4|lli

IBM ILOG DB Link V5.3

Tutorial

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Tutorial 1

Table of Contents

IBMILOG DB Link Tutorial. e 5
IBMILOG DB Link Basic USeo e 6
Step 1: Connectingto the Database i 7
Step 2: Queryingthe Database 8
Step 3: Retrieving Data fromthe Database e 10
Step 4: Disconnecting From the Database i 12
IBM ILOG DB Link Optimization Techniques 12
Step 1: Executing a Query Multiple Times. 12
Step 2: Optimizing Network UsSeo e e 14
Step 3: Accessing Data Directly.o 16
Step 4: Keeping Data in MemOryottt e e e 18
IBM ILOG DB Link Portability Considerations, 19
Step 1: Using the Date as Object Mode. e 20
Step 2: Using the Numeric as Object Mode. e 21
IBM ILOG DB Link Access to Object Data TYPesS oot vi ittt 23
Step 1: Getting the Description of an ADT it e e e 24
Step 2: BUIlding an AD Tot e 28
... 33

IBM ILOG DB LINK V5.3 — TUTORIAL 3

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Tutorial

IBM® ILOG® DB Link isacomprehensive C++ library that handles the processing of
Relational Database Management Systems (RDBMS). It includes several classes of objects
that allow efficient devel opment of applications with RDBM S connectivity. The APl is
simplified to hide the complexity of the Client API of the various RDBM Ss. Furthermore,
the DB Link API isthe same for any RDBMS. Consequently, applications devel oped with
the DB Link library will work with Oracle®, Sybase, or Informix (for example) without any
changein the source code.

A schematic representation of the IBM ILOG DB Link Architecture is shown in Figure 1.1.

Thistutorial presents the main features of the library through the use of samples. Each
significant point is detailed with the corresponding excerpt from the source code. The full
code is also provided, if you wish to get acomplete view of the mechanism.

Thetutoria isdivided in 4 chapters:

¢ IBM ILOG DB Link Basic Use - Describes the basic features of DB Link—how to
connect and execute queries. It explainsthe fundamental classes of IBM ILOG DB Link:
IldDbms, I1dRequest, and I1dDiagnostic.

¢ |IBM ILOG DB Link Optimization Techniques - Describes the methods used to
optimize an application when using DB Link to run queries on an RDBMS.

¢ |IBM ILOG DB Link Portability Considerations - Describes the specia considerations
to keep in mind when building portable applications.

IBM ILOG DB LINK V5.3 — TUTORIAL 5

¢ |BM ILOG DB Link Accessto Object Data Types - Presents how to access the new data
types introduced by Object Oriented RDBMS.

Figure1.1 IBM ILOG DB Link Architecture

IBM ILOG DB Link Basic Use

This chapter details the fundamental principles of IBM® ILOG® DB Link through the use
of asample. Working through the 4 steps found in this chapter will help you understand how
to send basic queries to the database server and then retrieve the results.

The main classis 11dpbms, which handles the connection to the RDBMS. It also gives
access to the schema handling capabilities and manages various configuration settings.

Then, the T1drequest classis designed to send queries to the RDBMS and get the results
back. To send a query, you first need to be connected. Therefore, instances of 11drRequest
are created or released through an 11dpbms instance that handles the connection.

The 11dpiagnostic classisused to manage errors that may be raised. These errors can
come from the RDBM S or from DB Link itself.

6 IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Basic Use

The 11dpbms and T1dRequest classes get accessto the error information by the same API.
This reduces the time required to learn how to handle the errors and is achieved with the
IldIldBase class.

I1dIldBase isan abstract class: you do not need to create an instance of this class. Itsonly
purpose is to implement the error mechanism that will be used by the 11dDbms and
I1dRequest classes. They both inherit from 11dr1dBase. I1dI1dBase includes an
instance of the 11dpiagnostic classand provides methods to access the error information.

Thistutoria has 4 steps.

& Step 1. Connecting to the Database - Shows how to connect to the database, using the
IldDbms class.

& Step 2: Querying the Database - Sends a query to the database.
& Step 3. Retrieving Data from the Database - Retrieves the output from a select query.

& Step 4. Disconnecting From the Database - Disconnects from the database and releases
the objects.

Step 1: Connecting to the Database
This step shows how to connect to the RDBM S and disconnect when leaving the application.
The code is presented, beginning with the main part:

IldDbms* dbms = IldNewDbms (dbName, connStr) ;

Thisisthe only entry point to the library. A single entry point simplifies the use of the
library. Using the 11aNewDbms method is all that is required to get connected, and isthe
only way to get a connection. Any object used later will be allocated from the T1dDbms
instance returned by this method. Therefore, destroying the 11dpbms instance will also
automatically release all objects allocated with this instance.

This method has 2 arguments. The first identifies the RDBM S to connect to. Thereisa
specific name for each RDBM S supported by DB Link. The second argument specifies the
user name, password, and database identification. Both these arguments are given as
parameters to the program.

The connection string format depends on the RDBMS, as described in the following table:

dbName connsStr

informix userName/password/database@dbServer
mssql userName/password/database/dbServer
odbc dataSourceName/userName/password

IBM ILOG DB LINK V5.3 — TUTORIAL 7

dbName connsStr

OLE DB userName/password/database/dbServer
oracle userName/password@service
sybase userName/password/database/dbServer

It ispossiblefor the connection to fail. Thisisthe case, for instance, when the user password
isincorrect. The following code tests for such afailure:

if (dbms->isErrorRaised()) {
IldDisplayError ("Connection failed : ", dbms) ;
delete dbms ;
exit (1) ;

}

The 11dDbms class can indicate whether an error occurred and what kind of error it was.
The 11dpisplayError function queriesthe T1apbms instance to get thisinformation and
then processit (display it in this case). Thisis done as follows:

void IldDisplayError (const char* operation, const I1ldIldBase* ildobj) {
cout << operation << endl;

cout << " Code : " << ildobj->getErrorCode() << endl;
cout << " SglState: " << ildobj->getErrorSglstate() << endl;
cout << " Message : " << ildobj->getErrorMessage() << endl;

}

Before exiting the program, the T1dpbms object must be deleted. Doing so automatically
disconnects from the database and rel eases any objects previously allocated with this
connection. Thisis done very simply, asfollows:

delete dbms;

Conclusion

This chapter showed how to connect to an RDBM S and process the errors that may occur.
You are now ready to send queries to the server.

