Legal notices

Copyright notice
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks
IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml
Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Further notices

Additional registered trademarks
Python® is a registered trademark of the Python Software Foundation.
MATLAB® is a registered trademark of The MathWorks, Inc.

Acknowledgement of use: dtoa routine of the gdtoa package
The author of this software is David M. Gay.
All Rights Reserved.
Copyright (C) 1998, 1999 by Lucent Technologies

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name of Lucent or any of its entities not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(end of license terms of dtoa routine of the gdtoa package)
Table of contents

- For technical support... 23
 - Contacting IBM Support...24

- Meet CPLEX.. 27
 - What is CPLEX?.. 28
 - What does CPLEX do?.. 29
 - What you need to know... 31
 - Examples online.. 32
 - Notation in this manual.. 35
 - Related documentation... 36
 - Online services... 38
 - Further reading... 39

- Languages and APIs... 41
 - Concert Technology for C++ users.. 43
 - Overview... 45
 - Architecture of a CPLEX C++ application.. 46
 - Licenses.. 47
 - Compiling and linking.. 48
 - Creating a C++ application with Concert Technology.................................. 49
 - Modeling an optimization problem with Concert Technology.................. 51

© Copyright IBM Corp. 1987, 2009
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>52</td>
</tr>
<tr>
<td>Creating the environment: IloEnv.</td>
<td>53</td>
</tr>
<tr>
<td>Defining variables and expressions: IloNumVar.</td>
<td>54</td>
</tr>
<tr>
<td>Declaring the objective: IloObjective.</td>
<td>56</td>
</tr>
<tr>
<td>Adding constraints: IloConstraint and IloRange.</td>
<td>57</td>
</tr>
<tr>
<td>Formulating a problem: IloModel.</td>
<td>58</td>
</tr>
<tr>
<td>Managing data</td>
<td>59</td>
</tr>
<tr>
<td>Solving the model</td>
<td>61</td>
</tr>
<tr>
<td>Overview</td>
<td>62</td>
</tr>
<tr>
<td>Extracting a model</td>
<td>64</td>
</tr>
<tr>
<td>Invoking a solver</td>
<td>65</td>
</tr>
<tr>
<td>Choosing an optimizer</td>
<td>66</td>
</tr>
<tr>
<td>Controlling the optimizers</td>
<td>69</td>
</tr>
<tr>
<td>Accessing solution information</td>
<td>71</td>
</tr>
<tr>
<td>Accessing solution status</td>
<td>72</td>
</tr>
<tr>
<td>Querying solution data</td>
<td>73</td>
</tr>
<tr>
<td>Accessing basis information</td>
<td>74</td>
</tr>
<tr>
<td>Performing sensitivity analysis</td>
<td>75</td>
</tr>
<tr>
<td>Analyzing infeasible problems</td>
<td>76</td>
</tr>
<tr>
<td>Assessing solution quality</td>
<td>77</td>
</tr>
<tr>
<td>Modifying a model</td>
<td>79</td>
</tr>
<tr>
<td>Overview</td>
<td>80</td>
</tr>
<tr>
<td>Deleting and removing modeling objects</td>
<td>81</td>
</tr>
<tr>
<td>Changing variable type</td>
<td>82</td>
</tr>
<tr>
<td>Handling errors</td>
<td>83</td>
</tr>
<tr>
<td>Example: optimizing the diet problem in C++</td>
<td>85</td>
</tr>
<tr>
<td>Overview</td>
<td>86</td>
</tr>
<tr>
<td>Problem representation</td>
<td>87</td>
</tr>
<tr>
<td>Application description</td>
<td>89</td>
</tr>
<tr>
<td>Creating multi-dimensional arrays with IloArray</td>
<td>90</td>
</tr>
<tr>
<td>Using arrays for input or output.</td>
<td>91</td>
</tr>
<tr>
<td>Solving the model with IloCplex</td>
<td>93</td>
</tr>
<tr>
<td>Complete program</td>
<td>94</td>
</tr>
<tr>
<td>Concert Technology for Java users</td>
<td>95</td>
</tr>
<tr>
<td>Architecture of a CPLEX Java application</td>
<td>97</td>
</tr>
<tr>
<td>Overview</td>
<td>98</td>
</tr>
<tr>
<td>Licenses in a Java application</td>
<td>100</td>
</tr>
<tr>
<td>Compiling and linking a Java application</td>
<td>101</td>
</tr>
<tr>
<td>Creating a Java application with Concert Technology</td>
<td>102</td>
</tr>
<tr>
<td>Modeling an optimization problem with Concert Technology in the Java API</td>
<td>103</td>
</tr>
<tr>
<td>Overview</td>
<td>104</td>
</tr>
<tr>
<td>Using IloModeler</td>
<td>107</td>
</tr>
<tr>
<td>The active model</td>
<td>110</td>
</tr>
</tbody>
</table>
Callable Library...173
 Architecture of the Callable Library.................................175
 Overview..176
 Licenses..177
 Compiling and linking..178
 Using the Callable Library in an application.........................179
 Overview..180
 Initialize the CPLEX environment..181
 Instantiate the problem as an object.................................182
 Put data in the problem object..183
 Optimize the problem..184
 Change the problem object..185
 Destroy the problem object..186
 Release the CPLEX environment..187
 CPLEX programming practices...189
 Overview..191
 Variable names and calling conventions.............................192
 Data types...194
 Ownership of problem data...195
 Problem size and memory allocation issues.........................196
 Status and return values..197
 Symbolic constants..198
 Parameter routines...199
 Null arguments...200
 Row and column references..201
 Character strings...202
 Problem data...203
 Callbacks..205
 Portability..206
 FORTRAN interface...207
 C++ interface...209
 Managing parameters from the Callable Library.....................210
 Example: optimizing the diet problem in the Callable Library....213
 Overview..214
Programming considerations..223

Managing log files...265

Using Concert csvReader..263

Using Concert XML extensions..262

Managing input and output...253

Overview...254

Understanding file formats...255

Overview...256

Working with LP files...257

Working with MPS files...259

Converting file formats..261

Using Concert XML extensions..262

Using Concert csvReader..263

Managing log files...265

Overview...266

Creating, renaming, relocating log files..267

Closing log files...268

Controlling message channels..269
Understanding solution quality from the barrier LP optimizer ... 380
Tuning barrier optimizer performance .. 383
 Overview of parameters for tuning the barrier optimizer .. 384
 Memory emphasis: letting the optimizer use disk for storage .. 386
Preprocessing .. 387
Detecting and eliminating dense columns .. 388
Choosing an ordering algorithm .. 389
Using a starting-point heuristic .. 390
Overcoming numeric difficulties .. 391
 Default behavior of the barrier optimizer with respect to numeric difficulty .. 392
 Numerical emphasis settings .. 393
 Difficulties in the quality of solution .. 394
 Difficulties during optimization ... 396
 Difficulties with unbounded problems .. 398
Diagnosing infeasibility reported by barrier optimizer .. 399

Solving network-flow problems ... 401
Choosing an optimizer: network considerations ... 402
Formulating a network problem .. 403
Example: network optimizer in the Interactive Optimizer ... 405
 Network flow problem description .. 406
 Understanding the network log file ... 407
 Tuning performance of the network optimizer .. 408
Solving problems with the network optimizer ... 409
 Invoking the network optimizer ... 410
 Network extraction .. 411
 Preprocessing and the network optimizer ... 412
Example: using the network optimizer with the Callable Library netex1.c ... 413
Solving network-flow problems as LP problems .. 415
Example: network to LP transformation netex2.c .. 417

Solving problems with a quadratic objective (QP) ... 419
Identifying convex QPs .. 421
Entering QPs .. 423
 Matrix view ... 424
 Algebraic view ... 425
 Examples for entering QPs ... 426
 Reformulating QPs to save memory ... 428
Saving QP problems .. 429
Changing problem type in QPs .. 430
Changing quadratic terms .. 431
Optimizing QPs ... 433
Diagnosing QP infeasibility ... 434
Examples: creating a QP, optimizing, finding a solution ... 435
 Problem description of a quadratic program ... 436
Example: iloqpe x1.cpp...437
Example: QPex1.java...438
Example: qpe x1.c...439
Example: reading a QP from a file qpe2.c...440

Solving problems with quadratic constraints (QCP)..441
Identifying a quadratically constrained program (QCP)..443
Characteristics of a quadratically constrained program...444
Convexity..445
Semi-definiteness..447
Second order cone programming (SOCP)..448
Detecting the problem type of a QCP or SOCP...449
Overview...450
Concert Technology and QCP problem type..451
Callable Library and QCP problem type..452
Interactive Optimizer and QCP problem type...453
File formats and QCP problem type..454
Changing problem type...459
Changing quadratic constraints..460
Solving with quadratic constraints..461
Numeric difficulties and quadratic constraints...462
Examples: QCP...463

Discrete optimization...465

Solving mixed integer programming problems (MIP).......................................467
Stating a MIP problem..469
Preliminary issues...471
Entering MIP problems..472
Displaying MIP problems..473
Changing problem type in MIPs..474
Changing variable type...476
Using the mixed integer optimizer...477
Invoking the optimizer for a MIP model...478
Emphasizing feasibility and optimality...479
Terminating MIP optimization..481
Tuning performance features of the mixed integer optimizer..............................483
Branch & cut or dynamic search?...485
Introducing performance features of the MIP optimizer.......................................486
Applying cutoff values..487
Applying tolerance parameters..488
Applying heuristics...489
When an integer solution is found: the incumbent..490
Controlling strategies: diving and backtracking...491
Selecting nodes...492
Solution pool: generating and keeping multiple solutions

What is the solution pool?
Example: simple facility location problem
Filling the solution pool
Accumulating incumbents in the solution pool
Populating the solution pool
What is populating the solution pool?
Invoking the populate procedure
Algorithm of the populate procedure
Example: calling populate
Stopping criteria for the populate procedure
Stored solutions, populate limit, and pool capacity
Choosing whether to accumulate or populate
What's the difference between accumulating and populating?
Advanced use: interaction of MIP optimization and populate
Example: using populate after MIP optimization
Enumerating all solutions
How to enumerate all solutions
Limitations due to continuous variables and finite precision
Limitations due to unbounded MIP models
Limitations due to numeric difficulties
Impact of change on the solution pool
Changes between MIP optimization and populate
Persistence of solutions in the solution pool
Model changes and the solution pool
Examine the solution pool
Accessing a solution in the solution pool
Using solutions from the solution pool
Deleting solutions from the solution pool
The incumbent and the solution pool
Parameters of the solution pool
Which parameters control the solution pool?
Example: quality control through the solution pool gap parameter
Example: few or many solutions through intensity parameter
Example: diverse solutions through replacement parameter
Infeasibility and unboundedness..729

Preprocessing and feasibility...731
Issues of infeasibility and unboundedness...732
Early reports of infeasibility based on preprocessing reductions..........................733

Managing unboundedness...735
What is unboundedness?..736
Avoiding unboundedness in a model...737
Diagnosing unboundedness...738

Diagnosing infeasibility by refining conflicts...739
What is a conflict?..741
What a conflict is not...742
How to invoke the conflict refiner..743
How a conflict differs from an IIS..744
Meet the conflict refiner in the Interactive Optimizer..745
 Limits of the conflict refiner in the Interactive Optimizer.................................746
 A model for the conflict refiner..747
 Optimizing the example...748
 Interpreting the results and detecting conflict..749
 Displaying a conflict in the Interactive Optimizer..750

Interpreting conflict...751
Understanding the conflict in the model...752
Deleting a constraint...753
Understanding a conflict report..755
Summing equality constraints...756
Changing a bound..757
Adding a constraint...758
Changing bounds on cost..759
Relaxing a constraint...760

More about the conflict refiner..761
Refining a conflict in a MIP start..763
Using the conflict refiner in an application..765
 Example: modifying ilomipex2.cpp..766
 What belongs in an application to refine conflict..768
Advanced programming techniques

User-cut and lazy-constraint pools

What are user cuts and lazy constraints?

What are pools of user cuts or lazy constraints?

Differences between user cuts and lazy constraints.

Limitations on pools in the C API.

Adding user cuts and lazy constraints

Using the Component Libraries

Using the Interactive Optimizer

Reading and writing LP files

Reading and writing SAV files

Reading and writing MPS files

Deleting user cuts and lazy constraints

Using goals

Branch & cut with goals

What is a goal?

Overview of goals in the search

How goals are implemented in branch & cut

About the method execute in a goal

Special goals in branch & cut

Or goal

And goal

Fail goal

Local cut goal

Null goal

Branch as CPLEX goal

Solution goal

Aggregating goals

Example: goals in branch & cut

The goal stack

Memory management and goals

Cuts and goals

Injecting heuristic solutions

Controlling goal-defined search

Comparing a conflict application to Interactive Optimizer

Preferences in the conflict refiner

Groups in the conflict refiner

Repairing infeasibilities with FeasOpt

What is FeasOpt?

Invoking FeasOpt

Specifying preferences

Example: FeasOpt in Concert Technology

Solution goal

Branch as CPLEX goal

Null goal

Local cut goal

Fail goal

And goal

Or goal

About the method execute in a goal

How goals are implemented in branch & cut

Overview of goals in the search

What are user cuts and lazy constraints?

Adding user cuts and lazy constraints

Using the Component Libraries

Using the Interactive Optimizer

Reading and writing LP files

Reading and writing SAV files

Reading and writing MPS files

Deleting user cuts and lazy constraints

About the method execute in a goal

How goals are implemented in branch & cut

Overview of goals in the search

What are user cuts and lazy constraints?

Adding user cuts and lazy constraints

Using the Component Libraries

Using the Interactive Optimizer

Reading and writing LP files

Reading and writing SAV files

Reading and writing MPS files

Deleting user cuts and lazy constraints

Branch & cut with goals

What is a goal?

Overview of goals in the search

How goals are implemented in branch & cut

About the method execute in a goal

Special goals in branch & cut

Or goal

And goal

Fail goal

Local cut goal

Null goal

Branch as CPLEX goal

Solution goal

Aggregating goals

Example: goals in branch & cut

The goal stack

Memory management and goals

Cuts and goals

Injecting heuristic solutions

Controlling goal-defined search
For technical support

Explains prerequisites and procedure for technical support

In this section

Contacting IBM Support
Contains information on how to obtain technical support from IBM worldwide, should you encounter any problems in using IBM products.
Contacting IBM Support

IBM Software Support Handbook

This guide contains important information on the procedures and practices followed in the service and support of your IBM products. It does not replace the contractual terms and conditions under which you acquired specific IBM Products or Services. Please review it carefully. You may want to bookmark the site so you can refer back as required to the latest information. The "IBM Software Support Handbook" can be found on the web at http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html.

Accessing Software Support

When calling or submitting a problem to IBM Software Support about a particular service request, please have the following information ready:

♦ IBM Customer Number
♦ The machine type/model/serial number (for Subscription and Support calls)
♦ Company name
♦ Contact name
♦ Preferred means of contact (voice or email)
♦ Telephone number where you can be reached if request is voice
♦ Related product and version information
♦ Related operating system and database information
♦ Detailed description of the issue
♦ Severity of the issue in relationship to the impact of it affecting your business needs

Contact by Web

Open service requests is a tool to help clients find the right place to open any problem, hardware or software, in any country where IBM does business. This is the starting place when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online problem management to open, edit and track open and closed PMRs by customer number. Timesaving options: create new PMRs with prefilled demographic fields; describe problems yourself and choose severity; submit PMRs directly to correct support queue; attach troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports on open and closed PMRs. You can find information about assistance for SR at http://www.ibm.com/software/support/help-contactus.html

System Service Request (SSR) tool is similar to Electronic Service request in providing online problem management capability for clients with support offerings in place on System
IBMLink SoftwareXcel support contracts offer clients on the System z platform the IBMLink online problem management tool to open problem records and ask usage questions on System z software products. You can open, track, update, and close a defect or problem record; order corrective/preventive/tolerance maintenance; search for known problems or technical support information; track applicable problem reports; receive alerts on high impact problems and fixes in error; and view planning information for new releases and preventive maintenance.

Contact by phone

If you have an active service contract maintenance agreement with IBM, or are covered by Program Services, you may contact customer support teams by telephone. For individual countries, please visit the Technical Support section of the IBM Directory of worldwide contacts.
Introduces IBM® ILOG® CPLEX®, explains what it does, suggests prerequisites, and offers advice for using this documentation with it.

In this section

What is CPLEX?
Describes CPLEX Component Libraries.

What does CPLEX do?
Defines the scope of CPLEX®.

What you need to know
Suggests prerequisites for using CPLEX®.

Examples online
Describes examples delivered with the product.

Notation in this manual
Documents notation in this manual.

Related documentation
Describes other available documentation of the product.

Online services
Describes mailing list and optimization forum.

Further reading
Recommends further reading about related topics.
What is CPLEX?

IBM® ILOG® CPLEX® offers C, C++, Java, .NET, and Python libraries that solve linear programming (LP) and related problems. Specifically, it solves linearly or quadratically constrained optimization problems where the objective to be optimized can be expressed as a linear function or a convex quadratic function. The variables in the model may be declared as continuous or further constrained to take only integer values.

CPLEX® comes in these forms to meet a wide range of users' needs:

♦ The CPLEX® Interactive Optimizer is an executable program that can read a problem interactively or from files in certain standard formats, solve the problem, and deliver the solution interactively or into text files. The program consists of the file cplex.exe on Windows platforms or cplex on UNIX platforms.

♦ Concert Technology is a set of libraries offering an API that includes modeling facilities to allow a programmer to embed CPLEX® optimizers in C++, Java, or .NET applications. The library is provided in files ilocplex121.lib, concert.lib and cplex121.jar as well as cplex121.dll and concert29.dll on Windows platforms and in libilocplex.a, libconcert.a and cplex.jar on UNIX platforms, and makes use of the Callable Library (described next).

♦ The CPLEX® Callable Library is a C library that allows the programmer to embed CPLEX® optimizers in applications written in C, Visual Basic, Fortran or any other language that can call C functions. The library is provided as a DLL on Windows platforms and in a library (that is, with file extensions .a, .so, or .sl) on UNIX platforms.

In this manual, the phrase CPLEX® Component Libraries is used to refer equally to any of these libraries. While all libraries are callable, the term Callable Library as used here refers specifically to the C library.
What does CPLEX do?

CPLEX® is a tool for solving, first of all, linear optimization problems. Such problems are conventionally written like this:

Minimize (or maximize) \[c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \]

subject to

\[a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \quad \sim \quad b_1 \]
\[a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n \quad \sim \quad b_2 \]
\[\quad \ldots \]
\[a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \quad \sim \quad b_m \]

with these bounds

\[l_1 \leq x_1 \leq u_1, \ldots, l_n \leq x_n \leq u_n \]

where the relation \(\sim \) may be greater than or equal to, less than or equal to, or simply equal to, and the upper bounds \(u_i \) and lower bounds \(l_i \) may be positive infinity, negative infinity, or any real number.

When a linear optimization problem is stated in that conventional form, its coefficients and values are customarily referred to by these terms:

- **Objective function coefficients**: \(c_1, \ldots, c_n \)
- **Constraint coefficients**: \(a_{11}, \ldots, a_{mn} \)
- **Righthand side**: \(b_1, \ldots, b_m \)
- **Upper bounds**: \(u_1, \ldots, u_n \)
- **Lower bounds**: \(l_1, \ldots, l_n \)
- **Variables or unknowns**: \(x_1, \ldots, x_n \)

In the most basic linear optimization problem, the variables of the objective function are continuous in the mathematical sense, with no gaps between real values. To solve such linear programming problems, CPLEX® implements optimizers based on the simplex algorithms (both primal and dual simplex) as well as primal-dual logarithmic barrier algorithms and a sifting algorithm. These alternatives are explained more fully in *Solving LPs: simplex optimizers*.
CPLEX® can also handle certain problems in which the objective function is not linear but quadratic. Such problems are known as quadratic programs or QPs. Solving problems with a quadratic objective (QP), covers those kinds of problems.

CPLEX® also solves certain kinds of quadratically constrained problems. Such problems are known as quadratically constrained programs or QCPs. Solving problems with quadratic constraints (QCP), tells you more about the kinds of quadratically constrained problems that CPLEX® solves, including the special case of second order cone programming (SOCP) problems.

CPLEX® is also a tool for solving mathematical programming problems in which some or all of the variables must assume integer values in the solution. Such problems are known as mixed integer programs or MIPs because they may combine continuous and discrete (for example, integer) variables in the objective function and constraints. MIPs with linear objectives are referred to as mixed integer linear programs or MILPs, and MIPs with quadratic objective terms are referred to as mixed integer quadratic programs or MIQPs. Likewise, MIPs that are also quadratically constrained in the sense of QCP are known as mixed integer quadratically constrained programs or MIQCPs.

Within the category of mixed integer programs, there are two kinds of discrete integer variables: if the integer values of the discrete variables must be either 0 (zero) or 1 (one), then they are known as binary; if the integer values are not restricted in that way, they are known as general integer variables. This manual explains more about the mixed integer optimizer in Solving mixed integer programming problems (MIP).

CPLEX® also offers a Network Optimizer aimed at a special class of linear problem with network structures. CPLEX® can optimize such problems as ordinary linear programs, but if CPLEX® can extract all or part of the problem as a network, then it will apply its more efficient Network Optimizer to that part of your problem and use the partial solution it finds there to construct an advanced starting point to optimize the rest of the problem. Solving network-flow problems offers more detail about how the CPLEX® Network Optimizer works.
What you need to know

The manual assumes that you are familiar with CPLEX® from reading *Getting Started with CPLEX* and from following the tutorials there. Before you begin using CPLEX®, it is a good idea to read *Getting Started with CPLEX* and to try the tutorials in it. It is available in the standard distribution of the product.

In order to use CPLEX® effectively, you need to be familiar with your operating system, whether UNIX or Windows. A list of the machine-types and library formats (including version numbers of compilers and JDKs) is available in the standard distribution of your product in the file `yourCPLEXinstallation/mptable.html`.

This manual assumes that you are familiar with the concepts of mathematical programming, particularly linear programming. In case those concepts are new to you, the bibliography in *Further reading* in this preface indicates references to help you there.

This manual also assumes you already know how to create and manage files. In addition, if you are building an application that uses the Component Libraries, this manual assumes that you know how to compile, link, and execute programs written in a high-level language. The Callable Library is written in the C programming language, while Concert Technology is written in C++, Java, and .NET. This manual also assumes that you already know how to program in the appropriate language and that you will consult a programming guide when you have questions in that area.
Examples online

For the examples explained in the manual, you will find the complete code for the solution in the examples subdirectory of the standard distribution of CPLEX®, so that you can see exactly how CPLEX® fits into your own applications. Examples lists the examples in this manual and indicates where to find them.

Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Source File</th>
<th>In This Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>dietary optimization: building a model by rows (constraints) or by columns (variables), solving with IloCplex in C++</td>
<td>ilodiet.cpp</td>
<td>Example: optimizing the diet problem in C++</td>
</tr>
<tr>
<td>dietary optimization: building a model by rows (constraints) or by columns (variables), solving with IloCplex in Java</td>
<td>Diet.java</td>
<td>Example: optimizing the diet problem in Java</td>
</tr>
<tr>
<td>dietary optimization: building a model by rows (constraints) or by columns (variables), solving with Cplex in C#.NET</td>
<td>Diet.cs</td>
<td>Example: optimizing the diet problem in C#.NET</td>
</tr>
<tr>
<td>dietary optimization: building a model by rows (constraints) or by columns (variables), solving with the Callable Library</td>
<td>diet.c</td>
<td>Example: optimizing the diet problem in the Callable Library</td>
</tr>
<tr>
<td>linear programming: starting from an advanced basis</td>
<td>ilolpex6.cpp lpex6.c</td>
<td>Example ilolpex6.cpp Example lpex6.c</td>
</tr>
<tr>
<td>network optimization: using the Callable Library</td>
<td>netex1.c</td>
<td>Example: using the network optimizer with the Callable Library netex1.c</td>
</tr>
<tr>
<td>network optimization: relaxing a network flow to an LP</td>
<td>netex2.c</td>
<td>Example: network to LP transformation netex2.c</td>
</tr>
<tr>
<td>quadratic programming: maximizing a QP</td>
<td>iloqplex1.cpp QPex1.java</td>
<td>Example: iloqplex1.cpp Example: QPex1.java</td>
</tr>
<tr>
<td>Example</td>
<td>Source File</td>
<td>In This Manual</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>quadratic programming: reading a QP from a formatted file</td>
<td>qpex2.c</td>
<td>Example: reading a QP from a file qpex2.c</td>
</tr>
<tr>
<td>quasi-constrained programming: QCP</td>
<td>qcpx1.c</td>
<td>Examples: QCP</td>
</tr>
<tr>
<td>mixed integer programming: optimizing a basic MIP</td>
<td>ilomipex1.cpp, mipex1.c</td>
<td>Examples: optimizing a simple MIP problem</td>
</tr>
<tr>
<td>mixed integer programming: reading a MIP from a formatted file</td>
<td>ilomipex2.cpp, mipex2.c</td>
<td>Example: reading a MIP problem from a file</td>
</tr>
<tr>
<td>mixed integer programming: using special ordered sets (SOS) and priority orders</td>
<td>ilomipex3.cpp, mipex3.c</td>
<td>Example: using SOS and priority</td>
</tr>
<tr>
<td>cutting stock: using column generation</td>
<td>cutstock.cpp</td>
<td>What is column generation?</td>
</tr>
<tr>
<td>transport: piecewise-linear optimization</td>
<td>transport.cpp</td>
<td>Complete program: transport.cpp</td>
</tr>
<tr>
<td>food manufacturing 2: using logical constraints</td>
<td>foodmanufac.cpp</td>
<td>Using logical constraints: Food Manufacture 2</td>
</tr>
<tr>
<td>early tardy scheduling</td>
<td>etsp.cpp</td>
<td>Early tardy scheduling</td>
</tr>
<tr>
<td>input and output: using the message handler</td>
<td>lpex5.c</td>
<td>Example: Callable Library message channels</td>
</tr>
<tr>
<td>using query routines</td>
<td>lpex7.c</td>
<td>Example: using query routines lpex7.c</td>
</tr>
<tr>
<td>using callbacks</td>
<td>ilolpex4.cpp, lpex4.c, iloadmipex5.cpp</td>
<td>Example: deriving the simplex callback ilolpex4.cpp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: using callbacks lpex4.c</td>
</tr>
<tr>
<td>Example</td>
<td>Source File</td>
<td>In This Manual</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Example: controlling cuts</td>
<td>iloadmipex5.cpp</td>
<td>Example: controlling cuts</td>
</tr>
<tr>
<td>using the tuning tool</td>
<td>tuneset.c</td>
<td>Meet the tuning tool and Example: time limits on tuning in the</td>
</tr>
<tr>
<td>mixed integer programming: solution pool</td>
<td>location.lp</td>
<td>Interactive Optimizer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: simple facility location problem</td>
</tr>
</tbody>
</table>
Notation in this manual

Like the reference manuals, this manual uses the following conventions:

♦ Important ideas are italicized the first time they appear.

♦ The names of C routines and parameters in the CPLEX® Callable Library begin with CPX; the names of C++ and Java classes in CPLEX® Concert Technology begin with Ilo; and both appear in this typeface, for example: CPXcopyobjnames or IloCplex.

♦ The names of .NET classes and interfaces are the same as the corresponding entity in Java, except the name is not prefixed by Ilo. Names of .NET methods are the same as Java methods, except the .NET name is capitalized (that is, uppercase) to conform to Microsoft naming conventions.

♦ Where use of a specific language (C++, Java, C, C#, and so on) is unimportant and the effect on the optimization algorithms is emphasized, the names of CPLEX® parameters are given as their Concert Technology variant. The CPLEX Parameters Reference Manual documents the correspondence of these names to the Callable Library and the Interactive Optimizer.

♦ Text that is entered at the keyboard or displayed on the screen and commands and their options available through the Interactive Optimizer appear in this typeface, for example, set preprocessing aggregator n.

♦ Values that you must fill in (for example, the value to set a parameter) also appear in the same typeface as the command but modified to indicate you must supply an appropriate value; for example, set simplex refactor i indicates that you must fill in a value for i.

♦ Matrices are denoted in two ways:

 ● In printable material where superscripts and bold type are available, the product of A and its transpose is denoted like this: AAT. The superscript T indicates the matrix transpose.

 ● In computer-generated samples, such as log files, where only ASCII characters are available, the product of A and its transpose are denoted like this: A*A'. The asterisk (*) indicates matrix multiplication, and the prime ('') indicates the matrix transpose.
Related documentation

The online information files are distributed with the CPLEX® libraries. On UNIX platforms, they can be found in yourCplexHome/doc. On Windows platforms, the online documentation can be found in the IBM® ILOG® Optimization suite, for example, in Start > Programs > ILOG > Optim > CPLEX or in C:\ILOG\Optim\CPLEX.

The complete documentation set for CPLEX® consists of the following material:

♦ **Getting Started**: It is a good idea for new users of CPLEX® to start with that manual. It introduces CPLEX® through the Interactive Optimizer, and contains tutorials for CPLEX® Concert Technology for C++, Java, and .NET applications as well as the CPLEX® Callable Library.

Getting Started is supplied in HTML, in Microsoft compiled HTML help (.chm), and as a PDF file.

♦ **User’s Manual**: This manual explains the topics covered in the *Getting Started* manual in greater depth, with individual chapters about:

 ♦ LP (Linear Programming) problems;
 ♦ Network-Flow problems;
 ♦ QP (Quadratic Programming) problems;
 ♦ QCP (Quadratically Constrained Programming), including the special case of second order cone programming (SOCP) problems, and
 ♦ MIP (Mixed Integer Programming) problems.

 There is also detailed information about:

 ♦ tuning performance,
 ♦ managing input and output,
 ♦ generating and keeping multiple solutions in the solution pool,
 ♦ using query routines,
 ♦ using callbacks, and
 ♦ using parallel optimizers.

 The *CPLEX User’s Manual* is supplied in HTML form, in Microsoft compiled HTML help (.chm), and as a PDF file.

♦ **Overview of the API** offers you navigational links into the HTML reference manual organized into categories of tasks you may want to perform in your applications. Each category includes a table linking to the corresponding C routine, C++ class or method, and Java interface, class, or method to accomplish the task. There are also indications about the name of the corresponding .NET method so you can locate it in the Microsoft compiled HTML help (.chm).

♦ **Callable Library Reference Manual**: This manual supplies detailed definitions of the routines, macros, and functions in the CPLEX® C application programming interface
As part of that online manual, you can also access other reference material:

- **CPLEX® Error Codes** documents error codes by name in the group `optim.cplex.errorcodes`. You can also access error codes by number in the *Overview of the API* through the link *Interpreting Error Codes*.

- **CPLEX® Solution Quality Codes** documents solution quality codes by name in the group `optim.cplex.solutionquality`.

- **CPLEX® Solution Status Codes** documents solution status codes by name in the group `optim.cplex.solutionstatus`. You can also access solution status codes by number in the *Overview of the API* through the link *Interpreting Solution Status Codes*.

- **CPLEX C++ API Reference Manual**: This manual supplies detailed definitions of the classes, macros, and functions in the CPLEX® C++ application programming interface (API). It is available online as HTML and as Microsoft compiled HTML help (.chm).

- **CPLEX Java API Reference Manual**: This manual supplies detailed definitions of the Concert Technology interfaces and CPLEX® Java classes. It is available online as HTML and as Microsoft compiled HTML help (.chm).

- **CPLEX .NET Reference Manual**: This manual documents the .NET API of Concert Technology for CPLEX®. It is available online as HTML and as Microsoft compiled HTML help (.chm).

- **CPLEX Parameters Reference Manual**: This manual lists the parameters of CPLEX® with their names in the Callable Library, in Concert Technology, and in the Interactive Optimizer. It also shows their default settings with explanations of the effect of other settings. Normally, the default settings of CPLEX® solve a wide range of mathematical programming problems without intervention on your part, but these parameters are available for fine tuning in special cases.

- **CPLEX File Formats Reference Manual**: This manual documents the file formats recognized and supported by CPLEX®.

- **CPLEX Interactive Optimizer Commands**: This manual lists the commands of the Interactive Optimizer, along with their options and links to examples of their use in the *CPLEX User’s Manual*.

- **ILOG License Manager (ILM)**: CPLEX® is protected by the ILOG License Manager. Before you can use CPLEX®, you need to set up ILM. Its online documentation explains how to do so step-by-step, for different platforms. It is in HTML format, available from your customer support website, or separately on your installation CD.
Online services

CPLEX® supports an online forum for discussion of topics in optimization, mathematical programming, and CPLEX®. These forums are accessible through the Internet at http://forums.ilog.com/optimization.

An electronic newsletter announcing product updates, technical articles, and upcoming workshops is available to subscribers at http://www.ilog.com/optimization/the-right-hand-side.

Only the product manager of CPLEX® posts announcements to this newsletter. Your name and mailing address will not be published for any other purpose than receiving these official product announcements.
Further reading

In case you want to know more about optimization and mathematical or linear programming, here is a brief selection of printed resources:

Williams, H. P. *Model Building in Mathematical Programming*, fourth edition. New York: John Wiley & Sons, 1999. This textbook includes many examples of how to design mathematical models, including linear programming formulations. (How you formulate your model is at least as important as what CPLEX® does with it.) It also offers a description of the branch & bound algorithm. In fact, Williams’s book inspired some of the models delivered with CPLEX®.

Languages and APIs

This part of the manual collects topics about each of the application programming interfaces (APIs) available for IBM® ILOG® CPLEX®. It is not necessary to read each of these topics thoroughly. In fact, most users will concentrate only on the topic about the API that they plan to use, whether C, C++, Java, or .NET.

In this section

Concert Technology for C++ users
Explores the features CPLEX® offers to users of C++ to solve mathematical programming problems.

Concert Technology for Java users
Explores the features CPLEX® offers to Java users to solve mathematical programming problems.

Concert Technology for .NET users
Explores the features that CPLEX® offers to users of C#.NET through Concert Technology.

Callable Library
Shows how to write C applications using the Callable Library.
Explores the features CPLEX® offers to users of C++ to solve mathematical programming problems.

In this section

Overview
Highlights the design, architecture, modeling facilities for C++ users of CPLEX®.

Architecture of a CPLEX C++ application
Describes the architecture of a conventional CPLEX® application in C++.

Licenses
Describes licensing conventions for a C++ application using CPLEX®.

Compiling and linking
Tells where to find instructions to compile and link a C++ application using CPLEX®.

Creating a C++ application with Concert Technology
Outlines steps to create a C++ application with CPLEX®.

Modeling an optimization problem with Concert Technology
Introduces classes of the C++ API of Concert Technology for modeling optimization problems to be solved by IloCplex.

Solving the model
Describes facilities for solving a model in the C++ API.
Accessing solution information
Describes available information about solution feasibility, solution variables, basis information, and solution quality.

Modifying a model
Describes methods in the C++ API to modify a model.

Handling errors
Describes error handling in the C++ API.

Example: optimizing the diet problem in C++
Shows an example of the C++ API.
Overview

This topic explains the design of the library, explains modeling techniques, and offers an example of programming with Concert Technology in C++. It also provides information about controlling parameters in a C++ application. It shows how to write C++ applications using IBM® ILOG® CPLEX® Concert Technology for C++ users. It also includes information about licensing, compiling, and linking your applications.
Architecture of a CPLEX C++ application

A view of Concert Technology for C++ users shows a program using CPLEX® Concert Technology to solve optimization problems. The optimization part of the user’s application program is captured in a set of interacting C++ objects that the application creates and controls. These objects can be divided into two categories:

♦ Modeling objects are used to define the optimization problem. Generally an application creates several modeling objects to specify the optimization problems. Those objects are grouped into an IloModel object representing the complete optimization problem.

♦ Solving objects in an instance of IloCplex are used to solve models created with the modeling objects. An instance of IloCplex reads a model and extracts its data to the appropriate representation for the CPLEX® optimizers. Then the IloCplex object is ready to solve the model it extracted. After it solves a model, it can be queried for solution information.

A view of Concert Technology for C++ users
CPLEX® runs under the control of the ILOG License Manager (ILM). Before you can run any application program that calls CPLEX®, you must have established a valid license that it can read. Licensing instructions are provided to you separately when you buy or upgrade CPLEX®. Contact your local support department if this information has not been communicated to you or if you find that you need help in establishing your CPLEX® license. For details about contacting support, see the product web site.
Compiling and linking

Compilation and linking instructions are provided with the files that come in the standard distribution of CPLEX® for your computer platform. Check the readme.html file for details.
Creating a C++ application with Concert Technology

These are the steps most applications are likely to entail.

1. First, create a model of your problem with the modeling facilities of Concert Technology. *Modeling an optimization problem with Concert Technology* offers an introduction to creating a model.

2. When the model is ready to be solved, hand it over to CPLEX® for solving. *Solving the model* explains how to do so. It includes a survey of the IloCplex interface for controlling the optimization. Individual controls are discussed in the chapters explaining the individual optimizers.

3. After CPLEX® solves the model, *Accessing solution information*, shows you how to access and interpret results from the optimization.

4. After analyzing the results, you may want to make changes to the model and study their effect. *Modifying a model* explains how to make changes and how CPLEX® deals with them.

5. *Handling errors*, discusses the error handling and debugging support provided by Concert Technology and CPLEX®.

6. *Example: optimizing the diet problem in C++* presents a complete program.

Not covered in this chapter are advanced features, such as the use of goals or callbacks for querying data about an ongoing optimization and for controlling the optimization itself. Goals, callbacks, and other advanced features are discussed in *Advanced programming techniques*.
Modeling an optimization problem with Concert Technology

Introduces classes of the C++ API of Concert Technology for modeling optimization problems to be solved by IloCplex.

In this section

Overview
Highlights the C++ classes for models in CPLEX®.

Creating the environment: IloEnv
Describes the C++ class IloEnv.

Defining variables and expressions: IloNumVar
Describes the C++ class IloNumVar.

Declaring the objective: IloObjective
Describes the C++ class IloObjective.

Adding constraints: IloConstraint and IloRange
Describes the C++ classes for constraints and ranges.

Formulating a problem: IloModel
Describes the C++ class IloModel.

Managing data
Describes C++ classes to manage data.
Overview

A Concert Technology model consists of a set of C++ objects. Each variable, each constraint, each special ordered set (SOS), and the objective function in a model are all represented by objects of the appropriate Concert Technology class. These objects are known as modeling objects. They are summarized in *Concert Technology modeling objects in C++*.
Creating the environment: IloEnv

Before you create modeling objects, you must construct an object of the class IloEnv. This object known as the environment. It is constructed with the statement:

```cpp
IloEnv env;
```

That statement is usually the first Concert Technology statement in an application. At the end, you must close the environment by calling:

```cpp
env.end();
```

That statement is usually the last Concert Technology statement in an application. The end method must be called because, like most Concert Technology classes, the class IloEnv is a handle class. That is, an IloEnv object is really only a pointer to an implementation object. Implementation objects are destroyed by calling the end method. Failure to call the end method can result in memory leaks.

Users familiar with the CPLEX® Callable Library are cautioned not to confuse the Concert Technology environment object with the CPLEX® environment object of type CPXENVptr, used to set CPLEX® parameters. Such an object is not needed with Concert Technology, as parameters are handled directly by each instance of the class IloCplex. In other words, the environment in Concert Technology always refers to the object of class IloEnv required for all other Concert Technology objects.
Defining variables and expressions: IloNumVar

Probably the first modeling class you will need is IloNumVar. Objects of this class represent decision variables in a model. They are defined by the lower and upper bound for the variable, and a type which can be one of ILOFLOAT, ILOINT, or ILOBOOL for continuous, integer, or Boolean variables, respectively. The following constructor creates an integer variable with bounds -1 and 10:

```cpp
IloNumVar myIntVar(env, -1, 10, ILOINT);
```

The class IloNumVar provides methods that allow querying of the data needed to specify a variable. However, only bounds can be modified. Concert Technology provides a modeling object class IloConversion to change the type of a variable. This conversion allows you to use the same variable with different types in different models.

Variables are usually used to build up expressions, which in turn are used to define the objective or constraints of the optimization problem. An expression can be explicitly written, as in

```plaintext
```

where x is assumed to be an array of variables (IloNumVarArray). Expressions can also be created piece by piece, with a loop:

```cpp
IloExpr expr(env);
for (int i = 0; i < x.getSize(); ++i)
    expr += data[i] * x[i];
```

Whenever possible, build your expressions in terms of data that is either integer or double-precision (64-bit) floating point. Single-precision (32-bit) floating point data should be avoided, as it can result in unnecessarily ill conditioned problems. For more information, refer to Numeric difficulties.

While Concert Technology supports very general expressions, only linear, quadratic, piecewise-linear, and logical expressions can be used in models to be solved with IloCplex. For more about each of those possibilities, see these topics:

- **Solving LPs: simplex optimizers** and **Solving LPs: barrier optimizer** both discuss linear expressions.
- **Solving problems with a quadratic objective (QP)** discusses quadratic expressions in an objective function.
- **Solving problems with quadratic constraints (QCP)** discusses quadratic expressions in quadratically constrained programming problems (QCPs), including the special case of second order cone programming (SOCP) problems.
- **Using piecewise linear functions in optimization: a transport example** introduces piecewise-linear expressions through a transportation example.
- **Logical constraints in optimization** introduces logical constraints handled by CPLEX®. Topics following it offer examples.
When you have finished using an expression (that is, you created a constraint with it) you need to delete it by calling its method \texttt{end}, for example:

\begin{verbatim}
expr.end();
\end{verbatim}
Declaring the objective: IloObjective

Objects of class IloObjective represent objective functions in optimization models. IloCplex may only handle models with at most one objective function, though the modeling API provided by Concert Technology does not impose this restriction. An objective function is specified by creating an instance of IloObjective. For example:

```cpp
IloObjective obj(env,
    1*x[1] + 2*x[2] + 3*x[3],
    IloObjective::Minimize);
```

defines the objective to minimize the expression $1 \times x[1] + 2 \times x[2] + 3 \times x[3]$.

Adding constraints: IloConstraint and IloRange

Similarly, objects of the class IloConstraint represents constraints in your model. Most constraints will belong to the subclass IloRange, derived from IloConstraint, and thus inherit its constructors and methods. IloRange represent constraints of the form lower bound \(\leq \) expression \(\leq \) upper bound. In other words, an instance of IloRange is a convenient way to express a ranged constraint, that is, a constraint with explicit upper or lower bounds. Any floating-point value or \(+\text{IloInfinity}\) or \(-\text{IloInfinity}\) can be used for the bounds. For example:

```cpp
IloRange r1(env, 3.0, x[1] + x[2], 3.0);
```

defines the constraint \(x[1] + x[2] \leq 3.0 \).
Formulating a problem: IloModel

To formulate a full optimization problem, the objects that are part of it need to be selected. This is done by adding them to an instance of IloModel, the class used to represent optimization problems. For example:

```cpp
IloModel model(env);
model.add(obj);
model.add(r1);
```

defines a model consisting of the objective obj, constraint r1, and all the variables they use. Notice that variables need not be added to a model explicitly, as they are implicitly considered if any of the other modeling objects in the model use them. However, variables may be explicitly added to a model if you want.

For convenience, Concert Technology provides the functions IloMinimize and IloMaximize to define minimization and maximization objective functions. Also, operators <=, ==, and >= are overloaded to create IloRange constraints. This allows you to rewrite the above examples in a more compact and readable way, like this:

```cpp
IloModel model(env);
model.add(IloMinimize(env, 1*x[1] + 2*x[2] + 3*x[3]));
model.add(x[1] + x[2] == 3.0);
```

With this notation, the C++ variables obj and r1 need not be created.

The class IloModel is itself a class of modeling objects. Thus, one model can be added to another. A possible use of this feature is to capture different scenarios in different models, all of which are extensions of a core model. The core model could be represented as an IloModel object itself and added to the IloModel objects that represent the individual scenarios.
Managing data

Usually the data of an optimization problem must be collected before or during the creation of the Concert Technology representation of the model. Though, in principle, modeling does not depend on how the data is generated and represented, this task may be facilitated by using the array or set classes, such as `IloNumSet`, provided by Concert Technology.

For example, objects of class `IloNumArray` can be used to store numeric data in arrays. Elements of the class `IloNumArray` can be accessed like elements of standard C++ arrays, but the class also offers a wealth of additional functions. For example, Concert Technology arrays are extensible; in other words, they transparently adapt to the required size when new elements are added using the method `add`. Conversely, elements can be removed from anywhere in the array with the method `remove`. Concert Technology arrays also provide debugging support when compiled in debug mode by using `assert` statements to make sure that no element beyond the array bounds is accessed. Input and output operators (that is, operator `<<` and operator `>>`) are provided for arrays. For example, the code:

```cpp
IloNumArray data(env, 3, 1.0, 2.0, 3.0);
cout << data << endl;
```

produces the following output:

```
[1.0, 2.0, 3.0]
```

When you have finished using an array and want to reclaim its memory, call the method `end`; for example, `data.end`. When the environment ends, all memory of arrays belonging to the same environment is returned to the system as well. Thus, in practice you do not need to call `end` on an array (or any other Concert Technology object) just before calling `env.end`.

The constructor for arrays specifies that an array of size 3 with elements 1.0, 2.0, and 3.0 is constructed. This output format can be read back in with, for example:

```cpp
cin >> data;
```

The Example: optimizing the diet problem in C++ takes advantage of this function and reads the problem data from a file.

Finally, Concert Technology provides the template class `IloArray<X>` to create array classes for your own type `X`. This technique can be used to generate multidimensional arrays. All the functions mentioned here are supported for `IloArray` classes except for input/output, which depends on the input and output operator being defined for type `X`.
Solving the model

Describes facilities for solving a model in the C++ API.

In this section

Overview
Introduces the C++ class IloCplex.

Extracting a model
Describes the method that extracts a model for an algorithm in the C++ API.

Invoking a solver
Describes the method that invokes a solver in the C++ API.

Choosing an optimizer
Describes the optimizers available in the C++ API.

Controlling the optimizers
Describes parameters that control the optimizers in the C++ API.
Overview

CPLEX® generally does not need to be involved while you create your model. However, after the model is set up, it is time to create your cplex object, that is, an instance of the class IloCplex, to be used to solve the model. IloCplex is a class derived from IloAlgorithm. There are other Concert Technology algorithm classes, also derived from IloAlgorithm, as documented in the CPLEX C++ API Reference Manual. Some models might also be solved by using other algorithms, such as the class IloCP for constraint programming, or by using a hybrid algorithm consisting of both CP Optimizer and CPLEX®. Some models, on the other hand, cannot be solved with CPLEX®.

The makeup of the model determines whether or not CPLEX® can solve it. More precisely, in order to be handled by IloCplex objects, a model may only consist of modeling objects of the classes listed in Concert Technology modeling objects in C++.

Instances of IloConstraint extracted by CPLEX® can be created in a variety of ways. Most often, they can be generated by means of overloaded C++ operators, such as ==, <=, or >=, in the form expression1 operator expression2. Instances of both IloConstraint and IloRange generated in that way may be built from either linear or quadratic expressions. Constraints and ranges may also include piecewise linear terms. (Other sections of this manual, not specific to C++, show you how to use quadratic expressions: Solving problems with a quadratic objective (QP) and Solving problems with quadratic constraints (QCP). Likewise, Using piecewise linear functions in optimization: a transport example shows you how to apply piecewise linear terms in a C++ application.)

For more detail about solving problems with IloCplex, see the following sections of this manual.

Concert Technology modeling objects in C++

<table>
<thead>
<tr>
<th>To model:</th>
<th>Use:</th>
</tr>
</thead>
<tbody>
<tr>
<td>numeric variables</td>
<td>objects of the class IloNumVar, as long as they are not constructed with a list of feasible values</td>
</tr>
<tr>
<td>semi-continuous variables</td>
<td>objects of the class IloSemiContVar</td>
</tr>
<tr>
<td>linear objective function</td>
<td>an object of the class IloObjective with linear or piecewise linear expressions</td>
</tr>
<tr>
<td>quadratic objective function</td>
<td>an object of the class IloObjective with quadratic expressions</td>
</tr>
<tr>
<td>linear constraints</td>
<td>objects of the class IloRange</td>
</tr>
<tr>
<td></td>
<td>(lower bound <= expression <= upper bound)</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>objects of the class IloConstraint</td>
</tr>
<tr>
<td></td>
<td>(expr1 relation expr2)</td>
</tr>
</tbody>
</table>
To model: | Use:
---|---
| involving strictly linear or piecewise linear expressions
quadratic constraints | objects of the class IloConstraint that contain quadratic expressions as well as linear expressions or piecewise linear expressions
logical constraints | objects of the class IloConstraint or generated ranges with linear or piecewise linear expressions
variable type-conversions | objects of the class IloConversion
special ordered sets of type 1 | objects of the class IloSOS1
special ordered sets of type 2 | objects of class IloSOS2

For an explanation of quadratic constraints, see *Solving problems with quadratic constraints (QCP)*.
For more information about quadratic objective functions, see *Solving problems with a quadratic objective (QP)*.
For examples of piecewise linear constraints, see *Using piecewise linear functions in optimization: a transport example*.
For more about logical constraints, see *Logical constraints in optimization*.
For a description of special ordered sets, see *Using special ordered sets (SOS)*.
Extracting a model

This manual defines only one optimization model and uses only one instance of IloCplex at a time to solve the model. Consequently, it talks about these as the model and the cplex object. It should be noted, however, that in Concert Technology an arbitrary number of models and algorithm-objects can be created. The cplex object can be created by the constructor:

IloCplex(env);

To use it to solve the model, the model must first be extracted to cplex by a call like this:

cplex.extract(model);

This method copies the data from the model into the appropriate efficient data structures, which CPLEX® uses for solving the problem. It does so by extracting each of the modeling objects added to the model and each of the objects referenced by them. For every extracted modeling object, corresponding data structures are created internally in the cplex object. For readers familiar with the sparse matrix representation used internally by CPLEX®, a variable becomes a column and a constraint becomes a row. As discussed later, these data structures are synchronized with the modeling objects even if the modeling objects are modified.

If you consider a variable to be part of your model, even though it is not (initially) used in any constraint, you should add this variable explicitly to the model. This practice makes sure that the variable will be extracted. This practice may also be important if you query solution information for the variable, since solution information is available only for modeling objects that are known to CPLEX® because they have been extracted from a model.

If you feel uncertain about whether or not an object will be extracted, you can add it to the model to be sure. Even if an object is added multiple times, it will be extracted only once and thus will not slow the solution process down.

Since the sequence of creating the cplex object and extracting the model to it is such a common one, IloCplex provides the shortcut:

IloCplex(model);

This shortcut is completely equivalent to separate calls and makes sure that the environment used for the cplex object will be the same as that used for the model when it is extracted, as required by Concert Technology. The shortcut uses the environment from the model to construct the cplex object before extraction.
Invoking a solver

After the model is extracted to the cplex object, you are ready to solve it by calling

solve();

For most problems this is all that is needed for solving the model. Nonetheless, CPLEX® offers a variety of controls that allow you to tailor the solution process for your specific needs.
Choosing an optimizer

Solving the extracted model with CPLEX® involves solving one or a series of continuous relaxations:

♦ Only one continuous relaxation needs to be solved if the extracted model is continuous itself, that is, if it does not contain integer variables, Boolean variables, semi-continuous or semi-integer variables, logical constraints, special ordered sets (SOS), or piecewise linear functions. Solving LPs: simplex optimizers and Solving LPs: barrier optimizer discuss the algorithms available for solving LPs. Similarly, Solving problems with a quadratic objective (QP), discusses the algorithms available for solving QPs. Solving problems with quadratic constraints (QCP) re-introduces the barrier optimizer in the context of quadratically constrained programming problems (QCPs). Using piecewise linear functions in optimization: a transport example introduces piecewise-linear functions through a transportation example. Logical constraints in optimization introduces logical constraints, and chapters following it offer examples.

♦ In all other cases, the extracted problem that CPLEX® sees is indeed a MIP and, in general, a series of continuous relaxations needs to be solved. The method cplex.isMIP returns IloTrue in such a case. Solving mixed integer programming problems (MIP) discusses the algorithms applied.

The optimizer option used for solving the first continuous relaxation (whether it is the only one or just the first in a series of problems) is controlled by the root algorithm parameter:

cplex.setParam(IloCplex::RootAlg, alg);

where alg is a member of the nested enumeration IloCplex::Algorithm

As a nested enumeration, the fully qualified names that must be used in the program are IloCplex::Primal, IloCplex::Dual, and so on. The table Optimizer options in IloCplex::Algorithm displays the meaning of the optimizer options defined by IloCplex::Algorithm.

Tip: The choice Sifting is not available for QP models. Only the Barrier option is available for QCP models. The table Algorithm available at root by problem type summarizes these options.
Optimizer options in IloCplex::Algorithm

AutoAlg
let CPLEX decide which algorithm to use

Primal
use the primal simplex algorithm

Dual
use the dual simplex algorithm

Network
use the primal network simplex algorithm on an embedded network followed by the dual simplex algorithm for LPs and the primal simplex algorithm for QPs on the entire problem

Barrier
use the barrier algorithm. The type of crossover performed after the barrier algorithm is set by the parameter IloCplex::BarCrossAlg.

Sifting
use the sifting algorithm

Concurrent
use multiple algorithms concurrently on a multiprocessor system

Algorithm available at root by problem type

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm Type</th>
<th>LP?</th>
<th>QP?</th>
<th>QCP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IloCplex::AutoAlg</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>IloCplex::Primal</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>2</td>
<td>IloCplex::Dual</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>3</td>
<td>IloCplex::Network</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>4</td>
<td>IloCplex::Barrier</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>IloCplex::Sifting</td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
<tr>
<td>6</td>
<td>IloCplex::Concurrent</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
</tbody>
</table>

If the extracted model requires the solution of more than one continuous relaxation, the algorithm for solving the first one at the root is controlled by the RootAlg parameter. The algorithm at all other nodes except the root is controlled by the NodeAlg parameter:

```cplex.setParam(IloCplex::NodeAlg, alg)```

**Algorithm types for NodeAlg** summarizes the options available at nodes.
### Algorithm types for NodeAlg

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm Type</th>
<th>MILP?</th>
<th>MIQP?</th>
<th>MIQCP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IloCplex::Auto</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>IloCplex::Primal</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>2</td>
<td>IloCplex::Dual</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>3</td>
<td>IloCplex::Network</td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
<tr>
<td>4</td>
<td>IloCplex::Barrier</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>IloCplex::Sifting</td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
</tbody>
</table>
Controlling the optimizers

Though CPLEX® defaults will prove sufficient to solve most problems, CPLEX® offers a variety of parameters to control various algorithmic choices. CPLEX® parameters can assume values of type bool, num, int, and string. IloCplex provides four categories of parameters that are listed in the nested enumeration types:

♦ IloCplex_BoolParam
♦ IloCplex_IntParam
♦ IloCplex_NumParam
♦ IloCplex_StringParam

To access the current value of a parameter that interests you from Concert Technology, use the method getParam. To access the default value of a parameter, use the method getDefault. Use the methods getMin and getMax to access the minimum and maximum values of num and int type parameters.

Some integer parameters are tied to nested enumerations that define symbolic constants for the values the parameter may assume. Nested enumerations for integer parameters summarizes those parameters and their enumeration types.

**Nested enumerations for integer parameters**

<table>
<thead>
<tr>
<th>This Enumeration:</th>
<th>Is Used for This Parameter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IloCplex::Algorithm</td>
<td>IloCplex::RootAlg</td>
</tr>
<tr>
<td>IloCplex::Algorithm</td>
<td>IloCplex::NodeAlg</td>
</tr>
<tr>
<td>IloCplex::MIPEmphasisType</td>
<td>IloCplex::MIPEmphasis</td>
</tr>
<tr>
<td>IloCplex::VariableSelect</td>
<td>IloCplex::VarSel</td>
</tr>
<tr>
<td>IloCplex::NodeSelect</td>
<td>IloCplex::NodeSel</td>
</tr>
<tr>
<td>IloCplex::PrimalPricing</td>
<td>IloCplex::PPriInd</td>
</tr>
<tr>
<td>IloCplex::DualPricing</td>
<td>IloCplex::DPriInd</td>
</tr>
<tr>
<td>IloCplex::BranchDirection</td>
<td>IloCplex::BrDir</td>
</tr>
</tbody>
</table>

There are, of course, routines in Concert Technology to set these parameters. Use the following methods to set the values of CPLEX® parameters:

♦ setParam(BoolParam, value);
♦ setParam(IntParam, value);
♦ setParam(NumParam, value);
For example, the numeric parameter `IloCplex::EpOpt` controlling the optimality tolerance for the simplex algorithms can be set to 0.0001 by this call:

```cpp
setParam(IloCplex::EpOpt, 0.0001);
```

The *CPLEX Parameters Reference Manual* documents the type of each parameter (bool, int, num, string) along with the Concert Technology enumeration value, symbolic constant, and reference number representing the parameter.

The method `setDefaults` resets all parameters (except the log file) to their default values, including the CPLEX® callback functions. This routine resets the callback functions to `NULL`.

When you are solving a MIP, CPLEX® provides additional controls of the solution process. Priority orders and branching directions can be used to control the branching in a static way. These controls are discussed in *Heuristics*. These controls are static in the sense that they allow you to control the solution process based on data that does not change during the solution and can thus be set up before you solve the model.

Dynamic control of the solution process of MIPs is provided through goals or control callbacks. They are discussed in *Using goals*, and in *Using optimization callbacks*. Goals and callbacks allow you to control the solution process based on information that is generated during the solution process. *Goals and callbacks: a comparison* contrasts the advantages of each approach.
Accessing solution information

Describes available information about solution feasibility, solution variables, basis information, and solution quality.

In this section

Accessing solution status
Describes the status of a solution.

Querying solution data
Describes methods available in the C++ API to query data about the solution after optimization.

Accessing basis information
Describes methods in the C++ API to retrieve basis information.

Performing sensitivity analysis
Describes methods in the C++ API to analyze infeasible problems.

Analyzing infeasible problems
Describes methods in the C++ API to analyze infeasible models.

Assessing solution quality
Describes methods in the C++ API to assess quality of a solution.
Accessing solution status

Calling `solve` returns a Boolean value indicating whether or not a feasible solution (but not necessarily the optimal one) has been found. To obtain more of the information about the model that CPLEX® found during the call to the `solve` method, call the method `getStatus`. It returns a member of the nested enumeration `IloAlgorithm_Status`. The fully qualified names of those symbols have the `IloAlgorithm` prefix. *Algorithm status and information about the model* shows what each return status means for the extracted model.

**Algorithm status and information about the model**

<table>
<thead>
<tr>
<th>Return Status</th>
<th>Extracted Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible</td>
<td>has been proven to be feasible. A feasible solution can be queried.</td>
</tr>
<tr>
<td>Optimal</td>
<td>has been solved to optimality. The optimal solution can be queried.</td>
</tr>
<tr>
<td>Infeasible</td>
<td>has been proven to be infeasible.</td>
</tr>
<tr>
<td>Unbounded</td>
<td>has been proven to be unbounded. The notion of unboundedness adopted by IloCplex does not include that the model has been proven to be feasible. Instead, what has been proven is that if there is a feasible solution with objective value $x^<em>$, there exists a feasible solution with objective value $x^</em>-1$ for a minimization problem, or $x^*+1$ for a maximization problem.</td>
</tr>
<tr>
<td>InfeasibleOrUnbounded</td>
<td>has been proven to be infeasible or unbounded.</td>
</tr>
<tr>
<td>Unknown</td>
<td>has not been able to be processed far enough to prove anything about the model. A common reason may be that a time limit was hit.</td>
</tr>
<tr>
<td>Error</td>
<td>has not been able to be processed or an error occurred during the optimization.</td>
</tr>
</tbody>
</table>

As you see, these statuses indicate information about the model that the CPLEX® optimizer was able to prove during the most recent call to the method `solve`.

In addition, the CPLEX® optimizer provides information about how it terminated. For example, it may have terminated with only a feasible but not optimal solution because it hit a limit or because a user callback terminated the optimization. Further information is accessible by calling solution query routines, such as the method `getCplexStatus`, which returns a member of the nested enumeration type `IloCplex::CplexStatus`, or methods `cplex.isPrimalFeasible` or `cplex.isDualFeasible`.

For more information about those status codes, see the *CPLEX Reference Manual*. 
Querying solution data

If `getValue` returns `IloTrue`, a feasible solution has been found and solution values for model variables are available to be queried. For example, the solution value for the numeric variable `var1` can be accessed as follows:

```cplex
IloNum x1 = getValue(var1);
```

However, querying solution values variable by variable may result in ugly code. Here the use of Concert Technology arrays provides a much more compact way of accessing the solution values. Assuming your variables are stored in an array of numeric variables (`IloNumVarArray`) named `var`, use lines like these to access the solution values for all variables in `var` simultaneously:

```cplex
IloNumArray x(env); getValues(x, var);
```

Value `x[i]` contains the solution value for variable `var[i]`.

Solution data is not restricted to the solution values of variables. It also includes values of slack variables in constraints (whether the constraints are linear or quadratic) and the objective value. If the extracted model does not contain an objective object, `IloCplex` assumes a `0` expression objective. The objective value is returned by calling method `getObjValue`. Slack values are accessed with the methods `getSlack` and `getSlacks`, which take linear or quadratic constraints as a parameter.

For LPs and QPs, solution data includes information such as dual variables and reduced cost. Such information can be queried with the methods, `getDual`, `getDuals`, `getReducedCost`, and `getReducedCosts`. 
Accessing basis information

When you solve LPs or QPs with either the simplex algorithm or the barrier optimizer with crossover enabled, basis information is available as well. Basis information can be consulted by the method `getStatuses` which returns basis status information for variables and constraints.

Such information is encoded by the nested enumeration `IloCplex_BasisStatus`. 
Performing sensitivity analysis

The availability of a basis for an LP allows you to perform sensitivity analysis for your model, if it is an LP. Such analysis tells you by how much you can modify your model without affecting the solution you found. The modifications supported by the sensitivity analysis function include bound changes, changes of the right hand side vector and changes of the objective function. They are analyzed by the methods `getBoundSA`, `getRHSSA`, and `getObjSA`, respectively.
Analyzing infeasible problems

An important feature of CPLEX® is that even if no feasible solution has been found, (that is, if `solve` returns `IloFalse`), some information about the problem can be queried. All the methods discussed so far may successfully return information about the current (infeasible) solution which CPLEX® maintains.

Unfortunately, there is no simple comprehensive rule about whether or not current solution information can be queried because, by default, CPLEX® uses a presolve procedure to simplify the model. If, for example, the model is proven to be infeasible during the presolve, no current solution is generated by the optimizer. If, in contrast, infeasibility is proven by the optimizer, current solution information is available to be queried. The status returned by `getCplexStatus` may help you decide which case you are facing, but it is probably safer and easier to include the methods for querying solution within try/catch statements.

When an LP has been proven to be infeasible, CPLEX® provides assistance for investigating the cause of the infeasibility. In one approach, known as FeasOpt, CPLEX® accepts an infeasible model and selectively relaxes bounds and constraints to find a minimal set of changes that would make the model feasible. It then reports these suggested changes and the solution they would produce for you to decide whether to apply them in your model. For more about this approach, see Repairing infeasibility: FeasOpt.

In another approach, CPLEX® can detect a conflict among the constraints and bounds of an infeasible model and refine the conflict to report to you a minimal conflict to repair yourself. For more about this approach, see Diagnosing infeasibility by refining conflicts.

For more about these and other ways of overcoming infeasibility, see Diagnosing LP infeasibility.
Assessing solution quality

The CPLEX® optimizer uses finite precision arithmetic to compute solutions. To compensate for numeric errors due to this convention, tolerances are used by which the computed solution is allowed to violate feasibility or optimality conditions. Thus the solution computed by the solve method may in fact slightly violate the bounds specified in the model, for example. You can call the method getQuality, like this:

```cpp
IloNum violation = getQuality(IloCplex::MaxPrimalInfeas);
```

to query the maximum bound violation among all variables and slacks. If you are also interested in the variable or constraint where the maximum violation occurs, call the method with these arguments instead:

```cpp
IloRange maxrange; IloNumVar maxvar; IloNum violation = getQuality(IloCplex::MaxPrimalInfeas, &maxrange, &maxvar);
```

CLEX® will copy the variable or constraint handle in which the maximum violation occurs to maxvar or maxrange and make the other handle an empty one. The maximum primal infeasibility is only one example of a wealth of quality measures. The full list is defined by the nested enumeration type IloCplex_Quality. All of these can be used as a parameter for the getQuality methods, though some measures are not available for all optimizer option choices. A list of solution qualities appears in the CPLEX Reference Manual of the Callable Library and C++ API, as the group optim.cplex.solutionquality.
Modifying a model

Describes methods in the C++ API to modify a model.

In this section

Overview
Outlines different ways to modify a model for CPLEX® in a C++ application.

Deleting and removing modeling objects
Describes the effects of deleting modeling objects in the C++ API.

Changing variable type
Describes IloConversion, the class of the C++ API to change the type of a variable.
Overview

In some applications, you may want to solve another model or a modification of your original model, in order, for example, to analyze a scenario or to make adaptations based on the solution of the first model. To do this, you do not have to start a new model from scratch, but instead you can take an existing model and change it to your needs. To do so, call the modification methods of the individual modeling objects.

When an extracted model is modified, the modification is tracked in the cplex object through notification. Whenever a modification method is called, cplex objects that have extracted the model are notified about it. The cplex objects then track the modification in their internal data structures.

Not only does CPLEX® track all modifications of the model it has extracted, but also it tries to maintain as much solution information from a previous invocation of solve as is possible and reasonable.

You have already encountered what is perhaps the most important modification method, that is, the method IloModel::add for adding modeling objects to a model. Conversely, you may call IloModel::remove to remove a modeling object from a model.

Objective functions can be modified by changing their sense and by editing their expression, or by changing their expression completely.

Similarly, the bounds of constraints and their expressions can be modified.

For a complete list of supported modifications, see the documentation of the individual modeling objects in the reference manual.
Deleting and removing modeling objects

A special type of modification is that of deleting a modeling object by calling its `end` method. Consider, for example, the deletion of a variable. What happens if the variable you delete has been used in constraints or in the objective function, or has been extracted to CPLEX®? If you call its `end` method, Concert Technology carefully removes the deleted variable from all other modeling objects and algorithms that may keep a reference to the variable in question. This convention applies to any modeling object to be removed. However, user-defined handles to the removed variable are not managed by Concert Technology. Instead, it is up to the user to make sure that these handles are not used after the deletion of the modeling object. The only operation allowed then is the assignment operator.

Concert Technology also provides a way to remove a modeling object from all other modeling objects and algorithms exactly the same way as when deleting it, yet without deleting the modeling object: call the method `removeFromAll`. This method may be helpful to temporarily remove a variable from your model while keeping the option to add it back later.

It is important to understand the difference between calling `end` and calling `model.remove(obj)` for an object `obj`. In the case of a call to `remove`, `obj` is not necessarily removed from the problem CPLEX® maintains. Whether or not anything appears to happen depends on whether the removed object is referenced by yet another extracted modeling object. For example, when you add a modeling object, such as a ranged constraint, to a model, all the variables used by that modeling object implicitly become part of the model as well. However, when you remove that modeling object (for example, that ranged constraint), those variables are not implicitly removed because they may be referenced by other elements (such as the objective function or a basis, for example). For that reason, variables can be explicitly removed from a model only by a call to its `end` member function.

Usually when a constraint is removed from the extracted model, the constraint is also removed from CPLEX® as well, unless it was added to the model more than once.

Consider the case where a variable is removed from CPLEX® after one of the `end` or `remove` operations. If the `cplex` object contains a simplex basis, by default the status for that variable is removed from the basis as well. If the variable happens to be basic, the operation corrupts the basis. If this is not what you want, CPLEX® provides a delete mode that first pivots the variable out of the basis before removing it. The resulting basis is not guaranteed to be feasible or optimal, but it will still constitute a valid basis. To select this mode, call the method:

```cpp
setDeleteMode(IloCplex::FixBasis);
```

Similarly, when removing a constraint with the `FixBasis` delete mode, CPLEX® will pivot the corresponding slack or artificial variable into the basis before removing it, to make sure of maintaining a valid basis. In either case, if no valid basis was available in the first place, no pivot operation is performed. To set the delete mode back to its default setting, call:

```cpp
setDeleteMode(IloCplex::LeaveBasis);
```
Changing variable type

The type of a variable cannot be changed by calling modification methods. Instead, Concert Technology provides the modeling class `IloConversion`, the objects of which allow you to override the type of a variable in a model. This design allows you to use the same variable in different models with different types. Consider for example model1 containing integer variable x. You then create model2, as a copy of model1, that treats x as a continuous variable, with the following code:

```cpp
IloModel model2(env);
model2.add(model1);
model2.add(IloConversion(env, x, ILOFLOAT));
```

A conversion object, that is, an instance of `IloConversion`, can specify a type only for a variable that is in a model. Converting the type more than once is an error, because there is no rule about which would have precedence. However, this convention is not too restrictive, since you can remove the conversion from a model and add a new one. To remove a conversion from a model, use the method `IloExtractable::end`. To add a new one, use the method `IloModel::add`. For a sample of code using these methods in this procedure, see the documentation of the class `IloConversion` in the CPLEX C++ API Reference Manual.
Handling errors

In Concert Technology two kinds of errors are distinguished:

♦ Programming errors, such as:
  ● accessing empty handle objects;
  ● mixing modeling objects from different environments;
  ● accessing Concert Technology array elements beyond an array’s size; and
  ● passing arrays of incompatible size to functions.

Such errors are usually an oversight of the programmer. After they are recognized and fixed there is usually no danger of corrupting an application. In a production application, it is not necessary to handle these kinds of errors.

In Concert Technology such error conditions are handled using assert statements. If compiled without `-DNDEBUG`, the error check is performed and the code aborts with an error message indicating which assertion failed. A production application should then be compiled with the `-DNDEBUG` compiler option, which removes all the checking. In other words, no CPU cycles are consumed for checking the assertions.

♦ Runtime errors, such as memory exhaustion.

A correct program assumes that such failures can occur and therefore must be treated, even in a production application. In Concert Technology, if such an error condition occurs, an exception is thrown.

All exceptions thrown by Concert Technology classes (including IloCplex) are derived from IloException. Exceptions thrown by algorithm classes such as IloCplex are derived from its child class IloAlgorithm::Exception. The most common exceptions thrown by CPLEX® are derived from IloCplex_Exception, a child class of IloAlgorithm::Exception.

Objects of the exception class IloCplex::Exception correspond to the error codes generated by the CPLEX® Callable Library. You query the error code from a caught exception by calling the method:

IloInt getStatus () const;

You query the error message by calling the method:

const char* IloException::getMessage() const;

That method is a virtual method inherited from the base class IloException. If you want to access only the message for printing to a channel or output stream, it is more convenient to use the overloaded output operator (`operator<<`) provided by Concert Technology for IloException.

In addition to exceptions corresponding to error codes from the C Callable Library, a cplex object may throw exceptions pertaining only to IloCplex. For example, the exception MultipleObjException is thrown if a model is extracted containing more than one objective function. Such additional exception classes are derived from class IloCplex_Exception; objects can be recognized by a negative status code returned when calling method getStatus.
In contrast to most other Concert Technology classes, exception classes are not handle classes. Thus, the correct type of an exception is lost if it is caught by value rather than by reference (that is, using catch (IloException& e) {...}). This is one reason that catching IloException objects by reference is a good idea, as demonstrated in all examples. See, for example, ilodiet.cpp. Some derived exceptions may carry information that would be lost if caught by value. So if you output an exception caught by reference, you may get a more precise message than when outputting the same exception caught by value.

There is a second reason for catching exceptions by reference. Some exceptions contain arrays to communicate the reason for the failure to the calling function. If this information were lost by calling the exception by value, method end could not be called for such arrays and their memory would be leaked (until env.end is called). After catching an exception by reference, calling the exception’s method end will free all the memory that may be used by arrays (or expressions) of the actual exception that was thrown.

In summary, the preferred way of catching an exception is this:

```cpp
catch (IloException& e) {
 ...
 e.end();
}
```

where IloException may be substituted for the desired Concert Technology exception class.
Example: optimizing the diet problem in C++

Shows an example of the C++ API.

In this section

Overview
Outlines how to solve the diet problem with CPLEX® in a C++ application.

Problem representation
Describes how the problem is represented in the application.

Application description
Describes the architecture of the application.

Creating multi-dimensional arrays with IlloArray
Describes data handling in the application.

Using arrays for input or output
Describes input and output in the application.

Solving the model with Ilcplex
Shows how to solve the example.

Complete program
Refers to the online sample.
Overview

The optimization problem solved in this example is to compose a diet from a set of foods, so that the nutritional requirements are satisfied and the total cost is minimized. Problem representation describes the problem.

The example ilodiet.cpp illustrates these procedures:

♦ Creating a model row by row;
♦ Creating a model column by column.

To continue this example, Application description outlines the structure of the application. The following sections explain more about data structures useful in this application.

Notes about the application are available in Complete program.
Problem representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional requirements to be satisfied, which are the constraints; and an objective of minimizing the total cost of the food. There are two ways of looking at this problem:

♦ The problem can be modeled by rows, by entering the variables first and then adding the constraints on the variables and the objective function.

♦ The problem can be modeled by columns, by constructing a series of empty constraints and then inserting the variables into the constraints and the objective function.

Concert Technology is equally suited for both kinds of modeling; in fact, you can even mix both approaches in the same program. If a new food product is created, you can create a new variable for it regardless of how the model was originally built. Similarly, if a new nutrient is discovered, you can add a new constraint for it.

Creating a model row by row

You walk into the store and compile a list of foods that are offered. For each food, you store the price per unit and the amount in stock. For some foods that you particularly like, you also set a minimum amount you would like to use in your diet. Then, for each of the foods, you create a modeling variable to represent the quantity to be purchased for your diet.

Now you get a nutrition book and look up which nutrients are known and relevant for you. For each nutrient, you note the minimum and maximum amounts that should be found in your diet. Also, you go through the list of foods and decide how much a food item will contribute for each nutrient. This gives you one constraint per nutrient, which can naturally be represented as a range constraint in pseudo-code like this:

\[
\text{nutrMin}[i] \leq \sum_{j} (\text{nutrPer}[i][j] \times \text{Buy}[j]) \leq \text{nutrMax}[i]
\]

where \( i \) represents the number of the nutrient under consideration, \( \text{nutrMin}[i] \) and \( \text{nutrMax}[i] \) the minimum and maximum amount of nutrient \( i \) and \( \text{nutrPer}[i][j] \) the amount of nutrient \( i \) in food \( j \).

Finally, you specify your objective function in pseudo-code like this:

\[
\text{minimize} \sum_{j} (\text{cost}[j] \times \text{Buy}[j])
\]

The loop in the example combines those two ideas and looks like this:

```
mod.add(IloMinimize(env, IloScalProd(Buy, foodCost)));
for (i = 0; i < m; i++) {
 IloExpr expr(env);
 for (j = 0; j < n; j++) {
 expr += Buy[j] * nutrPer[i][j];
 }
 mod.add(nutrMin[i] <= expr <= nutrMax[i]);
 expr.end();
```
This way of creating the model appears in the function `buildModelByRow`, in the example `ilodiet.cpp`.

### Creating a model column by column

You start with the nutrition book where you compile the list of nutrients that you want to make sure are properly represented in your diet. For each of the nutrients, you create an empty constraint:

\[
\text{nutrMin}[i] \leq \ldots \leq \text{nutrMax}[i]
\]

where \(\ldots\) is left to be filled in after you walk into the store. Also, you set up the objective function to minimize the cost. Constraint \(i\) is referred to as \(\text{range}[i]\) and to the objective as \(\text{cost}\).

Now you walk into the store and, for each food, you check the price and nutritional content. With this data you create a variable representing the amount you want to buy of the food type and install the variable in the objective function and constraints. That is, you create the following column in pseudo code, like this:

\[
\text{cost(foodCost}[j]) \,+\, \text{"sum_i" \,(range}[i\,(\text{nutrPer}[i][j]))
\]

where the notation `+` and `sum` indicate in pseudo code that you add the new variable \(j\) to the objective \(\text{cost}\) and constraints \(\text{range}[i]\). The value in parentheses is the linear coefficient that is used for the new variable. This notation is similar to the syntax actually used in Concert Technology, as demonstrated in the function `buildModelByColumn`, in the example `ilodiet.cpp`.

```cpp
for (j = 0; j < n; j++) {
 IloNumColumn col = cost(foodCost[j]);
 for (i = 0; i < m; i++) {
 col += range[i](nutrPer[i][j]);
 }
 Buy.add(IloNumVar(col, foodMin[j], foodMax[j], type));
 col.end();
}
```
Application description

In *ilodiet.cpp*, the main part of the application starts by declaring the environment and terminates by calling the method `end` for that environment. The code in between is encapsulated in a `try` block that catches all Concert Technology exceptions and prints them to the C++ error stream `cerr`. All other exceptions are caught as well, and a simple error message is issued. The first action of the program is to evaluate command-line options and call the function `usage` in cases of misuse.

**Note:** In such cases, an exception is thrown. This practice makes sure that `env.end` is called before the program is terminated.
Creating multi-dimensional arrays with IloArray

All data defining the problem are read from a file. The nutrients per food are stored in a two-dimensional array, IloNumArray2.
Using arrays for input or output

If all goes well, the input file is opened in the file `ifstream`. After that, the arrays for storing the problem data are created by declaring the appropriate variables. Then the arrays are filled by using the input operator with the data file. The data is checked for consistency and, if it fails, the program is aborted, again by throwing an exception.

After the problem data has been read and verified, it is time to build the model. To do so, construct the model object with this declaration:

```cpp
IloModel mod(env);
```

The array `Buy` is created to store the modeling variables. Since the environment is not passed to the constructor of `Buy`, an empty handle is constructed. So at this point the variable `Buy` cannot be used.

Depending on the command-line option, either `buildMethodByRow` or `buildMethodByColumn` is called. Both create the model of the diet problem from the input data and return an array of modeling variables as an instance of the class `IloNumVarArray`. At that point, `Buy` is assigned to an initialized handle containing all the modeling variables and can be used afterwards.

**Building the model by row**

The model is created by rows using the function `buildModelByRow`. It first gets the environment from the model object passed to it. Then the modeling variables `Buy` are created. Instead of calling the constructor for the variables individually for each variable, create the full array of variables, with the array of lower and upper bounds and the variable type as parameter. In this array, variable `Buy[i]` is created such that it has lower bound `foodMin[i]`, upper bound `foodMax[i]`, and type indicated by `type`.

The statement:

```cpp
mod.add(IloMinimize(env, IloScalProd(Buy, foodCost)));
```

creates the objective function and adds it to the model. The `IloScalProd` function creates the expression \( \sum_j (Buy[j] \times \text{foodCost}[j]) \) which is then passed to the function `IloMinimize`. That function creates and returns the actual `IloObjective` object, which is added to the model with the call `mod.add`.

The following loop creates the constraints of the problem one by one and adds them to the model. First the expression \( \sum_j (Buy[j] \times \text{nutrPer[i][j]} \) is created by building a Concert Technology expression. An expression variable `expr` of type `IloExpr` is created, and linear terms are added to it by using `operator+=` in a loop. The expression is used with the overloaded `operator<=` to construct a range constraint (an `IloRange` object) which is added to the model:

```cpp
mod.add(nutrMin[i] <= expr <= nutrMax[i]);
```

After an expression has been used for creating a constraint, it is deleted by a call to `expr.end`.
Finally, the array of modeling variables \texttt{Buy} is returned.

**Building the model by column**

The function \texttt{buildModelByColumn} implements the creation of the model by columns. It begins by creating the array of modeling variables \texttt{Buy} of size 0. This is later populated when the columns of the problem are created and eventually returned.

The statement:

\begin{verbatim}
IloObjective cost = IloAdd(mod, IloMinimize(env));
\end{verbatim}

creates a minimization objective function object with 0 expressions and adds it to the model. The objective object is created with the function \texttt{IloMinimize}. The template function \texttt{IloAdd} is used to add the objective as an object to the model and to return an objective object with the same type, so that the objective can be stored in the variable \texttt{cost}. The method \texttt{IloModel::add} returns the modeling object as an \texttt{IloExtractable}, which cannot be assigned to a variable of a derived class such as \texttt{IloObjective}. Similarly, an array of range constraints with 0 (zero) expressions is created, added to the model, and stored in the array \texttt{range}.

In the following loop, the variables of the model are created one by one in columns; thus, the new variables are immediately installed in the model. An \texttt{IloNumColumn} object \texttt{col} is created and initialized to define how each new variable will be appended to the existing objective and constraints.

The \texttt{IloNumColumn} object \texttt{col} is initialized to contain the objective coefficient for the new variable. This is created with \texttt{cost(foodCost[j])}, that is using the overloaded operator () for \texttt{IloObjective}. Next, an \texttt{IloNumColumn} object is created for every constraint, representing the coefficient the new variable has in that constraint. Again these \texttt{IloNumColumn} objects are created with the overloaded operator(), this time of \texttt{IloRange}. The \texttt{IloNumColumn} objects are merged together to an aggregate \texttt{IloNumColumn} object using operator \texttt{+}. The coefficient for row \texttt{i} is created with \texttt{range[i](nutrPer[i][j])}, which calls the overloaded operator() for \texttt{IloRange} objects.

When a column is completely constructed, a new variable is created for it and added to the array of modeling variables \texttt{Buy}. The construction of the variable is performed by the constructor:

\begin{verbatim}
IloNumVar(col, foodMin[j], foodMax[j], type)
\end{verbatim}

which creates the new variable with lower bound \texttt{foodMin[j]}, upper bound \texttt{foodMax[j]} and type \texttt{type}, and adds it to the existing objective and ranges with the coefficients specified in column \texttt{col}. After creating the variable for this column, the \texttt{IloColumn} object is deleted by calling \texttt{col.end}.
Solving the model with IloCplex

After the model has been populated, it is time to create the cplex object and extract the model to it by calling:

IloCplex(mod);

It is then ready to solve the model, but for demonstration purposes the extracted model will first be written to the file diet.lp. Doing so can help you debug your model, as the file contains exactly what CPLEX® sees. If it does not match what you expected, it will probably help you locate the code that generated the wrong part.

The model is then solved by calling method solve. Finally, the solution status and solution vector are output to the output channel cplex.out. By default this channel is initialized to cout. All logging during optimization is also output to this channel. To turn off logging, you would set the out stream of cplex to a null stream by calling cplex.setOut(env.getNullStream()).
Complete program

The complete program ilodiet.cpp is available online in the standard distribution at your CPLEX installation /examples/src.

Note: ♦ All the definitions needed for a CPLEX® Concert Technology application in C++ are imported by including the file <ilcplex/ilocplex.h>.

♦ The line ILOSTLBEGIN is a macro that is needed for portability. Microsoft Visual C++ code varies, depending on whether you use the STL or not. This macro allows you to switch between both types of code without the need to otherwise change your source code.

♦ The function usage is called in case the program is executed with incorrect command line arguments.
Concert Technology for Java users

Explores the features CPLEX® offers to Java users to solve mathematical programming problems.

**In this section**

**Architecture of a CPLEX Java application**
Describes the architecture of a Java application in Concert Technology.

**Creating a Java application with Concert Technology**
Introduces the components of an application in the Java API of Concert Technology and covers the steps most Java applications are likely to follow.

**Modeling an optimization problem with Concert Technology in the Java API**
Describes classes in the Java API to model an optimization problem.

**Solving the model**
Describes the class IloCplex in the Java API.

**Accessing solution information**
Describes the information available in the Java API about a solution.

**Choosing an optimizer**
Describes algorithms implemented in the Java API for solving optimization problems.

**Controlling CPLEX optimizers**
Describes the features that control optimizers in the Java API.

**More solution information**
Describes additional information available from a solution.
Advanced modeling with IloLPMatrix
ExplainstheconceptofmatrixmodelingasimplementedbytheclassIloLPMatrixintheJavaAPI.

Modeling by column
IntroducesmodelingbycolumnsasimplementedintheJavaAPI.

Example: optimizing the diet problem in Java
DescribesanapplicationtosolvethediетproblemintheJavaAPI.

Modifying the model
DescribesmodificationofamodelintheJavaAPI.
Architecture of a CPLEX Java application

Describes the architecture of a Java application in Concert Technology.

In this section

Overview
Offers an overview of the architecture.

Licenses in a Java application
Describes licensing conventions specific to the Java API.

Compiling and linking a Java application
Tells where to find the compilation and linking instructions specific to the Java API.
Overview

A user-written application of IBM® ILOG® CPLEX® in Java first creates an IloCplex object. It then uses the Concert Technology modeling interface implemented by IloCplex to create the variables, the constraints, and the objective function of the model to be solved. For example, every variable in a model is represented by an object that implements the Concert Technology variable interface IloNumVar. The user code accesses the variable only through its Concert Technology interface. Similarly, all other modeling objects are accessed only through their respective Concert Technology interfaces from the user-written application, while the actual objects are maintained in the CPLEX® database.

A view of Concert Technology for Java users illustrates how an application uses Concert Technology, IloCplex, and the CPLEX® internals. The Java interfaces, represented by the dashed outline, do not actually consume memory. The CPLEX® internals include the computing environment, its communication channels, and your problem objects.

A user-written Java application and CPLEX® internals use separate memory heaps. Java supports two different command-line options of interest in this respect:

♦ -Xms sets the initial heap size for the Java-part of the application;
♦ -Xmx sets the maximum heap size for the Java part of the application.

For applications where more memory is needed, you must carefully assess whether the Java application needs to increase or decrease its memory heap. In some cases, the Java application needs more memory to create the model to be solved. If so, use the -Xmx option to increase the maximum heap size. Keep in mind that allocating more space in the heap to the Java application makes less memory available to the CPLEX® internals, so increase the maximum heap size only as needed. Otherwise, the Java application will use too much memory, imposing an unnecessary limitation on the memory available to the CPLEX® internals.

In cases where insufficient memory is available for CPLEX® internals, there are remedies to consider with respect to the heap:

♦ make sure the maximum heap size has not been set to a value larger than needed;
♦ consider reducing the default maximum heap size if the Java application can operate with less memory.

For users familiar with object-oriented design patterns, this design is that of a factory, where IloCplex is a factory for modeling objects. The advantage of such a design is that code which creates a model using the Concert Technology modeling interface can be used not only with IloCplex, but also with any other factory class, for instance IloSolver. This allows you to try different optimization technologies for solving your model.
A view of Concert Technology for Java users
Licenses in a Java application

CPLEX® runs under the control of the ILOG License Manager (ILM). Before you can run any application program that calls CPLEX®, you must have established a valid license that it can read. Licensing instructions are provided to you separately when you buy or upgrade CPLEX®. Contact your local support department if this information has not been communicated to you or if you find that you need help in establishing your CPLEX® license. For details about contacting support, see the product web site.
Compiling and linking a Java application

Compilation and linking instructions are provided with the files that come in the standard distribution of CPLEX® for your computer platform. Check the file readme.html for details.
Creating a Java application with Concert Technology

First, create a model of your problem with the modeling facilities of Concert Technology. Modeling an optimization problem with Concert Technology in the Java API offers an introduction to creating a model. Building the model goes into more detail.

When the model is ready to be solved, hand it over to CPLEX® for solving. Solving the model explains how to do so. It includes a survey of the IloCplex interface for controlling the optimization. Individual controls are discussed in the chapters explaining the individual optimizers.

Accessing solution information shows you how to access and interpret results from the optimization after solving the model.

After analyzing the results, you may want to make changes to the model and study their effect. Modifying the model explains how to make changes and how CPLEX® deals with them in the context of the diet problem.

Example: optimizing the diet problem in Java presents a complete program.

Not covered in this chapter are advanced features, such as the use of goals or callbacks to query data about an ongoing optimization and for controlling the optimization itself. Goals, callbacks, and other advanced features are discussed in Advanced programming techniques.
Modeling an optimization problem with Concert Technology in the Java API

Describes classes in the Java API to model an optimization problem.

In this section

Overview
Introduces classes to support models for CPLEX® in Java applications.

Using IloModeler
Describes the class IloModeler in the Java API.

The active model
Describes the active model in the Java API.

Building the model
Uses the diet example to demonstrate building a model for CPLEX® in Java.
Overview

An optimization problem is represented by a set of interconnected modeling objects in an instance of IloCplex or IloCplexModeler. Modeling objects in Concert Technology are objects of type IloNumVar and its extensions, or IloAddable and its extensions. Since these are Java interfaces and not classes, objects of these types cannot be created explicitly. Rather, modeling objects are created using methods of an instance of IloModeler or one of its extensions, such as IloMPModeler or IloCPModeler.

Note: The class IloCplex extends IloCplexModeler. All the modeling methods in IloCplex derive from IloCplexModeler. IloCplex implements the solving methods.

The class IloCplexModeler, which implements IloMPModeler, makes it possible for a user to build models in a Java application as pure Java objects, without using the class IloCplex.

In particular, a model built with IloCplexModeler using no instance of IloCplex does not require loading of the CPLEX.dll nor any shared library.

Furthermore, IloCplexModeler is serializable. For example, a user may develop a pure Java application that builds a model with IloCplexModeler and sends the model and modeling objects off to an optimization server that uses IloCplex.

The example CplexServer.java shows you how to write an optimization server that accepts pure Java model taking advantage of the class IloCplexModeler in a native J2EE client application.

This discussion concentrates on IloModeler and IloMPModeler because the classes IloCplex and IloCplexModeler implement these interfaces and thus inherit their methods. To create a new modeling object, you must first create the IloModeler which will be used to create the modeling object. For the discussion here, the model will be an instance of IloCplex, and it is created like this:

```java
IloCplex cplex = new IloCplex();
```

Since class IloCplex implements IloMPModeler (and thus its parent interface IloModeler) all methods from IloMPModeler and IloModeler can be used for building a model. IloModeler defines the methods to:

♦ create modeling variables of type integer, floating-point, or Boolean;
♦ construct simple expressions using modeling variables;
♦ create objective functions; and
♦ create ranged constraints, that is, constraints of the form:

```plaintext
lowerbound ≤ expression ≤ upperbound
```
Models that consist only of such constructs can be built and solved with any optimizer implementing the IloModeler interface, including IloCplex, which implements the IloMPModeler extension.

The IloMPModeler interface extends IloModeler by adding functionality specific to mathematical programming applications. This functionality includes these additional modeling object types:

♦ semi-continuous variables;
♦ special ordered sets; and
♦ piecewise linear functions.

It also includes these modeling features to support specific needs:

♦ change of type for previously declared variables;
♦ modeling by column; and
♦ general manipulations of model entities.

_Modeling classes of CPLEX with Concert Technology for Java users_ summarizes those observations about the interfaces of CPLEX® with Concert Technology for Java users.

### Modeling classes of CPLEX with Concert Technology for Java users

<table>
<thead>
<tr>
<th>To Model This</th>
<th>Use an Object of This Class or Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable</td>
<td>IloNumVar and its extensions IloIntVar and IloSemiContVar</td>
</tr>
<tr>
<td>range constraint</td>
<td>IloRange with (piecewise) linear or quadratic expressions</td>
</tr>
<tr>
<td>other relational constraint</td>
<td>IloConstraint of the form expr1 relation expr2, where both expressions are linear or quadratic and may optionally contain piecewise linear terms.</td>
</tr>
<tr>
<td>LP matrix</td>
<td>IloLPMatrix</td>
</tr>
<tr>
<td>linear or quadratic objective</td>
<td>IloObjective with (piecewise) linear or quadratic expressions</td>
</tr>
<tr>
<td>variable type-conversion</td>
<td>IloConversion</td>
</tr>
<tr>
<td>special ordered set</td>
<td>IloSOS1 or IloSOS2</td>
</tr>
<tr>
<td>logical constraints</td>
<td>IloOr, IloAnd, and methods such as not</td>
</tr>
</tbody>
</table>

For an explanation of quadratic constraints, see *Solving problems with quadratic constraints (QCP)*. For more information about quadratic objective functions, see *Solving problems with a quadratic objective (QP)*. For examples of piecewise linear constraints, see *Using piecewise linear functions in optimization: a transport example*. For a description of special ordered
sets, see *Using special ordered sets (SOS)*. For more about logical constraints, see *Logical constraints in optimization*. 
Using IloModeler

*IloModeler* defines an interface for building optimization models. This interface defines methods for constructing variable, constraint, and objective function objects.

Variables in a model

A modeling variable in Concert Technology is represented by an object of type *IloNumVar* or one of its extensions. You can choose from a variety of methods defined in *IloModeler* and *IloMPModeler* to create one or multiple modeling variable objects. An example of the method is:

```java
IloNumVar x = cplex.numVar(lb, ub, IloNumVarType.Float, "xname");
```

This constructor method allows you to set all the attributes of a variable: its lower and upper bounds, its type, and its name. Names are optional in the sense that null strings are considered to be valid as well.

The other constructor methods for variables are provided mainly for ease of use. For example, because names are not frequently assigned to variables, all variable constructors come in pairs, where one variant requires a name string as the last parameter and the other one does not (defaulting to a null string).

Integer variables can be created by the *intVar* methods, and do not require the type *IloNumVarType.Int* to be passed, as this is implied by the method name. The bound parameters are also specified more consistently as integers. These methods return objects of type *IloIntVar*, an extension of interface *IloNumVar* that allows you to query and set bounds consistently using integers, rather than doubles as used for *IloNumVar*.

Frequently, integer variables with 0/1 bounds are used as decision variables. To help create such variables, the *boolVar* methods are provided. In the Boolean type, 0 (zero) and 1 (one) are implied, so these methods do not need to accept any bound values.

For all these constructive methods, there are also equivalent methods for creating a complete array of modeling variables at one time. These methods are called *numVarArray*, *intVarArray*, and *boolVarArray*.

Expressions

Modeling variables are typically used in expressions that define constraints or objective functions. Expressions are represented by objects of type *IloNumExpr*. They are built using methods such as *sum*, *prod*, *diff*, *negative*, and *square*. For example, the expression

```
x1 + 2*x2
```

where *x1* and *x2* are *IloNumVar* objects, is constructed by this call:

```java
IloNumExpr expr = cplex.sum(x1, cplex.prod(2.0, x2));
```
It follows that a single variable is a special case of an expression, since `IloNumVar` is an extension of `IloNumExpr`.

The special case of linear expressions is represented by objects of type `IloLinearNumExpr`. Such expressions can be edited, especially convenient when linear expressions are being built in a loop, like this:

```csharp
IloLinearNumExpr lin = cplex.linearNumExpr();
for (int i = 0; i < num; ++i)
 lin.addTerm(value[i], variable[i]);
```

The special case of the scalar product of an array of values with an array of variables is directly supported through the method `scalProd`. Thus that loop can be rewritten as:

```csharp
IloLinearNumExpr lin = cplex.scalProd(value, variable);
```

It is recommended that you build expressions in terms of data that is either integer or double-precision (64-bit) floating-point. Single-precision (32-bit) floating-point data should be avoided as it can result in unnecessarily ill-conditioned problems. For more information, refer to `Numeric difficulties`.

### Ranged constraints

Ranged constraints are constraints of the form: \( lb \leq \text{expression} \leq ub \) and are represented in Concert Technology by objects of type `IloRange`. The most general constructor is:

```csharp
IloRange rng = cplex.range(lb, expr, ub, name);
```

where `lb` and `ub` are double values, `expr` is of type `IloNumExpr`, and `name` is a string.

By choosing the range bounds appropriately, ranged constraints can be used to model any of the more commonly found constraints of the form:

\[ \text{expr} \ \text{relation} \ \text{rhs} \]

where `relation` is the relation =, ≤, or ≥. The following table shows how to choose `lb` and `ub` for modeling these relations:

<table>
<thead>
<tr>
<th>relation</th>
<th>lb</th>
<th>ub</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>rhs</td>
<td>rhs</td>
<td>eq</td>
</tr>
<tr>
<td>≤</td>
<td>-Double.MAX_VALUE</td>
<td>rhs</td>
<td>le</td>
</tr>
<tr>
<td>≥</td>
<td>rhs</td>
<td>Double.MAX_VALUE</td>
<td>ge</td>
</tr>
</tbody>
</table>

The last column contains the method provided with `IloModeler` to use directly to create the appropriate ranged constraint, when you specify the expression and right-hand side (RHS). For example, the constraint \( \text{expr} \leq 1.0 \) is created by the call:
Again, all constructors for ranged constraints come in pairs, one constructor with and one without an argument for the name.

**The objective function**

The objective function in Concert Technology is represented by an object of type `IloObjective`. Such objects are defined by an optimization sense, an expression, and an optional name. The objective expression is represented by an `IloNumExpr`. The objective sense is represented by an object of class `IloObjectiveSense` and can take two values, `IloObjectiveSense.Maximize` or `IloObjectiveSense.Minimize`. The most general constructor for an objective function object is:

```
where sense is of type IloObjectiveSense, expr is of type IloNumExpr, and name is a string.
```

For convenience, the methods `maximize` and `minimize` are provided to create a maximization or minimization objective respectively, without using an `IloObjectiveSense` parameter. Names for objective function objects are optional, so all constructor methods come in pairs, one with and one without the name parameter.
Modeling objects, constraints and objective functions are created as explained in *Using IloModeler*; then these components must be added to the active model. The active model is the model implemented by the IloCplex object itself. In fact, IloModeler is an extension of the IloModel interface defining the model API. Thus, IloCplex implements IloModel, or in other words, an IloCplex object is a model. The model implemented by the IloCplex object itself is referred to as the active model of the IloCplex object, or if there is no possibility of confusion between several optimizers, simply as the active model.

A model is just a set of modeling objects of type IloAddable such as IloObjective and IloRange. Objects of classes implementing this interface can be added to an instance of IloModel. Other IloAddable objects usable with IloCplex are IloLPMatrix, IloConversion, IloSOS1, and IloSOS2. These will be covered in the IloMPModeler section.

Variables cannot be added to a model because IloNumVar is not an extension of IloAddable. All variables used by other modeling objects (IloAddable objects) that have been added to a model are implicitly part of this optimization model. The explicit addition of a variable to a model can thus be avoided.

During modeling, a typical sequence of operations is to create a modeling object and immediately add it to the active model. To facilitate this, for most constructors with a name such as ConstructorName, there is also a method add ConstructorName which immediately adds the newly constructed modeling object to the active model. For example, the call:

```java
IloObjective obj = cplex.addMaximize(expr);
```

is equivalent to:

```java
IloObjective obj = cplex.add(cplex.maximize(expr));
```

Not only do the add ConstructorName -methods simplify the program, they are also more efficient than the two equivalent calls because an intermediate copy can be avoided.
Building the model

All the building blocks are now in place to implement a method that creates a model. The diet problem consists of finding the least expensive diet using a set of foods such that all nutritional requirements are satisfied. The example in this chapter builds the specific diet model, chooses an optimizing algorithm, and shows how to access more detailed information about the solution.

The example includes a set of foods, where food \( j \) has a unit cost of \( \text{foodCost}[j] \). The minimum and maximum amount of food \( j \) which can be used in the diet is designated \( \text{foodMin}[j] \) and \( \text{foodMax}[j] \), respectively. Each food \( j \) also has a nutritional value \( \text{nutrPerFood}[i][j] \) for all possible nutrients \( i \). The nutritional requirement states that in the diet the amount of every nutrient \( i \) consumed must be within the bounds \( \text{nutrMin}[i] \) and \( \text{nutrMax}[i] \).

Mathematically, this problem can be modeled using a variable \( \text{Buy}[j] \) for each food \( j \) indicating the amount of food \( j \) to buy for the diet. Then the objective is:

\[
\text{minimize } \sum_j (\text{Buy}[j] \times \text{foodCost}[j])
\]

The nutritional requirements mean that the following conditions must be observed; that is, for all \( i \):

\[
\text{nutriMin}[i] \leq \sum_i \text{nutrPerFood}[i][j] \times \text{Buy}[j] \leq \text{nutriMax}[i]
\]

Finally, every food must be within its bounds; that is, for all \( j \):

\[
\text{foodMin}[j] \leq \text{Buy}[j] \leq \text{foodMax}[j]
\]

With what you have learned so far, you can implement a method that creates such a model.

```java
static void buildModelByRow(IloModeler model, Data data, IloNumVar[] Buy, IloNumVarType type) throws IloException {
 int nFoods = data.nFoods;
 int nNutrs = data.nNutrs;

 for (int j = 0; j < nFoods; j++) {
 Buy[j] = model.numVar(data.foodMin[j], data.foodMax[j], type);
 }
 model.addMinimize(model.scalProd(data.foodCost, Buy));

 for (int i = 0; i < nNutrs; i++) {
 model.addRange(data.nutrMin[i], model.scalProd(data.nutrPerFood[i], Buy), data.nutrMax[i]);
 }
}
```
The function accepts several arguments. The argument `model` is used for two purposes:

- creating other modeling objects, and
- representing the model being created.

The argument `data` contains the data for the model to be built. The argument `Buy` is an array, initialized to length `data.nFoods`, containing the model's variables. Finally, the argument `type` is used to specify the type of the variables being created.

The function starts by creating the modeling variables, one by one, and storing them in the array `Buy`. Each variable `j` is initialized to have bounds `data.foodMin[j]` and `data.foodMax[j]` and to be of type `type`.

The variables are first used to construct the objective function expression with the method `model.scalProd(foodCost, Buy)`. This expression is immediately used to create the minimization objective which is directly added to the active model by `addMinimize`.

In the loop that follows, the nutritional constraints are added. For each nutrient `i` the expression representing the amount of nutrient in a diet with food levels `Buy` is computed using `model.scalProd(nutrPerFood[i], Buy)`. This amount of nutrient must be within the ranged constraint bounds `nutrMin[i]` and `nutrMax[i]`. This constraint is created and added to the active model with `addRange`.

Note that function `buildModelByRow` uses the interface `IloModeler` rather than `IloCplex`. This convention allows the function to be called without change in another implementation of `IloModeler`, such as `IloCP`. 

```python
}
```
Solving the model

After you have created an optimization problem in your active model, you solve it by means of the IloCplex object. For an object named cplex, for example, you solve by calling the method like this:

```cplex.solve();```

The solve method returns a Boolean value specifying whether or not a feasible solution was found and can be queried. However, when true is returned, the solution that was found may not be the optimal one; for example, the optimization may have terminated prematurely because it reached an iteration limit.

Additional information about a possible solution available in the IloCplex object can be queried with the method getStatus returning an IloCplex.Status object. Possible statuses are summarized in Solution status.

Solution status

<table>
<thead>
<tr>
<th>Return Status</th>
<th>Active Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>It has not been possible to process the active model, or an error occurred during the optimization.</td>
</tr>
<tr>
<td>Unknown</td>
<td>It has not been possible to process the active model far enough to prove anything about it. A common reason may be that a time limit was reached.</td>
</tr>
<tr>
<td>Feasible</td>
<td>A feasible solution for the model has been proven to exist.</td>
</tr>
<tr>
<td>Bounded</td>
<td>It has been proven that the active model has a finite bound in the direction of optimization. However, this does not imply the existence of a feasible solution.</td>
</tr>
<tr>
<td>Optimal</td>
<td>The active model has been solved to optimality. The optimal solution can be queried.</td>
</tr>
<tr>
<td>Infeasible</td>
<td>The active model has been proven to possess no feasible solution.</td>
</tr>
<tr>
<td>Unbounded</td>
<td>The active model has been proven to be unbounded. The notion of unboundedness adopted by IloCplex is technically that of dual infeasibility; this does not include the notion that the model has been proven to be feasible. Instead, what has been proven is that if there is a feasible solution with objective value z*, there exists a feasible solution with objective value z*-1 for a minimization problem, or z*+1 for a maximization problem.</td>
</tr>
<tr>
<td>InfeasibleOrUnbounded</td>
<td>The active model has been proven to be infeasible or unbounded.</td>
</tr>
</tbody>
</table>

For example, an Optimal status indicates that an optimal solution has been found and can be queried, whereas an Infeasible status indicates that the active model has been proven...
to be infeasible. See the online *CPLEX Java API Reference Manual* for more information about these statuses.

More detailed information about the status of the optimizer can be queried with method `getCplexStatus` returning an object corresponding to CPLEX® status codes. Again the online *CPLEX Java API Reference Manual* contains further information about this.
Accessing solution information

If a solution has been found with the `solve` method, you access it and then query it using a variety of methods. The objective function can be accessed by the call:

```java
double objval = cplex.getObjValue();
```

The values of individual modeling variables for the solution are accessed by the methods `IloCplex.getValue`, for example:

```java
double x1 = cplex.getValue(var1);
```

Frequently, solution values for an array of variables are needed. Rather than your having to implement a loop to query the solution values variable by variable, use the method `IloCplex.getValues` to do so with only one function call, like this:

```java
double[] x = cplex.getValues(vars);
```

Similarly, you query slack values for the constraints in the active model by means of the methods `IloCplex.getSlack` or `IloCplex.getSlacks`.

These ideas apply to solving and printing the solution to the diet problem as well.

```java
IloCplex cplex = new IloCplex();
IloNumVar[] Buy = new IloNumVar[nFoods];

if ( byColumn ) buildModelByColumn(cplex, data, Buy, varType);
    else buildModelByRow (cplex, data, Buy, varType);

    // Solve model
    if ( cplex.solve() ) {
        System.out.println();
        System.out.println("Solution status = " + cplex.getStatus());
        System.out.println();
        System.out.println(" cost = " + cplex.getObjValue());
        for (int i = 0; i < nFoods; i++) {
            System.out.println(" Buy" + i + " = " +
                              cplex.getValue(Buy[i]));
        }
        System.out.println();
    }
```

These lines of code start by creating a new `IloCplex` object and passing it, along with the raw data in another object, either to the method `buildModelByColumn` or to the method `buildModelByRow`. The array of variables returned by it is saved as the array `Buy`. Then the method `solve` optimizes the active model and, upon success, the application prints solution information.
Choosing an optimizer

Describes algorithms implemented in the Java API for solving optimization problems.

In this section

Overview
Introduces the Java methods that solve a problem in CPLEX®.

What does CPLEX solve?
Explains what is solved in terms of problem types.

Solving a single continuous model
Shows how to choose the optimizer to solve a single continuous model.

Solving subsequent continuous relaxations in a MIP
Shows how to choose the optimizer to solve a series of relaxations.
Overview

The algorithm implemented in the solve methods can be controlled and if necessary tailored to the particular needs of the model. The most important control you exercise is your selection of the optimizer.
What does CPLEX solve?

Given an active model, CPLEX® solves one continuous relaxation or a series of continuous relaxations.

♦ A single LP is solved if IloCplex.isMIP, IloCplex.isQO, and IloCplex.isQC return false. This is the case if the active model does not include:

- integer variables, Boolean variables, or semi-continuous variables;
- special ordered sets (SOS);
- piecewise linear functions among the constraints; or
- quadratic terms in the objective function or among the constraints.

IloCplex provides several optimizing algorithms to solve LPs. For more about those optimizers, see Solving LPs: simplex optimizers, Solving LPs: barrier optimizer, and Solving network-flow problems in this manual.

♦ A single QP is solved if both IloCplex.isMIP and IloCplex.isQC return false and IloCplex.isQO returns true. This is the case if the active model contains a quadratic (and positive semi-definite) objective but does not contain:

- integer variables, Boolean variables, or semi-continuous variables;
- quadratic terms among the constraints;
- special ordered sets; or
- piecewise linear functions among the constraints.

As in the case of LPs, IloCplex provides several optimizing algorithms to solve QPs. For more about identifying this kind of problem, see Solving problems with a quadratic objective (QP).

♦ A single QCP is solved if IloCplex.isMIP returns false and IloCplex.isQC returns true, indicating that it detected a quadratically constrained program (QCP). This is the case if the active model includes one or more quadratic (and positive semi-definite) constraints but does not contain:

- integer variables, Boolean variables, or semi-continuous variables;
- special ordered sets; or
- piecewise linear functions.

IloCplex solves QCP models using the barrier optimizer. For more about this kind of problem, see Solving problems with quadratic constraints (QCP), where the special case of second order cone programming (SOCP) problems is also discussed.

In short, an LP model has a linear objective function and linear constraints; a QP model has a quadratic objective function and linear constraints; a QCP includes quadratic constraints, and it may have a linear or quadratic objective function. A problem that can be represented as LP, QP, or QCP is also known collectively as a continuous model or a continuous relaxation.
A series of relaxations is solved if the active model is a MIP, which can be recognized by `IloCplex.isMIP` returning `true`. This is the case if the model contains any of the objects excluded for single continuous models. If a MIP contains a purely linear objective function, (that is, `IloCplex.isQO` returns `false`), the problem is more precisely called an MILP. If it includes a positive semidefinite quadratic term in the objective, it is called an MIQP. If it includes a constraint that contains a positive semidefinite quadratic term, it is called an MIQCP. MIPs are solved using branch & cut search, explained in more detail in *Solving mixed integer programming problems (MIP)*.
Solving a single continuous model

To choose the optimizer to solve a single continuous model, or the first continuous relaxation in a series, use

\[
\text{IloCplex.setParam(IloCplex.IntParam.RootAlg, alg)}
\]

where \(\text{alg} \) is an integer specifying the algorithm type. *Algorithm types for RootAlg* shows you the available types of algorithms.

Algorithm types for RootAlg

<table>
<thead>
<tr>
<th>(\text{alg})</th>
<th>Algorithm Type</th>
<th>LP?</th>
<th>QP?</th>
<th>QCP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IloCplex.Algorithm.Auto</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>IloCplex.Algorithm.Primal</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>2</td>
<td>IloCplex.Algorithm.Dual</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>3</td>
<td>IloCplex.Algorithm.Network</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>4</td>
<td>IloCplex.Algorithm.Barrier</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>IloCplex.Algorithm.Sifting</td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
<tr>
<td>6</td>
<td>IloCplex.Algorithm.Concurrent</td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
</tbody>
</table>

You are not obliged to set this parameter. In fact, if you do not explicitly call \(\text{IloCplex.setParam(IloCplex.IntParam.RootAlg, alg)} \), CPLEX® will use the default: IloCplex.Algorithm.Auto. In contrast, any invalid setting, such as a value other than those of the enumeration, will produce an error message.

The IloCplex.Algorithm.Sifting algorithm is not available for QP. IloCplex will default to the IloCplex.Algorithm.Auto setting when the parameter IloCplex.IntParam.RootAlg is set to IloCplex.Algorithm.Sifting for a QP.

Only the settings IloCplex.Algorithm.Auto and IloCplex.Algorithm.Barrier are available for a QCP.
Solving subsequent continuous relaxations in a MIP

Parameter `IloCplex.IntParam.RootAlg` also controls the algorithm used for solving the first continuous relaxation when solving a MIP. The algorithm for solving all subsequent continuous relaxations is then controlled by the parameter `IloCplex.IntParam.NodeAlg`.

In other words, use the root algorithm parameter to choose the optimizer for solving at the root, and use the node algorithm parameter to choose the optimizer for solving at the subsequent nodes of the problem.

The algorithm choices appear in *Algorithm types for NodeAlg*

<table>
<thead>
<tr>
<th>alg</th>
<th>Algorithm Type</th>
<th>MILP?</th>
<th>MIQP?</th>
<th>MIQCP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>IloCplex.Algorithm.Auto</code></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td><code>IloCplex.Algorithm.Primal</code></td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>2</td>
<td><code>IloCplex.Algorithm.Dual</code></td>
<td>yes</td>
<td>yes</td>
<td>not available</td>
</tr>
<tr>
<td>3</td>
<td><code>IloCplex.Algorithm.Network</code></td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
<tr>
<td>4</td>
<td><code>IloCplex.Algorithm.Barrier</code></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td><code>IloCplex.Algorithm.Sifting</code></td>
<td>yes</td>
<td>not available</td>
<td>not available</td>
</tr>
</tbody>
</table>
Describes the features that control optimizers in the Java API.

In this section

Overview
Introduces the methods to invoke CPLEX® parameters in a Java application.

Parameters
Introduces parameters as a means to control optimizers in the Java API.

Priority orders and branching directions
Introduces methods in the Java API to specify priority orders and branching directions.
Overview

Though CPLEX® defaults will prove sufficient to solve most problems, CPLEX® offers a variety of other parameters to control various algorithmic choices. CPLEX® parameters can take values of type boolean, int, double, and string. The parameters are accessed via parameter names defined in classes IloCplex.BooleanParam, IloCplex.IntParam, IloCplex.DoubleParam, and IloCplex.StringParam corresponding to the parameter type.
Parameters

Parameters are manipulated by means of IloCplex.setParam.

