.Effects.Add (feMerge)

The following illustration shows how this filter is applied to a graphic object:

A . Gaussian Blur

ILOG Diagrammer N >

Computing afilter effect on a graphic object can be time consuming. The time to compute
the filter depends on the number and type of filter effects primitives. It also depends on the
size of the graphic object on the output device and the resolution used for intermediate
images.

One easy way to accelerate the time needed to compute a filter effect isto specify a
maximum resolution for the filter. This can be done through the Resolution property of the
Filter class. This property specifies the maximum size in pixels of intermediate images used
to compute the filter effect results. The default valueis set to -1,-1 which means that the
filter will use the most appropriate size to get the best rendering result, of course asmall size

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 133

Styling Graphic Objects Using Fill, Stroke and Filter Classes

for intermediate images will result in the graphic object being pixelized on screen when the
object is zoomed above this rendering size.

Notes:

1. Afilter object can be shared by several graphic objects.

2. IBM ILOG Diagramfor .NET contains a predefined dialog box for editing the filter
effects of a graphic object. Thisdialog box is described in Editing Filter Effects Using
the Filter Dialog Box.

Editing Filter Effects Using the Filter Dialog Box

Each graphic object of IBM® ILOG® Diagram for .NET can be associated with filter
effects defined by the Filter class. For more details on applying filter effects on agraphic
object, see Applying a Filter to a Graphic Object.

IBM ILOG Diagram for .NET provides a predefined dialog box that proposes a set of
predefined filter effects and allows you to edit a Filter object. Thisdialog box is defined by

the class FilterDialog located in the ILOG.Diagrammer.Windows.Forms namespace. The
following illustration shows the dialog box that previews an emboss filter on arectangle

object:

134 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Editing Filter Effects Using the Filter Dialog Box

Select a Filter Effect

General | Advanced |

Select a fitter: Preview:

Drop Shadows
[=I- Reliefs
Bumpln
BumpOut
ThinEmboss
LargeEmboss
Blurs
Colors
Convalutions
Textures
Miscelleanous

= = R R R

| X NoFiter || oKk || Cancel

The General tab displaysatree of predefined filters. The Advanced tab allows you to modify
all the properties of the Filter object through a property sheet.

Hereisamethod that edits afilter through the dialog box:

Filter EditFilter (Filter filter, GraphicObject preview)

{

// Create the dialog
FilterDialog dialog = new FilterDialog() ;

// Specify the filter to edit
dialog.Filter = filter;

// Specify the graphic object used to preview the result
dialog.PreviewObject = preview;

// Show the dialog
if (dialog.ShowDialog() == DialogResult.OK)

// returns the resulting filter
return dialog.Filter;

// in other cases returns the old filter
return filter;

}
Function EditFilter (ByVal filter As Filter, ByVal preview As GraphicObject) As
Filter

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 135

Styling Graphic Objects Using Fill, Stroke and Filter Classes

' Create the dialog
Dim dialog As FilterDialog = New FilterDialog

' Specify the filter to edit
dialog.Filter = filter

' Specify the graphic object used to preview the result
dialog.PreviewObject = preview

' Show the dialog
If dialog.ShowDialog = DialogResult.OK Then

' returns the resulting filter
Return dialog.Filter

End If
' in other cases returns the old filter

Return filter
End Function

136 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Displaying Text in a Diagram

IBM® ILOG® Diagram for .NET offers various waysto display textual informationin a
diagram. You may display simple multiline text inside a graphic object or create more
complex styled text using dedicated graphic objects such as the Text or TextOnPath objects.

Displaying Text in a Graphic Object

A graphic object can display textual information specified by the Text property of the
GraphicObject class. The text that you specify through the Text property isfitted in the
bounding rectangle of the graphic object. Many options alow specifying the alignment of
the text within this rectangle, the margin, the colors as well as various ways to wrap the text
in the rectangle.

The following illustration shows a text wrapped within a rectangular object.

rectangle

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 137

Displaying Text in a Diagram

Once the text is specified through the Text property, the various options that allow
controlling the appearance of the text is defined by the TextAppearance class.

TextAppear ance regroups the propertiesto specify the style of the text such asthe Font, the
Background and Foreground properties as well as properties to specify the way thetext is
laid out inside bounding rectangle of the graphic object such as the Margins, the

Horizontal Alignment, the Vertical Alignment or the Trimming properties.

The following shows some of the TextAppear ance options:

Text can be T Text can be
displayed in any displayed in any
graphic objact grap ope graphic objact
Textcar! be
Text can ba display't_ad in any
displayed in any graphic object Text can be
graphic object dizplayad in any
graphic object
Text can be I axt can be
displayed in anygr_. Text can be I .
displayed in any displayed i any
graphic objact hic ols
Text can be E%E
displayed in any o= g
hic chiect Text can ba =l-o
Lo bl displayed in_ gﬁ_g B
CIERS

Every GraphicObject holds a TextAppear ance instance in its TextAppear ance property.
Like other styling objects such as the Fill or Stroke objects, the same TextAppear ance
instance can be used by several objects allowing sharing the same text stylein several

graphic objects.

The following code creates an Ellipse object displaying some text inside the ellipse.

public Ellipse CreateEllipseWithText ()

{

Ellipse ellipse

new Ellipse (520F,

160F, 140F, 120F);

ellipse.Fill = new SolidFill (Color.WhiteSmoke) ;

ellipse.Text =

"Welcome to IBM ILOG Diagram for .NET";

TextAppearance appearance = new TextAppearance () ;

appearance.Font

new System.Drawing.Font ("Arial", 12F);

appearance.Foreground = new SolidFill (Color.Blue) ;
new ILOG.Diagrammer.Margins (5f) ;

appearance.Margins

138 IBM ILOG DIAGRAM FOR

.NET 2.0

— PROGRAMMING

appearance.VerticalAlignment = VerticalTextAlignment.Center;

appearance.HorizontalAlignment = HorizontalTextAlignment.Center;

ellipse.TextAppearance = appearance;
return ellipse;

}

Public Function CreateEllipseWithText () As Ellipse

Dim ellipse As Ellipse = New Ellipse(520F, 160F, 140F, 120F)
ellipse.Fill = New SolidFill (Color.WhiteSmoke)
ellipse.Text = "Welcome to IBM ILOG Diagram for .NET"

Dim appearance As TextAppearance = New TextAppearance
appearance.Font = New System.Drawing.Font ("Arial", 12F)
appearance.Foreground = New SolidFill (Color.Blue)
appearance.Margins = New ILOG.Diagrammer.Margins (5F)
appearance.VerticalAlignment = VerticalTextAlignment.Center

appearance.HorizontalAlignment = HorizontalTextAlignment.Center

ellipse.TextAppearance = appearance
Return ellipse
End Function

The ellipse you have just created will ook like the following:

ier

IBM

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

139

Displaying Text in a Diagram

Note: Some graphic objects such as the Rect object that simply displays a rectangle have
an AutoSize property. When a Rect object has its AutoSize property set to true, then the
object automatically computes its size depending on the text that it displays. This feature
can be particularly useful when creating a custom graphic object.

The example below shows how to use a StackPanel that layouts vertically several rectangles
containing text to create akind of table of text.

private static StackPanel CreateStackPanelWithRectangles ()

{

StackPanel stackPanel = new StackPanel () ;

stackPanel .Rectangle = new Rectangle2D(0, 0, 100, 100);
stackPanel .AutoSize = true;

stackPanel .Border = new Stroke (Color.Black) ;
stackPanel.CornerRadius = new CornerRadius (6f) ;

Rect header = new Rect () ;

header.Text = "Header";

header.AutoSize = true;

header.Fill = new LinearGradientFill (new Point2D(0, 0),
new Point2D(0, 1),
Color.Silver, Color.White) ;

Rect rectl = new Rect();
rectl.Text = "Text 1";
rectl.Fill = null;
rectl.AutoSize = true;

Rect rect2 = new Rect();
rect2.Fill = null;
rect2.AutoSize = true;
rect2.Text = "Text 2";

Rect rect3 = new Rect();
rect3.Fill = null;
rect3.AutoSize = true;

rect3.Text = "Text 3";
stackPanel.Objects.AddRange (new GraphicObject[] { header, rectl, rect2,
rect3 });

return stackPanel;

}

Private Shared Function CreateStackPanelWithRectangles () As StackPanel

Dim stackPanel As StackPanel = New StackPanel
stackPanel .Rectangle = New Rectangle2D(0, 0, 100, 100)
stackPanel .AutoSize = True

stackPanel.Border = New Stroke (Color.Black)
stackPanel.CornerRadius = New CornerRadius (6F)

Dim header As Rect = New Rect

140 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

header.Text = "Header"

header.AutoSize = True

header.Fill = New LinearGradientFill (New Point2D (0, 0), New Point2D(0, 1),
Color.Silver, Color.White)

Dim rectl As Rect = New Rect
rectl.Text = "Text 1"
rectl.Fill = Nothing
rectl.AutoSize = True

Dim rect2 As Rect = New Rect
rect2.Fill = Nothing
rect2.AutoSize = True
rect2.Text = "Text 2"

Dim rect3 As Rect = New Rect
rect3.Fill = Nothing
rect3.AutoSize = True
rect3.Text = "Text 3"

stackPanel.Objects.AddRange (New GraphicObject () {(header, rectl, rect2,
rect3})

Return stackPanel
End Function

The stack panel you have just created should look like the following one:

(Header
Teut 1
Teut 2

Text 3

e

For more information on how to layout objects with Panels read the section Panels.

Displaying Text using Text and TextOnPath Objects

You can also display textual information in a diagram using dedicated objects like the Text
and TextOnPath.

The Text class allows you to display text at a specified location. The location of the text
depends on the TextL ocation property that specifies the anchor point of the text and the
Vertical Alignment and Horizontal Alignment properties that specify how the text is aligned
with respect to this anchor point.

In addition to text drawn along astraight line, IBM ILOG Diagram for .NET also includesto
specify text drawn along a path. To specify ablock of text to be drawn along a path you use
the TextOnPath object and specify the path through its Path property.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 141

Displaying Text in a Diagram

The following illustration shows a Text and a TextOnPath object.

Diagrammer for NET

Both Text and TextOnPath objects can be filled and stroked. You stroke the outline of each
letter using the Stroke property and fill the content using the Fill property.

The following example creates the Text and TextOnPath objects.

GraphicObject [] CreateTextAndTextOnPath ()

{

TextOnPath textOnPath = new TextOnPath() ;
textOnPath.Text = "IBM ILOG Diagram for .NET";
textOnPath.Font = new Font ("Garamond", 35F, FontStyle.Bold);

LinearGradientFill gradient
= new LinearGradientFill (new Point2D (0, O0),
new Point2D(0, 1),
Color.Yellow,
Color.Red) ;
textOnPath.Fill = gradient;
textOnPath.Stroke = new Stroke (Color.Olive) ;

textOnPath.Path.SetGeometry (
"M100 200 C 100 100 250 100 250 200 S400 300 400 200");

Text text = new Text () ;

text.Text = "IBM ILOG Diagram for .NET";
text.TextLocation = new Point2D(70f, 330f);

text.Fill = gradient;

text.Stroke = textOnPath.Stroke;

text.Font = textOnPath.Font;

text .HorizontalAlignment = HorizontalTextAlignment.Left;
text.VerticalAlignment = VerticalTextAlignment.Center;

return new GraphicObject[] { text, textOnPath };

142 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

}

Function CreateTextAndTextOnPath() As GraphicObject ()
Dim textOnPath As TextOnPath = New TextOnPath
textOnPath.Text = "IBM ILOG Diagram for .NET"
textOnPath.Font = New Font ("Garamond", 35.0F, FontStyle.Bold)

Dim gradient As LinearGradientFill = _
New LinearGradientFill (New Point2D(0, 0),

New Point2D(0, 1),
Color.Yellow,
Color.Red)

textOnPath.Fill = gradient

textOnPath.Stroke = New Stroke (Color.Olive)

textOnPath.Path.SetGeometry (_

"M100 200 C 100 100 250 100 250 200 S400 300 400 200")
Dim text As Text = New Text

text.Text = "IBM ILOG Diagram for .NET"
text.TextLocation = New Point2D(70.0F, 330.0F)
text.Fill = gradient

text.Stroke = textOnPath.Stroke

text.Font = textOnPath.Font

text .HorizontalAlignment = HorizontalTextAlignment.Left
text.VerticalAlignment = VerticalTextAlignment.Center

Return New GraphicObject () {text, textOnPath}
End Function

Textual information can also be displayed in the links of agraph by the Link object. Please
refer to the section Link Objects.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 143

Displaying Text in a Diagram

144 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Graphic Object Visibility

The visibility of a graphic object can be changed by using the Visibility property of the
GraphicObject class. The type of this property is given by the Visibility enumeration. The
values for this enumeration are defined in the following table:

Value Description

Visible The graphic object is visible.

Hidden The graphic object is not visible.

Collapsed The graphic object is not visible and its bounds are no
longer used

The difference between Hidden and Collapsed is that when an object visibility is set to
Collapsed, its geometry is no longer used during bounding boxes computations.

The following example illustrates this difference:

Group container
Ellipse ellipse
Rect rectangle

new Group () ;
new Ellipse (0, 0, 100, 100);

new Rectangle (200, 200, 100, 100);

container.Objects.Add(ellipse) ;
container.Objects.Add(rect) ;

Console.WriteLine (container.Bounds) ;

// Output : 0,

0,

300, 300

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

145

Understanding Graphic Object Visibility

146

rectangle.Visibility = Visibility.Hidden;
Console.WriteLine (container.Bounds) ;
// Output : 0, 0, 300, 300

rectangle.Visibility = Visibility.Collapsed;
Console.WriteLine (container.Bounds) ;

// Output : 0, 0, 100, 100

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
Dim rectangle As Rect = New Rect (200, 200, 100, 100)
container.Objects.Add(ellipse)
container.Objects.Add(rect)

Console.WriteLine (container.Bounds)
' Output : 0, 0, 300, 300

rectangle.Visibility = Visibility.Hidden
Console.WriteLine (container.Bounds)
' Output : 0, 0, 300, 300

rectangle.Visibility = Visibility.Collapsed
Console.WriteLine (container.Bounds)
' Output : 0, 0, 100, 100

The Visibility property isjust a hint to specify the visibility of agraphic object. The real
visibility is given by the IsVisible and | sCollapsed properties, which can be overridden. Asa
conseguence, an object is said to be visible only when its | sVisible property returnstrue.
Similarly, an object is said to be collapsed only when its | sCollapsed property returnstrue.

An object can be collapsed because its geometry cannot be computed. For example, a
Polyline with zero points is collapsed, even though its Visibilty property is set to Visible.

When an object visibility is changed, the associated graphic event must contain the
VisibilityMask value. See Raising Graphic Object Events for details.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 147

Understanding Graphic Object Visibility

148 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Graphic Object Preferred Size

A graphic object that has content to display may have apreferred size, that is, asize at which
its content is rendered at best. For example, a rectangular graphic object displaying text has
apreferred size that enables the text to be displayed entirely.

By using the preferred size of graphic objects you are able to build complex hierarchies of
graphic objects using panels or other types of containers.

The AutoSize property is used to specify whether a graphic object should use its preferred
size. The following code shows how to create a Rect object displaying atext inside. The
specific size of the Rect object is not given. Instead, the size is automatically computed by
setting the AutoSize property:

Rect r = new Rect () ;

r.Text = "This is an auto sized Rect";

t.TextAppearance.Margins = new Margins(10) ;

r.AutoSize = true;

Dim r as Rect = new Rect ()

r.Text = "This is an auto sized Rect"

t.TextAppearance.Margins = new Margins (10)
r.AutoSize = True

The AutoSize property isjust a hint that allows you to specify if an object should take its
preferred size, the real properties are the HasPreferredWidth and HasPreferredHeight
properties. These properties can be overridden in subclasses in order to implement specific
behaviors.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 149

Using Graphic Object Preferred Size

Note: Even though the AutoSize property has been set, the container of the graphic object
has the responsibility of resizing it. As a consequence, setting the AutoSize property may
not be enough to have the graphic object resized to its preferred size, asit dependson its
parent behavior. In particular, when graphic objects are displayed into panels, the panel
always uses its settings first to determine its children size. For details on panels, see
Panels.

To get the preferred size of a graphic object, use the GetPreferredSize method. This method
iscalled internally by the existing containers. You may want to overrideit, if you need to
change the preferred size of an object.

The default behavior for the GraphicObject classisto compute asize that allows you to
display the Text property entirely, taking into account the TextAppearance property of the
graphic object. Other graphic objects, like panels, have implemented different behaviors
based on their content: their preferred size is computed so that their children are displayed
using their preferred size, if any. For details on panels preferred sizes, see Panels.

Becauseit is powerful, the layout system isaso complex, and finding the right setting to get
the right layout may not be obvious. The following rules may help you understand which
settings to use to get the desired layout:

A graphic object using its preferred size has its size constrained by its content.

A graphic object located in apanel may have its size constrained by the panel, depending
on the panel settings. This may conflict with the previous rule. In this case, the panel
settings always win.

A graphic object may have its width constrained by its contents, and its height
constrained by its parent, or vice-versa.

The following example shows how to create a StackPanel with three Rect objects inside.
The StackPanel hasits AutoSize property set to true, which means that it should take its
preferred size. In the case of avertical stack panel, the preferred size is as follows:

Width = Maximum width of children whose horizontal alignment is not
HorizontalAlignment.Stretch.

Height = Sum of the children heights.

Each Rect hasalso its AutoSize property set to true, to makeit takeits preferred size. In the
case of abasic graphic object, the preferred size is determined by the text displayed by the
object.

Only the first Rect object has a horizontal alignment different from
HorizontalAlignment.Stretch. This means that the width of the stack panel has the same
width as this object. The other two Rect objects are using the default horizontal alignment,

150 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

that is, Horizontal Alignment.Stretch. In this case, their width size will be constrained by

the panel width.

StackPanel panel = new StackPanel () ;

panel.AutoSize = true;

Rect rectl = new Rect () ;

rectl.Text = "Rect 1 is in AutoSize";

rectl.AutoSize = true;

panel.Objects.Add (rectl) ;

panel.SetHorizontalAlignment (rectl, HorizontalAlignment.Center) ;
Rect rect2 = new Rect();

rect2.Text = "Rect 2 is in AutoSize, HorizontalAlignment = Stretch";
rect2.AutoSize = true;

panel .Objects.Add (rect2) ;

Rect rect3 = new Rect();

rect3.Text = "Rect 3 is in AutoSize, HorizontalAlignment = Stretch";
rect3.AutoSize = true;

panel .Objects.Add (rect3) ;

Dim panel As StackPanel = New StackPanel

panel .AutoSize = true

Dim rectl As Rect = New Rect

rectl.Text = "Rect 1 is in AutoSize"

rectl.AutoSize = true

panel .Objects.Add (rectl)

panel.SetHorizontalAlignment (rectl, HorizontalAlignment.Center)

Dim rect2 As Rect = New Rect

rect2.Text = "Rect 2 is in AutoSize, HorizontalAlignment = Stretch"
rect2.AutoSize = true

panel.Objects.Add (rect2)

Dim rect3 As Rect = New Rect

rect3.Text = "Rect 3 is in AutoSize, HorizontalAlignment = Stretch"
rect3.AutoSize = true

panel.Objects.Add (rect3)

The following illustration shows the compiled application:

Fect 1is in AutoSize
Rect 215 1n
LutoSize,
Haorizontal Alignment
= Stretch
Rect 3is in
LutoSize,
Hornizontal Alignment
= Stretch

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

151

Using Graphic Object Preferred Size

152 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Graphic Object Events

Among the various events sent by graphic objects, we can distinguish between:
[_The eventsraised after a property change.
[_The eventsraised to notify the framework of a graphic change.

The events raised after a property change are typical .NET events, whereas the events rai sed
to notify the framework of a graphic change are specific to
IBM® ILOG® Diagram for .NET. This section focuses on the second type of events.

Raising Graphic Object Events

Graphic object events are useful for the framework to know which portion of the screen
should be redrawn after a change in the objects hierarchy. When an object gets modified, it
should raise two events: one before the change and one after the change. To raise those
events, a graphic object uses the OnGraphicChanging and OnGraphicChanged methods.

The following code example shows the Radius property of the Circle class to illustrate this:

public class Circle : Shape

{

public float Radius

{

get { return radius; }

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 153

Understanding Graphic Object Events

set

OnGraphicChanging (GraphicChange .GeometryBounds) ;
_radius = value;
OnGraphicChanged (GraphicChange . GeometryBounds) ;

}

Public Class Circle
Inherits Shape

Public Property Radius As Single
Get
Return _radius
End Get
Set
OnGraphicChanging (GraphicChange .GeometryBounds)
_radius = value
OnGraphicChanged (GraphicChange . GeometryBounds)
End Set
End Property

End Class

The parameter for the OnGraphicChanging and OnGraphicChanged methods is one of
the GraphicChange values. This enumeration defines the possible changes for agraphic
object. In the example above, changing the radius of the circle changesits geometry bounds,
thus the GraphicChange.GeometryBounds value is used.

The following table lists the main values that can be used:

Enumeration Value Description

Appearance The graphic object appearance has changed.
StyledBounds The graphic object styled bounds have changed.
Bounds The graphic object bounds have changed.
GeometryBounds The graphic object geometry bounds have changed.
Transform The graphic object transformer has changed.

Note: Raising graphic object events is an advanced feature that is needed only if you have
to create a new graphic object by code. If you create your new graphic object by composing
existing graphic objects, the events notification will be handled by the framework.

154 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Listening to Graphic Object Events

Listening to graphic object eventsis useful to track changesin a graphic objects hierarchy.
For example, you may want to track the location of an object, its size, or whatever. To listen
to graphic events sent by an object, use the Changing and Changed events.

The following code example shows how to listen to geometry bounds events, that is, events
that notify a change in the object geometry bounds:

Rect r = new Rect (0, 0, 100, 100);
r.Changed += new GraphicChangeEventHandler (ObjectChanged) ;

private void ObjectChanged (object sender, GraphicObjectEventArgs args)

{

if (args.IsBoundsChangeEvent)
Console.WriteLine ("New bounds : " + args.Bounds) ;

}

Dim r As Rect = New Rect (0, 0, 100, 100)
AddHandler r.Changed, AddressOf Me.ObjectChanged

Private Sub ObjectChanged (ByVal sender As Object, _
ByVal args As GraphicObjectEventArgs)
If args.IsBoundsChangeEvent Then
Console.WriteLine ("New bounds", args.Bounds)
End If
End Sub

Note that the BoundsChanging and BoundsChanged events are al so raised when the bounds
of graphic objects are changed.

The ChildChanging and ChildChanged events are raised by any container whose children
are being changed. Listening to those events allows you to track changesin a entire graphic
objects hierarchy, as shown in the following code example:

Group g = new Group () ;
g.ChildChanged += new GraphicChangeEventHandler (ChidChanged) ;

private void ChildChanged (object sender, GraphicObjectEventArgs args)

{

Console.WriteLine ("Name of the object : " + args.Source.Name) ;
if (args.IsBoundsChangeEvent)
Console.WriteLine ("New bounds : " + args.Bounds) ;

}

Dim g As Group = New Group
AddHandler g.ChildChanged, AddressOf Me. ChildChanged

Private Sub ChildChanged (ByVal sender As Object, _
ByVal args As GraphicObjectEventArgs)
Console.WriteLine ("Name of the object : " + args.Source.Name)
If args.IsBoundsChangeEvent Then
Console.WriteLine ("New bounds", args.Bounds)
End If
End Sub

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 155

Understanding Graphic Object Events

In the code example above, the Source property is used to know which graphic object isthe
event source.

156 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Graphic Containers

Graphic objects are by nature hierarchical: a drawing can be decomposed in several
subdrawings. A graphic container is agraphic object that contains other graphic objects. The
base class for graphic containersis the abstract class GraphicContainer.

IBM® ILOG® Diagram for .NET provides different concrete subclasses of the
GraphicContainer classin order to achieve the most complex scenarios.

In This Section
Introduction to Graphic Containers
Explains the basics of the GraphicContainer class.
Using the Predefined Graphic Containers

Explains how to choose between the various containers available in
IBM ILOG Diagram for .NET.

Introduction to Graphic Containers

The GraphicContainer classis the base class for graphic objects that contain children. A
container is responsible for the drawing and the hit testing of its children.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 157

Understanding Graphic Containers

The GraphicContainer class does not define any API to add or remove children, whichis
donein subclasses. Instead, it provides a set of helpful methods that should be called by
concrete graphic container subclasses.

Graphic Container Events

The GraphicContainer class defines several events that can be used to track the container
changes.

The ChildrenHierarchyChange event is raised when a change has occurred in the container
children hierarchy. The change may have occurred on the direct children of the container, or
on one of their descendants. The event argument sent with the event gives accurate
information about the change that occurred. See the ChildrenHierarchyChangeEventArgs
classfor details. The following code shows how to monitor changes in the children
hierarchy of a Group:

public Group CreateGroup ()

{
Group group = new Group () ;
group.ChildrenHierarchyChanged +=

new ChildrenHierarchyChangeEventHandler (HierarchyChanged) ;

Rect rectl = new Rect (0, 0, 100, 100);
rectl.Text = "Rect 1";
group.Objects.Add(rectl) ;
Rect rect2 = new Rect (200, 200, 100, 100);
rect2.Text = "Rect 2";
group.Objects.Add (rect2) ;
return group;

}

private void HierarchyChanged (object sender, ChildrenHierarchyChangeEventArgs
e)
{
if (e.Action == ChildrenHierarchyChangeAction.Add)
System.Console.WriteLine ("Adding children") ;
else
System.Console.WriteLine ("Removing children") ;
}
Public Function CreateGroup() As Group
Dim group As Group = New Group
AddHandler group.ChildrenHierarchyChanged, AddressOf Me.HierarchyChanged
Dim rectl As Rect = New Rect (0, 0, 100, 100)
rectl.Text = "Rect 1"
group.Objects.Add (rectl)
Dim rect2 As Rect = New Rect (200, 200, 100, 100)
rect2.Text = "Rect 2"
group.Objects.Add (rect2)
Return group
End Function

Private Sub HierarchyChanged (ByVal sender As Object, _
ByVal e As ChildrenHierarchyChangeEventArgs)
If (e.Action = ChildrenHierarchyChangeAction.Add) Then
System.Console.WriteLine ("Adding children")

158 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using the Predefined Graphic Containers

Else
System.Console.WriteLine ("Removing children")
End If
End Sub

The ChildChanging and ChildChanged events are raised respectively before and after a
descendant of the graphic container changed. These events can be used to monitor graphic
changes on the container descendants.

The Childinvalidated event is raised when one of the container descendants needs to be
repainted. This event is used by the DiagramView to invalidate its display.

Graphic Container Coordinate System

The GraphicContainer class uses an internal affine transformation to draw its children.
This transformation can be accessed using the ChildTransform property. For details on
coordinate systems, see XREF Understanding Coordinate Systems.

Logical Children versus Children

The GraphicContainer classintroduces the notion of logical children. Logical children can
be added to or removed from their container, whereas children cannot. For example, the
ScrollViewer class uses scroll bars to scroll its content. These scroll bars cannot be removed
from the ScrollViewer, whereas the ScrollViewer content can be changed. The
ScrollViewer content isalogical child of the ScrollViewer, whereas the ScrollViewer
scroll bars are not. Both children and logical children react to events.

Logical children can be accessed through the Logical Children property, and children can be
accessed through the Children property.

Using the Pred

IBM

efined Graphic Containers

IBM® ILOG® Diagram for .NET provides alarge set of predefined graphic containers that
can be mixed to achieve the most complex scenarios. Understanding the main features of
each graphic container isthe key to choose which container suits best for a particular use.

Controls

Controls are containers whose geometry is defined by arectangular areain which children
will be placed. The base class for controlsis the Control class. Controls add graphic
decorations such as a border or a background and can implement specific behaviors.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 159

Understanding Graphic Containers

The Controal classisan abstract class that has three different types of subclasseslisted in the
following table:

Super Class Description Examples

Control Controls that do not have children. | HScrollBar, VScrollBar

ContentControl Controls with a single child. Button, ScrollViewer, ViewPort

ObjectsControl Controls with several children. DockPanel, Canvas, GridPanel,
StackPanel

For details about controls, see Controls.
For details about the classes DockPanel, Canvas, GridPanel and StackPanel, see Panels.

Composite Objects

Composite objects are containers whose geometry is defined by their children. The base
class for composite objectsis the Composite object class. The children of the composite
objects can be accessed through the Objects property. Composite objects are containers that
simply group their children without adding any graphic decoration or behavior.

The Composite class is an abstract class that has several subclasses listed in the following

table:

Class Description

Group A simple group of graphic objects that can be used to group
objects sharing the same z-order.

GraphicSymbol Allows you to create simple symbols. See GraphicSymbols
for details.

UserSymbol Allows you to create complex symbols in Visual Studio.NET®.
See UserSymbol for details.

160 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Coordinate Systems

Understanding coordinate systemsin IBM® ILOG® Diagram for .NET is useful to convert
coordinates expressed in a coordinate system into another coordinate system.

In This Section
Overview of Existing Coordinate Systems
Describes the coordinate systems defined by IBM ILOG Diagram for .NET.
Conversion Between Coordinate Systems
Explains how to convert coordinates.

Overview of Existing Coordinate Systems

IBM® ILOG® Diagram for .NET defines three coordinate systems:
[The Geometry Coordinate System

[The Container Coordinate System
[The View Coordinate System

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 161

Understanding Coordinate Systems

The Geometry Coordinate System

The geometry of an object is defined by (x, y) points expressed in the geometry coordinate
system. The following illustration shows a rectangle where the top-left point is (10, 10) and
the sizeis (100, 100), and atriangle defined by the points (200, 10), (250, 110), and (150,
110):

0 50 100 150 200 250

(=]

Rectangle

[*1)
(=]
III|IIII

Triangle

—_
(=]
(=]

Each graphic object hasits own way of defining its geometry. A Rect object has the
Rect.Rectangle property, a Polygon has the PolyPoints.Points property, and so on.

For details on how to specify the geometry of aparticular object, see the reference manual of
this object.

The bounds of a graphic object expressed in the geometry coordinate system are called
geometry bounds. To get or set the geometry bounds of a graphic object, use
GeometryBounds property. Set this property to modify the graphic object geometry so that
it fitsin the new geometry bounds. For example, setting the geometry bounds of a Polygon
will move its points, while setting the geometry bounds of a Rect object will just set the
Rect.Rectangle property to the new bounds.

The geometry coordinate system does not use the local object transformation and thus
setting the Transform property has no impact on the geometry coordinate system.

162 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Overview of Existing Coordinate Systems

The Container Coordinate System

The container coordinate system is the coordinate system in which a container displaysits
children. This coordinate system takes into account the children local transformations. The
following illustration shows a group composed of arectangle and atriangle:

(=]

50 100 150 200

D IIIIIIIIIIIIIIIIIIIIIIII

Rectangle

te—— Group

. riangle

The rectangle geometry bounds are (x = 10, y = 10, width = 60, height = 60), thereisno
local transformation. Thus, its bounds expressed in the container coordinate space are the
same.

The triangle geometry bounds are (50, 50, 50, 50). The local transformation applied to the
triangle is the composition of atranslation of (-50, -50) and a scale transformation of factor
2. The resulting bounds expressed in the container coordinate space are (50, 50, 100, 100).

In addition to the local graphic object transformation that can be set using the Transform
property, graphic containers apply another transformation to their children. This
transformation is given by the ChildTransform property. The property is used internally by
some containers to transform the coordinate system in which their children are drawn. The
following illustration shows a Canvas that contains two rectangles. The Canvas uses its

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 163

Understanding Coordinate Systems

ChildTransform property to have its upper left corner defined as the point (0, 0) inits
children coordinate system:

50 100 150 200

n IIIIIIIIIIIIIIIIIIIIIIII

=

o
(=1

Rect 1

ey
100

150
Rect 2

The Canvas bounds are (50, 50, 150, 150). In the container coordinate system, the point (50,
50) istransformed to the point (0, 0). As aresult, the bounds of the rectangles named "Rect
1" and "Rect 2" are respectively (10, 10, 60, 40) and (80, 100, 60, 40).

The bounds of a graphic object expressed in the container coordinate system are called
bounds. To get or sets the bounds of a graphic object, use the Bounds property. Set this
property to modify the graphic object so that it fits in the new bounds. The way the graphic
object is modified to fit in the new bounds depends on the following parameters:
[_graphic object type,

[_graphic object local transformation,

[ResizeMode property.

Depending on those parameters, the graphic object will either modify its geometry bounds,
or itslocal transformation to fit in the new bounds.

The View Coordinate System

When graphic objects are displayed using diagram views, an additional transformationis
used to enable the scrolling and the zooming into the view. The following illustration shows
aWinforms DiagramView that contains a rectangle and a triangle whose bounds are
respectively (10, 10, 100, 100) and (150, 10, 100, 100). The diagram view has been

164 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Conversion Between Coordinate Systems

translated by the vector (-50, -50) so that the point (0, 0) in the view coordinate system
corresponds to the point (50, 50) in the diagram coordinate system:

0 50 100 150 200 250

A

(=]

[*1)
(=]
L1 | L1l

Rel
100
] View
150
] (0, Q) in view coordinate system
200

The diagram view transformation can be set by using the Transform property for the
Winforms version, and the Transform property for the ASPNET version.

Conversion Between Coordinate Systems

To convert coordinates expressed in a coordinate system to another coordinate system, the
following methods can be used:

Class Method Description
GraphicObject GetGeometryToContainerTran | Gets the transformation to convert
sform geometry coordinates into the
specified container coordinate
system.
GraphicObject GetGeometryToViewTransform | Gets the transformation to convert

geometry coordinates into the
specified view coordinate system.

GraphicContainer | GetTransformToContainer Gets the transformation to convert
children coordinates into the specified
container coordinate system.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 165

Understanding Coordinate Systems

Class Method Description

GraphicContainer |GetTransformToView Gets the transformation to convert
children coordinates into the specified
view coordinate system.

GraphicObject GetRelativeBounds Gets the bounds of this object
expressed in the specified container
coordinate system.

Note that conversions must be made between graphic objects that have a common ancestor;
otherwise an exception is thrown.

Thefollowing illustration shows two Canvas, each containing two Rect objects. Assume that
the two Canvas share acommon ancestor, so that the coordinate conversion between themis

possible.