See source code.

Step 2: Querying the Database

To send a query to the database, you need to get an instance of the T1drequest class. This
classis used both to send queries to the RDBM S and to retrieve results. Theinstance is
created using the T1dDbms : : getFreeRequest method.

After connecting to the RDBMS as described in Step 1, a new request is allocated from the
connection (this request will be used later to send queries to the RDBMS). Thisis done as
follows:

I1dRequest* request = dbms->getFreeRequest () ;

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Basic Use

if (dbms->isErrorRaised()) {
IldDisplayError ("Creation of request failed : ", dbms)
delete dbms ;
exit (1)

}

Note: The error handling mechanismis the same as the one used with the 11dpbms
instancein Sep 1.

Then, the tableis created by using thisnew 11drequest instance to send aDDL (Data
Definition Language) statement to the RDBMS. Thisis done using the 11drequest method
execute (const char*, IldInt* rowCount = 0), asfollows:

const char* createStr = "create table ATABLE(Fl int,F2 char(20))"
cout << "Creating a table : " << createStr << endl ;
request->execute (createStr)
if (request->isErrorRaised()) {

IldDisplayError ("Table creation failed : ", request)

delete dbms ;

exit (1)

}

The second argument of the execute method is an optional output argument. It is used to
get the number of rows modified by the statement. It is not applicable for a DDL statement
but it can be used for aDML (Data Manipulation Language) statement, such as insert.

Aninsert statement now writes records to the table (thisisthe simplest way to insert arow in
atable).

const char* insertStrl = "insert into ATABLE values (40, 'Forty')" ;
I1dInt nbRows = 0 ;
cout << "Row #1 : " << insertStrl << endl ;
if (!request->execute(insertStrl, &nbRows))
IldDisplayError ("Insertion failed :", request) ;
else cout << "\t" << nbRows << " row inserted." << endl ;

The number of inserted rows is retrieved with the second parameter of the

IldRequest: : execute method. Thisisuseful mainly when running an update statement
together with awhere clause. In such a case, you may not know how many rows are updated.
The only way to be made aware of thisisto use this second parameter.

This time the error was checked using the '!I" unary operator. It is redefined by the
I1dI1dBase classto return the error status. Therefore, it may be used with either an
I1dDbbms OF an I1dRequest instance. It isequivalent to the i sErrorRaised method,
except that it is shorter to write.

Before leaving the program, the table that has just created must be cleaned out. Thisis done
the same way it was created— by using a drop statement.

const char* dropStr = "drop table ATABLE" ;

IBM ILOG DB LINK V5.3 — TUTORIAL 9

10

cout << "Dropping table : " << dropStr << endl ;
if (!request->execute(dropStr))
IldDisplayError ("Drop table failed : ", request) ;

Conclusion

Theseinstructions are all that is needed to send a query to the RDBMS. They will be used
often.

See source code.

Step 3: Retrieving Data from the Database

This step shows how to retrieve the output from the database. In Step 2, asimple query to
create a new table was sent to the RDBM S, and records were inserted in this table. Now, you
can read the data from the table.

First, aselect statement is executed. Thisis done as follows:

const char* selectStr = "select * from ATABLE";
cout << "Retrieving all rows : " << selectStr << endl;
if (!request->execute(selectStr))

IldDisplayError ("Select failed : ", request);

Note: The value of rowCount passed to execute iS0 for “ select” queries. Thisis
| ogical—counting the rows before they have all been accessed would impose an
unnecessary performance penalty on the application.

When execute issuccessful, a description of the results set can be accessed. The
description includes the number, name, data type, and size of each column. These are
accessed by using the following methods:

& Il1dushort IldRequest::getColCount - Getsthe number of columnsin the results
set.

@ const char* getColName (I1dUShort index) - Getsthe name of the column
defined by the index position in the results set.

€ I1dColumnType IldRequest::getColType (I1dUShort index) - Getsthetype
of the given column.

& I1duInt IldRequest::getColSize(IldUShort index) - Getsthe size of the
column (number of bytes required to store a value of the column).

In the sample, you know exactly what results set to retrieve. However, these methods are
used to display the results set when the query is known only at run time. Thisis Dynamic
SQL; the application can process queries provided by an end user at run time.

The information is processed as follows:

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Basic Use

// Print selected item names.

IldUShort i ;

I1dUShort nbCols = request->getColCount () ;

const char* colNamel = request->getColName (0)

const char* colName2 = request->getColName (1) ;

cout << "\t ATABLE" << endl ;

cout << " " << colNamel << "\t\t" << colName(2) << endl ;

The information is available following the execution of the select query.
I1dRequest: : fetch isSnow used to get the values of these columns from the RDBMS.
This retrieves the data from the memory of DB Link.

I1dRequest: : fetch attemptsto get the first available row of the results set. If thereisa
row available, the 11drRequest : :hasTuple method returns 11dTrue.

Since I1dRequest : : fetch returns areference to an I1drRequest instance, the rows are
fetched in aloop as follows:

while (request->fetch().hasTuple()) {
cout << " " ;
for (1 = 0 ; 1 < nbCols ; ++i) {
if (request->isColNull (i))
cout << "=-" ;
else
switch (request->getColType(i)) {
case IldIntegerType :
cout << request->getColIntegerValue (i) ;
break ;
case IldStringType :
cout << "'" << request->getColStringValue(i) << "'"
break ;
default :
// Other possible types are not handled here.
break ;
}
cout << endl ;
}
cout << endl ;

}

Aslong asthereisatuple available, one of the

IldRequest: :getCol<dataType>Value (I1dUshort i) methodsisused to retrieve
the values of the results set. The method depends on the column type. The

IBM ILOG DB Link Reference Manual contains a complete list of these methods.

Note: A column of any type may be null. Thisis detected by the method
I1ldRequest::1sColNull (I1dUShort 1i).

Conclusion

This step described the simplest way to read the data recorded in the database. This includes
the Metadata of the results set, aswell asthe dataitself. You can now run queries against the
database. Since your querieswill probably be more sophisticated than these, the sample code

IBM ILOG DB LINK V5.3 — TUTORIAL 11

can be changed to improve performance. Nevertheless, the basic approach will be the same
for all DB Link applications.

See source code.

Step 4: Disconnecting From the Database

This step shows how to terminate the program by disconnecting from the database and
releasing the objects previously allocated.

