Volume 5
February 2001

e IBM VisualAge Generator Newsletter

enerator

A Powerful New Vision of Programming™

Special millennium edition

Contents

The DESEIS YELTO COME ...t 2
Performance, performance, performance!ccoocoiiiiiiii 3
Effective MQSeries application deployment using VisualAge Generatorccccco.... 5
Transforming TUIsinto Web Transactionscccocooiiiiiiiiiiiiii e 7
Generating VAGen Java programs: High altitude instructionsccccccooeeiiiiis 11
T0 Java Or NOT O JAVATooiiiiiiiiiiii e 13
Whatis VAGen Object Scripting all about and why dolcare?...........ccccooevvvviieiiiiinnnn 14
Object Scripting made easy using the VAGen Script Wizardccoceevviiiiiiiiiennn, 18
DB2 for OS/390 hiNts @NA LIPS ..veivviiiiiieiiieeie e 21
Some frequently asked questions for VisualAge Generator on OS/400ce.... 28
FUNCTIONS - Here @t last!cooiiiiiiiiiiie e 30
Functions, local storage, parameters:

everything you wanted to know and then SOmeccccccoviiiiiiii 32
VisualAge Smalltalk vs. VisualAge for Java - a simple comparisonccccceveeennnnn 34
I'llneverforget. .. WhatshiSNameccocooiiiiiiiii e 36
SHARE in Long Beach, February 25-March 2, 2007ccooiiiiiiiiiiiiic e 38
Planning for migrationto VisualAge Generator 4.Xcccooviiiiiiiiiiiiiieeeeee e 39
Client/Server configurations for VisualAge Generator version 4.0cccccceoiienn. 43
Accessing VSAM Files on OS/390 from VisualAge Generator ..o 47

Testing modificationsto generated UIReCOrd JSPS ... 55

The best is yet to come

by Steve Choquette, VisualAge Generator Product Manager

It's hard to believe that 2000 is over and
the new millennium has officially begun.
The memories of preparing for Y2K and
hoping that nothing cataclysmic would
occur seem so fresh. Through careful
planning that started many years ago,
Y2K turned out to be a reason to
celebrate, instead of a disaster. As the
old adage goes, “prior planning
prevents poor performance.”
Congratulations on being a survivor!

Allow me to introduce myself. My name
is Steve Choquette and | am the new
product manager for VisualAge
Generator. Prior to joining this
organization in January of 2000, | was a
developer, support manager, and
release manager for an IBM product
called Communications Server for OS/
390. CS/390 provides the SNA and TCP/
IP support for the S/390, Amdahl, and
Hitachi mainframes. As a support
manager for a product that controls
mainframe access for most of the
Fortune 500 companies, | learned that
product quality is important to your
success and IBM’s.

This year has brought about a
heightened emphasis on e-business —
connecting your existing corporate
infrastructure with the web. And what
better product to simplify that task than
VisualAge Generator? The Ul Record
programming model, introduced in
Version 4.0, allows you to easily create
web pages that provide browser access
to the important applications and data
running on your enterprise servers —
without knowing all the underlying
details of HTML, JSPs, multitier servers,
gateways, communication protocols,
state management, and database query
languages. How much simpler could it
get?

The VisualAge Generator team has had
a busy year in 2000. Hopefully you got a
chance to meet some of our developers
at conferences - COMMON, SHARE, AS/
400 Technical Conference, CICS & MQ
Technical Conference, Solutions
Developer 2000, Colorado Software

Summit, VG Users Group, or the VG
International Symposium.

In addition to two Fixpacks for Version
4.0, the VisualAge Generator team has
worked on Version 4.5, which shipped in
September. That release, described in
detail in this newsletter, provides
numerous enhancements that will help
your business be successful in the new
web economy. The MQSeries Integration
function, for example, allows you to take
advantage of this powerful message
queuing tool, using the same

I/O verbs you are already familiar with.
The Java Server Generation item adds
the capability to generate Java to a
Windows NT server. Future releases will
generate Java for other server platforms.
(Remember that Java GUI client support
was added in Version 4.0.)

In 2000, we partnered with the IBM
S/390 University Relations team,
Perficient (an IBM Business Partner),
and Northern lllinois University to teach
a two-week course on e-business to
faculty members from universities
around the world. The second week of
the class focused on VisualAge
Generator. Our goal is to have several
universities whose Computer Science
graduates are trained in VisualAge
Generator.

Powerful enterprise
e-business solutions

In the next few months, look to hear
more about VisualAge Generator and
the Application Framework for
e-Business. The Framework integrates a
large number of application
development tools, continuing IBM’s
move toward open standards and
platforms, and making it easier for
business partners or ISVs to enhance
IBM’s application development toolkit
via plug-ins. As | said in the title, the best
is yet to come. | am excited about being
a part of the VisualAge Generator team. |
look forward to meeting many of you,
perhaps at the Nordic GUIDE session
January 24-26 in Sweden. See our web
site at http://www.software.ibm.com/ad/
visgen for more information.m

Performance, performance, performance!

by Wing Hong Ho, VisualAge Generator Tester and Jay Cagle, VisualAge Generator Developer

Recently, a number of performance
enhancements were made in the Java
version of VisualAge Generator
Developer and VisualAge Generator
Workgroup Services. This article will
detail those improvements as well as
provide general recommendations for
improving performance.