0 50 100 150 200 250 300

D IIII|IIII|IIII|IIII|IIII|IIII
] Rect 1

50
B Canvas 1

100 Rect 2

150

200

250

If you want to express the bounds of "Rect 3" in the container coordinate system of "Canvas
1", you can code:

Rectangle2D bounds = rect3.GetRelativeBounds (canvasl) ;
Dim bounds As Rectangle2D = rect3.GetRelativeBounds (canvasl)

If you want to compute the transformation that converts from the container coordinate
system of "Canvas 1" to the container coordinate system of "Canvas 2", you can code:

Transform t = canvasl.GetTransformToContainer (canvas2) ;
Dim t As Transform = canvasl.GetTransformToContainer (canvas2)

166 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating Diagrams with Nodes and Links

In this section you are going to see how to create diagrams with nodes and links.
In This Section
Creating a Smple Diagram with Nodes and Links Programmatically
Explains the code needed to create a simple diagram.
Introducing Link and Anchor Classes
Explains the basic principles of the classes that are used to create graphs.
Using Automatic Link Crossing Detection in a Graph
Explains how to automatically detect and display link crossing in a graph.
Creating a New Class of Anchor
Explains how to write a new Anchor subclass.

Creating a Simple Diagram with Nodes and Links Programmatically

This section explains the code needed to create a simple diagram that depicts a graph of
objects.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 167

Creating Diagrams with Nodes and Links

Thisisthe graph that you are going to create:

<>

A graphisaset of objects (called nodes) connected together through links. In
IBM® ILOG® Diagram for .NET, creating a graph involves the following classes:

[_The nodes of the graph are instances of any subclass of GraphicObject.
[_Thelinks of the graph are instances of the class Link.

[_The connections between nodes and links are done through the Anchor class.

Creating Nodes

The graphic objects representing the nodes of a graph are created in the usual way. This
example uses Ellipse objects.

The following example shows how to create a node.

// The group argument is the container in which the graph is created.

//

private GraphicObject CreateNode (Group group, string text,
float x, float y)

{

// Create the ellipse object:

//

Ellipse ellipse = new Ellipse(new Rectangle2D(x, y, 80, 40));
ellipse.Text = text;

ellipse.Fill = new So0lidFill (Color.WhiteSmoke) ;

// Add a shape anchor to the ellipse:
//

ShapeAnchor anchor = new ShapeAnchor () ;
ellipse.Anchors.Add (anchor) ;

// Add the ellipse to the group:
//
group.Objects.Add(ellipse) ;

return ellipse;

168 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating a Simple Diagram with Nodes and Links Programmatically

}

"' The group argument is the container in which the graph is created.

T

Private Function CreateNode (ByVal group As Group, ByVal text As String,
ByVal x As Single, ByVal y As Single) As GraphicObject

' Create the ellipse object:

1
Dim ellipse As Ellipse = New Ellipse (New Rectangle2D(x, y, 80, 40))

ellipse.Text = text
ellipse.Fill = New So0lidFill (Color.WhiteSmoke)

' Add a shape anchor to the ellipse:

1

Dim anchor As ShapeAnchor = New ShapeAnchor
ellipse.Anchors.Add (anchor)

' Add the ellipse to the group:

group.Objects.Add (ellipse)
Return ellipse
End Function

Note: A ShapeAnchor has been added to the node. This anchor will be used to connect the
links.

Creating Links
The following example shows how to create alink between two nodes.

private Link CreateLink (Group group, GraphicObject startNode, GraphicObject
endNode)

{

// Create the link:

//
Link link = new Link() ;
link.ShapeType = LinkShapeType.Straight;

// Set the start and end anchors:

//

link.StartAnchor = startNode.Anchors[0] ;
link.EndAnchor = endNode.Anchors[0];

group.Objects.Add (1link) ;

return link;

}

Private Function CreateLink (ByVal group As Group, ByVal startNode As
GraphicObject,
ByVal endNode As GraphicObject) As Link

' Create the link:

Dim link As Link = New Link
link.ShapeType = LinkShapeType.Straight

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 169

Creating Diagrams with Nodes and Links

' Set the start and end anchors:
1
link.StartAnchor = startNode.Anchors (0)
link.EndAnchor = endNode.Anchors(0)
group.Objects.Add (1link)
Return link

End Function

In this example, every node has only one anchor, and al the links that start or end on the
same node are connected to the same anchor. It is also possible to add several anchorsto a
node and to connect each link to a different anchor.

Creating the Graph

Finally, the following example shows how to create the whole graph.

private Group CreateGraph ()

{

// Create the container of the graph:

//

Group group =

// Create the

//

new Group () ;

four nodes:

GraphicObject nodel = CreateNode (group, "Node 1", 30, 90);

GraphicObject node2 CreateNode (group, "Node 2", 180, 20);

GraphicObject node3 CreateNode (group, "Node 3", 180, 160);

GraphicObject node4 CreateNode (group, "Node 4", 330, 90);

// Create the four links:

//

CreateLink (group, nodel, node2);

CreateLink (group, nodel, node3);

CreateLink (group, node2, node4) ;

CreateLink (group, node3, node4) ;

return group;

}
Private Function CreateGraph() As Group

' Create the container of the graph:
1

Dim group As Group = New Group
' Create the four nodes:
1

Dim nodel As GraphicObject = CreateNode (group, "Node 1", 30, 90)
Dim node2 As GraphicObject = CreateNode (group, "Node 2", 180, 20)
Dim node3 As GraphicObject = CreateNode (group, "Node 3", 180, 160)
Dim node4 As GraphicObject = CreateNode (group, "Node 4", 330, 90)
' Create the four links:
1

170 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Introducing Link and Anchor Classes

CreateLink (group, nodel, node2)
Createlink (group, nodel, node3)
CreatelLink (group, node2, node4)
Createlink (group, node3, node4)
Return group

End Function

Introducing Link and Anchor Classes

This section explains the basic principles of the classes that are used to create graphs.
In this section, we will focus on the Link and Anchor classes.
The relationships between nodes, anchors and links are the following:

[Each graphic object owns a collection of anchorsin its Anchors property.

A link can be attached to two anchors through its StartAnchor and EndAnchor
properties.

[Thelinksthat are attached to an anchor can be retrieved through the Links property of
the anchor.

Links

Links are graphic objects that implement the ILink interface. This interface defines the

following properties:

[—HtartAnchor defines the Anchor to which the start of the link is attached. This property
can be null.

_EndAnchor defines the Anchor to which the end of thelink is attached. This property
can be null.

[HtartPoint defines the position of the start point of the link when it is not attached to an
anchor, that is, when StartAnchor isnull.

[EndPoint defines the position of the end point of the link when it is not attached to an
anchor, that is, when EndAnchor is null.

TheLink classisthe only classin the I BM® ILOG® Diagram for .NET library that
implementsthe ILink interface. The Link class has many optionsto control the appearance
of thelink and the text items attached to it.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 171

Creating Diagrams with Nodes and Links

The following illustration shows some samples of Link objects.

ShapeType = Straight

FillEffect = Pipe 1

FillEffact = Neon

BevelBorder = True 1

ShapeType = Crthogonal

ShapaType = Obligue

ShapeType = Free

D

BorderStroke
Curved = True
[
Radius =5
— Tunnel T >
Crossings = Bridga
Text: 4 g
—_— Cut -
End

For more details on how to use and configure Link objects see Link Objects.

Anchors

An anchor determines the exact position of the start and end point of alink. The base class
Anchor isan abstract class. This section describes the predefined subclasses of Anchor.

[_The BoundsAnchor connects alink to afixed position on the bounding rectangle of a
graphic object. The position of the connection point is determined by the Position
property of the anchor, which is an enumeration of type Anchor Position whose possible
values are Top, Bottom, L eft, Right, Center, TopL eft, and so on. The connection point
can be further modified using the Offset property.

172 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Introducing Link and Anchor Classes

BoundsAnchor with
»'| Position = AnchorPosition. Top

BoundsAnchar with
Pasition = AnchorPositon Right

+ | BoundsAnchor with
Y Position = AnchorPasition. Bollom
Offzet = -0.25, 0

[_The ShapeAnchor class connects alink to the outline of the shape of a graphic object.
The connection point depends on the geometry of the last segment of the link: the last
segment is considered to point to the center of the node's shape, and the connection point
isthe intersection between this virtual segment and the outline of the shape. The distance
between the connection point and the shape can be modified using the Distance property.

=
" Shapetnchar with
Distance = 10

Note: The same ShapeAnchor can provide different connection points for different links,
asin the example above.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 173

Creating Diagrams with Nodes and Links

174

[_The PolylineAnchor class connects to a point along a linear graphic object like a
Polyline. The connection point is a point of the polyline that lies between two edges of
the polyline defined by the StartEdge and EndEdge properties. The Position property
specifies the linear position aong the path of the polyline.

FalylineAnchaor with
StarEdge = 1
EndEdge = 2

FolylineAnchar with Position = 0.5

StarEdge =0
EndEdge=3 [~=
Position = 0.2

"~ . | PalylineAnchor with
StartEdge = EndEdge = 2

The PolylineAnchor can be used with any graphic object that implements the
| PolyPoints interface.

Note: Since the Link classimplementsthisinterface, it is possible to connect a link to
another link

You can create your own subclass of Anchor if the predefined anchor classes do not fit your
needs. To do this see Creating a New Class of Anchor.

Specifying Anchors on a Graphic Object

To add an anchor on a graphic object, use the Add method of the collection contained in the
Anchor s property of the graphic object.

Each class of graphic object has aset of default anchors, returned by the GetDefaultAnchors
method of the graphic object. These default anchors are not contained in the Anchors
collection of the graphic object: they are only used by the CreateL inklInteractor and
EditAnchorsInteractor objects to propose the possible anchors (in addition to any anchors
that have been added to the Anchor s collection as explained above). Once the user has
selected one of the default anchors, this anchor will actually be added to the graphic object.

The default anchors mechanism can be disabled by setting the UseDefaultAnchors property
of the graphic object to false. The interactors will not propose any more the default anchors

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Automatic Link Crossing Detection in a Graph

of the graphic object; they will only propose the anchors that have been added to the
Anchor s collection.

Using Automatic Link Crossing Detection in a Graph

IBM® ILOG® Diagram for .NET provides options to automatically detect and display link
crossing in agraph. Link crossing detection is used when you need to graphically show the
points where two different links cross. This feature is often used, for instance, in electrical
schematics diagrams.

The following illustration shows a graph where link crossing detection is enabled.

Link Efn.:ﬂ"lﬂ'q_l'\""'*- e
N ghih
o)
A &1)_0
O—o——0—a3
- &
— g)_o

Enabling Link Crossing Detection

Link crossing detection is controlled by the LinkCrossings property of the GraphicContainer
class. The value of this property is an instance of the class LinkCrossings.

To enable link crossing detection in a graphic container, set the Enabled property of the
LinkCrossings object to LinkCrossingsEnableM ode.Enabled.

Link crossings will then be detected and displayed on all the links contained in the graphic
container. Link crossings concern al the objects that implement the ICrossable interface. In
theIBM ILOG Diagram for .NET library, the only class that implements thisinterface is the
Link class, so only crossings between links are detected.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 175

Creating Diagrams with Nodes and Links

Enabling or Disabling Link Crossing Detection on SubContainers

You will typically enable link crossing detection on the top-level graphic container that
contains your diagram. This will aso enable link crossing detection on al subcontainers.

You can also choose to enable or disable link crossing detection on specific subcontainers by
setting the Enabled property of the Link Crossings object to one of the values of the
LinkCrossingsEnableM ode enumeration. The possible values are:

[LikeParent: Thisvalue meansthat link crossing detection isinherited from the parent
container, that is, it is enabled if the Link Crossings object of one of the ancestors of the
container hasits Enabled property set to Enabled.

[Enabled: Thisvalue means that link crossing detection is enabled for this container,
regardless of the settings on other containers.

[Disabled: Thisvaue means that link crossing detection is disabled for this container,
regardless of the settings on other containers.

The default value for al graphic containersis LikeParent, so if you enable link crossing
detection for the top-level container, it is also enabled automatically for al subcontainers.

Changing the Appearance of Link Crossings

You can choose the way link crossings are displayed in a graphic container by setting the
Style property of the Link Crossings object of the container. The value of this property is an
enumeration ocf type LinkCrossingsStyle, and the possible values are:

[Tunnel: Thisvalue meansthat crossings are drawn as small arcs of circle (seethe picture
below).

[Bridge: Thisvaue meansthat crossings are drawn as two short segments orthogonal to
the link's path on each side of the crossing (see the picture below).

[Cut: Thisvalue means that the path of thelink is cut at the crossing (see the picture
below).

[Mone: Thisvalue means that no special crossings are drawn, that is, the links cross
normally.

[Default: Thisvalue means that the crossing style is inherited from the parent container,
if any. If there is no parent container, the default crossing styleis Tunnel.

176 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Automatic Link Crossing Detection in a Graph

The following illustration shows the possible crossing types.

'y
— Tunnel ik »
—— Bridge 111 *
—_— Cut -

You can also change the size of the link crossings by setting the Size property of the
LinkCrossings object. The default sizeis 10.

Instead of changing the appearance of crossings for all the links in a container, the
appearance can be changed for an individual Link using the CrossingStyle and CrossingSize
properties of the link. Thiswill override the values of the Style and Size properties of the
LinkCrossings object of the graphic container. However, thisisnot generally recommended
because diagrams look nicer if all link crossings have the same appearance and size.

Changing the Orientation of Link Crossings

When there are many link crossingsin adiagram, the display will generally look nicer if all
the crossings have the same orientation. For example, if al the links are made of horizontal
or vertical segments, placing all the crossings on horizontal segmentsis preferable to having
some crossings horizontal and some vertical.

The orientation of link crossingsis controlled by the Orientation property of the
LinkCrossings object of the graphic container. The value of this property is an enumeration
of type LinkCrossingsOrientation, and the possible values are:

[Horizontal: Thisvalue meansthat al crossingswill be placed on horizontal segments (if
the segments are not strictly horizontal or vertical, the closest orientation is used).

[Wertical: Thisvalue meansthat all crossings will be placed on vertical segments (if the
segments are not strictly horizontal or vertical, the closest orientation is used).

[—Any: Thisvalue means that crossings are placed on the first segment on which they are
detected, regardless of its orientation.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 177

Creating Diagrams with Nodes and Links

Creating a New Class of Anchor
In the section Introducing Link and Anchor Classes you have been introduced to the basic
principles of the Anchor class and to its predefined subclasses.

In some cases, the predefined anchors might not fulfill your needs and you may have to
write anew Anchor subclass. This section explains how to do this.

You are going to create a class called Orthogonal Anchor. This custom anchor class can be
used to connect alink to agraphic object such that the link stays vertical regardless of the
position of the other end of the link, as shown in the following illustration.

Maowve me

Thefirst step isto create the subclass of Anchor.
public class OrthogonalAnchor : Anchor

Public Class OrthogonalAnchor
Inherits Anchor

In your custom Anchor class, you will override two methods: NeedsReferencePoint and
GetPoint.

The NeedsReferencePoint method simply returnstrue.

public override bool NeedsReferencePoint ()

{
}

Public Overrides Function NeedsReferencePoint () As Boolean
Return True
End Function

return true;

178 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Creating a New Class of Anchor

This meansthat your custom anchor needs a reference point to compute the connection point
of alink. The reference point isthe "other end" of the link (in the example above, it will be
the center of the "Move me" rectangle). The reference point is used to determine the X
position of the connection point.

The GetPoint method is the place where the anchor computes the connection point.

public override void GetPoint (Point2D referencePoint, out Point2D
connectionPoint,
out Point2D originPoint)
{

// Get the bounds of the owner object.

//

Rectangle2D bounds =

IQueryOutlinePath)Owner) .GetOutlinePath (Transform. Identity) .GetBounds () ;

connectionPoint = new Point2D() ;
originPoint = new Point2D() ;

connectionPoint.X = referencePoint.X;

connectionPoint.Y = bounds.Y;

originPoint.X = connectionPoint.X;

originPoint.Y = bounds.Y + bounds.Height / 2;
}
Public Overrides Sub GetPoint (ByVal referencePoint
As Point2D, _

ByRef connectionPoint As Point2D, _
ByRef originPoint As Point2D)

' Get the bounds of the owner object.

1

Dim bounds As Rectangle2D _

= CType (Owner,

IQueryOutlinePath) .GetOutlinePath (Transform.Identity) .GetBounds ()

connectionPoint = New Point2D

originPoint = New Point2D

connectionPoint.X = referencePoint.X

connectionPoint.Y = bounds.Y

originPoint.X = connectionPoint.X originPoint.Y = (bounds.Y +
(bounds.Height / 2))
End Sub

By using this method, proceed as follows:

1. Retrieve the bounds of the graphic object that owns the anchor (thisisthe wide rectangle
in the example). The owner object is contained in the Owner property.

2. Compute the connection point: its X coordinate is the same of the X coordinate of the
reference point, and its Y coordinate is the top of the bounding rectangle of the owner
object.

3. Computethe origin point: it has the same X coordinate as the connection point, but its Y
coordinate is the vertical center of the owner object. Note that the origin point is
important because it determines the side on which the link is connected (thisis used, in

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 179

Creating Diagrams with Nodes and Links

particular, to compute the shape of orthogonal links). You can think of the origin point as
"where the link pointsto". In this example, the link has to be vertical and must point
somewhere below the connection point.

This example can be found in the Samples/QuickStart/CustomAnchor directory. (The code
of the sampleis slightly more complex because it deals with the cases where the reference
point is not directly above the graphic object.)

180 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Handling Interactions in a Diagram View
(WinForms)

In this section you are going to see how to handle interactionsin a diagram view
(WinForms).

In This Section

Understanding Events Dispatching in a Diagram View (WinForms)
Shows how to handle input events.

Using Predefined I nteraction Tools in a Diagram View
Explains how to use the predefined interaction tools.

Creating a New Interactor in a DiagramView (WinForms)
Shows how to create a subclass of Viewlnteractor through an example.

Understanding Events Dispatching in a Diagram View (WinForms)

This section explains how input events are handled by a diagram view, how they are

dispatched to a diagram and how to handle events in a graphic object. When an input event
isreceived by adiagram view, the event is dispatched to the view interactor or to the graphic
objects according to different routing strategies. When an event is routed to graphic objects

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 181

Handling Interactions in a Diagram View (WinForms)

through the graphic object hierarchy, the handlers that have been set on the hierarchy
elements are notified to perform some actionsin response to this event.

In This Section
From the View to the Graphic Object
Explains how events are handled by the diagram view.
Dispatching Events to Graphic Objects
Explains how events are dispatched to graphic objects.
Sopping the Event Propagation
Explains how to stop event propagation.

Event Capture
Explains how a graphic object can capture events.

From the View to the Graphic Object

When an input event is received by a diagram view, the event is dispatched to the graphic
objects contained in the view graphic container. The graphic object that receives the event
may respond to this event either directly in itsimplementation or via the event handlers set
on the graphic object.

A view dispatches input events according to the following rules:

_If aview interactor is set on the view, the event is dispatched to the interactor and the
event dispatching phase ends.

[Theevent is sent to the graphic object targeted by the input event, that is, the graphic
object that responded to the hit testing. Then, the graphic object notifiesits event
handlers.

Listening to an event is performed by attaching an event handler to the corresponding
GraphicObject event and by implementing the expected behavior in the event handler.

The following example shows how to listen to MouseEnter and Mousel eave events to
implement arollover effect on a graphic object:

public partial class Forml : Form

{

private static Stroke DefaultStroke = new Stroke (Color.Black, 3);
private static Stroke HighlightStroke =
new Stroke (Color.LightSteelBlue,
3,System.Drawing.Drawing2D.DashStyle.Dash) ;
public Forml ()

{

InitializeComponent () ;

DiagramView diagramvViewl = new DiagramView () ;
diagramViewl .Dock = System.Windows.Forms.DockStyle.Fill;

182 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Understanding Events Dispatching in a Diagram View (WinForms)

this.Controls.Add (diagramViewl) ;

// Create the graphic object hierarchy

Group content = new Group () ;

Rect shape = new Rect (new Rectangle2D (30, 60, 110, 60));
shape.Stroke = DefaultStroke;

shape.Name = "shape";

shape.Fill = new SolidFill (Color.Coral) ;
content.Objects.Add (shape) ;

diagramViewl.Content = content;

shape.MouseEnter += new ObjectEventHandler (OnShapeMouseEnter) ;
shape.MouseLeave += new ObjectEventHandler (OnShapeMouselLeave) ;

}

void OnShapeMouseLeave (object sender, ObjectEventArgs e)

{

Shape shape = e.Target as Shape;
if (shape != null)

{
}

shape.Stroke = DefaultStroke;

}

void OnShapeMouseEnter (object sender, ObjectEventArgs e)

{
Shape shape = e.Target as Shape;
if (shape != null)

{
}

shape.Stroke = HighlightStroke;
1
}
Public Class Forml
Inherits Form
Private Shared DefaultStroke As Stroke = New Stroke (Color.Black,
Private Shared HighlightStroke As Stroke = _

New Stroke(Color.LightSteelBlue, _
3, System.Drawing.Drawing2D.DashStyle.Dash)

Public Sub New ()
InitializeComponent
Dim diagramViewl As DiagramView = New DiagramView
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill
Me.Controls.Add (diagramViewl)
Dim content As Group = New Group
Dim shape As Rect = New Rect (New Rectangle2D(30, 60, 110, 60))
shape.Stroke = DefaultStroke
shape.Name = "shape"
shape.Fill = New SolidFill (Color.Coral)
content .Objects.Add (shape)
diagramViewl.Content = content
AddHandler shape.MouseEnter, AddressOf OnShapeMouseEnter
AddHandler shape.MouseLeave, AddressOf OnShapeMouseLeave
End Sub

Sub OnShapeMouselLeave (ByVal sender As Object, ByVal e As ObjectEventArgs)

Dim shape As Shape = TryCast (e.Target, Shape)
If Not (shape Is Nothing) Then
shape.Stroke = DefaultStroke

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

3)

183

Handling Interactions in a Diagram View (WinForms)

184

IBM

shape.Stroke = DefaultStroke
End If
End Sub

Sub OnShapeMouseEnter (ByVal sender As Object, ByVal e As ObjectEventArgs)
Dim shape As Shape = TryCast (e.Target, Shape)
If Not (shape Is Nothing) Then
shape.Stroke = HighlightStroke
End If
End Sub
End Class

Dispatching Events to Graphic Objects

In IBM® ILOG® Diagram for .NET, adiagram is a hierarchical structure similar to atree.
The top-level container isaroot node which contains child nodes that might contain
themselves other children. Thistreeis called graphic object hierarchy. When an event is
dispatched to the graphic object, it goes throughout the hierarchy to reach the target graphic
object.

The event dispatching is divided in two different phases:
[tunneling phase

From the top-level container to the target graphic object (that is, from top to bottom).
[Bbubbling phase

From the target graphic object to the top-level container (that is, from bottom to top).

The following picture shows the route followed by an event during the event dispatching
phase when the user clicks a graphic object contained in a container, itself being a child of a
top-level container:

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

View7

Understanding Events Dispatching in a Diagram View (WinForms)

View Representation Tree Representation

View1.Content ObjectMouseEvantArgs

View1.Content

Container?

+ PreviewMouseClick LD Container1 + MouseClick

=
& PreviewMouseClick |—: ! Container2 + MouseClick
!

PreviewMouseClick L@ Target - MouseClick

aseyd Buisuun
Bubbling Phase

Tunneling Phase

The tunneling phase corresponds to the top-to-bottom routing part. In this phase, the input
event goes down the hierarchy from the top-level container to the target graphic object,
notifying the corresponding event handlers at each level of the hierarchy.

To distinguish between an event in the tunneling phase and in the bubbling phase, the name
of the event sent during the tunneling phase is prefixed by Preview.

Bubbling Phase

The bubbling phase corresponds to the bottom-to-top routing part. In this phase, the input
event goes up the hierarchy from the target graphic object to the top-level container,
notifying the corresponding event handlers at each level of the hierarchy.

Because an event is routed throughout the hierarchy, an event handler must be able to know
the target of the event (for example, the graphic object on which the user clicks). For this
purpose, the event data define the Target property which returns the GraphicObject that
received the event.

Similarly, an event handler must be able to know the current GraphicObject that is notified
when the event travel s throughout the hierarchy (for example, an intermediate container in
the hierarchy that contains the event target). For this purpose, the event data define the
CurrentTarget property which returns the current GraphicObject of the hierarchy that is
being notified of the event.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 185

Handling Interactions in a Diagram View (WinForms)

Notes:

1. There are two exceptions to the event dispatching mechanism described above: the
MouseEnter and Mouseleave events. These events are not dispatched by the standard
route: thereis no tunneling nor bubbling phases. Instead, they are dispatched directly to
the graphic object.

2. Thefollowing example illustrates the tunneling and bubbling phases, tracing the
MouseClick event dispatching throughout a hierarchy of graphic objects.

public partial class Forml : Form

{

public Forml ()

{

InitializeComponent () ;

DiagramView diagramvViewl = new DiagramView () ;
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill;
this.Controls.Add (diagramViewl) ;
// Create the graphic object hierarchy
Group content = new Group () ;
Canvas containerl = new Canvas() ;
containerl.Name = "containerl";
containerl.Size = new Size2D(300, 250);
containerl.Location = new Point2D(5, 5);
containerl.Background = new SolidFill (Color.LightSteelBlue) ;
Canvas container2 = new Canvas/() ;
container2.Name = "container2";
container2.Size = new Size2D (260, 180) ;
container2.Location = new Point2D (10, 10);
container2.Background = new SolidFill (Color.Coral) ;
Rect shape = new Rect (new Rectangle2D(30, 60, 110, 60));
shape.Name = "shape";
shape.Fill = new SolidFill (Color.CadetBlue) ;
container2.0bjects.Add (shape) ;
containerl.Objects.Add (container2) ;
content.Objects.Add (containerl) ;
diagramViewl.Content = content;
// Wire PreviewMouseClick event handlers
containerl.PreviewMouseClick +=

new ObjectMouseEventHandler (OnObjectPreviewMouseClick) ;
container2.PreviewMouseClick +=

new ObjectMouseEventHandler (OnObjectPreviewMouseClick) ;
shape.PreviewMouseClick +=

new ObjectMouseEventHandler (OnObjectPreviewMouseClick) ;
// Wire MouseClick event handlers
containerl.MouseClick +=

new ObjectMouseEventHandler (OnObjectMouseClick) ;
container2.MouseClick +=

new ObjectMouseEventHandler (OnObjectMouseClick) ;
shape.MouseClick +=

new ObjectMouseEventHandler (OnObjectMouseClick) ;

}

void OnObjectMouseClick (object sender, ObjectMouseEventArgs e)

186 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Understanding Events Dispatching in a Diagram View (WinForms)

MessageBox.Show (" [Event target: " +
e.Target .Name + "] [CurrentTarget:" +
e.CurrentTarget .Name + "]", "Bubbling phase");

}

void OnObjectPreviewMouseClick (object sender, ObjectMouseEventArgs e)

{

MessageBox.Show (" [Event target: " +
e.Target .Name + "] [CurrentTarget:" +
e.CurrentTarget .Name + "]", "Tunneling phase") ;

}

Public Class Forml
Inherits Form

Public Sub New ()
InitializeComponent
Dim diagramViewl As DiagramView = New DiagramView
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill
Me.Controls.Add (diagramViewl)
Dim content As Group = New Group
Dim containerl As Canvas = New Canvas
containerl.Name = "containerl"
containerl.Size = New Size2D (300, 250)
containerl.Location = New Point2D(5, 5)
containerl.Background = New SolidFill (Color.LightSteelBlue)
Dim container2 As Canvas = New Canvas
container2.Name = "container2"
container2.Size = New Size2D (260, 180)
container2.Location = New Point2D (10, 10)
container2.Background = New SolidFill (Color.Coral)
Dim shape As Rect = New Rect (New Rectangle2D(30, 60, 110, 60)
shape.Name = "shape"
shape.Fill = New SolidFill (Color.CadetBlue)
container2.0Objects.Add (shape)
containerl.Objects.Add (container2)
content.Objects.Add (containerl)
diagramViewl.Content = content
AddHandler containerl.PreviewMouseClick, AddressOf OnObjectPreviewMouseClick
AddHandler container2.PreviewMouseClick, AddressOf OnObjectPreviewMouseClick
AddHandler shape.PreviewMouseClick, AddressOf OnObjectPreviewMouseClick
AddHandler containerl.MouseClick, AddressOf OnObjectMouseClick
AddHandler container2.MouseClick, AddressOf OnObjectMouseClick
AddHandler shape.MouseClick, AddressOf OnObjectMouseClick
End Sub

Sub OnObjectMouseClick (ByVal sender As Object, _
ByVal e As ObjectMouseEventArgs)

MessageBox.Show (" [Event target: " + _
e.Target.Name + "] [CurrentTarget:" +
e.CurrentTarget .Name + "]", "Bubbling phase")
End Sub

Sub OnObjectPreviewMouseClick (ByVal sender As Object, _
ByVal e As ObjectMouseEventArgs)
MessageBox.Show (" [Event target: " + _
e.Target.Name + "] [CurrentTarget:" + _

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 187

Handling Interactions in a Diagram View (WinForms)

IBM

e.CurrentTarget .Name + "]", "Tunneling phase")
End Sub
End Class

Stopping the Event Propagation

Event handlers are able to stop the current event dispatching. For this purpose, the event data
sent to the event handlers define the Consumed property. When this property is set to true,
the event is marked as handled and the event propagation stops immediately. If an event is
marked as Consumed during the bubbling phase, the bubbling phase stops and the event
dispatching ends. If the event is marked as Consumed during the tunneling phase, the
tunneling phase stops and the event dispatching ends with no bubbling phase. Typicaly,
input events should be marked as Consumed as soon as an event handler has handled the
event to implement the expected behavior. Then, the dispatching is no longer needed.

The following example illustrates how a container consumed the M ouseClick event in the
tunneling phase to change the stroke of the clicked graphic object. The event is marked as
Consumed in the tunneling phase so that the event propagation is reduced to its minimum:
only the top-level container is notified and the bubbling phase is not executed. It isatypical
scenario when you care for performances.

public partial class Forml : Form
{
private static Stroke DefaultStroke = new Stroke (Color.Black, 3);
private static Stroke HighlightStroke = new Stroke(Color.Green, 3,
System.Drawing.Drawing2D.DashStyle.Dash) ;
public Forml ()

{

InitializeComponent () ;

DiagramView diagramViewl = new DiagramView() ;

diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill;

this.Controls.Add (diagramViewl) ;

// Create the graphic object hierarchy

Group content = new Group() ;

Canvas containerl = new Canvas/() ;

containerl.Size = new Size2D(300, 250);

containerl.Location = new Point2D(5, 5);

containerl.Background = new SolidFill (Color.LightSteelBlue) ;

Rect shape = new Rect (new Rectangle2D (30, 60, 110, 60));

shape.Stroke = DefaultStroke;

shape.Fill = new SolidFill (Color.CadetBlue) ;

containerl.Objects.Add (shape) ;

Ellipse ellipse = new Ellipse(new Rectangle2D (100, 130, 90, 70));

ellipse.Fill = new SolidFill (Color.Coral) ;

ellipse.Stroke = DefaultStroke;

containerl.Objects.Add(ellipse) ;

content.Objects.Add (containerl) ;

diagramViewl.Content = content;

containerl.PreviewMouseClick += new
ObjectMouseEventHandler (OnPreviewMouseClick) ;

}

void OnPreviewMouseClick (object sender, ObjectMouseEventArgs e)

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Events Dispatching in a Diagram View (WinForms)

if (e.Target != e.CurrentTarget)
{
Shape s = (Shape)e.Target;
s.Stroke = s.Stroke == DefaultStroke ?

HighlightStroke : DefaultStroke;
e.Consumed = true;

}

Public Class Forml
Inherits Form
Private Shared DefaultStroke As Stroke = New Stroke(Color.Black, 3)
Private Shared HighlightStroke As Stroke = _
New Stroke (Color.Green, 3, System.Drawing.Drawing2D.DashStyle.Dash)

Public Sub New ()
InitializeComponent
Dim diagramViewl As DiagramView = New DiagramView
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill
Me.Controls.Add (diagramvViewl)
Dim content As Group = New Group
Dim containerl As Canvas = New Canvas
containerl.Size = New Size2D (300, 250)
containerl.Location = New Point2D(5, 5)
containerl.Background = New SolidFill (Color.LightSteelBlue)
Dim shape As Rect = New Rect (New Rectangle2D(30, 60, 110, 60)
shape.Stroke = DefaultStroke
shape.Fill = New SolidFill (Color.CadetBlue)
containerl.Objects.Add (shape)
Dim ellipse As Ellipse = New Ellipse (New Rectangle2D (100, 130, 90, 70))
ellipse.Fill = New SolidFill (Color.Coral)
ellipse.Stroke = DefaultStroke
containerl.Objects.Add (ellipse)
content .Objects.Add (containerl)
diagramViewl.Content = content
AddHandler containerl.PreviewMouseClick, AddressOf OnPreviewMouseClick
End Sub

Sub OnPreviewMouseClick (ByVal sender As Object, _
ByVal e As ObjectMouseEventArgs)
If Not (e.Target = e.CurrentTarget) Then
Dim s As Shape = CType(e.Target, Shape)
If s.Stroke = DefaultStroke Then
s.Stroke = HighlightStroke
Else
s.Stroke = DefaultStroke
End If
e.Consumed = True
End If
End Sub
End Class

Event Capture

In some cases, after a specific event has been received, a graphic object may require to
receive all the input events that are coming next, whatever the event target is. Thisis called

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 189

Handling Interactions in a Diagram View (WinForms)

190

event capture. It means that a graphic object that gets the event capture will receive al the
input events received from the view until it releases the capture. When the graphic object
that got the capture has completed its events handling it must release the mouse capture.

A diagram view distinguishes two types of capture: the mouse capture to handle all mouse
events, and the keyboard capture to handle all keyboard events.

To get the mouse capture, a graphic object must call the CaptureM ouse(GraphicObject),
while to release the mouse capture it must call the Rel easeM ouseCapture method. These
methods are in the DiagramView class.

To get the keyboard capture, a graphic object must call the CaptureK ey(GraphicObject)
method, while to release the keyboard capture it must call the ReleaseK eyCapture method.
These methods are in the DiagramView class.