The simplest way to do thisis to delete the T11dpbms object itself. This automatically
disconnects from the database and releases any objects previoudy allocated with this
connection. Thisis done as follows:

delete dbms;

Conclusion

This step demonstrated the disconnection procedure. This procedure is simplified since an
I1dpbms instance keeps track of the objects alocated with its connection.

IBM ILOG DB Link Optimization Techniques

12

This chapter describes 4 techniques that can be used to optimize an application when
working with an RDBMS,

& Step 1: Executing a Query Multiple Times, shows the proper way to execute a query
several times.

& Step 2: Optimizing Network Use, shows how to optimize use of the network.
& Step 3: Accessing Data Directly, shows how to optimize data transfer with the RDBMS.

& Step 4: Keeping Data in Memory, shows how to efficiently keep data read from the
RDBMSin memory.

Step 1. Executing a Query Multiple Times

Thisfirst optimization technique is for cases when a query hasto be executed several times.
This technigue involves the use of deferred execution. With deferred execution, the
statement isfirst prepared for execution and then executed. With immediate execution (as
seen in IBM ILOG DB Link Basic Use) the two steps are carried out simultaneously.
Deferred execution is used in the following cases:

& The Statement is to be Executed Several Times: In this case, the statement is prepared
once by the server for all the required executions. This eliminates the preparation time
for the subsequent executions.

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Optimization Techniques

& The Statement Contains Parameters: In this case, the statement isfirst prepared without
knowing the values of the parameters, and it is then executed once the parameters are set
to their values. A query with parametersis aways executed using deferred execution,
even if it is executed only once.

The Statement is to be Executed Several Times

Deferred execution is done using the parse step and the execute step. The parse step is done
only once. It sends the query to the RDBMS, which prepares the execution plan. Then the
execute step can be done several times. The same execution plan will be reused each time by
the RDBMS.

The Statement Contains Parameters

In this case, placeholders for parameters must be considered. Most RDBM Ss support the
SO SQL standard syntax for placeholders. the ? symbol. Exceptions to this are Oracle® and
SglBase:

& For Oracle, the syntax can be : <n>, where <n> isan integer starting from 1.

& Oracle also uses named parameters. The syntax of named parametersis : <name>.
Example of Deferred Execution

An example of deferred execution is now presented.

First, the RDBMS connection is verified in order to use the proper placeholder syntax. This
is done by checking the return value from 11dbbms : : getName. This method returns the
RDBMS to which the program is connected.

const char* insertStr = 0 ;

if (!strncmp (dbms->getName(), "oracle", 6))
insertStr = "insert into OPTIMS1 values (:1, :2)"
else
insertStr = "insert into OPTIMS1 values (?, ?)"

This statement is parsed with the T1drRequest : :parse method:

if (!request->parse(insertStr)) {
IldDisplayError ("Parse of query failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

Then the parameters are bound to set their types. This parameter binding may also be used to
specify other parameter information (See Step 3: Accessing Data Directly, which dealswith
external binding, for further information).

if (!request->bindParam((I1ldUShort)0, IldIntegerType)) {
IldDisplayError ("First parameter binding failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

if (!request->bindParam((I1ldUShort)0, IldStringType)) {

IBM ILOG DB LINK V5.3 — TUTORIAL 13

14

IldDisplayError ("Second parameter binding failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

Thelast step is execution. A loop isrun to set the parameters to different values, and the
prepared query is executed with these parameter val ues:

static const IldUShort strLen = 20 ;
Il1dUShort i, j ;
I1dInt nbRows, nval ;
// strBuf will be used to build a different string for each execution.
char strBuf[strLen + 1] ;
strBuf [strLen] = 0 ;
for (i =0 ; i <5 ; i++) {
nval = i ;
// Build a new string value for this execution.
for (j = 0 ; j < strLen ; ++3)
strBuf([j] = 'a' + 1 ;
// Set parameter values.
if (!request->setParamValue(nval, 0) ||
'request->setParamValue (strBuf, 1)) {

IldDisplayError ("Set parameter value failed :", request) ;
Ending (dbms) ;
exit (1) ;

}
// Execute the query.

if (!request->execute (&nbRows, 1)) {
IldDisplayError ("Insertion failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

else cout << "\t" << nbRows << " row inserted." << endl ;

}

Conclusion

This step described how to run a query with parameters using the deferred execution
method.

The next steps describe how to make this application even more efficient.

See source code.

Step 2: Optimizing Network Use

The goal of network optimization techniques is to reduce network traffic for a given SQL
execution. Changes with respect to the standard methods (as described in
IBM ILOG DB Link Basic Use) are needed on two different occasions, when:

¢ AQueryis Sent to the RDBMS
& A Results St is Retrieved for the RDBMS

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Optimization Techniques

Deferred execution can also be used to execute the same query several timesin only one
execute call. Thisreduces the number of queries sent to the server.

Similarly, several rows can be requested at atime when retrieving results from the RDBMS.
This aso reduces network use. These techniques use the notion of an Array of parameters
and an Array of columns.

A Query is Sent to the RDBMS
First, look at the input side, that is, when queries are sent to the RDBMS.

The same insertion asin previous stepsis run, but in only one execution. To do so, you need
to request an array of n parameters from DB Link. Then, values are set for each set of
parameters. Finally, an execute statement isrun for the entire set of parameters.

The I1dRequest: : setParamArraySize method isused to specify the size of the
parameter array:

static const I1ldUShort nbParam = 5 ;

if (!request->setParamArraySize (nbParam)) {
IldDisplayError ("Could not set parameter array size : ", request) ;
Ending (dbms) ;
exit (1) ;

}

The parse and parameter binding steps are done as described in Step 1.

The parameter values are now set. Thisisdoneasin Step 1, except that the third argument of
TI1dRequest: : setParamvalue iSused to specify which parameter to set:

static const IldUShort strLen = 20 ;
I1dInt i, j, nbRows ;
char strBuf[strLen + 1] ;
for (1 = 0 ; 1 < nbParam ; i++) {
nval = i ;
// Build a new string value for this set of parameters.
for (j = 0 ; j < strLen ; ++3)
strBuf[j] = 'a' + i ;
// Set parameter values.
if (!request->setParamValue(nval, 0, i) ||

!request->setParamValue (strBuf, 1, i)) {
IldDisplayError ("Set parameter value failed :", request) ;
Ending (dbms) ;

exit (1) ;

}
}

Now, the query is run and the number of times it will be run is specified.

