I .. —
I . A
- - N N
_— I I ——
-_— L9 L& & |
- - L I - .-
I B N W
I BT Y _®

IBM ILOG DB Link V5.3

User’s Manual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 2009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is aregistered trademark of Linus Torvaldsin the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/licenses/notices.txt in the installed product.

Preface

Chapter 1

Table of Contents

About This Manual 10
Manual Organizationt 13
Where to Get More Information e 15
Related DOCUMENTAtIONot e e e 15
Further Reading 16
Data TYPES. . ottt 15
OULPUL MO . . . o e e 16
DB . 17
INfOrmMIX . .o 17
MS SO SeIVET . o e 19
O DB . . 19
OraCE . . 21
SY DA . . 22
Special FEAtUIES ot e 23
INPUL MOE . ..o 24
Date AS SN . . . oot 25
NUMENC AS SN . . . oo e e e 26
MS SQL Server Limitation e 26

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 4

Chapter 2

Chapter 3

Configuration ISSUESt e 27
Environment Variables 28
DB . . e 28
T 0] 0 0] G 28
MS SO SeIVET . o e 28
OraCIe. . . 28
Configuration File 29
Format . . . 29
LOCAtION . . . oo 30
Resolving Library Names and Loading Libraries i 31
Configuration FeatUres e 31
Date AS SN . . . oottt 31
NUMETIC AS SHING . . ot et e e e e e e e 32
Numeric As ODJeCt. e 32
Array Bind ... 33
Array FetCh. . . e 34
Asynchronous Processing Mode e 34
PIINCIDIE . 35
Important Behavior Change. 35
Drivers that Support Asynchronous Processing.t 35
Functions that Use Asynchronous Processing.ot 36
Server INformation 37
Sessions & CONNECLIONSt e 41
Connection Handling through lldDbms Objects. i 42
Initiating @ Session or @ CONNECHION.ttt e e 42
Creating IIdDbms Objects 44
Session Configuration e 46
Disconnecting and Reconnecting.ot 48
Number of CONNECLIONS 49
Destroying IldDbms ODbjJeCtS.o 49
Accessing the Database Schema. i 49

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Chapter 4

Schema ENtity TYPeS . . .o oo 50

Schema Entity Names and OWNEISottt e e 51
Tables and VieWsS.ot 53
Procedures and FUNCLIONS o 56
SYNONY IS . . ettt e e 57
ADSIraCt Data TYPES. . . . o oot et e 57
Table Privilegeso 58
Data Definition Language (DDL). ottt e 58
Transaction CONtrol. 59
Initiating @ TransacCtion. i e 60
Committing @ TranSaCLONttt e e e e e 61
Rolling Back a Transactiont e 62
AutocommMIt MOOEo e 62
CUrsor AllOCatiONo 62
Extending the IADbmsS Classot 62
Use NOtIfiCationo 64
Subscribe to an EVENt 64
Unsubscribe froman EVent 64
Differences between lldDbms and lldDbmsModel Classes 65
CUIS OIS 67
HAREQUESE ObJECTS. . . ot 68
Creating IIdReqUESt ObJECES ot e 68
NUumber of ACHIVE CUISOISttt e e e 69
Disposing of IIdRequest ObJECESo i 69
Configuration Settings i e 70
Default Settings oo 70
Accessing and Changing the Configuration. i, 71
ATy MOES. . . oo 71
Column and Parameter DesCriptors.ttt e 73
NOION Of DESCIIPLONS . . . o ottt e e e e e e e 73
Implementation DeSCHPLOISo 74

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 6

Chapter 5

Application DeSCIHIPIOrSt e e e 75

Processing SQL Statements.o 76
Immediate EXECULION o e 76
Deferred EXECULIONot e 78
Results Retrieval 81
Handling Multiple Result Sets 81
DIrECE ACCESS . . . o ittt 82
Binding to User-Allocated MeMOIY. oot 84
Binding Input Variables. 86
Standard Implementation. 86
Overloaded VersioNt 87
Setting Parameter Values e 88
Specific CoNSIAerations 88
GENENIC Data TYPOS . o ot ittt e e e e e 89
Handling Date and Time Values e 89
Handling Exact Numeric Values. 920
Large ObjJectS (LOBS)ttt e e e 92
Sending Large ODjJeCtS.o 92
Different Ways of Retrieving Large Objects. e 93
Handling Abstract Data Type Values e 95
Abstract Data Type DeSCriptOr.ot e e 95
Abstract Data Type ValUEsSt e 96
Extending the lldRequest Class 97
Differences between IldRequest and lldRequestModel Classes 98
QUETIES o 99
Executing an SQL Query Immediately 100
Setting Up a Query for Multiple or Repeated Use. 100
Binding Application Memory to the Database APl 101
Finding Out the Types and Sizes of Returned Columns 101
Retrieving Data.o 102

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Chapter 6

Chapter 7

Errors and Warningso ot e 103
DiagnostiC Classo 104
Accessing a Diagnostic INStanCe 104
Context INfOrmation 104
VAN . ¢ ottt 105
ErTOrS 105
Error Handlerso 105
Error COOeS . . o 106
IBM ILOG DB Link APl Codes and Messages Table. 107
FUNCHON COdeS 112
SOL ST ATE . e 112
Error MESSAgESot 112
ErrOr Origin. . o . et 112
Erroneous lldDbms and lldRequest Objects i e 113
ErrOr REP O el . o 114
Default Settings and Behavior e 114
OUtPUL EITOr Stream.o e e 114
Customizing the Error Handling Mechanism 116
Base Class. . .. it 117
Virtual Functions and Their Parameters. 117
Compiling and Linking. 119
Compilation Flags e 120
Compatibility with Previous Releases s 120
RDBMS Flags . ..o o e 122
Dynamic Loadt 122
Mode and Flagot 124
Target RDBMSS 124
Multiple Targets 124
RDBMS PrereqUISITESottt 124
IBMILOG DB Link Libraries e 124
Library Nameso 125

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 8

Chapter 8

Building Dynamically-Loadable Drivers under UNIX 126

Code Samples. 127
GeNeriC EXamples 128
BasSiC USE. . . o 128
Handling Dates and Numbers 129
SOL INterpreter . ..o 129
Concurrent Connections and CUISOISttt e 130
Relation Searching. 131
Relation Nameso 131
INPUE BINAINGSo 132
OUIPUL BINAINGS . . . oo e 132
Multiple Output Bindingst e 133
Handling LOBS.o e 133
ASYNCHrONOUS PrOCESSINGo ittt e e e e e e e e e 133
RDBMS-Specific EXamples o 134
INfOrMIX . . 135
OFaCIE. . . 135
Sy . . .o 138
.. 141

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

About This Manual

Thismanual tells you how to usethe IBM® ILOG® DB Link libraries. More specificaly, it
explains how to use classes and functions, and includes considerations about particular
relational database management systems (RDBM Ss). Numerous examples are supplied to
help you configure IBM ILOG DB Link depending on your specific RDBMS.

What Is IBM ILOG DB Link?

IBM® ILOG® DB Link givesyou asimple yet powerful interface to one or more RDBMSs.

Its APl (Application Programming Interface) isindependent of both the platform and the
RDBMS. This applies at several levels:

[With regard tothe RDBM S APIs: ThelBM ILOG DB Link APl hidesall the
proprietary, RDBM S-specific API calls, as well as RDBM S-specific call sequencing.
Using one single call, you can have your SQL statement executed.

[With regard to platforms and compilers: Your code can be used to communicate with
different RDBM Ss simultaneously. AsIBM ILOG DB Link is platform-independent,
you do not have to rewrite any code when changing your platform or compiler. The

IBM ILOG DB Link APl issimilar to the Call Level Interface (CLI) SO standard but
adapted to the C++ language.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 10

[With regard to the contents of the SQL statements: Usualy, IBM ILOG DB Link
does not change the contents of the SQL statements you send to the RDBMS. The only
exception isfor MS SQL Server, which does not support placeholders. The
IBM ILOG DB Link Library interface lacks the necessary functionality. In fact, most of
thetime, IBM ILOG DB Link does not even read the SQL statements you send. This
allows you to send any query you want, but it also meansthat IBM ILOG DB Link does
not check whether your SQL code complies with a standard such as SQL 92 or the SQL
implementation specific to agiven RDBMS,

IBM ILOG DB Link accepts and processes queries that use RDBM S-specific features, but
such queries may cause an error with RDBM Ss that |ack the specific feature.

There are two ways of using IBM ILOG DB Link:

[_If the target RDBM Ss are known from the beginning, the application can be linked with
the appropriate drivers.

_If the application does not specify one or more target RDBM S, it can be linked with the
IBM ILOG DB Link driver manager, which will dynamically load the appropriate
drivers when necessary.

Supported RDBMSs and Platforms

The number of RDBM Ss and platforms on which IBM® ILOG® DB Link works has been
increased. However, not all possible combinations are available. Make sure that your
platform, compiler, archtecture and RDBMS versions match a combination marked Y for
“yes’ in Table 1.

If the cell corresponding to your combination does not exist in the table, or if that cell
contains a dash or an N, you should contact your IBM sales representative.

When aport is obsolete, the cell contains an O. In that case, you are strongly advised to
switch to another port as soon as possible because future versions of IBM ILOG DB Link
will drop that port.

11 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Table 1 indicates which systems and compilers are available with a given RDBMS.
Table1 Available Configurationsfor IBM ILOG DB Link

MS
LIt System Compiler IBM® :Efl\g?mix SeL ODBC [OLE DB Crieells || SHoEse
Portname Y P DB2® ® Server ® ®
*
(Default 8x&9x(5t011 2000, |3.5x 2.X 9to11 (11,12,
architecture is
32 bits) 2005 15
ultrasparc32_8_6.2 Solaris 2.8 Forte 6.2 O () - - - (@) (0]
ultrasparc64_8_6.2 Solaris 2.8 Forte 6.2 Y Y - - -
64 bits
ultrasparc32_10_11 Solaris 2.10 SunStudio 11 |Y Y - - - Y Y
ultrasparc64_10_11 Solaris 2.8 SunStudio 11 |Y Y - - - Y Y
64 bits
alpha_5.1_6.5 Compag Tru64 | CXX 6.5 N () - - - Y Y
V5.1
x86_RHEL4.0_3.4 Red Hat 4.0 gcec 3.4 Y Y - - - Y Y
x86-64_RHEL4.0_3.4 | Red Hat Linux gcc 3.4 Y Y - - - Y Y
4.0 64 bits
x86_sles10.0_4.1 Suze Linux 10.0 | gcc 4.1 Y Y - - -
x86_.net2003_7.1 MS Visual msvc 7.1 (@) (@) O (@] O O o)
Studio .net2003
x86_.net2005_8.0 MS Visual msvc 8.0 Y Y Y Y Y Y Y
Studio .net2005
x64_.net2005_8.0 MS Visual msvc 8.0 Y Y Y Y Y Y Y
Studio .net2005
64 bits
X86_.net2008_9.0™ MS Visual msvc 9.0 Y Y Y Y Y Y Y
Studio 2008
x64_.net2008_9.0™" | MS Visual msvc 9.0 Y Y Y Y Y Y Y
- - Studio 2008
64 bits
rs6000_5.1_6.0 AIX 5.1 Visual Age Y Y - - - Y Y
C++ 6.0
power32_5.2_7.0 AIX 5.2 PPC IBMXLC/C++ | Y Y - - - Y Y
7.0
power64_5.2_7.0 AIX 5.2 PPC IBMXLC/C++ | Y Y - - - Y Y
64 bits 7.0

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 12

Table1l Available Configurationsfor IBM ILOG DB Link (Continued)

MS
L IIHOCD System Compiler 121142 :Efl\c/)l?mix SeL ODBC |OLE DB el | SYeEe
Portname DB2® ® Server ® ®
*
ia64_hpux11_6.17 Itanium HP UX | aC++6.17 - Y - - - Y -
11.23 64 bits
ia32_hpux11_6.17 Itanium HP UX - Y - - - Y -
11.23
x64_solaris10_11 x86-64 Sun Sun Studio 11 Y - - - Y -
Solaris 5.10
x86_solaris10_11 x86-64 Sun Sun Studio 11 Y - - - Y -
Solaris10
hp32_11_3.73 HP-UX 11 aCC 3.73 Y Y - - - Y Y
hp64_11_3.73 HP-UX 11 aCC 3.73 Y Y - - - Y Y
64 bits

*Support for MS SQL native DBLib will be discontinued soon. Users are advised to switch to OLE DB port.
“"This port was previously known asx86_windows_vs2008.
This port was previously known as x64 windows vs2008.

What You Need to Know

This manual assumes that you are familiar with the operating system in which you are going
to use your product. Since this product is written for C++ developers, this manual also
assumes that you can write C++ code and that you have a working knowledge of your
coding environment. To work with IBM ILOG DB Link, you also need to know SQL.

Manual Organization

This manual is divided as follows:

[Data Types provides the correspondence between IBM ILOG DB Link types and
RDBMSs, first in output mode, then in input mode.

[_Configuration I ssues describes the environment variables required by
IBM ILOG DB Link for each RDBMS, aswell as configuration-file issues and some
basic configuration features. This chapter also describes what implementation
information items can be retrieved from the server.

13 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Notation

[Fessions & Connections describes how to use the class 11dDbms.
[Cursors describes how to use the class 11drRequest.

[Queries explains how to prepare and execute queries, bind application memory to the
database API, access the column descriptors, and retrieve data.

—Errors and Warnings explains the error-handling mechanism implemented by
IBM ILOG DB Link.

[Compiling and Linking discusses compilation flags and compatibility issues, and
presentsthe IBM ILOG DB Link libraries.

[Code Samples describes the samplefiles that are shipped with your IBM ILOG DB Link
product.

The following typographic conventions apply throughout this manual:
[Code extracts and file names are written in courier typeface.

[Important ideas are emphasized like this.

Naming Conventions

Throughout this manual, we will refer to the “application” as a program that you have
written to make use of datain one or more databases, managed by one or more RDBM S, all
linked by IBM ILOG DB Link.

[Basic type names begin with 11 asthey come from the common basic IBM ILOG library
(ilog.libor 1libilog.a).

[_The names of classes, and functions defined in the IBM ILOG DB Link library begin
with 11d.

[Constants, error codes, and options are written in uppercase letters, separated by an
underscore“_" if their name consists of more than one word:

ILD_BAD FILE

[_The names of classes, functions, C++ types, and enumerated values (enum) are written as
concatenated, capitalized words:

class IldDbms;

enum I1dEntityType {IldTableEntity, IldViewEntity, I1dADTEntity,
IldCallableEntity, IldSynonymEntity};

I1dDbms* IldNewDbms (const char*, const char¥*) ;

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 14

[_Thefirst word in names of arguments, instances, and member functions begins with a
lowercase letter. Other words in such a name begin with an uppercase letter. Data

members of classes and fields in structures are prefixed by an underscore”_":

I1dRequest: :getByteValue () ;

typedef struct {
IlInt _size;
IldByte* _wvalue;

1
A ccessors begin with the keyword get followed by the name of the data member:

const char* getCursorName () const;

A ccessors for Boolean members begin with is followed by the name of the data
member:

I1lBoolean isConnected() const;
[Modifiers begin with the keyword set followed by the name of the data member:

IldRequest& setCursorName (const char* cursName) ;

Where to Get More Information

This section tells you where you can find additional information about your product:

[Related Documentation lists the other printed and online manuals that make up the
IBM® ILOG® DB Link documentation kit.

[Further Reading is a short bibliography on the SQL language and RDBM Ss.

Related Documentation

In addition to this manual, the IBM ILOG DB Link libraries come with the following
documentation:

[_The Reference Manual describes the various classes and functions in aphabetical order.

[Release Notes contain important, last-minute information such as new features and
errata, that could not beincluded in the printed or HTML manuals.

[The readme.html file delivered in the standard distribution. This file contains the most
current information about platform prerequisites for IBM ILOG DB Link.

—Jource code for examples delivered in the standard distribution.

15 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Further Reading
SQL Language

1Information Technology - Database Languages - SQL, Part 2: Foundation (SQL/
Foundation),”

See also the other parts of the standard at http://www.iso.org/iso/
iso _catalogue.htm.

[1An Introduction to Database Systems” 7th edition, C.J. Date, Addison-Wesley, ISBN 0-
201-38590-2, August 1999.

1A Guide to the QL Sandard” 4th edition, C.J.Date and H. Darwen, Addison-Wesley,
ISBN 0-201-96426-0, 1997.

[1Database Systems. the Complete Book” , 1st edition, H. Garcia-Molina, J. D. Uliman,
and J. D. Widom, Prentice Hall, ISBN 0-130319-95-3, October 2001.

[Www.sgl.org
RDBMSs
[DB2
. “ QL Reference” , IBM, DB2 Documentation, S10J-8165-01

. “Call Level Interface Guide and Reference’, IBM, DB2 Documentation, S103-8159-
00

—Informix
- “Informix-ESQL/C Programmer's Manual” , Informix Press, Part Number 000-7629
- “Informix Answers Online” Version 1.6, CD, Part No. 000-6823

[ODBC

. “ODBC 3.0 Programmer's Reference and SDK Guide” , Microsoft® Press,
Part Number 097-0001688

[OLEDB

- “"OLE DB 2.0 Programmer's Reference and Data Access SDK", Microsoft® Press,
ISBN 0-7356-0590-4

[Oracle®

- “Programmer's Guide to the Oracle Call Interface’, Oracle,
Part Number 5411-70-1292

. “Oracle7 Server QL Language Reference Manual” , Oracle,
Part Number 778-70-1292

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 16

http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeStandardsListPage.TechnicalCommitteeStandardsList?COMMID=160
http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeStandardsListPage.TechnicalCommitteeStandardsList?COMMID=160

17

. “Oracle Call Interface” Release 8.0 Programmer’s Guide 2 Vol.
Part Numbers A54657-01 & A54655-01

[Fybase
. “Open Client Client Library/C Reference Manual” , Sybase, Part Number 32840-01-
1000-04
- “Open Client Client Library/C Programmer's Guide’ , Sybase, Part Number 35570-
01-1000-03
IBM ILOG DB LINK V5.3 — USER’S MANUAL

Data Types

Individual IBM® ILOG® DB Link type definitions are provided in the Reference Manual.

The minimal set of ANSI database data types are translated to the same types for all
supported RDBM Ss. The data types that are handled by IBM ILOG DB Link are the same
for input and for output. The database system input and output types are mapped to

IBM ILOG DB Link types according to tables that show which IBM ILOG DB Link typeis
used to retrieve the database data.

A one-to-one correspondence between database data types and IBM ILOG DB Link types
cannot be established. The IBM ILOG DB Link principle for mapping is economy—that is,
IBM ILOG DB Link defines aminimal set of data types to which database types are
converted. This does not prevent IBM ILOG DB Link from converting all database data
types for each supported RDBMS.

This chapter is divided asfollows:

[Qutput Mode provides the correspondence between IBM ILOG DB Link types and
RDBMSsin output mode.

[Inhput Mode provides the correspondence between IBM ILOG DB Link types and
RDBMSsin input mode.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 15

Output Mode

16

IBM® ILOG® DB Link usesits own types, mapped to C or C++ types, structures, and
objects, to fetch or send the data values from or to a database server. Dueto variationsin the
way different RDBM Ssimplement their own types, the correspondence may vary. However,
the SQL standard types, when they exist, are handled by the same IBM ILOG DB Link
types, regardless of the RDBMS. That is:

[AHAR, VARCHAR, NCHAR, LVARCHAR, and NVARCHAR are mapped to 11dstringType.
[INTEGER and SMALLINT are mapped to I1dIntegerType.
[BLOAT, REAL, and DOUBLE PRECISION are mapped to I1dRealType.
[NUMBER, NUMERIC, DECIMAL are mapped to:
. IldrealType When the default settings are active.
. IldstringType When the“numeric asstring” featureisturned on.
. IlNumeric when the“numeric asobject” featureisturned on.

[DATE, TIME, and TIMESTAMP are mapped t0 I1dDateType OF I1dDateTimeType
when the “date as string” feature is turned off.

The following tables are organized by RDBMS. They show which IBM ILOG DB Link type
is used to retrieve data from the database. Tables for the following RDBM Ss are provided:

[DB2

[Informix
WS SQL Server
[ODBC

[Oracle

[Fybase

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

DB2

Table1.1 Mapping between IBM ILOG DB Link Types and DB2 Types

IBM ILOG DB Link Type SQL Type
I1dByteType -
IldStringType CHAR, CHAR FOR BIT DATA
VARCHAR, VARCHAR FOR BIT
DATA
IldDateType DATE
IldDateTimeType TIME
TIMESTAMP
I1dRealType ! DECIMAL
IldNumericType NUMERIC
FLOAT
DOUBLE
REAL
IldIntegerType INTEGER, SMALLINT
IldLongTextType LONG VARCHAR
IldBinaryType LONG VARCHAR FOR BIT DATA
I1dBLOBType BLOB
I1dCLOBType CLOB
IldDecFloatType DEC_FLOAT

1 When the numeric as string feature is turned on, the column data types are
converted into I1dStringType.

Informix

Table1.2 Mapping between IBM ILOG DB Link Types and Informix Types

IBM ILOG DB Link Type SQL Type
I1dByteType -
I1dStringType CHAR, CHARACTER

NCHAR

CHARACTER VARYING,
VARCHAR

NVARCHAR, LVARCHAR

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Output Mode

17

Table1.2 Mapping between IBM ILOG DB Link Types and Informix Types

IBM ILOG DB Link Type SQL Type

IldDateType DATE

IldDateTimeType DATETIME
INTERVAL

I1dRealType 1

DEC, DECIMAL, NUMERIC
REAL, SMALLFLOAT

I1dNumericType
DOUBLE PRECISION, FLOAT
IldIntegerType INT, INTEGER
SMALLINT
SERIAL
IldMoneyType(l) MONEY
IldLongTextType TEXT
I1ldBinaryType BYTE

IldCollectionType 2

LIST, SET, MULTISET

I1dobj ectType(Z)

[INAMED] ROW

I1dCLOBType

CLOB

I1dBLOBType

BLOB

1 When the numeric as string feature is turned on, the column data types are
converted into I1dStringType.

2 Only supported for Informix Universal Server.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

MS SQL Server

Table 1.3 Mapping Between IBM ILOG DB Link Typesand MS SQL Server Types

IBM ILOG DB Link Type SQL Type
I1dByteType TINYINT
BIT
IldIntegerType SMALLINT
INT
I1ldRealType NUMERIC
DECIMAL®)
FLOAT, DOUBLE
PRECISION
REAL
IldMoneyType SMALLMONEY
MONEY
IldDateType SMALLDATETIME
IldDateTimeType DATETIME
IldStringType CHAR, NCHAR
VARCHAR, NVARCHAR
BINARY
IldLongTextType TEXT
IldBinaryType IMAGE

1 When the numeric asstring feature is turned on, these column data types

areconvertedinto I1dStringType.

ODBC
Table 1.4 Mapping Between IBM ILOG DB Link Types and ODBC Types
IBM ILOG DB Link Type | SQL Type
I1dByteType SQL_BIT
SQL_TINYINT
IldIntegerType SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Output Mode

19

20

Table 1.4 Mapping Between IBM ILOG DB Link Types and ODBC Types (Continued)

IBM ILOG DB Link Type | SQL Type
I1dRealType SQL_FLOAT
SQL_DOUBLE
SQL_REAL
SQL_DECIMAL !
SQL_NUMERIC®
I1dStringType SQL_CHAR
SQL_VARCHAR
SQL_BINARY
SQL_VARBINARY
IldDateType SQL_DATE
IldDateTimeType SQL_TIME
SQL_TIMESTAMP
IldMoneyType 2
IldLongTextType SQL_LONGVARCHAR
I1dBinaryType SQL_LONGVARBINARY

1 When the numeric as string feature is turned on, these column data
types are converted into I1dStringType.

2 Database Money Typeistranslated to NUMERIC or DECIMAL.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Output Mode

Oracle
Table 1.5 Mapping Between IBM ILOG DB Link Types and Oracle Types

IBM ILOG DB Link Type SQL Type

I1dByteType -

IldStringType CHAR, CHARACTER

VARCHAR, VARCHAR2, CHARACTER
VARYING,

CHAR VARYING

ROWID

MLSLABEL

RAW

IldIntegerType NUMBER, NUMERIC, DECIMAL, DEC,
INTEGER, INT, SMALLINT,

2
I1ldrealType FLOAT, DOUBLE PRECISION, REAL,

LldNumericType BINARY_FLOAT, BINARY_DOUBLE
IldDateType 3 DATE, TIMESTAMP, TIMESTAMP WITH TIME
IldDateTimeType ZONE, TIMESTAMP WITH LOCAL TIME
ZONE, INTERVAL YEAR TO MONTH,
INTERVAL DAY TO SECOND
IldMoneyType -
IldLongTextType LONG, LONGVARCHAR
I1dBinaryType LONG RAW
IldCollectionType VARRAY
NESTED TABLE
I1dObjectType OBJECT
IldCursorType CURSOR
I1dBLOBType BLOB
I1dCLOBType CLOB

L All numeric types are described through the external type SQLT_NUM. DB Link
differentiates between integer and fl oating-point numbers using the precision and scale values.
If the scaleis non-null or is null and precision is null or greater than 10, or if both scale and
precision are null, then the default typeis I1dRealType. Otherwiseg, itis
IldIntegerType.

Such aprotocol leavesapotential problem for numberswith aprecision set to 10 and no scale.
They can overflow the C or C++ limit for integer values. If such an overflow occursdue to the
values stored in the database system, your application can use the “numeric as string” or
“numeric as object” features.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 21

2 When the numeric as string feature is turned on, these column data types are converted into
IldStringType.

3 When the date as string feature is turned off, these column data types are converted into
IldDateTimeType.

Sybase
Table 1.6 Mapping Between IBM ILOG DB Link Types and Sybase Types
IBM ILOG DB Link Type SQL Type
I1dByteType TINYINT
BIT
IldIntegerType SMALLINT
INT
IldRealType NUMERIC 1
DECIMAL®)
FLOAT, DOUBLE
PRECISION
REAL
IldMoneyType SMALLMONEY
MONEY
IldDateType SMALLDATETIME
IldDateTimeType DATETIME
I1dStringType CHAR, NCHAR
VARCHAR, NVARCHAR
BINARY
IldLongTextType TEXT
IldBinaryType IMAGE

1 When the numeric as string feature is turned on, these column data types
areconvertedinto I1dStringType.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Output Mode

Special Features

The following special features of the Output Mode are described:
[Date As Sring

[Mumeric As Sring

_Mumeric As Object

Date As String

When the “date as string” feature isturned off, IBM ILOG DB Link automatically setsthe
column typeto 11dDateTimeType. ASaconsequence, it refusesto return the DATE,
DATETIME, Or TIMESTAMP valuein string form and raisesthe error ILD_TYPE MISMATCH.

Seethefunctions 11dI1dBase: :useStringDate and

IldIldBase: :setStringDateUse, for the I1drRequest and I1dpbms classesin the
IBM ILOG DB Link Reference Manual for more information. (Functions common to those
classes are documented in the 11d11dBase class.)

Numeric As String

When the numeric as string feature is turned on, IBM ILOG DB Link retrieves the numeric-
type value in string form. If the member function I1drequest : :getColRealvalue iS
inadvertently used to retrieve the column value, the result is unpredictable.

Seethefunctions 11dI1dBase: :useStringNumeric and

I1dIldBase: : setStringNumericUse, for the 11drRequest and 11dDbms classesin the
IBM ILOG DB Link Reference Manual for more information. (Functions common to those
classes are documented in the 11d11dBase class.)

Numeric As Object

When the numeric as object feature isturned on, IBM ILOG DB Link silently retrieves the
numeric-type value in T1Numeric object form. If the function

I1dRequest: :getColRealValue isinadvertently used to retrieve the column value, the
result is unpredictable. The various features for numeric-type values retrieval are mutually
exclusive.

Seethefunctions I1dIldBase: :useNumeric and I1dIldBase: : setNumericUse, for
the I1drequest and I1dpbms classesin the IBM ILOG DB Link Reference Manual for
more information. (Functions common to those classes are documented inthe 11d11dBase
class.)

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 23

Input Mode

The following table lists the RDBMS API type-names that IBM® ILOG® DB Link usesto
send parameter values to the RDBM Ss.