The following example illustrates how to set the key capture. A Rect instance isinitialized
with the key capture so that every character entered using the keyboard appearsin the panel.
The capture ends when the ESC key is pressed.

public partial class Forml : Form
{
Rect buffer;
DiagramView diagramViewl;
public Forml ()
{
InitializeComponent () ;
diagramViewl = new DiagramView() ;
diagramViewl.AutoSizeContent = true;
diagramViewl.AutoSizeContentMode = ResizeMode.Resize;
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill;
diagramViewl.KeepAspectRatio = false;
this.Controls.Add (diagramViewl) ;
// Create the graphic object hierarchy
Group content = new Group () ;
ScrollViewer scviewer = new ScrollViewer () ;
SolidFill whiteFill = new SolidFill (Color.White) ;
whiteFill.Freeze() ;
scviewer.Background = whiteFill;
buffer = new Rect () ;
buffer.Location = new Point2D (0, 0);
buffer.Stroke = null;
buffer.Fill = whiteFill;
buffer.AutoSize = true;
buffer.TextAppearance.VerticalAlignment = VerticalTextAlignment.Top;
buffer.TextAppearance.HorizontalAlignment =
HorizontalTextAlignment .Left;
scviewer.Content = buffer;
scviewer.VerticalScrollBar.MouseUp +=
new ObjectMouseEventHandler (OnScrollBarMouseUp) ;
scviewer.HorizontalScrollBar.MouseUp +=
new ObjectMouseEventHandler (OnScrollBarMouseUp) ;
content.Objects.Add (scviewer) ;
diagramViewl.Content = content;
diagramViewl.CaptureKey (buffer) ;
buffer.KeyDown += new ObjectKeyEventHandler (buffer KeyDown) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding Events Dispatching in a Diagram View (WinForms)

buffer.KeyPress += new ObjectKeyPressEventHandler (buffer KeyPress) ;

}

void OnScrollBarMouseUp (object sender, ObjectMouseEventArgs e)

{
}

void buffer KeyDown (object sender, ObjectKeyEventArgs e)

{

diagramViewl.CaptureKey (buffer) ;

if (e.KeyCode == Keys.Escape)

{
}

e.ReleaseKeyCapture () ;

}

void buffer KeyPress(object sender, ObjectKeyPressEventArgs e)
{
char ¢ = e.KeyChar;
Rect r = (Rect)sender;
StringBuilder buffer = new StringBuilder (r.Text) ;
if (¢ == 13)
buffer.AppendLine ("") ;
else
buffer.Append(c) ;
r.Text = buffer.ToString() ;

}

Public Class Forml
Inherits Form
Private buffer As Rect
Private diagramViewl As DiagramView

Public Sub New /()
InitializeComponent
diagramViewl = New DiagramView
diagramViewl.AutoSizeContent = True
diagramViewl.AutoSizeContentMode = ResizeMode.Resize
diagramViewl.Dock = System.Windows.Forms.DockStyle.Fill
diagramViewl.KeepAspectRatio = False
Me.Controls.Add (diagramViewl)
Dim content As Group = New Group
Dim scviewer As ScrollViewer = New ScrollViewer
Dim whiteFill As SolidFill = New SolidFill (Color.White)
whiteFill.Freeze
scviewer.Background = whiteFill
buffer = New Rect
buffer.Location = New Point2D(0, O0)
buffer.Stroke = Nothing
buffer.Fill = whiteFill
buffer.AutoSize = True
buffer.TextAppearance.VerticalAlignment = VerticalTextAlignment.Top
buffer.TextAppearance.HorizontalAlignment = HorizontalTextAlignment.Left
scviewer.Content = buffer
AddHandler scviewer.VerticalScrollBar.MouseUp, AddressOf OnScrollBarMouseUp
AddHandler scviewer.HorizontalScrollBar.MouseUp, AddressOf
OnScrollBarMouseUp
content.Objects.Add (scviewer)

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 191

Handling Interactions in a Diagram View (WinForms)

diagramViewl.Content = content

diagramViewl.CaptureKey (buffer)

AddHandler buffer.KeyDown, AddressOf buffer KeyDown

AddHandler buffer.KeyPress, AddressOf buffer KeyPress
End Sub

Sub OnScrollBarMouseUp (ByVal sender As Object, ByVal e As
ObjectMouseEventArgs)
diagramViewl.CaptureKey (buffer)
End Sub

Sub buffer KeyDown (ByVal sender As Object, ByVal e As ObjectKeyEventArgs)
If e.KeyCode = Keys.Escape Then
e.ReleaseKeyCapture
End If
End Sub

Sub buffer KeyPress(ByVal sender As Object, ByVal e As
ObjectKeyPressEventArgs)
Dim ¢ As Char = e.KeyChar
Dim r As Rect = CType (sender, Rect)
Dim buffer As StringBuilder = New StringBuilder (r.Text)
If ¢ = 13 Then
buffer.AppendLine ("")
Else
buffer.Append(c)
End If
r.Text = buffer.ToString
End Sub
End Class

Using Predefined Interaction Tools in a Diagram View
Interaction tools make it possible to handle user's input in a diagram view. These interaction
tools are called interactors.
In This Section
Setting an Interactor on a View
Explains the set a view interactor on a diagram view.
Selection Interactor
Describes the SelectInteractor class.

Zoom Interactor
Describes the Zoomlnteractor class.

Rotate Interactor
Describes the Rotatel nteractor class.

Pan Interactor

192 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Interaction Tools in a Diagram View

Describes the Panl nteractor class.
Rectangular Shapes Creation Interactor

Describes the CreateGraphi cObjectI nteractor class.
Polypoints Shape Creation Interactor

Describes the CreatePolyPointslnteractor class.
Link Creation Interactor

Describes the CreateLinkInteractor class.
Anchor Editing Interactor

Describes the EditAnchorsl nteractor class.

Setting an Interactor on a View

Interactors are provided as a set of classes. The base class of all interactorsisthe
Viewlnteractor class which defines the basic facility to handle eventsin aview.

In order to be used, an interactor must be set on aview. When an interactor is set on aview,
all input events coming to the view are forwarded to the interactor. To do so, you use the
Interactor property of the DiagramView class.

The following example shows how to set a selection interactor on aview:

DiagramView view = new DiagramView () ;

ViewInteractor interactor = new SelectInteractor () ;
view.Interactor = interactor;

Dim view As DiagramView = New DiagramView

Dim interactor As ViewInteractor = New SelectInteractor
view.Interactor = interactor

Selection Interactor

The selection interactor is defined by the Selectinteractor class. It allows you to select ,
move, resize, rotate, copy, or reparent graphic objects displayed in a DiagramView. It also
allows you to connect existing links to nodes, as well asto edit the text displayed by a
graphic object.

For details about selecting objects in adiagram view, see Handling Selection in a Diagram.
Select a Graphic Object
There are several waysto select graphic objects depending on what you want to do:

[Single selection: to select only one graphic object, click the object with the left mouse
button.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 193

Handling Interactions in a Diagram View (WinForms)

[Multiple selection on a per-object basis: to select several graphic objects one at atime,
pressthe CTRL or Shift key and click with the left mouse button the graphic objects you
want to select.

[Areaselection: to select al the graphic objects that intersect a given rectangular area,
move the mouse pointer to an empty area of the view, press the left mouse button and
drag the mouse to define the area while keeping the left mouse button pressed. When the
selection areais as expected, rel ease the mouse button.

[Clear the selection: to deselect all the objects current selected, click an empty area of the
view with the left mouse button.

[Deselect an object: to deselect one particular object from the current selection, pressthe
CTRL or Shift modifier and click with the left mouse button the graphic object to
deselect.

When agraphic object is selected, a selection graphic object is displayed on top of the
selected object. The selection graphic object enables the user to perform operations specific
to the selected graphic object, like resize and rotate operations for objects that support it.

See Handling Selection in a Diagram for more information.

Move, Copy, or Reparent a Graphic Object

The selection interactor allows you to move one or several graphic objectsin the view:
[_To move one object: click the graphic object and drag the mouse to a new position.

[_To move several objects: select the objects to move using one of the selection types
described in Select a Graphic Object. Click the selected graphic objects and drag the
mouse to a new position.

Several key modifiers can be used to control the move operation. The table below lists those

modifiers:

Key modifier Description

ALT By default, the selection interactor snaps the mouse pointer to the
view grid if such a grid is active. If you press the ALT key while
performing the operation you disable the snap-to-grid behavior and
this allows you to freely move or resize the selection.

CTRL To copy the selected objects instead of simply moving them, press the
CTRL key during the interaction.

194 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Interaction Tools in a Diagram View

Key modifier Description

SHIFT When moving a graphic object over a panel, the panel is highlighted to
show that dropping the graphic object at this location will place it into
the panel. To disable this behavior, press the SHIFT key during the
interaction.

ESC Whe moving graphic objects, pressing the ESC key will cancel the
interaction.

Connect a Link to a Node

The Selectl nteractor alows you to connect or reconnect exiting links to nodes. To do so,
you must first select the link you want to connect to display the selection handles of the link.
Then, simply drag one of thse link extremities over a node to display the anchors to which
the link can be connected. For details about connecting links or creating links, see Link
Creation Interactor.

Edit the Text of a Graphic Object

By double-clicking a graphic object, the Selectl nteractor displays an editing box in which
you can type anew text. To validate the editing press the ENTER key. To cancel the editing,
press the ESCAPE key.

Configure the Selectinteractor

The Selectl nteractor behavior can be customized by using the SelectionStyle class. A
instance of this class can be retrieved on the view on which the interactor has been set by
using the DiagramView.SelectionStyle property for the Windows® Forms version, and the
DiagramView.SelectionStyle property for the ASPNET version.

The following table lists the properties of the SelectionStyle class that can be used to
configure the Selectl nteractor behavior:

Property Description

CanMove Indicates whether graphic objects can be moved using the
interactor. The default value is true.

CanReparent Indicates whether graphic objects can be reparented using the
interactor. The default value is true.

CanCopy Indicates whether graphic objects can be copied using the
interactor. The default value is true.

CanEditText Indicates whether graphic objects text can be edited using the
interactor. The default value is true.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 195

Handling Interactions in a Diagram View (WinForms)

See Also

See Also

196

Property Description

CanConnect Indicates whether link can be connected or reconnected using the
interactor. The default value is true.

CanRotate Indicates whether graphic objects can be rotated using the
interactor. The default value is true.

CanResize Indicates whether graphic objects can be resized using the
interactor. The default value is true.

MultipleSelection Indicates whether multiple selection is allowed using the
interactor. The default value is true.

RectangleSelection Indicates whether multiple selection is allowed using the interactor
by dragging a rectangle around objects. The default value is true.

InstantEditing Indicates whether interactions are instantaneous. The default
value is true.

SnapToGrid Indicates whether the interactions should take into account the

grid defined on the view to snap graphic objects onto the grid

points. The default value is true.

Handling Selection in a Diagram

Zoom Interactor

Theinteractor used to zoom aview is defined by the Zoomlinteractor class. It enables you to
zoom in or zoom out a particular area of aview:

[—Zoom in: to zoom in an area of aview, drag arectangle corresponding to the areato
zoom and release the mouse button to perform the zoom.

[—Zoom out: to zoom out the view, press the Shift key and drag a rectangle corresponding
to the area into which the current visible area should appear after the zooming-out
operation.

Itis possibleto cancel the current operation pressing the ESC key while dragging the mouse
to define the rectangular areato zoom.

Displaying Diagrams in a Windows Forms Application

Rotate Interactor

The interactor used to rotate aview is defined by the Rotatel nteractor class.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

See Also

See Also

Using Predefined Interaction Tools in a Diagram View

To rotate the view, press the left mouse button and set the angle of the rotation moving the
mouse. The current angle is shown on the reticule that is drawn.

It is possible to cancel the current operation by pressing the ESC key while dragging the
mouse to define the rotation angle.

Displaying Diagramsin a Windows Forms Application

Pan Interactor
The interactor used to pan aview is defined by the Paninteractor class.

To pan aview, press the left mouse button on the view and drag the mouse to display the
new visible area.

It is possible to cancel the current operation by pressing the ESC key while dragging the
mouse to define the new visible area.

Displaying Diagrams in a Windows Forms Application

Rectangular Shapes Creation Interactor

Theinteractor used to create rectangular shapesis defined by the
CreateGraphi cObjectInteractor class.

To create a shape, press the left mouse button and drag the mouse to define the rectangle
corresponding to the size of the graphic object you want to create.
Creating Shapes

To create a shape, the CreateGraphicObjectl nteractor class delegates the shape creation
to a shape factory. This factory determines the type of shape to create and is specified by
means of the Factory property.

The following predefined factories are provided with the CreateGr aphicObjecti nteractor:
[—Rect

[Hllipse

—Arc

[Pie

The following code shows how to configure the interactor to create ellipses:

DiagramView view = new DiagramvView() ;

CreateGraphicObjectInteractor inter = new CreateGraphicObjectInteractor() ;
inter.Factory = CreateGraphicObjectInteractor.EllipseFactory;

view.Interactor = inter;

Dim view As DiagramView = New DiagramView
Dim inter As CreateGraphicObjectInteractor = New CreateGraphicObjectInteractor

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 197

Handling Interactions in a Diagram View (WinForms)

inter.Factory =

view.Interactor = inter

Creating Custom Shapes

CreateGraphicObjectInteractor.EllipseFactory

Custom shape types are supported by implementing the | GraphicObjectFactory interface so
that the Createl nstance method returns an instance of the custom type.

The following code shows the implementation of the default arc factory:

class ArcShapeFactory :

{

IGraphicObjectFactory

public GraphicObject CreatelInstance (IServiceProvider serviceProvider)

{

Arc arc = new Arc();
arc.StartAngle = 90f;
arc.SweepAngle = 270f;

return arc;

}
}

Class ArcShapeFactory
Implements IGraphicObjectFactory

Public Function CreatelInstance (ByVal serviceProvider

Dim arc As Arc
arc.StartAngle

arc.SweepAngle =

As IServiceProvider) As GraphicObject
New Arc
90F
270F

Return arc
End Function
End Class

Customizing the Created Shape

The CreateGraphicObjectlnteractor class defines the ObjectCreated event that enables

event handlers to customize the created shape.

The following code shows how an event handler sets the Text property of every new shapes:

public Forml() {
InitializeComponent () ;
CreateGraphicObjectInteractor inter =
new CreateGraphicObjectInteractor
inter.ObjectCreated +=

0

new GraphicObjectCreatedEventHandler (OnObjectCreated) ;

diagramViewl.Interactor = inter;

}

void OnObjectCreated(object sender, GraphicObjectCreatedEventArgs e) {

e.GraphicObject.Text =

}

Public Sub New ()
InitializeComponent

Dim inter As CreateGraphicObjectInteractor =

"Hello World !";

New CreateGraphicObjectInteractor

AddHandler inter.ObjectCreated, AddressOf OnObjectCreated

diagramViewl.Interactor = inter

End Sub

198 IBM ILOG DIAGRAM FOR .NET 2.0

PROGRAMMING

See Also

Using Predefined Interaction Tools in a Diagram View

Sub OnObjectCreated (ByVal sender As Object, ByVal e As
GraphicObjectCreatedEventArgs)

e.GraphicObject.Text = "Hello World !"
End Sub
Using Predefined Graphic Objects

Polypoints Shape Creation Interactor

Theinteractor used to create polypoints shapes is defined by the CreatePolyPointsl nteractor
class.

Depending on the type of shape, there are several waysto create a polypoints shape:

[_Hreehand shape: press the left mouse button and drag the mouse to define the outline of
the shape. Release the mouse button to end the interaction and create the shape.

[—Point-by-point creation mode: click the left mouse button for each point of the shape.
Double-click to end the interaction and create the shape.
Creating a Polypoints Shape

To create a polypoints shape, the CreatePolyPointsl nteractor class delegates the shape
creation to a shape factory. This factory determines the type of shapeto create and is
specified by means of the Factory property.

The following predefined factories are provided with the CreatePolyPointsl nter actor :
—Curve

[CTlosed Curve

[Polygon

[—Polyline

The following code shows how to configure the interactor to create closed curves:
DiagramView view = new DiagramView () ;

CreatePolyPointsInteractor inter = new CreatePolyPointsInteractor() ;
inter.Factory = CreatePolyPointsInteractor.ClosedCurveFactory;
view.Interactor = inter;

Dim view As DiagramView = New DiagramView

Dim inter As CreatePolyPointsInteractor = New CreatePolyPointsInteractor

inter.Factory = CreatePolyPointsInteractor.ClosedCurveFactory
view.Interactor = inter

Creating a Custom Polypoints Shape

Custom polypoints shape types are supported by implementing the | PolyPoi ntsShapeFactory
interface so that the Createl nstance method returns an instance of the custom type.

The following code shows a basic implementation of afactory that creates polygon:

class PolygonFactory : IPolyPointsShapeFactory

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 199

Handling Interactions in a Diagram View (WinForms)

public IPolyPointsShape CreatelInstance (IServiceProvider serviceProvider)
{

IPolyPointsShape polygon = new Polygon() ;
return polygon;

}

public int MinimumNumberOfPoints

{
}

public int MaximumNumberOfPoints

get { return 2; }

get { return int.MaxValue; }

GraphicObject IGraphicObjectFactory.CreatelInstance (IServiceProvider
serviceProvider)

{

}
}
Class PolygonFactory
Implements IPolyPointsShapeFactory

return Createlnstance (serviceProvider) as GraphicObject;

Public Function CreatelInstance (ByVal serviceProvider As IServiceProvider) As
IPolyPointsShape

Dim polygon As IPolyPointsShape = New Polygon
Return polygon
End Function

Public ReadOnly Property MinimumNumberOfPoints() As Integer
Get

Return 2
End Get
End Property

Public ReadOnly Property MaximumNumberOfPoints() As Integer
Get

Return Integer.MaxValue
End Get
End Property

Function IGraphicObjectFactory.CreatelInstance (ByVal serviceProvider As
IServiceProvider) As GraphicObject

Return TryCast (CreatelInstance (serviceProvider), GraphicObject)
End Function
End Class

Customizing the Created Shape

The CreatePolyPointslnteractor class defines the ObjectCreated event that enables event
handlers to customize the created shape.

200 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

See Also

IBM

Using Predefined Interaction Tools in a Diagram View

The following code shows how an event handler sets the Text property of every new
polypoints shapes:

public Forml () {
InitializeComponent () ;
CreatePolyPointsInteractor inter = new CreatePolyPointsInteractor () ;
inter.ObjectCreated +=
new GraphicObjectCreatedEventHandler (OnObjectCreated) ;
diagramViewl.Interactor = inter;

}

void OnObjectCreated(object sender, GraphicObjectCreatedEventArgs e) {

e.GraphicObject.Text = "Hello World !";

}

Public Sub New ()

InitializeComponent

Dim inter As CreatePolyPointsInteractor = _

New CreatePolyPointsInteractor

AddHandler inter.ObjectCreated, AddressOf OnObjectCreated
diagramViewl.Interactor = inter
End Sub

Sub OnObjectCreated (ByVal sender As Object, _

ByVal e As GraphicObjectCreatedEventArgs)
e.GraphicObject.Text = "Hello World !"
End Sub

Using Predefined Graphic Objects

Link Creation Interactor
The interactor used to create links is defined by the CreateLinklInteractor class.

To create anew link, the user first clicks the start point of the link, then the end point.
Alternatively, the user can press the left mouse button on the start point, drag the mouse,
then release the mouse button on the end point.

New links can be created in an empty area of the diagram view, or they can be connected to
existing graphic objects. To create a connected link, move the mouse cursor over the start
object. The connection points (called anchors) attached to the object are drawn as small
circles. Then, move the mouse cursor over the anchor to which the link must be connected
and press the left mouse button. The same process is repeated for the end object.

Moving or Duplicating Anchors

While connecting alink to agraphic object, it is possible to move an anchor if it isnot at the
desired position. To do this, proceed as follows:

1. pressthe left mouse button over an anchor to connect the link to its start or end anchor,
2. pressthe Shift key and drag the anchor to its new position,
3. release the Shift key.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 201

Handling Interactions in a Diagram View (WinForms)

You can complete the operation by connecting the link normally and releasing the left mouse
button.

Itisalso possible to duplicate the anchor. To do this, follow the same steps required for
moving an anchor and press the CTRL button instead of the Shift button.

Note: Not all types of anchors can be moved: anchors of type BoundsAnchor can be
moved, while anchors of type ShapeAnchor cannot. The interactor displays a tooltip to
indicateif it is possible to move and/or duplicate an anchor.

Creating Custom Link Type

To create alink object, the Createl inkl nteractor class delegates the shape creation to a
link factory. This factory determines the type of link to create and is specified by means of
the LinkFactory property. If no factory has been set, which is the case by default, the
CreateLinkInteractor class creates new instances of the Link class.

Thelink factory is an implementation of the | GraphicObjectFactory interface so that the
Createl nstance method returns an instance of the custom type.

The following code shows a basic implementation of afactory that creates an instance of a
custom link class called MyL ink:

public partial class Forml : Form

{

public Forml ()
InitializeComponent () ;
CreateLinkInteractor inter = new CreateLinkInteractor () ;
inter.LinkFactory = new MyLinkFactory() ;
diagramViewl.Interactor = inter;

public class MyLinkFactory : IGraphicObjectFactory

{

public GraphicObject CreatelInstance (IServiceProvider serviceProvider)
{

return new MyLink () ;
}

Public Class Forml
Inherits Form

Public Sub New ()
InitializeComponent
Dim inter As CreatelLinkInteractor = New CreateLinkInteractor
inter.LinkFactory = New MyLinkFactory
diagramViewl.Interactor = inter
End Sub
End Class

202 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Interaction Tools in a Diagram View

Public Class MyLinkFactory
Implements ILinkFactory

Public Function CreateInstance(_
ByVal serviceProvider As IServiceProvider) As ILOG.Diagrammer.ILink
Return New MyLink
End Function

Function IGraphicObjectFactory.CreateInstance(_
ByVal serviceProvider As IServiceProvider) As
ILOG.Diagrammer.GraphicObject
Return TryCast (CreatelInstance (serviceProvider), GraphicObject)
End Function
End Class

Customizing the Created Shape

The Createl inklnteractor class defines the ObjectCreated event that enables event
handlers to customize the created shape.

The following code shows how an event handler sets the ShapeType and CrossingStyle
properties of every new link:

public partial class Forml : Form

{

public Forml ()
{
InitializeComponent () ;
diagramViewl.Content = new Group() ;
diagramViewl.Content.LinkCrossings.Enabled =
LinkCrossingsEnableMode.Enabled;
CreateLinkInteractor inter = new CreateLinkInteractor () ;
diagramViewl.Interactor = inter;
inter.ObjectCreated +=
new GraphicObjectCreatedEventHandler (OnObjectCreated) ;
1

void OnObjectCreated (object sender, GraphicObjectCreatedEventArgs e)
{

Link link = e.GraphicObject as Link;

link.ShapeType = LinkShapeType.Orthogonal;

link.CrossingStyle = LinkCrossingsStyle.Bridge;

}

Public Class Forml
Inherits Form

Public Sub New()
InitializeComponent
diagramViewl.Content = New Group
diagramViewl.Content.LinkCrossings.Enabled = LinkCrossingsEnableMode.Enabled
Dim inter As CreateLinkInteractor = New CreatelLinkInteractor
diagramViewl.Interactor = inter
AddHandler inter.ObjectCreated, AddressOf OnObjectCreated

End Sub

Sub OnObjectCreated(ByVal sender As Object, ByVal e As
GraphicObjectCreatedEventArgs)

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 203

Handling Interactions in a Diagram View (WinForms)

Dim link As Link = TryCast (e.GraphicObject, Link)
link.ShapeType = LinkShapeType.Orthogonal
link.CrossingStyle = LinkCrossingsStyle.Bridge
End Sub
End Class

See Also Link Objects
Introducing Link and Anchor Classes

Creating a Smple Diagram with Nodes and Links Programmatically

Anchor Editing Interactor

Theinteractor used to modify the anchors of graphic objectsis defined by the
EditAnchorsInteractor class. The anchor editing interactor allows you to add, remove, move
and duplicate anchors on a graphic object.

To modify the anchors of a graphic object, move the mouse cursor over the object. The
existing anchors of the object are drawn as small red circles, asin the link creation interactor.

To add a new anchor, move the mouse cursor over an area where no anchor exists, pressthe
CTRL key and press the left mouse button while holding down the CTRL key. Thiswill add
anew BoundsAnchor at the desired location.

To remove an anchor, move the mouse cursor over that anchor, press the CTRL key, and
press the left mouse button while holding down the CTRL key.

To move an anchor, move the mouse cursor over that anchor, pressthe left mouse button and
drag the anchor to its new position.

To duplicate an anchor, move the mouse cursor over that anchor, press the CTRL key, press
the left mouse button and drag the duplicated anchor to its new position while holding down
the CTRL key.

Theinteractor displays atooltip that explains the possible actions at any given time.

Creating a New Interactor in a DiagramView (WinForms)
IBM® ILOG® Diagram for .NET enables you to define interaction tools on a diagram view
to provide arich user experience by means of interactors.

An interactor makesit possible to handle user'sinput in a DiagramView. When an interactor
isset on aview, all input events received by the view are forwarded to the interactor which
will then handle the events to accomplish its task.

This section explains how to subclass the ViewlInteractor class to create a new interactor
through a step-by-step example.

204 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating a New Interactor in a DiagramView (WinForms)

Requirements

When you write a new interactor, the first step is to define what the interactor should do
when it is set on aview.

The example shows a basic interactor that creates circle objects when the user presses the

left mouse button and drags the mouse.

The reguirements to implement thisinteraction are:

[_Tircle objects are instances of the Ellipse class.

[To define the circle position and size, the user presses the left mouse button on the view
to define the circle center and drags the mouse to define the circle radius.

[_The user must be able to cancel the operation by pressing the ESC key.
[_There must be a graphical feedback of the current operation.
[_The feedback rendering must be customizable (like the line width or the line color).

IBM

Creating the Interactor

To handle input eventsin aview, you have to create an interactor class. The base class for
interactorsis the Viewl nteractor class which defines the basic functionalities and services
to handle input eventsin a DiagramView.

In order to customize the rendering of the interaction feedback, the interactor defines the
GhostStroke property as an instance of the Stroke class. The Stroke class encapsul ates all
the graphical attributes that define the ghost appearance.

The following example shows the class definition as well as the GhostStroke property.

public class CircleInteractor : ViewInteractor
{
// the interaction starting point
Point2D _startPt = Point2D.Empty;
// the circle radius
float _radius;
// the ghost stroke
private Stroke _stroke = new Stroke(Color.Black, 1, DashStyle.Dot) ;

public CirclelInteractor () : this (MouseButtons.Left)

{
}

public CirclelInteractor (MouseButtons button) : base (button)

{
}

public Stroke GhostStroke

{
get {
return _stroke;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 205

Handling Interactions in a Diagram View (WinForms)

}
set {
_stroke = value;
1
}

-

Public Class CircleInteractor
Inherits ViewInteractor
' the interaction starting point
Private _startPt As Point2D = Point2D.Empty
' the circle radius
Private _radius As Single
' the ghost stroke
Private _stroke As Stroke = New Stroke (Color.Black, 1, DashStyle.Dot)

Public Sub New()
MyClass.New (MouseButtons.Left)
End Sub

Public Sub New(ByVal button As MouseButtons)
MyBase .New (button)
End Sub

Public Property GhostStroke () As Stroke
Get
Return _stroke
End Get
Set (ByVal value As Stroke)
_stroke = value
End Set
End Property

End Class

Handling Input Events in a ViewlInteractor Subclass

A view interactor consists of implementing a behavior in response to input events that occur
in aview. When a user input event occursin the view, the current view interactor is notified
of the event so that it performs the appropriate action.

Itispossible to handle input eventsin aViewlnteractor subclass by overriding one of the
following methods:

[®OnMouseDown(MouseEventArgs)

[OnMouseM ove(M ouseEventArgs)

[®OnMouseUp(M ouseEventArgs)

[®OnMouseClick(MouseEventArgs)

[®nMouseDoubleClick(MouseEventArgs)
[OnMouseEnter(EventArgs)

206 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating a New Interactor in a DiagramView (WinForms)

[OnMousel eave(EventArgs)

[OnMouseWheel (M ouseEventArgs)
[OnKeyDown(KeyEventArgs)

[OnKeyUp(KeyEventArgs)

[OnKeyPress(KeyPressEventArgs)

In this example, to implement the behavior of the interactor as defined by the requirements,
the following actions need to be performed:

[Memorize the location of the pointer when the mouse button is pressed.

[_Compute the circle radius when the mouse is moved while the mouse button is still
pressed.

[Create the circle and add it to the view content when the mouse button is released.
[Cancel the current interaction when the ESC key is pressed.

Therefore, the interactor must handle the MouseDown, MouseMove, MouseUp and
KeyDown events.

The following example shows the implementation of the input events handlers :

protected override void OnMouseDown (MouseEventArgs e)

{

if (e.Button == Buttons)

_startPt = new Point2D(e.X, e.Y);
StartInteraction() ;

}

base.OnMouseDown (e) ;

}

protected override void OnMouseMove (MouseEventArgs e)
if (InOperation)
Rectangle bounds = GetGhostBounds () ;
Point2D currentPt = new Point2D(e.X, e.Y);
_radius = GetDistance(_startPt, currentPt);

}

base.OnMouseMove (e) ;

}

protected override void OnMouseUp (MouseEventArgs e)

{
if (InOperation)
{
if (_radius > 3)
DolIt () ;
StopInteraction (true) ;

}

base.OnMouseUp (e) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 207

Handling Interactions in a Diagram View (WinForms)

}

protected override void OnKeyDown (KeyEventArgs e)

{

if (e.KeyCode == Keys.Escape)

StopInteraction (false) ;

}

base.OnKeyDown (e) ;
}
Protected Overloads Overrides Sub OnMouseDown (ByVal e As MouseEventArgs)
If e.Button = Buttons Then
_startPt = New Point2D(e.X, e.Y)
StartInteraction
End If
MyBase .OnMouseDown (e)
End Sub

Protected Overloads Overrides Sub OnMouseMove (ByVal e As MouseEventArgs)

If InOperation Then
Dim bounds As Rectangle = GetGhostBounds
Dim currentPt As Point2D = New Point2D(e.X, e.Y)
radius = GetDistance(startPt, currentPt)

End If

MyBase .OnMouseMove (e)

End Sub

Protected Overloads Overrides Sub OnMouseUp (ByVal e As MouseEventArgs)
If InOperation Then
If radius > 3 Then
Dolt
End If
StopInteraction (True)
End If
MyBase .OnMouseUp (e)
End Sub

Protected Overloads Overrides Sub OnKeyDown (ByVal e As KeyEventArgs)
If e.KeyCode = Keys.Escape Then
StopInteraction(False)
End If
MyBase.OnKeyDown (e)
End Sub

Visual Feedback During the Interaction

An additional requirement is the visual feedback of the interaction while the user drags the
mouse to define the circle radius. Such feedback is called ghost drawing in the

IBM ILOG Diagram for .NET framework and is natively supported by the Viewlnteractor
API by means of the DrawGhost(DrawingContext) method.

The DrawGhost(DrawingContext) method is called when the view is redrawn so that the
interactor has avisual feedback on the view. The default implementation does nothing and
the subclasses are free to implement it.

208 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating a New Interactor in a DiagramView (WinForms)

In this example, theinteractor draws acircle to illustrate the current circle geometry defined
by the current values of the center and radius.

The following example shows the implementation of the DrawGhost(DrawingContext)
method:

protected override void DrawGhost (DrawingContext context)

{
if (InOperation)
{
Graphics g = context.Graphics;
Rectangle bounds = GetGhostGeometry () ;
using (Pen pen = _stroke.GetPen (
new Rectangle2D (bounds.X, bounds.Y,
bounds.Width, bounds.Height),
View.Transform))

{

g.DrawEllipse (pen, bounds) ;

}
1
else
{
base.DrawGhost (context) ;
1
1

Protected Overloads Overrides Sub DrawGhost (ByVal context As DrawingContext)
If InOperation Then
Dim g As Graphics = context.Graphics
Dim bounds As Rectangle = GetGhostGeometry
' Using
Dim pen As Pen = _stroke.GetPen(_
New Rectangle2D(bounds.X, bounds.Y, _
bounds.Width, bounds.Height), _
View.Transform)
Try
g.DrawEllipse (pen, bounds)
Finally
CType (pen, IDisposable) .Dispose ()
End Try
Else
MyBase .DrawGhost (context)
End If
End Sub

As mentioned above, the DrawGhost method is called when the view isinvalidated.
However, , it isthe responsibility of the interactor to invalidate the view area corresponding
to the ghost bounds.

Therefore, the code of the input event handlers should be modified so that the view is
invalidated when the mouse is pressed or dragged to draw the ghost, and when the mouse is
released to erase the ghost.