When deferred execution is used, by default the parameter array size is used to specify the
number of times the query is to be executed. Consequently, the second argument of
TI1dRequest: :execute (I1dInt*, TI1ldInt) iShotrequired (the default valueis used).

Thefirst argument of the execute method is set to the number of rows updated by the query
(5inthiscase).

IBM ILOG DB LINK V5.3 — TUTORIAL 15

16

if (!request->execute (&nbRows, nbParam)) {
IldDisplayError ("Insertion failed : ", request) ;
Ending (dbms) ;

exit(1l) ;

}

else cout << "\t" << nbRows << " row inserted." << endl ;

A Results Set is Retrieved for the RDBMS

Optimization by deferred execution can a so be used when retrieving aresults set from the
RDBMS.

The I1dRequest: :setColArraySize method isused to specify the number of rowsto
retrieve in one fetch. After calling this method, the other steps of the application will be
exactly the same as they would be without this optimization.

The bigger the array size, the less the server has to be contacted, and the fewer network
resources are used. However, more memory is needed in this case. DB Link fetches all the
rowsin memory. Then, from the application point of view, the process is the same as it
would beto get only one row.

The 11dRequest : : fetch method checks to see whether thereis arow availablein
memory. If there is, the row is made available to the application. Otherwise, the method
automatically getsthe next block of rows from the RDBMS.

The runDisplay method can be seen in the compl ete source code for this step. This method
isthe same asin Step 1 (except the call to T1dRequest: : setColArraySize()).

Conclusion

This step demonstrated how several operations can be executed in only one step to reduce
network use.

See source code.

Step 3: Accessing Data Directly

This step shows how to use external binding, as well as the advantage of using it. The
external binding feature (as opposed to internal binding) isfirst presented.

Binding is the process of sending and receiving RDBM S data directly to and from the
application memory.

In previous steps, the DB Link default mode was used. Thismodeis called internal binding.
With internal binding, DB Link automatically allocates the memory where datais stored.
Then, the data must be copied from the application memory to the memory allocated by
DB Link. For example, in Step 1, the I1drRequest : : setParamvalue method isused to
copy the value needed to the buffer allocated by DB Link.

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Optimization Techniques

Thisisthe easiest method since the application does not need to do an explicit binding—
DB Link doesit by itself. However, this method is less efficient since the value has to be
copied from the application memory areato the area allocated by DB Link.

With external binding, the application allocates the memory and tells DB Link to use this
areadirectly. Thisisdone using one of the binding methods, bindcol and bindParam. The
bindcCol method is used when retrieving column datafrom the RDBMS. The bindParam
method is used to bind application memory to the array of value arguments for a query with
parameters.

To see how this works from the input side (writing data to the RDBMS), the memory to be
used isfirst allocated. An array of parametersis used, as described in the previous step, to
run only one execute cal. Thisis done asfollows:

static const I1ldUShort nbParam = 5 ;

// strBuf will be used to store an array of 5 string values.
char strBuf [nbParam] [strLen + 1] ;

I1dInt intBuf[nbParam] ;

short strNulls[nbParam], intNulls[nbParam] ;

This declares an array of five strBuf strings where string parameter val ues are stored.
Then, the intBuf array records the integer parameter val ues.

The strBuf array isused with strNulls, and the intBuf array isused with intNulls.
These arrays record the NULL indicators. They are initialized with zeros to specify that the
parameters are not NULL.

A null indicator is required to specify that the valueisNULL. In the context of an RDBMS, a
null value meansthat thereisno value at al. For instance, for an integer column, anull value
iISNULL, not zero.

I Note: The null indicators are not required when you do not have to handleanu11 value.

Then, the parameter array sizeis set as described in the previous step, and the query is
parsed.

The intBuf and strBuf buffersare given as argumentsto the T1drRequest : :bindParam
method. The use of external binding requires nothing more.

if (!request->bindParam((I1dUShort)0,

IldIntegerType,

sizeof (I1dInt),

intBuf,

intNulls)) {
IldDisplayError ("Bind first parameter failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

if (!request->bindParam((I1dUShort)1,
I1dStringType,
strLen + 1,

IBM ILOG DB LINK V5.3 — TUTORIAL 17

18

strBuf,
strNulls)) {
IldDisplayError ("Bind second parameter failed : ", request) ;
Ending (dbms) ;
exit (1) ;
}

Now you work directly with the buffers. They are used to send datato the RDBMS.

IlduShort 1, Jj ;

I1dInt nbRows ;

for (1 = 0 ; i < nbParam ; i++) {
intBuf[i] = i ;
// Build a new string value for this set of parameters.
for (j = 0 ; j < strLen ; ++3)

strBuf[i][j] = 'a' + i ;

}

if (!request->execute (&nbRows, nbParam)) {
IldDisplayError ("Insertion failed : ", request) ;
Ending (dbms) ;
exit (1) ;

}

else cout << "\t" << nbRows << " row inserted." << endl ;

Conclusion

This step demonstrates how to bind DB Link directly to application memory. Thisisan
efficient way of exchanging datawith the RDBMS.

See source code.

Step 4: Keeping Data in Memory

This step shows how to use multiple binding, as well as the advantage of using it. Multiple
binding is used to get better performance when the application needs to keep in memory the
objects it reads from the RDBMS.

In previous steps, data always went to the same address location when it was retrieved from
the RDBMS. Therefore, each fetch operation overwrites the data previously fetched. If the

application needs to keep this datain memory, it has to copy it to another location (this can
lead to memory exhaustion problems).

To avoid this, the T1drRequest : :bindCol method is called as often as necessary to specify
anew address location between each fetch. This is demonstrated by the following sample
(see method readpata in the complete code sample for this step).