Table 1.7 RDBMSAPI Type Symbols Used by IBM ILOG DB Link

IBM ILOG DB Link DB2 Informix MS SQL Server ODBC
I1dByteType SQL C TINYINT CINTTYPE SQLINT1 SQL C TINYINT
IldIntegerType SQL_C_LONG CINTTYPE SQLINT4 SQL C_ INTEGER
I1dRealType SQL_C DOUBLE CDOUBLETYPE SQLFLTS8 SQL_C DOUBLE
IldStringType SQL_C_CHAR CCHARTYPE SQLCHAR SQL_C_CHAR
IldDateType SQL_C_CHAR CCHARTYPE SQLDATETIME SQL_C_CHAR
IldDateTimeType

IldMoneyType SQL_C DOUBLE CDOUBLETYPE SQLMONEY SQL_C DOUBLE
IldLongTextType SQL_ C_CHAR CLOCATOR SQLTEXT SQL_C_CHAR
IldBinaryType SQL C BINARY CLOCATOR SQLBIT SQL_ C BINARY
I1d0ObjectType - CROWTYPE - -
IldCollectionType - CCOLLTYPE - -
IldCursorType - - - -

IldRefType - - - -
I1dCLOBType SQL CLOB_LOCATOR | CLOCATOR - -
I1dBLOBType SQL BLOB_LOCATOR | CLOCATOR - -
I(E:';Anltlh?uc;dD)B Link Oracle Sybase

IldByteType SQLT_INT CS_INT

IldIntegerType SQLT_INT CS_INT

I1ldRealType SQLT_FLT CS_FLOAT

IldStringType SQLT_STR CS_CHAR

24 IBM ILOG DB LINK V5.3 — USER'S MANUAL

IBM IITOG DB Link Oracle Sybase
(Continued)

IldDateType SQLT_STR CS_CHAR
IldDateTimeType

IldMoneyType SQLT_FLT CS_FLOAT
IldLongTextType SQLT_STR CS_CHAR
IldBinaryType SQLT_LBI CS_BINARY
IldObjectType SQLT_NTY -
IldCollectionType SQLT_NTY -
IldCursorType SQLT_RSET -
IldRefType SQLT_REF -
I1dCLOBType SQLT_CLOB -
I1dBLOBType SQLT_BLOB -

The following special features of the Input Mode are described separately:

[Date As Sring
[Mumeric As Sring
[CMS QL Server Limitation

Date A

s String

Input Mode

When the date as string feature is turned off, the IBM ILOG DB Link 11dpateTime type

values are sent using different database client API type symbols.

DB2 SQL_C TYPE TIMESTAMP
Informix CDTIMETYPE

OoDBC SQL_C_TIMESTAMP
Oracle SQL_TIMESTAMP

Sybase CS_DATETIME TYPE

IBM

ILOG DB LINK V5.3 —

USER’'S MANUAL

25

Numeric As String

A similar change happens when the numeric as string feature is turned on:

DB2 SQL_C NUMERIC
Informix CCHARTYPE
ODBC SQL_C_CHAR
Oracle SQLT_ STR
Sybase CS_NUMERIC

MS SQL Server Limitation

MS SQL Server does not automatically convert string values into integer values; the
application must use the SQL function convert:

cout << "Data insertion : " << endl;
const char* insertStr =
((!'strncmp (dbms->getName (), "oracle", 6)
|| !strcmp (dbms->getName (), "sqglbase")) ?
"insert into ATABLE values(:1, :2)"
((!strcmp (dbms->getName (), "mssqgl") ||
1 T1dStrNICaseCmp (dbOdbc, "Microsoft SQL Server", 20)) ?
"insert into ATABLE values (convert (numeric (28, 9), ?), ?)"

"insert into ATABLE values(?, ?)"));

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Configuration Issues

This chapter is divided as follows:

[_Environment Variables describes the environment variables required by
IBM® ILOG® DB Link for each RDBMS.

[Configuration File explains how to load the configuration files that are necessary to your
working environment.

[Configuration Features deals with configuration file issues and some basic configuration
features.

[Asynchronous Processing Mode describes the principle of asynchronous processing in
IBM ILOG DB Link, aswell as the changes brought about by this mode.

[—Ferver Information describes what implementation information items can be retrieved
from the server.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 27

Environment Variables

28

Depending on the operating system and the target RDBM S, some environment variables
must be set. Some configurations also require that you add the appropriate paths to your
environment. These considerations are described for the following RDBMSs:

[DB2

[Informix
WS SQL Server
[Oracle

DB2

The environment variables DB2DIR and DB2 INSTANCE must be set.

Informix
[WNIX® systems require the following variables:
. INFORMIXDIR, Which locatesthe Informix client installation.
. INFORMIXSERVER, Which providesthe name of the default server.

. DELIMIDENT=y, Which must be defined if your application is to use delimited
identifiers, because IBM ILOG DB Link libraries are compiled with this varigble.

. If youuseshared libraries, add $ INFORMIXDIR/1ib and $INFORMIXDIR/1lib/esqgl
to the appropriate path variable (PATH OF LD_LIBRARY PATH Of SHLIB PATH).

[On PCs, the use of the Informix Utility setnet32 setsall necessary variablesin the
registry.

MS SQL Server
All needed information is set in the registry upon installation.

Oracle

[On UNIX systems, the environment variable ORACLE HOME must be set. If you use
shared libraries, add $ORACLE_HOME/1ib32 if running in 32bits, or SORACLE HOME/
1ib if runnning 64bits, to the shared libraries path variable.

[On PCs, the variable orRACLE_HOME and numerous other values are set in the registry
upon installation, and $ORACLE_HOME%\bin is added to the PATH variable.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Configuration File

Configuration File

If you use the dynamic load feature, IBM® ILOG® DB Link looks for a configuration file
that describes the drivers allowed for the current platform before establishing a connection.

I Note: When the driver islinked statically, thisfileis not used.

The following items concerning this configuration file are described:

[_Format
[Nocation
[Resolving Library Names and Loading Libraries

Format

The default configuration filedblink. ini isincluded in the standard distribution. Thisfile
contains asingle section, [dblink], which lists al available drivers with the following

format:

[<dblink>]

<database name>=<library name>
where:

[ddatabase name> iSone of the database system names listed in section Connection
Arguments on page 44,

[dlibrary names istheroot of the IBM ILOG DB Link driver-library name. See
Resolving Library Names and Loading Libraries.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 29

30

Location

[On PCs, the configuration fileis searched for first in the executable directory, and thenin
the Windows® root directory.

A first scan looks for afile named after the executable name. For example, if the
application name ismyapp, IBM ILOG DB Link first looks for a configuration file
named myapp . ini. If ho such fileisfound, IBM ILOG DB Link looks for the default
filedblink.ini.

[®n UNIX, the configuration fileis first searched using the contents of the environment
variable ILDHOME, if it is defined. The suffix . ini is appended to the variable contents.
If no such fileisfound, it is searched for localy. If it is till not found,
IBM ILOG DB Link first looks for the default file db1ink. ini in the directory defined
by r1LDHOME, then locally.

Whichever the platform, if the entry is not found in the application configuration file
myapp . ini, it will be searched for in the default file dblink. ini.

If the configuration file is not found using this method, DBLink will use the following hard-
coded values:

—db2 = dbdb2
—db29x = dbdb29x
[ihformix9 = dbinf9
[hssgl = dbmssql
[—adbc = dbodbc
—dledb = dboledb
[—aracle9 = dbora9
[—araclel0=dboralO
[oaraclell=dborall

[3ybase = ctsyb

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Configuration Features

Resolving Library Names and Loading Libraries
This step exists only when loading a driver dynamically.

The library name s built from the value of the entry in the configuration file that
corresponds to the first argument passed to the inline function 11dNewDbms. Depending on
the operating system, aprefix can be added (1ib under UNIX) and an extension is appended
(.so for Solaris, Linux, AIX and Tru64 UNIX®, .d11 for PCs, .s1 for HP-UX).

Thelibrary isthen loaded using the system library functions dedicated to that purpose.
These functions and their behavior vary from one operating system to another.

[On PCs, the function LoadLibrary automatically searchesthe library using the
contents of the environment variable pATH.

[Ih compliance to POSIX standard, on UNIX, thelibrary is always searched in the
directories declared in the variable LD_LIBRARY PATH.

Configuration Features

This section describes the way date-and-time values and numeric values are handled. It also
discusses the array modes whereby IBM ILOG DB Link sends or fetches several rows at a
time. The following items are described:

[Date As Sring

[Mumeric As Sring
[Mumeric As Object
[—Array Bind
[—Array Fetch

Date As String

Date-and-time rel ated values can be sent and retrieved as strings. This entails a dependence
on the RDBMS configuration parameters and LOCALE settings. The behavior with date-and-
time column data types can be changed. The default behavior ensures compatibility with
older versions, but the new behavior allows you to use objects to handle date-and-time

values.

[To turn off the default behavior for all 11drequest objects created from a specific
I1dDbms Object or to set a specific 11drequest object to handle date-and-time related
values as objects, use the member function 11d11dBase: : setStringDateUse, With
itsargument setto T1False.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 31

32

[To find the current setting, use the member function 11d11dBase: :useStringDate,
which returns a Boolean value.

Both functions are inherited from the common base class 11d11dBase.

Theerror ILD_TYPE MISMATCH iSraised when an application tries to send or retrieve a
date-and-time value as an object when the date as string feature is turned on. Likewise, the
sameerror israised if an application triesto send or retrieve adate-and-time value asa string
—instead of as an object—when the date as string feature is turned off.

Numeric As String

Numeric data values (and decimal values when applicable) can be sent and retrieved as
double values. However, this causes aloss in precision. The behavior with respect to exact
numeric column data types can be changed.

The default behavior ensures compatibility with older versions, but you can change it to
preserve exact precision for very large numbers by handling these values as strings.

[To turn off the default behavior for all 11drequest objects created from a specific
I1dDbms Object or to set a specific 11drequest object to handle numeric values as
strings, use the member function I11d11dBase: : setStringNumericUse withits
argument set to 11True. To handle numeric values as numeric objects, use the member
function with its argument set to I1False, as shown below:

// Data selection using numeric objects
request->setStringNumericUse (I1lFalse) ;

}

To find the current setting, use the member function
IldIldBase: :useStringNumeric. It returns a Boolean value.

Both member functions are inherited from the common base class 11d11dBase. No error is
raised if an application retrieves a numeric value as double when the numeric as string
feature is turned on, but the returned value isirrelevant.

It is possible to bind a database numeric type variable asan IBM ILOG DB Link string
variable. The conversion is handled silently.

Numeric As Object

The numeric as string feature has a drawback: since the application depends upon the
current LOCALE, the fractional-part and thousands separators may change from one session
to another.

To avoid that external dependency, IBM ILOG DB Link allows you to send and retrieve
numeric and decimal values under object form. The class T11Numeric isintended for that
purpose.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Configuration Features

[To turn off the default behavior for all 11drequest objects created from a specific
I1dDbms oObject or to set a specific I11drequest object to handle numeric values as
objects, use the member function 11d11dBase: : setNumericUse Withitsargument set
10 I1True.

[To find the current setting, use the member function 11d11dBase: :useNumeric,
which returns a Boolean value.

Both member functions are inherited from the common base class 11d11dBase.

[_To retrieve the numeric value of a select-list column in object form, use the function
IldRequest: :getColNumericValue. Theerror ILD TYPE MISMATCH iSraised
when this function is used and the numeric as object feature has not been turned on.
Conversdly, itisalso an error to try to retrieve the value in string form if the feature is
turned on.

A parameter value can be set using the function T1drequest : : setParamvalue and
retrieved by means of the function 11drequest : : get ParamNumericvalue.

Array Bind

Array bind meansthat IBM ILOG DB Link sends several rows of parameter values each
time a prepared query is executed.

[To set the array bind mode, pass the number of rows you want to be sent at atime.

Thisnumber can be set asadefault valuefor all 11drRequest objectsrequested from one
I1dDbms Object but it can be changed for any particular instance of 11drRequest
whenever needed.

[To set the default value for al newly created 11drequest oObjects, use the member
function 11dbpbms : : setDefaultParamArraySize, passing it apositive integer value
asits argument. The new valueis set to all cursors requested after that setting, but it is
not changed for cursors aready held by the application. The current default array bind
size can beretrieved using the function I1dbbms : : getDefaultParamArraySize.

[For each I11drequest object, you can change the array size using the function
I1dRequest: : setParamArraySize With apositive integer asits argument. To be
effective, this setting must take place before the call to 11drRequest : : parse oOr
I1dRequest: :execute.

[To get the array Size, use I1dRequest : :getParamArraySize and to reset it, use
IldRequest: :removeParamArraySize.

For RDBM Swhose API does not support thisfeature, IBM ILOG DB Link emulatesit. This
isthe case of Informix, which supports the array bind mode only for insert statements
within atransaction.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 33

Array Fetch

Array fetch meansthat IBM ILOG DB Link fetches several rows at atime from the current
result set and buffer the returned values. This optimizes network traffic by reducing the
number of messages exchanged between the client application and the database server.

[To set the default value for all 11drequest objects requested from an T1dDbms oObject,
use the function 11dpbms : : setDefaultColArraySize With apositive integer asits
argument. The cursors aready held by the application are not affected by the setting.

[Hor each T1drequest oObject, this setting can be changed using the member function
IldRequest: : setColArraySize With apositiveinteger asits argument, or reset

using I1dRequest : : removeColArraySize. TO be effective, the setting must take
place before thefirst call to fetch.

[_To get the current array size, use T1dRequest : :getColArraySize.
With ODBC, the array fetch feature is available only if the driver has level 2 compliance.

For RDBM S whose API does not support this feature, IBM ILOG DB Link emulates it, but
with no optimization effect on the network |oad.

Asynchronous Processing Mode

34

This section describes what this processing mode does, how it changes the application

behavior, what drivers currently support this mode and what member functions use it. The
following items are described:

[Principle
[Important Behavior Change
[Driversthat Support Asynchronous Processing

[—Functions that Use Asynchronous Processing

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Asynchronous Processing Mode

Principle

When this mode is turned on, the execution of a query immediately returns control to the
application.

The application must then be designed so as to call the function again with the very same
arguments until the query completes. To test the completion status, the application calls the
function I1drRequest: : isCompleted, which returns:

[11Trueif:
. anerror was raised, or
. thecdlerisinactive, or
. thequery is completed.

[d1ralse if the execution of the query is still in progress.

Important Behavior Change

When the asynchronous processing mode is turned on, only ONE query can be active at a
time for a given connection. In this case, it isimpossible to use two different 11drRequest
objects pertaining to the same connection (an 11dbbms object) simultaneously. However, it
ispossible to allocate several 11drequest objects for the same connection, and use any of
these requests as soon as the previous operation is compl eted.

Drivers that Support Asynchronous Processing

Thefunction 11dDbms : : i sAsyncSupported returns I1True when the driver supportsthe
asynchronous processing mode. Currently these drivers are:

[dracle9,10and 11

[dybase

[Cdssql

[ddbc, when the underlying ODBC driver supportsit.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 35

36

Functions that Use Asynchronous Processing

When the asynchronous processing mode is turned on, the following member functions must
be checked for completion before accessing their results:

[11dDbms class

I1dDbms: : readRelation

I1dDbms: : readRelationNames (Overloaded)

I1dDbms: : readRelationOwners

I1dDbms: : subscribeEvent

I1dDbms: :unSubscribeEvent

[11dRrRelation class

IldRelation: :getForeignKeys

IldRelation: :getIndexes

IldRelation: :getPrimaryKey

IldRelation: :getSpecialColumns

For these four functions, check with:

rel->getDbms () .isCompleted ()

For these two classes, the returned values are significant if, and only if, the following test

holds:

dbms->isCompleted ()

&& !dbms->isErrorRaised()

[d1dRequest class

. IldRequest::execute(Oveﬂoaded)

IBM

I1dRequest::fetch
IldRequest: :insertBinary
IldRequest: :insertLongText
IldRequest: :getLargeObject
IldRequest: :getLargeObjectChunk
I1dRequest: :parse
IldRequest: :startGetLargeObject
ILOG DB LINK V5.3 — USER’S MANUAL

Server Information

Server Information

Information about implementation is retrieved by calling the function 11dDbms : : get Info.
The first argument of this function takesits value in the enumeration type 11dInfoItem.

The enumeration is defined in thefile i1dconst . h. It uses the CLI-defined symbols,
prefixed with the IBM ILOG DB Link prefix 114, and complies with the CLI numeric
values of these symbols. The values returned by the function get Info also are compliant
with the CLI| specifications except for 11douterdoinCapabilities, whereanumber is
returned instead of a one-character string.

For information items whose value is a string, the server usually returns the exact value to
the appropriate query, but for those with numeric values, these values are translated to
symbols derived from the CL I standard.

The following table lists the type of the output argument from the function
I1dDbms: :getInfo that isused to return the value of the item.

Table2.1 Server Information ltems

Symbol

CLI Code | Iltem Value Possible Values

I1dAlterTable

86 integer Depending on the RDBMS SQL

implementation, this item returns a value

resulting from the logical OR combination of:
—IldAlterTableAddColumn (1),

rIldAlterTableDropColumn (2),
r—IldAlterTableAlterColumn (4),

rIldAlterTableAddConstraint (8),
and

r1IldAlterTableDropConstraint
(16).

IldCatalogName

10003 string

IldCollatingSequence 10004 string

IldCursorCommitBehavior 23 integer This item returns one of the following values,

depending on the connected RDBMS:
rIldCurBehaviorDelete (0),

r—IldCurBehaviorClose (1), or

rIldCurBehaviorPreserve (2).

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 37

Table2.1 Server Information Items (Continued)

Symbol

CLI Code

Item Value

Possible Values

IldCursorSensitivity

10001

integer

This item returns one of the following values:
rIldCursorASensitive (0),

rIldCursorInSensitive (1), or

rIldCursorSensitive (2)

IldDataSourceName

string

IldDataSourceReadOnly

25

string

I1dDBMSName

17

string

I1dDBMSVersion

18

string

IldDefTransactionIsolation

26

integer

This item returns one of the following values:
IldTransIsolReadUncommitted (1),

rIldTransIsolReadCommitted (2),
—IldTransIsolRepeatableRead (3),0r
rIldTransIsolSerializable (4)

IldDescribeParameter

10002

string

I1dFetchDirection

integer

This item returns a logical OR operation
between all supported fetch directions. For
databases that do not support scrollable
cursors, the only possible value will be
IldFetchDirectionNext (1).
rIldFetchDirectionNext (1),

rIldFetchDirectionFirst (2),
rIldFetchDirectionLast (4),
rIldFetchDirectionPrior (8),

rIldFetchDirectionAbsolute(16),
and

rIldFetchDirectionRelative (32)

IldGetDataExtension

81

integer

For this item, the returned value is always the
sum of:
IldGetDataAnyColumn (1) and

—IldGetDataAnyOrder (2)

because IBM ILOG DB Link implements these
capabilities for all supported RDBMSs.

38 IBM ILOG DB LINK V5.3

USER’'S MANUAL

Table2.1 Server Information Items (Continued)

Server Information

Symbol CLI Code |[Item Value |Possible Values

IldIdentifierCase 28 integer This item returns one of the following values:
rIldIdentifierUpper (1),
rIldIdentifierLower (2),
rIldIdentifierSensitive (3), or
—IldIdentifierMixed (4)

IldIntegrity 73 string

IldMaxCatalogNameLength 34 integer

IldMaxColumnsInGroupBy 97 integer

IldMaxColumnsInOrderBy 99 integer

IldMaxColumnsInSelect 100 integer

IldMaxColumnsInTable 101 integer

IldMaxColumnNameLength 30 integer

IldMaxConcurrentActivities 1 integer

IldMaxCursorNameLength 31 integer

IldMaxDriverConnections 0 integer

IldMaxIdentifierLength 10005 integer

IldMaxSchemaNameLength 32 integer

IldMaxStatementLength 105 integer

IldMaxTableNameLength 35 integer

IldMaxTablesInSelect 106 integer

IldMaxUserNameLength 107 integer

IldNullCollation 85 integer This item returns one of the following values,

depending on whether the RDBMS collates
null values first or last in the result sets:

rIldNullCollateHigh (0) or
r—IldNullCollateLow (1)

IldOrderByColumnsInSelect 90 string

IBM

ILOG DB LINK V5.3 —

USER'S MANUAL 39

Table2.1 Server Information Items (Continued)

Symbol CLI Code |Item Value Possible Values

IldOuterJoinCapabilities 115 integer This item returns a logical OR operation
between all supported outer join capabilities:
rIldOuterJoinLeft (1),

r—IldOuterJoinRight (2),
rIldOuterJoinFull (4),
mIldOuterJdJoinNested (8),
rIldOuterJoinNotOrdered (16),
—IldOuterJoinInner (32), Or
rIldOuterJoinAllOps (64)

IldScrollConcurrency 43 integer This item returns a logical OR operation
between all supported options:
r—IldScrollReadOnly (1),

rIldScrollLock (2),
r—IldScrollOptRowver (4), and
rIldScrollOoptvValues (8)

IldServerName 13 string

IldSpecialCharacters 94 string

IldTransactionCapable 46 integer This item returns one of the following values:
—IldTransCapableNone (0),
IldTransCapableDML (1),
—IldTransCapableall (2),
rIldTransCapableDDLCommit (3), or
r—IldTransCapableDDLIgnore (4).

IldTransactionIsolationOpt 72 integer This item returns one of the following values:
IldTransIsolReadUncommitted (1),
rIldTransIsolReadCommitted (2),
—IldTransIsolRepeatableRead (3),0r
rIldTransIsolSerializable (4)

IldUserName 47 string

For all items that return an integer value, the return valueis o if the value is unknown.
When an error israised during the retrieval of an information item, the integer argument
isset to -1 and the string argument is set to the empty string (thefirst character isanull
character).

40 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Sessions & Connections

An application can be designed to communicate with several RDBM Ss at atime, each
communication being represented by a connection that makes up the active part of a session.
A connection can be closed and reopened using a different authentication.

IBM® ILOG® DB Link implements the session concept through the class 11dpbms, which
is aso the repository for the connection control.

I1dDbmsModel, atwin classto I1dDbms, is provided to develop drivers for RDBMS that
aren't currently supported by IBM ILOG DB Link. It supports the same functionalities as
I1dDbms, plusthe ability to be derived. So, in this manual, we describe the 11dDbms class,
which is the main one. The few differences between the two twin classes areitemized in a
subsection.

This chapter is divided as follows, to reflect what this class allows:

[_Connection Handling through IldDbms Objects—Connecting, disconnecting,
reconnecting.

[Accessing the Database Schema for database schema descriptions—Several classes of
descriptors exist to describe the various entities contained in the target database.

[Data Definition Language (DDL)—Executing DDL and DML statements.

[Transaction Control—All transactional operations, such as initiating, committing, or
rolling back atransaction.

[Cursor Allocation—Cursors are created on demand and then cached in a pool for reuse.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 41

[Extending the IldDbms Class—This class cannot be derived, but you can extend its
functionalities under certain conditions. If you need to derive the 11dDbms class, you
must use itstwin class, I11dbbmsModel.

[Wse Notification—This feature lets you receive natifications from the RDBM S
asynchronously.

[ifferences between |ldDbms and IldDbmsModel Classes

Connection Handling through lldDbms Objects

42

With IBM ILOG DB Link, an application connects to an RDBM S through an abject of the
class 11dpbms. Infact, thefirst thing that IBM ILOG DB Link must do before an interactive
session can be initiated with a database server isto create such an 11dpbms object.

This section explains how to create, manipulate, and delete T1dDbms objects. Itisdivided as
follows:

[Initiating a Session or a Connection
[Creating IldDbms Objects
[—Session Configuration
[Disconnecting and Reconnecting

[Mumber of Connections

[Destroying IldDbms Objects

Initiating a Session or a Connection

The only way to initiate a session or aconnection isto create an 11dpbms object. To do this,
usetheinline function 11dNewbbms. (Thisentry point is defined asan inline global function
in the header file dblink . h.) ASaconsequence, a connection is activated. It can be closed
by calling the function 11dpbms : : disconnect and reopened later by calling the function

I1dDbms: : connect.

Note: Several connections can be active at the same time. Their number islimited only by
the server configuration (not by IBM ILOG DB Link itself).

When the 11dpbms object is deleted, the connection is automatically closed and all
dependent objects are deleted.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Connection Handling through lldDbms Objects

If the driver failsto establish theinitial connection, an object from the class 11dErrorDbms
is returned.

I Warning: The class 11dErrorDbms is not documented.

There arefive cases where an error of type 11dErrorDbms can be returned and only one
where an instance of I11dErrorRequest isreturned. All cases where an 11dErrorDbms
error isreturned are handled by the driver manager in the function 11dallocConnect.
Only the member function I1dbbms: : getFreeRequest may return an

IldErrorRequest error, when the connection is not established and the
error handler failsto fix it.

Error-Raising Conditions
[Mull or empty strings as arguments

The arguments passed to the function 11dNewDbms must not be null or empty strings.
Otherwise, an 11dErrorDbms €fror isreturned.

See Connection Arguments for details about these two arguments.
[Driver not linked or not found

. When the drivers are linked statically, the driver whose name is passed as first
argument to the function 11dNewDbms must be found. Otherwise, an instance of
I1dErrorDbms iScreated, initialized in an error state—that is, the function
IldIldBase: : isErrorRaised returns 11True—and returned. (Thisfunctionis
inherited from the common base class 11d11dBase.)

- Whenthedriversareloaded dynamically and an entry with the proper nameis missing
inthedblink.ini file, the same behavior occurs.

[Memory allocation failure

When the driver entry point is called and failsto return a valid address, the driver
manager creates and returns an I1dErrorDbms €fTOr.

[Wnknown driver

When using the dynamic |oad feature, if the RDBM S nameisnot found inthe [dblink]
section of the configuration file, the driver manager returns an 11dErrorDbms €fTOr.

—_Improper driver found

When using the dynamic load feature, if thedriver library isloaded properly but the entry
point cannot be found, the driver manager allocates and returns an 11dErrorDbms €rror.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 43

44

[—Wnconnected

When the connection is not established or has been closed, and the error handler did not
attempt to re-establish it or this attempt failed, the 11dDbms : : get FreeRequest
function allocates and returns an I1dErrorRequest object.

The only time that the function 11dNewDbms can return anull value is when no object can
be allocated because the application ran out of memory.

Creating lldDbms Objects

Thereisno public constructor for objects of the class 11dpbms. To create 11dpbms objects,
use the inline function 11dNewbbms. This function is defined in your application as soon as
thefiledblink.hisincluded. Its code is modified by the compile-time flags you define.

If your application is linked in dynamic load mode, no RDBM S-specific compile-time flag
is needed.

Throughout this manual, multiple examples show you how to use the function 11dNewDbms.
{

cout << "Connecting to: " << IldDbmsName << endl;
I1ldDbms* dbms = IldNewDbms (I1ldDbmsName, IldConString) ;
if (!dbms) cout << "Out of memory" << endl;
if (dbms->isErrorRaised())

IldDisplayError ("Creating Dbms: ", dbms) ;

delete [] queryBuffer;

delete dbms;

return 1;

Warning: Even though the allocation may be successful, the creation of the IldDbms object
may still fail. To make sure the connection is successful, you must a) Check that
I1dNewDbms returnsa non-null pointer; b) Use the member function

IldIldBase: : isErrorRaised to check whether the 11dpbms object was successfully
allocated.

Automatic Connection

Creating an I1dbbms object connects you to the RDBM S using the values passed to the
function 11dNewDbms. Thisinitial connection is required to test whether the server can be
reached and is ready for communication.

Connection Arguments

The function 11dNewDbms takes two arguments, which are the DB Link name of the
database system and the connection string.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Connection Handling through lldDbms Objects

[_The first argument is the name of the database systemas known by IBM ILOG DB Link.
It must have one of the following values:

. db2

e db29x

« informix9
. mssqgl

- odbc

« oledb

e oracle9

« oraclelO
e oraclell
. sybase

These names are al lowercase and must be entered exactly as shown. Any other names
areillegal when using IBM ILOG DB Link-supported drivers.

If the name you pass does not match one from the abovelist, IBM ILOG DB Link raises
either theerror ILD_ UNKNOWN_RDBMS, indicating that it does not recognize the RDBMS,
or 1LD_LIB_ NLNKD if the application did not link the driver statically.