For example:

```cpp
cplex.setParam(IloCplex.BooleanParam.PreInd, false);
```

sets the Boolean parameter PreInd to false, instructing CPLEX® not to apply presolve before solving the problem.

Integer parameters often indicate a choice from a numbered list of possibilities, rather than a quantity. For example, the class IloCplex.PrimalPricing defines constants with the integer parameters shown in Constants in IloCplex.PrimalPricing for better maintainability of the code.

Constants in IloCplex.PrimalPricing

<table>
<thead>
<tr>
<th>Integer Parameter</th>
<th>Constant in class IloCplex.PrimalPricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IloCplex.PrimalPricing.Auto</td>
</tr>
<tr>
<td>1</td>
<td>IloCplex.PrimalPricing.Devex</td>
</tr>
<tr>
<td>2</td>
<td>IloCplex.PrimalPricing.Steep</td>
</tr>
<tr>
<td>3</td>
<td>IloCplex.PrimalPricing.SteepQStart</td>
</tr>
<tr>
<td>4</td>
<td>IloCplex.PrimalPricing.Full</td>
</tr>
</tbody>
</table>

Thus, the suggested method for setting steepest-edge pricing for use with the primal simplex algorithm looks like this:

```cpp
cplex.setParam(IloCplex.IntParam.PPriInd, IloCplex.PrimalPricing.Steep);
```

Classes with parameters defined by integers. gives an overview of the classes defining constants for parameters.
Classes with parameters defined by integers.

<table>
<thead>
<tr>
<th>Class</th>
<th>For use with parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IloCplex.MIPEmphasis</td>
<td>IloCplex.IntParam.MIPEmphasis</td>
</tr>
<tr>
<td>IloCplex.VariableSelect</td>
<td>IloCplex.IntParam.VarSel</td>
</tr>
<tr>
<td>IloCplex.DualPricing</td>
<td>IloCplex.IntParam.DPriInd</td>
</tr>
<tr>
<td>IloCplex.PrimalPricing</td>
<td>IloCplex.IntParam.PPriInd</td>
</tr>
</tbody>
</table>

Parameters can be queried with method `IloCplex.getParam` and reset to their default settings with method `IloCplex.setDefaults`. The minimum and maximum value to which an integer or double parameter can be set is queried with methods `IloCplex.getMin` and `IloCplex.getMax`, respectively. The default value of a parameter is obtained with `IloCplex.getDefault`.
Priority orders and branching directions

When CPLEX® is solving a MIP, another important way for you to control the solution process is by providing priority orders and branching directions for variables.

The methods for doing so are these:

♦ `IloCplex.setDirection`,
♦ `IloCplex.setDirections`,
♦ `IloCplex.setPriority`, and
♦ `IloCplex.setPriorities`.

Priority orders and branch directions allow you to control the branching performed during branch & cut in a static way.

Dynamic control of the solution process of MIPs is provided through goals or control callbacks. Goals are discussed for C++ in *Using goals*. Control callbacks are discussed in *Using optimization callbacks*. (Java goals and callbacks are similar to the C++ goals and callbacks.) Goals and callbacks allow you to control the solution process when solving MIPs based on information generated during the solution process itself. *Goals and callbacks: a comparison* contrasts the advantages of both.
More solution information

Describes additional information available from a solution.

In this section

Overview
Introduces methods in Java to access information about a solution in CPLEX®.

Writing solution files
Describes methods of the Java API to write solution files.

Dual solution information
Describes methods of the Java API to access dual solution information.

Basis information
Describes methods of the Java API to access basis information.

Infeasible solution information
Describes methods of the Java API to access information about an infeasible solution.

Solution quality
Describes methods of the Java API to access information about the quality of a solution.
Overview

Depending on the model being solved and the algorithm being used, more solution information is generated in addition to the objective value and solution values for variables and slacks.
Writing solution files

The class IloCplex offers a variety of ways to write information about a solution that it has found.

After solving, you can call the method IloCplex.writeMIPstart to write a MIP solution suitable for a restart. The file it writes is in MST format. That format is documented by MST file format: MIP starts in the CPLEX File Formats Reference Manual.

The method IloCplex.exportModel writes the active model to a file. The format of the file depends on the file extension in the name of the file that your application passes as an argument to this method. A model exported in this way to a file can be read back into CPLEX® by means of the method IloCplex.importModel. Both these methods are documented more fully in the reference manual of the Java API.
When solving an LP or QP, all the algorithms also compute dual solution information that your application can then query. (However, no dual information is available for QCP models.) You can access reduced costs by calling the method `IloCplex.getReducedCost` or `IloCplex.getReducedCosts`. Similarly, you can access dual solution values for the ranged constraints of the active model by using the methods `IloCplex.getDual` or `IloCplex.getDuals`.
Basis information

When solving an LP using all but `IloCplex.Algorithm.Barrier` without crossover, or when solving a QP with a Simplex optimizer, basis information is available as well. Basis information can be queried for the variables and ranged constraints of the active model using method `IloCplex.getBasisStatus`. This method returns basis statuses for the variables or constraints using objects of type `IloCplex.BasisStatus`, with possible values:

- `IloCplex.BasisStatus.Basic`
- `IloCplex.BasisStatus.AtLower`
- `IloCplex.BasisStatus.AtUpper`
- `IloCplex.BasisStatus.FreeOrSuperbasic`

The availability of a basis for an LP allows you to perform sensitivity analysis for your model. Such analysis tells you by how much you can modify your model without affecting the solution you found. The modifications supported by the sensitivity analysis function include variable bound changes, changes to the bounds of ranged constraints, and changes to the objective function. They are analyzed by methods `IloCplex.getBoundSA`, `IloCplex.getRangeSA`, `IloCplex.getRHS SA` and `IloCplex.getObjSA`, respectively.
Infeasible solution information

An important feature of CPLEX® is that even if no feasible solution has been found, (that is, if \texttt{cplex.solve} returns \texttt{false}), some information about the problem can still be queried. All the methods discussed so far may successfully return information about the current (infeasible) solution that CPLEX® maintains.

Unfortunately, there is no simple comprehensive rule about whether or not current solution information can be queried. This is because by default, CPLEX® uses a presolve procedure to simplify the model. If, for example, the model is proven to be infeasible during the presolve, no current solution is generated by the optimizer. If, in contrast, infeasibility is only proven by the optimizer, current solution information is available to be queried. The status returned by calling \texttt{cplex.getCplexStatus} may help you decide which case you are facing, but it is probably safer and easier to include the methods for querying the solution within \texttt{try / catch} statements.

The method \texttt{IloCplex.isPrimalFeasible} can be called to learn whether a primal feasible solution has been found and can be queried. Similarly, the method \texttt{IloCplex.isDualFeasible} can be called to learn whether a dual feasible solution has been found and can be queried.

When an LP has been proven to be infeasible, CPLEX® provides assistance for investigating the cause of the infeasibility through two different approaches: the conflict refiner and FeasOpt.

One approach, invoked by the method \texttt{IloCplex.refineConflict}, computes a minimal set of conflicting constraints and bounds and reports them to you for you to take action to remove the conflict from your infeasible model. For more about this approach, see \textit{Diagnosing infeasibility by refining conflicts}.

Another approach to consider is the method \texttt{IloCplex.feasOpt} to explore whether there are modifications you can make that would render your model feasible. \textit{Repairing infeasibility: FeasOpt} explains that feature of CPLEX® more fully, with examples of its use.
Solution quality

The CPLEX® optimizer uses finite precision arithmetic to compute solutions. To compensate for numeric errors due to this, tolerances are used by which the computed solution is allowed to violate feasibility or optimality conditions. Thus the solution computed by the solve method may in fact slightly violate the bounds specified in the active model.

IloCplex provides the method getQuality to allow you to analyze the quality of the solution. Several quality measures are defined in class IloCplex.QualityType. For example, to query the maximal bound violation of variables or slacks of the solution found by cplex.solve, call getQuality, like this:

```java
IloCplex.QualityType inf = cplex.getQuality(IloCplex.QualityType.MaxPrimalInfeas);
double maxinfeas = inf.getValue();
```

The variable or constraint for which this maximum infeasibility occurs can be queried by inf.getNumVar or inf.getRange, one of which returns null. Not all quality measures are available for solutions generated by different optimizers. See the CPLEX Java API Reference Manual for further details.
Advanced modeling with IloLPMatrix

Introduces the Java class supporting matrix-oriented modeling in CPLEX®.

So far the constraints have been considered only individually as ranged constraints of type IloRange; this approach is known as modeling by rows. However, mathematically the models that can be solved with IloCplex are frequently represented as:

\[
\begin{align*}
\text{Minimize (or Maximize) } & \ f(x) \\
\text{such that } & \quad L \leq Ax \leq U \\
\text{with these bounds } & \quad L \leq x \leq U
\end{align*}
\]

where \(A \) is a sparse matrix. A sparse matrix is one in which a significant portion of the coefficients are zero, so algorithms and data structures can be designed to take advantage of it by storing and working with the substantially smaller subset of nonzero coefficients.

Objects of type IloLPMatrix are provided for use with IloCplex to express constraint matrices rather than individual constraints. An IloLPMatrix object allows you to view a set of ranged constraints and the variables used by them as a matrix, that is, as: \(L \leq Ax \leq U \)

Every row of an IloLPMatrix object corresponds to an IloRange constraint, and every column of an IloLPMatrix object corresponds to a modeling variable (an instance of IloNumVar).

An IloLPMatrix object is created with the method LPMatrix defined in IloMPModeler like this:

```java
IloLPMatrix lp = cplex.LPMatrix();
```

(or cplex.addLPMatrix to add it immediately to the active model). The rows and columns are then added to it by specifying the non-zero matrix coefficients. Alternatively, you can add complete IloRange and IloNumVar objects to it to create new rows and columns. When adding ranged constraints, columns will be implicitly added for all the variables in the constraint expression that do not already correspond to a column of the IloLPMatrix. The IloLPMatrix object will make sure of consistency between the mapping of rows to constraints and columns to variables. For example, if a ranged constraint that uses variables not yet part of the IloLPMatrix is added to the IloLPMatrix, new columns will automatically be added and associated to those variables.

See the online CPLEX Java API Reference Manual for more information about IloLPMatrix methods.
Modeling by column

Introduces modeling by columns as implemented in the Java API.

In this section

What is modeling by column?
Explains modeling by column.

Procedure for Modeling by Column
Tells how to model by columns in the Java API.
What is modeling by column?

The concept of modeling by column modeling comes from the matrix view of mathematical programming problems. Starting from a (degenerate) constraint matrix with all its rows but no columns, you populate it by adding columns to it. The columns of the constraint matrix correspond to variables.

Modeling by column in CPLEX® is not limited to IloLPMatrix, but can be approached through IloObjective and IloRange objects as well. In short, for CPLEX®, modeling by column can be more generally understood as using columns to hold a place for new variables to install in modeling objects, such as an objective or row. The variables are created as explained in Procedure for Modeling by Column.
Procedure for Modeling by Column

Start by creating a description of how to install a new variable into existing modeling objects. Such a description is represented by IloColumn objects. Individual IloColumn objects define how to install a new variable in one existing modeling object and are created with one of the IloMIPModeler.column methods. Several IloColumn objects can be linked together (with the IloCplex.and method) to install a new variable in all modeling objects in which it is to appear. For example:

```java
IloColumn col = cplex.column(obj, 1.0).and(cplex.column(rng, 2.0));
```

can be used to create a new variable and install it in the objective function represented by obj with a linear coefficient of 1.0 and in the ranged constraint rng with a linear coefficient of 2.0.

After you have created the proper column object, use it to create a new variable by passing it as the first parameter to the variable constructor. The newly created variable will be immediately installed in existing modeling objects as defined by the IloColumn object that has been used. So this line:

```java
IloNumVar var = cplex.numVar(col, 0.0, 1.0);
```

creates a new variable with bounds 0.0 and 1.0 and immediately installs it in the objective obj with linear coefficient 1.0 and in the ranged constraint rng with linear coefficient 2.0.

All constructor methods for variables come in pairs, one with and one without a first IloColumn parameter. Methods for constructing arrays of variables are also provided for modeling by column. These methods take an IloColumnArray object as a parameter that defines how each individual new variable is to be installed in existing modeling objects.
Example: optimizing the diet problem in Java

The problem solved in this example is to minimize the cost of a diet that satisfies certain nutritional constraints. You might also want to compare this approach through the Java API of CPLEX® with similar applications in other programming languages:

♦ Example: optimizing the diet problem in C++
♦ Example: optimizing the diet problem in C#.NET
♦ Example: optimizing the diet problem in the Callable Library

This example was chosen because it is simple enough to be viewed from a row as well as from a column perspective. Both ways are shown in the example. In this example, either perspective can be viewed as natural. Only one approach will seem natural for many models, but there is no general way of deciding which is more appropriate (rows or columns) in a particular case.

The example accepts a filename and two options -c and -i as command line arguments. Option -i allows you to create a MIP model where the quantities of foods to purchase must be integers. Option -c can be used to build the model by columns.

The example starts by evaluating the command line arguments and reading the input data file. The input data of the diet problem is read from a file using an object of the embedded class Diet.Data. Its constructor requires a file name as an argument. Using the class InputDataReader, it reads the data from that file. This class is distributed with the examples, but will not be considered here as it does not use CPLEX® or Concert Technology in any special way.

After the data has been read, the IloCplex modeler/optimizer is created.

```java
IloCplex cplex = new IloCplex();
IloNumVar[] Buy = new IloNumVar[nFoods];

if ( byColumn ) buildModelByColumn(cplex, data, Buy, varType);
else buildModelByRow (cplex, data, Buy, varType);```

The array IloNumVar[] Buy is also created where the modeling variables will be stored by buildModelByRow or buildModelByColumn.

You have already seen a method very similar to buildModelByRow. This function is called when byColumn is false, which is the case when the example is executed without the -c command line option; otherwise, buildModelByColumn is called. Note that unlike buildModelByRow, this method requires IloMPModeler rather than IloModeler as an argument since modeling by column is not available with IloModeler.

First, the function creates an empty minimization objective and empty ranged constraints, and adds them to the active model.

```java
IloObjective cost = model.addMinimize();
IloRange[] constraint = new IloRange[nNutrs];```
for (int i = 0; i < nNutrs; i++) {
 constraint[i] = model.addRange(data.nutrMin[i], data.nutrMax[i]);
}

Empty means that they use a 0 expression. After that the variables are created one by one, and installed in the objective and constraints modeling by column. For each variable, a column object must be created. Start by creating a column object for the objective by calling:

IloColumn col = model.column(cost, data.foodCost[j]);

The column is then expanded to include the coefficients for all the constraints using \texttt{col}. and with the column objects that are created for each constraint, as in the following loop:

for (int i = 0; i < nNutrs; i++) {
 col = col.and(model.column(constraint[i], data.nutrPerFood[i][j]));
}

When the full column object has been constructed it is finally used to create and install the new variable like this:

Buy[j] = model.numVar(col, data.foodMin[j], data.foodMax[j], type);

After the model has been created, solving it and querying the solution is straightforward. What remains to be pointed out is the exception handling. In case of an error, CPLEX® throws an exception of type \texttt{IloException} or one of its subclasses. Thus the entire CPLEX® program is enclosed in \texttt{try/catch} statements. The \texttt{InputDataReader} can throw exceptions of type \texttt{java.io.IOException} or \texttt{InputDataReader.InputDataReaderException}.

Since none of these three possible exceptions is handled elsewhere, the \texttt{main} function ends by catching them and issuing appropriate error messages.

The call to the method \texttt{cplex.end} frees the memory that CPLEX® uses.

The entire source code listing for the example is available as \texttt{Diet.java} in the standard distribution at \texttt{yourCPLEXinstallation/examples/src}.
Modifying the model

An important feature of CPLEX® is that you can modify a previously created model to consider different scenarios. Furthermore, depending on the optimization model and algorithm used, CPLEX® will save as much information from a previous solution as possible when optimizing a modified model.

The most important modification method is IloModel.add, for adding modeling objects to the active model. Conversely, you can use IloModel.remove to remove a modeling object from a model, if you have previously added that object.

When you add a modeling object such as a ranged constraint to a model, all the variables used by that modeling object implicitly become part of the model as well. However, when you remove a modeling object, no variables are implicitly removed from the model. Instead, variables can only be explicitly removed from a model by calling IloMPModeler.delete. (The interface IloMPModeler derives from the class IloModel, among others. It is implemented by the class IloCplex.) This call will cause the specified variables to be deleted from the model, and thus from all modeling objects in the model that are using these variables. In other words, deleting variables from a model may implicitly modify other modeling objects in that model.

The API of specific modeling objects may provide modification methods. For example, you can change variable bounds by using the methods IloNumVar.setLB and IloNumVar.setUB. Similarly, you can change the bounds of ranged constraints by using IloRange.setLB and IloRange.setUB.

Because not all the optimizers that implement the IloModeler interface support the ability to modify a model, modification methods are implemented in IloMPModeler. These methods are for manipulating the linear expressions in ranged constraints and objective functions used with IloCplex. The methods IloMPModeler.setLinearCoef, IloMPModeler.setLinearCoefs, and IloMPModeler.addToExpr apply in this situation.

The type of a variable cannot be changed. However, it can be overwritten for a particular model by adding an IloConversion object, which allows you to specify new types for variables within that model. When CPLEX® finds a conversion object in the active model, it uses the variable types specified in the conversion object instead of the original type specified for the optimization. For example, in a model containing the following lines, CPLEX® will only generate solutions where variable x is an integer (within tolerances), yet the type returned by x.getType will remain IloNumVarType.Float.

```c++
IloNumVar x = cplex.numVar(0.0, 1.0);
cplex.add(cplex.conversion(x, IloNumVarType.Int));
```

A variable can be used only in at most one conversion object, or the model will no longer be unambiguously defined. This convention does not imply that the type of a variable can be changed only once and never again after that. Instead, you can remove the conversion object and add a new one to implement consecutive variable type changes. To remove the conversion object, use the method IloModel.remove.
Explores the features that CPLEX® offers to users of C#.NET through Concert Technology.

In this section

Prerequisites
Prepares the reader for this tutorial.

Describe
States the aim of the tutorial and describes the finished application.

Step 1: Describe the problem
Suggests questions to ask when you describe the problem.

Step 2: Open the file
Tells where to find lessons for this tutorial.

Model
Describes the modeling step of this tutorial.

Step 3: Create the model
Shows lines to create the model in a .NET application of CPLEX®.

Step 4: Create an array to store the variables
Shows lines to create an array in a .NET application of CPLEX®.

Step 5: Specify by row or by column
Shows lines to add to accept arguments in a .NET application of CPLEX®.
Build by Rows
Introduces reason for a static method in this example.

Step 6: Set up rows
Shows lines to declare a static method in a .NET application of CPLEX®.

Step 7: Create the variables: build and populate by rows
Shows lines to create variables for this example.

Step 8: Add objective
Shows lines to add an objective to this example.

Step 9: Add nutritional constraints
Shows lines to add constraints to this example.

Build by Columns
Introduces the need for a static method in the example.

Step 10: Set up columns
Shows lines to build the model by columns.

Step 11: Add empty objective function and constraints
Shows lines to add objective function and constraints in a model built by columns.

Step 12: Create variables
Shows lines to create variables in a model built by columns.

Solve
Describes steps in the tutorial to solve the problem.

Step 13: Solve
Shows line to invoke the solver in this example.

Step 14: Display the solution
Shows lines to display the solution in this example.

Step 15: End application and free license
Shows a line to end the application and free the license for this example.

Good programming practices
Describes good programming practices to include in the application.

Step 16: Read the command line (data from user)
Shows lines to read data entered by a user of this example.

Step 17: Show correct use of command line
Shows lines that prompt user about correct usage.
Step 18: Enclose the application in try catch statements
Shows lines to enclose this application in try catch statements.

Example: optimizing the diet problem in C#.NET
Tells where to find complete application, project, lessons for the tutorial.
Prerequisites

This tutorial walks you through an application based on the widely published diet problem.

The .NET API can be used from any programming language in the .NET framework. This tutorial concentrates on an example using C#.NET. There are also examples of VB.NET (Visual Basic in the .NET framework) delivered with IBM® ILOG® CPLEX® in your CPLEX home \examples\src. Because of their .NET framework, those VB.NET examples differ from the traditional Visual Basic examples that may already be familiar to some CPLEX® users.

Note: This topic consists of a tutorial based on a procedure-based learning strategy. The tutorial is built around a sample problem, available in a file that can be opened in an integrated development environment, such as Microsoft Visual Studio. As you follow the steps in the tutorial, you can examine the code and apply concepts explained in the tutorials. Then you compile and execute the code to analyze the results. Ideally, as you work through the tutorial, you are sitting in front of your computer with Concert Technology for .NET users and CPLEX® already installed and available in your integrated development environment.

For hints about checking your installation of CPLEX® and Concert Technology for .NET users, see the online manual *Getting Started*. It is also a good idea to try the tutorial for .NET users in that manual before beginning this one.
Describe

The aim of this tutorial is to build a simple application with CPLEX® and Concert Technology for .NET users. The tutorial is based on the well known diet problem: to minimize the cost of a daily diet that satisfies certain nutritional constraints. The conventional statement of the problem assumes data indicating the cost and nutritional value of each available food.

The finished application accepts a filename and two options -c and -i as command line arguments. Option -i allows you to create a MIP model where the quantities of foods to purchase must be integers (for example, 10 carrots). Otherwise, the application searches for a solution expressed in continuous variables (for example, 1.7 kilos of carrots). Option -c can be used to build the model by columns. Otherwise, the application builds the model by rows.

The finished application starts by evaluating the command line arguments and reading the input data file. The input data for this example is the same data as for the corresponding C++ and Java examples in this manual. The data is available in the standard distribution at:

`yourCPLEXhome \examples\data\diet.dat`
Step 1: Describe the problem

Write a natural language description of the problem and answer these questions:

♦ What is known about this problem?
♦ What are the unknown pieces of information (the decision variables) in this problem?
♦ What are the limitations (the constraints) on the decision variables?
♦ What is the purpose (the objective) of solving this problem?

What is known?
The amount of nutrition provided by a given quantity of a given food.
The cost per unit of food.
The upper and lower bounds on the foods to be purchased for the diet

What are the unknowns?
The quantities of foods to buy.

What are the constraints?
The food bought to consume must satisfy basic nutritional requirements.
The amount of each food purchased must not exceed what is available.

What is the objective?
Minimize the cost of food to buy
Step 2: Open the file

Open the file yourCPLEXhome\examples\src\tutorials\Dietlesson.cs in your integrated development environment, such as Microsoft Visual Studio. Then go to the comment Step 2 in Dietlesson.cs, and add the following lines to declare a class, a key element of this application.

```csharp
public class Diet {
    internal class Data {
        internal int nFoods;
        internal int nNutrs;
        internal double[] foodCost;
        internal double[] foodMin;
        internal double[] foodMax;
        internal double[] nutrMin;
        internal double[] nutrMax;
        internal double[][] nutrPerFood;

        internal Data(string filename) {
            InputDataReader reader = new InputDataReader(filename);

            foodCost = reader.ReadDoubleArray();
            foodMin = reader.ReadDoubleArray();
            foodMax = reader.ReadDoubleArray();
            nutrMin = reader.ReadDoubleArray();
            nutrMax = reader.ReadDoubleArray();
            nutrPerFood = reader.ReadDoubleArrayArray();
            nFoods = foodMax.Length;
            nNutrs = nutrMax.Length;

            if (nFoods != foodMin.Length ||
                nFoods != foodMax.Length)
                throw new ILOG.CONCERT.Exception("inconsistent data in file " + filename);
            if (nNutrs != nutrMin.Length ||
                nNutrs != nutrPerFood.Length)
                throw new ILOG.CONCERT.Exception("inconsistent data in file " + filename);

            for (int i = 0; i < nNutrs; ++i) {
                if (nutrPerFood[i].Length != nFoods)
                    throw new ILOG.CONCERT.Exception("inconsistent data in file " + filename);
            }
        }
    }
}
```

The input data of the diet problem is read from a file into an object of the nested class Diet.Data. Its constructor requires a file name as an argument. Using an object of the class InputDataReader, your application reads the data from that file.
Model

This example was chosen because it is simple enough to be viewed by rows as well as by columns. Both ways are implemented in the finished application. In this example, either perspective can be viewed as natural. Only one approach will seem natural for many models, but there is no general way of deciding which is more appropriate (rows or columns) in a particular case.
Step 3: Create the model

Go to the comment Step 3 in Dietlesson.cs, and add this statement to create the Cplex model for your application.

```csharp
Cplex cplex = new Cplex();
```
Step 4: Create an array to store the variables

Go to the comment Step 4 in Dietlesson.cs, and add this statement to create the array of numeric variables that will appear in the solution.

```csharp
INumVar[] Buy = new INumVar[nFoods];
```

At this point, only the array has been created, not the variables themselves. The variables will be created later as continuous or discrete, depending on user input. These numeric variables represent the unknowns: how much of each food to buy.
Step 5: Specify by row or by column

Go to the comment Step 5 in Dietlesson.cs, and add the following lines to specify whether to build the problem by rows or by columns.

```csharp
if ( byColumn ) BuildModelByColumn(cplex, data, Buy, varType);
else BuildModelByRow (cplex, data, Buy, varType);
```

The finished application interprets an option entered through the command line by the user to apply this conditional statement.
Build by Rows

The finished application is capable of building a model by rows or by columns, according to an option entered through the command line by the user. The next steps in this tutorial show you how to add a static method to your application. This method builds a model by rows.
Step 6: Set up rows

Go to the comment Step 6 in Dietlesson.cs, and add the following lines to set up your application to build the model by rows.

```csharp
internal static void BuildModelByRow(IModeler model, Data data, INumVar[] Buy, NumVarType type) {
    int nFoods = data.nFoods;
    int nNutrs = data.nNutrs;
}
```

Those lines begin the static method to build a model by rows. The next steps in this tutorial show you the heart of that method.
Step 7: Create the variables: build and populate by rows

Go to the comment Step 7 in Dietlesson.cs, and add the following lines to create a loop that creates the variables of the problem with the bounds specified by the input data.

```csharp
for (int j = 0; j < nFoods; j++) {
    Buy[j] = model.NumVar(data.foodMin[j], data.foodMax[j], type);
}
```
Step 8: Add objective

Go to the comment Step 8 in Dietlesson.cs, and add this statement to add the objective to the model.

```csharp
model.AddMinimize(model.ScalProd(data.foodCost, Buy));
```

The objective function indicates that you want to minimize the cost of the diet computed as the sum of the amount of each food to buy $Buy[i]$ times the unit price of that food $data.foodCost[i]$.
Step 9: Add nutritional constraints

Go to the comment Step 9 in Dietlesson.cs, and add the following lines to add the ranged nutritional constraints to the model.

```csharp
for (int i = 0; i < nNutrs; i++) {
    model.AddRange(data.nutrMin[i],
                   model.ScalProd(data.nutrPerFood[i], Buy),
                   data.nutrMax[i]);
}
```
Build by Columns

As noted in Build by Rows, the finished application is capable of building a model by rows or by columns, according to an option entered through the command line by the user. The next steps in this tutorial show you how to add a static method to your application to build a model by columns.
Step 10: Set up columns

Go to the comment Step 10 in Dietlesson.cs, and add the following lines to set up your application to build the problem by columns.

```csharp
internal static void BuildModelByColumn(IMPModeler model,
                                        Data data,
                                        INumVar[] Buy,
                                        NumVarType type) {

    int nFoods = data.nFoods;
    int nNutrs = data.nNutrs;
}
```

Those lines begin a static method that the next steps will complete.
Step 11: Add empty objective function and constraints

Go to the comment Step 11 in Dietlesson.cs, and add the following lines to create empty columns that will hold the objective and ranged constraints of your problem.

```csharp
IObjective cost = model.AddMinimize();
IRange[] constraint = new IRange[nNutrs];

for (int i = 0; i < nNutrs; i++) {
    constraint[i] = model.AddRange(data.nutrMin[i], data.nutrMax[i]);
}
```
Step 12: Create variables

Go to the comment Step 12 in Dietlesson.cs, and add the following lines to create each of the variables.

```java
for (int j = 0; j < nFoods; j++) {
    Column col = model.Column(cost, data.foodCost[j]);
    for (int i = 0; i < nNutrs; i++) {
        col = col.And(model.Column(constraint[i],
                               data.nutrPerFood[i][j]));
    }
    Buy[j] = model.NumVar(col, data.foodMin[j], data.foodMax[j], type);
}
```

For each food \(j\), a column object \(col\) is first created to represent how the new variable for that food is to be added to the objective function and constraints. Then that column object is used to construct the variable \(Buy[j]\) that represents the amount of food \(j\) to be purchased for the diet. At this time, the new variable will be installed in the objective function and constraints as defined by the column object \(col\).
Solve

After you have added lines to your application to build a model, you are ready for the next steps: adding lines for solving and displaying the solution.
Step 13: Solve

Go to the comment Step 13 in Dietlesson.cs, and add this statement to solve the problem.

```csharp
if ( cplex.Solve() ) {
```
Step 14: Display the solution

Go to the comment Step 14 in Dietlesson.cs, and add the following lines to display the solution.

```csharp
System.Console.WriteLine();
System.Console.WriteLine("Solution status = " + cplex.GetStatus());
System.Console.WriteLine();
System.Console.WriteLine(" cost = " + cplex.ObjValue);
for (int i = 0; i < nFoods; i++) {
    System.Console.WriteLine(" Buy" + i + " = " + cplex.GetValue(Buy[i]));
}
System.Console.WriteLine();
```
Step 15: End application and free license

Go to the comment Step 15 in Dietlesson.cs, and add this statement to free the license used by CPLEX®.

```csharp
    cplex.End();
```
Good programming practices

The next steps of this tutorial show you how to add features to your application.
Step 16: Read the command line (data from user)

Go to the comment Step 16 in `Dietlesson.cs`, and add the following lines to read the data entered by the user at the command line.

```csharp
for (int i = 0; i < args.Length; i++) {
    if (args[i].ToCharArray()[0] == '-') {
        switch (args[i].ToCharArray()[1]) {
        case 'c':
            byColumn = true;
            break;
        case 'i':
            varType = NumVarType.Int;
            break;
        default:
            Usage();
            return;
        }
    } else {
        if (filename == null)
            filename = args[i];
        break;
    }
}

Data data = new Data(filename);
```
Step 17: Show correct use of command line

Go to the comment Step 17 in Dietlesson.cs, and add the following lines to show the user how to use the command correctly (in case of inappropriate input from a user).

```csharp
internal static void Usage() {
    System.Console.WriteLine(" ");
    System.Console.WriteLine("options: -c build model by column");
    System.Console.WriteLine("    -i use integer variables");
    System.Console.WriteLine(" ");
}
```
Step 18: Enclose the application in try catch statements

Go to the comment Step 18 in Dietlesson.cs, and add the following lines to enclose your application in a try and catch statement in case of anomalies during execution.

```csharp
} catch (ILOG.CONECT.Exception ex) {
    System.Console.WriteLine("Concert Error: " + ex);
}

try {
    catch (InputDataReader.InputDataReaderException ex) {
        System.Console.WriteLine("Data Error: " + ex);
    }
    catch (System.IO.IOException ex) {
        System.Console.WriteLine("IO Error: " + ex);
    }
}
```

The try part of that try and catch statement is already available in your original copy of Dietlesson.cs. When you finish the steps of this tutorial, you will have a complete application ready to compile and execute.
Example: optimizing the diet problem in C#.NET

You can see the complete program online at:

yourCPLEXhome\examples\src\Diet.cs

There is a project for this example, suitable for use in an integrated development environment, such as Microsoft Visual Studio, at:

yourCPLEXhome\examples\system\format \Diet.csproj

The empty lesson, suitable for interactively following this tutorial, is available at:

yourCPLEXhome\examples\tutorials\Dietlesson.cs
Callable Library

Shows how to write C applications using the Callable Library.

In this section

Architecture of the Callable Library
Describes the architecture of the Callable Library C API.

Using the Callable Library in an application
Describes an application of the C API.

CPLEX programming practices
Lists some of the programming practices the CPLEX® team observes in developing and maintaining the Callable Library (C API).

Managing parameters from the Callable Library
Introduces routines to manage parameters of CPLEX from the C API.

Example: optimizing the diet problem in the Callable Library
Walks through an example applying the C API.

Using surplus arguments for array allocations
Describes coding conventions of the C API to manage surplus arguments and array allocations.

Example: using query routines lpex7.c
Shows how to use query routines of the C API in an example.
Describes the architecture of the Callable Library C API.

In this section

Overview
Offers general remarks and a diagram of the architecture of a Callable Library application.

Licenses
Describes licensing conventions for the C AI.

Compiling and linking
Tells where to find information about compiling and linking with the C API.
Overview

IBM® ILOG® CPLEX® includes a callable C library that makes it possible to develop applications to optimize, to modify, and to interpret the results of mathematical programming problems whether linear, mixed integer, or convex quadratic ones.

You can use the Callable Library to write applications that conform to many modern computer programming paradigms, such as client-server applications within distributed environments, multithreaded applications running on multiple processors, applications linked to database managers, or applications using flexible graphic user interface builders, just to name a few.

The Callable Library together with the CPLEX database make up the CPLEX core, as you see in A view of the Callable Library. The CPLEX database includes the computing environment, its communication channels, and your problem objects. You will associate the core with your application by calling library routines.

A view of the Callable Library

The Callable Library itself contains routines organized into several categories:

♦ problem modification routines let you define a problem and change it after you have created it within the CPLEX® database;

♦ optimization routines enable you to optimize a problem and generate results;

♦ utility routines handle application programming issues;

♦ problem query routines access information about a problem after you have created it;

♦ file reading and writing routines move information from the file system of your operating system into your application, or from your application into the file system;

♦ parameter routines enable you to query, set, or modify parameter values maintained by CPLEX®.

 USER’S MANUAL FOR CPLEX

176
Licenses

CPLEX® runs under the control of the ILOG License Manager (ILM). Before you can run any application program that calls CPLEX®, you must have established a valid license that it can read. Licensing instructions are provided to you separately when you buy or upgrade CPLEX®. Contact your local support department if this information has not been communicated to you or if you find that you need help in establishing your CPLEX® license. For details about contacting support, click "Customer Support" at the bottom of the first page of CPLEX® online documentation.
Compiling and linking

Compilation and linking instructions are provided with the files that come in the standard distribution of CPLEX® for your computer platform. Check the readme.html file for details.
Using the Callable Library in an application

Describes an application of the C API.

In this section

Overview
Outlines steps to include in a Callable Library application.

Initialize the CPLEX environment
Tells how to initialize the environment in the C API.

Instantiate the problem as an object
Tells how to instantiate a problem object in the C API.

Put data in the problem object
Tells how to populate a problem object with data in the C API.

Optimize the problem
Tells how to optimize a problem in the C API.

Change the problem object
Tells how to modify a problem in the C API.

Destroy the problem object
Tells when to destroy a problem object in the C API.

Release the CPLEX environment
Tells how to end an application of the C API.
This topic tells you how to use the Callable Library in your own applications. Briefly, you must initialize the CPLEX® environment, instantiate a problem object, and fill it with data. Then your application calls one of the CPLEX® optimizers to optimize your problem. Optionally, your application can also modify the problem object and re-optimize it. CPLEX® is designed to support this sequence of operations—modification and re-optimization of linear, quadratic, or mixed integer programming problems (LPs, QPs, or MIPs)—efficiently by reusing the current feasible solution (basis or incumbent) of a problem as its starting point (when applicable). After it finishes using CPLEX®, your application must free the problem object and release the CPLEX® environment it has been using. The following sections explain these steps in greater detail.
Initialize the CPLEX environment

To initialize a CPLEX® environment, you must use the routine CPXopenCPLEX.

This routine checks for a valid CPLEX® license and then returns a C pointer to the CPLEX® environment that it creates. Your application then passes this C pointer to other CPLEX® routines (except CPXmsg). As a developer, you decide for yourself whether the variable containing this pointer should be global or local in your application. Because the operation of checking the license can be relatively time consuming, it is strongly recommended that you call the CPXopenCPLEX routine only once, or as infrequently as possible, in a program that solves a sequence of problems.

A multithreaded application needs multiple CPLEX® environments. Consequently, CPLEX® allows more than one environment to exist at a time.

Note: An attempt to use a problem object in any environment other than the environment (or a child of that environment) where the problem object was created will raise an error.
Instantiate the problem as an object

After you have initialized a CPLEX® environment, your next step is to instantiate (that is, create and initialize) a problem object by calling CPXcreateprob. This routine returns a C pointer to the problem object. Your application then passes this pointer to other routines of the Callable Library.

Most applications will use only one problem object, though CPLEX® allows you to create multiple problem objects within a given CPLEX® environment.
Put data in the problem object

When you instantiate a problem object, it is originally empty. In other words, it has no constraints, no variables, and no coefficient matrix. CPLEX® offers you several alternative ways to put data into an empty problem object (that is, to populate your problem object).

♦ You can make a sequence of calls, in any convenient order, to these routines:
 ● CPXaddcols
 ● CPXaddqconstr
 ● CPXaddrows
 ● CPXchgcoeflist
 ● CPXcopyctype
 ● CPXcopyqsep
 ● CPXcopyquad
 ● CPXnewcols
 ● CPXnewrows

♦ If data already exist in MPS, SAV, or LP format in a file, you can call CPXreadcopyprob to read that file and copy the data into the problem object. Mathematical Programming System (MPS) is an industry-standard format for organizing data in mathematical programming problems. LP and SAV file formats are CPLEX®-specific formats for expressing linear programming problems as equations or inequalities. Understanding file formats explains these formats briefly. They are documented in the reference manual CPLEX File Formats.

♦ You can assemble arrays of data and then call CPXcopylp to copy the data into the problem object.

Whenever possible, compute your problem data in double precision (64 bit). Computers are finite-precision machines, and truncating your data to single precision (32 bit) can result in unnecessarily ill-conditioned problems For more information, refer to Numeric difficulties.
Optimize the problem

Call one of the CPLEX® optimizers to solve the problem object that you have instantiated and populated. *Choosing an optimizer for your LP problem* explains in greater detail how to choose an appropriate optimizer for your problem.
Change the problem object

In analyzing a given mathematical program, you may make changes in a model and study their effect. As you make such changes, you must keep CPLEX® informed about the modifications so that ILOG CPLEX can efficiently re-optimize your changed problem. Always use the problem modification routines from the Callable Library to make such changes and thus keep CPLEX® informed. In other words, do not change a problem by altering the original data arrays and calling CPXcopylp again. That tempting strategy usually will not make the best use of CPLEX®. Instead, modify your problem by means of the problem modification routines.

Use the routines whose names begin with CPXchg to modify existing objects in the model, or use the routines CPXaddcols, CPXaddqconstr, CPXaddrows, CPXnewcols, and CPXnewrows to add new constraints and new variables to the model.

For example, let’s say a user has already solved a given LP problem and then changes the upper bound on a variable by means of an appropriate call to the Callable Library routine CPXchgbds. CPLEX® will then begin any further optimization from the previous optimal basis. If that basis is still optimal with respect to the new bound, then ILOG CPLEX will return that information without even needing to refactor the basis.
Destroy the problem object

Use the routine `CPXfreenode` to destroy a problem object when your application no longer needs it. Doing so will free all memory required to solve that problem instance.
Release the CPLEX environment

After all the calls from your application to the Callable Library are complete, you must release the CPLEX® environment by calling the routine CPXcloseCPLEX. This routine tells CPLEX® that:

♦ all application calls to the Callable Library are complete;
♦ CPLEX® should release any memory allocated by CPLEX® for this environment;
♦ the application has relinquished the CPLEX® license for this run, thus making the license available to the next user.
Lists some of the programming practices the CPLEX® team observes in developing and maintaining the Callable Library (C API).

In this section

Overview
Introduces general characteristics of variables and routines in the Callable Library.

Variable names and calling conventions
Describes the coding practices of the C API with respect to variable names and calling conventions.

Data types
Describes the data types available in the C API.

Ownership of problem data
Describes ownership conventions in the C API with respect to data.

Problem size and memory allocation issues
Describes conventions of the C API with respect to size of problem and memory allocation.

Status and return values
Describes coding conventions of the C API with respect to status and return values.

Symbolic constants
Describes coding conventions about symbolic constants in the C API.

Parameter routines
Describes routines of the C API to control CPLEX parameters.
Null arguments
Describes coding conventions of the C API with respect to null arguments.

Row and column references
Describes coding conventions of the C API with respect to indexing arrays.

Character strings
Describes coding conventions of the C API with respect to character strings.

Problem data
Describes routines to verify problem data and diagnose bugs in an application of the C API.

Callbacks
Describes coding conventions of the C API with respect to callbacks.

Portability
Describes coding conventions of the C API to make portable applications.

FORTRAN interface
Describes coding conventions of the C API to support interface with a FORTRAN application.

C++ interface
Describes conventions of the C API for interface with C++ applications.
Overview

The Callable Library supports modern programming practices. It uses no external variables. Indeed, no global nor static variables are used in the library so that the Callable Library is fully re-entrant and thread-safe. The names of all library routines begin with the three-character prefix CPX to prevent namespace conflicts with your own routines or with other libraries. Also to avoid clutter in the namespace, there is a minimal number of routines for setting and querying parameters.
Variable names and calling conventions

Routines in the Callable Library obey the C programming convention of call by value (as opposed to call by reference, for example, in FORTRAN and BASIC). If a routine in the Callable Library needs the address of a variable in order to change the value of the variable, then that fact is documented in the Callable Library Reference Manual by the suffix _p in the argument name in the synopsis of the routine. In C, you create such values by means of the & operator to take the address of a variable and to pass this address to the Callable Library routine.

For example, let’s look at the synopses for two routines, CPXgetobjval and CPXgetx, as they are documented in the Callable Library Reference Manual to clarify this calling convention. Here is the synopsis of the routine CPXgetobjval:

```c
int CPXgetobjval (CPXCENVptr env, CPXCLPptr lp, double *objval_p);
```

In that routine, the third argument is a pointer to a variable of type double. To call this routine from C, declare:

```c
double objval;
```

Then call CPXgetobjval in this way:

```c
status = CPXgetobjval (env, lp, &objval);
```

In contrast, here is the synopsis of the routine CPXgetx:

```c
int CPXgetx (CPXENV env, CPXLPptr lp, double *x, int begin, int end);
```

You call it by creating a double-precision array by means of either one of two methods. The first method dynamically allocates the array, like this:

```c
double *x = NULL;
x = (double *) malloc (100*sizeof(double));
```

The second method declares the array as a local variable, like this:

```c
double x[100];
```

Then to see the optimal values for columns 5 through 104, for example, you could write this:

```c
status = CPXgetx (env, lp, x, 5, 104);
```

The parameter objval_p in the synopsis of CPXgetobjval and the parameter x in the synopsis of CPXgetx are both of type (double *). However, the suffix _p in the parameter objval_p indicates that you should use an address of a single variable in one call, while the lack of _p in x indicates that you should pass an array in the other.
For guidance about how to pass values to CPLEX® routines from application languages such as FORTRAN or BASIC that conventionally call by reference, see Call by reference in this manual, and consult the documentation for those languages.
Data types

In the Callable Library, CPLEX® defines a few special data types for specific CPLEX® objects, as you see in the table *Special data types in the Callable Library*. The types starting with CPXC represent the corresponding pointers to constant (const) objects.

Special data types in the Callable Library

<table>
<thead>
<tr>
<th>Data type</th>
<th>Is a pointer to</th>
<th>Declaration</th>
<th>Set by calling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPXENVptr CPXCENVptr</td>
<td>CPLEX environment</td>
<td>CPXENVptr env;</td>
<td>CPXopenCPLEX</td>
</tr>
<tr>
<td>CPXLPtr CPXCLPptr</td>
<td>problem object</td>
<td>CPXLPtr lp;</td>
<td>CPXcreateprob</td>
</tr>
<tr>
<td>CPXNETptr CPXCNETptr</td>
<td>problem object</td>
<td>CPXNETptr net;</td>
<td>CPXNETcreateprob</td>
</tr>
<tr>
<td>CPXCHANNELptr</td>
<td>message channel</td>
<td>CPXCHANNELptr channel;</td>
<td>CPXgetchannels CPXaddchannel</td>
</tr>
</tbody>
</table>

When any of these special variables are set to a value returned by an appropriate routine, that value can be passed directly to other CPLEX routines that require such arguments. The actual internal type of these variables is a memory address (that is, a pointer); this address uniquely identifies the corresponding object. If you are programming in a language other than C, you should choose an appropriate integer type or pointer type to hold the values of these variables.
Ownership of problem data

The Callable Library does not take ownership of user memory. All arguments are copied from your user-defined arrays into CPLEX®-allocated memory. CPLEX® manages all problem-related memory. After you call a routine that copies data into a CPLEX® problem object, you can free or reuse the memory you allocated as arguments to the copying routine.
Problem size and memory allocation issues

As indicated in *Change the problem object*, after you have created a problem object by calling `CPXcreateprob`, you can modify the problem in various ways through calls to routines from the Callable Library. There is no need for you to allocate extra space in anticipation of future problem modifications. Any limit on problem size is set by system resources and the underlying implementation of the system function `malloc`—not by artificial limits in CPLEX®.

As you modify a problem object through calls to modification routines from the Callable Library, CPLEX® automatically handles memory allocations to accommodate the increasing size of the problem. In other words, you do not have to keep track of the problem size nor make corresponding memory allocations yourself as long as you are using library modification routines such as `CPXaddrows` or `CPXaddcols`.
Status and return values

Most routines in the Callable Library return an integer value, 0 (zero) indicating success of the call. A nonzero return value indicates a failure. Each failure value is unique and documented in the Callable Library Reference Manual. However, some routines are exceptions to this general rule.

The Callable Library routine CPXopenCPLEX returns a pointer to a CPLEX® environment. In case of failure, it returns a NULL pointer. The argument *status_p (that is, one of its arguments) is set to 0 if the routine is successful; in case of failure, that argument is set to a nonzero value that indicates the reason for the failure.

The Callable Library routine CPXcreateprob returns a pointer to a CPLEX® problem object and sets its argument *status_p to 0 (zero) to report success. In case of failure, it returns a NULL pointer and sets *status_p to a nonzero value specifying the reason for the failure.

Some query routines in the Callable Library return a nonzero value when they are successful. For example, CPXgetnumcols returns the number of columns in the constraint matrix (that is, the number of variables in the problem object). However, most query routines return 0 (zero) reporting success of the query and entail one or more arguments (such as a buffer or character string) to contain the results of the query. For example, CPXgetrowname returns the name of a row in its name argument.

It is extremely important that your application check the status—whether the status is indicated by the return value or by an argument—of the routine that it calls before it proceeds.
Symbolic constants

Most CPLEX® routines return or require values that are defined as symbolic constants in
the header file (that is, the include file) cplex.h. This practice of using symbolic constants,
rather than hard-coded numeric values, is highly recommend. Symbolic names improve the
readability of calling applications. Moreover, if numeric values happen to change in
subsequent releases of the product, the symbolic names will remain the same, thus making
applications easier to maintain.
Parameter routines

You can set many parameters in the CPLEX® environment to control its operation. The values of these parameters may be integer, double, or character strings, so there are sets of routines for accessing and setting them. Callable Library routines for parameters in the CPLEX environment shows you the names and purpose of these routines. Each of these routines accepts the same first argument: a pointer to the CPLEX® environment (that is, the pointer returned by CPXopenCPLEX). The second argument of each of those parameter routines is the parameter number, a symbolic constant defined in the header file, cplex.h. Managing parameters from the Callable Library offers more details about parameter settings.

<table>
<thead>
<tr>
<th>Type</th>
<th>Change value</th>
<th>Access current value</th>
<th>Access default, max, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>CPXsetintparam</td>
<td>CPXgetintparam</td>
<td>CPXinfointparam</td>
</tr>
<tr>
<td>double</td>
<td>CPXsetdblparam</td>
<td>CPXgetdblparam</td>
<td>CPXinfodblparam</td>
</tr>
<tr>
<td>string</td>
<td>CPXsetstrparam</td>
<td>CPXgetstrparam</td>
<td>CPXinfostrparam</td>
</tr>
</tbody>
</table>
Null arguments

Certain CPLEX® routines that accept optional arguments allow you to pass a NULL pointer in place of the optional argument. The documentation of those routines in the Callable Library Reference Manual shows explicitly whether NULL pointer arguments are acceptable. (Passing NULL arguments is an effective way to avoid allocating unnecessary arrays.)
Row and column references

Consistent with standard C programming practices, in CPLEX® an array containing \(k \) items will contain these items in locations 0 (zero) through \(k-1 \). Thus a linear program with \(m \) rows and \(n \) columns will have its rows indexed from 0 to \(m-1 \), and its columns from 0 to \(n-1 \).

Within the linear programming data structure, the rows and columns that represent constraints and variables are referenced by an index number. Each row and column may optionally have an associated name. If you add or delete rows, the index numbers usually change:

♦ for deletions, CPLEX® decrements each reference index above the deletion point; and
♦ for additions, CPLEX® makes all additions at the end of the existing range.

However, CPLEX® updates the names so that each row or column index will correspond to the correct row or column name. Double checking names against index numbers is the only sure way to reveal which changes may have been made to matrix indices in such a context. The routines CPXgetrowindex and CPXgetcolindex translate names to indices.
Character strings

You can pass character strings as parameters to various CPLEX® routines, for example, as row or column names. The Interactive Optimizer truncates output strings 255 characters. Routines from the Callable Library truncate strings at 255 characters in output text files (such as MPS or LP text files) but not in binary SAV files. Routines from the Callable Library also truncate strings at 255 characters in names that occur in messages. Routines of the Callable Library that produce log files, such as the simplex iteration log file or the MIP node log file, truncate at 16 characters. Input, such as names read from LP and MPS files or typed interactively by the enter command, are truncated to 255 characters. However, it is not recommended that you rely on this truncation because unexpected behavior may result.
Problem data

If you inadvertently make an error entering problem data, the problem object will not correspond to your intentions. One possible result may be a segmentation fault or other disruption of your application. In other cases, CPLEX® may solve a different model from the one you intended, and that situation may or may not result in error messages from CPLEX®.

Using the data checking parameter

To help you detect this kind of error, you can set the data consistency checking switch parameter CPX_PARAM_DATACHECK (int) to the value CPX_ON to activate additional checking of array arguments for CPXcopy Data, CPXread Data, and CPXchg Data routines (where Data varies). The additional checks include:

♦ invalid sense / ctype / sostype values
♦ indices out of range, for example, rowind ≥ numrows
♦ duplicate entries
♦ matbeg or sosbeg array with decreasing values
♦ NAN s in double arrays
♦ NULL s in name arrays

This additional checking may entail overhead (time and memory). When the parameter is set to CPX_OFF, only simple checks, for example checking for the existence of the environment, are performed.

Using diagnostic routines for debugging

CPLEX® also provides diagnostic routines to look for common errors in the definition of problem data. In the standard distribution of CPLEX®, the file check.c contains the source code for these routines:

♦ CPXcheckcopylp
♦ CPXcheckcopylpwnames
♦ CPXcheckcopyqpsep
♦ CPXcheckcopyquad
♦ CPXcheckaddrows
♦ CPXcheckaddcols
♦ CPXcheckchgcoeflist
♦ CPXcheckvals
♦ CPXcheckcopyctype
♦ CPXcheckcopysos

♦ CPXNETcheckcopynet

Each of those routines performs a series of diagnostic tests of the problem data and issues warnings or error messages whenever it detects a potential error. To use them, you must compile and link the file check.c. After compiling and linking that file, you will be able to step through the source code of these routines with a debugger to help isolate problems.

If you have observed anomalies in your application, you can exploit this diagnostic capability by calling the appropriate routines just before a change or copy routine. The diagnostic routine may then detect errors in the problem data that could subsequently cause inexplicable behavior.

Those checking routines send all messages to one of the standard CPLEX® message channels. You capture that output by setting the messages to screen switch parameter CPX_PARAM_SCRIND (if you want messages directed to your screen) or by calling the routine CPXsetlogfile.
The Callable Library supports callbacks so that you can define functions that will be called at crucial points in your application:

♦ during the presolve process;
♦ once per iteration in a linear programming or quadratic programming routine; and
♦ at various points, such as before node processing, in a mixed integer optimization.

In addition, callback functions can call `CPXgetcallbackinfo` to retrieve information about the progress of an optimization algorithm. They can also return a value to indicate whether an optimization should be aborted. `CPXgetcallbackinfo` and certain other callback-specific routines are the only ones of the Callable Library that a user-defined callback may call. (Of course, calls to routines not in the Callable Library are permitted.)

Using optimization callbacks explores callback facilities in greater detail, and *Advanced MIP control interface* discusses control callbacks in particular.
Portability

CPLEX® contains a number of features to help you create Callable Library applications that can be easily ported between UNIX and Windows platforms.

CPXPUBLIC

All Callable Library routines except `CPXmsg` have the word `CPXPUBLIC` as part of their prototype. On UNIX platforms, this has no effect. On Win32 platforms, the `CPXPUBLIC` designation tells the compiler that all of the CPLEX® functions are compiled with the Microsoft `__stdcall` calling convention. The exception `CPXmsg` cannot be called by `__stdcall` because it takes a variable number of arguments. Consequently, `CPXmsg` is declared as `CPXPUBVARARGS`; that calling convention is defined as `__cdecl` for Win32 systems.

Function pointers

All Callable Library routines that require pointers to functions expect the passed-in pointers to be declared as `CPXPUBLIC`. Consequently, when your application uses such routines as `CPXaddfuncdest`, `CPXsetlpcallbackfunc`, and `CPXsetmpicallbackfunc`, it must declare the user-written callback functions with the `CPXPUBLIC` designation. For UNIX systems, this has no effect. For Win32 systems, this will cause the callback functions to be declared with the `__stdcall` calling convention. For examples of function pointers and callbacks, see Example: using callbacks `lpex4.c` and Example: Callable Library message channels.

CPXCHARptr, CPXCCHARptr, and CPXVOIDptr

The types `CPXCHARptr`, `CPXCCHARptr`, and `CPXVOIDptr` are used in the header file `cplex.h` to avoid the complicated syntax of using the `CPXPUBLIC` designation on functions that return `char*`, `const char*`, or `void*`.

File pointers

File pointer arguments for Callable Library routines should be declared with the type `CPXFILEptr`. On UNIX platforms, this practice is equivalent to using the file pointer type. On Win32 platforms, the file pointers declared this way will correspond to the environment of the CPLEX® DLL. Any file pointer passed to a Callable Library routine should be obtained with a call to `CPXfopen` and closed with `CPXfclose`. Callable Library routines with file pointer arguments include `CPXsetlogfile`, `CPXaddfpdest`, `CPXdelfpdest`, and `CPXfp.puts`. Callable Library routines for message channels discusses most of those routines.

String functions

Several routines in the Callable Library make it easier to work with strings. These functions are helpful when you are writing applications in a language, such as Visual Basic, that does not allow you to de-reference a pointer. The string routines in the Callable Library are `CPXmemcpy`, `CPXstrlen`, `CPXstrcpy`, and `CPXmsgstr`.

206 USER'S MANUAL FOR CPLEX
FORTRAN interface

The Callable Library can be interfaced with FORTRAN applications. Although they are no longer distributed with the product, you can download examples of a FORTRAN application from the product support web site. Direct your browser to this FTP site:

Those examples were compiled with CPLEX® versions 7.0 and earlier on a particular platform. Since C-to-FORTRAN interfaces vary across platforms (operating system, hardware, compilers, etc.), you may need to modify the examples for your own system.

Whether you need intermediate routines for the interface depends on your operating system. As a first step in building such an interface, it is a good idea to study your system documentation about C-to-FORTRAN interfaces. In that context, this section lists a few considerations particular to CPLEX® in building a FORTRAN interface.

Case-sensitivity

As you know, FORTRAN is a case-insensitive language, whereas routines in the Callable Library have names with mixed case. Most FORTRAN compilers have an option, such as the option \(-u\) on UNIX systems, that treats symbols in a case-sensitive way. It is a good idea to use this option in any file that calls Callable Library routines.

On some operating systems, certain intrinsic FORTRAN functions must be in all uppercase (that is, capital letters) for the compiler to accept those functions.

Underscore

On some systems, all FORTRAN external symbols are created with an underscore character (that is, \(_\) added to the end of the symbol name. Some systems have an option to turn off this feature. If you are able to turn off those postpended underscores, you may not need other “glue” routines.

Six-character identifiers

FORTRAN 77 allows identifiers that are unique only up to six characters. However, in practice, most FORTRAN compilers allow you to exceed this limit. Since routines in the Callable Library have names greater than six characters, you need to verify whether your FORTRAN compiler enforces this limit or allows longer identifiers.

Call by reference

By default, FORTRAN passes arguments by reference; that is, the \texttt{address} of a variable is passed to a routine, not its value. In contrast, many routines of the Callable Library require arguments passed by value. To accommodate those routines, most FORTRAN compilers have the VMS FORTRAN extension \texttt{%VAL}(). This operator used in calls to external functions or subroutines causes its argument to be passed by value (rather than by the default FORTRAN convention of passed by reference). For example, with that extension, you can call the routine \texttt{CPXprimopt} with this FORTRAN statement:
status = CPXprimopt (%val(env), %val(lp))

Pointers

Certain CPLEX® routines return a pointer to memory. In FORTRAN 77, such a pointer cannot be de-referenced; however, you can store its value in an appropriate integer type, and you can then pass it to other CPLEX® routines. On most operating systems, the default integer type of four bytes is sufficient to hold pointer variables. On some systems, a variable of type `INTEGER*8` may be needed. Consult your system documentation to learn the appropriate integer type to hold variables that are C pointers.

Strings

When you pass strings to routines of the Callable Library, they expect C strings; that is, strings terminated by an ASCII NULL character, denoted \0 in C. Consequently, when you pass a FORTRAN string, you must add a terminating NULL character; you do so by means of the FORTRAN intrinsic function `CHAR(0)`.
C++ interface

The CPLEX® header file, cplex.h, includes the extern C statements necessary for use with C++. If you wish to call the CPLEX® C interface from a C++ application, rather than using Concert Technology, you can include cplex.h in your C++ source.
Managing parameters from the Callable Library

Some CPLEX® parameters assume values of type double; others assume values of type int; others are strings (that is, C-type char*). Consequently, in the Callable Library, there are sets of routines (one for int, one for double, one for char*) to access and to change parameters that control the CPLEX® environment and guide optimization.

For example, the routine CPXinfointparam shows you the default, the maximum, and the minimum values of a given parameter of type int, whereas the routine CPXinfodblparam shows you the default, the maximum, and the minimum values of a given parameter of type double, and the routine CPXinfostrparam shows you the default value of a given string parameter. Those three Callable Library routines observe the same conventions: they return 0 (zero) from a successful call and a nonzero value in case of error.

The routines CPXinfointparam and CPXinfodblparam expect five arguments:

♦ a pointer to the environment; that is, a pointer of type CPXENVptr returned by CPXopenCPLEX;

♦ an indication of the parameter to check; this argument may be a symbolic constant, such as the clock type for computation time parameter CPX_PARAM_CLOCKTYPE, or a reference number, such as 1006; the symbolic constants and reference numbers of all CPLEX parameters are documented in the Parameters Reference Manual and they are defined in the include file cplex.h.

♦ a pointer to a variable to hold the default value of the parameter;

♦ a pointer to a variable to hold the minimum value of the parameter;

♦ a pointer to a variable to hold the maximum value of the parameter.

The routine CPXinfostrparam differs slightly in that it does not expect pointers to variables to hold the minimum and maximum values as those concepts do not apply to a string parameter.

To access the current value of a parameter that interests you from the Callable Library, use the routine CPXgetintparam for parameters of type int, CPXgetdblparam for parameters of type double, and CPXgetstrparam for string parameters. These routines also expect arguments to indicate the environment, the parameter you want to check, and a pointer to a variable to hold that current value.

No doubt you have noticed in other chapters of this manual that you can set parameters from the Callable Library. There are, of course, routines in the Callable Library to set such parameters: one sets parameters of type int; another sets parameters of type double; another sets string parameters.

♦ CPXsetintparam accepts arguments to indicate:
 • the environment; that is, a pointer of type CPXENVptr returned by CPXopenCPLEX;
 • the parameter to set; this routine sets parameters of type int;
 • the value you want the parameter to assume.

♦ CPXsetdblparam accepts arguments to indicate:
● the environment; that is, a pointer of type CPXENVptr returned by CPXopenCPLEX;
● the parameter to set; this routine sets parameters of type double;
● the value you want the parameter to assume.

♦ CPXsetstrparam accepts arguments to indicate:

● the environment; that is, a pointer of type CPXENVptr returned by CPXopenCPLEX;
● the parameter to set; this routine sets parameters of type const char*;
● the value you want the parameter to assume.

The Parameters Reference Manual documents the type of each parameter (int, double, char*) along with the symbolic constant and reference number representing the parameter.

The routine CPXsetdefaults resets all parameters (except the log file) to their default values, including the CPLEX® callback functions. This routine resets the callback functions to NULL. Like other Callable Library routines to manage parameters, this one accepts an argument specifying the environment, and it returns 0 for success or a nonzero value in case of error.
Example: optimizing the diet problem in the Callable Library

Walks through an example applying the C API.

In this section

Overview
Describes the problem in the example.

Problem representation
Describes how to represent the problem by means of the C API.

Program description
Describes the architecture of an application from the C API solving the diet problem.

Solving the model with CPXlpopt
Shows the routine used to solve the problem.

Complete program
Tells where to find the C implementation of the diet problem online.
Overview

The optimization problem solved in this example is to compose a diet from a set of foods, so that the nutritional requirements are satisfied and the total cost is minimized. The example `diet.c` illustrates these points.
Problem representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional requirements to be satisfied, which are the constraints; and an objective of minimizing the total cost of the food. There are two ways to look at this problem:

♦ The problem can be modeled in a row-wise fashion, by entering the variables first and then adding the constraints on the variables and the objective function.

♦ The problem can be modeled in a column-wise fashion, by constructing a series of empty constraints and then inserting the variables into the constraints and the objective function.

The diet problem is equally suited for both kinds of modeling. In fact you can even mix both approaches in the same program: If a new food product is introduced, you can create a new variable for it, regardless of how the model was originally built. Similarly, is a new nutrient is discovered, you can add a new constraint for it.

Creating a model row by row

You walk into the store and compile a list of foods that are offered. For each food, you store the price per unit and the amount they have in stock. For some foods that you particularly like, you also set a minimum amount you would like to use in your diet. Then for each of the foods you create a modeling variable to represent the quantity to be purchased for your diet.

Now you get a medical book and look up which nutrients are known and relevant for you. For each nutrient, you note the minimum and maximum amount that should be found in your diet. Also, you go through the list of foods and decide how much a food item will contribute for each nutrient. This gives you one constraint per nutrient, which can naturally be represented as a range constraint

\[
\text{nutrmin}[i] \leq \sum_j (\text{nutrper}[i][j] \times \text{buy}[j]) \leq \text{nutrmax}[i]
\]

where \(i\) represents the index of the nutrient under consideration, \(\text{nutrmin}[i]\) and \(\text{nutrmax}[i]\) the minimum and maximum amount of nutrient \(i\) and \(\text{nutrper}[i][j]\) the amount of nutrient \(i\) in food \(j\). Finally, you specify your objective function to minimize, like this:

\[
\text{cost} = \sum_j (\text{cost}[j] \times \text{buy}[j])
\]

This way to create the model is shown in function \texttt{populatebyrow} in example \texttt{diet.c}.

Creating a model column by column

You start with the medical book where you compile the list of nutrients that you want to make sure are properly represented in your diet. For each of the nutrients, you create an empty constraint:

\[
\text{nutrmin}[i] \leq \ldots \leq \text{nutrmax}[i]
\]

where \(\ldots\) is left to be filled after you walk into your store. You also set up the objective function to minimize the cost. Constraint \(i\) is referred to as \(\text{rng}[i]\) and the objective is referred to as \(\text{cost}\).

Now you walk into the store and, for each food, you check its price and nutritional content. With this data you create a variable representing the amount you want to buy of the food
type and install it in the objective function and constraints. That is you create the following column:

```cpp
IloObjective obj = cplex.objective(sense, expr, name);
cplex.setParam(IloCplex.IntParam.PPriInd,
             IloCplex.PrimalPricing.Steep);
IloColumn col = cplex.column(obj, 1.0).and(cplex.column(rng, 2.0));
IloColumn col = cplex.column(obj, 1.0).and(cplex.column(rng, 2.0));
cost(foodCost[j]) "+" "sum_i" (rng[i](nutrper[i][j])
```

where the notation "+" and "sum" indicates that you “add” the new variable \(j \) to the objective cost and constraints \(rng[i] \). The value in parentheses is the linear coefficient that is used for the new variable.

Here’s another way to visualize a column, such as column \(j \) in this example:

```
foodCost[j]
nutrper[0][j]
nutrper[1][j]
...
nutrper[m-1][j]
```
Program description

All definitions needed for a Callable Library application are imported when your application includes the file `<ilcplex/cplex.h>` at the beginning of the application. After a number of lines that establish the calling sequences for the routines that are to be used, the main function of the application begins by checking for correct command line arguments, printing a usage reminder and exiting in case of errors.

Next, the data defining the problem are read from a file specified in the command line at run time. The details of this are handled in the routine `readdata`. In this file, cost, lower bound, and upper bound are specified for each type of food; then minimum and maximum levels of several nutrients needed in the diet are specified; finally, a table giving levels of each nutrient found in each unit of food is given. The result of a successful call to this routine is two variables `nfoods` and `nnutr` containing the number of foods and nutrients in the data file, arrays `cost`, `lb`, `ub` containing the information about the foods, arrays `nutrmin`, `nutrmax` containing nutritional requirements for the proposed diet, and array `nutrper` containing the nutritional value of the foods.

Preparations to build and solve the model with CPLEX® begin with the call to `CPXopenCPLEX`. This establishes a CPLEX® environment to contain the LP problem, and succeeds only if a valid CPLEX® license is found.

After calls to set parameters, one to control the output that comes to the user's terminal, and another to turn on data checking for debugging purposes, a problem object is initialized through the call to `CPXcreateprob`. This call returns a pointer to an empty problem object, which now can be populated with data.

Two alternative approaches to filling this problem object are implemented in this program, `populatebyrow` and `populatebycolumn`, and which one is executed is set at run time by an argument on the command line. The routine `populatebyrow` operates by first defining all the columns through a call to `CPXnewcols` and then repeatedly calls `CPXaddrows` to enter the data of the constraints. The routine `populatebycolumn` takes the complementary approach of establishing all the rows first with a call to `CPXnewrows` and then sequentially adds the column data by calls to `CPXaddcols`.
Solving the model with CPXlpopt

The model is at this point ready to be solved, and this is accomplished through the call to CPXlpopt, which by default uses the dual simplex optimizer.

After this, the program finishes by making a call to CPXsolution to obtain the values for each variable in this optimal solution, printing these values, and writing the problem to a disk file (for possible evaluation by the user) via the call to CPXwriteprob. It then terminates after freeing all the arrays that have been allocated along the way.
Complete program

The complete program, diet.c, appears online in the standard distribution at yourCPLEXinstallation/examples/src.
Using surplus arguments for array allocations

Most of the query routines in the Callable Library require your application to allocate memory for one or more arrays that will contain the results of the query. In many cases, your application—the calling program—does not know the size of these arrays in advance. For example, in a call to CPXgetcols requesting the matrix data for a range of columns, your application needs to pass the arrays cmatind and cmatval for CPLEX® to populate with matrix coefficients and row indices. However, unless your application has carefully kept track of the number of nonzeros in each column throughout the problem specification and, if applicable, throughout its modification, the actual length of these arrays remains unknown.

Fortunately, the query routines in the Callable Library contain a surplus_p argument that, when used in conjunction with the array length arguments, enables you first to call the query routine to discover the length of the required array. Then, when the length is known, your application can properly allocate these arrays. Afterwards, your application makes a second call to the query routine with the correct array lengths to obtain the requested data.

For example, consider an application that needs to call CPXgetcols to access a range of columns. Here is the list of arguments for CPXgetcols.

```c
CPXgetcols (CPXENVptr env, 
CPXLPtr lp, 
int *nzcnt_p, 
int *cmatbeg, 
int *cmatind, 
double *cmatval, 
int cmatspace, 
int *surplus_p, 
int begin, 
int end);
```

The arrays cmatind and cmatval require one element for each nonzero matrix coefficient in the requested range of columns. The required length of these arrays, specified in cmatspace, remains unknown at the time of the query. Your application—the calling program—can discover the length of these arrays by first calling CPXgetcols with a value of 0 for cmatspace. This call will return an error status of CPXERR_NEGATIVE_SURPLUS indicating a shortfall of the array length specified in cmatspace (in this case, 0); it will also return the actual number of matrix nonzeros in the requested range of columns. CPXgetcols deposits this shortfall as a negative number in the integer pointed to by surplus_p. Your application can then negate this shortfall and allocate the arrays cmatind and cmatval sufficiently long to contain all the requested matrix elements.

The following sample of code illustrates this procedure. The first call to CPXgetcols passes a value of 0 (zero) for cmatspace in order to obtain the shortfall in cmatsz. The sample then uses the shortfall to allocate the arrays cmatind and cmatval properly; then it calls CPXgetcols again to obtain the actual matrix coefficients and row indices.

```c
status = CPXgetcols (env, lp, &nzcnt, cmatbeg, NULL, NULL, 
0, &cmatsz, 0, numcols - 1);
if ( status != CPXERR_NEGATIVE_SURPLUS ) {
    if ( status != 0 ) {
        CPXmsg (cpxerror,
```
That sample code (or your application) does not need to set the length of the array `cmatbeg`. The array `cmatbeg` has one element for each column in the requested range. Since this length is known ahead of time, your application does not need to call a query routine to calculate it. More generally, query routines use surplus arguments in this way only for the length of any array required to store problem data of unknown length. Problem data in this category include nonzero matrix entries, row and column names, other problem data names, special ordered sets (SOS), priority orders, and MIP start information.
Example: using query routines lpex7.c

This example uses the Callable Library query routine CPXgetcolname to get the column names from a problem object. To do so, it applies the programming pattern just outlined in *Using surplus arguments for array allocations*. It derives from the example lpex2.c from the manual *Getting Started*. This query-routine example differs from that simpler example in several ways:

♦ The example calls CPXgetcolname twice after optimization: the first call discovers how much space to allocate to hold the names; the second call gets the names and stores them in the arrays cur_colname and cur_colnamestore.

♦ When the example prints its answer, it uses the names as stored in cur_colname. If no names exist there, the example creates generic names.

This example assumes that the current problem has been read from a file by CPXreadcopyprob. You can adapt the example to use other query routines to get information about any problem read from a file.

The complete program lpex7.c appears online in the standard distribution at yourCplexinstallation/examples/src.
Programming considerations

This part of the manual documents concepts that are valid as you develop an application, regardless of the programming language that you choose. It highlights software engineering concepts implemented in IBM® ILOG® CPLEX®, concepts that will enable you to develop effective applications to exploit it efficiently. This part contains:

In this section

Developing CPLEX applications
Offers suggestions for improving application development and debugging completed applications.

Managing input and output
Describes input to and output from CPLEX®.

Timing interface
Introduces the timing interface available in CPLEX®.

Licensing an application
Describes CPLEX® runtime and development licensing conventions.

Tuning tool
The tuning tool, a utility to aid you in improving the performance of your optimization applications, analyzes a model or a group of models and suggests a suite of parameter settings for you to use that provide better performance than the default parameter settings for your model or group of models. This topic documents the tuning tool of IBM® ILOG® CPLEX®.
Developing CPLEX applications

Offers suggestions for improving application development and debugging completed applications.

In this section

Tips for successful application development
In the previous chapters, you saw briefly the minimal steps to use the Component Libraries in an application. This section offers guidelines for successfully developing an application that exploits the IBM® ILOG® CPLEX® Component Libraries according to those steps. These guidelines aim to help you minimize development time and maximize application performance.

Using the Interactive Optimizer for debugging
Describes Interactive Optimizer more fully as debugger.

Eliminating common programming errors
Serves as a checklist to eliminate common pitfalls from an application.
Tips for successful application development

In the previous chapters, you saw briefly the minimal steps to use the Component Libraries in an application. This section offers guidelines for successfully developing an application that exploits the IBM® ILOG® CPLEX® Component Libraries according to those steps. These guidelines aim to help you minimize development time and maximize application performance.

In this section

Prototype the model
Describes use of prototypes.

Identify routines to use
Describes purpose of decomposition.

Test interactively
Introduces Interactive Optimizer as debugger.

Assemble data efficiently
Describes populating the problem with data.

Test data
Presents a data checking tool.

Test and debug the model
Introduces the preprocessor, conflict refiner, and FeasOpt as testing and debugging tools..

Choose an optimizer
Describes optimizer choice in terms of problem type.
Program with a view toward maintenance and modifications
Suggests practices to facilitate maintenance and modification of applications.
Prototype the model

Begin by creating a small-scale version of the model for your problem. This prototype model can serve as a test-bed for your application and a point of reference during development.
Identify routines to use

If you decompose your application into manageable components, you can more easily identify the tools you will need to complete the application. Part of this decomposition consists of deciding which methods or routines from the CPLEX® Component Libraries your application will call. Such a decomposition will assist you in testing for completeness; it may also help you isolate troublesome areas of the application during development; and it will aid you in measuring how much work is already done and how much remains.
Test interactively

The Interactive Optimizer in CPLEX® (introduced in the manual Getting Started) offers a reliable means to test the CPLEX® component of your application interactively, particularly if you have prototyped your model. Interactive testing through the Interactive Optimizer can also help you identify precisely which methods or routines from the Component Libraries your application needs. Additionally, interactive testing early in development may also uncover any flaws in procedural logic before they entail costly coding efforts.

Most importantly, optimization commands in the Interactive Optimizer perform exactly like optimization routines in the Component Libraries. For an LP, the optimize command in the Interactive Optimizer works the same way as the cplex.solve and CPXlpopt routines in the CPLEX® Component Libraries. Consequently, any discrepancy between the Interactive Optimizer and the Component Libraries routines with respect to the solutions found, memory used, or time taken indicates a problem in the logic of the application calling the routines.
Assemble data efficiently

As indicated in previous topics, CPLEX® offers several ways of putting data into your problem or (more formally) populating the problem object. You must decide which approach is best adapted to your application, based on your knowledge of the problem data and application specifications. These considerations may enter into your decision:

♦ If your Callable Library application builds the arrays of the problem in memory and then calls CPXcopylp, it avoids time-consuming reads from disk files.

♦ In the Callable Library, using the routines CPXnewcols, CPXnewrows, CPXaddcols, CPXaddrows, CPXaddrows, CPXaddrows, and CPXchgcoeflist may help you build modular code that will be more easily modified and maintained than code that assembles all problem data in one step.

♦ An application that reads an MPS or LP file may reduce the coding effort but, on the other hand, may increase runtime and disk space requirements.

Keep in mind that if an application using the CPLEX® Component Libraries reads an MPS or LP file, then some other program must generate that formatted file. The data structures used to generate the file can almost certainly be used directly to build the problem-populating arrays for CPXcopylp or CPXaddrows—a choice resulting in less coding and a faster, more efficient application.

In short, formatted files are useful for prototyping your application. For production purposes, assembly of data arrays in memory may be a better enhancement.
Test data

CPLEX® provides a parameter to check the correctness of data used in problem creation and problem modification methods: the data consistency checking switch (DataCheck or CPX_PARAM_DATACHECK). When this parameter is set, CPLEX® will perform extra checks to confirm that array arguments contain valid values, such as indices within range, no duplicate entries, valid row sense indicators and valid numeric values. These checks can be very useful during development, but are probably too costly for deployed applications. The checks are similar to but not as extensive as those performed by the CPXcheck Data functions provided for the C API. When the parameter is not set (the default), only simple error checks are performed, for example, checking for the existence of the environment.
Test and debug the model

The optimizers available in CPLEX® work on primarily on models for which bounded feasible solutions exist. For unbounded or infeasible models, that is, for models for which no bounded, feasible solution exists, CPLEX® offers tools to enable you to test and debug the model.

Early reports of infeasibility based on preprocessing reductions explains how to interpret reports from the preprocessor that your model is infeasible or unbounded. It also describes how to use a parameter to further your analysis of those preprocessor reports.

Diagnosing infeasibility by refining conflicts explains the conflict refiner, a tool that can help you diagnose incompatibilities among constraints within your model or MIP start.

Repairing infeasibilities with FeasOpt introduces a tool that attempts to repair infeasibility in a model by modifying the model according to preferences that you express.
Choose an optimizer

After you have instantiated and populated a problem object, you solve it by calling one of the optimizers available in the CPLEX® Component Libraries. Your choice of optimizer depends on the type of problem:

♦ Use the primal simplex, dual simplex, or primal-dual barrier optimizers to solve linear and quadratic programs.

♦ Use the barrier optimizer to solve quadratically constrained programming problems.

♦ The network optimizer is appropriate for solving linear and quadratic programs with large embedded networks.

♦ Use the MIP optimizer if the problem contains discrete components (binary, integer, or semi-continuous variables, piecewise linear objective, or SOS sets).

In CPLEX®, there are many possible parameter settings for each optimizer. Generally, the default parameter settings are best for linear programming and quadratic programming problems, but Solving LPs: simplex optimizers and Solving problems with a quadratic objective (QP) offer more detail about improving performance with respect to these problems. Integer programming problems are more sensitive to specific parameter settings, so you may need to experiment with them, as suggested in Solving mixed integer programming problems (MIP).

In either case, the Interactive Optimizer in CPLEX® lets you try different parameter settings and different optimizers to decide the best optimization procedure for your particular application. From what you learn by experimenting with commands in the Interactive Optimizer, you can more readily choose which method or routine from the Component Libraries to call in your application.
Program with a view toward maintenance and modifications

Good programming practices save development time and make an application easier to understand and modify. "Tips for successful application development" outlines programming conventions followed in developing CPLEX®. In addition, the following programming practices are recommended.

Comment your code

Comments, written in mixed upper- and lower-case, will prove useful to you at a later date when you stare at code written months ago and try to figure out what it does. They will also prove useful to CPLEX® team, should you need to send CPLEX® your application for customer support.

Write readable code

Follow conventional formatting practices so that your code will be easier to read, both for you and for others. Use fewer than 80 characters per line. Put each statement on a separate line. Use white space (for example, space, blank lines, tabs) to distinguish logical blocks of code. Display compound loops with clearly indented bodies. Display if statements like combs; that is, align if and else in the same column and then indent the corresponding block. Likewise, it is a good idea to indent the body of compound statements, loops, and other structures distinctly from their corresponding headers and closing brackets. Use uniform indentation (for example, three to five spaces). Put at least one space before and after each relational operator, as well as before and after each binary plus (+) and minus (-). Use space as you do in normal a natural language, such as English.

Avoid side-effects

It is good idea to minimize side-effects by avoiding expressions that produce internal effects. In C, for example, try to avoid expressions of this form:

\[
\text{a = c + (d = e*f); /* A BAD IDEA */}
\]

where the expression assigns the values of \(d\) and \(a\).

Don’t change argument values

A user-defined function should not change the values of its arguments. Do not use an argument to a function on the left-hand side of an assignment statement in that function. Since C and C++ pass arguments by value, treat the arguments strictly as values; do not change them inside a function.

Declare the type of return values

Always declare the return type of functions explicitly. Though C has a “historical tradition” of making the default return type of all functions int, it is a good idea to declare explicitly
the return type of functions that return a value, and to use void for procedures that do not
return a value.

Manage the flow of your code

Use only one return statement in any function. Limit your use of break statements to the
inside of switch statements. In C, do not use continue statements and limit your use of
goto statements to exit conditions that branch to the end of a function. Handle error
conditions in C++ with a try/catch block and in C with a goto statement that transfers
control to the end of the function so that your functions have only one exit point.

In other words, control the flow of your functions so that each block has one entry point and
one exit point. This “one way in, one way out” rule makes code easier to read and debug.

Localize variables

Avoid global variables at all costs. Code that exploits global variables invariably produces
side-effects which in turn make the code harder to debug. Global variables also set up
peculiar reactions that make it difficult to include your code successfully within other
applications. Also global variables preclude multithreading unless you invoke locking
techniques. As an alternative to global variables, pass arguments down from one function
to another.

Name your constants

Scalars (both numbers and characters) that remain constant throughout your application
should be named. For example, if your application includes a value such as 1000, create a
constant with the #define statement to name it. If the value ever changes in the future, its
occurrences will be easy to find and modify as a named constant.

Choose clarity first, efficiency later

Code first for clarity. Get your code working accurately first so that you maintain a good
understanding of what it is doing. Then, after it works correctly, look for opportunities to
improve performance.

Debug effectively

Using diagnostic routines for debugging, contains tips and guidelines for debugging an
application that uses the CPLEX® Callable Library. In that context, a symbolic debugger
as well as other widely available development tools are quite helpful to produce error-free
code.

Test correctness, test performance

Even a program that has been carefully debugged so that it runs correctly may still contain
errors or “features” that inhibit its performance with respect to execution speed, memory
use, and so forth. Just as the CPLEX® Interactive Optimizer can aid in your tests for
correctness, it can also help you improve performance. It uses the same routines as the
Component Libraries; consequently, it requires the same amount of time to solve a problem
created by a Concert or Callable Library application.
Use one of these methods, specifying a file type of SAV, to create a binary representation of the problem object from your application in a SAV file.

- `IloCplex::exportModel`
- `IloCplex.exportModel`
- `Cplex.ExportModel`
- `CPXwriteprob`

Then read that representation into the Interactive Optimizer, and solve it there.

If your application sets parameters, use the same settings in the Interactive Optimizer.

If you find that your application takes significantly longer to solve the problem than does the Interactive Optimizer, then you can probably improve the performance of your application. In such a case, look closely at issues like memory fragmentation, unnecessary compiler options, inappropriate linker options, and programming practices that slow the application without causing incorrect results (such as operations within a loop that should be outside the loop).
Using the Interactive Optimizer for debugging

The CPLEX® Interactive Optimizer distributed with the Component Libraries offers a way to see what is going on within the CPLEX® part of your application when you observe peculiar behavior in your optimization application. The commands of the Interactive Optimizer correspond exactly to routines of the Component Libraries, so anomalies due to the CPLEX®-part of your application will manifest themselves in the Interactive Optimizer as well, and contrariwise, if the Interactive Optimizer behaves appropriately on your problem, you can be reasonably sure that routines you call in your application from the Component Libraries work in the same appropriate way.

With respect to parameter settings, you can write a parameter file with the file extension .prm from your application by means of one of these methods:

♦ IloCplex::writeParam in the C++ API
♦ IloCplex.writeParam in the Java API
♦ Cplex.WriteParam in the .NET API
♦ CPXwriteparam in the Callable Library
♦ write file .prm in the Interactive Optimizer

The Interactive Optimizer can read a .prm file and then set parameters exactly as they are in your application.

In the other direction, you can use the display command in the Interactive Optimizer to show the nondefault parameter settings; you can then save those settings in a .prm file for re-use later. See the topic Saving a parameter specification file in the reference manual of the Interactive Optimizer for more detail about using a parameter file in this way.

To use the Interactive Optimizer for debugging, you first need to write a version of the problem from the application into a formatted file that can then be loaded into the Interactive Optimizer. To do so, insert a call to the method exportModel or to the routine CPXwriteprob into your application. Use that call to create a file, whether an LP, SAV, or MPS formatted problem file. (Understanding file formats briefly describes these file formats.) Then read that file into the Interactive Optimizer and optimize the problem there.

Note that MPS, LP and SAV files have differences that influence how to interpret the results of the Interactive Optimizer for debugging. SAV files contain the exact binary representation of the problem as it appears in your program, while MPS and LP files are text files containing possibly less precision for numeric data. And, unless every variable appears on the objective function, CPLEX® will probably order the variables differently when it reads the problem from an LP file than from an MPS or SAV file. With this in mind, SAV files are the most useful for debugging using the Interactive Optimizer, followed by MPS files, then finally LP files, in terms of the change in behavior you might see by use of explicit files. On the other hand, LP files are often quite helpful when you want to examine the problem, more so than as input for the Interactive Optimizer. Furthermore, try solving both the SAV and MPS files of the same problem using the Interactive Optimizer. Different results may provide additional insight into the source of the difficulty. In particular, use the following guidelines with respect to reproducing your program’s behavior in the Interactive Optimizer:

1. If you can reproduce the behavior with a SAV file, but not with an MPS file, this suggests corruption or errors in the problem data arrays. Use the DataCheck parameter or diagnostic routines in the source file check.c to track down the problem.
2. If you can reproduce the behavior in neither the SAV file nor the MPS file, the most likely cause of the problem is that your program has some sort of memory error. Memory debugging tools such as Purify will usually find such problems quickly.

3. When solving a problem in MPS or LP format, if the Interactive Optimizer issues a message about a segmentation fault or similar ungraceful interruption and exits, contact CPLEX® customer support to arrange for transferring the problem file. The Interactive Optimizer should never exit with a system interrupt when solving a problem from a text file, even if the program that created the file has errors. Such cases are extremely rare.

If the peculiar behavior that you observed in your application persists in the Interactive Optimizer, then you must examine the LP or MPS or SAV problem file to discover whether the problem file actually defines the problem you intended. If it does not define the problem you intended to optimize, then the problem is being passed incorrectly from your application to CPLEX®, so you need to look at that part of your application.

Make sure the problem statistics and matrix coefficients indicated by the Interactive Optimizer match the ones for the intended model in your application. Use the Interactive Optimizer command `display problem stats` to verify that the size of the problem, the sense of the constraints, and the types of variables match your expectations. For example, if your model is supposed to contain only general integer variables, but the Interactive Optimizer indicates the presence of binary variables, check the type variable passed to the constructor of the variable (Concert Technology) or check the specification of the `ctype` array and the routine `CPXcopyctype` (Callable Library). You can also examine the matrix, objective, and righthand side coefficients in an LP or MPS file to see if they are consistent with the values you expect in the model.
Eliminating common programming errors

Serves as a checklist to eliminate common pitfalls from an application.

In this section

Check your include files
Identifies essential include file (header file).

Clean house and try again
Suggests recovery strategy.

Read your messages
Introduces warning and error messages.

Check return values
Explains purpose of return values.

Beware of numbering conventions
Describes indexing and numbering conventions.

Make local variables temporarily global
Describes investigation of the heap through global variables.

Solve the problem you intended
Recommends interactive debugging and diagnostic routines.

Special considerations for FORTRAN
Describes FORTRAN conventions for indexing, numbering.
Tell us
Tells where to report problems.
Check your include files

Make sure that the header file `ilocplex.h` (Concert Technology) or `cplex.h` (Callable Library) is included at the top of your application source file. If that file is not included, then compile-time, linking, or runtime errors may occur.
Clean house and try again

Remove all object files, recompile, and relink your application.
Read your messages

CPLEX® detects many different kinds of errors and generates exception, warnings, or error messages about them.

To query exceptions in Concert Technology, use the methods:

```cpp
IloInt getStatus () const; const char* IloException::getMessage () const;
```

To view warnings and error messages in the Callable Library, you must direct them either to your screen or to a log file.

- To direct all messages to your screen, use the routine `CPXsetintparam` to set the messages to screen switch `CPX_PARAM_SCRIND`.
- To direct all messages to a log file, use the routine `CPXsetlogfile`.
Check return values

Most methods and routines of the Component Libraries return a value that indicates whether the routine failed, where it failed, and why it failed. This return value can help you isolate the point in your application where an error occurs.

If a return value indicates failure, always check whether sufficient memory is available.
Beware of numbering conventions

If you delete a portion of a problem, CPLEX® changes not only the dimensions but also the indices of the problem. If your application continues to use the former dimensions and indices, errors will occur. Therefore, in parts of your application that delete portions of the problem, look carefully at how dimensions and indices are represented.
Make local variables temporarily global

If you are having difficulty tracking down the source of an anomaly in the heap, try making certain local variables temporarily global. This debugging trick may prove useful after your application reads in a problem file or modifies a problem object. If application behavior changes when you change a local variable to global, then you may get from it a better idea of the source of the anomaly.
Solve the problem you intended

Your application may inadvertently alter the problem and thus produce unexpected results. To check whether your application is solving the problem you intended, use the Interactive Optimizer, as in *Using the Interactive Optimizer for debugging*, and the diagnostic routines, as in *Using diagnostic routines for debugging*.

You should not ignore any CPLEX® warning message in this situation either, so read your messages, as in *Read your messages*.

If you are working in the Interactive Optimizer, you can use the command `display problem stats` to check the problem dimensions.
Special considerations for FORTRAN

Check row and column indices. FORTRAN conventionally numbers from one (1), whereas C, C++, Java, and other languages number from zero (0). This difference in numbering conventions can lead to unexpected results with regard to row and column indices when your application modifies a problem or exercises query routines.

It is important that you use the FORTRAN declaration IMPLICIT NONE to help you detect any unintended type conversions, because such inadvertent conversions frequently lead to strange application behavior.
Tell us

Finally, if your problem remains unsolved by CPLEX®, or if you believe you have discovered a bug in CPLEX®, the team would appreciate hearing from you about it.
Managing input and output

Describes input to and output from CPLEX®.

In this section

Overview
Provides background for managing input and output for CPLEX®.

Understanding file formats
Explains programming considerations about widely used file formats.

Using Concert XML extensions
Describes facilities for serialization of models and solutions.

Using Concert csvReader
Describes facilities for reading comma separated values (CSV).

Managing log files
Describes facilities for working with log files.

Controlling message channels
Describes message channels.
Overview

Note: There are platforms that limit the size of files that they can read. If you have created a problem file on one platform, and you find that you are unable to read the problem on another platform, consider whether the platform where you are trying to read the file suffers from such a limit on file size. IBM® ILOG® CPLEX® may be unable to open your problem file due to the size of the file being greater than the platform limit.
Understanding file formats

Explains programming considerations about widely used file formats.

In this section

Overview
Introduces the reference manual about file formats supported by CPLEX®.

Working with LP files
Describes programming considerations for working with LP file format.

Working with MPS files
Describes programming considerations for working with MPS file format.

Converting file formats
Describes programming considerations about converting file formats.
Overview

The *CPLEX File Formats Reference Manual* documents the file formats that CPLEX® supports more fully. The following topics cover programming considerations about widely used file formats.
Working with LP files

LP files are row-oriented so you can look at a problem as you enter it in a naturally and intuitively algebraic way. However, CPLEX® represents a problem internally in a column-ordered format. This difference between the way CPLEX® accepts a problem in LP format and the way it stores the problem internally may have an impact on memory use and on the order in which variables are displayed on screen or in files.

Variable order and LP files

As CPLEX® reads an LP format file by rows, it adds columns as it encounters them in a row. This convention will have an impact on the order in which variables are named and displayed. For example, consider this problem:

Maximize

subject to

\[-x_1 + x_2 + x_3 \leq 20\]
\[x_1 - 3x_2 + x_3 \leq 30\]

with these bounds

\[0 \leq x_1 \leq 40\]
\[0 \leq x_2 \leq \infty\]
\[0 \leq x_3 \leq \infty\]

Since CPLEX® reads the objective function as the first row, the two columns appearing there will become the first two variables. When the problem is displayed or rewritten into another LP file, the variables there will appear in a different order within each row. In this example, if you execute the command `display problem all`, you will see this:

```
Maximize
  obj: 2 x2 + 3 x3
Subject To
  c1: x2 + x3 - x1 <= 20
  c2: -3 x2 + x3 + x1 <= 30
Bounds
  0 <= x1 <= 40
  All other variables are >= 0.
```

That is, \(x_1\) appears at the end of each constraint in which it has a nonzero coefficient. Also, while re-ordering like this does not affect the optimal objective function value of the problem, if there exist alternate optimal solutions at this value, then the different order of the variables
could result in a change in the solution path of the algorithm, and there may be noticeable variation in the solution values of the individual variables.
Working with MPS files

The CPLEX® MPS file reader is highly compatible with files created by other modeling systems that respect the MPS format. There is generally no need to modify existing problem files to use them with CPLEX®. However, there are CPLEX®-specific conventions that may be useful for you to know. This section explains those conventions, and the CPLEX File Formats Reference Manual documents the MPS format more fully.

Free rows in MPS files

In an MPS file, CPLEX® selects the first free row or N-type row as the objective function, and it discards all subsequent free rows unless it is instructed otherwise by an OBJNAME section in the file. To retain free rows in an MPS file, reformulate them as equality rows with an additional free variable. For example, replace the free row \(x + y \) by the equality row \(x + y - s = 0 \) where \(s \) is free. Generally, the CPLEX® presolver will remove rows like that before optimization so they will have no impact on performance.

Ranged rows in MPS files

To handle ranged rows, CPLEX® introduces a temporary range variable, creates appropriate bounds for this variable, and changes the sense of the row to an equality (that is, MPS type EQ). The added range variables will have the same name as the ranged row with the characters \(R_g \) prefixed. When CPLEX® generates solution reports, it removes these temporary range variables from the constraint matrix.

Extra rim vectors in MPS files

The MPS format allows multiple righthand sides (RHSs), multiple bounds, and multiple range vectors. It also allows extra free rows. Together, these features are known as extra rim vectors. By default, the CPLEX® MPS reader selects the first RHS, bound, and range definitions that it finds. The first free row (that is, N-type row) becomes the objective function, and the remaining free rows are discarded. The extra rim data are also discarded.

Naming conventions in MPS files

CPLEX® accepts any noncontrol-character within a name. However, CPLEX® recognizes blanks (that is, spaces) as delimiters, so you must avoid them in names. You should also avoid $ (dollar sign) and * (asterisk) as characters in names because they normally indicate a comment within a data record.

Error checking in MPS files

Fairly common problems in MPS files include split vectors, unnamed columns, and duplicated names. CPLEX® checks for these conditions and reports them. If repeated rows or columns occur in an MPS file, CPLEX® reports an error and stops reading the file. You can then edit the MPS file to correct the source of the problem.
Saving modified MPS files

You may often want to save a modified MPS file for later use. To that end, CPLEX® writes out a problem exactly as it appears in memory. All your revisions of that problem will appear in the new file. One potential area for confusion occurs when a maximization problem is saved. Since MPS conventionally represents all problems as minimizations, CPLEX® reverses the sign of the objective-function coefficients when it writes a maximization problem to an MPS file. When you read and optimize this new problem, the values of the variables will be valid for the original model. However, since the problem has been converted from a maximization to the equivalent minimization, the objective, dual, and reduced-cost values will have reversed signs.
Converting file formats

MPS, Mathematical Programming System, an industry-standard format based on ASCII-text has historically been restricted to a fixed format in which data fields were limited to eight characters and specific fields had to appear in specific columns on specific lines. CPLEX® supports extensions to MPS that allow more descriptive names (that is, more than eight characters), greater accuracy for numeric data, and greater flexibility in data positions.

Most MPS files in fixed format conform to the CPLEX® extensions and thus can be read by the CPLEX® MPS reader without error. However, the CPLEX® MPS reader will not accept the following conventions:

♦ blank space within a name;
♦ blank lines;
♦ missing fields (such as bound names and righthand side names);
♦ extraneous, uncommented characters;
♦ blanks in lieu of repeated name fields, such as bound vector names and righthand side names.

You can convert fixed-format MPS files that contain those conventions into acceptable CPLEX®-extended MPS files. To do so, use the convert utility supplied in the standard distribution of CPLEX®. The convert utility removes unreadable features from fixed-format MPS, BAS, and ORD files. It runs from the operating system prompt of your platform. Here is the syntax of the convert utility:

\[
\text{convert -option inputfilename outputfilename}
\]

Your command must include an input-file name and an output-file name; they must be different from each other. The options, summarized in Options for the convert utility and corresponding file extensions, indicate the file type. You may specify only one option. If you do not specify an option, CPLEX® attempts to deduce the file type from the extension in the file name.

Options for the convert utility and corresponding file extensions

<table>
<thead>
<tr>
<th>Option</th>
<th>File type</th>
<th>File extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m</td>
<td>MPS (Mathematical Programming System)</td>
<td>.mps</td>
</tr>
<tr>
<td>-b</td>
<td>BAS (basis file according to MPS conventions)</td>
<td>.bas</td>
</tr>
<tr>
<td>-o</td>
<td>ORD (priority orders)</td>
<td>.ord</td>
</tr>
</tbody>
</table>
Using Concert XML extensions

Concert Technology for C++ users offers a suite of classes for serializing CPLEX® models (that is, instances of IloModel) and solutions (that is, instances of IloSolution) through XML. The CPLEX C++ API Reference Manual documents the XML serialization API in the group optim.concert.xml. That group includes these classes:

♦ IloXmlContext allows you to serialize an instance of IloModel or IloSolution. This class offers methods for reading and writing a model, a solution, or both a model and a solution together. There are examples of how to use this class in the reference manual.

♦ IloXmlInfo offers methods that enable you to validate the XML serialization of elements, such as numeric arrays, integer arrays, variables, and other extractables from your model or solution.

♦ IloXmlReader creates a reader in an environment (that is, in an instance of IloEnv). This class offers methods to check runtime type information (RTTI), to recognize hierarchic relations between objects, and to access attributes of objects in your model or solution.

♦ IloXmlWriter creates a writer in an environment (that is, in an instance of IloEnv). This class offers methods to access elements and to convert their types as needed in order to serialize elements of your model or solution.

Note: There is a fundamental difference between writing an XML file of a model and writing an LP/MPS/SAV file of the same extracted model. If the model contains piecewise linear elements (PWL), or other nonlinear features, the XML file will represent the model as such. In contrast, the LP/MPS/SAV file will represent only the transformed model. That transformed model obscures these nonlinear features because of the automatic transformation that took place.
Using Concert csvReader

CSV is a file format consisting of lines of comma-separated values in ordinary ASCII text. Concert Technology for C++ users provides classes adapted to reading data into your application from a CSV file. The constructors and methods of these classes are documented more fully in the *Concert Technology C++ Reference Manual*.

♦ **IloCsvReader**

An object of this class is capable of reading data from a CSV file and passing the data to your application. There are methods in this class for recognizing the first line of the file as a header, for indicating whether or not to cache the data, for counting columns, for counting lines, for accessing lines by number or by name, for designating special characters, for indicating separators, and so forth.

♦ **IloCsvLine**

An object of this class represents a line of a CSV file. The constructors and methods of this class enable you to designate special characters, such as a decimal point, separator, line ending, and so forth.

♦ **IloCsvReader::Iterator**

An object of this embedded class is an iterator capable of accessing data in a CSV file line by line. This iterator is useful, for example, in programming loops of your application, such as `while` statements.
Managing log files

Describes facilities for working with log files.

In this section

Overview
Introduces log files from CPLEX®.

Creating, renaming, relocating log files
Describes methods for creating, renaming, and relocating log files.

Closing log files
Describes facilities for closing log files.
Overview

As CPLEX® is working, it can record messages to a log file. By default, the Interactive Optimizer creates the log file in the directory where it is running, and it names the file cplex.log. If such a file already exists, CPLEX® adds a line indicating the current time and date and then appends new information to the end of the existing file. That is, it does not overwrite the file, and it distinguishes different sessions within the log file. By default, there is no log file for Component Library applications.

You can locate the log file where you like, and you can rename it. Some users, for example, like to create a specifically named log file for each session. Also you can close the log file in case you do not want CPLEX® to record messages to its default log file.
Creating, renaming, relocating log files

♦ In the Interactive Optimizer, use the command `set logfile filename`, substituting the name you prefer for the log file. In other words, use this command to rename or relocate the default log file.

♦ From the Callable Library, first use the routine `CPXfopen` to open the target file; then use the routine `CPXsetlogfile`. The *Callable Library Reference Manual* documents both routines.

♦ From Concert, use the `setOut` method to send logging output to the specified output stream.
Closing log files

♦ If you do not want CPLEX® to record messages in a log file, then you can close the log file from the Interactive Optimizer with the command `set logfile *`.

♦ By default, routines from the Callable Library do not write to a log file. However, if you want to close a log file that you created by a call to `CPXsetlogfile`, call `CPXsetlogfile` again, and this time, pass a `NULL` pointer as its second argument.

♦ From Concert, use the `setOut` method with `env.getNullStream` as argument, where `env` is an `IloEnv` object, to stop sending logging output to an output stream.
Controlling message channels

Describes message channels.

In this section

Overview
Introduces message channels for CPLEX®.

Parameter for output channels
Describes control for message channels in Interactive Optimizer and C API.

Callable Library routines for message channels
Describes routines to control message channels in the C API.

Example: Callable Library message channels
Demonstrates control of message channels in the C API.

Concert Technology message channels
Describes control of message channels in Concert Technology C++ API.
Overview

In both the Interactive Optimizer and the Callable Library, there are message channels that enable you to direct output from your application as you prefer. In the Interactive Optimizer, these channels are defined by the command `set output channel` with its options as listed in *Options for the output channel command*. In the Callable Library, there are routines for managing message channels, in addition to parameters that you can set. In the C++ and Java APIs, the class `IloCplex` inherits methods from the Concert Technology class `IloAlgorithm`, methods that enable you to control input and output channels.

The following sections offer more details about these ideas:

- Parameter for output channels;
- Callable Library routines for message channels;
- Example: Callable Library message channels;
- Concert Technology message channels.
Parameter for output channels

Besides the log-file parameter, the Interactive Optimizer and the Callable Library offer you output-channel parameters to give you finer control over when and where messages appear in the Interactive Optimizer. Output-channel parameters indicate whether output should or should not appear on screen. They also allow you to designate log files for message channels. The output-channel parameters do not affect the log-file parameter, so it is customary to use the command set logfile before the command set output channel value1 value2.

In the output-channel command, you can specify a channel to be one of dialog, errors, logonly, results, or warnings. Options for the output channel command summarizes the information carried over each channel.

Options for the output channel command

<table>
<thead>
<tr>
<th>Channel</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>dialog</td>
<td>messages related to interactive use; e.g., prompts, help messages, greetings</td>
</tr>
<tr>
<td>errors</td>
<td>messages to inform user that operation could not be performed and why</td>
</tr>
<tr>
<td>logonly</td>
<td>message to record only in file (not on screen) e.g., multiline messages</td>
</tr>
<tr>
<td>results</td>
<td>information explicitly requested by user; state, change, progress information</td>
</tr>
<tr>
<td>warnings</td>
<td>messages to inform user request was performed but unexpected condition may result</td>
</tr>
</tbody>
</table>

The option value2 lets you specify a file name to redirect output from a channel.

Also in that command, value1 allows you to turn on or off output to the screen. When value1 is y, output is directed to the screen; when its value is n, output is not directed to the screen. Channels directing output to the screen or to a file summarizes which channels direct output to the screen by default. If a channel directs output to the screen by default, you can leave value1 blank to get the same effect as set output channel y.

Channels directing output to the screen or to a file

<table>
<thead>
<tr>
<th>Channel</th>
<th>Default value 1</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>dialog</td>
<td>y</td>
<td>blank directs output to screen but not to a file</td>
</tr>
<tr>
<td>errors</td>
<td>y</td>
<td>blank directs output to screen and to a file</td>
</tr>
<tr>
<td>logonly</td>
<td>n</td>
<td>blank directs output only to a file, not to screen</td>
</tr>
<tr>
<td>results</td>
<td>y</td>
<td>blank directs output to screen and to a file</td>
</tr>
<tr>
<td>warnings</td>
<td>y</td>
<td>blank directs output to screen and to a file</td>
</tr>
</tbody>
</table>
Callable Library routines for message channels

Interactive Optimizer and the Callable Library define several message channels for flexible control over message output:

♦ cpxresults for messages containing status and progress information;
♦ cpxerror for messages issued when a task cannot be completed;
♦ cpxwarning for messages issued when a nonfatal difficulty is encountered; or when an action taken may have side-effects; or when an assumption made may have side-effects;
♦ cpxlog for messages containing information that would not conventionally be displayed on screen but could be useful in a log file.

Output messages flow through message channels to destinations. Message channels are associated with destinations through their destination list. Messages from routines of the CPLEX® Callable Library are assigned internally to one of those predefined channels. Those default channels are C pointers to CPLEX® objects; they are initialized by CPXopenCplex; they are not global variables. Your application accesses these objects by calling the routine CPXgetchannels. You can use these predefined message channels for your own application messages. You can also define new channels.

An application using routines from the CPLEX® Callable Library produces no output messages unless the application specifies message handling instructions through one or more calls to the message handling routines of the Callable Library. In other words, the destination list of each channel is initially empty.

Messages from multiple channels may be sent to one destination. All predefined CPLEX® channels can be directed to a single file by a call to CPXsetlogfile. Similarly, all predefined CPLEX® channels except cpxlog can be directed to the screen by the messages to screen switch CPX_PARAM_SCRIND. For a finer level of control, or to define destinations for application-specific messages, use the following message handling routines, all documented in the Callable Library Reference Manual:

♦ CPXmsg writes a message to a predefined channel;
♦ CPXflushchannel flushes a channel to its associated destination;
♦ CPXdisconnectchannel flushes a channel and clears its destination list;
♦ CPXdelchannel flushes a channel, clears its destination list, frees memory for that channel;
♦ CPXaddchannel adds a channel;
♦ CPXaddfpdest adds a destination file to the list of destinations associated with a channel;
♦ CPXdelfpdest deletes a destination from the destination list of a channel;
♦ CPXaddfuncdest adds a destination function to a channel;
♦ CPXdelfuncdest deletes a destination function to a channel;

After channel destinations are established, messages can be sent to multiple destinations by a single call to a message-handling routine.
CPLEX message handling routines

User-written application

- CPXmsg
- CPXaddchannel
- CPXdest

Channel(s)

- CPXdelmsg
- CPXdelchannel

Destination File(s)

Destination Function
Example: Callable Library message channels

This example shows you how to use the CPLEX® message handler from the Callable Library. It captures all messages generated by CPLEX® and displays them on screen along with a label indicating which channel sent the message. It also creates a user channel to receive output generated by the program itself. The user channel accepts user-generated messages, displays them on screen with a label, and records them in a file without the label.

The complete program `lpex5.c` appears online in the standard distribution at `yourCPEXinstallation/examples/src`. This example derives from `lpex1.c`, a program in Getting Started. There are a few differences between the two examples:

- In this example, the function `ourmsgfunc` (rather than the C functions `printf` or `fprintf (stderr, . . .)`) manages all output. The program itself or `CPXmsg` from the CPLEX® Callable Library calls `ourmsgfunc`. In fact, `CPXmsg` is a replacement for `printf`, allowing a message to appear in more than one place, for example, both on screen and in a file.

Only after you initialize the CPLEX® environment by calling `CPXopenCPLEX` can you call `CPXmsg`. And only after you call `CPXgetchannels` can you use the default CPLEX® channels. Therefore, calls to `ourmsgfunc` print directly any messages that occur before the program gets the address of `cpxerror` (a channel). After a call to `CPXgetchannels` gets the address of `cpxerror`, and after a call to `CPXaddfuncdest` associates the message function `ourmsgfunc` with `cpxerror`, then error messages are generated by calls to `CPXmsg`.

After the `TERMINATE:` label, any error must be generated with care in case the error message function has not been set up properly. Thus, `ourmsgfunc` is also called directly to generate any error messages there.

- A call to the Callable Library routine `CPXaddchannel` initializes the channel `ourchannel`. The Callable Library routine `fopen` opens the file `lpex5.out` to accept solution information. A call to the Callable Library routine `CPXaddfpdest` associates that file with that channel. Solution information is also displayed on screen since `ourmsgfunc` is associated with that new channel, too. Thus in the loops near the end of `main`, when the solution is printed, only one call to `CPXmsg` suffices to put the output both on screen and into the file. A call to `CPXdelchannel` deletes `ourchannel`.

- Although `CPXcloseCPLEX` will automatically delete file- and function-destinations for channels, it is a good practice to call `CPXdelfpdest` and `CPXdelfuncdest` at the end of your programs.
Concert Technology message channels

In the C++ API of Concert Technology, the class `IloEnv` initializes output streams for general information, for error messages, and for warnings. The class `IloAlgorithm` supports these communication streams, and the class `IloCplex` inherits its methods. For general output, there is the method `IloAlgorithm::out`. For warnings and nonfatal conditions, there is the method `IloAlgorithm::warning`. For errors, there is the method `IloAlgorithm::error`.

By default, an instance of `IloEnv` defines the output stream referenced by the method `out` as the system `cout` in the C++ API, but you can use the method `setOut` to redefine it as you prefer. For example, to suppress output to the screen in a C++ application, use this method with this argument:

```cpp
setOut(IloEnv::getNullStream)
```

Likewise, you can use the methods `IloAlgorithm::setWarning` and `setError` to redefine those channels as you prefer.
Timing interface

Introduces the timing interface available in CPLEX®.

In this section

Using the timing interface
Describes the timing interface for accessing time stamps.
Using the timing interface

There are methods and routines in IBM® ILOG® CPLEX® that provide a time stamp to enable you to measure computational time. For example, an application can invoke one of these methods or routines at the beginning and end of an operation; then compare the two time stamps to compute elapsed time in seconds.

♦ In Concert Technology

- In the C++ API, IloCplex::getCplexTime returns a time stamp that applications may use to calculate elapsed time in seconds.
- In the Java API, IloCplex.getCplexTime returns a time stamp that applications may use to calculate elapsed time in seconds.
- In the .NET API, the property Cplex.CplexTime accesses a time stamp that applications may use to calculate elapsed time in seconds.

♦ In the Callable Library, CPXgettime returns a time stamp that applications may use to calculate elapsed time in seconds.

In addition, other methods and routines return a time stamp specifying when a time limit will occur; this time stamp may be used in calculations with the time stamp returned by the previous methods or routines to compute remaining time in seconds from callbacks.

♦ In Concert Technology

- In the C++ API, CallbackI::getEndTime returns a time stamp specifying when a time limit will occur; this time stamp may be used in calculations with the time stamp returned by gettime to compute remaining time in seconds.
- In the Java API, CpxCallback.getEndTime returns a time stamp specifying when a time limit will occur; this time stamp may be used in calculations with the time stamp returned by gettime to compute remaining time in seconds.
- In the .NET API, the property Cplex.Callback.EndTime accesses a time stamp specifying when a time limit will occur; this time stamp may be used in calculations with the time stamp accessed by CplexTime to compute remaining time in seconds.

♦ In the Callable Library, CPX_CALLBACK_INFO_ENDTIME is a symbolic value that CPXgetcallbackinfo can supply in its argument whichinfo. That value is a time stamp of the point in time when the optimization will terminate if optimization does not finish before that point. In other words, this symbol is useful in measuring time through information callbacks.

For a sample of these timing features, see these examples among those distributed with the product in yourCPLEXinstallation/examples:

♦ ilomipex4.cpp in C++ in Concert Technology
♦ MIPex4.java in Java in Concert Technology
♦ MIPex4.cs in C#.NET in Concert Technology
♦ MIPex4.vb in Visual Basic.NET in Concert Technology
♦ mipex4.c in C in the Callable Library
Licensing an application

Describes CPLEX® runtime and development licensing conventions.

In this section

Overview
Outlines general considerations about licensing an application that uses ILOG CPLEX.

Types of ILM runtime licenses
ILM runtime licenses come in two forms: file-based and memory-based. The following sections document those two forms of license.

Routines and methods for licensing
Describes routines of the C API and methods of Concert Technology for licensing an application of CPLEX®.

Examples
Here are some code samples that illustrate the use of those runtime license routines and methods.

Summary
Summarizes licensing conventions for applications of CPLEX®.
Overview

IBM® ILOG® CPLEX® uses the standard ILOG License Manager (ILM). The ILOG License Manager online documentation documents ILM access keys (or keys, for short) in more detail. This topic shows you how to write applications that use ILM runtime access keys.

A runtime license is restricted to applications created by a particular developer or company. In order to distinguish runtime access keys from development keys (as well as runtime keys for applications created by other companies), you need to call an additional routine in your source code before initializing the CPLEX® environment.
Types of ILM runtime licenses

ILM runtime licenses come in two forms: file-based and memory-based. The following sections document those two forms of license.

In this section

File-based RTNODE, RTSTOKEN or TOKEN keys
Describes file-based ILM licenses.