The select query is executed asin previous steps:

static const char* selectStr = "select I from OPTIMS4" ;
if (!request->execute(selectStr)) {
IldDisplayError ("Could not run select query : ", request) ;
Ending (dbms) ;
exit (1) ;
}
IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Portability Considerations

A first bindco1l call is executed to get the first column value. Then, within the fetch loop,
the column binding is changed so that each value fetched is stored in anew location:

IlduShort i = 0 ;

if (!request->bindCol ((I1ldUShort)0, IldIntegerType, &values[i])) {
IldDisplayError ("Could not bind column : ", request) ;
Ending (dbms) ;
exit (1) ;

}
while (request->fetch() .hasTuple())

if (++1 == nbvVal) break ;
else
if (!request->bindCol ((IldUShort)0, IldIntegerType, &values[i])) {
IldDisplayError ("Could not bind column : ", request) ;
Ending (dbms) ;
exit(1l) ;

}

Note: In this sample, only thefirst valuesin an array are retrieved. Thisis why the fetch
loop is broken after a given number of rows. In a real application, memory used to store
data is allocated dynamically as required. Data is then printed at the end of the program.

Conclusion

This step demonstrated how to use the multiple binding method to keep in memory dataread
from the RDBMS. Thisis easy to use and avoids the possible memory exhaustion problems
that can arise when copying the data to another application buffer.

See source code.

IBM ILOG DB Link Portability Considerations

A magjor feature of DB Link isits portability across various RDBM Ss and systems. An
application built for Oracle®, for instance, will also work with Informix®, on either
Solaris™ or Windows®.

This chapter describes specific considerations to keep in mind when building portable
applications:

& Step 1. Using the Date as Object Mode,
& Step 2: Using the Numeric as Object Mode,

& Avoiding problemsthat arise from various LOCALE settings. Thisis discussed in both
steps.

IBM ILOG DB LINK V5.3 — TUTORIAL 19

20

Step 1: Using the Date as Object Mode

Inits default configuration, DB Link handles the date as a string. Thisis referred to as the
date as object mode. In this mode, date strings must respect the format expected by the
RDBMS. This format varies depending on the RDBM S being connecting to. Also, this
format depends on the LOCALE setting.

Note: Some RDBMSs can handle time with milliseconds. The “ date as string” mode does
not allow you to get these milliseconds, whereas “ date as object” does. Consequently, the
“ date as object” mode respects the precision of the data returned by the RDBMS.

To avoid these dependencies, DB Link providesaclass (11dpateTime) to record adate.
This object may be used to send or retrieve a date to or from the RDBMS. DB Link silently
converts thisto what is expected by the RDBM S (a specific structure).

This11dpateTime class provideslogical accessorsto build the date value. The sample
PortStepl.cpp shows how to usethis class to record date values to atable.

Since the default mode for datesis date as string, you first switch to date as object mode. To
do s0,the I11dI1dBase: :setStringDateUse (I1dBoolean) method is used:

request->setStringDateUse (I1dFalse) ;

IldpateTime 0Objects can now be used.

Aninsert query isrun to insert new date valuesin atable. An array of parametersis used,
with external binding, as described in IBM ILOG DB Link Optimization Techniques.

if (!request->parse(insertStr))
IldDisplayError ("Could not parse insert query", request)

if (!request->bindParam((I1dUShort)0, IldDateTimeType, sizeof (IldDateTime),
dates, dateNulls))
IldDisplayError ("Bind parameter failed : ", request) ;

The values for the date parameters are now set. Thisis done using the intuitive interface
provided by the T1dpateTime class.

for (1 = 0 ; 1 < nbParam ; ++1i) {
dates[i].setYear(1999) ;
dates[1i
dates[i
dates[1i
dates[i

}

] .setMonth (10) ;
].setDay (i + 1) ;
] .setHour (10) ;

] .setMinute (30) ;

The query is how executed:

if (!request->execute (&rowCount, nbParam)) {

IldDisplayError ("Could not execute insert query : ", request) ;
Ending (dbms) ;
exit (1) ;

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Portability Considerations

}

Then the datais retrieved using the method di splayData. Thisisdonein string mode,
since the values need only to be printed. Using this sample, you can check how the date
strings will be affected by the RDBM S format and the LOCALE settings.

Conclusion

This step demonstrated the use of the T1dpateTime class. This class provides an intuitive
way to handle dates and exchange date data with the RDBMS, regardless of LOCALE
settings. Without DB Link, this requires knowledge of the specific structures used by the
RDBMS API. Such code is complicated and is not portable to other RDBM Ss.

See source code.

Step 2: Using the Numeric as Object Mode
In this step you will see the following items:

& The Numeric as Object Mode

Setting the Numeric Mode

Displaying the Current Numeric Mode

Inserting Data Using the Numeric as Object Mode

* 6 o o

Executing the Query

The Numeric as Object Mode

The numeric as object mode is similar to the date as object mode. Instead of handling the
numeric value as a string (which depends on the LOCA LE setting for the decimal separator),
or asaC float datatype (which impliesaloss of precision, since database humeric types can
handle a precision much greater than afloat), DB Link contains a C++ class called
IlNumeric. Thisclass providesan intuitive interface to numeric values. DB Link converts
the value in an RDBM S-specific structure without any loss of precision and independently
of LOCALE settings.

Two other possible modes are:

& With the default mode, numeric values are handled as basic C++ types—either integers
or float values. Since large numbers cannot be represented in this mode, precision may
belost. You can return to this default mode by using either
IldIldBase: :setNumericMode (I1dFalse) OfF
IldIldBase: :setStringNumericMode (I1dFalse).

¢ With the numeric as string mode, numeric values are handled as strings. While there is
no loss of precision, the string representation will depend on the LOCALE settings. The
IldIldBase: :setStringNumericUse (I1dTrue) method activates this mode.

IBM ILOG DB LINK V5.3 — TUTORIAL 21

22

The best way to handle large floating values is to use the numeric as object mode, which
does not lose precision and is independent of the LOCALE settings. This mode is activated
with method T1d11dBase: : setNumericUse (I1dTrue).

Setting the Numeric Mode

The following code demonstrates how to set the numeric mode. It also demonstrates the
effect of this mode on the results set retrieved from the database. In method
checkNumericMode, a new request is opened and then successively set to the three
different modes. For each mode, a description of the mode is printed. Here is an excerpt
from this method:

request->setStringNumericUse (I1dTrue) ;
displayNumericMode (dbms, request, "Mode \"Numeric as String\" is activated :",
I1dStringType) ;

request->setNumericUse (I1dTrue) ;
displayNumericMode (dbms, request, "Mode \"Numeric as Object\" is activated :",
I1ldNumericType) ;

Displaying the Current Numeric Mode

The displayNumericMode method displays the current numeric mode using the methods
IldIldBase: :useNumeric and IldIldBase: :useStringNumeric. Then, it runsa
select query to select a numeric value from the database. Depending on the current numeric
mode, this column will be of type T1drealType (default mode), T1dstringType
(numeric as string mode), or T1dNumericType (numeric as object mode).