[_The second argument is the connection string. It must comply with aformat that depends
on the target RDBMS.

Connection String Format

The format and contents of a connection string depend on the target RDBMS:
[CDB2: [<user>]/ [<password>] /<database names>

[Informix: [<users>]/ [<password>] /<database names[@<servers>]
[CMS SQL Server: <user>/<passwords>/<database names/<server names
[ODBC: <data source name>/ [<user>]/ [<passwords]

[Oracle; [<user>]/[<password>] [@<services]

Eiﬂybasa <user>/<password>/<database name>/<server name>

Values enclosed in sgquare brackets are optional.

Note: With ODBC, you cannot pass the database hame in the connection string. It can be
set through the odbce . ini file. Also, the slash marks ('/') are mandatory.

The ODBC driver also supports a connection string following the format:
"DRIVER= ...; DBQ=..."

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 45

If the second argument passed to the function 11dNewDbms does not comply with the
appropriate format, IBM ILOG DB Link raisestheerror 1 _BaD DB_SPEC indicating that
the connection string is not valid for this RBDMS. Nothing can be done using that 11dbbms
object until avalid connection is established.

Session Configuration

Default Error Reporter

When you create an 11dbbms object, it is associated with anew I1dErrorReporter
object. The default reporter is not accessible to the application. As a conseguence, the
function 11dbbms : : getErrorReporter returnsanull pointer if no user-derived error
reporter has been set.

To customize error handling, you can create your own error reporter class and instantiate it
for the 11dDbms object reporter using the function I11dbbms : : setErrorReporter.

Default Configuration

The default settings for a session configuration are the following:
[The date as string feature is turned on.

[The numeric as string feature is turned off.

[_The numeric as object feature is turned off.

[The array size for the array bind and array fetch modesis set to 1.

Checking the Default Configuration of a Connection

Once you have created the first object of the class 11dpbms, you can access the following
configuration settings:

[To get the versions of the currently accessed RDBM S against which
IBM ILOG DB Link was tested, use the function 11dDbms : : getDbmsVersions.

[_To get the main version number of the supported RDBMS, use the member function
I1dDbms: :getDbmsVersion.

[To get the information items obtained from the server, use I1dbbms : :getInfo.

None of these values can be changed, so they remain valid for all 11dpbms oObjects your
application creates.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Connection Handling through lldDbms Objects

Checking the Current Configuration of a Connection

In the current 11dpbms object, several session-wide parameters are set. Table 3.1 shows
what 11dpbms member function you can use to check their values.

Table 3.1 Checking the Current Configuration of a Connection

Use this member function...

...to get this setting.

Default Value

I1dDbms: :getName

IBM ILOG DB Link name of the currently
accessed RDBMS

IldDbms: :getUser Name of the user who established the
connection
I1ldDbms: :getDatabase Name of the database used to establish the
connection
I1dDbms: :getDefaultColArraySize Default size of the array used to fetch rows 11
when the SQL statement executed is a
select query
IldDbms: :getDefaultParamArraySize |Default size of the array used to send rows of |42
parameter values
IldIldBase: :useStringDate Date as string feature IlTrue
IldIldBase: :useStringNumeric Numeric as string feature IlFalse
IldIldBase: :useNumeric Numeric as object feature IlFalse

1 This default value means that rows will be fetched one by one. It is automatically used at creation time for all objects of the class

I1ldRequest that depend on that I1dDbms object.

2 This default value means that the parameter rows will be sent one by one. Like the fetch array size, thisvalueis set at creation time for all
objects of the class I1dRequest that depend on that T1dDbms object.

Changing the Configuration of a Connection

You can change the settings in your current connection configuration, as shown in Table 3.2:
Table 3.2 Changing the Settings of the Current Connection Configuration

Use

To

I1dDbms: :setDefaultColArraySize

Change the default fetch array size®

IldDbms: :setDefaultParamArraySize

Change the default parameter array size

IldIldBase: :setStringDateUse

Turn off the date as string feature

IBM

ILOG DB LINK V5.3

USER’'S MANUAL

47

48

Table 3.2 Changing the Settings of the Current Connection Configuration

Use To
IldI1ldBase: :setStringNumericUse Turn on the numeric as string feature
IldIldBase: :setNumericUse Turn on the numeric as object feature

1 The new values are inherited at creation time by all T 1dRequest objects built after one of these functions
has been called. Array size values for objects that were created before the call remain unchanged.
Disconnecting and Reconnecting

To disconnect from an RDBMS, you must call the function 11dpbms : : disconnect as
follows:

{

cout << "Disconnecting from: " << argv[l] << endl;
if (!dbms->disconnect())
IldDisplayError ("Disconnection failed: ", dbms);

}

Note: The error reporter of the 11dpbms object isinherited by all subsequently created
I1dRequest Objects.

This function:
[deletes all its attached 11drequest objects;
[deletes all its attached schema entity description objects;
[—dloses the connection to the RDBMS.

Once you have disconnected, you cannot create an 11drequest object from that same
I1dDbms Object. Any such attempt raisesthe error ILD_DBMS NOT CONNECTED and an
I1dErrorRequest Object isreturned to the calling application.

With adisconnected 11dDbms object, you can reconnect to any database from the same
database system by calling the member function I1dbbms : : connect. [tSargument isa
connection string of the same format as the second argument passed to the function
I1dNewDbms. If the 11dDbms object was not properly disconnected prior to your call to
connect, theerror ILD_ALREADY CONNECTED is raised, indicating that the current object
isstill in use or has not been properly disconnected yet.

{

cout << "New connection to: " << argv([l] << endl;
if (!dbms->connect (argv[2]))
IldDisplayError ("Reconnection failed: ", dbms) ;

}

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Accessing the Database Schema

The member function I1dbbms : : disconnect isused in the example testerr where an
attempt to connect twice is made deliberately. The user-defined error reporter forces a
disconnection to enable the new connection to be made:

{

case ILD_ALREADY CONNECTED:
cout << endl
<< "USER WARNING: already connected to: "
<< dbms->getDatabase ()
<< endl;
dbms->disconnect () ;
// The connection will be performed by DB Link itself.
break;

Number of Connections

IBM ILOG DB Link has no built-in limitation to the number of connections an application
can create. The RDBMS itself raises an error when its maximum number of connectionsis
reached. This maximum may be configured.

The member function I11dbbms : : getNumberOfActiveConnections returnsthe number
of T1dpbms objects created.

Destroying lIldDbms Objects

All 11dpbms objects created by an application must be destroyed before the application
exitsto avoid memory leaks and possible dangling connections to the RDBMS.

The 11dpbms destructor has the same effect on attached 11drequest objects and schema
entity description objects as a call to the function 11dpbms : : disconnect. All these
objects are destroyed, hence, there is no need to delete them. IBM ILOG DB Link takes care
of deleting them before deleting the 11dpbms object itself.

I mportant: Objects of classes derived from 11dDbmsModel DO NOT behave in this way:
I1dRequestModel derived objects MUST be explicitly separately deleted.

Accessing the Database Schema

IBM ILOG DB Link offers several functionsto access the database schemaor catalog.

A schemaentity isany autonomous structure in a schema: thisincludestables, views, stored
procedures, user-defined data types, and synonyms. However, indexes or primary keys are
not schema entities because they cannot be described independently of atable.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 49

Most entities belonging to a database schema can be described by means of specia
descriptors. All schema entity descriptors are instances of classes derived from the class
IldSchemaEntity:

[11dRelation for tablesand views
[11dcallable for proceduresand functions
[11dSynonym for synonyms

[11daDpTpescriptor for user-defined data types (supported only when connected to
Object-Relational Data Base Management Systems).

Itisalso possible to get only the entity names and owner names. Names are returned as
arrays of character strings by the following member functions of the class 11dpbms:

[11dDbms: : readRelationNames

[11dDbms: : readProcedureNames

[11dDbms: : readSynonymNames

[11dDbms: : readAbstractTypeNames

All these functions take the owner name as an optional argument to restrict the returned
names to the entities that belong to that owner. These items are described in the following
order:

[—3chema Entity Types

[—3chema Entity Names and Owners
[Tablesand Views

[—Procedures and Functions
[_$ynonyms

[Abstract Data Types

[Table Privileges

Schema Entity Types

Any schema entity for which a descriptor class exists has an identifier in the enumeration
type I11dEntityType declared inthefileild.h.

For any descriptor derived from 11dSchemaEntity, the actual type of the descriptor can be
retrieved by calling the function T1dSchemaEntity: :getEntityType.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Accessing the Database Schema

These descriptors have only one possible identifier, except for the table or view descriptor
I1dRelation, which can beidentified by 11dTableEntity OF I1dViewEntity, as
summarized in Table 3.3.

Table 3.3 Schema Entity Descriptors

Descriptors Identifiers

Table IldTableEntity
View IldviewEntity
Procedure or function IldCallableEntity
Synonym IldSynonymEntity
User-defined type (abstract data type) | I1dADTEntity

Error IldUnknownEntity

Schema Entity Names and Owners

[_The names of all owners of any entity in the schema can be retrieved by calling the
function I1dDbms : : readOwners.

[_The names and owners of any entity typein the schemacan be retrieved as a cursor using
the function I1dpbms : : readEnt ityNames. Thisfunction takes the entity type asits
first argument and, optionally, an owner’s name as its second argument, and returns a
result set in form of afetch-ready 11drequest object.

Names and Owners of Tables or Views

If you areinterested only in table names, you can use the member function

I1dDbms: : readRelationNames. It returns an array of all table and view names found in
the schema. It is your responsibility to delete the array returned and the stringsit contains,
preferably using the function 11dDbms : : freeNames:

{

char** names = dbms->readRelationNames () ;

if (names) {
cout << "All relation names:" << endl;
for (int i = 0; names[i] != 0 ; i++)

cout << " " << names[i] << endl;

dbms- >freeNames (names) ;

}

}

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 51

52

Some database management systems, such as Oracle, allow different usersto create different
tables with the same name. In this case, the array returned contains the same name several
times. The second argument is optional and changes the behavior of the function:

_If the user argument is specified, only the names of the tables that belong to the given
user name are returned.

[_If not, all table names from the current schema are returned.
{

cout << endl << "Give a USER name[CR for no USER]: ";
cin.getline(str, 100);

if (strlol) {

// We got a user.

names = dbms->readRelationNames (str) ;

if (names) {

cout << "Relation names belonging to " << str << ": "

<< endl;
for (int i = 0 ; names[i] != 0 ; i++) {
cout << " " << names[i] << endl;

}

dbms- >freeNames (names) ;

}

else
cout << " NONE " << endl;

}
1
If you want to know all table names and their owner names, the overloaded member function
I1dDbms: : readRelationNames returnsan array of the table names and setsits parameter
to an array of the owner names. It is your responsibility to delete both arrays and the strings
they contain.

Procedure Names

All procedure and function names are returned by the function
I1dDbms: : readProcedureNames. If the optional user argument is specified, this
function returns only the names of the procedures and functions that belong to that user.

Synonym Names

All synonym names are returned by the function 11dbbms : : readSynonymNames. |f the
optional user argument is specified, this function returns only the names of the synonyms
that belong to that user.

Note: This function is not supported for DB2, MS SQL Server, ODBC, and Sybase, which
do not have the notion of synonyms.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Accessing the Database Schema

Abstract Data Type Names
All abstract data type names are returned by the function

I1ldDbms: : readAbstractTypeNames. |f the optiona user argument is specified, this
function returns only the names of the abstract data types that belong to that user.

Note: This function is only supported for ORDBMS (Object-Relational Data Base
Management Systems).

Tables and Views

Within IBM ILOG DB Link, adatabase table or view is described as an object of the class
I1dRelation. Such objects can be created by calling one of the following functions:

[11dDbms: : readRelation: Thisfunction takes the table or view name asits first
argument, and the owner name as its optional second argument.

This function does not cache the returned object, which, therefore, must be deleted by the
application.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the table or view. This second version is not supported by all RDBMS.

Warning: When atable description isreturned by thisfunction, it is not possible to get
its keys and indexes. If the application needs to hold a table description that is not
attached to a connection, it should get it from the next function, query the keys and
indexes, and then ask the description to be detached from the connection using the
function I1dDbms: : removeRelation.

[11dDbms: :getRelation. Thisfunction takes the table name asits first argument and
an owner name as its optional second argument. This function adds the created object to
the cache managed by the caller. Therefore, the object can be accessed later without
querying the server and can be deleted automatically when the caller is destroyed.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the table or view. This second version is not supported by all RDBM Ss.

Warning: Some database systems, such as Oracle, allow different usersto own different
tables with the same name. With such systems, it isimportant to supply the user
parameter. Otherwise, IBM ILOG DB Link buildsthe 11drelation object based on
the first row returned from the database server and ignores the others.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 53

54

{

cout << "Trying to retrieve an unknown relation: " << endl;
I1ldRelation* relation = dbms->getRelation ("ATABLE") ;

if (!relation)

relation = dbms->getRelation("atable",

if (!relation)
// We print the error message.
if (dbms->isErrorRaised())

IldDisplayError (intentErr, dbms) ;

}
Types

nn)'.

IBM ILOG DB Link returns different types of relations, depending on the RDBMS you are
connected to. The availabletypesare 11dTableEntity and IldviewEntity.

The meaning of these symbolsis straightforward. Depending on the target RDBM S, loading
the schemamay create O or N I1drelation objectsof type 11dview Entity

Table Characteristics

Objects of theclass T11drelat ion can be accessed to get the table characteristics, as shown

in Table 3.4
Table 3.4 Table Descriptors

Use this function...

To get the following descriptor

IldSchemaEntity: :getEntityType

Type of the table

IldRelation: :getCount

Number of columns

IldSchemaEntity: :getName

Table name

IldSchemaEntity: :getOwner

Table owner

IldSchemaEntity: :getDbms

Related 11dDbms object

IldRelation: :getPrimaryKey

Primary key, if any

IldRelation: :getForeignKeys

Foreign keys, if any

IldRelation: :getIndexes

Indexes, if any

IldRelation: :getSpecialColumns

Special columns (—that is, the columns that
uniquely identify one row in the table)

The global function 11dPrintRelation intheildutil.cpp sample file shows how to
use these member functions. See Relation Searching on page 131 for details.

With the exception of the 11dpbms object, no value returned by these functions can be

modified.

IBM ILOG DB LINK V5.3 —

USER’'S MANUAL

Accessing the Database Schema

Columns

From an I1drelation object, you can reach its column descriptions. IBM ILOG DB Link
preserves the column order, except with ODBC, where the column order is not specified.

A column description includes its name, size, IBM ILOG DB Link type, and native type
name, as well asthe flag indicating whether it accepts null values. Use the following
member functions to get these attributes:

[MName: I1drRelation: :getColName (I1UShort).

[$ize: I11dRelation: :getColSize (I1UShort). Thecolumnsizeisawaysin bytes. It
isthe actual size (the maximum size for cHAR and VARCHAR database types) used by
IBM ILOG DB Link to store or send the data values.

Note: The LOB-type columns do not follow this rule. Thus, the value returned by the
function getColsize isnot meaningful for such columns.

[DB Link type: I11dRelation: :getColType (I1UShort). Thisfunction returnsa
value from the enumeration I1dColumnType.

[Mative SQL typename: I1dRelation: :getColSQLType (I1UShort). Thisfunction
returns the name of the native SQL data type on the server.

[Mull-valuesflag: 11dRelation: :isColNullable (I1UShort)
{

for (i = 0; i < nbColumns; i++)
ostrstream ostr (ColumnSizeStr, 32);
ostr << relation.getColSize (i) << ends;
ItemsArray [0] . buffer (char*)relation.getColName (1) ;
ItemsArray[1l] . buffer (char*)relation.getColSQLType (i) ;
ItemsArray[3] . buffer (relation.isColNullable (i)
? "true" : "false");
cout << IldFormatLine (4, ItemsArray, IlFalse) << endl;

}
}

All these member functions take a column number as the argument. A valid column number
is:

[greater than or equal to 0, and

[strictly lessthan the value returned by T1dRelation: :getCount.

Keys, Indexes, and Special Columns

The primary key, foreign keys, indexes, and special column descriptors are not created at the
same time as the table description. They are retrieved from the database only the first time
they are accessed, using the 11drelation functions I1drRelation: :getPrimaryKey,
IldRelation: :getForeignKeys, I1ldRelation: :getIndexes, and

IldRelation: :getSpecialColumns.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 55

56

If no keys of that type exist, the server is not queried again on the next call to one of these
functions.

Procedures and Functions

Within IBM ILOG DB Link, a database procedure or function is described as an object of
theclass 11dcallable. Such objects can be created by calling one of the following
member functions:

[11dDbms: : readProcedure: Thisfunction takes the procedure or function name as its
first argument and an owner name as the optional second argument. The returned object
is not cached. Therefore, it is the application’s responsibility to deleteit.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the procedure or function. This second version is not supported by all
RDBMSs.

[11dDbms: :getProcedure: Thisfunction takes the procedure or function name asits
first argument and an owner name as the optional second argument. The created object is
added to the cache managed by the caller. Therefore, the object can be accessed | ater
without querying the server and can be deleted automatically when the caler is
destroyed.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the procedure or function. This second version is not supported by all
RDBMSs.

SQL Type of the Object

The 11dcallable object returned can represent either a stored procedure or a stored
function. To differentiate between the two, acall to I11dcallable: : isProcedure returns
I1True if itisaprocedure description, or I11False otherwise.

Arguments

The formal arguments to the procedure or function are represented by objects of the class
Ildargument, which isderived fromthe class 11dbescriptor. The number of arguments
isreturned by acall to 11dcallable: :getArgumentsCount.

An I1dargument Object describes the argument by:

[Itsinput or output mode: One of the three functions 11dArgument : : i sInArgument,
I1dArgument : : isOutArgument, OF I1dArgument : : isInOutArgument returns
I1False Whilethe other two return I11True.

A default value: The member function I1dargument : :hasDefault tellswhether the
argument has a default value or not.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Accessing the Database Schema

Return Values

The return values of afunction are described by instances of the class 11dbescriptor. The
number of returned valuesisgiven by 11dcallable: :getResultsCount.

Synonyms

Within IBM ILOG DB Link, asynonym is described as an object of the class 11dSynonym.
Such objects can be created by calling one of the following functions:

[11dDbms: : readSynonym: This function takes the synonym name asiits first argument
and an owner name as the optional second argument. The returned object is not cached.
Therefore, it isthe application’s responsibility to delete it.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the synonym. This second version is not supported by all RDBM Ss.

[11dDbms: :getSynonym: Thisfunction takes the synonym name asitsfirst argument
and an owner name as the optional second argument. The created object is added to the
cache managed by the caller. Therefore, the object can be accessed later without
guerying the server and can be deleted automatically when the caller is destroyed.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the synonym. This second version is not supported by all RDBM Ss.

Note: None of these functions are supported with DB2, MS SQL Server, ODBC, and
Sybase because this concept does not exist in these database systems.

Abstract Data Types

Within IBM ILOG DB Link, an abstract data type is described as an object of the class
I1dADTDescriptor. Such objects can be created by calling one of the following functions:

[11dDbms: : readAbstractType: Thisfunction takes the abstract data type name asits
first argument and an owner name as the optional second argument. The returned object
isnot cached. Therefore, it is the application’s responsibility to deleteit.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the abstract datatype.

[11dDbms: :getAbstractType: Thisfunction takes the abstract data type name asits
first argument and an owner name as the optional second argument. The created object is
added to the cache managed by the caller. Therefore, the object can be accessed | ater
without querying the server and can be deleted automatically when the caler is
destroyed.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 57

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the abstract data type.

I Note: Both functions are only supported for ORDBMSs.

Table Privileges

The privileges given to a specific table/ view can be accessed by calling the function
IldDbms: :readTablePrivileges.

I1dDbms: : readTablePrivileges (const char* catalog,

const char* schema,
const char* table) ;

The first argument is used only by DBM Ss that support three-part naming for tables

(qualifier.owner.name). In particular, thisis not supported by Oracle, which uses only
schemaname.

Make sure that the table, schema, and catal og parameters are spelled with the correct case.
The RDBMS case method must be used.

If no specific trustee is given to atable, the result set for this table will be empty.
For Sybase:
[ieble nameis required,

o wildcard-characters are allowed.

Data Definition Language (DDL)

58

When aDDL (Data Definition Language) statement must be executed, you can use the
member function 11dpbms : : execute. Thisfunction behaves like the member function
I1dRequest: :execute. If required, IBM ILOG DB Link silently allocates an
I1dRequest Object and usesit.

This function can also be used for DML (Data Manipulation Language) statements, except
for the select statement. If you need to know the number of processed rows —modified,
inserted, or deleted— you must pass avalid pointer to an 111nt variable as the second
argument to the function 11dbbms : : execute (thefirst argument being the text of the SQL
statement). Thisisthe only way since, unlike the class 11drequest, the class 11dpbms has
no getStatus member function. You cannot use this function to perform select

statements because you cannot get the private 11drequest object that was used by the
I1dDbms Object.

Through the class 11dsQLType, IBM ILOG DB Link offersafull interface to find out the
database type names to be used when creating a table. The application can retrieve the

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Transaction Control

proper RDBM S-dependent name for a column using the 11dpbms : : get TypeInfo
function, which takesits first argument from thelist at the end of the i1dconst . hfile. This
function can return several objectsin an array, or no objectsif that specific type does not
exist in the currently connected RDBMS.

Transaction Control

Most RDBM Ss can handle sequences of SQL statements as one block: all statements
succeed or al fail. Thistypical behavior is called a transaction mechanism.

In some rare cases, the RDBM S is not capable of handling transactions, because this
functionality either is not implemented or not enabled for the database, as with Informix.

A block isdelimited by the initiation of the transaction and by its commitment or rollback.

The activation of the transaction mechanism can be checked by a call to one of the functions
I1dDbms: :isTransactionEnabled Or
I1dDbms: :getInfo (IldTransactionCapable, ...).

IBM ILOG DB Link offersa unified API that avoids RDBM S specificity. The member
functionsin the API take two optional arguments. However, for portability considerations,
we urge you to always pass a value to each optional argument and to stick to the protocol
that consists of sending the SQL statements by means of the 11drequest object that
initiated the transaction. If you do not follow this rule when using MS SQL Server, you will
encounter an unexpected behavior: the request that initiates the transaction is not the one that
executes the SQL statements. This amounts to an empty transaction and resultsin the
following:

[_If the transaction is rolled back, the changes to the database will not be undone.

1z the transaction is committed, the changes are executed but they are not validated.
Therefore, they are lost on disconnection.

With IBM ILOG DB Link, you can use member functions of the class 11dpbms for any
transaction-related command, whatever your target RDBMS, as shown in Table 3.5:

Table 3.5 IldDbms Member Functions for Transaction-Related Commands

To Use the I1dDms member function |Comments

Initiate a transaction I1dDbms: :startTransaction Inoperative with Oracle and ODBC
ports

Commit a transaction I1dDbms: :commit

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 59

Table 3.5 IldDbms Member Functions for Transaction-Related Commands

To

Use the I1dDms member function |Comments

Roll back a transaction I1dDbms: :rollback

Switch the auto-commit mode on | I1dDbms : : autoCommitOn OF Inoperative with Sybase and

or off

IldDbms: :autoCommitOf £ MS SQL Server.

60

For all these functions, the request argument (a pointer to an I1drequest object) is
optional for most of the supported RDBM Ss. However, this argument is mandatory for the
Sybaseand MS SQL Server database systems, which all require the 11drequest object to
control the commands that execute the SQL statements enclosed in the transaction.

Some RDBM Ss have implemented the “auto-commit mode” feature. When on, this mode
commits each SQL statement when it is executed. Each database system has a unique notion
of transaction control and, therefore, a unique interface to implement it.

With Sybase and MS SQL Server, the first argument is mandatory for all transaction-control
functions. The second argument is used only for Sybase. Sybase TransactSQL allows you to
name atransaction. For all other ports, both arguments are ignored. The following items
relevant to transactions are described:

[Initiating a Transaction

[Committing a Transaction
[Rolling Back a Transaction
[—Autocommit Mode

Initiating a Transaction

To initiate atransaction, call the member function 11dDbms: : startTransaction, as
shown in the following example:

// A new transaction.
cout << "Initiating a transaction." << endl;
if (!dbms->startTransaction(request))
IldDisplayError ("Begin transaction failed:", dbms) ;
}

This function takes two arguments, which are optional for most RDBM Ss.

[_IF specified, the first argument must be a pointer to an 11drequest object, whichisused
to send the SQL statements that make up the body of the transaction.

[_IF specified, the second argument is a character string that is set as the transaction name.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Transaction Control

With Informix, it is an error to start, commit, or roll back atransaction several timeson a
connection. IBM ILOG DB Link ensures that superfluous calls to these functions will not
raise an error: they simply do nothing. However, you must be aware that the actual
transaction still starts with the first call to I1dDbms : : startTransaction and ends with
thefirst call to either 11dDbms: : commit Or I1dDbms: : rollback.

Committing a Transaction

To commit atransaction, call the member function I1dbbms : : commit. This function takes
two optional arguments, as shown in the following example.
{

cout << "Committing the transaction." << endl;
if (!dbms->commit (request))
IldDisplayError ("Commit failed: ", dbms);

}

[_IF specified, thefirst optional argument must be apointer to the 11drequest object used
to send the SQL statements that make up the body of the transaction—namely, the same
object that was used to initiate the transaction.

[_IF specified, the second optional argument is the same transaction name that was used to
initiate the transaction.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 61

Rolling Back a Transaction

Toroll back all effects of the SQL statements executed since the transaction was initiated,
call the member function 11dpbms : : rollback, as shown in the following example:
{

cout << "Rolling back the transaction." << endl;
if (!dbms->rollback (request))
IldDisplayError ("Rollback failed:", dbms) ;

}

This member function takes two optional arguments, which must be the same as those used
to initiate the transaction.

Autocommit Mode

To switch the autocommit mode on or off, use the member function
I1dDbms: :autoCommitOn Or I1dDbms : : autoCommitOf £. Like other transaction-control
functions, these functions take two optional arguments.

Note: The autocommit mode, while ensuring commitment of every successful SQL
statement, exacts a very high price in terms of server work. You should avoid setting it on
when it is not required by the application context.

Cursor Allocation

A cursor isan instance of the class 11drequest. Although this nameis currently used in
IBM ILOG DB Link manuals, it is not fully appropriate: an 11drequest object isactualy
used to handle any SQL statement whether it needs a cursor or not.

Thefunction I1dbbms: : getFreeRequest registers a newly created cursor in its cursor
array. When acursor is deleted—either explicitly using the delete operator or implicitly on
disconnection—the corresponding connection is notified of the cursor disappearance.

Important: T1drequestModel derived objectsdo not behave in this way because, by
defaut, they are not attached to any 11dbbmsModel oObject.

Extending the lldDbms Class

It isnot possible to derive from the class 11dDbms because the actual objects handled by
your application are instances of its subclasses rather than instances of the base class.

62 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Extending the lldDbms Class

If, for any reason, you need to extend the functionality of the 11dpbms class, you can
retrieve the determining part for connection handling. The member function
I1dDbms: : getHook returnsthat part as avoid pointer.

Table 3.6 shows what thisfunction returns and what proprietary client interface you can call,
depending on the target database system.

Table 3.6 Values Returned by the Member Function IldDbms::getHook

With this Database
System...

...and lets you call the
...the getHook function returns following database proprietary
client interface.

DB2 the SQLHANDLE CLI (Call Level Interface)
Informix the connection name (a character string) Embedded SQL

MS SQL Server the pointer to the DBPROCESS structure DB Library function
OoDBC the HDBC ODBC functions
OLE-DB the pointer to the IDBCreateSession structure | OLE-DB functions

Oracle9, 10 or 11

the pointer to the OCISvcCtx structure OCI functions

Sybase

the pointer to the CS_CONNECTION structure | Client Library functions

On the other hand, the member function 11dbbms : : setHook may be used to initialize the
connection with an existing connection from an other application.

The I1dpbms instance must be disconnected before using this function.

The connection given will not be closed when calling 11dDbms : : ~I1dDbms (), Of when
calling 11dDbms : :disconnect (). Since it was alocated outside of IBM ILOG DB Link,
the application is responsible for closing it.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 63

Use Notification

The notification isimplemented in the ‘ Enterprise’ or ‘Workstation’ editions of Oracle.
The following entities are required:

[—aqueue (either persistent or not),

[—a subscriber attached to this queue,

atrigger for the event.