The following example shows the complete code of the interactor:

using System;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 209

Handling Interactions in a Diagram View (WinForms)

210

IBM

using
using
using
using
using
using

System.Windows.Forms;
System.Drawing;
System.Drawing.Drawing2D;
ILOG.Diagrammer;
ILOG.Diagrammer.Graphic;
ILOG.Diagrammer.Windows.Forms;

namespace CustomInteractor

{

public class CircleInteractor : ViewInteractor

{

Point2D _startPt = Point2D.Empty;
float _radius;
Stroke _stroke = new Stroke (Color.Black, 1, DashStyle.Dot) ;

public CirclelInteractor ()

{
}

this (MouseButtons.Left)

public CircleInteractor (MouseButtons button)

{
}

base (button)

public Stroke GhostStroke

{

get

{

return _stroke;

set

{

}
}

_stroke = value;

protected override void OnMouseDown (MouseEventArgs e)

{

if (e.Button == Buttons)

{

}

_startPt = new Point2D(e.X, e.Y);
StartInteraction() ;

base.OnMouseDown (e) ;

}

protected override void OnMouseMove (MouseEventArgs e)

{

if

{

(InOperation)

Rectangle bounds = GetGhostBounds () ;
Point2D currentPt = new Point2D(e.X, e.Y);
_radius = GetDistance(_startPt, currentPt);
if (bounds.IsEmpty)

bounds = GetGhostBounds () ;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Creating a New Interactor in a DiagramView (WinForms)

else
bounds = Rectangle.Union (bounds, GetGhostBounds()) ;
InvalidateView (bounds) ;

}

base.OnMouseMove (e) ;

}

protected override void OnMouseUp (MouseEventArgs e)

{

if (InOperation)

{
if (_radius > 3)
DoIt () ;
Rectangle bounds = GetGhostBounds () ;
StopInteraction(true) ;
InvalidateView (bounds) ;

}

base.OnMouseUp (e) ;

}

protected override void OnKeyDown (KeyEventArgs e)

{

if (e.KeyCode == Keys.Escape)

{
Rectangle bounds = GetGhostBounds () ;
View.Invalidate (bounds) ;
StopInteraction(false) ;

1

base.OnKeyDown (e) ;

}

protected Rectangle GetGhostGeometry ()

{

Rectangle bounds =

new Rectangle ((int)_startPt.X - (int)Math.Floor(_radius),
(int)_startPt.Y - (int)Math.Floor (_radius),
(int) (2 * _radius + 1),
(int) (2 * _radius + 1));

return bounds;

}

protected Rectangle GetGhostBounds ()

{

Rectangle bounds = GetGhostGeometry () ;
using (Pen pen = _stroke.GetPenForBounds (View.Transform))

{
float width = pen.Width;
bounds.Inflate((int)width, (int)width) ;
bounds.Offset ((int) (-width / 2), (int) (-width / 2));

}

return bounds;

}

protected override void DrawGhost (DrawingContext context)

{

if (InOperation)

{

Graphics g = context.Graphics;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

211

Handling Interactions in a Diagram View (WinForms)

Rectangle bounds = GetGhostGeometry () ;
using (Pen pen = _stroke.GetPen (
new Rectangle2D (bounds.X, bounds.Y,
bounds.Width, bounds.Height),
View.Transform))
{
g.DrawEllipse (pen, bounds) ;
1
1
else
{
base.DrawGhost (context) ;
}
}

protected override void StopInteraction(bool validate)
{

_startPt = Point2D.Empty;

_radius = 0;

base.StopInteraction(validate) ;

}

protected virtual void DoIt ()

{
Rectangle rect = GetGhostGeometry () ;
Ellipse ellipse = new Ellipse();
Transform t = View.Content.Transform;
t = t * View.Transform;
t = t.Inverse();

// Computes the points of the rect in the container coordinates
Point2D[] points = GetPointsFromRectangle (rect) ;
t.TransformPoints (points) ;
// Sets the object's size
if (rect.wWwidth != 0f || rect.Height != 0f)
{

float w = GetDistance (points[0], points[1]);

float h = GetDistance(points[1], points[2]);

ellipse.Size = new Size2D(w, h);

// Sets the object's location
Point2D center = t.TransformPoint (_startPt);
ellipse.Move (center, ContentAlignment.MiddleCenter) ;
GraphicObject[] obj = new GraphicObject[] { ellipse };
IManageChildren container = View.Content as IManageChildren;
if (container != null)
container.AddChildren (obj) ;
if (SelectOnCreate) ({
View.Selection.SetSelectedObjects (obj) ;
1
}

static private float GetDistance (Point2D pl, Point2D p2)

{
double a = (p2.X - pl.X);
double b = (p2.Y - pl.Y);
return (float)Math.Sgrt(a * a + b * b);

}

212 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

static pub
{
return n
new Po
new Po
new Po
new Po

}

}
}

Imports Syst
Imports Syst
Imports Syst
Imports Syst

Creating a New Interactor in a DiagramView (WinForms)

lic Point2D[] GetPointsFromRectangle (Rectangle2D rect)

ew Point2D[] {

int2D(rect.Left, rect.Top),
int2D(rect.Right, rect.Top),
int2D(rect.Right, rect.Bottom),
int2D(rect.Left, rect.Bottom) };

em
em.Windows . Forms
em.Drawing
em.Drawing.Drawing2D

Imports ILOG.Diagrammer
Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer.Windows.Forms

Public Class
Inherits
Private
Private
Private
Public S

MyC1l
End Sub

Public S
MyBa
End Sub

Public P
Get

End
Set (

End

CircleInteractor
ViewInteractor
_startPt As Point2D = Point2D.Empty
_radius As Single
_stroke As Stroke = New Stroke (Color.Black, 1, DashStyle.Dot)
ub New ()
ass.New (MouseButtons.Left)

ub New (ByVal button As MouseButtons)
se.New (button)

roperty GhostStroke() As Stroke

Return _stroke

Get

ByVal value As Stroke)
_stroke = value

Set

End Property

Protecte
If e

End

d Overloads Overrides Sub OnMouseDown (ByVal e As MouseEventArgs)
.Button = Buttons Then

_startPt = New Point2D(e.X, e.Y)

StartInteraction/()

If

MyBase .OnMouseDown (e)

End Sub

Protecte
If I

invalidate.

IBM ILOG D

d Overloads Overrides Sub OnMouseMove (ByVal e As MouseEventArgs)
nOperation Then
' get the old bounds. Needed to compute the view area to

Dim bounds As Rectangle = GetGhostBounds ()

Dim currentPt As Point2D = New Point2D(e.X, e.Y)
_radius = GetDistance(startPt, currentPt)

' compute the area to invalidate.

IAGRAM FOR .NET 2.0 — PROGRAMMING 213

Handling Interactions in a Diagram View (WinForms)

If bounds.IsEmpty Then
bounds = GetGhostBounds ()
Else
bounds = Rectangle.Union (bounds, GetGhostBounds)
End If
' Invalidate the view.
InvalidateView (bounds)
End If
MyBase .OnMouseMove (e)
End Sub

Protected Overloads Overrides Sub OnMouseUp (ByVal e As MouseEventArgs)
If InOperation Then
If radius > 3 Then
DoIt ()
End If
Dim bounds As Rectangle = GetGhostBounds ()
StopInteraction (True)
InvalidateView (bounds)
End If
MyBase .OnMouseUp (e)
End Sub

Protected Overloads Overrides Sub OnKeyDown (ByVal e As KeyEventArgs)
' 1f the user press the Escape key, cancel the interaction.
If e.KeyCode = Keys.Escape Then
Dim bounds As Rectangle = GetGhostBounds ()
View.Invalidate (bounds)
StopInteraction(False)
End If
MyBase .OnKeyDown (e)
End Sub

Protected Function GetGhostGeometry () As Rectangle
Dim bounds As Rectangle = _
New Rectangle (CType (_startPt.X, Integer) - _
CType (Math.Floor (_radius), Integer),
CType (_startPt.Y, Integer) - _
CType (Math.Floor (_radius), Integer),
CType ((2 * _radius + 1), Integer),
CType ((2 * _radius + 1), Integer))
Return bounds
End Function

Protected Function GetGhostBounds () As Rectangle
Dim bounds As Rectangle = GetGhostGeometry ()
' expand the geometry bounds by the stroke width.
Dim pen As Pen = _stroke.GetPenForBounds (View.Transform)
Try
Dim width As Single = pen.Width
bounds.Inflate (CType (width, Integer), CType(width, Integer))
bounds.Offset (CType ((-width / 2), Integer), CType((-width / 2),
Integer))
Finally
CType (pen, IDisposable) .Dispose ()
End Try
Return bounds
End Function

214 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating a New Interactor in a DiagramView (WinForms)

Protected Overloads Overrides Sub DrawGhost (ByVal context As
DrawingContext)
If InOperation Then
Dim g As Graphics = context.Graphics
Dim bounds As Rectangle = GetGhostGeometry ()

' Using
Dim pen As Pen = _stroke.GetPen (New Rectangle2D (bounds.X, bounds.Y,
bounds.Width, _
bounds.Height) ,
View.Transform)
Try
g.DrawEllipse (pen, bounds)
Finally
CType (pen, IDisposable) .Dispose ()
End Try
Else
MyBase .DrawGhost (context)
End If
End Sub
C
Protected Overloads Overrides Sub StopInteraction (ByVal validate As
Boolean)

' reset fields to default values

_startPt = Point2D.Empty

_radius = 0

MyBase.StopInteraction(validate)
End Sub

Protected Overridable Sub DoIt ()
Dim rect As Rectangle = GetGhostGeometry ()
Dim ellipse As Ellipse = New Ellipse
Dim t As Transform = View.Content.Transform
t = t * View.Transform
t = t.Inverse

' Computes the points of the rect in the container coordinates

Dim points As Point2D() = GetPointsFromRectangle (rect)

t.TransformPoints (points)

' Sets the object's size

If Not (rect.Width = 0.0F) OrElse Not (rect.Height =
Dim w As Single = GetDistance (points(0), points (1l
Dim h As Single = GetDistance(points(1l), points(2
ellipse.Size = New Size2D(w, h)

End If

' Sets the object's location

Dim center As Point2D = t.TransformPoint (_startPt)

ellipse.Move (center, ContentAlignment.MiddleCenter)

)

0.0F) Then
)
))

Dim obj As GraphicObject() = New GraphicObject () {ellipse}
Dim container As IManageChildren = CType (View.Content, IManageChildren)
If Not (container Is Nothing) Then
container.AddChildren (obj)
End If
If SelectOnCreate Then
View.Selection.SetSelectedObjects (obj)
End If

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 215

Handling Interactions in a Diagram View (WinForms)

End Sub

Private Shared Function GetDistance (ByVal pl As Point2D, ByVal p2 As
Point2D) As Single
Dim a As Double = (p2.X - pl.X)
Dim b As Double = (p2.Y - pl.Y)
Return CType (Math.Sgrt(a * a + b * b), Single)
End Function

Public Shared Function GetPointsFromRectangle (ByVal rect As Rectangle2D) As
Point2D ()
Return New Point2D() {New Point2D(rect.Left, rect.Top), _
New Point2D(rect.Right, rect.Top), _
New Point2D(rect.Right, rect.Bottom),
New Point2D(rect.Left, rect.Bottom)}
End Function

End Class

216 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Handling Selection in a Diagram

Selecting a graphic object in a diagram can be useful to:
[differentiate this object from non-selected objects by changing its appearance,

[inhteract with this object by adding interactive decorations.

IBM® ILOG® Diagram for .NET provides several classes that helps you manage the
selection in adiagram view. Most of these classes are shared by the WinForms and

ASPNET version of the diagram view.
In This Section

Managing Selected Objects
Explains how to add or remove objects to or from the selection using the

SelectionService class.
Listening to Selection Events
Explains how to listen to selection events.

Using Predefined Selection Graphic Objects

Lists the predefined selection graphic objects.
Syling Selection Graphic Objects

Explains how to change the rendering of selection graphic objects.
Creating Custom Selection Graphic Objects

.NET 2.0 — PROGRAMMING 217

IBM ILOG DIAGRAM FOR

Handling Selection in a Diagram

Explains how to create custom selection graphic objects.

Managing Selected Objects

IBM® ILOG® Diagram for .NET provides an API to manage the selection of graphic
objectsin adiagram view. This APl is mainly composed by the SelectionService class,
which contains methods to access the selected objects as well as methods to add or remove
objectsto or from the selection.

In addition to the API, built-in interactors are provided to manage the selection by
interacting directly in the DiagramView rather than using the API. For more information on
how to use this interactor, see Using Predefined Interaction Toolsin a Diagram View.

The objects that are selected in adiagram view can be accessed through the Selection
property for the WinForms version and the Selection property for the ASPNET® version.
The type of this property is SelectionService.

The following example shows how to create a WinForms DiagramView with afew objects
and how to select them:

public class MyForm : Form
{

public MyForm()

{

// Creates a DiagramView and dock it in the form
DiagramView view = new DiagramView() ;

view.Dock = System.Windows.Forms.DockStyle.Fill;
Controls.Add (view) ;

// Fills the view content with a Rect and an Ellipse
Group g = new Group () ;

Rect r = new Rect (10, 10, 100, 100);

Ellipse e = new Ellipse (150, 50, 100, 100);
g.Objects.Add(r) ;

g.Objects.Add (e) ;

view.Content = g;

// Selects the Rect object
view.Selection.AddSelectedObject (¥) ;
1
1
Public Class MyForm
Inherits Form

Public Sub New ()
MyBase .New

' Creates a DiagramView and dock it in the form
Dim view As DiagramView = New DiagramView
view.Dock = System.Windows.Forms.DockStyle.Fill
Controls.Add (view)

218 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Listening to Selection Events

' Fills the view content with a Rect and an Ellipse

Dim g As Group = New Group

Dim r As Rect = New Rect (10, 10, 100, 100)

Dim e As Ellipse = New Ellipse (150, 50, 100, 100)
g.Objects.Add(r)

g.Objects.Add (e)

view.Content = g

' Selects the Rect object
view.Selection.AddSelectedObject (r)

End Sub
End Class

Notes:
1. If you change the whole selection, it is better to use the SetSel ectedObjects method for

performance reasons.
2. You can set the Selection property to share the selection between different diagram

views,

The SelectionSer vice has the notion of primary selection. When the sel ection contains many
graphic objects, the primary selection can be used as the reference for commands that work
on the selected objects and that need a reference object. For example, when aligning several
objects, the objects are aligned with the primary selection. The primary selection can be get
and set using the PrimarySelection property. The primary selection is automatically
managed by the selection service, which meansthat there is always a primary selection

when the selection is not empty.

Listening to Selection Events

Each time the selection changesin adiagram view, an event israised so that listeners can be
notified of the change.

SelectionChanged is the event raised for the WinForms diagram view, SelectionChanged is
the event raised for the ASPNET® diagram view. The event argument carried with the event
contains information about the nature of the change that occurred in the selection.

The following example shows how to listen to selection eventsin a WinForms
DiagramView:

public class MyForm : Form

{

public MyForm()

{

// Creates a DiagramView and dock it in the form
DiagramView view = new DiagramView() ;
view.Dock = System.Windows.Forms.DockStyle.Fill;

Controls.Add (view) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 219

Handling Selection in a Diagram

// Fills the view content with a Rect and an Ellipse
Group g = new Group () ;
Rect r = new Rect (10, 10, 100, 100);
Ellipse e = new Ellipse (150, 50, 100, 100);
g.Objects.Add(r) ;
g.Objects.Add(e) ;
view.Content = g;
// Listens to selection changed events
view.SelectionChanged +=

new SelectionChangedEventHandler (SelectionChanged) ;
// Selects the Rect object
view.Selection.AddSelectedObject (r) ;

}

void SelectionChanged (object sender, SelectionChangedEventArgs e)

{

switch (e.Action)
{
case ILOG.Diagrammer.SelectionAction.Add:
Console.WriteLine ("Objects added to selection !");
break;
case ILOG.Diagrammer.SelectionAction.Remove:
Console.WriteLine ("Objects removed from selection !");
break;
case ILOG.Diagrammer.SelectionAction.Primary:
Console.WriteLine ("Primary selection changed !");
break;
case ILOG.Diagrammer.SelectionAction.Reset:
Console.WriteLine ("Selection Reset !");
break;

}
Public Class MyForm
Inherits Form

Public Sub New ()
MyBase .New

' Creates a DiagramView and dock it in the form
Dim view As DiagramView = New DiagramView
view.Dock = System.Windows.Forms.DockStyle.Fill
Controls.Add (view)

' Fills the view content with a Rect and an Ellipse
Dim g As Group = New Group

Dim r As Rect = New Rect (10, 10, 100, 100)

Dim e As Ellipse = New Ellipse (150, 50, 100, 100)
g.Objects.Add(r)

g.Objects.Add (e)
view.Content = g

' Listens to selection changed events
AddHandler view.SelectionChanged, AddressOf Me.SelectionChanged

' Selects the Rect object

220 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Listening to Selection Events

view.Selection.AddSelectedObject (r)
End Sub

Private Sub SelectionChanged(ByVal sender As Object, _
ByVal e As SelectionChangedEventArgs)
Select Case (e.Action)
Case ILOG.Diagrammer.SelectionAction.Add
Console.WriteLine ("Objects added to selection !")
Case ILOG.Diagrammer.SelectionAction.Remove
Console.WriteLine ("Objects removed from selection !")
Case ILOG.Diagrammer.SelectionAction.Primary
Console.WriteLine ("Primary selection changed !")
Case ILOG.Diagrammer.SelectionAction.Reset
Console.WriteLine ("Selection Reset !")
End Select
End Sub

End Class

The SelectionGraphic Class

A selection graphic object is a graphic object that is drawn on top of the selected object it
refersto. The base class for selection graphic object is the SelectionGraphic class.

Selection graphic objects are managed by the DiagramView: They are created, displayed,
and disposed by the DiagramView.

Example of Selection Graphic Object

The following illustration shows a selected Ellipse with its associated selection graphic
object:

Ellipse

Selection Graphic Object

Border ——p Selection Handles

The selection graphic displays a border that can be used to move the selected object and the
selection handles that allow you to resize the selected object.

The following example shows how to create and select an Ellipsein aDiagramView:

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 221

Handling Selection in a Diagram

using System.Windows.Forms;
using ILOG.Diagrammer.Windows.Forms;
using ILOG.Diagrammer.Graphic;

public class SelectedEllipse : Form
{
public SelectedEllipse ()
{
// Creates the DiagramView
DiagramView view = new DiagramView() ;
view.Dock = System.Windows.Forms.DockStyle.Fill;
Controls.Add (view) ;

// Creates the group displayed by the view
Group group = new Group () ;

Ellipse e = new Ellipse (100, 100, 100, 100);
group.Objects.Add (e) ;

// Displays the group in the view
view.Contents = group;

// Selects the ellipse
view.Selection.AddSelectedObject (e) ;
}
}
Imports System.Windows.Forms

Imports ILOG.Diagrammer.Windows.Forms
Imports ILOG.Diagrammer.Graphic

Public Class SelectedEllipse
Inherits Form

Public Sub New ()
MyBase .New

' Creates the DiagramView

Dim view As DiagramView = New DiagramView
view.Dock = System.Windows.Forms.DockStyle.Fill
Controls.Add (view)

' Creates the group displayed by the view

Dim group As Group = New Group

Dim e As Ellipse = New Ellipse (100, 100, 100, 100)
group.Objects.Add (e)

' Displays the group in the view
view.Contents = group

' Selects the ellipse
view.Selection.AddSelectedObject (e)
End Sub
End Class

222 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Listening to Selection Events

Life Cycle of Selection Graphic Objects

For each selected object in a DiagramView, a selection graphic object is created and
displayed. Similarly, when an object is deselected, its associated selected graphic object is
automatically disposed.

To create the selection graphic object associated with a graphic object, the DiagramView
uses the following mechanism:

[_The CreateSelectionGraphic event is raised to enable the creation of the selection
graphic object by the event handlers.

[_IF no selection graphic object has been created in the previous step, the
SelectionGraphicAttribute attribute is searched for on the graphic object type that is
currently selected. This attribute contains the type of the selection graphic object that
should be used for that particular type. If such an attribute is present on a graphic object
type, the DiagramView creates a sel ection graphic object using the type specified in the
attribute. This only applies when you create new graphic objects.

Note: The GraphicObject class has the SelectionGraphicAttribute attribute set with the
ReshapeSel ectionGraphic class as selection graphic object type. This means that the
creation of a selection graphic object will always succeed. If you want to prevent an object
from being selected by setting a null selection graphic object in the

CreateSel ectionGraphic event handler, do not forget to set the
CreateSelectionGraphicEventArgs.Cancel to true.

The following example shows how to specify a selection graphic object by using the
SelectionGraphicAttribute attribute:

[SelectionGraphic (typeof (MyGraphicObjectSelectionGraphic))]
public class MyGraphicObject : GraphicObject

{
}

public class MyGraphicObjectSelectionGraphic : SelectionGraphic

{

<SelectionGraphic (GetType (MyGraphicObjectSelectionGraphic)) >
Public Class MyGraphicObject
Inherits GraphicObject
End Class
Public Class MyGraphicObjectSelectionGraphic

Inherits SelectionGraphic

End Class

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 223

Handling Selection in a Diagram

The following example shows how to use the CreateSelectionGraphic to create a specific
selection graphic object:

using System.Windows.Forms;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Windows.Forms;
using ILOG.Diagrammer.Graphic;

public class SelectedEllipse : Form
{
public SelectedEllipse ()
{
// Creates the DiagramView
DiagramView view = new DiagramView() ;
view.Dock = System.Windows.Forms.DockStyle.Fill;
Controls.Add (view) ;

// Adds the event handler for the selection
// graphic object creation
view.CreateSelectionGraphic +=
new CreateSelectionGraphicEventHandler (CreateSelectionGraphic) ;

// Creates the group displayed by the view
Group group = new Group () ;

Ellipse e = new Ellipse (100, 100, 100, 100);
group.Objects.Add (e) ;

// Displays the group in the view
view.Contents = group;

// Select the ellipse
view.Selection.AddSelectedObject (e) ;

}

void CreateSelectionGraphic (object sender, CreateSelectionGraphicEventArgs

{

e)

// Creates a new selection graphic object
// and sets it to the e.SelectionGraphic property
// or set the e.Cancel property to true to deny selection
}
}
Imports System.Windows.Forms
Imports ILOG.Diagrammer
Imports ILOG.Diagrammer.Windows.Forms
Imports ILOG.Diagrammer.Graphic
Public Class SelectedEllipse
Inherits Form

Public Sub New ()
MyBase .New

' Creates the DiagramView

Dim view As DiagramView = New DiagramView
view.Dock = System.Windows.Forms.DockStyle.Fill
Controls.Add (view)

224 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Selection Graphic Objects

' Add the event handler for the selection

' graphic object creation

AddHandler view.CreateSelectionGraphic, _
AddressOf Me.CreateSelectionGraphic

' Creates the group displayed by the view

Dim group As Group = New Group

Dim e As Ellipse = New Ellipse (100, 100, 100, 100)
group.Objects.Add (e)

' Displays the group in the view
view.Contents = group

' Select the ellipse
view.Selection.AddSelectedObject (e)

End Sub

Private Sub CreateSelectionGraphic(ByVal sender As Object, _

ByVal e As

CreateSelectionGraphicEventArgs)

' Creates a new selection graphic object
' and set it to the e.SelectionGraphic property
' or set the e.Cancel property to true to deny selection

End Sub

End Class

When selected objects are desel ected, the associated sel ection graphic objects are disposed
by the DiagramView.

Using Predefined Selection Graphic Objects

The following table lists the selection graphic objects available in
IBM® ILOG® Diagram for .NET:

Graphic Object

Class Selection Graphic Class Description

All ReshapeSelectionGraphic Provides handles around the object bounding
box to enable the resize of the object.

Arc, Pie ArcSelectionGraphic Extends the ReshapeSelectionGraphic by
adding handles to manipulate the arc angles.

Basic2DShape Basic2DShapeSelectionGraphic Extends the ReshapeSelectionGraphic by
adding handles to manipulate the control
value.

BezierCurve BezierSelectionGraphic Provides handles to manipulate the points of

the Bezier curve.

IBM

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 225

Handling Selection in a Diagram

Graphic Object
Class

Selection Graphic Class

Description

Circle CircleSelectionGraphic Provides handles to change the circle radius.
Control ControlSelectionGraphic Graphic selection object dedicated to controls.
Group GroupSelectionGraphic Provides a handle to move the group.

Line, LinearScale

LineSelectionGraphic

Provides two handles to manipulate the start
and end points of the line.

Link LinkSelectionGraphic Provides handles to manipulate the points that
define the link.
Path PathSelectionGraphic Provides handles to manipulate the points that

define the path.

Polyline, Polygon,
Curve,
ClosedCurve

PolyPointsSelectionGraphic

Provides handles to manipulate the points of
the selected object.

Panel PanelSelectionGraphic Graphic selection object dedicated to panels.

Text TextSelectionGraphic Graphic selection object dedicated to text
objects.

TextOnPath TextOnPathSelectionGraphic Graphic selection object dedicated to
TextOnPath objects.

UserSymbol UserSymbolSelectionGraphic Graphic selection object dedicated to user

symbols.

Common Behaviors

Most of the selection graphic objects inherit from the DefaultSel ectionGraphic class.

The following illustration shows a DefaultSelectionGr aphic object:

IBM ILOG DIAGRAM FOR

.NET 2.0 — PROGRAMMING

Maove Handle —1

Using Predefined Selection Graphic Objects

& s Rolate Handle

Rotation Center Handle

The predefined behaviors of the DefaultSelectionGraphic class are described in the
following table:

Command

Interaction

Rotate the selected object.

Click and drag the rotate selection handle.

Move the rotation center.

Click and drag the rotation center selection handle.

Copy the selected object.

Click and drag the selection graphic border or the move
selection handle with the CTRL key pressed.

Reparent the selected object.

Click and drag the selection graphic border or the move
selection handle with the Shift key pressed.

Copy and reparent the selected
object.

Click and drag the selection graphic border or the move
selection handle with the CTRL and Shift key pressed.

Disable Grid Snhapping during
current interaction.

Press the ALT key during the interaction.

Cancel the current interaction.

Press the ESC key during the interaction.

IBM

Resizing Behaviors

The ReshapeSel ectionGraphic enhances the Default SelectionGr aphic class by adding eight
new handles around the selected object bounding box to allow you to resize it. Most of the
predefined selection graphic objects inherit from the ReshapeSelectionGr aphic.

The following illustration shows a ReshapeSelectionGraphic:

ILOG DIAGRAM FOR

.NET 2.0 —

PROGRAMMING 227

Handling Selection in a Diagram

228

Border

Reasize Handles = Z

s Rotate Handla

Ratation Center Handle

The predefined behaviors of the ReshapeSelectionGraphic class are described in the

following table:

Command

Interaction

Change the width.

Click and drag the middle-left or middle-right selection
handle.

Change the height.

Click and drag the top-center or bottom-center selection
handle.

Change both the width and the
height.

Click and drag the top-left, top-right, bottom-left or
bottom-right selection handle.

Keep the aspect ratio during
resizing.

Click and drag one the resize selection handles with the
Shift key pressed.

Keep the center fixed during
resizing.

IBM

Click and drag one the resize selection handles with the
CTRL key pressed.

PolyPoints Editing Behaviors

The PolyPointsSel ectionGraphic classis the sel ection graphic class responsibe for editing of
PolyPoints subclasses such as Polyline, Polygon, Curve, and so on. As a subclass of the
ReshapeSelectionGraphic class, the PolyPointsSelectionGraphic class provides handles
to resize the selected object. The PolyPointsSelectionGraphic also provides amode in
which each point of the selected object hasits own selection handle. In this mode, additional
handles are a so provided to create new points in the middle of each vertex. To switch from

one mode to another, simply click the selected object.

The following illustration shows two selected polygons:

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

O

Polygon in Edit Bounds mode

Using Predefined Selection Graphic Objects

#——— Move Point Handlz

= Add Foint Handle

Polygon in Edit Points mode

The predefined behaviors of the PolyPointsSelectionGraphic class are described in the

following table:

Command

Interaction

Move a point.

Click and drag the selection handle of the point to move
it.

Create a new point between two
existing points.

Click and drag the diamond shaped selection handle
located in the middle of the two points.

Duplicate an existing point.

Click and drag the selection handle of the point to
duplicate with the CTRL key pressed.

Remove an existing point.

Click the selection handle of the point to remove with
the CTRL key pressed.

Switch to Edit Bounds mode.

Click the selected object while in Edit Points mode.

Switch to Edit Points mode.

Click the selected object while in Edit Bounds mode.

Path Editing Behaviors

The PathSelectionGraphic classis the selection graphic class responsible for editing of
graphic objects whose geomety is defined by a PathData such as Path and TextOnPath
classes. As asubclass of the ReshapeSelectionGraphic class, the PathSelectionGraphic
class provides handles to resize the selected object. The PathSelectionGraphic also
provides a mode in which each segment of the selected object path data displaysits own
selection handles. In this mode, additional handles are also provided to create new segments
in the middle of each segment. To switch from one mode to another, simply click the

selected object.

The following illustration shows a selected Path object and a selected TextOnPath object:

IBM ILOG DIAGRAM FOR

.NET 2.0 — PROGRAMMING 229

Handling Selection in a Diagram

| i
[m]]

Quadratic bezier SEomMent ——

Bezier segment

Mave Paint handle Bezier segment control handles
&
4 Add line segment handle
Line segment

L Quadratic bezier segment

control handle

Path in Edit Bounds mode

Path in Edit Path mode

The predefined behaviors of the PathSelectionGraphic class are described in the following

table:

Command

Interaction

Move a point.

Click and drag the selection handle of the point to move
it. If the Shift key is pressed, smooth curves will not be
preserved.

Split a line segment into two line
segments.

Click and drag the diamond shaped selection handle
located in the middle of the line segment.

Duplicate an existing point of the
selected object to create a new line
segment.

Click and drag the selection handle of the point to
duplicate with the CTRL key pressed.

Convert a line segment into a
quadratic Bezier segment.

Click and drag the diamond shaped selection handle
located in the middle of the line segment with the CTRL
key pressed.

Convert a quadratic Bezier segment
into a Bezier segment.

Click and drag the quadratic Bezier segment control
selection handle with the CTRL key pressed.

Convert a quadratic Bezier segment
into a line segment.

Click the quadratic Bezier segment control selection
handle with the CTRL key pressed.

Convert a Bezier segment into a
quadratic Bezier segment.

Click one of the Bezier segment control selection
handles with the CTRL key pressed.

Remove an existing point of the
selected object.

Click the selection handle of the point to remove with
the CTRL key pressed.

Switch to Edit Bounds mode.

Click the selected object while in Edit Points mode.

Switch to Edit Points mode.

Click the selected object while in Edit Bounds mode.

230 IBM ILOG DIAGRAM FOR

.NET 2.0

PROGRAMMING

Styling Selection Graphic Objects

Styling Selection Graphic Objects

The rendering of selection graphic objects can be changed at the view level. The common
graphic properties have been gathered in the SelectionStyle class to enable the selection
style to be changed in a global way. The following table lists the properties of the
SelectionStyle class that can be used to change the rendering of selection graphic objects:

Property Description

DashStyle Gets or sets the dash style used for selection
graphic border.

ForeColor Gets or sets the color used for selection graphic
border.

HandleForeColor Gets or sets the color used for selection graphic
handles.

HandleBackColor Gets or sets the background color used for selection

graphic handles.

PrimarySelectionHandleForeColor Gets or sets the color used for primary selection
graphic handles.

PrimarySelectionHandleBackColor Gets or sets the background color used for primary
selection graphic handles.

HandleSize Gets or sets the size for selection graphic handles.

HighlightColor Gets or sets the color used to highlight a selection
graphic object.

HighlightSize Gets or sets the size of the border drawn when the
selection graphic is highlighted.

In aWinForms diagram view, use the SelectionStyle property to accessthe selection style. In
an ASPNET diagram view, use the SelectionStyle property.

If you need to control the selection graphic rendering more accurately, see Creating Custom
Salection Graphic Objects.

Creating Custom Selection Graphic Objects

You need to create a custom selection graphic object when:

ytou have created a new graphic object and want to add specific editing capabilities,

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 231

Handling Selection in a Diagram

[_ytou want to change the sel ection graphic object of an existing classin order to modify its
behavior or appearance.

In both cases, you need to create a subclass of the SelectionGraphic class, the base class for
selection graphic objects. Depending on the purpose of your selection graphic object, you
can decide to inherit directly from the SelectionGraphic class or from an existing subclass.

If you want to change the appearance of an object that you have selected you need to
modify its properties and subclass the SelectionGraphic class.

The following example shows how to change the color of an Ellipse when it is sel ected:

public class ShapeSelectionGraphic : SelectionGraphic

{

private Fill oldFill;

public ShapeSelectionGraphic (GraphicObject obj) : base (obj)
{

Shape s = obj as Shape;

// Store current fill

_0ldFill = s.Fill;

// Change the fill

s.Fill = new SolidFill (Color.Blue) ;

}

protected override void Dispose (bool disposing)

// Restore fill before selection
if (disposing)

((Shape) SelectedObject) .Fill = _oldFill;
base.Dispose (disposing) ;

}

Public Class ShapeSelectionGraphic
Inherits SelectionGraphic

Private oldFill As Fill

Public Sub New(ByVal obj As GraphicObject)

MyBase .New (obj)

Dim s As Shape = CType (obj, Shape)

' Store current fill

_0ldFill = s.Fill

' Change the fill

s.Fill = New SolidFill (Color.Blue)
End Sub

Protected Overrides Sub Dispose (ByVal disposing As Boolean)
' Restore fill before selection
If disposing Then

CType (SelectedObject, Shape) .Fill = oldFill

End If
MyBase.Dispose (disposing)

End Sub

End Class

232 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating Custom Selection Graphic Objects

If you want to add decorations or handles to manipulate the selected object, you may
subclass the DefaultSel ectionGraphic class or one of its subclasses. The
DefaultSelectionGraphic class defines an API to manage selection handles. Each handle
has alocation and a specific rendering and behavior associated. The
DefaultSelectionGraphic class defines three handles:

b move the selected object
b rotate the selected object
b change the rotation center

Each subclass of the DefaultSelectionGraphic class adds new handles to implement
specific behaviors. For example, the ReshapeSel ectionGraphic class adds eight handles to
resize the selected object.

The following table lists the methods that you may have to override when subclassing the
DefaultSelectionGraphic class:

Method Description
GetHandlePoints Returns a list containing the location of the selection
handles.
IsHandleVisible Indicates whether the specified handle is visible or not.
GetHandleCursor Gets the cursor associated with the specified handle.
GetHandleType Returns the type of the selection handle.
GetHandleDescription Gives textual information about the specified handle.
MoveHandle Is called when the specified handle is moved.
OnlnteractionStarted Is called when an interaction is started.
OnlnteractionValidated Is called when an interaction is validated.
OnlnteractionCanceled Is called when an interaction is cancelled.

To see the complete implementation of a subclass of the DefaultSelectionGraphic class,
see the sampl e located in QuickStarts\CustomSel ectionGraphic.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 233

Handling Selection in a Diagram

234 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Building Diagrams and User Symbols
Inside Visual Studio

IBM® ILOG® Diagram for .NET offers a powerful foundation for quickly creating
advanced graphical user interfaces. In addition to afully programmable Software
Development Kit (SDK), IBM ILOG Diagram for .NET has a deep integration in Visua
Studio to automate the production of applications without coding. Thisintegration allows
you to create new graphical symbols and diagrams directly inside Visual Studio.

Several Visual Studio templates are available to help you get started with a new Visua
Studio project or incorporate diagrams in your existing project.

Several samples are provided with the product to show you how to create user symbols and
diagramsinside Visua Studio.