Here isthe code of the displayNumericMode method:
static const char* selectStr = "select N from PORTS2"

cout << message << endl ;
<< "* request->useNumeric() = "

<< (request->useNumeric() ? "IldTrue" : "IldFalse")
<<", request->useStringNumeric() = "
(request->useStringNumeric () ? "IldTrue" : "IldFalse") << endl ;
if (!request->execute(selectStr)) {
IldDisplayError ("Select execution failed : ", request) ;
Ending (dbms)
exit (1) ;

}

Inserting Data Using the Numeric as Object Mode

Datais now inserted in the table using the numeric as object mode. Thisis done with method
insertData. First, numeric as object mode is activated:

request->setNumericUse (I1dTrue)

Theinsert query is prepared asin previous steps. To bind the parameter, I1dNumericType
is used to specify the parameter in numeric as object mode. An array of two parametersis
used:

if (!request->parse(insertStr)) {

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Access to Object Data Types

IldDisplayError ("Could not parse insert query : ", request) ;
Ending (dbms) ;
exit (1) ;
}
if (!request->bindParam((I1dUShort)0, IldNumericType, sizeof (I1lNumeric), nums,
numNulls)) {
IldDisplayError ("Bind parameter failed : ", request) ;
Ending (dbms) ;
exit (1) ;
}

Executing the Query

The two numeric objects are initialized with a string of characters. They can also be
initialized with a double-precision value, but thisis not as precise. The query isthen
executed:

// Set the values for the numbers :
nums[0] .set ("1234567890.456") ;
nums[1l] .set ("-86420.13579") ;

// Initialize null buffers :
memset (numNulls, 0, sizeof (short) * nbParam) ;

if (!request->execute (&rowCount, nbParam)) {
IldDisplayError ("Could not execute insert query : ", request) ;
Ending (dbms) ;
exit (1) ;

}

Conclusion

This step demonstrated the use of the T1Numeric class. This class provides an intuitive way
to handle large floating values with the RDBMS, regardless of LOCALE settings and with
no loss of precision. Without DB Link, this requires knowledge of the specific structures
used by the RDBM S API. Such code is complicated and is not portable to other RDBM Ss.
This step also demonstrated how the three different numeric modes are activated.

See source code.

IBM ILOG DB Link Access to Object Data Types

This chapter demonstrates how IBM® ILOG® DB Link gives access to the new data types
introduced by an object oriented RDBMS. DB Link supports Informix Universal Server and
Oracle®, which both provide object oriented features. In this document, these new data
types are called Abstract Data Types (ADT).

There are 2 basic kinds of structures introduced by these new RDBM Ss—Ilists, and obj ects.

First, this chapter demonstrates how to describe such adatatype. It presents all the methods
available to access the structure of the data type. To work with the objects created in the

IBM ILOG DB LINK V5.3 — TUTORIAL 23

24

database, you need to know how these objects are built, that is, what their attributes are. This
isreferred to as describing the Abstract Data Type.

Then, the chapter presents the classes used to build an instance of an Abstract Data Type
within DB Link, and how thisinstanceis stored in the RDBMS.

These 2 items are reflected in this document as follows:

& Step 1. Getting the Description of an ADT - Shows how to get the description of an
ADT.

& Step 2: Building an ADT - Shows how to handlean ADT value.

Step 1: Getting the Description of an ADT

This step demonstrates how to get the description of an ADT. An I1dADTDescriptor
instance is retrieved. This gives us the description of the ADT, sincean ADT is described
using DB Link class T1daDTDescriptor.

In this step, the following items are presented:
& Objectsand Abstract Data Types

¢ Creating an ADT Instance

¢ Displaying the Object Structure

¢ Printing the ADT Attributes

Objects and Abstract Data Types

There are various kinds of object typesin an RDBMS. However, these object types can be
different with Informix and Oracle®. DB Link provides two basic object types:
T1dobjectType and T1dCollectionType. When an ADT columnisretrieved, it will be
one of these 2 types. T1d0bjectType may be the object type in Oracle, and named row or
unnamed row in Informix. I1dcollectionType May be varray or nested table typesin
Oracle, or nested table, list, set, or multiset in Informix Universal Server.

The 11daDTDescriptor class provides an additional type name to give more information
on the exact data type in the RDBMS. Thisisthe 11daDpTType returned by
TI1dADTDescriptor: :getType. Depending on this type, you may want to access a
specific ADT attribute. For instance, avarray is a specific kind of collection, sincethereisa
limit to the maximum number of elements that can be recorded in the collection. This
maximum number of elements can be retrieved from an T1daDTDbescriptor instance and
is meaningful only for avarray ADT.

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Access to Object Data Types

The following table summarizes the various ADT types handled by DB Link.

DB Link Column type IIdADTDescriptor type
Database type
'lldColumnType' 'ldADTType' yp
I1dObjectType I1dADTObject Oracle® objects, and
Informix [named] rows
IldCollectionType I1dADTTable Informix or Oracle nested
tables
IldCollectionType I1dADTList Informix lists, sets, and
multisets
IldCollectionType I1dADTArray Oracle varrays

In DB Link, the various list types (11daDTTable, I1dADTList, and I1dADTArray) are
manipulated in the same way. However, specific information that depends on the
I1dADTType Can beretrieved.

To access an object type, you first create one within the database. Thisis done by the
createADT (I1dbbms*) method in source file ADTCommon . cpp.

Note: The SQL commands used to build the object data type depend on the database
used—Oracle® or Informix US

The object structure is made from one or more of the following object data types:

& POINT: A POINT object contains the coordinates of the point—two integer values X and
Y.

& LINE: A LINE object contains two POINT objects.
¢ BRIDGE: A BRIDGE object contains a name and a nested object LINE.

¢ BRIDGELST: A BRIDGELST object datatype contains alist of bridges. With Informix,
a data type name cannot be given to a collection. Therefore, the BRIDGEL ST datatype
cannot be created in this step. It will be created in Step 2, within atable.

All this makes for a complex nested object structure. This structure is described with
DB Link.

Creating an ADT Instance

The program code first creates an 11daDTDescriptor instance for the data type to be
described. To do so, the name of the object data type is specified.