The trigger will send a message to the queue, and the application will be notified that an
event was generated.

This feature lets you receive natifications from the RDBM S asynchronously. This means
that the application may be performing any task when the notification isreceived. A handler
isautomatically called when the notification isreceived. When it is completed, the execution
will continue the interrupted task.

Subscribe to an Event

Subscription to an event is done using the following function:

IldDbms: : subscribeEvent (const char* name,
I1dNotifFunction usrCB,
IlAny usrData) ;

The name given will be <queue name>:<agent name>.
[dsrcB isthe handle that will be called when the event is received.

[dsrData isabuffer from the application that will be transmitted to the callback
function.

Unsubscribe from an Event

Unsubscribing is done using the following function:

I1dDbms: :unSubscribeEvent (const char* name) ;

[dame isthe name that identifies the event (the one used to subscribe to the event).

This function isto be called when you no longer need to receive notifications for a given
event.

64 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Differences between lldDbms and lldDbmsModel Classes

Differences between lldDbms and lldDbmsModel Classes

I1dDbmsModel providesthe samefunctionalities as 11dpbms, plusthe ability to be derived.
This derivation capability introduces afew differences with the 11dpbms class, asfollows:

[11dpbmsModel instances are allocated directly by their constructor. The schema of
using afunction such as 11dNewDbms () isnot used for the I1dDbmsModel class.

[The I11dDbms: : get FreeRequest member function cannot be used to instantiate a
request with an object of the 11dpbmsModel class. Instead, you must use the
IldRequestModel : : I1dRequestModel constructor, with the 11dbbmsModel
instance as a parameter.

[When an 11dbbms instance isdeleted, the 11drequest instancesthat arelinked toit are
automatically deleted. This functionality is not implemented for the 11dDbmsModel
class. You must delete all 11drequestModel instances allocated using the given
I1dDbmsModel instance.

(Thisisbecause 11drequestModel instances may be allocated on the stack, as
automatic instances. Therefore, IBM ILOG DB Link has no control over the deletion of
those instances. They will be deleted when the block in which they have been alocated
ends.)

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 65

66

IBM

ILOG DB LINK V5.3

USER’'S MANUAL

cursors

IBM® ILOG® DB Link implements cursors as instances of the class 11drRequest or
IldRequestModel. I1dRequestModel isthetwin classto 11drequest, butin addition it
provides the ability to be derived. In this manual we describe the 11drequest class, which
isthe main class. All its features also apply to the 11drRequestModel class. The few
differences between the two twin classes are itemized in a subsection.

This chapter is divided as follows:
[1ldRequest Objects — Creating, manipulating, and deleting 11drRequest objects.

[Configuration Settings — Default settings, accessing and changing the configuration,
and array modes.

[Column and Parameter Descriptors — The concept of descriptors, implementation
descriptors, and application descriptors.

[Processing SQL Satements— Immediate execution, deferred execution, and preparing a
statement.

[Results Retrieval — Fetching and handling result sets.
[Binding Input Variables— How to usethe I1drRequest : : bindParam function.
[Generic Data Types— Handling date, time, and numeric values.

[llarge Objects (LOBs) — Sending and retrieving large objects.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 67

[Handling Abstract Data Type Values — Using the descriptors of user-defined data types
with ORDBMSs.

[Extending the IldRequest Class — This class cannot be derived but you can extend its
functionalities under certain conditions. If you need to derive the 11drequest class,
you must use itstwin class, I1dRequestModel.

[Differences between IIdRequest and |IdRequestModel Classes

IIdRequest Objects
This section explains how to create, manipulate, and delete T11drequest objects. Itis
divided asfollows:
[Creating IldRequest Objects
[Mumber of Active Cursors

[Disposing of IldRequest Objects

Creating lldRequest Objects

No public constructor exists for the class 11drRequest. The I1drRequest constructor is
private to its class so it cannot be called from your application.

To create an I1drRequest Object, you must have already created an 11dDbms object using
the function 11dNewDbms.

Theonly way to create a cursor isto ask an 11dDbms object to deliver one using the function
I1dDbms: :getFreeRequest, as shown in the following example:

{

cout << "Creating a request: " << endl;

IldRequest* request = dbms->getFreeRequest () ;

if (dbms->isErrorRaised()) {
IldDisplayError ("Creation of request failed: ", dbms);
delete dbms;
exit (1) ;

}

The 11dpbms : : get FreeRequest function does not necessarily allocate a new
I1dRequest Object eachtimeitiscalled, but instead, it may reuse any 11drequest object

68 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

lldRequest Objects

that has been previously released (see Releasing an |IdRequest Object for more
information).

Warning: It is possible for the allocation of an 11drequest object to succeed (partially,
for example), while the creation of the object not succeed. In such a situation, memory was
at least partially allocated, but the returned object cannot be used to execute a query. For
that reason, you must always check that no errors were raised in the 11dpbms object.

If an error is raised but you do not check it, you will be using a specia object instead of the
normal T11drRequest object. Using this special object will, in turn, raise an error
ILD USING ERROR_REQUEST each time any functionis called with it.

Number of Active Cursors

The number of T11drequest objects you can createislimited only by the database system
configuration (for example, 50 with the Oracle default configuration).

To get the number of active I11drequest objects, you call the member function
I1dDbms: : getNumberOfRequests. This number corresponds to the number of
I1dRequest objectsthat actually exist, not the number of 11drequest objectsfor which
an SQL statement is being processed. That is, even if an 11drRequest object has been
released, it is still considered active (see next section for more information).

Disposing of lldRequest Objects

Disposing of an 11drequest object involves releasing it and destroying it.

Releasing an lldRequest Object

When you are finished using an 11drequest object, you can tell IBM ILOG DB Link that
you are not going to useit any longer and that the object is at its disposal. To do so, use the
member function I1drRequest: : release.

Warning: You must be careful not to use an 11drequest object once it has been
released. Instead, you must ask the 11dDbms object to supply a new 11drequest object
(which could be the same).

Destroying an lldRequest Object
An I1drequest oObject can be destroyed and its server-side all ocated resources released on
an explicit or implicit basis.

[To destroy an 11drequest object explicitly, just call the C++ operator delete Onit.
The I1drRequest: : ~I1dRequest destructor notifies the related 11dpbms object of its

disappearance.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 69

[Todestroy an 11drequest object implicitly, all you haveto do isleave the object where
itis. Actually, the destruction of the related 11dpbms object causes the appropriate

destructor to be called.

Releasing Versus Destroying

IBM ILOG DB Link tries to manage the memory allocated for 11drequest objects as
sparingly as possible. Thisiswhy you are strongly advised to use the function
I1dRequest: : release rather than calling the operator delete when it comesto

disposing of an I11drequest object.

Using the pair 11dDbms : : getFreeRequest/I1dRequest: : release IS, ON average,
faster than using the pair 11dDbms : : get FreeRequest/delete because, with thefirst pair,
the 11drequest object isnot deleted and will be reused on afurther call to

IldDbms: :getFreeRequest.

Configuration Settings

This section describes how to access and change configuration settings and tells you more
about the array bind and array fetch modes. It is divided as follows:

[Default Settings
[—Accessing and Changing the Configuration
[—Array Modes

Default Settings

Any 11drRequest oObject returned by the function 11dbbms: : get FreeRequest iS
configured using the current configuration setting from itsrelated 11dpbms object.

Thus, it inherits the array fetch size and the parameter array size, as well as the settings for
the date as string, numeric as string, and numeric as object features.

Note: The error reporter isnot reset when an 11drequest object has been released and
islater reassigned by 11dpbms : : get FreeRequest.

70 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Configuration Settings

Accessing and Changing the Configuration

Table 4.1 shows what member functions of the class 11drequest you can useto change the
default configuration settings.

Table4.1 Changing the Default Configuration Settings

Use To
I1dRequest: :setColArraySize Change the fetch array size
I1dRequest: :removeColArraySize Return the cursor to the default fetching

protocol (one row at a time)

I1dRequest: :getColArraySize Retrieve the current fetch array size

IldRequest: :setParamArraySize Set the parameter array size

IldRequest: : removeParamArraySize |[Return the cursor to the default binding
protocol (one parameter row at a time)

I1dRequest: :getParamArraySize Retrieve the current parameter array size

Array Modes

IBM ILOG DB Link can handle several rows at atime, whether input or output data. The
default setting, however, isone row at atime.

Each 11drequest object inherits the settings of its related 11dpbms object. The default
settings can be changed at the 11dDbms level.

While using array modes enhances performance —at the network communication level for
array fetch and with respect to CPU time for array bind—you must be aware that

IBM ILOG DB Link pre-allocates memory for data values and null indicators. The data
buffers are allocated the maximum size required for the column data types, except for the
LOB types I1dLongTextType and I1dBinaryType, for which the buffer sizeislimited to
64 Kilobytes. Consequently, on some systems with limited memory, setting the array mode
to a high number of rows may cause an allocation failure.

Array Bind Mode

[To set the array bind mode, specify the number of rows you want to send at atime. This
number isamaximum and can be changed by the value of the second argument passed to
the member function I1drRequest : :execute.

For each 11drequest object, you can change the array size using the function
I1dRequest: : setParamArraySize With apositive integer asits argument:

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 71

72

{

cout << "Host variables array size set to 2" << endl;
request->setParamArraySize (2) ;

}

[To get the array size, use the member function I1drRequest : :getParamArraySize.

[_To reset the array size, use the function T1drRequest : : removeParamArraySize.

Warning: To be effective, the array bind size must be set before the function parse or
execute iscalled.

Array Fetch Mode

Since the cursor-relative positioning and absol ute positioning are not implemented, these
features do not prevent you from using the function I11drRequest: : fetch.

[To set the default value for all newly created 11drequest objects, use the function
I1dDbms: : setDefaultColArraySize With apositiveinteger asits argument.
{

}

dbms->setDefaultColArraySize ((I1UInt) 10) ;

[_To change this setting for a given 11drequest object, use the member function
IldRequest: :setColArraySize With apositive integer asits argument.

[_To reset this setting, use the function I11dRequest : : removeColArraySize.

Warning: To be effective, the array fetch size must be set before the first call to the
fetch member function.

[To get the current array size, use the function 11drequest : :getColArraySize.

With ODBC, the array fetch mode is available only if the driver has level-2 compliance.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Column and Parameter Descriptors

Column and Parameter Descriptors
This section presents application and implementation descriptors as implemented by
IBM ILOG DB Link. It isdivided as follows:
[NMotion of Descriptors
[Implementation Descriptors

—Application Descriptors

Notion of Descriptors

CLI Definition
The CLI standard defines descriptors at implementation- and application- levels.

At implementation level —that is, from the database server point of view— the
descriptors are called IRD (Implementation Row Descriptor) and IPD (Implementation
Parameter Descriptor).

At application level, the descriptors are called ARD (Application Row Descriptor) and
APD (Application Parameter Descriptor).

Likewise, IBM ILOG DB Link aso differentiates between implementation level and
application level, but refers to row descriptors as column descriptors and uses the same
classes for column and parameter descriptors.

Implementation Within IBM ILOG DB Link

IBM ILOG DB Link uses two classes to describe the properties of a column or parameter:

[J1ldpescriptor: Declaredinthefile i1dent . h, thisclassis used to describe a column
or parameter type on the server side.

[J1dappDbescriptor: A subclassof 11dpescriptor declaredinthefileildtuple.h,
this class is used to hold the type descriptor and the column or parameter values and
indicators on the application side.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 73

74

Implementation Descriptors

Aninstance of T1dpescriptor holds the following information about the column or
parameter. Table 4.2 shows the corresponding member functions:

Table4.2 lldDescriptor Member Functions

Use this Member Function To get

IldDescriptor: :getType IBM ILOG DB Link type

IldDescriptor: :getSqglType SQL data type code

IldDescriptor: :getName Column name

IldDescriptor: :getSize Maximum data size (in bytes)

IldDescriptor: :getPrecision Precision (for columns of a numeric type) - 0
if irrelevant

IldDescriptor: :getScale Scale (for columns of a numeric type) - 0 if
irrelevant

IldDescriptor: :getSqglTypeName SQL type name in the server

IldDescriptor::isNullable Nullability flag

IldDescriptor: :getADTDescriptor |Abstract type descriptor (for columns of
IBM ILOG DB Link type) - null otherwise

Note: Since most RDBMSs do not have the capability of describing the parameters of a
guery, the contents of the 11dpescriptor object for a parameter are undefined until itis
bound using the member function T1drequest : :bindParam.

Type Codes

SQL data type codes are defined as constants in the section Type Codes of the
ildconst . h header file. Most of them have anamethat is very similar to their CLI name
but afew of them differ. The names are prefixed with 11dsQL.

Their values are the ones defined in the CL| standard.

The CLI specification has been extended to negative values so as to provide support for all
types of all supported RDBM Ss.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Column and Parameter Descriptors

Application Descriptors

Aninstance of T1dappbescriptor adds the following information to its base class
IldDescriptor:
Table4.3 Member functions added by IIdAppDescriptor to IldDescriptor

Information Member Function

Size of one element in the value buffer (in | I1dAppDescriptor: :getBufferSize
bytes)

Value buffer IldAppDescriptor: :getValue
Indicator buffer IldAppDescriptor: :getNulls
In addition:

[—_The member function I1dappDescriptor: : isExtValue letsyou know whether the
value buffer was allocated by IBM ILOG DB Link or is bound to some application
memory space. Thisfunction returns 11False inthefirst case or 11True in the second.

[—The member function T1dappDescriptor: : isExtNulls letsyou know whether the
null-indicator buffer was allocated by IBM ILOG DB Link or is bound to some
application memory space. This function returns 11False inthefirst case or 11True in

the second.

Simple 11dpescriptor objectsexist only for user-defined data-type attribute descriptors
of type 11dAaDTDescriptor. All other accesses to descriptors return instances of derived

classes:
[Thefunction I1drRelation: :getColumn returnsinstances of the derived class
I1dColumn.

[Thefunctions 11dRequest : :getColDescriptor and
IldRequest: :getParamDescriptor return instances of the derived class

IldAppDescriptor.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 75

Processing SQL Statements

76

SQL statement are usually sent for processing one at atime. However, some RDBMSs allow
you to send a batch of several statements at once: such isthe case of Sybase, MS SQL
Server, and ODBC if the underlying RDBMS allows it.

Although it is not forbidden by IBM ILOG DB Link, we do not recommend using batches of
statements. Stored procedures are far more convenient.

Two different processes exist with respect to statement execution:

[Immediate Execution: The SQL statement is sent to the server immediately viathe
function I1drRequest: : execute.

[Deferred Execution: The execution process is broken down into the following steps:
. The SQL statement is prepared by the function 11drequest : :parse.
. The parameters are bound and set.

. Theactual execution takes place when the function I1drRequest : :execute iS
caled.
You should choose immediate execution when the query has no placeholder (or parameter)
and will be used only once.

Immediate Execution

To execute an SQL statement immediately, use the member function
I1dRequest: : execute, Which takes two arguments:
[Thefirst argument isthe SQL statement string.

[_The second argument, rowCount, isoptional. If specified, it must be avalid pointer to an
I1Int variable, which will be set to the number of processed rows if the statement is

delete, insert, Of update.

Note: rowCount is zero after a select query is executed. For performance reasons, most
RDBMSs do not “ ook ahead” to set this value for a query.

Oncethecal to 11drequest : : execute SUcceeds, you can retrieve the execution statusvia
the member function I1drRequest : :getStatus. This member function returns the
number of processed rows if the SQL statement iSdelete, insert, OF update. If itisa

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Processing SQL Statements

select Statement, the returned value is the number of rows actually fetched —namely 0
when the execution has just been completed.

Note: An SQL statement that is to be executed immediately must not contain any
parameters.

If the execution fails, the returned value, usualy -1, is not meaningful.

{

if (!request->execute (queryBuffer))

IldDisplayError ("Executing: ", request);
else {
if (!request->fetch())
IldDisplayError ("Fetching: ", request);

else if (request->hasTuple())
// Loop with two levels, since ODBC, Sybase, and MS SQL Server
// can have several result sets for one command.
do {
if (request->getColCount ()) {
I1dPrintTuple (request, IldNames) ;
IldPrintTuple (request, IldSeparators) ;
I1dPrintTuple (request) ;
while (request->fetch() .hasTuple())
I1dPrintTuple (request) ;
cout << endl;
if (request->isErrorRaised())
IldDisplayError ("Fetching: ", request);
!
} while (request->fetch().hasTuple());
else if (request->getColCount()) {
IldPrintTuple (request, IldNames) ;
I1dPrintTuple (request, IldSeparators) ;
cout << endl << "No row found." << endl;
}
else if ((count = request->getStatus()) > 0)
cout << count << " modified line(s)" << endl;
1

}

It isalso possible to get the attributes of the returned rows from the result set, using the
following member functions:

[11dRequest: : getColName t0 get the column names,
[11dRequest: :getColType to get the column types,
[11dRequest: :getColSize to get the column sizes.

If the SQL statement is select, you can retrieve the rows using the member function
I1ldRequest: : fetch. When used after execution of any other SQL statement, this member
function is ineffective, but no error is raised.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 77

78

Deferred Execution

It isnot always useful to execute a query immediately, either because it contains
placeholders for which values must be passed or because you want to reuse the same query
and thus avoid the time needed to prepare it for execution.

The database system must prepare a query before executing it. Preparing a query involves:
1. Parsing the query and checking the SQL syntax,
2. Preparing an execution plan,

3. Calling the query optimizer.

These steps can take place only once, rather than repeatedly, if you intend to use the same
query several times —whether containing placeholder values or not.

To send the same query several times, you must follow this protocol:

1. Preparethe query by calling 11drRequest : :parse.

2. Bind the placeholders by calling 11dRequest : :bindParam.

3. If needed, bind output columns by calling 11drRequest : :bindCol.

4. For each execution, pass values to the placeholders by calling the function
I1dRequest: :setParamValue.

5. Cal 11drequest: :execute.

Note: When using any of the member functions related to the result set or to the
parameters set, remember that IBM ILOG DB Link follows the C or C++ convention,
where indexes start from O, rather than the standard SQL convention, where indexes start
at 1.

Hereisan example:
{

const char* selectStr = (!strcmp(dbms->getName(), "oracle") ||
Istrcmp (dbms->getName (), "sglbase")) ?
"select * from DBLTABLE where no > :1"

"select * from DBLTABLE where no > ?";
cout << "Parsing a request containing a host variable: " << endl;
cout << "\t" << selectStr << endl;
if (!request->parse (selectStr)) ({
IldDisplayError ("Parse failed: ", request);
Ending (dbms, request) ;
}
cout << endl;
cout << "Host variable bind with integer type and value 0" << endl;
if (!request->bindParam((I1lUShort)0, IldIntegerType)) {
IldDisplayError ("Binding failed: ", request);

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Processing SQL Statements

Ending (dbms, request) ;
}
request->setParamValue ((I1Int)0, 0);
cout << "Executing the request" << endl;
if (!lrequest->execute())
IldDisplayError ("Execute failed: ", request);
Ending (dbms, request) ;

}

cout << endl;

cout << "Results from the request: " << endl;
if (request->getColCount ()) {
while (request->fetch().hasTuple()) {

if (!request->isColNull (0))

cout << request->getColIntegerValue(0) ;
else

cout << "-";
cout << "\t";
if (!request->isColNull (1))

cout << request->getColStringValue (1) ;
else

cout << "-'";
cout << endl;

}
}
}

Preparing a Statement

To prepare a statement, issue acall to I1drRequest : :parse. Itsargument isthe SQL
statement string to be prepared. Its action is roughly equivalent to the SQL statements
PREPARE and DESCRIBE.

Warning: Parsing a request discards any previously parsed queries, aswell asall
pending result sets of the 11drequest object.

Thisparse method must not be called for statements that cannot be prepared. These
statements vary depending on the RDBM S you are connected to. Check the RDBM S client
API manuals for information about which statements can be prepared.

Note: Asimple select statement that includes no placeholder should not be prepared
when you use the ODBC port. The resulting data will be irrelevant in the bound memory
space.

Multiple Execution

Multiple execution means that one call to the member function I11drRequest : : execute
will process several rowsin the database. This function takes two optional arguments:

[_Thefirst argument is a pointer to an 11Int variable. After execution is successful, this
argument is set to the number of processed rows.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 79

80

[_The second argument, a number of type 11UInt, isthe number of timesthe query hasto
be executed. When specified, this number must be positive and less than or equal to the
value returned by acall to the function 11dRequest : : getParamArraySize.

Note: When you use ODBC, this second argument can be set only if the driver is ODBC
level 2 compliant. Also with ODBC, the array bind mode can be used only if the driver is
ODBC level 2 compliant.

// Since the "count" argument is set to 1, there will be only one
// update performed despite the variable array size set to 2 !!
if (!request->execute (&rowCount, 1))

IldDisplayError ("Execution failed: ", request);

Ending (dbms, request) ;
cout << "Row processed count " << rowCount << endl << endl;

}

Repeated Execution

Once prepared, a query can be executed as many times as needed by successive callsto the
overloaded member function T1drequest : : execute. Before each execution, you can set
new bindings for the input variables (placehol ders) and the output columns. You must also
pass the values of the input variables.

Example:
{

for (int i = 0; 1 < 5; i++) {
cout << "Set " << 1 << "th variable to name: "
<< names[i] << " and age: " << ages[i] << endl;
request->setParamValue (names[i], 0, 0);
request->setParamValue (ages[i], 1, 0);

// execute the insertion

cout << "Inserting row" << endl;

if (!request->execute(&n))
IldDisplayError ("Execution failed: ", request);
delete cust;
Ending (dbms, request) ;

}

cout << n << "row(s) inserted." << endl;

}

A frequent mistake is to use the basic member function 11drRequest : : execute. This
function takes a string as its first argument, thus causing an error, in this context, dueto
unbound variables.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Results Retrieval

Results Retrieval

Once an SQL select statement has been executed as a query, the resulting data can be
fetched using the member function I11drRequest: : fetch or
I1dRequest: :fetchScroll.

The member function I1drRequest : : fetchScroll isimplemented for RDBMSs that
enable this feature: Informix®, Mssgl, Oracle® and Odbc.

You can go back in the result set when you use this function, while 11drequest: : fetch
lets you only access the records that follow it.

To activate this feature, you must activate the scrollable cursor mode by calling
I1dRequest: :setScrollable (I1True). Thisfeatureisnot activated by default because
it requires additional resources on the server side. Furthermore, the RDBM S may restrict the
set of queries you can run. For instance, with Informix, you cannot fetchaBYTE or TEXT
column using a scrollable cursor.

When the column array sizeis used to fetch several rows at the same time, the <n> last rows
will beretrieved if fetchOrientation == IldFetchDirectionLast.

Once fetched, the data can be read using the specialized accessors
IldRequest: :getCol<type>Value, Where <type> isone of thevalid
IBM ILOG DB Link column type names (see Direct Access for details).

A faster way to retrieve and send datais to bind application-allocated memory to
IBM ILOG DB Link. This can be done for input values as well as for output columns.

The following items are described individually:
[Handling Multiple Result Sets

[Direct Access

[Binding to User-Allocated Memory

Handling Multiple Result Sets

A result set isreturned at fetch time for each SQL select statement. Sybase and
MS SQL Server return several result sets for a stored procedure call.

When the target RDBM S allows queries to be sent in batches, there may exist several
successive result setsto be fetched. In this case, IBM ILOG DB Link retrievesthe first set,
then returnsthe value 11False fromthecal to I11dRequest: :hasTuple.

To make sure that there is no other result set to be fetched, you must issue another call to
IldRequest: : fetch and then acall t0 I1dRequest: :hasTuple, asshowninthe
following example:

{

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 81

cout << "\tResult sets: " << endl;
while (request->fetch().hasTuple()) {
if (request->getColCount ()) {
IldPrintTuple (request, IldNames) ;
I1dPrintTuple (request, IldSeparators) ;
do {
I1dPrintTuple (request) ;
} while (request->fetch().hasTuple());

}

else {
I1Int count = 0;
if ((count = request->getStatus()) > 0)
cout << count << " modified row"

<< ((count > 1) ? "g" : "") << endl;

}

cout << endl;

Direct Access

To retrieve data, you can either:

[asetheBM ILOG DB Link API alone with type-related member functions,
[—or bind the application memory space on outpuit.

IBM ILOG DB Link data accessors are of the form 11dRequest : :getCol<types>Value
where <type> can be one of the following IBM ILOG DB Link types:

[ADT
[Binary
[Byte
[Date

[DateTime
[Anteger
[TongText
[Money
[Numeric
[Real

[Ref
[3tring
Hereisan example:

// Selection of the data accessor.
if (request->isColNull(i))
ItemsArray[i] . buffer = "-";

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Results Retrieval

else
switch (request->getColType(i)) {
case IldDateType:
ItemsArray[i] ._buffer =
I1dStrRTrim((char*) request->getColDateValue(i)) ;
break;
case IldDateTimeType:
ItemsArray[i] ._buffer =
IldDateTimeToString (request->getColDateTimeValue (1)) ;
break;
case IldStringType:
ItemsArray[i] ._mode = IldLeft;
ItemsArray [i] . _buffer =
(char*) request->getPurgedStringValue (1) ;
break;
case IldLongTextType:
ItemsArray[i] . _mode = IldLeft;
ItemsArray[i] ._buffer =
I1dStrRTrim((char*) request->getLongTextValue (1)) ;
break;
case IldMoneyType: {
ItemsArray[i] ._buffer = &BuffersArray[i * IldBufSize];
ostrstream ostr (&BuffersArray[i * IldBufSizel,
(int) I1ldBufSize) ;
ostr << '$' << request->getMoneyValue (i) << ends;
break;
}
case IldRealType: {
ItemsArray[i] . buffer = &BuffersArray([i * IldBufSize];
ostrstream ostr (&BuffersArray[i * IldBufSizel,
(int) I1ldBufSize) ;
ostr << request->getRealValue(i) << ends;
break;

case IldByteType: {
ItemsArray[i] ._buffer = &BuffersArray[i * IldBufSize];
ostrstream ostr (&BuffersArray[i * IldBufSizel,

I1dBufSize) ;

ostr << (short)request->getByteValue (i) << ends;
break;

}

case IldIntegerType: {
ItemsArray[i] . buffer = &BuffersArray([i * IldBufSize];
ostrstream ostr (&BuffersArray([i * IldBufSizel,

I1dBufSize) ;

ostr << request->getIntegerValue (i) << ends;
break;

case IldBinaryType: ({
ItemsArray[i] ._buffer = "...";
break;

case IldUnknownType: {

ItemsArray[i] ._buffer = "2?22";
break;

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 83

Also, you should keep in mind that:

[When the valueis of type I11dstringType, I1dBinaryType, Of I1dLongTextType
it must be copied over to the memory allocated by your application because after the next
call to 11drequest : : fetch, the value will be undetermined.

[Values returned for columns of type T1dDateTimeType OF I1dNumericType are
automatically copied into the receiving object.

[Valuesreturned for columns of type I11dobjectType Or I1dCollectionType become
the property of the application. Therefore, the application must delete them when they
are no longer needed.

Binding to User-Allocated Memory

An interesting optimization consists of retrieving the data directly into your application
memory space. To achieve this, use one of the overloaded member functions
IldRequest: :bindCol. Thefirst one usesthe column index in the result set as akey,
whereas the second one uses the column name.

If you choose this method, be aware that when IBM ILOG DB Link compares the strings,
the comparison is case-sensitive. Some RDBM Ss use only uppercase while others use
lowercase letters, or are case-sensitive themselves.

To find out how your target RDBM S handles character cases, you can call the function
IldDbms: :getInfo for informationitem 11didentifierCase.

Hereisan example:
{

// 1/ parse a selection request

const char* selectStr = "select NAME, AGE from BINDTABLE";
cout << "Parsing select request: " << selectStr << endl;
if (!request->parse (selectStr))

IldDisplayError ("Parse failed: ", request);

delete cust;
Ending (dbms, request) ;
}
cout << endl;
// 2/ declare binding of outputs
cout << "Binding output: " << endl;
cout << " column NAME bound to customer name slot" << endl;
if (!request->bindCol ((I1lUShort)0, IldStringType,
cust->name, 20))
IldDisplayError ("Column binding failed:", request) ;
delete cust;
Ending (dbms, request) ;

}

cout << " column AGE bound to customer age slot" << endl;
if (!request->bindCol (1, IldIntegerType, &(cust->age)))
IldDisplayError ("Column binding failed:", request) ;

delete cust;
Ending (dbms, request) ;

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

}

cout << endl;

// 3/ execute the select request

cout << "Executing the select request" << endl;

if (!lrequest->execute())
IldDisplayError ("Execution failed: ", request);
delete cust;
Ending (dbms, request) ;

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Results Retrieval

85

Binding Input Variables

86

To bind input variables, you will use the member function 11drequest : : bindParam.