[Process Control, located in Samples/Applications/ProcessControl.
[_Tunnel Monitoring, located in Samples/Applications/TunnelMonitoring.
[—Anaog Clock, located in Samples/QuickStart/AnalogClock.

[Wser Symbols Library, located in Samples/QuickStart/UserSymbolLibrary.

You may also read the following tutorial that guides you through the creation of auser
symbol:

Creating an IBM ILOG Diagram for .NET Windows Forms Application and User Symbol

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 235

Building Diagrams and User Symbols Inside Visual Studio

In This Section
Creating Diagrams and User Symbols Using Visual Sudio
Introduces the Diagram Designer.
Adding Graphic Objects to Diagram or User Symbol
Describes how to add graphic objects to adiagram or a user symbol
Controlling the Zoom Level
Describes how to control the zoom level.
Selecting Graphic Objects
Describes how to select graphic objects.
Moving, Resizing, Rotating and Aligning Graphic Objects
Explains how to move, resize, rotate and align a graphic object.
Changing Properties of Graphic Objects
Explains how to use the Properties Window.
Setting Text to a Graphic Object
Describes how to set text to a graphic object.
Grouping Graphic Objects
Explain how to group objects.
Manipulating Panels and Other Containers
Explains how to manipulate panels and other ontainers.
Controlling the Drawing Order of Graphic Objects
Explains how to control the drawing order of graphic objects.
Inspecting the Sructure of a Diagram
Introduces the Document Outline view.
Showing and Hiding Objects
Describes how to show and hide objects.
Creating Complex Path Objects
Explains how to create a Path object.
Cut, Copy and Paste
Briefly refersto the cut, copy and paste functionalities.
Graph, Link and Anchors
Describes how to handle Link and Anchor objects.

236 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating Diagrams and User Symbols Using Visual Studio

Graph Layout
Introduces to the graph layouts.
Importing Vector Graphicsin SVG or IVN Format
Explains how to import filesin the SVG or IVN format.
Printing a Diagram
Shows how to print a diagram.
Diagram Designer Commands
Lists the commands available with the Diagram Designer.

Related Sections
Creating your First IBM ILOG Diagram for .NET AJAX Web Site

Walks you through the process of creating your first IBM ILOG Diagram for .NET
AJAX Web Site.

Creating an IBM ILOG Diagram for NET Windows Forms Application and User Symbol

Walks you through the process of creating your first IBM ILOG Diagram for .NET
Windows® Forms application.

Creating Diagrams and User Symbols Using Visual Studio

Integrated within Visual Studio, the Diagram Designer is a point-and-click editor that allows
you to design diagrams and new graphic objects (user symbols) by dragging graphic objects
to the Design view.

You can use the Diagram Designer to:
[dreate diagrams by assembling graphic objects,
[_dreate new graphic objects: the user symbols.

In both cases, the .NET code corresponding to your diagrams or your symbolswill be
generated. If you create a new diagram, the related code corresponds to a subclass of the
Group object. If you create a new graphic object, the related code is represented by subclass

of the UserSymbol class.

The Diagram Designer is composed of the following elements:

[Design View
Isthe view where you design your diagram or user symbol. In the Design view you drag
the graphic objects that compose the diagram or the symbol being designed.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 237

Building Diagrams and User Symbols Inside Visual Studio

[—Toolbox
Presents a set of predefined graphic objects that you can drag to the Design view.

—Properties Window
Displays the properties of the graphic objects that you have selected in the Design view.
From the Properties Window you can modify al the properties of the graphic objectsand
access to the events fired by the graphic objects.

[_Diagram Toolbar

Enables operations like controlling the zoom of the Design view, creating some graphic
objects, grouping objects, changing the text properties of the selected graphic objects and
more. To open the Diagram Toolbar select View>Toolbars>IBM ILOG Diagram from
the menu bar.

[—_Diagram Menu
Presents several commands like the zoom commands, or commands to import afilein
your diagram.

—Htyle Window

Presents the Fill and Stroke properties of the selected graphic objects and alows you to
change the style of graphic objects. To open the Style Window select View>Other
Windows>Diagram Style Window from the menu bar.

238 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating Diagrams and User Symbols Using Visual Studio

The following illustration shows the different elements you can useinside Visual Studio for
creating diagrams or symboals.

*8 DiagramApplication1 - Microsoft Visual Studio

File Edit View Project Buld Debug Data Format Took Test Analyze Disgram Window Hebp
ERRERAN" B M- RN P Debug - Y- 28 % R BRE 2
Bt g & LT e gl Lt B e TR
.
(a2 @@ EFE-ml=kEnAaicaime s«
Tookbox - -Til XE v x| Solution Explorer - Soluton Diagramépplic... w & X
= com-.. & P P Po T) [F|Bafeasa
|-ihﬁ=_ Shapes | | e e AT e ; ;3—'“0""9‘503“’ fon' (1 project)
Nfoms 0 W= i= 24 DiagramApplicationl
= i : Diapram Diagram Menu o O fropetes
() Rounded Rectangle g Toalhar B - [References
O Hipse 3 - &) Diagram.cs
; o e A @ [FormLes
8“"‘ o . i] Program.cs
N BE i SRE SO Gl SL0 G PEtH R
O crce i : R R e e : =
() Polygan 5 3 I
................ FRC 5 Do R |
477/ Closed Curve R SRR, Diagram Design — ==
N e e s st ke v e View 3 el
“1-Pohine (T e Rectangle ILOG.Diagrammer.Graphic,Rect -
“2- Curve A ik 3 >
B =2 (A 19| 4
A\ Trange e SRR EREE RS SRR ERR R | | "N
[J paralelogram e R e R S Ry SrFepernt e 2
[\ Trapezeid L in . CanResize True
Fem —) Toolbox of o o ; CanRotate True
S Wacew Mt N, predefined graphic ;3::1‘?10:‘:5 - Canselect True
| | | i i
e =1 objects to drop in Troe
Stroke.Fill = the diagram AeszeMode Resize
TextAppearance.Background =1 ToolTy
TextAppearance.Foreground |3 i i = 3 . : i
W s e i st e S LA UseDefaultanchors True
i ERtadntnes ol e sl R Sl i b 8 Desi
i ORE o ieeseitdeatate. meulbetir moade e weiad fiame) Rectangle 4
7 A : : . P ' B ey —Tman. —
I BEEE 000 R i S Edit Filters..., Edit Anchors...
R:j245 2| . Style Window
s a5 3|8
e eesssrsmsosganaioase i bea Rl ks ke R 0
a‘,gys: B RO civeae oo The name of the object.
B¢ 2
Click an object to select it. Click the view and drag to select objects intersecting the area. Ctri-Click to add to/remove from selection. Cirl-drag to dupiicate. Shift-drag to move r

A number of Visual Studio projects or item templates are installed when you install

IBM® ILOG® Diagram for .NET. Through these templates you accel erate the devel opment
process and you do not need to create new IBM ILOG Diagram for .NET projects from
scratch.

The project templates provide the basic files needed to create a new
IBM ILOG Diagram for .NET project. To use these templates choose File>New>Project
from the menu bar and select:

[IBM ILOG Diagram for .NET Application (WinForms) template, to create a Windows®
Forms application that contains the diagram displayed in a Diagram View.

or

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 239

Building Diagrams and User Symbols Inside Visual Studio

240

[I1BM ILOG Diagram for NET Symbol Library template, to create alibrary (DLL) of
user symbols that you can reuse later in the diagrams of your Windows Forms or Web
Forms applications.

Use the project item templates to add new elements to an existing project. To use these
templates, right-click an existing project in the Solution Explorer, choose Add>New Item
and select:

_Diagram (IBM ILOG Diagram for .NET) template, to add a new diagram in you project,
or

[WserSymbol (IBM ILOG Diagram for .NET) template, to add a new user symbol to your
project.

When you create a project with adiagram or auser symbol, Visual Studio opensthe diagram
or the symbol in design mode and allows you to create the graphical representation by
dragging graphic objects from the Toolbox to the Design view.

When you create adiagram inside Visual Studio a new subclass of the Group classis
created. When you create a new user symbol, a new subclass of the User Symbol classis
created.

The concepts of the Diagram Designer are similar to the concept of the Winforms Designer
of Visual Studio. In the Winforms Designer you design your interface by creating a new
Form or anew User Control. In the Diagram Designer you create anew Group or a new
User Symbol. Asyou drag graphic objects to the Design view, the code that creates the
graphic objects that compose the diagram or user symbol is generated by Visual Studio in
the new Group or User Symbol classin their | nitializeComponent method.

The following illustration shows an empty diagram in Design mode inside Visua Studio.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Adding Graphic Objects to Diagram or User Symbol

8 DiagramApplication1 - Microsoft Visual Studio

Fle Edt View Proect Bukd Debug Data Format Took Test Andfyze Dlagram Window Help
-l 35 H e 4 |9 . 5[5 | b Debug - sl s R BRE
N Iy S B R 4 3 b2 =
IR T i L - Mirosoft Sans Seif - B.25 +

Toabax » 0 x Diagraml.cs [Design]*

- | PP Y P P P O W T O (= e A sl 7
= Basic Shapes | = || [Selution DiagramApplcaton 1 (17
[_pointer & S [DisgramApplication1
[Rectangle # W Properties

(] Rounded Rectangle =] # (= References

O Elipse & + _'11 Diagram1.cs

O aee = ﬂﬁ:rnl..:

G - &} Program.cs

o =

() Crde

) Polygan 45 &
Lo Cosed Curve |t T | g 8 &5 (BT = (o el
it g N =
71 Polyine 2y : : : Diagram1 1L0G Disgrammer Gragl =
2 Curve ==y

fo E EER

FT ooy g CartifTest Tre -~
1 Traossck frs ¢ 5 ot Cortove True

r =] CarReparent True

< Damand Ca bipote Sl et hopt b Bt R b E D o e Corfesae Tn=

() Reguar Pentagon = R Carflotate True

(7) Detagen B e = viss SR et Cargelect The

=
) Hexagon = Cursor
™ Cross 3 b ; {5 gl e ; ¥ i H LinkCrossings (LinkCrossings)
=] UseDefauttane True

¥r star =7

== Four Ponts Start i
= Amaw @
= Flow Chart e

b Pointer 5
- =]

1 Process - i !] o ey
£ Manual Trgut ,_ e A M A U i

Cornector =

1 oEEn: £ mhoe. b Ei< 2

Ciick an objext to select It, Chck the view and drag i select cbjects ntersecting the area. Cirl-Clck ta add tofremove from selection. Cirl-drag to duplica

Adding Graphic Objects to Diagram or User Symbol

You can add graphic objects to your diagram by dragging objects from the Toolbox. The
following illustration shows a rectangle dragged to the Design view.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 241

Building Diagrams and User Symbols Inside Visual Studio

8 DiagramApplication1 - Microsoft Visual Studio

Fle Edt Vew Project Euld Oebup Data Format Tools Test Anafyze [Diagram ‘Window Help

RN - A A Sl [b Debig . sl e @ DRE
s T o dl : S

______ SRR AR@ o0 - [F[F] moomtsussest -0 -8 2 4 E[E|E=[=]= RiBiin<en]
Teabax » 0 x Diagraml.cs [Design]* ~ % Solution Explocer - Solutl.., w § X

RPo, P, fo, B0 BB SELES A
Al 23 saluton DiagramAppicaten ! (1]
= (i DiagramApplicationl

F G Properties

Rectangle [LOG Disgrammer Grap =

EPNEE
CarfReparent True ~
Carflesze True
CarRotate True
CarfSelect True
Cursor
Enabled True
ResgeMode Resae
Toallip
UseDefaultAne True

| (Hame])
w || The name of the cbject.

< >

rah w

Ciick an objext to select It, Chck the view and drag i select cbjects ntersecting the area. Cirl-Clck ta add tofremove from selection. Cirl-drag to duplica

Asyou drag graphic objects to the Design view, the corresponding code is generated in the
I nitializeComponent method of the new class. Here the I nitializeComponent method that
is generated when a single Rect object named rectl is dragged to a diagram of a C# project.

private void InitializeComponent ()
{
this.rectl = new ILOG.Diagrammer.Graphic.Rect () ;
((System.ComponentModel.ISupportInitialize) (this)) .BeginInit () ;
//
// rectl
//
this.rectl.Fill = new
ILOG.Diagrammer.SolidFill (System.Drawing.Color.WhiteSmoke) ;
this.rectl.Name = "rectl";
this.rectl.Rectangle = new ILOG.Diagrammer.Rectangle2D(-170F, -200F, 100F,
100F) ;
//
// Diagraml
//
this.Objects.Add(this.rectl);
((System.ComponentModel.ISupportInitialize) (this)) .EndInit () ;

242 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Adding Graphic Objects to Diagram or User Symbol

To add graphic objects to a diagram or a user symbol the following commands are available
on the IBM ILOG Diagram for .NET toolbar.

Create Arc -, Creates an Arc object.

Create Closed Curve (T Creates a ClosedCurve object.
Create Curve e Creates a Curve object.

Create Ellipse O Creates an Ellipse object.

Create Filled Closed Curve i Creates a filled ClosedCurve object.

Create Filled Ellipse Creates a filled Ellipse object.

@
Create Filled Polygon Z Creates a filled Polygon object.
Create Filled Rectangle = Creates a filled Rect object.

Create FreeHand Shape Creates a Curve object.

Create Image Creates an Image object.

e | =5

Create Link Creates a Link object.

Create Pie Y Creates a Pie object.

Create Polygon Z Creates a Polygon object.

Create Polyline - Creates a Polyline object.
h

Create Rectangle] Creates a Rect object.

Create Text abl Creates a Text object.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 243

Building Diagrams and User Symbols Inside Visual Studio

Asyou start creating your own graphic object classes, you will be able to place them in the
Toolbox and reuse them for creating diagrams inside Visual Studio.

Controlling the Zoom Level

The following options are available for controlling the zoom level of the Design view:
C— 100 % ~ to change the zoom level.

[Mouse wheel + CTRL key to zoom in and out.

[. tozoomin.

[(=} tozoom out.

— ;ﬁ to adjust the zoom level so that all the graphic objects are visible.

[, toreset thezoom level to 100% (diagram original size).

[i, toselect the areato zoom in the diagram.

Selecting Graphic Objects

To select agraphic object in the Design view, click the graphic object. Simultaneoudly, al
the other graphic objects are automatically deselected. To add new graphic objects to the
selection, hold down the CTRL or Shift key while clicking the new graphic object. If you
click an object which is already selected while pressing the CTRL or Shift key, this object
will be deselected.

When a graphic object is selected, the sel ection handles appear around the graphic object, as
shown in the following illustration.

244 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Moving, Resizing, Rotating and Aligning Graphic Objects

The easiest way to select several graphic objectsisto use the lasso. Right-click an empty
area of the view and drag the lasso so that it intersects the graphic objects you want to select.
When you release the mouse, the elements that intersect the lasso will be selected.

Hold down the CTRL or Shift key while you drag the lasso to invert the selection. Objects
aready selected will then be desel ected.

If you click a selected graphic object and drag the mouse instead of clicking in the
background of the view, the selected object will be moved. To avoid this and force the lasso
mode, hold down the ALT key before you click.

When several objects are selected, one of them has the selection handles with a different
color. This object is the primary selection. For example, the primary selection is used by
alignment actions (aligning several abjects means to align them on the primary selection).

You can also select agraphic object by clicking its namein the drop-down list at the top of
the Properties Window or by selecting the object name in the Document Outline view. To
open the Document Outline view choose View>Other Windows>Document Outline.

Moving, Resizing, Rotating and Aligning Graphic Objects

To move an object, simply right-click it and drag the mouse.

When agraphic object is selected, the selection handles appear around the object. These
handles allow you to resize and rotate the object.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 245

Building Diagrams and User Symbols Inside Visual Studio

246

Resize Handles

Rotation Handle

Rotation Center Handle

By default a magnetic grid isinstalled on the Design view so that graphic objects are
automatically aligned on the grid when you move or resize them. To prevent grid snapping
when moving or resizing a graphic object, you can turn off the grid or pressthe ALT key

while moving the mouse.

You can also move and resize the sel ected graphic objects using the following keyboard
combinations:

C—_Arrow keys to move the selected object by the grid spacing in the arrow direction.
C—Shift+Arrow keys to resize the selected object by the grid spacing.
C_CTRL+Arrow keysto move the objects by one pixel on the screen.
C_CTRL+Shift+Arrow keys to resize the selected objects by one pixel on the screen.

The grid can be turned on or off using the Grid button on the
IBM ILOG Diagram for .NET toolbar.

To modify the options of the grid, click in the background of a Design view and modify the
following propertiesin the Properties Window:

[GridActive: turn on or off the magnetic grid.
[GridSpacing: change the grid spacing.
[GridColor: change the grid color.

[GridVisible: show or hide the grid.

Use the Visual Studio Layout toolbar to access the alignment commands. The following
table lists the commands that are available to align the graphic objects.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Moving, Resizing, Rotating and Aligning Graphic Objects

Command Toolbar Description
icon
Align to Grid -Et Moves the graphic object so that the top left
corner is aligned on the grid.
Align Lefts = Aligns the left border of the selected graphic

=

objects to the left border of the primary selection.

Align Centers

Aligns the center of the selected graphic objects

- to the center of the primary selection.
Align Rights = Aligns the right border of the selected graphic
= objects to the right border of the primary
selection.
Align Tops - Aligns the top of the selected graphic objects to
: the top of the primary selection.
Align Middles g Aligns the middle of the selected graphic objects
to the middle of the primary selection.
Align Bottoms i Aligns the bottom of the selected graphic objects
= to the bottom of the primary selection.
Make Same Width — Resizes the selected graphic objects to the
e same width of the primary selection.
Make Same Height :'"J Resizes the selected graphic objects to the
= same height of the primary selection.
Make Same Size N, Resizes the selected graphic objects to the
L+d

same size of the primary selection.

Size to Grid

Resizes the selected graphic objects so that the
size fits the grid.

Make Horizontal Spacing

Moves the selected graphic objects so that the

IBM

Equal ok horizontal spacing between them is the same.
Increase Horizontal Spacing e Moves the selected graphic objects in order to
Al increase the horizontal spacing between them.

Decrease Horizontal Spacing ofla Moves the selected graphic objects in order to
*r decrease the horizontal spacing between them.

Remove Horizontal Spacing ok Moves the selected graphic objects in order to

** remove the horizontal spacing between them.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 247

Building Diagrams and User Symbols Inside Visual Studio

Toolbar

Command .
icon

Description

Make Vertical Spacing Equal

Hfa

Moves the selected graphic objects so that the
vertical spacing between them is the same.

Increase Vertical Spacing

Moves the selected graphic objects in order to
increase the vertical spacing between them.

Moves the selected graphic objects in order to
decrease the vertical spacing between them.

=

Decrease Vertical Spacing a4
[=hy

Remove Vertical Spacing at
>

Moves the selected graphic objects in order to
remove the vertical spacing between them.

The alignment commands are a so available in the Format menu of Visual Studio.

Changing Properties of Graphic Objects

The Properties Window gives access to the properties and events of a graphic object. To
open the Properties Window, click a graphic object to select it, then right-click the graphic
object to open the contextual menu and choose Properties Window in the menu. You can
also open it through the option View>Properties Window on the menu bar.

The Smart Tags

Like in the Winforms Designer of Visual Studio, the Diagram Designer presents the notion
of smart tags. A smart tag panel proposes a quick access to the most important properties

and actions on the graphic object.

The following illustration shows the smart tag panel for an Ellipse object:

o*
- Text |
o &
e, o Fil [LightSteelBlue v
O e man®’
------------- Stroke | E=1 (SolidFill} o]
ool | EditFilters...
............. e

248 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Changing Properties of Graphic Objects

To open the smart tag panel, simply click on the arrow on the top of the selected graphic
object.

Note: It is possible to customize the smart tag of your own graphic objects. To learn more
about customizing the design-time behavior of a graphic object see Improving the
Design-Time Behavior of Your Graphic Object.

Changing the Style with the Style Window

You can modify the appearance of graphic objects by changing the properties from the
Properties Window. ILOG Diagram for .NET offers another quick access to the styling
properties of a graphic object: the Style Window.

To open the Style Window choose View>Other Windows>Diagram Style Window from the
menu bar.

The following illustration shows the Style Window displaying the style properties of an
Ellipse object:

Style Window ~ 0 x

Stroke

Stroke.Fill
TextAppearance.Backaround
Text4ppearance.Foreground

w1 S

_{l

The Style Window shows the list of properties that you can modify. Thislist displaysthe
properties of the selected graphic object that are of type Fill or Stroke. A Fill object defines

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 249

Building Diagrams and User Symbols Inside Visual Studio

how the interior of ashapeisfilled and a Stroke object defines how the outline of the shape
isdrawn.

For a property of type Fill, the Style Window allows you to set the Fill to Nothing (the read

cross), to asolid color (like in the picture above), a gradient, a texture or a predefined
pattern.

For a property of type Stroke, you can specify the width of the line as well as the dash
pattern. The following illustration shows the Style Window editing a Stroke property:

Style Window

Fill

Stroke

Stroke.Fill
TextAppearance.Background
Text&ppearance.Foreground

——— | - - «[F]e ..|

----------- J 4Pt
I

To learn more about the Sroke and Fill objects see Filling and Sroking Graphic Objects.

Copy and Apply Style Commands

Two additional commands are available in Visual Studio to simplify the task of copying the
style of a graphic object to other objects.

Use the Copy Style command (%) to change the style of the selected objects. First select
the graphic objects you want to modify, then choose the Copy Style command and click the
graphic object from which you want to take the style from.

Use the Apply Style command (4*) to change the style of some objects. First select the
graphic object that has the style you want to copy, then choose the Apply Style command
and click all the graphic objects to which you want to apply the style.

250 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Changing Properties of Graphic Objects

In Place Gradient Brush Editor

The following commands are available in Visual Studio to simplify the editing of gradient
brushes:

Use the Edit Gradient Fill command (5) to edit the gradient of a graphic object fill,
Use the Edit Gradient Stroke command (| %]) to edit the gradient of graphic object stroke.

To edit agradient, a gradient editor is displayed on top of selected objects. The following
picture shows a rectangle object with acircular gradient being edited:

Gradient bounds resize handles

el

Gradient bounds
Gradient stops line

Gradient path Gradient stops handles

Gradient start color handle

Gradient end color handle

Both the Edit Gradient Fill and Edit Gradient Stroke commands share the same kind of
interaction. The table below lists the possible interactions during the editing of a gradient:

Interaction Description
Click a graphic object Shows the gradient editor on top of the graphic object.
Double-click a graphic object Shows the modal fill editor dialog. This allows you to

change the type of fill (pattern, gradient, solid, and so on)
used by the graphic object.

Drag the gradient stops line or Moves the gradient inside the graphic object.
the gradient bounds

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 251

Building Diagrams and User Symbols Inside Visual Studio

Interaction Description

Click the gradient stops line with | Adds a new gradient stop at the clicked location.
the CTRL key pressed

Click a gradient stop with the Removes the clicked gradient stop.
CTRL key pressed

Double-click a gradient stop Shows the modal color editor dialog to change the color
of the gradient stop.

Drag a gradient stop Moves the gradient stop along the gradient stops line.

Drag a gradient stop with the Duplicate the gradient stop.
CTRL key pressed

Setting Text to a Graphic Object

Every graphic object has a property named Text. This property represents a string that can be
displayed on top of the graphic object. Some graphic objects, such as Text or TextOnPath,
are dedicated to display text. The text displayed by the graphic objects can be formatted by
using the commands available on the Diagram toolbar, asillustrated in the following figure:

Lucida Sans Typewriter - 20 - B T EEIE =

The following table describes the options available on the Diagram tool bar

Align Text Bottom Aligns the text to the bottom.

Align Text Center Aligns the text horizontally in the center of the

graphic object.

Align Text Left Aligns the text to the left.

Align Text Middle Aligns the text vertically in the middle of the

graphic object.

Align Text Right Aligns the text to the right.

Align Text Top = Aligns the text to the top.

252 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Grouping Graphic Objects

Bold B Sets the text in bold.
Italic I Sets the text in italic.
Underline u Underlines the text.

To learn more about text in a diagram see Displaying Text in a Diagram.

Grouping Graphic Objects

Graphic objects can be grouped together inside a Group object or inside a GraphicSymbol
object.

To group objects you need to create a Group or a GraphicSymbol object and place the
selected objects as children of this new Group or GraphicSymbol.

Use the Group as GraphicSymbol command to create a new GraphicSymbol, and the
Group as Group command to create anew Group.

Group and GraphicSymboal are similar, they both contain child objects and they have no

particular rendering apart their children, but are used for different purposes. You can use the
Group object to create alogical group of graphic objects, while the GraphicSymbol can be
used to create a new graphic symbol that you will manipulate as a whole. For example, ina
GraphicSymbol you will not be able to select the graphic objects that compose the symbol.

To see the structure of the diagram with groups and symbols use the Document Outline
view.

Manipulating Panels and Other Containers

Containers are graphic objects that contain other objects. In the Diagram Designer severa
functionalities allow you to manipulate the children in a container object. You can drag
several panel objects from the Panelstab of the Toolbox.

Those graphic objects are container that automatically control the size and the location of
their children. For example, a GridPanel layoutsiits children in rows and columns, the
StackPanel layouts its children vertically or horizontally.

To create a Panel object simply drag it from the Toolbox. Once a panel is created, you may
drag anew graphic object to it from the Toolbox. As you drop a new graphic object in a
container, the bounding area of the container is highlighted to indicate the drop target as
shown in the following illustration.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 253

Building Diagrams and User Symbols Inside Visual Studio

% Rect 3

You can also drag a graphic object which is already in the Design view to placeit in a panel.
To do so simply drag the graphic object to the destination panel. As you drag the graphic
object, the destination panel will be highlighted. If you simply need to move the graphic
object without changing its parent container, hold down the Shift key during the interaction.

The following illustration shows a graphic object representing a cross being dropped on a
SackPanel:

254 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Controlling the Drawing Order of Graphic Objects

The same operation can be used to remove a graphic object from a panel.

When agraphic object isinserted in a panel, additional properties are added to the graphic
object so that you can control some alignments and attachment options.

For example, when a graphic object isinserted in a GridPanel, you can control the row and
column in which the graphic object will be placed by changing the Rows and Columns
properties in the Properties Window.

Panel objects are particularly useful when you create a new User Symbol composed of
graphic objects that must be laid out in some way. For example, a User Symbol that
representsa UML class would use avertical StackPanel where graphic objects representing
methods and properties will be added.

To learn more about the Panel objects see Panels.

Controlling the Drawing Order of Graphic Objects

The drawing order of graphic objects that compose a diagram or a symbol is determined by
the order of the graphic objectsin their parent. Right-click a graphic object and choose one
of the following commands available in the Order menu:

[Bring to Front, to place the object in front of all other objectsin the same parent.
[—Fend to Back, to send the object behind other objects in the same parent.
[—Fend Backward, to place the object behind hisfirst sibling.

[—Fend Forward, to place the object in front of hisfirst sibling.

The commands Bring to Front and Send to Back are also availablein the Layout toolbar as
well asin the Format menu.

You can also have alook at the drawing order using the Document Outline view.

Inspecting the Structure of a Diagram
Through the Document Outline view you can look at the structure of the diagram. To open

the Document Outline view choose Document Outline from the View>Other
Windows>Document Outline from the menu bar.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 255

Building Diagrams and User Symbols Inside Visual Studio

The following illustration shows the document outline:

e d e B — -
Document Outline - DoubleGauge + I X

Brld = | & 4+ & &

AEm
EK } DoubleGauge UserSymbal
< back Path
< pathl Path
< path2 Path
< path3 Path
< patha Path
< paths Path
= ## needlel Group
i needle1Shadow FPath
~= path7 Fath
"= path8 Fath
< centerl Path
< gloss Path
= "? gr Group
i pathll Path
= ## needle2 Group
= pathl2 Path
= pathl3 Path
- ~» path14 Path
> center2 Path
< eventpath2 Path |

éijs.:.luti.:.n Explorer | [5| Document Outline

|

From this view you can a so rename the objects that compose your diagram or symbols.

Showing and Hiding Objects

By default when you hide a graphic object by setting its Visibility property to Hidden or
Collapsed, the graphic object staysvisible in the Diagram Designer, although the object will
not be visible at runtime. To hide or show the invisible objects use the option
Diagram>Show Invisible Objects available on the menu bar.

256 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating Complex Path Objects

Creating Complex Path Objects

A Path object is a graphic object that can display almost any kind of shape. The geometry of
this object is defined by a collection of segments. The segments can be lines, arcs, Bezier or
quadratic Bezier segments. It isalso possible to create compound paths (a path with multiple
subpaths) to enable effects such as "donut holes'.

The following illustration shows a Path object:

You can create a Path object by converting a basic shape into a Path.

Any basic shapes (rectangle, ellipse, arc, polygons, polylines, curves, and so on) can be
converted into a Path object. The Text object as well as the TextOnPath object can also be
converted into a Path.

To convert an object into a Path, select the command Path>Object to Path in the contextual
menu that opens when you right-click a graphic object.

You can also create a path by combining basic shapes. In this case you have to select several
objects and right click to open the contextual menu which will display the following
commands:

—Wnion: replaces the selected objects by a single Path that is the union of all the selected
paths.

[_Difference: replaces the selected objects by a single Path with a geometry that
corresponds to the shape of the primary selected object from which all the intersection
with other objects have been removed.

[Intersection: replaces the selected objects by a single Path with a shape that corresponds
to the intersection of all the selected objects.

[_Exclusion: replaces the selected objects by a single Path with a geometry that
corresponds to the shape of all the selected objects from which all the intersection have
been removed.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 257

Building Diagrams and User Symbols Inside Visual Studio

The following illustration shows the result of these commands:

/ i . Union

v . Intersection

P Excdusion T

A Path object can aso be made of several disconnected figures. Use the following
commands to manipulate such paths.

[Merge: creates a Path object composed of several disconnected figures representing the
geometry of the selected objects.

[Break: converts a Path object composed of several disconnected figuresinto several
Path objects.

For more information see Paths.

258 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Cut, Copy and Paste

Cut, Copy and Paste

At any time you can cut, copy and paste graphic objects in the Design view by selecting
objects and using the commands Cut/Copy and Paste available in the contextual menu that is
displayed when you right click a graphic object.

You can also duplicate the selected graphic objects by dragging the objects while holding
down the CTRL key.

Graph, Link and Anchors

Link objects are used to connect graphic objects together and are useful to build graphs.
Examples of graphs are flow charts, UML diagrams or business process diagrams.

To create alink, select the desired type of link in the Toolbox under the Connectors category.
Move the mouse cursor over agraphic object to connect the start of the link. The anchors of
the graphic object are highlighted (they are drawn as small red circles). Move the mouse
cursor over one of the anchors and press the left mouse button. Then, drag the link to another
graphic object to connect the end of the link and choose the end anchor in the same way.

Once alink is connected to its start and end nodes, the link will be kept connected to the
nodes when they are moved or resized.

Links can have several shapes:. straight, orthogonal, oblique or free. Thelink shapeis
controlled by the ShapeType property. See Link Objects for a complete description of the
Link class.

Links are connected to graphic objects through anchors. Anchors are represented by the
class Anchor and its subclasses. By default, most graphic objects have anchors on the top,
left, right and bottom sides, in addition to one floating anchor that follows the shape of the
node.

See Introducing Link and Anchor Classes and Creating Diagrams with Nodes and Links for
more information on links and anchors.

Graph Layout

IBM

When you create complex graphs with nodes and links, it is often useful to arrange them
automatically to obtain a clear display. To do this, IBM® ILOG® Diagram for NET
provides a powerful set of graph layout algorithms.

To choose a graph layout algorithm, click the background of the Designer view to select the
Group that contains the diagram.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 259

Building Diagrams and User Symbols Inside Visual Studio

In the Property Window, edit the GraphL ayout property to show the Graph Layout dialog
box. This dialog box lets you choose the type of layout that you want to apply and allows
you to customize the parameters of the layout. Once you have chosen and customized the
layout, select Set Graph Layout if you want to apply the layout later, or Set and Execute
Layout if you want to apply the layout immediately.

You can re-execute the graph layout algorithm at any time using the command
Format>Execute Graph Layout available on the Diagram toolbar.

In addition to the GraphL ayout property, you can set the LinkL ayout property to choose
and customize a second layout algorithm that will only route the links of the diagram so asto
avoid crossings with nodes and other links, without moving the nodes. Asfor the graph
layout, you can re-execute the link layout at any time using the Execute Link Layout
command.

See Graph Layout Algorithms for more information on graph layout algorithms.

Importing Vector Graphics in SVG or IVN Format

When creating a diagram or a user symbol in the Diagram Designer, you can import filesin
the SVG or IVN format (the XML format for storing diagramsin

IBM® ILOG® Diagram for .NET). To do this, select Diagram>Import File from the menu
bar. You can import afilein two different ways:

[By creating asingle Image object that displaysthe content of the file. Thisis useful when
you have to create a background for your diagram on which you will not interact,

or

[—ih amode where each graphic object becomes available as a member of your class, asif
you had dragged them from the Tool box.

To learn more about the SV G support in IBM ILOG Diagram for .NET see Importing SVG
Files. For more information onthe IVN format see Serializing and Deserializing a Diagram
in XML.

Printing a Diagram

It is possible to print the diagrams or symbols that you create with the Diagram Designer
using the commands File>Print, File>Print Preview and File>Page Settings available from
the menu bar.

For more information on the printing dialog box see Using Predefined Printing Dialog
Boxes.

260 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Diagram Designer Commands

Diagram Desig

IBM

ner Commands

Zoom Commands

Toolbar

Command . Description

icon
Pan 0 Scrolls the diagram design view by panning.
Zoom Area Zooms the diagram design view by dragging a

rectangle to select the zoom area.

Fit to Contents

Zooms the diagram design view to make all the
graphic objects visible.

=

Reset Zoom 0o, Resets the zoom of the diagram design view to
B 100%.

Zoom In 1_{ Zooms in the diagram design view.

Zoom Out _{ Zooms out the diagram design view.

Grid and Alignment Commands

Command Toolbar Description

icon
Show Grid Shows or hides the magnetic grid.
Align to Grid -Et Moves the graphic object so that the top left
corner is aligned to the grid.
Align Lefts = Aligns the left border of the selected graphic

objects to the left border of the primary selection.