By making enhancements in the Java
library, we improved the performance of
accessing VAGen parts throughout the
integrated development environment
(IDE). In addition, we also optimized the
code for some of our part editors so that
navigating and editing code is now
much more efficient, particularly where
extensive tree-diagrams are involved.

These performance improvements will
be incorporated in the up-coming
FixPak2 for VisualAge Generator on
Java version 4.0 and a future FixPak for
version 4.5. Performance enhancements
can be found in the following areas:

e Opening the Program Editor The
time it takes to open a large program
in the Program Editor is dramatically
improved. Large programs that call
many functions are now opened up to
ten times faster than before with their
structure diagrams fully expanded.

e Expanding the Table and Additional
Records list The operation is now
done in a fraction of a second.

e Opening a record or table
Performance improved by at least an
order of magnitude, particularly for
records and tables that have many
shared data items. Most records and
tables are opened almost instantly.

e Testing programs in Interactive Test
Facility (ITF) The time it takes to start
the test is greatly improved. Programs
load and run faster in ITF, particularly
when testing the program for the first
time when the parts are not already in
memory.

e Working with open editions
Performance of accessing VAGen
parts from an open edition is greatly
improved. There is no longer a

performance difference between
open editions and versions of a
package.

You will also see an improvement in
performance when you import large ESF
files and when you migrate large
development projects. These
improvements will help your team work
more efficiently and increase their
productivity.

On the runtime side, we also have good
news to bring you. The server code for
C++ platforms has been optimized, and
our testing indicates a speed increase
that ranges from 20-30% for a typical
generated program. In fact, in a test
using C++ server with AIX CICS, we saw
a tenfold improvement in the number of
transactions completed per second.

Some performance hints and
tips:

There are some easy steps you can take
to ensure that performance is optimal.
Here are some of them:

¢ Partition your code into smaller
logical units Put each functional
area of your code in a separate
package/application. Not only does
this make your program easier to
understand and maintain, it is
required to maintain acceptable
performance. You should generally
have fewer than 500 parts of the
same part type in the same package/
application. Exceeding this limit can
degrade performance.

| MOTST1-MA
Emor voutime:
Dascrption:

Default collapse

¢ Take advantage of the Program
Editor option The “Preferred Editor
View” option controls how much
information is initially displayed in the
structure diagram of the Program
Editor. You can set this option from the
Program section of the VisualAge
Generator Preferences window. In the
Part Browser, choose Windows ->
Options in Java, or Options ->
Preferences in Smalltalk.

There you will find three choices:

e Main function: Choose this option
to display only the main function of
the program initially.

e Entire structure diagram: Choose
this option to display the entire
structure diagram, fully expanded.

e Default collapse: Choosing this
option gives you the most control
over how much detail is displayed
when the program is first loaded in
the Program Editor. You can prevent
certain function nodes from being
expanded by specifying the
“Default collapse” property. To
specify this property, from the
Function Editor, select Define ->
Properties and click the “Default
collapse” checkbox.

Intuitively, you can guess that
selecting the “Main function” option
takes the least time to execute, while
selecting “Entire structure diagram”
takes the most time. Choosing
“Default collapse” will be somewhere
in between, depending on how you
arranged the “Default collapse”

Cancel

Help

Performance, performance, performance, continued

settings for your functions. By default, What about times when you want to e Consult the Design Guide for more
the “Default collapse” check box is visualize the program flow? By hiding performance tips. The Design Guide
blank for all functions, so all function the monitors, haven't you defeated the has information that can help you
nodes are expanded in the structure purpose of having them in the first optimize the performance of your
diagram, making the situation the place? generated programs. Some of the
same as if ‘you selected “Entire You can place a breakpoint where topics include:
structure diagram’ you want to start tracing through your e Using NUMC and PACK instead of
The latest improvements in the code. When execution pauses at the NUM and PACF
Program Editor code reduced the breakpoints, you can re-display the e Making a Table ‘Resident’
performance difference between the monitors and proceed in order to get . .
Co . e Generating options that can affect
initial display options. However, a a feel of the program flow. erformance
judicious use of the “Default collapse” | o Regularly defragment your hard P _
option can still make the structure drive. This is more important to do on For detalls about these and other
diagram much easier to read. the ENVY server. The ENVY server is t((;,)Eilch: :ee Appendix A of the Design
typically /0 bound, so anything that '

In a test using C++ server with improves 1/O performance will

AIX CICS, we saw a tenfold enhance your team’s productivity. By

improvement in the number of defragmenting your hard drive

transactions completed per regularly, you can make sure that

Eacond! parts are retrieved efficiently.
Consider checking the “Default
collapse” button for functions that Interested in learning more about VisualAge Generator?
have very isolated and well-defined Check out these classes.