This section differentiates the standard implementation of this function from its overloaded
versions, and explains how to set parameter values. It is divided as follows:

—Handard Implementation
[Overloaded Version
[Fetting Parameter Values
[Fpecific Considerations

Standard Implementation

This function can take up to eight arguments, from which only the first two ones are
mandatory, the others being optional:

[Thefirst argument isthe chronological order of the variablein the statement, that is, ina
left-to-right reading, its order of appearance in the statement string.

[_The second argument isthe IBM ILOG DB Link type of the data.

[Thethird argument is the data size in bytes. It isignored for fixed-size types (such as
integer, real, byte) but it can be used for al other type bindings. However, the error
ILD BAD VARIABLE SIZE israised if the size passed istoo small to handle the values.

[_Thefourth and fifth arguments are, respectively, a pointer to the data and a pointer to the
null indicator.

[_The sixth argument indicates the variable output status. It is needed only with Sybase on
stored procedure calls.

The following code extract is taken from the sample file sybproc . cpp and shows how
this argument is used:

cout << "Binding parameters: " << endl;

cout << " @intparam" << endl;

if (!request->bindParam("@intparam", IldIntegerType)) ({
IldDisplayError ("Binding of @intparam failed: ", request);
delete dbms;
return 1;

}

cout << " @sintparam" << endl;

if (!request->bindParam("@sintparam", IldIntegerType,

-1, 0, 0, IlTrue)) {

IldDisplayError ("Binding of @sintparam failed: ", request);
delete dbms;
return 1;

}

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Binding Input Variables

cout << " @floatparam" << endl;
if (!request-s>bindParam("@floatparam", IldRealType,
-1, 0, 0, IlTrue)) {
IldDisplayError ("Binding of @floatparam failed: ", request);
delete dbms;
return 1;

}

cout << " @charparam" << endl;
if (!request->bindParam("@charparam", IldStringType, 20,
0, 0, IlTrue)) {
IldDisplayError ("Binding of @charparam failed: ", request);
delete dbms;
return 1;

}
}

Warning: I1BM ILOG DB Link managesthe memory allocation for data buffersinternally.
In case of long strings, as with Oracle vARCHAR or Informix cHAR, the allocated buffer
may be too small if the size is nhot supplied at binding time. If your parameter islonger
than 255 characters, pass the actual maximum size as the third argument to the function
IldRequest: :bindParam.

[_The seventh argument is the actual number of valuesin the array argument. This

argument is only used with Oracle for stored procedure calls where array arguments are
required.

[_The eighth argument is avalid abstract data type descriptor. It is only used with
ORDBMSs and is mandatory if the parameter isbound to 11dCollectionType OF
IldObjectType types.

Warning: Despite standardization, Oracle does not support the question mark asa
variable identifier.

Overloaded Version

Thereis an overloaded version of the function 11drRequest : :bindParam that isreserved
for use with Oracle. Itsfirst argument is a character string holding the parameter name the
way Oracle expectsit, that is, intheformat ' : ' <parameter names.

Since Oracle also supportstheformat ' : ' <parameter numbers, thefirstimplementation
of thebindpraram function can also be used with them, as shown in the following RDBM S
example sbinding:

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 87

88

cout << "Binding input variable :name of type string" << endl;
if (!request->bindParam((IlUShort)0, IldStringType, 20))
IldDisplayError ("Variable binding failed:", request);
delete cust;
Ending (dbms, request) ;
}
cout << "Binding input variable :age of type integer" << endl;
if (!request->bindParam(1l, IldIntegerType)) ({
IldDisplayError ("Variable binding failed:", request);
delete cust;
Ending (dbms, request) ;

}

Setting Parameter Values

Just before calling the function T1drequest : : execute, you must supply values for the
parameters through the function 11drRequest : : set Paramvalue, as shown in the
following example:

{

IlInt n = O;

for (int i = 0; 1 < 5; i++) {
cout << "Set " << 1 << "th variable to name: "
<< names[i] << " and age: " << ages[i] << endl;

request->setParamValue (names[i], 0, 0);
request->setParamValue (ages[i], 1, 0);

// execute the insertion

cout << "Inserting row" << endl;

if (!request-s>execute(&n))
IldDisplayError ("Execution failed: ", request);
delete cust;
Ending (dbms, request) ;

}

cout << n << "row(s) inserted." << endl;

Specific Considerations

You must be careful when using variables of Oracle CHAR data type. For this data type, the
valuesin the database are padded with blanks. A common error isto set parameter values for
these columns, without padding the values with blanks.

For instance, with table article (name char(10), id char(10)), the query "select name from
articlewhereid ='0" works correctly.

However, when calling parse for query "select name from articlewhereid = :1", you have to
fill the bind variable with spaces so that the equality operator retrieves the expected values.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Generic Data Types

Generic Data Types

Some database data types cannot be easily translated to C or C++ types. This section
explains how IBM ILOG DB Link deals with this particular issue for:

[Handling Date and Time Values
[—Handling Exact Numeric Values

Handling Date and Time Values

Date-and-time rel ated data types are handled through different conversion protocols
depending on the database systems. To achieve portability, IBM ILOG DB Link offersa
feature that allows date-and-time values to be sent and retrieved as objects of the class
IldDateTime.

TheIBM ILOG DB Link class 11dDateTime iS atransparent container where you can put
or get the separate components of a date-and-time value. Its fields extend the time precision
to milliseconds.

Note: The millisecond precision of the class 11dpateTime introduces a small
discrepancy when connected to Informix, where a millionth of a second precision is
possible.

After turning the date as string feature off, you can use an 11dpateTime object just like any
other datatype.

[_To put adate-and-time value into a variable, use the member function
IldRequest: :setParamvalue, likethis;

IldDateTime* dt = new IldDateTime (1996, 3, 2); // 1996/03/02
request->setParamValue (dt, 1);

}

[To retrieve a date-and-time value, use the function
IldRequest: :getColDateTimeValue, asin the following code extract:

{

// Print selected item values.

do {
if (!request->fetch())
IldDisplayError ("Fetch failed:", request);
else if (request->hasTuple()) {

cout << request->getColStringValue (0) << "\t";
IldDateTime dt = request->getColDateTimeValue (1) ;
if (request->isErrorRaised())
IldDisplayError ("Cannot retrieve DateTime: ", request);
else {
cout << dt.getYear() << "/" << dt.getMonth() << "/"

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 89

90

<< dt.getDay() << " " << dt.getHour() << ":"
<< dt.getMinute() << ":" << dt.getSecond() << endl;

}

} while (request->hasTuple());

}

These two member functions raise an error of type 1Lp_TYPE MISMATCH if the date as
string feature is turned on.

At creation, al fields of an 11dpateTime object areinitialized by default at zero.

Handling Exact Numeric Values

Exact numeric types sometimes hold values that cannot be converted into integer values.
They can be turned into floating-point values but with aloss in significant digits.

IBM ILOG DB Link allows you to send or retrieve such values as character strings or
objects to avoid that 1oss of precision.

Numeric As String

Very large numeric or decimal values can be handled as strings to preserve precision. To do
so, turn on the numeric as string feature before you use the string-dedicated

IBM ILOG DB Link member functions I1drRequest : : set Paramvalue and
IldRequest: :getColStringValue.

[To turn on the feature:

// Data selection
request->setStringNumericUse (I1True) ;

}
[To send huge exact numeric values as strings:
{
}

request->setParamValue ("9876543210987.654321098", 0) ;

[_To retrieve such huge numeric values as strings:
{

// Print selected item values.
do {
if (!request->fetch())
IldDisplayError ("Fetch failed:", request);
else if (request->hasTuple()) ({
cout << request->getColStringValue (0) << "\t"
<< request->getColDateValue(l) << endl;
1

} while (request-s>hasTuple());

}

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Generic Data Types

Numeric As Object

To gain full independence from the RDBMSS server and client host localization, an
application can use the numeric as object feature to handle values of datatypes DECIMAL
and NuMERIC. Thefeatureis enabled by acall to the function

I1dIldBase: : setNumericUse With an argument value of 11 True.

When using Oracle, due to the existence of the numeric type, NUMBER, numeric values are
handled as objects as soon as that feature is turned on.

An I1Numeric object can be converted to and from thetype 111nt but itsvalue can also be
accessed as a character string, which will be built following the ¢ locale (no thousands
separator and adot as the decimal separator).

[To turn on the feature:
{

// Use numeric objects
request->setNumericUse (I1True) ;

1
[To send numeric object values:
{

IlNumeric* num = new IlNumeric;
num->set ("987654321.654321") ;
request->setParamvValue (num, O0) ;

}

[To retrieve anumeric object value use the function
IldRequest: :getColNumericValue, likethis:

// Print selected item values.

do {
if (!request->fetch())
IldDisplayError ("Fetch failed:", request);
else if (request->hasTuple()) {
IlNumeric num = request->getColNumericValue (0) ;
if (!request->isErrorRaised()) {

char numvValue [ILD MAX NUM_LEN] ;
num.get (numValue, ILD MAX NUM LEN) ;
cout << numValue << "";

}
}
} while (request->hasTuple());

}

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 91

Large Objects (LOBS)

92

With IBM ILOG DB Link, your application can handle Large OBjects (LOBs) either asa
whole or in memory chunks.

L OBs can be sent to the RDBM S only from memory-stored data, but they can beretrieved as
awhole into memory or as whole into a named file, or in chunks into application-allocated
memory.

Retrieving LOBs in chunks depends on the RDBM S: most RDBM Ss allow retrieval only in
consecutive chunks. The only exception to this is Oracle whose APl supports positioned
retrieval.

The various RDBM Ss use different type names for LOBs and have different protocols to
send and retrieve these kinds of values. Theterm LOB is used for data types that allow
values of unlimited size. (Thisistheoretical. In practice, the sizeis always limited to two
gigabytes).

This section isdivided in 2 parts:
[—Fending Large Objects
[Different Ways of Retrieving Large Objects

Sending Large Objects

With IBM ILOG DB Link, you have only one way of sending LOBSs to the database server,
namely through the member functions 11drRequest : : insertLongText Of
IldRequest: :insertBinary.

Both member functions actually update an already existing row using the discrimination
clause passed in the fifth argument. This argument must contain avalid where clause,
reduced to the predicate part —that is, without the where keyword.

Sending Text Data
The member function I1drRequest : : insertLongText takes five arguments:
[the text data buffer,
[the data length,
[atable name,
[—a column name,

[Areduced where clause.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Large Objects (LOBS)

This code extract shows that you must send the column data as awhole.

{

// Prepare the where clause of the update

ostr.seekp (ios: :beg) ;

ostr << " NAME = '" << name << "'" << ends;
// Find out file size

int len = inFile.seekg(0, ios::end).tellg();
char* buff = new char [len + 1];

if (lbuff) {
cout << "Memory exhausted: cannot allocate text buffer" << endl;

res = IlFalse;

}

else {
// Read in data
inFile.seekg (0, ios::beg); // Back to beginning of file
inFile.read (buff, len);
// Proper text insertion.

if (!request->insertLongText (buff, len, "USERTABLE",
"VALUE", str))

res = IlFalse;

}

Sending Binary Data
The member function I1drequest : : insertBinary takes four arguments:

[An I1dBytes structure holding the data and its length,
A table name,
A column name, and

A reduced where clause.

Different Ways of Retrieving Large Objects
To retrieve LOBs, you can choose one of the following three methods:

[Getting the whole contents at once into memory (with some limitations);
[Getting the whole contents at once into afile;

[Getting the contents in memory chunks.

Retrieving into Memory

[llong Text Values

To retrieve alarge text value at once into memory, after having successfully executed an
SQL select statement, usethe function I1drRequest : :getColLongTextValue.

Warning: The memory chunk internally allocated by IBM ILOG DB Link is limited to
64 Kilobytes.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 93

{

while (request->fetch() .hasTuple())
cout << request->getColLongTextValue (0) << endl;
}

[Llong Binary Values
To retrieve alarge binary value at once into memory, after having successfully executed an
SQL select statement, use the member function I11drRequest : :getColBinaryValue.

Warning: The memory chunk internally allocated by IBM ILOG DB Link is limited to
64 Kilobytes.

Retrieving into a Named File

To retrieve alarge text value at once into a named file, use the member function
IldRequest: :getLargeObject. The member function itself issuestheinitial SQL
select statement. Thereis no program limit on the size of the data value.

This function can be used for I1dLongTextType valuesaswell asfor 11dBinaryType
values. It takes the following four arguments:

[_The table name,

[_The column name,

A reduced where clause,

[_The full path name of the file where the column datais to be saved.

{
if (!request->getLargeObject ("DBLTEXT", "TVAL",
"NAME = 'lst Text'","/tmp/textl")) {
IldDisplayError ("Text retrieval failed:", request);
Ending (dbms, request) ;

}
}

Retrieving in Chunks of Memory
To retrieve alarge text or binary value in chunks of memory:

1. Initiate the process by a call to the function I1drRequest : : startGetLargeObject,
whichissuestheinitial SQL select Statement.

This function takes the following three arguments:
. Thetable name,
. The column name,

. Thereduced where clause.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Handling Abstract Data Type Values

2. lterate by calling the function 11drRequest : : getLargeObjectChunk until the
of fset argument isleft unchanged by the call, meaning that no more data was returned.

Since you pass the address of a preallocated memory chunk as the second argument to the
call, it is up to you to decide the memory limitation.

The third argument isignored on input for all RDBM Ss except Oracle. Oracle allows you to
fetch from any offset in the column value.

All other database systems only allow retrieving chunks by ascending, not by overlapping,
indexes. On output, the argument is set to its entry value, increased by the total number of
bytes actually read so far.

These functions can be used for 11dLongTextType Valuesaswell asfor I1dBinaryType
values.

Handling Abstract Data Type Values

Since abstract data types (also called user-defined data types) are supported only for
ORDBM s, the corresponding val ues make sense only when connected to databases that
have this capability. Two such RDBMSs are currently supported: Oracle® and Informix®
Universal Server, also called Informix9 in the IBM ILOG DB Link documentation.

The following items are described:
[—Abstract Data Type Descriptor
[Abstract Data Type Values

Abstract Data Type Descriptor

Descriptor Class

A descriptor is used to describe abstract data types. This descriptor isimplemented by the
class 11daDTDescriptor.

Such a descriptor can be embedded in an 11dpescriptor instanceif the described column
or parameter is of auser-defined type, that is, when the function

IldDescriptor: :getType returnseither 11dobjectType Of I1dCollectionType
objects.

Categories of User-Defined Data Types

A value of a user-defined data type is always an instance of 11daDTvalue, Whether a
“horizontal” structure (object for Oracle, named row or unnamed row for Informix
Universal Server) or a“vertical” structure (varray Or nested table for Oracle, 1ist,
set, Of multiset for Informix US).

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 95

96

To differentiate between them, the user-defined data type descriptor can be queried using the
function get Type, which returns an 11dabpTType value, according to Table 4.4:

Table4.4 Categories of User-Defined Data Types

This type Is used for these data types

I1dADTObject |Objects and named rows

I1dADTTable Nested tables

I1dADTList Lists, sets, and multisets

I1dADTArray Varrays

The type of a user-defined data type descriptor can only be a value from the enumeration
I11daDTType declared inthefile i1d.h. In other words, an 11daDTDescriptor instance
can represent one of the following:

[AnOraclevarray if itStypeis I1dADTArray,

[An Oracle object or an Informix US named row or unnamed row if itstypeis
I1dADTObject,

[—An Oraclenested table if itstypeisI11daDpTTable, OF

An Informix US1ist, set, Of multiset if itStypeis11daDTList.

Abstract Data Type Values

Values of an abstract data type are handled using instances of the class 11dapTvalue. Such
avalue keeps areference to the abstract data type descriptor, which can be accessed by
calling the function 11daDTValue: :getDescriptor.

Retrieving Values from the Result Set

An 11daDTvValue oObject isreturned by the function I11drRequest : :getColADTValue.
This object becomes the application’s property. This means that the application must delete
it once done with it.

Sending Values as Parameters

Once a parameter has been bound to the IBM ILOG DB Link types 11dobjectType Of
IldCollectionType Using the member function 11drRequest : :bindParam, values can
be passed using the overloaded function set Paramvalue. The first parameter of this
function can be deleted immediately after the call because IBM ILOG DB Link copiesit.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Extending the IldRequest Class

Accessing Attribute Values

Whether the object represents the value of an object type or the value of a collection type,
theindividual attribute or slot values are retrieved using the same accessor functions of the
form get<type>value () where <type> can be one of:

[3tring
[dnteger
[Real
[Byte

[Money

[Date

[Numeric
[DateTime
[Bytes
[ADT

[Ref

Warning: The values returned for string and ADT types must be copied by the
application.

Extending the lldRequest Class

Itisnot possibleto derive from the class 11drequest because the actual objects handled by
your application are not instances of the 11drequest base class but instances of subclasses
of thisclass.

If, for any reason, you need to extend the functionality of the IBM ILOG DB Link class
I1dRequest, you can retrieve the determining part for handling statements.

The member function I11drRequest : : getHook returnsit asavoid pointer (11Any). The
actual return value depends on the target RDBMS, as shown in Table 4.5:

Table4.5 Values Returned by the Member Function Il1dRequest: : getHook

With this Database System... |...the getHook function returns following database

...and lets you call the

proprietary client interface.

DB2

the SQLHANDLE CLI (Call Level Interface)

Informix

the cursor name Embedded SQL

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 97

Table4.5 Values Returned by the Member Function Il1dRequest: : getHook

With this Database System...

...the getHook function returns

...and lets you call the
following database
proprietary client interface.

MS SQL Server

the pointer to the DBCURSOR structure

DB Library function

ODBC

the HSTMT

ODBC functions

OLE-DB

structure

the pointer to the IDBCreateCommand

OLE-DB functions

Oracle 9i, 10g and 11g

the pointer to the 0OCIStmt structure

OCI function

Sybase

the pointer to the CS_ COMMAND structure

Client Library functions

Differences between IldRequest and IldRequestModel Classes

I1dRequestModel providesthe same functionalities as 11drequest, plusthe ability to be
derived. This derivation capability introduces afew differences with the 11drequest class,

asfollows:

[d1drequestModel instances are allocated using their constructor, and not using the
I1dDbms: :getFreeRequest member function of the 11dbbmsModel class.

[d1drRequestModel oObjects are not automatically cleaned when deleting the
I1dbbmsModel instance through which they were allocated.

98 IBM

ILOG DB LINK V5.3

USER’'S MANUAL

C H A P T E R

5IBM ILOG DB LINK V5.3 — USER’S MANUAL

Queries

This chapter is divided into the following sections:
[—HExecuting an SQL Query Immediately

[Fetting Up a Query for Multiple or Repeated Use

[Binding Application Memory to the Database API
[Finding Out the Types and Szes of Returned Columns
[Retrieving Data

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 99

Executing an SQL Query Immediately

Some SQL statements sent by your application can be:
[one shot” queries, such as DDL statements (create table, drop table, and soon),
[0r, select Of delete queries, known beforehand.

For immediate execution, you do not even need to create an 11drRequest object. The
I1dDbms Object can process such statements by means of the function
I1dDbms: :execute.

However, you can also use an 11drequest object for that purpose by calling the function
IldRequest: :execute.

When the execution succeeds, you may bind the returned data columns to application
memory by using the member function I11drRequest : :bindCol.

Setting Up a Query for Multiple or Repeated Use

100

When your application reuses the same basic SQL statement several times, at once or in
various places, with different values as parameters, you can alocate an 11drequest object,
which will be used to prepare the query for execution and will be kept until actual execution
is needed.

Such aquery contains placeholdersin the form of question marks, “2”, as defined in the SO
SQL standard, or even in an RDBM S-specific form, suchas“:1” or “ :var”. Theselast two
forms are supported only by Oracle which does not support the standard placeholder format.
Asaconsequence, queriesthat need to be prepared cannot be made portable on all RDBM Ss
and your application code must allow for this.

The general procedure to set up aquery for multiple or repeated use is the following:
1. Call thefunction I1drequest : :parse t0 prepare a parameterized query.

Once the query has been prepared successfully, you must bind the variables (which are
the program counterpart of the placeholders) to the proper type and, possibly, to the
application memory.

2. Todo so, use the member function 11drRequest : :bindParam.

Before actual execution, set the variable values either in your application memory or in
the IBM® ILOG® DB Link internal memory.

3. Todo so, use the member function I1drRequest : : setParamvalue.

An overloaded version of that member function exists for each possible
IBM ILOG DB Link type.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Binding Application Memory to the Database API

When there are many rows to be inserted, this schema can be implemented in two
different ways:

. Asaloop inserting one row at atime.

For each row of parameter values, call T11dRequest : : setParamvalue for al
parameters, then call 11drRequest : :execute.

. Asabatch inserting several rows at once.

4. Usingthearray bind mode, passall parameter val ues, up to the number of rows indicated
by I1drRequest : :getParamArraySize.

5. Call the member function I1drRequest : : execute.

If there are fewer rows than the bind array size, you can pass the actual number of rows
as the second parameter to the function 11drequest : : execute.

Binding Application Memory to the Database API

On both input and output, you can bind application memory to the API of the RDBMS by
calling the function 11dRequest : :bindParam for input or I1dRequest : :bindCol for
output.

[Input bindings must be done after the query has been successfully prepared.

[Qutput bindings make sense only if the query isan SQL select statement or an SQL
execute procedure Statement that returns rows. In the case of immediate execution,
output bindings can be done after the execution and before the first call to the member
function 11drRequest : : fetch.

In the case of a prepared query, the bindings can take place after the function
IldRequest: :execute hasbeen called.

Finding Out the Types and Sizes of Returned Columns

Oncethe select statement has been prepared using the function I11drRequest : :parse Of
executed using the function I11drequest : : execute, the application can gain access to the
column descriptors.

The number of select 1ist columnsisgiven by acall to the member function
IldRequest: :getColCount. Then, for any index between 0 and that value, the function
IldRequest: :getColDescriptor returnsan instance of the class 11dbescriptor.

Table 4.2 on page 74 shows the 11dDescriptor information you can get on the
corresponding column.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 101

Retrieving Data

Depending on your implementation, the application can either retrieve datain its own
memory space or let IBM® ILOG® DB Link handle al memory alocation and data
retrieval.

The simplest way isto process the SQL statements and then ask IBM ILOG DB Link for the
column data values viathe function I1drRequest : :getCol<data types>Value, Where
<data type>isoneof IBM ILOG DB Link-supported types. All accessors check their
argument values. Therefore, the data type for which the accessor is made must match the
actual column binding type, and the indexes to the result set, column, and row numbers
(optional) must not be out of bounds.

When you use accessors to datatypeslike string or binary, you must copy the returned
value to application-allocated memory. Thisis done because the next data fetch reuses the
same internal memory, and, consequently, the previously fetched data will be lost.

102 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Errors and Warnings

This chapter explains the error handling mechanism implemented by
IBM® ILOG® DB Link and covers the following topics:

[DDiagnostic Class— Theclass I11dbiagnostic.

[Warnings — Querying the classes 11dpbms and I1drRequest on various information
messages.

[_HErrors— Error codes and messages asraised by IBM ILOG DB Link.

[_Error Reporter — Default settings and behavior of the IBM ILOG DB Link error
handling mechanism, and the output error stream.

[Customizing the Error Handling Mechanism

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 103

Diagnostic Class

104

The 11dpiagnostic class contains information about the context of an error or warning.
The following items are described:

[Accessing a Diagnostic Instance

[Tontext Information

Accessing a Diagnostic Instance

Theinformation provided by a given instance of 11dDiagnostic isrelevant only if the
function I1dIldBase: : isErrorRaised Of I1dIldBase: :isInformationRaised:

[has been called before the function 11d11dBase: :getError Or
I1dIldBase: :getInformation, respectively, and

[oeturned I1True.

Otherwise, the 11d11dBase: :getError Of I1dIldBase: :getInformation function
may return either null or an instance of 11dbiagnostic whose contents are irrelevant.

If any context information items need to be kept, the application must copy the
corresponding values into its own memory space because the contents of the
IldDiagnostic object might be overwritten during subsequent execution of aquery.

Context Information

The object contains the following information items about the context in which it was
created or filled:

[Code: This number can originate from IBM® ILOG® DB Link or from the server.

[Native code of the error: When the error israised by IBM ILOG DB Link, it isset to 0.
Otherwise, it has the same value as the code.

[Hunction code: The IBM ILOG DB Link symbolic code for the function in which the
error was raised.

[Origin: The layer that raised the error.

[Sqlstate: Either the value returned by the server, the value set by IBM ILOG DB Link, or
no valueat all.

[Message text: The text associated with the error.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Warnings

Errors

Warnings

Objects of the classes 11dpbms and 11dRequest can be queried about the arrival of
warnings or other information messages.

When such amessage is received, aflagisraised in the object. To test the flag, call the
function 11d11dBase: :isInformationRaised. If thereturn valueis 11True, awarning
or information message has been received. You can read its symbolic code and text by
calling the member function 11d11dBase: :get InformationCode Of

IldIldBase: :getInformationMessage. For example:

if (request->isInformationRaised()) {

cout << "Information: " << endl;
cout << "\t" << request->getInformationMessage() << endl;

}

Platforms: When your application is connected to Sybase, these information messages
originate from the TransactsQL function print.

This section is divided as follows:

[—Hrror Handlers

[—Hrror Codes

[IBM ILOG DB Link API Codes and Messages Table
[—HFunction Codes

[—SQLSTATE

[_Hrror Messages

[_Hrror Origin

[_Erroneous IldDbms and I1dRequest Objects

Error Handlers

In the process of exchanging information with a database system, there are numerous
opportunities for errors. These can be raised by IBM® ILOG® DB Link, by the client AP
of the RDBMS, or even by the database server.

IBM ILOG DB Link implements error handlersto catch errors. All 11dbbms and
I1drRequest objects must have an attached 11dErrorReporter object. In fact, when
I1dpbms and I1drRequest Objects are created, an error handler is automatically attached.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 105

106

However, you can change the default error handler for an object of a class derived from
Il1dErrorReporter.

Note: Itisnot possible to access the default reporter. Thus, when no reporter has been set
by the application, although the function 11d11dBase: : getErrorReporter returns
null, a reporter is actually set.

Platforms: When using Sybase, your application must not replace the message or error
handlers by the Sybase library routine ct_callback with the parameter
CS_CLIENTMSG CB OF CS_SERVERMSG_CB. Such acall made by your application would
break the error handling mechanism of IBM ILOG DB Link. The same problem occurswith
MS SQL Server andthe pB Library functions dberrhandle and dbmsghandle. Your
application must conform to the protocol defined in Customizing the Error Handling
Mechanism on page 116.

Error Codes

ILOG DB Link defines error codes associated with error messages. Some of these codes
correspond to anomalies detected by the library. Additionally, there are error codes and
messages corresponding to those raised within an RDBMSitself. ILOG DB Link provides
the necessary interface for your application to recover gracefully (whenever possible) from
these two kinds of errorsintheclass 11dErrorReporter.

Error codes returned by the member function 11d11dBase: : getErrorCode may originate
from IBM ILOG DB Link or from the RDBMS. You cannot tell the origin of the error from
that number only, because IBM ILOG DB Link error codes are negative, just like most
RDBMS error codes.

However, you can differentiate between them through the error origin: the function
I1dIldBase: :getErrorOrigin returns 11dbblink if the error was trapped by the

IBM ILOG DB Link API, or 11drDBMServer if the error was trapped by the server.
Moreover, Sybase allows you to distinguish the errors raised in the server from those rai sed
inthe client API: for the latter, the originisof type 11dClientAPI.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Errors

IBM ILOG DB Link API Codes and Messages Table

The following table gives you alist of all error messages generated by the
IBM ILOG DB Link API together with the corresponding error codes. The reasons for the
errors are also included.

Table6.1 Error Codes and Messages

Error Code (Symbol)

Error Message (String)

Comment

ILD ALREADY CONNECTED

Current object is already
connected

This error can be raised by the function
I1dDbms: : connect if an active connection is
already open.