Align Centers

Aligns the center of the selected graphic objects
to the center of the primary selection.

Align Rights

=

Aligns the right border of the selected graphic
objects to the right border of the primary
selection.

Align Tops

=
—+|

Aligns the top of the selected graphic objects to
the top of the primary selection.

ILOG DIAGRAM FOR

.NET 2.0 — PROGRAMMING 261

Building Diagrams and User Symbols Inside Visual Studio

262

Command Toolbar Description
icon
Align Middles a Aligns the middle of the selected graphic objects
to the middle of the primary selection.
Align Bottoms il Aligns the bottom of the selected graphic objects
- to the bottom of the primary selection.
Make Same Width = Resizes the selected graphic objects to the
e same width of the primary selection.
Make Same Height ” Resizes the selected graphic objects to the
+..

same height of the primary selection.

Make Same Size

Resizes the selected graphic objects to the
same size of the primary selection.

Size to Grid

Resizes the selected graphic objects to make
the size fit the grid.

Make Horizontal Spacing

Moves the selected graphic objects so that the

Equal horizontal spacing between them is the same.

Increase Horizontal Spacing Hle Moves the selected graphic objects to increase
bl the horizontal spacing between them.

Decrease Horizontal Spacing ole Moves the selected graphic objects to decrease
** the horizontal spacing between them.

Remove Horizontal Spacing b Moves the selected graphic objects to remove
+4

the horizontal spacing between them.

Make Vertical Spacing Equal

Moves the selected graphic objects so that the
vertical spacing between them is the same.

IBM

Increase Vertical Spacing Lt Moves the selected graphic objects to increase
& the vertical spacing between them.
Decrease Vertical Spacing o+ Moves the selected graphic objects to decrease
Sl the vertical spacing between them.
Remove Vertical Spacing at Moves the selected graphic objects to remove
* the vertical spacing between them.
Flip Horizontal o Flips the selected graphic objects horizontally.
=
Flip Vertical i Flips the selected graphic objects horizontally.
ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Diagram Designer Commands

Command Toolbar Description
icon
Rotate Left i Rotates the selected graphic objects by 45
= degrees to the left.
Rotate Right = Rotates the selected graphic objects by 45
=1 degrees to the right.
Text Commands
Command Toolbar Description
icon
Align Text Bottom Aligns the text in a graphic object to the bottom.
Align Text Center = Aligns the text horizontally to the center of the
= graphic object.
Align Text Left = Aligns the text to the left of the graphic object.
Align Text Middle 1 Aligns the text vertically in the middle of the
i graphic object.
Align Text Right = Aligns the text to the right of a graphic object.
Align Text Top = Aligns the text to the top of a graphic object.
Bold B Sets the text of the graphic object in bold.
Italic I Sets the text of the graphic object in italic.
Underline u Underlines the text of the graphic object.
Path Commands
Command Toolbar Description
icon
Object to Path Converts a graphic object to a Path object.
Stroke to Path Converts the outline of a graphic object to a
Path object.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 263

Building Diagrams and User Symbols Inside Visual Studio

264

Command Toolbar Description
icon
Union C:I Creates a Path object union of several graphic
objects.
Difference Replaces the selected objects by a single Path

with a geometry that corresponds to the shape
of the primary selected object from which all the
intersection with other objects have been
removed.

Intersection

Replaces the selected objects by a single Path
with a shape that corresponds to the intersection
of all the selected objects.

Exclusion

Replaces the selected objects by a single Path
with a geometry that corresponds to the shape
of all the selected objects from which all the
intersection have been removed.

Merge

Creates a Path object composed of several
disconnected figures representing the geometry
of the selected objects.

Break

Converts a Path object composed of several
disconnected figures into several Path objects.

Object Creation Commands

IBM

Command Toolbar Description
icon
Create Arc Creates an Arc object.
Create Closed Curve e Creates a ClosedCurve object.
Create Curve B Creates a Curve object.
Create Ellipse S Creates an Ellipse object.
Create Filled Closed Curve @ Creates a fllled ClosedCurve object.
Create Filled Ellipse < Creates a filled Ellipse object.
ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Diagram Designer Commands

Command Toolbar Description
icon
Create Filled Polygon @ Creates a filled Polygon object.
Create Filled Rectangle = Creates a filled Rect object.
Create FreeHand Shape g% Creates a Curve object.
Create Image ﬂ Creates an Image object.
Create Link :\n Creates a Link object.
Create Pie o Creates a Pie object.
Create Polygon Z Creates a Polygon object.
Create Polyline - Creates a Polyline object.
Create Rectangle] Creates a Rect object.
Create Text ab| Creates a Text object.
Printing Commands
Command Toolbar Description
icon
Print Prints the diagram.
Print Preview Opens the print preview dialog box.
Page Setup Opens the page setup dialog box.
ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 265

Building Diagrams and User Symbols Inside Visual Studio

266

IBM

Editing Commands

Cut % Cuts the selected graphic objects to the
= clipboard.

Copy e Copies the selected graphic objects to the
[| clipboard.

Paste IE Pastes graphic objects from the clipboard.

Delete Deletes the selected graphic objects.

Order Commands

Bring To Front

Brings the selected graphic object to the front.

Send To Back

Sends the selected graphic object to the back.

Send Forward

Sends the selected graphic object forward.

Send Backward

Sends the selected graphic object backward.

Group Commands
Group As Group % Groups the selected graphic objects in a Group
[} object.
Group As GraphicSymbol % Groups the selected graphic objects in a
[} GraphicSymbol object.
Ungroup IEI Ungroups the selected graphic objects.
ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Diagram Designer Commands

IBM

Nudge Commands

Command Icon K'eyb'oard Description

binding

Key Move Left Left Moves the selected graphic
objects to the left of the grid
size.

Key Move Right Right Moves the selected graphic
objects to the right of the
grid size.

Key Move Up Up Moves the selected graphic
objects on top of the grid
size.

Key Move Down Down Moves the selected graphic
objects down to the grid size

Key Nudge Left 5 CTRL+Left Moves the selected graphic

objects to the left by 1 pixel.

Key Nudge Right i CTRL+Right Moves the selected graphic

objects to the right by 1
pixel.

Key Nudge Top 1 CTRL+Up Moves the selected graphic

objects up by 1 pixel.

Key Nudge Bottom CTRL+Down Moves the selected graphic

1 . ;
objects down by 1 pixel.

Key Nudge Width Increase CTRL+Shift+Ri | Increases the width of the

ght selected graphic objects by

1 pixel.
Key Nudge Width Decrease CTRL+Shift+Lef | Decreases the width of the
t selected graphic objects by

1 pixel.
Key Nudge Height Increase CTRL+Shift+Do | Increases the height of the
wn selected graphic objects by

1 pixel.

Key Nudge Height Decrease CTRL+Shift+Up | Decreases the height of the
selected graphic objects by
1 pixel.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 267

Building Diagrams and User Symbols Inside Visual Studio

Command Icon K_eyt_)oard Description

binding

Key Size Width Increase Shift+Right Increases the width of the
selected graphic objects by
the grid size.

Key Size Width Decrease Shift+Left Decreases the width of the
selected graphic objects by
the grid size.

Key Size Height Increase Shift+Down Increases the height of the
selected graphic objects by
the grid size.

Key Size Height Decrease Shift+Up Decreases the height of the
selected graphic objects by
the grid size.

Miscellaneous

Command Toolbar Description

icon

Apply Style o Applies the style of the graphic object that you

clicked on to the selected graphic objects.

Copy Style 2t Copies the style of the selected graphic object to

all the graphic objects you click on.

Edit Anchors 3 Sets the anchors edition mode.

Export As... aﬁl Saves the diagram to the IVN format.

Import File... & Imports an SVG or IVN file in the diagram.

Select Shape s Sets the selection mode

Show Invisible Objects Shows or hides all the objects marked as

invisible.

268 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

XML Serialization

In IBM® ILOG® Diagram for .NET the persistence of adiagram isimplemented as an
XML serialization. For thispurpose, IBM ILOG Diagram for .NET provides a generic, fully
customizable XML serialization framework to support shared references resolution, custom
types and several levels of customization during the serialization process.

InIBM ILOG Diagram for .NET the XML documents are standard XML files that have the
. ivn filename extension. GZIP compressed files are also natively supported and the
filename extension is . ivnz (for GZIP compressed file).
In This Section
Serializiing and Deserializing a Diagramin XML
Describes how to serialize and deserialize a diagram to the
IBM ILOG Diagram for NET XML format.
Under standing the XML Serialization Mechanism
Goes through the low-level serialization APl and explainsthe XML serialization
mechanism
Customizing the XML Serialization
Introduces the several levels of customization during the XML serialization process.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 269

XML Serialization

Serializing and Deserializing a Diagram in XML

This section describes how to serialize and deserialize a diagram to the
IBM® ILOG® Diagram for NET XML format.

InIBM ILOG Diagram for .NET the API supports the XML serialization through two
levels:

high-level API: allows you to serialize and deserialize adiagram quickly and easily by
means of the SaveAsXml(Stream stream) and FromXml Stream(Stream stream) methods
of the GraphicObject. In most cases these methods will be used to serialize or deserialize
adiagram.

C_low-level API: see Understanding the XML Serialization Mechanism.

Serializing a Diagram
The following example illustrates the required steps to serialize a diagram.

Group group = new Group() ;
group.Objects.Add (new Rect (0, 0, 75, 110));
group.Objects.Add (new Ellipse (10, 30, 70, 50));
FileStream output = null;
try {
output = new FileStream(@"c:\tmp\contents.ivn", FileMode.Create) ;
group . SaveAsXml (output) ;
} catch (Exception e)
// TODO: handle exception
} finally {
if (output != null) output.Close();
}

Dim group As Group = New Group
group.Objects.Add (New Rect (0, 0, 75, 110))
group.Objects.Add (New Ellipse (10, 30, 70, 50))
Dim output As FileStream = Nothing
Try
output = New FileStream("c:\tmp\contents.ivn", FileMode.Create)
group.SaveAsXml (output)
Catch e As Exception
Finally
If Not (output Is Nothing) Then
output.Close
End If
End Try

In this example, the graphical objects are created programmatically and added to a Group
instance. Then, afile stream is opened on the destination file and the group is serialized in
this stream by means of the SaveAsXml method.

270 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding the XML Serialization Mechanism

Deserializing a Diagram
The following example illustrates the required steps to deserialize a diagram.

FileStream input = null;
GraphicObject container = null;
try {
input = new FileStream(@"c:\tmp\contents.ivn",
FileMode.Open,FileAccess.Read) ;
container = GraphicObject.FromXmlStream (input) ;
} catch (Exception e)
// TODO: handle exception
} finally {
if (input != null) input.Close();
}

Dim input As FileStream = Nothing
Dim container As GraphicObject = Nothing
Try
input = New FileStream("c:\tmp\contents.ivn", FileMode.Open,
FileAccess.Read)
container = GraphicObject.FromXmlStream (input)
Catch e As Exception
Finally
If Not (input Is Nothing) Then
input.Close
End If
End Try

In this example, an input stream is opened on afile and a container is deserialized from the
stream by means of the FromXmlStream static method.

In the following sections, you will go through the low-level XML serialization APl and see
how the serialization process can be controlled and customized.

Understanding the XML Serialization Mechanism

The serialization of agraphical objects hierarchy is performed by means of the XML
serialization APl availablein IBM® ILOG® Diagram for .NET.

This section goes through the low-level serialization APl and explainsthe XML seriaization
mechanism.

The XML seridlization framework in IBM ILOG Diagram for .NET has been designed as a
generic XML serialization framework. As such, it supports several levels of customization
that allow you to control the serialization process. For this purpose, the API providesthe
DiagramXmlSerializer class which is the low-level entry point of the serialization process.
This class supports both the serialization (output) and the deserialization (input) and alows
you to customize and control the serialization process.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 271

XML Serialization

272

IBM

The XML serialization framework is composed of the following types:

[_DiagramXmlSerializer: represents the entry point of the serialization process. It
manages and performs the serialization of adiagram. It handles shared references,
custom types and assemblies, and extender-provided properties resolution.

[Xml SerializationManager: provides services for managing the XML serialization
process: type resolution, CLR versus XML namespace mapping, XML element creation,
naming, context stack, and so on.

[ObjectXmlSerializerBase: base class for classes that effectively performs XML
serialization of atype. Several concrete implementations are provided for arrays, lists,
value types and objects.

[XmlSerializerContext: provides contextual information to ObjectXmlSerializer Base
instances. These instances are handled by means of a stack by the
XmlSerializationM anager and they are typically used to pass contextua information
between seridlizers.

[_XmlSeriaizationProvider: acts as an ObjectXmlSerializer Base provider to the
XmlSerializationM anager. It manages the search of an ObjectXmlSerializer Basefor a
specified type depending on the current context.

—PropertyDesignerSerializerAttribute: indicates which serializer the serialization manager
should use in order to serialize the property to which this attribute is applied.

The following illustration shows the relationship between the classes and the interfaces that
areinvolved in the XML seriaization.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding the XML Serialization Mechanism

XmlSeriakzerContext

{provides contextusl
information to
DizgrammSenzizer's)

G ILOG. Diagrammer. Senalization

D System.Companentbodel Design. Seralzation

DiagramXm Semalzer
ObjectXm|SeralizerBase

{performs XML senzlzation)
{senzlizes objects into XML}

Uses Gats
1
XmlSerializationkanager XmlSerian;li:lPl:nilEl
{provides senvices for
mznzging XML senizlization Aszks forserizlzers {provides ObjectmiSenzlzerBass
processes) instances)
US‘V \55
Property D es ignerSeralizeoittribute DesignerSenaizerittribute
{indicates a senzlzer for the {indicates = senzlizer for the
senzlzation manager to use senzlzation manager to use
to senizlize the propany this to senizlize the type this
attribute is applied to) attribute is applied to)

Introducing the DiagramXmlSerializer Class

The DiagramXmlSerializer classisthe entry point of the XML serialization framework. It
manages the whole process of seriaization, handling shared references, |ExtenderProvider
and type resolution.

Serializing a Diagram Using the DiagramXml|Serializer

The following example shows the required steps to serialize a diagram using the
DiagramXmlSerializer API.

Group group = new Group () ;
group.Objects.Add (new Rect (0, 0, 75, 110));
group.Objects.Add (new Ellipse (10, 30, 70, 50));
DiagramXmlSerializer serializer = new DiagramXmlSerializer() ;
FileStream output = null;
try {
output = new FileStream(@"c:\tmp\contents.ivn", FileMode.Create) ;
serializer.Serialize (group, output) ;
} catch (Exception e)
// TODO: handle exception
} finally {
if (output != null) output.Close();
}

Dim group As Group = New Group
group.Objects.Add (New Rect (0, 0, 75, 110))

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 273

XML Serialization

274 IBM

group.Objects.Add (New Ellipse (10, 30, 70, 50))
Dim serializer As DiagramXmlSerializer = New DiagramXmlSerializer
Dim output As FileStream = Nothing
Try
output = New FileStream("c:\tmp\contents.ivn", FileMode.Create)
serializer.Serialize (group, output)
Catch e As Exception
Finally
If Not (output Is Nothing) Then
output.Close
End If
End Try

In this example, the graphical objects are created programmatically and added to a Group
instance. Then, afile stream is opened on the destination file and the group is serialized in
this stream by a DiagramXmlSerializer instance by means of the Serialize method.

Deserializing a Diagram Using the DiagramXmlSerializer

The following example shows the required steps to deserialize a diagram using the
DiagramXmlSerializer API.

DiagramXmlSerializer serializer = new DiagramXmlSerializer() ;
FileStream input = null;
GraphicObject container = null;
try {
input = new FileStream(@"c:\tmp\contents.ivn",
FileMode.Open, FileAccess.Read) ;
container = serializer.Deserialize (input) as GraphicObject;
} catch (Exception e) {
// TODO: handle exception
} finally {
if (input != null) input.Close() ;
}

Dim serializer As DiagramXmlSerializer = New DiagramXmlSerializer
Dim input As FileStream = Nothing
Dim container As GraphicObject = Nothing
Try
input = New FileStream("c:\tmp\contents.ivn", _
FileMode.Open, FileAccess.Read)
container = CType(serializer.Deserialize (input), GraphicObject)
Catch e As Exception
Finally
If Not (input Is Nothing) Then
input.Close ()
End If
End Try

In this example, an input stream is opened on afile, and the input stream contents are
deserialized by means of the Deserialize method.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Understanding the XML Serialization Mechanism

Structure of an IBM ILOG Diagram for .NET XML Document

The IBM ILOG Diagram for NET XML format follows a declarative programming model.
In thismodel, an object is serialized asan XML element that represents the instance class,
which contains child nodes for every properties that need to be serialized. The child nodes
contain themselves other child nodes that represent their value. This gives origin to the
following sequence:

Class
Property
Class...

For example, the serialization of an Rect instance whose Fill property isa
LinearGradientFill instance gives the following resullt:

1<Rect>

2 <Fill>

3 <LinearGradientFill>...

4 </LinearGradientFill>

5 <J/Fill>

6 </Rect>

Online 1, the element <Rect> represents the class declaration.
On line 2, the element <Fill> represents the Fill property.

Online 3, the element <L inear GradienFill> represents the class declaration of the value of
the Fill property (that is, the value of the Fill property is an instance of the
Linear GradientFill class).

However, the standard Class/Property/Class pattern presents the following exceptions:
property as XML attribute and arrays/list.

When aproperty is being serialized and there is an TypeConverter associated to the
property val ue type supporting string conversion, the property is serialized as an XML
attribute of the class declaration element. For example, the EndColor and StartColor colors
properties of aLinear GradientFill are serialized as:

<LinearGradientFill EndColor="242, 242, 249" StartColor="153, 151, 181" />

Arraysand I List are also exceptions to the standard pattern. When contents of a collection
are serialized, the Item property (or the equivalent) is skipped and therefore the structure is
Class/Class. For example, here isthe serialization of an ArrayList of strings:

<ArrayList>
<Strings>hello</ Strings>

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 275

XML Serialization

<String>world</ String>
<String>!</String>
</ArrayList>

Because class elements are named according to tht short name of the corresponding type, the
XML serialization framework needs away to properly identify atype.

To avoid naming conflict, a mapping between the CLR (Common Language Runtime)
namespaces and the XML namespaces is built: each CLR namespace has a corresponding
XML namespace, and every type from a given namespace will have an XML element
created in the corresponding XML namespace.

The following example illustrates how the CLR namespace System is mapped to the XML
namespace "xmlns: sys" and how any XML element matching atype for the System
namespace is created in the corresponding namespace:

<?xml version="1.0" encoding="utf-8"?>

<idn:grapher .. xmlns:sys="System, mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" xmlns:idn="www.ibm.com/diagramnet">
<sys:String>Hello World</sys:Strings>

</idn:graphers>

The XmlSerializationM anager supports adefault assembly which is mapped to the default
XML namespace. When a default assembly is specified, all typesfrom this assembly (except
possible naming collision) are mapped to the default XML namespace and therefore the
XML elements are created in the default XML namespace.

What is serialized

In order to be serialized, a class must fulfill the following conditions:
it must be public,

it must have a default constructor (see exceptions below),

[the assembly where the type is defined must be accessible.

Note: The default constructor limitation might be raised by providing a custom serializer
for the specified type. See Customizing the XML Serialization for more information about
customizing serialization.

By default, the following items can be serialized using the DiagramXmlSerializer:
[—Public read/write properties of public classes

[Value types, primitive types,

[Arrays, IList,

276 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

C_public reference types via generic seriaization.

Sinceit is an extensible framework, types that are not supported by default can be serialized
by means of a custom ObjectXmlSerializer Base.

In order to reduce the amount of data to serialize, the serializer may skip some properties
which are useless to represent the current state of an instance. In particular, if one the
following conditions occurs, the property will not be serialized:

[the property is not public,

[the property is not read/write,

[the property value has the default value,

[—and/or the ShouldSerialize method for this property returns false,
[the DesignerSerializationVisibility attribute is set to Hidden.

Customizing the XML Serialization

The XML serialization framework in IBM® ILOG® Diagram for .NET supports several
levels of customization to control how adiagram is serialized during the XML serialization
process.

Introducing the ObjectXmlSerializerBase Abstract Class

When a particular class cannot be seriaized because it does not fulfill the requirements
listed in What is serialized, it is necessary to implement a custom serializer that will handle
the class seriaization.

You can write a custom serializer by extending the ObjectXml SerializerBase abstract class,
or by extending one of the concrete implementations provided in the
IBM ILOG Diagram for .NET assembly.

The ObjectXmlSerializer Base abstract class defines the following methods:

public abstract void Serialize (XmlSerializationManager manager,
object instance,
XmlDocument document,
XmlElement parent) ;

public abstract object Deserialize (XmlSerializationManager manager,
XmlDocument document,
object instance,
XmlElement element) ;

The Serialize method is called during the serialization process to dump the current state of
the specified instance into its XML representation.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 277

XML Serialization

278 I B

The parameters are:

[hanager : the Xml SerializationManager instance that manages the serialization process.
It provides services that might be needed to perform the XML seridization (like type
resolution, CLR namespace versus XML namespace mapping resolution, shared
reference resolution, and so on).

[ihstance: the instance to serializein XML.

[_document: the XML document used for the XML serialization. It might be used to
create XML attributes or elements depending on the XML representation.

[parent: The parent XML element in the DOM (Document Object Model). Depending on
the current context, this element represents either the class declaration or the property. A
serializer will typically append a new child element to it for a class declaration
serialization or append a new attribute for a to-string representation.

The Deseriaize method is called during the serialization process to create an instance from
an XML representation.

The parameters are:

[manager: the XmlSerializationM anager instance that manages the deserialization
process. It provides services that might be needed to perform the XML deserialization
(like type resolution, CLR namespace versus XML namespace mapping resolution,
shared reference resol ution, and so on).

[ihstance: the instance to deserialize. This parameter is not null when deserializing an
instance whose properties have been serialized. For example, thisis the case of
properties with a SerializationVisibility.Hidden attribute.

[—document: the XML document containing the XML representation of the instance to
deserialize.

[—dlement: Theroot XML element of the instance XML representation. Depending on the
current context, this element represents either the class declaration or the property.

Writing a Custom Serializer
This section provides step-by-step examples that illustrate how to write a custom serializer.

Thefirst example, Extending the ObjectXmlSerializerBase Abstract Class, shows how to
write a serializer for instances that support string conversion through their TypeConverter
by extending directly the ObjectXmlSerializer Base abstract class.

Note: Thisisa simpler version of the string XML serializer provided in the
IBM ILOG Diagram for .NET assembly.

M ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

The second example, Extending the ObjectXml Serializer Class, shows how to extend the
ObjectXmlSerializer class in order to bypass the default constructor limitation.

Extending the ObjectXmlSerializerBase Abstract Class
This example illustrates how to extend the ObjectXmlSerializer Base abstract class.

The new seriadizer has the following requirements:

[—applies for types that support string conversion (both ways) through their associated
TypeConverter.

[hust writethe "value as string" as an XML attribute when serializing a property, or asan
XML element. In other words, assuming a class called Shape defines a property Fill of
type Color, and an instance of this classis serialized, the expected result is:

<Shape Fill="Red"/>

On the other hand, if a Color instanceis serialized but not in a context of a property, the
expected result is:

<Color>Red</Color>
Now that the requirements have been defined, proceed as follows:

1. Import the Serialization namespace.

using ILOG.Diagrammer.Serialization;
Imports ILOG.Diagrammer.Serialization

2. Declare your new class and extend the ObjectXmlSerializer Base abstract class.

class StringXmlSerializer : ObjectXmlSerializerBase {

public override void Serialize (XmlSerializationManager manager,
object instance,
XmlDocument document,
XmlElement parent)

}

public override object Deserialize (XmlSerializationManager manager,
object instance,
XmlDocument document,
XmlElement objectElement) {
}
1
Class StringXmlSerializer Inherits ObjectXmlSerializerBase

Public Overrides Sub Serialize (ByVal manager As _
XmlSerializationManager, _
ByVal instance As Object, _

ByVal document As XmlDocument,
ByVal parent As XmlElement)

End Sub

Public Overrides Function Deserialize (ByVal manager As

XmlSerializationManager,

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 279

XML Serialization

ByVal instance As Object, _
ByVal document As _
XmlDocument, _

ByVal objectElement As _
XmlElement) As Object

End Function
End Class

3. Implement the Serialize method as follows:

[Get the current Xml SerializerContext from the manager context stack. The
XmlSerializer Context provides information about the current context of the
serialization. It will be used in the next steps.

public override void Serialize (XmlSerializationManager manager,
object instance,
XmlDocument document,
XmlElement parent) {
string val = null;
IDesignerSerializationManager mgr =
(IDesignerSerializationManager)manager;
XmlSerializerContext context =
mgr.Context [typeof (XmlSerializerContext)] as XmlSerializerContext;
Public Overrides Sub Serialize(ByVal manager As XmlSerializationManager,
ByVal instance As Object, _
ByVal document As XmlDocument, _
ByVal parent As XmlElement)

Dim val As String = Nothing
Dim mgr As IDesignerSerializationManager = _
CType (manager, IDesignerSerializationManager)
Dim context As XmlSerializerContext = _
CType (mgr.Context (GetType (XmlSerializerContext)), XmlSerializerContext)

[Check whether the valueit is passed is null. If thisis the case, then it calls the
SerializeNulllnstance method that handles the serialization of null value.

if (instance == null) {
XmlUtilities.SerializeNullInstance (manager,
document,
context,
parent) ;
return;

}

If (instance = Nothing) Then
XmlUtilities.SerializeNullInstance (manager, _

document, _
context, _
parent)
Return
End If

280 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Customizing the XML Serialization

[Check whether thereisan TypeConverter associated with the instance type and whether
it supports conversion to string. If such a converter exists, the value is converted to a
string.

Type objectType = instance.GetType() ;

TypeConverter conv = TypeDescriptor.GetConverter (objectType) ;

if (conv == null || !conv.CanConvertTo (context,typeof (String))) ({
throw new ArgumentException ("No converter found.");

}

val = (string)conv.ConvertTo (context,
CulturelInfo.InvariantCulture,
instance,
typeof (string)) ;
if (val == null) {
throw new ArgumentException ("null conversion") ;
!

Dim objectType As Type = instance.GetType
Dim conv As TypeConverter = TypeDescriptor.GetConverter (objectType)
If ((conv = Nothing)

OrElse Not conv.CanConvertTo (context, GetType(String))) Then
Throw New ArgumentException ("No converter found.")
End If

val = CType (conv.ConvertTo (context, CultureInfo.InvariantCulture, _
instance, GetType (System.String)),String)
If (val = Nothing) Then
Throw New ArgumentException ("null conversion")

End If

The valueis now converted into a string.

To fulfil the second requirement, the serialization context is checked to know whether a
property is being serialized. If thisisthe case, the valueis serialized as an attribute of the
parent element (the attribute name is the property name and the attribute value is the string
value). Otherwise, the value is serialized in the form of a class declaration element and the
value is represented by a child text node.

Note: To create a class declaration element, the XmlSerializationManager class provides
the CreateClassElement method that returns an XmlElement instance properly initialized
for the specified type. This method handles internally the mapping between the CLR
namespace of the type and the corresponding XML namespace.

string name;

PropertyDescriptor pdesc = context != null ?
context .PropertyDescriptor :
null;

if (pdesc != null) {
name = context.PropertyDescriptor.Name;
XmlAttribute attribute = document.CreateAttribute (name) ;
attribute.Value = val;
parent .Attributes.Append (attribute) ;

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 281

XML Serialization

} else { // ... as a TextNode
XmlElement elt = manager.CreateClassElement (document,
objectType) ;
parent .AppendChild(elt) ;
XmlText valElt = document.CreateTextNode (val) ;
elt.AppendChild(valElt) ;

Dim name As String
Dim pdesc As PropertyDescriptor
If (Not (context) Is Nothing) Then
pdesc = context.PropertyDescriptor
Else
pdesc = Nothing;
End If
If (Not (pdesc) Is Nothing) Then
name = context.PropertyDescriptor.Name
Dim attribute As XmlAttribute = document.CreateAttribute (name)
attribute.Value = val
parent.Attributes.Append (attribute)
Else
' ... as a TextNode
Dim elt As XmlElement = manager.CreateClassElement (document,
objectType)
parent.AppendChild (elt)
Dim valElt As XmlText = document.CreateTextNode (val)
elt.AppendChild (valElt)
End If

4. Implement the Deserialize method.

This method implements the reverse logic of the Serialize implementation. To
implement this method proceed as follows:

[Determine in which context the serialization happened: a property or a class declaration.
To do so, the XmlSerializer Context isretrieved and is checked whether thereisa
PropertyDescriptor.

public override object Deserialize (XmlSerializationManager manager,
object instance,
XmlDocument document,
XmlElement objectElement) {
XmlSerializerContext context =
((IDesignerSerializationManager)manager) .
Context [typeof (XmlSerializerContext)] as XmlSerializerContext;
object val = null;
string pvalue = null;
string pname = null;
PropertyDescriptor pdesc = context != null ?
context.PropertyDescriptor : null;
Public Overrides Function Deserialize (ByVal manager As
XmlSerializationManager, _
ByVal instance As Object, _
ByVal document As XmlDocument, _
ByVal objectElement As XmlElement) As
Object
Dim context As XmlSerializerContext =
CType (CType (manager, IDesignerSerializationManager) . _
Context (GetType (XmlSerializerContext)) ,XmlSerializerContext)

282 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

Dim val As Object = Nothing

Dim pvalue As String = Nothing

Dim pname As String = Nothing

Dim pdesc As PropertyDescriptor

If (Not (context) Is Nothing) Then
pdesc = context.PropertyDescriptor

Else
pdesc = Nothing

End If

[Get the value as string in order to convert it. If it isa property, it means that it has been
serialized as an attribute of the objectElement parameter. In this case, the XML attribute
corresponding to the context PropertyDescriptor is retrieved, and if such an attribute
exists, then the property valueisthe attribute value. Otherwise, it checks whether it isa
null value.

If the current serialization context does not specify a PropertyDescriptor, the string
valueis serialized as a class declaration element, in aform like <Color>Red</Color >.

if (pdesc != null) {

pname = context.PropertyDescriptor.Name;

if (objectElement.HasAttribute (pname))
pvalue = objectElement.GetAttribute (pname) ;

if (pvalue == null) ({
XmlNode child = objectElement.FirstChild;
while (child != null && child.NodeType != XmlNodeType.Element)

child = child.NextSibling;
if (child != null &&
XmlSerializationManager.IsNullElement ((XmlElement)child))
return null;
1
} else {

// In this case, objectElement == the class element

if (XmlSerializationManager.IsNullElement (objectElement))
return null;

// We look for the value in a text element

// <objectElement>text value</objectElement>

XmlNode child = objectElement.FirstChild;

while (child != null && child.NodeType != XmlNodeType.Text)
child = child.NextSibling;

if (child != null) { // the value element has been found
pvalue = child.Value;

}

If (Not (pdesc) Is Nothing) Then
pname = context.PropertyDescriptor.Name
If objectElement .HasAttribute (pname) Then
pvalue = objectElement.GetAttribute (pname)
End If
If (pvalue = Nothing) Then
Dim child As XmlNode = objectElement.FirstChild
While ((Not (child) Is Nothing) _
AndAlso (child.NodeType <> XmlNodeType.Element)
child = child.NextSibling

End While
If ((Not (child) Is Nothing) AndAlso _
XmlSerializationManager.IsNullElement (CType (child,XmlElement))) Then

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 283

XML Serialization

Return Nothing
End If
End If
Else
' In this case, objectElement == the class element
If XmlSerializationManager.IsNullElement (objectElement) Then
Return Nothing
End If
' We look for the value in a text element
' <objectElement>text value</objectElement>
Dim child As XmlNode = objectElement.FirstChild
While ((Not (child) Is Nothing) _
AndAlso (child.NodeType <> XmlNodeType.Text)
child = child.NextSibling
End While
If (Not (child) Is Nothing) Then
' the value element has been found
pvalue = child.Value
End If
End If

5. Finally, thestring valueis converted by means of the TypeConverter associated with the
type of the deserialized object. Determining the type of the object being deserialized
depends on the serialization context. If a property is being deserialized, then the type of
the value is the property type given by the PropertyDescriptor. Otherwise (itisnotin a
property context), the typeis given by the XmlElement itself and the type resolution is
performed by the XmlSerializationM anager.

The value is eventually converted into the expected type and the method returns.

if (pvalue != null) {
Type ptype;
if (pdesc != null)
ptype = context.PropertyDescriptor.PropertyType;
else
ptype = manager.ResolveType (objectElement) ;
if (ptype == null) {
string msg = context != null &&
context.PropertyDescriptor != null ?
context .PropertyDescriptor.PropertyType.ToString ()
objectElement .LocalName;
throw new ArgumentException ("Cannot resolve type: " + msg) ;
}
TypeConverter conv = TypeDescriptor.GetConverter (ptype) ;
if (conv == null || !conv.CanConvertFrom(context, typeof (string)))
throw new InvalidOperationException("No string converter for type: " +
ptype) ;
val = conv.ConvertFrom(context, CultureInfo.InvariantCulture,
pvalue) ;

if (val == null)
throw new InvalidOperationException ("Conversion failed") ;
return val;

}

If (Not (pvalue) Is Nothing) Then
Dim ptype As Type
If (Not (pdesc) Is Nothing) Then

284 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

ptype = context.PropertyDescriptor.PropertyType
Else
ptype = manager.ResolveType (objectElement)
End If
If (ptype = Nothing) Then
Dim msg As String
If ((Not (context) Is Nothing) AndAlso _
(Not (context.PropertyDescriptor) Is Nothing)) Then
msg = context.PropertyDescriptor.PropertyType.ToString()

Else
msg = objectElement.LocalName
End If
Throw New ArgumentException(("Cannot resolve type: " + msg))
End If

Dim conv As TypeConverter = TypeDescriptor.GetConverter (ptype)
If ((conv = Nothing) OrElse _

Not conv.CanConvertFrom(context, GetType (System.String))) Then
Throw New InvalidOperationException(("No string converter for type: " +
ptype))
End If

val = conv.ConvertFrom(context,
CultureInfo.InvariantCulture, pvalue)
End If
If (val = Nothing) Then
Throw New InvalidOperationException ("Conversion failed.")
End If
Return val

In order to be recognized by the XmlSerializationProvider as avalid
ObjectXmlSerializerBase, the custom class must be associated with a given type. For more
information see Associating an ObjectXml Serializer Base Implementation with a Given
Custom Type.