Memory-based RUNTIME keys
Describes memory-based ILM licenses.
File-based RTNODE, RTSTOKEN or TOKEN keys

These are a file-based access key that is tied to a particular computer or server. Refer to the ILOG License Manager online documentation for information about how to establish the file containing the key. You must communicate the location of this file to your application. In order to avoid potential conflicts with other runtime applications, it is a good idea to put the key in a directory specific to your application by using one of the following:

♦ the C routine CPXputenv from the Callable Library
♦ the C routine CPXputenv from the Callable Library in the C++ API of Concert Technology
♦ the method IloCplex.putEnv in the Java API of Concert Technology
♦ the method Cplex.PutEnv in the .NET API of Concert Technology

These file-based keys are the most commonly used runtime licenses.
Memory-based RUNTIME keys

These involve passing some information in the memory of your program to ILM. No files containing access keys are involved. Rather, you set the key in your program and pass it to ILM by calling one of the following:

♦ the C routine CPXRegisterLicense from the Callable Library
♦ the C routine CPXRegisterLicense from the Callable Library in the C++ API of Concert Technology
♦ the method IloCplex.registerLicense in the Java API of Concert Technology
♦ the method Cplex.RegisterLicense in the .NET API of Concert Technology
Routines and methods for licensing

All CPLEX® applications either call the routine `CPXopenCPLEX` to establish the CPLEX® environment, or use the appropriate constructor (`IloCplex` in the C++ and Java API or `Cplex` in the .NET API) to initialize CPLEX® for use with Concert Technology. Until either `CPXopenCPLEX` is called or the `IloCplex` object exists, few CPLEX® routines or methods operate. In addition to allocating the environment, `CPXopenCPLEX` performs license checks, as do the constructors for Concert Technology. For development licenses, no additional licensing steps are required. For runtime licenses, your application first needs to provide some additional licensing information before the call to `CPXopenCPLEX` or the use of a constructor.

♦ For RTNODE, RTSTOKEN and TOKEN keys, this requires calling the `CPXputenv` routine from the Callable Library and C++ API of Concert Technology, or the `IloCplex.putenv` static method from the Java API, or `Cplex.PutEnv` from the .NET API, to specify the location of the key through the `ILOG_LICENSE_FILE` environment variable.

♦ For memory-based RUNTIME keys, this requires calling the `CPXRegisterLicense` routine for Callable Library and C++ users, or the static method `IloCplex.registerLicense` for Java users, or the static method `Cplex.RegisterLicense` for .NET users, to pass the RUNTIME key to ILM.

Documentation of the routines `CPXputenv` and `CPXRegisterLicense` is in the *CPLEX Callable Library Reference Manual*; documentation of `IloCplex.putenv` and `IloCplex.registerLicense` is in the *CPLEX Java API Reference Manual*; documentation of `Cplex.PutEnv` and `Cplex.RegisterLicense` is in the *CPLEX .NET API Reference Manual*.
Examples

Here are some code samples that illustrate the use of those runtime license routines and methods.

In this section

CPXputenv routine for C and C++ users
Illustrates opening the CPLEX® environment for C and C++ users.

The putenv method for Java users
Illustrates putenv method for Java users.

The Putenv method for .NET users
Illustrates Putenv method for .NET users.

CPXRegisterLicense routine for C and C++ users
Illustrates license registration for C and C++ users.

The registerLicense method for Java users
Illustrates license registration for Java users.

The RegisterLicense method for .NET users
Illustrates license registration for .NET users.
CPXputenv routine for C and C++ users

```c
char *inststr = NULL;
char *envstr = NULL;

/* Initialize the CPLEX environment */
envstr = (char *) malloc (256);
if ( envstr == NULL ) {
    fprintf (stderr, "Memory allocation for CPXputenv failed.\n");
    status = FAIL;
    goto TERMINATE;
} else {
    inststr = (char *) getenv("MYAPP_HOME");
    if ( inststr == NULL ) {
        fprintf (stderr, "Unable to find installation directory.\n");
        status = FAIL;
        goto TERMINATE;
    }
    strcpy (envstr, "ILOG_LICENSE_FILE=");
    strcat (envstr, inststr);
    strcat (envstr, "\license\access.ilm");
    CPXputenv (envstr);
}
env = CPXopenCPLEX (&status);
```

Note: This example assumes a Microsoft Windows file directory structure that requires an additional backslash when specifying the path of the file containing the key. It also assumes that the application uses an environment variable called `MYAPP_HOME` to identify the directory in which it was installed.

The string argument to `CPXputenv` must remain active throughout the time CPLEX® is active; the best way to do this is to `malloc` the string.
The putenv method for Java users

```java
IloCplex.putenv("ILOG_LICENSE_FILE=\license\access.ilm");
try {
    cplex = new IloCplex();
} catch (IloException e) {
    System.err.println("Exception caught for runtime license:");
    e;
}
```
Cplex.Putenv("ILOG_LICENSE_FILE=../../certify/access.e.ilm");
try {
 cplex = new Cplex();
}
catch (ILOG.Concert.Exception e) {
 System.Console.WriteLine("Concert exception caught: " + e);
}
static char *ilm_license="LICENSE ILOG Incline
RUNTIME CPLEX 12.000 21-Jul-2011 R81GM34ECZTS N, options: m";
static int ilm_license_signature=2756133;

CPXENVptr env = NULL;
int status;

/* Initialize the CPLEX environment */

status = CPXRegisterLicense (ilm_license, ilm_license_signature);
if (status != 0) {
 fprintf (stderr, "Could not register CPLEX license, status %d.\n", status);
 goto TERMINATE;
}

env = CPXopenCPLEX (&status);
if (env == NULL) {
 char errmsg[1024];
 fprintf (stderr, "Could not open CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 goto TERMINATE;
}
The registerLicense method for Java users

```java
static String ilm_CPLEX_license=""LICENSE ILOG Test\n RUNTIME CPLEX 12.000 021-Jul-2015 R81GM34ECZTS N ,
 options: m ";
static int ilm_CPLEX_license_signature=2756133;

public static void main(String[] args) {
    try {
        IloCplex.registerLicense(ilm_CPLEX_license, ilm_CPLEX_license_signature);
        IloCplex cplex = new IloCplex();
    }
    catch (IloException e) {
        System.err.println("Exception caught for runtime license:" + e);
    }
}
```
The RegisterLicense method for .NET users

```csharp
internal static string ilm_CPLEX_license="LICENSE ILOG User\n RUNTIME CPLEX
12.000 05-Aug-2015 62RAR21A8NC5 N any , options: m ";
internal static int ilm_CPLEX_license_signature=863909;
public static void Main(string[] args) {
    try {
        Cplex.RegisterLicense(ilm_CPLEX_license, ilm_CPLEX_license_signature);
        Cplex cplex = new Cplex();
    }
    catch (ILOG.Concert.Exception e) {
        System.Console.WriteLine("Expected Concert exception caught: " + e);
    }
}
```
Summary

ILM runtime license keys come in two forms. Users of file-based RTNODE, RTSTOKEN, and TOKEN keys should use the routine CPXputenv or the method IloCplex.putenv or the method Cplex.PutEnv to identify the location of the license file. Users of memory-based RUNTIME keys should use the routine CPXRegisterLicense or the method IloCplex.registerLicense or the method Cplex.RegisterLicense to pass the key to the ILOG License Manager embedded inside the CPLEX® Component Libraries. Refer to the ILOG License Manager online documentation for additional information about activating and maintaining ILM license keys.
Tuning tool

The tuning tool, a utility to aid you in improving the performance of your optimization applications, analyzes a model or a group of models and suggests a suite of parameter settings for you to use that provide better performance than the default parameter settings for your model or group of models. This topic documents the tuning tool of IBM® ILOG® CPLEX®.

In this section

Meet the tuning tool
Introduces the tuning tool.

Invoking the tuning tool
Describes methods and routines to invoke the tuning tool.

Example: time limits on tuning in the Interactive Optimizer
Shows the effect of time limits on the tuning tool in the Interactive Optimizer.

Fixing parameters and tuning multiple models in the Interactive Optimizer
Shows options of the tuning tool command in the Interactive Optimizer.

Tuning models in the Callable Library (C API)
Describes the tuning tool in the C API.

Callbacks for tuning
Describes callbacks available to the tuning tool.

Terminating a tuning session
Describes facilities to end a tuning session.
Meet the tuning tool

Introduces the tuning tool.

In this section

Overview
Defines the scope of the tuning tool.

If CPLEX solves your problem to optimality
Distinguishes problems solved to optimality.

If CPLEX finds solutions but does not prove optimality
Distinguishes problems with solutions not proven optimal.

Tuning and time limits
Introduces parameters to set time limits on tuning.

Tuning results
Describes typical results of a tuning session.
Overview

The tuning tool looks at parameters to improve solving time. If your model suffers from numeric instability, the tuning tool will not attempt to correct that problem. Furthermore, if there is insufficient memory to accommodate optimization of your model, the tuning tool will not correct that problem either. In short, the tuning tool does not magically eliminate all performance bottlenecks. However, if you understand the performance issues of your model, the tuning tool can help you discern parameter settings that lead to faster solving time.

The recommended practice with the tuning tool is to solve your model first with default settings and to consider the results before invoking the tuning tool. Your analysis of those results directs you toward the next step. The following sections sketch typical scenarios for working effectively with the tuning tool and outline what to expect from the tuning tool.
If CPLEX solves your problem to optimality

If CPLEX® solves your problem to optimality, you may still want to apply the tuning tool to discover whether you can solve the model faster. In such a case, bear in mind that the tuning tool performs several optimization runs as it goes about its work. These optimization runs may take six to eight times longer than the default run that produced your optimal results. If that projected time (six to eight times longer than the initial default run) seems too long for your purpose, then consider setting a general time limit by means of the optimizer time limit parameter (\texttt{TiLim, CPX_PARAM_TILIM}) or consider setting a specific tuning time limit per problem, per optimization, by means of the tuning time limit parameter (\texttt{TuningTiLim, CPX_PARAM_TUNINGTILIM}). \textit{Example: time limits on tuning in the Interactive Optimizer} illustrates this approach through time limits more fully.
If CPLEX finds solutions but does not prove optimality

In the case where CPLEX® finds solutions for your model but does not prove optimality in your initial run before invoking the tuning tool, you will likely want to set the time limit per model. See Tuning and time limits for more about that idea.

In situations where CPLEX® does not solve your model to optimality for a reason other than a time limit, you should address that reason before you apply the tuning tool.

For example, if your initial run results in an out-of-memory error, consider setting the memory emphasis parameter (memory reduction switch: MemoryEmphasis, CPX_PARAM_MEMORYEMPHASIS). Then create a file in which you specify a fixed setting of that parameter for the tuning tool to respect. Pass that file to the tuning tool with your model. Fixing parameters and tuning multiple models in the Interactive Optimizer illustrates this approach.
Tuning and time limits

The tuning process is affected by two time limit parameters.

The overall time limit for the tuning process is set with the general time limit parameter (optimizer time limit: T\text{ilim}, CPX_PARAM_TILIM).

Tuning consists of a series of optimizations of each of the problems to be tuned. The time limit on each of these optimizations is specified by the tuning time limit parameter (tuning time limit: *TuningT*\text{ilim}, CPX_PARAM_TUNINGTILIM). The default value of this parameter is set to a value much smaller than the default value of the overall time limit, so as to avoid runs of indeterminate length. This parameter governs complete optimizations started within the tuning tool. The tuning tool may also launch shorter and partial optimizations; in such cases, it uses this parameter as guidance to compute shorter time limits.

The per-problem, per-optimization time limit can also be set using the general time limit parameter (optimizer time limit: T\text{ilim}, CPX_PARAM_TILIM) in a fixed parameter set. *Fixing parameters and tuning multiple models in the Interactive Optimizer* explains more about that approach. You would want to set the per-problem, per-optimization time limit in this way if you are using a time limit in your usual (non-tuning) runs of the models.
Tuning results

The tuning tool selects the best suite of parameter settings based on the performance times of the several optimizations of the model or models. Because the performance times cannot be measured exactly, the results of tuning can differ from one tuning run to another if the times for the individual optimizations are close.
Invoking the tuning tool

The tuning tool is available in all components of CPLEX®: Concert Technology, Callable Library, and Interactive Optimizer.

In Concert Technology, you invoke the tuning tool through these methods:

♦ `tuneParam` in the C++ API; see also the example `ilotuneset.cpp`;
♦ `tuneParam(String,String)` in the Java API; see also the example `TuneSet.java`;
♦ `Cplex.TuneParam` in the .NET API; see also the example `TuneSet.cs` or `TuneSet.vb`.

The tool is also part of the Callable Library (C API) through separate routines for tuning a single model or a group of models. For more detail about the C routine for tuning a single model or a group of models, see Tuning models in the Callable Library (C API). For a sample application, see examples/src/cplex/tuneset.c.

In the Interactive Optimizer, you can tune one model or a group of models with the `tune` command. See the Example: time limits on tuning in the Interactive Optimizer, as well as the topic Fixing parameters and tuning multiple models in the Interactive Optimizer.

You can specify whether you want the least worst performance or the best average performance across a set of models with the tuning measure parameter, (tuning measure: `TuningMeasure,CPX_PARAM_TUNINGMEASURE`), documented in the CPLEX Parameters Reference Manual.

When you are tuning a single model, you can ask CPLEX® to permute the model and re-tune to get more robust results, as explained in the documentation of the repeat tuning parameter (tuning repeater: `TuningRepeat,CPX_PARAM_TUNINGREPEAT`).

You can also set a time limit specific to tuning per problem and per optimization run, as documented for the tuning time limit parameter (tuning time limit: `TuningTilLim,CPX_PARAM_TUNINGTILIM`). Example: time limits on tuning in the Interactive Optimizer shows how to set such a time limit.
Example: time limits on tuning in the Interactive Optimizer

As an example, suppose that you want to spend an overall amount of time tuning the parameter settings for a given model, say, 1000 seconds. Also suppose that you want CPLEX® to make multiple attempts within that overall time limit to tune the parameter settings for your model. Suppose further that you want to set a time limit on each of those attempts, say, 200 seconds per attempt.

In the Interactive Optimizer, first enter your model into a session (for example, by reading a formatted file), like this:

```
read model.mps
```

Then set the overall time limit through the environment with this command:

```
set timelimit 1000
```

That command makes 1000 seconds available as a resource in the environment. The command effectively sets the overall time limit (optimizer time limit: TiLim, CPX_PARAM_TILIM).

Then set the tuning time limit, like this:

```
set tune timelimit 200
```

This series of commands tells CPLEX® to tune the parameters of your model, making multiple attempts of 200 seconds each (set by the tuning time limit: TuningTiLim, CPX_PARAM_TUNINGTILIM), within an overall time limit of 1000 seconds (set by the optimizer time limit: TiLim, CPX_PARAM_TILIM).
Fixing parameters and tuning multiple models in the Interactive Optimizer

Shows options of the tuning tool command in the Interactive Optimizer.

In this section

Invoking the tuning tool in the Interactive Optimizer
Shows commands to invoke the tuning tool in the Interactive Optimizer.

Fixed parameters to respect
Describes facilities in Interactive Optimizer to exclude parameters from consideration by the tuning tool.

Files of models to tune
Describes facility in the Interactive Optimizer to tune multiple models simultaneously.
Invoking the tuning tool in the Interactive Optimizer

The command to invoke the tuning tool in the Interactive Optimizer is: `tune`

Optionally, that command may take one or two arguments, in either order, like this:
```
tune paramfile.prm modelfile
```
or
```
tune modelfile paramfile.prm
```

The following sections explain those optional arguments.
Fixed parameters to respect

If you supply an optional file name with the extension .prm, that file contains the formatted list of parameters and their values that you do not want CPLEX® to tune. That is, you want CPLEX® to respect those parameter settings. If you do not supply a parameter file to the tune command, then all parameters are subject to tuning.

For example, if you have a model that you know has numerical issues, and you have already determined that you want to set the numerical emphasis parameter yourself, then a PRM file suitable for tuning your model would contain the following heading and parameter setting:

```
CPLEX Parameter File Version 12.0.0
CPX_PARAM_NUMERICALEMPHASIS   1
```

Tip: A PRM file must have a correctly formatted header to let CPLEX® know which version to expect.

An easy way to generate a PRM file with a correct heading and fixed parameter settings is to read your model, set the parameters you wish, and write a PRM file from the Interactive Optimizer, with this command:

```
write  filename .prm
```
Files of models to tune

If you supply an optional file name, such as `modelfile`, that file contains a list of files, one file name per line. Each file contains a model to tune. Each file must specify its type, such as `.mps`, `.lp`, or `.sav`, as the extension in the file name. Optionally, those cited files may be compressed, as specified by the extension `.gz` or `.bz2`. Here is an example of the contents of such a file, specifying three compressed files of type `.mps` available in the current working directory:

```
p0033.mps.gz
p0548.mps.gz
p2756.mps.gz
```

For models not in the current working directory, you can specify a path to them with the usual syntax for your platform.

CPLEX® will uncompressed the model files, read them according to their type of format, and apply the tuning tool to that suite of files. If you do not specify a list of models to tune, then CPLEX® tunes the model currently in the Interactive Optimizer.
The routine \texttt{CPXtuneparam} tunes one existing model, and the routine \texttt{CPXtuneparamprobset} tunes a group of models, specified by an array of file names.

Both these routines are applicable to models of one of these types: LP, QP, and MIP. (Neither applies to networks. Neither applies to quadratically constrained programs (QCP).) Advanced bases in \texttt{.sav} files are ignored by these routines. Acceptable file formats for these routines are:

- \texttt{.mps}
- \texttt{.lp}
- \texttt{.sav}

Parameter settings in the environment control the resources for the tuning tool; the parameter settings passed in the arguments of these routines are used by CPLEX$^\text{®}$ as a starting point for tuning. You can specify parameters and corresponding values for CPLEX$^\text{®}$ to use as a starting point. Bear in mind that the parameters you specify at nondefault settings will be fixed during the tuning. That is, the tuning tool will not attempt to modify them. In other words, when you set a parameter as a starting point, you eliminate it from consideration by the tuning tool.

Callbacks (except the tuning callback) are ignored by these tuning routines in the Callable Library (C API).

The tuning tool checks the termination signal (that is, the variable set by the routine \texttt{CPXsetterminate}) and terminates the tuning process in compliance with that termination signal. Tuning also respects time limits set in the environment.

The result of either tuning routine is an environment containing the parameter settings recommended by tuning. You can query these values or write them to a formatted PRM file with the usual routines.

After tuning, the return value of either routine specifies 0 (zero) when tuning completed successfully and nonzero when it has not done so. A tuning status is also returned as an argument to these routines. The possible nonzero values of the tuning status argument are these:

- \texttt{CPX_TUNE_ABORT} specifies that abort occurred through \texttt{CPXsetterminate}.
- \texttt{CPX_TUNE_TILIM} specifies that tuning reached a time limit specified as a parameter in the environment.

Tuning will set any parameters which have been chosen even if there is an early termination.
Callbacks for tuning

A tuning callback is a user-written function that CPLEX® calls before each trial run during a tuning session. A tuning callback allows you to follow the progress of tuning. It reports information that enables you to estimate how much more time tuning needs to achieve results useful in your model.

To use a tuning callback in a tuning session, you must first write the callback function, and then pass it to CPLEX®. CPLEX® will then execute your tuning callback before it begins a trial run.

♦ In Concert Technology, you must implement your user-written function as an instance of the tuning callback class.
 ● IloCplex::TuningCallback in the C++ API
 ● IloCplex.TuningCallback in the Java API
 ● Cplex.TuningCallback in the .NET API

 For details about writing your tuning callback, see Using optimization callbacks, especially Implementing callbacks with Concert Technology

♦ In the Callable Library (C API), use the routine CFXsettuningcallbackfunc. For more about how to write a callback, see also Implementing callbacks in the Callable Library.
Terminating a tuning session

To terminate a tuning session, you can use one of the following means:

♦ In the C++ API, pass an instance of the class `IloCplex::Aborter` to an instance of `IloCplex`. Then call the method `IloCplex::Aborter::abort` to terminate the tuning session.

♦ In the Java API, pass an instance of the class `IloCplex.Aborter` to an instance of `IloCplex`. Then call the method `IloCplex.Aborter.abort` to terminate the tuning session.

♦ In the .NET API, pass an instance of the class `Cplex.Aborter` to an instance of `Cplex`. Then call the method `Cplex.Aborter.Abort` to terminate the tuning session.

♦ In the Callable Library (C API), call the routine `CPXsetterminate` to set a pointer to the termination signal. Initially, the value of the termination signal should be zero. When your application sets the termination signal to a nonzero value, then CPLEX® will terminate the tuning session.
This part focuses on algorithmic considerations about the optimizers of IBM® ILOG® CPLEX® that solve problems formulated in terms of continuous variables. While ILOG CPLEX is delivered with default settings that enable you to solve many problems without changing parameters, this part also documents features that you can customize for your application.

In this section

Solving LPs: simplex optimizers
Documents the primal and dual simplex optimizers.

Solving LPs: barrier optimizer
Documents solving linear programming problems by means of the CPLEX® Barrier Optimizer.

Solving network-flow problems
Documents the CPLEX® Network Optimizer.

Solving problems with a quadratic objective (QP)
Describes solving convex quadratic programming problems (QPs) with CPLEX®.

Solving problems with quadratic constraints (QCP)
Documents the solution of quadratically constrained programming problems (QCPs), including the special case of second order cone programming problems (SOCPs).
Solving LPs: simplex optimizers

Documents the primal and dual simplex optimizers.

In this section

Introducing the primal and dual optimizers
Places the primal and dual optimizers in context.

Choosing an optimizer for your LP problem
Explains considerations of choosing an optimizer for LP models.

Tuning LP performance
Documents tactics for tuning performance on LP models.

Diagnosing performance problems
While some linear programming models offer opportunities for performance tuning, others, unfortunately, entail outright performance problems that require diagnosis and correction. This section indicates how to diagnose and correct such performance problems as lack of memory or numeric difficulties.

Diagnosing LP infeasibility
Documents ways to diagnose sources of infeasibility in LP models.

Examples: using a starting basis in LP optimization
Shows examples of starting from an advanced basis for LP optimization.
Introducing the primal and dual optimizers

The preceding topics have focused on the details of writing applications that model optimization problems and access the solutions to those problems, with minimal attention to the optimizer that solves them, because most models are solved well by the default optimizers provided by IBM® ILOG® CPLEX®. For instances where a user wishes to exert more direct influence over the solution process, CPLEX® provides a number of features that may be of interest.

This topic and the following one tell you more about solving linear programs with the LP optimizers of CPLEX®. This topic emphasizes primal and dual simplex optimizers.
Choosing an optimizer for your LP problem

Explains considerations of choosing an optimizer for LP models.

In this section

Overview of LP optimizers
Introduces parameters to select LP optimizers.

Automatic selection of an optimizer
Describes conditions for automatic selection of an optimizer.

Dual simplex optimizer
Describes conditions favoring the dual simplex optimizer.

Primal simplex optimizer
Describes conditions favoring the primal simplex optimizer.

Network optimizer
Describes conditions favoring the network optimizer.

Barrier optimizer
Describes conditions favoring the barrier optimizer.

Sifting optimizer
Describes conditions favoring the sifting optimizer.

Concurrent optimizer
Describes conditions favoring the concurrent optimizer.
Parameter settings and optimizer choice
Describes special considerations about parameters and choice of optimizer.
Overview of LP optimizers

CPLEX® offers several different optimizers for linear programming problems. Each of these optimizers is available whether you call CPLEX® from within your own application using Concert Technology or the Callable Library, or you use the Interactive Optimizer.

The choice of LP optimizer in CPLEX® can be specified using the algorithm for continuous problems parameter, named RootAlg in the C++, Java, and .NET APIs, CPX_PARAM_LPMETHOD in the Callable Library, and lpmethod in the Interactive Optimizer. In Concert Technology, the LP method is controlled by the RootAlg parameter (which also controls related aspects of QP and MIP solutions, as explained in the corresponding chapters of this manual). In this chapter, this parameter will be referred to uniformly as LPMethod.

The LPMethod parameter sets which optimizer will be used when you solve a model in one of the following ways:

♦ cplex.solve (Concert Technology)
♦ CPXlpopt (Callable Library)
♦ optimize (Interactive Optimizer)

The choices for LPMethod are summarized in Settings of the LPMethod parameter for choosing an optimizer.

Settings of the LPMethod parameter for choosing an optimizer

<table>
<thead>
<tr>
<th>Setting of LPMethod</th>
<th>Meaning</th>
<th>See Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Default Setting</td>
<td>Automatic selection of an optimizer</td>
</tr>
<tr>
<td>1</td>
<td>Primal Simplex</td>
<td>Primal simplex optimizer</td>
</tr>
<tr>
<td>2</td>
<td>Dual Simplex</td>
<td>Dual simplex optimizer</td>
</tr>
<tr>
<td>3</td>
<td>Network Simplex</td>
<td>Network optimizer</td>
</tr>
<tr>
<td>4</td>
<td>Barrier</td>
<td>Barrier optimizer</td>
</tr>
<tr>
<td>5</td>
<td>Sifting</td>
<td>Sifting optimizer</td>
</tr>
<tr>
<td>6</td>
<td>Concurrent Dual, Barrier, and Primal</td>
<td>Concurrent optimizer</td>
</tr>
</tbody>
</table>

The symbolic names for these settings in an application are summarized in Symbolic names for LP solution methods.
Symbolic names for LP solution methods

<table>
<thead>
<tr>
<th>Concert C++</th>
<th>Concert Java</th>
<th>Concert.NET</th>
<th>Callable Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>IloCplex::AutoAlg</td>
<td>IloCplex. Algorithm.Auto</td>
<td>Cplex.Auto</td>
<td>CPX_ALG_AUTOMATIC</td>
</tr>
<tr>
<td>IloCplex::Primal</td>
<td>IloCplex. Algorithm.Primal</td>
<td>Cplex.Primal</td>
<td>CPX_ALG_PRIMAL</td>
</tr>
<tr>
<td>IloCplex::Dual</td>
<td>IloCplex. Algorithm.Dual</td>
<td>Cplex.Dual</td>
<td>CPX_ALG_DUAL</td>
</tr>
<tr>
<td>IloCplex::Barrier</td>
<td>IloCplex. Algorithm.Barrier</td>
<td>Cplex.Barrier</td>
<td>CPX_ALG_BARRIER</td>
</tr>
<tr>
<td>IloCplex::Sifting</td>
<td>IloCplex. Algorithm.Sifting</td>
<td>Cplex.Sifting</td>
<td>CPX_ALG_SIFTING</td>
</tr>
<tr>
<td>IloCplex::Concurrent</td>
<td>IloCplex. Algorithm.Concurrent</td>
<td>Cplex. Concurrent</td>
<td>CPX_ALG_CONCURRENT</td>
</tr>
</tbody>
</table>
Automatic selection of an optimizer

The default Automatic setting of the LP method lets CPLEX® decide which algorithm to use to optimize your problem. Most models are solved well with this setting, and this is the recommended option except when you have a compelling reason to tune performance for a particular class of model.

On a serial computer, or on a parallel computer where only one thread will be invoked, the automatic setting will in most cases choose the dual simplex optimizer. An exception to this rule is when an advanced basis is present that is ascertained to be primal feasible; in that case, primal simplex will be called.

On a computer where parallel threads are available to CPLEX®, the automatic setting results in the dual simplex optimizer being called if the parallel mode is deterministic, and in the concurrent optimizer being called if the parallel mode is opportunistic. An exception to this rule occurs when an advanced basis is present; in that case, it will behave as the serial algorithm would.
Dual simplex optimizer

If you are familiar with linear programming theory, then you recall that a linear programming problem can be stated in primal or dual form, and an optimal solution (if one exists) of the dual has a direct relationship to an optimal solution of the primal model. CPLEX® Dual Simplex Optimizer makes use of this relationship, but still reports the solution in terms of the primal model. The dual simplex method is the first choice for optimizing a linear programming problem, especially for primal-degenerate problems with little variability in the righthand side coefficients but significant variability in the cost coefficients.
Primal simplex optimizer

CPLEX® Primal Simplex Optimizer also can effectively solve a wide variety of linear programming problems with its default parameter settings. The primal simplex method is not the obvious choice for a first try at optimizing a linear programming problem. However, this method will sometimes work better on problems where the number of variables exceeds the number of constraints significantly, or on problems that exhibit little variability in the cost coefficients. Few problems exhibit poor numeric performance in both primal and dual form. Consequently, if you have a problem where numeric difficulties occur when you use the dual simplex optimizer, then consider using the primal simplex optimizer instead.
Network optimizer

If a major part of your problem is structured as a network, then the CPLEX® Network Optimizer may have a positive impact on performance. The CPLEX® Network Optimizer recognizes a special class of linear programming problems with network structure. It uses highly efficient network algorithms on that part of the problem to find a solution from which it then constructs an advanced basis for the rest of your problem. From this advanced basis, CPLEX® then iterates to find a solution to the full problem. Solving network-flow problems explores this optimizer in greater detail.
Barrier optimizer

The barrier optimizer offers an approach particularly efficient on large, sparse problems (for example, more than 100,000 rows or columns, and no more than perhaps a dozen nonzeros per column) and sometimes on other models as well. The barrier optimizer is sufficiently different in nature from the other optimizers that it is discussed in detail in *Solving LPs: barrier optimizer*.
Sifting optimizer

Sifting was developed to exploit the characteristics of models with large aspect ratios (that is, a large ratio of the number of columns to the number of rows). In particular, the method is well suited to large aspect ratio models where an optimal solution can be expected to place most variables at their lower bounds. The sifting algorithm can be thought of as an extension to the familiar simplex method. It starts by solving a subproblem (known as the working problem) consisting of all rows but only a small subset of the full set of columns, by assuming an arbitrary value (such as its lower bound) for the solution value of each of the remaining columns. This solution is then used to re-evaluate the reduced costs of the remaining columns. Any columns whose reduced costs violate the optimality criterion become candidates to be added to the working problem for the next major sifting iteration. When no candidates are present, the solution of the working problem is optimal for the full problem, and sifting terminates.

The choice of optimizer to solve the working problem is governed by the SiftAlg parameter. You can set this parameter to any of the values accepted by the LPMethod parameter, except for Concurrent and of course Sifting itself. At the default SiftAlg setting, CPLEX® chooses the optimizer automatically, typically switching between barrier and primal simplex as the optimization proceeds. It is recommended that you not turn off the barrier crossover step (that is, do not set the parameter BarCrossAlg to -1) when you use the sifting optimizer, so that this switching can be carried out as needed.
Concurrent optimizer

The concurrent optimizer launches distinct optimizers in multiple threads. When the concurrent optimizer is launched on a single-threaded platform, it calls the dual simplex optimizer. In other words, choosing the concurrent optimizer makes sense only on a multiprocessor computer where threads are enabled. For more information about the concurrent optimizer, see *Parallel optimizers*, especially *Concurrent optimizer*.
Parameter settings and optimizer choice

When you are using parameter settings other than the default, consider the algorithms that these settings will affect. Some parameters, such as the time limit, will affect all the algorithms invoked by the concurrent optimizer. Others, such as the refactoring frequency, will affect both the primal and dual simplex algorithms. And some parameters, such as the primal gradient, dual gradient, or barrier convergence tolerance, affect only a single algorithm.
Tuning LP performance

Documents tactics for tuning performance on LP models.

In this section

Introducing performance tuning for LP models
Outlines general facilities for performance tuning on LP models.

Preprocessing
Documents preprocessing at default parameter settings in LP optimizers.

Starting from an advanced basis
Documents effect of an advanced basis on LP optimizers.

Simplex parameters
Documents parameters settings that may improve performance of LP optimizers.
Introducing performance tuning for LP models

Each of the optimizers available in CPLEX® is designed to solve most linear programming problems under its default parameter settings. However, characteristics of your particular problem may make performance tuning advantageous.

As a first step in tuning performance, try the different CPLEX® optimizers, as recommended in *Choosing an optimizer for your LP problem*.

To help you decide whether default settings of parameters are best for your model, or whether other parameter settings may improve performance, the tuning tool is available. *Tuning tool* explains more about this utility and offers you examples of its use.

The following sections suggest other features of CPLEX® to consider in tuning the performance of your application.
Preprocessing

At default settings, CPLEX® preprocesses problems by simplifying constraints, reducing problem size, and eliminating redundancy. Its presolver tries to reduce the size of a problem by making inferences about the nature of any optimal solution to the problem. Its aggregator tries to eliminate variables and rows through substitution. For most models, preprocessing is beneficial to the total solution speed, and CPLEX® reports the model’s solution in terms of the user’s original formulation, making the exact nature of any reductions immaterial.

Dual formulation in presolve

A useful preprocessing feature for performance tuning, one that is not always activated by default, can be to convert the problem to its dual formulation. The nature of the dual formulation is rooted in linear programming theory, beyond the scope of this manual, but for the purposes of this preprocessing feature it is sufficient to think of the roles of the rows and columns of the model’s constraint matrix as being switched. Thus the feature is especially applicable to models that have many more rows than columns.

You can direct the preprocessor to form the dual by setting the PreDual parameter to 1 (one).

Conversely, to entirely inhibit the dual formulation for the barrier optimizer, you can set the PreDual parameter to -1. The default, automatic, setting is 0.

It is worth emphasizing, to those familiar with linear programming theory, that the decision to solve the dual formulation of your model, via this preprocessing parameter, is not the same as the choice between using the dual simplex method or the primal simplex method to perform the optimization. Although these two concepts (dual formulation and dual simplex optimizer) have theoretical foundations in common, it is valid to consider, for example, solving the dual formulation of your model with the dual simplex method; this would not simply result in the same computational path as solving the primal formulation with the primal simplex method. However, with that distinction as background, it may be worth knowing that when CPLEX® generates the dual formulation, and a simplex optimizer is to be used, CPLEX® will in most cases automatically select the opposite simplex optimizer to the one it would have selected for the primal formulation. Thus, if you set the PreDual parameter to 1 (one), and also select LPMethod 1 (which normally invokes the primal simplex optimizer), the dual simplex optimizer will be used in solving the dual formulation. Because solution status and the other results of an optimization are the same regardless of these settings, no additional steps need to be taken by the user to use and interpret the solution; but examination of solution logs might prove confusing if this behavior is not taken into account.

Dependency checking in presolve

The CPLEX® preprocessor offers a dependency checker which strengthens problem reduction by detecting redundant constraints. Such reductions are usually most effective with the barrier optimizer, but these reductions can be applied to all types of problems: LP, QP, QCP, MIP, MIQP, MIQCP. Dependency checking parameter DepInd or CPX_PARAM_DEPIND shows you the possible settings of the dependency switch, the parameter that controls dependency checking, and indicates their effects.
Dependency checking parameter *DepInd* or *CPX_PARAM_DEPIND*

<table>
<thead>
<tr>
<th>Setting</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>automatic: let CPLEX choose when to use dependency checking</td>
</tr>
<tr>
<td>0</td>
<td>turn off dependency checking (default)</td>
</tr>
<tr>
<td>1</td>
<td>turn on only at the beginning of preprocessing</td>
</tr>
<tr>
<td>2</td>
<td>turn on only at the end of preprocessing</td>
</tr>
<tr>
<td>3</td>
<td>turn on at beginning and at end of preprocessing</td>
</tr>
</tbody>
</table>

Final factor after presolve

When presolve makes changes to the model prior to optimization, a reverse operation (uncrush) occurs at termination to restore the full model with its solution. With default settings, the simplex optimizers will perform a final basis factorization on the full model before terminating. If you turn on the memory emphasis parameter (memory reduction switch: *MemoryEmphasis (bool), CPX_PARAM_MEMORYEMPHASIS (int)*) to conserve memory, the final factorization after uncrusihing will be skipped; on large models this can save some time, but computations that require a factorized basis after optimization (for example the computation of the condition number Kappa) may be unavailable depending on the operations presolve performed.

Factorization can easily be performed later by a call to a simplex optimizer with the parameter *AdvInd* set to a value greater than or equal to one.

Memory use and presolve

To reduce memory use, presolve may compress the arrays used for storage of the original model. This compression can make more memory available for the optimizer that the user has called. To conserve memory, you can also turn on the memory emphasis parameter (memory reduction switch: *MemoryEmphasis (bool), CPX_PARAM_MEMORYEMPHASIS (int)*) .

Controlling passes in preprocessing

In rare instances, a user may wish to specify the number of analysis passes that the presolver or the aggregator makes through the problem. The parameters *PrePass* and *AggInd*, respectively, control these two preprocessing features; the default, automatic, setting of -1 lets CPLEX® decide the number of passes to make, while a setting of 0 directs CPLEX® not to use that preprocessing feature, and a positive integer limits the number of passes to that value. At the automatic setting, CPLEX® applies the aggregator just once when it is solving the LP model; for some problems, it may be worthwhile to increase the *AggInd* setting. The behavior under the *PrePass* default is less easy to predict, but if the output log indicates it is performing excessive analysis, you may wish to try a limit of five passes or some other modest value.
Aggregator fill in preprocessing

Another parameter, which affects only the aggregator, is \texttt{AggFill}. Occasionally the substitutions made by the aggregator will increase matrix density and thus make each iteration too expensive to be advantageous. In such cases, try lowering \texttt{AggFill} from its default value of 10. \texttt{CPLEX®} may make fewer substitutions as a consequence, and the resulting problem will be less dense.

Turning off preprocessing

Finally, if for some reason you wish to turn \texttt{CPLEX®} preprocessing entirely off, set the parameter \texttt{PreInd} to 0 (zero).
Starting from an advanced basis

Another performance improvement to consider, unless you are using the barrier optimizer, is starting from an advanced basis. If you can start a simplex optimizer from an advanced basis, then there is the potential for the optimizer to perform significantly fewer iterations, particularly when your current problem is similar to a problem that you have solved previously. Even when problems are different, starting from an advanced basis may possibly help performance. For example, if your current problem is composed of several smaller problems, an optimal basis from one of the component problems may significantly speed up solution of the other components or even of the full problem.

Note that if you are solving a sequence of LP models all within one run, by entering a model, solving it, modifying the model, and solving it again, then with default settings the advanced basis will be used for the last of these steps automatically.

In cases where models are solved in separate application calls, and thus the basis will not be available in memory, you can communicate the final basis from one run to the start of the next by first saving the basis to a file before the end of the first run.

To save the basis to a file:

♦ When you are using the Component Libraries, use the method `cplex.writeBasis` or the Callable Library routine `CPXmbasewrite`, after the call to the optimizer.

♦ In the Interactive Optimizer, use the `write` command with the file type `bas`, after optimization.

Then to read an advanced basis from this file later:

♦ When you are using the Component Libraries, use the method `cplex.readBasis` or the routine `CPXreadcopybase`.

♦ In the Interactive Optimizer, use the `read` command with the file type `bas`.

Tip: A basis file, also known as a BAS file, is a formatted text file conforming to the MPS standard. It relies on each variable (column) and each constraint (row) having a name. If those names do not exist, names will be created automatically and added during write operations of a basis file. If you anticipate the need to read and write basis files, it is a good idea to assign a name yourself to every variable and constraint when you create your model.

Make sure that the advanced start parameter, `AdvInd`, is set to either 1 (its default value) or 2, and not 0 (zero), before calling the optimization routine that is to make use of an advanced basis.

The two nonzero settings for `AdvInd` differ in this way:

♦ `AdvInd` =1 causes preprocessing to be skipped;

♦ `AdvInd` =2 invokes preprocessing on both the problem and the advanced basis.
If you anticipate the advanced basis to be a close match for your problem, so that relatively few iterations will be needed, or if you are unsure, then the default setting of 1 is a good choice because it avoids some overhead processing. If you anticipate that the simplex optimizer will require many iterations even with the advanced basis, or if the model is large and preprocessing typically removes much from the model, then the setting of 2 may give you a faster solution by giving you the advantages of preprocessing. However, in such cases, you might also consider not using the advanced basis, by setting this parameter to 0 instead, on the grounds that the basis may not be giving you a helpful starting point after all.
Simplex parameters

After you have chosen the right optimizer and, if appropriate, you have started from an advanced basis, you may want to experiment with different parameter settings to improve performance. This section documents parameters that are most likely to affect performance of the simplex linear optimizers. (The barrier optimizer is different enough from the simplex optimizers that it is discussed elsewhere, in Solving LPs: barrier optimizer). The simplex tuning suggestions appear in the following topics:

♦ Pricing algorithm and gradient parameters
♦ Scaling
♦ Crash
♦ Memory management and problem growth

Pricing algorithm and gradient parameters

The parameters in DPriInd parameter settings for dual simplex pricing algorithm set the pricing algorithms that CPLEX® uses. Consequently, these are the algorithmic parameters most likely to affect simplex linear programming performance. The default setting of these gradient parameters chooses the pricing algorithms that are best for most problems. When you are selecting alternate pricing algorithms, look at these values as guides:

♦ overall solution time;
♦ number of Phase I iterations (that is, iterations before CPLEX® arrives at an initial feasible solution);
♦ total number of iterations.

CPLEX® records those values in the log file as it works. (By default, CPLEX® creates the log file in the directory where it is executing, and it names the log file cplex.log. Managing log files tells you how to rename and relocate this log file.)

If the number of iterations required to solve your problem is approximately the same as the number of rows, then you are doing well. If the number of iterations is three times greater than the number of rows (or more), then it may very well be possible to improve performance by changing the parameter that sets the pricing algorithm, DPriInd for the dual simplex optimizer or PPriInd for the primal simplex optimizer.

The symbolic names for the acceptable values for these parameters appear in DPriInd parameter settings for dual simplex pricing algorithm and PPriInd parameter settings for primal simplex pricing algorithm. The default value in both cases is 0 (zero).
DPriInd parameter settings for dual simplex pricing algorithm

<table>
<thead>
<tr>
<th>Description</th>
<th>Concert</th>
<th>Callable Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 set automatically</td>
<td>DPriIndAuto</td>
<td>CPX_DPRIIND_AUTO</td>
</tr>
<tr>
<td>1 standard dual pricing</td>
<td>DPriIndFull</td>
<td>CPX_DPRIIND_FULL</td>
</tr>
<tr>
<td>2 steepest-edge pricing</td>
<td>DPriIndSteep</td>
<td>CPX_DPRIIND_STEEP</td>
</tr>
<tr>
<td>3 steepest-edge in slack space</td>
<td>DPriIndFullSteep</td>
<td>CPX_DPRIIND_FULLSTEEP</td>
</tr>
<tr>
<td>4 steepest-edge, unit initial norms</td>
<td>DPriIndSteepQStart</td>
<td>CPX_DPRIIND_STEEPQSTART</td>
</tr>
<tr>
<td>5 devex pricing</td>
<td>DPriIndDevex</td>
<td>CPX_DPRIIND_DEVEX</td>
</tr>
</tbody>
</table>

PPriInd parameter settings for primal simplex pricing algorithm

<table>
<thead>
<tr>
<th>Description</th>
<th>Concert</th>
<th>Callable Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 reduced-cost pricing</td>
<td>PPriIndPartial</td>
<td>CPX_PPRIIND_PARTIAL</td>
</tr>
<tr>
<td>0 hybrid reduced-cost and devex</td>
<td>PPriIndAuto</td>
<td>CPX_PPRIIND/auto</td>
</tr>
<tr>
<td>1 devex pricing</td>
<td>PPriIndDevex</td>
<td>CPX_PPRIIND_DEVEX</td>
</tr>
<tr>
<td>2 steepest-edge pricing</td>
<td>PPriIndSteep</td>
<td>CPX_PPRIIND_STEEP</td>
</tr>
<tr>
<td>3 steepest-edge, slack initial norms</td>
<td>PPriIndSteepQStart</td>
<td>CPX_PPRIIND_STEEPQSTART</td>
</tr>
<tr>
<td>4 full pricing</td>
<td>PriIndFull</td>
<td>CPX_PPRIIND_FULL</td>
</tr>
</tbody>
</table>

For the dual simplex pricing parameter, the default value selects steepest-edge pricing. That is, the default (0 or CPX_DPRIIND_AUTO) automatically selects 2 or CPX_DPRIIND_STEEP.

For the primal simplex pricing parameter, reduced-cost pricing (−1) is less computationally expensive, so you may prefer it for small or relatively easy problems. Try reduced-cost pricing, and watch for faster solution times. Also if your problem is dense (say, 20-30 nonzeros per column), reduced-cost pricing may be advantageous.

In contrast, if you have a more difficult problem taking many iterations to complete Phase I and arrive at an initial solution, then you should consider devex pricing (1). Devex pricing benefits more from CPLEX® linear algebra enhancements than does partial pricing, so it may be an attractive alternative to partial pricing in some problems. However, if your problem has many columns and relatively few rows, devex pricing is not likely to help much. In such a case, the number of calculations required per iteration will usually be disadvantageous.

If you observe that devex pricing helps, then you might also consider steepest-edge pricing (2). Steepest-edge pricing is computationally more expensive than reduced-cost pricing, but it may produce the best results on difficult problems. One way of reducing the
computational intensity of steepest-edge pricing is to choose steepest-edge pricing with initial slack norms (3).

Scaling

Poorly conditioned problems (that is, problems in which even minor changes in data result in major changes in solutions) may benefit from an alternative scaling method. Scaling attempts to rectify poorly conditioned problems by multiplying rows or columns by constants without changing the fundamental sense of the problem. If you observe that your problem has difficulty staying feasible during its solution, then you should consider an alternative scaling method.

Use the scaling parameter (scale parameter: ScaInd, CPX_PARAM_SCAIND) to set scaling appropriate for your model. *ScalInd parameter settings for scaling methods* summarizes available values for this parameter.

ScalInd parameter settings for scaling methods

<table>
<thead>
<tr>
<th>ScalInd Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>no scaling</td>
</tr>
<tr>
<td>0</td>
<td>equilibration scaling (default)</td>
</tr>
<tr>
<td>1</td>
<td>aggressive scaling</td>
</tr>
</tbody>
</table>

Refactoring frequency

CPLEX® dynamically decides the frequency at which the basis of a problem is refactored in order to maximize the speed of iterations. On very large problems, CPLEX® refactors the basis matrix infrequently. Very rarely should you consider increasing the number of iterations between refactoring. The refactoring interval is controlled by the ReInv parameter. The default value of 0 (zero) means CPLEX® will decide dynamically; any positive integer specifies the user's chosen factoring frequency.

Crash

It is possible to control the way CPLEX® builds an initial (crash) basis through the CraInd parameter.

In the dual simplex optimizer, the CraInd parameter sets whether CPLEX® aggressively uses primal variables instead of slack variables while it still tries to preserve as much dual feasibility as possible. If its value is 1 (one), it specifies the default starting basis; if its value is 0 (zero) or -1, it specifies an aggressive starting basis. These settings are summarized in *CraInd parameter settings for the dual simplex optimizer*.
CraInd parameter settings for the dual simplex optimizer

<table>
<thead>
<tr>
<th>CraInd Setting</th>
<th>Meaning for Dual Simplex Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use default starting basis guided by coefficients</td>
</tr>
<tr>
<td>0</td>
<td>Use an aggressive starting basis ignoring coefficients</td>
</tr>
<tr>
<td>-1</td>
<td>Use an aggressive starting basis contrary to coefficients</td>
</tr>
</tbody>
</table>

In the primal simplex optimizer, the CraInd setting sets how CPLEX® uses the coefficients of the objective function to select the starting basis. If its value is 1 (one), CPLEX® uses the coefficients to guide its selection; if its value is 0 (zero), CPLEX® ignores the coefficients; if its value is -1, CPLEX® does the opposite of what the coefficients normally suggest. These settings are summarized in CraInd parameter settings for the primal simplex optimizer.

CraInd parameter settings for the primal simplex optimizer

<table>
<thead>
<tr>
<th>CraInd Setting</th>
<th>Meaning for Primal Simplex Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use coefficients of objective function to select basis</td>
</tr>
<tr>
<td>0</td>
<td>Ignore coefficients of objective function</td>
</tr>
<tr>
<td>-1</td>
<td>Select basis contrary to one indicated by coefficients of objective function</td>
</tr>
</tbody>
</table>

Memory management and problem growth

CPLEX® automatically handles memory allocations to accommodate the changing size of a problem object as you modify it. And it manages (using a cache) most changes to prevent inefficiency when the changes will require memory re-allocations.
While some linear programming models offer opportunities for performance tuning, others, unfortunately, entail outright performance problems that require diagnosis and correction. This section indicates how to diagnose and correct such performance problems as lack of memory or numeric difficulties.

In this section

Lack of memory
Documents CPLEX® behavior in limited memory for LP models.

Numeric difficulties
Documents CPLEX® behavior with respect to numeric difficulties in LP models.
Lack of memory

To sustain computational speed, CPLEX® should use only available physical memory, rather than virtual memory or paged memory. Even if your problem data fit in memory, CPLEX® will need still more memory to optimize the problem. When CPLEX® recognizes that only limited memory is available, it automatically makes algorithmic adjustments to compensate. These adjustments almost always reduce optimization speed. If you detect when these automatic adjustments occur, then you can decide when you need to add additional memory to your computer to sustain computational speed for your particular problem.

An alternative to obtaining more memory is to conserve memory that is available. The memory emphasis parameter (memory reduction switch) can help you in this respect.

- **C++ Name MemoryEmphasis (bool) in Concert Technology**
- **C Name CPX_PARAM_MEMORYEMPHASIS (int) in the Callable Library**
- **emphasis memory** in the Interactive Optimizer

If you set the memory emphasis parameter to its optional value of 1 (one), then CPLEX® will adopt memory conservation tactics at the beginning of optimization rather than only after the shortage becomes apparent. These tactics may still have a noticeable impact on solution speed because these tactics change the emphasis from speed to memory utilization, but they could give an improvement over the default in the case where memory is insufficient.

The following sections offer further guidance about memory conservation if memory emphasis alone does not do enough for your problem.

Warning messages

In certain cases, CPLEX® issues a warning message when it cannot perform an operation, but it continues to work on the problem. Other CPLEX® messages warn that CPLEX® is compressing the problem to conserve memory. These warnings mean that CPLEX® finds insufficient memory available, so it is following an alternate—less desirable—path to a solution. If you provide more memory, CPLEX® will return to the best path toward a solution.

Paging virtual memory

If you observe paging of memory to disk, then your application is incurring a performance penalty. If you increase available memory in such a case, performance will speed up dramatically.

Refactoring frequency and memory requirements

The CPLEX® primal and dual simplex optimizers refactor the problem basis at a rate set by the ReInv parameter.

The longer CPLEX® works between refactoring, the greater the amount of memory it needs for each iteration. Consequently, one way of conserving memory is to decrease the interval between refactoring. In fact, if little memory is available to it, CPLEX® will automatically decrease the refactoring interval in order to use less memory at each iteration.
Since refactoring is an expensive operation, decreasing the refactoring interval (that is, factoring more often) will generally slow performance. You can tell whether performance is being degraded in this way by checking the iteration log file.

In an extreme case, lack of memory may force CPLEX® to refactor at every iteration, and the impact on performance will be dramatic. If you provide more memory in such a situation, the benefit will be tremendous.

Preprocessing and memory requirements

By default, CPLEX® automatically preprocesses your problem before optimizing, and this preprocessing requires memory. If memory is extremely tight, consider turning off preprocessing, by setting the `PreInd` parameter to 0 (zero). But doing this foregoes the potential performance benefit of preprocessing, and should be considered only as a last resort.
Numeric difficulties

CPLEX® is designed to handle the numeric difficulties of linear programming automatically. In this context, numeric difficulties mean such phenomena as:

♦ repeated occurrence of singularities;
♦ little or no progress toward reaching the optimal objective function value;
♦ little or no progress in scaled infeasibility;
♦ repeated problem perturbations; and
♦ repeated occurrences of the solution becoming infeasible.

While CPLEX® will usually achieve an optimal solution in spite of these difficulties, you can help it do so more efficiently. This section characterizes situations in which you can help.

Some problems will not be solvable even after you take the measures suggested here. For example, problems can be so poorly conditioned that their optimal solutions are beyond the numeric precision of your computer.

Numerical emphasis settings

The numerical precision emphasis parameter controls the degree of numerical caution used during optimization of a model.

♦ C++ Name NumericalEmphasis in Concert Technology
♦ C Name CPX_PARAM_NUMERICALEMPHASIS in the Callable Library
♦ emphasis numerical in the Interactive Optimizer

At its default setting, CPLEX® employs ordinary caution in dealing with the numerical properties of the computations it must perform. Under the optional setting, CPLEX® uses extreme caution.

This emphasis parameter is different in style from the various tolerance parameters in CPLEX®. The purpose of the emphasis parameter is to relieve the user of the need to analyze which tolerances or other algorithmic controls to try. Instead, the user tells CPLEX® that the model about to be solved is known to be susceptible to unstable numerical behavior and lets CPLEX® make the decisions about how best to proceed.

There may be a trade-off between solution speed and numerical caution. You should not be surprised if your model solves less rapidly at the optional setting of this parameter, because each iteration may potentially be noticeably slower than at the default. On the other hand, if the numerical difficulty has been causing the optimizer to proceed less directly to the optimal solution, it is possible that the optional setting will reduce the number of iterations, thus leading to faster solution. When the user chooses an emphasis on extreme numerical caution, solution speed is in effect treated as no longer the primary emphasis.
Numerically sensitive data

There is no absolute link between the form of data in a model and the numeric difficulty the problem poses. Nevertheless, certain choices in how you present the data to CPLEX® can have an adverse effect.

Placing large upper bounds (say, in the neighborhood of $1e9$ to $1e12$) on individual variables can cause difficulty during Presolve. If you intend for such large bounds to mean “no bound is really in effect” it is better to simply not include such bounds in the first place.

Large coefficients anywhere in the model can likewise cause trouble at various points in the solution process. Even if the coefficients are of more modest size, a wide variation (say, six or more orders of magnitude) in coefficients found in the objective function or right hand side, or in any given row or column of the matrix, can cause difficulty either in Presolve when it makes substitutions, or in the optimizer routines, particularly the barrier optimizer, as convergence is approached.

A related source of difficulty is the form of rounding when fractions are represented as decimals; expressing $1/3$ as 0.33333333 on a computer that in principle computes values to about 16 digits can introduce an apparent “exact” value that will be treated as given but may not represent what you intend. This difficulty is compounded if similar or related values are represented a little differently elsewhere in the model.

For example, consider the constraint $1/3 \ x_1 + 2/3 \ x_2 = 1$. In perfect arithmetic, it is equivalent to $x_1 + 2 \ x_2 = 3$. However, if you express the fractional form with decimal data values, some truncation is unavoidable. If you happen to include the truncated decimal form of the constraint in the same model with some differently-truncated form or even the exact-integer data form, an unexpected result could easily occur. Consider the following problem formulation:

```
Maximize
   obj: x1 + x2
Subject To
   c1: 0.333333 x1 + 0.666667 x2 = 1
   c2: x1 + 2 x2 = 3
End
```

With default numeric tolerances, this will deliver an optimal solution of $x_1=1.0$ and $x_2=1.0$, giving an objective function value of 2.0. Now, see what happens when using slightly more accurate data (in terms of the fractional values that are clearly intended to be expressed):

```
Maximize
   obj: x1 + x2
Subject To
   c1: 0.333333333 x1 + 0.666666667 x2 = 1
   c2: x1 + 2 x2 = 3
End
```

The solution to this problem has $x_1=3.0$ and $x_2=0.0$, giving an optimal objective function value of 3.0, a result qualitatively different from that of the first model. Since this latter result is the same as would be obtained by removing constraint c_1 from the model entirely, this is a more satisfactory result. Moreover, the numeric stability of the optimal basis (as indicated by the condition number, discussed in the next section), is vastly improved.
The result of the extra precision of the input data is a model that is less likely to be sensitive to rounding error or other effects of solving problems on finite-precision computers, or in extreme cases will be more likely to produce an answer in keeping with the intended model. The first example, above, is an instance where the data truncation has fundamentally distorted the problem being solved. Even if the exact-integer data form of the constraint is not present with the decimal form, the truncated decimal form no longer exactly represents the intended meaning and, in conjunction with other constraints in your model, could give unintended answers that are "accurate" in the context of the specific data being fed to the optimizer.

Be particularly wary of data in your model that has been computed (within your program, or transmitted to your program from another via an input file) using single-precision (32-bit) arithmetic. For example, in C, this situation would arise from using type float instead of double. Such data will be accurate only to about 8 decimal digits, so that (for example) if you print the data, you might see values like 0.3333333432674408 instead of 0.3333333333333333. CPLEX® uses double-precision (64-bit) arithmetic in its computations, and truncated single-precision data carries the risk that it will convey a different meaning than the user intends.

The underlying principle behind all the cautions in this section is that information contained in the data needs to reflect actual meaning or the optimizer may reach unstable solutions or encounter algorithmic difficulties.

Measuring problem sensitivity with basis condition number

Ill-conditioned matrices are sensitive to minute changes in problem data. That is, in such problems, small changes in data can lead to very large changes in the reported problem solution. CPLEX® provides a basis condition number to measure the sensitivity of a linear system to the problem data. You might also think of the basis condition number as the number of places in precision that can be lost.

For example, if the basis condition number at optimality is $1e+13$, then a change in a single matrix coefficient in the thirteenth place (counting from the right) may dramatically alter the solution. Furthermore, since many computers provide about 16 places of accuracy in double precision, only three accurate places are left in such a solution. Even if an answer is obtained, perhaps only the first three significant digits are reliable.

Because of this effective loss of precision for matrices with high basis condition numbers, CPLEX® may be unable to select an optimal basis. In other words, a high basis condition number can make it impossible to find a solution.

♦ In the Interactive Optimizer, use the command **display solution kappa** in order to see the basis condition number of a resident basis matrix.

♦ In Concert Technology, use the method:

```cpp
IloCplex::getQuality(IloCplex::Kappa) (C++)
```

```java
IloCplex.getQuality(IloCplex.QualityType.Kappa) (Java)
```

```csharp
Cplex.GetQuality(Cplex.QualityType.Kappa) (.NET)
```

♦ In the Callable Library, use the routine **CPXgetdblquality** to access the condition number in the double-precision variable `dvalue`, like this:

```c
status = CPXgetdblquality(env, lp, &dvalue, CPX_KAPPA);
```
Repeted singularities

Whenever CPLEX® encounters a singularity, it removes a column from the current basis and proceeds with its work. CPLEX® reports such actions to the log file (by default) and to the screen (if you are working in the Interactive Optimizer or if the messages to screen switch CPX_PARAM_SCRIND is set to 1 (one)). After it finds an optimal solution under these conditions, CPLEX® will then re-include the discarded column to be sure that no better solution is available. If no better objective value can be obtained, then the problem has been solved. Otherwise, CPLEX® continues its work until it reaches optimality.

Occasionally, new singularities occur, or the same singularities recur. CPLEX® observes a limit on the number of singularities it tolerates. The parameter SingLim specifies this limit. By default, the limit is ten. After encountering this many singularities, CPLEX® will save in memory the best factorable basis found so far and stop its solution process. You may want to save this basis to a file for later use.

To save the best factorable basis found so far in the Interactive Optimizer, use the write command with the file type bas. When using the Component Libraries, use the method cplex.writeBasis or the routine CPXwriteprob.

If CPLEX® encounters repeated singularities in your problem, you may want to try alternative scaling on the problem (rather than simply increasing CPLEX® tolerance for singularities). Scaling explains how to try alternative scaling.

If alternate scaling does not help, another tactic to try is to increase the Markowitz tolerance. The Markowitz tolerance controls the kinds of pivots permitted. If you set it near its maximum value of 0.99999, it may make iterations slower but more numerically stable. Inability to stay feasible shows how to change the Markowitz tolerance.

If none of these ideas help, you may need to alter the model of your problem. Consider removing the offending variables manually from your model, and review the model to find other ways to represent the functions of those variables.

Stalling due to degeneracy

Highly degenerate linear programs tend to stall optimization progress in the primal and dual simplex optimizers. When stalling occurs with the primal simplex optimizer, CPLEX® automatically perturbs the variable bounds; when stalling occurs with the dual simplex optimizer, CPLEX® perturbs the objective function.

In either case, perturbation creates a different but closely related problem. After CPLEX® has solved the perturbed problem, it removes the perturbation by resetting problem data to their original values.

If CPLEX® automatically perturbs your problem early in the solution process, you should consider starting the solution process yourself with a perturbation. (Starting in this way will save the time that would be wasted if you first allowed optimization to stall and then let CPLEX® perturb the problem automatically.)

To start perturbation yourself, set the parameter PerInd to 1 instead of its default value of 0 (zero). The perturbation constant, EPPer, is usually appropriate at its default value of 1e-6, but can be set to any value 1e-8 or larger.

If you observe that your problem has been perturbed more than once, then the perturbed problem may differ too greatly from your original problem. In such a case, consider reducing
the value of the perturbation constant perturbation constant (EpPer in Concert Technology, CFX_PARAM_EPPER in the Callable Library).

Inability to stay feasible

If a problem repeatedly becomes infeasible in Phase II (that is, after CPLEX® has achieved a feasible solution), then numeric difficulties may be occurring. It may help to increase the Markowitz tolerance in such a case. By default, the value of the parameter EpMrk is 0.01, and suitable values range from 0.0001 to 0.99999.

Sometimes slow progress in Phase I (the period when CPLEX® calculates the first feasible solution) is due to similar numeric difficulties, less obvious because feasibility is not gained and lost. In the progress reported in the log file, an increase in the printed sum of infeasibilities may be a symptom of this case. If so, it may be worthwhile to set a higher Markowitz tolerance, just as in the more obvious case of numeric difficulties in Phase II.
Diagnosing LP infeasibility

Documents ways to diagnose sources of infeasibility in LP models.

In this section

Infeasibility reported by LP optimizers
Documents facilities for diagnosing sources of infeasibility in LP models.

Coping with an ill-conditioned problem or handling unscaled infeasibilities
Describes the effect of scaling on infeasible LP models.

Interpreting solution quality
Documents facilities for evaluating solution quality in LP models.

Finding a conflict
Introduces the conflict refiner as a tool for diagnosing sources of infeasibility in a LP models.

Repairing infeasibility: FeasOpt
Introduces FeasOpt as a tool for repairing infeasibility in LP models.
Infeasibility reported by LP optimizers

CPLEX® reports statistics about any problem that it optimizes. For infeasible solutions, it reports values that you can analyze to discover where your problem formulation proved infeasible. In certain situations, you can then alter your problem formulation or change CPLEX® parameters to achieve a satisfactory solution.

♦ When the CPLEX® primal simplex optimizer terminates with an infeasible basic solution, it calculates dual variables and reduced costs relative to the Phase I objective function; that is, relative to the infeasibility function. The Phase I objective function depends on the current basis. Consequently, if you use the primal simplex optimizer with various parameter settings, an infeasible problem will produce different objective values and different solutions.

♦ In the case of the dual simplex optimizer, termination with a status of infeasibility occurs only during Phase II. Therefore, all solution values are relative to the problem’s natural (primal) formulation, including the values related to the objective function, such as the dual variables and reduced costs. As with the primal simplex optimizer, the basis in which the detection of infeasibility occurred may not be unique.

CPLEX® provides tools to help you analyze the source of the infeasibility in your model. Those tools include the conflict refiner and FeasOpt:

♦ The conflict refiner is invoked by the routine CPXrefineconflict in the Callable Library or by the method refineConflict in Concert Technology. It finds a set of conflicting constraints and bounds in a model and refines the set to be minimal in a sense that you declare. It then reports its findings for you to take action to repair that conflict in your infeasible model. For more about this feature, see Diagnosing infeasibility by refining conflicts.

♦ FeasOpt is implemented in the Callable Library by the routine CPXfeasopt and in Concert Technology by the method feasOpt. For more about this feature, see Repairing infeasibility: FeasOpt.

With the help of those tools, you may be able to modify your problem to avoid infeasibility.
Coping with an ill-conditioned problem or handling unscaled infeasibilities

By default, CPLEX® scales a problem before attempting to solve it. After it finds an optimal solution, it then checks for any violations of optimality or feasibility in the original, unscaled problem. If there is a violation of reduced cost (indicating nonoptimality) or of a bound (indicating infeasibility), CPLEX® reports both the maximum scaled and unscaled feasibility violations.

Unscaled infeasibilities are rare, but they may occur when a problem is ill-conditioned. For example, a problem containing a row in which the coefficients have vastly different magnitude is ill-conditioned in this sense and may result in unscaled infeasibilities.

It may be possible to produce a better solution anyway in spite of unscaled infeasibilities, or it may be necessary for you to revise the coefficients. To decide which way to go, consider these steps in such a case:

1. Use the command **display solution quality** in the Interactive Optimizer to locate the infeasibilities.

2. Examine the coefficient matrix for poorly scaled rows and columns.

3. Evaluate whether you can change unnecessarily large or small coefficients.

4. Consider alternate scalings.

You may also be able to re-optimize the problem successfully after you reduce optimality tolerance, as explained in *Maximum reduced-cost infeasibility*, or after you reduce feasibility tolerance, as explained in *Maximum bound infeasibility: identifying largest bound violation*. When you change these tolerances, CPLEX® may produce a better solution to your problem, but lowering these tolerances sometimes produces erratic behavior or an unstable optimal basis.

Check the basis condition number, as explained in *Measuring problem sensitivity with basis condition number*. If the condition number is fairly low (for example, as little as 10^5 or less), then you can be confident about the solution. If the condition number is high, or if reducing tolerance does not help, then you must revise the model because the current model may be too ill-conditioned to produce a numerically reliable result.
Interpreting solution quality

Infeasibility and unboundedness in linear programs are closely related. When the linear program CPLEX® solves is infeasible, the associated dual linear program has an unbounded ray. Similarly, when the dual linear program is infeasible, the primal linear program has an unbounded ray. This relationship is important for proper interpretation of infeasible solution output.

The treatment of models that are unbounded involves a few subtleties. Specifically, a declaration of unboundedness means that CPLEX® has detected that the model has an unbounded ray. Given any feasible solution x with objective z, a multiple of the unbounded ray can be added to x to give a feasible solution with objective z-1 (or z+1 for maximization models). Thus, if a feasible solution exists, then the optimal objective is unbounded. Note that CPLEX® has not necessarily concluded that a feasible solution exists. To see whether CPLEX® has also concluded that the model has a feasible solution, use one of these routines or methods:

♦ in Concert Technology:
 ● isPrimalFeasible or isDualFeasible in the C++ API;
 ● IloCplex.isPrimalFeasible or isDualFeasible in the Java API;
 ● Cplex.IsPrimalFeasible or IsDualFeasible in the .NET API.

♦ CPXsolinfo in the Callable Library.

By default, individual infeasibilities are written to a log file but not displayed on the screen. To display the infeasibilities on your screen, in Concert Technology, use methods of the environment to direct the output stream to a log file; in the Interactive Optimizer, use the command set output logonly y cplex.log.

For C++ applications, see Accessing solution information, and for Java applications, see Accessing solution information. Those sections highlight the application programming details of how to retrieve statistics about the quality of a solution.

Regardless of whether a solution is infeasible or optimal, the command display solution quality in the Interactive Optimizer displays the bound and reduced-cost infeasibilities for both the scaled and unscaled problem. In fact, it displays the following summary statistics for both the scaled and unscaled problem:

♦ maximum bound infeasibility, that is, the largest bound violation;
♦ maximum reduced-cost infeasibility;
♦ maximum row residual;
♦ maximum dual residual;
♦ maximum absolute value of a variable, a slack variable, a dual variable, and a reduced cost.

When the simplex optimizer detects infeasibility in the primal or dual linear program (LP), parts of the solution it provides are relative to the Phase I linear program it solved to conclude infeasibility. In other words, the result you see in such a case is not the solution values computed relative to the original objective or original righthand side vector. Keep this
distinction in mind when you interpret solution quality; otherwise, you may be surprised by the results. In particular, when CPLEX® detects that a linear program is infeasible using the primal simplex method, the reduced costs and dual variables provided in the solution are relative to the objective of the Phase I linear program it solved. Similarly, when CPLEX® detects that a linear program is unbounded because the dual simplex method detected dual infeasibility, the primal and slack variables provided in the solution are relative to the Phase I linear program created for the dual simplex optimizer.

The following sections discuss these summary statistics in greater detail.

Maximum bound infeasibility: identifying largest bound violation

The maximum bound infeasibility identifies the largest bound violation. This information may help you discover the cause of infeasibility in your problem. If the largest bound violation exceeds the feasibility tolerance of your problem by only a small amount, then you may be able to get a feasible solution to the problem by increasing the feasibility tolerance parameter (EpRHS in Concert Technology, CPX_PARAM_EPRHS in the Callable Library). Its range is between $1e^{-9}$ and 0.1. Its default value is $1e^{-6}$.

Maximum reduced-cost infeasibility

The maximum reduced-cost infeasibility identifies a value for the optimality tolerance that would cause CPLEX® to perform additional iterations. It refers to the infeasibility in the dual slack associated with reduced costs. Whether CPLEX® terminated with an optimal or infeasible solution, if the maximum reduced-cost infeasibility is only slightly smaller in absolute value than the optimality tolerance, then solving the problem with a smaller optimality tolerance may result in an improvement in the objective function.

To change the optimality tolerance, set the optimality tolerance parameter (EpOpt in Concert Technology, CPX_PARAM_EPOPT in the Callable Library).

Maximum row residual

The maximum row residual identifies the maximum constraint violation. CPLEX® Simplex optimizers control these residuals only indirectly by applying numerically sound methods to solve the given linear system. When CPLEX® terminates with an infeasible solution, all infeasibilities will appear as bound violations on structural or slack variables, not constraint violations. The maximum row residual may help you decide whether a model of your problem is poorly scaled, or whether the final basis (whether it is optimal or infeasible) is ill-conditioned.

Maximum dual residual

The maximum dual residual indicates the numeric accuracy of the reduced costs in the current solution. By construction, in exact arithmetic, the dual residual of a basic solution is always 0 (zero). A nonzero value is thus the effect of roundoff error due to finite-precision arithmetic in the computation of the dual solution vector. Thus, a significant nonzero value indicates ill conditioning.
Maximum absolute values: detecting ill-conditioned problems

When you are trying to decide whether your problem is ill-conditioned, you also need to consider the following maximum absolute values, all available in the infeasibility analysis that CPLEX® provides you:

♦ variables;
♦ slack variables;
♦ dual variables;
♦ reduced costs (that is, dual slack variables).

When using the Component Libraries, use the method getQuality or the routine CPXgetdblquality to access the information provided by the command display solution quality in the Interactive Optimizer.

If you discover from this analysis that your model is indeed ill-conditioned, then you need to reformulate it. Coping with an ill-conditioned problem or handling unscaled infeasibilities outlines steps to follow in this situation.
Finding a conflict

If CPLEX® reports that your problem is infeasible, then you can invoke tools of CPLEX® to help you analyze the source of the infeasibility. These diagnostic tools compute a set of conflicting constraints and column bounds that would be feasible if one of them (a constraint or variable) were removed. Such a set is known as a conflict. For more about detecting conflicts, see Diagnosing infeasibility by refining conflicts.
Repairing infeasibility: FeasOpt

Previous sections focused on how to diagnose the causes of infeasibility. However, you may want to go beyond diagnosis to perform automatic correction of your model and then proceed with delivering a solution. One approach for doing so is to build your model with explicit slack variables and other modeling constructs, so that an infeasible outcome is never a possibility. Such techniques for formulating a model are beyond the scope of this discussion, but you should consider them if you want the greatest possible flexibility in your application.

In contrast, an automated approach offered in CPLEX® is known as FeasOpt (for feasible optimization). FeasOpt attempts to repair an infeasibility by modifying the model according to preferences set by the user. For more about this approach, see Repairing infeasibilities with FeasOpt.
Examples: using a starting basis in LP optimization

Shows examples of starting from an advanced basis for LP optimization.

In this section

Overview
Introduces an example starting from an advanced basis.

Example ilolplex6.cpp
Shows an example of starting from in advanced basis in the C++ API.

Example lpex6.c
Shows an example of starting from an advanced basis in the C API.
Overview

Here is an approach mentioned in the section *Tuning LP performance*, which is to start with an advanced basis. The following small example in C++ and in C demonstrates an approach to setting a starting basis by hand. *Example ilolpex6.cpp* is from Concert Technology in the C++ API. *Example lpex6.c* is from the Callable Library in C.
The example, ilolpex6.cpp, resembles one you may have studied in the Getting Started manual, ilolpex1.cpp. This example differs from that one in these ways:

♦ Arrays are constructed using the populatebycolumn method, and thus no command line arguments are needed to select a construction method.

♦ In the main routine, the arrays cstat and rstat set the status of the initial basis.

♦ After the problem data has been copied into the problem object, the basis is copied by a call to cplex.setBasisStatuses.

♦ After the problem has been optimized, the iteration count is printed. For the given data and basis, the basis is optimal, so no iterations are required to optimize the problem.

The main program starts by declaring the environment and terminates by calling method end for the environment. The code in between is encapsulated in a try block that catches all Concert Technology exceptions and prints them to the C++ error stream cerr. All other exceptions are caught as well, and a simple error message is issued. Next the model object and the cplex object are constructed. The function populatebycolumn builds the problem object and, as noted earlier, cplex.setBasisStatuses copies the advanced starting basis.

The call to cplex.solve optimizes the problem, and the subsequent print of the iteration count demonstrates that the advanced basis took effect. In fact, this basis is immediately detected as optimal, resulting in zero iterations being performed, in contrast to the behavior seen in the example program ilolpex1.cpp where the same model is solved without the use of an advanced basis.

The complete program ilolpex6.cpp appears online in the standard distribution at yourCPLEXinstallation/examples/src.
Example lpex6.c

The example, lpex6.c, resembles one you may have studied in the Getting Started manual, lpex1.c. This example differs from that one in these ways:

♦ In the main routine, the arrays cstat and rstat set the status of the initial basis.

♦ After the problem data has been copied into the problem object, the basis is copied by a call to CPXcopybase.

♦ After the problem has been optimized, the iteration count is printed. For the given data and basis, the basis is optimal, so no iterations are required to optimize the problem.

The application begins with declarations of arrays to store the solution of the problem. Then, before it calls any other CPLEX® routine, the application invokes the Callable Library routine CPXopenCPLEX to initialize the CPLEX® environment. After the environment has been initialized, the application calls other Callable Library routines, such as CPXsetintparam with the argument CPX_PARAM_SCRIND to direct output to the screen and most importantly, CPXcreateprob to create the problem object. The routine populatebycolumn builds the problem object, and as noted earlier, CPXcopybase copies the advanced starting basis.

Before the application ends, it calls CPXfreeprob to free space allocated to the problem object and CPXcloseCPLEX to free the environment.

The complete program lpex6.c appears online in the standard distribution at yourCPLEXinstallation /examples/src.
Solving LPs: barrier optimizer

Documents solving linear programming problems by means of the CPLEX® Barrier Optimizer.

In this section

Introducing the barrier optimizer
Describes the type of problem the barrier optimizer solves and characterizes its approach.

Barrier simplex crossover
Describes considerations about basis solutions and the barrier optimizer.

Differences between barrier and simplex optimizers
Contrasts barrier optimizer with simplex optimizers.

Using the barrier optimizer
Documents parameters and methods associated with the barrier optimizer.

Special options in the Interactive Optimizer
Describes where to find further options of the barrier optimizer in the Interactive Optimizer.

Controlling crossover
Documents values of the parameter controlling barrier crossover.

Using SOL file format
Describes content of SOL file with respect to the barrier optimizer and crossover.

Interpreting the barrier log file
Describes the log file generated by the barrier optimizer.
Understanding solution quality from the barrier LP optimizer
Documents the information available about the quality of a solution found by the barrier optimizer.

Tuning barrier optimizer performance
Describes facilities for tuning performance of the barrier optimizer.

Overcoming numeric difficulties
Documents ways to cope with numeric difficulties in the barrier optimizer.

Diagnosing infeasibility reported by barrier optimizer
Explains information about an infeasible solution from the barrier optimizer and its implications in diagnosing sources of infeasibility.
Introducing the barrier optimizer

The IBM® ILOG® CPLEX® Barrier Optimizer is well suited to large, sparse problems. An alternative to the simplex optimizers, which are also suitable to problems in which the matrix representation is dense, the barrier optimizer exploits a primal-dual logarithmic barrier algorithm to generate a sequence of strictly positive primal and dual solutions to a problem. As with the simplex optimizers, it is not really necessary to understand the internal workings of barrier in order to obtain its performance benefits. However, for the interested reader, here is an outline of how it works.

CPLEX® finds the primal solutions, conventionally denoted \((x, s)\), from the primal formulation:

Minimize \(c^T x\)

subject to \(Ax = b\)

with these bounds \(x + s = u\) and \(x \geq l\)

where \(A\) is the constraint matrix, including slack and surplus variables; \(u\) is the upper and \(l\) the lower bounds on the variables.

Simultaneously, CPLEX® automatically finds the dual solutions, conventionally denoted \((y, z, w)\) from the corresponding dual formulation:

Maximize \(b^T y - u^T w + l^T z\)

subject to \(A^T y - w + z = c\)

with these bounds \(w \geq 0\) and \(z \geq 0\)

All possible solutions maintain strictly positive primal solutions \((x - l, s)\) and strictly positive reduced costs \((z, w)\) so that the value 0 (zero) forms a barrier for primal and dual variables within the algorithm.

CPLEX® measures progress by considering the primal feasibility, dual feasibility, and duality gap at each iteration. To measure feasibility, CPLEX® considers the accuracy with which the primal constraints \((Ax = b, x + s = u)\) and dual constraints \((A^T y + z - w = c)\) are satisfied. The optimizer stops when it finds feasible primal and dual solutions that are complementary. A complementary solution is one where the sums of the products \((x_j - l_j)z_j\) and \((u_j - x_j)z_j\) are within some tolerance of 0 (zero). Since each \((x_j - l_j)\), \((u_j - x_j)\), and \(z_j\) is strictly positive, the sum can be near zero only if each of the individual products is near zero. The sum of these products is known as the complementarity of the problem.

On each iteration of the barrier optimizer, CPLEX® computes a matrix based on \(AA^T\) and then computes a Cholesky factor of it. This factored matrix has the same number of nonzeros on each iteration. The number of nonzeros in this matrix is influenced by the barrier ordering parameter.

The CPLEX® Barrier Optimizer is appropriate and often advantageous for large problems, for example, those with more than 100 000 rows or columns. It is not always the best choice, though, for sparse models with more than 100 000 rows. It is effective on problems with staircase structures or banded structures in the constraint matrix. It is also effective on problems with a small number of nonzeros per column (perhaps no more than a dozen nonzero values per column).
In short, denseness or sparsity are not the deciding issues when you are deciding whether to use the barrier optimizer. In fact, its performance is most dependent on these characteristics:

♦ the number of floating-point operations required to compute the Cholesky factor;
♦ the presence of dense columns, that is, columns with a relatively high number of nonzero entries.

To decide whether to use the barrier optimizer on a given problem, you should look at both these characteristics, not simply at denseness, sparseness, or problem size. (How to check those characteristics is explained later in this chapter in *Cholesky factor in the log file*, and *Nonzeros in lower triangle of A*A' in the log file*).
Barrier simplex crossover

Since many users prefer basic solutions because they can be used to restart simplex optimization, the CPLEX® Barrier Optimizer includes basis crossover algorithms. By default, the barrier optimizer automatically invokes a primal crossover when the barrier algorithm terminates (unless termination occurs abnormally because of insufficient memory or numeric difficulties). Optionally, you can also execute barrier optimization with a dual crossover or with no crossover at all. The section Controlling crossover explains how to control crossover in the Interactive Optimizer.
Differences between barrier and simplex optimizers

The barrier optimizer and the simplex optimizers (primal and dual) are fundamentally different approaches to solving linear programming problems. The key differences between them have these implications:

♦ Simplex and barrier optimizers differ with respect to the nature of solutions. Barrier solutions tend to be midface solutions. In cases where multiple optima exist, barrier solutions tend to place the variables at values between their bounds, whereas in basic solutions from a simplex technique, the values of the variables are more likely to be at either their upper or their lower bound. While objective values will be the same, the nature of the solutions can be very different.

♦ By default, the barrier optimizer uses crossover to produce a basis. However, you may choose to run the barrier optimizer without crossover. In such a case, the fact that barrier without crossover does not produce a basic solution has consequences. Without a basis, you will not be able to optimize the same or similar problems repeatedly using advanced start information. You will also not be able to obtain range information for performing sensitivity analysis.

♦ Simplex and barrier optimizers have different numeric properties, sensitivity, and behavior. For example, the barrier optimizer is sensitive to the presence of unbounded optimal faces, whereas the simplex optimizers are not. As a result, problems that are numerically difficult for one method may be easier to solve by the other. In these cases, concurrent optimization, as documented in Concurrent optimizer, may be helpful.

♦ Simplex and barrier optimizers have different memory requirements. Depending on the size of the Cholesky factor, the barrier optimizer can require significantly more memory than the simplex optimizers.

♦ Simplex and barrier optimizers work well on different types of problems. The barrier optimizer works well on problems where the $A^T A$ remains sparse. Also, highly degenerate problems that pose difficulties for the primal or dual simplex optimizers may be solved quickly by the barrier optimizer. In contrast, the simplex optimizers will probably perform better on problems where the $A^T A$ and the resulting Cholesky factor are relatively dense, though it is sometimes difficult to predict from the dimensions of the model when this will be the case. Again, concurrent optimization, as documented in Concurrent optimizer, may be helpful.
Using the barrier optimizer

As you have read in *Introducing the barrier optimizer*, the CPLEX® Barrier Optimizer finds primal and dual solutions from the primal and dual formulations of a model, but you do not have to reformulate the problem yourself. The CPLEX® Barrier Optimizer automatically creates the primal and dual formulations of the problem for you after you enter or read in the problem.

Specify that you want to use the barrier optimizer by setting the parameter LPMethod to one of the values in *Settings of LPMethod to invoke the barrier optimizer*.

Settings of LPMethod to invoke the barrier optimizer

<table>
<thead>
<tr>
<th>Setting</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>IloCplex::Barrier</td>
<td>Concert Technology for C++ users</td>
</tr>
<tr>
<td>IloCplex.Algorithm.Barrier</td>
<td>Concert Technology for Java users</td>
</tr>
<tr>
<td>Cplex.Algorithm.Barrier</td>
<td>Concert Technology for .NET users</td>
</tr>
<tr>
<td>CFX_ALG_BARRIER</td>
<td>Callable Library</td>
</tr>
<tr>
<td>4</td>
<td>Interactive Optimizer</td>
</tr>
</tbody>
</table>

And then you call the solution routine just as for any other CPLEX® optimizer, as you see in *Calling the barrier optimizer*.

Calling the barrier optimizer

<table>
<thead>
<tr>
<th>Call</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>cplex.solve</td>
<td>Concert Technology for C++ users</td>
</tr>
<tr>
<td>cplex.solve</td>
<td>Concert Technology for Java users</td>
</tr>
<tr>
<td>Cplex.Solve</td>
<td>Concert Technology for .NET users</td>
</tr>
<tr>
<td>CPXlpopt</td>
<td>Callable Library</td>
</tr>
<tr>
<td>optimize</td>
<td>Interactive Optimizer</td>
</tr>
</tbody>
</table>
Special options in the Interactive Optimizer

In addition to the parameters available for other CPLEX® LP optimizers, there are also parameters to control the CPLEX® Barrier Optimizer. In the Interactive Optimizer, to see a list of the parameters specific to the CPLEX® Barrier Optimizer, use the command `set barrier`.
Controlling crossover

The nature of the crossover step that follows barrier is controlled by the parameter BarCrossAlg. Under the default Automatic setting, an appropriate crossover step will be invoked. Possible settings for the parameter appear in BarCrossAlg parameter settings.

<table>
<thead>
<tr>
<th>BarCrossAlg Values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>no crossover</td>
</tr>
<tr>
<td>0</td>
<td>automatic (default)</td>
</tr>
<tr>
<td>1</td>
<td>primal crossover</td>
</tr>
<tr>
<td>2</td>
<td>dual crossover</td>
</tr>
</tbody>
</table>
Using SOL file format

When you use the CPLEX® Barrier Optimizer with no crossover, you can save the primal and dual variable values and their associated reduced cost and dual values in a SOL-format file (that is, a solution file with the extension .sol). You can then read that solution file into CPLEX® before you initiate a crossover at a later time. After you read a solution file into CPLEX®, all three optimizers (primal simplex, dual simplex, and barrier simplex) automatically invoke crossover. See the CPLEX File Formats Reference Manual, especially SOL file format: solution files, for more about solution files.
Interpreting the barrier log file

Describes the log file generated by the barrier optimizer.

In this section

Accessing and managing the log file of the barrier optimizer
Describes routines and methods to access and manage the log file of the barrier optimizer.

Sample log file from the barrier optimizer
Shows a typical log file from the barrier optimizer.

Preprocessing in the log file
Identifies the preprocessing report in a log file from the barrier optimizer.

Nonzeros in lower triangle of A*A' in the log file
Explains report of nonzeros in the log file of the barrier optimizer.

Ordering-algorithm time in the log file
Describes the report of the time used by ordering algorithm of the barrier optimizer.

Cholesky factor in the log file
Identifies the report of the Cholesky factor in the log file of the barrier optimizer.

Iteration progress in the log file
Identifies iteration progress in the log file of the barrier optimizer.

Infeasibility ratio in the log file
Identifies the infeasibility ratio reported in the log file of the barrier optimizer.
Accessing and managing the log file of the barrier optimizer

Like the CPLEX® simplex optimizers, the barrier optimizer records information about its progress in a log file as it works. Some users find it helpful to keep a new log file for each session. By default, CPLEX® records information in a file named cplex.log.

♦ In Concert Technology, use the method `setOut` of `IloCplex` to designate a log file for a predefined channel.

♦ In the Callable Library, use the routine `CPXsetlogfile` with arguments to indicate the log file.

♦ In the Interactive Optimizer, use the command `set logfile filename` to change the name of the log file.

You can control the level of information that CPLEX® records about barrier optimization by setting the `BarDisplay` parameter. Those settings appear in *BarDisplay parameter settings*.

BarDisplay parameter settings

<table>
<thead>
<tr>
<th>BarDisplay Values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no display</td>
</tr>
<tr>
<td>1</td>
<td>display normal information (default)</td>
</tr>
<tr>
<td>2</td>
<td>display detailed (diagnostic) output</td>
</tr>
</tbody>
</table>
Sample log file from the barrier optimizer

Here is an example of a log file for a barrier optimization (without crossover):

```
Tried aggregator 1 time.
LP Presolve eliminated 9 rows and 11 columns.
Aggregator did 6 substitutions.
Reduced LP has 12 rows, 15 columns, and 38 nonzeros.
Presolve time = 0.00 sec.
Number of nonzeros in lower triangle of A'A' = 26
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:
 Rows in Factor = 12
 Integer space required = 12
 Total non-zeros in factor = 78
 Total FP ops to factor = 650

Itn  Primal Obj  Dual Obj  Prim Inf  Upper Inf  Dual Inf
 0  -1.3177911e+01  -1.2600000e+03  6.55e+02  0.00e+00  3.92e+01
 1  -4.8683118e+01  -5.4058675e+02  3.91e+01  0.00e+00  1.18e+01
 2  -1.6008142e+02  -3.5969226e+02  1.35e-13  7.11e-15  5.81e+00
 3  -3.5186681e+02  -6.1738305e+02  1.59e-10  1.78e-15  5.16e-01
 4  -4.5808732e+02  -4.7450513e+02  5.08e-12  1.95e-14  4.62e-02
 5  -4.6435693e+02  -4.6531819e+02  1.66e-12  1.27e-14  1.59e-03
 6  -4.6473085e+02  -4.6476678e+02  5.53e-11  2.17e-14  2.43e-15
 7  -4.6475237e+02  -4.6475361e+02  5.59e-13  2.99e-14  2.19e-15
 8  -4.6475312e+02  -4.6475316e+02  1.73e-13  1.55e-14  1.17e-15
 9  -4.6475314e+02  -4.6475314e+02  1.45e-13  2.81e-14  2.17e-15

Barrier - Optimal: Objective = -4.6475314194e+02
Solution time = 0.01 sec. Iterations = 9
```
Preprocessing in the log file

The opening lines of that log file record information about preprocessing by the CPLEX® presolver and aggregator. After those preprocessing statistics, the next line records the number of nonzeros in the lower triangle of a particular matrix, $\mathbf{A} \mathbf{A}^T$, denoted $\mathbf{A} \mathbf{A}'$ in the log file.
Nonzeros in lower triangle of A^*A' in the log file

The number of nonzeros in the lower triangle of AA^T gives an early indication of how long each barrier iteration will take in terms of a relative measure of time. The larger this number, the more time each barrier iteration requires. If this number is close to 50% of the square of the number of rows of the reduced LP, then the problem may contain dense columns that are not being detected. In that case, examine the histogram of column counts; then consider setting the barrier column-nonzeros parameter to a value that enables CPLEX® to treat more columns as being dense.

In the Interactive Optimizer, you can examine the histogram of column counts with the command `display problem histogram`.
Ordering-algorithm time in the log file

After the number of nonzeros in the lower triangle of AA^T, CPLEX® records the time required by the ordering algorithm. (The CPLEX® Barrier Optimizer offers you a choice of several ordering algorithms, explained in *Choosing an ordering algorithm.*) This section in the log file indicates which ordering algorithm the default Automatic setting chose.
Cholesky factor in the log file

After the time required by the ordering algorithm, CPLEX® records information about the Cholesky factor. CPLEX® computes this matrix on each iteration. The number of rows in the Cholesky factor represents the number after preprocessing. The next line of information about the Cholesky factor—integer space required—indicates the amount of memory needed to store the sparsity pattern of the factored matrix. If this number is low, then the factor can be computed more quickly than when the number is high.

Information about the Cholesky factor continues with the number of nonzeros in the factored matrix. The difference between this number and the number of nonzeros in $\mathbf{A}\mathbf{A}^T$ indicates the fill-level of the Cholesky factor.

The final line of information indicates how many floating-point operations are required to compute the Cholesky factor. This number is the best predictor of the relative time that will be required to perform each iteration of the barrier optimizer.
Iteration progress in the log file

After the information about the Cholesky factor, the log file records progress at each iteration. It records both primal and dual objectives (as Primal Obj and Dual Obj) per iteration.

It also records absolute infeasibilities per iteration. Internally, the CPLEX® Barrier Optimizer treats inequality constraints as equality constraints with added slack and surplus variables. Consequently, primal constraints in a problem are written as \(Ax = b \) and \(x + s = u \), and the dual constraints are written as \(ATy + z - w = c \). As a result, in the log file, the infeasibilities represent norms, as summarized in *Infeasibilities and norms in the log file of a barrier optimization*.

<table>
<thead>
<tr>
<th>Infeasibility</th>
<th>In log file</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>primal</td>
<td>Prim Inf</td>
<td>(</td>
</tr>
<tr>
<td>upper</td>
<td>Upper Inf</td>
<td>(</td>
</tr>
<tr>
<td>dual</td>
<td>Dual Inf</td>
<td>(</td>
</tr>
</tbody>
</table>

If solution values are large in absolute value, then the infeasibilities may appear inordinately large because they are recorded in the log file in absolute terms. The optimizer uses relative infeasibilities as termination criteria.
If you are using one of the barrier infeasibility algorithms available in the CPLEX® Barrier Optimizer (that is, if you have set BarAlg to either 1 or 2, as discussed later in this chapter), then CPLEX® records an additional column of output titled Inf Ratio, the infeasibility ratio. This ratio, always positive, is a measure of progress for that particular algorithm. In a problem with an optimal solution, you will see this ratio increase to a large number. In contrast, in a problem that is infeasible or unbounded, this ratio will decrease to a very small number.
Understanding solution quality from the barrier LP optimizer

When CPLEX® successfully solves a problem with the CPLEX® Barrier Optimizer, it reports the optimal objective value and solution time in a log file, as it does for other LP optimizers. Because barrier solutions (prior to crossover) are not basic solutions, certain solution statistics associated with basic solutions are not available for a strictly barrier solution. For example, reduced costs and dual values are available for strictly barrier LP solutions, but range information about them is not.

To help you evaluate the quality of a barrier solution more readily, CPLEX® offers a special display of information about barrier solution quality. To display this information in the Interactive Optimizer, use the command display solution quality after optimization. When using the Component Libraries, use the method cplex.getQuality or use the routines CPXgetintquality for integer information and CPXgetdblquality for double-valued information.

Barrier solution quality display lists the items CPLEX® displays and explains their meaning. In the solution quality display, the term \(\pi \) refers to dual solution values, that is, the \(y \) values in the conventional barrier problem-formulation. The term \(rc \) refers to reduced cost, that is, the difference \(z - w \) in the conventional barrier problem-formulation. Other terms are best understood in the context of primal and dual LP formulations.

Normalized errors, for example, represent the accuracy of satisfying the constraints while considering the quantities used to compute \(Ax \) on each row and \(y^\top A \) on each column. In the primal case, for each row, consider the nonzero coefficients and the \(x_j \) values used to compute \(Ax \). If these numbers are large in absolute value, then it is acceptable to have a larger absolute error in the primal constraint.

Similar reasoning applies to the dual constraint.

If CPLEX® returned an optimal solution, but the primal error seems high to you, the primal normalized error should be low, since it takes into account the scaling of the problem and solution.

After a simplex optimization—whether primal, dual, or network—or after a crossover, the display command will display information related to the quality of the simplex solution.
Barrier solution quality display

<table>
<thead>
<tr>
<th>Item</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>primal objective</td>
<td>primal objective value $c^T x$</td>
</tr>
<tr>
<td>dual objective</td>
<td>dual objective value $b^T y - u^T w + l^T z$</td>
</tr>
<tr>
<td>duality gap</td>
<td>difference between primal and dual objectives</td>
</tr>
<tr>
<td>complementarity</td>
<td>sum of column and row complementarity</td>
</tr>
<tr>
<td>column complementarity (total)</td>
<td>sum of $</td>
</tr>
<tr>
<td>column complementarity (max)</td>
<td>maximum of $</td>
</tr>
<tr>
<td>row complementarity (total)</td>
<td>sum of</td>
</tr>
<tr>
<td>row complementarity (max)</td>
<td>maximum of</td>
</tr>
<tr>
<td>primal norm</td>
<td>x</td>
</tr>
<tr>
<td>primal norm</td>
<td>x</td>
</tr>
<tr>
<td>dual norm</td>
<td>rc</td>
</tr>
<tr>
<td>dual norm</td>
<td>rc</td>
</tr>
<tr>
<td>primal error (Ax = b) (total, max)</td>
<td>total and maximum error in satisfying primal equality constraints</td>
</tr>
<tr>
<td>dual error (A'pi + rc = c) (total, max)</td>
<td>total and maximum error in satisfying dual equality constraints</td>
</tr>
<tr>
<td>primal x bound error (total, max)</td>
<td>total and maximum error in satisfying primal lower and upper bound constraints</td>
</tr>
<tr>
<td>primal slack bound error (total, max)</td>
<td>total and maximum violation in slack variables</td>
</tr>
<tr>
<td>dual pi bound error (total, max)</td>
<td>total and maximum violation with respect to zero of dual variables on inequality rows</td>
</tr>
<tr>
<td>dual rc bound error (total, max)</td>
<td>total and maximum violation with respect to zero of reduced costs</td>
</tr>
<tr>
<td>primal normalized error (Ax = b) (max)</td>
<td>accuracy of primal constraints</td>
</tr>
<tr>
<td>dual normalized error (A'pi + rc = c) (max)</td>
<td>accuracy of dual constraints</td>
</tr>
</tbody>
</table>
Tuning barrier optimizer performance

Describes facilities for tuning performance of the barrier optimizer.

In this section

Overview of parameters for tuning the barrier optimizer
Introduces performance parameters of the barrier optimizer.

Memory emphasis: letting the optimizer use disk for storage
Describes effect of the memory emphasis parameter on the performance of the barrier optimizer.

Preprocessing
Describes the effect of preprocessing on the performance of the barrier optimizer.

Detecting and eliminating dense columns
Explains the effect of dense columns in the model on performance of the barrier optimizer.

Choosing an ordering algorithm
Describes performance considerations with respect to the ordering algorithm of the barrier optimizer.

Using a starting-point heuristic
Describes impact of starting-point heuristics on performance of the barrier algorithm.
Overview of parameters for tuning the barrier optimizer

Naturally, the default parameter settings for the CPLEX® Barrier Optimizer work best on most problems. However, you can tune several algorithmic parameters to improve performance or to overcome numeric difficulties.

To help you decide whether default settings of parameters are best for your model, or whether other parameter settings may improve performance, the tuning tool is available. *Tuning tool* explains more about this utility and shows you examples of its use.

Parameters for performance and numeric difficulties

The following sections document parameters particularly relevant to performance and numeric difficulties in the barrier optimizer:

♦ *Memory emphasis: letting the optimizer use disk for storage*
♦ *Preprocessing;*
♦ *Detecting and eliminating dense columns;*
♦ *Choosing an ordering algorithm;*
♦ *Using a starting-point heuristic.*

Parameters for termination

In addition, several parameters set termination criteria. With them, you control when CPLEX® stops optimization.

Parameters to control convergence

You can also control convergence tolerance (another factor that influences performance). Convergence tolerance specifies how nearly optimal a solution CPLEX® must find: tight convergence tolerance means CPLEX® must keep working until it finds a solution very close to the optimal one; loose tolerance means CPLEX® can return a solution within a greater range of the optimal one and thus stop calculating sooner.

Cholesky factor and parameter changes

Performance of the CPLEX® Barrier Optimizer is most highly dependent on the number of floating-point operations required to compute the Cholesky factor at each iteration. When you adjust barrier parameters, always check their impact on this number. At default output settings, this number is reported at the beginning of each barrier optimization in the log file, as explained in *Cholesky factor in the log file.*

Dense columns and performance considerations

Another important performance issue is the presence of dense columns. A dense column means that a given variable appears in a relatively large number of rows. You can check
column density as suggested in \textit{Nonzeros in lower triangle of }A^*A' \textit{ in the log file}. Detecting and eliminating dense columns also says more about column density.

\section*{Managing parameter changes for the barrier optimizer}

In adjusting parameters, you may need to experiment to find beneficial settings because the precise effect of parametric changes will depend on the nature of your LP problem as well as your platform (hardware, operating system, compiler, etc.). After you have found satisfactory parametric settings, keep them in a parameter specification file for re-use, as explained in Saving a parameter specification file in the reference manual \textit{CPLEX Interactive Optimizer Commands}.
Memory emphasis: letting the optimizer use disk for storage

At default settings, the CPLEX® barrier optimizer will do all of its work in central memory (also variously referred to as RAM, core, or physical memory). For models too large to solve in the central memory on your computer, or in cases where you simply do not want to use this much memory, it is possible to instruct the barrier optimizer to use disk for part of the working storage it needs, specifically the Cholesky factorization. Since access to disk is slower than access to central memory, there may be some lost performance by this choice on models that could be solved entirely in central memory, but the out-of-core feature in the barrier optimizer is designed to make this trade-off as efficient as possible. It generally will be far more effective than relying on the virtual memory (that is, the swap space) of your operating system.

To activate the out-of-core feature, set the memory emphasis parameter (memory reduction switch) to 1 (one) instead of its default value of 0 (zero).

♦ MemoryEmphasis in Concert Technology
♦ CFX_PARAM_MEMORYEMPHASIS in the Callable Library
♦ emphasis memory in the Interactive Optimizer

This memory emphasis feature will also invoke other memory conservation tactics, such as compression of the data within presolve.

Memory emphasis uses some working memory in RAM to store the portion of the factor on which it is currently performing computation. You can improve performance by allocating more working memory by means of the working memory parameter (memory available for working storage).

♦ WorkMem in Concert Technology
♦ CFX_PARAM_WORKMEM in the Callable Library
♦ workmem in the Interactive Optimizer

More working memory allows the optimizer to transfer less data to and from disk. In fact, the Cholesky factor matrix will not be written to disk at all if its size does not exceed the value of the working memory parameter. The default for this parameter is 128 megabytes.

When the barrier optimizer operates with memory emphasis, the location of disk storage is controlled by the working directory parameter (directory for working files).

♦ WorkDir in Concert Technology
♦ CFX_PARAM_WORKDIR in the Callable Library
♦ workdir in the Interactive Optimizer

For example, to use the directory /tmp/mywork, set the working directory parameter to the string /tmp/mywork. The value of the working directory parameter should be specified as the name of a directory that already exists, and CPLEX® will create its working directory as a subdirectory there. At the end of barrier optimization, CPLEX® will automatically delete any working directories it created, leaving the directory specified by the working directory parameter intact.
Preprocessing

For best performance of the CPLEX® Barrier Optimizer, preprocessing should almost always be on. That is, use the default setting where the presolver and aggregator are active. While they may use more memory, they also reduce the problem, and problem reduction is crucial to barrier optimizer performance. In fact, reduction is so important that even when you turn off preprocessing, CPLEX® still applies minimal presolving before barrier optimization.

For problems that contain linearly dependent rows, it is a good idea to turn on the preprocessing dependency parameter. (By default, it is off.) This dependency checker may add some preprocessing time, but it can detect and remove linearly dependent rows to improve overall performance. Dependency checking parameter DepInd or CPX_PARAM DEPIND shows you the possible settings of the dependency switch, the parameter that controls dependency checking, and indicates their effects.

Dependency checking parameter DepInd or CPX_PARAM DEPIND

<table>
<thead>
<tr>
<th>Setting</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>automatic: let CPLEX choose when to use dependency checking</td>
</tr>
<tr>
<td>0</td>
<td>turn off dependency checking</td>
</tr>
<tr>
<td>1</td>
<td>turn on only at the beginning of preprocessing</td>
</tr>
<tr>
<td>2</td>
<td>turn on only at the end of preprocessing</td>
</tr>
<tr>
<td>3</td>
<td>turn on at beginning and at end of preprocessing</td>
</tr>
</tbody>
</table>

These reductions can be applied to all types of problems: LP, QP, QCP, MIP, including MIQP and MIQCP.
Detecting and eliminating dense columns

Dense columns can significantly degrade the performance of the barrier optimizer. A dense column is one in which a given variable appears in many rows. So that you can detect dense columns, the Interactive Optimizer contains a display feature that shows a histogram of the number of nonzeros in the columns of your model, display problem histogram c.

Nonzeros in lower triangle of A*A' in the log file explains how to examine a log file from the barrier optimizer in order to tell which columns CPLEX® detects as dense at its current settings.

In fact, when a few dense columns are present in a problem, it is often effective to reformulate the problem to remove those dense columns from the model.

Otherwise, you can control whether CPLEX® perceives columns as dense by setting the column nonzeros parameter. At its default setting, CPLEX® calculates an appropriate value for this parameter automatically. However, if your problem contains one (or a few) dense columns that remain undetected at the default setting (according to the log file), you can adjust this parameter yourself to help CPLEX® detect it (or them). For example, in a large problem in which one column contains forty entries while the other columns contain less than five entries, you may benefit by setting the column nonzeros parameter to 30. This setting allows CPLEX® to recognize that column as dense and thus invoke techniques to handle it.

To set the dense column threshold, set the parameter BarColNz to a positive integer. The default value of 0 (zero) means that CPLEX® will set the threshold.
Choosing an ordering algorithm

CPLEX® offers several different algorithms in the CPLEX® Barrier Optimizer for ordering the rows of a matrix:

♦ automatic, the default, indicated by the value 0;
♦ approximate minimum degree (AMD), indicated by the value 1;
♦ approximate minimum fill (AMF) indicated by the value 2;
♦ nested dissection (ND) indicated by the value 3.

The log file, as explained in Ordering-algorithm time in the log file, records the time spent by the ordering algorithm in a barrier optimization, so you can experiment with different ordering algorithms and compare their performance on your problem.

Automatic ordering, the default option, will usually be the best choice. This option attempts to choose the most effective of the available ordering methods, and it usually results in the best order. It may require more time than the other settings. The ordering time is usually small relative to the total solution time, and a better order can lead to a smaller total solution time. In other words, a change in this parameter is unlikely to improve performance very much.

The AMD algorithm provides good quality order within moderate ordering time. AMF usually provides better order than AMD (usually 5-10% smaller factors) but it requires somewhat more time (10-20% more). ND often produces significantly better order than AMD or AMF. Ten-fold reductions in runtimes of the CPLEX® Barrier Optimizer have been observed with it on some problems. However, ND sometimes produces worse order, and it requires much more time.

To select an ordering algorithm, set the parameter BarOrder to a value 0, 1, 2, or 3.
Using a starting-point heuristic

CPLEX® supports several different heuristics to compute the starting point for the CPLEX® Barrier Optimizer. The starting-point heuristic is specified by the BarStartAlg parameter, and *BarStartAlg parameter settings for starting-point heuristics* summarizes the possible settings and their meanings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dual is 0 (default)</td>
</tr>
<tr>
<td>2</td>
<td>estimate dual</td>
</tr>
<tr>
<td>3</td>
<td>average primal estimate, dual 0</td>
</tr>
<tr>
<td>4</td>
<td>average primal estimate, estimate dual</td>
</tr>
</tbody>
</table>

For most problems the default works well. However, if you are using the dual preprocessing option (setting the parameter PreDual to 1) then one of the other heuristics for computing a starting point may perform better than the default.

♦ In the Interactive Optimizer, use the command `set barrier startalg i`, substituting a value for `i`.

♦ When using the Component Libraries, set the barrier starting point algorithm parameter `IloCplex::BarStartAlg` or `CPX_PARAM_BARSTARTALG`.

Overcoming numeric difficulties

Documents ways to cope with numeric difficulties in the barrier optimizer.

In this section

Default behavior of the barrier optimizer with respect to numeric difficulty
Describes the context of crossover by barrier optimizer.

Numerical emphasis settings
Documents purpose of numerical emphasis parameter for barrier optimizer.

Difficulties in the quality of solution
Suggests strategies with the barrier optimizer to overcome poor quality solutions.

Difficulties during optimization
Suggests strategies for overcoming difficulties during optimization with the barrier optimizer.

Difficulties with unbounded problems
Suggests strategies to overcome unbounded problems with the barrier optimizer.
Default behavior of the barrier optimizer with respect to numeric difficulty

As noted in Differences between barrier and simplex optimizers, the algorithms in the barrier optimizer have very different numeric properties from those in the simplex optimizer. While the barrier optimizer is often extremely fast, particularly on very large problems, numeric difficulties occasionally arise with it in certain classes of problems. For that reason, it is a good idea to run simplex optimizers in conjunction with the barrier optimizer to verify solutions. At its default settings, the CPLEX® Barrier Optimizer always crosses over after a barrier solution to a simplex optimizer, so this verification occurs automatically.
Numerical emphasis settings

Before you try tactics that apply to specific symptoms, as described in the following sections, a useful CPLEX® parameter to try is the numerical precision emphasis parameter.

♦ NumericalEmphasis in Concert Technology

♦ CFX_PARAM_NUMERICALEMPHASIS in the Callable Library

♦ emphasis numerical in the Interactive Optimizer

Unlike the following suggestions, which deal with knowledge of the way the barrier optimizer works or with details of your specific model, this parameter is intended as a way to tell CPLEX® to exercise more than the usual caution in its computations. When you set it to its nondefault value specifying extreme numerical caution, various tactics are invoked internally to try to avoid loss of numerical accuracy in the steps of the barrier algorithm.

Be aware that the nondefault setting may result in slower solution times than usual. The effect of this setting is to shift the emphasis away from fastest solution time and toward numerical caution. On the other hand, if numerical difficulty is causing the barrier algorithm to perform excessive numbers of iterations due to loss of significant digits, it is possible that the setting of extreme numerical caution could actually result in somewhat faster solution times. Overall, it is difficult to project the impact on speed when using this setting.

The purpose of this parameter setting is not to generate "more accurate solutions" particularly where the input data is in some sense unsatisfactory or inaccurate. The numerical caution is applied during the steps taken by the barrier algorithm during its convergence toward the optimum, to help it do its job better. On some models, it may turn out that solution quality measures are improved (Ax-b residuals, variable-bound violations, dual values, and so forth) when CPLEX® exercises numerical caution, but this would be a secondary outcome from better convergence.
Difficulties in the quality of solution

Understanding solution quality from the barrier LP optimizer lists the items that CPLEX® displays about the quality of a barrier solution. If the CPLEX® Barrier Optimizer terminates its work with a solution that does not meet your quality requirements, you can adjust parameters that influence the quality of a solution. Those adjustments affect the choice of barrier algorithm, the limit on barrier corrections, and the choice of starting-point heuristic—topics introduced in Tuning barrier optimizer performance and recapitulated here in the following subsections.

Change the barrier algorithm

The CPLEX® Barrier Optimizer implements the algorithms listed in BarAlg parameter settings for barrier optimizer. The selection of barrier algorithm is controlled by the BarAlg parameter. The default option invokes option 3 for LPs and QPs, option 1 for QCPs, and option 1 for MIPs where the CPLEX® Barrier Optimizer is used on the subproblems. Naturally, the default is the fastest for most problems, but it may not work well on LP or QP problems that are primal infeasible or dual infeasible. Options 1 and 2 in the CPLEX® Barrier Optimizer implement a barrier algorithm that also detects infeasibility. (They differ from each other in how they compute a starting point.) Though they are slower than the default option, in a problem demonstrating numeric difficulties, they may eliminate the numeric difficulties and thus improve the quality of the solution.

<table>
<thead>
<tr>
<th>BarAlg Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>default</td>
</tr>
<tr>
<td>1</td>
<td>algorithm starts with infeasibility estimate</td>
</tr>
<tr>
<td>2</td>
<td>algorithm starts with infeasibility constant</td>
</tr>
<tr>
<td>3</td>
<td>standard barrier algorithm</td>
</tr>
</tbody>
</table>

Change the limit on barrier corrections

The default barrier algorithm in the CPLEX® Barrier Optimizer computes an estimate of the maximum number of centering corrections that CPLEX® should make on each iteration. You can see this computed value by setting barrier display level two, as explained in Interpreting the barrier log file, and checking the value of the parameter to limit corrections. (Its default value is -1.) If you see that the current value is 0 (zero), then you should experiment with greater settings. Setting the parameter BarMaxCor to a value greater than 0 (zero) may improve numeric performance, but there may also be an increase in computation time.
Choose a different starting-point heuristic

As explained in Using a starting-point heuristic, the default starting-point heuristic works well for most problems suitable to barrier optimization. But for a model that is exhibiting numeric difficulty it is possible that setting the BarStartAlg to select a different starting point will make a difference. However, if you are preprocessing your problem as dual (for example, in the Interactive Optimizer you issued the command set preprocessing dual), then a different starting-point heuristic may perform better than the default. To change the starting-point heuristic, see BarStartAlg parameter settings for starting-point heuristics.
Difficulties during optimization

Numeric difficulties can degrade performance of the CPLEX® Barrier Optimizer or even prevent convergence toward a solution. There are several possible sources of numeric difficulties:

♦ elimination of too many dense columns may cause numeric instability;
♦ tight convergence tolerance may aggravate small numeric inconsistencies in a problem;
♦ unbounded optimal faces may remain undetected and thus prevent convergence.

The following subsections offer guidance about overcoming those difficulties.

Numeric instability due to elimination of too many dense columns

Detecting and eliminating dense columns explains how to change parameters to encourage CPLEX® to detect and eliminate as many dense columns as possible. However, in some problems, if CPLEX® removes too many dense columns, it may cause numeric instability.

You can check how many dense columns CPLEX® removes by looking at the preprocessing statistics at the beginning of the log file. For example, the following log file shows that CPLEX® removed 2249 columns, of which nine were dense.

If you observe that the removal of too many dense columns results in numeric instability in your problem, then increase the column nonzeros parameter, BarColNz.

The default value of the column nonzeros parameter is 0 (zero); that value tells CPLEX® to calculate the parameter automatically.
To see the current value of the column nonzeros parameter (either one you have set or one CPLEX® has automatically calculated) you need to look at the level two display, by setting the BarDisplay parameter to 2.

If you decide that the current value of the column nonzeros parameter is inappropriate for your problem and thus tells CPLEX® to remove too many dense columns, then you can increase the parameter BarColNz to keep the number of dense columns removed low.

Small numeric inconsistencies and tight convergence tolerance

If your problem contains small numeric inconsistencies, it may be difficult for the CPLEX® Barrier Optimizer to achieve a satisfactory solution at the default setting of the complementarity convergence tolerance. In such a case, you should increase the convergence tolerance parameter (BarEpComp for LP or QP models, BarQCPEpComp for QCP models).