uses. This way, you can make the
function appear like a subroutine, with

VisualAge Generator v4.5 on Java - Basics

its internal structure hidden away to (Class # SW410)
reduce clutter. Jan. 29-Feb 2 Pittsburgh PA
¢ Hide the monitors when using ITF Mar 19-23 Pittsburgh PA

The “Executing Stack Monitors” and
“Statement Monitor” in ITF are
updated frequently when running a
program in ITE. This can put additional (Class # SW411)
demands on your processor and Mar 6-9 Pittsburgh PA
reduce performance. By hiding these
monitors when you don't need them,
you can improve the response time of
ITF

The easiest way to accomplish this is
by choosing View -> Hide all monitors
in ITFE. If your program is already
running, you can still select it by first
pausing the execution. Alternatively,
you can minimize ITF during
execution to improve performance.

VisualAge Generator v4.5 on Java - Transitions from Cross System Product

Effective MQSeries application deployment using

VisualAge Generator

by Paul Hoffman, VisualAge Generator Architect and Sanjay Chandru, VisualAge Generator Developer

The IBM MQSeries messaging system
provides a simple asynchronous
alternative to server program calls as a
way of connecting applications across
dissimilar environments.

With MQSeries messaging, programs
communicate by writing messages
(strings of data) to queues and reading
messages from queues via MQ API calls
to a message queue manager. The
queue can reside on the same system
as the program (local queue) or on
another system (remote queue). The
queue manager handles any
communications necessary to access
remote queues.

e Communication through queues
makes asynchronous operations
possible. For example, when you use
queues:

e Communicating programs can run in
parallel.

e Communicating programs can run at
different times.

¢ Intermittent communications link
failures do not stop communication
since the queue manager can store
and forward messages until the link
comes back up.

MQSeries and VisualAge
Generator Version 4.0

VisualAge Generator is an effective tool
for hiding the complexities of
implementing MQSeries functionality on
multi-platform applications. VisualAge
Generator supports most of the platforms
on which MQSeries applications can be
deployed currently. You can write and
test MQSeries programs for these
platforms in the VAGen development
environment before you run them on the
target platform VisualAge Generator
Version 4.0 contains new sample
programs and reusable parts for building
programs for MQSeries Version 5.0 APIs.

New reusable parts

Reusable MQ 4GL parts include:

¢ Functions for calling each MQSeries
API

e Records for each MQSeries data
structure

e Functions for initializing each data
structure

e Tables for MQSeries constants, return
codes, and return code descriptions

e Function for checking MQSeries
return codes and building a standard
error description

The names of the reusable parts
shipped with version 4.0 are different
from those shipped with previous
versions of VisualAge Generator. The
functions for API calls are now defined
with parameters, allowing the same
functions to be used for accessing
different queues within the same
program.

New sample programs

Sample programs implementing the
basic MQSeries calls are also available
with VisualAge Generator 4.0. The
sample programs are:

e MQGUI - graphic user interface

e MQWEB - web browser user interface
e MQ3270 - 3270 user interface

e MQBATCH - batch print program

All the sample programs access a
message queue via the reusable MQ
parts. The MQWEB program is an
example of a browser program for which
no state is saved on the server.

The sample programs and reusable
parts can be loaded from MQS.DAT in
the Smalltalk sample directory or
MQJ.DAT in the Java samples directory.

Prerequisites for running
programs

¢ |nstall MQSeries server and client on
the platform on which you wish to test
the sample applications (MQSeries
Version 5.x for AIX, AS/400, HP-UX, OS/
2, Sun Solaris, Windows NT, Version 1.x
for OS/390, Version 2.x for VSE).

...the developer does not have to

worry about modifying or writing
new code for every platform.

e \Verify queue manager using
MQSeries sample programs provided
with MQSeries software

e Define local queue. The queue name
must be TESTQUEUE if running the
MQBATCH program

e VAGenerator 40 needs to be installed
and configured.

e | oad the sample program .dat file

e Start the queue manager. The target
queue must have its Get and Put
message options enabled.

e Run the sample programs in test
facility or generate and run in any
supported runtime environment.

Example

This example shows function calls
written in VAGen 4.0 4GL for an
MQSeries specific application. The code
is derived from the MQWEB_PUT
funciton from the MQWEB sample
program.

In the code sample, connection to a
queue manager is established, a queue
is accessed, messages are written to the
queue, and the connections are closed.
The MQSeries API calls are made by
reusable VAGen parts that have the
same names as the MQ APlIs:

¢ MQCONN - connect to queue
manager

e MQOPEN - open queue

e MQPUT - put message to queue

e MQCLOSE - close queue

¢ MQDISC - disconnect from queue
manager

Effective MQSeries application deployment using

VisualAge Generator, continued

The records used in the code represent
MQ data structures:

(alternate specification of reusable
MQSTATE record)

or program specific information:

Whenever a call is made, the
completion code and reason code are
checked for the success or failure of
each call. Subsequent steps are based
on the result of previous calls. The
advantage of developing MQSeries
specific applications using VAGen is
that, code written in 4GL is then