Extending the ObjectXmlSerializer Class

The ObjectXmlSerializeris class is a concrete implementation of the

ObjectXmlSerializer Base that manages the serialization of generic reference type,
provided the reference type has adefault constructor. This example shows how to extend the
ObjectXmlSerializer Base to bypass this limitation and be able to serialize Cur sor
instances.

This sampleisasimplified version of the Cursor serializer provided in the
IBM ILOG Diagram for .NET assembly.

Looking at the interface of the ObjectXmlSerializer class, the following methods must be
overridden:

[—S$houldSeridize
Specifies whether the serializer can write the instance.
[—erializeDeclaration

Performs the XML seridization of the class declaration.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 285

XML Serialization

286

IBM

[_Createl nstance

Creates an instance from an XML class declaration.

Since the Cur sor Converter, which isthe TypeConverter implementation associated with
the Cursor class, supports the conversion from byte array to Cur sor, the easiest solution is
to seriaize the byte array that defines the bitmap as a base64 encoded string. However, the
serializer should also handle the case of the predefined cursors declared as Cur sor s static
fields. If the cursor being serialized is a predefined cursor, it is expected to get the reference
to the corresponding static field once deserialized, and not a new instance with the same
bitmap.

To fulfill this requirement, the name of the static field is stored in an XML attribute.
1. Import the Serialization namespace.

using ILOG.Diagrammer.Serialization;
Imports ILOG.Diagrammer.Serialization

2. Extend the ObjectXmlSerializer class.

public class CursorSerializer : ObjectXmlSerializer {
}
Public Class CursorSerializer
Inherits ObjectXmlSerializer
End Class

Because the default implementation of the ShouldSerialize method ensures thereis a
default constructor, the method must be overridden to remove this condition. Therefore, itis
limited to the check of the serialization scope.

protected override bool ShouldSerialize (object obj,
XmlSerializationManager manager,
XmlDocument document,
XmlSerializerContext context) {
return (obj != null) && (obj.GetType() == typeof (Cursor)) ;
}
Protected Overloads Overrides Function ShouldSerialize(ByVal obj As Object, _
ByVal manager As
XmlSerializationManager,
ByVal document As
XmlDocument,
ByVal context As
XmlSerializerContext)
As Boolean
Return ((Not (obj) Is Nothing) AndAlso (Object.ReferenceEquals (obj.GetType, _
GetType (Cursor))))
End Function

3. Implement the class declaration serialization.

Thisisthe purpose of the SerializeDeclaration method. As explained in the introduction
of this example, areference to a predefined cursor (like Cursors.Hand) must be
serialized so that the same reference is returned at deserialization. Thisis performed by
adding an XML attribute named Cur sor s with the cursor name as value. For example,

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

hereistheresult of the serialization of a Cursor instance referencing the Cur sors.Hand
static field:

<Cursor Cursors="Hand" />

To benefit from the services provided by the ObjectXmlSerializer class like shared
reference resolution and type resolution, the class declaration element is created by calling
the base implementation.

XmlElement objectElt =
base.SerializeDeclaration (manager, obj, document, parent, refElt);
// Determine whether it is one of the predefined Cursors
PropertyInfol[] cursors = typeof (Cursors).GetProperties (BindingFlags.Public |
BindingFlags.Static) ;
for (int i = 0; i < cursors.Length; ++i) {
Cursor cursor = (Cursor)cursors[i].GetValue (null, null) ;
if (cursor == ((Cursor)obj)) ({
// Serialize the cursor name as an attribute
string field = cursors[i] .Name;
XmlAttribute attribute = document.CreateAttribute ("Cursors") ;
attribute.vValue = field;
objectElt.Attributes.Append (attribute) ;
return objectElt;

}
}

Dim objectElt As XmlElement = _
MyBase.SerializeDeclaration (manager, obj, document, parent, refElt)
Dim cursors As PropertyInfo() = _
GetType (Cursors) .GetProperties (BindingFlags.Public Or BindingFlags.Static)
Dim i As Integer = 0
While i < cursors.Length
Dim cursor As Cursor = _
CType (cursors (i) .GetValue (Nothing, Nothing), Cursor)
If cursor = CType(obj, Cursor) Then
Dim field As String = cursors (i) .Name
Dim attribute As XmlAttribute = _
document .CreateAttribute ("Cursors")
attribute.Value = field
objectElt.Attributes.Append (attribute)
Return objectElt
End If
1++
End While

If it isacustom cursor, the bitmap data are encoded into a base64 string and stored in atext
node of a child node named data. For example, here is the result of the serialization of a
custom cursor (note that the base64 encoded string is partially shown below):

<Cursor>
<data>AAACAAEAI..</data>
</Cursor>

XmlElement propElt = document.CreateElement (objectElt.Prefix, "data",

objectElt .NamespaceURI) ;
byte[] data = (bytel[])Converter.ConvertTo (obj, typeof (bytell));
string base64 = Convert.ToBase64String(data) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 287

XML Serialization

288 IBM

XmlText textNode = document.CreateTextNode (baseé64) ;

propElt.AppendChild (textNode) ;

objectElt.AppendChild (propElt) ;

return objectElt;

Dim propElt As XmlElement = document.CreateElement (objectElt.Prefix, _
"data", objectElt.NamespaceURI)

Dim data As Byte() = CType (Converter.ConvertTo (obj, GetType (Byte())),_

Byte())

Dim base64 As String = Convert.ToBase64String(data)

Dim textNode As XmlText = document.CreateTextNode (base64)

propElt.AppendChild (textNode)

objectElt.AppendChild (propElt)

Return objectElt

4. Finally, thelast step isto write the deserialization code. Since the Cursor class does not
define adefault constructor, the way an instance is created by the ObjectXmlSerializer
class needs to be changed to take into account the new declaration element written
during the serialization. To do so, the method Createl nstance must be overridden. The
purpose of this method isto return an instance of the specified type for the XmlElement
given as parameter.

The overridden implementation first checks whether thereisa Cursors XML attribute
and try to get the corresponding predefined cursor if it isthe case. Otherwise, it looks for
a<data> child node and convert the base64 string to a byte array and creates a Cur sor
from it thanks to the Cur sor Converter class:

protected override object
CreateInstance (IDesignerSerializationManager manager,
XmlDocument document,
Type objType,
string name,
XmlElement objectElt) ({
// Determine whether it is one of the predefined Cursors
if (objectElt.HasAttribute ("Cursors")) ({
string field = objectElt.GetAttribute ("Cursors");
PropertyInfo pinfo = typeof (Cursors) .GetProperty(field,
BindingFlags.Public | BindingFlags.Static);
if (pinfo != null)
return pinfo.GetValue(null, null);
else
throw new InvalidOperationException("Cannot resolve cursor " + field);
}

// else deserialize the bitmap data
XmlNode node = objectElt.FirstChild;

while (node != null && !node.LocalName.Equals("data")
node = node.NextSibling;
if (node != null) {
XmlElement dataElt = (XmlElement)node;
string value = (string) ((XmlText)dataElt.FirstChild) .Value;

value = XmlUtilities.FixBase64ForImage (value) ;
if (value.Length > 0) {
byte[] bitmapData = new byte[value.Lengthl] ;
bitmapData = Convert.FromBase64String(value) ;
Cursor cursor = (Cursor)Converter.ConvertFrom(bitmapData) ;
return cursor;

}

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Customizing the XML Serialization

}

throw new ArgumentException ("Cannot create Cursor from XmlElement: " +
objectElt + ".");
}
Protected Overloads _
Overrides Function CreateInstance (ByVal manager As
IDesignerSerializationManager, _
ByVal document As XmlDocument, _
ByVal objType As Type, _
ByVal name As String,

ByVal objectElt As XmlElement) As Object
If objectElt.HasAttribute ("Cursors") Then

Dim field As String = objectElt.GetAttribute ("Cursors")
Dim pinfo As PropertyInfo _
= GetType (Cursors) .GetProperty (field, BindingFlags.Public Or
BindingFlags.Static)
If Not (pinfo Is Nothing) Then
Return pinfo.GetValue (Nothing, Nothing)
Else
Throw New InvalidOperationException ("Cannot resolve cursor " + field)
End If
End If
Dim node As XmlNode = objectElt.FirstChild
While Not (node Is Nothing) AndAlso Not node.LocalName.Equals ("data")
node = node.NextSibling
End While
If Not (node Is Nothing) Then
Dim dataElt As XmlElement = CType (node, XmlElement)

Dim value As String = CType (CType (dataElt.FirstChild, XmlText) .Value,
String)

value = XmlUtilities.FixBase64ForImage (value)
If value.Length > 0 Then
Dim bitmapData (value.Length) As Byte
bitmapData = Convert.FromBase64String (value)

Dim cursor As Cursor = CType (Converter.ConvertFrom(bitmapData), Cursor)
Return cursor
End If
End If
Throw New ArgumentException ("Cannot create Cursor from XmlElement: " +

objectElt + ".")
End Function

Once the new serializer classiswritten, it needs to be associated with atype in order to be
taken into account during the search of the ObjectXmlSerializer Base.

Depending on the context, the following solutions are available:
[Associating an ObjectXml Serializer Base | mplementation with a Given Custom Type

[Associating an ObjectXml Serializer Base |mplementation with a Given Type at Property
Level

[—Providing an ObjectXml SerializerBase Implementation Through a Custom
| SerializationProvider

Associating an ObjectXmlSerializerBase Implementation with a Given Custom

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 289

XML Serialization

290

I B M

Type

When an instance is serialized, the Xml SerializationProvider tries to find an
ObjectXmlSerializer Base implementation suitable for the given type. You can specify the
ObjectXmlSerializer Base to use for a specific type by means of the
System.ComponentM odel.Design.Serialization.Designer Serializer Attribute class.

For exampl e, the following example shows how to set MyXmlSerializer class asthe
ObjectXmlSerializer Base implementation to be used to serialize MyGraphicObject class.
[DesignerSerializerAttribute (typeof (MyXmlSerializer),

typeof (ObjectXmlSerializerBase))]
public class MyGraphicObject : GraphicObject {

}

Thisisthe simplest solution when you have access to the source code of the class. It requires
no operation other than tagging the class with the attribute.

Associating an ObjectXmlSerializerBase Implementation with a Given Type at
Property Level

In some cases it might be necessary to change the ObjectXmlSerializer Base
implementation to use at property level without impacting the default association. For
example, when the value of a property refers to predefined constant fields and must be
referenced again after deserialization. In this case, the XML serialization framework
provides the PropertyDesignerSerializerAttribute that acts as the

Designer Serializer Attribute but at property level.

The following code extract setsthe Cursor Serializer classimplemented in the example
Extending the ObjectXmiSerializer Class as the ObjectXmlSerializer Base implementation
to be used to serialize the Cursor property of MyGraphicObject class:

public class MyGraphicObject : GraphicObject ({

[PropertyDesignerSerializer (typeof (CursorSerializer),
typeof (ObjectXmlSerializerBase))]
public Cursor Cursor {

}
}

This solution requires no operation other than tagging the property of your class with the
attribute.

Providing an ObjectXmlSerializerBase Implementation Through a Custom ISe-
rializationProvider

If the logic of the default XmlSerializationProvider has to be changed, a new

| SerializationProvider implementation can be provided to the Xml SerializationM anager.
Thisis performed by means of the

I Designer SerializationProvider. AddSerializationProvider method.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Customizing the XML Serialization

For example, this can be the case of a custom ObjectXmlSerializer Base implementation
that must be associated with a type for which the source code is not available (therefore the

first solution cannot be applied).

The following example shows how to use the string serializer implemented in the example
Extending the ObjectXml SerializerBase Abstract Class.

public class MySerializationProvider : ISerializationProvider ({
public object GetSerializer (IDesignerSerializationManager manager,
object currentSerializer,
Type objectType,
Type serializerType) {

if (serializerType == typeof (ObjectXmlSerializerBase)) {
// implements the logic depending on objectType.
if (objectType == ...) {

return new StringXmlSerializer ();

1
}
return null;
1
1

XmlSerializationManager mgr = new XmlSerializationManager () ;
((IDesignerSerializationManager)mgr) .AddSerializationProvider (new

MySerializationProvider()) ;
DiagramXmlSerializer s = new DiagramXmlSerializer (mgr) ;

MemoryStream output = new MemoryStream() ;
s.Serialize (instance, output) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 291

XML Serialization

292 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Animating Graphic Objects

IBM® ILOG® Diagram for .NET provides arich set of graphic objects that can be used to
build attractive user interfaces. Animation can be used to improve the user experience by
creating smooth transitions between states or by providing helpful visual cues.

In This Section

Animation Overview
Introduces the animation process.

Controlling Animation Execution

Introduces the animation engine.
Animating a Property

Introduces the PropertyAnimation class.
Grouping Animations

Explains how to group animations.

Using Animation as a Timer
Introduces the TimerAnimation class.

Animating a Graphic Object Along a Path
Introduces the M otionPathA nimation class.

Animation Types

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 293

Animating Graphic Objects

Describes al the animations available in IBM ILOG Diagram for .NET.

Creating a Custom Animation
Explains how to write your own animation class.

Animation Overview

Animation is the process of displaying quickly a series of images. Each imageis slightly
different from the last one to give theillusion of a moving scene.

Animation can be used to improve the user experience, by providing transitions between
states. For example, if you want to make an object disappear, instead of simply hiding it, you
can make it fade out by changing its opacity.

IBM® ILOG® Diagram for .NET provides a built-in animation framework that eases the
creation of animations. It is composed of an animation engine, and a set of predefined
animations. The animation engine is represented by the Animator class. It allows you to
control and monitor animations at the application level. In most cases, users do not have to
access the animation engine. An Animation is a subclass of the Animation class.

It can be started, stopped, suspended. When an animation is started, the animation engine
animates it by calling its animation method repeatedly.

Note: The animation framework can also be used to animate custom objects, not only
graphic objects.

Controlling Animation Execution

Animations are scheduled by the animation engine. There is one animation engine per
application. The animation engine class is represented by the Animator class which can be
used to monitor animations or to fix the animations frame rate at the application level.

To fix the animations frame rate, use the FramesPer Seconds property.

To monitor animations, use the BeforeAnimation and AfterAnimation events.

294 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Animating a Property

The animation engine schedul es animations depending on their running status. The
animation status is given by the Status property and can have the following values:

Started The animation has been started and is running.
Suspended The animation has been suspended.
Stopped The animation has been stopped.

To start an animation, use the Start method.

To suspend a running animation, use the Suspend method. A suspended animation can be
resumed by calling the Sart method.

To stop a running animation, use the Stop method.

Each animation can be monitored by using the animation events: Started, Stopped,
Suspended, Resumed, Finished, BeforeAnimating and AfterAnimating.

There are two different types of animations:
[Animations whose duration is specified.

Thistype of animation is represented by the BoundedAnimation class. The following
table lists several properties of the BoundedAnimation class that can be used to control
the animation execution.

Duration Gets or sets the animation duration.

AutoReverse Indicates if the animation should play in reverse at the end.

RepeatCount The number of times the animation will be run before ending. A
negative value can be used to specify that the animation will
never end.

HoldEnd Indicates whether the animation should go back to the state
before playing the animation.

[—_Animation whose duration is infinite.

Thistype of animation is represented by the TimerAnimation class. For more details see
Using Animation asa Timer.

Animating a Property

In most cases, animating a graphic object means changing one or several of its propertiesto
give theillusion of animation. The base class for animating propertiesis the
PropertyAnimation class. This class can be used to animate any kind of property of any
object. For example, you can use it to move a graphic object by modifying its location or to

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 295

Animating Graphic Objects

change the color of a SolidFill object. The PropertyAnimation class has several subclasses
dedicated to the animation of properties of a specific type. For acomplete list of
PropertyAnimation subclasses, see Animation Types.

In this section you are going to see how to animate the opacity of a graphic object to make it
fade out.

The opacity of agraphic object is given through the Opacity property, whose typeis float.
The animation class responsible for animating float values is the FloatAnimation class. The
FloatAnimation class produces float val ues between a starting value and an ending value in
agiven duration. In this case, the starting value is 1, which means that the object is opaque,
and the ending value is 0, which means that the object is transparent. The animation duration
isfixed to 1 second: the animation interpolates float values from 0 to 1 within this duration
and then is automatically stopped.

public void StartFadeOutAnimation (GraphicObject obj)

{

TimeSpan duration = TimeSpan.FromSeconds (0.5f) ;

FloatAnimation animation = new FloatAnimation(obj, "Opacity", 1£f, Of,
duration) ;

animation.Start () ;
}

Public Sub StartFadeOutAnimation (ByVal obj As GraphicObject)

Dim duration As TimeSpan = TimeSpan.FromSeconds(0.5!)

Dim animation As FloatAnimation = New FloatAnimation (obj, Opacity, 1!,
0!, duration)

animation.Start
End Sub

For some property types, like enumeration or string, it is not possible to interpol ate values. If
you need to animate a property that cannot be interpolated, you can use the SetAnimation
class. The SetAnimation class allows you to specify a collection of pairs (duration, value)
that is used to animate the property instead of using interpolation.

The following example shows how to animate the Text property of a GraphicObject using
the SetAnimation class.

public void StartTextAnimation (GraphicObject obj)

{

AnimationFrame[] frames = new AnimationFrame[] ({
new AnimationFrame (TimeSpan.FromSeconds (0), "Zero"),
new AnimationFrame (TimeSpan.FromSeconds (1), "One"),
new AnimationFrame (TimeSpan.FromSeconds (2), "Two"),
new AnimationFrame (TimeSpan.FromSeconds (3), "Three")
}i
SetAnimation animation = new SetAnimation(obj, "Text", frames);

animation.Start () ;

}

Public Sub StartTextAnimation (ByVal obj As GraphicObject)

Dim frames() As AnimationFrame = New AnimationFrame() {
New AnimationFrame (TimeSpan.FromSeconds (0), "Zero"),
New AnimationFrame (TimeSpan.FromSeconds (1), "One"),
New AnimationFrame (TimeSpan.FromSeconds(2), "Two"),

296 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Grouping Animations

New AnimationFrame (TimeSpan.FromSeconds (3), "Three")

}

Dim animation As SetAnimation = New SetAnimation(obj, "Text",

animation.Start

End Sub

frames)

Grouping Animations

When building complex animations, it may be useful to group different animationsinto a
single one to make the programming easier. For example, if you want to create an animation
that rotates a graphic object and changesitsfill color at the same time, you can group both
animations into an AnimationGroup.

public void StartAnimation (Shape obj)

{

}

TimeSpan duration = TimeSpan.FromSeconds (1) ;
AnimationGroup animation = new AnimationGroup () ;

animation.Add (new TransformAnimation (obj, "Transform",
obj.Transform, 90f,

obj.Location, duration)) ;

So0lidFill fill = new SolidFill (Color.Red) ;

obj.Fill = £ill;

animation.Add (new ColorAnimation(fill, "Color", fill.Color,
Color.Blue, duration)) ;

animation.Start () ;

Public Sub StartAnimation (ByVal obj As Shape)

Dim duration As TimeSpan = TimeSpan.FromSeconds (1)
Dim animation As AnimationGroup = New AnimationGroup

animation.Add (New TransformAnimation (obj, Transform, _
obj.Transform, _

90!, obj.Location, _
duration))

Dim £ill As SolidFill = New SolidFill (Color.Red)

obj.Fill = f£ill

animation.Add (New ColorAnimation(fill, Color, _
fill.Color, _
Color.Blue, duration))

animation.Start ()

End Sub

Animations added to an AnimationGroup are executed in parallel. This means that when a
group of animations starts, every child animation also starts. To simulate animations run in

IBM

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

297

Animating Graphic Objects

series, you can use the Begin property to specify that an animation begins after a specified
amount of time after it has been started.

The following example shows how to create an animation that will animate the X coordinate
from 0 to 100 during 1 second, then the Y coordinate from 0 to 100 during 1 second.

public void StartAnimation (Shape obj)

{

TimeSpan duration = TimeSpan.FromSeconds (1) ;
AnimationGroup animation = new AnimationGroup () ;

FloatAnimation xAnim = new FloatAnimation(obj, "X", 0f, 100f, duration);
animation.Add (xAnim) ;

FloatAnimation yAnim = new FloatAnimation(obj, "Y", 0f, 100f, duration);
yAnim.Begin = xAnim.GetActualDuration() ;
animation.Add (yAnim) ;

animation.Start () ;

}
Public Sub StartAnimation (ByVal obj As Shape)
Dim duration As TimeSpan = TimeSpan.FromSeconds (1)

Dim animation As AnimationGroup = New AnimationGroup

Dim xAnim As FloatAnimation = New FloatAnimation (obj, X, 0!, 100!, duration)
animation.Add (xAnim)

Dim yAnim As FloatAnimation = New FloatAnimation(obj, Y, 0!, 100!, duration)
yAnim.Begin = xAnim.GetActualDuration
animation.Add (yAnim)

animation.Start ()
End Sub

Grouping animations eases the control of the animation execution. To start, suspend or stop
an animation, you have just to call the corresponding method on the group rather than on
each animation.

Using Animation as a Timer

The TimerAnimation classis an animation that can be used as atimer. An event is triggered
at fixed intervals and the animation runs until it has been explicitly stopped by calling the
Stop method.

Use the Timer Animation class when you do not know the duration of the animation, or
when you want to animate an object at regular intervals.

298 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Animating a Graphic Object Along a Path

Animating a Graphic Object Along a Path

The MotionPathAnimation class allows you to animate a GraphicObject along a PathData.
The following example moves a rectangle in order to describe an ellipse.

public void StartAnimation (GraphicObject obj)

{

TimeSpan duration = TimeSpan.FromSeconds (10f) ;

PathData path = new PathData() ;
path.AddEllipse (new Rectangle2D(0, 0, 200, 200));

MotionPathAnimation animation = new MotionPathAnimation (obj, path,
duration) ;

animation.RepeatCount = -1;

animation.Start () ;
}
Public Sub StartAnimation (ByVal obj As GraphicObject)

Dim duration As TimeSpan = TimeSpan.FromSeconds (10!)

Dim path As PathData = New PathData
path.AddEllipse (New Rectangle2D(0, 0, 200, 200))

Dim animation As MotionPathAnimation _

= New MotionPathAnimation (obj, path, duration)
animation.RepeatCount = -1

animation.Start
End Sub

Animation Types

IBM

This section describes all the animations that are provided in
IBM® ILOG® Diagram for .NET.

Class Type Description

FloatAnimation Bounded Animates a float property by interpolating
between two values.

DoubleAnimation Bounded Animates a double property by interpolating
between two values.

IntAnimation Bounded Animates an int property by interpolating
between two values.

Point2DAnimation Bounded Animates a Point2D property by interpolating
between two values.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 299

Animating Graphic Objects

Class Type Description

Size2DAnimation Bounded Animates a Size2D property by interpolating
between two values.

Rectangle2DAnimation Bounded Animates a Rectangle2D property by
interpolating between two values.

ColorAnimation Bounded Animates a Color property by interpolating
between two values.

SetAnimation Bounded Animates any property by specifying animation
frames.

TransformAnimation Bounded Animates a Transform property by
interpolating between two values.

MotionPathAnimation Bounded Animates a GraphicObject along a PathData.

TimerAnimation Timer Triggers an event at regular intervals.

Creating a Custom Animation

By grouping and composing the existing animations classes, it is possible to create complex
animations. However, you may have to write your own animation class. For example, if you
want to animate a property whose type is a custom type, you may want to create an

animation class dedicated to this type.

The following example shows how to implement an animation class that interpol ates val ues
between two DateTime objects.

public class DateTimeAnimation :

{

private DateTime _from;
private DateTime _to;

PropertyAnimation

public DateTimeAnimation (object instance, string propertyName,
DateTime from, DateTime to, TimeSpan duration)

: base (instance,

_from = from;

_to = to;

}

propertyName,

duration)

protected override object GetValueAt (TimeSpan duration,

long ticks =

300 IBM ILOG DIAGRAM FOR

TimeSpan relativeDuration,
float completion,
bool reversing,
bool repeating)

(long) (_from.Ticks + (_to.Ticks - _from.Ticks) *

.NET 2.0 — PROGRAMMING

IBM

Creating a Custom Animation

completion) ;
return new DateTime (ticks) ;

Public Class DateTimeAnimation
Inherits PropertyAnimation

Private _from As DateTime
Private _to As DateTime

Public Sub New(ByVal instance As Object, ByVal propertyName As String,
ByVal from As DateTime, ByVal to As DateTime,
ByVal duration As TimeSpan)
MyBase.New (instance, propertyName, duration)
_from = from
_to = to
End Sub

Protected Overrides Function GetValueAt (ByVal duration As TimeSpan, _
ByVal relativeDuration As TimeSpan,
ByVal completion As Single,
ByVal reversing As Boolean, _
ByVal repeating As Boolean) As Object
Dim ticks As Long = CType((_from.Ticks
+ ((_to.Ticks - _from.Ticks)
* completion)), Long)
Return New DateTime (ticks)
End Function

End Class

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 301

Animating Graphic Objects

302 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Printing a Diagram

IBM® ILOG® Diagram for .NET providesthe API that enables you to print diagrams. This
API iscomposed of a print document, the DiagramPrintDocument class, and several dialog
boxes to help you configure the print settings. As the printing API extends the classes of the
.NET Framework, you are able to use all the printing support of .NET Framework to print
your diagrams.

In This Section
Setting up a Print Document
Introduces the DiagramPrintDocument class.
Using Predefined Printing Dialog Boxes
Introduces the predefined dial og boxes dedicated to printing.

Setting up a Print Document

A print document contains all theinformation needed to print a diagram. It describes settings
related to the printer such asthe printer name, the paper size, or the paper orientation. It also
contains data about the diagram that will be printed, such as the container or the number of
pages on which the print document will be printed. The print document is defined by the
DiagramPrintDocument class.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 303

Printing a Diagram

Printing a Graphic Container
The DiagramPrintDocument class allows you to print the content of a GraphicContainer.
The following example shows how to print the content of a group that contains an Ellipse:

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;

DiagramPrintDocument document = new DiagramPrintDocument (container) ;
document . PrinterSettings.PrinterName = "MyPrinter";
document . Print () ;

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse (0, 0, 100, 100)
container.Objects.Add(ellipse)

Dim document As DiagramPrintDocument = New DiagramPrintDocument (container)
document . PrinterSettings.PrinterName = "MyPrinter"

document . Print ()

In this example, the document content is set in the constructor of DiagramPrintDocument.
The content can also be accessed by using the Content property.

Note: myPrinter should be replaced by areal printer name. You do not need to set this
property when you use the predefined print dialog boxes. For more details, see Using
Predefined Printing Dial og Boxes.

Specifying the Areato Print

By default, the document prints the whole content of its container. To change this, the
PrintAll property of the document must be set to false and the ContentPrintArea should be
set to the desired area. The ContentPrintArea property defines the rectangular area of the
document container that will be printed.

The following example shows how to preview the partial content of a group that contains an
Ellipse and a Rect, focusing on the Ellipse:

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;

Rect rect = new Rect (200, 200, 100, 100);
container.Objects.Add(rect) ;

DiagramPrintDocument document = new DiagramPrintDocument (container) ;
document .PrintAll = false;

document . ContentsPrintArea = ellipse.Bounds;
DiagramPrintPreviewDialog dlg = new DiagramPrintPreviewDialog(document) ;
dlg.ShowDialog() ;

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse (0, 0, 100, 100)
container.Objects.Add(ellipse)

Dim rect As Rect = New Rect (200, 200, 100, 100)

304 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Setting up a Print Document

container.Objects.Add(rect)

Dim document As DiagramPrintDocument = New DiagramPrintDocument (container)
document . PrintAll = false

document . ContentsPrintArea = ellipse.Bounds

Dim dlg As DiagramPrintPreviewDialog = New DiagramPrintPreviewDialog (document)
dlg.ShowDialog

Printing on Several Pages

To adjust the size of the printing by specifying azoom level on the document, the AutoZoom
property of the document must be set to false and the Zoom property should be set to the
desired zoom level. The DiagramPrintDocument class automatically computes the number
of pages needed to draw the diagram at the specified zoom level.

To adjust the size of the printing by specifying a number of printed pages, the AutoZoom
property of the document must be set to true and the Rows and Columns properties must be
set to the desired values.

The following example shows how to preview the content of a group that contains an
Ellipse, on two columns and two rows:;

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;

DiagramPrintDocument document = new DiagramPrintDocument (container) ;
document .AutoZoom = true;

document .Rows = 2;

document .Columns = 2;

DiagramPrintPreviewDialog dlg = new DiagramPrintPreviewDialog(document) ;
dlg.ShowDialog() ;

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse (0, 0, 100, 100)
container.Objects.Add(ellipse)

Dim document As DiagramPrintDocument = New DiagramPrintDocument (container)
document .AutoZoom = true

document .Rows = 2

document .Columns = 2

Dim dlg As DiagramPrintPreviewDialog = New DiagramPrintPreviewDialog (document)
dlg.ShowDialog

Note: Although the PrintPreviewDialog of the .NET Framework® could have been used to
preview the printing, IBM ILOG Diagram for .NET provides a more powerful print preview
dialog box with the DiagramPrintPreviewDialog class.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 305

Printing a Diagram

The following illustration shows the print preview dialog you have just created:

E® Print Preview

4 b a v | gibo

Multi-Page Size: 2 row(s) by 2 column(s)

Customizing the Printing

Decorations can be added to each printed page. Header and footer can be added by setting
respectively the Header and Footer properties of ExtendedPrintDocument. A frame can also
be painted around the printing area by setting the MustPrintFrame property of the
ExtendedPrintDocument.

306 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Setting up a Print Document

The following illustration shows an example of header.

DiagramUtLivn Monday, Janusry 15, 2007 Page 1
Composife
Obijects: GraphicO
HasFixedHeight: B
Dispose [Boolean
|# ShouldSeriglize0b + |
GraphicSymbol UserSymbol Group
KeepispectRatio: | HasFixedHeight : B ool
ChildResizeMode; » HasFizedwidth: B oole|
¢ CanSelectChild (Grap # OnKeepfspectRat ¢ GetDefaultinchars
@ add_Keepdspectf v i GetPreferedSizel v

Each of the three text sections of aheader or footer can contain the text that you specify in
the constructor of the object.

The following example showsd how to obtain a header:

Header header =

new Header ("Monday, January 15, 2007", "DiagramUML.ivn", "Page 1");
Dim header as Header =
New Header ("Monday, January 15, 2007", " DiagramUML.ivn", "Page 1"

Since the header and footer are defined on the document, you should not specify the page
number asin the previous example. The HeaderFooter class provides afew patterns that will
be trandlated to values from the document when the document is printed. The following
table lists the patterns that you can use:

Pattern Description

PagePattern The pattern for the page number.

PagesPattern The pattern for the number of pages in the document.

DatePattern The pattern for the printing date.

TimePattern The pattern for the printing time.

FileNamePattern The pattern for the name of the file associated with the
document.

DocumentPattern The pattern for the name of the document.

AuthorPattern The pattern for the name of the author of the document.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 307

Printing a Diagram

To create the header in the figure above, use the following code:

Header header =
new Header (HeaderFooter.DatePattern,
HeaderFooter.DocumentPattern,
"Page " + HeaderFooter.PagePattern)
Dim header as Header =
New Header (HeaderFooter.DatePattern, _
HeaderFooter.DocumentPattern,

("Page " + HeaderFooter.PagePattern))

The following table summarizes the properties of the DiagramPrintDocument class:

Property Description Default Value

DocumentName (inherited | The name of the document.
from PrintDocument)

DefaultPageSettings The paper size, margins, and orientation
(inherited from of pages.
PrintDocument)

PrinterSettings (inherited | The printer that prints the document.
from PrintDocument)

Author (inherited from The name of the author of the document.
ExtendedPrintDocument)

File (inherited from The name of the file that is printed.
ExtendedPrintDocument)

Header (inherited from The header of each page. null
ExtendedPrintDocument)

Footer (inherited from The footer of each page. null
ExtendedPrintDocument)

AutoZoom Indicates whether the documents false
automatically adjust the zoom level.

Zoom The zoom level used when printing. Used | 1
only if AutoZoom is set to false.

Columns The number of pages in the horizontal 1
direction. Used only if AutoZoom is set
to true.

308 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Printing Dialog Boxes

Property Description Default Value
Rows The number of pages in the vertical 1
direction. Used only if AutoZoom is set
to true.
ContentPrintArea The area of the container to print. Used | The bounds of the
only if PrintAll is set to false. document
container.
PrintAll Indicates whether the document chooses |true
the printed area automatically to print all
the contents of the container.
IsOverThenDownOrder Indicates the page-numbering order. true

Using Predefined Printing Dialog Boxes
IBM® ILOG® Diagram for .NET provides two predefined dialog boxes dedicated to
printing:
A dialog box for setting up a print document.
A dialog box for previewing a print document.
In This Section
Setting up a Print Document Using the Predefined Dial og Box
Introduces the DiagramPageSetupDial og class.

Previewing a Print Document Using the Predefined Dialog Box
Introduces the DiagramPrintPreviewDialog class.

Setting up a Print Document Using the Predefined Dialog Box

IBM ILOG Diagram for .NET provides a dialog box for setting up a print document by
means of the DiagramPageSetupDialog class. This dialog box is used to edit the common
printing properties, such as paper size, paper orientation, or margins, and also additional
properties like header and footer or the areato print.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 309

Printing a Diagram

The following illustration shows the DiagramPageSetupDialog dialog box:

Page |Heau:|er;"Fu:u:nter Diagram

Paper

Size:
Source:

Crientation
{(*) Portratt

() Landsc

Page order

a4

| Auto Select

Margins (inches)

0]

ape Top:

() Down, then over

(*) Over, then down

QK Cancel

J |

This dialog box has the following tab pages:

Tab Page

Description

Page

orientation.

For editing page settings, such as paper size or paper

Header/Footer

For editing the header and footer of the print document.

Diagram

the zoom level.