I1dADTDescriptor* adt = 0 ;

if (! (adt = dbms->readAbstractType (checkCase (ADTName, dbms)))) {

IldDisplayError ("Could not getADT description : ", dbms) ;
Ending (dbms) ;

IBM ILOG DB LINK V5.3 — TUTORIAL 25

26

exit (-1) ;

Note: In this call, the checkcase method is used. This ensures that the name of the data
typeis spelled in the correct case, depending on the RDBMS. With Informix, it is of the
BRIDGE data type. With Oracle®, it is of the BRIDGELST data type. In this code excerpt,
'ADTName' contains this name—either BRIDGE for Informix or BRIDGELST for Oracle.

Another way to get an T1daDTDescriptor instanceisto use the datatype ID instead of its
NAME. Thisismainly useful for Informix datatypes that are not named: unnamed rows and
the various kinds of collections. This method is not used here.

Displaying the Object Structure

Now the structure of the object is displayed. Thisis done recursively, since the object
contains nested objects.

First, the type of the object is tested using method 11daDTDescriptor: : getType.

& Ifthe11dAaDTDescriptor Object describesan object (T11dobjectType), thefollowing
methods are used:

e IldADTDescriptor::getAttributes - Returnsan array of T1dbescriptor
objects. Each attribute of the ADT is described by one of these 11dDescriptor
objects.

e I1dADTDescriptor::getAttributesCount - Givesthe number of attributes of
the ADT. Thisisaso the number of elementsin the array returned by
I1dADTDescriptor: :getAttributes.

& When the object isacollection, it isbuilt upon only one attribute. Hence, you do not have
accessto al the information (for example, the maximum number of elementsin thelist).
To retrieve this additional information, the following methods are used:

e I1dADTDescriptor::getCollectionAttribute - Thisisequivalent to
I1dADTDescriptor: :getAttributes, but it returns only one element.

e I1dADTDescriptor::getCollMaxSize - Returnsthe maximum number of
elementsin the list when the collection typeis 11dabpTarray.

The code to get the description of the ADT is as follows (method displayaDT):

IldUShort i = 0 ;
switch (adt->getType()) {
case I1dADTObject : {
const IldDescriptor* const* elts = 0 ;
cout << "Object ("
elts = adt->getAttributes() ;
for (i = 0 ; i < adt->getAttributesCount() ; i++) {
displayDesc (dbms, elts[i]) ;

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Access to Object Data Types

if (i < adt->getAttributesCount() - 1)
cout << ", "
}
cout << ")"
break ;

}
case I1dADTList :
case I1dADTArray : {
const IldDescriptor* desc = adt->getCollectionAttribute() ;

if (adt->getType() == I1dADTList)
cout << "List of {" ;
else
cout << "List[" << adt->getCollMaxSize() << "] of {" ;

displayDesc (dbms, desc)

cout << "}" ;

break ;
}
default:

cout << "Unexpected ADT Type." << endl ;
}

Here, the T1dpescriptor instances that describe each attribute of the ADT are retrieved
fromthe 11daDTDescriptor instance that describes the type. Then, the description of each
of these attribute descriptions is printed.

Printing the ADT Attributes

Printing the ADT attributes is done by the method displayDesc. If one of the attributesis
an object (nested object), the displaybesc method recursively calls displayADT to print
the ADT description.

Hereis an excerpt from method di splayDesc:

cout << desc->getName ()
switch (desc->getType()) {
case IldObjectType :
case IldCollectionType :
if (desc->getADTDescriptor ()->isNamedType ())

cout << "'" << desc->getSglTypeName() << "' : " ;
displayADT (dbms, desc->getADTDescriptor())
break ;
case IldStringType :
cout << desc->getSglTypeName () << " (" << desc->getSize() << ")" ;
break ;

case IldIntegerType :
cout << desc->getSqglTypeName ()

break ;
default:

cout << "Other type : " << desc->getType() << endl ;
}
Conclusion

This step demonstrated how to get the description of an Abstract Data Type. The two
methods displayapT and displayDesc show how to go through the
I1dADTDescriptor instanceto get the description of the various attributes of the data type.

IBM ILOG DB LINK V5.3 — TUTORIAL 27

28

See ADTCommom . cpp Source code (creation of the object types).

See main source code.

Step 2: Building an ADT

This step demonstrates how to build a value for an Abstract Data Type and send it to the
RDBMS. (The same database objects as in the previous step is used).

Building the ADT is done asfollows:
Creating the Table

Getting the ADT Description
Retrieving the I nstances
Building the Object Values

*® 6 6 o o

Executing the Query

Creating the Table

First, the table ADTS2 is created. The table contains 3 fields:
4 Thenameof ariver (RIVER)

¢ Thelength of the river (LENGTH)

¢ Alist of bridges associated with theriver (B)

Then an ADT valueis built and recorded in the B field.

Getting the ADT Description

The ADT valueis an instance of the DB Link class T1dapTvalue. To build such an
instance, the description of the Abstract Data Type is needed.

Since you now have atable that uses the ADT, another way of getting this description is
presented (different from the method used in the first step). All that isrequiredisto run a
guery to select the B column from the ADTS? table. Then, the description of the column can
be accessed, which means that the description of its data type can also be accessed.

Thisis done in the following code excerpt:

// Retrieve the descriptor of the parameter object type.
I1dADTDescriptor* bridgeLstAdt = 0 ;

const char* query = "select B from ADTS2" ;

if (!request->execute(query)) {
IldDisplayError ("Could not select object column : ", request) ;
localEnd (dbms) ;
exit (1) ;

}
bridgeLstAdt = request->getColDescriptor (0)->getADTDescriptor () ;

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Access to Object Data Types

You now have the I1daDTDescriptor instance that describes the upper level object: the
list of bridges. Thisinstanceis required to build the ADT value and aso to bind the Abstract
Data Type parameter. The query parse operation and the binding of the parameter is similar
to what has been done in previous steps with basic types. The only differenceisthat for an
ADT parameter, the 11dAaDTDescriptor Of the datatype must be provided. Thisisdoneas
follows:

// Parse the insert query :

const char* insertStr =
(!strncmp (dbms->getName (), "oracle", 6) ?
"insert into ADTS2 values ('River Name', 30, :1)"
"insert into ADTS2 values ('River Name', 30, ?)") ;

cout << "Parse request : " << insertStr << endl ;

if (!request->parse(insertStr)) {
IldDisplayError ("Could not parse insert query : ", request) ;
localEnd (dbms)
exit (1) ;

}

if (!request->bindParam((I1ldUShort)0, IldCollectionType, -1, 0, 0, IldFalse, O,
bridgeLstAdt)) {
IldDisplayError ("Could not bind object parameter : ", request)
localEnd (dbms) ;
exit (1)
}

Retrieving the Instances

The request is now parsed and a value given to the parameter. Since the main object (the list
of bridges) contains inner objects, you also need to get the 11daDTDescriptor instances
that describe these nested aobjects. These instances are retrieved through the upper level
I1dADTDescriptor.