MQOD - object (queue) descriptor
MQMD - message descriptor
MQPMO - put options

MQUIR - web user interface record
MQSAMPLE_STATE - program state

/* check for input nessage
| F MQUI R PUT_MESSAGE EQ“ *;
MOVE “Ent er nessage text in put nessage text field”
TO MU R ERROR_MESSAGE;
EZERTN() ;
END;

/* Connect to message queue manager
MCONN(MBAMPLE_STATE, MU R MQVANACER) ;
MONEB_MXCHECK() ;

/* Put messages to queue ;
| F MBAMPLE_STATE. COVPCCDE LE MXCC_WARNI NG

/* Qpen nessage queue
MQOD_I NI T(MOD) ;
MOVE MUl R MQQUEUE TO MOD. CBJECTNANE;
MOVE MQUI R MQVANAGER TO MQOD. CBJECTQVIGRNANME;
MIBAVPLE_STATE. CPTI ONS = MQOO_CUTPUT;
MQOPEN(MBAMPLE_STATE, MXD);
MNEB_MQOHECK() ;

/* Put nessages to queue
| F MOSAMPLE_STATE. COVPCCDE LE MCC_WARNI NG
MPMO_I NI T(MPMO) ;
MMD_I NI T(MQVD) ;
MXBAWPLE_STATE. BUFFERLENGTH = EZEBYTES(MQUI R PUT_MESSAGE) ;

MPUT(MBAVPLE_STATE, MQVD, MPMO, MU R PUT_MESSAGE) ;
MOWEB_MQOHECK() ;
| F MBAVPLE_STATE. COVPCCODE EQ 0;

MOVE “Message witten to queue” TO MU R ERROR_MESSAGE;
END;

/* d ose queue
MXBAMPLE_STATE. CPTI ONS = MQCO_NONE;
MQOLOSE(MOSAVPLE_STATE) ;
MMEB_MXCHECK() ;
END;
END;

/* Di sconnect fromnessage queue nanager
MDD SC{ MBAVPLE_STATE) ;

MNEB_MUCHECK() ;
END;

generated to any target platform. This
ensures that the developer does not
have to worry about modifying or writing
new code for every platform on which
this application is deployed.

Information and reference

For general information on MQSeries
and VisualAge Generator:

http://www-4.ibm.com/software/ts/
mgseries/

http://www-4.ibm.com/software/ad/
visgen/

http://www.redbooks.ibm.com/;
MQSeries Primer, REDP0021

For specific information on
implementing MQSeries programs in
VisualAge Generator, refer to Chapter
21, Implementing Client/Server
Processing Using the Message Queue
Interface in the VisualAge Generator
Version 4.0 Client/Server
Communications Guide,
SH23-0261-00.

Interested in MQSeries support in
version 4.57 See our white paper at
http://www.ibm.com/software/ad/visgen/
librarym

Looking for the latest industry
R&D news? Checkout the IBM
Journal of Research and
Development and the iBM

Systems Journal at:

Transforming TUIs into web transactions

by Theresa Smit, Manager, VisualAge Generator Consulting Services

Are you taking advantage of the opportunities that e-business
provides? Let VisualAge Generator Version 4 help you move
your Cross System Product or VisualAge Generator
applications into the world of e-business. IBM is leveraging its
experience in delivering scalable and secure systems to
equip this new world with optimized infrastructure and tools.
The result is a set of products and architectures that supports
the creation and deployment of end-to-end, multi-tiered e-
business systems. If an e-business system is viewed as a
logical 3-tier solution, IBM WebSphere Application Server
provides the run-time environment for tier-2, WebSphere
Studio provides the tools for Web-site management and page

have an analysis phase to identify the functionality to include
in the Web application. The main purpose of this phase is to
determine the functions in the existing code that are to be
retained and to define what is required for screen navigation.
This step can save converting program functions that are not
needed in the new implementation and serve to clarify end
user interface components.

For example, a TUI screen that displays a selection list of 20
codes or records and has forward, backward, right, and left
scrolling can be presented as a web page that just does
forward scrolling and handles the selection of a record. The
code that handles the back, left, and right functions would be

Not prepared to make the
coding changes to get to the
Web, but need to be there today?

composition, and the VisualAge products allow professional
programmers to rapidly create transactional data servers and
business logic. In this context, VisualAge Generator plays a
central role in the development of new third-tier transactional
servers, which must guarantee high performance and
transaction volumes and reach a variety of legacy platforms
and data, automatically generating the code necessary to use
their services in a servlet/JSP component dynamic HTML
context. This article describes the issues you should consider
and processes you can use to convert your existing TUI
applications to Web Transactions and maximize the reuse of
existing business logic, enabling you to retain your current
investment.

Not prepared to make the coding changes to get to the Web,
yet need to be there today? Then, you might consider using a
screen-scraping implementation such as CICS Host On-
Demand, CICS Web Interface with 3270 Bridge or NetCICS.
This tool makes your CICS TUI transactions immediately
available on the Web! Although this implementation does not
exploit Web Ul functionality, it can quickly get your TUI
applications to the Web. You might consider this your first step
into Web development. See http//:www-4.ibm.com/software/ts/
cics/library/whitepapers/cicsweb/webtable.html

Your next step into Web development should maximize Web Ul
functionality with features like radio buttons, drop-down lists,
forms, and program links. To achieve this, you should consider
using the VAGen Ul Record to transform your TUI application
into an e-business Web Transaction.