For editing diagram properties, such as the area to print or

310 IBM ILOG DIA

GRAM FOR .NET 2.0 —

PROGRAMMING

IBM

Using Predefined Printing Dialog Boxes

The following example shows how to use the DiagramPageSetupDial og dialog:

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;

DiagramPrintDocument document = new DiagramPrintDocument (container) ;
DiagramPageSetupDialog dialog = new DiagramPageSetupDialog() ;
dialog.Document = document;

dialog.ShowDialog () ;

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add(ellipse)

Dim document As DiagramPrintDocument = New DiagramPrintDocument (container)
Dim dialog As DiagramPageSetupDialog = New DiagramPageSetupDialog
dialog.Document = document

dialog.ShowDialog

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 311

Printing a Diagram

Customizing the Header and Footer
The following illustration shows the Header/Footer tab of the Page Setup dialog box:

Page Setup

Page | Header/Focter | Diagmm|

Header

LInnamed

Unnamed w

Custom header...]

Footer

Page 1af 7

Page 1of 7 W

Custom footer...]

]] [Cancel

312 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Printing Dialog Boxes

The combo boxes contain predefined header and footer settings. To use a custom header or
footer, select the corresponding button. Then, the following dialog box is displayed to allow
you to create a custom header or footer:

Header

To change font: select the text area and then choose the fort button.
To insert a page number, date, time, document name, or filename: position the insertion point

in the edit box, and then choose the appropriate button.
Cancel

Left section: Center section: Right section:
&[Document]

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 313

Printing a Diagram

Customizing the Diagram Print Settings
The following illustration shows the Diagram tab of the Page Setup dia og box:

Page Setup

| Page ||M|W|

Print Range

O Al
® Area

Right: [6433

Top : 130 ||F

<
Bottom : [|
Print Zoom

) Ftto |:| page(s) accross by |:| page(s) down

(®) Adjust to % of nomal size

Alignmert: | Middle Center hd |

I OK] [Cancel]

In Print Range, you can specify the area of the document that will be printed. In Print Zoom,
you can select the size of the printing.

Previewing a Print Document Using the Predefined Dialog Box

IBM ILOG Diagram for .NET provides a dialog box for previewing a print document by
means of the DiagramPrintPreviewDialog class. This dialog box allows you to preview a
print document, change the print settings through the Page Setup dialog box and print the
document.

314 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Using Predefined Printing Dialog Boxes

The following illustration shows the Print Preview diaog box:

B8 Print Preview |:| |§ X|

<> - - o, |- OH) 0 & o

Multi-Page Size: 2 row(s) by 3 column(s)

The dialog box has two mode to visualize the pages:

[Fingle page mode: only one pageis displayed at atime. In this mode, the arrow buttons
can be used to navigate through the pages.

[Multiple pages mode: all the pages are visible.

The following example shows how to preview the content of a group that contains an
Ellipse, on two columns and two rows:

Group container = new Group() ;

Ellipse ellipse = new Ellipse(0, 0, 100, 100);
container.Objects.Add(ellipse) ;

DiagramPrintDocument document = new DiagramPrintDocument (container) ;
document .AutoZoom = true;

document .Rows = 2;

document .Columns = 2;

DiagramPrintPreviewDialog dlg = new DiagramPrintPreviewDialog(document) ;
dlg.ShowDialog() ;

Dim container As Group = New Group

Dim ellipse As Ellipse = New Ellipse(0, 0, 100, 100)
container.Objects.Add(ellipse)

Dim document As DiagramPrintDocument = New DiagramPrintDocument (container)

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 315

Printing a Diagram

document .AutoZoom = true

document .Rows = 2

document .Columns = 2

Dim dlg As DiagramPrintPreviewDialog = New DiagramPrintPreviewDialog (document)
dlg.ShowDialog

Note: To preview a print document, you can also use the PrintPreviewDial og class of the
.NET Framework®.

316 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Importing SVG Files

This section describes how to import a Scalable Vector Graphics (SVG) document in a
diagram.

Scalable Vector Graphics

IBM® ILOG® Diagram for .NET allows you to import Scalable Vector Graphics (SVG) in
adiagram. SVG isatwo-dimensional structure graphics format defined by the World Wide
Web Consortium (W3C). The format is based on the eXtensible Markup Language (XML)
which givesit agreat interoperability.

An SVG file describes a set of two-dimensional graphics. For example, the following
graphics could be found in an SVG file:

[Images through the image element.

[Rectangles through the rect element.

[_Circles and ellipses through the circle and ellipse elements.

[Lines through the line and polyline elements.

—Polygons through the polygon element.

Arbitrary paths (curves, arcs, lines, and so on) through the path element.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 317

Importing SVG Files

[Groups of other graphic elements through the g element.
[Text through the text element.

These elements can be styled using XML presentation attributes on them or Cascading Style
Sheets (CSS) linked to the elements.

SVG File Example

The following code shows atypical example of an SV G file:

<svg width="640" height="480">

<defs>
<!-- the style on path elements and element with id "myid" -->
<!-- is defined through a style sheet -->

<style type="text/css">
path {stroke-width:3;stroke:blue;fill:none}
.dash {stroke-dasharray:5 2}
#myid {£ill:rgb(205,5,5);fill-opacity:0.5}
</style>
<!-- style can be complex such as a gradient... -->
<linearGradient id="grad" x1="0%" yl="0%" x2="100%"
y2="100%">
<stop offset="0" stop-color="yellow"/>
<stop offset="0.2" stop-color="green"/>
<stop offset="1" stop-color="red"/>
</linearGradient>

</defs>
<!-- the style on the rectangle is defined through XML -->
<!-- attributes -->

<rect x="0" y="0" width="100%" height="100%"
fill="url (#grad)"/>
<!-- paths use a particular syntax to defined their shape -->
<path d="MO0 0L640 480"/>
<path class="dash" d="M640 OLO 480"/>
<!-- the style on the ellipse is defined through an inline -->
<!-- style sheet -->
<ellipse cx="320" cy="240" rx="40" ry="30"
style="fill:rgb(180,10,10)"/>
<circle id="myid" cx="320" cy="240" r="50"/>
</svg>

This SVG file will be rendered as a 640 x 480 rectangle filled with alinear green, yellow,
and red gradient. On top of this gradient there will be two lines of thickness 3, and one of
them isadashed line. Thereis also an ellipse and a circle; the color on thecircle is semi-
transparent (fill-opacity:0.5) and lets you see the color of the ellipse underneath.

For More Information

To better understand SV G and its possibilities, see the SVG specification at http://
www.w3.0rg/TR/SVG. You will seethat SV G provides many more features than those
introduced here, such as transformations on graphic elements, filter effects, in-line
animation, and scripting capabilities.

318 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Reading an SVG File

You can read an SV G file by means of the SVGReader class located in the
ILOG.Diagrammer.SV G namespace.

The following code extract reads the SV G filein order to display the result in the Windows
Forms component that displays diagrams (the DiagramView class).

void ReadSVGDocument (string fileName, DiagramView view)
// Creates the Reader
SVGReader svgReader = new SVGReader () ;

// Specifies the initial viewport to the current size of the

// diagram view

Rectangle2D viewport = view.ViewRectangle;

svgReader.InitialViewPort = new Rectangle2D(0, 0, viewport.Width,
viewport .Height) ;

try {
// read the document
GraphicObject svgResult = svgReader.Load (fileName) ;
Group top = new Group () ;
top.Objects.Add (svgResult) ;
// set the result in the view
view.Contents = top;
view.Transform = Transform.Identity;

}

catch (Exception e)

{

// error cannot open file

Sub ReadSVGDocument (ByVal fileName As String, ByVal view As DiagramView)
' Creates the Reader
Dim svgReader As SVGReader = New SVGReader

' Specifies the initial viewport to the current size of the

' diagram view

Dim viewport As Rectangle2D = view.ViewRectangle

svgReader.InitialViewPort = New Rectangle2D (0, 0, viewport.Width,
viewport .Height)

Try
' reads the file
Dim svgResult As GraphicObject = svgReader.Load(fileName)
Dim top As Group = New Group
top.Objects.Add (svgResult)
' sets the result in the view
view.Contents = top
view.Transform = Transform.Identity

Catch e As Exception

' error cannot open file

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 319

Importing SVG Files

End Try
End Sub

For a more complete example, you may take alook at the SV G Viewer Sample located in
Samples/Applications/SV GViewer.

Using SVG to Create a Custom Graphic object

IBM ILOG Diagram for .NET allows you to create new graphical representations named
user symbols.

A UserSymbol is a graphic object composed of other graphic objects. When creating a new
User Symbol through the Visual Studio Diagram Designer of IBM ILOG Diagram for .NET,
you may import SV G documents to define the graphical representation of the symbol. For
more information on how to create user symbols through the Visual Studio Designer, see
Creating Diagrams and User Symbols Using Visual Sudio.

SVG Supported Features

To help you build SV G files that will be fully understood by the SV G reader of
IBM ILOG Diagram for .NET, use the following tables for supported and unsupported SVG
elements and CSS properties.

Supported SV G Elements

Element Name Attributes Not Supported on this Element
a xlink:role, xlink:acrole, xlink:actuate

circle N/A

clipPath clipPathUnits

defs N/A

desc N/A

ellipse N/A

feBlend N/A

feColorMatrix N/A

feComponentTransfer N/A

320 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Element Name Attributes Not Supported on this Element
feComposite N/A
feConvolveMatrix N/A
feDiffuseLighting N/A
feDisplacementMap N/A

feDistantLight N/A

feFlood N/A

feFuncA N/A

feFuncB N/A

feFuncG N/A

feFuncR N/A
feGaussianBlur N/A

felmage N/A

feMerge N/A

feMergeNode N/A

feMorphology N/A

feOffset N/A

fePointLight N/A
feSpecularLighting N/A

feSpotLight N/A

feTile N/A

feTurbulence N/A

filter Background image Background alpha, Fill Paint and Stroke

Paint not supported.

g N/A

image N/A

line N/A

linearGradient N/A

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 321

Importing SVG Files

322

Element Name

Attributes Not Supported on this Element

metadata N/A

path N/A

pattern patternUnits, patternTransform.

polygon N/A

polyline N/A

radialGradient N/A

rect N/A

stop N/A

style Important rules are not supported.

svg zoomAndPan

switch N/A

symbol refX, refY, viewBox, preserveAspectRatio.

text textLength, lengthAdjust.

textPath textLength, lengthAdjust, method, spacing.

title N/A

tspan multiple values x, y, dx, dy (single values supported),
rotate, textLength

use N/A

Supported CSS Properties

Property Name Remark

clip-path URI local to the file only.
color N/A
fill URI local to the file only, ICC colors are not supported.
fill-opacity N/A
fill-rule N/A
font-family N/A
IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

Property Name

Remark

font-size

Relative identifiers are not supported.

font-stretch

Relative identifiers are not supported.

font-style N/A

font-weight Relative identifiers are not supported.
opacity N/A

stop-color ICC colors are not supported.

stop-opacity

N/A

stroke URI local to the file only, ICC colors are not supported.
stroke-dasharray N/A
stroke-dashoffset N/A
stroke-linecap N/A
stroke-linejoin N/A
stroke-miterlimit N/A
stroke-opacity N/A
stroke-width N/A
text-anchor N/A
visibility N/A
ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 323

Importing SVG Files

324 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Improving the Design-Time Behavior of
Your Graphic Object

Any graphic abject of IBM® ILOG® Diagram for .NET isa.NET component. You can
improve the design-time behavior of the graphic objects that you create as you improve the
design-time behavior of any .NET component, like for example when you create a Windows
Forms User Control.

See the .NET documentation on componentsin Visual Studio to know more about the
design-time architecture of the NET Framework®. This section describes the mostly used
features.

The example presented in this section is based on the tutorial Creating an
IBM ILOG Diagram for .NET Windows Forms Application and User Symbol which shows
how to create a new graphic object (subclass of UserSymbol) that represents atraffic light.

Thisisthe code of the new graphic object:

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using System.Drawing;

namespace DiagrammerApplicationl

{

public enum TrafficLightState

{

Stop,

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 325

Improving the Design-Time Behavior of Your Graphic Object

Go,
Amber

}

public partial class TrafficLight : UserSymbol

{

TrafficLightState state = TrafficLightState.Go;

public TrafficLight ()

{

InitializeComponent () ; // required by the designer

// Initialize the default value.
State = TrafficLightState.Stop;

}

public TrafficLightState State

{
get

{
}

set

return state;

if (state != wvalue)

{

state = value;

stopLight.Fill = new SolidFill(
value == TrafficLightState.Stop ? Color.Red :
Color.LightGray) ;
goLight.Fill = new SolidFill (
value == TrafficLightState.Go ? Color.Green :

Color.LightGray) ;
amberLight .Fill = new SolidFill(
value == TrafficLightState.Amber ? Color.Yellow :
Color.LightGray) ;

}

To improve the design-time experience for the traffic light object, you can add a description
and a specific icon that will appear in the Visual Studio and Diagram Editor tool box.
[ToolboxBitmap ("c:\\trafficlight.bmp")]

[Description("A traffic light object")]

public partial class TrafficLight : UserSymbol

{
Asyou seein the code, the traffic light object defines a property named Sate.

326 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

The design-time behavior of this property can be improved by adding various design-time
attributes, such as information on the default value, a description or a category for the
property.

[DefaultValue (TrafficLightState.Stop)]
[Category ("Data")]

[Description ("The state of the traffic light")]
public TrafficLightState State

{

get { ..

The DefaultValue attribute isimportant for properties, because no code will be generated by
Visual Studio and no XML node will be created by the XML serializer when the property
has its default value.

For complex properties you can also specify avalue editor by creating a specific
Ul TypeEditor associated with the property. This editor will be used when editing the value
in the Properties View of Visual Studio.

To further improve the design-time behavior of your new graphic object, you can also
associate a designer object with your graphic object. The designer controls the appearance
and behavior of your object at design-time and allows you to control the smart tags of your
new graphic objects.

The following example shows how to code a designer for the traffic light object, so that the
Sate property becomes available in the SmartTags window. This code creates a subclass of
the UserSymbol Designer class and overrides the CreateActionList method:

class TrafficLightDesigner : UserSymbolDesigner

{

protected override DesignerActionList CreateActionList ()

{
}

class TrafficLightDesignerActionList : DesignerActionList

{

return new TrafficLightDesignerActionList (Component) ;

public TrafficLightDesignerActionList (IComponent component)
: base (component)
{

}

public TrafficLightState State

{

get
{
return (this.Component as TrafficLight) .State;

set

{
TypeDescriptor.GetProperties (
base.Component) ["State"] .SetValue (base.Component, value) ;

}

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 327

Improving the Design-Time Behavior of Your Graphic Object

public override DesignerActionItemCollection GetSortedActionItems ()
DesignerActionItemCollection col =
new DesignerActionItemCollection() ;
PropertyDescriptor descr =
TypeDescriptor.GetProperties (Component) ["State"] ;
col.Add (new DesignerActionPropertyItem("State", "State",
descr.Category, descr.Description)) ;
return col;

}
The designer is associated with the graphic object through the Designer attribute:

[Designer (typeof (TrafficLightDesigner))]
public partial class TrafficLight : UserSymbol {

In this example, this allows you to get the following smart tag:

L TrafficLight Tasks

State |5top v .

For more information about designers, designer action lists and smart tags, seethe .NET
Framework® documentation.

328 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Creating BPMN Diagrams

The Business Process Modeling Notation (BPMN) is a graphical notation that depicts the
steps in a business process. Below is an example of aBPMN diagram:

The version 1.1 of the BPMN specification has been adopted by the Object Management
Group (OMG), and iswidely used by business process modelers. More information about
BPMN can be found on the BPMN Web site (http://www.bpmn.org) and on the OMG Web
site (http://www.omg.org).

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 329

IBM® ILOG® Diagram for .NET provides out-of-the-box support for creating BPMN
diagrams, including:

—all the BPMN graphic objects available as predefined user symbols,
[a ready-to-use and customizable BPMN editor,
Support for both BPMN 1.0 and BPMN 1.1.
In This Section
The BPMN Symbols
Provides a short overview of the IBM ILOG Diagram for .NET BPMN symbols.
The BPMN Editor
Briefly introduces the BPMN Editor.

The BPMN Symbols

330

IBM

IBM® ILOG® Diagram for .NET contains alibrary of symbols that implement all the
graphic objects defined in the BPMN specification. These BPMN graphic objects are
contained in the ILOG.Diagrammer.BPMN namespace.

The graphic appearance and also the properties attached to the graphic objects fully conform
tothe BPMN specification. Additional graphical properties have been added to some objects

for a better usability, like the position of text relative to the shape of an object, and so on.

This section does not cover the BPMN symbolsin details. Refer to the BPMN specification
available on the BPMN Web site (http://www.bpmn.org) for a complete description of the

BPMN objects and their semantics.
Hereisashort overview of the IBM ILOG Diagram for .NET BPMN symbols.

Common Properties

Most BPMN objectsin IBM ILOG Diagram for .NET have a BPMN_Name property that
defines the text displayed in or around the object (the BPM N_ prefix isto differentiate from

the design-time Name property).

BPMN objects also have an Id property that defines a unique identifier for the object.

Finally, most objects have a Fill property that defines the fill color, aBorder property that

defines the border color, and a TextColor property that defines the text color.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Tasks

Task objects represent the basic work unit in a process. Tasks can have markers as defined
by the BPMN specification.

[Task J [Loop J [Compsnsation)
o “

Events

Event objects represent the events that occur during a process. There are three types of
events: Start, Intermediate and End events.

Start Event Intermediate End Event
Event

Events can have triggers, represented by different icons inside the event shape.

@ 0 0 @ 60 © ® ®

Messaga Timer Error Compenzation Rule Link Multiple Cancal

Intermediate events can be attached to the boundary of an activity. Thisisdone by setting the
Target property of the event to areference to a Task object.

Timeout

Gateways

Gateway objects represent the fork or join pointsin the process flow. The position of the text
relative to the gateway is defined by the TextPosition property.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 331

e ®

Complex
(Data-based) (Event-based)

Flow Objects

Flow objects are the links used to connect other objectsin the process. There are two kinds
of flow objects: SequenceFlow and MessageFlow.

ﬁ O ====

Sequence Flow Messaée Flow
|
;’ - ————
Subprocesses

Subprocesses are activities that contain other activities. In IBM ILOG Diagram for .NET,
embedded subprocesses can be dynamically expanded or collapsed, by setting the boolean
Expanded property. When a subprocess is expanded, you can directly edit its content.

3]

sensensnsensnnnd Expanded = true

Pools and Lanes

Pool objects are used to group the elements of a process into organization units. Pools can
contain Lane objects that are used to further divide the processinto smaller units. Lanes can
contain sublanes at an arbitrary nesting level. In IBM ILOG Diagram for .NET, poolsand
lanes are graphic container, therefore you can just drop objectsinside a pool or lane, drag the
pool/lane to move al its contents.

332 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

IBM

O—C=0)
L&=>—0

O—C —C=)—O

Pool 1
Lane 2 | Lane 1

Pool 2

Artifacts

Artifacts are objects that are not part of the process flow but that define additional
information about the process. There are three kinds of artifacts: DataObject, Annotation
and Group

Group Al

D o[Text Annotation |

[
Data Object

—

BPMN 1.1 Support

There are afew differences in the graphic appearance of some symbols between the 1.0 and
the 1.1 versions of the BPMN specification. IBM ILOG Diagram for .NET supports both
versions.

To choose the right BPMN version for a diagram, set the BPMNVersion property of the
BusinessProcessDiagram object, which is the top level container for BPMN diagrams. By
default, BPMN 1.0 is used.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 333

The following picture shows some differences between BPMN 1.0 and BPMN 1.1 symbols.

l-”_ BPMN 1.0 N
I

| .
® @ |

: Message Compensation Link Multiple |
! Event-based |
| XOR Gateway /
(T T T T T T BPMNTT <~ T T T T T T T N
i I
| caaning Q |
i Message Compensation Link Multiple |
i I
. . Event-based |
! Throwing @ @ XOR Gateway -
| Message Compensation Link Multiple |

e e o s e e m = e = = e M o o o = -

InBPMN 1.1, events can be considered as catching or throwing. Thisisreflected by the new
EventMode property of the IntermediateEvent class. A new Signal trigger typeisaso
available.

The BPMN Editor
The BPMN editor is contained in the Samples/Applications/BPMNEditor subdirectory of
the IBM® ILOG® Diagram for .NET installation directory.

The BPMN editor is aspecialized version of the Diagram Editor application, where the
toolbox is populated with the BPMN graphic objects. The source code of the editor is
provided, and therefore you can easily customize it and integrateit in your own application.

All the standard diagram editing tools and commands are available: drag-and-drop from the
toolbox, property grid and formatting commands.

Some examples of BPMN diagrams are available in the Example directory. Use the
File>Open command to load them.

334 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Localizing an IBM ILOG Diagram for .NET
Application

IBM® ILOG® Diagram for .NET isinternationalized. All messages, resources and dialog
boxes of IBM ILOG Diagram for .NET are localized for English language. If you need to
localize for another language, IBM ILOG Diagram for .NET provides the resource files and
tools that will allow you to localize the library for a particular culture. The library uses the
culture information that you have specified in the Control Panel to display dates and
numbers.

In order to create alocalized version of IBM ILOG Diagram for NET you must create
assemblies (DLLs) that contain the culture-dependant resources of the library. Those
assemblies are called satellite assemblies. IBM ILOG Diagram for .NET provides the tools
that will help you create satellite assemblies for a particular culture.

In This Section

Creating a Localization Project
Explains how to use the localization tool.

Translating the Resource Files
Describes the different types of resource files and explains how to translate them.

Creating the Satellite Assemblies
Explains how to create the satellite assemblies.

IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 335

Localizing an IBM ILOG Diagram for .NET Application

Creating a Localization Project

The IBM® ILOG® Diagram for .NET localization tool allows you to start localizing the
library for aparticular culture. The LocalizationTool . exe file can befoundin the
directory <install-dir>\bin.

Launchthe LocalizationTool.exe and choose alanguage for the localization.

* ILOG Localization tool ?X]

|Ise this tool to generate a Visual Studio Solution containing all the resource files of

ILOG Diagrammer for .MET. Edit and build the solution to create the localized satellite
assemblies.

Select a Language

Slovenian {Slovenia ~
_. -

Spanish {Argentina)
Spanish (Bolivia)
Spanish (Chile)
Spanish {Colombia)
Spanish {Costa Rica)
Spanish (Dominican Republic) b’

Create and Edit Localization Solution]

When you press the button Create and Edit Localization Solution, the tool opens a new
Visual Studio solution.

Thetool creates anew solution for building the satellite assemblies and creates also a new
directory with a copy of all the resource files that you may need to localize. This new
directory is called: <install-dir>\localization\resources-<culture name>.

For example, if you choose to localize for Spanish, anew directory named resources-es
will be created. This new directory contains a copy of all the resource files of
IBM ILOG Diagram for .NET and a solution named Localization-es.sln.

The solution created by the Localization tool contains a project for each of the
IBM ILOG Diagram for .NET satellite assemblies. Each project contains the resource files
(. resx files) that need to be translated for the culture you have chosen.

336 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

Translating the Resource Files

Translating the Resource Files

The projects contain two types of resource files:

[mesource filesthat contain global resource for the library. Those files are named for
example Resources.resx.

[nesource files that correspond to a predefined dialog box of
IBM® ILOG® Diagram for .NET. For example, the FilterDialog.resx file
corresponds to the FilterDialog dialog box.

You can use Visual Studio to open the resource files and do the trandation, but you can also
usethe .NET Framework tool winres . exe to do the translation of the dialog box resources.
Refer to the .NET Framework documentation for more information about winres . exe.

Creating the Satellite Assemblies

IBM

When you have modified the resource files for your culture, you can build the solution
created by the localization tool. When you build the solution, you create the satellite
assemblies in the <install-dir>\bin\<culture name> directory. It isimportant to note that
these assemblies are not fully operational. They will not be recognized as satellite
assemblies of IBM® ILOG® Diagram for .NET until they are signed with the

IBM ILOG Diagram for .NET private key. In order to sign those assemblies you must send
them to the technical support where they will be signed with the

IBM ILOG Diagram for .NET private key. You can test your satellite assemblies before they
are signed by registering the assemblies for "Verification skipping" using the .NET
Framework tool named sN . exe.

In aVisual Studio command prompt do:
sn -Vr <assembly>

for each satellite assembly.

ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING 337

Localizing an IBM ILOG Diagram for .NET Application

338 IBM ILOG DIAGRAM FOR .NET 2.0 — PROGRAMMING

I N D E X
Index
A path object 64
basic web application
AJAX web application diagram view
creating a new interactor 49 controlling the image generation 32
diagram view controlling the zoom level 30
displaying adiagram 38 displaying diagrams 28
using predefined interaction tools 41 handling user input event 35
graphic object creation interactor 46 showing the view content 32
overview of the ILOG Diagram for .NET framework 38 BPMN 329
pan interactor 46 editor 334
selection interactor 42 symbols 330
setting an interactor 41 artifacts 333
tiling mode 40 common properties 330
zoom interactor 45 events 331
animation flow objects 332
controlling execution 294 gateways 331
customizing 300 pools and lanes 332
graphic object along a path 299 subprocesses 332
grouping 297 tasks 331
overview 294
property 295 C
types 299
using as atimer 298 controls
basic 84
B multiple content 84
single content 84
basic shapes the Control class 82
Basic2DShape 64 coordinate systems
geometry defined by arectangle 62 container 163
geometry defined by a set of points 63 conversion 165

IBM ILOG DIAGRAM FOR

.NET 2.0 PROGRAMMING 1

geometry 162

overview 161

view 164
creating

graph 170

nodes 168

D

deserializing 270
Design View 237
design-time behavior
improving 325
diagram
deserializing 271
serializing 270
Diagram Designer 237
commands 261
editing 266
grid and alignment 261
group 266
miscellaneous 268
nudge 267
object creation 264
order 266
path 263
printing 265
text 263
zoom 261
graphic objects
adding to diagram or user symbol 241
aligning 245
changing properties 248
containers 253
creating path objects 257
cut, copy, paste 259
drawing order 255
graph layout 259
links and anchors 259
moving 245
panels 253
resizing 245
rotating 245
selecting 244
setting text 252

2 IBM ILOG DIAGRAM FOR

showing/hiding 256
importing vector graphics 260
printing 260

displaying diagram
AJAX web application 37
basic web application 28

E

events
capture 189
dispatching in adiagram view 181
dispatching to graphic objects 184
listening 155
raising 153
stopping propagation 188

G

graphic containers
introducing 157
using predefined 159
graphic objects
basic shape 60
control 82
displaying text 137
editing fill objects 128
filling and stroking 120
filter
applying 129
editing effects 134
gauge 107
graphic symbol 100
image 69
link object 71
panel 85
path 64
preferred size 149
scale object 102
sub-diagram 97
text object 70
user symbol 110
grid
setting the geometry 22
setting the style 21, 24

.NET 2.0 — PROGRAMMING

snap coordinates 23

interactor
anchor editing 204
creating 204
link creation 201
pan 197
polypoints shape creation 199
rectangular shapes creation 197
rotate 196
selection 193
setting on aview 193
zoom 196

L

link objects
adding text 78
crossing 81
customizing arrows 76
customizing link appearance 77
free 75
oblique 74
specifying the connection points 72
specifying the link shape 73

link shape
orthogonal 73
straight 73

localization
creating a project 336
creating the satellite assemblies 337
trandating the resource files 337

P

painting
interior of a shape 120
outline of a shape 126
with alinear gradient 121
with a path gradient 123
with asolid color 120
with atexture 124
with hatches 125

IBM ILOG DIAGRAM FOR

panels
predefined
Canvas 89
DockPanel 95
GridPanel 93
StackPanel 90
the Panel class 85
using predefined 89
predefined selection graphic objects
behavior
common 226
editing path 229
editing polypoints 228
resizing 227
printing
customizing 306
graphic container 304
on severa pages 305
predefined dialog boxes 309
previewing 314
setting up adocument 303
specifying the area 304

R

rendering
clipping 116
imagefilter 114
opacity 114
text 115
text appearance 115
transform 116
visibility 113

S

satellite assemblies 335
scale objects
circular 106
linear 106
the ScaleBase class 102
selection
creating custom graphic objects 231
listening to events 219
managing selected objects 218

.NET 2.0 — PROGRAMMING

styling graphic objects 231

the SelectionGraphic class 221

using predefined graphic objects 225
serializing 270
SVG 317

creating a custom graphic object 320

file example 318

reading afile 319

supported features 320

text
alignment 79
appearance 81
displaying in agraphic object 137
intersections 81
position 79
rotation 80
using Text object 141
using TextOnPath object 141

U

Using the Localization Tool 336

Vv

visibility
of agraphic object 145

w

web application
diagram view
generating the image map 32
WinForms
creating a new interactor 204

dispatching eventsin adiagram view 181

using predefined interaction tools 192
winforms application
diagram view
controlling the zoom level 17
displaying agrid 21, 23
displaying diagrams 16

4 IBM ILOG DIAGRAM FOR

modifying appearance 20
scrolling 19

showing view content 20
using predefined behavior 25

XML

document 278

element 278

instance 278

manager 278

seridlization
customizing 277
mechanism 271

.NET 2.0 — PROGRAMMING

	Programming with IBM ILOG Diagram for .NET Windows Forms and ASP.NET Controls
	Creating a Basic Diagram Programmatically
	Displaying Diagrams in a Windows Forms Application
	Displaying Diagrams in a Diagram View
	Controlling the Zoom Level in a Diagram View
	Scrolling in a Diagram View
	Showing the Whole View Content
	Modifying the Appearance of a Diagram View
	Displaying a Grid in a Diagram View
	Displaying Rulers in a Diagram View
	Using the Predefined Behavior of the Diagram View

	Displaying Diagrams in an ASP.NET Application
	Displaying a Diagram in a Basic Web Application
	Displaying Diagrams in a Diagram View
	Controlling the Zoom Level in a Diagram View
	Showing the Whole View Content
	Controlling the Image Generation
	Image Map Generation
	Handling User Input Event in a Diagram View

	Displaying a Diagram in an AJAX Web Application
	Overview of the IBM ILOG Diagram for .NET AJAX Framework
	Displaying a Diagram in an AJAX Diagram View
	Tiling Mode
	Using Predefined Interaction Tools in an AJAX Diagram View
	Creating a New AJAX-enabled View Interactor

	Using Predefined Graphic Objects
	Basic Shapes
	Paths
	Images
	Text Objects
	Link Objects
	Specifying the Connection Points
	Specifying the Link Shape
	Customizing the Arrows
	Customizing the Link Appearance
	Adding Text
	Link Crossing

	Controls
	The Control Class
	Basic Controls
	Single Content Controls
	Multiple Content Controls

	Panels
	The Panel class
	Using Predefined Panels

	Subdiagrams
	Graphic Symbols
	Scale Objects
	The ScaleBase Class
	Linear Scales
	Circular Scales

	Gauges
	User Symbols

	Common Graphic Objects Rendering Features
	Visibility
	Opacity
	Image Filter
	Text and Text Appearance
	Transform
	Clipping

	Styling Graphic Objects Using Fill, Stroke and Filter Classes
	Filling and Stroking Graphic Objects
	Editing Fill Objects Using the Fill Dialog Box
	Applying a Filter to a Graphic Object
	Editing Filter Effects Using the Filter Dialog Box

	Displaying Text in a Diagram
	Displaying Text in a Graphic Object
	Displaying Text using Text and TextOnPath Objects

	Understanding Graphic Object Visibility
	Using Graphic Object Preferred Size
	Understanding Graphic Object Events
	Raising Graphic Object Events
	Listening to Graphic Object Events

	Understanding Graphic Containers
	Introduction to Graphic Containers
	Using the Predefined Graphic Containers

	Understanding Coordinate Systems
	Overview of Existing Coordinate Systems
	Conversion Between Coordinate Systems

	Creating Diagrams with Nodes and Links
	Creating a Simple Diagram with Nodes and Links Programmatically
	Introducing Link and Anchor Classes
	Using Automatic Link Crossing Detection in a Graph
	Creating a New Class of Anchor

	Handling Interactions in a Diagram View (WinForms)
	Understanding Events Dispatching in a Diagram View (WinForms)
	From the View to the Graphic Object
	Dispatching Events to Graphic Objects
	Stopping the Event Propagation
	Event Capture

	Using Predefined Interaction Tools in a Diagram View
	Setting an Interactor on a View
	Selection Interactor
	Zoom Interactor
	Rotate Interactor
	Pan Interactor
	Rectangular Shapes Creation Interactor
	Polypoints Shape Creation Interactor
	Link Creation Interactor
	Anchor Editing Interactor

	Creating a New Interactor in a DiagramView (WinForms)

	Handling Selection in a Diagram
	Managing Selected Objects
	Listening to Selection Events
	Using Predefined Selection Graphic Objects
	Styling Selection Graphic Objects
	Creating Custom Selection Graphic Objects

	Building Diagrams and User Symbols Inside Visual Studio
	Creating Diagrams and User Symbols Using Visual Studio
	Adding Graphic Objects to Diagram or User Symbol
	Controlling the Zoom Level
	Selecting Graphic Objects
	Moving, Resizing, Rotating and Aligning Graphic Objects
	Changing Properties of Graphic Objects
	Setting Text to a Graphic Object
	Grouping Graphic Objects
	Manipulating Panels and Other Containers
	Controlling the Drawing Order of Graphic Objects
	Inspecting the Structure of a Diagram
	Showing and Hiding Objects
	Creating Complex Path Objects
	Cut, Copy and Paste
	Graph, Link and Anchors
	Graph Layout
	Importing Vector Graphics in SVG or IVN Format
	Printing a Diagram
	Diagram Designer Commands

	XML Serialization
	Serializing and Deserializing a Diagram in XML
	Understanding the XML Serialization Mechanism
	Customizing the XML Serialization

	Animating Graphic Objects
	Animation Overview
	Controlling Animation Execution
	Animating a Property
	Grouping Animations
	Using Animation as a Timer
	Animating a Graphic Object Along a Path
	Animation Types
	Creating a Custom Animation

	Printing a Diagram
	Setting up a Print Document
	Using Predefined Printing Dialog Boxes

	Importing SVG Files
	Scalable Vector Graphics
	Reading an SVG File
	Using SVG to Create a Custom Graphic object
	SVG Supported Features

	Improving the Design-Time Behavior of Your Graphic Object
	Creating BPMN Diagrams
	The BPMN Symbols
	The BPMN Editor

	Localizing an IBM ILOG Diagram for .NET Application
	Creating a Localization Project
	Translating the Resource Files
	Creating the Satellite Assemblies

	Index
	A
	B
	C
	D
	E
	G
	I
	L
	P
	R
	S
	T
	U
	V
	W
	X