ILD BAD COLUMN INDEX

Bad column index

This error is raised by the function
I1dRequest: :getColName when the
column descriptor has no name or the given
index is out of bounds.

ILD_BAD COLUMN NAME

Bad column name

This error is raised by the function
I1dRequest: :getColIndex when no
column with the given name is found in the
results set descriptors.

ILD_BAD DB_SPEC

Bad format for database
specification

This error is raised at connection time when the
given connection string does not match the
RDBMS-specific format requested.

ILD BAD EXECUTE_COUNT

Bad count for execute function

This error is raised when the function
I1dRequest: :execute is called for a
prepared query whose second argument is
greater than the size of the bind array.

ILD BAD FILE

File cannot be opened for write
operation

This error is raised by the function
I1dRequest: :getLargeObject when the
file indicated by the fileName argument is write-
protected.

ILD_BAD VARIABLE SIZE

Bad size for variable being
bound

This error is raised when binding a column with
a byte size that is too small for the data type
used.

ILD_CANNOT RESIZE TUPLE

Cannot resize tuple

This error is raised while describing a results
set or binding a parameter when an internal
allocation failed

ILD CBCK INIT

Callback initialization failed

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

IBM

ILOG DB LINK V5.3

USER'S MANUAL 107

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol)

Error Message (String)

Comment

ILD_CON_ALLOC

Connection allocation failed

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_CON_INIT

Connection initialization failed

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_CTXT ALLOC

Context allocation failed

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD CTXT INIT

Context initialization failed

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD DATE CONVERT

Date conversion failed

This error is raised when a conversion fails,
either from the RDBMS internal format to a
date value or, conversely, from a date value to
the RDBMS internal format.

ILD_DBMS_FATAL_ERROR

Fatal Dbms error

This error is raised after an unrecoverable error
occurs. After the error is raised, the connection
is in an unpredictable state and must not be
reused. The I1dDbms object must be
destroyed.

ILD DBMS NOT CONNECTED

Dbms is not connected

This error is raised each time a function from
the class I1dDbms is called while the
connection is closed.

ILD IGN EXT ROWS

Extra row(s) ignored

WARNING ONLY

This is a warning emitted by member functions
such as I1drRequest: :getLargeObject
when the given condition is not restrictive
enough and several rows are returned.

ILD_ INVALID HANDLE

Invalid handle

This error is raised when the underlying control
structure used to communicate with the server
is out of order.

108 IBM

ILOG DB LINK V5.3 —

USER’'S MANUAL

Errors

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol)

Error Message (String)

Comment

ILD_ INVALID_ PARAMETER

Data exception, invalid
parameter value

This error is raised when a function of

IBM ILOG DB Link is called with an invalid
value. For example, the userCallBack
parameter (which is the user function called
when the event occurs) in the

I1dDbms: : subscribeEvent function can
not be null. Ifitis, the program will crash
when the event occurs.

ILD_ INVALID_ SEQUENCE

Calling this function is not
allowed at this time

This error is raised when a function is called
when some other function should have been
called prior to this one.

ILD_LIB_MSMTCH

Library mismatch

If your application was linked in dynamic mode,
this error is raised when the driver manager
finds a library with the right name but with no
proper entry point.

ILD LIB_ NLNKD

RDBMS library not linked

If your application was linked in static mode,
this error is raised when the target RDBMS
library has not been linked or the RDBMS
name is not recognized.

ILD LOCK NAME MISMATCH

Lock name mismatches

This error can be raised only when an attempt
is made to unlock an I1dReqguest object using
the wrong name or an empty name for the lock
to be released.

ILD_MAX_CURS_LEN

Cursor name truncated

WARNING ONLY
This warning is raised when the name passed
for a cursor is too long for the target RDBMS.

ILD_ MEMORY EXHAUSTED

Memory exhausted

This error is raised when an allocation fails.

ILD_NO DYN LIB

Dynamic library not found

If your application was linked in dynamic mode,
this error is raised when the driver manager
cannot find the designated driver library.

ILD_NO_HANDLER

Error handler not called

This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_NO_MORE_TUPLES

No more tuples

This error is raised when an accessor to
column data is used and no row has been
returned from the server.

IBM

ILOG DB LINK V5.3

USER'S MANUAL 109

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol)

Error Message (String)

Comment

ILD_NO_REPORTER

Error reporter cannot be null

This error is raised by the functions
I1dDbms: : setErrorReporter and
I1dRequest: :setErrorReporter when
the argument passed is null.

ILD_NOT IMPLEMENTED

Not implemented for current
RDBMS

This error is raised when an attempt is made to
use a functionality that cannot be implemented
for the target RDBMS.

ILD NOT_SCROLL_MODE

Scrollable cursor mode must
be activated

This error is raised when an attempt is made to
use the function

I1dRequest: :fetchScroll in the following
context:

A value of the fetchOrientation parameter is
different from I1dFetchDirectionNext .
Scrollable cursor mode is not activated (see
member function

IldRequest: :setScrollable).

ILD NUM CONVERT

Numeric conversion failed

This error is raised when a conversion fails,
either from the RDBMS internal format to a
numeric value or, conversely, from a numeric
value to the RDBMS internal format.

ILD OFFSET

Offset

INFORMATION ONLY
This is not an error but merely part of an error
message.

ILD_OUT OF RANGE

Index out of range

This error is raised when an attempt is made to
bind an output column using an index greater
than the actual number of columns in the
results set.

ILD RDBMS CONN

Must give RDBMS name and
connection string

This error is raised when trying to create an
I1dDbms object and either the RDBMS name
or the connection string was null or started
with a null character.

ILD REQUEST REQUIRED

I1dRequest object missing

This error can be raised only when connected
to Sybase, or MS SQL Server. With these
RDBMSs, the transaction-handling I1dDbms
functions require that a valid I1dRequest
object be passed.

110 IBM

ILOG DB LINK V5.3 —

USER’'S MANUAL

Errors

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol)

Error Message (String)

Comment

ILD_TYPE MISMATCH

Value accessor mismatch

This error is raised if an output or input column
is bound to a type, in the IBM ILOG DB Link
sense, that is not possible or not allowed by the
configuration settings (for example, binding a
column to I1dDateType while the
I1dRequest object is set to use the “date as
object” feature).

ILD UNCHGEABLE

Cannot modify a server
initialization parameter

This error can be raised only within a
connection to Oracle, when an attempt is made
to modify the request time-out.

ILD_UNDEF_LINK_ MODE

Unknown DB Link driver
linkage mode

The application must be linked with either the
dblnkdyn or dblnkot library. If none is used,
this error is raised when trying to allocate a
connection.

ILD_UNKN_ERRMSG

Unknown error message

REPLACEMENT MESSAGE
This is a replacement message, not an error. It
is raised when the RDBMS API fails to give the
proper message for an error.

ILD UNKNOWN CODE

Unknown error code

This error is raised when a function call to the
underlying RDBMS API returns an unexpected
value. If such an error occurs, contact IBM
customer support.

ILD_ UNKNOWN_ ENTITY

Unknown relation

This error is raised when a schema entity
description is not available because it does not
exist in the database.

ILD_UNKNOWN_ RDBMS

Unknown RDBMS

This error is raised when an I1dDbms object is
created and the given RDBMS name is not
recognized by the driver manager. It can be
raised only if the application is linked in
dynamic mode.

ILD UNKNOWN_ TYPE

Unknown column type

This error is raised if an attempt is made to bind
an output column or an input parameter to a
type that is not supported for the target
RDBMS.

IBM

ILOG DB LINK V5.3

USER'S MANUAL 111

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment

ILD USING ERROR_DBMS Using Error Dbms object This error is raised by any function of the class
I1dDbms when this function is used against an
object that was not properly built. This occurs
when an error is raised because an error
occurred when the I11dDbms object is created
or when the initial connection is processed.

ILD USING_ERROR_REQUEST | Using Error Request object This error is raised by any function of the class
I1dRrRequest when the object has not been
allocated properly, usually because the
attached 11dDbms object has not been
connected to the server.

Function Codes

Each documented function has a unique identifier whose symbolic name mimics its name.
For example, theidentifier for the function 11dDbms: : disconnect IS

ILD D DISCONNECT. Theseidentifiers are defined by the enumeration type 11dFuncid in
thefileild.h, under the section “Db Link Function Ids.”

SQLSTATE

Whenever the RDBM S gives access to the SOLSTATE value, IBM ILOG DB Link registers
that value. The text of the sQLSTATE message can be retrieved using the member function
IldIldBase: :getErrorSglstate. The content of thetext isvolatile—that is, it may be
overwritten by other data. Therefore, you must copy it if you want to keep atrace of the
error.

Error Messages

The text of an error message can be retrieved using the member function

IldIldBase: :getErrorMessage. The content of thetext isvolatile, that is, it may be
overwritten by other data. Therefore, you must copy it if you want to keep atrace of the
error.

For error message strings, see Table 6.1 on page 107.
Error Origin

The enumeration type 11dErrorOrigin indicates the various sources of errors:
IBM ILOG DB Link itself, the client API of the RDBMS, or the database server.

112 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Errors

Depending on the layer in which the error wasraised, IBM ILOG DB Link sets the error
origin to adifferent value of 11dErrororigin.
enum IldErrorOrigin {

IldUnknownOrigin,

I1dDbLink,

I1dClientAPI,
I1dRDBMServer

}i
When the error israised by an IBM ILOG DB Link function, theoriginisset to 11dpbLink.

Platforms: When connected to a Sybase server, the origin will be set to 11dclientapT if
the cLIeNT callback has been activated. Otherwise, it is set to I1dRDBMServer.

Erroneous IldDbms and IldRequest Objects

If avery serious error is raised when an object is created, the return value you receive may
be of the class 11dErrorDbms Or I1dErrorRequest (instead of the object you expect).

Instances of these classes will never process any SQL statement. They alwaysraise an error,
either ILD_USING ERROR DBMS Of ILD USING ERROR REQUEST.

[JILD USING ERROR_DBMS: An erroneous connection object is returned only when an
I1dDpbms oObject cannot be allocated.

[1LD USING ERROR_REQUEST: An erroneous request object isreturned only when you
try to get anew I1drequest object even though the related 11dpbms object is not
connected.

I Warning: You must explicitly delete these erroneous objects.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 113

Error Reporter
This section explains how an error reporter is created and how an output error stream can be
attached to it. It is divided as follows:
[Default Settings and Behavior
[O@utput Error Stream

Default Settings and Behavior

When an I1dpbms object is created, an 11dErrorReporter oObject isattached toit. This
object isinherited by all 11drequest objects created from that 11dpbms Object.

The output stream field of the 11dErrorReporter object isnot set on creation.

IBM ILOG DB Link guarantees that, when an error israised, the 11dErrorReporter
object will call one of the following member functions:

[d1dErrorReporter: :dblinkError if the error wasraised by the
IBM ILOG DB Link AP, or

[d1dErrorReporter: :dbmsError if the error was raised by the database server or the
RDBMSclient API.

Output Error Stream

An output stream (an instance of the C++ class ostream) can be attached to an
I1dErrorReporter object. Once an output stream has been attached, the error handling
mechanism will output the code and text of the error through that stream.

An output stream is attached by a call to the function T1dErrorReporter: : setOStream
and can be retrieved by a call to the function I1dErrorReporter: :getOStream.

The error code and text are formatted in the output stream like this:

<function name> = <error code> = <error text>

where <function names indicatesthe IBM ILOG DB Link member function (from the
list in Table 6.2) in which the error was rai sed:

Table 6.2 Error-raising Member Functionsin the Class IldDbms

Class lldDbms
Constructor autoCommitOn autoCommitOff
commit connect disconnect

114 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Table 6.2 Error-raising Member Functions in the Class [ldDbms

Error Reporter

Class IldDbms

execute getAbstractType getHook
getInfo getName getProcedure
getRelation getSynonym getTypeInfo
readAbstractTypeNames |readEntityNames readOwners

readRelationNames

readRelationOwners

readProcedureNames

readSynonymNames readPrimaryKey readForeignKeys
readIndexes readSpecialColumns rollBack
setCursorMode setErrorReporter setTimeOut
startTransaction

Table 6.3 Error-raising Member Functionsin the Class IldRequest

Class lldRequest

Constructor Destructor bindCol
bindParam closeCursor execute

fetch getColADTValue getColBinaryValue
getColByteValue getColDateTimeValue getColIndex
getColIntegerValue getColLongTextValue getColMoneyValue
getColName getColNumericValue getColRealValue

getColReferenceValue

getLargeObject

getParamBinaryValue

getParamCursorValue getParamDateTimeValue |getParamIndex
getParamNumericValue getStatus insertLongText
insertBinary isColNull isNullIndicatorOn
isParamNull parse release

removeColLock removeColArraySize removeParamArraySize
removeParamLock setColArraySize setColPos

IBM ILOG DB LINK V5.3 — USER'S MANUAL 115

Table 6.3 Error-raising Member Functions in the Class ||dRequest

Class lldRequest

setCursorName setErrorReporter setParamArraySize

setParamNullInd setParamValue setReadOnly

Customizing the Error Handling Mechanism

IBM ILOG DB Link assumes that the client application will have to run 24 hours a day,
seven days aweek, so it provides afull error-handling mechanism that does not allow the
application to exit prematurely. This mechanism captures warning messages and errors. Its
mainspring is an object of the class 11dErrorReporter.

To a certain extent, you can customize the mechanism by subtyping this class. Doing so
enables you to set your own error reporters on every object of the classes 11dbbms and
IldRequest, by using the member functions 11dbpbms : : setErrorReporter Of
IldRequest: :setErrorReporter. It iSan error to try to set anull value as the error
reporter sincethe error ILD_NO_REPORTER IS then raised in the calling object.

Customizing the error handling mechanism is done in two main steps:

1. Derivefrom the class 11dErrorReporter and definethe virtual functions
IldErrorReporter: :dbmsError and I1dErrorReporter: :dblinkError:

class UserErrorReporter: public IldErrorReporter {
public:
virtual void dbmsError (I1lInt,

const char*,

const char*,

IldDbms*,
IldRequest* = 0,
const char* = 0) const;

virtual void dblinkError (IlInt,
const char¥*,
const char*,
I1ldDbms*,
IldRequest* = 0,
const char* = 0,
IlInt = (IlInt)oO,
const IldRelation* = 0) const;

i

2. Create an instance of your derived class and attach it to the IBM ILOG DB Link object

you choose.
// The following UserErrorReporter objects will be
// destroyed by the IldDbms and IldRequest destructors

// respectively.
UserErrorReporter* dbmsReporter = new UserErrorReporter;

116 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Customizing the Error Handling Mechanism

UserErrorReporter* requestReporter = new UserErrorReporter;

cout << "Error reporter set to user defined one" << endl;
dbms->setErrorReporter (dbmsReporter) ;

cout << "Setting request error reporter to user defined one" << endl;
request->setErrorReporter (requestReporter) ;

Base Class

In objects of the class 11dErrorReporter, the following fields can be set when an error is
raised:

I1dDbms* _dbms;
IldRequest™* _request;
IldRelation* _relation;
const char* _query;
IlInt _index;
IlInt _size;

An accessor function exists for each of these fields. For example, thefield dbms isread
with the accessor 11dErrorReporter: :getDbms. The same naming convention is used
for al fields.

Most fields also have a modifier function, but it is neither advisable nor practical to useit.
After the whole internal processing of the error is complete, one of the two member
functions 11dErrorReporter: :dblinkError Of I1dErrorReporter: :dbmsError iS
called.

Virtual Functions and Their Parameters

[_The member function I11dErrorReporter: : domsError takes the following
arguments:

. thefunction code,

. thefunction name,

. theerror text,

. the 11dpbms object (if appropriate),

. the 11drequest object (if appropriate),

. the connection string (if appropriate).

void UserErrorReporter: :dbmsError (I1Int errorType,
const char* function,
const char* message,
IldDbms* dbms,
IldRequest* request,
const char* string) const;

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 117

[_The member function I1dErrorReporter: : dblinkError takesthe following
arguments:

. thefunction code,

. thefunction name,

. theerror text,

. the 11dpbms object (if appropriate),

. the 11drequest object (if appropriate),
. the connection string (if appropriate),

. theindex value (if appropriate),

. theIldrelation object (if appropriate).

void UserErrorReporter: :dblinkError (I1Int errorType,
const char* function,
const char* message,
I1ldDbms* dbms,
IldRequest* request,
const char* string,
I1Int index,
const IldRelation* relation)
const;

In both lists, “if appropriate” means that these arguments can have anull valueiif the
function where the error is raised does not use such an object. One of the two arguments
dbms and request must be non-null.

118 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Compiling and Linking

This chapter deals with compilation and compatibility issues, and presents the
IBM® ILOG® DB Link libraries. It is divided as follows:

[Compilation Flags
[Target RDBMSs
[IBM ILOG DB Link Libraries

Warning: The IBM ILOG DB Link includefile “ dblink.h” must always be included in
your application. It defines a static variable that will initialize the driver linkage mode

(either static if you use dblnkst + RDBMS compilation flag, or dynamic if you use
dblnkdyn).

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

119

Compilation Flags

120

IBM ILOG DB Link can be present in an application using two different protocols:
[_The target RDBM Ss are known at compile-link time:

RDBM S-specific flags are used at compile time and the IBM® ILOG® DB Link drivers
corresponding to the target RDBM Ss are linked to the application, together with the
RDBMSclient libraries.

[_The application is generic with respect to the RDBMSs:
No compile-time flag is used. The link-time options only refer to the
IBM ILOG DB Link driver manager library.

Warning: Never mix both protocols in the same application, because linking with the
driver manager isincompatible with “ static” linkage of the drivers.

When you use IBM ILOG DB Link to write an application dedicated to a specific RDBMS,

you must set some specific compiler flags. These flags depend on the target RDBM S and on
the mode in which the code will be linked.

While reading the header files, IBM ILOG DB Link defines other flags that you can use to
achieve portability.

This section is divided as follows:

[Compatibility with Previous Releases
[—_RDBMSFlags

[Dynamic Load

[Mode and Flag

Compatibility with Previous Releases

Some changesin IBM ILOG DB Link V5.3 cause incompatibilities with code written for
IBM ILOG DB Link 4.x. The current version is not binary compatible with previous ones.

Generic Data Types

IBM ILOG DB Link V5.3 no longer definesits own basic datatypes (11dint, I1dShort,
and so on). Instead, it usesthe IFC (IBM ILOG Foundation Classes) data types (111Int,
I1Short, and so On).

If you want to port an application that was developed with IBM ILOG DB Link 4.x to
IBM ILOG DB Link V5.3, you need to make the changes listed in the following table.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Hereisthelist of changesto implement for the conversion:
Table7.1 New Macros for IBM ILOG DB Link V5.3

Old Macro New Macro
ILDWINDOWS WINDOWS

ILDSTD IL STD
ILDSTDUSE IL STDUSE
ILDSTDPREF IL_STDPREF

ILD MAX NUM LEN IL MAX NUM LEN

Table 7.2 |IFC Generic Data Types for IBM ILOG DB Link V5.3

Old Data Type

New Data Type

IldBoolean IlBoolean
IldFalse IlFalse
IldTrue IlTrue
I1ldInt IlInt
I1dUInt IlUInt
IldAny IlAny
I1dUShort I1UShort
I1dByte IlUChar
IldNumeric I1lNumeric

Library Organization

The organization of libraries has also changed.

Compilation Flags

[With previous rel eases, there was one library for each supported database plusthe library
dblink to support dynamic loading.

[Thisrelease contains:

. A specific library that containsthe IBM ILOG DB Link kernel: dokernel.

. Plusonelibrary for each supported RDBMS.

. Plustwo libraries defining whether RDBMS libraries are linked statically or
dynamically: dblnkst and dolnkdyn.

IBM ILOG DB LINK V5.3 —

USER’'S MANUAL

121

122

So if you want your application to be linked statically with, for instance, IBM DB2 and
Oracle 9 drivers, it must be linked with:

dblnkst + dbdb2 + dbora9 + dbkernel
If you want the application to use dynamically loadable drivers, it must be linked with:

dblnkdyn + dbkernel

I mportant: With certain systems, the order of the librariesisimportant. You must use first
the library that defines the link mode (static or dynamic), then, if used, the
IBM ILOG DB Link RDBMS driver, then finally the IBM ILOG DB Link kernel.

RDBMS Flags
There is one compiler flag for each supported RDBMS:
. DB2: 1L.DDB2
- Informix: ILDINFORMIX
. MSSQL Server: ILDMSSQL
. ODBC: 1LDODBC
. OLE-DB: 1LDOLEDB
. Oracle: ILDORACLE
. Sybase: ILDSYBASE

There must be at |east one of these flags per compilation to allow the corresponding driver to
be effectively linked at link time. If not, no error will beissued at compile time or at link
time. At runtime, however, it will not be possible to create any connection.

The makefilesfor all examples have a variable that defines one of these flags:

DBMSCCFLAGS=-DILDORACLE

Dynamic Load

IBM ILOG DB Link is delivered as a set of libraries that include:
[—akernel library: 1ibdbkernel.a (Or dbkernel.lib)
[—adynamic driver manager: 1ibdblnkdyn.a (Or dblnkdyn.1lib)
[adtatic driver manager: 1ibdblnkst.a (Or dblnkst.1ib)

[aset of drivers, possibly several per support.

On PCs, there is no difference between adriver and the delivered DLL.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Compilation Flags

The kernel and dynamic load libraries ([1ib] dbkernel and [1ib] dblnkdyn) are
themselves dynamically loadable on all UNIX® platforms.

On UNIX, the delivered shared libraries are not built as dynamically loadable drivers. On a
per-platform basis, a makefile named Makefile.drv is delivered, which alowsyou to
build the drivers using the delivered object files. You cannot build adriver unless you have
installed the RDBMS client libraries in aversion that includes shared libraries. Thus, if the
target RDBM S is Informix, you need at least version 7.2, and if the target is Oracle you need
at least version 9.0. See Building Dynamically-Loadable Drivers under UNIX on page 126
for more information.

Warning: The only variables that can be modified in these makefiles are those regarding
thelist of RDBMS-dedicated libraries. The object files list must not be modified nor must
the driver manager library be added to thelibrary list.

The drivers can be loaded only if their access path is present in an environment variable
LD LIBRARY PATH.

Use of the dynamic load facility is demonstrated by a number of example files, which you
can find in the directories examples/dblink/<port names>. The makefilesin these
directories build the same examples as the ones that can be found in the dedicated
directories. The makefilesin the db1ink database differ from the othersin that the
DBMSCCFLAGS and DBMSLDFLAGS Vvariable are empty, and the DBLIB variable is set to
dblink.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 123

Mode and Flag

IBM ILOG DB Link is delivered as a set of libraries compiled in various compilation
modes.

[Hor UNIX®, there are two compilation modes per port: static_pic, and shared (and
somevariantslike static_stl and shared_stl under AlX, and so on.) When your
application islinked with the shared mode library, be sure you add the path to the library
in the environment varisble LD_LIBRARY PATH before running it.

—for Windows® (NT, 2000, XP, or Vista), there are at |east three compilation modes:
stat_mta, stat_mda,dll mda, with thecompiler flag 1. _sTD. At runtime, the PATH
environment variable must indicate the directory where the IBM ILOG DB Link library

isinstalled.

Target RDBMSs

This section deals with:
[Multiple Targets, and
[RDBMS Prerequisites.

Multiple Targets

When the application istargeted for several database systems, just add the proper
compilation flags and the proper RDBM S client libraries.

RDBMS Prerequisites

To build an executable application using IBM ILOG DB Link, you need to havethe RDBM S
client kit (available separately).

IBM ILOG DB Link Libraries

This section provides atable of the IBM® ILOG® DB Link libraries and draws your
attention to the special make files supplied to enable you to rebuild dynamically-loadable
drivers. It isdivided as follows:

[Library Names
[Building Dynamically-Loadable Drivers under UNIX

124 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Library Names

IBM ILOG DB Link Libraries

Table 7.3 provides the names of IBM ILOG DB Link libraries. These names have been
stripped of their suffix. The suffix depends on the operating system and compilation mode. It

can be one of:
[la,
[lso,
[s1,
[J1lib,0r
[Jd11.

Table 7.3 IBM ILOG DB Link Libraries

RDBMS UNIX® Name |Windows® Name
IBM ILOG DB Link driver |libdbkernel dbkernel
manager

Static Load Mode libdbInkst dblinkst
Dynamic load mode libdbinkdyn dbinkdyn
DB2 libdbdb2 dbdb2
DB2 libdbdb29x dbdb29x
Informix Universal Server | libdbinf9 dbinf9
Microsoft® SQL Server® | - dbmssql
ODBC - dbodbc
OLE-DB (for Microsoft - dboledb
SQL Server)

Oracle v9i libdbora9 dbora9
Oracle v10g libdboral0 dboral0
Oracle v11 libdborall dborall
Sybase libctsyb ctsyb

IBM

ILOG DB LINK V5.3 —

USER'S MANUAL 125

126

Building Dynamically-Loadable Drivers under UNIX

The delivery includes special makefilesto rebuild the dynamically-loadable drivers. These
filesare named Makefile.drv.

For all ports, these files use variables to locate the RDBMS client libraries. These variables
follow the UNIX® convention of each RDBMS:;

[de2DIR for DB2
[INFORMIXDIR for Informix
[—adracLE HOME for Oracle
[3vBasE for Sybase

The delivery includes the object files needed to rebuild the drivers. These files are separated
into two groups: the IBM ILOG DB Link kernel files and the RDBM S-specific files. The
IBM ILOG DB Link kernel files are always the same but the RDBM S files change
depending on the client libraries.

On UNIX ports, you need to set the value of RDBM S dedicated variables:
[anFLIBs for Informix

[araL1gs for Oracle

[3vyBLIBS for Sybase

For the AIX port, the driver build process uses a specia script called makeC++SharedLib,
which is part of the compiler distribution.

To build the drivers, the client libraries must be “ sharable” libraries—that is, . so fileson
UNIX®. The only exception is AlX, under which drivers can be built even from . a library
files. If your current version of the client software does not include this type of library,
building the driversisimpossible.

Warning: Do not mix RDBMS-specific files for one version with client libraries for

another; even though the drivers building process may succeed, the runtime behavior is
unpredictable and usually results in a memory fault.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Code Samples

The IBM ILOG DB Link distribution includes a number of code samples that are delivered

onan‘“asis’ basis and are intended for information only. You can reuse their source codeto
implement parts of your application.

This chapter is divided as follows:

[Generic Examples — The examples presented in this section do not depend on your
target RDBMs.

[RDBMS Specific Examples — This section details afew sample files that were designed
for the Informix, Oracle, and Sybase RDBMS respectively.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 127

Generic Examples

128

The sample files presented in this section focus on the following IBM ILOG DB Link
functionalities:

[Basic Use— Aniillustration of the simplest use that can be made of IBM ILOG DB Link
libraries.

[Handling Dates and Numbers

QL Interpreter — A small-scale interpreter that sends (to the database server) the
gueries that the user types, and then retrieves the result set.

[Concurrent Connections and Cursors
[Relation Searching — Using the member function I1dbbms : :getRelation.

[Relation Names — Using the member functions 11dDbms : : readRelationNames and
I1dDbms: : readRelationOwners.

[Input Bindings — Illustrating several combinations of input bindings.

[Output Bindings — How to use user-allocated and internally-allocated memory.
[Multiple Output Bindings

[Handling LOBs— How to use some specific I1drRequest member functions.

[—Asynchronous Processing

Basic Use

The sample exampleillustrates the simplest use that can be made of IBM ILOG DB Link
libraries. It isindependent of any RDBMS and is built from the files samp1le . cpp and
ildutil.cpp.

It connects to the database server and checks whether the connection is properly established,
and then creates an 11drRequest object used to execute all SQL statements.

The SQL statements consist of:

[Creating atable: CREATE TABLE

[Inserting rows: INSERT INTO

[—Selecting the whole table contents: SELECT *
[Hinaly, dropping the table: DROP TABLE

Neither the insert nor the select statements use parameters. They are executed
immediately using the function I1drRequest : :execute.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Generic Examples

After each call to this function, the error status is checked using the operator !, which is
applied to the reference to the caller returned by the function.

The disconnection and deletion of the 11drequest object areimplicit: the deletion of the
I1dDbms Object takes care of both aspects.