Phase 1 - analysis

You should approach this transformation effort as you would
approach any other new Web development. First, you should

eliminated. You can also eliminate code for fields such as a
small (less than 100 items) single field selection list, which
can be better presented as a drop-down list. Other
considerations include the number of items shown in the list
and how a user makes a selection from the list (radio button
vs. program link).

Phase 2 - basic transformation

After you have identified the functions and code that need to
be changed, there are a few steps to transform the basic
functions into a Web user interface.

1. Import your code into VisualAge Generator V4 using the
migration tool or the import function (refer to VisualAge
Generator Migration Guide, SH23-0267 for more
information). There are additional considerations if you are
moving from Cross System Product V3.3 or earlier to
VisualAge Generator for the first time because migrating
from an interpretive execution to generated COBOL might
require additional changes to your source code (refer to
Migrating Cross System Product Applications to Visual Age
Generator, SH23-0244-01 for more information on this type
of migration).

2. Test the TUI base code to ensure that all components are
loaded and to establish that the development environment
is functioning properly. Establish your naming conventions
and library organization (Projects, Packages, etc.) for your
transformed parts and for the new part types, Ul Record and
Web Transaction. (Refer to VisualAge Generator Guide to
Migrating MSL’s to ENVY, SH23-0252-01 and the VisualAge
Generator V4 Migration Guide, SH23-0267 for more
information.)

3. For each VAGen Map in the VAGen Parts Browser, select the
map, then select Create Ul Record from Map from t

Transforming TUIs into Web Transactions, continued

context menu. This action creates a new VAGen Ul Record e Add submit buttons to your Ul Record for the Enter key

with fields for each named map field (variable field). Note
that any label text or constant fields are not included in the
Ul Record. The default label text is the field name. Be sure to
follow your naming standards for the new Ul Record name.
Do not exceed the length of the name of the old field. For
example, if the original map was named XYO1MOQ2, then a
good name for the new Ul record would be XY01UO2. This
naming convention will enable you to more easily change
the external source format.

4. Export the program to external source format using VAGen
Export with Associates. Using a text editor, globally
change the map name to the Ul Record name where it is
referenced in the code. Change all occurrences of EZEMSG
to EZMSG, and, optionally, change other component names
such as program name and function names. Consistent
naming standards will simplify this step and reduce
duplicate parts if you have both the old TUI program and the

and each function key processed. You can set the initial
value for each button to the EZEAID equivalent value
(ENTER, PF1, PF3...); however if your program executes a
SET uirecord EMPTY this will clear the initial values. If
submit buttons have no value they are not displayed. So
set the submit values prior to the CONVERSE as shown in
the following example:

MOVE ‘ PF3’ TO EXI T- BUTTON;
MOVE * ENTER TO SUBM T- BUTTON;
*xk _____ CONVERSE UGDETB- MAP1 ——————=***

| F EZEAI D NOT PF3;

new Web Transaction in your workspace at the same time. ¢ Statements that SET or TEST the map item’s attributes are

After you have made the changes, import your new program
from the changed external source format file.

5. Make program changes to implement the Ul Record using
the Converse model (see VisualAge Generator V4 System
Development Guide, SG24-5467-00 for more information on
defining a Ul Record)

e Change the program type to Web Transaction.

e Ensure that any CONVERSE functions are using the new
Ul Record. If you have several maps that are DISPLAYed
prior to the final CONVERSE then, convert them to Ul
Records, and add all of the data items to one record. Pop-
up maps will have to be considered separately. You might
use a drop-down list or another Ul part to replace their
function.

e Add labels to each Input/Output field. Ul Record fields
can be customized to add table, function and other edits,
and help text. Table edits will appear as drop-down lists.
For function edits that are not doing 1/O or server calls,
you can choose to have them run on the web server or

on the host server. Help text for each field is included in °

the generated Java bean and can be referenced in the
JSP. This is not referenced in the default JSP generated
by VisualAge Generator.

not recognized and will cause errors. For example, SET
map item PROTECTED will cause an error. These
statements need to be commented out or removed. The
way in which fields are displayed or hidden is
determined by the Ul designer. To make this
determination, additional data will need to be passed in
the Ul Record. For example, if your map has certain fields
that are updatable depending on user security, then that
user security information needs to be included in the Ul
record. The Ul designer can then change the JSP to
access the security data passed and set the display or
hide fields appropriately. Testing a field for MODIFIED is
allowed, but setting a field to MODIFIED is not. This might
also have an impact on your security or edit processing.

Add a title to your Ul Record by editing the properties for
the Ul Record.

Change any date fields that are defined as numeric and
have a date mask to a character field (length 10). Then
move EZEDTELC to this field to format the date.