Thisis done in the method get SubADTDescriptor, which requires the following
parameters:

€ const I1dADTDescriptor* adt - Themain object.

€ I1dushort idx - Theindex of the nested object to access.

I Note: The method has two other parameters. These are used only to process the error
Cases.

Theinner object T1daDTDescriptor isretrieved asfollows:

I1dADTDescriptor* subAdt = 0 ;
// Get the descriptor at the given position :
if (adt->getType() == I1dADTObject) {

if (adt->getAttributesCount () > idx)

desc = adt->getAttributes () [1dx] ;

}
else

desc = adt->getCollectionAttribute ()

IBM ILOG DB LINK V5.3 — TUTORIAL 29

// Get the ADT descriptor :
subAdt = desc->getADTDescriptor() ;

Then, the get sSubaDTDescriptor method isused to get each ADT descriptor for each
object nested within the bridge collection:

// Get the ADT Descriptor for the bridge object :

I1dADTDescriptor* bridgeAdt = getSubADTDescriptor (dbms, bridgeLstAdt, O,
"bridge")

// Get the ADT Descriptor for the line object

I1dADTDescriptor* lineAdt = getSubADTDescriptor (dbms, bridgeAdt, 0, "line") ;

// Get the ADT Descriptor for the point object

I1dADTDescriptor* pointAdt = getSubADTDescriptor (dbms, lineAdt, 0, "point") ;

Building the Object Values

You now have everything required to build the object values. This is done from the most
nested level to the upper level asfollows:

I1dADTValue* pointObjl = new I1dADTValue (pointAdt) ;
I1dADTValue* pointObj2 = new I1dADTValue (pointAdt) ;
I1dADTValue* 1lineObjl = new I1ldADTValue(lineAdt) ;
I1dADTValue* bridgeObjl = new I1dADTValue (bridgeAdt) ;
I1dADTValue* bridgeLst = new I1dADTValue (bridgeLstAdt) ;

pointObjl->setValue((I1dInt)10, 0) ; // X for point 1.
pointObjl->setValue((I1dInt)20, 1) ; // Y for point 1.
pointObj2->setValue((I1dInt)10, 0) ; // X for point 2.
pointObj2->setValue((I1dInt)30, 1) ; // Y for point 2.
lineObjl->setValue (pointObjl, 0) ; // First point of the line.
lineObjl->setValue (pointObj2, 1) ; // Second point of the line.

bridgeObjl->setValue (lineObjl, 0) ;
bridgeObjl->setValue ("Bridge Name", 1) ;

bridgeLst->setValue (bridgeObjl, 0) ;

Executing the Query

The parameter value is then set and the query executed as done with basic data typesin
previous steps:

if (!request->setParamValue (bridgeLst, 0)) {
IldDisplayError ("Could not set parameter value : ", request) ;
localEnd (dbms) ;
exit (1) ;
}
if (!request->execute(&rowCount, 1)) {
IldDisplayError ("Could not execute the query : ", request) ;
localEnd (dbms) ;
exit (1) ;
}
else
cout << rowCount << " rows inserted." << endl ;

The same method is used to add a second row with alist that contains three e ements.

IBM ILOG DB LINK V5.3 — TUTORIAL

IBM ILOG DB Link Access to Object Data Types

You can also look at the method displayData, which retrieves from the database the
objects previously recorded.

Conclusion

This step demonstrated how to build a value for an Abstract Data Type and how to record it
in the database. It is much simpler to do so with DB Link than with the native RDBMS API.

See ADTCommom . cpp Source code (creation of the object types).

See main source code.

IBM ILOG DB LINK V5.3 — TUTORIAL 31

32

IBM

ILOG DB LINK V5.3

— TUTORIAL

A

Accessto Object Data Types 23

ADT
cregting an instance 25
getting the description 24
printing attributes 27

ADT types
IldCollectionType 25
I1ldObjectType 25

B

Basic Use 6

D

database
connectingto 7
disconnecting from 12
querying 8
retrieving datafrom 10

IBM® ILOG DB Link tutorial 5

I1dADTDescriptor class24, 27
getAttributes method 26
getAttributesCount method 26
getCollectionAttribute method 26

Index

getCollMaxSize method 26
getType method 24
IldDateTime class20
IldDbms class6, 12
getFreeRequest method 8
getName method 13
IldDiagnostic class6
IldIldBase class7,9
useNumeric method 22
useStringNumeric method 22
IldNumeric class21, 23
IldRequest class6, 8
bindCol method 18
bindParam method 17
execute method 9
fetch method 11, 16
hasTuple method 11
parse method 13
setColArraySize method 16
setParamArraySize method 15
setParamValue method 15, 16

O

Optimization Techniques 12

P

Portability Considerations 19

IBM ILOG DB LINK V5.3 — TUTORIAL 33

R
RDBMS5

T

tutorials
IBM® ILOG DB Link 5

34 IBM ILOG DB LINK V5.3 — TUTORIAL

	IBM ILOG DB Link Tutorial
	IBM ILOG DB Link Basic Use
	Step 1: Connecting to the Database
	Step 2: Querying the Database
	Step 3: Retrieving Data from the Database
	Step 4: Disconnecting From the Database

	IBM ILOG DB Link Optimization Techniques
	Step 1: Executing a Query Multiple Times
	Step 2: Optimizing Network Use
	Step 3: Accessing Data Directly
	Step 4: Keeping Data in Memory

	IBM ILOG DB Link Portability Considerations
	Step 1: Using the Date as Object Mode
	Step 2: Using the Numeric as Object Mode

	IBM ILOG DB Link Access to Object Data Types
	Step 1: Getting the Description of an ADT
	Step 2: Building an ADT

	Index
	A
	B
	D
	I
	O
	P
	R
	T