Handling Dates and Numbers

The datasmpl example shows how to handle dates and exact numeric values. It is built
fromthefilesdatasmpl.cpp and i1dutil.cpp. Thisexampleis RDBM S-dependent in
that it changes the column data types according to the RDBM S name. See the global
functions 11dGetDateTypeName and I1dGetNumericTypeName inthefile
datasmpl.cpp.

This example creates atable with two columns, the first holding numeric values, the second
holding dates. For insertions, it uses the protocol for repeated execution with bound
variables,

[Theinsertions are made with the date as string feature turned off. The second time the
I1dRequest: :bindParam functioniscalled, the value 11dpateTime is passed asthe
column type argument.

[_For the two first insertions, the exact numeric input is bound using the 11dstringType
column type. This choice allows you to send such values as
“9876543210987.654321098" to the database server with no precision loss.

[For the following insertions, the numeric as objects feature is turned on. The second
parameter is then bound using the 11dNumericType value for the column type
argument.

[After insertion, the table is read by three successive select statements.

- For thefirst selection, the values are retrieved with the numeric as string feature
turned on, and the date type values are retrieved using I1dDateTime Objects.

- For the second selection, the date as string feature is turned back on.
- For the third selection, the feature numeric as objectsis turned back on.

[Before dropping the table, the previous cursor is explicitly closed using the function
IldRequest::closeCursor. Thedrop table Statement is executed using the
IldDbms: :execute function.

SQL Interpreter

The i1dsql exampleisasimplified SQL interpreter that sends to the database server the
queriesthat the user types, and then retrieves the result set (if any). It is built from the files
ildsqgl.cpp and ildutil.cpp. Thisexampleisfully RDBMS-independent.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 129

130

When retrieving arow from aresult set, the example first checks that the column is not null
for the current row.

Then, it dynamically calls the appropriate data accessors (I1drequest : :getCol<data
type>Value functions) as determined through the IBM ILOG DB Link type contained in
the column descriptor (I1dRelation: :getColType). The code for the 11dPrintTuple
functionisto befoundinthefileildutil . cpp. Thisfunction makesuse of al column type
accessors.

This example can a so handle more sophisticated statementslike commit or rollback, and
it even implements atable description facility through the command describe <table
name>.

The kernel of the interpreter contains 35 lines of code, including error checking of each call
to the RDBMS.

This example a so supports the retrieval of multiple result sets because the fetch loop is
doubled, that is, afirst do-while loop retrieves the first row of aresult set while the inner
while loop fetches al remaining rows. When the inner loop stops due to a negative result
from the call to I11drRequest : :hasTuple, the outer loop adds one more call to
I1dRequest : : fetch, Which starts retrieving the next result set, if any, and getting the
result set column descriptions. If this call fails, no error is raised but the outer loop stops as
well.

These nested loops are necessary because MS SQL Server, ODBC, and Sybase each have
the capability to return several result setsfor one execute call, which is the case when the
SQL statement is a stored procedure call.

Seethecodeinfile i1dsql . cpp for the other available options.

Concurrent Connections and Cursors

The examplemultidb illustrates the concurrence of connections and cursors. This example
isbuilt from thefilesmultidb.cpp and ildutil. cpp.

[Three different connections are created asthree 11dpbms objects. Each of them hasthree
cursors attached in the form of three 11drequest objects that are used to create tables
and issue SQL select statementson these tables.

[Inhsertions are made into the tables using different cursors from the same connection.

[The tables are then fetched using the different cursors from a same connection for each
table, the callsto 11drequest : : fetch being intertwined.

[When the connection objects have been deleted, the cursor array is cleaned up. Thisis
done to avoid keeping references to cursors that have become invalid because they have
been deleted as aresult of the corresponding connections being destroyed.

[Thetables are then dropped using a new connection.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Generic Examples

Relation Searching

The readrel exampleillustratesthe use of the member function 11dpbms : : getRelation
to retrieve atable description from the database schema.

The example is built from thefiles readrel . cpp and i1dutil.cpp.

After connecting to the database server, this code sample triesto retrieve the description of a
table that should not exist in the database.

Then, atable with a primary key is created before its description is retrieved and printed.

The table description displays the owner, name, and type of the relation. Its columns show
the column name, native SQL type, size (in bytes), and nullability. Finally, the primary key
and index descriptions are displayed.

The 11dprintRelation globa function triesto get al possible keys and indexes from the
table. It successively callsthe 11drelation member functions

IldRelation: :getPrimaryKey, I1dRelation: :getForeignKeys,

IldRelation: :getIndexes, and I1dRelation: :getSpecialColumns.

Refer tothefileildutil. cpp to seethe code for this function.

In the next step, the descriptor is deleted. Then, the 11dpbms object is requested to get this
descriptor using its index in the cache, hence an error.

An error is generated once more in the next step, which consists of dropping the table, and
then trying to retrieve its description.

Relation Names
The relnames exampleillustrates the use of two 11dbbms member functions:

[11dDbms: : readRelationNames, both with and without the owner array output
argument

[11dDbms: : readRelationOwners

It isbuilt from thefiles relnames.cpp and ildutil . cpp.

1. Thissamplefilefirst queries the database server for all table names that get printed.
2. Then, the database is searched for al relation owner names.

3. Then, it retrieves all relation names and all their respective owner names.

4. Finadly, it asks the user for an owner namethat is used to query the database for all the
names of al the relations belonging to that owner.

Each function returns one or two arrays of strings that are deleted using the function
I1dDbms: : freeNames. Using this function is mandatory when running on a PC that uses

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 131

132

IBM ILOG DB Link librariesin DLL forms. Otherwise, a memory access error occurs
during their deletion.

Input Bindings

The smp1bnd exampleillustrates most of the possible combinations of input bindings. It is
built from the files smplbnd.cpp and i1dutil. cpp.

1. Inthefirst step, rows are inserted, one by one, into anewly created table. Thisis
achieved using immediate execution through the function 11drequest : : execute.

2. Then, aselect statement with avariablein the where clauseis prepared for repeated
execution. It is executed twice with different values for the variable.

3. Then, an insert statement, where all inputs are supplied through variables, is prepared
for multiple execution. The array bind feature is set so that two rows will be inserted at
once for each execution.

Onevariable per row is set to null by the function I11drRequest : : setParamNullInd.
After that insertion, aselect statement isissued to check that the rows were inserted
and the null values used despite the values that were actually passed to the parameter.

4. Findly, anupdate statement with parametersis prepared and executed, but in the call to
IldRequest: : execute, asecond argument is passed. This argument constrains the
number of rowsto update to 1 despitethe bind array size of 2. Thelast select statement
checksthat only one row has been updated.

Output Bindings

The sbinding exampleillustrates how to use:
[user-allocated memory to retrieve column data,
[internally-allocated memory for parameters,

[nser-allocated memory for parameters.

It isbuilt from thefiles sbinding.cpp and ildutil . cpp.
1. First, it connects to the database server and creates atable.

2. Then, input variables are used to insert rows in the newly created table. The prepared
insert Statement isused in repeated execution mode. The parameter values are passed
to IBM ILOG DB Link, which assigns the necessary memory allocations.

3. Theinserted rows are then fetched and the returned values are passed as the attributes of
a user-defined object by binding the output columns via the function
IldRequest: :bindCol.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

Generic Examples

4. Finaly, new rows are inserted using user-allocated memory for the parameter bindings.
Then, aselect statement is executed and the function I1drequest : : fetch brings
column datain the user object fields.

For both select statements, null indicator buffers are bound but are not checked at fetch
time. Thisis not safe but the returned rows are known not to contain any null values.

Multiple Output Bindings
The rebindcl exampleillustrates the use of multiple bindings.
Itisbuilt from thefiles rebindcl.cpp and i1dutil. cpp.

If the application needs to keep in memory the dataretrieved from the RDBMS, it has to
copy the data to its own internal buffers, since the buffer specified by the first
I1dRequest: :bindCol operation will be overwritten by each successive
I1dRequest : : fetch operation to record the newly retrieved data.

So, to avoid the overhead required to copy the dataretrieved to another location, the
bindcol function may be called between each fetch operation to specify a new memory
area.

Handling LOBs

The ildtext and i1dbin examples show how to handle LOBs (Large OBjects) with the
use of the I1drequest functions I11drRequest : : insertLongText,

IldRequest: :insertBinary, I1dRequest : :getColLongTextValue, and
IldRequest: :getLargeObject. They arebuilt from thefiles i1dbin. cpp,
ildtext.cpp,and ildutil.cpp.

These two samples take the data from two files whose names are given by the user, process
the insertion into an ad-hoc table, and then retrieve the datainto two new files.

The c1ob and blob examples show how to handle new CLOB and BLOB data types
(reserved to Informix 9 and Oracle). These new datatypes are handled the same way asbasic
LOB types, so thereisacommon file between i1dtext / clob (file lobtext . cpp) and
ildbin/blob (file lobbin.cpp).

Asynchronous Processing
The async sample shows how the asynchronous feature may be used.

Thisfeatureis not implemented by every RDBMS. It may be used only against Mssql, Odbc
(depending on driver capabilities), Oracle, and Sybase.

With the other RDBM Ss, the sample will print a message to indicate that the feature is not
implemented.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 133

The sample will perform the following tasks:
et asynchronous status ON, and check that this worked correctly.
[_HExecute asimple insert and select operation.

[—Run severa queries simultaneously. Thisis to demonstrate that in asynchronous mode,
when the application sends arequest to the RDBMS, it gets the control back
immediately, even if the RDBM S did not complete its task. Then, the application is free
to do some other task. In this sample, we chose to submit other request to the RDBMS.
Then, from time to time, the application has to check each request to ensurethat it is
completed.

[The cancel feature is also used to cancel arequest too long to complete (run the sample
with the'-¢' parameter, (run the sample with no parameters for information on its usage)).

RDBMS-Specific Examples
A few RDBM S-specific examples are shipped with the standard distribution. They illustrate
RDBM S-specific features.
[Informix

For Informix9 or Informix US, the inf 9obj . cpp samplefileillustrates how to access
named row and collection type columns.

[Oracle

For Oracle, the oraproc . cpp fileisan example of stored procedures while the
oracurs . cpp fileisan example of how to use an output parameter of cursor type.

For Oracle, the oragobj . cpp exampleillustrates how to access varrays and objects on
selection, and how to use parameters of object and collection types.

For Oracle, the notif . cpp example shows how an application can register to alist of
events, and then get asynchronously notified when some of these events occur.

[FHybase
For Sybase, you can find the following samplefiles:
. sybproc for an example of astored procedure call,
. sybtrig for an example of atrigger firing,

. sybcomp for an example of the compute clause.

134 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

RDBMS-Specific Examples

Informix

SQL3 Features

The inf9obj example, built from the files inf9obj . cpp and i1dutil. cpp, can only be
run against an Informix Universal Server. Thus, the first argument passed to the
I1dNewDbms inline function is hard-coded.

Inthisexample, adistinct typeto beused in acollection and anamed row typeare
created. These types are used to define two tables in which the following objects are
inserted:

A first row using afully literal statement with an 11dobjectType typed parameter,

[_Then, other rows using a parameterized insert statement with an
IldCollectionType typed parameter.

For the first object parameter insertion, the abstract data type descriptor isretrieved by its
name using the function 11dbbms : : getAbstractType. However, thisis not possible for
the second insertion because the collection parameter needs an anonymous abstract type
descriptor. This descriptor is retrieved via the table column description using the function
I1dDbms: :getRelation. Then, the column abstract data type descriptor is accessed via
the I1dDescriptor: :getADTDescriptor member function.

[Hinally, two select statements areissued against the tables and the fetched rows are
printed.
Stored Procedure Call

The infproc exampleis built from thefiles infproc.cpp and i1dutil.cpp. TWO
procedures are created:

C_Thefirst procedure queries the catalog table systables for all table names and
identifiers that match its second argument and whose owner is the one passed as its first
argument. The matching table names and identifiers are returned as a standard result set
that will be fetched.

[_The second procedure sends an array of parameter values to be inserted in atemporary
table.

Oracle

Stored Procedure Call

The oraproc exampleis built from thefiles oraproc.cpp and i1dutil.cpp. It createsa
PL/SQL package that contains a type definition and a procedure. Then, the procedureis
called and the output values of the parameters are printed.

The procedure takes two parameters:

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 135

136

[Thefirst oneisascalar integer and is used as an index for an array.
[_The second oneisan array that is modified by the procedure.

The parameter array size is mandatory since one of the parametersis of type array. Because
the first parameter is anon-null scalar integer, its bind call does not need to use the optional
arguments for the null indicator, the input/output status, or the actual array size. The user
address of the value buffer isgiven but, becauseit isafixed-size value type, the default value
for size (-1) ispassed: IBM ILOG DB Link will take care of the actual size.

For the second parameter, a specific array size is passed as the seventh argument in the bind
call. That size is smaller than the maximum. Due to the procedure execution, it is clear that
the actual value of thefirst parameter must be smaller than or equal to the actual array size of
the second parameter.

The procedure sets some values for some elements of the array but it also sets an element to
the null value, as can be seen when the returned array is printed.

The actual procedure call must be enclosed in an anonymous pL/sQL block.

The values of the parameters are retrieved using the IBM ILOG DB Link API but the user
memory slots can also be accessed directly. The IBM ILOG DB Link API also tests whether
the parameter values are null but this can have been checked by directly accessing the value
of the user indicators that were bound using the T1drequest : :bindcol function.

Thefirst parameter does not require that a user-allocated memory space be bound.

The third argument to the binding of the second parameter is the actual user-side size of one
element of the array.

The sixth argument to the binding of the second parameter isignored by
IBM ILOG DB Link for Oracle. Its value can therefore be set to 11False without any
change in the execution behavior.

Cursor Output Parameter

The oracurs exampleisbuilt from thefilesoracurs.cpp and i1dutil.cpp. It createsa
PL/SQL package that contains two type definitions and a procedure. Then, the procedureis
called and the output values of the parameters are printed.

The procedure takes two parameters:
[_Thefirst oneisacursor that will be set during execution.
[_The second one is a number used to restrict the select statement executed.

The samplefirst creates atable in which it inserts some rows before creating the package
and calling the procedure. The returned value of the first parameter is then fetched just as
with ausual 11drequest object that would have been used to execute aselect statement.

This sample cannot be run against an Oracle server whose version is lower than 7.3.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

RDBMS-Specific Examples

Object Handling

The oragobj example, built from the files oragobj . cpp and i1dutil. cpp, illustrates
how the user-defined data-type features of Oracle are handled. It cannot be run against a
server with a version lower than 8. This example is divided into three steps.

1. Inthefirst step, an object type, a collection type, and tables with columns of those types
are created. A parameter of T1dobjectType typeisused. Itsvaueis built using the
abstract data type descriptor returned from acall to the member function
I1ldDbms: :getAbstractType.

2. Inthe second step, rows are inserted using parameterized queries. A parameter of
IldCollectionType typeisused. Itsvalueisalso built using an abstract type
descriptor.

3. Inthethird step, the contents of both tables are retrieved and printed.

Notification Sample

Thenotif example, built from thefileSnotif.cpp and i1dutil . cpp, demonstrates how
the notification mechanism isimplemented.

This feature isimplemented only for the Oracle81 driver (thisis anew feature in this
database).

It isdelivered with three SQL command files. These files need to be executed using SQL -
Plus, for example. They achieve the following requirements:

[dotifocr.sqgl for 'Notification objects creation’. This batch isto be executed first to
create the queues required by the RDBM S to implement the notification mechanism.

[dotif.sqgl. Thisbatch will generate events that will be detected by the DBLiNk notif
sample. It should be executed twice, when the DBLink sample is running.

[dotifodr.sqgl for 'Notification objects drop'. This batch isto be executed once the
DBLink sample is completed, to clean the queues and various objects created by
notifocr.sql.

The notif sample demonstrates the following features:

[—Subscribe to two different events: 'PUBSUB.INSERT_NOTIF:AGENT', and
'PUBSUB.UPDATE_NOTIF:AGENT". When the subscription is done, a specific
callback function is attached to these two events: 'insertCallBack' and ‘updateCallBack'.
Each callback function will display a specific message to show that it was called, and the
insert callback will count the number of insert events.

[_The sample will then wait for three insert operations. Note that the application may
perform any operation during this time, and it is notified asynchronously when an event

occurs. To simplify the sample, a sleep operation is done to wait for the events to be
generated.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 137

138

[_Then, the sample will unsubscribe the update event. The samenotif.sqgl batchisto be
executed a second time to demonstrate that the update event is not received any more.

Sybase

Stored Procedure Call

The sybproc exampleisafree adaptation of the Sybase example rpc . c. Itisbuilt with the
files sybproc.cpp and ildutil . cpp.

1t declares a stored procedure whose arguments are al output arguments, except the first
one.

A call to that procedure is then parsed, the parameters bound, and their values supplied.
[After execution, the various result sets returned are fetched in a double loop.
[Hinally, the parameters output values are printed.

This sample shows the restrictions that exist when calling stored procedures against a
Sybase server:

[Despite the fact that the statement must be prepared using the function
IldRequest: :parse, it cannot be executed several times.

[The execute SQL reserved word is mandatory. It is used as the only indicator of a
procedure call during the parsing phase. Thisis one of the few cases where
IBM ILOG DB Link needs to scan the query string,

If the procedure call only needs input parameters, you can simply use the
I1dRequest: : execute function and pass the parameter values to the query string.
For example:

request->execute ("sp_helpdb mydb") ;

Another Sybase-specific feature with regard to stored procedure callsis that the output
parameter values cannot be accessed before all result sets have been completely fetched.

Error Due to Trigger Firing

The sybtrig exampleisbuilt from thefiles sybtrig.cpp and ildutil.cpp. It
illustrates how to capture an error raised in atrigger fired by adelete event.

This example creates atable with atrigger attached to the delete event and insertsarow in
the table such that it is protected against deletion by the trigger.

Then, it tries to delete the row, which causes the trigger to be fired. The trigger sends a
TransactSQL print statement, rolls back the transaction, and raises a user-defined error.

Theprint statement isreceived as an information message and it is turned into awarning
by IBM ILOG DB Link. The raiserror statement is actually returned as an error and is
interpreted as such by IBM ILOG DB Link.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL

RDBMS-Specific Examples

Compute Clauses

The sybcomp example, made of the files sybcomp . cpp and i1dutil.cpp, illustrates the
use of the Sybase compute clause.

This example:
[Creates atable,
[Inserts afew rowsin thistable,
[Issues aselect statement that includes two compute clauses:
. onefor the minimum and maximum values of the column,

. onefor the average value of the column.

The three fetch loops show that after the normal result set containing the fetched rows, there
isone result set for each individual compute clause.

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 139

140 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

A

abstract datatypes 57
descriptor 51, 135, 137
handling 95
names 53
ANSI database data types 15
application descriptors 75
array bind mode 33, 46, 71, 80, 101, 132
array fetch mode 34, 46, 71, 72
asynchronous processing 133
asynchronous processing mode 34
autocommit mode 60, 62
autoCommitOff member function for I1dDbms 60, 62,
114
autoCommitOn member function for I1dDbms 60, 62,
114
automatic connection 44

B

batch processing of SQL statements 76, 81, 101
bibliography 16
binary data
retrieving 94
sending 93
bind application memory to the database APl 101
bind input variables with Oracle or SQL Base 87
bindCol member functionfor I1drRequest 78, 84, 100,
101, 115,132

IBM

Index

binding
application memory 101
input variables 80, 86
returned data columns to application memory 100
variables 86
bindings
multiple output 133
bindParam member function for I1dRequest 74, 78,
86, 87, 96, 100, 101, 115, 129

C

call stored procedures 135, 138
case sensitivity 84
CHAR datatype 16, 55
CLI standard 10, 37, 73, 74
closeCursor member function for I1dRequest 115,
129
closing a connection 42, 48
codes
for errors 106
for functions 112
columns
attributes 55
descriptors 73, 101
types17 to 25
commit atransaction 61
commit member function for I1dDbms 59, 61, 114
commit statement 130
compatibility with previous releases 120

ILOG DB LINK V5.3 — USER’'S MANUAL 141

Compilation Flags 120
compilation flags 44, ??to 124
compiling 119 to 126
compute clause 139
configuration 27 to 47
file 29, 43
settings 70 to 72
connect member function for I1dDbms 42, 48, 49, 114
connection string format 45
connections 41 to 65
concurrent 130
dangling 49
maximum number 42, 49
create an I1dRequest object 68
creating
I1dDbms objects42, 44
I1dRequest objects 68
cursors 67 to 98
allocating 62
concurrent 130
handling 42
retrieving a schema entity name or owner as 51
customize the error handling mechanism 46, 116

D

dangling connections, avoiding 49
datatypes 15 to 26
abstract 53
generic 89
ILOG generic 120
LOBs71
maximum size 92
database schema 49
Date As String feature
and I1dDateTime objects89, 90
and input mode 25
and output mode 16, 23
current configuration 47
default configuration 46
defined 31
DATE datatype 16
DB Link 5.0
compatibility with previous releases 120
library organization 121

new macros 121
porting from previous releases 120
DB Link types 17, 74, 96
binding input variables 86
related data accessors 82
DB2
available system and compiler 12
bibliography 16
compiler flag 122
connection string 45
Date As String input 25
environment variables 28
mapping between DB Link typesand SQL types
input mode 24
output mode 17
Numeric As String input 26
synonyms not supported 52, 57
DB2DIR environment variable 28, 126
DB2INSTANCE environment variable 28
dbkernel library 121
DBLIB variable 123
dblinkError member function for
IldErrorReporter 114,116,117,118
dblnkdyn library 121
dblnkst library 121
dbmsError member function for I1dErrorReporter
114,116,117
DECIMAL datatype 16, 91
default configuration settings 46, 70
default error reporter 46, 106, 114
deferred execution 78
delete operator 62, 69
delete statement 76, 100
deleting
cursors 62
descriptors 48
erroneous objects 113
I1dDbms objects 42, 49
I1ldRequest objects 48, 69
DELIMIDENT environment variable 28
DESCRIBE SQL statement 79
descriptors
deleting 48
for abstract data types 95, 135, 137
for columns 101

142 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

for schema entities 50

getting type of 51

I1dDbms destructor 49

notion 73

return values 57
diagnostic 104
disconnect member function for I1dDbms 42, 48, 112,

114

disconnecting from an RDBMS 48
DLL libraries122, 132
DOUBLE PRECISION datatype 16
drivers 120, 122

linking statically 43

loading dynamically 29, 43
drop table statement 129
dynamic driver manager 122
dynamic load mode 43, 44, 122

E

enumerations
I1dADTType 96
IldColumnType 55
I1dEntityType 50
I1dErrorOrigin 112
IldInfoItem 37
environment variables 28, 123
error handler 103 to 118
customizing 116 to 118
default 105
error reporter 48, 70, 114 t0 116
customizing 116
default 46, 106
errors103t0 118
codes 104, 106
descriptor identifier 51
dueto trigger firing, sample file 138
I1dErrorDbms class43
origin 104, 112
output stream 114
events
subscribing 64
unsubscribing 64
exact numeric values, handling 32, 90 to 91, 129
examples

IBM

binding input variables with Oracle or SQLBase 87
creating an I1dRequest object 68
exact numeric values 90 to 91
generic 128 to 134
multiple result set 81
repeated execution of aquery 80
retrieving data
directly 82
into the application memory space 84
sending text data 93
setting parameter values 88
SQL statement
differed execution 78
immediate execution 77
using the sixth argument to bindParam 86
execute aquery repeatedly 80
execute an SQL statement
immediately 77
later 78
execute member function
I1dDbms class58, 100, 115, 129
I1dRequest class 33, 36,58, 71, 72, 76, 78, 79, 80,
88, 100, 101, 115, 128, 132, 138
execute member function for I1dRequest 76
execute procedure statement 101
execute SQL reserved word 138
execution modes for SQL statements 76

F

fetch array size 71
fetch member function
I1dRequest class 36
fetch member function for I1drRequest 34, 72,77, 81,
84,101, 115, 130, 133
fetch multiple result sets 81
fetchScroll member function for I1dRequest 81
find out the types and sizes of returned columns 101
FLOAT datatype 16
foreign keys 54
descriptors 55
freeNames member function for I1dDbms 51, 131
functions 56
codes 112
descriptors 50

ILOG DB LINK V5.3 — USER’S MANUAL 143

I1dNewDbms 42, 43, 68, 135

G

getAbstractType member function for 11dDbms 57,
115, 135, 137
getADTDescriptor member function for
IldDescriptor 74,135
getArgumentsCount member function for
IldcCallable 56
getBuffersize member function for
IldAppDescriptor 75
getColADTValue member function for I1dRequest
96, 115
getColArraySize member function for I1dRequest
34,71,72
getColBinaryValue member function for
I1dRequest 94, 115
getColByteValue member function for I1dRequest
115
getColCount member function for I1drRequest 101
getColDateTimeValue member function for
I1dRequest 89, 115
getColDescriptor member functionfor I1dRequest
75,101
getColIndex member function for I1dRequest 115
getColIntegerValue member function for
IldRequest 115
getColLongTextValue member function for
IldRequest 93, 115,133
getColMoneyValue member functionfor I1dRequest
115
getColName member function
I1dRelation class55
I1dRequest class 77,115
getColNumericValue member function for
Ildrequest 33,91, 115
getColRealValue member function for I1dRequest
23,115
getColReferenceValue member function for
IldRequest 115
getColSize member function
IldRelation class55
IldRequest class77
getColSQLType member functionfor I1dRelation 55

144 IBM

ILOG DB LINK V5.3 —

getColStringValue member function for
I1dRequest 90
getColType member function
IldRelation class55, 130
I1dRequest class77
getColTypeValue member function for I1dRequest
81, 82
getColumn member function for I1dRelation 75
getCount member function for I1dRelation 54, 55
getDatabase member function for I1dDbms 47
getDbms member function
I1dErrorReporter class117
IldRelation class54
getDbmsVersion member function for I1dDbms 46
getDbmsVersions member function for I1dDbms 46
getDefaultColArraySize member function for
I1dDbms 47
getDefaultParamArraySize member function for
I1dDbms 33,47
getDescriptor member functionfor I1dADTValue 96
getEntityType member functionfor I1dRelation 54
getEntityType member function for
IldSchemaEntity 50
getError member functionfor 11dI11dBase 104
getErrorCode member function for I1dI1dBase 106
getErrorMessage member functionfor I1dI1dBase
112
getErrorOrigin member function for I1dI1dBase
106
getErrorReporter member function
I1dDbms class46
IldIldBase class 106
getErrorSqglstate member functionfor I1dI1ldBase
112
getForeignKeys member function
IldRelation class 36
getForeignKeys member function for I1dRelation
54, 55,131
getFreeRequest member functionfor I1dDbms 43, 44,
62,68, 70
getHook member function
I1dDbms class63, 115
IldRequest class 97
getIndexes member function
IldRelation class36

USER’'S MANUAL

getIndexes member functionfor I1dRelation 54,55,
131
getInfo member function for 11dDbms 37, 46, 59, 84,
115
getInformation member functionfor I1dI1dBase
104
getInformationCode member function for
I1dIldBase 105
getInformationMessage member function for
I1dIldBase 105
getLargeObject member function
I1dRequest class 36
getLargeObject member function for I1dRequest
94,115,133
getLargeObjectChunk member function
I1dRequest class 36
getLargeObijectChunk member function for
I1dRequest 95
getName member function
IldDbms class47, 115
IldDescriptor class74
IldRelation class54
getNulls member function for I1dAppDescriptor 75
getNumberOfActiveConnections member function
for I1dDbms 49
getNumberOfRequests member function for I1dDbms
69
getOStream member functionfor I1dErrorReporter
114
getOwner member function for I1dRelation 54
getParamArraySize member function for
Il1drequest 33,71,72,80,101
getParamBinaryValue member function for
IldRequest 115
getParamCursorValue member function for
IldRequest 115
getParamDateTimeValue member function for
IldRequest 115
getParamDescriptor member function for
I1dRequest 75
getParamIndex member functionfor I1dRequest 115
getParamNumericValue member function for
IldRequest 115
getParamValue member function for I1dRequest 33
getPrecision member function for I1dDescriptor