For map array fields that have been converted to items
with occurrences, you need to add a counter item to the
Ul Record to hold the number of elements to display in
the list when the Ul Record is conversed. Then, in the
custom settings for the item with occurrences, specify
the counter item as the occurrences item

7. Test your program. When a CONVERSE is reached, the
Browser is displayed with your Ul Record contents. (see
Figure 1) You may need additional code and Ul Record
changes to reach a baseline functionality.

http://www.ibm.com/software/ad/visgen/education

Phase 3 - make it more Web-like

At this point your application will still look very Text-like even
though it is displayed using a Browser. To better utilize the

- benefits of the Web, the Ul Record and Web Transaction can
Emplovee Detail be enhanced to make the navigation and internal functionality
more Web-like. Some additions might include:

L] I

:?ITHEF e Using Program Links as a record selection - In the Ul
v Record, change a table column to be a Ul Type of Program
Voaals Diepmomens [11 7 Link, then customize it to specify the program and the first Ul
a0 Record that will be passed. Be sure that only key information
J.:'ETHI 1 is passed in this manor because there is a limit to the

otk Lrvetie) amount of data that can be passed (around 400 bytes). The
v B Linked program must be prepared to handle the First Ul

ol) TN record information and use the key information to read the
:‘:'F_...,_._..I':”‘I‘ detail record. (see Figures 2a,b & c)

[g |90

Ui e e e s s

o] F A S e o | e
[LT i F]

Figure 1. Testing Web Transaction

Other things that may need special consideration in this
new environment are:

Security Use of EZEUSR or application-specific security for
read-only access versus update authority.

Attributes Setting of extended or highlight attributes - how
to identify in the Ul Record. Could use a separate attribute
field for each field or a general one if possible.

Messages |If you are using a Message Table, you will need
to change references to EZEMNO and EZEMSG to
EZEUIERR. In this new environment, when you have multiple
fields in error, all field level error messages are displayed
below the field rather than one at a time in EZEMSG. General
or informational messages such as “Key selection and
press enter” moved to EZEMSG will need to be moved to a
Ul record field like EZMSG instead. Be sure the text of the
message still applies to the Web interface.

Error checking If you currently have edit functions
specified in your map, these will be included in the Ul
Record you create from the map. Additionally, you can
specify if the edits are to be performed on the Web Server or
on the VAGen Server. However, if you SET map fields as
MODIFIED to force the edit routine, you will need to change
the program to always execute the edit routine after the
CONVERSE.

Navigation Consider the use of menus, “fastpath” fields, or
other navigation. This function may be better implemented
by the Web designer.

Figure 2.b Program link properties

Transforming TUIs into Web Transactions, continued

Lmpiirer Lo b Homs hriosms T IRECT ITEARE, G T mbak e
A, (P A7, label 8 rena

TIPRAT_PRE, awiaen B R L Sistenil ekl UM, FIATY

SLEMT WALOE. pacary T, G4), fNamyn
FAT T e b o sl ke o ae T

Emplovee List by Name PROG1 .
SUBERT_JTEM[I =TT 7 devibsiy FENE bassvory armar do ity FTRER fnrion
* i Ve ik N Sl EUPT MAULLE el il s T

Remils H'u-nf_______ - SLEIEET) TE T = T e ard Lemsar F ey psbao BT Serra
* BT VALUE sl paeaads F1°

Liaph=wa = Tani I"..I.I Luri Plaiis #|
T 50

e
— L1 1 [—

—— AT B ANRTC]

i BB _ALLE = T7)72

CININ:
Ey 8 ECE

Figure 3. Before (using CONVERSE Single program)

EHREC s Fo, i b4 o - P <M
] ol s P ke P Vi b e T s i e e
ALl P et Aaloieess
FREE) } 1] 1 S Ve e L AR Rt i A
i) ! 1 13 i (AL T R] iy
e T o i =
== T T a
Eﬂﬁd b A A ey
L. B . i
-
Figure 2.c Test of Ul Record - List with program link - E E -
PEMI ifirst Ul = WIRECH) P
o ik il - T "'"""'_,'_‘____.'
e Use forms to combine multiple Text screens into one Ul ae ftt ey
Record. Because you are no longer limited to a 24x80 ERS——] -
screen, you might improve user productivity by retrieving .t

more information on each request. Work with your Web
designer to identify what would be best for your users.

Figure 4. After (using XFER model with two programs)

e Consider using the XFER stateless model for selection lists
and inquiry-only programs and stay with the CONVERSE Phase 4 - modify default JSP
model for maintenance (Insert, Update, Delete). To
implement the XFER model, divide your single application
into two programs. Everything prior to the CONVERSE is in
the first program and everything after the CONVERSE s in
the second program. Each program would use the same Ul
Record. The Ul Record would have a parent field with Ul
Type of Form that links to the second program. Instead of the
first program doing a CONVERSE, it would XFER
,UIRECORD. After the user selects a submit button, the
second program is invoked and will evaluate the request

and continue. (see before-Figure 3 and after-Figure 4) This transformation can retain a large portion of your
application business logic. However this effort is not a trivial

task. VAGen’s new Web technology can be implemented by
the same developers who maintain your existing Cross System
Product or VAGen applications without having to learn much
about Java. However, you will need to develop some expertise
in HTML and JSPs to successfully move your applications to
the Web.m

Up to this point you have only seen the default Java Server
Page (JSP) displayed in the Browser. To make the user
presentation more weblike, this JSP will need to be enhanced
with graphics and incorporated in existing Web pages using
Web authoring tools such as Websphere Studio. The Ul
designer can use the default JSP generated as a base or
guide to create the customized JSP.