Unbounded variables and unbounded optimal faces

An unbounded optimal face occurs in a model that contains a sequence of optimal solutions, all with the same value for the objective function and unbounded variable values. The CPLEX® Barrier Optimizer will fail to terminate normally if an undetected unbounded optimal face exists.

Normally, the CPLEX® Barrier Optimizer uses its barrier growth parameter, BarGrowth, to detect such conditions. If this parameter is increased beyond its default value, the CPLEX® Barrier Optimizer will be less likely to detect that the problem has an unbounded optimal face and more likely to encounter numeric difficulties.

Consequently, you should change the barrier growth parameter only if you find that the CPLEX® Barrier Optimizer is terminating its work before it finds the true optimum because it has falsely detected an unbounded face.
Difficulties with unbounded problems

CPLEX® detects unbounded problems in either of two ways:

♦ either it finds a solution with small complementarity that is not feasible for either the primal or the dual formulation of the problem;

♦ or the iterations tend toward infinity with the objective value becoming very large in absolute value.

The CPLEX® Barrier Optimizer stops when the absolute value of either the primal or dual objective exceeds the objective range parameter, BarObjRng.

If you increase the value of BarObjRng, then the CPLEX® Barrier Optimizer will iterate more times before it decides that the current problem suffers from an unbounded objective value.

If you know that your problem has large objective values, consider increasing BarObjRng.

Also if you know that your problem has large objective values, consider changing the barrier algorithm by resetting the BarAlg parameter.
Diagnosing infeasibility reported by barrier optimizer

When the CPLEX® Barrier Optimizer terminates and reports an infeasible solution, all the usual solution information is available. However, the solution values, reduced costs, and dual variables reported then do not correspond to a basis; hence, that information does not have the same meaning as the corresponding output from the CPLEX® simplex optimizers.

Actually, since the CPLEX® Barrier Optimizer works in a single phase, all reduced costs and dual variables are calculated in terms of the original objective function.

If the CPLEX® Barrier Optimizer reports to you that a problem is infeasible, one approach to overcoming the infeasibility is to invoke FeasOpt or the conflict refiner. See Repairing infeasibilities with FeasOpt and Diagnosing infeasibility by refining conflicts for an explanation of these tools.

If the CPLEX® Barrier Optimizer reports to you that a problem is infeasible, but you still need a basic solution for the problem, use the primal simplex optimizer. CPLEX® will then use the solution provided by the barrier optimizer to find a starting basis for the primal simplex optimizer. When the primal simplex optimizer finishes its work, you will have an infeasible basic solution for further infeasibility analysis.

If the default algorithm in the CPLEX® Barrier Optimizer discovers that your problem is primal infeasible or dual infeasible, then try the alternate algorithms in the barrier optimizer. These algorithms, though slower than the default, are better at detecting primal and dual infeasibility.

To select one of the barrier infeasibility algorithms, set the BarAlg parameter to either 1 or 2.
Solving network-flow problems

Documents the CPLEX® Network Optimizer.

In this section

Choosing an optimizer: network considerations
Describes conditions under which the network optimizer is appropriate.

Formulating a network problem
 Defines the characteristics of a network flow model.

Example: network optimizer in the Interactive Optimizer
Demonstrates an example of the network optimizer in the Interactive Optimizer.

Solving problems with the network optimizer
Explains invocation and activity of the network optimizer.

Example: using the network optimizer with the Callable Library netex1.c
Demonstrates an example of the network optimizer in the C API.

Solving network-flow problems as LP problems
Explains the conversion between a network flow model and a conventional LP model.

Example: network to LP transformation netex2.c
Demonstrates an example of converting a network flow model to its LP model in the C API.
Choosing an optimizer: network considerations

As explained in Using the Callable Library in an application, to exploit IBM® ILOG® CPLEX® in your own application, you must first create a CPLEX® environment, instantiate a problem object, and populate the problem object with data. As your next step, you call a CPLEX® optimizer.

If part of your problem is structured as a network, then you may want to consider calling the CPLEX® Network Optimizer. This optimizer may have a positive impact on performance. There are two alternative ways of calling the network optimizer:

♦ If your problem is an LP where a large part is a network structure, you may call the network optimizer for the populated LP object.

♦ If your entire problem consists of a network flow, you should consider creating a network object instead of an LP object. Then populate it, and solve it with the network optimizer. This alternative generally yields the best performance because it does not incur the overhead of LP data structures. This option is available only for the Callable library.

How much performance improvement you observe between using only a simplex optimizer versus using the network optimizer followed by either of the simplex optimizers depends on the number and nature of the other constraints in your problem. On a pure network problem, performance has been measured as 100 times faster with the network optimizer. However, if the network component of your problem is small relative to its other parts, then using the solution of the network part of the problem as a starting point for the remainder may or may not improve performance, compared to running the primal or dual simplex optimizer. Only experiments with your own problem can tell.
Formulating a network problem

A network-flow problem finds the minimal-cost flow through a network, where a network consists of a set N of nodes and a set A of arcs connecting the nodes. An arc a in the set A is an ordered pair (i, j) where i and j are nodes in the set N; node i is called the tail or the from-node and node j is called the head or the to-node of the arc a. Not all the pairs of nodes in a set N are necessarily connected by arcs in the set A. More than one arc may connect a pair of nodes; in other words, $a_1 = (i, j)$ and $a_2 = (i, j)$ may be two different arcs in A, both connecting the nodes i and j in N.

Each arc a may be associated with four values:

♦ x_a is the flow value, that is, the amount passing through the arc a from its tail (or from-node) to its head (or to-node). The flow values are the modeling variables of a network-flow problem. Negative values are allowed; a negative flow value indicates that there is flow from the head to the tail.

♦ l_a, the lower bound, sets the minimum flow allowed through the arc a. By default, the lower bound on an arc is 0 (zero).

♦ u_a, the upper bound, sets the maximum flow allowed through the arc a. By default, the upper bound on an arc is positive infinity.

♦ c_a, the objective value, specifies the contribution to the objective function of one unit of flow through the arc.

Each node n is associated with one value:

♦ s_n is the supply value at node n.

By convention, a node with strictly positive supply value (that is, $s_n > 0$) is called a supply node or a source, and a node with strictly negative supply value (that is, $s_n < 0$) is called a demand node or a sink. A node where $s_n = 0$ is called a transshipment node. The sum of all supplies must match the sum of all demands; if not, then the network flow problem is infeasible.

T_n is the set of arcs whose tails are node n; H_n is the set of arcs whose heads are node n. The usual form of a network problem looks like this:
Minimize (or maximize)

\[
\sum_{c \in \mathcal{A}} (c_c x_c)
\]

subject to

\[
\sum_{a \in I_n} x_a - \sum_{a \in J_n} x_a = s_n \forall n \in \mathcal{N}
\]

with these bounds

\[
l_a \leq x_a \leq u_a \forall (a \in \mathcal{A})
\]

That is, for each node, the net flow entering and leaving the node must equal its supply value, and all flow values must be within their bounds. The solution of a network-flow problem is an assignment of flow values to arcs (that is, the modeling variables) to satisfy the problem formulation. A flow that satisfies the constraints and bounds is feasible.
Example: network optimizer in the Interactive Optimizer

Demonstrates an example of the network optimizer in the Interactive Optimizer.

In this section

Network flow problem description
Describes a sample network flow problem for the network optimizer.

Understanding the network log file
Describes a typical log file, corresponding to the example, from the network optimizer.

Tuning performance of the network optimizer
Suggests strategies for improving performance of the network optimizer.
Network flow problem description

This example is based on a network where the aim is to minimize cost and where the flow through the network has both cost and capacity. A directed network with arc-capacity, flow-cost, sinks, and sources shows you the nodes and arcs of this network. The nodes are labeled by their identifying node number from 1 through 8. The number inside a node indicates its supply value; 0 (zero) is assumed where no number is given. The arcs are labeled 1 through 14. The lower bound \(l \), upper bound \(u \), and objective value \(c \) of each arc are displayed in parentheses \((l, u, c)\) beside each arc. In this example, node 1 and node 5 are sources, representing a positive net flow, whereas node 4 and node 8 are sinks, representing negative net flow.

A directed network with arc-capacity, flow-cost, sinks, and sources

The example in A directed network with arc-capacity, flow-cost, sinks, and sources corresponds to the results of running the netex1.c. If you run that application, it will produce a file named netex1.net which can be read into the Interactive Optimizer with the command read netex1.net. After you read the problem into the Interactive Optimizer, you can solve it with the command netopt or the command optimize.
Understanding the network log file

As CPLEX® solves the problem, it produces a log like the following lines:

```
Iteration log . . .
Iteration: 0  Infeasibility = 48.000000 (150)

Network - Optimal: Objective = 2.6900000000e+002
Solution time = 0.01 sec. Iterations = 9 (9)
```

This network log file differs slightly from the log files produced by other CPLEX® optimizers: it contains values enclosed in parentheses that represent modified objective function values.

As long as the network optimizer has not yet found a feasible solution, it is in Phase I. In Phase I, the network optimizer uses modified objective coefficients that penalize infeasibility. At its default settings, the CPLEX® Network Optimizer displays the value of the objective function calculated in terms of these modified objective coefficients in parentheses in the network log file.

You can control the amount of information recorded in the network log file, just as you control the amount of information in other CPLEX® log files. To record no information at all in the log file, use the command `set network display 0`. To display the current objective value in parentheses relative to the actual unmodified objective coefficients, use the command `set network display 1`. To see the display mentioned earlier in this section, leave the network display parameter at its default value, 2. (If you have changed the default value, you can reset it with the command `set network display 2`.)
Tuning performance of the network optimizer

The default values of parameters controlling the network optimizer are generally the best choices for effective performance. However, the following sections indicate parameters that you may want to experiment with in your particular problem.

Controlling tolerance

You control the feasibility tolerance for the network optimizer through the parameter NetEpRHS. Likewise, you control the optimality tolerance for the network optimizer through the parameter NetEpOpt.

Selecting a pricing algorithm for the network optimizer

On the rare occasions when the network optimizer seems to take too long to find a solution, you may want to change the pricing algorithm to try to speed up computation. The pricing algorithm for the network optimizer is controlled by parameter NetFPriInd. All the choices use variations of partial reduced-cost pricing.

Limiting iterations in the network optimizer

Use the parameter NetItLim if you want to limit the number of iterations that the network optimizer performs.
Solving problems with the network optimizer

Explains invocation and activity of the network optimizer.

In this section

Invoking the network optimizer
Describes invocation of the network optimizer.

Network extraction
Documents how the network optimizer extracts a problem.

Preprocessing and the network optimizer
Explains possible impact of the preprocessor on network flow models.
Invoking the network optimizer

You instruct CPLEX® to apply the network optimizer for solving the LP at hand by setting the algorithm for continuous problems parameter:

♦ setting CPX_PARAM_LPMETHOD to CPX_ALG_NET in the Callable Library
♦ or setting RootAlg to Network in Concert Technology

When you do so, CPLEX® performs a sequence of steps. It first searches for a part of the LP that conforms to network structure. Such a part is known as an embedded network. It then uses the network optimizer to solve that embedded network. Next, it uses the resulting basis to construct a starting basis for the full LP problem. Finally, it solves the LP problem with a simplex optimizer.

You can also use the network optimizer when solving QPs (that is, problems with a positive semi-definite quadratic term in the objective function), but not when solving quadratically constrained problems. To do so using the Callable Library, you set the algorithm for continuous quadratic optimization parameter CPX_PARAM_QPMETHOD to CPX_ALG_NET. For Concert Technology, you set the RootAlg parameter to Network. When CPLEX® uses the network optimizer to solve a QP, it first ignores the quadratic term and uses the network optimizer to solve the resulting LP. CPLEX® then uses the resulting basis to start a simplex algorithm on the QP model with the original quadratic objective.
Network extraction

The CPLEX® network extractor searches an LP constraint matrix for a submatrix with the following characteristics:

♦ the coefficients of the submatrix are all 0 (zero), 1 (one), or -1 (minus one);
♦ each variable appears in at most two rows with at most one coefficient of +1 and at most one coefficient of -1.

CPLEX® can perform different levels of extraction. The level it performs depends on the NetFind parameter.

♦ When the NetFind parameter is set to 1 (one), CPLEX® extracts only the obvious network; it uses no scaling; it scans rows in their natural order; it stops extraction as soon as no more rows can be added to the network found so far.

♦ When the NetFind parameter is set to 2, the default setting, CPLEX® also uses reflection scaling (that is, it multiplies rows by -1) in an attempt to extract a larger network.

♦ When the NetFind parameter is set to 3, CPLEX® uses general scaling, rescaling both rows and columns, in an attempt to extract a larger network.

In terms of total solution time expended, it may or may not be advantageous to extract the largest possible network. Characteristics of your problem will qualify the tradeoff between network size and the number of simplex iterations required to finish solving the model after solving the embedded network.

Even if your problem does not conform precisely to network conventions, the network optimizer may still be advantageous to use. When it is possible to transform the original statement of a linear program into network conventions by these algebraic operations:

♦ changing the signs of coefficients,
♦ multiplying constraints by constants,
♦ rescaling columns,
♦ adding or eliminating redundant relations,

then CPLEX® will carry out such transformations automatically if you set the NetFind parameter appropriately.
Preprocessing and the network optimizer

If your LP problem includes network structures, there is a possibility that CPLEX® preprocessing may eliminate those structures from your model. For that reason, you should consider turning off preprocessing before you invoke the network optimizer on a problem.
Example: using the network optimizer with the Callable Library
netex1.c

In the standard distribution of CPLEX®, the file netex1.c contains code that creates, solves, and displays the solution of the network-flow problem illustrated in *A directed network with arc-capacity, flow-cost, sinks, and sources*.

Briefly, the main function initializes the CPLEX® environment and creates the problem object; it also calls the optimizer to solve the problem and retrieves the solution.

In detail, main first calls the Callable Library routine CPXopenCPLEX. As explained in *Initialize the CPLEX environment*, CPXopenCPLEX must always be the first CPLEX® routine called in a Callable Library application. Those routines create the CPLEX® environment and return a pointer (called env) to it. This pointer will be passed to every Callable Library routine. If this initialization routine fails, env will be NULL and the error code indicating the reason for the failure will be written to status. That error code can be transformed into a string by the Callable Library routine CPXgeterrorstring.

After main initializes the CPLEX® environment, it uses the Callable Library routine CPXsetintparam to turn on the CPLEX® messages to screen switch parameter CPX_PARAM_SCRIND so that CPLEX® output appears on screen. If this parameter is turned off, CPLEX® does not produce viewable output, neither on screen, nor in a log file. It is a good idea to turn this parameter on when you are debugging your application.

The Callable Library routine CPXNETcreateprob creates an empty problem object, that is, a minimum-cost network-flow problem with no arcs and no nodes.

The function buildNetwork populates the problem object; that is, it loads the problem data into the problem object. Pointer variables in the example are initialized as NULL so that you can check whether they point to valid data (a good programming practice). The most important calls in this function are to the Callable Library routines, CPXNETaddnodes, which adds nodes with the specified supply values to the network problem, and CPXNETaddarcs, which adds the arcs connecting the nodes with the specified objective values and bounds. In this example, both routines are called with their last argument NULL indicating that no names are assigned to the network nodes and arcs. If you want to name arcs and nodes in your problem, pass an array of strings instead.

The function buildNetwork also includes a few routines that are not strictly necessary to this example, but illustrate concepts you may find useful in other applications. To delete a node and all arcs dependent on that node, it uses the Callable Library routine CPXNETdelnodes. To change the objective sense to minimization, it uses the Callable Library routine CPXNETchgobjsen.

Look again at main, where it actually calls the network optimizer with the Callable Library routine, CPXNETprimopt. If CPXNETprimopt returns a nonzero value, then an error has occurred; otherwise, the optimization was successful. Before retrieving that solution, it is necessary to allocate arrays to hold it. Then use CPXNETsolution to copy the solution into those arrays. After displaying the solution on screen, write the network problem into a file, netex1.net in the NET file format.

The TERMINATE: label is used as a place for the program to exit if any type of error occurs. Therefore, code following this label cleans up: it frees the memory that has been allocated for the solution data; it frees the network object by calling CPXNETfreeprob; and it frees the CPLEX® environment by calling CPXcloseCPLEX. All freeing should be done only if the data...
is actually available. The Callable Library routine CPXcloseCplex should always be the last CPLEX® routine called in a Callable Library application. In other words, all CPLEX® objects that have been allocated should be freed before the call to CPXcloseCplex.

The complete program netex1.c appears online in the standard distribution at yourCplexinstallation/examples/src.
Solving network-flow problems as LP problems

A network-flow model is an LP model with special structure. The CPLEX® Network Optimizer is a highly efficient implementation of the primal simplex technique adapted to take advantage of this special structure. In particular, no basis factoring occurs. However, it is possible to solve network models using any of the CPLEX® LP optimizers if first, you convert the network data structures to those of an LP model. To convert the network data structures to LP data structures, in the Interactive Optimizer, use the command change problem lp; from the Callable Library, use the routine CPXcopynettolp.

The LP formulation of our example from A directed network with arc-capacity, flow-cost, sinks, and sources looks like this:

Minimize

\[
3a_1 + 32 + 43 + 34 + 56 + 6 + 7 + 48 + 20 + 6a10 + 5a11 + 4a12 + 3a13 + 6a14
\]

subject to

\[
a1 = 20
\]

\[
a1 + a2 - a8 - a9 + a14 = 0
\]

\[
- a2 + a3 + a9 = 0
\]

\[
- a3 + a4 + a10 + a11 - a12 = -15
\]

\[
a7 + a8 - a10 - a13 = 5
\]

\[
- a5 + a6 - a11 + a12 + a13 - a14 = 0
\]

\[
- a4 + a5 = 0
\]

\[
- a6 - a7 = -10
\]

with these bounds

\[
18 \leq a1 \leq 24 \quad 0 \leq a2 \leq 25 \quad a3 = 12
\]

\[
0 \leq a4 \leq 10 \quad 0 \leq a5 \leq 9 \quad a6 \text{ free}
\]

\[
0 \leq a7 \leq 20 \quad 0 \leq a8 \leq 10 \quad 0 \leq a9 \leq 5
\]

\[
0 \leq a10 \leq 15 \quad 0 \leq a11 \leq 10 \quad 0 \leq a12 \leq 11
\]

\[
0 \leq a13 \leq 6 \quad 0 \leq a14
\]

In that formulation, in each column there is exactly one coefficient equal to 1 (one), exactly one coefficient equal to -1, and all other coefficients are 0 (zero).

Since a network-flow problem corresponds in this way to an LP problem, you can indeed solve a network-flow problem by means of a CPLEX® LP optimizer as well. If you read a network-flow problem into the Interactive Optimizer, you can transform it into its LP formulation with the command change problem lp. After this change, you can apply any of the LP optimizers to this problem.
When you change a network-flow problem into an LP problem, the basis information that is available in the network-flow problem is passed along to the LP formulation. In fact, if you have already solved the network-flow problem to optimality, then if you call the primal or dual simplex optimizers (for example, with the Interactive Optimizer command `primopt` or `tranopt`), that simplex optimizer will perform no iterations.

Generally, you can also use the same basis from a basis file for both the LP and the network optimizers. However, there is one exception: in order to use an LP basis with the network optimizer, at least one slack variable or one artificial variable needs to be basic. *Starting from an advanced basis* explains more about this topic in the context of LP optimizers.

If you have already read the LP formulation of a problem into the Interactive Optimizer, you can transform it into a network with the command `change problem network`. Given any LP problem and this command, CPLEX® will try to find the largest network embedded in the LP problem and transform it into a network-flow problem. However, as it does so, it discards all rows and columns that are not part of the embedded network. At the same time, CPLEX® passes along as much basis information as possible to the network optimizer.
Example: network to LP transformation netex2.c

This example shows how to transform a network-flow problem into its corresponding LP formulation. That example also indicates why you might want to make such a change. The example reads a network-flow problem from a file (rather than populating the problem object by adding rows and columns as in netex1.c). You can find the data of this example in the file examples/data/infnet.net. After reading the data from that file, the example then attempts to solve the problem by calling the Callable Library routine CPXNETprimopt. If it detects that the problem is infeasible, it then invokes the conflict refiner to analyze the problem and possibly indicate the cause of the infeasibility.

The complete program netex2.c appears online in the standard distribution at yourCPLEXinstallation/examples/src.
Solving problems with a quadratic objective (QP)

Describes solving convex quadratic programming problems (QPs) with CPLEX®.

In this section

Identifying convex QPs
Explains how to identify a convex quadratic program.

Entering QPs
Documents the two views of quadratic objective functions supported by CPLEX®: a matrix view and an algebraic view.

Saving QP problems
Recommends appropriate file formats to save a quadratic program.

Changing problem type in QPs
Explains special considerations about the change of the problem type of a quadratic program.

Changing quadratic terms
Defines quadratic algebraic term and quadratic matrix.

Optimizing QPs
Describes how to invoke an optimizer for a quadratic program and explains the appropriate choice of optimizer.

Diagnosing QP infeasibility
Explains infeasibility in the context of a quadratic program.
Examples: creating a QP, optimizing, finding a solution
Demonstrates creation, optimization, and solution of a quadratic program.

Example: reading a QP from a file qpex2.c
Demonstrates reading data for a quadratic program from a file and solving in the C API.
Identifying convex QPs

Conventionally, a quadratic program (QP) is formulated this way:

Minimize \(\frac{1}{2} x^T Q x + c^T x \)
subject to \(Ax \sim b \)
with these bounds \(l \leq x \leq u \)

where the relation \(\sim \) may be any combination of equal to, less than or equal to, greater than or equal to, or range constraints. As in other problem formulations, \(l \) indicates lower and \(u \) upper bounds. \(Q \) is a matrix of objective function coefficients. That is, the elements \(Q_{jj} \) are the coefficients of the quadratic terms \(x_j^2 \), and the elements \(Q_{ij} \) and \(Q_{ji} \) are summed together to be the coefficient of the term \(x_i x_j \).

IBM® ILOG® CPLEX® distinguishes two kinds of \(Q \) matrices:

♦ In a *separable* problem, only the diagonal terms of the matrix are defined.

♦ In a *nonseparable* problem, at least one off-diagonal term of the matrix is nonzero.

CPLEX® can solve minimization problems having a convex quadratic objective function. Equivalently, it can solve maximization problems having a concave quadratic objective function. All linear objective functions satisfy this property for both minimization and maximization. However, you cannot always assume this property in the case of a quadratic objective function. Intuitively, recall that any point on the line between two arbitrary points of a convex function will be above that function. In more formal terms, a continuous segment (that is, a straight line) connecting two arbitrary points on the graph of the objective function will not go below the objective in a minimization, and equivalently, the straight line will not go above the objective in a maximization. *Minimize a convex objective function, maximize a concave objective function* illustrates this intuitive idea for an objective function in one variable. It is possible for a quadratic function in more than one variable to be neither convex nor concave.

![Graphs showing convex and concave objective functions](image)

Minimize a convex objective function, maximize a concave objective function

In formal terms, the question of whether a quadratic objective function is convex or concave is equivalent to whether the matrix \(Q \) is positive semi-definite or negative semi-definite. For convex QPs, \(Q \) must be positive semi-definite; that is, \(x^T Q x \geq 0 \) for every vector \(x \), whether or not \(x \) is feasible. For concave maximization problems, the requirement is that \(Q \) must be negative semi-definite; that is, \(x^T Q x \leq 0 \) for every vector \(x \). It is conventional to use the same term, positive semi-definite, abbreviated PSD, for both cases, on the assumption that a
maximization problem with a negative semi-definite Q can be transformed into an equivalent PSD.

For a separable function, it is sufficient to check whether the individual diagonal elements of the matrix Q are of the correct sign. For a nonseparable case, it may be less easy to decide in advance the convexity of Q. However, CPLEX® detects this property during the early stages of optimization and terminates if the quadratic objective term in a QP is found to be not PSD.

For a more complete explanation of quadratic programming generally, a text, such as one of those listed in *Further reading* of the preface of this manual, may be helpful.
Entering QPs

Documents the two views of quadratic objective functions supported by CPLEX®: a matrix view and an algebraic view.

In this section

Matrix view
Describes the matrix view of a quadratic program.

Algebraic view
Describes the algebraic view of a quadratic program.

Examples for entering QPs
Demonstrates ways to enter the objective function of a quadratic program.

Reformulating QPs to save memory
Describes an alternative formulation of a quadratic program that may save memory.
Matrix view

In the matrix view, commonly found in textbook presentations of QP, the objective function is defined as $\frac{1}{2} x^T Q x + c^T x$, where Q must be symmetric and positive semi-definite for a minimization problem, or negative semi-definite for a maximization problem. This view is supported by the MPS file format and the Callable Library routines, where the quadratic objective function information is specified by providing the matrix Q. Thus, by definition, the factor of $1/2$ must be explicit when you enter a model using the matrix view, as it will be implicitly assumed by the optimization routines.

Similarly, symmetry of the Q matrix data is required; the MPS reader will return an error status code if the file contains unequal off-diagonal components, such as a nonzero value for one and zero (or omitted) for the other.

This symmetry restriction applies to quadratic programming input formats rather than the quadratic programming problem itself. For models with an asymmetric Q matrix, either express the quadratic terms algebraically, as described in Algebraic view, or provide as input $(Q + Q')/2$ instead of Q. This latter approach relies on the identity $Q = (Q + Q')/2 + (Q - Q')/2$ combined with the fact that $(Q - Q')/2$ contributes 0 (zero) to the quadratic objective.
In the algebraic view, a quadratic objective function is specified as an expression of the form:

\[c_1 x_1 + \ldots + c_n x_n + q_{11} x_1 x_1 + q_{12} x_1 x_2 + \ldots + q_{nn} x_n x_n \]

This view is supported by the LP format, when you enter a quadratic objective function in the Interactive Optimizer, and by Concert Technology. Again, a quadratic objective function must be convex in the case of a minimization problem, or concave in the case of a maximization problem. When you enter a quadratic objective with the algebraic view, neither symmetry considerations nor any implicit factors need to be considered, and indeed attempting to specify both of the off-diagonal elements for one of the quadratic terms may result in double the intended value of the coefficient.
Examples for entering QPs

CPLEX® LP format requires the factor of 1/2 explicitly specified in the file.

Minimize

\[
\text{obj: } \left[100 \ x_1 \ ^2 - 200 \ x_1 \ * \ x_2 + 100 \ x_2 \ ^2 \right] / 2
\]

MPS format for this same objective function contains the following.

<table>
<thead>
<tr>
<th>QMATRIX</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1, x1</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>x1, x2</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>x2, x1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>x2, x2</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

A C++ Concert program having such an objective function might include the following.

```cpp
model.add(IloMinimize(env, 0.5 * (100*x[0]*x[0] + 100*x[1]*x[1] - 200*x[0]*x[1])));
```

Or since the algebraic view is supported, the factor of one-half could be simplified as in the following equivalent expression.

```cpp
model.add(IloMinimize(env, (50*x[0]*x[0] + 50*x[1]*x[1] - 100*x[0]*x[1])));
```

A similar Java program using Concert might express it this way:

```java
IloNumExpr x00 = model.prod(100, x[0], x[0]);
IloNumExpr x11 = model.prod(100, x[1], x[1]);
IloNumExpr x01 = model.prod(-200, x[0], x[1]);
IloNumExpr Q = model.prod(0.5, model.sum(x00, x11, x01));
model.add(model.minimize(Q));
```

Again, the user may choose to simplify that expression algebraically if that suits the purposes of the application better.

Finally, a Callable Library application in C might construct the quadratic objective function in a way similar to the following:

```c
zqmatind[0] = 0;  zqmatind[2] = 0;
zqmatval[0] = 100.0; zqmatval[2] = -100.0;
```
To re-emphasize the point about the factor of 1/2 in any of these methods: if that objective function is evaluated with a solution of \(x_1 = 1.000000 \) and \(x_2 = 3.000000 \), the result is 200, not 400.
Reformulating QPs to save memory

When the \(Q \) matrix is very dense or extremely large in dimension, excessive memory may be needed to solve the problem as conventionally formulated. However, you may be able to use an alternative formulation to avoid such bottlenecks. Specifically, if you can express \(Q \) as \(FF' \), (where \(F \) is another matrix, not necessarily square, having fewer nonzeros than \(Q \), and \(F' \) is its transpose) then you can reformulate the QP like this:

\[
\begin{align*}
\min & \quad c'x + y'y \\
\text{Ax} & \quad -b \\
y - Fx & \quad = 0 \\
l & \quad \leq x \leq u \\
y & \quad \text{free}
\end{align*}
\]

In the reformulation, \(y \) is a vector of free variables, one variable for each column of \(F \).

Portfolio optimization models in particular benefit from this reformulation. In the most common portfolio models, \(Q \) is a covariance matrix of asset returns, while \(F \) is the matrix of the deviations of the asset returns from their mean used to compute the covariances. In that reformulation, the number of columns of \(F \) corresponds to the number of time periods for which returns are measured.

In general, while the number of rows in \(F \) must match the dimension of the square matrix \(Q \), the number of columns of \(F \) may be fewer. So, even if \(Q \) is dense and \(F \) is also dense, you still may reduce the memory requirements to solve the model if \(F \) has more rows than columns.

Furthermore, if \(F \) is a sparser matrix than \(Q \), this alternative formulation may improve performance even if \(F \) has more columns than \(Q \).
Saving QP problems

After you enter a QP problem, whether interactively or by reading a formatted file, you can then save the problem in a formatted file. The formats available to you are LP, MPS, and SAV. (These formats are documented in File Formats Reference Manual.) When you save a QP problem in one of these formats, the quadratic information will also be recorded in the formatted file.
Changing problem type in QPs

Concert Technology (that is, applications written in the C++, Java, or .NET API of CPLEX®) treats all models as capable of containing quadratic coefficients in the objective function. These coefficients can therefore be added or deleted at will. When extracting a model with a quadratic objective function, IloCplex will automatically detect it as a QP and make the required adjustments to data structures.

However, the other ways of using CPLEX® (the **Callable Library** and the **Interactive Optimizer**) require an explicit *problem type* to distinguish a linear program (LP) from a QP. The following sections discuss the topic for these users.

When you enter a problem, CPLEX® discovers the problem type from the available information. When read from a file (LP, MPS, or SAV format, for example), or entered interactively, a continuous optimization problem is usually treated as being of type QP if quadratic coefficients are present in the objective function and no quadratic terms are present among the constraints. (Quadratic terms among the constraints may make a problem of type QCP. For more about that type, see *Solving problems with quadratic constraints (QCP)*.) Otherwise, the problem type is usually LP. The issue of problem types that support integer restrictions in conjunction with quadratic variables is discussed in *Solving mixed integer programming problems (MIP)*.

If you enter a problem that lacks any quadratic coefficients, its *problem type* is initially LP. If you then wish to modify the problem to contain quadratic coefficients in the objective function, you do this by first changing the problem type to QP. Conversely, if you have entered a QP model and wish to remove all the quadratic coefficients from the objective function and thus convert the model to an LP, you must also change the problem type to LP. Note that deleting each of the quadratic coefficients individually still leaves the problem type as QP, although in most instances the distinction between this problem and its LP or QP counterpart is somewhat arbitrary in terms of the steps to solve it.

When using the **Interactive Optimizer**, you use the command `change problem` with one of the following options:

♦ `lp` indicates that you want CPLEX® to treat the problem as an LP. This change in Problem Type removes from your problem all the quadratic information, if there is any present.

♦ `qp` indicates that you want CPLEX® to treat the problem as a QP. This change in Problem Type creates in your problem an empty quadratic matrix, if there is not one already present, for the objective function, ready for populating via the `change qpterm` command.

From the **Callable Library**, use the routine `CPXchgprobtype` to change the problem type to either `CPXPROB_LP` for the LP case or `CPXPROB_QP` for the QP case for the same purposes.
Changing quadratic terms

CPLEX® distinguishes between a quadratic algebraic term and a quadratic matrix coefficient. The quadratic algebraic terms are the coefficients that appear in the algebraic expression defined as part of the CPLEX® LP format. The quadratic matrix coefficients appear in Q. The quadratic coefficient of an off-diagonal term must be distributed within the Q matrix, and it is always one-half the value of the quadratic algebraic term.

To clarify that terminology, consider this example:

Minimize \(a + b + \frac{1}{2}(a^2 + 4ab + 7b^2) \)

subject to \(a + b \geq 10 \)

with these bounds \(a \geq 0 \) and \(b \geq 0 \)

The off-diagonal quadratic algebraic term in that example is 4, so the quadratic matrix Q is

\[
\begin{bmatrix}
1 & 2 \\
2 & 7
\end{bmatrix}
\]

♦ In a QP, you can change the quadratic matrix coefficients in the Interactive Optimizer by using the command change qpterm.

♦ From the Callable Library, use the routine CPXchgqpcoef to change quadratic matrix coefficients.

♦ Concert Technology does not support direct editing of expressions other than linear expressions. Consequently, to change a quadratic objective function, you need to create an expression with the modified quadratic objective and use the setExpr method of IloObjective to install it.

Changing an off-diagonal element changes the corresponding symmetric element as well. In other words, if a call to CPXchgqpcoef changes \(Q_{ij} \) to a value, it also changes \(Q_{ji} \) to that same value.

To change the off-diagonal quadratic term from 4 to 6, for example, use this sequence of commands in the Interactive Optimizer:

```
CPLEX> change qpterm
Change which quadratic term ['variable' 'variable']: a b
Present quadratic term of variable 'a', variable 'b' is 4.000000.
Change quadratic term of variable 'a', variable 'b' to what: 6.0
Quadratic term of variable 'a', variable 'b' changed to 6.000000.
```

From the Callable Library, the CPXchgqpcoef call to change the off-diagonal term from 4 to 6 would change both of the off-diagonal matrix coefficients from 2 to 3. Thus, the indices would be 0 and 1, and the new matrix coefficient value would be 3.

If you have entered a linear problem without any quadratic terms in the Interactive Optimizer, and you want to create quadratic terms, you must first change the problem type to QP. To do so, use the command change problem qp. This command will create an empty quadratic matrix with \(Q = 0 \).
When you change quadratic terms, there are still restrictions on the properties of the \(Q \) matrix. In a minimization problem, it must be convex, positive semi-definite. In a maximization problem, it must be concave, negative semi-definite. For example, if you change the sense of an objective function in a convex \(Q \) matrix from minimization to maximization, you will thus make the problem unsolvable. Likewise, in a convex \(Q \) matrix, if you make a diagonal term negative, you will thus make the problem unsolvable.
Optimizing QPs

CPLEX® allows you to solve your QP models through a simple interface, by calling the default optimizer as follows:

♦ In the Interactive Optimizer, use the command optimize.

♦ From the Callable Library, use the routine CPXqpopt.

♦ In Concert Technology applications, use the method solve.

With default settings, this will result in CPLEX® invoking the barrier optimizer to solve a continuous QP.

For users who wish to tune the performance of their applications, there are two simplex optimizers to try for solving QPs. They are dual simplex and primal simplex. You can also use the network optimizer; this solves the model as an LP network (temporarily ignoring the quadratic term in the objective function) and takes this solution as a starting point for the primal simplex QP optimizer. This choice of QP optimizer is controlled by the root algorithm parameter (QPMETHOD in the Interactive Optimizer and in the Callable Library). RootAlg parameter settings for QPs shows you the possible settings.

RootAlg parameter settings for QPs

<table>
<thead>
<tr>
<th>Root algorithm value</th>
<th>Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Automatic (default)</td>
</tr>
<tr>
<td>1</td>
<td>Primal Simplex</td>
</tr>
<tr>
<td>2</td>
<td>Dual Simplex</td>
</tr>
<tr>
<td>3</td>
<td>Network Simplex</td>
</tr>
<tr>
<td>4</td>
<td>Barrier</td>
</tr>
<tr>
<td>5</td>
<td>Sifting</td>
</tr>
<tr>
<td>6</td>
<td>Concurrent</td>
</tr>
</tbody>
</table>

Many of the optimizer tuning decisions for LP apply in the QP case; and parameters that control barrier and simplex optimizers in the LP case can be set for the QP case, although in some instances to differing effect. Most models are solved fastest by default parameter settings. In case your model is not solved satisfactorily by default settings, consider the advice offered in Solving LPs: barrier optimizer, especially Tuning barrier optimizer performance as well as in Solving LPs: simplex optimizers, especially Tuning LP performance.

Just as for the LP case, each of the available QP optimizers automatically preprocesses your model, conducting presolution problem analysis and reductions appropriate for a QP.

The barrier optimizer for QP supports crossover; but unlike other LP optimizers, its crossover step is off by default for QPs. The QP simplex optimizers return basic solutions, and these bases can be used for purposes of restarting sequences of optimizations, for example. As a result, application writers who wish to allow end users control over the choice of QP optimizer need to be aware of this fundamental difference and to program carefully. For most purposes, the nonbasic barrier solution is entirely satisfactory, in that all such solutions fully satisfy the standard optimality and feasibility conditions of optimization theory.
Diagnosing QP infeasibility

Diagnosis of an infeasible QP problem can be carried out by the conflict refiner. See *Diagnosing infeasibility by refining conflicts*.

Note that it is possible for the outcome of that analysis to be a confirmation that your model (viewed as an LP) is feasible after all. This is typically a symptom that your QP model is numerically unstable or ill-conditioned. Unlike the simplex optimizers for LP, the QP optimizers are primal-dual in nature, and one result of that is the scaling of the objective function interacts directly with the scaling of the constraints.

Just as our recommendation regarding numeric difficulties on LP models (see *Numeric difficulties*) is for coefficients in the constraint matrix not to vary by more than about six orders of magnitude, for QP this recommendation expands to include the quadratic elements of the objective function coefficients as well. Fortunately, in most instances, it is straightforward to scale your objective function, by multiplying or dividing all the coefficients (linear and quadratic) by a constant factor, which changes the unit of measurement for the objective but does not alter the meaning of the variables or the sense of the problem as a whole. If your objective function itself contains a wide variation of coefficient magnitudes, you may also want to consider scaling the individual columns to achieve a closer range.
Examples: creating a QP, optimizing, finding a solution

Demonstrates creation, optimization, and solution of a quadratic program.

In this section

Problem description of a quadratic program
Describes the model used in the examples of a quadratic program.

Example: iloqpxex1.cpp
Demonstrates the solution of a quadratic program in the C++ API.

Example: QPex1.java
Demonstrates the solution of a quadratic program in the Java API.

Example: qpxex1.c
Demonstrates the solution of a quadratic program in the C API.
Problem description of a quadratic program

This example shows you how to build and solve a QP. The problem being created and solved is:

Maximize

\[
23x_1^2 + 2x_2 + 3x_3 - 0.5(33x_1^2 + 22x_2^2 + 11x_3^2 - 12x_1x_2 - 23x_2x_3)
\]

subject to

\[
\begin{align*}
-x_1 + x_2 + x_3 & \leq 20 \\
x_1 - 3x_2 + x_3 & \leq 30
\end{align*}
\]

with these bounds

\[
\begin{align*}
0 & \leq x_1 \leq 40 \\
0 & \leq x_2 \leq +\infty \\
0 & \leq x_3 \leq +\infty
\end{align*}
\]

The following sections solve this model in the various APIs available in CPLEX®:

- Example: iloqpe1.cpp
- Example: QPex1.java
- Example: qpe1.c
Example: iloqpex1.cpp

This example is almost identical to ilolpex1.cpp with only function populatebyrow to create the model. Also, this function differs only in the creation of the objective from its ilolpex1.cpp counterpart. Here the objective function is created and added to the model like this:

```cpp
model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]
   - 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2]
   - 12*x[0]*x[1] - 23*x[1]*x[2]) ));
```

In general, any expression built of basic operations \(+\), \(-\), \(*\), \(/\) constant, and brackets \[\] that amounts to a quadratic and optional linear term can be used for building a QP objective function. If the expressions of the objective or any constraint of the model contains IloPiecewiseLinear, then when a quadratic objective is specified the model becomes an MIQP problem. (Piecewise-linearity is not the only characteristic that renders a model MIQP. See also, for example, the features in Logical constraints in optimization, where automatic transformation with logical constraints can render a problem MIQP.)

The complete program iloqpex1.cpp appears online in the standard distribution at yourCPLEXinstallation/examples/src.
This example is almost identical to LPex1.java using only the function populatebyrow to create the model. Also, this function differs only in the creation of the objective from its LPex1.java counterpart. Here the objective function is created and added to the model like this:

```java
// Q = 0.5 ( 33*x0*x0 + 22*x1*x1 + 11*x2*x2 - 12*x0*x1 - 23*x1*x2 )
IloNumExpr x00 = model.prod(33, x[0], x[0]);
IloNumExpr x11 = model.prod(22, x[1], x[1]);
IloNumExpr x22 = model.prod(11, x[2], x[2]);
IloNumExpr x01 = model.prod(-12, x[0], x[1]);
IloNumExpr x12 = model.prod(-23, x[1], x[2]);
IloNumExpr Q = model.prod(0.5, model.sum(x00, x11, x22, x01, x12));

double[] objvals = {1.0, 2.0, 3.0};
model.add(model.maximize(model.diff(model.scalProd(x, objvals), Q)));```

A quadratic objective may be built with square, prod, or sum methods. Inclusion of IloPiecewiseLinear will change the model from a QP to a MIQP.
Example: qpex1.c

This example shows you how to optimize a QP with routines from the CPLEX® Callable Library when the problem data is stored in a file. The example derives from lpeX1.c discussed in Getting Started. The Concert forms of this example, iloqpeX1.cpp and QPex1.java, are included online in the standard distribution.

Instead of calling CPXlpopt to find a solution as for the linear programming problem in lpeX1.c, this example calls CPXqpopt to optimize this quadratic programming problem.

Like other applications based on the CPLEX® Callable Library, this one begins with calls to CPXopenCPLEX to initialize the CPLEX® environment and to CPXcreateprob to create the problem object. Before it ends, it frees the problem object with a call to CPXfreeprob, and it frees the environment with a call to CPXcloseCPLEX.

In the routine setproblemdata, there are parameters for qmatbeg, qmatcnt, qmatind, and qmatval to fill the quadratic coefficient matrix. The Callable Library routine CPXcopyquad copies this data into the problem object created by the Callable Library routine CPXcreateprob.

In this example, the problem is a maximization, so the objective sense is specified as CPX_MAX.

The off-diagonal terms in the matrix Q are one-half the value of the terms $x_1x_2$, and $x_2x_3$ as they appear in the algebraic form of the example.

Instead of calling CPXlpopt to find a solution as for the linear programming problem in lpeX1.c, this example calls CPXqpopt to optimize this quadratic programming problem.
Example: reading a QP from a file qpex2.c

This example shows you how to optimize a QP with routines from the CPLEX® Callable Library when the problem data is stored in a file. The example derives from lpeq2.c discussed in Getting Started. The Concert forms of this example, iloqpex2.cpp and QPex2.java, are included online in the standard distribution.

Instead of calling CPXlpopt to find a solution as for the linear programming problem in lpeq2.c, this example calls CPXqpopt to optimize this quadratic programming problem.

Like other applications based on the CPLEX® Callable Library, this one begins with calls to CPXopenCplex to initialize the CPLEX® environment and to CPXcreateprob to create the problem object. Before it ends, it frees the problem object with a call to CPXfreeprob, and it frees the environment with a call to CPXcloseCplex.

The complete program, qpex2.c, appears online in the standard distribution at yourCPLEXinstallation/examples/src.
**Solving problems with quadratic constraints**

*(QCP)*

Documents the solution of *quadratically constrained* programming problems (QCPs), including the special case of *second order cone* programming problems (SOCPs).

**In this section**

**Identifying a quadratically constrained program (QCP)**
Defines the types of quadratically constrained programs that CPLEX® solves.

**Detecting the problem type of a QCP or SOCP**
Documents the criteria that CPLEX® components use to detect the problem type of a quadratically constrained program.

**Changing problem type**
Explains considerations about changing the problem type in a quadratically constrained program, according to CPLEX® components.

**Changing quadratic constraints**
Explains special considerations about modifying a constraint containing a quadratic term.

**Solving with quadratic constraints**
Documents the routine or method to solve a quadratically constrained program.

**Numeric difficulties and quadratic constraints**
Describes the symptoms of numeric difficulties in a quadratically constrained program.

**Examples: QCP**
Tells where to find sample applications solving a quadratically constrained program.
Identifying a quadratically constrained program (QCP)

Defines the types of quadratically constrained programs that CPLEX® solves.

In this section

Characteristics of a quadratically constrained program
Describes the characteristics of a quadratically constrained program.

Convexity
Defines convexity in the context of a quadratically constrained program.

Semi-definiteness
Defines semi-definiteness in the context of a quadratically constrained program.

Second order cone programming (SOCP)
Relates convexity and positive semi-definiteness to second order cone programming.
Characteristics of a quadratically constrained program

The distinguishing characteristic of QCP is that quadratic terms may appear in one or more constraints of the problem. The objective function of such a problem may or may not contain quadratic terms as well. Thus, the most general formulation of a QCP is:

Minimize $\frac{1}{2} x^T Q x + c^T x$

subject to $A x \sim b$

and $a_i^T x + x^T Q_i x \leq r_i$ for $i=1,\ldots,q$

with these bounds $l \leq x \leq u$

As in a quadratic objective function, convexity plays an important role in quadratic constraints. The constraints must each define a convex region. To make sure of convexity, IBM® ILOG® CPLEX® requires that each $Q_i$ matrix be positive semi-definite (PSD) or that the constraint can be transformed into a second order cone. The following sections offer more information about these concepts.
Convexity

The inequality \( x^2 + y^2 \leq 1 \) is convex. To give you an intuitive idea about convexity, the figure titled \( x^2 + y^2 \leq 1 \) is convex graphs that inequality and shades the area that it defines as a constraint. If you consider \( a \) and \( b \) as arbitrary values in the domain of the constraint, you see that any continuous line segment between them is contained entirely in the domain.

\[ x^2 + y^2 \leq 1 \text{ is convex} \]

The inequality \( x^2 + y^2 \geq 1 \) is not convex; it is concave. The figure titled \( x^2 + y^2 \geq 1 \) is not convex graphs that inequality and shades the area that it defines as a constraint. If you consider \( c \) and \( d \) as arbitrary values in the domain of this constraint, then you see that there may be continuous line segments that join the two values in the domain but pass outside the domain of the constraint to do so.

\[ x^2 + y^2 \geq 1 \text{ is not convex} \]
It might be less obvious at first glance that the equality \( x^2 + y^2 = 1 \) is not convex either. As you see in the figure titled \( x^2 + y^2 = 1 \) is not convex, there may be a continuous line segment that joins two arbitrary points, such as \( e \) and \( f \), in the domain but the line segment may pass outside the domain. Another way to see this idea is to note that an equality constraint is algebraically equivalent to the intersection of two inequality constraints of opposite sense, and you have already seen that at least one of those quadratic inequalities will not be convex. Thus, the equality is not convex either.

\[ x^2 + y^2 = 1 \text{ is not convex} \]
Semi-definiteness

Identifying a quadratically constrained program (QCP) explained that the quadratic matrix in each constraint must be positive semi-definite (PSD), thus providing convexity. A matrix $Q_i$ is PSD if $x^T Q_i x \geq 0$ for every vector $x$, whether or not $x$ is feasible. Other issues pertaining to positive semi-definiteness are discussed in the context of a quadratic objective function in Identifying convex QPs.

When you call the barrier optimizer, your quadratic constraints will be checked for the necessary PSD property, and an error status 5002 will be returned if any of them violate it.
Second order cone programming (SOCP)

There is one exception to the PSD requirement; that is, there is an additional form of quadratic constraint which is accepted but is not covered by the general formulation in *Identifying a quadratically constrained program (QCP)*. Technically, the class of quadratically constrained problems that the barrier optimizer solves is a Second-Order Cone Program (SOCP). CPLEX®, through its preprocessing feature, carries out the translation to SOCP for you, transparently, returning the solution in terms of your original formulation. A constraint will be accepted for solution by the barrier optimizer if it can be transformed to the following convex second-order cone constraint:

\[-c_0^2 + \sum c_i x_i \leq 0\]

CPLEX® automatically transforms quadratic constraints of these types:

- \(x^TQx \leq y^2\) where \(y \geq 0\) and \(Q\) is PSD
- \(x^TQx \leq yz\) where \(y \geq 0\), \(z \geq 0\), and \(Q\) is PSD

into second order cone constraints.

**Note:** When \(Q\) is the identity matrix, that formulation is known as a rotated cone. CPLEX® automatically translates those formulations as well and solves the rotated cone program for you transparently.
Detecting the problem type of a QCP or SOCP

Documents the criteria that CPLEX® components use to detect the problem type of a quadratically constrained program.

In this section

Overview
Offers general considerations about QCP problem type in each API of CPLEX®.

Concert Technology and QCP problem type
Documents the role of the quadratic constraints in Concert Technology applications.

Callable Library and QCP problem type
Documents the role of quadratic constraints in the C API.

Interactive Optimizer and QCP problem type
Documents the role of quadratic constraints in the Interactive Optimizer.

File formats and QCP problem type
Describes the file formats that accommodate quadratic constraints.
Overview

The various components of CPLEX® (the object-oriented APIs of Concert Technology, the C API of the Callable Library, and the Interactive Optimizer) give more or less weight to the idea of problem type. The following topics discuss the issues of problem type for each of those components with respect to QCPs and SOCPs.
Concert Technology and QCP problem type

Concert Technology treats all models as capable of containing quadratic constraints. In other words, applications written in Concert Technology are capable of handling quadratic constraints. These constraints can be added or deleted at will in your application, just as other constraints are. When extracting a model with a quadratic constraint, CPLEX® automatically detects it as a QCP and makes the required adjustments to its internal data structures.
Callable Library and QCP problem type

When routines of the Callable Library read a problem from a file, they are capable of detecting quadratic constraints. If they detect a quadratic constraint in the model they read, Callable Library routines automatically set the problem type as QCP. If there are no quadratic constraints, then Callable Library routines consider whether there are any quadratic coefficients in the objective function. If there is a quadratic term in the objective function, then Callable Library routines automatically set the problem type as QP, as explained in Changing problem type in QPs.
Interactive Optimizer and QCP problem type

In the Interactive Optimizer, a problem containing a quadratic constraint, as denoted by square brackets, is automatically identified as QCP when the problem is read from a file or entered interactively.
CPLEX® supports the definition of quadratic constraints in SAV files with the .sav file extension, in LP files with the .lp file extension, and in MPS files with the .mps file extension. In LP files, you state your quadratic constraints in the `subject to` section of the file. For more detail about representing QCP models in MPS file format, see the CPLEX File Formats Reference Manual, especially the topic Quadratically constrained programs (QCP) in MPS files. Here is a sample of a file including quadratic constraints in MPS format.

```
NAME /ilog/models/miqcp/all/p0033_qc1.lp.gz

ROWS
N R100
L R118
L R119
L R120
L R121
L R122
L R123
L R124
L R125
L R126
L R127
L R128
L ZBESTROW
L QC1
L QC2
L QC3
L QC4

COLUMNS
MARK0000 'MARKER' 'INTORG'
C157 R100 171
C157 R122 -300
C157 R123 -300
C158 R100 171
C158 R126 -300
C158 R127 -300
C159 R100 171
C159 R119 300
C159 R120 -300
C159 R123 -300
C159 QC1 1
C160 R100 171
C160 R119 300
C160 R120 -300
C160 R121 -300
C161 R100 163
C161 R119 285
C161 R120 -285
C161 R124 -285
```
| C161 | R125 | -285 |
| C162 | R100 | 162  |
| C162 | R119 | 285  |
| C162 | R120 | -285 |
| C162 | R122 | -285 |
| C162 | R123 | -285 |
| C163 | R100 | 163  |
| C163 | R128 | -285 |
| C164 | R100 | 69   |
| C164 | R119 | 265  |
| C164 | R120 | -265 |
| C164 | R124 | -265 |
| C165 | R100 | 69   |
| C165 | R119 | 265  |
| C165 | R120 | -265 |
| C165 | R122 | -265 |
| C165 | R123 | -265 |
| C166 | R100 | 183  |
| C166 | R118 | -230 |

<p>| C167 | R100 | 183  |
| C167 | R124 | -230 |
| C167 | R125 | -230 |
| C168 | R100 | 183  |
| C168 | R119 | 230  |
| C168 | R120 | -230 |
| C168 | R125 | -230 |
| C169 | R100 | 183  |
| C169 | R119 | 230  |
| C169 | R120 | -230 |
| C169 | R123 | -230 |
| C170 | R100 | 49   |
| C170 | R119 | 190  |
| C170 | R120 | -190 |
| C170 | R122 | -190 |
| C170 | R123 | -190 |
| C171 | R100 | 183  |
| C172 | R100 | 258  |
| C172 | R118 | -200 |
| C173 | R100 | 517  |
| C173 | R118 | -400 |
| C174 | R100 | 250  |
| C174 | R126 | -200 |
| C174 | R127 | -200 |
| C175 | R100 | 500  |
| C175 | R126 | -400 |
| C175 | R127 | -400 |
| C176 | R100 | 250  |
| C176 | R127 | -200 |
| C177 | R100 | 500  |
| C177 | R127 | -400 |
| C178 | R100 | 159  |
| C178 | R119 | 200  |</p>
<table>
<thead>
<tr>
<th>C178</th>
<th>R120</th>
<th>-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>C178</td>
<td>R124</td>
<td>-200</td>
</tr>
<tr>
<td>C178</td>
<td>R125</td>
<td>-200</td>
</tr>
<tr>
<td>C179</td>
<td>R100</td>
<td>318</td>
</tr>
<tr>
<td>C179</td>
<td>R119</td>
<td>400</td>
</tr>
<tr>
<td>C179</td>
<td>R120</td>
<td>-400</td>
</tr>
<tr>
<td>C179</td>
<td>R124</td>
<td>-400</td>
</tr>
<tr>
<td>C179</td>
<td>R125</td>
<td>-400</td>
</tr>
<tr>
<td>C180</td>
<td>R100</td>
<td>159</td>
</tr>
<tr>
<td>C180</td>
<td>R119</td>
<td>200</td>
</tr>
<tr>
<td>C180</td>
<td>R120</td>
<td>-200</td>
</tr>
<tr>
<td>C180</td>
<td>R125</td>
<td>-200</td>
</tr>
<tr>
<td>C181</td>
<td>R100</td>
<td>318</td>
</tr>
<tr>
<td>C181</td>
<td>R119</td>
<td>400</td>
</tr>
<tr>
<td>C181</td>
<td>R120</td>
<td>-400</td>
</tr>
<tr>
<td>C181</td>
<td>R125</td>
<td>-400</td>
</tr>
<tr>
<td>C182</td>
<td>R100</td>
<td>159</td>
</tr>
<tr>
<td>C182</td>
<td>R119</td>
<td>200</td>
</tr>
<tr>
<td>C182</td>
<td>R120</td>
<td>-200</td>
</tr>
<tr>
<td>C182</td>
<td>R122</td>
<td>-200</td>
</tr>
<tr>
<td>C182</td>
<td>R123</td>
<td>-200</td>
</tr>
<tr>
<td>C183</td>
<td>R100</td>
<td>318</td>
</tr>
<tr>
<td>C183</td>
<td>R119</td>
<td>400</td>
</tr>
<tr>
<td>C183</td>
<td>R120</td>
<td>-400</td>
</tr>
<tr>
<td>C183</td>
<td>R122</td>
<td>-400</td>
</tr>
<tr>
<td>C183</td>
<td>R123</td>
<td>-400</td>
</tr>
<tr>
<td>C184</td>
<td>R100</td>
<td>159</td>
</tr>
<tr>
<td>C184</td>
<td>R119</td>
<td>200</td>
</tr>
<tr>
<td>C184</td>
<td>R120</td>
<td>-200</td>
</tr>
<tr>
<td>C184</td>
<td>R123</td>
<td>-200</td>
</tr>
<tr>
<td>C185</td>
<td>R100</td>
<td>318</td>
</tr>
<tr>
<td>C185</td>
<td>R119</td>
<td>400</td>
</tr>
<tr>
<td>C185</td>
<td>R120</td>
<td>-400</td>
</tr>
<tr>
<td>C185</td>
<td>R123</td>
<td>-400</td>
</tr>
<tr>
<td>C186</td>
<td>R100</td>
<td>114</td>
</tr>
<tr>
<td>C186</td>
<td>R119</td>
<td>200</td>
</tr>
<tr>
<td>C186</td>
<td>R120</td>
<td>-200</td>
</tr>
<tr>
<td>C186</td>
<td>R121</td>
<td>-200</td>
</tr>
<tr>
<td>C187</td>
<td>R100</td>
<td>228</td>
</tr>
<tr>
<td>C187</td>
<td>R119</td>
<td>400</td>
</tr>
<tr>
<td>C187</td>
<td>R120</td>
<td>-400</td>
</tr>
<tr>
<td>C187</td>
<td>R121</td>
<td>-400</td>
</tr>
<tr>
<td>C188</td>
<td>R100</td>
<td>159</td>
</tr>
<tr>
<td>C188</td>
<td>R128</td>
<td>-200</td>
</tr>
<tr>
<td>C189</td>
<td>R100</td>
<td>318</td>
</tr>
<tr>
<td>C189</td>
<td>R128</td>
<td>-400</td>
</tr>
</tbody>
</table>

MARK0001 'MARKER' 'INTEND'

<table>
<thead>
<tr>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhs</td>
</tr>
<tr>
<td>rhs</td>
</tr>
<tr>
<td>rhs</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>rhs</td>
</tr>
</tbody>
</table>

**BOUNDS**

| UP bnd | C157  | 1  |
| UP bnd | C158  | 1  |
| UP bnd | C159  | 1  |
| UP bnd | C160  | 1  |
| UP bnd | C161  | 1  |
| UP bnd | C162  | 1  |
| UP bnd | C163  | 1  |
| UP bnd | C164  | 1  |
| UP bnd | C165  | 1  |
| UP bnd | C166  | 1  |
| UP bnd | C167  | 1  |
| UP bnd | C168  | 1  |
| UP bnd | C169  | 1  |
| UP bnd | C170  | 1  |
| UP bnd | C171  | 1  |
| UP bnd | C172  | 1  |
| UP bnd | C173  | 1  |
| UP bnd | C174  | 1  |
| UP bnd | C175  | 1  |
| UP bnd | C176  | 1  |
| UP bnd | C177  | 1  |
| UP bnd | C178  | 1  |
| UP bnd | C179  | 1  |
| UP bnd | C180  | 1  |
| UP bnd | C181  | 1  |
| UP bnd | C182  | 1  |
| UP bnd | C183  | 1  |
| UP bnd | C184  | 1  |
| UP bnd | C185  | 1  |
| UP bnd | C186  | 1  |
| UP bnd | C187  | 1  |
| UP bnd | C188  | 1  |
| UP bnd | C189  | 1  |

**QMATRIX**

<table>
<thead>
<tr>
<th>C158</th>
<th>C158</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C158</td>
<td>C189</td>
<td>0.5</td>
</tr>
<tr>
<td>C189</td>
<td>C158</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C189</td>
<td>C189</td>
<td>1</td>
</tr>
<tr>
<td>QCMATRIX</td>
<td>QC1</td>
<td></td>
</tr>
<tr>
<td>C157</td>
<td>C157</td>
<td>1</td>
</tr>
<tr>
<td>C157</td>
<td>C158</td>
<td>0.5</td>
</tr>
<tr>
<td>C158</td>
<td>C157</td>
<td>0.5</td>
</tr>
<tr>
<td>C158</td>
<td>C158</td>
<td>1</td>
</tr>
<tr>
<td>C159</td>
<td>C159</td>
<td>1</td>
</tr>
<tr>
<td>C160</td>
<td>C160</td>
<td>1</td>
</tr>
<tr>
<td>QCMATRIX</td>
<td>QC2</td>
<td></td>
</tr>
<tr>
<td>C161</td>
<td>C161</td>
<td>2</td>
</tr>
<tr>
<td>C162</td>
<td>C162</td>
<td>2</td>
</tr>
<tr>
<td>C163</td>
<td>C163</td>
<td>1</td>
</tr>
<tr>
<td>QCMATRIX</td>
<td>QC3</td>
<td></td>
</tr>
<tr>
<td>C164</td>
<td>C164</td>
<td>1</td>
</tr>
<tr>
<td>C165</td>
<td>C165</td>
<td>1</td>
</tr>
<tr>
<td>QCMATRIX</td>
<td>QC4</td>
<td></td>
</tr>
<tr>
<td>C166</td>
<td>C166</td>
<td>1</td>
</tr>
<tr>
<td>C167</td>
<td>C167</td>
<td>1</td>
</tr>
<tr>
<td>C168</td>
<td>C168</td>
<td>1</td>
</tr>
<tr>
<td>C169</td>
<td>C169</td>
<td>1</td>
</tr>
<tr>
<td>C171</td>
<td>C171</td>
<td>1</td>
</tr>
</tbody>
</table>

ENDATA
Changing problem type

By default, every model in Concert Technology is the most general problem type possible. Consequently, it is not necessary to declare the problem type nor to change the problem type, even if you add quadratic constraints to the model or remove them from it.

In contrast, both the Callable Library and the Interactive Optimizer need for you to specify a change in problem type explicitly if you remove the quadratic constraints that make your model a QCP.

In both the Callable Library and Interactive Optimizer, if you want to remove the quadratic constraints in order to solve the problem as an LP or aQP, then you must first change the problem type, just as you would, for example, if you removed the quadratic coefficients from a quadratic objective function.

From the Callable Library, use the routine CPXchgprobtype to change the problem type to CPXPROB_LP if you remove the quadratic constraints from your model in order to solve it as an LP. Contrariwise, if you want to add quadratic constraints to an LP or a QP model and then solve it as a QCP, use the routine CPXchgprobtype to change the problem type to CPXPROB_QCP.

When using the Interactive Optimizer, you apply the command change problem with one of the following options:

♦ lp specifies that you want CPLEX® to treat the problem as an LP. This change in the problem type removes all the quadratic information from your problem, if there is any present.

♦ qp specifies that you want CPLEX® to treat the problem as a QP (that is, a problem with a quadratic objective). This choice removes the quadratic constraints, if there were any in the model.

♦ qcp specifies that you want CPLEX® to treat the problem as a QCP.
Changing quadratic constraints

To modify a quadratic constraint in your model, you must first delete the old quadratic constraint and then add the new one.

In Concert Technology, you add constraints (whether or not they are quadratic) by means of the method add of the class IloModel, as explained about C++ applications in Adding constraints: IloConstraint and IloRange and about Java applications in The active model. To add constraints to a model in the .NET framework, see Concert Technology for .NET users.

Also in Concert Technology, you can remove constraints (again, whether or not they are quadratic) by means of the method remove of the class IloModel, as explained about C++ applications in Deleting and removing modeling objects and about Java applications in Modifying the model.

The Callable Library has a separate set of routines for creating and modifying quadratic constraints; do not use the routines that create or modify linear constraints.

In the Callable Library, you add a quadratic constraint by means of the routine CPXaddqconstr. You remove and delete quadratic constraints by means of the routine CPXdelqconstr. Don’t forget to change the problem type, as explained in Changing problem type. If you want to change a quadratic constraint, first delete it by calling CPXdelqconstrs and then add the new constraint using CPXaddqconstr.

In the Interactive Optimizer, if you want to change a quadratic constraint, you must delete the constraint (change delete qconstraints) and add the new constraint. Again, you must also change the problem type, as explained in Changing problem type.
Solving with quadratic constraints

CPLEX® allows you to solve your QCP models (that is, problems with quadratic constraints) through a simple interface, by calling the default optimizer:

♦ In Concert Technology applications, use the solve method of IloCplex.
♦ From the Callable Library, use the routine CPXbaropt.
♦ In the Interactive Optimizer, use the command optimize.

With default settings, each of these approaches will result in the barrier optimizer being called to solve a continuous QCP.

The barrier optimizer is the only optimizer available to solve QCPs.

However, in a mixed integer quadratically constrained programming (MIQCP) problem, you can specify whether CPLEX® solves a QCP relaxation or LP relaxation of the subproblems. The MIQCP strategy switch parameter (MIQCPStrat, CPX_PARAM_MIQCPSTRAT) lets you specify which type of relaxation to solve.
A word of warning: numeric difficulties are likely to be more acute for QCP than for LP or QP. Symptoms include:

♦ lack of convergence to an optimal solution;
♦ violation of constraints.

Consequently, you will need to scale your variables carefully so that units of measure are roughly comparable among them.
Examples: QCP

For examples of QCPs, see these variations of the same problem in your CPLEX home / examples/src:

♦ qcpex1.c
♦ iloqcpex1.cpp
♦ QCPex1.java
♦ QCPex1.cs
Discrete optimization

This part focuses on algorithmic considerations about the optimizers of IBM® ILOG® CPLEX® that solve problems formulated in terms of discrete variables, such as integer, Boolean, piecewise-linear, or semi-continuous variables. While default settings of ILOG CPLEX enable you to solve many problems without changing parameters, this part also documents features that enable you to tune performance.

In this section

Solving mixed integer programming problems (MIP)
Documents the solution of mixed integer programs (MIPs) with the CPLEX® Mixed Integer Optimizer; that is, solving models in which one or more variables must take integer solution values.

Solution pool: generating and keeping multiple solutions
Introduces the solution pool for storing multiple solutions to a mixed integer programming problem (MIP) and explains techniques for generating and managing those solutions.

Using special ordered sets (SOS)
Describes special ordered sets (SOSs) in a model as a way to specify integrality conditions.

Using semi-continuous variables: a rates example
Demonstrates semi-continuous variables in Concert Technology in an example of managing production in a power plant.

Using piecewise linear functions in optimization: a transport example
Demonstrates the use of piecewise linear functions to solve a transportation problem.

Logical constraints in optimization
Describes logical constraints in CPLEX® with Concert Technology.
Indicator constraints in optimization
Introduces indicator constraints and emphasizes their advantages over Big M formulations.

Using logical constraints: Food Manufacture 2
Demonstrates logical constraints in a sample application.

Early tardy scheduling
Solves a scheduling problem by applying logical constraints, piecewise linear functions, and aggressive MIP emphasis.

Using column generation: a cutting stock example
Uses an example of cutting stock to demonstrate the technique of column generation in Concert Technology.
Solving mixed integer programming problems (MIP)

Documents the solution of mixed integer programs (MIPs) with the CPLEX® Mixed Integer Optimizer; that is, solving models in which one or more variables must take integer solution values.

In this section

Stating a MIP problem
Defines the kind of problems that the mixed integer optimizer solves.

Preliminary issues
When you are optimizing a MIP, there are a few preliminary issues that you need to consider to get the most out of CPLEX®. The following sections cover such topics as entering variable types, displaying MIPs in the Interactive Optimizer, detecting the problem type, and switching to the fixed form of your problem.

Using the mixed integer optimizer
Describes features of the MIP optimizer.

Tuning performance features of the mixed integer optimizer
Describes features for tuning performance of the MIP optimizer.

Cuts
Describes types of cuts available in the MIP optimizer as performance features.

Heuristics
Introduces heuristics in performance features.
Preprocessing: presolver and aggregator
Describes preprocessing in the MIP optimizer.

Starting from a solution: MIP starts
Documents advanced starts; also known as warm starts or MIP starts.

Issuing priority orders
Describes priority order to control MIP optimization.

Using the MIP solution
Describes access to the solution of a MIP optimization.

Progress reports: interpreting the node log
Describes the progress reports issued in the node log during MIP optimization.

Troubleshooting MIP performance problems
Describes symptoms of performance problems in MIP optimization and recommends remedies.

Examples: optimizing a simple MIP problem
Introduces samples that demonstrate how to optimize a MIP with the CPLEX® Component Libraries.

Example: reading a MIP problem from a file
Introduces samples that show to solve a MIP with the Component Libraries when the problem data is stored in a file.
A mixed integer programming (MIP) problem may contain both integer and continuous variables. If the problem contains an objective function with no quadratic term, *(a linear objective)*, then the problem is termed a *Mixed Integer Linear Program* (MILP). If there is a quadratic term in the objective function, the problem is termed a *Mixed Integer Quadratic Program* (MIQP). If the model has any constraints containing a quadratic term, regardless of the objective function, the problem is termed a *Mixed Integer Quadratically Constrained Program* (MIQCP).

In IBM® ILOG® CPLEX® documentation, if the discussion pertains specifically to the MILP, MIQP, or MIQCP case, then that term is used. For the majority of topics that pertain equally to MILP, MIQP, and MIQCP, the comprehensive term MIP is used.

Integer variables may be restricted to the values 0 (zero) and 1 (one), in which case they are referred to as binary variables. Or they may take on any integer values, in which case they are referred to as general integer variables. A variable of any MIP that may take either the value 0 (zero) or a value between a lower and an upper bound is referred to as *semi-continuous*. A semi-continuous variable that is restricted to integer values is referred to as *semi-integer*. *Using semi-continuous variables: a rates example* says a bit more about semi-continuous variables later in this manual. Special Ordered Sets (SOS) are discussed in *Using special ordered sets (SOS)*. Continuous variables in a MIP problem are those which are not restricted in any of these ways, and are thus permitted to take any solution value within their (possibly infinite) lower and upper bounds.

In CPLEX® documentation, the comprehensive term *integer variable* means any of the various types just mentioned except for continuous or SOS. The presence or absence of a quadratic term in the objective function or among the constraints for a given variable has no bearing on its being classified as continuous or integer.

The following formulation illustrates a mixed integer programming problem, which is solved in the example program `ilomipex1.cpp / mipex1.c`, discussed later in this chapter:
Maximize $x_1 + 2x_2 + 3x_3 + x_4$

subject to

$-x_1 + x_2 + x_3 + 10x_4 \leq 20$

$x_1 - 3x_2 + x_3 \leq 30$

$x_2 - 3.5x_4 = 0$

with these bounds

$0 \leq x_1 \leq 40$

$0 \leq x_2 \leq +\infty$

$0 \leq x_3 \leq +\infty$

$2 \leq x_4 \leq 3$

$x_4$ integer
When you are optimizing a MIP, there are a few preliminary issues that you need to consider to get the most out of CPLEX®. The following sections cover such topics as entering variable types, displaying MIPs in the Interactive Optimizer, detecting the problem type, and switching to the fixed form of your problem.

In this section

- **Entering MIP problems**
  Describes special considerations for entering a MIP or reading a MIP from a file,

- **Displaying MIP problems**
  Describes options for displaying a MIP model.

- **Changing problem type in MIPs**
  Describes means of changing the type of a MIP model; also specifies how CPLEX® determines the type of a MIP model.

- **Changing variable type**
  Describes special considerations about changing the type of a variable in a MIP model.
Entering MIP problems

You enter MIPs into CPLEX® as explained in each of the topics about the APIs of CPLEX®, with this additional consideration: you need to specify which variables are binary, general integer, semi-continuous, and semi-integer, and which are contained in special ordered sets (SOS).

**Concert Technology** users specify this information by passing the value of a type to the appropriate constructor when creating the variable, as summarized in *Specifying type of variable for a MIP in Concert Technology*.

### Specifying type of variable for a MIP in Concert Technology

<table>
<thead>
<tr>
<th>Type of Variable</th>
<th>C++ API</th>
<th>Java API</th>
<th>.NET API</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>IloNumVar::Type::ILOBOOL</td>
<td>IloNumVarType. Bool</td>
<td>NumVarType.Bool</td>
</tr>
<tr>
<td>integer</td>
<td>IloNumVar::Type::ILOINT</td>
<td>IloNumVarType. Int</td>
<td>NumVarType.Int</td>
</tr>
<tr>
<td>semi-continuous</td>
<td>IloSemiContVar::Type::ILONUM</td>
<td>IloNumVarType. Float</td>
<td>NumVarType.Float</td>
</tr>
<tr>
<td>semi-integer</td>
<td>IloSemiContVar::Type::ILOINT</td>
<td>IloNumVarType. Int</td>
<td>NumVarType.Int</td>
</tr>
</tbody>
</table>

**Callable Library** users specify this information through the routine CPXcopyctype.

In the **Interactive Optimizer**, to specify binary integers in the context of the enter command, type *binaries* on a separate line, followed by the designated binary variables. To specify general integers, type *generals* on a separate line, followed by the designated general variables. To specify semi-continuous variables, type *semi-continuous* on a separate line, followed by the designated variables. Semi-integer variables are specified as both general integer and semi-continuous. The order of these three sections (generals, semi-continuous, semi-integer as both) does not matter. To enter the general integer variable of the *Stating a MIP problem*, you type this:

```plaintext
generals
 x4
```

You may also read MIP data in from a formatted file, just as you do for linear programming problems. *Understanding file formats* in this manual lists the file formats briefly, and the File Formats Reference Manual documents file formats, such as MPS, LP, and others.

♦ To read MIP problem data into the **Interactive Optimizer**, use the *read* command with an option to indicate the file type.

♦ To read MIP problem data into your application, use the *importModel* method in **Concert Technology** or use CPXreadcopyprob in the **Callable Library**.
Displaying MIP problems

*Interactive Optimizer display options for MIP problems* summarizes display options in the Interactive Optimizer that are specific to MIP problems.

**Interactive Optimizer display options for MIP problems**

<table>
<thead>
<tr>
<th>Interactive command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>display problem binaries</td>
<td>lists variables restricted to binary values</td>
</tr>
<tr>
<td>display problem generals</td>
<td>lists variables restricted to integer values</td>
</tr>
<tr>
<td>display problem semi-continuous</td>
<td>lists variables of type semi-continuous and semi-integer</td>
</tr>
<tr>
<td>display problem integers</td>
<td>lists all of the above</td>
</tr>
<tr>
<td>display problem sos</td>
<td>lists the names of variables in one or more Special Ordered Sets</td>
</tr>
<tr>
<td>display problem stats</td>
<td>lists LP statistics plus:</td>
</tr>
<tr>
<td></td>
<td>• binary variable types, if present;</td>
</tr>
<tr>
<td></td>
<td>• general variable types, if present;</td>
</tr>
<tr>
<td></td>
<td>• and number of SOSs, if present.</td>
</tr>
</tbody>
</table>

In *Concert Technology*, use one of the accessors supplied with the appropriate object class, such as `IloSOS2::getVariables`.

From the *Callable Library*, use the routines `CPXgetctype` and `CPXgetsos` to access this information.
Changing problem type in MIPs

Concert Technology applications treat all models as capable of containing integer variables, and thus these variable declarations may be added or deleted at will. When extracting a model with integer variables, CPLEX® in Concert Technology will automatically detect the model as a MIP and make the required adjustments to internal data structures.

However, the other ways of using CPLEX®, the Callable Library and the Interactive Optimizer, require an explicit declaration of a problem type to distinguish continuous LPs, QPs, and QCPs from MIPs. Techniques to declare the problem type with the Callable Library and the Interactive Optimizer are discussed in this topic.

When you enter a problem, CPLEX® detects the problem type from the available information. If the problem is read from a file (LP, MPS, or SAV format, for example), or entered interactively, the problem type is discovered according to Definitions of problem types.

**Definitions of problem types**

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>No Integer Variables</th>
<th>Has Integer Variables</th>
<th>No Quadratic Terms in the Objective Function</th>
<th>Has Quadratic Terms in the Objective Function</th>
<th>Has Quadratic Terms in Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>lp</strong></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><strong>qp</strong></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><strong>qcp</strong></td>
<td>X</td>
<td></td>
<td>possibly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><strong>milp</strong></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><strong>miqp</strong></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>miqcp</strong></td>
<td></td>
<td>X</td>
<td>possibly</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

However, if you enter a problem with no integer variables, so that its problem type is initially **lp**, **qp**, or **qcp**, and you then wish to modify the problem to contain integer variables, this modification is accomplished by first changing the problem type to **milp**, **miqp**, or **miqcp**. Conversely, if you have entered an MILP, MIQP, or MIQCP model and wish to remove all the integer declarations and thus convert the model to a continuous formulation, you can change the problem type to **lp**, **qp**, or **qcp**. Note that deleting each of the integer variable declarations individually still leaves the problem type as **milp**, **miqp**, or **miqcp**, although in most instances the distinction between this problem and its continuous counterpart is somewhat arbitrary in terms of the steps that will be taken to solve it.

Thus, when using the Interactive Optimizer, you use the command `change problem` with one of the following options:

♦ **milp**, **miqp**, or **miqcp**

specifying that you want CPLEX® to treat the problem as an MILP, MIQP, or MIQCP, respectively. This change in problem type makes the model ready for declaration of the integer variables via subsequent `change type` commands. If you change the problem to
be an MIQP and there are not already quadratic terms in the objective function, the Interactive Optimizer creates an empty quadratic matrix, ready for populating via the change qpterm command.

♦ lp, qcp, or qp

specifying that you want all integer declarations removed from the variables in the problem. If you choose the qp problem type and there are not already quadratic terms in the objective function, the Interactive Optimizer creates an empty quadratic matrix, ready for populating via the change qpterm command.

From the Callable Library, use the routine CPXchgprobtype to change the problem type to CPXPROB_MILP, CPXPROB_MIQP, or CPXPROB_MIQCP for the MILP, MIQP, and MIQCP case respectively, and then assign integer declarations to the variables through the CPXcopyctype function. Conversely, remove all integer declarations from the problem by using CPXchgprobtype with problem type CPXPROB_LP, CPXPROB_QP, or CPXPROB_QCP.

At the end of a MIP optimization, the optimal values for the variables are directly available. However, you may wish to obtain information about the LP, QP, or QCP associated with this optimal solution (for example, to know the reduced costs for the continuous variables of the problem at this solution). To do this, you must change the problem to be of type Fixed, either fixed_milp for the MILP case or fixed_miqp for the MIQP case. The fixed MIP is the continuous problem in which the integer variables are fixed at the values they attained in the best integer solution. After changing the problem type, you can then call any of the continuous optimizers to re-optimize, and then display solution information for the continuous form of the problem. If you then wish to change the problem type back to the associated milp or miqp, you can do so without loss of information in the model.
Changing variable type

In the Interactive Optimizer, the command `change type` adds (or removes) the restriction on a variable that it must be an integer. When you enter the command `change type`, the system prompts you to enter the variable that you want to change, and then it prompts you to enter the type (`c` for continuous, `b` for binary, `i` for general integer, `s` for semi-continuous, `n` for semi-integer).

You can change a variable to binary even if its bounds are not 0 (zero) and 1 (one). However, in such a case, the optimizer will change the bounds to be 0 and 1.

If you change the type of a variable to be semi-continuous or semi-integer, be sure to create both a lower bound and an upper bound for it. These variable types specify that at an optimal solution the value for the variable must be either exactly zero or else be between the lower and upper bounds (and further subject to the restriction that the value be an integer, in the case of semi-integer variables).

A problem may be changed to a mixed integer problem, even if all its variables are continuous.

**Note:** It is not required to specify explicit bounds on general integer variables. However, if during the branch-and-cut algorithm a variable exceeds 2,100,000,000 in magnitude of its solution, an error termination will occur. In practice, it is wise to limit integer variables to values far smaller than the stated limit, or numeric difficulties may occur; trying to enforce the difference between 1,000,000 and 1,000,001 on a finite precision computer might work but could be difficult due to round-off.
Using the mixed integer optimizer

Describes features of the MIP optimizer.

In this section

Invoking the optimizer for a MIP model.
Describes invocation of the optimizer for a MIP model.

Emphasizing feasibility and optimality
Describes the context of the MIP emphasis parameter.

Terminating MIP optimization
Describes termination conditions of the MIP optimizer.
Invoking the optimizer for a MIP model.

The CPLEX® Mixed Integer Optimizer solves MIP models using a very general and robust algorithm based on branch & cut. While MIP models have the potential to be much more difficult than their continuous LP, QCP, and QP counterparts, it is also the case that large MIP models are routinely solved in many production applications. A great deal of algorithmic development effort has been devoted to establishing default CPLEX® parameter settings that achieve good performance on a wide variety of MIP models. Therefore, it is recommended to try solving your model by first calling the Mixed Integer Optimizer in its most straightforward form.

To invoke the Mixed Integer Optimizer, use one of these approaches:

♦ In the Interactive Optimizer, use the mipopt command.
♦ In Concert Technology, with the method solve.
♦ In the Callable Library, use the routine CPXmipopt.
Emphasizing feasibility and optimality

The following topic, *Tuning performance features of the mixed integer optimizer*, goes into great detail about the algorithmic features, controlled by parameter settings, that are available in CPLEX® to achieve performance tuning on difficult MIP models. However, there is an important parameter, MIPEmphasis or CPX_PARAM_MIPEMPHASIS, that is oriented less toward the user understanding the algorithm being used to solve the model, and more toward the user telling the algorithm something about the underlying aim of the optimization being run. That parameter is discussed here.

Optimizing a MIP model involves:

1. finding a succession of improving integer feasible solutions (that is, solutions satisfying the linear and quadratic constraints and the integrality conditions); while

2. also working toward a proof that no better feasible solution exists and is undiscovered.

For most models, a balance between these two sometimes-competing aims works well, and this is another way of stating the philosophy behind the default MIPEmphasis setting: it balances optimality and integer feasibility.

At this default MIPEmphasis setting of 0 (that is, MIPEmphasisBalanced in Concert Technology or CPX_MIPEMPHASIS_BALANCED in the Callable Library), CPLEX® uses tactics intended to find a proven optimal solution quickly, for models of a broad range of difficulty. That is, considerable analysis of the model is performed before branching ever begins, in the expectation that the investment will result in a faster total run time, yet not every possible analysis is performed. And then branching is performed in a manner that seeks to find good quality feasible solutions, without sacrificing too much time that could be spent proving the optimality of any solution that has already been found.

In many situations, the user may want a greater emphasis on feasibility and less emphasis on analysis and proof of optimality. For example, a restrictive time limit (set by the user with the TiLim parameter) may be in force due to a real-time application deployment, where a model is of sufficient difficulty that a proof of optimality is unlikely, and the user wants to have simply as good a solution as is practicable when the time limit is reached. The MIPEmphasis setting of 1 (MIPEmphasisFeasibility in Concert Technology or CPX_MIPEMPHASIS_FEASIBILITY in the Callable Library) directs CPLEX® to adopt this emphasis. Less computational effort is applied at the outset toward the analyses that aid in the eventual proof of optimality, and more effort is spent in immediately beginning computations that search for early (and then improved) feasible solutions. It is likely on most models that an eventual proof of optimality would take longer by setting MIPEmphasis to 1, but since the user has given CPLEX® the additional information that this proof is of less importance than usual, the user’s needs will actually be met more effectively.

Another choice for MIPEmphasis is 2 (MIPEmphasisOptimality in Concert Technology or, in the Callable Library, CPX_MIPEMPHASIS_OPTIMALITY). This setting results in a greater emphasis on optimality than on feasibility. The search for feasible solutions is not ignored completely, but the balance is shifted toward moving the Best Bound (described in the following paragraph) more rapidly, at the likely expense of feasible solutions being found less rapidly, and improved feasible solutions less frequently, than with the default emphasis.

The fourth choice for MIPEmphasis, 3 (MIPEmphasisBestBound in Concert Technology or, in the Callable Library, CPX_MIPEMPHASIS_BESTBOUND) works exclusively at moving the *Best Bound*. The Best Bound represents the objective function value at which an integer feasible solution could still potentially exist. As possibilities are eliminated, this Best Bound value will move in the opposite direction to that of any improving series of integer feasible solutions.
The process of moving the Best Bound will eventually result in the optimal feasible solution being discovered, at which point the optimization is complete, and feasible solutions may be discovered along the way anyway, due to branches that happen to locate feasible solutions that do not match the Best Bound. A great deal of analysis may be performed on the model, beyond what is done with the default emphasis. Therefore, it is recommended to use this setting only on models that are difficult for the default emphasis, and for which you do not care about interim feasible solutions that may or may not be optimal.

The final choice for **MIPEmphasis** is 4 (CPX_MIPEMPHASIS_HIDDENFEAS). It applies considerable additional effort toward finding high quality feasible solutions that are difficult to locate, and for this reason the eventual proof of optimality may take longer than with default settings. This choice is intended for use on difficult models where a proof of optimality is unlikely, and where emphasis 1 (one) does not deliver solutions of an appropriately high quality.

To make clear a point that has been alluded to so far: every choice of **MIPEmphasis** results in the search algorithm proceeding in a manner that eventually will find and prove an optimal solution, or will prove that no integer feasible solution exists. The choice of emphasis only guides CPLEX® to produce feasible solutions in a way that is in keeping with the user's particular purposes, but the accuracy and completeness of the algorithm is not sacrificed in the process.

The **MIPEmphasis** parameter may be set in conjunction with any other CPLEX® parameters (discussed at length in the next section). For example, if you wish to set an upward branching strategy via the BrDir parameter, this will be honored by any setting of **MIPEmphasis**. Of course, certain combinations of **MIPEmphasis** with other parameters may be counter-productive, such as turning off all cuts with emphasis 3, but the user has the option if that is what is wanted.
Terminating MIP optimization

CPLEX® terminates MIP optimization under a variety of circumstances. First, CPLEX® declares integer optimality and terminates when it finds an integer solution and all parts of the search space have been processed. Optimality in this case is relative to whatever tolerances and optimality criteria you have set. For example, CPLEX® considers any user-supplied cutoff value (such as CutLo or CutUp) as well as the objective difference parameter (ObjDif) when it treats nodes during branch & cut. Thus these settings indirectly affect termination.

An important termination criterion that the user can set explicitly is the MIP gap tolerance. In fact, there are two such tolerances: a relative MIP gap tolerance that is commonly used, and an absolute MIP gap tolerance that is appropriate in cases where the expected optimal objective function is quite small in magnitude. The default value of the relative MIP gap tolerance is 1e-4; the default value of the absolute MIP gap tolerance is 1e-6. These default values indicate to CPLEX® to stop when an integer feasible solution has been proved to be within 0.01% of optimality. On a difficult model with input data obtained with only approximate accuracy, where a proved optimum is thought to be unlikely within a reasonable amount of computation time, a user might choose a larger relative MIP gap to allow early termination; for example, a relative MIP gap of 0.05 (corresponding to 5%). Conversely, in a model where the objective function amounts to billions of dollars and the data are accurate to a degree that further processing is worthwhile, a tighter relative MIP Gap (even 0.0) may be advantageous to avoid any chance of missing the best possible solution.

CPLEX® also terminates optimization when it reaches a limit that you have set. You can set limits on time, number of nodes, size of tree memory, and number of integer solutions. Parameters to limit MIP optimization summarizes those parameters and their purpose.

**Parameters to limit MIP optimization**

<table>
<thead>
<tr>
<th>To set a limit on</th>
<th>Use this parameter</th>
<th>Concert Technology</th>
<th>Callable Library</th>
<th>Interactive Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>elapsed time</td>
<td>optimizer time limit</td>
<td>TiLim</td>
<td>CPX_PARAM_TILIM</td>
<td>timelimit</td>
</tr>
<tr>
<td>number of nodes</td>
<td>MIP node limit</td>
<td>NodeLim</td>
<td>CPX_PARAM_NODELIM</td>
<td>mip limits nodes</td>
</tr>
<tr>
<td>size of tree</td>
<td>tree memory limit</td>
<td>TreLim</td>
<td>CPX_PARAM_TRELIM</td>
<td>mip limits tree memory</td>
</tr>
<tr>
<td>number of integer solutions</td>
<td>MIP integer solution limit</td>
<td>IntSolLim</td>
<td>CPX_PARAM_INTSOLLIM</td>
<td>mip limits solutions</td>
</tr>
<tr>
<td>relative MIP gap tolerance</td>
<td>relative MIP gap tolerance</td>
<td>EpGap</td>
<td>CPX_PARAM_EPGAP</td>
<td>mip tolerances mipgap</td>
</tr>
<tr>
<td>absolute MIP gap tolerance</td>
<td>absolute MIP gap tolerance</td>
<td>EpAGap</td>
<td>CPX_PARAM_EPGAP</td>
<td>mip tolerances absmipag</td>
</tr>
</tbody>
</table>

CPLEX® also terminates when an error occurs, such as when CPLEX® runs out of memory or when a subproblem cannot be solved. If an error is due to failure to solve a subproblem, an additional line appears in the node log file to indicate the reason for that failure. For suggestions about overcoming such errors, see Troubleshooting MIP performance problems.
Tuning performance features of the mixed integer optimizer

Describes features for tuning performance of the MIP optimizer.

In this section

Branch & cut or dynamic search?
Describes the search facilities of the MIP optimizer.

Introducing performance features of the MIP optimizer
Describes performance features generally.

Applying cutoff values
Describes conditions in which CPLEX® applies a cutoff value.

Applying tolerance parameters
Describes conditions in which CPLEX® applies tolerances.

Applying heuristics
Describes conditions in which CPLEX® applies heuristics.

When an integer solution is found: the incumbent
Describes CPLEX® handling of an incumbent value.

Controlling strategies: diving and backtracking
Describes parameters to control search strategies
Selecting nodes
Describes options of the parameter to control selection of strategies applied at nodes and their effect on the search.

Selecting variables
Describes options of the parameter to control selection of the next variable.

Changing branching direction
Describes options of the parameter to change branching direction and its effect on search.

Solving subproblems
Describes the parameters to control solution of subproblems.

Using node files
Describes a storage feature for nodes of the search.

Probing
Describes probing, a technique that fixes binary variables and analyzes the implications.
Branch & cut or dynamic search?

In addition to a robust branch & cut algorithm, CPLEX® also offers a dynamic search algorithm. The dynamic search algorithm consists of the same building blocks as branch & cut: LP relaxation, branching, cuts, and heuristics. The following sections of the manual describe performance and tuning in relation to branch and cut. The parameters mentioned in this context have a similar effect in the dynamic search algorithm as in conventional branch and cut. In fact, the generic description in relation to branch & cut suffices conceptually for both branch and cut and dynamic search, even though their implementations differ.

CPLEX® offers the MIP search parameter (MIP dynamic search switch: MIPSearch, CPX_PARAM_MIPSEARCH) for you to control whether it pursues dynamic search or conventional branch & cut in solving your problem. At its default setting, this parameter specifies that CPLEX® should choose which algorithm to apply on the basis of characteristics it finds in your model. Other settings allow you to specify which search to pursue.

Because many parameter settings directly affect the branch & cut and dynamic search algorithms, here is a general description of how branch & cut is implemented within CPLEX®.

In the branch & cut algorithm, CPLEX® solves a series of continuous subproblems. To manage those subproblems efficiently, CPLEX® builds a tree in which each subproblem is a node. The root of the tree is the continuous relaxation of the original MIP problem.

If the solution to the relaxation has one or more fractional variables, CPLEX® will try to find cuts. Cuts are constraints that cut away areas of the feasible region of the relaxation that contain fractional solutions. CPLEX® can generate several types of cuts. (Cuts tells you more about that topic.)

If the solution to the relaxation still has one or more fractional-valued integer variables after CPLEX® tries to add cuts, then CPLEX® branches on a fractional variable to generate two new subproblems, each with more restrictive bounds on the branching variable. For example, with binary variables, one node will fix the variable at 0 (zero), the other, at 1 (one).

The subproblems may result in an all-integer solution, in an infeasible solution, or another fractional solution. If the solution is fractional, CPLEX® repeats the process.
Introducing performance features of the MIP optimizer

The CPLEX® Mixed Integer Optimizer contains a wealth of features intended to aid in the solution of challenging MIP models. While default strategies are provided that solve the majority of models without user involvement, there exist difficult models that benefit from attention to performance tuning.

To help you decide whether default settings of parameters are best for your model, or whether other parameter settings may improve performance, the tuning tool is available. *Tuning tool* explains more about this utility and directs you to examples of its use.

This section discusses the CPLEX® features and parameters that are the most likely to offer help with difficult models.
Applying cutoff values

CPLEX® cuts off nodes when the value of the objective function associated with the subproblem at that node is worse than the cutoff value.

You set the cutoff value by means of the **CutUp** parameter (for a minimization problem) or the **CutLo** parameter (for a maximization problem), to indicate to CPLEX® that integer feasible solutions worse than this cutoff value should be discarded. The default value of the lower cutoff is \(-1e+75\); the default value of the upper cutoff is \(1e+75\). The defaults, in effect, mean that no cutoff is to be supplied. You can supply any number that you find appropriate for your problem. It is never required that you supply a cutoff, and in fact for most applications is it not done.
Applying tolerance parameters

CPLEX® will use the value of the best integer solution found so far, as modified by the tolerance parameters ObjDif (absolute objective function difference) or RelObjDif (relative objective function difference) as the cutoff. Again, it is not typical that users set these parameters, but they are available if you find them useful. Use care in changing these tolerances: if either of them is nonzero, you may miss the optimal solution by as much as that amount. For example, in a model where the true minimum is 100 and the absolute cutoff is set to 5, if a feasible solution of say, 103 is found at some point, the cutoff will discard all nodes with a solution worse than 98, and thus the solution of 100 would be overlooked.
Applying heuristics

Periodically during the branch & cut algorithm, CPLEX® may apply a heuristic that attempts to compute an integer solution from available information, such as the solution to the relaxation at the current node. This activity does not replace the branching steps, but sometimes is able inexpensively to locate a new feasible solution sooner than by branching, and a solution found in this way is treated in the same way as any other feasible solution. At intervals in the tree, new cuts beyond those computed at the root node may also be added to the problem.
When an integer solution is found: the incumbent

After CPLEX® finds an integer solution, it does the following:

♦ It makes that integer solution the incumbent solution and that node the *incumbent node*.

♦ It makes the value of the objective function at that node (modified by the objective difference parameter) the new cutoff value.

♦ It prunes from the tree all subproblems for which the value of the objective function is no better than the incumbent.
Controlling strategies: diving and backtracking

You control the path that CPLEX® traverses in the tree through several parameters, as summarized in Parameters for controlling branch & cut strategy.

### Parameters for controlling branch & cut strategy

<table>
<thead>
<tr>
<th>Interactive Optimizer Command</th>
<th>Concert Technology IIoCPLEX Method</th>
<th>Callable Library Routine</th>
<th>Parameter Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>set mip strategy backtrack</td>
<td>setParam (BtTol, n)</td>
<td>CPXsetdblparam (env, CPX_PARAM_BTTOL, n)</td>
<td>backtracking tolerance</td>
</tr>
<tr>
<td>set mip strategy nodeselect</td>
<td>setParam(NodeSel, i)</td>
<td>CPXsetintparam (env, CPX_PARAM_NODESEL, i)</td>
<td>MIP node selection strategy</td>
</tr>
<tr>
<td>set mip strategy variableselect</td>
<td>setParam(VarSel, i)</td>
<td>CPXsetintparam (env, CPX_PARAM_VARSEL, i)</td>
<td>MIP variable selection strategy</td>
</tr>
<tr>
<td>set mip strategy bbinterval</td>
<td>setParam(BBInterval, i)</td>
<td>CPXsetintparam (env, CPX_PARAM_BBINTERVAL, i)</td>
<td>MIP strategy best bound interval</td>
</tr>
<tr>
<td>set mip strategy branch</td>
<td>setParam(BrDir, i)</td>
<td>CPXsetintparam (env, CPX_PARAM_BRDIR, i)</td>
<td>MIP branching direction</td>
</tr>
</tbody>
</table>

During the branch & cut algorithm, CPLEX® may choose to continue from the present node and dive deeper into the tree, or it may backtrack (that is, begin a new dive from elsewhere in the tree). The value of the backtracking tolerance parameter, BtTol or CPX_PARAM_BTTOL, influences this decision, in terms of the relative degradation of the objective function caused by the branches taken so far in this dive. Setting that parameter to a value near 0.0 increases the likelihood that a backtrack will occur, while the default value near 1.0 makes it more likely that the present dive will continue to a resolution (fathoming either via a cutoff or an infeasible combination of branches or the discovery of a new incumbent integer feasible solution). See the CPLEX Parameters Reference Manual for more details about how this parameter influences the computation that makes the decision to backtracking.
Selecting nodes

When CPLEX® backtracks, there usually remain large numbers of unexplored nodes from which to begin a new dive. The node selection parameter sets this choice. (For documentation of the node selection parameter, see MIP node selection strategy in the *CPLEX Parameters Reference Manual*.)

**Node selection parameter settings for node search type**

<table>
<thead>
<tr>
<th>Value of the parameter</th>
<th>Symbolic Value</th>
<th>Node Search Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Default)</td>
<td>CPX_NODESEL_BESTBOUND</td>
<td>Best Bound search, which means that the node with the best objective function will be selected, generally near the top of the tree.</td>
</tr>
<tr>
<td>2</td>
<td>CPX_NODESEL_BESTEST</td>
<td>Best Estimate search, whereby CPLEX will use an estimate of a given node's progress toward integer feasibility relative to its degradation of the objective function. This setting can be useful in cases where there is difficulty in finding feasible solutions or in cases where a proof of optimality is not crucial.</td>
</tr>
<tr>
<td>3</td>
<td>CPX_NODESEL_BESTEST_ALT</td>
<td>A variation on the Best Estimate search.</td>
</tr>
<tr>
<td>0</td>
<td>CPX_NODESEL_DFS</td>
<td>Depth First search will be conducted. In many cases this amounts to a brute force strategy for solving the combinatorial problem, gaining a small amount of tactical efficiency due to a variety of reasons, and it is rare that it offers any advantage over other settings.</td>
</tr>
</tbody>
</table>

In instances where Best Estimate node selection (NodeSel = 2 or 3) is in effect, the parameter known as MIP strategy best bound interval (BBinterval or CPX_PARAM_BBINTERVAL) sets the frequency at which backtracking is done by Best Bound anyway. The default value of 7 works well, but you can set it to 0 (zero) to make sure that Best Estimate is used every time backtracking occurs.
Selecting variables

After a node has been selected, the variable selection parameter influences which variable is chosen for branching at that node. (For documentation of that parameter, see MIP variable selection strategy in the CPLEX Parameters Reference Manual.)

**VarSel parameter settings for choice of branching variable**

<table>
<thead>
<tr>
<th>VarSel Setting</th>
<th>Symbolic Value</th>
<th>Branching Variable Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPX_VARSEL_MININFEAS</td>
<td>Branch strictly at the nearest integer value which is closest to the fractional variable.</td>
</tr>
<tr>
<td>1</td>
<td>CPX_VARSEL_MAXINFEAS</td>
<td>Branch strictly at the nearest integer value which is furthest from the fractional variable.</td>
</tr>
<tr>
<td>0 (Default)</td>
<td>CPX_VARSEL_DEFAULT</td>
<td>CPLEX automatically decides each branch direction.</td>
</tr>
<tr>
<td>2</td>
<td>CPX_VARSEL_PSEUDO</td>
<td>Use pseudo costs, which derives an estimate about the effect of each proposed branch from duality information.</td>
</tr>
<tr>
<td>3</td>
<td>CPX_VARSEL_STRONG</td>
<td>Use strong branching, which invests considerable effort in analyzing potential branches in the hope of drastically reducing the number of nodes that will be explored.</td>
</tr>
<tr>
<td>4</td>
<td>CPX_VARSEL_PSEUDOREDUCED</td>
<td>Use pseudo reduced costs, which is a computationally less intensive form of pseudo costs.</td>
</tr>
</tbody>
</table>
Changing branching direction

After a variable has been selected for branching, the branching direction parameter influences the direction, up or down, of the branch on that variable to be explored first. (For documentation of that parameter, see MIP branching direction in the CPLEX Parameters Reference Manual.)

**BrDir parameter settings for choice of branching direction**

<table>
<thead>
<tr>
<th>BrDir Setting</th>
<th>Symbolic Value</th>
<th>Branching Direction Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>CPX_BRANCH_DOWN</td>
<td>Branch downward</td>
</tr>
<tr>
<td>0 (Default)</td>
<td>CPX_BRANCH_GLOBAL</td>
<td>CPLEX automatically decides each branch direction.</td>
</tr>
<tr>
<td>1</td>
<td>CPX_BRANCH_UP</td>
<td>Branch upward</td>
</tr>
</tbody>
</table>

Priority orders complement the behavior of these parameters. They are introduced in *Issuing priority orders*. They offer a mechanism by which you supply problem-specific directives about the order in which to branch on variables. In a priority order, you can also provide preferred branching directions for specific variables.
Solving subproblems

CPLEX® allows you to distinguish the algorithm applied to the initial relaxation of your problem from the algorithm applied to other continuous subproblems of a MIP. This distinction between initial relaxation and the other MIP subproblems may be useful when you have special information about the nature of your model. In this context, “other MIP subproblems” includes nodes of the branch & cut tree, problems re-solved after cutting plane passes, problems solved by node heuristics, and so forth.

The MIP starting algorithm parameter (RootAlg, CPX_PARAM_STARTALG) enables you to specify which algorithm for CPLEX® to apply to the initial relaxation.

The MIP subproblem algorithm parameter (NodeAlg, CPX_PARAM_SUBALG) lets you specify the algorithm applied to other continuous subproblems.

For more detail about situations in which you may find these parameters helpful, see * Unsatisfactory optimization of subproblems. *
Using node files

On difficult models that generate a great number of nodes in the tree, the amount of available memory for node storage can become a limiting factor. Storage of node files can be an effective technique which uses disk space to augment RAM, at little or no penalty in terms of solution speed.

The node-file storage-feature enables you to store some parts of the branch & cut tree in files while the branch & cut algorithm is being applied. If you use this feature, CPLEX® will be able to explore more nodes within a smaller amount of computer memory. This feature includes several options to reduce the use of physical memory, and it entails a very small increase in runtime. Node-file storage as managed by CPLEX® itself offers a much better option in terms of memory use and performance time than relying on swap space as managed by your operating system in this context.

For more about the parameters controlling node files, see *Use node files for storage*. 
The probing feature can help in many different ways on difficult models. Probing is a technique that looks at the logical implications of fixing each binary variable to 0 (zero) or 1 (one). It is performed after preprocessing and before the solution of the root relaxation. Probing can be expensive, so this parameter should be used selectively. On models that are in some sense easy, the extra time spent probing may not reduce the overall time enough to be worthwhile. On difficult models, probing may incur very large runtime costs at the beginning and yet pay off with shorter overall runtime. When you are tuning performance, it is usually because the model is difficult, and then probing is worth trying.

At the default setting of the probing parameter (0 (zero)), CPLEX® will automatically decide an appropriate level of probing. Setting the probing parameter to 1, 2, or 3, results in increasing levels of probing performed beyond the default level. A setting of -1 results in no probing being performed.

To activate an increasing level of probing use the MIP probing level parameter:

- In the Interactive Optimizer, use the command `set mip strategy probe i`.
- In Concert Technology, set the integer parameter `Probe`.
- In the Callable Library, set the integer parameter `CPX_PARAM_PROBE`. 
Cuts

Describes types of cuts available in the MIP optimizer as performance features.

In this section

What are cuts?
Defines cuts.

Clique cuts
Defines a clique cut.

Cover cuts
Defines a cover cut.

Disjunctive cuts
Defines disjunctive cuts.

Flow cover cuts
Defines flow cover cuts.

Flow path cuts
Defines flow path cuts.

Gomory fractional cuts
Defines Gomory fractional cuts.

Generalized upper bound (GUB) cover cuts
Defines GUB cover cuts.
Implied bound cuts
Defines implied bound cuts.

Mixed integer rounding (MIR) cuts
Defines MIR cuts.

Multi-commodity flow (MCF) cuts
Defines multi-commodity flow cuts.

Zero-half cuts
Defines zero-half cuts and offers an example.

Adding cuts and re-optimizing
Describes conditions under which CPLEX® adds cuts.

Counting cuts
Describes methods and routines to calculate how many cuts have been added.

Parameters affecting cuts
Summarizes parameters controlling cuts.
What are cuts?

Cuts are constraints added to a model to restrict (cut away) noninteger solutions that would otherwise be solutions of the continuous relaxation. The addition of cuts usually reduces the number of branches needed to solve a MIP.

In the following descriptions of cuts, the term subproblem includes the root node (that is, the root relaxation). Cuts are most frequently seen at the root node, but they may be added by CPLEX® at other nodes as conditions warrant.

CPLEX® generates its cuts in such a way that they are valid for all subproblems, even when they are discovered during analysis of a particular subproblem. If the solution to a subproblem violates one of the subsequent cuts, CPLEX® may add a constraint to reflect this condition.

Here are descriptions of the cuts implemented in CPLEX®:

♦ Clique cuts
♦ Cover cuts
♦ Disjunctive cuts
♦ Flow cover cuts
♦ Flow path cuts
♦ Gomory fractional cuts
♦ Generalized upper bound (GUB) cover cuts
♦ Implied bound cuts
♦ Mixed integer rounding (MIR) cuts
♦ Multi-commodity flow (MCF) cuts
♦ Zero-half cuts
Clique cuts

A clique is a relationship among a group of binary variables such that at most one variable in the group can be positive in any integer feasible solution. Before optimization starts, CPLEX® constructs a graph representing these relationships and finds maximal cliques in the graph.
Cover cuts

If a constraint takes the form of a knapsack *constraint* (that is, a sum of binary variables with nonnegative coefficients less than or equal to a nonnegative righthand side), then there is a minimal cover associated with the constraint. A *minimal cover* is a subset of the variables of the inequality such that if all the subset variables were set to one, the knapsack constraint would be violated, but if any one subset variable were excluded, the constraint would be satisfied. CPLEX® can generate a constraint corresponding to this condition, and this cut is called a cover cut.
Disjunctive cuts

A MIP problem can be divided into two subproblems with disjunctive feasible regions of their LP relaxations by branching on an integer variable. Disjunctive cuts are inequalities valid for the feasible regions of LP relaxations of the subproblems, but not valid for the feasible region of LP relaxation of the MIP problem.
Flow cover cuts

Flow covers are generated from constraints that contain continuous variables, where the
continuous variables have variable upper bounds that are zero or positive depending on the
setting of associated binary variables. The idea of a flow cover comes from considering the
constraint containing the continuous variables as defining a single node in a network where
the continuous variables are in-flows and out-flows. The flows will be on or off depending
on the settings of the associated binary variables for the variable upper bounds. The flows
and the demand at the single node imply a knapsack constraint. That knapsack constraint
is then used to generate a cover cut on the flows (that is, on the continuous variables and
their variable upper bounds).
Flow path cuts

*Flow path cuts* are generated by considering a set of constraints containing the continuous variables that define a path structure in a network, where the constraints are nodes and the continuous variables are in-flows and out-flows. The flows will be on or off depending on the settings of the associated binary variables.
Gomory fractional cuts

_Gomory fractional cuts_ are generated by applying integer rounding on a pivot row in the optimal LP tableau for a (basic) integer variable with a fractional solution value.
Generalized upper bound (GUB) cover cuts

A GUB constraint for a set of binary variables is a sum of variables less than or equal to one. If the variables in a GUB constraint are also members of a knapsack constraint, then the minimal cover can be selected with the additional consideration that at most one of the members of the GUB constraint can be one in a solution. This additional restriction makes the GUB cover cuts stronger (that is, more restrictive) than ordinary cover cuts.
Implied bound cuts

In some models, binary variables imply bounds on continuous variables. CPLEX® generates potential cuts to reflect these relationships.
**Mixed integer rounding (MIR) cuts**

*MIR cuts* are generated by applying integer rounding on the coefficients of integer variables and the righthand side of a constraint.
Multi-commodity flow (MCF) cuts

Many real-world models include network structures. CPLEX® is able to recognize some of these network structures automatically and to produce special cutting planes that usually help to solve such models.

The structure that is addressed by this separator is called a multi-commodity flow network with arc capacities.

When such a structure is present, CPLEX® generates cuts that state that the capacities installed on arcs pointing into a component of the network must be at least as large as the total flow demand of the component that can not be satisfied by flow sources within the component.
Zero-half cuts are based on the observation that when the lefthand side of an inequality consists of integral variables and integral coefficients, then the righthand side can be rounded down to produce a zero-half cut. To understand how zero-half cuts are generated, consider these two constraints over five integer variables with integer coefficients:

\[
\begin{align*}
    x_1 + 2x_2 + x_3 + 3x_4 & \leq 8 \\
    x_1 + 3x_3 + x_4 + 2x_5 & \leq 5
\end{align*}
\]

Now consider the sum of those two constraints:

\[
2x_1 + 2x_2 + 4x_3 + 4x_4 + 2x_5 \leq 13
\]

Divide that constraint by 2:

\[
x_1 + x_2 + 2x_3 + 2x_4 + x_5 \leq 6.5
\]

Round down the righthand side to get the zero-half cut:

\[
x_1 + x_2 + 2x_3 + 2x_4 + x_5 \leq 6
\]
Adding cuts and re-optimizing

Each time CPLEX® adds a cut, the subproblem is re-optimized. CPLEX® repeats the process of adding cuts at a node until it finds no further effective cuts. It then selects the branching variable for the subproblem.
Counting cuts

Cuts may be added to a problem during MIP optimization. After MIP optimization terminates, to know the number of cuts that were added during optimization, implement one of the following techniques in your application:

♦ For **Concert Technology**, use the method:
  - `IloCplex::getNumCuts` in the C++ API;
  - `IloCplex.getNumCuts` in the Java API;
  - `Cplex.GetNumCuts` in the .NET API.

♦ For **Callable Library**, use the routine `CPXgetnumcuts`.

**Tip:** After MIP optimization terminates, those techniques count the number of cuts that were added during the optimization. In order to count cuts while optimization is on going, consider methods from the query callbacks, such as `IloCplex::MIPCallback::getNzeroHalfCut`, which counts the number of zero-half cuts, for example. For more detail, see *Query or diagnostic callbacks*, which tells where to find examples of their use and where to find documentation of such methods in the reference manuals of the APIs.
Parameters affecting cuts

Parameters control the way each class of cuts is used. Those parameters are listed in the table Parameters for controlling cuts.

### Parameters for controlling cuts

<table>
<thead>
<tr>
<th>Cut Type</th>
<th>Interactive Command</th>
<th>Concert/Technology</th>
<th>Callable Library</th>
<th>Parameter Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>set mip cuts cliques</td>
<td>Cliques</td>
<td>CPX_PARAM_CLIQUES</td>
<td>MIP cliques switch</td>
</tr>
<tr>
<td>Cover</td>
<td>set mip cuts covers</td>
<td>Covers</td>
<td>CPX_PARAM_COVERS</td>
<td>MIP covers switch</td>
</tr>
<tr>
<td>Disjunctive</td>
<td>set mip cuts disjunctive</td>
<td>DisjCuts</td>
<td>CPX_PARAM_DISJCUTS</td>
<td>MIP disjunctive cuts switch</td>
</tr>
<tr>
<td>Flow Cover</td>
<td>set mip cuts flowcovers</td>
<td>FlowCovers</td>
<td>CPX_PARAM_FLOWCOVERS</td>
<td>MIP flow cover cuts switch</td>
</tr>
<tr>
<td>Flow Path</td>
<td>set mip cuts pathcut</td>
<td>FlowPaths</td>
<td>CPX_PARAM_FLOWPATHS</td>
<td>MIP flow path cut switch</td>
</tr>
<tr>
<td>Gomory</td>
<td>set mip cuts gomory</td>
<td>FracCuts</td>
<td>CPX_PARAM_FRACCUTS</td>
<td>MIP Gomory fractional cuts switch</td>
</tr>
<tr>
<td>GUB Cover</td>
<td>set mip cuts gubcovers</td>
<td>GUBCovers</td>
<td>CPX_PARAM_GUBCOVERS</td>
<td>MIP GUB cuts switch</td>
</tr>
<tr>
<td>Implied Bound</td>
<td>set mip cuts implied</td>
<td>ImplBd</td>
<td>CPX_PARAM_IMPLBD</td>
<td>MIP implied bound cuts switch</td>
</tr>
<tr>
<td>Mixed Integer Rounding</td>
<td>set mip cuts mircut</td>
<td>MIRCuts</td>
<td>CPX_PARAM_MIRCUTS</td>
<td>MIP MIR (mixed integer rounding) cut switch</td>
</tr>
<tr>
<td>Zero-Half</td>
<td>set mip cuts zerohalfcut</td>
<td>ZeroHalfCuts</td>
<td>CPX_PARAM_ZEROLFFCUTS</td>
<td>MIP zero-half cuts switch</td>
</tr>
</tbody>
</table>

The default value of each of those parameters is 0 (zero). By default, CPLEX® automatically decides how often (if at all) it should try to generate that class of cut. A setting of -1 specifies that no cuts of the class should be generated; a setting of 1 specifies that cuts of the class should be generated moderately; and a setting of 2 specifies that cuts of the class should be generated aggressively. For clique cuts, cover cuts, and disjunctive cuts, a setting of 3 is permitted, which specifies that the specified type of cut should be generated very aggressively.

In the Interactive Optimizer, the command `set mip cuts all i` applies the value `i` to all types of cut parameters. That is, you can set them all simultaneously.

The row multiplier factor for cuts (CutsFactor, CPX_PARAM_CUTSFACTOR) parameter controls the number of cuts CPLEX® adds to the model. The problem can grow to CutsFactor times the original number of rows in the model (or in the presolved model, if the presolver is active). Thus, a CutsFactor of 1.0 would mean that no cuts will be generated, which may be a more convenient way of turning off all cuts than setting them individually. The default
CutsFactor value of 4.0 works well in most cases, as it allows a generous number of cuts while in rare instances it also serves to limit unchecked growth in the problem size.

The constraint aggregation limit for cut generation (AggCutLim, CPX_PARAM_AGGCUTLIM) parameter controls the number of constraints allowed to be aggregated for generating MIR and flow cover cuts.

The pass limit for generating Gomory fractional cuts (FracPass, CPX_PARAM_FRACPASS) parameter controls the number of passes for generating Gomory fractional cuts. This parameter will not have any effect if the parameter for set mip cuts gomory has a nondefault value.

The candidate limit for generating Gomory fractional cuts (FracCand, CPX_PARAM_FRACCAND) parameter controls the number of variable candidates to be considered for generating Gomory fractional cuts.
Heuristics

Introduces heuristics in performance features.

In this section

What are heuristics?
Defines a heuristic and describes conditions under which CPLEX® applies heuristics in MIP optimization.

Node heuristic
Describes the heuristic applied at nodes by the MIP optimizer.

Relaxation induced neighborhood search (RINS) heuristic
Describes RINS as a heuristic of the MIP optimizer.

Solution polishing
Describes solution polishing as a heuristic of the MIP optimizer.

Feasibility pump
Describes the feasibility pump as a heuristic of the MIP optimizer.
In CPLEX®, a heuristic is a procedure that tries to produce good or approximate solutions to a problem quickly but which lacks theoretical guarantees. In the context of solving a MIP, a heuristic is a method that may produce one or more solutions, satisfying all constraints and all integrality conditions, but lacking an indication of whether it has found the best solution possible.

Being integrated into branch & cut, these heuristic solutions gain the same advantages toward a proof of optimality as any solution produced by branching, and in many instances, they can speed the final proof of optimality, or they can provide a suboptimal but high-quality solution in a shorter amount of time than by branching alone. With default parameter settings, CPLEX® automatically invokes the heuristics when they seem likely to be beneficial.

CPLEX® provides families of heuristics to find integer solutions at nodes (including the root node) during the branch-and-cut procedure. These families of heuristics are documented in the following topics.
Node heuristic

The node heuristic employs techniques to try to construct a feasible solution from the current (fractional) branch-and-cut node. This feature is controlled by the parameter $\text{HeurFreq}$. At its default value of 0 (zero), CPLEX® dynamically sets the frequency with which the heuristic is invoked. The setting $-1$ turns the feature off. A positive value specifies the frequency (in node count) with which the heuristic will be called. For example, if the HeurFreq parameter is set to 20, then the node heuristic will be applied at node 0, node 20, node 40, and so on.
Relaxation induced neighborhood search (RINS) heuristic

Relaxation induced neighborhood search (RINS) is a heuristic that explores a neighborhood of the current incumbent solution to try to find a new, improved incumbent. It formulates the neighborhood exploration as another MIP (known as the subMIP), and truncates the subMIP optimization by limiting the number of nodes explored in the search tree.

Two parameters apply specifically to RINS: RINSHeur and SubMIPNodeLim.

RINSHeur controls how often RINS is invoked, in a manner analogous to the way that HeurFreq works. A setting of 100, for example, means that RINS is invoked every 100th node in the tree, while -1 turns it off. The default setting is 0 (zero), which means that CPLEX® decides when to apply it; with this automatic setting, RINS is applied very much less frequently than the node heuristic is applied because RINS typically consumes more time. Also, with the default setting, RINS is turned entirely off if the node heuristic has been turned off via a HeurFreq setting of -1; with any other RINSHeur setting than 0 (zero), the HeurFreq setting does not affect RINS frequency.

SubMIPNodeLim restricts the number of nodes searched in the subMIP during application of the relaxation induced neighborhood search (RINS) heuristic. Its default is 500 is satisfactory in most situations, but you can set this parameter to any positive integer if you need to tune performance for your problem.

For more about this heuristic, see the article published by Emilie Danna, Edward Rothberg, Claude Le Pape in 2005, titled Exploring relaxation induced neighborhoods to improve MIP solutions in the journal Mathematical Programming in volume 102, issue 1, pages 71–90.
Solution polishing

Solution polishing can yield better solutions in situations where good solutions are otherwise hard to find. More time-intensive than other heuristics, solution polishing is actually a variety of branch and cut that works after an initial solution is available. In fact, it requires a solution to be available for polishing, either a solution produced by branch and cut, or a MIP start supplied by a user.

Because of the high cost entailed by solution polishing, it is not called throughout branch and cut like other heuristics. Instead, solution polishing works in a second phase after a first phase of conventional branch and cut. As an additional step after branch and cut, solution polishing can improve the best known solution.

As a kind of branch-and-cut algorithm itself, solution polishing focuses solely on finding better solutions. Consequently, it may not prove optimality, even if the optimal solution has indeed been found.

Stopping criteria for solution polishing

Solution polishing obeys the same stopping criteria as branch and cut.

♦ The absolute gap tolerance is a stopping criterion for polishing. For more general information about it, see absolute MIP gap tolerance in the CPLEX Parameters Reference Manual.
  
  • EpAGap in Concert Technology
  • CPX_PARAM_EPAGAP in the Callable Library
  • mip tolerances absmipgap in the Interactive Optimizer

♦ The relative gap tolerance is a stopping criterion for polishing. For more general information about it, see relative MIP gap tolerance in the CPLEX Parameters Reference Manual.
  
  • EpGap in Concert Technology
  • CPX_PARAM_EPGAP in the Callable Library
  • mip tolerances mipgap in the Interactive Optimizer

♦ The optimizer time limit is a stopping criterion for polishing. For more general information about it, see optimizer time limit in the CPLEX Parameters Reference Manual.
  
  • TiLim in Concert Technology
  • CPX_PARAM_TILIM in the Callable Library
  • timelimit in the Interactive Optimizer

♦ The node limit is a stopping criterion for polishing. For more general information about it, see MIP node limit in the CPLEX Parameters Reference Manual.
  
  • NodeLim in Concert Technology
  • CPX_PARAM_NODELIM in the Callable Library
  • mip limits nodes in the Interactive Optimizer
♦ The integer solution limit is a stopping criterion for polishing. For more general information about it, see MIP integer solution limit in the CPLEX Parameters Reference Manual.

- IntSolLim in Concert Technology
- CPX_PARAM_INTSOLLIM in the Callable Library
- mip limits solutions in the Interactive Optimizer

Those criteria apply to the overall optimization, that is, branch and cut plus solution polishing. For example, if you set the optimizer time limit (TiLim, CPX_PARAM_TILIM) to 100 seconds, then CPLEX® spends at most 100 seconds in total for branch and cut plus solution polishing.

Starting conditions for solution polishing
You control when CPLEX® switches from branch and cut to solution polishing with these parameters:

♦ The absolute MIP gap before starting to polish a feasible solution
  - PolishAfterEpAGap in Concert Technology
  - CPX_PARAM_POLISHAFTEREPAGAP in the Callable Library
  - mip polish after absmipgap in the Interactive Optimizer

♦ The relative MIP gap before starting to polish a feasible solution
  - PolishAfterEpGap in Concert Technology
  - CPX_PARAM_POLISHAFTEREPGAP in the Callable Library
  - mip polish after mipgap in the Interactive Optimizer

♦ The number of MIP integer solutions to find before starting to polish a feasible solution
  - PolishAfterIntSol in Concert Technology
  - CPX_PARAM_POLISHAFTERINTSOL in the Callable Library
  - mip polish after solutions in the Interactive Optimizer

♦ The number of nodes to process before starting to polish a feasible solution
  - PolishAfterNode in Concert Technology
  - CPX_PARAM_POLISHAFTERNODE in the Callable Library
  - mip polish after nodes in the Interactive Optimizer

♦ The amount (in seconds) of time before starting to polish a feasible solution
  - PolishAfterTime in Concert Technology
  - CPX_PARAM_POLISHAFTERTIME in the Callable Library
  - mip polish after time in the Interactive Optimizer
With each of those parameters, a user tells CPLEX® when to switch from branch and cut to solution polishing. CPLEX® is able to switch after it has found a feasible solution and put into place the MIP structures needed for solution polishing.

When these two conditions are met (feasible solution and structures in place), CPLEX® stops branch and cut and then switches to solution polishing whenever the first of these starting conditions is met:

- when CPLEX® achieves a specified absolute MIP gap;
- when CPLEX® achieves a specified relative MIP gap;
- when CPLEX® finds a specified number of integer feasible solutions;
- when CPLEX® processes a specified number of nodes;
- when CPLEX® has spent a specified amount of time in optimization.

Other parameters governing solution polishing

Like the RINS heuristic, solution polishing explores neighborhoods of previously found solutions by solving subMIPs. Consequently, the subMIP node limit also controls aspects of the work that solution polishing performs. See the limit on nodes explored when a subMIP is being solved in the CPLEX Parameters Reference Manual.

Solution polishing operates in a second phase, after a first phase of the usual branch and cut, but it operates within the same branch-and-cut framework. Consequently, the same parameters that govern branch and cut also govern solution polishing.

For example, if multiple threads are available in your application, solution polishing can exploit them to work in parallel. See global default thread count in the CPLEX Parameters Reference Manual.

Callbacks and solution polishing

Callbacks are valid and work during solution polishing. However, nodes are processed much more slowly during solution polishing because of the more expensive work carried out at each node. Consequently, callbacks may be called less often during solution polishing.
Finding a first solution to improve by polishing

A typical use of solution polishing is first, to find a preliminary solution with branch and cut, then to improve it with solution polishing.

To create conditions where you can find a first solution and then improve it by means of polishing, follow these steps:

1. Set to 1 (one) the number of MIP integer solutions to find before starting to polish a feasible solution.
   ♦ PolishAfterIntSol in Concert Technology
   ♦ CPX_PARAM_POLISHAFTERINTSOL in the Callable Library
   ♦ mip polishafter solutions in the Interactive Optimizer

2. Set the optimizer time limit to a positive value, such as 200 seconds, to specify the total time for CPLEX® to spend in branch and cut plus polishing.

3. Call the optimizer.

Improving a MIP start with polishing

Similarly, polishing can improve a MIP start.

To create conditions to improve a MIP start with polishing, follow these steps:

1. Set to 0 (zero) the time before starting to polish a feasible solution.

2. Set the optimizer time limit to a positive number of seconds.
   ♦ TiLim in Concert Technology
   ♦ CPX_PARAM_TILIM in the Callable Library
   ♦ timelimit in the Interactive Optimizer

3. Verify that the advanced start switch remains at its default value of 1 (one) so that polishing will proceed from the MIP start.
   ♦ AdvInd in Concert Technology
   ♦ CPX_PARAM_ADVIND in the Callable Library
   ♦ advance in the Interactive Optimizer

4. Specify the MIP start, for example, by reading it from a file or adding it to the model, as explained in Establishing starting values in a MIP start.

5. Call the optimizer.

With those settings, CPLEX® switches to polishing as soon as all MIP structures needed for polishing are in place. It does **not** completely solve the root node with those settings. In particular, it does **not** generate cuts under these conditions.

If CPLEX® is unable to process the MIP start into a solution, then solution polishing does not begin until after branch and cut finds a solution.

In contrast, if you want to **solve the root node**, and if the MIP start has been processed into a solution, you must change that step 1 before applying the other steps:
1. Set the starting condition for polishing by means of this parameter, the number of nodes to process before starting to polish a feasible solution, set to 1 (one).
   ♦ PolishAfterNode in Concert Technology
   ♦ CPX_PARAM_POLISHAFTERNODE in the Callable Library
   ♦ mip polishafter nodes in the Interactive Optimizer

2. Set the optimizer time limit to a positive number of seconds.

3. Verify that the advanced start switch remains at its default value of 1 (one).

4. Specify the MIP start, for example, by reading it from a file or adding it to the model, as explained in Establishing starting values in a MIP start.

5. Call the optimizer.

If your model and application are such that processing the root node takes too much time, try the recommendations in these other topics:

♦ Large number of unhelpful cuts

♦ Too much time at node 0

In the rare event that solution polishing is unable to improve a MIP start that you provide, polishing may be more successful if you disable some combination of dual reductions, nonlinear reductions, or symmetry reductions during preprocessing.

For details about the parameters to disable those features, see the CPLEX Parameter Reference Manual, especially these topics:

♦ the presolve switch: PreInd, CPX_PARAM_PREIND

♦ the linear reduction switch: PreLinear, CPX_PARAM_PRELINEAR

♦ the symmetry breaking parameter: Symmetry, CPX_PARAM_SYMMETRY

Controlling solution polishing with time as a criterion

As an example to illustrate how to manage time spent polishing a feasible solution, suppose the user wants to solve a problem by spending 100 seconds in branch and cut plus 200 seconds in polishing.

1. Set the optimizer time limit to 300.0 seconds. This parameter controls the total time spent in branch and cut plus solution polishing.
   ♦ TiLim in Concert Technology
   ♦ CPX_PARAM_TILIM in the Callable Library
   ♦ timelimit in the Interactive Optimizer

2. Set to 100 seconds the amount of time before starting to polish a feasible solution as the starting condition for polishing. This parameter controls the amount of time CPLEX® spends in branch and cut before CPLEX® switches to solution polishing.
   ♦ PolishAfterTime in Concert Technology
   ♦ CPX_PARAM_POLISHAFTERTIME in the Callable Library
mip polish after time in the Interactive Optimizer

3. Call the optimizer.

Under those conditions, if CPLEX® finds a feasible solution within the first 100 seconds of branch and cut, then it switches to solution polishing after exactly 100 seconds. However, if CPLEX® does not find a feasible solution within the first 100 seconds, then it continues branch and cut until it finds a first feasible solution and switches to solution polishing afterward.

Those settings guarantee that CPLEX® spends at most 300 seconds on the model and that CPLEX® applies polishing only if it finds a feasible solution within that time.

Controlling solution polishing with a gap as a criterion

CPLEX® also allows you to control when polishing starts and when polishing ends with a gap as a criterion. The gap may be relative or absolute. For example, suppose you want to apply branch and cut until achieving a 10% relative gap and then you want to switch to solution polishing until achieving a 2% relative gap.

To apply branch and cut until achieving a 10% gap and then to switch to solution polishing until achieving a 2% gap, follow these steps:

1. Set the relative MIP gap tolerance to 2%. This parameter determines when overall optimization stops.

   ♦ EpGap in Concert Technology
   ♦ CPX_PARAM_EPGAP in the Callable Library
   ♦ mip tolerances mipgap in the Interactive Optimizer

2. Set to 10% the relative MIP gap before starting to polish a feasible solution. This parameter sets the starting condition for polishing. It controls when CPLEX® switches from branch and cut to solution polishing.

3. Set the optimizer time limit to a positive value (for example, 200 seconds) to specify the total time spent in branch and cut plus polishing. For difficult problems, this step is a precaution to guarantee that CPLEX® terminates even if the targeted gap cannot be achieved.

   ♦ TiLim in Concert Technology
   ♦ CPX_PARAM_TILIM in the Callable Library
   ♦ timelimit 200.0 in the Interactive Optimizer

4. Call the optimizer.

For more about solution polishing

Feasibility pump

The feasibility pump is a heuristic that finds an initial feasible solution even in certain very hard mixed integer programming problems (MIPs). In CPLEX®, you control this heuristic by means of a parameter, feasibility pump switch, that specifies how the feasibility pump looks for a feasible solution.

♦ FBHeur in Concert Technology

♦ CFX_PARAM_FPHEUR in the Callable Library

♦ mip strategy fpheur in the Interactive Optimizer

Various settings of this parameter turn off the feasibility pump entirely, allow CPLEX® to determine whether to apply the feasibility pump, emphasize finding any feasible solution, or emphasize finding a feasible solution with a good objective value. For more detail about this parameter and its settings, see feasibility pump switch in the Parameters Reference Manual.

For a theoretical and practical explanation of the feasibility pump heuristic, see research reported by Fischetti, Glover, and Lodi (2003, 2005), by Bertacco, Fischetti, and Lodi (2005), and by Achterberg and Berthold (2005, 2007).
Preprocessing: presolver and aggregator

When you invoke the MIP optimizer, whether through the Interactive Optimizer command `mipopt`, through a call to the Concert Technology `IloCplex` method `solve`, or through the Callable Library routine `CPXmipopt`, CPLEX® by default automatically preprocesses your problem. Parameters for controlling MIP preprocessing summarizes the preprocessing parameters. In preprocessing, CPLEX® applies its presolver and aggregator one or more times to reduce the size of the integer program in order to strengthen the initial linear relaxation and to decrease the overall size of the mixed integer program.

Parameters for controlling MIP preprocessing

<table>
<thead>
<tr>
<th>Interactive Command</th>
<th>Concert Technology Parameter</th>
<th>Callable Library Parameter</th>
<th>Comment</th>
<th>Parameter Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>set preprocessing aggregator</td>
<td>AggInd</td>
<td>CPX_PARAM_AGGIND</td>
<td>on by default</td>
<td>preprocessing aggregator application limit</td>
</tr>
<tr>
<td>set preprocessing presolve</td>
<td>PreInd</td>
<td>CPX_PARAM_PREIND</td>
<td>on by default</td>
<td>presolve switch</td>
</tr>
<tr>
<td>set preprocessing boundstrength</td>
<td>BndStrenInd</td>
<td>CPX_PARAM_BNDSTRENIND</td>
<td>presolve must be on</td>
<td>bound strengthening switch</td>
</tr>
<tr>
<td>set preprocessing coeffreduce</td>
<td>CoeRedInd</td>
<td>CPX_PARAM_COEREDIND</td>
<td>presolve must be on</td>
<td>coefficient reduction setting</td>
</tr>
<tr>
<td>set preprocessing relax</td>
<td>RelaxPreInd</td>
<td>CPX_PARAM_RELAXPREIND</td>
<td>applies to relaxation</td>
<td>relaxed LP presolve switch</td>
</tr>
<tr>
<td>set preprocessing reduce</td>
<td>Reduce</td>
<td>CPX_PARAM_REDUCE</td>
<td>all on by default</td>
<td>primal and dual reduction type</td>
</tr>
<tr>
<td>set preprocessing numpass</td>
<td>PrePass</td>
<td>CPX_PARAM_PREPASS</td>
<td>automatic by default</td>
<td>limit on the number of</td>
</tr>
</tbody>
</table>
These and other parameters also control the behavior of preprocessing of the continuous subproblem (LP, QP, or QCP) solved during a MIP optimization. See Preprocessing for further details about these parameters in that context. The following discussion pertains to these parameters specifically in MIP preprocessing.

While preprocessing, CPLEX® attempts to strengthen bounds on variables. This bound strengthening may take a long time. In such cases, you may want to turn off bound strengthening.

CPLEX® attempts to reduce coefficients of constraints during preprocessing. Coefficient reduction usually strengthens the continuous relaxation and reduces the number of nodes in the branch & cut tree, but not always. Sometimes, it increases the amount of time needed to solve the linear relaxations at each node, possibly enough time to offset the benefit of fewer nodes. Two levels of coefficient reduction are available, so it is worthwhile to experiment with these preprocessing options to see whether they are beneficial to your problem.

The RelaxPreInd parameter controls whether an additional round of presolve is applied before CPLEX® solves the continuous subproblem at the root relaxation. Often the root relaxation is the single most time-consuming subproblem solved during branch and cut. Certain additional presolve reductions are possible when MIP restrictions are not present, and on difficult models this extra step will often pay off in faster root-solve times. Even when there is no appreciable benefit, there is usually no harm either. However, the RelaxPreInd parameter is available if you want to explore whether skipping the additional presolve step will improve overall solution speed, for example, if you are solving a long sequence of very easy models and need maximum speed on each one.

It is possible to apply preprocessing a second time, after cuts and other analyses have been performed and before branching begins. If your models tend to require a lot of branching, this technique is sometimes useful in further tightening the formulation. Use the MIP repeat presolve switch (RepeatPresolve, CPX_PARAM_REPEATPRESOLVE) parameter to invoke this additional step. Its default value of -1 means that CPLEX® makes the decision internally whether to repeat presolve; 0 (zero) turns off this feature unconditionally, while positive values allow you control over which aspects of the preprocessed model are re-examined during preprocessing and whether additional cuts are then permitted. Values of RepeatPresolve parameter summarizes the possible values of this parameter.
### Values of RepeatPresolve parameter

<table>
<thead>
<tr>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Automatic (default)</td>
</tr>
<tr>
<td>0</td>
<td>Turn off repeat presolve</td>
</tr>
<tr>
<td>1</td>
<td>Repeat presolve without cuts</td>
</tr>
<tr>
<td>2</td>
<td>Repeat presolve with cuts</td>
</tr>
<tr>
<td>3</td>
<td>Repeat presolve with cuts and allow new root cuts</td>
</tr>
</tbody>
</table>

CPLEX® preprocesses a MIP by default. However, if you use a basis to start LP optimization of the root relaxation, CPLEX® will proceed with that starting basis without preprocessing it. Frequently the strategic benefits of MIP presolve outweigh the tactical advantage of using a starting basis for the root node, so use caution when considering the advantages of a starting basis.
Starting from a solution: MIP starts

When you are solving a mixed integer programming problem (MIP), you can supply hints to help CPLEX® find an initial solution. These hints consist of pairs of variables and values, known as a MIP start, an advanced start, or a warm start. A MIP start might come from a different problem you have previously solved or from your knowledge of the problem, for example. You can also provide CPLEX® with one or more MIP starts, that is, multiple MIP starts.

A MIP start may be a feasible solution of the model, but it need not be; it may even be infeasible or incomplete. If you are interested in debugging an infeasible MIP start, that is, if you want to discover why CPLEX® regards a MIP start as infeasible, consider using the conflict refiner on that MIP start, as explained in Refining a conflict in a MIP start.

What are the characteristics of a MIP start?

A MIP start may include continuous and discrete variables of various types, such as integer variables, binary variables, semi-continuous variables or those in lazy constraints, linearized constraints, or special ordered sets. For more information about each of those types, see these topics in this manual:

♦ Using semi-continuous variables: a rates example
♦ User-cut and lazy-constraint pools
♦ Indicator constraints in optimization or Logical constraints in optimization
♦ Using special ordered sets (SOS)

You may specify values for any combination of discrete and continuous variables. CPLEX® decides how to construct a starting point from these variable-value pairs depending on the specified values and on the specified effort level. For more detail about effort level, see MIP starts and effort level.

Managing a MIP start with the advanced start switch

After a MIP start has been established for your model, you control its use by the advanced start switch (AdvInd in Concert Technology; CPX_PARAM_ADVIND in the Callable Library). At the default setting of 1 (one) , the MIP start values that you specify are used. If you set AdvInd to the value 0 (zero), then the MIP start will not be used. If you set this parameter to 2, CPLEX® retains the current incumbent (if there is one), re-applies presolve, and starts a new search from a new root. Setting 2 can be particularly useful for solving fixed MIP models, where a start vector but no corresponding basis is available. For more about a fixed MIP, see Working with the fixed MIP problem.

Using a MIP start

When you provide a MIP start as data, CPLEX® processes it before starting branch and cut during an optimization. If one or more of the MIP starts define a solution, CPLEX® installs the best of these solutions as the incumbent solution. Having an incumbent from the very beginning of branch and cut allows CPLEX® to eliminate portions of the search space and thus may result in smaller branch-and-cut trees. Having an incumbent also allows
CPLEX® to use heuristics which require an incumbent, such as relaxation induced neighborhood search (RINS heuristic) or solution polishing.

You may invoke relaxation induced neighborhood search on a starting solution. See Relaxation induced neighborhood search (RINS) heuristic in this manual for more about that topic.

Alternatively, you may invoke solution polishing to improve a solution known to CPLEX®. See Solution polishing, also in this manual, for more about that way of proceeding.

**Establishing starting values in a MIP start**

You can establish MIP starting values by using the method addMIPStart in a Concert Technology application, or by using CPXaddmipstarts in a Callable Library application.

For use in the Interactive Optimizer, or as an alternative approach in a Concert Technology or Callable Library application, you can establish MIP starting values in a formatted file and then read the file.

To read a MIP start from a formatted file, use one of these:

- the method readMIPStart in Concert Technology
- the routine CPXreadcopymipstarts in the Callable Library
- the command read in the Interactive Optimizer

You can establish MIP starting values from a file in either MST or SOL format. MST and SOL share the same underlying XML format. MST format is documented in MST file format: MIP starts in the CPLEX File Formats Reference Manual. SOL format is documented in SOL file format: solution files also in the CPLEX File Formats Reference Manual.

**Creating a file for a MIP start**

At the end of a MIP optimization, when a feasible (not necessarily optimal) solution is still in memory, you can create an MST file for later use as starting values to another MIP problem.

- from Concert Technology with the method writeMIPStarts
- from the Callable Library with the routine CPXwritemipstarts
- from the Interactive Optimizer with the write command

**Tip:** Make sure that the name of each variable is consistent between the original model and your target model when you use this approach.

When you tell CPLEX® to write a MIP start to a formatted file, you can also specify a degree of detail to record there, such as only values of discrete variables, values of all variables, and so forth. The write level for MST, SOL files is a parameter (WriteLevel, CPX PARAM WRITELEVEL), documented in the CPLEX Parameter Reference Manual, to manage the level of detail.
When CPLEX® reads from such a file, it processes all the MIP starts. They will be processed at the next MIP optimization. Immediately after an optimization, the first MIP start is the MIP start corresponding to the incumbent solution, so if you write a file with multiple MIP starts, the first MIP start will be that corresponding to the incumbent.

Because processing a large number of MIP starts may be costly, CPLEX® allows you to associate an individual effort level with each MIP start. The effort level tells CPLEX® how to expend its effort in processing that MIP start. For more detail about effort level, see MIP starts and effort level.

**MIP starts and effort level**

You may want CPLEX® to process multiple MIP starts differently, expending more effort on some than on others. Moreover, you may want to limit the effort CPLEX® applies to MIP starts when it transforms each MIP start into a feasible solution, especially if there are many of them. In that context, you can specify a level of effort that CPLEX® should expend for each MIP start to transform it into a feasible solution.

You specify the level of effort as an argument to the method or routine that adds a MIP start to a model or that modifies a MIP start. When CPLEX® writes MIP starts to a file, such as a file in MST format, CPLEX® records the level of effort the user specified for each MIP start. If you have not specified an effort level, CPLEX® assigns a default effort level.

Here are the levels of effort and their effect:

- **Level 1**: CPLEX® checks feasibility of the corresponding MIP start. This level requires you to provide values for all variables in the problem, both discrete and continuous. If any values are missing, CPLEX® does not process this MIP start.

- **Level 2**: CPLEX® solves the fixed LP problem specified by the MIP start. This effort level requires you to provide values for all discrete variables. If values for any discrete variables are missing, CPLEX® does not process the MIP start. CPLEX® uses the values of continuous variables at this effort level only in the initial phase when it attempts to determine values for unspecified discrete variables.

- **Level 3**: CPLEX® solves a subMIP. You must specify the value of at least one discrete variable at this effort level. CPLEX® uses the values of continuous variables at this effort level only in the initial phase when it attempts to determine values for unspecified discrete variables.

- **Level 4**: CPLEX® attempts to repair the MIP start if it is infeasible, according to the parameter that sets the frequency to try to repair infeasible MIP start (RepairTries, CFX_PARAM_REPAIRTRIES). You must specify the value of at least one discrete variable at this effort level, too.

You may specify a different level of effort for each MIP start, for example, differing levels of effort for the incumbent, for a MIP start corresponding to a solution in the solution pool, for a MIP start supplied by the user. By default, CPLEX® expends effort at level 4 for the first MIP start and at level 1 (one) for other MIP starts. You may change that level of effort; you do so by means of an argument to the method or routine when you add a MIP start to a model or when you modify the MIP start.
MIP starts and repair tries

If the values specified in your MIP start do not lead directly to an integer-feasible solution, CPLEX® applies a heuristic to try to repair the MIP start. The frequency at which CPLEX® applies the heuristic (that is, the number of branch-and-cut nodes processed between calls of the heuristic) is controlled by a parameter, the frequency to try to repair infeasible MIP start (RepairTries in Concert Technology, CPX_PARAM_REPAIRTRIES in the Callable Library). If this process succeeds, the solution will be treated as an integer solution of the current problem.

MIP starts and the solution pool

If you are solving a sequence of problems, for example, by modifying and re-solving the model, CPLEX® creates a MIP start corresponding to the incumbent and to each member of the solution pool. You may add other MIP starts which you have computed. CPLEX® then automatically processes all of these MIP starts, unless you have turned off MIP starts by setting that parameter to 0 (zero). For documentation of the MIP start parameter (AdvInd, CPX_PARAM_ADVIND) see advanced start switch in the CPLEX Parameters Reference Manual.

MIP starts and the Interactive Optimizer

To write a particular MIP start to a file from the Interactive Optimizer, use the write command supplying the file name, the file extension for MST formatted files, and the identifier of the MIP start, like this:

```plaintext
write filename.mst id
```

The identifier of the MIP start may be its name or its index number. In the Interactive Optimizer, MIP starts are named by default like this: m1, m2, m3, and so forth (that is, m followed by a number). The index number of a MIP start ranges from 1 (one) through the number of existing MIP starts for the current problem.

To write all existing MIP starts from the current session of the Interactive Optimizer to a formatted file, use this command:

```plaintext
write filename.mst all
```

To delete a MIP start from the current session of the Interactive Optimizer, use this command, where id is the name or index of the MIP start to delete:

```plaintext
change delete mipstart id
```

To delete a range of MIP starts, supply one the conventional options for a range in the Interactive Optimizer, using hyphen or wild card star, like these examples:

```plaintext
change delete mipstart 5-7
change delete mipstart *
```
Issuing priority orders

In the search, CPLEX® makes decisions about which variable to branch on at a node. You can control the order in which CPLEX® branches on variables by issuing a priority order. A priority order assigns a branching priority to some or all of the integer variables in a model. CPLEX® performs branches on variables with a higher assigned priority number before variables with a lower priority; variables not assigned an explicit priority value by the user are treated as having a priority value of 0. Note that CPLEX® will branch only on variables that take a fractional solution value at a given node. Thus a variable with a high priority number might still not be branched upon until late in the tree, if at all, and indeed if the presolve or the aggregator feature of the CPLEX® Preprocessor removes a given variable then branching on that variable would never occur regardless of a high priority order assigned to it by the user.

Problems that use integer variables to represent different types of decisions should assign higher priority to those that must be decided first. For example, if some variables in a model activate processes, and others use those activated processes, then the first group of variables should be assigned higher priority than the second group. In that way, you can use priority to achieve better solutions.

Setting priority based on the magnitude of objective coefficients is also sometimes helpful.

You can specify priority for any variable, though the priority is used only if the variable is a general integer variable, a binary integer variable, a semi-continuous variable, a semi-integer variable, or a member of a special ordered set. To specify priority, use one of the following routines or methods:

♦ From the Callable Library, use CPXcopyorder to copy a priority order and apply it, or CPXreadcopyorder to read the copy order from a file in ORD format. That format is documented in the CPLEX File Formats Reference Manual.

♦ From Concert Technology, use the method setPriority to set the priority of a given variable or setPriorities to set priorities for an array of variables. Use the method readOrder to read priorities from a file in ORD format and apply them.

CPLEX® can generate a priority order automatically, based on problem-data characteristics. This facility can be activated by setting the MIPOrdType parameter to one of the values in Parameter settings for branching priority order.

<table>
<thead>
<tr>
<th>Value</th>
<th>Branching priority order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no automatic priority order will be generated (default)</td>
</tr>
<tr>
<td>1</td>
<td>decreasing cost coefficients among the variables</td>
</tr>
<tr>
<td>2</td>
<td>increasing bound range among the variables</td>
</tr>
<tr>
<td>3</td>
<td>increasing cost per matrix coefficient count among the variables</td>
</tr>
</tbody>
</table>

If you explicitly read a file of priority orders, its settings will override any generic priority order you may have set by this parameter.
The parameter MIPOrdInd, when set to 0 (zero), allows you to direct CPLEX® to ignore a priority order that was previously read from a file. The default setting for this parameter means that CPLEX® applies a priority order, if one has been read in.
Using the MIP solution

This section discusses the **optimal** solution or the **best feasible** solution, if no optimum has been proved. For information about managing the entire pool of feasible solutions, see *Solution pool: generating and keeping multiple solutions*.

**Accessing a MIP solution as values in an array**

After you have solved a MIP, you will usually want to make use of the solution in some way. If you are interested only in the values of the variables at the optimum, then you can perform some simple steps to get that information:

♦ In **Concert Technology**, the method `getValues` accesses this information.

♦ In the **Callable Library**, use the routine `CPXgetx`.

After your program has placed the solution values into arrays in this way, it can print the values to the screen, write the values to a file, perform computations using the values, and so forth.

**Displaying a MIP solution in the Interactive Optimizer**

In the **Interactive Optimizer**, you can print the nonzero solution values to the screen with the command `display solution variables`. A copy of this information goes to the log file, named `cplex.log` by default. Thus one way to print your solution to a file is to rename the log file temporarily. For example, the following series of commands in the Interactive Optimizer will place the solution values of all variables whose values are not zero into a file named `solution.asc`:

```plaintext
set logfile solution.asc display solution
variables set logfile cplex.log
```

**Accessing MIP solution information**

Further solution information, such as the optimal values of the slack variables for the constraints, can be written to a file in the SOL format. See the description of this file format in the *CPLEX File Formats Reference Manual* in SOL file format: solution files.

For any of the MIP problem types, the following additional solution information is available in the Interactive Optimizer through options of the `display` command after optimization has produced a solution:

♦ objective function value for the best integer solution, if one exists;

♦ best bound, that is, best objective function value among remaining subproblems;

♦ solution quality;

♦ primal values for the best integer solution, if one has been found;

♦ slack values for best integer solution, if one has been found.

If you request other solution information than these items for a MIP, an error status will be issued. For example, in the **Interactive Optimizer**, you would get the following message:

`Not available for mixed integer problems- use CHANGE PROBLEM to change the problem type`
Such post-solution information does not have the same meaning in a mixed integer program (MIP) as in a linear program (LP) because of the special nature of the integer variables in the MIP. The reduced costs, dual values, and sensitivity ranges give you information about the effect of making small changes in problem data so long as feasibility is maintained. Integer variables, however, lose feasibility if a small change is made in their value, so this post-solution information cannot be used to evaluate changes in problem data in the usual way of continuous models.

**Working with the fixed MIP problem**

Integer variables often represent major structural decisions in a model, and many continuous variables of the model may be related to these major decisions. With that observation in mind, if you take the integer variable solution values as given, then you can obtain useful post-solution information that applies only to the continuous variables, in the usual way. This observation about the information available only for continuous variables in a MIP is the idea behind the so-called "fixed MIP" problem. The fixed MIP is a form of the MIP problem where all of the discrete variables are placed at values corresponding to the MIP solution; that is, the discrete variables are fixed in the sense of set at a given value. Thus a fixed MIP is a continuous problem though not strictly a relaxation of the MIP.

If you wish to access dual information in such a problem, first optimize your MILP problem to create the fixed MILP problem; then re-optimize it, like this:

♦ In **Concert Technology**, call the method `solveFixed`. (There is no explicit problem type in Concert Technology, so there is no need to change the problem type as in other components.)

♦ In the **Callable Library**, call the routine `CPXchgprobtype` with the argument `CPXPROB_FIXEDMILP` as the problem type and then call `CPXlpopt`.

♦ In the **Interactive Optimizer**, use these commands to change the problem type and re-optimize:

   ● change problem fixed_milp
   ● optimize

As explained in *Managing a MIP start with the advanced start switch*, setting 2 of the advanced start switch (`AdvInd` in Concert Technology; `CPX_PARAM_ADVIND` in the Callable Library) can be particularly useful for solving fixed MIP models, where a start vector but no corresponding basis is available.
Progress reports: interpreting the node log

As explained in other topics, when CPLEX® optimizes mixed integer programs, it builds a tree with the linear relaxation of the original MIP at the root and subproblems to optimize at the nodes of the tree. CPLEX® reports its progress in optimizing the original problem in a node log file as it traverses this tree.

You control how information in the log file is recorded and displayed, through two CPLEX® parameters. The MIPDisplay parameter controls the general nature of the output that goes to the node log. The table Values of the MIP display parameter summarizes its possible values and their effects.

<table>
<thead>
<tr>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No display until optimal solution has been found</td>
</tr>
<tr>
<td>1</td>
<td>Display integer feasible solutions</td>
</tr>
<tr>
<td>2</td>
<td>Display integer feasible solutions plus an entry for every n-th node; default</td>
</tr>
<tr>
<td>3</td>
<td>Display integer feasible solutions, every n-th node entry, number of cuts added, and information about the processing of each successful MIP start</td>
</tr>
<tr>
<td>4</td>
<td>Display integer feasible solutions, every n-th node entry, number of cuts added, information about the processing of each successful MIP start, and information about the LP subproblem at root</td>
</tr>
<tr>
<td>5</td>
<td>Display integer feasible solutions, every n-th node entry, number of cuts added, information about the processing of each successful MIP start, and information about the LP subproblem at root and at nodes</td>
</tr>
</tbody>
</table>

The MIP node log interval parameter (MIPInterval, CPX_PARAM_MIPINTERVAL) controls how frequently node log lines are printed. Its default is 100; it can be set to any positive integer value, as documented in the CPLEX Parameters Reference Manual. CPLEX® records a line in the node log for every node with an integer solution if the parameter controlling MIP node log display information (MIPDisplay, CPX_PARAM_MIPDISPLAY) is set to 1 (one) or higher. Likewise, if the MIPDisplay is set to 2 or higher, then for any node whose number is a multiple of the MIPInterval value, a line is recorded in the node log for every node with an integer solution.

Here is an example of a log file from the Interactive Optimizer, where the MIPInterval parameter has been set to 10:

```
Tried aggregator 1 time.
Presolve time = 0.00 sec.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.00 sec
```
In that example, CPLEX® found the **optimal objective function value** of 3.186 after exploring 44 nodes and performing 131 (dual simplex) iterations, and CPLEX® found an integral LP solution, designated by the star (*) and the word **integral** at node 39. That log reports a **heuristic solution**, designated by a star (*) and a plus (+) after the node number, at the root and at node 20. The MIP interval parameter was set at 10, so every tenth node was logged, in addition to the node where an integer solution was found.
As you can see in that example, CPLEX® logs an asterisk (*) in the left-most column for any node where it finds an integer-feasible solution or new incumbent. In the next column, it logs the node number. It next logs the number of nodes left to explore.

In the next column, Objective, CPLEX® either records the objective value at the node or a reason to fathom the node. (A node is fathomed if the solution of a subproblem at the node is infeasible; or if the value of the objective function at the node is worse than the cutoff value for branch & cut; or if the linear programming relaxation at the node supplies an integer solution.) This column is left blank for lines that report that CPLEX® found a new incumbent by primal heuristics. A plus (+) after the node number distinguishes such lines.

In the column labeled IIInf, CPLEX® records the number of integer-infeasible variables and special ordered sets. If no solution has been found, the column titled Best Integer is blank; otherwise, it records the objective value of the best integer solution found so far.

The column labeled Cuts/Best Node records the best objective function value achievable. If the word Cuts appears in this column, it means various cuts were generated; if a particular name of a cut appears, then only that kind of cut was generated.

The column labeled ItCnt records the cumulative iteration count of the algorithm solving the subproblems. Until a solution has been found, the column labeled Gap is blank. If a solution has been found, the relative gap value is printed: when it is less than $999.99$, the value is printed; otherwise, hyphens are printed. The gap is computed as:

$$(\text{best integer} - \text{best node}) \times \text{objsen} / (\text{abs (best integer)} + 1e-10)$$

Consequently, the printed gap value may not always move smoothly. In particular, there may be sharp improvements whenever a new best integer solution is found. Moreover, if the populate procedure of the solution pool is invoked, the printed gap value may become negative after the optimal solution has been found and proven optimal.

CPLEX® also logs its addition of cuts to a model. In the previous sample node log file, CPLEX® reports that it added a variety of cuts (cover cuts, zero-half cuts, Gomory fractional cuts).

CPLEX® also logs the number of clique inequalities in the clique table at the beginning of optimization. Cuts generated at intermediate nodes are not logged individually unless they happen to be generated at a node logged for other reasons. CPLEX® logs the number of applied cuts of all classes at the end.

CPLEX® also shows, in the node log file, each instance of a successful application of the node heuristic. The previous sample node log file shows that a heuristic found a solution at node 20. The + denotes an incumbent generated by the heuristic.

Periodically, if the MIP display parameter is 2 or greater, CPLEX® records the cumulative time spent since the beginning of the current MIP optimization and the amount of memory used by branch & cut. (Periodically means that time and memory information appear either every 20 nodes or ten times the MIP interval parameter, whichever is greater.)

The Interactive Optimizer prints an additional summary line in the log if optimization stops before it is complete. This summary line shows the best MIP bound, that is, the best objective value among all the remaining node subproblems. The following example shows you lines from a node log file where an integer solution has not yet been found, and the best remaining objective value is 2973.9912281.

<table>
<thead>
<tr>
<th>MIP-Node limit, no integer solution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current MIP best bound = 2.9739912281e+03 (gap is infinite)</td>
</tr>
</tbody>
</table>
Stating a MIP problem presents a typical MIP problem. Here is the node log file for that problem with the default setting of the MIP display parameter and one thread:

Tried aggregator 1 time.
Aggregator did 1 substitutions.
Reduced MIP has 2 rows, 3 columns, and 6 nonzeros.
Presolve time = 0.00 sec.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.00 sec.

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Cuts/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Left</td>
</tr>
<tr>
<td>* 0+</td>
<td>0</td>
</tr>
<tr>
<td>* 0+</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Solution pool: 2 solutions saved
MIP-Integer optimal solution: Objective = 1.2250000000e+02
Solution time = 0.00 sec. Iterations = 3 Nodes = 0

These additional items appear only in the node log file (not on screen) in conventional branch & cut:

♦ Variable records the name of the variable where CPLEX® branched to create this node. If the branch was due to a special ordered set, the name listed here will be the right-most variable in the left subset.

♦ B specifies the branching direction:
  • D means the variables was restricted to a lower value;
  • U means the variable was restricted to a higher value;
  • L means the left subset of the special ordered set was restricted to 0 (zero);
  • R means the right subset of the special ordered set was restricted to 0 (zero);
  • A means that constraints were added or more than one variable was restricted;
  • N means that cuts added to the node LP resulted in an integer feasible solution; no branching was required;
  • NodeID specifies the node identifier.

♦ Parent specifies the NodeID of the parent.

♦ Depth tells the depth of this node in the branch & cut tree.

Those additional items are not applicable in dynamic search.
Troubleshooting MIP performance problems

Describes symptoms of performance problems in MIP optimization and recommends remedies.

In this section

Introducing trouble shooting for MIP performance
Describes the background of MIP performance problems.

Too much time at node 0
Describes remedies for excessive time spent to solve root relaxation.

Trouble finding more than one feasible solution
Describes remedies for failure to find more than one feasible solution.

Large number of unhelpful cuts
Describes remedies for too much time spent to generate cuts.

Lack of movement in the best node
Describes conditions in which strong branching may help.

Time wasted on overly tight optimality criteria
Describes the effect of optimality tolerance on performance.

Slightly infeasible integer variables
Describes remedies for slightly infeasible integer variables.

Running out of memory
Describes remedies for limited memory.
**Difficulty solving subproblems: overcoming degeneracy**
Describes ways to overcome degeneracy as a source of difficulty in solving subproblems.

**Unsatisfactory optimization of subproblems**
Describes ways to overcome unsatisfactory optimization of difficult subproblems.
Introducing trouble shooting for MIP performance

Even the most sophisticated methods currently available to solve pure integer and mixed integer programming problems require noticeably more computation than the methods for similarly sized continuous problems. Many relatively small integer programming models still take enormous amounts of computing time to solve. Indeed, some such models have never yet been solved. In the face of these practical obstacles to a solution, proper formulation of the model is crucial to successful solution of pure integer or mixed integer programs.

For help in formulating a model of your own integer or mixed integer problem, you may want to consult H.P. Williams’s textbook about practical model building (referenced in Further reading in the preface of this manual).

Also you may want to develop a better understanding of the branch & cut algorithm. For that purpose, Williams’s book offers a good introduction, and Nemhauser and Wolsey’s book (also referenced in Further reading in the preface of this manual) goes into greater depth about branch & cut as well as other techniques implemented in the CPLEX® MIP Optimizer.

Tuning performance features of the mixed integer optimizer in this chapter has already discussed several specific features that are important for performance tuning of difficult models. Here are more specific performance symptoms and the remedies that can be tried.
Too much time at node 0

If you observe that a very long time passes before the search begins processing nodes, it may be that the root relaxation problem itself is taking a long time. The standard screen display will print a line saying "Root relaxation solution time = " after this root solve is complete, and a large solution time would be an indicator of an opportunity for tuning. If you set the MIPDisplay parameter to 4, you may get a further indication of the difficulties this root solve has run into. Tuning techniques found in Solving LPs: simplex optimizers, Solving problems with a quadratic objective (QP), and Solving problems with quadratic constraints (QCP) are applicable to tuning the root solve of a MIP model, too. In particular, it is worth considering setting the RootAlg parameter to a nondefault setting, such as the barrier optimizer, to see if a simple change in algorithm will speed up this step sufficiently.

For some problems, CPLEX® will spend a significant amount of time performing computation at node 0, apart from solving the continuous LP, QP, or QCP root relaxation. While this investment of time normally saves in the overall branch & cut, it does not always do so. Time spent at node 0 can be reduced by two parameters.

First, you can try turning off the node heuristic by setting the parameter HeurFreq to -1. Second, try a less expensive variable selection strategy by setting the parameter VarSel to 4, pseudo reduced costs.

It is worth noting that setting the MIPEmphasis parameter to 1, resulting in an emphasis on feasibility instead of optimality, often also speeds up the processing of the root node. If your purposes are compatible with this emphasis, consider using it.
Trouble finding more than one feasible solution

For some models, CPLEX® finds an integer feasible solution early in the process and then does not find a better one for quite a while. One possibility, of course, is that the first feasible solution is optimal and will eventually be proven optimal. In that case, there are no better solutions.

One possible approach to finding more feasible solutions is to increase the frequency of the node heuristic, by setting the parameter MIP heuristic frequency (HeurFreq, CPX_PARAM_HEURFREQ) to a value such as 10, 5, or even 1. This heuristic can be expensive, so exercise caution when setting this parameter to values less than 10.

Another approach to finding more feasible solutions is to try a node selection strategy alternative. Setting the parameter MIP node selection strategy (NodeSel, CPX_PARAM_NODESEL) to 2 invokes a best-estimate search, which sometimes does a better job of locating good quality feasible solutions than the default node selection strategy.

The settings 1 (one) and 4 of the MIP emphasis switch (MIPEmphasis, CPX_PARAM_MIPEMPHASIS) both address the issue of finding feasible solutions. These parameter settings are also worth considering for this symptom of difficulty finding more than one feasible solution.

Solution polishing also helps you find additional solutions. A good strategy in this respect is to let branch and cut find the first feasible solution and then let solution polishing improve it. For instructions to apply this strategy, see Finding a first solution to improve by polishing.
Large number of unhelpful cuts

While the cuts added by CPLEX® reduce runtime for most problems, on occasion they can have the opposite effect. If you notice, for example, that CPLEX® adds a large number of cuts at the root, but the objective value does not change significantly, then you may want to experiment with turning off cuts selectively (that is, by type of cut) or completely.

To turn off cuts selectively, use the cut parameters summarized in Parameters for controlling cuts, with a value of -1 (minus one). For example, in the Interactive Optimizer, the following command turns off only cover cuts:

```
set mip cuts covers -1
```

To limit types of cuts generated, consider the type of cut limit parameter (EachCutLim, CPX_PARAM_EACHCUTLIM).

To limit the number of passes that CPLEX® executes to generate cuts, consider the number of cutting plane passes parameter (CutPass, CPX_PARAM_CUTPASS).

To turn off all cuts, set the cut pass parameter to -1 (minus one). For example, in the Interactive Optimizer, use the following command to turn off all generation of all cuts:

```
set mip cuts all -1
```
Lack of movement in the best node

For some models, the Best Node value in the node log changes very slowly or not at all. Runtimes for such models can sometimes be reduced by the variable selection strategy known as strong branching. Strong branching explores a set of candidate branching-variables in-depth, performing a limited number of simplex iterations to estimate the effect of branching up or down on each.

**Important:** Strong branching consumes significantly more computation time per node than the default variable selection strategy.

To activate strong branching, set the variable selection parameter to a value of 3. For documentation of that parameter, see MIP variable selection strategy in the CPLEX Parameters Reference Manual.

On rare occasions, it can be helpful to modify strong branching limits. If you modify the limit on the size of the candidate list, then strong branching will explore a larger (or smaller) set of candidates. If you modify the limit on strong branching iteration, then strong branching will perform more (or fewer) simplex iterations per candidate.

These limits are controlled by the parameters StrongCandLim and StrongItLim, respectively.

Other parameters to consider trying, in the case of slow movement of the Best Node value, are nondefault levels for Probe (try the aggressive setting of 3 first, and then reduce it if the probing step itself takes excessive time for your purposes), and MIPEmphasis set to a value of 3.
Time wasted on overly tight optimality criteria

Sometimes CPLEX® finds a good integer solution early, but must examine many additional nodes to prove the solution is optimal. You can speed up the process in such a case if you are willing to change the optimality tolerance. CPLEX® supports two kinds of tolerance:

♦ Relative optimality tolerance guarantees that a solution lies within a certain percentage of the optimal solution.

♦ Absolute optimality tolerance guarantees that a solution lies within a certain absolute range of the optimal solution.

The default relative optimality tolerance is 0.0001. At this tolerance, the final integer solution is guaranteed to be within 0.01% of the optimal value. Of course, many formulations of integer or mixed integer programs do not require such tight tolerance, so requiring CPLEX® to seek integer solutions that meet this tolerance in those cases is wasted computation. If you can accept greater optimality tolerance in your model, then you should change the parameter _EpGap_.

If, however, you know that the objective values of your problem are near zero, then you should change the absolute gap because percentages of very small numbers are less useful as optimality tolerance. Change the parameter _EpAGap_ in this case.

To speed up the proof of optimality, you can set objective difference parameters, both relative and absolute. Setting these parameters helps when there are many integer solutions with similar objective values. For example, setting the _ObjDif_ parameter to 100.0 makes CPLEX® skip any potential solution with its objective value within 100.0 units of the best integer solution so far. Or, setting the _RelObjDif_ to 0.01 would mean that CPLEX® would skip any potential new solution that is not at least 1% better than the incumbent solution. Naturally, since this objective difference setting may make CPLEX® skip an interval where the true integer optimum may be found, the objective difference setting weakens the guarantee of optimality.

Cutoff parameters can also be helpful in restricting the search for optimality. If you know that there are solutions within a certain distance of the initial relaxation of your problem, then you can readily set the upper cutoff parameter for minimization problems and the lower cutoff parameter for maximization problems. Set the parameters _CutUp_ and _CutLo_, respectively, to establish a cutoff value.

When you set a MIP cutoff value, CPLEX® searches with the same solution strategy as though it had already found an integer solution, using a node selection strategy that differs from the one it uses before a first solution has been found.
Slightly infeasible integer variables

On some models, the integer solution returned by CPLEX® at default settings may contain solution values for the discrete variables that violate integrality by a small amount. The integrality tolerance parameter (EpInt, CPX_PARAM_EPINT) has a default value of 1e-5, which means that any discrete variable that violates integrality by no more than this amount will not be branched upon for resolution. For most model formulations, this situation is satisfactory and avoids branching that may be essentially meaningless, only consuming additional computing time.

However, some formulations combine discrete and continuous variables, for example, involving constraint coefficients over a million in magnitude, where even a small integrality violation can be magnified elsewhere in the model. In such situations, you may attempt to address this variation by tightening the simplex feasibility tolerance (EpRHS, CPX_PARAM_EPRHS) from its default value to its minimum; also tighten EpInt to a similar value, and re-run the MIP optimization from the beginning.

If this adjustment is insufficient to give satisfactory results, you can also try setting EpInt all the way to zero, preferably in conjunction with a tightened EpRHS setting. This very tight integrality tolerance directs CPLEX® to attempt to branch on any integer infeasibility, no matter how small. Numeric round-off due to floating-point arithmetic on any computer may make it impossible to achieve this tolerance, but in practice, the setting achieves its aim in many models and reduces the integrality violations in many others. In cases where the integrality violation even after branching remains above EpInt or is above 1e-10 when EpInt has been set to a value smaller than that, a solution status returned will be CPX_STAT_OPTIMAL_INFEAS instead of the usual CPX_STAT_OPTIMAL. In most cases a solution with status CPX_STAT_OPTIMAL_INFEAS will be satisfactory, and reflects only round-off error after presolve uncrush, but extra care in using the solution may be advisable in numerically sensitive formulations.

If these suggestions are not appropriate for your problem, another alternative to consider is reformulation of your model with indicator constraints. Indicator constraints in optimization offers more information about that alternative.
Running out of memory

A very common difficulty with MIPs is running out of memory. This problem almost always occurs when the branch & cut tree becomes so large that insufficient memory remains to solve a continuous LP, QP, or QCP subproblem. (In the rare case that the dimensions of a very large model are themselves the main contributor to memory consumption, you can try adjusting the memory emphasis parameter, as described in Lack of memory.) As memory gets tight, you may observe warning messages from CPLEX® as it attempts various operations in spite of limited memory. In such a situation, if CPLEX® does not find a solution shortly, it terminates the process with an error message.

The information about a tree that CPLEX® accumulates in memory can be substantial. In particular, CPLEX® saves a basis for every unexplored node. Furthermore, when CPLEX® uses the best bound or best estimate strategies of node selection, the list of unexplored nodes itself can become very long for large or difficult problems. How large the unexplored node list can be depends on the actual amount of memory available, the size of the problem, and algorithm selected.

A less frequent cause of memory consumption is the generation of cutting planes. Gomory fractional cuts, and, in rare instances, Mixed Integer Rounding cuts, are the ones most likely to be dense and thus use significant memory at default automatic settings. You can try turning off these cuts, or any of the cuts you see listed as being generated for your model (in the cuts summary at the end of the node log), or simply all cuts, through the use of parameter settings discussed in the section on cuts in this manual; doing this carries the risk that this will make the model harder to solve and only delay the eventual exhaustion of available memory during branching. Since generation of cutting planes is not a frequent cause of memory consumption, apply these recommendations only as a last resort, after trying to resolve the problem with less drastic measures.

Certainly, if you increase the amount of available memory, you extend the problem-solving capability of CPLEX®. Unfortunately, when a problem fails because of insufficient memory, it is difficult to project how much further the process needed to go and how much more memory is needed to solve the problem. For these reasons, the following suggestions aim at avoiding memory failure whenever possible and recovering gracefully otherwise.

Reset the tree memory parameter

To avoid a failure due to running out of memory, set the working memory parameter, WorkMem, to a value significantly lower than the available memory on your computer (in megabytes), to instruct CPLEX® to begin compressing the storage of nodes before it consumes all of available memory. See the related topic Use node files for storage, for other choices of what should happen when WorkMem is exceeded. That topic explains how to indicate to CPLEX® that it should use disk for working storage.

Because the storage of nodes can require a lot of space, it may also be advisable to set a tree limit on the size of the entire tree being stored so that not all of your disk will be filled up with working storage. The call to the MIP optimizer will be stopped after the size of the tree exceeds the value of TreLim, the tree limit parameter. At default settings, the limit is infinity (1e+75), but you can set it to a lower value (in megabytes).
Use node files for storage

As noted in Using node files, CPLEX® offers a node-file storage-feature to store some parts of the branch & cut tree in files as it progresses through its search. This feature allows CPLEX® to explore more nodes within a smaller amount of computer memory. It also includes several options to reduce the use of physical memory. Importantly, it entails only a very small increase in runtime. In terms of performance, node-file storage offers a much better option than relying on generic swap space managed by your operating system.

This feature is especially helpful when you are using steepest-edge pricing as the subproblem simplex pricing strategy because pricing information itself consumes a great deal of memory.

**Note:** Try node files whenever the MIP optimizer terminates with the condition "out of memory" and the node count is greater than zero. The message in such a situation looks like the following sample output.

```
Clique cuts applied: 30
CPLEX Error 1001: Out of memory.
Consider using CPLEX node files to reduce memory usage.
MIP-Error termination, integer feasible: Objective = 5.6297000000e+04
Current MIP best bound = 5.5731783224e+04 (gap = 565.217, 1.00%)
Solution time = 220.75 sec. Iterations = 16707 Nodes = 101 (58)
```

There are several parameters that control the use of node files. They are:

- **memory available for working storage:** WorkMem in Concert Technology or CPX_PARAM_WORKMEM in the Callable Library
- **node storage file switch:** NodeFileInd in Concert Technology or CPX_PARAM_NODEFILEIND in the Callable Library
- **tree memory limit:** TreLim in Concert Technology or CPX_PARAM_TRELIM in the Callable Library
- **directory for working files** WorkDir in Concert Technology or CPX_PARAM_WORKDIR in the Callable Library

CPLEX® uses node file storage most effectively when the amount of working memory is reasonably large so that it does not have to create node files too frequently. The default value of the WorkMem parameter is 128 megabytes. Setting it to higher values, even on a machine with very large memory, can be expected to result in only marginally improved efficiency. However, it is advisable to reduce this setting to approximately half the available memory of your machine if your machine has less than 256 megabytes of RAM to avoid defeating the purpose of node files, a situation that would occur if your application inadvertently triggers the swap space of your operating system.

When tree storage size exceeds the limit defined by WorkMem, and if the tree-memory limit has not been exceeded, then what happens next is decided by the setting of the node storage file switch (NodeFileInd in Concert Technology or CPX_PARAM_NODEFILEIND in the Callable Library). If that parameter is set to zero, then optimization proceeds with the tree stored in memory until CPLEX® reaches the tree memory limit (TreLim in Concert Technology or
CPX_PARAM_TRELIM in the Callable Library). If the node file indicator is set to 1 (the default), then a fast compression algorithm is used on the nodes to try to conserve memory, without resorting to writing the node files to disk. If the parameter is set to 2, then node files are written to disk. If the parameter is set to 3, then nodes are both compressed (as in option 1) and written to disk (as in option 2). Parameter values for node file storage summarizes these different options.

### Parameter values for node file storage

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no node files</td>
<td>optimization continues</td>
</tr>
<tr>
<td>1</td>
<td>node file in memory and compressed</td>
<td>optimization continues (default)</td>
</tr>
<tr>
<td>2</td>
<td>node file on disk</td>
<td>files created in temporary directory</td>
</tr>
<tr>
<td>3</td>
<td>node file on disk and compressed</td>
<td>files created in temporary directory</td>
</tr>
</tbody>
</table>

Among the memory conservation tactics employed by CPLEX® when the memory emphasis parameter has been set, the maximum setting for the node file indicator is automatically chosen, so that node-file storage will go to disk. You may still wish to adjust the working memory or tree limit parameters to fit the capabilities of your computer.

In cases where node files are written to disk, CPLEX® will create a temporary subdirectory under the directory specified by the directory for working files parameter (WorkDir in Concert Technology or CPX_PARAM_WORKDIR in the Callable Library). The directory named by this parameter must exist before CPLEX® attempts to create node files. By default, the value of this parameter is ".", which means the current working directory.

CPLEX® creates the temporary directory by means of system calls. If the system environment variable is set (on Windows platforms, the environment variable TMP; on UNIX platforms, the environment variable TMPDIR), then the system ignores the CPLEX® node-file directory parameter and creates the temporary node-file directory in the location indicated by its system environment variable. Furthermore, if the directory specified in the CPLEX® node-file directory parameter is invalid (for example, if it contains illegal characters, or if the directory does not allow write access), then the system chooses a location according to its own logic.

The temporary directory created for node file storage will have a name prefixed by cpox. The files within it will also have names prefixed by cpox.

CPLEX® automatically removes the files and their temporary directory when it frees the branch & cut tree:

- in the Interactive Optimizer,
  - at problem modification;
  - at normal termination;
- from Concert Technology,
  - when you call env.end;
  - when you modify the extracted model.
from the Callable Library,

- when you call a problem modification routine;
- when you call CPXfreeprob.

If a program terminates abnormally, the files are not removed.

Node files could grow very large. Use the tree memory limit parameter (TreLim, CPX_PARAM_TRELim) to limit the size of the tree so that it does not exceed available disk space, when you choose settings 2 or 3 in the node storage file switch (NodeFileInd, CPX_PARAM_NODEFILEIND). It is usually better to let CPLEX® terminate the run gracefully, with whatever current feasible solution has been found, than to trigger an error message or even a program abort.

When CPLEX® uses node-file storage, the sequence of nodes processed may differ from the sequence in which nodes are processed without node-file storage. Nodes in node-file storage are not accessible to user-written callback routines.

**Change algorithms**

The best approach to reduce memory use is to modify the solution process. Here are some ways to do so:

- Switch the node selection strategy to best estimate, or more drastically to depth-first, as explained in Node selection parameter settings for node search type. Depth-first search rarely generates a long, memory-consuming list of unexplored nodes since CPLEX® dives deeply into the tree instead of jumping around. A narrowly focused search, like depth-first, also often results in faster processing times for individual nodes. However, overall solution time is generally much worse than with best-bound node selection because each branch is searched exhaustively to its deepest level before it is fathomed in favor of better branches.

- Another memory-conserving strategy is to use strong branching for variable selection; that is, set the MIP variable selection strategy parameter (VarSel, CPX_PARAM_VARSEL) to the value 3. Strong branching requires substantial computational effort at each node to decide the best branching variable. As a result, it generates fewer nodes and thus makes less overall demand on memory. Often, strong branching is faster as well.
Difficulty solving subproblems: overcoming degeneracy

There are classes of MIPs that produce very difficult subproblems, for example, if the subproblems are dual degenerate. In such a case, a different optimizer, such as the primal simplex or the barrier optimizer, may be better suited to your problem than the default dual simplex optimizer for subproblems. These alternatives are discussed in Unsatisfactory optimization of subproblems. You may also consider a stronger dual simplex pricing algorithm, such as dual steepest-edge pricing (that is, the parameter DPriInd or CPX_PARAM_DPRIIND set to the value 2).

If the subproblems are dual degenerate, then consider using the primal simplex optimizer for the subproblems. You make this change by setting the MIP subproblem algorithm parameter (NodeAlg, CPX_PARAM_SUBALG) to 1 (one).

A different option is to solve as few subproblems of the original model as possible by switching to solution polishing after you find a first feasible solution. This strategy is appropriate if obtaining good integer solutions is more important than obtaining a proof of optimality. For details about how to apply solution polishing, see Solution polishing.
**Unsatisfactory optimization of subproblems**

In some problems, you can improve performance by evaluating how the continuous LP or QP subproblems are solved at the nodes in the search space, and then possibly modifying the choice of algorithm to solve them.

QCP subproblems are solved only by the barrier optimizer. However, MIQCP models are not always solved by a sequence of QCP subproblems. The MIQCP strategy switch (MIQCPStrat, CPX_PARAM_MIQCPSTRAT) allows you to control what kinds of subproblems are solved in a mixed integer quadratically constrained programming model. Consequently, the following suggestions may also help that class of problem as well.

You can control which algorithm CPLEX® applies to the root relaxation of your problem separately from your control of which algorithm CPLEX® applies to other subproblems. The following sections explain those parameters more fully.

**RootAlg parameter and difficult subproblems**

The RootAlg algorithm parameter indicates the algorithm for CPLEX® to use on the initial subproblem. In a typical MIP, that initial subproblem is usually the linear relaxation of the original MIP. By default, CPLEX® starts the initial subproblem with the dual simplex optimizer. You may have information about your problem that suggests that another optimizer could be more efficient. *Parameter settings for RootAlg and NodeAlg* summarizes the values available for the RootAlg parameter.

To set the MIP starting algorithm parameter:

- In the Interactive Optimizer, use the command `set mip strategy startalgorithm` with the value to indicate the optimizer you want.
- In Concert Technology, use the `IloCplex method setParam` with the parameter `RootAlg` and the appropriate algorithm enumeration value.
- In the Callable Library, use the routine `CPXsetintparam` with the parameter `CPX_PARAM_STARTALG`, and the appropriate symbolic constant.
Parameter settings for RootAlg and NodeAlg

<table>
<thead>
<tr>
<th>Concert Technology Enumeration</th>
<th>Callable Library Symbolic Constant</th>
<th>Setting</th>
<th>Calls this Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>CPX_ALG_AUTO</td>
<td>0</td>
<td>automatic</td>
</tr>
<tr>
<td>Primal</td>
<td>CPX_ALG_PRIMAL</td>
<td>1</td>
<td>primal simplex</td>
</tr>
<tr>
<td>Dual</td>
<td>CPX_ALG_DUAL</td>
<td>2</td>
<td>dual simplex (default)</td>
</tr>
<tr>
<td>Network</td>
<td>CPX_ALG_HYBNETOPT</td>
<td>3</td>
<td>network simplex</td>
</tr>
<tr>
<td>Barrier</td>
<td>CPX_ALG_BARRIER</td>
<td>4</td>
<td>barrier with crossover</td>
</tr>
<tr>
<td>Sifting</td>
<td>CPX_ALG_SIFTING</td>
<td>5</td>
<td>sifting</td>
</tr>
<tr>
<td>Concurrent</td>
<td>CPX_ALG_CONCURRENT</td>
<td>6</td>
<td>concurrent: allowed at root, but not at nodes</td>
</tr>
</tbody>
</table>

NodeAlg parameter and difficult subproblems

The NodeAlg parameter indicates the algorithm for CPLEX® to use on node relaxations other than the root node. By default, CPLEX® applies the dual simplex optimizer to subproblems, and unlike the RootAlg parameter it is extremely unusual for this to not be the most desirable choice, but again, you may have information about your problem that tells you another optimizer could be more efficient. The values and symbolic constants are the same for the NodeAlg parameter as for the RootAlg parameter in Parameter settings for RootAlg and NodeAlg.

To set the MIP subproblem algorithm parameter:

♦ In Concert Technology, use the IloCplex method setParam with the parameter NodeAlg and the appropriate algorithm enumeration value.

♦ In the Callable Library, use the routine CPXsetintparam with the parameter CPX_PARAM_SUBALG, and the appropriate symbolic constant.

♦ In the Interactive Optimizer, use the command set mip strategy subalgorithm with the value to indicate the optimizer you want.

Note: Only simplex and barrier optimizers can solve problems of type QP (quadratic term in the objective function).

Only the barrier optimizer can solve problems of type QCP (quadratic terms among the constraints).
Solution polishing and difficult subproblems

When subproblems are not solved satisfactorily, another option is to solve as few subproblems of the original model as possible by switching to solution polishing as soon as a first feasible solution is found. This strategy is helpful when finding a good integer solution is more important than proving optimality. For more information about this strategy, see Solution polishing in this manual.
Examples: optimizing a simple MIP problem

Introduces samples that demonstrate how to optimize a MIP with the CPLEX® Component Libraries.

In this section

ilomipex1.cpp
Shows how to optimize a MIP model in the C++ API.

MIPex1.java
Shows how to optimize a MIP model in the Java API.

MIPex1.cs and MIPex1.vb
Shows how to optimize a MIP model in the .NET API.

mipex1.c
Shows how to optimize a MIP model in the C API.
The example derives from ilolpex8.cpp. Here are the differences between that linear program and this mixed integer program:

♦ The problem to solve is slightly different. It appears in *Stating a MIP problem*.

♦ The routine *populatebyrow* added the variables, objective, and constraints to the model created by the method *IloModel model(env)*.
Also available among the examples distributed with the product is a Java implementation of the same MIP.
MIPex1.cs and MIPex1.vb

Also available among the examples distributed with the product are a C#.NET and a Visual Basic.NET implementation of the same MIP.
The example derives from lpex8.c. Here are the differences between that linear program and this mixed integer program:

♦ The problem to solve is slightly different. It appears in *Stating a MIP problem*.

♦ The routine `setproblemdata` has an argument, `ctype`, to set the types of the variables to indicate which ones must assume integer values. The routine `CPXcopyctype` associates this data with the problem that `CPXcreateprob` creates.

♦ The example calls `CPXmipopt` to optimize the problem, rather than `CPXlpopt`.

♦ The example calls the routines `CPXgetstat`, `CPXgetobjval`, `CPXgetx`, and `CPXgetslack` (instead of `CPXsolution`) to get a solution.

You do not get dual variables this way. If you want dual variables, you must do the following:

- Use `CPXchgprobtype` to change the problem type to `CPXchgprobtype`.

- Then call `CPXprimopt` to optimize that problem.

- Then use `CPXsolution` to get a solution to the fixed problem.
Example: reading a MIP problem from a file

Introduces samples that show to solve a MIP with the Component Libraries when the problem data is stored in a file.

**In this section**

**ilomipex2.cpp**
Shows how to read data from a file and solve a MIP model in the C++ API.

**mipex2.c**
Shows how to read data from a file and solve a MIP model in the C API.
This example derives from ilolpex2.cpp, an LP example explained in the manual Getting Started. That LP example differs from this MIP example in these ways:

♦ This example solves only MIPs, so it calls only IloCplex::solve, and its command line does not require the user to indicate an optimizer.

♦ This example does not generate or print a basis.

Like other applications based on CPLEX® Concert Technology, this one uses env, an instance of IloEnv, to initialize the Concert Technology environment and IloModel model(env) to create a problem object. Before the application ends, it calls env.end to free the environment.
The example derives from lpex2.c, an LP example explained in the manual Getting Started. That LP example differs from this MIP example in these ways:

♦ This example solves only MIPs, so it calls only CPXmipopt, and its command line does not require the user to specify an optimizer.

♦ This example does not generate or print a basis.

Like other applications based on the Callable Library, this one calls CPXopenCPLEX to initialize the CPLEX environment; it sets the screen-indicator parameter to direct output to the screen and calls CPXcreateprob to create a problem object. Before it ends, it calls CPXfreesprob to free the space allocated to the problem object and CPXcloseCPLEX to free the environment.
Solution pool: generating and keeping multiple solutions

Introduces the solution pool for storing multiple solutions to a mixed integer programming problem (MIP) and explains techniques for generating and managing those solutions.

In this section

What is the solution pool?
Defines the solution pool for storing multiple solutions of a MIP model.

Example: simple facility location problem
Describes a model used in documentation of the solution pool.

Filling the solution pool
Describes ways to fill the solution pool.

Accumulating incumbents in the solution pool
Describes accumulation of incumbents in the solution pool.

Populating the solution pool
Explains populate, the fundamental procedure of the solution pool.

Choosing whether to accumulate or populate
Explains differences between accumulating incumbents and generating multiple solutions in the solution pool.

Enumerating all solutions
Describes difficulties of enumerating all solutions.
Impact of change on the solution pool
Describes changes to a model or its context that may have an impact on the solution pool and the solutions stored there.

Examining the solution pool
Describes access to generic information about the solution pool.

Accessing a solution in the solution pool
Describes access to a particular solution in the solution pool.

Using solutions from the solution pool
Describes routines and methods to exploit solutions from the solution pool.

Deleting solutions from the solution pool
Describes routines and methods to delete solutions from the solution pool.

The incumbent and the solution pool
Describes access to the incumbent from the solution pool.

Parameters of the solution pool
Describes parameters to control the solution pool.

Filtering the solution pool
Documents filters of the solution pool. Filters offer a means of controlling properties of the solutions you generate and store.
What is the solution pool?

The solution pool allows you to generate and store multiple solutions to a mixed integer programming (MIP) model. This feature uses an extension of the IBM® ILOG® CPLEX® branch-and-cut algorithm to generate multiple solutions in addition to the optimal solution.

For example, some constraints may be difficult to formulate efficiently as linear expressions, or the objective may be difficult to quantify exactly. In such cases, obtaining multiple solutions will help you choose one which best fits all your criteria, including the criteria that could not be expressed easily in a conventional MIP model.

Furthermore, you can use the solution pool and tools associated with it to explore and evaluate alternative solutions in a variety of ways:

♦ You can collect solutions within a given percentage of the optimal solution. To do so, apply the solution pool gap parameters (relative or absolute), as explained in Parameters of the solution pool.

♦ You can collect a set of diverse solutions. To do so, use the solution pool replacement strategy parameter (SolnPoolReplace, CPX_PARAM_SOLNPOOLREPLACE) to set the solution pool replacement strategy to CPX_SOLNPOOL_DIV, as explained in the documentation of that parameter in the CPLEX Parameters Reference Manual. In order to control the diversity of solutions even more finely, apply a diversity filter, as explained in Diversity filters.

♦ In an advanced application of this feature, you can collect solutions with specific properties. To do so, see Filtering the solution pool.

♦ You can collect all solutions or all optimal solutions to a MIP model. To do so, see Enumerating all solutions.

Tip: The solution pool distinguishes solutions by the values of their discrete variables only. For more explanation of this point, see Limitations due to continuous variables and finite precision.
Example: simple facility location problem

A simple version of a facility location problem appears throughout this sequence of topics to show how the solution pool and the tools associated with it work. Here’s a description of the problem: a company is considering opening as many as four warehouses in order to serve nine different regions. The goal is to minimize the sum of fixed costs associated with opening warehouses (constraint c2) as well as the various transportation costs incurred to ship goods from the warehouses to the regions (constraint c3).

Whether or not to open a warehouse is represented by binary variable $x_i$, for $i = 1$ to 4.

Whether or not to ship goods from warehouse $i$ to region $j$ is represented by binary variable $y_{ji}$, for $j = 1$ to 9 and $i = 1$ to 4.

Each region needs a specified amount of goods, and each warehouse can store only a limited quantity of goods (constraints c4 to c7). In addition, each region must be served by exactly one warehouse (constraints c8 to c16). Constraints c17 to c52 complete the model by stating that warehouse $i$ must be open in order for goods to be shipped from warehouse $i$ to any region $j$.

The model for this simple facility location problem is available online in the formatted LP file `yourCPLEXdir/examples/data/location.lp`. In standard form, a model for the simple facility location problem looks like this:

```
Minimize
 obj: cost
Subject To
 c1: - cost + fixed + transport = 0
 c2: - fixed + 130 x1 + 150 x2 + 170 x3 + 180 x4 = 0
 c3: - transport + 10 y11 + 30 y12 + 25 y13 + 55 y14
 + 10 y21 + 25 y22 + 25 y23 + 45 y24
 + 20 y31 + 23 y32 + 30 y33 + 40 y34
 + 25 y41 + 10 y42 + 26 y43 + 40 y44
 + 28 y51 + 12 y52 + 20 y53 + 29 y54
 + 36 y61 + 19 y62 + 16 y63 + 22 y64
 + 40 y71 + 39 y72 + 22 y73 + 27 y74
 + 75 y81 + 65 y82 + 55 y83 + 35 y84
 + 34 y91 + 43 y92 + 41 y93 + 62 y94 = 0
 c4: 10 y11 + 10 y21 + 12 y31 + 15 y41 + 15 y51 + 15 y61 + 20 y71 + 25 y81 + 30 y91 - 90 x1 <= 0
 c5: 10 y12 + 10 y22 + 12 y32 + 15 y42 + 15 y52 + 15 y62 + 20 y72 + 25 y82 + 30 y92 - 110 x2 <= 0
 c6: 10 y13 + 10 y23 + 12 y33 + 15 y43 + 15 y53 + 15 y63 + 20 y73 + 25 y83 + 30 y93 - 130 x3 <= 0
 c7: 10 y14 + 10 y24 + 12 y34 + 15 y44 + 15 y54 + 15 y64 + 20 y74 + 25 y84 + 30 y94 - 150 x4 <= 0
 c8: y11 + y12 + y13 + y14 = 1
 c9: y21 + y22 + y23 + y24 = 1
 c10: y31 + y32 + y33 + y34 = 1
 c11: y41 + y42 + y43 + y44 = 1
```
c12: y51 + y52 + y53 + y54 = 1

c13: y61 + y62 + y63 + y64 = 1

c14: y71 + y72 + y73 + y74 = 1

c15: y81 + y82 + y83 + y84 = 1

c16: y91 + y92 + y93 + y94 = 1

\[c17: x1 - y11 \geq 0\]
\[c18: x1 - y21 \geq 0\]
\[c19: x1 - y31 \geq 0\]
\[c20: x1 - y41 \geq 0\]
\[c21: x1 - y51 \geq 0\]
\[c22: x1 - y61 \geq 0\]
\[c23: x1 - y71 \geq 0\]
\[c24: x1 - y81 \geq 0\]
\[c25: x1 - y91 \geq 0\]
\[c26: x2 - y12 \geq 0\]
\[c27: x2 - y22 \geq 0\]
\[c28: x2 - y32 \geq 0\]
\[c29: x2 - y42 \geq 0\]
\[c30: x2 - y52 \geq 0\]
\[c31: x2 - y62 \geq 0\]
\[c32: x2 - y72 \geq 0\]
\[c33: x2 - y82 \geq 0\]
\[c34: x2 - y92 \geq 0\]
\[c35: x3 - y13 \geq 0\]
\[c36: x3 - y23 \geq 0\]
\[c37: x3 - y33 \geq 0\]
\[c38: x3 - y43 \geq 0\]
\[c39: x3 - y53 \geq 0\]
\[c40: x3 - y63 \geq 0\]
\[c41: x3 - y73 \geq 0\]
\[c42: x3 - y83 \geq 0\]
\[c43: x3 - y93 \geq 0\]
\[c44: x4 - y14 \geq 0\]
\[c45: x4 - y24 \geq 0\]
\[c46: x4 - y34 \geq 0\]
\[c47: x4 - y44 \geq 0\]
\[c48: x4 - y54 \geq 0\]
\[c49: x4 - y64 \geq 0\]
\[c50: x4 - y74 \geq 0\]
\[c51: x4 - y84 \geq 0\]
\[c52: x4 - y94 \geq 0\]

**Binaries**

x1  x2  x3  x4
y11  y12  y13  y14  y21  y22  y23  y24  y31  y32  y33  y34
y41  y42  y43  y44  y51  y52  y53  y54  y61  y62  y63  y64
y71  y72  y73  y74  y81  y82  y83  y84  y91  y92  y93  y94
Filling the solution pool

There are two ways to fill the solution pool associated with a model:

♦ You can accumulate successive incumbents, as explained in *Accumulating incumbents in the solution pool*.

♦ You can generate alternative solutions, as explained in *Populating the solution pool*.

The difference between those ways is explained in *Choosing whether to accumulate or populate*.

Other details about filling and managing the solution pool are explained in *Deleting solutions from the solution pool* and *Model changes and the solution pool*.
Accumulating incumbents in the solution pool

MIP optimization automatically adds incumbents to the solution pool as they are discovered when you call it in one of these conventional ways:

♦ In Concert Technology, you invoke MIP optimization by means of one of these methods:
  ● IloCplex::solve in the C++ API.
  ● IloCplex.solve in the Java API.
  ● Cplex.Solve in the .NET API.

♦ In the Callable Library (C API), you invoke the MIP optimizer by means of the routine CPXmipopt.

♦ In the Interactive Optimizer, you invoke the command mipopt.

For example, if you read the model of Example: simple facility location problem into the Interactive Optimizer and invoke the usual command mipopt, MIP optimization finds solutions that it stores in the solution pool, and the log looks something like this (allowing for variation in the MIP path):

Solution pool: 4 solutions saved.

MIP - Integer optimal solution:  Objective = 4.9900000000e+02
Solution time = 0.12 sec.  Iterations = 197  Nodes = 33
Populating the solution pool

Explains populate, the fundamental procedure of the solution pool.

In this section

What is populating the solution pool?
Introduces the populate procedure of the solution pool.

Invoking the populate procedure
Describes how to invoke the populate procedure of the solution pool.

Algorithm of the populate procedure
Describes the algorithm of the populate procedure.

Example: calling populate
Shows an example of the populate procedure in the Interactive Optimizer.

Stopping criteria for the populate procedure
Defines stopping criteria of the populate procedure.

Stored solutions, populate limit, and pool capacity
Distinguishes between the solution pool capacity and the populate limit.
What is populating the solution pool?

CPLEX® also provides a procedure specifically to generate multiple solutions. You can invoke this procedure either as an alternative to the usual MIP optimizer or as a successor to the MIP optimizer. You can also invoke this procedure many times in a row in order to explore the solution space differently. In particular, you may invoke this procedure multiple times to find additional solutions, especially if the first solutions found are not satisfactory.

The following topics tell you more about the populate procedure.
Invoking the populate procedure

The populate procedure is available in all application programming interfaces (APIs) of CPLEX®.

♦ In Concert Technology, you invoke this procedure by means of the method:
  ● `IloCplex::populate` in the C++ API.
  ● `IloCplex.populate` in the Java API.
  ● `Cplex.Populate` in the .NET API.

♦ In the Callable Library (C API), you invoke this procedure by means of the routine `CPXpopulate`.

♦ In the Interactive Optimizer, you invoke this procedure by means of the command `populate`.

For examples of populating the solution pool in an application, see your CPLEX installation/examples/src/populate.c and ilopopulate.cpp as well as Populate.java and Populate.cs.
Algorithm of the populate procedure

Briefly, the algorithm that populates the solution pool works in two phases.

In the first phase, it solves the model to optimality (or some stopping criterion set by the user), but it retains nodes that might contain useful, even if not necessarily optimal integer feasible solutions—nodes that would be pruned by the optimality based branch-and-cut algorithm of CPLEX®. In other words, it retains nodes that have a feasible relaxation but an objective value worse than the cutoff value, as well as nodes that have an integer feasible relaxation solution without all the integer restricted variables having fixed bounds.

In the second phase, it generates multiple solutions by using the information computed and stored in the first phase and by continuing to explore the tree. Specifically, it branches on the additional nodes retained in the first phase and continues to explore the subtrees associated with these nodes.

The amount of preparation in the first phase and the intensity of exploration in the second phase are controlled by the solution pool intensity parameter:

♦ SolnPoolIntensity in Concert Technology;
♦ CFX_PARAM_SOLNPOOLINTENSITY in the Callable Library;
♦ mip pool intensity in the Interactive Optimizer.

After a model has been read (or created), the first call to populate will carry out both the first and second phase. In the general case, subsequent calls to populate will re-use stored information and proceed with the continuation of the second phase. The first phase will be re-computed if:

♦ the value of the pool intensity parameter has increased between successive calls of populate;
♦ any filters have been deleted.

Example: calling populate

You can generate multiple solutions with populate. To see this effect in the Interactive Optimizer, first read the example cited in Example: simple facility location problem, like this:

```plaintext
read location.lp
populate
```

At default settings in the Interactive Optimizer, you will see results such as these:

Populate: phase I
Tried aggregator 1 time.
MIP Presolve eliminated 3 rows and 3 columns.
MIP Presolve modified 47 coefficients.
Reduced MIP has 49 rows, 40 columns, and 148 nonzeros.
Presolve time = 0.01 sec.
Clique table members: 45.
MIP emphasis: balance optimality and feasibility.
Root relaxation solution time = 0.04 sec.

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Nodes</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/ Best Node</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>452.1107</td>
<td>27</td>
<td>452.1107</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>549.0000</td>
<td></td>
<td>452.1107</td>
<td>51 17.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>468.2224</td>
<td>23</td>
<td>549.0000</td>
<td>Cuts: 17</td>
<td>64</td>
<td>14.</td>
</tr>
<tr>
<td>71%</td>
<td>*</td>
<td>512.0000</td>
<td></td>
<td>468.2224</td>
<td>64 8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>470.5942</td>
<td>23</td>
<td>512.0000</td>
<td>Cuts: 2</td>
<td>68</td>
<td>8.</td>
</tr>
<tr>
<td>09%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>470.6800</td>
<td>20</td>
<td>512.0000</td>
<td>Cuts: 3</td>
<td>70</td>
<td>8.</td>
</tr>
<tr>
<td>07%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>470.6800</td>
<td>20</td>
<td>512.0000</td>
<td>470.6800</td>
<td>70</td>
<td>8.</td>
</tr>
<tr>
<td>07%</td>
<td>*</td>
<td>integral</td>
<td>0</td>
<td>499.0000</td>
<td>479.9271</td>
<td>129</td>
<td>3.</td>
</tr>
<tr>
<td>82%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cover cuts applied: 2
Zero-half cuts applied: 2
Gomory fractional cuts applied: 1

Populate: phase II
MIP emphasis: balance optimality and feasibility.
In that log, you see that the procedure executed its first and second phases. It reports parameter settings, such as MIP emphasis, like other optimization logs. It also reports how many solutions it found. It stops when it reaches the populate limit. (In this example, the populate limit rests at its default, 20 solutions.)

Interestingly, the gap printed in that log becomes negative in the second phase of populate. At the end of the first phase of populate, the model was solved to optimality; the best node value and the best integer value coincided and were equal to the optimal objective value; the gap was zero. Early in the second phase, the best integer value remained equal to the optimal objective value, but as populate progressed, nodes were explored and fathomed. At some point, all nodes with a relaxation value equal to the optimal objective value were fathomed. This fathoming explains why the best node value increased above the optimal objective value (for a minimization problem, such as this example) as the search space was explored in the second phase. Recall that the gap value is computed as:

\[(\text{bestInteger}-\text{bestNode})\ast\text{objSense}/(\text{abs(bestInteger)}+1e-10)\]

Consequently, the gap can become negative. A negative gap value (\(-g\%)\) indicates that the search space explored by populate does not contain any more solutions that are less than \(g\%\) worse than the optimal objective value.

You can invoke the populate procedure multiple times. In successive invocations, it will re-use information it has accumulated in previous invocations. For example, if you then immediately invoke populate a second time on this model, it re-uses the information it gathered in the previous invocation to resume its second phase, like this:

```plaintext
CPLEX> populate
Populate: phase II
MIP emphasis: balance optimality and feasibility.

 200 32 infeasible 499.0000 512.0000 268 -2.
 300 38 infeasible 499.0000 514.0000 282 -3.
 400 44 516.0000 1 499.0000 516.0000 295 -3.
 500 48 518.0000 1 499.0000 518.0000 312 -3.

Cover cuts applied: 2
```
Zero-half cuts applied: 2
Gomory fractional cuts applied: 1

Solution pool: 40 solutions saved.

Populate - Populate solution limit exceeded, integer optimal: Objective = 4.9900000000e+02
Solution time = 0.23 sec. Iterations = 320 Nodes = 532 (53)

In this second invocation, populate does not disturb the twenty solutions already accumulated in the solution pool, and it continues to search for another twenty solutions before stopping at its default limit again.

The status line of both invocations of populate indicates that the optimal solution of the model has been found. Nevertheless, populate continues to produce solutions: optimality is not the stopping criterion for populating the solution pool. For more detail about stopping criteria, see Stopping criteria for the populate procedure.
Stopping criteria for the populate procedure

Optimality is not a stopping criterion for the populate procedure. Even if the optimality gap is zero, this procedure will still try to find alternative solutions. The stopping criteria for populating the solution pool are these:

♦ Populate limit. This parameter controls how many solutions are generated before the populate procedure stops. Its default value is 20. Consequently, the procedure stopped after generating 20 solutions in the example with model `location.lp` in Example: calling `populate`.

maximum number of solutions generated for solution pool by populate

- `PopulateLim` in Concert Technology
- `CPX_PARAM_POPULATELIM` in the Callable Library (C API)
- `mip limits populate` in the Interactive Optimizer

Note: The parameter to limit the number of integer solutions in a MIP (MIP integer solution limit: `IntSolLim` in Concert Technology, `CPX_PARAM_INTSOLLIM` in the Callable Library, or `mip limits solutions` in the Interactive Optimizer) does not apply to the populate procedure; if you want to limit the populate procedure, apply the populate limit parameter (`PopulateLim`, `CPX_PARAM_POPULATELIM`) instead.

♦ optimizer time limit, as in a standard MIP optimization.

- `TiLim` in Concert Technology
- `CPX_PARAM_TILIM` in the Callable Library (C API)
- `timelimit` in the Interactive Optimizer

♦ MIP node limit, as in a standard MIP optimization.

- `NodeLim` in Concert Technology
- `CPX_PARAM_NODELIM` in the Callable Library (C API)
- `mip limit nodes` in the Interactive Optimizer

♦ In the absence of other stopping criteria, the populate procedure stops when it cannot enumerate any more solutions.

In particular, if you specify an objective tolerance with the relative or absolute solution pool gap parameters, populate stops if it cannot enumerate any more solutions within the specified objective tolerance.

However, there may exist additional solutions that are feasible, and if you have specified an objective tolerance, those feasible solutions may also satisfy this additional criterion. Depending on the solution pool intensity parameter, populate may or may not enumerate
all possible solutions. Consequently, populate may stop when it has enumerated only a subset of the solutions satisfying your criteria.
Stored solutions, populate limit, and pool capacity

It may be helpful to distinguish between criteria that govern the algorithm underlying populate (the procedure that generates solutions to store in the solution pool) and criteria that control how CPLEX® manages those stored solutions.

By default, CPLEX® stores all solutions generated by populate in the solution pool. However, the user may not be interested in examining every generated solution. For that reason, the user may set a maximum number of solutions kept in solution pool using the solution pool capacity parameter: `SolnPoolCapacity`, `CPX_PARAM_SOLNPOOLCAPACITY` to specify a finite maximum number of solutions to store in the solution pool. Only solutions stored in the pool are available for examination when populate terminates.

As explained in the topic *Stopping criteria for the populate procedure*, the populate limit provides a stopping criterion for populate. In other words, it is a criterion that governs the algorithm. In contrast, the solution pool capacity (`SolnPoolCapacity`, `CPX_PARAM_SOLNPOOLCAPACITY`) does not control the algorithm associated with populate at all. Instead, the solution pool capacity, along with the solution pool replacement strategy parameter (`SolnPoolReplace`, `CPX_PARAM_SOLNPOOLREPLACE`), controls how CPLEX® manages the solutions generated by populate.
Choosing whether to accumulate or populate

Explains differences between accumulating incumbents and generating multiple solutions in the solution pool.

In this section

What’s the difference between accumulating and populating?
Contrasts the populate procedure with MIP optimization.

Advanced use: interaction of MIP optimization and populate
Explains when to invoke the populate procedure.

Example: using populate after MIP optimization
Illustrates contrast between MIP optimization and the populate procedure.
What’s the difference between accumulating and populating?

Both MIP optimization and populate generate a series of solutions, but the two procedures differ in their aims. The aim of MIP optimization is optimality: after a solution has been found, MIP optimization prunes nodes unless they yield solutions of improving objective value, and the procedure will stop when optimality has been proven. In contrast, the aim of populate is to generate as many solutions as possible: after a solution has been found, populate may generate solutions of both improving and degrading objective value because it has retained nodes that may contain such solutions. It will stop only when it cannot generate any additional solutions or because other stopping criteria intervene.

In order to decide which procedure is better for your application, you should first try the MIP optimizer. If the solutions produced are sufficient for your application, then the MIP optimizer is the appropriate choice. If not, then you should try populate to generate more solutions and to have more control over the properties of the generated solutions.
Should you call MIP optimization and then populate, or should you call populate alone?

You can call populate after you call the MIP optimizer, or you can call populate on its own after you read or create a model. In order to decide which to do, you need to know more about the two procedures.

Recall that the algorithm underlying populate works in two phases. If you call the MIP optimizer after the model is read, it will gather and store information about the search as it solves the model. In practice, its activity constitutes the first phase of the populate algorithm. In the general case, if you then call populate, populate will re-use the information stored by the MIP optimizer and carry out only the second phase.

In contrast, if you call populate immediately after the model is read, populate will perform both the first phase and the second phase.

If you specify a nondefault setting of the pool intensity parameter, then calling the MIP optimizer and afterwards calling populate will give the same results in terms of performance and solutions generated as calling populate alone. (The exception to this generalization occurs when the pool intensity parameter is set at its default value, 0 (zero) that is, automatic. For details about that case, see the documentation of the solution pool intensity parameter.)

Calling populate alone is simpler than calling populate after MIP optimization. However, if you want more control over the details of the two phases (for example, if you want to specify different stopping criteria for each phase), then you need to call MIP optimization followed by populate, instead of calling populate alone. The risk associated with this approach is that populate might not be able to reuse the information about the tree from the previous MIP optimization; in that case, populate will start from scratch; that is, it again performs the first phase, followed by the second phase. In particular, this repetition of the first phase will happen if you increase the pool intensity parameter between the call to MIP optimization and the call to populate.

More information about this topic can be found in the documentation about the solution pool intensity parameter (SolnPoolIntensity, CPX_PARAM_SOLNPOOLINTENSITY) in the CPLEX Parameters Reference Manual.

In short, if you want the simplicity of a black box, call populate alone; if you need more control, call MIP optimization, then populate.
Example: using populate after MIP optimization

After invoking MIP Optimization, you can generate additional solutions with populate. You can use this possibility to get a few additional solutions quickly if the solutions obtained during MIP Optimization are not satisfactory. However, as explained in Advanced use: interaction of MIP optimization and populate, the sequence MIP Optimization followed by populate is especially useful to control the parameters and the stopping criteria of each phase of populate.

Consider again the model in Example: simple facility location problem. Suppose that the transportation costs are subject to fluctuations, and consequently it does not make sense to spend time optimizing the model exactly to optimality. You can set the MIP gap tolerance (absolute MIP gap tolerance: EpAGap, CPX_PARAM_EPAGAP; relative MIP gap tolerance EpGap, CPX_PARAM_EPGAP) to a value higher than the default (in this example: 5%) so that the MIP optimization, which constitutes the first phase of populate, stops earlier. Then, populate will go immediately into the second phase, so it can start producing solutions sooner.

The commands to reproduce this situation looks like this in the Interactive Optimizer:

```
read location.lp
set mip pool intensity 2
set mip tolerances mipgap 0.05
mipopt
populate
```

MIP optimization (as executed by mipopt in the Interactive Optimizer) shows these results:

```
Solution pool: 3 solutions saved.
MIP - Integer optimal, tolerance (0.05/1e-06): Objective = 4.9900000000e+02
Current MIP best bound = 4.7976250000e+02 (gap = 19.2375, 3.86%)
Solution time = 0.05 sec. Iterations = 135 Nodes = 11 (6)
```

Populate (following mipopt in the Interactive Optimizer) shows results like these:

```
Solution pool: 23 solutions saved.
Populate - Populate solution limit exceeded, integer feasible:
Objective = 4.9900000000e+02
Current MIP best bound = 4.9278787879e+02 (gap = 6.21212, 1.24%)
Solution time = 0.05 sec. Iterations = 271 Nodes = 261 (53)
```

In this example, the solution pool intensity (SolnPoolIntensity, CPX_PARAM_SOLNPOLLINTENSITY) is set to 2 because the default automatic value of this parameter for the sequence MIP optimization followed by populate is not the fastest possible setting for generating a large number of solutions. If you use this sequence of commands to control precisely the behavior of the optimizer in the first and second phase of populate, it is a good idea to reset the pool intensity parameter yourself, rather than relying on its default value.
Enumerating all solutions

Describes difficulties of enumerating all solutions.

In this section

How to enumerate all solutions
Tells how to enumerate all solutions of a MIP model.

Limitations due to continuous variables and finite precision
Describes limitations due to finite precision arithmetic.

Limitations due to unbounded MIP models
Describes limitations due to unbounded MIP models.

Limitations due to numeric difficulties
Describes limitations due to numeric difficulties.
How to enumerate all solutions

You can also enumerate all solutions that are valid for a specific criterion. For example, if you want to enumerate all alternative optimal solutions, do the following:

1. Set the absolute gap for solution pool parameter (SolnPoolAGap, CPX_PARAM_SOLNPOOLAGAP) to 0.0 (zero).

2. Set the solution pool intensity parameter to 4 (SolnPoolIntensity, CPX_PARAM_SOLNPOOLINTENSITY).

3. Set the maximum number of solutions generated for solution pool by populate (PopulateLim, CPX_PARAM_POPULATELIM) to a value sufficiently large for your model; for example, 2 100 000 000.

4. Call populate.

Beware, however, that, even for small models, the number of possible solutions is likely to be huge. Consequently, enumerating all of them will take time and consume a large quantity of memory.

In addition, when you attempt to enumerate all solutions, some restrictions apply, as explained in the following sections.

- *Limitations due to continuous variables and finite precision*
- *Limitations due to unbounded MIP models*
- *Limitations due to numeric difficulties*
Limitations due to continuous variables and finite precision

There may be an infinite number of possible values for a continuous variable, and it is not practical to enumerate all of them on a finite-precision computer. Therefore, populate gives only one solution for each set of discrete variables, even though there may exist several solutions that have the same values for all discrete variables but different values for continuous variables.
Limitations due to unbounded MIP models

Likewise, for the same reason, populate does not generate all possible solutions for unbounded MIP models. As soon as the proof of unboundness is obtained, populate stops.
Limitations due to numeric difficulties

CPLEX® uses numerical methods of finite-precision arithmetic. Consequently, the feasibility of a solution depends on the value given to tolerances. Two parameters define the tolerances that assess the feasibility of a MIP solution:

♦ the integrality tolerance \((EpInt, CPX_PARAM_EPINT)\);
♦ the feasibility tolerance \((EpRHS, CPX_PARAM_EPRHS)\).

A solution may be considered feasible for one pair of values for these two parameters, and infeasible for a different pair. This phenomenon is especially noticeable in models with numeric difficulties, for example, in models with Big M coefficients.

Since the definition of a feasible MIP solution is subject to tolerances, the total number of solutions to a MIP model may vary, depending on the approach used to enumerate solutions, and on precisely which tolerances are used. In most models, this tolerance issue is not problematic for CPLEX®. But, in the presence of numeric difficulties, CPLEX® may create solutions that are slightly infeasible or integer infeasible, and therefore create more solutions than expected.

You can find more details about the topic of numeric difficulties in the CPLEX User’s Manual in Numeric difficulties and Slightly infeasible integer variables.
Impact of change on the solution pool

Describes changes to a model or its context that may have an impact on the solution pool and the solutions stored there.

In this section

Changes between MIP optimization and populate
Describes changes to a MIP model between optimization and populate.

Persistence of solutions in the solution pool
Describes conditions under which solutions persist in the solution pool.

Model changes and the solution pool
Describes model changes and their impact on feasibility of solutions in the solution pool.
Changes between MIP optimization and populate

What might users do between a call of MIP optimization and a call of populate or between successive calls of populate?

Users can continue to call populate until they have a pool of solutions they are satisfied with. Between calls, users may examine solutions. If the solutions are satisfactory, users can stop calling populate. If the solutions are not satisfactory, then users can make changes to improve the solution pool. Changes that have an impact on the solutions that populate generates and stores include these:

♦ changing parameter settings;
♦ adding filters;
♦ removing filters;
♦ changing characteristics of filters.

Changes of the model itself, such as altering the objective function, are treated differently. For details, see *Model changes and the solution pool*. 

Persistence of solutions in the solution pool

Successive calls to MIP optimization or populate create solutions that are stored in the solution pool. Each call to MIP optimization or populate applies to all solutions in the pool. In particular, CPLEX® may replace solutions in the pool obtained during previous invocations of MIP optimization or populate if the pool is at its capacity and CPLEX® finds new solutions satisfying the replacement criteria.

If you want to keep all solutions produced through all calls to MIP optimization or populate, then you must query the solution pool before calling MIP optimization or populate again and store the solutions in user-defined arrays.
Model changes and the solution pool

When a user modifies a model, for example, by adding constraints or changing the coefficients of the objective function, the existing solutions already in the solution pool may or may not be feasible in terms of the changed model. Therefore, immediately after changing a model, the user cannot access the solution pool. In fact, if the user attempts to query the solution pool after changing a model, the solution pool query routines and methods return an error: CPXERR_NO_SOLNPOOL.

However, the MIP starts constructed from the solutions in the solution pool before the changes to the model may still exist if those MIP starts have not been modified or deleted. If those unmodified MIP starts still exist, they are accessible through these methods and routines:

♦ writeMIPStart in the C++ API;
♦ writeMIPStart(String) in the Java API;
♦ Cplex.WriteMIPStart in the .NET API;
♦ CPXgetmipstarts and CPXwritemipstarts in the Callable Library (C API).

Moreover, if the advanced start switch (AdvInd, CPX_PARAM_ADVIND) is set to a value greater than zero, then after the user changes a model, the next call to MIP optimization or populate tries to process MIP starts corresponding to members of the solution pool to derive solutions for the newly changed model.
Examining the solution pool

In the Interactive Optimizer, the command `display solution pool` produces a synopsis about the solution pool.

Also in the Interactive Optimizer, the command `display solution list` shows the objective value of solutions in the pool, along with the percentage of discrete variables that take a value different from the incumbent. To display all solutions in the pool, use `display solution list *`. Alternatively, you can specify the indices of the solutions to display, for example: `display solution list 2-4`.

The information displayed by both of these commands in the Interactive Optimizer is available through methods or routines in Concert Technology and the Callable Library, as shown in Accessing information about the solution pool.

Accessing information about the solution pool summarizes methods, routines, and commands that access aggregated information about the solution pool itself, such information as the number of solutions in the pool, the number of solutions that have been replaced, and the arithmetic mean of the objective value of solutions in the pool.

Solutions are replaced, according to the replacement policy, when the pool reaches its maximum capacity. Its maximum capacity is specified by the solution pool capacity parameter (maximum number of solutions kept in solution pool: `SolnPoolCapacity`, `CPX_PARAM_SOLNPOOLCAPACITY`) not by the parameter that limits populate (maximum number of solutions generated for solution pool by populate: `PopulateLimit`, `CPX_PARAM_POPULATELIM`).

In the presence of an objective tolerance specific to the solution pool, as specified either by the relative gap for solution pool parameter (`SolnPoolGap`, `CPX_PARAM_SOLNPOOLGAP`) or by the absolute gap for solution pool parameter (`SolnPoolAGap`, `CPX_PARAM_SOLNPOOLAGAP`), solutions that are generated but then deleted because of the improvement in the best integer value are also counted as replaced.

Accessing information about the solution pool

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Concert Technology</th>
<th>Callable Library</th>
<th>Interactive Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of solutions</td>
<td><code>getSolnPoolNsolns</code></td>
<td><code>CPXgetSolnpoolnumsolns</code></td>
<td><code>display solution pool</code></td>
</tr>
<tr>
<td>Number replaced</td>
<td><code>getSolnPoolNreplaced</code></td>
<td><code>CPXgetSolnpoolnumreplaced</code></td>
<td><code>display solution pool</code></td>
</tr>
<tr>
<td>Arithmetic mean of objective values</td>
<td><code>getSolnPoolMeanObjValue</code></td>
<td><code>CPXgetSolnpoolmeanobjval</code></td>
<td><code>display solution list</code></td>
</tr>
</tbody>
</table>
Accessing a solution in the solution pool

If you want to examine all the solutions available in the solution pool, your application should loop from 0 (zero) to N-1 (that is, one less than the number of solutions in the pool).

To learn the number of solutions in the pool for such a loop, use one of the following methods or routines.

♦ In Concert Technology,
  ● In the C++ API, use the method `IloCplex::getSolnPoolNsolns`.
  ● In the Java API, use the method `IloCplex.getSolnPoolNsolns`.
  ● In the .NET API, use the method `Cplex.GetSolnPoolNsolns`.
♦ In the Callable Library, use the routine `CPXgetsolnpoolnumsolns`.

**Accessing solution information in the solution pool**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Concert Technology</th>
<th>Callable Library</th>
<th>Interactive Optimizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective value</td>
<td><code>getObjValue</code></td>
<td><code>CPXgetsolnpoolobjval</code></td>
<td>display solution member i obj</td>
</tr>
<tr>
<td>Value of variable</td>
<td><code>getValues</code></td>
<td><code>CPXgetsolnpoolx</code></td>
<td>display solution member i var</td>
</tr>
<tr>
<td>Slack in linear constraints</td>
<td><code>getSlacks</code></td>
<td><code>CPXgetsolnpoolslack</code></td>
<td>display solution member i slacks</td>
</tr>
<tr>
<td>Slack in quadratic constraints</td>
<td><code>getSlacks</code></td>
<td><code>CPXgetsolnpoolqconstrslacks</code></td>
<td>display solution member i qcslacks</td>
</tr>
<tr>
<td>Quality</td>
<td><code>getQuality</code></td>
<td><code>CPXgetsolnpoolintquality</code> or <code>CPXgetsolnpooldblquality</code></td>
<td>display solution member i quality</td>
</tr>
<tr>
<td>Difference between solutions</td>
<td>(see Notes)</td>
<td>(see Notes)</td>
<td>display solution difference i j</td>
</tr>
</tbody>
</table>

**Note:** In the Interactive Optimizer, the command
display solution difference 1 2
compares the first and second solution. Likewise, the command
display solution difference 0 2
compares the incumbent and the second solution.

There is no exact equivalent of this difference command in Concert Technology or
the Callable Library. In those APIs, first access the solution vector (for example, in the
C++ API by means of the method `getValues` or in the C API by means of the routine
`CPXgetsolnpoolx`) and then write your own comparison.

For a sample of these methods or routines, see the example in `yourCPLEXhome/examples`
:
♦ `ilopopulate.cpp`
♦ `Populate.java`
♦ `Populate.cs` or `Populate.vb`
♦ `populate.c`
Using solutions from the solution pool

The solutions in the solution pool are available for use in applications or further optimizations. For example, you can write a particular solution from the solution pool to a solution file in SOL format.

♦ In Concert Technology
  • In the C++ API, use `IloCplex::writeSolution`.
  • In the Java API, use `IloCplex.writeSolution`.
  • In the .NET API, use `Cplex.WriteSolution`.

♦ In the Callable library, use the routine `CPXsolwritesolnpool`.

♦ In the Interactive Optimizer, use this command, where `i` represents the index of the solution in the solution pool: `write filename.sol i`

You can also write all the solutions from the solution pool into a single SOL file.

♦ In Concert Technology
  • In the C++ API, use `IloCplex::writeSolutions`.
  • In the Java API, use `IloCplex.writeSolutions`.
  • In the .NET API, use `Cplex.WriteSolutions`.

♦ In the Callable library, use the routine `CPXsolwritesolnpoolall`.

♦ In the Interactive Optimizer, use this command: `write filename.sol all`

Similarly, you can use a solution from the solution pool to change the fixed problem of your MIP model. Only these two types are supported for this change:

♦ `CPXPROB_FIXEDMILP`
♦ `CPXPROB_FIXEDMIQP`

♦ In Concert Technology
  • In the C++ API, use `IloCplex::solveFixed`.
  • In the Java API, use `IloCplex.solveFixed`.
  • In the .NET API, use `Cplex.SolveFixed`.

♦ In the Callable Library (C API), use the routine `CPXchgprobtypesolnpool`.

♦ In the Interactive Optimizer, the following command changes the fixed problem to that of the solution at index `i` in the pool: `change problem fixed i`

The parameter `write level` for MST, SOL files (`WriteLevel`, `CPX_PARAM_WRITELEVEL`), documented in the `CPLEX Parameters Reference Manual`, enables you to specify various levels of information, such as values for only discrete variables, values for all variables, and...
so forth, for CPLEX® to record about a solution when it writes the solution to a formatted file.
Deleting solutions from the solution pool

When the advanced start switch (AdvInd, CPLEX_PARAM_ADVIND) is set to 0 (zero) and a new optimization is started, either by MIP optimization or by populate, all solutions in the solution pool are deleted automatically.

You can also delete solutions yourself from the pool.

♦ In Concert Technology, use the methods:
  ● delSolnPoolSolns in the C++ API.
  ● delSolnPoolSolns(int, int) in the Java API.
  ● Cplex.DelSolnPoolSolns in the .NET API.

♦ In the Callable Library (C API) use the routine CFXdelSolnPoolSolns to delete solutions from the solution pool.

♦ In the Interactive Optimizer, use this command, where $i$ specifies the index of the solution to be deleted: change delete solutions $i$
The incumbent and the solution pool

A copy of the incumbent solution (that is, the best integer solution found relative to the objective function) is always added to the pool, as long as the pool capacity is at least one, regardless of its evaluation with respect to any filters and regardless of the replacement criterion governing the solution pool. This copy of the incumbent solution will be the first member of the solution pool, that is, the solution with index 0 (zero). The incumbent is accessible through queries that use the symbolic value identifying the incumbent.

♦ In the C++ API, use the value IloCplex::IncumbentId as an argument to such methods as IloCplex::getValues, getSlack, getSlacks, getQuality, getObjValue.

♦ In the Java API, use the value IloCplex.IncumbentId as an argument to such methods as IloCplex.getValues, getSlack, getSlacks, getQuality, getObjValue.

♦ In the .NET API, use the value Cplex.IncumbentId as an argument to such methods as Cplex.GetValues, GetSlack, GetSlacks, GetQuality, GetObjValue.

♦ In the Callable Library (C API), use the symbolic value CPX_INCUMBENT_ID as an argument to such routines as, CPXgetsolnpoolx, CPXgetsolnpoolobjval, CPXgetsolnpoolsack, CPXgetsolnpoolqconstrslack, CPXgetsolnpooldbquality, CPXgetsolnpoolintquality, CPXgetsolnpoolsolnname, CPXsolwritesolnpool, CPXchgprobtypesolnpool.

♦ In the Interactive Optimizer use the command display solution member 0 or display solution member incumbent. That is, you can display the incumbent solution by index number or by name.
Parameters of the solution pool

Describes parameters to control the solution pool.

In this section

Which parameters control the solution pool?
Lists parameters to control the solution pool.

Example: quality control through the solution pool gap parameter
Illustrates quality control through the solution pool gap parameter.

Example: few or many solutions through intensity parameter
Illustrates effect of the intensity parameter on the solution pool.

Example: diverse solutions through replacement parameter
Illustrates effect on diversity of the replacement parameter of the solution pool.
Which parameters control the solution pool?

CPLEX® provides parameters to control the solution pool. The table titled *Parameters for the solution pool* summarizes these parameters. *CPLEX Parameters Reference Manual* documents each of these parameters in greater detail.

### Parameters for the solution pool

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Concert parameter</th>
<th>Callable Library parameter</th>
<th>Interactive Optimizer</th>
<th>Parameter Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>SolnPoolIntensity</td>
<td>CPX_PARAM_SOLNPOOLINTENSITY</td>
<td>mip pool intensity</td>
<td>solution pool intensity</td>
</tr>
<tr>
<td>Limit on populate</td>
<td>PopulateLim</td>
<td>CPX_PARAM_POPULATELIM</td>
<td>mip limits populate</td>
<td>maximum number of solutions generated for solution pool by populate</td>
</tr>
<tr>
<td>(number of solutions generated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum capacity</td>
<td>SolnPoolCapacity</td>
<td>CPX_PARAM_SOLNPOOLCAPACITY</td>
<td>mip pool capacity</td>
<td>maximum number of solutions kept in solution pool</td>
</tr>
<tr>
<td>(number of solutions stored)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement strategy</td>
<td>SolnPoolReplace</td>
<td>CPX_PARAM_SOLNPOOLREPLACE</td>
<td>mip pool replace</td>
<td>solution pool replacement strategy</td>
</tr>
<tr>
<td>Relative objective gap</td>
<td>SolnPoolGap</td>
<td>CPX_PARAM_SOLNPOOLGAP</td>
<td>mip pool relgap</td>
<td>relative gap for solution pool</td>
</tr>
<tr>
<td>Absolute objective gap</td>
<td>SolnPoolAGap</td>
<td>CPX_PARAM_SOLNPOOLLAGAP</td>
<td>mip pool absgap</td>
<td>absolute gap for solution pool</td>
</tr>
</tbody>
</table>

The MIP node limit parameter (*NodeLim*, CPX_PARAM_NODELIM) and optimizer time limit parameter (*TiLim*, CPX_PARAM_TILIM) also have an effect on the solution pool, just as they influence MIP optimization generally. For more detail about these parameters, see their entries in the *CPLEX Parameters Reference Manual*. 
Example: quality control through the solution pool gap parameter

In many cases, solutions are interesting only if their objective value is close to the optimal objective value of the model. In that context, you can control the quality of solutions generated and saved in the solution pool with the absolute gap for solution pool parameter (SolnPoolsAGap, CPX_PARAM_SOLNPOLLAGAP) and the relative gap for solution pool parameter (SolnPoolsGap, CPX_PARAM_SOLNPOLLGAP).

To demonstrate this idea, consider again the example cited in Example: simple facility location problem. In order to obtain solutions that are less than 10% worse than the optimal objective value, specify the solution pool relative gap parameter in the Interactive Optimizer like this:

```
read location.lp
set mip pool relgap 0.1
populate
```

Then display the objective value of each solution in the Interactive Optimizer with this command:

```
display solution list *
```

Afterwards, you see that all solutions in the pool are of a cost less than or equal to 548; that is, within 10% of the optimal objective value of 499.
Example: few or many solutions through intensity parameter

Use the solution pool intensity parameter (SolnPoolIntensity, CpxParam_SolnPoolIntensity) to balance the number of solutions generated and the amount of time or memory consumed. Lower intensity values generate fewer solutions, whereas higher intensity values generate more solutions.

If you need many solutions, but do not want to impair performance too greatly, the value 2 (moderate) is a good choice for most models.

For example, the following session in the Interactive Optimizer reads a model in LP format of the Example: simple facility location problem. The session then effectively removes the stopping criterion of the populate limit parameter by setting it very high.