IBM

ILOG DB LINK V5.3 —

74
getPrimaryKey member function
IldRelation class36
getPrimaryKey member functionfor I1drRelation
54,55,131
getProcedure member function for I1dDbms 56, 115
getRelation member function for 11dDbms 53, 115,
131,135
getResultsCount member functionfor I1dcallable
57
getScale member function for I1dDescriptor 74
getSize member function for I1dDescriptor 74
getSpecialColumns member function
IldRelation class36
getSpecialColumns member function for
I1ldRelation 54,55, 131
getSqglType member function for I1dDescriptor 74
getSqglTypeName member function for
IldDescriptor 74
getStatus member function for I1dRequest 76, 115
getSynonym member function for I1dDbms 57, 115
getType member function
IldDescriptor class 74, 95
I1dRequest class 96
getTypeInfo member function for I1dDbms 59, 115
getUser member function for I1dDbms 47
getvalue member function for I1dAppDescriptor 75

H

handle exact numeric values 90 to 91, 129

handle LOBs 133

hasDefault member function for I1dArgument 56
hasTuple member function for I1dRequest 81, 130

IBM Informix

available system and compiler 12
identifiers

for schema entities 51
ILD ALREADY CONNECTED error 48, 107
ILD BAD COLUMN INDEX error 107
ILD BAD COLUMN NAME error 107
ILD_BAD_DB_SPEC efror 46, 107

USER’'S MANUAL 145

ILD_BAD_EXECUTE_COUNT error 107 I1dADTType enumeration 96

ILD BAD_FILE error 107 I1dADTValue class 95, 96

ILD BAD_VARIABLE SIZE efror 107 getDescriptor member function 96

ILD CANNOT RESIZE TUPLE error 107 I1dADTXxx types 96

ILD CBCK_INIT error 107 I1dAppDescriptor class73, 75

ILD CON_ALLOC error 108 getBuffersSize member function 75

ILD CON_INIT error 108 getNulls member function 75

ILD CTXT_ALLOC error 108 getValue member function 75

ILD CTXT_INIT error 108 isExtNulls member function 75

ILD D DISCONNECT functionidentifier 112 isExtValue member function 75

ILD DATE_CONVERT efror 108 IldArgument class56

ILD DBMS FATAL ERROR efror 108 hasDefault member function 56

ILD DBMS_NOT CONNECTED error 48, 108 isInArgument member function 56
ILD IGN_EXT ROWS error 108 isInOutArgument member function 56
ILD INVALID HANDLE efror 108 isOutArgument member function 56

ILD INVALID PARAMETER error 109 IldBinaryType columntype 17 to 25, 71, 84, 94, 95
ILD INVALID_ SEQUENCE efrror 109 I1dBLOBType columntype 17 to 25

ILD LIB_MSMTCH eror 109 IldBytes structure 93

ILD LIB_NLNKD error 45,109 I1dByteType columntype 17 to 24
ILD_LOCK_NAME_ MISMATCH error 109 IldcCallable class50, 56

ILD MAX_ CURS_LEN efrror 109 getArgument sCount member function 56
ILD MEMORY EXHAUSTED efror 109 getResultsCount member function 57
ILD NO DYN LIB efror 109 isProcedure member function 56

ILD NO HANDLER error 109 IldCallableEntity type51
ILD_NO_MORE_TUPLES error 109 I1dClientAPI error origin type 106, 113
ILD NO_ REPORTER error 110 I1dCLOBType columntype 17,21 to 25

ILD NOT_ IMPLEMENTED error 110 IldCollectionType columntype 18 to 25, 84, 87, 95,
ILD NOT_SCROLL_MODE error 110 96, 135, 137

ILD NUM_CONVERT error 110 IldColumnType enumeration type 55

ILD OFFSET error 110 IldCursorType columntype 21 to 25

ILD OUT_OF RANGE efrror 110 IldDateTime class89

ILD_RDBMS_CONN efror 110 IldDateTime type129

ILD REQUEST REQUIRED efror 110 IldDateTimeType columntype 17 to 25, 84
ILD TYPE MISMATCH eror 32, 33, 111 IldDateType columntype 17 to 25

ILD UNCHGEABLE efror 111 I1dDblink error origin type 106, 113

ILD UNDEF LINK MODE error 111 I1dDbms class 33, 41

ILD UNKN_ERRMSG error 111 autoCommitOf £ member function 60, 62
ILD UNKNOWN_CODE efror 111 autoCommitOn member function 60, 62
ILD UNKNOWN_ RDBMS error 45, 111 commit member function 59, 61

ILD UNKNOWN RELATION efror 111 connect member function 42, 48

ILD UNKNOWN_TYPE efror 111 destructor 49

ILD USING ERROR_DBMS efror 112 differences with I1dDbmsModel 65

ILD USING ERROR_REQUEST error 112 disconnect member function 42, 48, 49, 112
I1dADTDescriptor class50, 57, 95 execute member function 58, 100, 129
I1dADTEntity type51 freeNames member function 51, 131

146 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

getAbstractType member function 57, 135, 137

getDatabase member function 47

getDbmsVersion member function 46

getDbmsVersions member function 46

getDefaultColArraySize member function 47

getDefaultParamArraySize member function 33,
47

getErrorReporter member function 46

getFreeRequest member function 43, 44, 62, 68, 70

getHook member function 63

getInfo member function 37, 46, 59, 84

getName member function 47

getNumberOfActiveConnections member
function 49

getNumberOfRequests member function 69

getProcedure member function 56

getRelation member function 53, 131, 135

getSynonym member function 57

getTypeInfo member function 59

getUser member function 47

isAsyncSupported member function 35

isErrorRaised member function 43, 44

isTransactionEnabled member function 59

no subclassing 62

readAbstractType member function 57

readAbstractTypeNames member function 50, 53

readEnt ityNames member function 51

readOwners member function 51

readProcedure member function 56

readProcedureNames member function 50, 52

readRelation member function 36, 53

readRelationNames member function 36, 50, 51,
52,131

readRelationOwners member function 36, 131

readSynonym member function 57

readSynonymNames member function 50, 52

readTablePrivileges member function 58

removeRelation member function 53

rollback member function 60, 61, 62

setDefaultColArraySize member function 34,
47,72

setDefaultParamArraySize member function 33,
47

setErrorReporter member function 46, 116

setHook member function 63

IBM ILOG DB LINK V5.3

setNumericUse member function 23
setStringDateUse member function 23, 31
setStringNumericUse member function 23
startTransaction member function 59, 60, 61
subscribeEvent member function 36
unSubscribeEvent member function 36
useNumeric member function 23, 47
useStringDate member function 23, 47
useStringNumeric member function 23, 47

I1ldDbms objects 31, 33, 34, 35,42 t0 49

checking errors raised 69
deleting 49

erroneous 113

warnings 105

IldDbmsModel class41

differences with I1dDbms 65

IldDecFloatType column type 17
IldDescriptor class56, 73, 95, 101

getADTDescriptor member function 74, 135
getName member function 74

getPrecision member function 74
getScale member function 74

getSize member function 74

getSqglType member function 74
getSglTypeName member function 74
getType member function 74, 95
isNullable member function 74

IldDiagnostic 104

I1dEntityType enumeration type 50
I1dErrorDbms class43, 113
IldErrorOrigin enumeration type 112
I1dErrorReporter class46, 105,114, 116

dblinkError member function 114, 116, 117,118
dbmsError member function 114, 116, 117
getDbms member function 117

getOStream member function 114

setOStream member function 114

I1dErrorRequest class43, 48, 113
I1dFuncId enumerationtype112
ILDHOME environment variable 30
IldIdentifierCase infoitem 84
IldIldBase class23, 32, 33,43

getError member function 104
getErrorCode member function 106
getErrorMessage member function 112

— USER’'S MANUAL 147

getErrorOrigin member function 106
getErrorReporter member function 106
getErrorSglstate member function 112
getInformation member function 104
getInformationCode member function 105
getInformationMessage member function 105
isErrorRaised member function 104
isInformationRaised member function 104, 105
setNumericUse member function 48
setStringNumericUse member function 48
IldInfoItem enumeration type 37
IldIntegerType columntype 17 to 24
IldLongTextType columntype 17 to 25, 71, 84, 94, 95
I1dMoneyType column type 18 to 25
IldNewDbms inlinefunction 31, 42, 43, 44, 48, 68, 135
IldNumericType typel7, 84,129
I1d0bjectType datatype 18 to 25, 84, 87, 95, 96, 135,
137
I1dRDBMServer error origin type 106, 113
I1dRealType datatype 17 to 24
I1dRefType column type 25
IldRelation class50, 51, 53
getColName member function 55
getColsSize member function 55
getColSQLType member function 55
getColType member function 55, 130
getColumn member function 75
getCount member function 54, 55
getDbms member function 54
getEntityType member function 54
getForeignKeys member function 36, 54, 55, 131
getIndexes member function 36, 54, 55, 131
getName member function 54
getOwner member function 54
getPrimaryKey member function 36, 54, 55, 131
getSpecialColumns member function 36, 54, 55,
131
isCollNullable member function 55
IldRelation objects54
I1dRequest class33, 62, 67
bindCol member function 78, 84, 100, 101, 132
bindParam member function 74, 78, 86, 87, 96, 100,
101, 129
closeCursor member function 129
destructor 69, 115

148 IBM ILOG DB LINK V5.3

differenceswith I1dRequestModel 98

error-raising member functions 115 to 116

execute member function 33, 36, 58, 71, 72, 76, 78,
79, 80, 88, 100, 101, 128, 132,138

fetch member function 34, 36, 72, 77, 81, 84, 101,
130, 133

fetchScroll member function 81

getColADTValue member function 96

getColArraySize member function 34, 71, 72

getColBinaryValue member function 94

getColCount member function 101

getColDateTimeValue member function 89

getColDescriptor member function 75, 101

getColLongTextValue member function 93, 133

getColName member function 77

getColNumericValue member function 33, 91

getColRealValue member function 23

getColSize member function 77

getColStringValue member function 90

getColType member function 77

getColTypeValue member function 81, 82

getHook member function 97

getLargeObject member function 36, 94, 133

getLargeObjectChunk member function 36, 95

getParamArraySize member function 33, 71, 72,
80, 101

getParamDescriptor member function 75

getParamValue member function 33

getStatus member function 76

getType member function 96

hasTuple member function 81, 130

insertBinary member function 36, 92, 133

insertLongText member function 36, 92, 133

isCompleted member function 35

no subclassing 97

parse member function 33, 36, 72, 76, 78, 79, 100,
101, 138

release member function 69, 70

removeColArraySize member function 34, 71, 72

removeParamArraySize member function 33, 71,
72

setColArraySize member function 34, 71, 72

setErrorReporter member function 116

setNumericUse member function 23, 33

setNumericUse method 91

— USER’'S MANUAL

setParamArraySize member function 33, 71
setParamNullInd member function 132
setParamValue member function 33, 78, 88, 89, 90,
96, 100, 101
setStringDateUse member function 23, 31
setStringNumericUse member function 23, 32
startGetLargeObject member function 36, 94
useNumeric member function 23, 33
useStringDate member function 23, 32
useStringNumeric member function 23, 32
I1dRequest objects 31, 35, 47, 48, 49, 58, 68 to 70
erroneous 113
inherited settings 71
result set 51
transactions 60
warnings 105
I1dRequestModel class67
differenceswith I1dRequest 98
IldSchemaEntity class50
getEntityType member function 50
I1dSQLType class58
IldstringType datatype 17 to 24, 84, 129
I1dSynonym class50, 57
IldSynonymEntity type51
IldTableEntity type51
I1dUnknownEntity type51
Ildviewtype54
IldviewEntity type51
IlInt type58,76, 79,91
I1lNumeric class32, 91
I1Numeric type23
I1UInt type80
immediate execution 76, 100, 101
indexes 49, 54
descriptors 55
INFLIBS variable 126
Informix
abstract data types 95
array bind mode, limitation 33
bibliography 16
CHAR type 87
compiler flag 122
connection string 45
Date As String input 25
disabling the transaction functionality 59

IBM

environment variables 28
mapping between DB Link typesand SQL types
input mode 24
output mode 17
Numeric As String input 26
precision in date-and-time values 89
specific example 135
transaction control 61
Unix variable 126
INFORMIXDIR environment variable 28, 126
INFORMIXSERVER environment variable 28
initiate a transaction 60
initiating
sessions and connections 42
transactions 60
inline function I1dNewDbms 44, 48, 68, 135
input bindings 80, 86, 101, 132
input mode
correspondence between types and RDBM Ss 24 to 26
special features 25
insert statement 33, 76, 128, 132, 135
insertBinary member function
I1dRequest class 36
insertBinary member function for I1dRequest 92,
115,133
insertLongText member function
I1dRequest class 36
insertLongText member function for I1dRequest
92,115, 133
INTEGER datatype 16
isAsyncSupported member function
I1dDbms class 35
isCollNull member function for I1dRequest 115
isColNullable member functionfor I1drRelation 55
isCompleted member function
I1dRequest class 35
isErrorRaised member function
I1dDbms class43, 44
I1dIldBase class104
isExtNulls member functionfor I1dAppDescriptor
75
isExtValue member functionfor I1dAppDescriptor
75
isInArgument member function for I1dArgument 56
isInformationRaised member function for

ILOG DB LINK V5.3 — USER’S MANUAL 149

IldIldBase 104, 105
isInOutArgument member function for I1dArgument
56
isNullable member function for I1dDescriptor 74
isNullIndicatorOn member function for
IldRequest 115
isOutArgument member function for I1dAargument 56
isParamNull member function for I1dRequest 115
isProcedure member functionfor I1dCallable 56
isTransactionEnabled member function for
I1dDbms 59

K

keys, descriptors 55
keywords
where 92, 94

L

libraries 31, 124
linking 119 to 126
list Informix data structure 95
LoadLibrary function 31
LOBs
datatypes 55, 71
handling 133
retrieving 93 to 95
sending 92
LOCALE settings 31, 32
LVARCHAR datatype 16

M

makefiles 126

memory
allocation 69, 71, 87, 102, 132
allocation failure 43
leaks, avoiding 49
retrieving LOBs 92

MS SQL Server
available system and compiler 12
compiler flag 122
connection string 45
environment variables 28

150 IBM

ILOG DB LINK V5.3 —

error handler 106
integer input 26
mapping between DB Link typesand SQL types
input mode 24
output mode 19
multiple result sets 81, 130
placeholders not supported 11
processing statementsin batch 76
synonyms not supported 52, 57
transaction control 60
multiple bindings 133
multiple execution 79, 100
multiple output bindings 133
multiple result sets 81
multiset Informix data structure 95

N

names
of libraries, resolving 31
of relations 131
of schema entities, retrieving 51 to 53
naming conventions 14
native SQL types 55
NCHAR datatype 16
nested table Oracle data structure 95
notation 14
notification
sample 137
notification mechanism 137
notification of users 64
NUMBER datatype 16, 91
number of connections 49
Numeric As Object feature 16, 21, 23, 32, 46, 47, 48, 91,
129
Numeric AsString feature 16,17, 18, 19, 20, 21, 23, 26, 32,
46, 47, 90, 129
NUMERIC datatype 16, 91
numeric values, handling 32, 90, 129
NVARCHAR datatype 16

O

object files 123, 126
object Oracle data structure 95

USER’'S MANUAL

obsolete ports 11 VARCHAR type 87

ODBC ORALIBS variable 126
array bind mode 80 ORDBMS
array fetch mode 34, 72 abstract data types 50, 53, 58, 95
available system and compiler 12 output bindings 80, 101, 132
bibliography 16 output mode
column order 55 correspondence between types and RDBMSs 16 to 23
compiler flag 122 special features 23
connection string 45 overflow problems 21
Date As String input 25 owners of schemaentities 51 to 53
mapping between DB Link types and SQL types
input mode 24 P
output mode 19
multiple execution of SQL statements 80 parameters
multiple result sets 130 array size71
Numeric As String input 26 descriptors 73
processing statements in batch 76 sending values as 96
SQL select statement 79 setting 88
synonyms not supported 52, 57 parse member function
transaction control 59 I1ldRequest class 36
OLEDB parse member function for I1dRequest 33,72, 76, 78,
available system and compiler 12 79, 100, 101, 115, 138
OLEDB PATH environment variable 28
bibliography 16 placeholders 76, 78, 79, 80, 100
Oracle platforms supported 11
abstract data types 95 ports, obsolete 11
available system and compiler 12 precision 89
bibliography 16 PREPARE SQL statement 79
binding input variables 87 prerequisites 13
compiler flag 122 primary keys 49, 54
connection string 45 descriptors 55
Date As String input 25 print statement 138
environment variables 28 privileges 58
mapping between DB Link types and SQL types procedures 56
input mode 24 descriptors 50
output mode 21 names 52
maximum number of active cursors 69
Numeric As Object feature 91 Q
Numeric As String input 26
question mark not supported 87, 100 queries ??to 102
retrieving LOBs 92, 95 question mark not supported 87, 100
specific example 135
tables with same names 52, 53 R
transaction control 59
Unix variable 126 raiserror statement 138

IBM ILOG DB LINK V5.3 — USER’'S MANUAL 151

RDBMSs
bibliography 16
case sensitivity 84
corresponding types 15 to 26
limits on number of I1dRequest objects 69
multiple targets 124
specific features 134
supported 11
readAbstractType member function for I1dDbms 57
readAbstractTypeNames member function for
I1dDbms 50, 53, 115
readEntityNames member function for I1dDbms 51,
115
readForeignKeys member function for I1dDbms 115
readIndexes member function for I1dDbms 115
readOwners member function for I1dDbms 51, 115
readPrimaryKey member function for 11dDbms 115
readProcedure member function for I1dDbms 56
readProcedureNames member function for I1dDbms
50, 52, 115
readRelation member function
I1dDbms class 36
readRelation member function for I1dDbms 53
readRelationNames member function
I1dDbms class 36
readRelationNames member function for I1dDbms
50, 51,52, 115,131
readRelationOwners member function
I1dDbms class 36
readRelationOwners member function for I1dDbms
115,131
readSpecialColumns member function for I1dDbms
class 115
readSynonym member function for I11dDbms 57
readSynonymNames member function for I1dDbms 50,
52,115
readTablePrivileges member functionfor I1dDbms
58
REAL datatype 16
reconnecting to a database 48
relations
names 131
searching 131
release member function for I1dRequest 69, 70, 115
releasing I1dRequest objects 69

152 IBM

removeColArraySize member function for
IldRequest 34,71,72,115
removeColLock member functionfor I1dRequest 115
removeParamArraySize member function for
IldRequest 33,71,72,115
removeParamLock member function for I1dRequest
115
removeRelation member function for I1dDbms 53
repeated execution 80, 100
result sets
handling multiple 81
pending 79
retrieving values from 96
using related member functions 78
retrieve
a table description from the database schema 131
data102
directly 82
into the application memory space 84
long text values 93
multiple result set 130
relation names 131
retrieving
a table description from the database schema 131
current fetch/parameter array size 71
data102
date-and-time values 89
exact numeric values 90
LOBs92, 93,93 t0 95
multiple result sets 130
query execution status 76
relation names 131
results 81 to 85
values from the result set 96
return values, descriptors 57
roll back atransaction 62
rollback member function for I1dbbms 60, 61, 62, 115
rollback statement 130
rolling back atransaction 62
row Informix data structure 95
rows
handling several at atime 71, 101
retrieving from aresult set 130

ILOG DB LINK V5.3 — USER’S MANUAL

S

sbinding. cpp samplefile 87
schema entities
descriptors 48, 49, 50
names 51
owners 51
types 50
select statement 58, 81, 93, 94, 100, 101, 128 to 139
send
numeric object values 91
text data 93
the same query several times 78
Server Information 37
sessions 41 to 65
set parameter values 88
set up aquery for multiple or repeated use 100
setColArraySize member function for I1dRequest
34,71,72,115
setColPos member function for I1dRequest 115
setCursorMode member function for I1dDbms 115
setCursorName member function for I1dRequest 116
setDefaultColArraySize member function for
I1dDbms 34,47,72
setDefaultParamArraySize member function for
I1ldDbms 33,47
setErrorReporter member function
I1dDbms class46, 115,116
I1dRequest class 116
setHook member function
I1dDbms class63
setnet32 Informix utility 28
setNumericUse member function
I1dDbms class23
IldIldBase class48
IldRequest class 23, 33
setNumericUse method
IldRequest class9l
setOStream member function for I1dErrorReporter
114
setParamArraySize member function for
Ildrequest 33,71, 116
setParamNullInd member function for I1dRequest
116, 132
setParamValue member function for I1dRequest 33,

IBM

ILOG DB LINK V5.3 —

78, 88, 89, 90, 96, 100, 101, 116
setReadOnly member function for I1LdRequest 116
setStringDateUse member function

I1dDbms class 23, 31, 47
I1dRequest class23, 31
setStringNumericUse member function
I1dDbms class23
IldIldBase class48
IldRequest class 23, 32
setTimeOut member function for I1dDbms 115
shared libraries 28, 123
shared Unix compilation mode 124
SMALLINT datatype 16
special columns 54
SQL datatypes17, 74
SQL interpreter, example 129
SQL language, bibliography 16
SQL statements
commit 130
delete 100
drop table 129
execute procedure 101
executing a sequence as one block 59
in samplefiles 128 to 139
insert 33, 128,132, 135
print 138
processing 76 to 80
raiserror 138
rollback 130
rolling back 62
select 93, 94, 100, 101, 128 to 139
sending 60
update 132
SQL syntax, checking 78
SQL92 standard 11
SQLBase
bibliography 17
SQL-Plus 137
SQLSTATE value 104, 112
startGetLargeObject member function
I1dRequest class 36
startGetLargeObject member function for

I1dRequest 94
startTransaction member function for I1dDbms 59,

61

USER’'S MANUAL 153

startTransaction member function for I1dDbms

class 60
static driver manager 122
stored procedure calls 135, 138
subscribeEvent member function
I1dDbms class 36
subscribing to events 64
Sybase
available system and compiler 12
bibliography 17
compiler flag 122
compute clause 139
connection string 45
Date As String input 25
error handler 106
informative messages 105
mapping between DB Link types and SQL types
input mode 24
output mode 22
multiple result sets 81, 130
Numeric As String input 26
processing statements in batch 76
specific example 138
synonyms not supported 52, 57
tracing error origin 106
transaction control 60
Unix variable 126
variable output status 86
SYBASE variable 126
SYBLIBS variable 126
synonyms 57
descriptors 50
names 52
system
MS Visua Studio 2008 12
MS Visua Studio 2008 64 bits 12
Solaris 2.8 64 bits 12
systems supported 12

T

tables 53
characteristics 54
descriptors 50
different with same names 52, 53

names 51
owners51
text data
retrieving 93
sending 92
TIME datatype 16
time values, as handled by DB Link 89
TIMESTAMP datatype 16
transactions 59 to 62
turn on the Numeric As Object feature 91
turn on the Numeric As String feature 90
types
I1dADTXxx 96
I1dBinaryType 71, 84,94, 95
I1dClientAPT 106, 113

IldCollectionType 84,87, 95, 96, 135, 137

IldDateTime 129
IldDateTimeType 84
I1dDblink 106,113

I1dFuncId 112
IldLongTextType 71, 84,94, 95
IldNumericType 84, 129
I1dObjectType 84, 87,95, 96, 135, 137
I1dRDBMServer 106, 113
IldstringType 17 t0 24, 84,129
I1dTableEntity 51
Ildview54

IldviewEntity 51

IlInt 58,76,79,91

I1UInt 80

U

unbound variables 80
Unix
compilation modes 124
unsubscribeEvent member function
I1dDbms class 36
unsubscribing from events 64
update statement 76, 132
use the function I1dNewDbms 44
use the sixth argument to bindParam 86
useNumeric
member function for I1dDbms 23, 47
member function for I1drRequest 23, 33

154 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

user-allocated memory 84, 132, 136
user-defined data types 50
attribute descriptors 75
useStringDate
member function for I1dDbms 23, 47
member function for I1drRequest 23, 32
useStringNumeric
member function for I1dDbms 23, 47
member function for I1dRequest 23, 32

\%

value buffer 75
VARCHAR datatype 16, 55
variables

binding 80, 86

unbound 80

Unix RDBM S-dedicated 126
varray Oracle data structure 95
views 53

descriptors 50

names 51

owners51

w

warnings 103 to 118
where clause 92, 94, 132
Windows compiling 124

IBM ILOG DB LINK V5.3

USER’'S MANUAL

155

156 IBM ILOG DB LINK V5.3 — USER’'S MANUAL

	IBM ILOG DB Link V5.3 User’s Manual
	Table of Contents
	About This Manual
	Manual Organization
	Where to Get More Information
	Related Documentation
	Further Reading

	Data Types
	Output Mode
	DB2
	Informix
	MS SQL Server
	ODBC
	Oracle
	Sybase
	Special Features

	Input Mode
	Date As String
	Numeric As String
	MS SQL Server Limitation

	Configuration Issues
	Environment Variables
	DB2
	Informix
	MS SQL Server
	Oracle

	Configuration File
	Format
	Location
	Resolving Library Names and Loading Libraries

	Configuration Features
	Date As String
	Numeric As String
	Numeric As Object
	Array Bind
	Array Fetch

	Asynchronous Processing Mode
	Principle
	Important Behavior Change
	Drivers that Support Asynchronous Processing
	Functions that Use Asynchronous Processing

	Server Information

	Sessions & Connections
	Connection Handling through IldDbms Objects
	Initiating a Session or a Connection
	Creating IldDbms Objects
	Session Configuration
	Disconnecting and Reconnecting
	Number of Connections
	Destroying IldDbms Objects

	Accessing the Database Schema
	Schema Entity Types
	Schema Entity Names and Owners
	Tables and Views
	Procedures and Functions
	Synonyms
	Abstract Data Types
	Table Privileges

	Data Definition Language (DDL)
	Transaction Control
	Initiating a Transaction
	Committing a Transaction
	Rolling Back a Transaction
	Autocommit Mode

	Cursor Allocation
	Extending the IldDbms Class
	Use Notification
	Subscribe to an Event
	Unsubscribe from an Event

	Differences between IldDbms and IldDbmsModel Classes

	Cursors
	IldRequest Objects
	Creating IldRequest Objects
	Number of Active Cursors
	Disposing of IldRequest Objects

	Configuration Settings
	Default Settings
	Accessing and Changing the Configuration
	Array Modes

	Column and Parameter Descriptors
	Notion of Descriptors
	Implementation Descriptors
	Application Descriptors

	Processing SQL Statements
	Immediate Execution
	Deferred Execution

	Results Retrieval
	Handling Multiple Result Sets
	Direct Access
	Binding to User-Allocated Memory

	Binding Input Variables
	Standard Implementation
	Overloaded Version
	Setting Parameter Values
	Specific Considerations

	Generic Data Types
	Handling Date and Time Values
	Handling Exact Numeric Values

	Large Objects (LOBs)
	Sending Large Objects
	Different Ways of Retrieving Large Objects

	Handling Abstract Data Type Values
	Abstract Data Type Descriptor
	Abstract Data Type Values

	Extending the IldRequest Class
	Differences between IldRequest and IldRequestModel Classes

	Queries
	Executing an SQL Query Immediately
	Setting Up a Query for Multiple or Repeated Use
	Binding Application Memory to the Database API
	Finding Out the Types and Sizes of Returned Columns
	Retrieving Data

	Errors and Warnings
	Diagnostic Class
	Accessing a Diagnostic Instance
	Context Information

	Warnings
	Errors
	Error Handlers
	Error Codes
	IBM ILOG DB Link API Codes and Messages Table
	Function Codes
	SQLSTATE
	Error Messages
	Error Origin
	Erroneous IldDbms and IldRequest Objects

	Error Reporter
	Default Settings and Behavior
	Output Error Stream

	Customizing the Error Handling Mechanism
	Base Class
	Virtual Functions and Their Parameters

	Compiling and Linking
	Compilation Flags
	Compatibility with Previous Releases
	RDBMS Flags
	Dynamic Load
	Mode and Flag

	Target RDBMSs
	Multiple Targets
	RDBMS Prerequisites

	IBM ILOG DB Link Libraries
	Library Names
	Building Dynamically-Loadable Drivers under UNIX

	Code Samples
	Generic Examples
	Basic Use
	Handling Dates and Numbers
	SQL Interpreter
	Concurrent Connections and Cursors
	Relation Searching
	Relation Names
	Input Bindings
	Output Bindings
	Multiple Output Bindings
	Handling LOBs
	Asynchronous Processing

	RDBMS-Specific Examples
	Informix
	Oracle
	Sybase

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