Summary

e Some code is so intertwined with the map attributes and
other settings or so heavily modified that it may be faster to
use VAGen Templates to recreate the functionality of the
program. This is especially true for simple (not much
business logic) programs. For example, search for a record
based on selection fields, then display a selection list that
has a program link column that displays or maintains the
detail record. See http://www-4.iom.com/software/ad/visgen/
about/v4temp.pdf.

Generating VAGen Java programs:

High altitude instructions

by Matt Heitz, VisualAge Generator Developer

For years, VisualAge Generator has
enabled you to quickly develop
programs and generate them into either
COBOL or C++. In version 4.5 we have
added the ability to generate programs
in Java as well. This article explains the
basics of generating, deploying, and
running Java programs.

Developing for Java

There are no special steps to take while
developing a Java program in VAGen
and you don'’t need to be a Java
programmer. Whether you're
redeploying an existing program or
creating a new one, the process is the
same as for any VAGen program.

Most of the generation options that
apply to Java programs are similar

to the ones for C++ programs, but
there are a few exceptions. . .

However, you should keep in mind that
there are currently several limitations on
what Java programs can do. They must
either be batch programs or web
transactions, meaning that maps (text
user interfaces) are not supported.
Databases are accessed using JDBC,
which supports SQL but not DL/I. Java
programs don’t take advantage of CICS,
and at present Windows NT and
Windows 2000 are the only platforms
they run on. Future versions of
VisualAge Generator will address many
of these issues.

Generation options

When you're ready to generate your
program into Java, you need to set the
generation options. Most of the
generation options that apply to Java
programs are similar to the ones for C++
programs, but there are a few
exceptions. The target system (/SYSTEM
option) should be JAVAWINNT. (If you
specify the system value as WINNT, you
will generate a C++ program.) The only

valid value for the /DBMS option is
JDBC, and as in version 4.0 the
/PACKAGENAME option specifies the
package of the generated Java code.

There is also a new generation option,
/GENPROPERTIES, which causes a
properties file to be generated along
with the program. If you specify
/INOGENPROPERTIES, a properties file
will not be generated.
/NOGENPROPERTIES is the default.

VisualAge Generator Java programs use
these properties files instead of
environment variables. You can have
one properties file that contains global
settings and application-specific
properties files that override or extend
those defaults. The generated properties
files contain information taken from
some of the generation options, along
with the linkage table and resource
associations part that were specified
with the /LINKAGE and /RESOURCE
options.

Outputs of generation

Java programs are generated into one
or more .java files (e.g. PGM1.java) as
well as a .tab file made from each table
and possibly a .properties file. In
addition, some command files (with .bat,
.cmd, and .ftp extensions) are created.
They are used to deploy the program.

Deployment

Deployment of generated Java
programs is similar to the way generated
C++ programs are deployed. There are
three different scenarios (see the
VisualAge Generator Generation Guide
for more detailed information).

e You used the /PREP generation option
and the target machine is the one
you're generating from. The Java code
will be placed in the proper directory
and compiled for you.

* You used the /PREP generation option
and the target machine is different
from the one generating the code. In

addition to the code, VisualAge
Generator creates a command file
that causes the code to be compiled.
The code and command file will be
copied to the target machine, but you
must manually run the command file
to compile the code.

e You used the /NOPREP generation
option. The code and command files
will be placed in the directory
identified by the /GENOUT generation
option. Running one of those
command files will activate steps
identical to what the /PREP option
does, so you'll be in the one of the first
two scenarios.

VisualAge Generator Server must be
installed on the machine where your
program is compiled.

Customizing properties

If you used the /GENPROPERTIES
generation option, you may want to
modify the properties file that was
generated with your program. It will have
the same name as the program, with a
.properties extension. For example,

PGM .properties will be generated from a
program named PGM.

Properties files are ordinary text files, so
you can use your favorite editor to
change them. Properties consist of
name-value pairs of the form
propertyName = propertyValue. Each
property must be on a separate line in
the file.

Using jar files

Java programs created by tools such as
VisualAge for Java are often deployed in
Jar files. A Jar file is a collection of
compiled Java code that has been
compressed to save disk space and
minimize download time. VisualAge
Generator won'’t put your Java program
in a Jar file, but after it's compiled you
can do it yourself if you wish.