```
read location.lp
set mip limits populate 10000
set mip pool intensity 2
set mip pool relgap 0.1
populate
```

You can see from the log that setting the pool intensity to 2 yields results faster than when populate is called after MIP optimization at the default value of solution pool intensity.

If you set the solution pool intensity parameter to 3 (aggressive) or 4 (very aggressive), then an even larger number of solutions will be produced.

At solution pool intensity 2, a large number of solutions are produced (in this case, 196 solutions, though the precise number of solutions may vary on your platform).

If you set solution pool intensity at 3 instead, populate will generate a greater number of solutions (in this case, 208 solutions).

Likewise, if you set solution pool intensity at 4 instead, a very great number of solutions will be produced and stored in the solution pool, as this setting exhaustively enumerates solutions.

In this small example, the settings 3 and 4 happen to produce the same number of solutions (208), but in general it will not be the case that the two settings have the same effect.
**Example: diverse solutions through replacement parameter**

It is often impractical to manage a very large number of solutions, and in those situations, a smaller set of solutions with different characteristics proves more useful. You can achieve this aim in two steps:

1. Set the solution pool capacity parameter (maximum number of solutions kept in solution pool `SolnPoolCapacity, CPX_PARAM_SOLNPOOLCAPACITY`) to a manageable number, rather than its default value, which is quite large.

2. Set the solution pool replacement strategy (`SolnPoolReplace, CPX_PARAM_SOLNPOOLREPLACE`) to 2: replace least diverse solutions.

These settings make sure that pool capacity will not increase as solutions are added. Instead, solutions will be replaced in the pool according to their diversity if the number of solutions generated exceeds the limited capacity of the pool.

As an example of this idea of using the replacement strategy parameter to control diversity of solutions in the solution pool, consider the following session in the Interactive Optimizer, again reading the model in *Example: simple facility location problem*, setting parameters, and calling populate.

```
read location.lp
set mip pool intensity 2
set mip pool relgap 0.1
set mip pool replace 2
set mip pool capacity 10
set mip limits populate 10000
set time 1
populate
```

Logically, the pool contains only ten solutions now (its capacity) even though more solutions have been generated. The number of solutions that have been generated but are not retained in the pool is reported in the log by the number of solutions replaced.

If you apply a time limit of 10 seconds instead of 1 (one), many more solutions will be generated. That greater number of solutions also leads to greater diversity among the solutions retained in the pool.
Filtering the solution pool

Documents filters of the solution pool. Filters offer a means of controlling properties of the solutions you generate and store.

In this section

What are filters of the solution pool?
Defines filtering of the solution pool.

Diversity filters
Describes diversity filters of the solution pool.

Range filters
Describes range filters of the solution pool.

Filter files
Describes filter files for the solution pool.

Example: controlling properties of solutions with filters
Illustrates filters in use in the solution pool.

Incumbent callback as a filter
Describes the incumbent callback as a filter for the solution pool.
What are filters of the solution pool?

Filtering allows you to control properties of the solutions generated and stored in the solution pool. CPLEX® provides two predefined ways to filter solutions.

♦ If you want to filter solutions based on their difference as compared to a reference solution, use a diversity filter, as explained in Diversity filters.

♦ If you want to filter solutions based on their validity in an additional linear constraint, use a range filter, as explained in Range filters.

Those two ways are practical for most purposes. However, if you require finer control of which solutions to keep and which to eliminate, use an incumbent callback, as explained in Incumbent callback as a filter.

Adding or deleting filters does not affect the solutions already in the pool; new filters are applied only at the next call of MIP optimization or the populate procedure.

Filters are assigned an index number when they are added to the solution pool, and they may be accessed through this index number. Diversity filters and range filters share the same sequence of indices.

To count the number of filters associated with the solution pool, use one of these methods, routines, or commands:

♦ In Concert Technology
  - getNfilters in the C++ API;
  - IloCplex.getNFilters in the Java API;
  - Cplex.GetNFilters in the .NET API.

♦ CFXgetsolnpoolnumfilters in the Callable Library (C API);

To access a filter, use one of these methods, routines, or commands:

♦ Concert Technology offers a method to access each characteristic of a filter; for example, getFilterType, getFilterIndex, getFilterVars, and so forth.

♦ CFXgetsolnpoolrngfilter or CFXgetsolnpooldivfilter in the C API;

To delete a filter, use one of these methods, routines, or commands:

♦ In Concert Technology
  - In the C++ API, use the method IloCplex::delFilter.
  - In the Java API, use the method IloCplex.delFilter.
  - In the .NET API, use the method Cplex.DelFilter.

♦ In the Callable Library (C API), use CPXdelsolnpoolfilters.

♦ In the Interactive Optimizer, use the command change delete filter.
Diversity filters

A diversity filter allows you generate solutions that are similar to (or different from) a set of reference values that you specify for a set of binary variables. In particular, you can use a diversity filter to generate more solutions that are similar to an existing solution or to an existing partial solution. Several diversity filters can be used simultaneously, for example, to generate solutions that share the characteristics of several different solutions.

To create a diversity filter, use one of these methods, routines, or commands.

♦ In Concert Technology

- In the C++ API, use the method IloCplex::addDiversityFilter to add a diversity filter to the invoking IloCplex object.
- In the Java API, use the method IloCplex.addDiversityFilter to add a diversity filter to the invoking IloCplex object.
- In the .NET API, use the method Cplex.AddDiversityFilter to add a diversity filter to the invoking Cplex object.

♦ In the Callable Library (C API), use the routine CPXaddsolnpooldivfilter, passing the reference values, variables of interest, and weights as arguments; or, use your favorite text editor to create a file formatted according to the specifications in FLT file format: filter files for the solution pool, and then install the contents of that file with the routine CPXreadcopyssolnpoolfilters.

♦ In the Interactive Optimizer, use your favorite text editor to create a file formatted according to the specifications in FLT file format: filter files for the solution pool; then install the contents of that formatted file with the command: read filename flt

For greater detail about the characteristics of diversity filters and reference sets, see the documentation of those methods and routine in the Reference Manuals of the APIs. For an example of a filter in use, see Example: controlling properties of solutions with filters.
Range filters

A range filter allows you to generate solutions that obey a new constraint, specified as a linear expression within a range.

The difference between adding a range filter and adding a linear constraint directly to the model is that you can add range filters without losing information computed in previous invocations of MIP optimization or populate and store in the search space. In contrast, if you change the model directly by adding constraints, the next call of optimize or populate will discard previous information and restart from scratch on the changed model.

Range filters can be used to express diversity constraints that are more complex than the standard form implemented by diversity filters. In particular, range filters also apply to general integer variables, semi-integer variables, continuous variables, and semi-continuous variables, not just to binary variables.

To create a range filter, use one of the following methods, routines, or commands.

♦ In Concert Technology

- In the C++ API, use the method `IloCplex::addRangeFilter` to add the range filter to the invoking instance of `IloCplex`.

- In the Java API, use the method `IloCplex.addRangeFilter` to add the range filter to the invoking instance of `IloCplex`.

- In the .NET API, use the method `Cplex.AddRangeFilter` to add the range filter to the invoking instance of `Cplex`.

♦ In the Callable Library (C API), use the routine `CPXaddsolnpoolrngfilter`, passing a linear constraint and range as arguments; or, use your favorite text editor to create a file formatted according to the specifications in FLT file format: filter files for the solution pool, and then install the contents of that file with the routine `CPXreadcopy_solnpoolfilters`.

♦ In the Interactive Optimizer, use your favorite text editor to create a file formatted according to the specifications in FLT file format: filter files for the solution pool; then install the contents of that formatted file with the command: `read filename.flt`.

For more detail about the characteristics of range filters, see the documentation of those methods and routine in the Reference Manuals of the APIs. For an example of a filter in use, see Example: controlling properties of solutions with filters.
Filter files

You can store filters in a file, known as a filter file, distinguished by the file extension .flt. The same filter file can contain several filters, including both diversity filters and range filters. For documentation of the format of a filter file, see FLT file format: filter files for the solution pool in the CPLEX File Formats Reference Manual.

To create filters, use your favorite text editor to create a file formatted according to the specifications in FLT file format: filter files for the solution pool.

To install filters declared in a filter file, use one of these methods, routines, or commands:

♦ In Concert Technology, use the methods:
  ● IloCplex::readFilters
  ● IloCplex.readFilters
  ● Cplex.ReadFilters

♦ In the Callable Library (C API), use the routine CPXreadcopiesolnpoolfilters to add diversity or range filters.

♦ In the Interactive Optimizer, use the read command to import a filter file.

To write existing filters to a formatted file (for example, for re-use later), use these methods, routines, or commands:

♦ In Concert Technology, use the methods:
  ● writeFilters in the C++ API;
  ● writeFilters(String) in the Java API;
  ● Cplex.WriteFilters in the .NET API.

♦ In the Callable Library (C API), use the routine CPXfltwrite.

♦ In the Interactive Optimizer, use the write command with the file type option flt to create a filter file of the filters currently associated with the solution pool. For example, the following command creates a file named filename.flt containing the filters associated with the solution pool: write filename flt
Example: controlling properties of solutions with filters

The model in Example: simple facility location problem has two categories of variables. The $x$ variables specifying the facilities to open are of a higher decision level than the $y$ variables deciding how the goods are shipped from facilities to regions. Suppose, for example, that you want to populate the solution pool with solutions that differ by which facilities are opened, without specifying any specific criteria for the shipping decisions. The replacement strategy (shown in Example: diverse solutions through replacement parameter) does not allow you to specify a customized diversity measure that takes into account only a subset of the variables. However, this diversity measure expressed only over the $x$ variables can be enforced through a diversity filter.

Suppose further that facilities 1 and 2 are open. Let a solution keeping those two facilities open be the reference; that is, the reference value for $x_1$ is 1 (one), for $x_2$ is 1 (one), for $x_3$ is 0 (zero), for $x_4$ is 0 (zero). Then use a diversity filter to stipulate that any solution added to the solution pool must differ from the reference by decisions to open or close at least two other facilities. The following filter file enforces this diversity by giving each $x$ variable a weight of 1.0 and specifying a minimum diversity of 2 and unlimited maximum diversity (that is, infinity). In other words, this diversity filter makes sure that solutions satisfy the following constraint:

$$2 \leq 1.0 \cdot |x_1 - 1| + 1.0 \cdot |x_2 - 1| + 1.0 \cdot |x_3 - 0| + 1.0 \cdot |x_4 - 0| \leq \infty$$

The $y$ variables are not specified in the filter; hence, they are not taken into account in the diversification.

```plaintext
NAME location
DIVFILTER f1 2 inf
x1 1.0 1
x2 1.0 1
x3 1.0 0
x4 1.0 0
ENDATA
```

Range filters also enforce additional constraints. Suppose, for example, that you want to limit transportation costs to less than fixed costs. The following range filter enforces this restriction by expressing the linear constraint:

$$-\infty \leq 1.0 \cdot transport - 1.0 \cdot fixed \leq 0$$

```plaintext
NAME location
RNGFILTER f2 -inf 0
transport 1.0
fixed -1.0
ENDATA
```
Incumbent callback as a filter

If you need to enforce more complex constraints on solutions (if you need to enforce nonlinear constraints, for example), you can use the incumbent callback in Concert Technology or the Callable Library. During the populate procedure, the incumbent callback is called each time a new solution is found, even if the new solution does not improve the objective value of the incumbent. The incumbent callback allows your application to accept or reject the new solution based on your own criteria.

Bear in mind that the incumbent callback disables dynamic search. At default parameter settings, the incumbent callback, as a control callback, also disables deterministic parallel MIP optimization (if your application is licensed for parallel MIP optimization) though you can override this default behavior by setting the parallel mode switch (ParallelMode, CPX_PARAM_PARALLELMODE) yourself. For more about dynamic search, see Branch & cut or dynamic search?. For more about parallel MIP optimization, see Parallel MIP optimizer.

To create an incumbent callback, use the following methods or routine:

♦ In Concert Technology:

- In the C++ API, derive a subclass of IloCplex::IncumbentCallbackI, the implementation class documented in the reference manual. Use your user-defined subclass according to the instructions in the parent class IloCplex::CallbackI.

- In the Java API, implement a subclass of IloCplex.IncumbentCallback. Use it as documented in the parent class IloCplex.Callback.

- In the .NET API, implement a subclass of Cplex.IncumbentCallback. Use it as documented in the parent class Cplex.Callback.

♦ In the Callable Library (C API), use the routine CPXsetincumbentcallbackfunc.

Callbacks typically demand a profound understanding of the algorithms used by CPLEX®. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be difficult to debug. For more information, please read Using optimization callbacks and Advanced MIP control interface.
Using special ordered sets (SOS)

Describes special ordered sets (SOSs) in a model as a way to specify integrality conditions.

In this section

What is a special ordered set (SOS)?
Defines a special ordered set, explains its purpose, and describes its effect.

Example: SOS Type 1 for sizing a warehouse
Illustrates special ordered sets in a warehouse example.

Declaring SOS members
Describes routines and methods for declaring a special ordered set.

Example: using SOS and priority
Illustrates how to integrate priority orders with a special ordered set.
What is a special ordered set (SOS)?

A special ordered set (SOS) is an additional way to specify integrality conditions in a model. In particular, a special ordered set is a way to restrict the number of nonzero solution values among a specified set of variables in a model. There are various types of SOS:

- **SOS Type 1** is a set of variables where at most one variable may be nonzero.
- **SOS Type 2** is a set of variables where at most two variables may be nonzero. If two variables are nonzero, they must be adjacent in the set.

The members of a special ordered set (SOS) individually may be continuous or discrete variables in any combination. However, even when all the members are themselves continuous, a model containing one or more special ordered sets (SOSs) becomes a discrete optimization problem requiring the mixed integer optimizer for its solution.

IBM® ILOG® CPLEX® uses special branching strategies to take advantage of SOSs. For many classes of problems, these branching strategies can significantly improve performance. These special branching strategies depend upon the order among the variables in the set. The order is specified by assigning weights to each variable. The order of the variables in the model (such as in the MPS or LP format data file, or the column index in a Callable Library application) is not used in SOS branching. If there is no ordered relationship among the variables (such that weights cannot be specified or would not be meaningful), other formulations should be used instead of a special ordered set.
Example: SOS Type 1 for sizing a warehouse

To give you a feel for how SOSs can be useful, here’s an example of an SOS Type 1 used to choose the size of a warehouse. Assume for this example that a warehouse of 10000, 20000, 40000, or 50000 square feet can be built. Define binary variables for the four sizes, say, x1, x2, x4, and x5. Connect these variables by a constraint defining another variable to denote available square feet, like this: z - 10000x1 - 20000x2 - 40000x4 - 50000x5 = 0.

Those four variables are members of a special ordered set. Only one size can be chosen for the warehouse; that is, at most one of the x variables can be nonzero in the solution. And, there is an order relationship among the x variables (namely, the sizes) that can be used as weights. Then the weights of the set members are 10000, 20000, 40000, and 50000.

Assume furthermore that there is a known fractional (that is, noninteger) solution of x1 = 0.1, x5 = 0.9. These values indicate that other parts of the model have imposed the requirement of 46000 square feet since 0.1*10000 + 0.9*50000 = 46000. In SOS parlance, the weighted average of the set is (0.1*10000 + 0.9*50000)/(0.1 + 0.9) = 46000.

Split the set before the variable with weight exceeding the weighted average. In this case, split the set like this: x1, x2, and x4 will be in one subset; x5 in the other.

Now branch. One branch restricts x1, x2, x4 to 0 (zero). This branch results in x5 being set to 1 (one).

The other branch, where x5 is set to 0 (zero), results in an infeasible solution, so it is removed from further consideration.

If a warehouse must be built, then the additional constraint is needed that x1 + x2 + x4 + x5 = 1. The implicit constraint for an SOS Type 1 is less than or equal to one. The continuous relaxation may more closely resemble the MIP if that constraint is added.
Declarating SOS members

CPLEX® offers you several ways to declare an SOS in a problem:

♦ Use features of Concert Technology.
  - In the C++ API, use the classes IloSOS1, IloSOS2, or the methods IloCplex::addSOS1 or addSOS2.
  - In the Java API, use the interfaces IloSOS1 or IloSOS2, or use the methods IloCplex.addSOS1 or addSOS2.
  - In the .NET API, use the interfaces ISOS1 or ISOS2, or use the methods CplexModeler.AddSOS1 or CplexModeler.AddSOS2.

♦ Use routines from the Callable Library, such as CPXaddssos or CPXcopyssos.

♦ Use SOS declarations within an LP file (that is, one in LP format with the file extension .lp). Conventions for declaring SOS information in LP files are documented in the CPLEX File Format Reference Manual.

♦ Use SOS declarations within an MPS file (that is, one in MPS format with the file extension .mps). If you already have MPS files with SOS information, you may prefer this option, but keep in mind that this way of declaring an SOS supports the fewest number of digits of precision in the data. Conventions for declaring SOS information in MPS files are documented in the CPLEX File Format Reference Manual.

Members of an SOS should be given unique weights that in turn define the order of the variables in the set. (These unique weights are also called reference row values.) Each of those ways of declaring SOS members allows you to specify weights.

The SOS example, Example: SOS Type 1 for sizing a warehouse, used the coefficients of the warehouse capacity constraint to assign weights.
Example: using SOS and priority

Illustrates how to integrate priority orders with a special ordered set.

In this section

ilomipex3.cpp
Illustrates priority orders and a special ordered set in the C++ API.

mipex3.c
Illustrates priority orders and a special ordered set in the C API.
This example derives from ilomipex1.cpp. The differences between that simpler MIP example and this one are:

♦ The problem solved is slightly different so the output is interesting. The actual SOS and priority order that the example implements are arbitrary; they do not necessarily represent good data for this problem.

♦ The routine setPriorities sets the priority order.
This example derives from mipex1.c. The differences between that simpler MIP example and this one are:

♦ The problem solved is slightly different so the output is interesting. The actual SOS and priority order that the example implements are arbitrary; they do not necessarily represent good data for this problem.

♦ The CPLEX® preprocessing parameters for the presolver and aggregator are turned off to make the output interesting. Generally, this is not required nor recommended.

♦ The routine setsosandorder sets the SOS and priority order:
  ● It calls CPXcopySOS to copy the SOS into the problem object.
  ● It calls CPXcopyorder to copy the priority order into the problem object.
  ● It writes the priority order to files by calling CPXordwrite.

♦ The routine CPXwriteprob writes the problem with the constraints and SOSs to disk before the example copies the SOS and priority order to verify that the base problem was copied correctly.
Using semi-continuous variables: a rates example

Demonstrates semi-continuous variables in Concert Technology in an example of managing production in a power plant.

In this section

What are semi-continuous variables?
Defines semi-continuous variables.

Describing the problem
Describes a power plant to illustrate a model with semi-continuous variables.

Representing the problem
Identifies salient features of the model with semi-continuous variables.

Building a model
Describes the application to solve a model with semi-continuous variables.

Solving the problem
Describes activity in the application.

Ending the application
Describes memory management in the application.

Complete program
Identifies location of the sample application in the C++ API and other APIs as well.
What are semi-continuous variables?

A semi-continuous variable is a variable that by default can take the value 0 (zero) or any value between its semi-continuous lower bound (sclb) and its upper bound (ub). The semi-continuous lower bound (sclb) must be finite. The upper bound (ub) need not be finite. The semi-continuous lower bound (sclb) must be greater than or equal to 0 (zero). An attempt to use a negative value for the semi-continuous lower bound (sclb) will result in that bound being treated as 0 (zero).

In Concert Technology, semi-continuous variables are represented by the class IloSemiContVar. To create a semi-continuous variable, you use the constructor from that class to specify the environment, the semi-continuous lower bound, and the upper bound of the variable, like this:

```cpp
IloSemiContVar mySCV(env, 1.0, 3.0);
```

That statement creates a semi-continuous variable with a semi-continuous lower bound of 1.0 and an upper bound of 3.0. The method IloSemiContVar::getSemiContinuousLB returns the semi-continuous lower bound of the invoking variable, and the method IloSemiContVar::getUB returns the upper bound. That class, its constructors, and its methods are documented in the CPLEX C++ API Reference Manual.

In that manual, you will see that IloSemiContVar derives from IloNumVar, the Concert Technology class for numeric variables. Like other numeric variables, semi-continuous variables assume floating-point values by default (type ILOFLOAT). However, you can designate a semi-continuous variable as integer (type ILOINT). In that case, it is a semi-integer variable.

For details about the feasible region of a semi-continuous or semi-integer variable, see the documentation of IloSemiContVar in the CPLEX C++ API Reference Manual.

In the Callable Library, semi-continuous variables can be entered with type CPX_SEMICONT or CPX_SEMIINT via the routine CPXcopyctype. In that case, the lower bound of 0 (zero) is implied; the semi-continuous lower bound is defined by the corresponding entry in the array of lower bounds; and likewise, the semi-continuous upper bound is defined by the corresponding entry in the array of upper bounds of the problem.

Semi-continuous variables can be specified in MPS and LP files. Stating a MIP problem tells you how to specify variables as semi-continuous.
Describing the problem

With this background about semi-continuous variables, consider an example using them. Assume that you are managing a power plant of several generators. Each of the generators may be on or off (producing or not producing power). When a generator is on, it produces power between its minimum and maximum level, and each generator has its own minimum and maximum levels. The cost for producing a unit of output differs for each generator as well. The aim of the problem is to satisfy demand for power while minimizing cost in the best way possible.
Representing the problem

As input for this example, you need such data as the minimum and maximum output level for each generator. The application will use Concert Technology arrays `minArray` and `maxArray` for that data. It will read data from a file into these arrays, and then learn their length (that is, the number of generators available) by calling the method `getSize`.

The application also needs to know the cost per unit of output for each generator. Again, a Concert Technology array, `cost`, serves that purpose as the application reads data in from a file with the operator `>>`.

The application also needs to know the demand for power, represented as a numeric variable, `demand`. 
Building a model

After the application creates an environment and a model in that environment, it is ready to populate the model with extractable objects pertinent to the problem.

It represents the production level of each generator as a semi-continuous variable. In that way, with the value 0 (zero), the application can accommodate whether the generator is on or off; with the semi-continuous lower bound of each variable, it can indicate the minimum level of output from each generator; and indicate the maximum level of output for each generator by the upper bound of its semi-continuous variable. The following lines create the array `production` of semi-continuous variables (one for each generator), like this:

```cpp
IloNumVarArray production(env);
for (IloInt j = 0; j < generators; ++j)
 production.add(IloSemiContVar(env, minArray[j], maxArray[j]));
```

The application adds an objective to the model to minimize production costs in this way:

```cpp
mdl.add(IloMinimize(env, IloScalProd(cost, production)));
```

It also adds a constraint to the model: it must meet demand.

```cpp
mdl.add(IloSum(production) >= demand);
```

With that model, now the application is ready to create an algorithm (in this case, an instance of `IloCplex`) and extract the model.
Solving the problem

To solve the problem, create the algorithm, extract the model, and solve.

```java
if (cplex.solve()) {
```
Ending the application

As in all C++ CPLEX® applications, this program ends with a call to IloEnv::end to de-allocate the model and algorithm after they are no longer in use.

```
env.end();
```
Complete program

You can see the entire program online in the standard distribution of CPLEX® at yourCPLEXinstallation/examples/src/rates.cpp. To run that example, you need a license for CPLEX®.

You will also find Rates.java in yourCPLEXinstallation/examples/src/. If your installation includes the .NET API of CPLEX®, then you will also find the C#.NET implementation of this example in Rates.cs and the VB.NET implementation in Rates.vb.
Using piecewise linear functions in optimization: a transport example

Demonstrates the use of piecewise linear functions to solve a transportation problem.

In this section

What is a piecewise linear function?
Defines a piecewise linear function.

Syntax of piecewise linear functions
Describes the syntax to represent a piecewise linear function.

Discontinuous piecewise linear functions
Defines a discontinuous piecewise linear function.

Isolated points in piecewise linear functions
Defines an isolated point in a piecewise linear function.

Using IloPiecewiseLinear in expressions
Describes a piecewise linear function as an expression.

Describing the problem
Demonstrates a problem for which piecewise linear functions are suitable.

Developing a model
Describes an application using piecewise linear functions.
Solving the problem
Describes activity in the application.

Displaying a solution
Describes display of the solution from the application.

Ending the application
Describes memory management in the application.

Complete program: transport.cpp
Tells where the sample application in C++ is located and where to find variations in other APIs.
What is a piecewise linear function?

Some problems are most naturally represented by constraints over functions that are not purely linear but consist of linear segments. Such functions are also known as *piecewise linear*. In this topic, a transportation example shows you various ways of stating and solving problems that lend themselves to a piecewise linear model. Before plunging into the problem itself, this section defines a few terms appearing in this discussion.

From a geometric point of view, a *piecewise linear function with breakpoints* shows a conventional piecewise linear function $f(x)$. This particular function consists of four segments. If you consider the function over four separate intervals, $(-\infty, 4)$ and $[4, 5)$ and $[5, 7)$ and $[7, \infty)$, you see that $f(x)$ is linear in each of those separate intervals. For that reason, it is said to be piecewise linear. Within each of those segments, the slope of the linear function is clearly constant, though it is different between segments. The points where the slope of the function changes are known as breakpoints. The piecewise linear function in a *piecewise linear function with breakpoints* has three breakpoints.

![A piecewise linear function with breakpoints](image)

Piecewise linear functions are often used to represent or to approximate nonlinear unary functions (that is, nonlinear functions of one variable). For example, piecewise linear functions frequently represent situations where costs vary with respect to quantity or gains vary over time.
Syntax of piecewise linear functions

To define a piecewise linear function in Concert Technology, you need these components:

♦ the independent variable of the piecewise linear function;
♦ the breakpoints of the piecewise linear function;
♦ the slope of each segment (that is, the rate of increase or decrease of the function between two breakpoints);
♦ the geometric coordinates of at least one point of the function.

In other words, for a piecewise linear function of \( n \) breakpoints, you need to know \( n+1 \) slopes.

Typically, the breakpoints of a piecewise linear function are specified as an array of numeric values. For example, the breakpoints of the function \( f(x) \) as it appears in A piecewise linear function with breakpoints are specified in this way, where the first argument, \( \text{env} \), specifies the environment, the second argument specifies the number of breakpoints under consideration, and the remaining arguments specify the x-coordinate of the breakpoints:

\[
\text{IloNumArray (env, 3, 4., 5., 7.)}
\]

The slopes of its segments are indicated as an array of numeric values as well. For example, the slopes of \( f(x) \) are specified in this way, where the first argument again specifies the environment, the second argument specifies the number of slopes given, and the remaining arguments specify the slope of the segments:

\[
\text{IloNumArray (env, 4, -0.5, 1., -1., 2.)}
\]

The geometric coordinates of at least one point of the function, \((x, f(x))\) must also be specified; for example, \((4, 2)\). Then in Concert Technology, those elements are brought together in an instance of the class \text{IloPiecewiseLinear} in this way:

\[
\text{IloPiecewiseLinear(x,}
\begin{align*}
\text{IloNumArray(env, 3, 4., 5., 7.),} \\
\text{IloNumArray(env, 4, -0.5, 1., -1., 2.),} \\
4, 2)
\end{align*}
\]

Another way to specify a piecewise linear function is to give the slope of the first segment, two arrays for the coordinates of the breakpoints, and the slope of the last segment. In this approach, the example \( f(x) \) from A piecewise linear function with breakpoints looks like this:

\[
\text{IloPiecewiseLinear(x, -0.5, IloNumArray(env, 3, 4., 5., 7.),} \\
\text{IloNumArray(env, 3, 2., 3., 1.), 2);}\
\]
It may help you understand the signatures of these functions to recall the familiar Cartesian representation of a line or segment in two dimensions, $x$ and $y$:

$$y = ax + b$$

where $a$ represents the slope of the line or segment and $b$ represents the height at which the line theoretically crosses the $y$-axis at the point $(0, b)$. 

**Note:**
Discontinuous piecewise linear functions

Thus far, you have seen a piecewise linear function where the segments are continuous. Intuitively, in a continuous piecewise linear function, the endpoint of one segment has the same coordinates as the initial point of the next segment, as in the figure A piecewise linear function with breakpoints. One way of defining a continuous piecewise linear function is by specifying its breakpoints and the slope of each segment. Those specification breakpoints are also known as the anchors of their segments.

There are piecewise linear functions, however, where the endpoint of one segment and the initial point of the next segment may have the same \( x \) coordinate but differ in the value of \( f(x) \). Such a difference is known as a step in the piecewise linear function, and such a function is known as discontinuous. The figure A discontinuous piecewise linear function with steps shows a discontinuous piecewise linear function with two steps.

**Tip:** When the anchor of a segment resides at a step, then the discontinuous piecewise linear function is not uniquely defined by specifying its breakpoints and the slopes of its segments. In contrast, as long as the anchor point resides elsewhere, rather than at a step, one can specify a discontinuous piecewise linear function by its breakpoints and slopes as one specifies a continuous piecewise linear function.

Syntactically, a step is represented in this way:

- The \( x \)-coordinate of the breakpoint where the step occurs is repeated in the array of the breakpoint.

- The value of the first point of a step in the array of slopes is the height of the step. This value replaces the undefined slope of the vertical line associated with the discontinuous step.

- The value of the second point of the step in the array of slopes is the slope of the function after the step.

Concert Technology also supports discontinuous piecewise linear functions specified by the \( x \)-coordinate of the breakpoints and their associated function values, along with the slopes of the first and last segments. This additional information uniquely defines the function. At a step, the value of the \( x \)-coordinate appears twice in the breakpoint array of the specification. The function values associated with the bottom and top of the step appear in the corresponding entries of the values array.

By convention, a breakpoint belongs in both segments associated with the step. For example, in the figure A discontinuous piecewise linear function with steps, at the breakpoint \( x=3 \), the points \((3,1)\) and \((3,3)\) are both admissible. Similarly, when \( x = 5 \), the points \((5,4)\) and \((5,5)\) are both admissible.

However, isolated points, as explained in Isolated points in piecewise linear functions, are not allowed, neither in continuous nor in discontinuous piecewise linear functions. In fact, only one step is allowed at a given point.

In Concert Technology, a discontinuous piecewise linear function is represented by the overloaded function `IloPiecewiseLinear`. For example, the function in A discontinuous
piecewise linear function with steps is declared in this way, with the discontinuous step values (2 and 1) highlighted:

```
IloPiecewiseLinear(x,
 IloNumArray(env, 4, 3., 3., 5., 5.),
 IloNumArray(env, 5, 0., 2., 0.5, 1., -1.),
 0, 1);
```

The anchor point of (0,1) specified as the last two arguments does not reside at a discontinuity in that example.

Similarly, one can specify the same discontinuous piecewise linear function using breakpoints and values by providing the slope of the segment preceding the first break point, arrays of the breakpoints and associated function values, and the slope of the segment following the last breakpoint, like this:

```
IloPiecewiseLinear(x, 0.,
 IloNumArray(env, 4, 3., 3., 5., 5.),
 IloNumArray(env, 4, 1., 3., 4., 5.),
 -1.);
```

A discontinuous piecewise linear function with steps

---

**Note**: It may help to understand the signature of the function in this example to recall that in Cartesian coordinates, the slope of a horizontal line (that is, a line or segment parallel to the x-axis) is 0 (zero), and the slope of a vertical line (that is, a line or segment parallel to the y-axis) is undefined in the conventional representation:

\[ y = ax + b \]
In the signature of the function, the undefined slope of the vertical segment at the point of discontinuity is represented as the height of the step.
Isolated points in piecewise linear functions

When you specify the same point more than twice as you declare a piecewise linear function, you inadvertently create an **isolated point**. IBM® ILOG® CPLEX® does **not** support isolated points. When it encounters an isolated point in the declaration of a piecewise linear function, CPLEX® issues a warning and ignores the isolated point. An isolated point may appear as a visible point in the graph of a discontinuous piecewise linear function. For example, the point \((3, 2)\) would be an isolated point in a *discontinuous piecewise linear function with steps* and consequently ignored by CPLEX®. Isolated points may also be less conspicuously visible; for example, if the height of a step in a discontinuous piecewise linear function is 0 (zero), the isolated point overlaps with an endpoint of two other segments, and consequently, the isolated point will be ignored by CPLEX®.
Using IloPiecewiseLinear in expressions

Whether it represents a continuous or a discontinuous piecewise linear function, an instance of IloPiecewiseLinear behaves like a floating-point expression. That is, you may use it in a term of a linear expression or in a constraint added to a model (an instance of IloModel).
Describing the problem

Demonstrates a problem for which piecewise linear functions are suitable.

In this section

Problem statement
Describes a model using piecewise linear functions.

Variable shipping costs
Distinguishes convex from concave piecewise linear functions.

Model with varying costs
Describes syntax to represent varying costs in the model.
Problem statement

Assume that a company must ship cars from factories to showrooms. Each factory can supply a fixed number of cars, and each showroom needs a fixed number of cars. There is a cost for shipping a car from a given factory to a given showroom. The objective is to minimize the total shipping cost while satisfying the demands and respecting supply.

In concrete terms, assume there are three factories and four showrooms. Here is the quantity that each factory can supply:

```
supply0 = 1000
supply1 = 850
supply2 = 1250
```

Each showroom has a fixed demand:

```
demand0 = 900
demand1 = 1200
demand2 = 600
demand3 = 400
```

Let $\text{nbSupply}$ be the number of factories and $\text{nbDemand}$ be the number of showrooms. Let $x_{ij}$ be the number of cars shipped from factory $i$ to showroom $j$. The model is composed of $\text{nbDemand} + \text{nbSupply}$ constraints that force all demands to be satisfied and all supplies to be shipped. Thus far, a model for our problem looks like this:

Minimize

$$
\sum_{i=0}^{\text{nbDemand}-1} \sum_{j=0}^{\text{nbSupply}-1} c_{ij} x_{ij}
$$

subject to

$$
\sum_{i=0}^{\text{nbSupply}-1} x_{ij} = \text{supply}_i \quad i = 0, ..., \text{nbDemand} - 1
$$

$$
\sum_{i=0}^{\text{nbDemand}-1} x_{ij} = \text{demand}_j \quad j = 0, ..., \text{nbSupply} - 1
$$
Variable shipping costs

Now consider the costs of shipping from a given factory to a given showroom. Assume that for every pair (factory, showroom), there are different rates, varying according to the quantity shipped. To illustrate the difference between convex and concave piecewise linear functions, in fact, this example assumes that there are two different tables of rates for shipping cars from factories to showrooms. The first table of rates looks like this:

- a rate of 120 per car for quantities between 0 and 200;
- a rate of 80 per car for quantities between 200 and 400;
- a rate of 50 per car for quantities higher than 400.

These costs that vary according to quantity define the piecewise linear function represented in a concave piecewise linear cost function. As you see, the slopes of the segments of that function are decreasing, so that function is concave.

![A concave piecewise linear cost function](image)

Also assume that there is a second table of rates for shipping cars from factories to showrooms. The second table of rates looks like this:

- a rate of 30 per car for quantities between 0 and 200;
- a rate of 80 per car for quantities between 200 and 400;
- a rate of 130 per car for quantities higher than 400.

The costs in this second table of rates that vary according to the quantity of cars shipped define a piecewise linear function, too. It appears in a convex piecewise linear cost function. The slopes of the segments in this second piecewise linear function are increasing, so this function is convex.
A convex piecewise linear cost function
Model with varying costs

With this additional consideration about costs varying according to quantity, our model now looks like this:

Minimize

$$\sum_{i=0}^{nbDemand-1} \sum_{j=0}^{nbSupply-1} y_{ij}$$

subject to

$$y_{ij} = f(x_{ij}) \text{ for } i = 0, ..., nbDemand-1 \text{ and } j = 0, ..., nbSupply-1$$

$$\sum_{j=0}^{nbSupply-1} x_{ij} = demand_i \text{ for } i = 0, ..., nbDemand - 1$$

$$\sum_{i=0}^{nbDemand-1} x_{ij} = supply_j \text{ for } j = 0, ..., nbSupply - 1$$

With this problem in mind, consider how to represent the data and model in Concert Technology.
Describes an application using piecewise linear functions.

In this section

Creating the environment and model
Describes creation of the environment and model in the application.

Representing the data
Describes populating the model with data.

Adding constraints
Describes adding constraints in the application.

Checking convexity and concavity
Describes data checking in the application to detect convexity and concavity.

Adding an objective
Describes adding an objective function to the application.
Creating the environment and model

As in other examples in this manual, this application begins by creating an environment, an instance of `IloEnv`.

```c++
IloEnv env;
```

Within that environment, a model for this problem is created as an instance of `IloModel`.

```c++
IloModel model(env);
```

Then constraints and an objective are added to the model. The following sections sketch these steps.
Representing the data

As in other examples, the template class `IloArray` appears in a type definition to create matrices for this problem, like this:

```cpp
typedef IloArray<IloNumArray> NumMatrix;
typedef IloArray<IloNumVarArray> NumVarMatrix;
```

Those two-dimensional arrays (that is, arrays of arrays) are now available in the application to represent the demands from the showrooms and the supplies available from the factories.

```cpp
IloInt nbDemand = 4;
IloInt nbSupply = 3;
IloNumArray supply(env, nbSupply, 1000., 850., 1250.);
IloNumArray demand(env, nbDemand, 900., 1200., 600., 400.);

NumVarMatrix x(env, nbSupply);
NumVarMatrix y(env, nbSupply);
for(i = 0; i < nbSupply; i++) {
 x[i] = IloNumVarArray(env, nbDemand, 0, IloInfinity, ILOFLOAT);
 y[i] = IloNumVarArray(env, nbDemand, 0, IloInfinity, ILOFLOAT);
}
```
According to the description of the problem, the supply of cars from the factories must meet the demand of the showrooms. At the same time, it is important not to ship cars that are not in demand; in terms of this model, the demand should meet the supply as well. Those ideas are represented as constraints added to the model, like this:

```cpp
for(i = 0; i < nbSupply; i++) { // supply must meet demand
 model.add(IloSum(x[i]) == supply[i]);
}
for(j = 0; j < nbDemand; j++) { // demand must meet supply
 IloExpr v(env);
 for(i = 0; i < nbSupply; i++)
 v += x[i][j];
 model.add(v == demand[j]);
 v.end();
}
```
Checking convexity and concavity

To illustrate the ideas of convex and concave piecewise linear functions, two tables of costs that vary according to the quantity of cars shipped were introduced in the problem description. To accommodate those two tables in the model, the following lines are added.

```cpp
if (convex) {
 for(i = 0; i < nbSupply; i++){
 for(j = 0; j < nbDemand; j++){
 model.add(y[i][j] == IloPiecewiseLinear(x[i][j],
 IloNumArray(env, 2, 200.0, 400.0),
 IloNumArray(env, 3, 30.0, 80.0, 130.0),
 0),
 0.0, 0.0));
 }
 }
} else {
 for(i = 0; i < nbSupply; i++){
 for(j = 0; j < nbDemand; j++){
 model.add(y[i][j] == IloPiecewiseLinear(x[i][j],
 IloNumArray(env, 2, 200.0, 400.0),
 IloNumArray(env, 3, 120.0, 80.0, 50.0),
 0),
 0.0, 0.0));
 }
 }
}
```
Adding an objective

The objective is to minimize costs of supplying cars from factories to showrooms. It is added to the model in these lines:

```cplex
IloExpr obj(env);
for(i = 0; i < nbSupply; i++){
 obj += IloSum(y[i]);
}
model.add(IloMinimize(env, obj));
obj.end();
```
Solving the problem

The following lines create an algorithm (an instance of IloCplex) in an environment (an instance of IloEnv) and extract the model (an instance of IloModel) for that algorithm to find a solution.

```cpp
IloCplex cplex(env);
cplex.extract(model);
cplex.exportModel("transport.lp");
cplex.solve();
```
Displaying a solution

To display the solution, use the methods of IloEnv and IloCplex.

```cpp
env.out() << "- Solution: " << endl;
for(i = 0; i < nbSupply; i++){
 env.out() << " " << i << ": ";
 for(j = 0; j < nbDemand; j++){
 env.out() << cplex.getValue(x[i][j]) << "\t";
 }
 env.out() << endl;
}
env.out() << " Cost = " << cplex.getObjValue() << endl;
```
Ending the application

As in other C++ examples in this manual, the application ends with a call to the method IloEnv::end to clean up the memory allocated for the environment and algorithm.

```cpp
env.end();
```
Complete program: transport.cpp

You can see the complete program online in the standard distribution of CPLEX® at youCPLEXinstallation/examples/src/transport.cpp. To run this example, you need a license for CPLEX®.

You will also find Transport.java in yourCPLEXinstallation/examples/src/. If your installation includes the .NET API of CPLEX®, then you will also find the C#.NET implementation of this example in Transport.cs and the VB.NET implementation in Transport.vb.
Logical constraints in optimization

Describes logical constraints in CPLEX® with Concert Technology.

In this section

What are logical constraints?
Defines logical constraints.

What can be extracted from a model with logical constraints?
Documents the logical constraints available in each API.

Which nonlinear expressions can be extracted?
Describes certain nonlinear expressions as logical constraints.

Logical constraints for counting
Describes cardinality (counting) as a logical constraint.

Logical constraints as binary variables
Describes logical constraints as terms in expressions.

How are logical constraints extracted?
Describes extraction of logical constraints as indicators.
What are logical constraints?

For IBM® ILOG® CPLEX®, a logical constraint combines linear constraints by means of logical operators, such as logical-and, logical-or, negation (that is, not), conditional statements (that is, if ... then ...) to express complex relations between linear constraints. CPLEX® can also handle certain logical expressions appearing within a linear constraint. One such logical expression is the minimum of a set of variables. Another such logical expression is the absolute value of a variable. There’s more about logical expressions in Which nonlinear expressions can be extracted?.

Concert Technology can automatically translate logical constraints into their transformed equivalent that the discrete (that is, MIP) or continuous (LP) optimizers of CPLEX® can process efficiently in the C++, Java, or .NET APIs.

In the Callable Library, indicator constraints provide a similar facility. For more about that idea, see Indicator constraints in optimization in this manual.
What can be extracted from a model with logical constraints?

Documents the logical constraints available in each API.

In this section

Overview
Introduces logical constraints in the context of extraction.

Logical constraints in the C++ API
Describes logical constraints in the C++ API.

Logical constraints in the Java API
Describes logical constraints in the Java API.

Logical constraints in the .NET API
Describes logical constraints in the .NET API.
Overview

Concert Technology offers classes for you to design a model of your problem, of course. You can then invoke an algorithm to extract information from your model to solve the problem. In this context, an algorithm is an instance of a class such as IloCplex, documented in the CPLEX Reference Manuals of the C++ and Java APIs, or of the class CPLEX, documented in the CPLEX Reference Manual of the .NET API. For more about this idea of extraction generally, see topics in Languages and APIs, or see the concept of Extraction in the CPLEX Reference Manual of the C++ API.

When your model contains certain logical operators and conditional statements, Concert Technology extracts them as logical constraints appropriately. Much the same logical constraints are available in these APIs of CPLEX®.

♦ Logical constraints in the C++ API
♦ Logical constraints in the Java API
♦ Logical constraints in the .NET API

For similar facilities in the Callable Library, see Indicator constraints in optimization.
Logical constraints in the C++ API

In C++ applications, the class IloCplex can extract modeling objects to solve a wide variety of MIPs, as you see in Solving the model, summarized in Concert Technology modeling objects in C++. In fact, the C++ class IloCplex can extract logical constraints as well as some logical expressions. The logical constraints that IloCplex can extract are these:

♦ IloAnd
♦ IloOr
♦ IloNot
♦ IloIfThen
♦ IloDiff
♦ == that is, the equivalence relation

Among those extractable objects, IloAnd IloOr, IloNot, and IloDiff can also be represented in your application by means of the overloaded C++ operators:

♦ || (for IloOr)
♦ && (for IloAnd)
♦ ! (for IloNot)
♦ != that is, the exclusive-or relation (for IloDiff)

All those extractable objects accept as their arguments other linear constraints or logical constraints, so you can combine linear constraints with logical constraints in complicated expressions in your application.

For example, to express the idea that two jobs with starting times $x_1$ and $x_2$ and with duration $d_1$ and $d_2$ must not overlap, you can either use overloaded C++ operators, like this:

```cpp
model.add((x1 >= x2 + d2) || (x2 >= x1 + d1));
```

or you can express the same idea, like this:

```cpp
IloOr or(env)
or.add(x1 >= x2 + d2);
or.add(x2 >= x1 + d1);
model.add(or);
```

Since IloCplex can also extract logical constraints embedded in other logical constraints, you can also write logical constraints like this:

```cpp
IloIfThen(env, (x >= y && x >= z), IloNot(x <= 300 || y >= 700))
```

where $x$, $y$, and $z$ are variables in your application.
Logical constraints in the Java API

Of course, because the Java programming language does not support the overloading of operators as C++ does, overloaded logical operators are not supported in the Java API of Concert Technology. However, the Java class `IloCplexModeler` offers logical modeling facilities through methods, such as:

- `IloCplexModeler.and`
- `IloCplexModeler.or`
- `IloCplexModeler.not`
- `IloCplexModeler.ifThen`

Moreover, like their C++ counterparts, those extractable Java objects accept as their arguments other linear constraints or logical constraints, so you can combine linear constraints with logical constraints in complicated expressions in your Java application.
Logical constraints in the .NET API

Similarly, the .NET API of Concert Technology supports logical constraints, though not operator overloading. The .NET class `Cplex` offers these overloaded logical methods:

♦ `Cplex.And`
♦ `Cplex.Or`
♦ `Cplex.Not`
♦ `Cplex.IfThen`

Again, those extractable .NET objects accept other linear constraints or logical constraints as their arguments, thus making it possible for you to combine linear constraints with logical constraints in expressions in your .NET applications.
Which nonlinear expressions can be extracted?

Some expressions are easily recognized as nonlinear, for example, a function such as \( x^2 + y^2 \leq 1 \). However, other nonlinearities are less obvious, such as absolute value as a function. In a very real sense, MIP is a class of nonlinearly constrained problems because the integrality restriction destroys the property of convexity which any linear constraints otherwise might possess. Because of that characteristic, certain (although not all) nonlinearities are capable of being converted to a MIP formulation, and thus can be solved by CPLEX®. In fact, IloCplex can extract the following nonlinear expressions in a C++ application:

- **IloMin** the minimum of an array of numeric expressions or over a numeric expression and a constant in C++
- **IloMax** the maximum of an array of numeric expressions or over a numeric expression and a constant in C++
- **IloAbs** the absolute value of a numeric expression
- **IloPiecewiseLinear** the piecewise linear combination of a numeric expression,
- A linear constraint can appear as a term in a logical constraint.

For example, given these variables and arrays:

```cpp
IloIntVarArray x(env, 5, 0, 1000);
IloNumVar y(env, -1000, 5000);
IloNumVar z(env, -1000, 1000);
```

IloCplex in a C++ application recognizes the following constraint as valid and extracts it:

```cpp
IloMin(x) >= IloAbs(y)
```

In fact, ranges containing logical expressions can, in turn, appear in logical constraints. For example, the following constraint is valid and extractable by IloCplex:

```cpp
IloIfThen(env, (IloAbs(y) <= 100), (z <= 300));
```

It is important to note here that only linear constraints can appear as arguments of logical constraints extracted by CPLEX®. That is, quadratic constraints are not handled in logical constraints. Similarly, quadratic terms cannot appear as arguments of logical expressions such as IloMin, IloMax, IloAbs, and IloPiecewiseLinear.
Logical constraints for counting

In many cases it is even unnecessary to allocate binary variables explicitly in order to gain the benefit of linear constraints within logical expressions. For example, optimizing how many items appear in a solution is often an issue in practical problems. Questions of counting (how many?) can be represented formally as cardinality constraints.

Suppose that your application includes three variables, each representing a quantity of one of three products, and assume further that a good solution to the problem means that the quantity of at least two of the three products must be greater than 20. Then you can represent that idea in your application, like this:

```cplex
IloNumVarArray x(env, 3, 0, 1000);
model.add((x[0] >= 20) + (x[1] >= 20) + (x[2] >= 20) >= 2);
```
Logical constraints as binary variables

Linear or logical constraints can appear as terms in numeric expressions. A linear constraint appearing as a term in a numeric expression behaves like a binary value. For example, given $x$ and $y$ as variables, you can write the following lines to get the truth value of $x \geq y$ in a binary value:

```cpp
IloIntVar b(env, 0, 1);
model.add(b == (x >= y));
```

It is important to note here that only linear constraints can appear as arguments of logical constraints extracted by IloCplex. That is, quadratic constraints are not handled in logical constraints. Similarly, quadratic terms cannot appear as arguments of logical expressions such as IloMin, IloMax, IloAbs, and IloPiecewiseLinear.
How are logical constraints extracted?

Logical constraints are transformed automatically into equivalent linear formulations when they are extracted by a CPLEX® algorithm. This transformation involves automatic creation by CPLEX® of new variables and constraints. The transformation entails indicators as discussed in *Indicator constraints in optimization*. 
Indicator constraints in optimization

Introduces indicator constraints and emphasizes their advantages over Big M formulations.

In this section

What is an indicator constraint?
Defines indicator constraints.

Example: fixnet.c
Illustrates indicator constraints in an application of the C API; contrasts indicator constraints with Big M formulations.

Indicator constraints in the Interactive Optimizer
Contrasts indicator constraints with a Big M formulation in the Interactive Optimizer.

What are indicator variables?
Defines an indicator variable and directs you to an example.

Restrictions on indicator constraints
Describes limitations on indicator constraints.

Best practices with indicator constraints
Suggests best practices with respect to indicator constraints.
What is an indicator constraint?

An indicator constraint is a way for a user of the Callable Library (C API) to express relationships among variables by identifying a binary variable to control whether or not a specified linear constraint is active. This feature is also available in the Interactive Optimizer, as explained in Indicator constraints in the Interactive Optimizer.

Formulations using indicator constraints can be more numerically robust and accurate than conventional formulations involving so-called Big M data if the Big M formulations use artificial data to turn on or turn off enforcement of a constraint. Such Big M formulations often exhibit trickle flow, and sometimes they behave in unstable ways. Replacement of such formulations with indicator constraints enables IBM® ILOG® CPLEX® either to branch explicitly on the indicator constraint, or to use MIP preprocessing to derive a tighter value of Big M that makes the formulation more stable.

In Concert Technology applications, CPLEX® automatically uses indicator constraints for you when it encounters a constraint within an expression and when it encounters expressions which can be linearized, including the following:

- † IloAnd or Cplex.And
- † IloOr or Cplex.Or
- † IloNot or Cplex.Not
- † IloIfThen or Cplex.IfThen
- † using a constraint as a binary variable itself

In Callable Library applications, you can invoke the routine CPXaddindcontr yourself to introduce indicator constraints in your model. To remove an indicator constraint that you have added, use the routine CPXdelindconstr.
Example: fixnet.c

For an example of indicator constraints in use, see fixnet.c among the examples distributed with the product. This example contrasts a model of a fixed-charge problem using indicator constraints with a Big M model of the same problem. That contrast shows how artificial data lead to an answer that is different from the result that the formulator of the model intended.
**Indicator constraints in the Interactive Optimizer**

In the **Interactive Optimizer**, you can include indicator constraints among the usual linear constraints in LP-file format. You can also use the commands `enter` and `add` with indicator constraints. For example, you could declare `y` as a binary variable and enter the following:

```
constr01: y = 0 -> x1 + x2 + x3 = 0
```

This formulation of an indicator constraint is recommended instead of the following Big M formulation:

```
constr01: x1 + x2 + x3 - 1e+9 y <= 0 // not recommended
```

That Big M formulation relies on the `x` values summing to less than the Big M value (in this case, one billion). Such an assumption may cause numeric instability or undesirable solutions in certain circumstances, whereas a model with the indicator constraint, by contrast, introduces no new assumptions about upper bounds. In that respect, the use of indicator constraints instead of a Big M formulation offers a more numerically stable model, closer to the mathematical programming issues of the problem, and thus more likely to produce useful solutions of the problem.
What are indicator variables?

The binary variable introduced in an indicator constraint is known as an *indicator variable*. Usually, an indicator variable will also appear in the objective function or in other constraints. For example, in *fixnet.c*, the indicator variables $f$ appear in the objective function to represent the cost of building an arc. In fact, an indicator variable introduced in one indicator constraint may appear again in another, subsequent indicator constraint.
Restrictions on indicator constraints

There are a few restrictions regarding indicator constraints:

♦ The constraint must be linear; a quadratic constraint is not allowed to have an indicator constraint.

♦ A lazy constraint cannot have an indicator constraint.

♦ A user-defined cut cannot have an indicator constraint.

♦ Only z=0 (zero) or z=1 (one) is allowed for the indicator variable because the indicator constraint implies that the indicator variable is binary.

CPLEX® does not impose any arbitrary limit on the number of indicator constraints or indicator variables that you introduce, but there may be practical limits due to resources available on your platform.
Best practices with indicator constraints

The following points summarize best practices with indicator constraints in Callable Library applications:

♦ Use indicator constraints when Big M values in the formulation cannot be reduced.
♦ Do not use indicator constraints if Big M can be avoided.
♦ Do not use indicator constraints if Big M is eliminated by preprocessing. Check the presolved model for Big M.
♦ If valid upper bounds on continuous variables are available, use them. Bounds strengthen LP relaxations. Bounds are used in a MIP for fixing and so forth.
Using logical constraints: Food Manufacture 2

Demonstrates logical constraints in a sample application.

In this section

Introducing the example
Introduces an example from food manufacturing to illustrate logical constraints.

Describing the problem
Describes the problem verbally.

Representing the data
Raises questions pertinent to a sound representation of the data of the problem.

Developing the model
Describes creation of the model for the problem.

Formulating logical constraints
Contrasts conventional formulation of constraints with more efficient logical constraints.

Solving the problem
Describes activity in the application, display of the solution, and memory management.
Introducing the example

Logical constraints in optimization introduced features of IBM® ILOG® CPLEX® that transform parts of your problem automatically for you. This topic shows you some of those features in use in a C++ application. The example is based on the formulation by H.P. Williams of a standard industrial problem in food manufacturing. The aim of the problem is to blend a number of oils cost effectively in monthly batches. In this form of the problem, formulated by Williams as food manufacturing 2 in his book Model Building in Mathematical Programming, the number of ingredients in a blend must be limited, and extra conditions are added to govern which oils can be blended.
Describing the problem

The problem is to plan the blending of five kinds of oil, organized in two categories (two kinds of vegetable oils and three kinds of non vegetable oils) into batches of blended products over six months.

Some of the oil is already available in storage. There is an initial stock of oil of 500 tons of each raw type when planning begins. An equal stock should exist in storage at the end of the plan. Up to 1000 tons of each type of raw oil can be stored each month for later use. The price for storage of raw oils is 5 monetary units per ton. Refined oil cannot be stored. The blended product cannot be stored either.

The rest of the oil (that is, any not available in storage) must be bought in quantities to meet the blending requirements. The price of each kind of oil varies over the six-month period.

The two categories of oil cannot be refined on the same production line. There is a limit on how much oil of each category (vegetable or non vegetable) can be refined in a given month:

♦ Not more than 200 tons of vegetable oil can be refined per month.
♦ Not more than 250 tons of non vegetable oil can be refined per month.

There are constraints on the blending of oils:

♦ The product cannot blend more than three oils.
♦ When a given type of oil is blended into the product, at least 20 tons of that type must be used.
♦ If either vegetable oil 1 (v1) or vegetable oil 2 (v2) is blended in the product, then non vegetable oil 3 (o3) must also be blended in that product.

The final product (refined and blended) sells for a known price: 150 monetary units per ton.

The aim of the six-month plan is to minimize production and storage costs while maximizing profit.
Representing the data

To represent the problem accurately, there are several questions to consider:

♦ What is known about the problem?
♦ What are the unknowns of the problem?
♦ What are the constraints of the problem?
♦ What is the objective of the problem?

What is known?

In this particular example, the planning period is six months, and there are five kinds of oil to be blended. Those details are represented as constants, like this:

```cpp
const IloInt nbMonths = 6;
const IloInt nbProducts = 5;
```

The five kinds of oil (vegetable and non vegetable) are represented by an enumeration, like this:

```cpp
typedef enum { v1, v2, o1, o2, o3 } Product;
```

The varying price of the five kinds of oil over the six-month planning period is represented in a numeric matrix, like this:

```cpp
NumMatrix cost(env, nbMonths);
cost[0]=IloNumArray(env, nbProducts, 110.0, 120.0, 130.0, 110.0, 115.0);
cost[1]=IloNumArray(env, nbProducts, 130.0, 130.0, 110.0, 90.0, 115.0);
cost[2]=IloNumArray(env, nbProducts, 110.0, 140.0, 130.0, 100.0, 95.0);
cost[3]=IloNumArray(env, nbProducts, 120.0, 110.0, 120.0, 120.0, 125.0);
cost[4]=IloNumArray(env, nbProducts, 100.0, 120.0, 150.0, 110.0, 105.0);
cost[5]=IloNumArray(env, nbProducts, 90.0, 100.0, 140.0, 80.0, 135.0);
```

That matrix could equally well be filled by data read from a file in a large-scale application.

What is unknown?

The variables of the problem can be represented in arrays:

♦ How much blended, refined oil to produce per month?
♦ How much raw oil to use per month?
♦ How much raw oil to buy per month?
♦ How much raw oil to store per month?

like this:
IloNumVarArray produce(env, nbMonths, 0, IloInfinity);
NumVarMatrix use(env, nbMonths);
NumVarMatrix buy(env, nbMonths);
NumVarMatrix store(env, nbMonths);
IloInt i, p;
for (i = 0; i < nbMonths; i++) {
    use[i] = IloNumVarArray(env, nbProducts, 0, IloInfinity);
    buy[i] = IloNumVarArray(env, nbProducts, 0, IloInfinity);
    store[i] = IloNumVarArray(env, nbProducts, 0, 1000);
}

In those lines, the type NumVarMatrix is defined as:

typedef IloArray<IloNumVarArray> NumVarMatrix;

Notice that how much to use and buy is initially unknown, and thus has an infinite upper bound, whereas the amount of oil that can be stored is limited, as you know from the description of the problem. Consequently, one of the constraints is expressed here as the upper bound of 1000 on the amount of oil by type that can be stored per month.

What are the constraints?

As you know from Describing the problem, there are various constraints in this problem.

For each type of oil, there must be 500 tons in storage at the end of the plan. That idea can be expressed like this:

```cpp
for (p = 0; p < nbProducts; p++) {
 store[nbMonths-1][p].setBounds(500, 500);
}
```

The constraints on production in each month can all be expressed as statements in a for-loop:

♦ Not more than 200 tons of vegetable oil can be refined.

```cpp
model.add(use[i][v1] + use[i][v2] <= 200);
```

♦ Not more than 250 tons of non-vegetable oil can be refined.

```cpp
model.add(use[i][o1] + use[i][o2] + use[i][o3] <= 250);
```

♦ A blend cannot use more than three oils; or equivalently, of the five oils, two cannot be used in a given blend.

```cpp
model.add((use[i][v1] == 0) +
 (use[i][v2] == 0) +
 (use[i][o1] == 0) +
 (use[i][o2] == 0) +
 (use[i][o3] == 0) >= 2);
```
♦ Blends composed of vegetable oil 1 (v1) or vegetable oil 2 (v2) must also include non-vegetable oil 3 (o3).

```cpp
model.add(IloIfThen(env, (use[i][v1] >= 20) || (use[i][v2] >= 20),
 use[i][o3] >= 20));
```

♦ The constraint that if an oil is used at all in a blend, at least 20 tons of it must be used is expressed like this:

```cpp
for (p = 0; p < nbProducts; p++)
 model.add((use[i][p] == 0) || (use[i][p] >= 20));
```

**Note:** Alternatively, you could use semi-continuous variables.

♦ The fact that a limited amount of raw oil can be stored for later use is expressed like this:

```cpp
if (i == 0) {
 for (IloInt p = 0; p < nbProducts; p++)
 model.add(500 + buy[i][p] == use[i][p] + store[i][p]);
} else {
 for (IloInt p = 0; p < nbProducts; p++)
 model.add(store[i-1][p] + buy[i][p] ==
 use[i][p] + store[i][p]);
}
```

**What is the objective?**

On a monthly basis, the profit can be represented as the sale price per ton (150) multiplied by the amount produced minus the cost of production and storage, like this, where **profit** is defined as `IloExpr profit(env);`

```cpp
profit += 150 * produce[i] - IloScalProd(cost[i],
 buy[i]) - 5 * IloSum(store[i]);
```
Developing the model

First, create the model, like this:

```csharp
IloModel model(env);
```

Then use a for-loop to add the constraints for each month (from Representing the data: What are the constraints?), like this:

```csharp
IloExpr profit(env);
for (i = 0; i < nbMonths; i++) {
 model.add(use[i][v1] + use[i][v2] <= 200);
 model.add(use[i][o1] + use[i][o2] + use[i][o3] <= 250);
 model.add(3 * produce[i] <=
 8.8 * use[i][v1] + 6.1 * use[i][v2] +
 2 * use[i][o1] + 4.2 * use[i][o2] + 5 * use[i][o3]);
 model.add(8.8 * use[i][v1] + 6.1 * use[i][v2] +
 2 * use[i][o1] + 4.2 * use[i][o2] + 5 * use[i][o3]
 <= 6 * produce[i]);
 model.add(produce[i] == IloSum(use[i]));
 if (i == 0) {
 for (IloInt p = 0; p < nbProducts; p++)
 model.add(500 + buy[i][p] == use[i][p] + store[i][p]);
 } else {
 for (IloInt p = 0; p < nbProducts; p++)
 model.add(store[i-1][p] + buy[i][p] == use[i][p] + store[i][p])
 }
 profit += 150 * produce[i]
 - IloScalProd(cost[i], buy[i])
 - 5 * IloSum(store[i]);
 model.add((use[i][v1] == 0) + (use[i][v2] == 0) + (use[i][o1] == 0)
 + (use[i][o2] == 0) + (use[i][o3] == 0) >= 2);
 for (p = 0; p < nbProducts; p++)
 model.add((use[i][p] == 0) || (use[i][p] >= 20));
 model.add(IloIfThen(env, (use[i][v1] >= 20) || (use[i][v2] >= 20),
 use[i][o3] >= 20));
}
```

To consolidate the monthly objectives, add the overall objective to the model, like this:

```csharp
model.add(IloMaximize(env, profit));
```
Formulating logical constraints

You have already seen how to represent the logical constraints of this problem in Representing the data: What are the constraints? However, they deserve a second glance because they illustrate an important point about logical constraints and their automatic transformation in CPLEX®.

```cpp
// Logical constraints
// The food cannot use more than 3 oils
// (or at least two oils must not be used)
model.add(((use[i][v1] == 0) + (use[i][v2] == 0) + (use[i][o1] == 0) +
 (use[i][o2] == 0) + (use[i][o3] == 0) >= 2);

// When an oil is used, the quantity must be at least 20 tons
for (p = 0; p < nbProducts; p++)
 model.add((use[i][p] == 0) || (use[i][p] >= 20));

// If products v1 or v2 are used, then product o3 is also used
model.add(IloIfThen(env, (use[i][v1] >= 20) || (use[i][v2] >= 20),
 use[i][o3] >= 20));
```

Consider, for example, the constraint that the blended product cannot use more than three oils in a batch. Given that constraint, many programmers might naturally write the following statement (or something similar) in C++:

```cpp
model.add ((use[i][v1] != 0)
 + (use[i][v2] != 0)
 + (use[i][o1] != 0)
 + (use[i][o2] != 0)
 + (use[i][o3] != 0)
 <= 3);
```

That statement expresses the same constraint without changing the set of solutions to the problem. However, the formulations are different and can lead to different running times and different amounts of memory used for the search tree. In other words, given a logical English expression, there may be more than one logical constraint for expressing it, and the different logical constraints may perform differently in terms of computing time and memory.

Logical constraints in optimization introduced overloaded logical operators that you can use to combine linear, semi-continuous, or piecewise linear constraints in CPLEX®. In this example, notice the overloaded logical operators ==, >=, || that appear in these logical constraints.
Solving the problem

The following statement solves the problem to optimality:

```cpp
if (cplex.solve()) {
```

These lines (the action of the if-statement) display the solution:

```cpp
cout << " Maximum profit = " << cplex.getObjValue() << endl;
for (IloInt i = 0; i < nbMonths; i++) {
 IloInt p;
 cout << " Month " << i << " " << endl;
 cout << " . buy ";
 for (p = 0; p < nbProducts; p++) {
 cout << cplex.getValue(buy[i][p]) << "\t ";
 }
 cout << endl;
 cout << " . use ";
 for (p = 0; p < nbProducts; p++) {
 cout << cplex.getValue(use[i][p]) << "\t ";
 }
 cout << endl;
 cout << " . store ";
 for (p = 0; p < nbProducts; p++) {
 cout << cplex.getValue(store[i][p]) << "\t ";
 }
 cout << endl;
}
else {
 cout << " No solution found" << endl;
```

Like other C++ applications using CPLEX® with Concert Technology, this one ends with a call to free the memory used by the environment.

```cpp
env.end();
```
Early tardy scheduling

Solves a scheduling problem by applying logical constraints, piecewise linear functions, and aggressive MIP emphasis.

In this section

Describing the problem
Describes the problem to solve in the application.

Understanding the data file
Describes the data of the problem.

Reading the data
Shows how to read data from a file to fill matrices in the model.

Creating variables
Identifies unknowns of the problem.

Stating precedence constraints
Shows syntax of precedence constraints for this model.

Stating resource constraints
Shows syntax of resource constraints for this model.

Representing the piecewise linear cost function
Shows the earliness-tardiness cost function as a piecewise linear function.

Transforming the problem
Explains what CPLEX® extracts.
Solving the problem
Highlights MIP emphasis parameter and tells where to find the application.
**Describing the problem**

The problem is to schedule a number of jobs over a group of resources. In this context, a job is a set of activities that must be carried out, one after another. Each resource can process only one single activity at a time.

For each job, there is a due date, that is, the ideal date to finish this job by finishing the last activity of this job. If the job is finished earlier than the due date, there will be a cost proportional to the earliness. Symmetrically, if the job is finished later than the due date, there will be a cost proportional to the tardiness.

As “just in time” inventory management becomes more and more important, problems like this occur more frequently in industrial settings.
Understanding the data file

The data for this problem are available online with your installation of the product in the file yourCPLEXhome/examples/data/etsp.dat.

The data of this example consist of arrays and arrays of arrays (that is, matrices).

One array of arrays represents the resources required for each activity of a job. For example, job0 entails eight activities, and those eight activities require the following ordered list of resources:

1, 3, 4, 1, 2, 4, 2, 4

A second array of arrays represents the duration required for each activity of a job. For job0, the following ordered list represents the duration of each activity:

41, 32, 72, 65, 53, 35, 53, 2

In other words, job0 requires resource1 for a duration of 41 time units; then job0 requires resource3 for 32 time units, and so forth.

There is also an array representing the due date of each job. That is, array[i] specifies the due date of jobi.

To represent the penalty for the early completion of each job, there is an array of penalties. Likewise, to represent the penalty for late completion of each job, there is an array of penalties for tardiness.
Reading the data

The first part of this application reads data from a file and fills matrices:

```csharp
IloEnv env;
IntMatrix activityOnAResource(env);
NumMatrix duration(env);
IloNumArray jobDueDate(env);
IloNumArray jobEarlinessCost(env);
IloNumArray jobTardinessCost(env);

f >> activityOnAResource;
f >> duration;
f >> jobDueDate;
f >> jobEarlinessCost;
f >> jobTardinessCost;

IloInt nbJob = jobDueDate.getSize();
IloInt nbResource = activityOnAResource.getSize();
```

Each line in the data file corresponds to an array in the matrix and thus represents all the information about activities for a given job.

For each job, other arrays contain further information from the data file:

- **jobDueDate** contains the due date for each job;
- **jobEarlinessCost** contains the penalty for being too early for each job;
- **jobTardinessCost** contains the penalty for being too late for each job.

The matrix **activityOnAResource** contains the sets of activities that must be scheduled on the same resource. This information will be used to state resource constraints.
Creating variables

The unknowns of the problem are the starting dates of the various activities. To represent these dates with Concert Technology modeling objects, the application creates a matrix of numeric variables (that is, instances of IloNumVar) with bounds between 0 and Horizon, where Horizon is the maximum starting date for an activity that does not exclude interesting solutions of the problem. In this example, it is set arbitrarily at 10000. The type NumVarMatrix is defined as typedef IloArray<IloNumVarArray> NumVarMatrix;

    NumVarMatrix s(env, nbJob);
    for(j = 0; j < nbJob; j++){
        s[j] = IloNumVarArray(env, nbResource, 0.0, Horizon);
    }
Stating precedence constraints

In each job, activities must be processed one after the other. This order is enforced by the precedence constraints, which look like this:

```java
for(j = 0; j < nbJob; j++){
 for(i = 1; i < nbResource; i++){
 model.add(s[j][i] >= s[j][i-1] + duration[j][i-1]);
 }
}
```
Stating resource constraints

Each resource can process one activity at a time. To avoid having two (or more) activities that share the same resource overlap with each other, disjunctive constraints are added to the model. Disjunctive constraints look like this:

\[ s_1 \geq s_2 + d_2 \text{ or } s_2 \geq s_1 + d_1 \]

where \( s \) is the starting date of an activity and \( d \) is its duration.

If \( n \) activities need to be processed on the same resource then about \( \frac{n^2}{2} \) disjunctions need to be stated and added to the model, like this:

```cpp
for(i = 0; i < nbResource; i++) {
 IloInt end = nbJob - 1;
 for(j = 0; j < end; j++){
 IloInt a = activityOnAResource[i][j];
 for(IloInt k = j + 1; k < nbJob; k++){
 IloInt b = activityOnAResource[i][k];
 model.add(s[j][a] >= s[k][b] + duration[k][b]
 ||
 s[k][b] >= s[j][a] + duration[j][a]);
 }
 }
}
```
Representing the piecewise linear cost function

The earliness-tardiness cost function is the sum of piecewise linear functions having two segments, as you see in *Earliness and tardiness as piecewise linear cost function*. The function takes as an argument the completion date of the last activity of a job (in other words, the starting date plus the duration). In that two-segment function, the slope of the first segment is (-1) times the earliness cost, and the slope of the second segment is the tardiness cost. Moreover, at the due date, the cost is zero. Consequently, the function can be represented as a piecewise linear function with one breakpoint and two slopes, like this:

```cpp
IloInt last = nbResource - 1;
IloExpr costSum(env);
for(j = 0; j < nbJob; j++) {
 costSum += IloPiecewiseLinear(s[j][last] + duration[j][last],
 IloNumArray(env, 1, jobDueDate[j]),
 IloNumArray(env, 2, -jobEarlinessCost[j], jobTardinessCost[j])
 ,
 jobDueDate[j], 0);
}
model.add(IloMinimize(env, costSum));
```

*Earliness and tardiness as piecewise linear cost function*
Transforming the problem

When IBM® ILOG® CPLEX® extracts disjunctive constraints and piecewise linear functions, it transforms them to produce a MIP with linear constraints and possibly SOS constraints over integer or continuous variables. The tightness of the transformation depends on the bounds set on the variables.

In this example, the Horizon is set to 10000, but if you have information about your problem that indicates that a good or even optimal solution exists with a tighter horizon (say, 2000 instead) then the linear formulation of disjunctions will be tighter with that tighter horizon.

That kind of tightening often leads to a better lower bound at the root node and to a reduction of the solving time.
Solving the problem

An emphasis on finding hidden feasible solutions has proven particularly effective for this problem so this example makes that selection by setting the MIPEmphasis parameter to 4.

Solution polishing is also useful in this problem. Activate solution polishing by specifying a positive value for the parameter that controls the amount of time (in seconds) spent on polishing. For detail about that parameter, see time before starting to polish a feasible solution in the CPLEX Parameters Reference Manual. For more detail about invoking solution polishing, see Solution polishing in this manual.

You can see the entire example online in the standard distribution of CPLEX® at yourCPLEXinstallation/examples/src/etsp.cpp. Implementations of the same model, using the same features of CPLEX®, are available as Etsp.java, Etsp.cs, and Etsp.vb as well.
Using column generation: a cutting stock example

Uses an example of cutting stock to demonstrate the technique of column generation in Concert Technology.

In this section

What is column generation?
Defines column generation.

Column-wise models in Concert Technology
Describes features of Concert Technology to support column generation.

Describing the problem
Describes a problem to illustrate column generation.

Representing the data
Describes environment, model, and data in the application.

Developing the model: building and modifying
Describes column generation in this application with generalizations about other applications.

Changing the objective function
Describes modification of the objective function in the application.

Solving the problem: using more than one algorithm
Uses two instances of the algorithm to solve two models (master and column generator).
Ending the program
Ends the application with memory management in the C++ API.

Complete program
Tells where to find the sample application in the C++ API and other variations in other APIs.
What is column generation?

In colloquial terms, column generation is a way of beginning with a small, manageable part of a problem (specifically, a few of the variables), solving that part, analyzing that partial solution to discover the next part of the problem (specifically, one or more variables) to add to the model, and then resolving the enlarged model. Column generation repeats that process until it achieves a satisfactory solution to the whole of the problem.

In formal terms, column generation is a way of solving a linear programming problem that adds columns (corresponding to constrained variables) during the pricing phase of the simplex method of solving the problem. In gross terms, generating a column in the primal simplex formulation of a linear programming problem corresponds to adding a constraint in its dual formulation. In the dual formulation of a given linear programming problem, you might think of column generation as a cutting plane method.

In that context, many researchers have observed that column generation is a very powerful technique for solving a wide range of industrial problems to optimality or to near optimality. Ford and Fulkerson, for example, suggested column generation in the context of a multi-commodity network flow problem as early as 1958 in the journal of Management Science. By 1960, Dantzig and Wolfe had adapted it to linear programming problems with a decomposable structure. Gilmore and Gomory then demonstrated its effectiveness in a cutting stock problem. More recently, vehicle routing, crew scheduling, and other integer-constrained problems have motivated further research into column generation.

Column generation rests on the fact that in the simplex method, the solver does not need access to all the variables of the problem simultaneously. In fact, a solver can begin work with only the basis (a particular subset of the constrained variables) and then use reduced cost to decide which other variables to access as needed.
Column-wise models in Concert Technology

Concert Technology offers facilities for exploiting column generation. In particular, you can design the model of your problem (one or more instances of the class IloModel) in terms of columns (instances of IloNumVar, IloNumVarArray, IloNumColumn, or IloNumColumnArray). For example, instances of IloNumColumn represent columns, and you can use the operator (\x28\x29) in the classes IloObjective and IloRange to create terms in column expressions. In practice, the column serves as a placeholder for a variable in other extractable objects (such as a range constraint or an objective) when your application needs to declare or use those other extractable objects before it can actually know the value of a variable appearing in them.

Furthermore, an instance of IloCplex provides a way to solve the master linear problem, while other Concert Technology algorithms (that is, instances of IloCP, of IloCplex itself, or of other subclasses of IloAlgorithm, for example) lend themselves to other parts of the problem by specifying which variables to consider next (and thus which columns to generate).

In the CPLEX C++ API Reference Manual, the concept Column-Wise Modeling provides more detail about this topic and offers simple examples of its use.
Describing the problem

The cutting stock problem in this chapter is sometimes known in math programming terms as a knapsack problem with reduced cost in the objective function.

Generally, a cutting stock problem begins with a supply of rolls of material of fixed length (the stock). Strips are cut from these rolls. All the strips cut from one roll are known together as a pattern. The point of this example is to use as few rolls of stock as possible to satisfy some specified demand of strips. By convention, it is assumed that only one pattern is laid out across the stock; consequently, only one dimension—the width—of each roll of stock is important.

Two different patterns from a roll of stock

Even with that simplifying assumption, the fact that there can be so many different patterns makes a naive model of this problem (where a user declares one variable for every possible pattern) impractical. Such a model introduces too many symmetries. Fortunately, for any given customer order, a limited number of patterns will suffice, so many of the possible patterns can be disregarded, and the application can focus on finding the relevant ones.

Here is a conventional statement of a cutting stock problem in terms of the unknown $X_j$, the number of times that pattern $j$ will be used, and $A_{ij}$, the number of items $i$ of each pattern $j$ needed to satisfy demand $d_i$:

Minimize:

$$\sum_j X_j$$

subject to:

$$\sum_i A_{ij} X_j \geq d_i$$

greater than or equal to $d_i$ with:

$$X_j \geq 0$$

Solving this model with all columns present from the beginning is practically impossible. In fact, even with only 10 types of items with a size roughly 1/10 of the width of the roll, there would exist roughly $10^{10}$ kinds of patterns, and hence that many decision variables. Such a formulation might not even fit in memory on a reasonably large computer. Moreover, most of those patterns would obviously not be interesting in a solution. These considerations make column generation an interesting approach for this problem.
To solve a cutting stock problem by column generation, start with a subproblem. Choose one pattern, lay it out on the stock, and cut as many items as possible, subject to the constraints of demand for that item and the width of the stock. This procedure will surely work in that it produces some answer (a feasible solution) to the problem, but it will not necessarily produce a satisfactory answer in this way since it probably uses too many rolls.

To move closer to a satisfactory solution, the application can then generate other columns. That is, other decision variables (other $X_j$) will be chosen to add to the model. Those decision variables are chosen on the basis of their favorable reduced cost with the help of a subproblem. This subproblem is defined to identify the coefficients of a new column of the master problem with minimal reduced cost. With $\mathbf{\pi}$ as the vector of the dual variables of the current solution of the master problem, the subproblem is defined like this:

Minimize:

$$1 - \sum \pi_i A_i$$

subject to:

$$\sum W_i A_i \leq W$$

That is, the subproblem data consists of $W$ as the width of a roll of stock, $W_i$ as the width of strip $i$ that can be used in a pattern cut from the roll. The entries $A_i$ are the modeling variables of the subproblem. They specify the number of times the $i$-th strip is used in the pattern. Their solution values will be the coefficients of the new column to be added to the master model if a solution with a negative objective function is found for the subproblem. Consequently, the variables $A_i$ must be nonnegative integers.
Representing the data

As usual in a Concert Technology application, an environment, an instance of IloEnv, is created first to organize the data and build the model of the problem.

The data defining this problem includes the width of a roll of stock. This value is read from a file and represented by a numeric value, rollWidth. The widths of the ordered strips are also read from a file and put into an array of numeric values, size. Finally, the number of rolls ordered of each width is read from a file and put into an array of numeric values, amount.
Developing the model: building and modifying

Describes column generation in this application with generalizations about other applications.

In this section

The master model and column generator in this application. Outlines the design of master model and column generator with emphasis on modifications during model building.

Adding extractable objects: both ways Describes alternative ways to add columns to the model.

Adding columns to a model Shows how to add generated columns to a master model.

Changing the type of a variable Describes modifying the type of variables in the master model to support integrality constraints.

Cut optimization model Describes the initial model in the application.

Pattern generator model Describes the column generator in the application.
The master model and column generator in this application.

In this problem, an initial model cutOpt is built first to represent the master model. Later, through its modifications, another model patGen is built to generate the new columns. That is, patGen represents the subproblem.

The first model cutOpt, an instance of IloModel, is declared like this:

```cpp
IloModel cutOpt (env);
```

As a model for this problem is built, there will be opportunities to demonstrate to you how to modify a model by adding extractable objects, adding columns, changing coefficients in an objective function, and changing the type of a variable. When you modify a model by means of the methods of extractable objects, Concert Technology notifies the algorithms (instances of subclasses of IloAlgorithm, such as IloCplex or IloCP) about the modification. (For more about that idea, see the concept of Notification in the CPLEX C++ API Reference Manual.)

When IloCplex, for example, is notified about a change in an extractable object that it has extracted, it maintains as much of the current solution information as it can accurately and reasonably. Other parts of the CPLEX User’s Manual offer more detail about how the algorithm responds to modifications in the model.
Adding extractable objects: both ways

In a Concert Technology application, there are two ways of adding extractable objects to a model: by means of a template function (IloAdd) or by means of a method of the model (IloModel::add). In this example, you see both ways.

Using a template to add objects

When an objective is added to the model, the application needs to keep a handle to the objective RollsUsed because it is needed when the application generates columns. For that purpose, the application relies on the template function IloAdd, like this:

```
IloObjective RollsUsed = IloAdd(cutOpt, IloMinimize(env));
```

Apart from the fact that it preserves type information, that single line is equivalent to these lines:

```
IloObjective RollsUsed = IloMinimize(env);
cutOpt.add(RollsUsed);
```

Likewise, the application adds an array of constraints to the model. These constraints are needed later in column generation as well, so the application again uses IloAdd again to add the array Fill to the model.

```
IloRangeArray Fill = IloAdd(cutOpt,
 IloRangeArray(env, amount, IloInfinity));
```

That statement creates \( \text{amount}.\text{getSize} \) range constraints. Constraint \( \text{Fill}[i] \) has a lower bound of \( \text{amount}[i] \) and an upper bound of \( \text{IloInfinity} \).

Using a method to add objects

It is also possible to add objects to your model by means of the method IloModel::add. This example uses that approach for the submodel in this line:

```
patGen.add(IloScalProd(size, Use) <= rollWidth);
```
Adding columns to a model

1. Create a column expression defining the new column.
2. Create a variable using that column expression and add the variable to the model.

For example, in this problem, RollsUsed is an instance of IloObjective. The statement RollsUsed(1) creates a term in a column expression defining how to add a new variable as a linear term with a coefficient of 1 (one) to the expression RollsUsed.

The terms of a column expression are connected to one another by the overloaded operator +.

The master model is initialized with one variable for each size. Each such variable represents the pattern of cutting a roll into as many strips of that size as possible. These variables are stored as they are created in the array Cut by the following loop:

```cpp
IloInt nWdth = size.getSize();
for (j = 0; j < nWdth; j++)
 Cut.add(IloNumVar(RollsUsed(1) + Fill(1)(int(rollWidth / size[j]))));
```

Consequently, the variable Cut[j] will have an objective coefficient of 1 (one) and only one other nonzero coefficient (rollWidth/size[j]) for constraint Fill[j]. Later, in the column generation loop, new variables will be added. Those variables will have coefficients defined by the solution vectors of the subproblem stored in the array newPatt.

According to that two-step procedure for adding a column to a model, the following lines create the column with coefficient 1 (one) for the objective RollsUsed and with coefficient newPatt[i] for constraint Fill[i]; they also create the new variable with bounds at 0 (zero) and at MAXCUT.

```cpp
IloNumColumn col = RollsUsed(1);
for (IloInt i = 0; i < Fill.getSize(); ++i)
 col += Fill[i](newPatt[i]);
IloNumVar var(col, 0, MAXCUT);
```

(However, those lines do not appear in the example at hand.) Concert Technology offers a shortcut in the operator() for an array of range constraints. Those lines of code can be condensed into the following line:

```cpp
IloNumVar var(RollsUsed(1) + Fill(newPatt), 0, MAXCUT);
```

In other words, Fill(newPatt) returns the column expression that the loop would create. You see a similar shortcut in the example.
Changing the type of a variable

After the column-generation phase terminates, an integer solution to the master problem must be found. To do so, the type of the variables must be changed from continuous to integer.

With Concert Technology, in order to change the type of a variable in a model, you actually create an extractable object (an instance of `IloConversion`) and add that object to the model.

In the example, when the application needs to change the elements of `Cut` (an array of numeric variables) from their default type of `ILOFLOAT` to integer (type `ILOINT`), it creates an instance of `IloConversion` for the array `Cut`, and adds the conversion to the model, `cutOpt`, like this:

```cpp
cutOpt.add(IloConversion(env, Cut, ILOINT));
```
Cut optimization model

Here is a summary of the initial model `cutOpt`:

```cpp
IloModel cutOpt (env);

IloObjective RollsUsed = IloAdd(cutOpt, IloMinimize(env));
IloRangeArray Fill = IloAdd(cutOpt,
 IloRangeArray(env, amount, IloInfinity));
IloNumVarArray Cut(env);

IloInt nWdth = size.getSize();
for (j = 0; j < nWdth; j++)
 Cut.add(IloNumVar(RollsUsed(1) + Fill[j](int(rollWidth / size[j]))));
```
Pattern generator model

The submodel of the cutting stock problem is represented by the model \texttt{patGen} in this example. This pattern generator \texttt{patGen} (in contrast to \texttt{cutOpt}) is defined by the integer variables in the array \texttt{Use}. That array appears in the only constraint added to \texttt{patGen}: a scalar product making sure that the patterns used do not exceed the width of rolls. The application also adds a rudimentary objective function to \texttt{patGen}. This objective initially consists of only the constant 1 (one). The rest of the objective function depends on the solution found with the initial model \texttt{cutOpt}. The application will build that objective function as that information is computed. Here, in short, is \texttt{patGen}:

```
IloModel patGen (env);
IloObjective ReducedCost = IloAdd(patGen, IloMinimize(env, 1));
IloNumVarArray Use(env, nWdth, 0, IloInfinity, ILOINT);
patGen.add(IloScalProd(size, Use) <= rollWidth);
```
Changing the objective function

After the dual solution vector of the master model is available, the objective function of the subproblem is adjusted by a call to the method `IloObjective::setLinearCoefs`, like this:

```cpp
ReducedCost.setLinearCoefs(Use, price);
```
Solving the problem: using more than one algorithm

This example does not solve the problem to optimality. It only generates a good feasible solution. It does so by first solving a continuous relaxation of the column-generation problem. In other words, the application drops the requirement for integrality of the variables while the columns are generated. After all columns have been generated for the continuous relaxation, the application keeps the variables generated so far, changes their type to integer, and solves the resulting integer problem.

As you’ve seen, this example manages two models of the problem, cutOpt and patGen. Likewise, it uses two algorithms (that is, two instances of IloCplex) to solve them.

Here’s how to create the first algorithm cutSolver and extract the initial model cutOpt:

```cpp
IloCplex cutSolver(cutOpt);
```

And here is how to create the second algorithm and extract the model patGen:

```cpp
IloCplex patSolver(patGen);
```

The heart of the example is here, in the column generation and optimization over current patterns:

```cpp
IloNumArray price(env, nWdth);
IloNumArray newPatt(env, nWdth);

for (;;) {
 /// OPTIMIZE OVER CURRENT PATTERNS ///
 cutSolver.solve();
 report1 (cutSolver, Cut, Fill);

 /// FIND AND ADD A NEW PATTERN ///
 for (i = 0; i < nWdth; i++)
 price[i] = -cutSolver.getDual(Fill[i]);
 ReducedCost.setLinearCoefs(Use, price);

 patSolver.solve();
 report2 (patSolver, Use, ReducedCost);
 if (patSolver.getValue(ReducedCost) > -RC_EPS) break;

 patSolver.getValues(newPatt, Use);
 Cut.add(IloNumVar(RollsUsed(1) + Fill(newPatt)));
}

cutOpt.add(IloConversion(env, Cut, ILOINT));
cutSolver.solve();
```

Those lines solve the current subproblem cutOpt by calling cutSolver.solve. Then they copy the values of the negative dual solution into the array price. They use that array to
set objective coefficients in the model patGen. Then they solve the right pattern generation problem.

If the objective value of the subproblem is nonnegative within the tolerance RC_EPS, then the application has proved that the current solution of the model cutOpt is optimal within the given optimality tolerance (RC_EPS). Otherwise, the application copies the solution of the current pattern generation problem into the array newPatt and uses that new pattern to build the next column to add to the model cutOpt. Then it repeats the procedure.
As in other C++ Concert Technology applications, this program ends with a call of `IloEnv::end` to de-allocate the models and algorithms after they are no longer in use.

```cpp
env.end();
```
Complete program

You can see the entire program online in the standard distribution of IBM® ILOG® CPLEX® at yourCPLEXinstallation/examples/src/cutstock.cpp.

You will also find CutStock.java in yourCLEXinstallation/examples/src/. If your installation includes the .NET API of CPLEX®, then you will also find the C#.NET implementation of this example in CutStock.cs and the VB.NET implementation in CutStock.vb.
Infeasibility and unboundedness

Documents tools to help you analyze the source of the infeasibility in a model: the preprocessing reduction parameter for distinguishing infeasibility from unboundedness, the conflict refiner for detecting minimal sets of mutually contradictory bounds and constraints, and FeasOpt for repairing infeasibilities.

In this section

Preprocessing and feasibility
Introduces the detection of infeasibilities during preprocessing.

Managing unboundedness
Discusses tactics to diagnose the cause of an unbounded outcome in the optimization of a model and suggests ways to avoid an unbounded outcome.

Diagnosing infeasibility by refining conflicts
Describes the conflict refiner, a feature for diagnosing the cause of infeasibility in a model, whether continuous or discrete, whether linear or quadratic.

Repairing infeasibilities with FeasOpt
Documents FeasOpt, a feature for repairing infeasibility in a model.
Preprocessing and feasibility

Introduces the detection of infeasibilities during preprocessing.

In this section

Issues of infeasibility and unboundedness
Outlines issues of infeasibility and unboundedness.

Early reports of infeasibility based on preprocessing reductions
Explains how to interpret early reports of infeasibility and how to use a parameter in diagnosis.
Issues of infeasibility and unboundedness

The topics discussed in *Continuous optimization* and *Discrete optimization* often contained the implicit assumption that a bounded feasible solution to your model actually exists. Such may not always be the case.

The following topics discuss what steps to try when the outcome of an optimization is a declaration that your model is either:

♦ **infeasible**; that is, no solution exists that satisfies all the constraints, bounds, and integrality restrictions; or

♦ **unbounded**; that is, the objective function can be made arbitrarily large.

(A more careful definition of unbounded is provided in *What is unboundedness?*.)

Infeasibility and unboundedness are closely related topics in optimization theory. Consequently, certain of the concepts for one will have direct relation to the other. As you know, IBM® ILOG® CPLEX® can provide you solution information about the models that it optimizes. For infeasible outcomes, it reports values that you can analyze to detect what in your problem formulation caused this result. In certain situations, you can then alter your problem formulation or change CPLEX® parameters to achieve a satisfactory solution.

Infeasibility can arise from various causes, and it is not possible to automate procedures to deal with those causes entirely without input or intervention from the user. For example, in a shipment model, infeasibility could be caused by insufficient supply, or by an error in demand, and it is likely that the optimizer will tell the user only that the mismatch exists. The formulator of the model has to make the ultimate judgment of what the actual error is.

However, there are ways for you to try to narrow down the investigation with help from CPLEX®, for example, through tools such as the conflict refiner, documented in *Diagnosing infeasibility by refining conflicts*. In certain situations, CPLEX® even provides some degree of automatic repair, for example, with tools such as FeasOpt, documented in *Repairing infeasibilities with FeasOpt*.

The following topic explains how to interpret reports of infeasibility that occur before optimization begins, that is, reports that arise from preprocessing.
Early reports of infeasibility based on preprocessing reductions

CPLEX® preprocessing may declare a model infeasible before the selected optimization algorithm begins.

This early declaration saves considerable execution time in most cases.

When this declaration is the outcome of preprocessing, it is important to understand that there are two classes of reductions performed by the preprocessor: primal and dual reductions.

Reductions that are independent of the objective function are called *primal reductions*; those that are independent of the right-hand side (RHS) of the constraints are called *dual reductions*.

Preprocessing operates on the assumption that the model being solved is expected by the user to be feasible and that a finite optimal solution exists. If this assumption is false, then the model is either infeasible or no bounded optimal solutions exist; that is, it is unbounded.

Since primal reductions are independent of the objective function, they cannot detect unboundedness; they can detect only infeasibility.

Similarly, dual reductions can detect only unboundedness.

Thus, to aid analysis of an infeasible or unbounded declaration by the preprocessor, a parameter is provided that the user can set, so that the optimization can be rerun to make sure that the results reported by the preprocessor can be interpreted. The *CPLEX Parameters Reference Manual* documents this parameter: primal and dual reduction type (*Reduce*, CFX_PARAM_REDUCE).

If a model is declared by the preprocessor to be infeasible or unbounded and the user believes that it might be infeasible, the parameter can be set to 1 by the user, and the preprocessor will perform only primal reductions.

If the preprocessor still finds inconsistency in the model, the preprocessor will declare the model infeasible, instead of infeasible or unbounded.

Similarly, setting the parameter to 2 means that if the preprocessor detects unboundedness in the model, it will be declared unambiguously to be unbounded.

To control the types of reductions performed by the presolver, set the parameter to one of the following values:

♦ 0 = no primal and dual reductions
♦ 1 = only primal reductions
♦ 2 = only dual reductions
♦ 3 = both primal and dual reductions (default)

These settings of the parameter are intended for diagnostic use, as turning off reductions will usually have a negative impact on performance of the optimization algorithms in the normal (feasible and bounded) case.
Managing unboundedness

Discusses tactics to diagnose the cause of an unbounded outcome in the optimization of a model and suggests ways to avoid an unbounded outcome.

In this section

What is unboundedness?
Defines unboundedness and tells how to access further information about the problem.

Avoiding unboundedness in a model
Suggests ways to eliminate unboundedness from a model.

Diagnosing unboundedness
Explains typical messages related to unboundedness and suggests ways to access further information.
What is unboundedness?

Any class of model, continuous or discrete, linear or quadratic, has the potential to result in a solution status of *unbounded*. An unbounded discrete model must have a continuous relaxation that is also unbounded. Therefore, the discussion here assumes that you first relax any discrete elements, and thus you deal with an unbounded continuous optimization problem, when you try to diagnose the cause.

**Note:** The reverse of that observation (that an unbounded discrete model necessarily has an unbounded continuous relaxation) is not necessarily the case: a discrete optimization model may have an unbounded continuous relaxation and yet have a bounded optimum.

A declaration of unboundedness means that IBM® ILOG® CPLEX® has detected that the model has an *unbounded ray*. That is, for any feasible solution $x$ with objective $z$, a multiple of the unbounded ray can be added to $x$ to give a feasible solution with objective $z-1$ (or $z+1$ for maximization models). Thus, if a feasible solution exists, then the optimal objective is unbounded.

When a model is declared unbounded, CPLEX® has not necessarily concluded that a feasible solution exists. Users can call methods or routines to discover whether CPLEX® has also concluded that the model has a feasible solution.

♦ In Concert Technology, call one of these methods:
  ● `isDualFeasible`
  ● `isPrimalFeasible`
  ● `try/catch the exception`

♦ In the Callable Library, call the routine `CPXsolninfo`. 
Avoiding unboundedness in a model

Unboundedness can be viewed as an under-constrained condition; such an outcome may result from a modeler forgetting to include one or more constraints in the model. Therefore, carefully checking that your problem formulation is complete is a good first step in diagnosing unboundedness.

The default variable type in CPLEX® has a lower bound of 0 (zero) and an upper bound of infinity. If you declare a variable to be of type Free, its lower bound is negative infinity instead of 0 (zero). A model can not be unbounded unless one or more of the variables has either of these infinite bounds. Therefore, one straightforward tactic in avoiding unboundedness is to assign finite bounds to every variable in your model. In other words, if no variable can go on an unbounded ray to infinity, then your model can not be unbounded.

Other forms of avoiding under-constrained conditions, such as adding a constraint that limits the sum of all variables, are also possible.

If an unbounded solution is not possible in the physical system you are modeling, then adding finite lower and upper bounds or adding other constraints may represent something realistic about the system that is worth expressing in the model anyway. However, great care should be taken to assign meaningful bounds, in cases where it is not possible to be certain what the actual bounds should be. If you happen to select bounds that are tighter than an optimal solution would obtain, then you can get a solution with a worse value of the objective function than you want. On the other hand, picking extremely large numbers for bounds (just to be safe) carries some risk, too: on a finite-precision computer, even a bound of one billion may introduce numeric instability and cause the optimizer to solve less rapidly or not to converge to a solution at all, or may result in solutions that satisfy tolerances but contain small infeasibilities.
Diagnosing unboundedness

You may be able to diagnose the cause of unboundedness by examining the output from the optimizer that detected the unboundedness. For example, if the preprocessing at the beginning of optimization made a series of reductions and then stopped with a message like this:

Primal unbounded due to dual bounds, variable 'x1'.

it makes sense to look at your formulation, paying particular attention to variable \( x_1 \) and its interactions. Perhaps \( x_1 \) never intersects less-than-or-equal-to constraints with a positive coefficient (or, greater-than-or-equal-to constraints with a negative coefficient), and by inspection you can see that nothing prevents \( x_1 \) from going to infinity.

Similarly, the primal simplex optimizer may terminate with a message like this:

Diverging variable = x2

In such a case, you should focus attention on \( x_2 \). (The dual simplex and barrier optimizers work differently than primal; they do not detect unboundedness in this way.) Unfortunately, the variable which is reported in one of these ways may or may not be a direct cause of the unboundedness, because of the many algebraic manipulations performed by the optimizer along the way.

An approach to diagnosis that is related to the technique discussed in Avoiding unboundedness in a model is to temporarily assign finite bounds to all variables. By solving the modified model and discovering which variables have solution values at these artificial bounds, you may be able to trace the cause through the constraints involving those variables.

Since an unbounded outcome means that an unbounded ray exists, one approach to diagnosis is to display this ray. In Concert Technology, use the method getRay; in the Callable Library use the advanced routine CPXgetray. The relationship of the variables in this ray may give you guidance as to the cause of unboundedness.

If you are familiar with LP theory, then you might consider transforming your model to the associated dual formulation. This transformation can be accomplished, for example, by writing out the model in DUA format and then reading it back in. (See the CPLEX File Formats Reference Manual for a brief description of DUA as a file format.) The dual model of an unbounded model will be infeasible. And that means that you can use the conflict refiner to reduce the infeasible model to a minimal conflict. (See Diagnosing infeasibility by refining conflicts for more about the conflict refiner.) It is possible that the smaller model will allow you to identify the source of the (dual) infeasibility more easily than the full model allows.
Diagnosing infeasibility by refining conflicts

Describes the conflict refiner, a feature for diagnosing the cause of infeasibility in a model, whether continuous or discrete, whether linear or quadratic.

In this section

What is a conflict?
Defines a conflict as a set of mutually contradictory constraints in a model.

What a conflict is not
Distinguishes conflict refiner from FeasOpt, from data modification, from infeasibility induced by cutoff values.

How to invoke the conflict refiner
Describes routines and methods to invoke the conflict refiner.

How a conflict differs from an IIS
Distinguishes a conflict from an irreducibly inconsistent set (IIS).

Meet the conflict refiner in the Interactive Optimizer
Introduces the conflict refiner in the Interactive Optimizer.

Interpreting conflict
Interprets the conflict detected by the conflict refiner in the Interactive Optimizer.

More about the conflict refiner
Describes the behavior of the conflict refiner in greater detail.

Refining a conflict in a MIP start
Describes how a MIP start may be used with the conflict refiner.
Using the conflict refiner in an application
Describes an application using the conflict refiner in the C++ API.

Comparing a conflict application to Interactive Optimizer
Contrasts the conflict refiner in an application and in the Interactive Optimizer to
demonstrates features available only in the Callable Library and Concert Technology, not
in the Interactive Optimizer:
What is a conflict?

A *conflict* is a set of mutually contradictory constraints and bounds within a model. Given an infeasible model, IBM® ILOG® CPLEX® can identify conflicting constraints and bounds within it. CPLEX® refines an infeasible model by examining elements that can be removed from the conflict to arrive at a minimal conflict. A conflict smaller than the full model may make it easier for the user to analyze the source of infeasibilities in the original model.

If the model happens to contain multiple independent causes of infeasibility, it may be necessary for the user to repair one cause and then repeat the process with a further refinement.
What a conflict is not

Information about the necessary magnitude of change to data values, in order to gain feasibility, is not available from a conflict. The algorithms for detecting and refining conflicts do their work by including or removing a constraint or bound in trial solutions, not by varying the data of those entities. For that kind of insight, or for an approach to automatic repair of infeasibility, the FeasOpt feature, discussed in Repairing infeasibilities with FeasOpt, is more appropriate.

CPLEX® refines conflicts only among the constraints and bounds in your model. It disregards the objective function while it is refining a conflict. In particular, if you have set a MIP cutoff value with the idea that the cutoff value will render your model infeasible, and then you apply the conflict refiner, you will not achieve the effect you expect. In such a case, you should add one or more explicit constraints to enforce the restriction you have in mind. In other words, add constraints rather than attempt to enforce a restriction through the lower cutoff and upper cutoff parameters:

♦ CutLo or CutUp in Concert Technology (not recommended to enforce infeasibility)

♦ CPX_PARAM_CUTLO or CPX_PARAM_CUTUP in the Callable Library (not recommended to enforce infeasibility)

♦ mip tolerance lowercutoff or uppercutoff in the Interactive Optimizer (not recommended to enforce infeasibility)
How to invoke the conflict refiner

*Conflict Refiner* summarizes the methods and routines that invoke the conflict refiner, depending on the component or API that you choose.

**Conflict Refiner**

<table>
<thead>
<tr>
<th>API or Component</th>
<th>Invoke Conflict Refiner</th>
<th>Access Results</th>
<th>Save Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concert Technology for C++ Users</td>
<td>IloCplex::refineConflict</td>
<td>getConflict</td>
<td>writeConflict</td>
</tr>
<tr>
<td>Concert Technology for Java Users</td>
<td>IloCplex.refineConflict</td>
<td>getConflict</td>
<td>writeConflict</td>
</tr>
<tr>
<td>Concert Technology for .NET Users</td>
<td>Cplex.RefineConflict</td>
<td>GetConflict</td>
<td>WriteConflict</td>
</tr>
<tr>
<td>Callable Library</td>
<td>CPXrefineconflict</td>
<td>CPXgetconflict</td>
<td>CPXclpwrite</td>
</tr>
<tr>
<td></td>
<td>CPXrefineconflict</td>
<td>CPXgetconflicttext</td>
<td>CPXclpwrite</td>
</tr>
<tr>
<td>Interactive Optimizer</td>
<td>conflict</td>
<td>display conflict</td>
<td>write file.clp</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following sections explain more about these methods and routines.
How a conflict differs from an IIS

In some ways a conflict resembles an irreducibly inconsistent set (IIS). Detection of an IIS among the constraints of a model is a standard methodology in the published literature; an IIS finder has long been available as a tool within CPLEX®. Both tools (conflict refiner and IIS finder) attempt to identify an infeasible subproblem of a provably infeasible model.

However, a conflict is more general than an IIS. The IIS finder is applicable only to continuous LP models, whereas the conflict refiner is capable of doing its work on any type of problem, including mixed integer models or models containing quadratic elements.

Also, you can specify one or more groups of constraints for a conflict; a group will either be present together in the conflict, or else will not be part of it at all.

You can also assign numeric preference to a constraint or to groups of constraints. In the case of an infeasible model that has more than one possible conflict, the preferences you assign will guide the tool toward detecting the conflict you want. Preferences allow you to specify aspects of the model that may otherwise be difficult to encode.

While the conflict refiner usually will deliver a smaller set of constraints to consider than the IIS finder will, the methods are different enough that the reverse can sometimes be true. The fact that the IIS finder implements a standard methodology may weigh toward its use in some situations. Otherwise, the conflict refiner can be thought of as usually doing everything the IIS finder can, and often more. In fact, you might think of the conflict refiner as an extension and generalization of the IIS finder.
Meet the conflict refiner in the Interactive Optimizer

Introduces the conflict refiner in the Interactive Optimizer.

In this section

Limits of the conflict refiner in the Interactive Optimizer
Summarizes the limits of the conflict refiner in the Interactive Optimizer.

A model for the conflict refiner
Describes a model to exercise the conflict refiner in the Interactive Optimizer.

Optimizing the example
Displays results of optimizing that model in the Interactive Optimizer.

Interpreting the results and detecting conflict
Explains results of the example in the Interactive Optimizer.

Displaying a conflict in the Interactive Optimizer
Displays a conflict detected by the conflict refiner in the Interactive Optimizer.
Limits of the conflict refiner in the Interactive Optimizer

You can get acquainted with the conflict refiner in the Interactive Optimizer. Certain features of the conflict refiner, namely, preferences and groups, are available only through an application of the Callable Library or Concert Technology. Those additional features are introduced in *Using the conflict refiner in an application.*
A model for the conflict refiner

Here’s a simplified resource allocation problem to use as a model in the Interactive Optimizer. Either you can create a file containing these lines and read the file into the Interactive Optimizer by means of this command:

```
read filename
```

or you can use the enter command, followed by a name for the problem, followed by these lines:

```
Minimize
 obj: cost
Subject To
 c1: - cost + 80 x1 + 60 x2 + 55 x3 + 30 x4 + 25 x5 + 80 x6 + 60 x7 + 35 x8
 + 80 x9 + 55 x10 = 0
 c2: x1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
 c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2
 c4: x9 + 0.9 x10 >= 0.8
 c5: 0.2 x2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service = 0
 c6: x1 + x6 + x9 >= 1
 c7: x1 + x2 + x3 + x6 + x7 + x9 >= 2
 c8: x2 + x3 + x4 + x5 <= 0
 c9: x4 + x5 + x8 <= 1
 c10: x1 + x10 <= 1
Bounds
 service >= 3.2
Binaries
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
End
```

This simple model, for example, might represent a project-staffing problem. In that case, the ten binary variables could represent employees who could be assigned to duty.

The first constraint defines the cost function. In this example, the objective is to minimize the cost of salaries. The next three constraints (c2, c3, c4) represent three nonoverlapping skills that the employees must cover to varying degrees of ability. The fifth constraint represents some additional quality metric (perhaps hard to measure) that most or all of the employees can contribute to. It is called customer service in this example. That variable has a lower bound to make sure of a certain predefined minimum level of 3.2.

The remaining constraints represent various work rules that reflect either policy that must be followed or practical guidance based on experience with this workforce. Constraint c6, for example, dictates that at least one person with managerial authority be present. Constraint c7 requires at least two senior personnel be present. Constraint c8 indicates that several people are scheduled for off-site training during this period. Constraint c9 recognizes that three individuals are not productive together. Constraint c10 prevents two employees who are married to each other from working in this group in the same period, since one is a manager.
Optimizing the example

If you apply the `optimize` command to this example, you will see these results:

Row 'c8' infeasible, all entries at implied bounds.
Presolve time = 0.00 sec.
MIP - Integer infeasible.
Current MIP best bound is infinite.
Solution time = 0.00 sec.  Iterations = 0  Nodes = 0
Interpreting the results and detecting conflict

The declaration of infeasibility comes from presolve. In fact, presolve has already performed various reductions by the time it detects the unresolvable infeasibility in constraint c8. This information by itself is unlikely to provide any useful insights about the source of the infeasibility, so try the conflict refiner, by entering this command:

`conflict`

Then you will see results like these:

```
Refine conflict on 14 members...
Iteration Max Members Min Members
1 11 0
2 9 0
3 7 0
4 2 0
5 2 1
6 2 2
Minimal conflict: 2 linear constraint(s)
0 lower bound(s)
0 upper bound(s)
Conflict computation time = 0.00 sec. Iterations = 6
```

The first line of output mentions 14 members; this total represents constraints, lower bounds, and upper bounds that may be part of the conflict. There are ten constraints in this model; there are two continuous variables with lower and upper bounds that represent the other four members to be considered. Because binary variables are not reasonable candidates for bound analysis, the Interactive Optimizer treats the bounds of only the variables `cost` and `service` as potential members of the conflict. If you want all bounds to be candidates, you could instead declare the binary variables to be general integer variables with bounds of [0,1]. (Making that change in this model would likely result in the conflict refiner suggesting that one of the binary variables should take a negative value.) On some models, allowing so much latitude in the bounds may cause the conflict refiner to take far longer to arrive at a minimal conflict.
Displaying a conflict in the Interactive Optimizer

As you can see in the log displayed on the screen, the conflict refiner works to narrow the choices until it arrives at a conflict containing only two members. Since the conflict is small in this simplified example, you can see it in its entirety by entering this command:

display conflict all

Minimize

obj:

Subject To

\[ \begin{align*}
  c2: & \quad x1 + x2 + 0.8 \times x3 + 0.6 \times x4 + 0.4 \times x5 \geq 2.1 \\
  c8: & \quad x2 + x3 + x4 + x5 \leq 0
\end{align*} \]

Bounds

\[ \begin{align*}
  0 \leq x1 & \leq 1 \\
  0 \leq x2 & \leq 1 \\
  0 \leq x3 & \leq 1 \\
  0 \leq x4 & \leq 1 \\
  0 \leq x5 & \leq 1
\end{align*} \]

Binaries

x1 x2 x3 x4 x5

In a larger conflict, you can selectively display constraints or bounds on variables by using these commands to specify a range of rows or columns:

display conflict constraints

display conflict variables

You can also write the entire conflict to a file in LP-format to browse later by using the command (where `modelname` is the name you gave the problem):

write `modelname`.clp
Interprets the conflict detected by the conflict refiner in the Interactive Optimizer.

In this section

Understanding the conflict in the model
Describes the reported conflict in terms of the model in the example.

Deleting a constraint
Shows the effect of deleting a constraint from a conflict.

Understanding a conflict report
Explains lower bounds reported in a conflict by the conflict refiner.

Summing equality constraints
Explains sums of constraints reported in a conflict by the conflict refiner.

Changing a bound
Explains the effect of changing a bound reported in a conflict by the conflict refiner.

Adding a constraint
Explains the effect of adding a constraint to an infeasible model.

Changing bounds on cost
Explains the effect of changing bounds on cost in the model.

Relaxing a constraint
Explains the effect of relaxing a constraint in the model.
Understanding the conflict in the model

In those results in *Interpreting the results and detecting conflict*, you see that c8, the constraint mentioned by presolve, is indeed a fundamental part of the infeasibility, as it directly conflicts with one of the skill constraints. In this example, with so many people away at training, the skill set in c2 cannot be covered. Perhaps it would be up to the judgment of the modeler or management to decide whether to relax the skill constraint or to reduce the number of people who will be away at training during this period, but something must be done for this model to have a feasible solution.
Deleting a constraint

For the sake of explanation, assume that a managerial decision is made to cancel the training in this period. To implement that decision, try entering this command:

```
change delete constraint c8
```

Now re-optimize. Unfortunately, even removing c8 does not make it possible to reach an optimum, as you see from these results of optimization:

```
Constraints 'c5' and 'c9' are inconsistent.
Presolve time = 0.00 sec.
MIP - Integer infeasible.
Current MIP best bound is infinite.
Solution time = 0.00 sec. Iterations = 0 Nodes = 0
```

Perhaps presolve has identified a source of infeasibility, but if you run the **conflict** command again, you see these results:

```
Refine conflict on 13 members...
Iteration Max Members Min Members
 1 12 0
 2 9 0
 3 6 0
 4 4 0
 5 3 0
 6 3 1
 7 3 2
 8 3 3
Minimal conflict: 2 linear constraint(s)
 1 lower bound(s)
 0 upper bound(s)
Conflict computation time = 0.00 sec. Iterations = 8
```

Now view the entire conflict with this command:

```
display conflict all
```

```
Minimize
 obj:
Subject To
 c5: 0.2 x2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service = 0
 c x4 + x5 + x8 <= 1
sum_eq: 0.2 x2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service = 0
Bounds
 0 <= x2 <= 1
 0 <= x3 <= 1
 0 <= x4 <= 1
 0 <= x5 <= 1
 0 <= x7 <= 1
 0 <= x8 <= 1
```
\[0 \leq x_{10} \leq 1\]
\[\text{service} \geq 3.2\]
Binaries
\[x_2 \ x_3 \ x_4 \ x_5 \ x_7 \ x_8 \ x_{10}\]
Understanding a conflict report

The constraints mentioned by presolve are part of the minimal conflict detected by the conflict refiner. The additional information provided by this conflict is that the lower bound on service quality could also be considered for modification to achieve feasibility: with only one among employees 4, 5, and 8 permitted, any of whom contribute 0.5 to the quality metric, the lower bound on service cannot be achieved. Unlike a binary variable, where it would make little sense to adjust either of its bounds to achieve feasibility, the bounds on a continuous variable like service may be worth scrutiny.

The other information this Conflict provides is that no change of the upper bound on service, currently infinity, could aid toward feasibility; perhaps that is already obvious, but even a finite upper bound would not be part of this conflict (as long as it is larger than the lower bound of 3.2).
Summing equality constraints

Note the additional constraint provided in this conflict: \textit{sum\_eq}. It is a sum of all the equality constraints in the conflict. In this case, there is only one such constraint; sometimes when there are more, an imbalance will become quickly apparent when positive and negative terms cancel.
Changing a bound

Again, for the sake of the example, assume that it is decided after consultation with management to repair the infeasibility by reducing the minimum on the service metric, on the grounds that it is a somewhat arbitrary metric anyway. A minimal conflict does not directly tell you the magnitude of change needed, but in this case it can be quickly detected by examination of the minimal conflict that a new lower bound of 2.9 could be achievable; select 2.8, to be safe. Modify the model by entering this command:

```
change bound service lower 2.8
```

and re-optimize. Now at last the model delivers an optimum:

```
Tried aggregator 1 time.
MIP Presolve eliminated 9 rows and 12 columns.
MIP Presolve modified 16 coefficients.
All rows and columns eliminated.
Presolve time = 0.00 sec.
MIP-Integer optimal solution: Objective = 3.3500000000e+02
Solution time = 0.00 sec. Iterations = 0 Nodes = 0
```

Displaying the solution indicates that employees \{2,3,5,6,7,10\} are used in the optimal solution.
Adding a constraint

A natural question is why so many employees are needed. Look for an answer by adding a constraint limiting employees to five or fewer, like this:

```
add
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10 <= 5
end
optimize
```

As you might expect, the output from the optimizer indicates the current solution is incompatible with this new constraint, and indeed no solution to this what-if scenario exists at all:

```
Warning: MIP start values are infeasible.
Retaining MIP start values for possible repair.
Row 'c11' infeasible, all entries at implied bounds.
Presolve time = 0.00 sec.
MIP - Integer infeasible.
Current MIP best bound is infinite.
Solution time = 0.00 sec. Iterations = 0 Nodes = 0
```

Constraint c11, flagged by presolve, is the newly added constraint, not revealing very much. To learn more about why c11 causes trouble, run `conflict` again, and view the minimal conflict with the following command again:

```
display conflict all
```

You will see the following conflict:

```
Minimize
 obj:
Subject To
 c2: x1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
 c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2
 c4: x9 + 0.9 x10 >= 0.8
 c11: x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 <= 5
(omitting the listing of binary variables' bounds)
```

The constraints in conflict with this new limitation are all of the skill requirements. When viewed in this light, the inconsistency is easy to spot: one employee is obviously needed for constraint c4, two are needed for c3, and a simple calculation reveals that three are needed for c2. Since there is no overlap in the skill sets, five employees are too few.

Unless management or the formulator of the model is willing to compromise about the skills, (for example, to relax the righthand side of any of these constraints), constraint c11 needs to be taken out again, since it is unrealistic to get by with only five employees:

```
change delete constraint c11
```

This change results in a model with an optimal cost of 335, using six employees.
Changing bounds on cost

No better cost is possible in this formulation. Still, you may wonder, "Why not?" To try yet another scenario, instead of limiting the number of employees, try focusing on the cost by changing the upper bound of the cost to 330, like this:

```
change bound cost upper 330
optimize
conflict
display conflict all
```

This series of commands again renders the model infeasible and shows a minimal conflict:

```
Subject To
 c1: - cost + 80 x1 + 60 x2 + 55 x3 + 30 x4 + 25 x5 + 80 x6 + 60 x7
 + 35 x8 + 80 x9 + 55 x10 = 0
 c2: x1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
 c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2
 c5: 0.2 x2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service
 = 0
 c9: x4 + x5 + x8 <= 1

Bounds
 -Inf <= cost <= 330
 service >= 2.9
```

The upper bound on cost is, of course, expected to be in the conflict, so relaxing it would merely put the scenario back the way it was. The constraint c1 defines cost, so unless there is some unexpected latitude in setting salaries, no relief will be found there. Constraints c2 and c3 represent two skill requirements, previously judged beyond negotiation, and constraint c5 represents service quality, already compromised a bit. That rough analysis leaves c9, the requirement not to use three particular employees together.
Relaxing a constraint

How much is it costing to maintain this rule? Consider asking them to work productively pairwise, if not all three, and relax the upper limit of this constraint, like this:

```
change rhs c9 2
optimize
```

The model is now restored to feasibility, and the new optimum has an overall cost of 310, a tangible improvement of 25 over the previous optimum, using employees {2,3,5,6,8,10}; employee 7 has been removed in favor of employee 8. Is that enough monetary benefit to offset whatever reasons there were for separating employees 4 and 8? That is not a decision that can be made here; but at least this model provides some quantitative basis toward making that decision. Additionally, a check of the service variable shows that its solution value is back up to 3.2, a further benefit from relaxing constraint c9. Perhaps this decision should have been made sooner; the first time constraint c9 appeared in a conflict.

The solution of 310 could be investigated further by changing the upper bound of cost to be 305, for example. The conflict resulting from this change consists of the skills constraint plus the constraint requiring at least one manager on duty. At this point, the analysis has reached a conclusion, unless management or the model formulator wishes to challenge the policy.
More about the conflict refiner

Presolve proved the infeasibility of that simplified example in *A model for the conflict refiner*. However, a minimal conflict can be refined from an infeasible model regardless of how the infeasibility was found. The infeasibility may have been proven by presolve, by the continuous optimizers, or by the mixed integer optimizer.

A minimal conflict on a nontrivial model can take longer to refine than the associated optimization algorithm would have taken either to prove the infeasibility or to solve a similar model instance that was feasible. One reason that refining a minimal conflict may take longer is that multiple passes (that is, iterations) are performed; each iteration solves a submodel to decide its feasibility status. Another reason is that even if the full model is quickly detected to be infeasible, the infeasibility of the submodels may be less blatant and thus require more time to analyze. It can happen that a number of refinement iterations proceed quickly, and then suddenly no further progress is seen for quite a long time. This deceptive appearance of lack of progress may be especially noticeable in the case of mixed integer models, where a proof of infeasibility may become a quite difficult mathematical problem.

If the user sets a resource limit, such as a time limit, an iteration limit, or node limit, for example, or if a user interrupts the process interactively, the conflict that is available at that termination will be the best (that is, the most refined) that was achievable at that point. Even a nonminimal conflict may be more useful than the full model for discovering the cause of infeasibility. The status of a bound or constraint in such a nonminimal conflict may be *proved*, meaning that the conflict refiner had sufficient resources to prove participation of bound or constraint in the conflict, or the status may be *possible*, meaning that the conflict refiner has not yet proven whether the bound or constraint is necessarily part of a minimal conflict.

If a model contains more than one cause of infeasibility, then the conflict that is delivered may not be unique. As you saw in the example, you may repair one infeasibility only to find that there is another arising. An iterative approach may be necessary.

When the conflict refiner is allowed to run to completion, a conflict will be minimal in the sense that removal of any constraint or bound will result in a feasible subproblem. However, even if there is a single cause of infeasibility, it is worth realizing that conflicts can often be derived in more than one way, and one minimal conflict may be smaller (fewer in number of constraints or bounds) than another. For example, consider this small set of inconsistent constraints:

\[
\begin{align*}
  x + y + z & \geq 1 \\
  x & \leq 0 \\
  y & \leq 0 \\
  z & \leq 0 \\
  x + y + z & \leq 0
\end{align*}
\]

There are multiple minimal conflicts in that small set.

\[
\begin{align*}
(1) \\
  x + y + z & \geq 1 \\
  x & \leq 0 \\
  y & \leq 0 \\
  z & \leq 0
\end{align*}
\]
Removing any one of the constraints in conflict (1) results in feasibility. Likewise, removing either of the constraints in conflict (2) also results in feasibility. Either representation may guide you toward a correct analysis of the infeasibilities in the model.

Keep in mind also that a conflict may guide you toward multiple ways to repair a model, some more reasonable than others. For example, if the conflict in a model using continuous variables to represent percentages looked like this:

\[
\begin{align*}
x_1 + x_2 + x_3 & \geq 400 \\
\text{Bounds} & \\
0 & \leq x_1 \leq 100 \\
0 & \leq x_2 \leq 100 \\
0 & \leq x_3 \leq 100
\end{align*}
\]

the infeasibility could be repaired by one change, namely, by increasing the upper bound of \(x_3\) to be 200. However, with the way the variables are defined, this modification makes little sense. It is more likely that the model contains a subtle mistake in modeling (if the constraint should include more than three variables, for example).

When the model passed to the conflict refiner is actually feasible, the conflict refiner will return this message:

```
Problem is feasible; no conflict available
```

An attempt to display or access a conflict when none exists, whether because the conflict refiner has not yet been invoked or because an error occurred, results in this error message:

```
No conflict exists.
```

The cause of those messages will usually be apparent to a user. However, numeric instability may cause genuine uncertainty for a user. In an unstable model, one of the optimizers may return a valid conclusion of infeasibility, based on the numeric precision allowed by the model, and yet when a trivial modification is made, the model status changes, and a feasible solution now seems attainable. Because one of the conventional signs of instability can be this switching back and forth from feasibility to infeasibility, the user should be alert to this possibility. The conflict refiner halts and returns an error code if an infeasible model suddenly appears feasible during its analysis, due to this presumption of numeric instability. The user should turn attention away from infeasibility analysis at that point, and toward the sections in this manual such as *Numeric difficulties*. 
Refining a conflict in a MIP start

The conflict refiner can accept a MIP start. This feature may aid you in debugging a MIP start that CPLEX® rejects. That is, you can use the conflict refiner to analyze a rejected MIP start and may then be able to repair the MIP start appropriately.

To use the conflict refiner to debug a rejected MIP start, follow these steps:

1. Add the MIP start to the CPLEX® object.

2. Call a special version of the conflict refiner, specifying which MIP start to consider:
   - In Concert Technology
     - In the C++ API, use `IloCplex::refineMIPStartConflict`.
     - In the Java API, use `IloCplex.refineMIPStartConflict`.
     - In the .NET API, use `Cplex.RefineMIPStartConflict`.
   - In the Callable Library, use `CPXrefinemipstartconflict` or `CPXrefinemipstartconflictext`.
   - In the Interactive Optimizer, use the command `conflict i` where `i` specifies the index of the MIP start.

When a MIP start is added to the current model, you may specify an effort level to tell CPLEX® how much effort to expend in transforming the MIP start into a feasible solution. The conflict refiner respects effort levels except level 1 (one): check feasibility. It does not check feasibility of a MIP start.
Using the conflict refiner in an application

Describes an application using the conflict refiner in the C++ API.

In this section

Example: modifying ilomipex2.cpp
Describes modifications of ilomipex2.cpp to demonstrate the conflict refiner.

What belongs in an application to refine conflict
Highlights elements of an application invoking the conflict refiner.
Example: modifying ilomipex2.cpp

Here is an example using the conflict refiner in the C++ API of Concert Technology. You will modify one of the standard examples ilomipex2.cpp distributed with the product. Starting from that example, locate this statement in it:

cplex.solve();

Immediately after that statement, insert the following lines to prepare for and invoke the conflict refiner:

```cpp
if ((cplex.getStatus() == IloAlgorithm::Infeasible) ||
 (cplex.getStatus() == IloAlgorithm::InfeasibleOrUnbounded)) {
 cout << endl << "No solution - starting Conflict refinement" << endl;

 IloConstraintArray infeas(env);
 IloNumArray preferences(env);

 infeas.add(rng);
 infeas.add(sos1); infeas.add(sos2);
 if (lazy.getSize() || cuts.getSize()) {
 cout << "Lazy Constraints and User Cuts ignored" << endl;
 }
 for (IloInt i = 0; i<var.getSize(); i++) {
 if (var[i].getType() != IloNumVar::Bool) {
 infeas.add(IloBound(var[i], IloBound::Lower));
 infeas.add(IloBound(var[i], IloBound::Upper));
 }
 }
 for (IloInt i = 0; i<infeas.getSize(); i++) {
 preferences.add(1.0); // user may wish to assign unique preferences
 }

 if (cplex.refineConflict(infeas, preferences)) {
 IloCplex::ConflictStatusArray conflict = cplex.getConflict(infeas);

 env.getImpl()->useDetailedDisplay(IloTrue);
 cout << "Conflict :" << endl;
 for (IloInt i = 0; i<infeas.getSize(); i++) {
 if (conflict[i] == IloCplex::ConflictMember)
 cout << "Proved : " << infeas[i] << endl;
 if (conflict[i] == IloCplex::ConflictPossibleMember)
 cout << "Possible: " << infeas[i] << endl;
 }
 } else
 cout << "Conflict could not be refined" << endl;
```
cout << endl;
}

Now run this modified version with the model you have seen in *A model for the conflict refiner*. You will see results like these:

No solution - starting Conflict refinement

Refine conflict on 14 members...

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Max Members</th>
<th>Min Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Conflict:
Proved : c2( 2.1 <= ( x1 + x2 + 0.8 * x3 + 0.6 * x4 + 0.4 * x5 ) )
Proved : c8( ( x2 + x3 + x4 + x5 ) <= 0)
What belongs in an application to refine conflict

There are a few remarks to make about that modification:

♦ Lazy constraints must not be present in a conflict.

♦ User-defined cuts (also known as user cuts) must not be present in a conflict.

These lines check for lazy constraints and user-defined cuts.

```cpp
if (lazy.getSize() || cuts.getSize()) {
 cout << "Lazy Constraints and User Cuts ignored" << endl;
}
```

♦ Since it makes little sense to modify the bounds of binary (0-1) variables, this example does not include them in a conflict. This line eliminates binary variables from consideration:

```cpp
if (var[i].getType() != IloNumVar::Bool) {
```

Eliminating binary variables from consideration produces behavior consistent with behavior of the Interactive Optimizer. Doing so is optional. If you prefer for the conflict refiner to work on the bounds of your binary variables as well, omit this test, bearing in mind that it may take much longer to refine your model to a minimal conflict in that case.

♦ The method `useDetailedDisplay` is included to improve readability of the conflict when it is displayed.
Comparing a conflict application to Interactive Optimizer

Contrasts the conflict refiner in an application and in the Interactive Optimizer to demonstrates features available only in the Callable Library and Concert Technology, not in the Interactive Optimizer:

In this section

Preferences in the conflict refiner
Highlights preferences in the conflict refiner.

Groups in the conflict refiner
Highlights groups in the conflict refiner.
Preferences in the conflict refiner

You can assign *preference* to members of a conflict. In most cases there is no advantage to assigning unique preferences, but if you know something about your model that suggests assigning an ordering to certain members, you can do so.

♦ A preference of -1 means that the member is to be absolutely excluded from the conflict.
♦ A preference of 0 (zero) means that the member is always to be included.
♦ Preferences of positive value represent an ordering by which the conflict refiner will give preference to the members. A group with a higher preference is more likely to be included in the conflict. Preferences can thus help guide the refinement process toward a more desirable minimal conflict.
Groups in the conflict refiner

You can organize constraints and bounds into one or more *groups* in a conflict. A group is a set of constraints or bounds that must be considered together; that is, if one member of a group is designated by the conflict refiner to be a necessary in a minimal conflict, then the entire group will be part of the conflict.

For example, in the resource allocation problem from *A model for the conflict refiner*, management might consider the three skill requirements (c2, c3, c4) as inseparable. Adjusting the data in any one of them should require a careful re-evaluation of all three. To achieve that effect in the modified version of *ilomipex2.cpp*, replace this line:

```cpp
infeas.add(rng);
```

by the following lines to declare a group of the constraints expressing skill requirements:

```cpp
infeas.add(rng[0]);
IloAnd skills(env);
skills.add(rng[1]);
skills.add(rng[2]);
skills.add(rng[3]);
infeas.add(skills);
for (IloInt i = 4; i < rng.getSize(); i++) {
 infeas.add(rng[i]);
}
```

(This particular modification is specific to this simplified resource allocation model and thus would not make sense in some other infeasible model you might run with the modified *ilomipex2.cpp* application.)

After that modification, the cost constraint and the constraints indexed 4 through 10 are treated individually (that is, normally) as before. The three constraints indexed 1 through three are combined into a *skills* constraint through the *IloAnd* operator, and added to the infeasible set.

Individual preferences are not assigned to any of these members in this example, but you could assign preferences if they express your knowledge of the problem.

After this modification to group the skill constraints, a minimal conflict is reported like this, with the skill constraints grouped inseparably:

```plaintext
Conflict :
Proved : IloAnd and36 = {
 c2(2.1 <= (x1 + x2 + 0.8 * x3 + 0.6 * x4 + 0.4 * x5))
 c3(1.2 <= (x6 + 0.9 * x7 + 0.5 * x8))
 c4(0.8 <= (x9 + 0.9 * x10))
}
Proved : c8((x2 + x3 + x4 + x5) <= 0)
```
Repairing infeasibilities with FeasOpt

Documents FeasOpt, a feature for repairing infeasibility in a model.

In this section

What is FeasOpt?
Defines FeasOpt, defines preferences, and describes facilities in FeasOpt.

Invoking FeasOpt
Describes routines and methods to invoke FeasOpt.

Specifying preferences
Describes preferences and their effect on bounds and ranges in FeasOpt.

Example: FeasOpt in Concert Technology
Describes an application to use FeasOpt in the C++ API.
What is FeasOpt?

FeasOpt attempts to repair an infeasibility by modifying the model according to preferences set by the user. FeasOpt accepts an infeasible model and selectively relaxes the bounds and constraints in a way that minimizes a weighted penalty function that you define. FeasOpt supports all types of infeasible models. In essence, FeasOpt is another optimization algorithm (analogous to phase I of the simplex algorithm). It tries to suggest the least change that would achieve feasibility. FeasOpt does not actually modify your model. Instead, it suggests a set of bounds and constraint ranges and produces the solution that would result from these relaxations. Your application can query this solution. It can also report these values directly, or it can apply these new values to your model, or you can run FeasOpt again with different weights perhaps to find a more acceptable relaxation.

The infeasibility on which FeasOpt works must be present explicitly in your model among its constraints and bounds. In particular, if you have set a MIP cutoff value with the idea that the cutoff value will render your model infeasible, and then you apply FeasOpt, you will not achieve the effect you expect. In such a case, you should add one or more explicit constraints to enforce the restriction you have in mind. In other words, add constraints rather than attempt to enforce a restriction through the lower cutoff and upper cutoff parameters:

♦ CutLo or CutUp in Concert Technology (not recommended to enforce infeasibility)

♦ CFX_PARAM_CUTLO or CFX_PARAM_CUTUP in the Callable Library (not recommended to enforce infeasibility)

♦ mip tolerance lowercutoff or uppercutoff in the Interactive Optimizer (not recommended to enforce infeasibility)
Invoking FeasOpt

Depending on the interface you are using, you invoke FeasOpt in one of the ways listed in the table FeasOpt.

**FeasOpt**

<table>
<thead>
<tr>
<th>API or Component</th>
<th>FeasOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concert Technology for C++ users</td>
<td>IloCplex::feasOpt</td>
</tr>
<tr>
<td>Concert Technology for Java users</td>
<td>IloCplex feasOpt</td>
</tr>
<tr>
<td>Concert Technology for .NET users</td>
<td>Cplex.FeasOpt</td>
</tr>
<tr>
<td>Callable Library</td>
<td>CPXfeasopt and CPXfeasoptext</td>
</tr>
<tr>
<td>Interactive Optimizer</td>
<td>feasopt { variables</td>
</tr>
</tbody>
</table>

In **Concert Technology**, you have a choice of three implementations of FeasOpt, specifying that you want to allow changes to the bounds on variables, to the ranges on constraints, or to both.

In the **Callable Library**, you can allow changes without distinguishing bounds on variables from ranges over constraints.

In each of the APIs, there is an additional argument where you specify whether you want merely a *feasible* solution suggested by the bounds and ranges that FeasOpt identifies, or an *optimized* solution that uses these bounds and ranges.
Specifying preferences

You specify the bounds or ranges that FeasOpt may consider for modification by assigning positive preferences for each. A negative or zero preference means that the associated bound or range is not to be modified. One way to construct a weighted penalty function from these preferences is like this:

\[ \sum v_i \cdot p_i \]

where \( v_i \) is the violation and \( p_i \) is the preference.

Thus, the larger the preference, the more likely it will be that a given bound or range will be modified. However, it is not necessary to specify a unique preference for each bound or range. In fact, it is conventional to use only the values 0 (zero) and 1 (one) except when your knowledge of the problem suggests assigning explicit preferences.
Example: FeasOpt in Concert Technology

The following examples show you how to use FeasOpt. These fragments of code are written in Concert Technology for C++ users, but the same principles apply to the other APIs as well. The examples begin with a model similar to one that you have seen repeatedly in this manual.

```c++
IloEnv env;
try {
 IloModel model(env);
 IloNumVarArray x(env);
 IloRangeArray con(env);
 IloNumArray vals(env);
 IloNumArray infeas(env);

 x.add(IloNumVar(env, 0.0, 40.0));
 x.add(IloNumVar(env));
 x.add(IloNumVar(env));

 model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]));
 con.add(- x[0] + x[1] + x[2] <= 20);
 con.add(x[0] - 3 * x[1] + x[2] <= 30);
 con.add(x[0] + x[1] + x[2] >= 150);
 model.add(con);
}
```

If you extract that model and solve it, by means of the following lines, you find that it is infeasible.

```c++
IloCplex cplex(model);
cplex.exportModel("toto.lp");
cplex.solve();
if (cplex.getStatus() == IloAlgorithm::Infeasible ||
 cplex.getStatus() == IloAlgorithm::InfeasibleOrUnbounded) {
 env.out() << endl << "*** Model is infeasible ***" << endl << endl;
}
```

Now the following lines invoke FeasOpt to locate a feasible solution:

```c++
// begin feasOpt analysis

cplex.setOut(env.getNullStream());
IloNumArray lb(env);
IloNumArray ub(env);

// first feasOpt call

env.out() << endl << "*** First feasOpt call ***" << endl;
env.out() << "*** Consider all constraints ***" << endl;
```
The code first turns off logging to the screen by the optimizers, simply to avoid unnecessary output. It then allocates arrays `lb` and `ub`, to contain the preferences as input. The preference is set to 1.0 for all three constraints in both directions to indicate that any change to a constraint range is permitted.

Then the code calls `FeasOpt`. If the `FeasOpt` call succeeds, then several lines of output show the results. Here is the output:

```plaintext
*** First feasOpt call ***
*** Consider all constraints ***
*** Suggested bound changes = [50, -0, -0]
*** Feasible objective value would be = 50
Solution status = Infeasible
Solution obj value = 50
Values = [40, 30, 80]
```

There are several items of note in this output. First, you see that `FeasOpt` recommends only the first constraint to be modified, namely, by increasing its lower bound by 50 units.

The solution values of `[40, 30, 80]` would be feasible in the modified form of the constraint, but not in the original form. This situation is reflected by the fact that the solution status has not changed from its value of Infeasible. In other words, this change to the righthand side (RHS) of the constraint is only a suggestion from `FeasOpt`; the model itself has not changed, and the proposed solution is still infeasible in it.

To get a more concrete idea, assume that this constraint represents a limit on a supply, and assume further that increasing the supply to 70 is not practical. Now rerun `FeasOpt`, not allowing this constraint to be modified, like this:

```plaintext
// second feasOpt call
```
Those lines disallow any changes to the first constraint by setting \( lb[0] = ub[0] = 0.0 \). FeasOpt runs again, and here are the results of this second run:

*** Second feasOpt call ***
*** Consider all but first constraint ***
*** Suggested bound changes = \([-0, -0, -50]\)
*** Feasible objective value would be = 50
Solution status = Infeasible
Solution obj value = 50
Values = \([40, 17.5, 42.5]\)

Notice that the projected maximal objective value is quite different from the first time, as are the optimal values of the three variables. This solution was completely unaffected by the previous call to FeasOpt. This solution also is infeasible with respect to the original model, as you would expect. (If it had been feasible, you would not have needed FeasOpt in the first place.) The negative suggested bound change of the third constraint means that FeasOpt suggests decreasing the upper bound of the third constraint by 50 units, transforming this constraint:

\[ x[0] + x[1] + x[2] \geq 150 \]

into

\[ x[0] + x[1] + x[2] \geq 100 \]

That second call changed the range of a constraint. Now consider changes to the bounds.
// third feasOpt call

env.out() << endl << "*** Third feasOpt call ***" << endl;
env.out() << "*** Consider all bounds ***" << endl;

// re-use preferences - they happen to be right dimension
lb[0]=ub[0]=1.0;

if ( cplex.feasOpt(x, lb, ub) ) {
    env.out() << endl;
cplex.getInfeasibilities(infeas,x);
    env.out() << "*** Suggested bound changes = " << infeas << endl;
    env.out() << "*** Feasible objective value would be = "
        << cplex.getObjValue() << endl;
    env.out() << "Solution status = " << cplex.getStatus() << endl;
    env.out() << "Solution obj value = " << cplex.getObjValue() << endl;
cplex.getValues(vals, x);
    env.out() << "Values = " << vals << endl;
    env.out() << endl;
} else {
    env.out() << "*** Could not repair the infeasibility" << endl;
    throw (-1);
}

In those lines, all six bounds (lower and upper bounds of three variables) are considered for possible modification because a preference of 1.0 is set for each of them. Here is the result:

*** Third feasOpt call ***
*** Consider all bounds ***

*** Suggested bound changes = [25, 0, 0]
*** Feasible objective value would be = 25
Solution status = Infeasible
Solution obj value = 25
Values = [65, 30, 55]

Those results suggest modifying only one bound, the upper bound on the first variable. And just as you might expect, the solution value for that first variable is exactly at its upper bound; there is no incentive in the weighted penalty function to set the bound any higher than it has to be to achieve feasibility.

Now assume for some reason it is undesirable to let this variable have its bound modified. The final call to FeasOpt changes the preference to achieve this effect, like this:

// fourth feasOpt call

env.out() << endl << "*** Fourth feasOpt call ***" << endl;
env.out() << "*** Consider all bounds except first ***" << endl;
lb[0]=ub[0]=0.0;

if ( cplex.feasOpt(x, lb, ub) ) {
    env.out() << endl;
cplex.getInfeasibilities(infeas,x);
env.out() << "*** Suggested bound changes = " << infeas << endl;
env.out() << "*** Feasible objective value would be = "
    << cplex.getObjValue() << endl;
env.out() << "Solution status = " << cplex.getStatus() << endl;
env.out() << "Solution obj value = " << cplex.getObjValue() << endl;
cplex.getValues(vals, x);
env.out() << "Values = " << vals << endl;
env.out() << endl;
}
else {
    env.out() << "*** Could not repair the infeasibility" << endl;
    throw (-1);
}

Then after the fourth call of FeasOpt, the output to the screen looks like this:

*** Fourth feasOpt call ***
*** Consider all bounds except first ***
*** Could not repair the infeasibility
Unknown exception caught

This is a correct outcome, and a more nearly complete application should catch this exception and handle it appropriately. FeasOpt is telling the user here that no modification to the model is possible within this set of preferences: only the bounds on the last two variables are permitted to change according to the preferences expressed by the user, and they are already at \([0, +\infty]\), so the upper bound cannot increase, and no negative value for the lower bounds would ever improve the feasibility of this model.

Not every infeasibility can be repaired, and an application calling FeasOpt will usually need to take this practicality into account.
This part documents advanced programming techniques for users of IBM® ILOG® CPLEX®. It shows you how to apply query routines to gather information while CPLEX is working. It demonstrates how to redirect the search with goals or callbacks. This part also covers user-defined constraints and pools of lazy constraints. It documents the advanced MIP control interface and the advanced aspects of preprocessing: presolve and aggregation. It also introduces special considerations about parallel programming with CPLEX. This part of the manual assumes that you are already familiar with earlier parts of the manual.

In this section

User-cut and lazy-constraint pools
Documents pools of user-defined cuts and lazy constraints.

Using goals
Documents goals and their role in a branch & cut search.

Using optimization callbacks
Introduces optimization callbacks.

Goals and callbacks: a comparison
Contrasts goals with callbacks.

Advanced presolve routines
Documents the advanced presolve routines, available only in the Callable Library (C API).

Advanced MIP control interface
Documents the advanced MIP control interface.
Parallel optimizers
Documents the CPLEX® parallel optimizers.
User-cut and lazy-constraint pools

Documents pools of user-defined cuts and lazy constraints.

In this section

What are user cuts and lazy constraints?
Defines user cuts; defines lazy constraints.

What are pools of user cuts or lazy constraints?
Defines pools of user cuts or lazy constraints.

Differences between user cuts and lazy constraints
Distinguishes user cuts from lazy constraints.

Limitations on pools in the C API
Describes a limitation on pools in the C API.

Adding user cuts and lazy constraints
You may add user cuts or lazy constraints through routines or methods in the Component Libraries or via LP, SAV, or MPS files, as explained in the following sections.

Deleting user cuts and lazy constraints
Describes routines and methods to delete pools of user cuts or lazy constraints.
What are user cuts and lazy constraints?

In contrast to the cuts that IBM® ILOG® CPLEX® may automatically add while solving a problem, user cuts are those cuts that a user defines based on information already implied about the problem by the constraints; user cuts may not be strictly necessary to the problem, but they tighten the model. Lazy constraints are constraints that the user knows are unlikely to be violated, and in consequence, the user wants them applied lazily, that is, only as necessary or not before needed. User cuts can be grouped together in a pool of user cuts. Likewise, lazy constraints can also be grouped into a pool of lazy constraints.

Important: Only linear constraints may be included in a pool of user cuts or lazy constraints. Neither user cuts nor lazy constraints may contain quadratic terms.

Cuts in a typical MIP
What are pools of user cuts or lazy constraints?

Sometimes, for a MIP formulation, a user may already know a large set of helpful cutting planes \textit{(user cuts)}, or can identify a group of constraints that are unlikely to be violated \textit{(lazy constraints)}. Simply including these cuts or constraints in the original formulation could make the LP subproblem of a MIP optimization very large or too expensive to solve. Instead, these situations can be handled in one of these ways:

♦ through the cut callback described in \textit{Advanced MIP control interface}, or

♦ by setting up \textit{cut pools} before MIP optimization begins, as explained in \textit{Adding user cuts and lazy constraints}.

The principle in common between these two pools allows the optimization algorithm to perform its computations on a smaller model than it otherwise might, in the hope of delivering faster run times. In either case (whether in the case of pools of user cuts or pools of lazy constraints), the model starts out small, and then potentially grows as members of the pools are added to the model. Both kinds of pool may be used together in solving a MIP model, although that would be an unusual circumstance.

However, there is an important distinction between these two concepts.
Differences between user cuts and lazy constraints

Cuts may resemble ordinary constraints, but are conventionally defined to mean those which can change the feasible space of the continuous relaxation but do not rule out any feasible integer solution that the rest of the model permits. A collection of cuts, therefore, involves an element of freedom: whether or not to apply them, individually or collectively, during the optimization of a MIP model; the formulation of the model remains correct whether or not the cuts are included. This degree of freedom means that if valid and necessary constraints are mis-identified by the user and passed to CPLEX® as user cuts, unpredictable and possibly incorrect results could occur.

By contrast, lazy constraints represent simply one portion of the constraint set, and the model would be incomplete (and possibly would deliver incorrect answers) in their absence. CPLEX® always makes sure that lazy constraints are satisfied before producing any solution to a MIP model. Needed lazy constraints are also kept in effect after the MIP optimization terminates, for example, when you change the problem type to fixed-integer and re-optimize with a continuous optimizer.

Another important difference between pools of user cuts and pools of lazy constraints lies in the timing by which these pools are applied. CPLEX® may check user cuts for violation and apply them at any stage of the optimization. Conversely, it does not guarantee to check them at the time an integer-feasible solution candidate has been identified. Lazy constraints are only (and always) checked when an integer-feasible solution candidate has been identified, and of course, any of these constraints that turn out to be violated will then be applied to the full model.

Another way of comparing these two types of pool is to note that the user designates constraints as lazy in the strong hope and expectation that they will not need to be applied, thus saving computation time by their absence from the working problem. In practice, it is relatively costly (for a variety of reasons) to apply a lazy constraint after a violation is identified, and so the user should err on the side of caution when deciding whether a constraint should be marked as lazy. In contrast, user cuts may be more liberally added to a model because CPLEX® is not obligated to use any of them and can apply its own rules to govern their efficient use.
Limitations on pools in the C API

Certain restrictions apply to these pools if you are using the **Callable Library**. (Concert Technology automatically handles these CPLEX® parameter settings for you.) If either of these conditions is violated, CPLEX® issues the error `CPXERR_PRESOLVE_BAD_PARAM` when the MIP optimizer is called.

♦ When a user cut pool is present, the linear reduction switch (CPX_PARAM_PRELINEAR in the Callable Library, PreLinear in Concert Technology) must be set to zero.

♦ When a lazy constraint pool is present, the primal and dual reduction type (CPX_PARAM_REDUCE in the Callable Library, Reduce in Concert Technology) must be set to either 0 (zero) or 1 (one), in order that dual reductions not be performed by presolve during preprocessing.
Adding user cuts and lazy constraints

You may add user cuts or lazy constraints through routines or methods in the Component Libraries or via LP, SAV, or MPS files, as explained in the following sections.

In this section

Using the Component Libraries
Describes routines and methods for adding pools of user cuts or lazy constraints in the APIs.

Using the Interactive Optimizer
Describes display and addition of pools of user cuts and lazy constraints in the Interactive Optimizer.

Reading and writing LP files
Describes reading and writing pools of user cuts or lazy constraints from LP files.

Reading and writing SAV files
Describes reading and writing pools of user cuts or lazy constraints from SAV files.

Reading and writing MPS files
Describes reading and writing pools of user cuts or lazy constraints from MPS files.
Using the Component Libraries

The following facilities add user defined cuts to a user cut pool.

♦ The **Callable Library** routine \texttt{CPXaddusercuts}

♦ The **Concert Technology** methods:
  
  ● \texttt{addUserCuts} in the C++ API
  
  ● \texttt{IloCplex addUserCuts} in the Java API
  
  ● \texttt{Cplex.AddUserCuts} in the .NET API

The following facilities will add lazy constraints to a lazy constraint pool.

♦ The **Callable Library** routine is \texttt{CPXaddlazyconstraints}.

♦ The **Concert Technology** methods
  
  ● \texttt{addLazyConstraints} in the C++ API
  
  ● \texttt{IloCplex.addLazyConstraints} in the Java API
  
  ● \texttt{Cplex.AddLazyConstraints} in the .NET API
Using the Interactive Optimizer

User cuts and lazy constraints appear when you enter the command `display problem all` in the Interactive Optimizer. You can also add user cuts and lazy constraints to an existing problem with the `add` command of the Interactive Optimizer.
**Reading and writing LP files**

User cuts and lazy constraints may also be specified in LP-format files, and so may be read:

- With the **Interactive Optimizer** read command
- Through the routine `CPXreadcopyprob` of the **Callable Library**
- Through the methods of **Concert Technology**:
  - `importModel` of the C++ API
  - `IloCplex.importModel` of the Java API
  - `Cplex.ImportModel` of the .NET API

When CPLEX® writes LP-format files, user cuts and lazy constraints added through their respective add routines or read from LP format files are included in the output files along with their names (if any).

### General syntax

The general syntax rules for LP format documented in the *CPLEX File Formats Reference Manual* apply to user cuts and lazy constraints.

- The user cuts section or sections must be preceded by the keywords **USER CUTS**.

- The lazy constraints section or sections must be preceded by the keywords **LAZY CONSTRAINTS**.

These sections, and the ordinary constraints section preceded by the keywords **SUBJECT TO**, can appear in any order and can be present multiple times, as long as they are placed after the objective function section and before any of the keywords **BOUNDS**, **GENERALS**, **BINARIES**, **SEMI-CONTINUOUS** or **END**.

### Example

Here is an example of an LP file containing ordinary constraints and lazy constraints.

```
Maximize
 obj: 12 *x1 + 5 *x2 + 15 *x3 + 10 *x4
Subject To
 c1: 5 *x1 + *x2 + 9 *x3 + 12 *x4 <= 15
Lazy Constraints
 l1: 2 *x1 + 3 *x2 + 4 *x3 + *x4 <= 10
 l2: 3 *x1 + 2 *x2 + 4 *x3 + 10 *x4 <= 8
Bounds
 0 <= *x1 <= 5
 0 <= *x2 <= 5
 0 <= *x3 <= 5
 0 <= *x4 <= 5
Generals
```
<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End

CPLEX® stores user cuts and lazy constraints in memory separately from ordinary constraints.
Reading and writing SAV files

User cuts and lazy constraints may also be specified SAV-format files, and so may be read:

♦ With the **Interactive Optimizer** read command

♦ Through the routine **CPXreadcopyprob** of the **Callable Library**

♦ Through the methods of **Concert Technology**:

  ● **importModel** of the C++ API
  
  ● **IloCplex.importModel** of the Java API
  
  ● **Cplex.ImportModel** of the .NET API

When CPLEX® writes SAV format files, user cuts and lazy constraints added through their respective `add` routines or read from SAV format files are included in the output files along with their names (if any).
CPLEX® extends the MPS file format with additional optional sections to accommodate user defined cuts and lazy constraints. The usual routines of the Callable Library and methods of Concert Technology to read and write MPS files also read and write these optional sections. These additional sections follow the ROWS section of an MPS file in this order:

♦ **ROWS**

♦ **USERCUTS**

♦ **LAZYCONS**

The syntax of these additional sections conforms to the syntax of the **ROWS** section with this exception: the type R cannot appear in **USERCUTS** nor in **LAZYCONS**. For details about the format of the ROWS section in the MPS file format, see the *CPLEX File Format Reference Manual*, especially these sections:

♦ **The ROWS section**

♦ **User defined cuts in MPS files**

♦ **Lazy constraints in MPS files**

Here is an example of an MPS file extended to include lazy constraints.

```
NAME extra.mps
ROWS
 N obj
 L c2
 L c3
LAZYCONS
 L c1
COLUMNS
 MARK0000 'MARKER' 'INTORG'
 x1 obj -12
 x1 c2 2
 x1 c3 3
 x1 c1 5
 x2 obj -5
 x2 c2 3
 x2 c3 2
 x2 c1 1
 x3 obj -15
 x3 c2 4
 x3 c3 4
 x3 c1 9
 x4 obj -10
 x4 c2 1
 x4 c3 10
 x4 c1 12
 MARK0001 'MARKER' 'INTEND'
```
<table>
<thead>
<tr>
<th>RHS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rhs</td>
<td>c2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>rhs</td>
<td>c3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>rhs</td>
<td>c1</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOUNDS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UP bnd</td>
<td>x1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>UP bnd</td>
<td>x2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>UP bnd</td>
<td>x3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>UP bnd</td>
<td>x4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

ENDATA
Deleting user cuts and lazy constraints

In the Callable Library, the pools of user cut and lazy constraint are cleared by the routines CPXfreeusercuts and CPXfreelazyconstraints. Clearing the pools does not change the MIP solution.

The Concert Technology methods are clearUserCuts and clearLazyConstraints.

Clearing a pool means that the user cuts and lazy constraints in the pool are removed and are not applied the next time MIP optimization is called, and that the solution to the MIP (if one exists) is still available. Although any existing solution is still feasible, it may no longer be optimal because of this change in the constraints.
Using goals

Documents goals and their role in a branch & cut search.

In this section

Branch & cut with goals
Documents the effect of goals in the search.

Special goals in branch & cut
Describes specialized, predefined goals to control the search.

Aggregating goals
Describes aggregate goals (And, Or).

Example: goals in branch & cut
Illustrates goals in a C++ application.

The goal stack
Describes the goal stack.

Memory management and goals
Describes goals in the context of memory management.

Cuts and goals
Distinguishes local cuts from global cuts and illustrates cuts added by a goal.

Injecting heuristic solutions
Defines heuristic solutions and describes the injection of a heuristic solution by a goal.
**Controlling goal-defined search**
Describes node selection strategy with goals.

**Example: using node evaluators in a node selection strategy**
Illustrates node evaluators in a node selection strategy.

**Search limits**
Describes search limits induced by a goal.
Branch & cut with goals

Documents the effect of goals in the search.

In this section

What is a goal?
Defines a goal in CPLEX®.

Overview of goals in the search
Describes goals in relation to nodes in the search.

How goals are implemented in branch & cut
Describes implementation of goals in the search in the C++ API.

About the method execute in a goal
Describes the execute method of a goal.
What is a goal?

Goals allow you to take control of the branch & cut search procedure used by IBM® ILOG® CPLEX® to solve MIP problems. To help you understand how to use goals with CPLEX®, these sections review how this procedure works.

♦ Overview of goals in the search
♦ How goals are implemented in branch & cut
♦ About the method execute in a goal

Note: Goals are implemented by IloCplex::Goal, not IloGoal as in other IBM® ILOG® products.
Overview of goals in the search

The search procedure manages a search tree consisting of nodes. Every node represents a subproblem to be solved, and the root node of the tree represents the entire problem. Nodes are called active if they have not yet been processed.

The tree is first initialized to contain the root node as the only active node. CPLEX® processes active nodes from the tree until either no more active nodes are available or some limit has been reached. After a node has been processed, it is no longer active.

When processing a node, CPLEX® starts by solving the continuous relaxation of its subproblem (that is, the subproblem without integrality constraints). If the solution violates any cuts, CPLEX® adds them to the node problem and re-solves. This procedure is iterated until no more violated cuts are found by CPLEX®. If at any point the relaxation becomes infeasible, the node is pruned, that is, it is removed from the tree.

To solve the node problem, CPLEX® checks whether the solution satisfies the integrality constraints. If so, and if its objective value is better than that of the current incumbent, the solution of the node problem is used as the new incumbent. Otherwise, CPLEX® splits the node problem into one or two smaller subproblems, typically by branching on a variable that violates its integrality constraint. These subproblems are added to the tree as active nodes and the current node is deactivated.

The primary use of goals is to take control of these last steps, namely the integer-feasibility test and the creation of subproblems. However, as discussed later, goals also allow you to add local and global cuts.
How goals are implemented in branch & cut

**Note:** The discussion of the details of using goals will be presented mainly in terms of the C++ API. The Java and .NET APIs follow the same design and are thus equivalent at this level of discussion. In cases where a difference between these APIs needs to be observed, the point will be raised. Where the difference is only in syntax, the other syntax will be mentioned in parentheses following the C++ syntax.

In C++, goals are implemented in objects of type `IloCplex::GoalI` (having the handle class `IloCplex::Goal`). In Java, goals are implemented in objects of type `IloCplex.Goal` (and there are no handle classes). In .NET, goals are implemented by the class `Cplex.Goal`. The method `IloCplex::GoalI::execute` (`IloCplex.Goal.execute`) is where the control is implemented. This method is called by `IloCplex` after a node relaxation has been solved and all cuts have been added. Invoking the method `execute` of a goal is often referred to as **executing a goal**. When the method `execute` is executed, other methods of the class `IloCplex::GoalI` (`IloCplex.Goal` or `Cplex.Goal`) can be called to query information about the current node problem and the solution of its relaxation.
About the method execute in a goal

Typically, the implementation of the method `execute` will perform the following steps:

1. Check feasibility. An interesting possibility here is that the feasibility check may include more than verifying integrality of the solution. This allows you to enforce constraints that could not reasonably be expressed using linear constraints through cuts or branching. In other words, this allows you to use goals in a way that makes them part of the model to be solved. Such a use is common in Constraint Programming, but it is less frequently used in Mathematical Programming. Note, however, that this CP-style application of goals prevents you from making use of MP-style advanced starting information, either from a MIP Start file or by restarting a previous optimization with one that uses goals.

2. Optionally find local or global cuts to be added. Local cuts will be respected only for the subtree below the current node, whereas global cuts will be enforced for all nodes from then on.

3. Optionally construct a solution and pass it to CPLEX®.

4. Instruct CPLEX® how to proceed. Instruct CPLEX® how to proceed through the return value of the method `execute`; the return value of `execute` is another goal. CPLEX® simply continues by executing this goal.
Special goals in branch & cut

Describes specialized, predefined goals to control the search.

In this section

Or goal
Describes the Or goal to create subnodes of the current node.

And goal
Describes the And goal to combine other goals in a fixed order of execution.

Fail goal
Describes the Fail goal for pruning the search tree.

Local cut goal
Describes a local cut goal to add a cut to a node.

Null goal
Describes the null goal to stop further branching.

Branch as CPLEX goal
Describes a branch goal to return control to CPLEX®.

Solution goal
Describes a goal to inject a solution at a node.
Or goal

An Or goal is a goal that creates subnodes of the current node. This function takes at least 2 and up to 6 goals as arguments. For each of its arguments, the Or goal will create a subnode in such a way that when that subnode is processed, the corresponding goal will be executed. After the goal has been executed, the current node is immediately deactivated.

In the C++ API, an Or goal is returned by IloCplex::GoalI::OrGoal.

In the Java API, an Or goal is returned by the method IloCplex.or.

In the .NET API, an Or goal is returned by the method Cplex.Or.
And goal

An And goal also takes goals as arguments. It returns a goal that will cause CPLEX® to execute all the goals passed as arguments in the order of the arguments.

In the C++ API, an And goal is returned by `IloCplex::GoalI::AndGoal`.

In the Java API, an And goal is returned by the method `IloCplex.and`.

In the .NET API, an And goal is returned by the method `Cplex.And`.
Fail goal

A Fail goal creates a goal that causes CPLEX® to prune the current node. In other words, it discontinues the search at the node where the goal is executed. CPLEX® will continue with another active node from the tree, if one is available.

In the C++ API, a Fail goal is returned by `IloCplex::GoalI::FailGoal`.

In the Java API, a Fail goal is returned by the method `IloCplex.failGoal`.

In the .NET API, a Fail goal is returned by the method `Cplex.FailGoal`.
Local cut goal

A local cut goal adds a local cut to the node where the goal is executed.

In the C++ API, the class IloCplex::Goal has constructors that take an instance of IloRange or an instance of IloRangeArray (IloRange[]) as an argument. When one of these constructors is used, a local cut goal is created.

To create local cut goals with the Java API, use the method IloCplex.constraintGoal or if more convenient, one of the methods IloCplex.leGoal, IloCplex.geGoal, or IloCplex.eqGoal.

In the .NET API, use the methods Cplex.ConstraintGoal, Cplex.EqGoal, Cplex.LeGoal, or Cplex.GeGoal to create a local cut goal.
Null goal

The 0-goal is also known as a null goal or empty goal.

In the C++ API, a null goal is an IloCplex::Goal handle object with a null (0) implementation pointer.

A null goal can also be returned by the method IloCplex::GoalI::execute.

Use a null goal when you want to instruct CPLEX® not to branch any further. For example, when CPLEX® finds a feasible solution, and you want to accept it without further branching, a null goal is appropriate.

For example, the following sample from the C++ API accepts an integer feasible solution and stops branching.

```cpp
if (isIntegerFeasible())
 return 0;
```
Branch as CPLEX goal

Instead of instructing CPLEX® not to branch any further (as you can do with a null goal), it is also possible to tell CPLEX® to branch as it normally would; in other words, to branch as CPLEX®. You give CPLEX® this instruction by means of a branching goal. A branching goal tells CPLEX® to take over control of the branch & cut search with its built-in strategies.

The following lines in the C++ API tell CPLEX® to continue branching as it would normally do:

```cpp
if (!isIntegerFeasible())
 AndGoal(BranchAsCplexGoal(getEnv()), this);
```
Solution goal

A solution goal is a goal that injects a solution, such as a solution supplied by you or a solution found by CPLEX® during the search.

For example, here is a sample in the C++ API which injects a solution at the beginning of branch & bound and then uses a branching goal:

```c++
if (getNnodes() == 0)
 goal = AndGoal(OrGoal(SolutionGoal(goalvar,startVals),
 AndGoal(MyBranchGoal(getEnv(), var), goal)),
 goal);
else
 goal = AndGoal(MyBranchGoal(getEnv(), var), goal);
return goal;
```

For more about this kind of special goal, see *Injecting heuristic solutions*.
Aggregating goals

Since And goals and Or goals take other goals as arguments, goals can be combined into aggregate goals. In fact, this is how goals are typically used for specifying a branching strategy. A typical return goal of a user-written execute method for C++ looks like this:

```c++
return AndGoal(OrGoal(var <= IloFloor(val), var >= IloFloor(val)+1), this);
```

and for Java, it looks like this:

```java
return cplex.and(cplex.or(cplex.leGoal(var, Math.floor(val)),
 cplex.geGoal(var, Math.floor(val)+1)), this);
```

and for C#.NET, it looks like this:

```csharp
return cplex.And(
 cplex.Or(cplex.GeGoal(_vars[bestj], System.Math.Floor(x[bestj])+1),
 cplex.LeGoal(_vars[bestj], System.Math.Floor(x[bestj]))),
 this);
```

For the C++ case, note that since this statement would be called from the execute method of a subclass of IloCplex::GoalI, the full name IloCplex::GoalI::OrGoal can be abbreviated to OrGoal. Likewise, the full name IloCplex::GoalI::AndGoal can be abbreviated to AndGoal.

This return statement returns an And goal that first executes the Or goal and then the current goal itself specified by the this argument. When the Or goal is executed next, it will create two subnodes. In the first subnode, the first local cut goal representing

\[ \text{var} \leq [\text{val}] \]

(where

\[ [\text{val}] \]

denotes the floor of val) will be executed, thus adding the constraint

\[ \text{var} \leq [\text{val}] \]

for the subtree of this node. Similarly, the second subnode will be created, and when executing its constraint goal the constraint

\[ \text{var} \geq [\text{val}] + 1 \]

will be added for the subtree. this is then executed on each of the nodes that have just been created; the same goal is used for both subtrees. Further details about how goals are processed are available in The goal stack, Controlling goal-defined search, and Search limits.
Example: goals in branch & cut

Consider the following example to clarify the discussions of goals. This example is available as ilogoalex1.cpp in the examples/src subdirectory of your CPLEX® distribution. The equivalent Java implementation can be found as GoalEx1.java in the same location. The C#.NET version is in Goalex1.cs and the VB.NET version is in Goalex1.vb.

This example shows how to implement and use a goal for controlling the branch strategy used by CPLEX®. As discussed, goals are implemented as subclasses of the class IloCplex::GoalI (IloCplex.Goal or Cplex.Goal). The C++ implementation of that example uses the macro

```c++
ILOCPLEXGOAL1(MyBranchGoal, IloNumVarArray, vars)
```

instead. This macro defines two things, class MyBranchGoalI and the function

```c++
IloCplex::Goal MyBranchGoal(IloEnv env, IloNumVarArray vars);
```

The class MyBranchGoalI is defined as a subclass of class IloCplex::GoalI (IloCplex.Goal or Cplex.Goal) and has a private member IloNumVarArray vars. The function MyBranchGoal creates an instance of class MyBranchGoalI, initializes the member vars to the argument vars passed to the function, and returns a handle to the new goal object. The curly brackets "{}" following the macro enclose the implementation of the method MyBranchGoalI::execute containing the actual code of the goal.

The use of the macro is very convenient as the amount of user code is equivalent to the amount for defining a function, but with a slightly unusual syntax. IloCplex provides seven such macros that can be used for defining goals with 0 to 6 private members. If more than 6 members are needed, IloCplex::GoalI (IloCplex.Goal or Cplex.Goal) must be subclassed by hand.

Since the Java programming language does not provide macros, a subclass of IloCplex.Goal must always be implemented by hand. In this example, this class is called MyBranchGoalI and there is no helper function for creating an instance of that class (as the macro does in the case of C++).

The goal is then used for solving the extracted node by calling:

```c++
cplex.solve(MyBranchGoal(env, var));
```

for C++, or for Java:

```java
cplex.solve(new MyBranchGoal(var));
```

instead of the usual cplex.solve. The rest of the main function contains nothing new and will not be discussed any further.

In the implementation of the goal, or more precisely its method execute, starts by declaring and initializing some arrays. These arrays are then used by methods of class IloCplex::GoalI (IloCplex.Goal or Cplex.Goal) to query information about the node subproblem and the solution of its relaxation. The method getValues is used to query the solution values for the
variables in \( \text{vars} \), the method \text{getObjCoefs} \) is used to query the linear objective function coefficients for these variables, and method \text{getFeasibilities} \) is used to query feasibility statuses for them. The feasibility status of a variable indicates whether \text{IloCplex} considers the current solution value of the variable to be integer feasible or not. \text{IloCplex::GoalI} (\text{IloCplex.Goal} or \text{Cplex.Goal}) provides a wealth of other query methods. For details, see the \text{CPLEX Reference Manuals}.

After you have gathered information about the variables, their objective coefficients, and their current feasibility statuses, compute the index of an integer infeasible variable in \( \text{vars} \) that has the largest objective coefficients among the variables with largest integer infeasibility. That index is recorded in variable \( \text{bestj} \).

Then create a new goal handle object \( \text{res} \). By default, this is initialized to an empty goal. However, if an integer infeasible variable was found among those in \( \text{vars} \), then variable \( \text{bestj} \) will be \( \geq 0 \) and a nonempty goal will be assigned to \( \text{res} \):

\[
\text{res} = \text{AndGoal}(\text{OrGoal}(\text{vars}[\text{bestj}] \geq \text{IloFloor}(x[\text{bestj}])+1, \\
\text{vars}[\text{bestj}] \leq \text{IloFloor}(x[\text{bestj}]), \\
\text{this});
\]

This goal creates two branches, one for

\[
\text{vars}[\text{bestj}] \leq x[\text{bestj}]
\]

and one for

\[
\text{vars}[\text{bestj}] \geq [x[\text{bestj}]]+1
\]

and continues branching in both subtrees with the same goal \( \text{this} \). Finally, call method \text{end} for all temporary arrays and return goal \( \text{res} \).

Since Java objects are garbage collected, there is no need for the variable \( \text{res} \). Instead, depending on the availability of an integer infeasible variable, the null goal is returned or the returned goal is created in the return statement itself:

\[
\text{return cplex.and(cplex.or(cplex.geGoal(_vars[bestj],} \\
\text{Math.floor(x[bestj]))+1,} \\
\text{cplex.leGoal(_vars[bestj],} \\
\text{Math.floor(x[bestj]))},} \\
\text{this));}
\]
The goal stack

To understand how goals are executed, consider the concept of the goal stack. Every node has its own goal stack. When `cplex.solve(goal)` is called, the goal stack of the root node is simply initialized with `goal` and then the regular `cplex.solve` method is called.

When CPLEX® processes a node, it pops the first goal from the node’s goal stack and calls method `execute`. If a nonempty goal is returned, it is simply pushed back on the stack. CPLEX® keeps doing this until the node becomes inactive or the node’s goal stack becomes empty. When the node stack is empty, CPLEX® continues with its built-in search strategy for the subtree rooted at this node.

In light of the goal stack, here are the different types of goals:

♦ As explained in Or goal, the Or goal creates child nodes. CPLEX® first initializes the goal stack of every child node with a copy of the remaining goal stack of the current node. Then it pushes the goal passed as the argument to the Or goal on the goal stack of the corresponding node. Finally, the current node is deactivated, and CPLEX® continues search by picking a new active node from the tree to process.

♦ The And goal simply pushes the goals passed as arguments onto the goal stack in reverse order. Thus, when the goals are popped from the stack for execution, they will be executed in the same order as they were passed as arguments to the And goal.

♦ When a Fail goal executes, the current node is simply deactivated, and CPLEX® continues on another active node from the tree. In other words, CPLEX® discontinues its search below the current node.

♦ When a local cut goal is executed, its constraints are added to the node problem as local cuts and the relaxation is re-solved.

♦ An empty goal cannot be executed. Thus, empty goals are not pushed onto the goal stack. If the goal stack is empty, CPLEX® continues with the built-in branching strategy.

With this understanding, consider further what really goes on when a goal returns:

```cplex
return AndGoal(OrGoal(var <= IloFloor(val), var >= IloFloor(val)+1), this);
```

The And goal is pushed onto the current node's goal stack, only to be immediately popped back off of it. When it is executed, it will push `this` on the goal stack and then push the Or goal. Thus, the Or goal is the next goal that CPLEX® pops and executes. The Or goal creates two subnodes, and initializes their goal stacks with copies of the goal stack of the current node. At this point both subnodes will have `this` on top of their goal stacks. Next, the Or goal will push a local cut goal for

```
var <= v1
```

(where
```
[v1]
```

denotes the floor of `val` on the goal stack of the first subnode. Similarly, it pushes a local cut goal for

```
var \geq [v1] + 1
```
on the goal stack of the second subnode. Finally, the current node is deactivated and CPLEX® continues its search with a new active node from the tree.

When CPLEX® processes one of the subnodes that have been created by the Or goal, it will pop and execute the first goal from the node's goal stack. As you just saw, this will be a local cut goal. Thus CPLEX® adds the constraint to the node problem and re-solves the relaxation. Next, this will be popped from the goal stack and executed. That fact means that the same search strategy as implemented in the original goal is applied at that node.
Memory management and goals

Java and .NET use garbage collection to handle all memory management issues. Thus the following applies only to the C++ library. Java or .NET users may safely skip ahead to Cuts and goals.

To conserve memory, in the C++ API, CPLEX® only stores active nodes of the tree and deletes nodes as soon as they become inactive. When deleting nodes, CPLEX® also deletes the goal stacks associated with them, including all goals they may still contain. In other words, CPLEX® takes over memory management for goals.

It does so by keeping track of how many references to every goal are in use. As soon as this number drops to zero (0), the goal is automatically deleted. This technique is known as reference counting.

CPLEX® implements reference counting in the handle class IloCplex::Goal. Every IloCplex::Goal object maintains a count of how many IloCplex::Goal handle objects refer to it. The assignment operator, the constructors, and the destructor of class IloCplex::Goal are implemented in such a way as to keep the reference count up-to-date. This convention means that users should always access goals through handle objects, rather than keeping their own pointers to implementation objects.

Other than that, nothing special needs to be observed when dealing with goals. In particular, goals don't have end methods like other handle classes in the C++ API of Concert Technology. Instead, CPLEX® goal objects are automatically deleted when no more references to them exist.

Local cut goals contain IloRange objects. Since the IloRange object is only applied when the goal is executed, the method end must not be called for a range constraint from which a local cut goal is built. The goal will take over memory management for the constraints and call the method end when the goal itself is destroyed. Also, an IloRange object can only be used in exactly one local cut goal. Similarly, method end must not be called for IloRangeArray objects that are passed to local cut goals. Also such arrays must not contain duplicate elements.

Going back to the example ilogoalex1.cpp, you see that the method end is called for the temporary arrays x, obj, and feas at the end of the execute method. Though a bit hidden, two IloRange constraints are constructed for the goal, corresponding to the arguments of the Or goal. CPLEX® takes over memory management for these two constraints as soon as they are enclosed in a goal. This takeover happens via the implicit constructor IloCplex::Goal::Goal(IloRange rng) that is called when the range constraints are passed as arguments to the Or goal.

In summary, the user is responsible for calling end on all Concert Technology objects created in a goal, except when they have been passed as arguments to a new goal.

Also, user code in the execute method is not allowed to modify existing Concert Technology objects in any way. CPLEX® uses an optimized memory management system within goals for dealing with temporary objects. However, this memory management system cannot be mixed with the default memory management system used by Concert Technology. Thus, for example, it is illegal to add an element to array vars in the example, since this array has been created outside of the goal.
Cuts and goals

Goals can also be used to add global cuts. Whereas local cuts are respected only in a subtree, global cuts are added to the entire problem and are therefore respected at every node after they have been added.

Just as you can add local cuts by means of a local cut goal, as explained in Local cut goal, you can add a global cut by means of a global cut goal. A global cut goal is created with the method `IloCplex::GoalI::GlobalCutGoal` (or `Cplex.GlobalCutGoal`). This method takes an instance of `IloRange` or `IloRangeArray` (`IloRange[]`) as its argument and returns a goal. When the goal executes, it adds the constraints as global cuts to the problem.

Example `ilogoalex2.cpp` shows the use of `IloCplex::GoalI::GlobalCutGoal` for solving the `noswot` MILP model. This is a relatively small model from the MIPLIB 3.0 test set, consisting of only 128 variables. Nonetheless, it is very hard to solve without adding special cuts.

Although it is now solvable directly, the computation time is in the order of several hours on state-of-the-art computers. However, cuts can be derived, and the addition of these cuts makes the problem solvable in a matter of minutes or seconds. These cuts are:

```
x21 - x22 <= 0
x22 - x23 <= 0
x23 - x24 <= 0
2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*w11 + 0.25*w21 + 0.25*w31 + 0.25*w41 + 0.25*w51 <= 20.25
2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*w12 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20.25
2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0.25*w13 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53 <= 20.25
2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0.25*w14 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54 <= 20.25
2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0.25*w15 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55 <= 16.25
```

These cuts derive from interpreting the problem as a resource allocation model on five machines with scheduling horizon constraints and transaction times. The first three cuts break symmetries among the machines, while the others capture minimum bounds on transaction costs.

Of course, the best way to solve the `noswot` model with these cuts is simply to add them to the model before calling the optimizer. However, for demonstration purposes here, the cuts are added by means of a goal. The source code of this example can be found in the `examples/src` directory of the CPLEX® distribution. The equivalent Java implementation appears as `GoalEx2.java` in the same location. Likewise, there is also the C# .NET version in `Goalex2.cs` and the VB.NET version in `Goalex2.vb`.

The goal `CutGoal` in that example receives a list of "less than" constraints to use as global cuts and a tolerance value `eps`. The constraints are passed to the goal as an array of `lhs` expressions and an array of corresponding `rhs` values. Both are initialized in function `makeCuts`.

USER'S MANUAL FOR CPLEX 823
The goal CutGoal checks whether any of the constraints passed to it are violated by more than the tolerance value. It adds violated constraints as global cuts. Other than that, it follows the branching strategy CPLEX® would use on its own.

The goal starts out by checking whether the solution of the continuous relaxation of the current node subproblem is integer feasible. This check is done by the method isIntegerFeasible. If the current solution is integer feasible, a candidate for a new incumbent has been found, and the goal returns the empty goal to instruct CPLEX® to continue on its own.

Otherwise, the goal checks whether any of the constraints passed to it are violated. It computes the value of every lhs expression for current solution by calling getValue(lhs[i]). The result is compared to the corresponding righthand side value rhs[i]. If a violation of more than eps is detected, the constraint is added as a global cut and the rhs value will be set at IloInfinity to avoid checking it again unnecessarily.

The global cut goal for \( \text{lhs}[i] \leq \text{rhs}[i] \) is created by the method GlobalCutGoal. It is then combined with the goal named goal by the method AndGoal, so that the new global cut goal will be executed first. The resulting goal is stored again in goal. Before any global cut goals are added, the goal is initialized as:

```c++
IloCplex::Goal goal = AndGoal(BranchAsCplexGoal(getEnv()), this);
```

for C++, or for Java:

```java
 cplex.and(cplex.branchAsCplex(), this);
```

The method BranchAsCplexGoal(getEnv) (cplex.branchAsCplex in the Java API or Cplex.BranchAsCplex in the .NET API) creates a goal that branches in the same way as the built-in branch procedure. By adding this goal, the current goal will be executed for the entire subtree.

Thus the goal returned by CutGoal will add all currently violated constraints as global cuts one by one. Then it will branch in the way CPLEX® would branch without any goals and execute the CutGoal again in the child nodes.
Injecting heuristic solutions

At any time in the execution of a goal, you may find that, for example, by slightly manipulating the current node subproblem solution, you may construct a solution to your model. Such solutions are called *heuristic solutions*, and a procedure that generates them is called a *heuristic*.

Heuristic solutions can be injected into the branch & cut search by creating a solution goal with the method IloCplex::GoalI::SolutionGoal (IloCplex.solutionGoal or Cplex::SolutionGoal). Such a goal can be returned typically as a subgoal of an And goal much like global cut goals.

When CPLEX® executes a solution goal, it does not immediately use the specified solution as a potential new incumbent. The reason is that with goals, part of the model may be specified via global cuts or through specialized branching strategies. Thus the solution needs first to be tested for feasibility with respect to the entire model, including any part of the model specified through goals.

To test whether an injected solution is feasible, CPLEX® first creates a subnode of the current node. This subnode will of course inherit the goal stack from its parent. In addition, the solution goal will push local cuts onto the stack of the subnode such that all variables are fixed to the values of the injected solution.

By processing this subnode as the next node, CPLEX® makes sure that either the solution is feasible with respect to all goals or otherwise it is discarded. Goals that have been executed so far are either reflected as global cuts or by the local cuts that are active at the current node. Thus, if the relaxation remains feasible after the variable fixings have been added, the feasibility of these goals is certain.

If at that point the goal stack is not empty, the goals on the goal stack need to be checked for feasibility as well. Thus by continuing to execute the goals from the goal stack, CPLEX® will either prove feasibility of the solution with respect to the remaining goals or, in case the relaxation becomes infeasible, decide it really is infeasible and discard the solution. The rest of the branch & cut search remains unaffected by all of this.

The benefit of this approach is that your heuristic need not be aware of the entire model including all its parts that might be implemented via goals. Your heuristic can still safely be used, as CPLEX® will make sure of feasibility for the entire model. However, there are some performance considerations to observe. If parts of the model specified with goals are dominant, heuristic solutions you generate might need to be rejected so frequently that you do not get enough payoff for the work of running the heuristic. Also, your heuristic should account for the global and local cuts that have been added at the node where you run your heuristic so that a solution candidate is not rejected right away and the work wasted.
Controlling goal-defined search

So far, you have seen how to control the branching and cut generation of CPLEX® branch & cut search. The remaining missing piece is the node selection strategy. The node selection strategy sets which of the active nodes in the tree CPLEX® chooses when it selects the next node for processing. CPLEX® has several built-in node selection strategies, selected through the node selection parameter (NodeSel, CPLEX·PARAM_NODESEL).

When you use goal-controlled search, you use node evaluators to override the built-in node selection strategy. You combine a goal with a node evaluator by calling the method IloCplex::Goal::Apply (IloCplex.apply or Cplex.Apply). This method returns a new goal that implements the same search strategy as the goal passed as the argument, but adds the node evaluator to every node in the subtree defined by the goal. Consequently, nodes may have a list of evaluators attached to them.

When node evaluators are used, nodes are selected like this:

1. CPLEX® starts to choose the node with the built-in strategy as a first candidate.
2. Then CPLEX® loops over all remaining active nodes and considers choosing them instead.
3. If a node has the same evaluator attached to it as the current candidate, the evaluator is asked whether this node should take precedence over the current candidate. If the response is positive, the node under investigation becomes the new candidate, and the test against other nodes continues.

If a node has multiple evaluators attached, they are consulted in the order the evaluators have been applied. Here is the application order:

♦ If the first evaluator prefers one node over the other, the preferred node is used as candidate and the next node is considered.
♦ If the first evaluator does not give preference to one node over the other, the second evaluator is considered, and so on.

Thus, by adding multiple evaluators, you can build composite node selection strategies where later evaluators are used for breaking ties in previous evaluations.

In the C++ API, node evaluators are implemented as subclasses of class IloCplex::NodeEvaluatorI. The class IloCplex::NodeEvaluator is the handle class for node evaluators.

In Java, node evaluators are implemented in objects of type IloCplex.NodeEvaluator (and there are no handle classes). Likewise, in the .NET API, node evaluators are implemented in Cplex.NodeEvaluator.

Like goals, node evaluators use reference counting for memory management. As a result, you should always use the handle objects when dealing with node evaluators, and there is no method end to be called.

Node evaluators use a two-step process to decide whether one node should take precedence over another. First, the evaluator computes a value for every node to which it is attached. This is done by the method evaluate in C++:
IloNum IloCplex::NodeEvaluatorI::evaluate();

and in Java, by the method:

double IloCplex.NodeEvaluator.evaluate();

and in C#.NET:

double Cplex.NodeEvaluator.Evaluate();

This method must be implemented by users who write their own node evaluators. In the method evaluate, the protected methods of the class IloCplex::NodeEvaluatorI (IloCplex.NodeEvaluator or Cplex.NodeEvaluator) can be called to query information about the node being evaluated. The method evaluate must compute and return an evaluation (that is, a value) that is used later on, in the second step, to compare two nodes and select one of them. The evaluate method is called only once for every node, and the result is cached and reused whenever the node is compared against another node with the evaluator.

The second step consists of comparing the current candidate to another node. This comparison happens only for evaluators that are shared by the current candidate and the other node. By default, the candidate is replaced by the other node if its evaluation value is smaller than that of the candidate. You can alter this behavior by overwriting the method:

IloBool IloCplex::NodeEvaluatorI::subsume(IloNum candVal, IloNum nodeVal);

or, in the case of Java:

boolean IloCplex.NodeEvaluator.subsume(double candVal, double nodeVal);

or, in the case of C#.NET:

bool Cplex.NodeEvaluator.Subsume(double evalNode, double evalCurrent);

CPLEX® calls this method of an evaluator attached to the current candidate if the node being compared also has the same evaluator attached. The first argument candVal is the evaluation value the evaluator has previously computed for the current candidate, and nodeVal is the evaluation value the evaluator has previously computed for the node being tested. If this method returns IloTrue (true), the candidate is replaced. Otherwise, the method is called again with reversed arguments. If it still returns IloFalse (false), both nodes are tied with respect to that evaluator, and the next evaluator they share is consulted. Otherwise, the current candidate is kept and tested against the next node.

There are two more virtual methods defined for node evaluators that should be considered when you implement your own node evaluator. The method init is called immediately before evaluate is called for the first time, thus allowing you to initialize internal data of the evaluator. When this happens, the evaluator has been initialized to the first node to be evaluated; thus information about this node can be queried by the methods of the class IloCplex::NodeEvaluatorI (IloCplex.NodeEvaluator or Cplex.NodeEvaluator).

Finally, in C++, the method:
must be implemented by the user to return a copy of the invoking node evaluator object. This method is called by IloCplex to create copies of the evaluator for parallel branch & cut search.
Example: using node evaluators in a node selection strategy

The example ilogoalex3.cpp shows how to use node evaluators to implement a node selection strategy that chooses the deepest active node in the tree among those nodes with a maximal sum of integer infeasibilities. The example ilogoalex3.cpp can be found in the examples/src directory of your distribution. The equivalent Java implementation can be found in the file Goalex3.java at the same location. Likewise, the C#.NET example is available in Goalex3.cs.

As this example is an extension of the example ilogoalex1.cpp, this exposition of it concentrates only on their differences. Also, the example is discussed only in terms of the C++ implementation; the Java implementation has identical structure and design and differs only in syntax, as does the .NET as well.

The first difference is the definition of class DepthEvaluatorI as a subclass of IloCplex::NodeEvaluatorI. It implements the methods evaluate and duplicateEvaluator. The method evaluate simply returns the negative depth value queried for the current node by calling method getDepth. Since CPLEX® by default chooses nodes with the lowest evaluation value, this evaluator will favor nodes deep in the tree. The method duplicateEvaluator simply returns a copy of the invoking object by calling the (default) copy constructor. Along with the class, the function DepthEvaluator is also defined to create an instance of class DepthEvaluatorI and return a handle to it.

Similarly, the class IISumEvaluatorI and function IISumEvaluator are also defined. The evaluate method returns the negation of the sum of integer infeasibilities of the node being evaluated. This number is obtained by calling method getInfeasibilitySum. Thus, this evaluator favors nodes with larger sums of integer infeasibilities.

This example uses the same search strategy as ilogoalex1.cpp, implemented in goal MyBranchGoal. However, it applies first the IISumEvaluator to select nodes with a high integer infeasibility sum; to choose between nodes with the same integer infeasibility sum, it applies the DepthEvaluator. Application of the IISumEvaluator is done with:

```cpp
IloCplex::Goal iiSumGoal = IloCplex::Apply(cplex,
 MyBranchGoal(env, var),
 IISumEvaluator());
```

The goal created by calling MyBranchGoal is merged with the evaluator created by calling IISumEvaluator in a new goal iiSumGoal. Similarly, the goal iiSumGoal is merged with the node evaluator created by calling DepthEvaluator into a new goal depthGoal:

```cpp
IloCplex::Goal depthGoal = IloCplex::Apply(cplex,
 iiSumGoal,
 DepthEvaluator());
```

Thus, depthGoal represents a goal implementing the branching strategy defined by MyBranchGoal, but using IISumEvaluator as a primary node selection strategy and DepthEvaluator as a secondary node selection strategy for breaking ties. This goal is finally used for the branch & cut search by passing it to the solve method.

Node evaluators are only active while the search is controlled by goals. That is, if the goal stack becomes empty at a node and CPLEX® continues searching with its built-in search
strategy, that search is no longer controlled by any node evaluator. In order to maintain control over the node selection strategy while using the CPLEX® branch strategy, you can use the goal returned by the method IloCplex::GoalI::BranchAsCplexGoal (IloCplex. branchAsCplex or CplexBranchAsCplex). A goal that follows the branching performed by the built-in strategy of IloCplex can be easily implemented as:

```cpp
ILOCPLEXGOAL0(DefaultSearchGoal) {
 if (!isIntegerFeasible())
 return AndGoal(BranchAsCplexGoal(getEnv()), this);
 return 0;
}
```

Notice the test for integer feasibility. Without that test, the application would create an endless loop because when an integer feasible solution has been found, the goal BranchAsCplex does not change the node at all, and this would continue to be executed indefinitely.
As with node evaluators, it is possible to apply search limits to the branch & cut search controlled by goals. Search limits allow you to limit the search in certain subtrees; that is, they allow you to discontinue processing nodes when a specified condition applies. Search limits are implemented in subclasses of the class `IloCplex::SearchLimit` (IloCplex::SearchLimit or Cplex::SearchLimit), and the procedure for implementing and using them is very similar to that for node evaluators. See the reference manuals for more details about implementing and using search limits.
Using optimization callbacks

Introduces optimization callbacks.

In this section

What are callbacks?
Defines callbacks.

Informational callbacks
Documents informational callbacks.

Query or diagnostic callbacks
Documents query or diagnostic callbacks.

Control callbacks
Documents control callbacks.

Implementing callbacks with Concert Technology
Documents callbacks in Concert Technology.

Example: deriving the simplex callback ilolpx4.cpp
Illustrates derivation of a simplex callback in the C++ API.

Implementing callbacks in the Callable Library
Documents callbacks in the Callable Library C API.

Example: using callbacks lpex4.c
Illustrates callbacks in the C API.
Example: controlling cuts iloadmipex5.cpp
Illustrates callbacks to control cuts in the C++ API.

Interaction between callbacks and parallel optimizers
Describes interaction of callbacks with parallel optimizers.

Return values for callbacks
Documents return values appropriate in user-written callbacks.

Terminating without callbacks
Describes ways to terminate optimization without a callback.
What are callbacks?

Callbacks allow you to monitor closely and to guide the behavior of IBM® ILOG® CPLEX® optimizers. In particular, callbacks allow user code to be executed regularly during an optimization or during a tuning session. To use callbacks (either optimization or tuning callbacks) with CPLEX®, you must first write the callback function, and then pass it to CPLEX®.

There are three types of optimization callbacks: informational callbacks, query callbacks, and control callbacks. You will find additional information about callbacks in this manual in *Callbacks for tuning* and in *Advanced MIP control interface*. This topic concentrates on optimization callbacks.

**Note:** The callback class hierarchy for Java and .NET is exactly the same as the hierarchy for C++, but the class names differ, in that there is no I at the end.

For example, the Java implementation class corresponding to the C++ class `IloCplex::OptimizationCallbackI` is `IloCplex.OptimizationCallback`.

The names of callback classes in .NET correspond very closely to those in the Java API. However, the name of a .NET class does not begin with Ilo. Furthermore, the names of .NET methods are capitalized (that is, they begin with an uppercase character) according to .NET conventions.

For example, the corresponding callback class in .NET is `Cplex.OptimizationCallback`.

Callbacks allow you to monitor closely and to guide the behavior of IBM® ILOG® CPLEX® optimizers. In particular, callbacks allow user code to be executed regularly during an optimization or during a tuning session. To use callbacks (either optimization or tuning callbacks) with CPLEX®, you must first write the callback function, and then pass it to CPLEX®.

There are three types of optimization callbacks: informational callbacks, query callbacks, and control callbacks. You will find additional information about callbacks in this manual in *Callbacks for tuning* and in *Advanced MIP control interface*. This topic concentrates on optimization callbacks.

**Note:** The callback class hierarchy for Java and .NET is exactly the same as the hierarchy for C++, but the class names differ, in that there is no I at the end.

For example, the Java implementation class corresponding to the C++ class `IloCplex::OptimizationCallbackI` is `IloCplex.OptimizationCallback`.

The names of callback classes in .NET correspond very closely to those in the Java API. However, the name of a .NET class does not begin with Ilo. Furthermore, the names of .NET methods are capitalized (that is, they begin with an uppercase character) according to .NET conventions.

For example, the corresponding callback class in .NET is `Cplex.OptimizationCallback`.
Informational callbacks

Documents informational callbacks.

In this section

What is an informational callback?
Defines an informational callback.

Reference documents about informational callbacks
Tells where to find reference documents about informational callbacks.

Where to find examples of informational callbacks
Tells where to find sample applications of informational callbacks.

What informational callbacks can return
Tells what informational callbacks return.
What is an informational callback?

An informational callback is a user-written routine that enables your application to access information about the current mixed integer programming (MIP) optimization without sacrificing performance and without interfering in the search of the solution space. The algorithms call an informational callback when the algorithm finds it appropriate; for some algorithms, an informational callback is called at every node; for other algorithms, an informational callback is called at convenient points in the progress of the algorithm. Information returned by informational callbacks summarizes the information that an informational callback can return.

An informational callback can also enable your application to abort (that is, to terminate) optimization.

Informational callbacks are compatible with MIP dynamic search. For many models, MIP dynamic search finds feasible and optimal solutions more quickly than conventional MIP branch & cut.

Informational callbacks are also compatible with all modes of parallel optimization (if your application is licensed for parallel optimization). For more information about deterministic and opportunistic modes of parallel optimization, see Determinism of results and Parallel MIP optimizer.
Reference documents about informational callbacks

In Concert Technology, you implement an informational callback as an object of a class.

♦ In the **C++ API**, an informational callback is an instance of `IloCplex::MIPInfoCallback` or one of these derived subclasses:
  - `IloCplex::DisjunctiveCutInfoCallback`
  - `IloCplex::FlowMIRCutInfoCallback`
  - `IloCplex::FractionalCutInfoCallback`
  - `IloCplex::ProbingInfoCallback`

  An informational callback is installed in a C++ application by the method `IloCplex::use`.

♦ In the **Java API**, an informational callback is an instance of `MIPInfoCallback` or one of these derived subclasses:
  - `IloCplex.DisjunctiveCutInfoCallback`
  - `IloCplex.FlowMIRCutInfoCallback`
  - `IloCplex.FractionalCutInfoCallback`
  - `IloCplex.ProbingInfoCallback`

  An informational callback is installed in a Java application by the method `IloCplex.use`.

♦ In the **.NET API**, an informational callback is an instance of `Cplex.MIPInfoCallback` or one of these derived subclasses:
  - `Cplex.DisjunctiveInfoCallback`
  - `Cplex.FlowMIRCutInfoCallback`
  - `Cplex.FractionalCutInfoCallback`
  - `Cplex.ProbingInfoCallback`

  An informational callback is installed in a .NET application by the method `Cplex.Use`.

In the **Callable Library** (C API), use the following routines to install and access an informational callback:

♦ `CPXsetinfocallbackfunc`
♦ `CPXgetinfocallbackfunc`

Informational callbacks in a C application may call only the routines `CPXgetcallbackincumbent` or `CPXgetcallbackinfo`.  
Where to find examples of informational callbacks

For examples of how to create and use an informational callback, see the following samples of code in your CPLEX home/examples/src.

♦ mipex4.c
♦ ilomipex4.cpp
♦ IloMIPex4.java
♦ MIPex4.cs
♦ MIPex4.vb
What informational callbacks can return

**Information returned by informational callbacks**

<table>
<thead>
<tr>
<th>Symbolic name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPX_CALLBACK_INFO_BEST_INTEGER</td>
<td>objective value of the best integer solution</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_MY_THREAD_NUM</td>
<td>identifying number of the thread where the call of the callback occurred</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_BEST_REMAINING</td>
<td>objective value of the best remaining node</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_NODE_COUNT</td>
<td>how many nodes have been processed</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_NODES_LEFT</td>
<td>how many nodes remain to be processed</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_MIP_ITERATIONS</td>
<td>how many MIP iterations have occurred</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_CUTOFF</td>
<td>cutoff information</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_MIP_FEAS</td>
<td>feasibility information</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_PROBE_PHASE</td>
<td>which phase of probing (0-3)</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_PROBE_PROGRESS</td>
<td>progress in probing expressed as a fraction</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_FRACCUT_PROGRESS</td>
<td>progress in fractional cuts expressed as a fraction</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_DISJCUT_PROGRESS</td>
<td>progress in disjunctive cuts expressed as a fraction</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_FLOWMIR_PROGRESS</td>
<td>progress in MIR cuts expressed as a fraction</td>
</tr>
<tr>
<td>CPX_CALLBACK_INFO_ENDTIME</td>
<td>time stamp specifying when the optimization will terminate if optimization does not finish before that point</td>
</tr>
</tbody>
</table>
Query or diagnostic callbacks

Documents query or diagnostic callbacks.

In this section

What are query or diagnostic callbacks?
Defines a query or diagnostic callback.

Where query callbacks are called
Tells where query callbacks are called by CPLEX.

Query callbacks and dynamic search
Describes query callbacks as incompatible with dynamic search.

Query callbacks and deterministic parallel search
Describes query callbacks as incompatible with deterministic parallel search.
What are query or diagnostic callbacks?

Query or diagnostic callbacks allow you to monitor an ongoing optimization, and optionally to abort it (that is, to terminate it). Query callbacks access more detailed information about the current optimization than do informational callbacks. As a side effect, query or diagnostic callbacks may slow progress. Furthermore, query or diagnostic callbacks make assumptions about the traversal of a conventional branch & cut tree; those assumptions about a mixed integer program (MIP) may be incorrect during dynamic search or during deterministic search in parallel optimization. For more detail about this point, see Query callbacks and dynamic search and Query callbacks and deterministic parallel search.
Where query callbacks are called

Query or diagnostic callbacks are distinguished by the place where they are called during an optimization. There are nine such places where CPLEX® calls a query or diagnostic callback:

♦ The presolve query callback is called regularly during presolve.
  - IloCplex::PresolveCallback in the C++ API
  - IloCplex.PresolveCallback in the Java API
  - Cplex.PresolveCallback in the .NET API
  - CPXsetlpcallbackfunc in the Callable Library (C API)

♦ The crossover query callback is called regularly during crossover from a barrier solution to a simplex basis.
  - IloCplex::CrossoverCallback in the C++ API
  - IloCplex.CrossoverCallback in the Java API
  - Cplex.CrossoverCallback in the .NET API
  - CPXsetlpcallbackfunc in the Callable Library (C API)

♦ The network query callback is called regularly during the network simplex algorithm.
  - IloCplex::NetworkCallback in the C++ API
  - IloCplex.NetworkCallback in the Java API
  - Cplex.NetworkCallback in the .NET API
  - CPXsetnetcallbackfunc in the Callable Library (C API)

♦ The barrier query callback is called at each iteration during the barrier algorithm.
  - IloCplex::BarrierCallback or IloCplex::ContinuousCallback in the C++ API
  - IloCplex.BarrierCallback or IloCplex.ContinuousCallback in the Java API
  - Cplex.BarrierCallback or Cplex.ContinuousCallback in the .NET API
  - CPXsetlpcallbackfunc in the Callable Library (C API)

♦ The simplex query callback is called at each iteration during the simplex algorithm.
  - IloCplex::SimplexCallback or IloCplex::ContinuousCallback in the C++ API
  - IloCplex.SimplexCallback or IloCplex.ContinuousCallback in the Java API
  - Cplex.SimplexCallback or Cplex.ContinuousCallback in the .NET API
  - CPXsetlpcallbackfunc in the Callable Library (C API)
The MIP query callback is called regularly during the branch and cut search.

- IloCplex::MIPCallback in the C++ API
- IloCplex.MIPCallback in the Java API
- Cplex.MIPCallback in the .NET API
- CPXsetmipcallbackfunc in the Callable Library (C API)

The probing query callback is called regularly during probing.

- IloCplex::ProbingCallback in the C++ API
- IloCplex.ProbingCallback in the Java API
- Cplex.ProbingCallback in the .NET API

The fractional cut query callback is called regularly during the generation of fractional cuts.

- IloCplex::FractionalCutCallback in the C++ API
- IloCplex.FractionalCutCallback in the Java API
- Cplex.FractionalCutCallback in the .NET API

The disjunctive cut query callback is called regularly during the generation of disjunctive cuts.

- IloCplex::DisjunctiveCutCallback in the C++ API
- IloCplex.DisjunctiveCutCallback in the Java API
- Cplex.DisjunctiveCutCallback in the .NET API

In the C++ API, a query callback is installed by the method use.
In the Java API, a query callback is installed by the method IloCplex.use.
In the .NET API, a query callback is installed by the method Cplex.Use.
In Callable Library applications (C API), a query callback is a user-written function installed by the routine CPXsetmipcallbackfunc, CPXsetlpcallbackfunc, or CPXsetnetcallbackfunc.
Query callbacks and dynamic search

Query or diagnostic callbacks are not compatible with dynamic search, a feature which explores a solution space in a way that departs from a conventional branch & cut tree.

Normally, CPLEX® chooses whether to apply dynamic search or conventional branch & cut based on characteristics of the model. To benefit from dynamic search, a MIP must not include query callbacks. In the presence of query or diagnostic callbacks, CPLEX® turns off dynamic search, issues a warning, and applies conventional branch & cut.

If you want to avoid this warning in an application where query or diagnostic callbacks are present, you can deliberately turn off dynamic search yourself by setting the MIP dynamic search switch (MIPSearch, CPX_PARAM_MIPSEARCH) to 1 (one).
Query callbacks and deterministic parallel search

Query or diagnostic callbacks are not compatible with deterministic parallel search, a feature which explores a solution space in a way that departs from a conventional branch & cut tree.

In the presence of a query or diagnostic callback, CPLEX® turns off deterministic parallel search and invokes opportunistic parallel search instead, if your application is licensed for parallel MIP optimization.

For more information about deterministic and opportunistic parallel MIP optimization, see Determinism of results and Parallel MIP optimizer.
Control callbacks

Documents control callbacks.

In this section

What are control callbacks?
Defines control callbacks.

What control callbacks do
Describes what control callbacks do.

Control callbacks and dynamic search
Describes control callbacks as incompatible with dynamic search.

Control callbacks and deterministic parallel search
Describes control callbacks as incompatible with deterministic parallel search.
What are control callbacks?

Control callbacks allow you to control the branch & cut search during the optimization of MIP problems. Because control callbacks intervene in the search, the presence of a control callback in an application will cause CPLEX® to turn off dynamic search. Likewise, the presence of a control callback will cause CPLEX® to turn off deterministic parallelism, if the application is licensed for parallelism. Control callbacks and dynamic search and Control callbacks and deterministic parallel search offer more information about this point.

If you want to take advantage of dynamic search or deterministic parallelism in your application, and you see a need for a callback to report progress, consider an informational callback instead of a control callback. Informational callbacks explains more about this alternative, which is compatible with dynamic search and with deterministic parallelism.
What control callbacks do

If you determine that your application needs to seize control, intervene in the search, and redirect the optimizer, then the following control callbacks are available to do so.

♦ The node callback allows you to query and optionally overwrite the next node CPLEX® will process during a branch & cut search.
  - IloCplex::NodeCallbackI in the C++ API
  - IloCplex.NodeCallback in the Java API
  - Cplex.NodeCallback in the .NET API
  - CPXsetnodecallbackfunc in the Callable Library (C API)

♦ The solve callback allows you to specify and configure the optimizer option to be used for solving the LP at each individual node.
  - IloCplex::SolveCallbackI in the C++ API
  - IloCplex.SolveCallback in the Java API
  - Cplex.SolveCallback in the .NET API
  - CPXsetsolvecallbackfunc in the Callable Library (C API)

♦ The cut callback allows you to add problem-specific cuts at each node.
  - IloCplex::CutCallbackI in the C++ API
  - IloCplex.CutCallback in the Java API
  - Cplex.CutCallback in the .NET API
  - CPXsetcutcallbackfunc in the Callable Library (C API)

♦ The heuristic callback allows you to implement a heuristic that tries to generate a new incumbent from the solution of the LP relaxation at each node.
  - IloCplex::HeuristicCallbackI in the C++ API
  - IloCplex.HeuristicCallback in the Java API
  - Cplex.HeuristicCallback in the .NET API
  - CPXsetheuristiccallbackfunc in the Callable Library (C API)

♦ The branch callback allows you to query and optionally overwrite the way CPLEX® will branch at each node.
  - IloCplex::BranchCallbackI in the C++ API
  - IloCplex.BranchCallback in the Java API
  - Cplex.BranchCallback in the .NET API
The incumbent callback allows you to check and optionally reject incumbents found by CPLEX® during the search.

- `IloCplex::IncumbentCallbackI` in the C++ API
- `IloCplex.IncumbentCallback` in the Java API
- `Cplex.IncumbentCallback` in the .NET API
- `CPXsetincumbentcallbackfunc` in the Callable Library (C API)
Control callbacks and dynamic search

Control callbacks are not compatible with dynamic search, a feature which explores a solution space in a way that departs from a conventional branch & cut tree.

Normally, CPLEX® chooses whether to apply dynamic search or conventional branch & cut based on characteristics of the model. To benefit from dynamic search, a MIP must not include control callbacks. In the presence of control callbacks, CPLEX® turns off dynamic search, issues a warning, and applies conventional branch & cut.

If you want to avoid this warning in an application where control callbacks are present, you can deliberately turn off dynamic search yourself by setting the MIP dynamic search switch (MIPSearch, CPX_PARAM_MIPSEARCH) to 1 (one).
Control callbacks and deterministic parallel search

Control callbacks are not compatible with deterministic parallel search, a feature which explores a solution space in a way that departs from a conventional branch & cut tree.

In the presence of a control callback, CPLEX® turns off deterministic parallel search and invokes opportunistic parallel search instead, if your application is licensed for parallel MIP optimization.

For more information about deterministic and opportunistic parallel MIP optimization, see Determinism of results and Parallel MIP optimizer.
Implementing callbacks with Concert Technology

Documents callbacks in Concert Technology.

In this section

How callback classes are organized
Describes the hierarchy of callback classes.

Writing callback classes by hand
Describes user’s implementation of a callback class.

Writing callbacks with macros in C++
Describes implementation of a callback class by means of a macro.

Callback interface
Describes the common callback interface.

The continuous callback
Describes the common interface of callbacks for simplex and barrier optimizers.
How callback classes are organized

Callbacks are accessed via the IloCplex::Callback handle class in the C++ implementation of IloCplex. An instance of that handle class points to an implementation object of a subclass of IloCplex::Callback. In Java and .NET, there is no handle class and a programmer deals only with implementation classes which are subclasses of IloCplex.Callback or Cplex.Callback. One such implementation class is provided for each type of callback. The implementation class provides the functions that can be used for the particular callback as protected methods.

To reflect the fact that some callbacks share part of their protected API, the callback classes are organized in a class hierarchy, as documented in the reference manuals of the APIs. For example, the class hierarchy of C++ callbacks is visible when you select Tree or Graph in the reference manual of that API. Likewise, the class and interface hierarchy of Java callbacks is visible when you select Tree in the reference manual of the Java API. Similarly, you can see the class and interface hierarchy of .NET callbacks in that reference manual.

This hierarchy means that, for example, all functions available for the MIP callback are also available for the probing, fractional cut, and disjunctive cut callbacks. In particular, the function to abort the current optimization is provided by the class IloCplex::Callback (IloCplex.Callback in Java and Cplex.Callback in .NET) and is thus available to all callbacks.

There are two ways of implementing callbacks for CPLEX®: a more complex way that exposes all the C++ implementation details, and a simplified way that uses macros to handle the C++ technicalities. Since Java and .NET do not provide macros, only the more complex way is available for Java or .NET users. This section first explains the more complex way and discusses the underlying design. To implement your C or C++ callback quickly without details about the internal design, proceed directly to Writing callbacks with macros in C++.
Writing callback classes by hand

To implement your own callback for IloCplex, first select the callback class corresponding to the callback you want implemented. From it, derive your own implementation class, and overwrite the virtual method main. This is where you implement the callback actions, using the protected methods of the callback class from which you derived your callback or one of its base classes.

Next write a function that creates a new object of your implementation class using the environment operator new and returning it as an IloCplex::Callback handle object. Here is an example implementation of such a function:

```cpp
IloCplex::Callback MyCallback(IloEnv env, IloInt num) {
 return (new (env) MyCallbackI(num));
}
```

It is not customary to write such a function for Java nor for .NET applications; instead, new is called explicitly for creating a callback object when needed.

After an implementation object of your callback is created (either with the constructor function in C++ or by directly calling the new operator for Java or .NET), use it with IloCplex by calling cplex.use with the callback object as an argument. In C++, to remove a callback that is being used by a cplex object, call callback.end on the IloCplex::Callback handle callback. In Java or .NET, there is no way of removing individual callbacks from your IloCplex or Cplex object. Instead, you remove all callbacks by calling the method IloCplex.clearCallbacks or CplexClearCallbacks. Since Java and .NET use garbage collection for memory management, there is nothing equivalent to the end method for callbacks in the Java or .NET API.

One object of a callback implementation class can be used with only one IloCplex object at a time. Thus, when you use a callback with more than one cplex object, a copy of the implementation object is created every time cplex.use is called except for the first time. In C++, the method IloCplex::use returns a handle to the callback object that has actually been installed to enable calling end on it.

To construct the copies of the callback objects in C++, class IloCplex::CallbackI defines another pure virtual method:

```cpp
virtual IloCplex::CallbackI* IloCplex::CallbackI::duplicateCallback() const = 0;
```

which must be implemented for your callback class. This method will be called to create the copies needed for using a callback on different cplex objects or on one cplex object with a parallel optimizer.

In most cases you can avoid writing callback classes by hand, using supplied macros that make the process as easy as implementing a function. You must implement a callback by hand only if the callback manages internal data not passed as arguments, or if the callback requires eight or more arguments.
Writing callbacks with macros in C++

This is how to implement a callback using macros. Since macros are not supported in Java nor in .NET, this technique applies only to C++ applications.

Start by deciding which callback you want to implement and how many arguments to pass to the callback function. These two pieces of information determine the macro you need to use.

For example, to implement a simplex callback with one argument, the macro is ILOSIMPLEXCALLBACK1. Generally, for every callback type XXX and any number of arguments n from 0 to 7, there is a macro called ILOXXXCALLBACKn. Callback macros lists the callbacks and the corresponding macros and classes (where n is a placeholder for 0 to 7).
Callback macros

<table>
<thead>
<tr>
<th>Callback</th>
<th>Macro</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>presolve</td>
<td>ILOPRESOLVECALLBACKn</td>
<td>IloCplex::PresolveCallbackI</td>
</tr>
<tr>
<td>continuous</td>
<td>ILOCONTINUOUSCALLBACKn</td>
<td>IloCplex::ContinuousCallbackI</td>
</tr>
<tr>
<td>simplex</td>
<td>ILOSIMPLEXCALLBACKn</td>
<td>IloCplex::SimplexCallbackI</td>
</tr>
<tr>
<td>barrier</td>
<td>ILOBARRIERCALLBACKn</td>
<td>IloCplex::BarrierCallbackI</td>
</tr>
<tr>
<td>crossover</td>
<td>ILOCROSSOVERCALLBACKn</td>
<td>IloCplex::CrossoverCallbackI</td>
</tr>
<tr>
<td>network</td>
<td>ILONETWORKCALLBACKn</td>
<td>IloCplex::NetworkCallbackI</td>
</tr>
<tr>
<td>MIP info</td>
<td>ILOMIPINFOCALLBACKn</td>
<td>IloCplex::MIPInfoCallbackI</td>
</tr>
<tr>
<td>MIP</td>
<td>ILOMIPCALLBACKn</td>
<td>IloCplex::MIPCallbackI</td>
</tr>
<tr>
<td>probing info</td>
<td>ILOPROBINGINFOCALLBACKn</td>
<td>IloCplex::ProbingCallbackI</td>
</tr>
<tr>
<td>probing</td>
<td>ILOPROBINGCALLBACKn</td>
<td>IloCplex::ProbingCallbackI</td>
</tr>
<tr>
<td>fractional cut info</td>
<td>ILOFRACTIONALCUTINFOCALLBACKn</td>
<td>IloCplex::FractionalCutCallbackI</td>
</tr>
<tr>
<td>fractional cut</td>
<td>ILOFRACTIONALCUTCALLBACKn</td>
<td>IloCplex::FractionalCutCallbackI</td>
</tr>
<tr>
<td>disjunctive cut info</td>
<td>ILODISJUNCTIVECUTINFOCALLBACKn</td>
<td>IloCplex::DisjunctiveCutCallbackI</td>
</tr>
<tr>
<td>disjunctive cut</td>
<td>ILODISJUNCTIVECUTCALLBACKn</td>
<td>IloCplex::DisjunctiveCutCallbackI</td>
</tr>
<tr>
<td>flow MIR cut info</td>
<td>ILOFLOMIRCUTINFOCALLBACKn</td>
<td>IloCplex::FlowMIRCutInfoCallbackI</td>
</tr>
<tr>
<td>flow MIR cut</td>
<td>ILOFLOMIRCUTCALLBACKn</td>
<td>IloCplex::FlowMIRCutCallbackI</td>
</tr>
</tbody>
</table>

The protected methods of the corresponding class and its base classes specify the functions that can be called for implementing your callback. See the Reference Manual of the C++ API with respect to these classes for details of which functions can be called.

Here is an example of how to implement a simplex callback with the name MyCallback that takes one argument:

```cpp
virtual IloCplex::CallbackI*
IloCplex::CallbackI::duplicateCallback() const = 0;

ILOSIMPLEXCALLBACKI(MyCallback, IloInt, num) {
```
if ( getNiterations() == num ) abort();
}

This callback aborts the simplex algorithm at the iteration indicated by the number \texttt{num}. It queries the current iteration number by calling the function \texttt{getNiterations}, a protected method of the class \texttt{IloCplex::ContinuousCallbackI}.

To use this callback with an instance of \texttt{IloCplex} declared as \texttt{cplex}, simply call:

\begin{verbatim}
IloCplex::Callback mycallback = cplex.use(MyCallback(env, 10));
\end{verbatim}

The callback that is added to \texttt{cplex} is returned by the method \texttt{use} and stored in the variable \texttt{mycallback}. This convention allows you to call \texttt{mycallback.end} to remove the callback from \texttt{cplex}. If you do not intend to access your callback (for example, in order to delete it before ending the environment), you may safely leave out the declaration and initialization of the variable \texttt{mycallback}.
Callback interface

Two callback classes in the hierarchy need extra attention. The first is the base class IloCplex::CallbackI (IloCplex.Callback or Cplex.Callback). Since there is no corresponding callback in the Callable Library, this class cannot be used for implementing user callbacks. Instead, its purpose is to provide an interface common to all callback functions.

This common interface consists of these methods:

♦ getModel, which returns the model that is extracted to the IloCplex object that is calling the callback;

♦ getEnv, which returns the corresponding environment (C++ only);

♦ abort, which aborts the current optimization.

Further, methods getNrows and getNcols allow you to query the number of rows and columns of the current cplex LP matrix. These methods can be called from all callbacks.

**Note:** For C++ users, no manipulation of the model or, more precisely, no manipulation of any extracted modeling object is allowed during the execution of a callback. No modification is allowed of any array or expression not local to the callback function itself (that is, constructed and ended in it). The only exception is the modification of array elements. For example, x[i] = 0 would be permissible, whereas x.add(0) would not unless x is a local array of the callback.
The continuous callback

The second special callback class is `IloCplex::ContinuousCallbackI` (IloCplex. ContinuousCallback or CPLEX.ContinuousCallback). If you create a continuous callback and use it with an `IloCplex` object, it will be used for both the barrier and the simplex callback. In other words, implementing and using one Continuous callback is equivalent to writing and using these two callbacks independently.
Example: deriving the simplex callback ilolpx4.cpp

Example ilolpx4.cpp demonstrates the use of the simplex callback to print logging information at each iteration. It is a modification of example ilolpx1.cpp, so this discussion concentrates on the differences. The following code:

```cpp
ILOSIMPLEXCALLBACK0(MyCallback) {
 cout << "Iteration " << getNiterations() << ": ";
 if (isFeasible()) {
 cout << "Objective = " << getObjValue() << endl;
 } else {
 cout << "Infeasibility measure = " << getInfeasibility() << endl;
 }
}
```

defines the callback `MyCallback` without arguments with the code enclosed in the outer `{}`. In Java, the same callback is defined like this:

```java
static class MyCallback extends IloCplex.ContinuousCallback {
 public void main() throws IloException {
 System.out.print("Iteration " + getNiterations() + ": ");
 if (isFeasible())
 System.out.println("Objective = " + getObjValue());
 else
 System.out.println("Infeasibility measure = "
 + getInfeasibility());
 }
}
```

The callback prints the iteration number. Then, depending on whether the current solution is feasible or not, it prints the objective value or infeasibility measure. The methods `getNiterations`, `isFeasible`, `getObjValue`, and `getInfeasibility` are methods provided in the base class of the callback, `IloCplex::ContinuousCallbackI` (IloCplex.ContinuousCallback or Cplex.ContinuousCallback). See the Reference Manual of the C++ API for the complete list of methods provided for each callback class.

Here is the previous sample of code, with the macro `ILOSIMPLEXCALLBACK0` expanded:

```cpp
class MyCallbackI : public IloCplex::SimplexCallbackI {
 void main() {
 IloCplex::CallbackI* duplicateCallback() const {
 return (new (getEnv()) MyCallbackI(*this));
 }
 }
 IloCplex::Callback MyCallback(IloEnv env) {
 return (IloCplex::Callback(new (env) MyCallbackI()));
 }

 void MyCallbackI::main() {
```
cout << "Iteration " << getNiterations() << " : ";
if ( isFeasible() ) {
    cout << "Objective = " << getObjValue() << endl;
} else {
    cout << "Infeasibility measure = " << getInfeasibility() << endl;
}

The 0 (zero) in the macro indicates that no arguments are passed to the constructor of the callback. For callbacks requiring up to 7 arguments, similar macros are defined where the 0 is replaced by the number of arguments, ranging from 1 through 7. For an example using the cut callback, see Example: controlling cuts iloadmipex5.cpp. If you need more than 7 arguments, you will need to derive your callback class yourself without the help of a macro.

After the callback MyCallback is defined, it can be used with the line:

♦ cplex.use(MyCallback(env)); in C++
♦ cplex.use(new MyCallback()); in Java
♦ cplex.Use(new MyCallback()); in .NET

In the case of C++, the function MyCallback creates an instance of the implementation class MyCallbackI. A handle to this implementation object is passed to the method IloCplex::use.

If your application defines more than one simplex callback object (possibly with different subclasses), only the last one passed to CPLEX® with the use method is actually used during simplex. On the other hand, IloCplex can manage one callback for each callback class at the same time. For example, a simplex callback and a MIP callback can be used at the same time.

The complete program, ilolpex4.cpp, appears online in the standard distribution at yourCPLEXinstallation/examples/src. In the same location, there are also samples in Java (LPex4.java) and in the .NET API (LPex4.cs and LPex4.vb).
Implementing callbacks in the Callable Library

Documents callbacks in the Callable Library C API.

In this section

Callable Library callback facilities
Describes features to support callbacks in the C API.

Setting callbacks
Describes organization of callbacks in the C API.

Callbacks for continuous and discrete problems
Describes when callbacks are invoked and enumerates the arguments of a user-defined callback in the C API.
Callable Library callback facilities

Optimization routines in the Callable Library incorporate a callback facility to allow your application to transfer control temporarily from CPLEX® to the calling application. Using callbacks, your application can implement interrupt capability, for example, or create displays of optimization progress. After control is transferred back to a function in the calling application, the calling application can retrieve specific information about the current optimization from the routine CPXgetcallbackinfo. Optionally, the calling application can then tell CPLEX® to discontinue optimization.

To implement and use a callback in your application, you must first write the callback function and then tell CPLEX® about it. For more information about the Callable Library routines for callbacks, see the Callable Library Reference Manual. In that reference manual, the group optim.cplex.callable.callbacks gives you direct access to callback routines.
Setting callbacks

In the Callable Library, query or diagnostic callbacks are organized into two groups: LP callbacks (that is, continuous callbacks) and MIP callbacks (that is, discrete callbacks). For each group, one callback function can be set by the routine CPXsetlpcallbackfunc and one by CPXsetmipcallbackfunc. You can distinguish between the actual callbacks by querying the argument wherefrom passed to the callback function as an argument by CPLEX®.

The continuous callback is also called during the solution of problems of type LP, QP, and QCP.
Callbacks for continuous and discrete problems

CPLEX® will evaluate two user-defined callback functions, one during the solution of continuous problems and one during the solution of discrete problems. CPLEX® calls the continuous callback once per iteration during the solution of an LP, QP, or QCP problem and periodically during the presolve. CPLEX® calls the discrete callback periodically during the probing phase of MIP preprocessing, periodically during cut generation, and periodically in the branch & cut process.

Every user-defined callback must have these arguments:

♦ env, a pointer to the CPLEX® environment;
♦ cbdata, a pointer to CPLEX® internal data structures needed by CPXgetcallbackinfo;
♦ wherefrom, specifies which optimizer is calling the callback;
♦ cbhandle, a pointer supplied when your application calls CPXsetlpcallbackfunc or CPXsetmipcallbackfunc (so that the callback has access to private user data).

The arguments wherefrom and cbdata should be used only in calls to CPXgetcallbackinfo.
Example: using callbacks lpex4.c

This example shows you how to use callbacks effectively with routines from the Callable Library. It is based on lpex1.c, a program from the manual Getting Started. This example about callbacks differs from that simpler one in several ways:

♦ To make the output more interesting, this example optimizes a slightly different linear program.

♦ The CPLEX screen indicator (that is, the messages to screen switch CPX_PARAM_SCRIND) is not turned on. Only the callback function produces output. Consequently, this program calls CPXgeterrorstring to retrieve any error messages and then prints them. After the TERMINATE: label, the program uses separate status variables so that if an error occurred earlier, its error status will not be lost or destroyed by freeing the problem object and closing the CPLEX® environment. Status variables in lpex4.c summarizes those status variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Represents status returned by this routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>frstatus</td>
<td>CPXfreeprob</td>
</tr>
<tr>
<td>clstatus</td>
<td>CPXcloseCPLEX</td>
</tr>
</tbody>
</table>

♦ The function mycallback at the end of the program is called by the optimizer. This function tests whether the primal simplex optimizer has been called. If so, then a call to CPXgetcallbackinfo gets the following information:

● iteration count;
● feasibility indicator;
● sum of infeasibilities (if infeasible);
● objective value (if feasible).

The function then prints these values to indicate progress.

♦ Before the program calls CPXlpopt, the default optimizer from the Callable Library, it sets the callback function by calling CPXsetlpcallbackfunc. It unsets the callback immediately after optimization.

This callback function offers a model for graphic user interfaces that display optimization progress as well as those GUIs that allow a user to interrupt and stop optimization. If you want to provide your end-user a facility like that to interrupt and stop optimization, then you should make mycallback return a nonzero value to indicate the end-user interrupt.

The complete program lpex4.c appears online in the standard distribution at yourCPLEXinstallation /examples/src.
Example: controlling cuts iloadmipex5.cpp

This example shows how to use the cut callback in the context of solving the noswot model. This is a relatively small model from the MIPLIB 3.0 and MIPLIB 2003 test-sets, consisting only of 128 variables. This model is very hard to solve by itself. In fact, until the release of CPLEX version 6.5, it appeared to be unsolvable even after days of computation.

While it is now solvable directly, the computation time is still substantial. However, cuts can be derived, the addition of which make the problem solvable in a matter of minutes or seconds. These cuts, expressed as pseudo C++, look like this:

```plaintext
x21 - x22 <= 0
x22 - x23 <= 0
x23 - x24 <= 0
2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*w11 + 0.25*w21 + 0.25*w31 + 0.25*w41 + 0.25*w51 <= 20.25
2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*w12 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20.25
2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0.25*w13 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53 <= 20.25
2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0.25*w14 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54 <= 20.25
2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0.25*w15 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55 <= 16.25
```

These cuts derive from an interpretation of the model as a resource allocation problem on five machines with scheduling, horizon constraints and transaction times. The first three cuts break symmetries among the machines, while the others capture minimum bounds on transaction costs. For more information about how these cuts were found, see MIP Theory and Practice: Closing the Gap, available online at http://www.ilog.com/products/optimization/tech/researchpapers.cfm#MIPTheory.

Of course the best way to solve the noswot model with these cuts is to simply add the cuts to the model before calling the optimizer. In case you want to copy and paste those cuts into a model in the Interactive Optimizer, for example, here are the same cuts expressed in the conventions of the Interactive Optimizer with uppercase variable names, as in the MPS data file:

```plaintext
X21 - X22 <= 0
X22 - X23 <= 0
X23 - X24 <= 0
2.08 X11 + 2.98 X21 + 3.47 X31 + 2.24 X41 + 2.08 X51 +
0.25 W11 + 0.25 W21 + 0.25 W31 + 0.25 W41 + 0.25 W51 <= 20.25
2.08 X12 + 2.98 X22 + 3.47 X32 + 2.24 X42 + 2.08 X52 +
0.25 W12 + 0.25 W22 + 0.25 W32 + 0.25 W42 + 0.25 W52 <= 20.25
2.08 X13 + 2.98 X23 + 3.47 X33 + 2.24 X43 + 2.08 X53 +
0.25 W13 + 0.25 W23 + 0.25 W33 + 0.25 W43 + 0.25 W53 <= 20.25
2.08 X14 + 2.98 X24 + 3.47 X34 + 2.24 X44 + 2.08 X54 +
0.25 W14 + 0.25 W24 + 0.25 W34 + 0.25 W44 + 0.25 W54 <= 20.25
2.08 X15 + 2.98 X25 + 3.47 X35 + 2.24 X45 + 2.08 X55 +
```

870 USER'S MANUAL FOR CPLEX
0.25 W15 + 0.25 W25 + 0.25 W35 + 0.25 W45 + 0.25 W55 ≤ 16.25

However, for demonstration purposes, this example adds the cuts, using a cut callback, only when they are violated at a node. This cut callback takes a list of cuts as an argument and adds individual cuts whenever they are violated by the current LP solution. Notice that adding cuts does not change the extracted model, but affects only the internal problem representation of the CPLEX® object.

First consider the C++ implementation of the callback. In C++, the callback is implemented with these lines:

```cpp
ILOCUTCALLBACK3(CtCallback, IloExprArray, lhs, IloNumArray, rhs, IloNum, eps) {
 IloInt n = lhs.getSize();
 for (IloInt i = 0; i < n; ++i) {
 IloNum xrhs = rhs[i];
 if (xrhs < IloInfinity && getValue(lhs[i]) > xrhs + eps) {
 IloRange cut;
 try {
 cut = (lhs[i] <= xrhs);
 add(cut).end();
 rhs[i] = IloInfinity;
 } catch (...) {
 cut.end();
 throw;
 }
 }
 }
}
```

This defines the class `CtCallbackI` as a derived class of `IloCplex::CutCallbackI` and provides the implementation for its virtual methods `main` and `duplicateCallback`. It also implements a function `CtCallback` that creates an instance of `CtCallbackI` and returns a handle for it, an instance of `IloCplex::Callback`.

As specified by the 3 in the macro name, the constructor of `CtCallbackI` takes three arguments: `lhs`, `rhs`, and `eps` (lefthand side, righthand side, and tolerance). The constructor stores them as private members to have direct access to them in the callback function, implemented as the method `main`. Notice the comma (,) between the type and the argument object in the macro invocation. Here is how the macro expands with ellipsis (...) representing the actual implementation:

```cpp
class CtCallbackI : public IloCplex::LazyConstraintCallbackI {
 IloExprArray lhs;
 IloNumArray rhs;
 IloNum eps;
public:
 IloCplex::CallbackI* duplicateCallback() const {
 return (new(getEnv())) CtCallbackI(*this);
 }
};
```
Similar macros are provided for other numbers of arguments ranging from 0 through 7 for all callback classes.

The first argument \texttt{lhs} is an array of expressions, and the argument \texttt{rhs} is an array of values. These arguments are the left hand side and right hand side values of cuts of the form \texttt{lhs} \leq \texttt{rhs} to be tested for violation and potentially added. The third argument \texttt{eps} gives a tolerance by which a cut must at least be violated in order to be added to the problem being solved.

The implementation of this example cut-callback looks for cuts that are violated by the current LP solution of the node where the callback is invoked. It loops over the potential cuts, checking each for violation by querying the value of the \texttt{lhs} expression with respect to the current solution. This query calls \texttt{getValue} with this expression as an argument. This value is tested for violation of more than the tolerance argument \texttt{eps} with the corresponding right hand side value.

\textbf{Tip:} A numeric tolerance is always a wise thing to consider when dealing with any nontrivial model, to avoid certain logical inconsistencies that could otherwise occur due to numeric round-off. Here the standard simplex feasibility tolerance serves this purpose, to make sure there is consistency with the way CPLEX® is treating the rest of the model.

If a violation is detected, the callback creates an \texttt{IloRange} object to represent the cut: \texttt{lhs[i] \leq rhs[i]}. It is added to the LP by the method \texttt{add}. Adding a cut to CPLEX®, unlike extracting a model, only copies the cut into the CPLEX® data structures, without maintaining a notification link between the two. Thus, after a cut has been added, it can be deleted by calling its method \texttt{end}. In fact, it should be deleted, as otherwise the memory used for the cut could not be reclaimed. For convenience, the method \texttt{add} returns the cut that has been added, and thus the application can call \texttt{end} directly on the returned \texttt{IloRange} object.

It is important that all resources that have been allocated during a callback are freed again before leaving the callback, even in the case of an exception. Here exceptions could be thrown when the cut itself is created or when the application tries to add it, for example, due to memory exhaustion. Thus, these operations are enclosed in a \texttt{try} block to catch all exceptions that may occur. In the case of an exception, the cut is deleted by a call to \texttt{cut.end} and whatever exception was caught is then re-thrown. Re-throwing the exception can be omitted if you want to continue the optimization without the cut.
After the cut has been added, the application sets the rhs value at IloInfinity to avoid checking this cut for violation at the next invocation of the callback. Note that it did not simply remove the $i^{th}$ element of arrays rhs and lhs, because doing so is not supported if the cut callback is invoked from a parallel optimizer. However, changing array elements is allowed.

Also, for the potential use of the callback in parallel, the variable xrhs makes sure that the same value is used when checking for violation of the cut as when adding the cut. Otherwise, another thread may have set the rhs value to IloInfinity just between the two actions, and a useless cut would be added. CPLEX® would actually handle this correctly, as it handles adding the same cut from different threads.

The function makeCuts generates the arrays rhs and lhs to be passed to the cut callback. It first declares the array of variables to be used for defining the cuts. Since the environment is not passed to the constructor of that array, an array of 0-variable handles is created. In the following loop, these variable handles are initialized to the correct variables in the noswot model which are passed to this function as the argument vars. Variables are identified by querying their names. After all the variables have been assigned, they are used to create the lhs expressions and rhs values of the cuts.

The cut callback is created and passed to CPLEX® in this line:

```cpp
cplex.use(CtCallback(env, lhs, rhs, cplex.getParam(IloCplex::EpRHS)));
```

The function CtCallback constructs an instance of our callback class CtCallbackI and returns a handle (an instance of IloCplex::Callback) for it. This handle is directly passed to the function cplex.use.

The Java implementation of the callback is quite similar:

```java
public static class Callback extends IloCplex.CutCallback {
 double eps = 1.0e-6;
 IloRange[] cut;
 Callback(IloRange[] cuts) { cut = cuts; }

 public void main() throws IloException {
 int num = cut.length;
 for (int i = 0; i < num; ++i) {
 if (cut[i] != null) {
 double val = getValue(cut[i].getExpr());
 if (cut[i].getLB() > val+eps || val-eps > cut[i].getUB()) {
 add(cut[i]);
 cut[i] = null;
 }
 }
 }
 }
}
```

Instead of receiving expressions and righthand side values, the application directly passes an array of IloRange constraints to the callback; the constraints are stored in cut. The main loops over all cuts and evaluates the constraint expressions at the current solution by calling getValue(cut[i].getExpr). If this value exceeds the constraint bounds by more than the
tolerance of $\epsilon$, the cut is added during the search by a call to `add(cut[i])`, and `cut[i]` is set to null to avoid unnecessarily evaluating it again.

As for the C++ implementation, the array of cuts passed to the callback is initialized in a separate function `makeCuts`. The callback is then created and used to with the noswot cuts by calling.

`IloCplex` provides an easier way to manage such cuts in a case like this, where all cuts can be easily enumerated before starting the optimization. Calling the methods `cplex.addCut` and `cplex.addCuts` allows you to copy the cuts to `IloCplex` before the optimization. Thus, instead of creating and using the callback, a user could have written:

```c++
cplex.use(new Callback(makeCuts(cplex, lp)));
cplex.addCuts(makeCuts(var));
```

as shown in the example `iloadmipex4.cpp` in the distribution. During branch & cut, CPLEX® considers adding individual cuts to its representation of the model only if they are violated by a node LP solution in about the same way this example handles them. Whether this approach or adding the cuts directly to the model gives better performance during the solution of the model depends on the individual problem.

The complete program `iloadmipex5.cpp` appears online in the standard distribution at `yourCPLEXinstallation/examples/src`. The Java version is found in file `AdMIPex5.java` at the same location. The C#.NET implementation is in `AdMIPex5.cs`, and the VB.NET implementation is in `AdMIPex5.vb`. 
Interaction between callbacks and parallel optimizers

When you use callback routines, and invoke the parallel implementation of CPLEX® optimizers, you need to be aware that the CPLEX® environment passed to the callback routine corresponds to an individual CPLEX® thread rather than to the original environment created. CPLEX® frees this environment when finished with the thread. This convention does not affect most uses of the callback function. However, keep in mind that CPLEX® associates problem objects, parameter settings, and message channels with the environment that specifies them. CPLEX® therefore frees these items when it removes that environment; if the callback uses routines like CPXcreateprob, CPXcloneprob, or CPXgetchannels, those objects remain allocated only as long as the associated environment does. (You should not change parameters from within a callback.) So, applications that access CPLEX® objects in the callback should use the original environment you created if they need to access these objects outside the scope of the callback function.
Return values for callbacks

A user-written callback should return a nonzero value if the user wishes to stop the optimization and a value of zero otherwise.

For LP, QP, or QCP problems, if the callback returns a nonzero value, the solution process terminates. If the process was not terminated during the presolve process, the status returned by the function IloCplex::getStatus or the routines CPXsolution or CPXgetstat will be CPX_STAT_ABORT_USER, specifying that the process stopped because the user intervened.

For both LP, QP, QCP, and MIP problems, if the LP/QP/QCP callback returns a nonzero value during preprocessing, the optimizer will return the value CPXERR_PRESLV_ABORT, and no solution information will be available.

For MIP problems, if the callback returns a nonzero value, the solution process terminates, and the status returned by IloCplex::getStatus or CPXgetstat is one of the values in the table Status of nonzero callbacks for MIPs.

<table>
<thead>
<tr>
<th>Symbolic constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPXMIP_ABORT_FEAS</td>
<td>current solution integer feasible</td>
</tr>
<tr>
<td>CPXMIP_ABORT_INFEAS</td>
<td>no integer feasible solution found</td>
</tr>
</tbody>
</table>
Terminating without callbacks

If you simply want to terminate optimization under circumstances defined by your application, then you do not necessarily need to write a callback to do so. Instead, you can invoke termination by these means:

♦ In the C++ API, pass an instance of the class `IloCplex::Aborter` to an instance of `IloCplex`. Then call the method `IloCplex::Aborter::abort` to terminate optimization.

♦ In the Java API, pass an instance of the class `IloCplex.Aborter` to an instance of `IloCplex`. Then call the method `IloCplex.Aborter.abort` to terminate optimization.

♦ In the .NET API, pass an instance of the class `Cplex.Aborter` to an instance of `Cplex`. Then call the method `Cplex.Aborter.Abort` to terminate optimization.

♦ In the Callable Library (C API), call the routine `CPXsetterminate` to set a pointer to the termination signal. Initially, the value of the termination signal should be zero. When your application sets the termination signal to a nonzero value, then CPLEX® will terminate optimization.
Goals and callbacks: a comparison

Contrasts goals with callbacks.

In this section

Overview
Outlines advantages of goals and callbacks.
Overview

Goals and callbacks both provide an API within IBM® ILOG® CPLEX® to allow you to take control over the branch & cut search for solving MIP models. With one exception, the same functionality is available in both goals and callbacks. In fact, the goal API is built on top of callbacks. As a consequence, you can not use callbacks and goals at the same time. To help you choose which API is more suited to your needs, this topic examines commonalities and differences between both.

A quick checklist comparing goals and callbacks

Both approaches (goals and callbacks) allow you to control the branch & cut search used by CPLEX® to solve MIP models. The following points distinguish specific features of this control.

♦ Checking feasibility
  ● With goals, you can discontinue the search at a node by returning a Fail goal. Alternatively, you can continue searching, even though an integer feasible solution has been found, by returning another nonempty goal.
  ● With callbacks, you can use method prune of the branch callback to discontinue the search, and an incumbent callback to accept or reject integer feasible solutions.

♦ Creating branches
  ● With goals, you create branches by using Or goals with local cut goals as parameters.
  ● With callbacks, you create branches by using a branch callback.

♦ Adding local or global cuts
  ● With goals, you can add global and local cuts by using global and local cut goals, respectively.
  ● With callbacks, you need to implement either a cut callback (for global and local cuts) or a branch callback for branching on local cuts.

♦ Injecting solution candidates
  ● With goals, you inject solutions by using a solution goal.
  ● With callbacks, you need to implement a heuristic callback to inject solutions.

♦ Controlling the node selection strategy
  ● With goals, you control node selection by applying node evaluators to your search goal.
  ● With callbacks, you control node selection by using a node callback.

♦ Supporting advanced starts
  ● Since goals can enforce constraints, they do not support advanced starting information. An optimization with goals starts from scratch.
Since each callback provides a specific functionality, callbacks support advanced starts.

Further notes about goals and callbacks

Thus, one of the main differences between goals and callbacks is that with goals, all functionality is available from the execute method of the goal, whereas with callbacks, you must implement different callbacks to access different functionality.

With goals, the feasibility test and the resulting branching can be implemented with a single goal.

The second big difference between goals and callbacks is that with goals you can easily specify different search strategies in different subtrees. To do this, simply provide different search goals as a parameter to the or goal when creating the root nodes for the subtrees in question. To achieve a similar result with callbacks requires an implementation that is too complex for a presentation here.

The only functionality that is not supported via goals is that provided by the solve callback. Because of this, the solve callbacks can be used at the same time as goals. However, this callback is very rarely used.

In summary, goals can be advantageous if you want to take control over several steps of the branch & cut search simultaneously, or if you want to specify different search strategies in different subtrees. On the other hand, if you only need to control a single aspect of the search (for example, adding cuts) using the appropriate callback may involve a smaller API and thus be quicker and easier to understand and implement.

Example contrasting goals and callbacks

As an example, suppose you want to extend a search to satisfy additional constraints that could not conveniently be added as linear constraints to the model.

With callbacks, you need to use an incumbent callback and a branch callback. The incumbent callback has to reject an otherwise integer feasible solution if it violates such an additional constraint. In this case, the branch callback has to follow up with an appropriate branch to enforce the constraint. The choice of the appropriate branch may be quite difficult for constraints not modeled with linear expressions, even though CPLEX® supports branching on hyperplanes.
Advanced presolve routines

Documents the advanced presolve routines, available only in the Callable Library (C API).

In this section

Introduction to presolve
Describes presolve with an example contrasting continuous and discrete optimization.

A proposed example
Describes special considerations about presolve.

Restricting presolve reductions
Describes conditions under which a user might restrict presolve.

Manual control of presolve
Describes features to control presolve.

Modifying a problem
Describes conditions in which to modify a model after presolve.
Introduction to presolve

This discussion of the advanced presolve interface begins with a quick introduction to presolve. Most of the information in this section will be familiar to people who are interested in the advanced interface, but everyone is encouraged to read through it nonetheless.

As most users of IBM® ILOG® CPLEX® know, presolve is a process whereby the problem input by the user is examined for logical reduction opportunities. The goal is to reduce the size of the problem passed to the requested optimizer. A reduction in problem size typically translates to a reduction in total run time (even including the time spent in presolve itself).

Consider scorpion.mps from NETLIB as an example:

<table>
<thead>
<tr>
<th>CPLEX&gt; disp pr st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem name: scorpion.mps</td>
</tr>
<tr>
<td>Variables : 358</td>
</tr>
<tr>
<td>Constraint nonzeros: 1426</td>
</tr>
<tr>
<td>Objective nonzeros: 282</td>
</tr>
<tr>
<td>RHS nonzeros: 76</td>
</tr>
<tr>
<td>CPLEX&gt; optimize</td>
</tr>
<tr>
<td>Tried aggregator 1 time.</td>
</tr>
<tr>
<td>LP Presolve eliminated 138 rows and 82 columns.</td>
</tr>
<tr>
<td>Aggregator did 193 substitutions.</td>
</tr>
<tr>
<td>Reduced LP has 57 rows, 83 columns, and 327 nonzeros.</td>
</tr>
<tr>
<td>Presolve time = 0.00 sec.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration log . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration: 1 Dual objective = 317.965093</td>
</tr>
<tr>
<td>Dual - Optimal: Objective = 1.8781248227e+03</td>
</tr>
<tr>
<td>Solution time = 0.01 sec. Iterations = 54 (0)</td>
</tr>
</tbody>
</table>

CPLEX® is presented with a problem with 388 constraints and 358 variables, and after presolve the dual simplex method is presented with a problem with 57 constraints and 83 variables. Dual simplex solves this problem and passes the solution back to the presolve routine, which then unpresolves the solution to produce a solution to the original problem. During this process, presolve builds an entirely new ‘presolved’ problem and stores enough information to translate a solution to this problem back to a solution to the original problem. This information is hidden within the user's problem (in the CPLEX® LP problem object, for Callable Library users) and was inaccessible to the user in CPLEX® releases prior to 7.0.

The presolve process for a mixed integer program is similar, but has a few important differences. First, the actual presolve reductions differ. Integrality restrictions allow CPLEX® to perform several classes of reductions that are invalid for continuous variables. A second difference is that the MIP solution process involves a series of linear program solutions. In the MIP branch & cut tree, a linear program is solved at each node. MIP presolve is performed at the beginning of the optimization and applied a second time to the root relaxation, unless the relaxed LP presolve switch (RelaxPreInd or CPX_PARAM_RELAXPREIND) is set to 0 (zero), in which case the presolve is performed only once. All of the node relaxation solutions use the presolved model. Again, presolve stores the presolved model and the information required to convert a presolved solution to a solution for the original problem within the LP problem.
object. Again, this information was inaccessible to the user in CPLEX® releases prior to version 7.0.
A proposed example

Now consider an application where the user wishes to solve a linear program using the simplex method, then modify the problem slightly and solve the modified problem. As an example, let’s say a user wishes to add a few new constraints to a problem based on the results of the first solution. The second solution should ideally start from the basis of the first, since starting from an advanced basis is usually significantly faster if the problem is only modified slightly.

Unfortunately, this scenario presents several difficulties. First, presolve must translate the new constraints on the original problem into constraints on the presolved model. Presolve in releases prior to 7.0 could not do this. In addition, the new constraints may invalidate earlier presolve reductions, thus rendering the presolved model useless for the re-optimization. (There is an example in Restricting presolve reductions.) Presolve in releases prior to 7.0 had no way of disabling such reductions. In the prior releases, a user could either restart the optimization on the original, unpresolved model or perform a new presolve on the modified problem. In the former case, the re-optimization does not benefit from the reduction of the problem size by presolve. In the latter, the second optimization does not have the benefit of an advanced starting solution.

The advanced presolve interface can potentially make this and many other sequences of operations more efficient. It provides facilities to restrict the set of presolve reductions performed so that subsequent problem modifications can be accommodated. It also provides routines to translate constraints on the original problem to constraints on the presolved model, so new constraints can be added to the presolved model. In short, it provides a variety of capabilities.

When processing mixed integer programs, the advanced presolve interface plays a very different role. The branch & cut process needs to be restarted from scratch when the problem is even slightly modified, so preserving advanced start information isn’t useful. The main benefit of the advanced presolve interface for MIPs is that it allows a user to translate decisions made during the branch & cut process (and based on the presolved model) back to the corresponding constraints and variables in the original problem. This makes it easier for a user to control the branch & cut process. Details on the advanced MIP callback interface are provided in Advanced MIP Control Interface.
Restricting presolve reductions

Describes conditions under which a user might restrict presolve.

In this section

When to alert presolve to modifications
Describes conditions in which a user alerts presolve to modifications of the model.

Adding constraints to the first solution
Describes the effect of adding constraints after solution.

Primal and dual considerations in presolve reductions
Describes modifications that impact primal and dual formulations.

Cuts and presolve reductions
Describes presolve reductions influenced by cuts.

Infeasibility or unboundedness in presolve reductions
Describes special considerations of presolve with respect to infeasible or unbounded models.

Protected variables in presolve reductions
Describes the interaction of protected variables and presolve.
When to alert presolve to modifications

As mentioned in *Introduction to presolve*, some presolve reductions are invalidated when a problem is modified. The advanced presolve interface therefore allows a user to tell presolve what sort of modifications will be made in the future, so presolve can avoid possibly invalid reductions. These considerations apply only to linear programs. Any modifications of QP or QCP models will cause CPLEX® to discard the presolved model.
Adding constraints to the first solution

Consider adding a constraint to a problem after solving it. Imagine that you want to optimize a linear program:

Primal:  
\[
\begin{align*}
\text{max} & \quad -x_1 + x_2 + x_3 \\
\text{st} & \quad x_1 + x_2 + 2x_3 \leq 6 \\
\end{align*}
\]

Dual:  
\[
\begin{align*}
\text{min} & \quad 6y_1 + 5y_2 \\
\text{st} & \quad y_1 \geq -1 \\
& \quad y_1 + y_2 \leq 1 \\
& \quad 2y_1 + y_2 \leq 1 \\
\end{align*}
\]

Note that the first constraint in the dual \((y_1 \geq -1)\) is redundant. Presolve can use this information about the dual problem (and complementary slackness) to conclude that variable \(x_1\) can be fixed to 0 and removed from the presolved model. While it may be intuitively obvious from inspection of the primal problem that \(x_1\) can be fixed to 0, it is important to note that dual information (redundancy of the first dual constraint) is used to prove it formally.

Now consider the addition of a new constraint \(x_2 \leq 5x_1\):

Primal:  
\[
\begin{align*}
\text{max} & \quad -x_1 + x_2 + x_3 \\
\text{st} & \quad x_1 + x_2 + 2x_3 \leq 6 \\
\end{align*}
\]

Dual:  
\[
\begin{align*}
\text{min} & \quad 6y_1 + 5y_2 \\
\text{st} & \quad y_1 \geq -1 \\
& \quad y_1 + y_2 \leq 1 \\
& \quad 2y_1 + y_2 \leq 1 \\
\text{st} & \quad -5x_1 + x_2 \leq 0 \\
\end{align*}
\]

Our goal is to add the appropriate constraint to the presolved model and re-optimize. Note, however, that the dual information presolve used to fix \(x_1\) to 0 was changed by the addition of the new constraint. The first constraint in the dual is no longer guaranteed to be redundant, so the original fixing is no longer valid (the optimal solution is now \(x_1=1, x_2=5, x_3=0\)). As a result, CPLEX® is unable to use the presolved model to re-optimize.
Primal and dual considerations in presolve reductions

Presolve reductions can be classified into several groups: those that rely on primal information, those that rely on dual information, and those that rely on both. Addition of new constraints, modifications to objective coefficients, and tightening of variable bounds (a special case of adding new constraints) require the user to turn off dual reductions. Introduction of new columns, modifications to righthand-side values, and relaxation of variable bounds (a special case of modifying righthand-side values) require the user to turn off primal reductions.

These reductions are controlled through the primal and dual reduction type (CPX_PARAM_REDUCE) parameter. The parameter has four possible settings. The default value CPX_PREREDUCE_PRIMALANDDUAL (3) indicates that presolve can rely on primal and dual information. With setting CPX_PREREDUCE_DUALONLY (2), presolve only uses dual information, with setting CPX_PREREDUCE_PRIMALONLY (1) it only uses primal information, and with setting CPX_PREREDUCE_NO_PRIMALORDUAL (0) it uses neither (which is equivalent to turning presolve off).

Setting the primal and dual reduction type (CPX_PARAM_REDUCE) parameter has one additional effect on the optimization. Normally, the presolved model and the presolved solution are freed at the end of an optimization call. However, when CPX_PARAM_REDUCE is set to a value other than its default, CPLEX® assumes that the problem will subsequently be modified and reoptimized. It therefore retains the presolved model and any presolved solution information (internally to the LP problem object). If the user has set CPX_PARAM_REDUCE and is finished with problem modification, the user can call CPXfreePresolve to free the presolved model and reclaim the associated memory. The presolved model is automatically freed when the user calls CPXfreeProb on the original problem.
Cuts and presolve reductions

Cutting planes in mixed integer programming are handled somewhat differently than one might expect. If a user wishes to add his or her own cuts during the branch & cut process (through CPXaddusercuts or CPXcutcallbackadd), it may appear necessary to turn off dual reductions to accommodate them. (In fact, in this respect, these cuts differ from lazy constraints discussed in User-cut and lazy-constraint pools.)

However, for reasons that are complex and beyond the scope of this discussion, dual reductions can be left on. The reasons relate to the fact that valid cuts never exclude integer feasible solutions, so dual reductions performed for the original problem are still valid after cutting planes are applied.

However, a small set of reductions does need to be turned off. Recall that presolve must translate a new constraint on the original problem into a constraint on variables in the presolved model. Most reductions performed by CPLEX® presolve replace variables with linear expressions of zero or more other variables (plus a constant). A few do not. These latter reductions make it impossible to perform the translation to the presolved model. Set the linear reduction switch CPX_PARAM_PRELINEAR to 0 (zero) to forbid these latter reductions.
Infeasibility or unboundedness in presolve reductions

Restricting the type of presolve reductions will also allow presolve to conclude more about infeasible and/or unbounded problems. Under the default setting of the primal and dual reduction type (CPX_PARAM_REDUCE) parameter, presolve can only conclude that a problem is infeasible and/or unbounded. If the CPX_PARAM_REDUCE parameter is set to CPX_PREREDUCE_PRIMALONLY (1), presolve can conclude that a problem is primal infeasible with return status CPXERR_PRESLV_INF. If CPX_PARAM_REDUCE is set to CPX_PREREDUCE_DUALONLY (2), presolve can conclude that a problem is primal unbounded (if it is primal feasible) with return status CPXERR_PRESLV_UNBD.

Note: This paragraph applies to CPXpresolve, not CPXlpopt.
Protected variables in presolve reductions

A final facility that modifies the set of reductions performed by presolve is the CPXcopyprotected routine. The user provides as input a list of variables in the original problem that should survive presolve (that is, should exist in the presolved model). Presolve will avoid reductions that remove those variables, with one exception. If a protected variable can be fixed, presolve will still remove it from the problem. This command is useful in cases where the user wants to explicitly control some aspect of the branch & cut process (for example, through the branch callback) using knowledge about those variables.
**Manual control of presolve**

While presolve was a highly automated and transparent procedure in releases of CPLEX® prior to 7.0, releases 7.0 and above give the user significant control over when presolve is performed and what is done with the result. This section discusses these added control facilities. The routines mentioned here are documented in detail, including arguments and return values, in the *Callable Library Reference Manual*.

The first control function provided by the advanced presolve interface is `CPXpresolve`, which manually invokes presolve on the supplied problem. After this routine is called on a problem, the original problem has a *presolved model* associated with it. Subsequent calls to optimization routines (`CPXprimopt`, `CPXdualopt`, `CPXbaropt`, `CPXmipopt`) will use this presolved model without repeating the presolve, provided no operation that discards the presolved model is performed in the interim. The presolved model is automatically discarded if a problem modification is performed that is incompatible with the setting of the parameter `CPX_PARAM_REDUCE`, documented in primal and dual reduction type. (Further information about this point appears in *Modifying a problem*.)

By using the parameter `CPX_PARAM_REDUCE` to restrict the types of presolve reductions, CPLEX® can make use of the optimal basis of the presolved model. If you set `CPX_PARAM_REDUCE` to restrict presolve reductions, then make problem modifications that don’t invalidate those reductions, CPLEX® will automatically use the optimal basis of the presolved model. On the other hand, if the nature of the problem modifications is such that you cannot set `CPX_PARAM_REDUCE`, you can still perform an advanced start by making the modifications, then calling `CPXpresolve` to create the new presolved model, then calling `CPXcopystart`, passing the original model and any combination of primal and dual solutions. With nondefault settings of the parameter `CPX_PARAM_REDUCE` primal and dual reduction type, CPLEX® will crush the solutions and use them to construct a primal and dual solutions for the presolved model. If you are continuing with primal simplex, only providing a primal starting vector will usually perform better.

There are subtleties associated with using `CPXcopystart` to start an optimization from an advanced, presolved solution. This routine creates a presolved solution vector only if the presolved model is already present (either because the user called `CPXpresolve` or because the user turned off some presolve reductions through `CPX_PARAM_REDUCE` and then solved a problem). The earlier sequence would not have started from an advanced solution if `CPXcopystart` had been called before `CPXpresolve`. Another important detail about `CPXcopystart` is that it crushes primal and/or dual solutions, not bases. It then uses the crushed solutions to choose a starting basis. If you have a basis, you need to compute optimal primal and dual solutions (using `CPXcopybase` and then `CPXprimopt`), extract them, and then call `CPXcopystart` with them to use the corresponding advanced solution. In general, starting with both a primal and dual solution is preferable to starting with one or the other. One other thing to note about `CPXcopystart` is that the primal and dual slack (`slack` and `dj`) arguments are optional. The routine will compute slack values if none are provided.

You can set the advanced start switch (`CPX_PARAM_ADVIND`) to 2 in order to use advanced starting information together with presolve. At this setting, CPLEX® will use starting information provided to it with `CPXcopystart` or `CPXcopybase` when it solves an LP with the primal or dual simplex optimizer in the following way. If no presolved model is available, presolve is invoked. Then the starting information is crushed and installed in the presolved model. Finally, the presolved model is solved from the advanced (crushed) starting point.

Another situation where a user might want to use `CPXpresolve` is if the user wishes to gather information about the presolve, possibly in preparation for using the advanced MIP callback.
routines to control branch & cut. After CPXpresolve has been called, the user can then call CPXgetprestat to obtain information about the reductions performed on the problem. This routine provides information, for each variable in the original problem, about whether the variable was fixed and removed, aggregated out, removed for some other reason, or is still present in the reduced model. It also gives information, for each row in the original problem, about whether it was removed due to redundancy, aggregated out, or is still present in the reduced model. For those rows and columns that are present in the reduced model, this function provides a mapping from original row/column number to row/column number in the reduced model, and vice-versa.

Another situation where a user might want to use CPXpresolve is to work directly on the presolved model. By calling CPXgetredlp immediately after CPXpresolve, the user can obtain a pointer to the presolved model. As an example of how this pointer might be used, the user could call routines CPXcrushx and CPXcrushpi to presolve primal and dual solution vectors, then call CPXgetredlp to get access to the presolved model, then use CPXcopystart to copy the presolved solutions into the presolved model, then optimize the problem, and finally call the routines CPXuncrushx and CPXuncrushpi (CPXqpuncrushpi for QPs) to unpreserve solutions from the presolved model, creating solutions for the original problem.

The routine CPXgetredlp provides the user access to internal CPLEX® data structures. The presolved model must not be modified by the user. If the user wishes to manipulate the reduced problem, the user should make a copy of it (using CPXcloneprob) and manipulate the copy instead.

The advanced presolve interface provides another call that is useful when working directly with the presolved model (either through CPXgetredlp or through the advanced MIP callbacks). The call to CPXcrushform translates a linear expression in the original problem into a linear expression in the presolved model. The most likely use of this routine is to add user cuts to the presolved model during a mixed integer optimization. The advanced presolve interface also provides the reverse operation. The routine CPXuncrushform translates a linear expression in the presolved model into a linear expression in the original problem.

A limited presolve analysis is performed by CPXbasicpresolve and by the Concert Technology method IloCplex::basicPresolve. This routine detects which rows are redundant and computes strengthened bounds on the variables. This information can be used to derive some types of cuts that will tighten the formulation, to aid in formulation by pointing out redundancies, and to provide upper bounds for variables. CPXbasicpresolve does not create a presolved model.

The interface allows the user to manually free the memory associated with the presolved model using the routine CPXfreepresolve. The next optimization call (or call to CPXpresolve) recreates the presolved model.
Modifying a problem

This section briefly discusses the mechanics of modifying a model after presolve has been performed. This discussion applies only to linear programs; it does not apply to quadratic programs, quadratically constrained programs, nor mixed integer programs.

As noted earlier, the user must specify through the parameter \texttt{CPX\_PARAM\_REDUCE}, documented in primal and dual reduction type, the types of modifications that are going to be performed on the model. Recall that if primal reductions are turned off, the user can add variables, change the right-hand-side vector, or loosen variable bounds without losing the presolved model. These changes are made through the standard problem modification interface (\texttt{CPXaddcols}, \texttt{CPXchgrhs}, and \texttt{CPXchgbds}).

If dual reductions are turned off, the user can add constraints to the problem, change the objective function, or tighten variable bounds. Variable bounds are tightened through the standard interface (\texttt{CPXchgbds}). The addition of constraints or changes to the objective value must be done through the two routines \texttt{CPXpreaddrows} and \texttt{CPXprechgobj}. The constraints added by \texttt{CPXpreaddrows} are equivalent to but sometimes different from those input by the user. The dual variables associated with the added rows may take different values than those the user might expect.

If a user makes a problem modification that is not consistent with the setting of \texttt{CPX\_PARAM\_REDUCE}, CPLEX® discards the presolved model, and presolve is re-invoked at the next optimization call. Similarly, CPLEX® discards the presolved model if the user modifies a variable or constraint that presolve had previously removed from the problem. You can use \texttt{CPXpreaddrows} or \texttt{CPXprechgobj} to make sure that this will not happen. Note that \texttt{CPXpreaddrows} also permits changes to the bounds of the presolved model. If the nature of the procedure dictates a real need to modify the variables that presolve removed, you can use the \texttt{CPXcopyprotected} routine to instruct CPLEX® not to remove those variables from the problem.

Instead of changing the bounds on the presolved model, consider changing the bounds on the original model. CPLEX® will discard the presolved model, but calling \texttt{CPXpresolve} will cause CPLEX® to apply presolve to the modified model, with the added benefit of reductions based on the latest modifications. Then use \texttt{CPXcrushx}, \texttt{CPXcrushpi}, and \texttt{CPXcopystart} to provide an advanced start for the problem after presolve has been applied on the modified problem.
Advanced MIP control interface

Documents the advanced MIP control interface.

In this section

Introducing the advanced MIP control interface
Describes the context and prerequisites of the advanced MIP control interface.

Introducing MIP control callbacks
Documents MIP control callbacks

Heuristic callback
Describes the heuristic callback.

Cut callback
Describes special considerations of the cut callback.

Branch selection callback
Describes special considerations about the branch selection callback.

Incumbent callback
Describes special considerations about the incumbent callback.

Node selection callback
Describes special considerations about the node selection callback.

Solve callback
Describes special considerations about the solve callback.
Introducing the advanced MIP control interface

In this manual, *Using optimization callbacks* introduces callbacks, their purpose, and conventions. Continuing from there, this topic documents the IBM® ILOG® CPLEX® advanced MIP control interface, describing control callbacks in greater detail. It assumes that you are already familiar with that introduction to callbacks in general.

These callbacks allow sophisticated users to control the details of the branch & cut process. Specifically, users can choose the next node to explore, choose the branching variable, add their own cutting planes, place additional restrictions on integer solutions, or insert their own heuristic solutions. These functions are meant for situations where other tactics to improve performance on a hard MIP problem, such as nondefault parameter settings or priority orders, have failed. See *Troubleshooting MIP performance problems* for more information about MIP parameters and priority orders.

Users of the advanced MIP control interface can work with the variables of the presolved problem or, by following a few simple rules, can instead work with the variables of the original problem.

**Tip:** The advanced MIP control interface relies heavily on the advanced presolve capabilities. It’s a good idea to become familiar with *Advanced presolve routines* before reading this topic.

Control callbacks in Concert Technology use the variables of the original model. These callbacks are fully documented in the reference manual of each application programming interface (API).
Introducing MIP control callbacks

Documents MIP control callbacks

In this section

What are MIP control callbacks?
Describes MIP control callbacks.

Thread safety and MIP control callbacks
Describes control callbacks in parallel MIP.

Presolve and MIP control callbacks
Describes presolve considerations for MIP control callbacks.
What are MIP control callbacks?

As the reader is no doubt familiar, the process of solving a mixed integer programming problem involves exploring a tree of linear programming relaxations. CPLEX® repeatedly selects a node from the tree, solves the LP relaxation at that node, attempts to generate cutting planes to cut off the current solution, invokes a heuristic to try to find an integer feasible solution “close” to the current relaxation solution, selects a branching variable (an integer variable whose value in the current relaxation is fractional), and finally places the two nodes that result from branching up or down on the branching variable back into the tree.

The CPLEX® Mixed Integer Optimizer includes methods for each of those important steps (node selection, cutting planes, heuristic, branch variable selection, incumbent replacement). While default CPLEX® methods are generally effective, and parameters are available to choose alternatives if the defaults are not working for a particular problem, there are rare cases where a user may wish to influence or even override CPLEX® methods. CPLEX® provides a control callback mechanism to allow the user to do this. If the user installs a control callback routine, CPLEX® calls this routine during the branch & cut process to allow the user to intervene.
Thread safety and MIP control callbacks

When you use a control callback with parallel MIP, you must observe several points about default parameter settings, thread-safety, and parallelism. This section addresses those points.

The presence of a control callback in an application with default parameter settings turns off parallel MIP. (Informational callbacks do not have this effect of turning off parallel MIP optimization by default. For more about informational callbacks, see Informational callbacks.) In order to continue using parallel MIP in the presence of a control callback, the user must set the global default thread count parameter (Threads, CPX_PARAM_THREADS) to a value strictly greater than one. It is then the responsibility of the user to implement that control callback in such a way that the callback is thread-safe. In particular, the control callback must be written in such a way that it does not depend on the order in which callbacks are called, as no fixed order of calling the callbacks can be guaranteed by parallel CPLEX®.

With respect to determinism, if the user sets the parallel mode switch (ParallelMode, CPX_PARAM_PARALLELMODE) to 1 (one) thus invoking deterministic parallel MIP optimization, it is up to the user to make sure that the control callback does not interfere with the search in any way that would make the search opportunistic. To make sure of that condition, the control callback must use only information queried from CPLEX® itself within the callback as the basis for algorithmic decisions. In other words, no information that accumulated in an external data structure over several invocations of the control callback can be used.
Presolve and MIP control callbacks

This section addresses an important issue related to presolve that the user of MIP control callbacks should be aware of.

Most of the decisions made within MIP relate to the variables of the problem. The heuristic, for example, finds values for all the variables in the problem that produce a feasible solution. Similarly, branching chooses a variable on which to branch. When considering user callbacks, the difficulty that arises is that the user is familiar with the variables in the original problem, while the branch & cut process is performed on the presolved problem. Many of the variables in the original problem may have been modified or removed by presolve.

CPLEX® provides two options for handling the problem of mapping from the original problem to the presolved problem. First, the user may work directly with the presolved problem and presolved solution vectors. This is the default. While this option may at first appear unwieldy, note that the Advanced Presolve Interface allows the user to map between original variables and presolved variables. The downside to this option is that the user has to manually invoke these advanced presolve routines. The second option is to set the MIP callback switch between original model and reduced, presolved model (CPX_PARAM_MIPCBREDLP) to CPX_OFF (0), thus requesting that the callback routines work exclusively with original variables. CPLEX® automatically translates the data between original and presolved data. While the second option is simpler, the first provides more control. These two options will be revisited at several points in this chapter.
Heuristic callback

The first user callback we consider is the heuristic callback. The first step in using this callback is to call CPXsetheuristiccallbackfunc, with a pointer to a callback function and optionally a pointer to user private data as arguments. We refer the reader to advanced example admipex2.c for further details of how this callback is used. After this routine has been called, CPLEX® calls the user callback function at every viable node in the branch & cut tree (we call a node viable if its LP relaxation is feasible and its relaxation objective value is better than that of the best available integer solution). The user callback routine is called with the solution vector for the current relaxation as input. The callback function should return a feasible solution vector, if one is found, as output.

The advanced MIP control interface provides several routines that allow the user callback to gather information that may be useful in finding heuristic solutions. The routines CPXgetcallbackgloballb and CPXgetcallbackglobalub, for example, return the tightest known global lower and upper bounds on all the variables in the problem. No feasible solution whose objective is better than that of the best known solution can violate these bounds. Similarly, the routines CPXgetcallbacknodelb and CPXgetcallbacknodeub return variable bounds at this node. These reflect the bound adjustments made during branching. The routine CPXgetcallbackincumbent returns the current incumbent - the best known feasible solution. The routine CPXgetcallbacklp returns a pointer to the MIP problem (presolved or unpresolved, depending on the MIP callback switch between original model and reduced, presolved model, CPX_PARAM_MIPCBREDLP). This pointer can be used to obtain various information about the problem (variable types, etc.), or as an argument for the advanced presolve interface if the user wishes to manually translate between presolved and unpresolved values. In addition, the callback can use the cbdata parameter passed to it, along with routine CPXgetcallbacknodelp, to obtain a pointer to the node relaxation LP. This can be used to access desired information about the relaxation (row count, column count, etc.). Note that in both cases, the user should never use the pointers obtained from these callbacks to modify the associated problems.

As noted earlier, the CPX_PARAM_MIPCBREDLP parameter influences the arguments to the user callback routine. If this parameter is set to its default value of CPX_ON (1), the solution vector returned to the callback, and any feasible solutions returned by the callback, are presolved vectors. They contain one value for each variable in the presolved problem. The same is true of the various callback support routines (CPXgetcallbackgloballb, etc.). If the parameter is set to CPX_OFF (0), all these vectors relate to variables of the original problem. Note that this parameter should not be changed in the middle of an optimization.

The user should be aware that the branch & cut process works with the presolved problem, so the code will incur some cost when translating from presolved to original values. This cost is usually small, but can sometimes be significant.

We should also note that if a user wishes to solve linear programs as part of a heuristic callback, the user must make a copy of the node LP (for example, using CPXcloneprob). The user should not modify the CPLEX® node LP.
Cut callback

The next example to consider is the user cut callback routine. The user calls CPXsetcutcallbackfunc to set a cut callback, and the user's callback routine is called at every viable node of the branch & cut tree. We refer the reader to admipex5.c for a detailed example.

A likely sequence of events after the user callback function is called is as follows. First, the routine calls CPXgetcallbacknodex to get the relaxation solution for the current node. It possibly also gathers other information about the problem (through CPXgetcallbacklp, CPXgetcallbackgloballb, etc.) It then calls a user separation routine to identify violated user cuts. These cuts are then added to the problem by a call to CPXcutcallbackadd, and the callback returns. Local cuts, that is, cuts that apply to the subtree of which the current node is the root, can be added by the routine CPXcutcallbackaddlocal.

At this point, it is important to draw a distinction between the two different types of constraints that can be added through the cut callback interface. The first type is the traditional MIP cutting plane, which is a constraint that can be derived from other constraints in the problem and does not cut off any integer feasible solutions. The second is a “lazy constraint” that is, a constraint that can not be derived from other constraints and potentially cuts off integer feasible solutions. Either type of constraint can be added through the cut callback interface.

As with the heuristic callback, the user can choose whether to work with presolved values or original values. If the user chooses to work with original values, a few parameters must be modified. If the user adds only cutting planes to the original problem, the user must set advanced presolve linear reduction switch (CPX_PARAM_PRELINEAR) to CPX_OFF (0). This parameter forbids certain presolve reductions that make translation from original values to presolved values impossible.

If the user adds any lazy constraints, the user must turn off dual presolve reductions (using the primal and dual reduction type parameter, CPX_PARAM_REDUCE). The user must think carefully about whether constraints added through the cut interface are implied by existing constraints, in which case dual presolve reductions may be left on, or whether they are not, in which case dual reductions are forbidden.

Concert Technology users should use the class IloCplex::LazyConstraintCallbackI when adding lazy constraints, and the class IloCplex::UserCutCallbackI when adding cutting planes. Dual reductions and/or nonlinear reductions then will be turned off automatically.

One scenario that merits special attention is when the user knows a large set of cuts because of prior knowledge. Rather than adding them to the original problem, the user may instead wish to add them only when they are violated. The CPLEX® advanced MIP control interface provides more than one mechanism for accomplishing this. The first and probably most obvious at this point is to install a user callback that checks each cut from the user set at each node, adding those that are violated. The user can do this either by setting the MIP callback switch between original model and reduced, presolved model, CPX_PARAM_MIPCBREDLP, to CPX_OFF in order to work with the original problem in the cut callback, or by using the Advanced Presolve Interface to translate the cuts on the original problem to cuts on the presolved problem, and then use the presolved cuts in the cut callback.

Another, perhaps simpler alternative is to add the cuts or constraints to cut pools before optimization begins. Pools are discussed in User-cut and lazy-constraint pools.
Branch selection callback

The next callback to consider is the branch variable selection callback. After CPXsetbranchcallbackfunc is called with a pointer to a user callback routine, the user routine is called whenever CPLEX® makes a branching decision. CPLEX® indicates which variable has been chosen for branching and allows the user to modify that decision. The user may specify the number of children for the current node (between 0 and 2), and the set of bounds or constraints that are modified for each child through one of the routines CPXbranchcallbackbranchbds, CPXbranchcallbackbranchconstraints, or CPXbranchcallbackbranchgeneral. The children are explored in the order that they are returned. The branch callback routine is called for all viable nodes. In particular, it will be called for nodes that have zero integer infeasibilities; in this case, CPLEX® will not have chosen a branch variable, and the default action will be to discard the node. The user can choose to branch from this node and in this way impose additional restrictions on integer solutions.

For example, a user branch routine may call CPXgetcallbacknodeintfeasi to identify branching candidates, call CPXgetcallbackpseudocosts to obtain pseudo-cost information on these variables, call CPXgetcallbackorder to get priority order information, make a decision based on this and perhaps other information, and then respond that the current node will have two children, where one has a new lower bound on the branch variable and the other has a new upper bound on that variable.

Alternatively, the branch callback routine can be used to sculpt the search tree by pruning nodes or adjusting variable bounds. Choosing zero children for a node prunes that node, while choosing one node with a set of new variable bounds adjusts bounds on those variables for the entire subtree rooted at this node. Note that the user must be careful when using this routine for anything other than choosing a different variable to branch on. Pruning a valid node or placing an invalid bound on a variable can prune the optimal solution.

We should point out one important detail associated with the use of the MIP callback switch between original model and reduced, presolved model, CPX_PARAM_MIPCBREDLP, in a branch callback. If this parameter is set to CPX OFF (0), the user can choose branch variables (and add bounds) for the original problem. However, not every fractional variable is actually available for branching. Recall that some variables are replaced by linear combinations of other variables in the presolved problem. Since branching involves adding new bounds to specific variables in the presolved problem, a variable must be present in the presolved problem for it to be branched on. The user should use the CPXgetcallbacknodeintfeas routine from the Advanced Presolve Interface to find branching candidates (those for which CPXgetcallbacknodeintfeas returns CPX_INTEGER_INFEASIBLE). The CPXcopyprotected routine can be used to prevent presolve from removing specific variables from the presolved problem. (In Concert Technology, this issue is handled for you automatically.) While restricting branching may appear to limit your ability to solve a problem, in fact a problem can always be solved to optimality by branching only on the variables of the presolved problem.
Incumbent callback

The incumbent callback is used to reject integer feasible solutions that do not meet additional restrictions the user may wish to impose. The user callback routine will be called each time a new incumbent solution has been found, including when solutions are provided by the user’s heuristic callback routine. The user callback routine is called with the new solution as input. Depending on the API, the callback function changes an argument or invokes a method to indicate whether or not the new solution should replace the incumbent solution.

For the object-oriented callback classes of the C++, Java, and .NET APIs, all callback information about the model and solution vector pertains to the original, unpresolved model. For the C API, the MIP callback switch between original model and reduced, presolved model, CPX_PARAM_MIPCBREDLP, influences the arguments to the user callback routine. If this parameter is set to its default value of CPX_ON (1), the solution vector that is input to the callback is a presolved vector. It contains one value for each variable in the presolved problem. The same is true of the various callback support routines (CPXcallbackglobalub, and so forth.). If the parameter is set to CPX_OFF (0), all these vectors relate to the variables of the original problem. Note that this parameter should not be changed in the middle of an optimization.
Node selection callback

The user can influence the order in which nodes are explored by installing a node selection callback (through `CPXsetnodecallbackfunc`). When CPLEX® chooses the node to explore next, it will call the user callback routine, with the choice of CPLEX® as an argument. The callback has the option of modifying this choice.
The final callback to consider is the solve callback. By calling `CPXsetssolvecallbackfunc`, the user instructs CPLEX® to call a user function rather than the CPLEX® choice (dual simplex by default) to solve the linear programming relaxations at each node of the tree. Advanced example `ad mipex6.c` shows how this callback might be used.

**Note:** The most common use of this callback is to craft a customer solution strategy out of the set of available CPLEX® algorithms. For example, a user might create a hybrid strategy that checks for network status, calling `CPXhybnetopt` instead of `CPXdualopt` when it finds it.
Parallel optimizers

Documents the CPLEX® parallel optimizers.

In this section

What are parallel optimizers?
Describes the parallel optimizers available in CPLEX®.

Threads
Documents threads in the context of parallel optimizers.

Determinism of results
Defines determinism and describes its effect in parallel optimization.

Using parallel optimizers in the Interactive Optimizer
Describes parallel optimization in the Interactive Optimizer.

Using parallel optimizers in the Component Libraries
Describes parallel optimization in the Component Libraries.

Parallel barrier optimizer
Describes the parallel barrier optimizer.

Concurrent optimizer
Describes the concurrent optimizer.

Parallel MIP optimizer
Describes the parallel MIP optimizer.
Clock settings and time measurement
Describes reporting of time in parallel MIP optimization.
What are parallel optimizers?

IBM® ILOG® CPLEX® offers Parallel Barrier, Parallel MIP, and Concurrent optimizers. These parallel optimizers are implemented to run on hardware platforms with parallel processors. These parallel optimizers can be called from the Interactive Optimizer and the Component Libraries.
Documents threads in the context of parallel optimizers.

In this section

Licensing and threads parameter
Describes the effect of licensing conditions on number of threads in parallel.

Example: threads and licensing
Illustrates interaction of threads and licensing with an example.

Threads and performance considerations
Describes performance consideration for threads.
Licensing and threads parameter

The CPLEX® parallel optimizers are licensed for a specific maximum number of threads. You manage the number of threads that CPLEX® uses with the global default thread count parameter (Threads, CPX_PARAM_THREADS) documented in the CPLEX Parameters Reference Manual. At its default setting 0 (zero), the number of threads that CPLEX® actually uses during a parallel optimization is the smaller of:

♦ the number of CPU cores available on the computer where CPLEX® is running;
♦ the number of threads specified by the license.

If you set the threads parameter to a value greater than its default of 0 (zero), then the number of threads that CPLEX® uses equals that value. When you set the threads parameter to 1 (one), you enforce sequential operation, that is, processing on one thread only. The maximum possible setting is the smaller of:

♦ the number of CPU cores available on the computer where CPLEX® is running;
♦ the number of threads specified by the license.

The number of threads used by a parallel CPLEX® optimizer is separate from and independent of the number of licensed users. A typical CPLEX® license permits one licensed use, that is, a single concurrent execution on one licensed computer. If the license also contains the parallel option with a thread limit of, say, four (on a machine with at least four processors), that one concurrent execution of CPLEX® can employ any number of parallel threads to increase performance, up to that limit of 4. A license with the parallel option that additionally has a limit larger than one on the number of licensed uses can support that many simultaneous executions of CPLEX®, each with the licensed maximum number of parallel threads. In such a case, the operating system will manage any contention for processors.

The number of parallel threads used by a CPLEX® optimizer is usually controlled by CPLEX® parameter settings. These settings are discussed in more detail in the sections that follow.
Example: threads and licensing

For example, let’s assume you use CPLEX® to optimize MIP models on an eight processor machine, and you have purchased a CPLEX® license for four parallel threads. Then you can use the Interactive Optimizer command `set threads i`, substituting values 1 through 4 for i. You will not be able to set the thread count higher than 4 because you are licensed for a maximum of four threads.

If you set the number of threads to a value less than the number of processors, the remaining processors will be available for other jobs on your platform. Simultaneously running multiple parallel jobs with a total number of threads exceeding the number of processors may impair the performance of each individual processor as its threads compete with one another.
Threads and performance considerations

The benefit of applying more threads to optimizing a specific problem varies depending on the optimizer you use and the characteristics of the problem. You should experiment to assess performance improvements and degradation when you apply more or fewer processors.

For example, consider the following results:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root node processing (before b&amp;c):</td>
<td></td>
</tr>
<tr>
<td>Real time</td>
<td>3.22</td>
</tr>
<tr>
<td>Parallel b&amp;c, 2 threads:</td>
<td></td>
</tr>
<tr>
<td>Real time</td>
<td>8.29</td>
</tr>
<tr>
<td>Sync time (average)</td>
<td>2.74</td>
</tr>
<tr>
<td>Wait time (average)</td>
<td>2.48</td>
</tr>
<tr>
<td>Total (root+branch&amp;cut)</td>
<td>11.51 sec</td>
</tr>
</tbody>
</table>

When the wait time is particularly high, as in that example, consider changing the parallel mode from deterministic to opportunistic or changing from parallel to sequential processing. *Determinism of results* explains more about these choices.

Another key consideration in setting optimizer and global thread limits is your management of overall system load.
Determinism of results

By default, CPLEX® will employ parallel algorithms only as long as the optimization remains deterministic. In this context, *deterministic* means that repeated solving of the same model with the same parameter settings on the same computing platform will follow exactly the same solution path, yielding the same level of performance and the same values in the solution.

The parallel barrier optimizer cannot work deterministically because of design considerations. Likewise, by design, the concurrent optimizer cannot work deterministically. (Even though determinism cannot be guaranteed theoretically for parallel barrier or concurrent optimization, these optimizers rarely exhibit behavior that is not deterministic in practice.) Because of this consideration about determinism in their design, and because of its implicit contract to use parallel algorithms deterministically by default, CPLEX® does not invoke these optimizers by default in parallel. Thus, in order to use parallel processors for concurrent optimization or for barrier optimization, you must explicitly set the global default thread count parameter (Threads, CPX_PARAM_THREADS) to a value strictly greater than one. This higher setting implicitly specifies to CPLEX® that the user is willing to accept behavior that may not be deterministic.

In contrast, for mixed integer programming (MIP), two parallel implementations are available in CPLEX®: deterministic and opportunistic. Opportunistic parallel optimization requires less synchronization between threads and thus offers better performance on average. Consequently, during development of an application, you may find deterministic parallelism advantageous for the repeatable, invariant solution path and results, whereas after development, during application deployment, you may prefer opportunistic parallelism for its performance.

To maintain determinism (that is, an implicit contract of repeatable, invariant search path and results), CPLEX® invokes deterministic parallelism by default for MIP optimization, but when the global default thread count parameter (Threads, CPX_PARAM_THREADS) is set to a value strictly greater than one, opportunistic parallel MIP will be invoked. This higher setting implicitly specifies to CPLEX® that the user is willing to accept opportunistic behavior.

In addition to the threads parameter, you can use the parallel mode switch (ParallelMode, CPX_PARAM_PARALLELMODE) to control the invocation of opportunistic algorithms. With its default setting of 0 (zero), only deterministic algorithms are used, unless the threads parameter is changed to a value strictly greater than one.

To force CPLEX® to use deterministic algorithms in all cases, set the parallel mode parameter to 1 (one).

To allow CPLEX® to use opportunistic algorithms in all situations, set the parallel mode parameter to -1 (minus one).

The presence of a time limit, set by the optimizer time limit parameter (TiLim, CPX_PARAM_TILIM) for example, poses problems for reproducibility in any algorithm that is otherwise deterministic, even in sequential rather than parallel mode. Subtle variations in runtime on computer architectures can lead to variation in the measurement of time. (Other limits, such as node limits, are not subject to this variability.)

Because time limits are so important in many applications, CPLEX® will still attempt to use deterministic mode without regard to whether a time limit is in effect. While variability will still be much lower than with the opportunistic setting, the user is advised that complete determinism within time limits can not be assured.
Using parallel optimizers in the Interactive Optimizer

For mixed integer programming (MIP), this policy means the following sequence of commands invokes parallel deterministic MIP optimization:

1. Start the parallel CPLEX® Interactive Optimizer with the command `cplex` at the operating system prompt.
2. Enter your problem object and populate it with data as usual.
3. Call the parallel optimizer with the `mipopt` command. The optimizer will use the maximum number of available threads in deterministic mode.

In order to invoke parallel optimization of continuous models in the Interactive Optimizer, you must abandon determinism. You can do so explicitly with the parallel mode parameter, or you can do so implicitly with the threads parameter.

**To abandon determinism explicitly by means of the parallel mode parameter, do this:**

1. Start the parallel CPLEX® Interactive Optimizer with the command `cplex` at the operating system prompt.
2. Enter your problem object and populate it with data as usual.
3. Enter the command: `set parallel -1`. The optimizer will use the maximum number of available threads in opportunistic mode.
4. Optimize.

**To abandon determinism implicitly by means of the thread parameter, do this:**

1. Start the parallel CPLEX® Interactive Optimizer with the command `cplex` at the operating system prompt.
2. Enter your problem object and populate it with data as usual.
3. Enter the command: `set threads n` where `n` is a number strictly greater than 1 (one). The optimizer will use the specified number of threads in opportunistic mode.
4. Optimize.
Using parallel optimizers in the Component Libraries

1. Create your CPLEX® environment and initialize a problem object in the usual way. See Initialize the CPLEX environment and Instantiate the problem as an object for details.

2. Enter and populate your problem object in the usual way, as in Put data in the problem object.

3. If you want to use an opportunistic parallel algorithm, set either the parallel mode switch (ParallelMode, CFX_PARAM_PARALLELMODE) or the global default thread count (Threads, CFX_PARAM_THREADS) parameter in your application. This step is mandatory if you want to use the parallel barrier optimizer or the concurrent optimizer. If you want to use the parallel MIP optimizer in deterministic mode with fewer than the maximum number of available threads, set both the parallel mode and the threads parameter in your application. See Determinism of results for background about this step.

4. Call the parallel optimizer with the appropriate method or routine from Parallel optimizer methods and routines of the Component Libraries.

Parallel optimizer methods and routines of the Component Libraries

<table>
<thead>
<tr>
<th>Optimizer</th>
<th>Concert IloCplex Method</th>
<th>Callable Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel MIP Optimizer</td>
<td>solve</td>
<td>CFXmipopt</td>
</tr>
<tr>
<td>Parallel Barrier Optimizer</td>
<td>setParam(RootAlg , Barrier) and then solve</td>
<td>CFXbaropt or CFXhybbaropt</td>
</tr>
<tr>
<td>Concurrent Optimizer</td>
<td>setParam(RootAlg , Concurrent) and then solve</td>
<td>CFXsetintparam(env, CFX_PARAM_LPMETHOD, CFX_ALG_CONCURRENT) and then CPXlpopt or CPXqopt</td>
</tr>
</tbody>
</table>
Parallel barrier optimizer

The CPLEX® Parallel Barrier Optimizer achieves significant speedups over its serial counterpart on a wide variety of classes of problems. (The serial Barrier Optimizer is introduced in *Solving LPs: barrier optimizer*, and explored further in *Solving problems with a quadratic objective (QP)* and in *Solving problems with quadratic constraints (QCP)*.) Consequently, the parallel barrier optimizer will be the best continuous choice on a parallel computer more frequently than on a single-processor. For that reason, you should be careful not to apply performance data or experience based on serial optimizers when you are choosing which optimizer to use on a parallel platform.
Concurrent optimizer

On a multiprocessor computer, the concurrent optimizer launches distinct LP and QP optimizers on multiple threads, terminating as soon as the first optimizer finishes. The first thread uses the same strategy as the single-processor automatic LPMethod setting (0). If a second thread is available, the concurrent optimizer runs the barrier optimizer on it. If a third processor is available, dual simplex, primal simplex, and barrier are all run. All further available threads are devoted to making the barrier optimization parallel. It should be noted that the barrier optimization is not considered complete until the crossover step has been performed and simplex re-optimization has converged; in other words, regardless of which optimizer turns out to be the fastest, the concurrent optimizer always returns a basic solution at optimality.

The concurrent optimizer requires more memory than any individual optimizer, and of course it adds system load by consuming more aggregate CPU time than the fastest individual optimizer would alone. But the advantages offered in terms of robust solution of models, and assurance in most cases of the minimum solution time, will make it attractive in many situations.
Parallel MIP optimizer

Describes the parallel MIP optimizer.

In this section

Introducing parallel MIP optimization
Describes parallel MIP optimization in general terms.

Root relaxation and parallel MIP processing
Describes special considerations about the root relaxation in parallel MIP optimization.

Memory considerations and the parallel MIP optimizer
Describes considerations about memory consumption in parallel MIP optimization.

Output from the parallel MIP optimizer
Shows a sample log from parallel MIP optimization.
Introducing parallel MIP optimization

By default, CPLEX® uses the deterministic parallel MIP optimizer to solve a mixed integer programming problem. In doing so, it exploits parallel computations while it solves nodes of the MIP branch & cut tree. It also executes strong branching computations in parallel.

Besides these applications of parallel processes, there may be additional possibilities for parallel computation at the root node. However, these additional possibilities are not deterministic; they are known as opportunistic. In order to exploit such opportunities, your application must allow CPLEX® to run opportunistically in parallel. To do so, either you can explicitly set the parallel mode switch (ParallelMode, CPX_PARAM_PARALLELMODE) to the value -1 (minus one), or you can implicitly allow opportunistic parallel optimization by setting the global default thread count (Threads, CPX_PARAM_THREADS) parameter to a value strictly greater than one.

As explained in Determinism of results, you may find it advantageous to develop your application in deterministic parallel mode, where you can rely on the invariance and repeatability of the search path and results to evaluate the correctness of your model and solutions. After you are convinced of correctness of your model, there are two different approaches you can take in deployment of your application. If performance is critical, consider deploying in opportunistic parallel mode. While faster performance in opportunistic mode cannot be guaranteed, it does generally out-perform deterministic mode. On the other hand, if performance is not critical, you may prefer to deploy in deterministic mode to retain the possibility of reproducing any problems that your end-user may encounter during deployment. In summary, you need to evaluate for your model and application which mode is more appropriate.
Root relaxation and parallel MIP processing

In some models, the continuous root relaxation takes significant solution time before parallel branching begins. These models have potential for additional speed increases by running the root relaxation step in parallel. If the root problem is an LP or QP and the Threads parameter is set to a value greater than 1 (one), the concurrent optimizer is invoked by default. This provides a form of parallelism that assigns the available threads to multiple optimizers. If the root problem is a QCP, the barrier optimizer alone is used.

You can try a different form of parallelism at the root by selecting the barrier optimizer specifically with the MIP starting algorithm parameter:

♦ RootAlg in Concert Technology;
♦ CFX_PARAM_STARTALG in the Callable Library;
♦ set mip strategy startalgorithm in the Interactive Optimizer.

In such a case, the parallel threads will all be applied to the barrier algorithm.
Memory considerations and the parallel MIP optimizer

Before the parallel MIP optimizer invokes parallel processing, it makes separate, internal copies of the initial problem. The individual processors use these copies during computation, so each of them requires an amount of memory roughly equal to the size of the presolved model.
Output from the parallel MIP optimizer

The parallel MIP optimizer generates slightly different output in the node log (see Progress reports: interpreting the node log) from the sequential MIP optimizer. The following paragraphs explain those differences.

CPLEX® prints a summary of timing statistics specific to the parallel MIP optimizer at the end of optimization. You can see typical timing statistics in the following sample run.

```
Problem 'fixnet6.mps.gz' read.
Read time = 0.02 sec.
CPLEX> o
Tried aggregator 1 time.
MIP Presolve modified 308 coefficients.
Aggregator did 1 substitutions.
Reduced MIP has 477 rows, 877 columns, and 1754 nonzeros.
Presolve time = 0.00 sec.
Clique table members: 2.
MIP emphasis: balance optimality and feasibility.
Root relaxation solution time = 0.00 sec.

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Cuts/</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0+ 0</td>
<td>97863.0000 3192.0420 60 96.74%</td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>4505.0000 3192.0420 60 29.14%</td>
</tr>
<tr>
<td>0 0 3383.7784 16 4505.0000 Cuts: 35 114 24.89%</td>
<td></td>
</tr>
<tr>
<td>0 0 3489.7887 13 4505.0000 Cuts: 17 134 22.54%</td>
<td></td>
</tr>
<tr>
<td>0 0 3531.4512 16 4505.0000 Cuts: 11 149 21.61%</td>
<td></td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>4501.0000 3531.4512 149 21.54%</td>
</tr>
<tr>
<td>0 0 3552.4474 19 4501.0000 Cuts: 9 159 21.07%</td>
<td></td>
</tr>
<tr>
<td>0 0 3588.7513 19 4501.0000 Cuts: 8 178 20.27%</td>
<td></td>
</tr>
<tr>
<td>0 0 3597.3630 20 4501.0000 Cuts: 5 185 20.08%</td>
<td></td>
</tr>
<tr>
<td>0 0 3598.6200 21 4501.0000 Cuts: 6 190 20.05%</td>
<td></td>
</tr>
<tr>
<td>0 0 3601.2921 22 4501.0000 Cuts: 3 194 19.99%</td>
<td></td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>4457.0000 3601.2921 194 19.20%</td>
</tr>
<tr>
<td>0 0 3602.5189 23 4457.0000 Cuts: 3 197 19.17%</td>
<td></td>
</tr>
<tr>
<td>0 0 3633.5846 20 4457.0000 Cuts: 2 204 18.47%</td>
<td></td>
</tr>
<tr>
<td>0 0 3638.8299 22 4457.0000 Covers: 1 206 18.36%</td>
<td></td>
</tr>
<tr>
<td>0 0 3649.9331 22 4457.0000 Cuts: 3 212 18.11%</td>
<td></td>
</tr>
<tr>
<td>0 0 3652.9758 28 4457.0000 Cuts: 5 218 18.04%</td>
<td></td>
</tr>
<tr>
<td>0 0 3656.7563 24 4457.0000 Cuts: 3 227 17.95%</td>
<td></td>
</tr>
<tr>
<td>0 0 3659.1865 29 4457.0000 Cuts: 4 232 17.90%</td>
<td></td>
</tr>
<tr>
<td>0 0 3664.7373 26 4457.0000 Covers: 1 236 17.78%</td>
<td></td>
</tr>
<tr>
<td>0 0 3676.2923 33 4457.0000 Covers: 5 244 17.52%</td>
<td></td>
</tr>
<tr>
<td>0 0 3676.7448 31 4457.0000 Flowcuts: 2 250 17.51%</td>
<td></td>
</tr>
<tr>
<td>0 0 3676.9154 33 4457.0000 Flowcuts: 2 254 17.50%</td>
<td></td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>3994.0000 3676.9154 254 7.94%</td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>3990.0000 3676.9154 254 7.85%</td>
</tr>
<tr>
<td>* 0+ 0</td>
<td>3985.0000 3676.9154 254 7.73%</td>
</tr>
<tr>
<td>0 2 3680.6918 22 3985.0000 3676.9154 254 7.73%</td>
<td></td>
</tr>
</tbody>
</table>
* 22 5 integral 0 3983.0000 3770.3216 358 5.34% |
```

Root node processing (before b&c):
The sample reports that the processors spent an average of 0.03 of a second of real time waiting for other processors to provide nodes to be processed. The Sync time is the average time a processor spends trying to synchronize by accessing globally shared data. Because only one processor at a time can access such data, the amount of time spent in synchronization is really crucial: any other processor that tries to access this region must wait, thus sitting idle, and this idle time is counted separately from the Wait time.

There is another difference in the way logging occurs in the parallel MIP optimizer. When this optimizer is called, it makes a number of copies of the problem. These copies are known as clones. The parallel MIP optimizer creates as many clones as there are threads available to it. When the optimizer exits, these clones and the memory they used are discarded.

If a log file is active when the clones are created, then CPLEX® creates a clone log file for each clone. The clone log files are named cloneK.log, where K is the index of the clone, ranging from 0 (zero) to the number of threads minus one. Since the clones are created at each call to the parallel MIP optimizer and discarded when it exits, the clone logs are opened at each call and closed at each exit. (The clone log files are not removed when the clones themselves are discarded.)

The clone logs contain information normally recorded in the ordinary log file (by default, cplex.log) but inconvenient to send through the normal log channel. The information likely to be of most interest to you are special messages, such as error messages, that result from calls to the LP optimizers called for the subproblems.
Clock settings and time measurement

On most platforms, CPLEX® offers two ways of measuring time: CPU time and wall-clock time. However, on Microsoft Windows platforms, only wall-clock time is available. By default, when CPLEX® is running sequentially, CPU time is reported on platforms that support it. In contrast, when CPLEX® is running parallel algorithms, wall-clock time is the default on all platforms.

On platforms that support both types of clock, you can choose the type of clock by setting the clock type for computation time parameter to a value different from the default 0 (zero).

♦ In Concert Technology, use the method:
  - IloCplex::setParam(ClockType, i) in the C++ API;
  - IloCplex.setParam(ClockType, i) in the Java API;
  - Cplex.SetParam(ClockType, i) in the .NET API.

♦ In the Callable Library, use the routine CPXsetintparam(env, CPX_PARAM_CLOCKTYPE, i).

♦ In the Interactive Optimizer, use the command set clocktype i.

Replace the i with the value 1 (one) to specify CPU time or 2 to specify wall-clock time.
absolute objective difference
in integrality constraints of a MIP
in MIP performance
absolute optimality tolerance
definition
gap
accessing
basis information (C++ API)
current parameter value (C API)
current parameter value (C++ API)
default parameter value (C API)
dual values (C++ API)
maximum parameter value (C API)
maximum parameter value (Java API)
minimum parameter value (C API)
minimum parameter value (Java API)
objective function value (C++ API)
reduced costs (C++ API)
solution quality (C++ API)
solution values (C++ API)
active model
as instance of IloCplex (Java API)
MIP (Java API)
active node
add method
IloModel C++ class
extensible arrays
modifying a model
addMinimize method (Java API)
advanced basis
example
ignored by tuning tool
in networks
parallel threads and
primal feasibility and
reading from file (LP)
saving to file (LP)
starting from (LP)
advanced start
element (LP)
AdvInd parameter
MIP start
solution polishing and
AggCutLim
AggCutLim parameter
controlling cuts
aggregator
barrier preprocessing
simplex and
algorithm
choosing in LP (C++ API)
controlling in IloCplex (C++ API)
pricing
type (Java API)
using multiple
Algorithm::Barrier (Java API)
application
creating with Concert Technology (C++ API)
development steps (C++ API)
arcc
architecture
C++ API
Callable Library (C API)
Java API
arguments
null pointers (C API)
optional (C API)
array
constructing (Java API)
creating multi-dimensional (C++ API)
creating variables in (Java API)
extensible (C++ API)
using for I/O (C++ API)
BarAlg
large objective values and 398
log file and 379
settings 394
barrier optimizer
algorithm 363
algorithms and infeasibility 399
barrier display parameter 394
centering corrections 394
column nonzeros parameter and density 388
column nonzeros parameter and instability 396
corrections limit 394
growth parameter 397
infeasibility analysis 399
inhibiting dual formulation 331
linear 399
log file 372
numeric difficulties and 396
numerical emphasis and 393
parallel 920
performance tuning 383
preprocessing 387
primal-dual 325
QCP and 447
quadratic 419, 440
quadratic constraints and 447
row-ordering algorithms 389
second-order cone program (SOCP) and 448
simplex optimizer and 366
solution quality 380
solving LP problems 361
starting-point heuristics 390
threads and 917
unbounded optimal face and 397
unbounded problems 398
uses 363
BarStartAlg parameter
barrier starting algorithm 390
basis
accessing information (C++ API) 74
advanced, primal feasible 321
advanced, role in network 324
advanced, starting from (example) 358
column generation and 711
condition number 346, 351
crash parameter and 338
crossover algorithms 365
current (C API) 180
differences between LP and network optimizers 415
from basis file 415
infeasibility and 350
maximum row residuals and 353
no factoring in network optimizer 415
objective in Phase I and 350
optimal, condition number and 346
optimal, numeric stability and 345
parallel preprocessing versus starting (MIP) 528
previous optimal (C API) 185
refactoring rate 338
removing objects from (C++ API) 81
role in converting LP to network flow 415
role in converting network-flow to LP 415
role in network optimizer 410
role in network optimizer to solve QP 410
saving best so far 347
sensitivity analysis and (Java API) 133
singularities and 347
starting from advanced 886
unexplored nodes in tree (MIP) 552
unstable optimal 351
bibliography 39
column generation 711
Big M 680
bound violation (LP) 353
Bounded return status (Java API) 113
branch variable selection callback 905
branch-and-cut algorithm
definition 485
branching direction (Java API) 127
breakpoint
discontinuous piecewise linear and 646
example 643
piecewise linear function and 643
BtTol parameter
backtrack parameter purpose 491
C
call by value (C API) 192
Callable Library
categories of routines 176
core 176
debugging and 239
description 28
parameters 210
using 173
callback
branch variable selection 905
cut (definition) 850
debugging and 854
graphic user interface and 869
heuristic 903
incumbent 906
incumbent as filter in solution pool 623
node selection 907
opportunistic parallel mode and 838
resetting to null (C API) 210
resetting to null (C++ API) 69
solve 908
using status variables 869
changing
bounds setLB (Java API) 142
bounds setUB (Java API) 142
limit on barrier corrections 394
maximization to minimization 413
model setLinearCoef (Java API) 142
pricing algorithm 408
problem type
network to LP 415
qp 431
zeroed_qp 431
quadratic coefficients 431
type of variable 721
variable type (C++ API) 82
channel example 274
character string length requirements (C API) 202
check.c CPLEX file 203
Cholesky factor 384
barrier iteration 363
barrier log file and 377
clique cuts
counting 514
definition 502
cloneK.log 927
clones 927
log files 927
threads and 927
closing
application (C API) 187
application (network) 413
environment (C API) 187
environment (network) 413
log files 268
column
dense 396
density 388
index number (C API) 201
name (C API) 201
nonzeros parameter and density 388
nonzeros parameter and instability 396
referencing (C API) 201
column generation
basis and 711
cutting plane method and 711
reduced cost and (example) 713
reduced cost to select next variable 711
columnwise modeling (C API) 215
columnwise modeling (C++ API) 88
columnwise modeling (Java API)
IloMPModeler and 104
objective and 138

U S E R ' S

ranges and 138
complementarity 363
barrier optimizer and 363
convergence tolerance 397
unbounded models and 398
Component Libraries (definition) 28
Concert Technology
accessing parameter values (C++ API) 69
application development steps (C++ API) 49
creating application (C++ API) 49
description 28
design (C++ API) 46
error handling (C++ API) 83
solving problem with (C++ API) 46
using (C++ API) 43, 94
writing programs with (C++ API) 45
concurrent optimizer 921
licensing issues 914
non-default parameters and 328
parallel processing and 925
root relaxation and 925
threads and 917
cone (SOCP) 448
rotated 448
conflict
comparing IIS 744
definition 741
groups in 771
conflict refiner 739
C++ API example 766
Interactive Optimizer example 746
MIP starts and 763
constraint
adding with user-written callback 904
convex quadratic 441
creating ranged (Java API) 104
cuts as 501
indicator 680
lazy 786, 904
logical 667
modeling linear (C++ API) 62
quadratic 441
ranged (Java API) 108
removing from basis (C++ API) 81
representing with IloRange (C++ API) 57
violation 353
constructing arrays of variables (Java API) 139
continuous piecewise linear 646
continuous relaxation (Java API) 119
continuous relaxation (MIP) 485
continuous relaxation subproblem 805
control callback
definition 850
types of 850
conventions

M A N U A L

F O R

C P L E X

933


character strings (C API) 202
naming 259
notation 35
numbering 250, 257
numbering rows, columns 247
convergence tolerance
barrier algorithm and 328
definition 384
effect of tightness 396
performance and 384
correct CPLEX utility 261
converting
error code to string 413
file formats 261
network-flow model to LP 415
network-flow problem to LP 415, 417
convex
quadratic constraints and 445
convex quadratic constraint 441
cover cuts 503
counting 514
defined 503
CPLEX
Component Libraries 28
core (C API) 176
licensing (C++ API) 47
parameters (C++ API) 69
Cplex.CplexTime 278
Cplex.EndTime 278
cplex.h header file
C API 210
extern statements in 209
in an application 243
macros for pointers in 206
cplex.log file
changing name 372
close logs 927
default name 266, 336
CPX_CALLBACK_INFO_ENDTIME 278
CPX_INTEGER_INFEASIBLE 905
CPX_PARAM_ADVIND
MIP start 531
presolve and advanced start 894
solution polishing and 521
CPX_PARAM_BARSTARTALG
barrier starting algorithm 390
CPX_PARAM_CLOCKTYPE
example of parameter checking 210
CPX_PARAM_CUTLO
conflict refiner and 742
FeasOpt and 774
CPX_PARAM_CUTUP
conflict refiner and 742
FeasOpt and 774
CPX_PARAM_DATACHECK
entering problem data and 203
CPX_PARAM_DEPIND
barrier 360
CPX_PARAM_EPOPT 353
CPX_PARAM_EPRHS 353
CPX_PARAM_LPMETHOD
choosing LP optimizer 319
network flow 410
CPX_PARAM_MEMORYEMPHASIS
barrier 386
conserving memory 342
final factor after preprocessing 332
presolve and 332
CPX_PARAM_MIPCBREDLP
branch callbacks and 905
callback arguments and 903
heuristic callbacks and 903
incumbent callback and 906
presolved and original problem 902
user defined cuts and 904
CPX_PARAM_NODEFILEIND
effect on storage 553
node files and 553
CPX_PARAM_NUMERICALEMPHASIS
barrier 393
LP 344
CPX_PARAM_POLISHTIME
solution polishing 521
CPX_PARAM_PRELINEAR
advanced MIP control and 904
advanced presolve 891
CPX_PARAM_PROBE
MIP 497
CPX_PARAM_QPMETHOD
network flow and quadratic objective 410
CPX_PARAM_REDUCE
advanced presolve 890
lazy constraints and 789
lazy constraints and advanced MIP control 904
optimal basis and 894
presolve and problem modifications 896
problem modifications and 894
CPX_PARAM_RELAXPREIND
advanced presolve 884
CPX_PARAM_REPAIRTRIES
MIP starts and 531
CPX_PARAM_REPEATPRESOLVE
purpose 528
CPX_PARAM_SCAIND 338
CPX_PARAM_SCRIND
error checking and 203
example lpex6.c 360
example with callbacks 869
managing input and output 272
network flow 413
programming practices and 245
repeated singularities and 347
CPX_PARAM_SCRIND parameter
data checking and 203
reporting repeated singularities 347
CPX_PARAM_STARTALG
controlling algorithm in initial relaxation (MIP) 495
initial subproblem and 557
parallel processing and barrier 925
CPX_PARAM_SUBALG
controlling algorithm at nodes 495
node relaxations and 558
CPX_PARAM_SUBMIPNODELIM
solution polishing and 521
CPX_PARAM_TILIM
solution polishing and 521
CPX_PARAM_TRELIM
effect on storage 553
node files and 553
CPX_PARAM_WORKDIR
barrier 386
node file subdirectory 553
node files and 553
CPX_PARAM_WORKMEM
barrier 386
node files and 553
CPX_PREREDUCE DUALONLY 890
CPX_PREREDUCE NO PRIMALORDUAL 890
CPX_PREREDUCE PRIMALANDDUAL 890
CPX_PREREDUCE PRIMALONLY 890
CPX_SEMICONT 634
CPX_SEMIINT 634
CPXaddchannel routine
data types in Callable Library and 194
message handling and 272
CPXaddcolsroutine
maintainable code and 232
memory management and 196
modifying problems 896
CPXaddfpdest routine
element lpex5.c 274
file pointers and 206
message channels and 272
CPXaddfuncdest routine
element 274
function pointers and (C API) 206
message channels and 272
CPXaddindconstr 680
CPXaddrows routine
element 217
memory allocation and (C API) 196
modularity and 232
CPXaddusercuts 891
CPXbaropt 894
CPXbasicpresolve 894
CPXCENVptr 194
CPXCHANNELptr data type 194
CPXCHARptr data type 206
CPXcheckcoladdcols routine 203
CPXcheckcoladdrows routine 203
CPXcheckchgoeflist routine 203
CPXcheckcopyctype routine 203
CPXcheckcopylp routine 203
CPXcheckcopylpwnames routine 203
CPXcheckcopyqsep routine 203
CPXcheckcopyquad routine 203
CPXcheckcopytype routine 203
CPXcheckvals routine 203
CPXchgbds 896
CPXchgoeflist routine 232
CPXchqprobtype routine 565
CPXchqpccoeff routine 431
changing quadratic terms 431
example 431
CPXchnrghs 896
CPXcloneprob routine
advanced preprocessed and 894
copying node LPs 903
CPXcloseCPLEX routine
element lpex6.c 360
example mipex2.c 569
example qpe1x.c 439
example qpe2x.c 440
managing input and output 274
network flow problems 413
purpose 187
CPXCLPptr 194
CPXCNETptr 194
CPXcopybase 894
CPXcopybase routine 360
CPXcopyctype routine 634
CPXcopyctype routine
checking types of variables 239
example mipex1.c 565
specifying types of variables 472
CPXcopylp routine 183, 232
CPXcopynettol routine 415
CPXcopyorder routine 631
CPXcopyprotected 893, 905
CPXcopyquad routine 439
CPXcopytype routine
element lpex3.c 631
CPXcopystart 894
advanced presolved solution and 894
crushing primal or dual solutions 894
CPXcreateprob 875
CPXcreateprob routine 440
data types and 194
CPXsetheuristiccallbackfunc 903
CPXsetintparam routine
  arguments of 210
  example lpex6.c 360
  example netex1.c 413
  parameter types and 199
  redirecting output to screen 245
  selecting root algorithm 557
CPXsetlogfile routine 268, 372
  channels and 272
  collecting messages 203
  file pointers and 206
  managing log files 267
CPXsetlpcallbackfunc routine 206, 868, 869
CPXsetmipcallbackfunc routine 206, 868
CPXsetnodecallbackfunc 907
CPXsetsolvecallbackfunc 908
CPXsetstrparam routine 199, 210
CPXsolution routine 217, 565, 876
CPXstrcpy routine 206
CPXstrlen routine 206
CPXVOIDptr datatype 206
cpxwarning message channel 272
CPXwriteprob routine 217, 237, 239, 347, 631
creating
  application with Concert Technology (C++ API) 49
  array of variables (Java API) 107
  arrays of variables (Java API) 107
  Boolean variables (Java API) 107
  CPLEX environment 413
  log file 267
  modeling variables (Java API) 104, 107
  network flow problem object 413
  new rows (Java API) 136
  objective function (Java API) 104
  problem object (C API) 182
  ranged constraints (Java API) 104

crossover
  verifying barrier solutions 392
cut
  definition 501
cut callback 904
CutLo parameter
  branch and cut 487
  conflict refiner and 742
  FeasOpt and 774
cuts 503, 805
  adding 513
  clique 502
  counting 514
  cover 503
  disjunctive 504
  dual reductions and 891
  flow cover 505
flow path 506
  Gomory fractional 507
  GUB cover 508
  implied bound 509
  local or global 807
  MCF 511
  MIR 510
  re-optimizing 513
  recorded in MIP node log file 539
  what are 499
  zero-half 512

CutsFactor parameter
  controlling cuts 515
cutting plane method 711
CutUp parameter
  branch and cut 487
  conflict refiner and 742
  FeasOpt and 774

D

data
  entering (C API) 183
  special (C API) 194
data types
  Callable Library and 239
diagnostic routines and (C API) 203
  heap 248
  Interactive Optimizer and 239
  return values and 246
definition 469
degeneracy
  dual 555
  stalling and 347
delete goal stacks 822
deleting
  model objects (C++ API) 81
  variables (Java API) 142
deleting nodes 822
dense column 388
dense matrix
  reformulating QP 428
DepInd parameter
  barrier 387
  LPs and 331
destroying
  CPLEX environment (C API) 187
  nodes 413
  problem object (C API) 186
deterministic search
  control callbacks and 854
  incumbent callbacks and 623
  mixed integer programming (MIP) and 917
  query callbacks in dynamic search 848
  query callbacks in parallel 844
time limits and 917
devexpricing 336

diagnosing
infeasibility (barrier) 399
infeasibility (LP) 349
infeasibility (preprocessor) 733
infeasibility (QP) 434
infeasibility as conflict 739
performance problems (LP) 341
unboundedness 738
diagnostic callback
definition 844
types of 844
diagnostic routine
C API 203
log file and (C API) 203
message channels and (C API) 203
redirecting output from (C API) 203
diet model (Java API) 110
diff method (Java API) 107
dimensions, checking 249
discontinuous piecewise linear 646
breakpoints and 646
segments and 646
disjunctive cuts 504
displaying
barrier information 371
barrier solution quality 380
basis condition 346
bound infeasibilities 352
column-nonzeros parameter 396
infeasibilities on screen 352
messages 274
MIP information periodically 539
network objective values 407
network solution information 413
network solution on screen 413
optimization progress 869
problem dimensions 249
problem statistics 249
reduced-cost infeasibilities 352
simplex solution quality 380
solution quality 351
solutions on screen 274
variables 257
diversity filter
accessing 618
counting number of 618
filter file for 621
dual feasibility 363
dual reduction 733
dual residual 352
dual simplex optimizer
perturbing objective function 347
selecting 322
stalling 347
dual variable
solution data (C++ API) 73
duality gap 363
dynamic search
incumbent callbacks and 623
informational callbacks and 838
query callbacks and 844
dynamic search algorithm
building blocks of 485
definition 485
MIP blocks and 485
effort level
incumbent and 533
MIP starts and 533
solution pool and 533
emphasis
memory (barrier) 386
memory (LP) 342
numerical (barrier) 393
numerical (LP) 344
empty goal 814, 820
end method
IloEnv C++ class 53
enter Interactive Optimizer command 472
entering 472
LPs for barrier optimizer 367
mixed integer programs (MIPs) 472
network arcs 413
network data 413
network data from file 417
network nodes 413
enumeration
Algorithm (C++ API) 66
BasisStatus (C++ API) 74
BoolParam (C++ API) 69
IntParam (C++ API) 69
NumParam (C++ API) 69
Quality (C++ API) 77
Status (C++ API) 72
StringParam (C++ API) 69
environment
constructing (C++ API) 53
initializing (C API) 181
multithreaded (C API) 181
releasing (C API) 187
EpAGap parameter
objective near zero and 550
EpGap parameter
when to change 550
EpOpt parameter 353
EpRHS parameter 353
eq method (Java API) 108
error checking
diagnostic routines for (C API) 203
MPS file format 259
problem dimensions 249
error handling
in Concert Technology (C++ API) 83
querying exceptions 245
Error return status (C++) 72
Error return status (Java API) 113
example
Column Generation 709
columnwise modeling (C API) 215
columnwise modeling (C++ API) 88
conflict refiner (Interactive Optimizer) 747
creating multi-dimensional arrays (C++ API) 90
Cutting Stock 709
FORTRAN 207
message handler 274
MIP node log file 539
MIP optimization 561
MIP problem from file 567
MIP with SOS and priority orders 629
network optimization 406
optimizing QP 435
output channels 274
Piecewise Linear 641
project staffing 747
reading QP from file 439, 440
resource allocation 747
rowwise modeling (C API) 215
rowwise modeling (C++ API) 87
using arrays for I/O (C++ API) 91
executing a goal 806
expression
building (C++ API) 54
editable (Java API) 107
in ranged constraints (Java API) 109
linear (C++ API) 54
logical (C++ API) 54
piecewise linear (C++ API) 54
square method (Java API) 107
sum method (Java API) 107
using modeling variables to construct (Java API) 104
external variables (C API) 191
extra rim vectors 259

F
FailGoal 812
feasibility
analysis and barrier optimizer 399
check 807
dual 338, 363
network flows and 403
primal 363
progress toward 348, 403
feasibility tolerance
default 353
largest bound violation and 353
network optimizer and 408
range of 353
reducing 351
Feasible return status (C++) 72
Feasible return status (Java API) 113
FeasOpt 773
definition 774
displaying infeasibilities 777
example 777
invoking 775
preferences 776
feasOpt method
Java API 134
file format
converting 261
described 255
example QP problem data (C API) 439
lazy constraints in LP format 794
lazy constraints in MPS format 797
MST and MIP restart 131
solution pool filters 621
file reading routines in Callable Library 176
file writing routines in Callable Library 176
flow cover cuts
defined 505
flow path cuts
defined 506
FORTRAN 207, 250
FracCand parameter controlling cuts 515
FracPass parameter controlling cuts 515
fractional cuts
defined 507
free row 259
free variable
MPS files and 259
reformulating QPs and 428

G
gc method (Java API) 108
generalized upper bound (GUB) cover cuts 508
getBasisStatus method
IloCplex Java class 133
getBasisStatuses method
IloCplex C++ class 74
getBoundSA method
IloCplex C++ class 75
getBoundSA method (Java API) 133
getCplexStatus method
IloCplex C++ class 72, 75
default method
IloCplex C++ class 69
getDual method
null
getDuals method (C++ API) 73
getMax method (C++ API) 69
getMin method (C++ API) 69
getObjSA method (C++ API) 75
getObjValue method (C++ API) 73
getParam method (C++ API) 69
getQuality method 346, 380
getReducedCost method (C++ API) 73
getReducedCosts method (C++ API) 73
getRHSSA method (C++ API) 75
getSlack method (C++ API) 73
getSlacks method (C++ API) 73
getStatus method (C++ API) 72
getStatuses method 359
getVal method (C++ API) 73
getValues method (C++ API) 73
IloMPModeler and (Java API) 104
isDualFeasible method (C++ API) 72
isPrimalFeasible method (C++ API) 72
modeling objects and (Java API) 104
notifying about changes to (C++ API) 80
objects in user application (C++ API) 46
PrimalPricing (Java API) 125
setDefault method (C++ API) 69
setParam method (C++ API) 69
solve method (C++ API) 72, 75, 77, 80, 93
writeBasis method 347
IloCplex.getCplexTime 278
IloCplex.getEndTime 278
IloCplex::getCplexTime 278
IloCplex::getEndTime 278
IloCplexModeler interface
modeling objects (Java API) 104
IloCPModeler class (Java API) 104
IloEnv class 53
delete method (C++ API) 53
IloExpr C++ class 54
ILOG License Manager
examples 287
invoking 286
ILOG License Manager (ILM) 282
CPLEX (C++ API) and 47
types of 283
IloLPMatrix class (Java API) 136
IloMaximize C++ function 58
IloMinimize C++ function 58, 92
IloModel C++ class 58
IloModel class
add method (C++ API) 59, 80
add method (Java API) 142
remove method (C++ API) 59, 80
remove method (Java API) 142
IloModeler class
basic modeling (Java API) 107
creating modeling objects (Java API) 104
creating variables (Java API) 107
IloMPModeler class
creating variables (Java API) 107
IloMPModeler class (Java API) 104
delete method 142
IloNumArray C++ class 59
IloNumExpr class
objective and (Java API) 109
ranged constraints and (Java API) 108
variables and (Java API) 107
IloNumVar C++ class 54, 62
IloNumVar class
modeling objects and (Java API) 104
IloNumVarArray C++ class 54
IloNumVar class
extension of IloNumExpr (Java API) 107
IloObjective C++ class 62
IloObjective class
addable objects (Java API) 110
as modeling object (C++ API) 62
declaring (C++ API) 56
modeling by column (Java API) 138
setExpr method in QP term 431
IloObjectiveSense class
example (Java API) 109
maximizing (Java API) 109
minimizing (Java API) 109
objective function and (Java API) 109
iloqpex1.cpp example
every example
iloqpex1.cpp 437
IloRange class
adding constraints (C++ API) 57
linear constraints and (C++ API) 62
modeling by column (Java API) 138
modeling objects and (Java API) 110
IloSemiContVar class 62
IloSolver as factory (Java API) 98
IloSOS1 C++ class 62
IloSOS2 C++ class 62
implied bound cuts
defined 509
include file 243
incumbent
node 490
solution 490
solution pool and 577
incumbent callback 906
solution pool and 623
index number (C API) 201
indicator constraint 668
definition 680
restrictions 684
indicator variable 683
infeasibility
barrier optimizer and 399
conflicts and 739
diagnosing in network flows 417
displaying on screen 352
dual 394, 399
interpreting results 352
maximum bound 352, 353
maximum reduced-cost 352, 353
network flow 403
network optimizer and 417
norms 378
primal 379, 394, 399
ratio in barrier log file 379
reports 350
scaling and 351
unboundedness and (LP) 352
unscaled 351
Infeasible return status (C++ API) 72
Infeasible return status (Java API) 113
infeasible solution
accessing information (Java API) 134
analyzing (C++ API) 75
InfeasibleOrUnbounded
return status (C++ API) 72
return status (Java API) 113
informational callback
dynamic search and 838
initializing
CPLEX environment 413
problem object 413
problem object (C API) 182
input operator (C++ API) 59
instantiating
CPLEX environment 413
problem object 413
problem object (C API) 182
integality constraint
MIP 551
parameter 551
Interactive Optimizer
changing problem type (MIP) 474
debugging and 239
description 28
experimenting with optimizers 235
improving application performance 237
testing code in 231
tuning tool 306
tuning tool time limit 304
isDualFeasible method
IloCplex C++ class 72
isolated point 649
isPrimalFeasible method
IloCplex C++ class 72
J
Java serialization 104
K
knapsack constraint
cover cuts and 503
GUB cover cuts and 508
knapsack problem with reduced cost in objective 713
L
lazy constraint 904
definition 786
Interactive Optimizer and 793
LP file format and 794
MPS file format and 797
pool 785, 799
gle method
in expressions (Java API) 108
license
CPLEX (C++ API) 47
runtime 282
limiting
network iterations 408
strong branching candidate list 549
linear expression (C++ API) 54
linear objective function (C++ API) 62
linear relaxation
as initial subproblem in MIP 557
MIP and coefficients at nodes 528
MIP and preprocessing 528
MIP and progress reports 539
log file
barrier optimizer 372
Cholesky factor in 377
clones and 927
closing 268
contents 336, 380
creating 267
default 267
description 265
diagnostic routines and (C API) 203
iteration 342
naming 267
network 407
parallel MIP optimizer and 927
parameter 267
records infeasibilities 352
records singularities 347
relocating 267
renaming 267
logical constraint 667, 668
example in early tardy scheduling 697
logical expression (C++ API) 54
LP
barrier optimizer 361
choosing algorithm (C++ API) 66
network optimizer 401
problem formulation 29, 363
solving 316, 399

LP file format
lazy constraints 794
QPs and 429
row, column order 257
special considerations 257
user cuts 794

managing
log file 265
memory (LP) 342
memory (MIP) 552
Markowitz tolerance 347, 348
default 348
increasing to stay feasible 348
maximum value 347
numeric stability and 347
pivots and 347
slow progress in Phase I and 348
maximal cliques
recorded in MIP node log file 539
maximization
concave QPs 421
lower cutoff parameter 550
maximize method
objective functions and (Java API) 109
maximum bound infeasibility 353
maximum reduced-cost infeasibility 353
maximum row residual 353
MCF cuts 511
memory 552
memory emphasis
barrier 386
continuous (LP) 342
memory leaks (C++ API) 53
memory management
MIPs and 552
performance in LP 342
refactoring frequency and 342
memory management (Java API) 98
MemoryEmphasis parameter
barrier 386
conserving memory and 342
final factor after preprocessing 332
presolve and 332
message channel
diagnostic routines and (C API) 203
message handler (example) 274
minimal covers
recorded in MIP node log file 539
minimization
convex QPs 421

USER'S MANU AL FOR CPLEX 943
reformulating large QP 428
removing objects (C++ API) 80
serializing 262
solving (C++ API) 46, 65
solving with IloCplex (C++ API) 93
XML representation of modeling
columnwise (C API) 215
columnwise (C++ API) 88
objects (C++ API) 46
rowwise (C API) 215
rowwise (C++ API) 87
modeling by column (Java API)
IloMPModeler and 104
objective and 138
ranges and 138
modeling variable
creating (Java API) 104
IloNumVar (Java API) 107
modifying
constraints in QCP 460
model (Java API) 142
MPS file format
conversion utility 261
lazy constraints in 797
saving modifications 260
saving QP 429
user cuts in 797
multi-commodity flow cuts (MCF) 511
multithreaded application
needs multiple environments (C API) 181
namespace conflicts (C API) 191
naming
arcs in network flow 413
conventions 259
log file 267
node file 553
nodes in network flow 413
negative method
expressions and (Java API) 107
negative semi-definite objective 421
NetItLim 408
network
converting to LP model 415
embedded 410
infeasibility in 403
modeling variables 403
multi-commodity flow cuts (MCF) 511
problem formulation 403
network extractor 411
network object 402
network optimizer 324, 401, 412
preprocessing and 412
problem formulation 403
null goal 814
definition 814
when to use 814
numbering conventions
C 250
FORTRAN 250
row, column order 257
numeric difficulties
barrier growth parameter 397
barrier optimizer and 396
basis condition number and 346
complementarity 397
cconvergence condition number and 397
definition (LP) 344
dense columns removed 396
infeasibility and 348
sensitivity 346

USER'S MANUAL FOR CPLEX
unbounded optimal face 397
numeric variable (C++ API) 62
numerical emphasis
  barrier optimizer and 393
  continuous (LP) 344
NumericalEmphasis parameter
  barrier 393
  LP 344

ObjDif tolerance parameter 488
objective coefficients
  crash parameter and 338
  modified in log file 407
  network flows and 407
  priority and 535
objective difference
  absolute 488, 550
  relative 488, 550
objective function
  accessing value of (C++ API) 73
  changing sense 413
  constructor (Java API) 109
  creating (Java API) 104
  free row as 259
  in log file 407
  in MPS file format 260
  maximization 260
  maximize (C++ API) 58
  minimize (C++ API) 58
  modeling (Java API) 109
  network flows and 403
  optimality tolerance and 353
  preprocessing and 733
  primal reductions and 733
  representing with IloObjective (C++ API) 56
  sign reversal in 260
objective value
  accessing slack in (C++ API) 73
  in log file 407
  network flows and 403
  object range parameter 398
  unbounded 398
opportunist mode
  MIP in parallel and 917
  MIP parallel optimizer and 924
  parallel mode parameter 917
opportunistic search
  component libraries and 919
  control callbacks in parallel 854
  informational callbacks and 838
  Interactive Optimizer and 918
  mixed integer programming (MIP) and 917
  query callbacks in parallel 848
  synchronization and 917
  thread safety and 901

threads parameter and 917
wait time and 916
Optimal return status (C++ API) 72
Optimal return status (Java API) 113
optimality
  basis condition number and 346
  cutoff parameters 550
  infeasibility ration 379
  normalized error and 380
  singularities and 347
  tolerance 351, 353
    relative 550
optimality tolerance
  absolute 550
  changing relative or absolute 550
  gap 550
  maximum reduced-cost infeasibility and 353
  Network and 408
  reducing 351
  relative 550
  relative, default 550
  setting 353
  when to change 550
optimization
  interrupting 869
  stopping 481, 869
optimization problem
  defining with modeling objects (C++ API) 46
  representing with IloModel (C++ API) 58
optimization routines in Callable Library 176
optimizer
  barrier (linear) 361, 399
  barrier (quadratic) 419, 440
  choosing (Java API) 118, 121
  concurrent 921
  differences between Barrier, simplex 366
  dual simplex 322
  MIP 467
  network 324, 401, 412
  parallel 909
  primal simplex 323
  primal-dual barrier 325
optimizing
  cuts 513
OrGoal 820
output
  channel parameter 271
  debugging and 245
  redirecting 271
output operator (C++ API) 59

parallel
  license 914
  optimizers 909
  threads 914

P
Parallel Barrier Optimizer 920
Parallel MIP Optimizer 923
memory considerations 926
output log file 927
parallel optimization
collection callbacks and 854
query callbacks and 844, 848
parallel processing
root relaxation 925
selected starting algorithm 925
parameter
accessing
current value (C API) 210
current value (C++ API) 69
current value (Java API) 125
default value (C API) 210
default value (C++ API) 69
default value (Java API) 125
maximum value (C API) 210
maximum value (C++ API) 69
maximum value (Java API) 125
minimum value (C API) 210
minimum value (C++ API) 69
minimum value (Java API) 125
algorithmic 384
barrier corrections 394
Callable Library and 210
classes of (Java API) 124
gradient 336
log file 267
NetFind network extractor 411
object range 398
optimality cutoff 550
output channel 271
preprocessing dependency 387
routines in Callable Library 176
screen indicator 413
setting
all defaults (C API) 210
all defaults (C++ API) 69
all defaults (Java API) 125
branching direction (Java API) 127
C API 210
C++ API 69
default algorithm (Java API) 121
default steepest edge pricing (Java API) 125
default turn off presolve (Java API) 125
Java API 125
priority in MIP (Java API) 127
RootAlg (Java API) 121
symbolic constants as (C API) 210
tree memory 552
types of

C API 210
C++ API 69
Java API string 124
Java API StringParam 124
performance
Barrier
centering corrections and 394
characteristics 363
dense columns and 388
memory management and 386
numeric difficulties and 396
preprocessing and 387
row order and 389
tuning 383
convergence tolerance and 384
LP
advanced basis and 334
automatic selection of optimizer 321
increasing available memory 342
network as model 324
numeric difficulties and 323
parameters for 336
preprocessing and 331
preprocessing and memory 343
refactoring and 342
troubleshooting 341
tuning 329
MIP
default optimizer and 478
feasibility emphasis 479
node files and 553
probing and 497
RINS and 520
subproblems and 555
swap space and 496
troubleshooting 543
tuning 483
negative impact of Reduce parameter 733
Network optimizer
general observations 402
tuning 408
QP
reformulating for 428
tuning 433
SOS
branching strategies and 626
perturbation constant (LP) 347
perturbing
objective function 347
variable bounds 347
piecewise linear 641
continuous 646
definition 643
discontinuous 646
example 643
example in early tardy scheduling 697
expression (C++ API) 54
IloMPModeler and (Java API) 104
isolated point ignored 649
steps 646
PolishTime parameter
solution polishing 521
pool
of cuts 787
of lazy constraints 787
of solutions 573
of user cuts 787
populating problem object (C API) 183
populating problem object (network optimizer) 413
portability (C API) 206
portfolio optimization model 428
positive semi-definite
objective 421
quadratic constraint 447
second-order cone program (SOCP) and 448
preference
element 770
FeasOpt 776
preprocessing
advanced basis and (LP) 334
barrier and 387
barrier optimizer 387
definition of 331
dense columns removed 396
dependency parameter 387
dual reductions in 733
lazy constraints and 789
MIPs 528
network optimizer and 412
primal reductions in 733
second-order cone program (SOCP) and 448
simplex and 331
starting-point heuristics and 390
turning off 333
presolve 884
barrier preprocessing 387
dependency checking in 331
final factorization after uncrush in 332
gathering information about 894
interface 894
lazy constraints and 789
limited 894
process for MIP 884
protecting variables during 893
restricting dual reductions 890
restricting primal reductions 890
simplex and 331
simplex preprocessing 331
turning off (Java API) 125
presolved model
adding constraints to 886
building 884
freeing 890
freeing memory 894
retaining 890
pricing algorithms 408
primal feasibility 363
primal reduction 733
primal simplex optimizer 323
perturbing variable bounds 347
stalling 347
primal variables 338
primal-degenerate problem 322
priority 535
binary variables and 535
integer variables and 535
order 535
parameter to control 535
reading from file 535
semi-continuous variables and 535
semi-integer variables and 535
special ordered set (SOS) and 535
priority order (Java API) 127
Probe parameter
MIP 497
probing parameter 497
problem
analyzing infeasible (C++ API) 75
solving with Concert Technology (C++ API) 46
problem formulation
barrier 363
dual 363, 367
ill-conditioned 351
infeasibility reports 350
linear 29
network 403
network-flow 403
primal 363, 367
removing dense columns 388
switching from network to LP 415, 417
problem modification routines in Callable Library 176
problem object
creating (C API) 182
destroying (C API) 186
freeing (C API) 186
initializing (C API) 182
instantiating (C API) 182
network 402
populating 413
populating (C API) 183
problem query routines in Callable Library 176
problem type
changing from network to LP 415, 417
changing in QCP 459
changing to qp 431
changing to zeroed_qp 431
quadratic programming and 430
quadratically constrained programming and 450
rotated cone programming and 450
second order cone programming and 450
prod method in expressions (Java API) 107
pruned node 805
PSD
positive semi-definite in objective function 421
quadratic constraints and 447
second-order cone program (SOCP) as exception to 448
Q
QCP
barrier optimizer and 447
convexity and 445
detecting problem type 450
examples 463
file types and 454
modifying constraints in 460
PSD and 447
QP
example 435, 439, 440
portfolio optimization 428
problem formulation 421
reformulating large, dense models 428
solution example 439, 440
solving 419, 440
QP relaxation 434
quadratic
constraints 441
convex constraints 441
quadratic coefficient
changing 431
quadratic objective function (C++ API) 62
quadratically constrained programming (QCP) 441
R
range filter
example 622
ranged constraint
creating (Java API) 104
definition (Java API) 108
name of (Java API) 108
ranged row 259
reading
MIP problem data 567
MIP problem data from file 472
network data from file 417
QP problem data from file 439, 440
start values from MST file 531
redirecting
diagnostic routines (C API) 203
log file output 271
output 245
screen output 271
Reduce parameter
lazy constraints and 789
reduced cost
accessing (C++ API) 73
accessing (Java API) 132
choosing variables in column generation 713
column generation and 711
pricing (LP) 336
reduction
dual 733
reduction, primal 733
refactoring frequency
dual simplex algorithm and 328
primal simplex algorithm and 328
reference counting 822
reference row values 628
refineConflict
Java API 134
reflection scaling 411
relative objective difference 488, 550
relative optimality tolerance
default (MIP) 550
definition 550
relaxation
algorithm applied to 555
of MIP problem 485
QP 434
solving MIPs (Java API) 119
relaxation induced neighborhood search (RINS) 520
RelaxPreInd parameter
advanced presolve 884
RelObjDiftolerance parameter 488
relocating log file 267
remove method
IloModel C++ class 59, 80
renaming
log file 267
RepairTries parameter
MIP starts and 531
RepeatPresolve parameter
purpose 528
residual
dual 352
maximum dual 353
maximum row 353
row 352
return status
Bounded (Java API) 113
Error (C++) 72
Error (Java API) 113
Feasible (C++) 72
Feasible (Java API) 113
Infeasible (C++) 72
Infeasible (Java API) 113
InfeasibleOrUnbounded (C++ API) 72
InfeasibleOrUnbounded (Java API) 113
Optimal (C++ API) 72
Optimal (Java API) 113
Unbounded (C++ API) 72
Unbounded (Java API) 113
Unknown (C++ API) 72
Unknown (Java API) 113

return value
C API 197
debugging with 246
routines to access parameters (C API) 210

righthand side (RHS)
file formats for 259

rim vectors 259
RINSHeur parameter 520

root relaxation
parallel processing 925
RootAlg parameter
controlling initial relaxation algorithm 495
initial subproblem and 557
network flow 410
network flow and quadratic objective 410
parallel processing and barrier 925

rotated cone 448
row
index number (C API) 201
name (C API) 201
referencing (C API) 201
residual 352
row-ordering algorithms 389
approximate minimum degree (AMD) 389
approximate minimum fill (AMF) 389
automatic 389
nested dissection (ND) 389

rowwise modeling
C API 215
C++ API 87

SAV file format 429
lazy constraints 796
user cuts 796

saving
best factorable basis 347
ScaInd parameter 338

scaled problem statistics 352
scaling
alternative methods of 338
definition 338
feasibility and 351

in network extraction 411
infeasibility and 351
maximum row residual and 353
numeric difficulties and QP 434
objective function in QP 434
singularities and 347

search limit 831
search tree 805
second order cone programming (SOCP) 441
second-order cone program (SOCP) formulation 448

semi-continuous variable
C++ API 62
element 637
Java API 104
priority and 535

semi-definite
negative and objective 421
positive and constraints 447
positive and objective 421

semi-integer variable 634
priority and 535

sensitivity analysis (C++ API) 75
sensitivity analysis (Java API) 133
separable 421

serialization 104
serializing 262

setDefaults method
IloCplex C++ class 69

setExpr method
IloObjective class 431

setOut method 267

setParam method
IloCplex C++ class 69

setting
algorithm in LP (C++ API) 66
all default parameters (C API) 210
all default parameters (C++ API) 69
callbacks to null (C API) 210
callbacks to null (C++ API) 69
parameters (C API) 210
parameters in C++ API 69

sifting 326
simplex
column generation and 711
dual 322
feasibility tolerance in MIP 551
optimizer 366
pricing phase and 711
primal 323

singularity 347
slack
accessing bound violations in (C++ API) 77
accessing in constraints in active model (Java API) 115
accessing slack variables in constraints (C++ API) 73
accessing slack variables in objective (C++ API) 73
as indicator of ill-conditioning 354
as reduced cost in infeasibility analysis 354
example CPXgetslack 565
in primal formulation (Barrier) 363
in summary statistics 352
infeasibilities as bound violations and 353
infeasibility in dual associated with reduced costs 353
maximum bound violation and (Java API) 135
meaning in infeasible primal or dual LP 352
pivoted in when constraint is removed (C++ API) 81
reducing computation of steepest edge pricing 336
role in inequality constraints (Barrier) 378
role in infeasibility analysis 354
using primal variables instead 338
variable needed in basis (Network) 415
variables and primal variables (dual) 338

SOCP
detecting problem type 450
SOCP second-order cone program 448
solution
accessing quality information (C++ API) 77
accessing values of (C++ API) 73
alternative (MIP) 573
basic infeasible primal 350
basis 365
complementary 363
differences between barrier, simplex 366
example QP 439, 440
feasible in MIPs 531
incumbent 490
infeasible basis 399
midface 366
nonbasis 365
pool (MIP) 573
quality 360, 380, 394
serializing 262
supplying first integer in MIPs 531
using advanced presolved 894
verifying 392
XML representation of 262
solution polishing
subproblems and 559
solution pool
changing fixed problem and 606
definition 573
fixed problem and 606
incumbent in 577
MIP start and 606
replaced solutions 603
stopping criteria 586
writing MIP start file 606
solve callback 908
solve method
IloCplex C++ class 72, 75, 77, 80, 93
solving
diet problem (Java API) 115
model (C++ API) 65
single LP (Java API) 121
subsequent LPs or QPs in a MIP (Java API) 122
sparse matrix
IloLPMatrix and (Java API) 136
special ordered set (SOS)
role in model (Java API) 104
type 1 (C++ API) 62
type 2 (C++ API) 62
using 626
weights in 628
stalling 347
starting algorithm
callbacks and 880
goals and 880
parallel processing 925
static variables (C API) 191
status variables, using 869
steepest-edge pricing 336, 553
step in piecewise linear function 646
stopping criterion
callbacks and 869
optimization (MIP) 481
solution pools and 586
strong branching 549
SubMIPNodeLim parameter
RINS and 520
solution polishing and 521
subproblem
definition (MIP) 495
summary statistics 352
suppressing output to the screen 275
surplus argument (C API) 220
symbolic constants (C API) 198, 210
T
tail 403
terminating
because of singularities 347
MIP optimization 481
network optimizer iterations 408
thread-safe (C API) 191
threads 914
clones 927
parallel optimizers 913
performance and 915
TiLim parameter
solution polishing and 521

time limit
concurrent optimizer and 328
deterministic search and 917
effects all algorithms invoked by concurrent optimizer 328
possible reason for Unknown return status (C++ API) 72
possible reason for Unknown return status (Java API) 113
TiLim parameter (MIP) 479
time stamp 278
timing interface 278
tolerance
absolute objective difference and 488
absolute optimality 550
complementarity convergence, default of 397
complementary solution and 363
convergence and barrier algorithm 328
convergence and numeric inconsistencies 396
convergence and performance 384
cut callbacks and 870
cut callbacks and (example) 870
cuts in goals and 823
default numeric (example LP) 345
feasibility range 353
feasibility (Network) 408
feasibility and largest bound violation 353
feasibility default 353
feasibility, reducing 351
integrality
example (Java API) 142
Markowitz 347
Markowitz and numeric difficulty 348
Markowitz, increasing to stay feasible 348
optimality 353
optimality (Network) 408
optimality, reducing 351
relative objective difference and 488
relative optimality 550
relative optimality default 550
role of (C++ API) 77
role of (Java API) 135
simplex optimality (example C++ API) 69
termination and 481
violated constraints in goals and 823
warning about absolute and relative objective difference 488
when reducing does not help 351

TreLim parameter
effect on storage 553
node files and 553
tuning tool 295
type

changing for variable (Java API) 104
conversion (Java API) 142

U
unbounded optimal face
barrier optimizer 366
detecting 397
Unbounded return status (C++ API) 72
Unbounded return status (Java API) 113
unboundedness
dual infeasibility and 352
infeasibility and 352
infeasibility and (LP) 352
optimal objective and 352
unbounded ray and 736
Unknown return status (C++ API) 72
Unknown return status (Java API) 113
unscaled problem statistics 352
user cut
definition 786
Interactive Optimizer and 793
MPS file format and 797
pool 785, 799
utility routines in Callable Library 176

V
variable
accessing dual (C++ API) 73
changing type (C++ API) 54, 82
changing type of 721
constructing arrays of (Java API) 139
creating modeling (Java API) 104
deleting (Java API) 142
external (C API) 191
global (C API) 191
in expressions (C++ API) 54
modeling (Java API) 107
not addable (Java API) 110
numeric (C++ API) 62
order 257
removing from basis (C++ API) 81
representing with IloNumVar (C++ API) 54
semi-continuous (C++ API) 62
semi-continuous (example) 637
semi-continuous (Java API) 104
semi-integer 634
static (C API) 191
type 472
variable selection strategy
strong branching and best node progress 549
strong branching and conservation of memory 555
variable type change (Java API) 104
vectors, rim 259
violation
bound 353
constraint 353

W
WorkDir parameter
barrier 386
node file subdirectory 553
node files and 553
working directory
barrier 386
working memory
barrier 386
WorkMem 552
WorkMem parameter
barrier 386
node files and 553
writeBasis method
IloCplex class 347

X
XML
Concert Technology and 262
serializing model, solution 262

Z
zero-half cut 512