Generating VAGen Java Programs: High Altitude Instructions, continued

The easiest way to put your program in a
Jar file is to use the jar program that
comes with the JDK. (JDK stands for
Java Development Kit, which is the set
of programs that includes javac, the
Java compiler.) The basic syntax of the
jar command is jar optionLetter f
jarName fileList. OptionlLetter is c if
you'’re creating a new Jar, x if you're
extracting a file from the Jar, or u if
you're updating the Jar by adding or
replacing a file. JarName is the name of
the Jar, and fileList is the names of the
files you want to add, extract, or update.
Use spaces to separate file names in
fileList.

Here is an example. If your program was
generated into a package called
my.java.pkg, and you want to create a
Jar named program.jar, change to the
directory where the program was
deployed and use the command jar cf
program.jar my\java\pkg*.class *.tab.
(Notice that the periods in the package
name are replaced by backslashes. The
jar command needs to know which
directory the files are in, not which
package they're in.) The .class files are
your compiled program, and the .tab
files are used by the tables in your
program.

You can also put your properties file in
the Jar by adding *.properties to the
fileList. Putting your properties file in a
Jar makes it easier to deploy the
program, because everything is in one
file, but you'll have to do a little extra
work if you decide to change the
properties later. Assuming the program
is named PGM, use jar xf program.jar
PGM.properties to extract
PGM.properties from the Jar. After
editing the file, use jar uf program.jar
PGM.properties to put it back.

Running Java programs

VisualAge Generator Server must be
installed on the machine where you
want to run your Java program. The
CLASSPATH environment variable
should include the directory or Jar file
where the program is.

Main batch programs can be invoked
using a command like java
xyz.123.PGM. In this case, the
program’s name is PGM and the
/[PACKAGENAME specified at generation
was xyz.123.

C++ and COBOL web transactions are
run according to settings defined in a
properties file on the web server. The
same is true for Java web transactions,
although the settings are slightly
different. Java web transaction programs
can be contacted over TCP/IP, like a
C++ web transaction, or they can run
directly inside the web server’s Java
Virtual Machine. This new “direct”
linkage, available only for Java web
transactions, may improve performance
by eliminating the overhead caused by
communicating with a remote

Web browser requirement:

Server for AIX

VisualAge Generator

machine.m
Tier 1 Tier 2 Tier 3
Web Server VisualAge Generator
Java Server
. HTTP TCP/IP I
> e
AIX AIX

requirement:

VisualAge Generator
Server for AIX

VisualAge Generator Web Transaction

Tier 1
Java GUI client

e
——
P a—

TCPIP
. —>

Tier 2
VisualAge Generator
Java Server

NT

Requirement:

VisualAge Generator
Server for NT

Java GUI Client/Server System

To Java or Not to Java?

by Y.C. Lui, VisualAge Generator Developer

VAGen V4.5 provides Java, in addition to
Cobol and C++, as a runtime
environment within VisualAge Generator
Server. With Java runtime support, users
will be able to generate Main Batch,
Called Batch, Web Transaction
programs and User Interface parts (GUI
clients) into Java source code that can
then be deployed and executed in the
target Java environment.

Now that you can choose either Java or
nonJava output (Cobol or C++) as the
target language for server program
generation, this article illustrates some
of the benefits and some of the
limitations of choosing Java as the target
language.

Benefits for Java server
Generation

A generated VAGen Java program
consists of pure Java code, which is
portable and can be executed on any
platform with Java Virtual Machine (JVM)
support. The JVM is free and can be
downloaded from IBM, SUN, or other
platform vendors. Being a Java program,
a VAGen part can now exploit and better
interface with other Java programs or
features in a JVM environment.

Because Java is an interpretive and
dynamic language, it is less susceptible
to changes in the supporting systems. A
VAGen Java server program, in that
respect, is less likely to be impacted if
an update is made in VisualAge
Generator Server or the JVM, so users
don’t have to regenerate or redistribute
their code.

VAGen Java programs use Java
Database Connectivity (JDBC) for SQL
database access. JDBC defines a
standard set of Java APIs for tool and
database developers and makes it
possible for database applications that
use the API to transparently access any
databases, provided that the JDBC
driver for the database is available for
the environment. Since the base JDBC
APl is packaged with the JVM, users do

not have to be concerned with
additional JDBC installation. All they
have to do is specify the location of the
JDBC drivers provided by the database
vendor to be used in the database
applications.

With the support of Java generation, the
Java server program can now be
generated as an Enterprise Java Bean
(EJB), which can then be invoked by a
VAGen session bean and run in the
same Enterprise Java Server (EJS)
process as the session bean. The Java
server program participates in true
transaction processing, coordinated by
the EJS transaction services.

Some limitations to consider

V4.5 of VisualAge Generator is an initial
step into Java runtime support. However,
there are certain important VAGen
functions that are not currently
supported but could be crucial to your
enterprise processing. If that is the case,
you might have to consider using C++
or Cobol as the target language as an
alternative for Java generation. These
missing functions are described below.

There is no Map support (i.e. 3270 text
based user interface) for Java server
programs. Users have to use a Java GUI
program to call into a Java Server
program or define a Web Transaction
program using a User Interface Record.

Currently, a VAGen Java server program
can access data sources via JDBC
interface. Access to DL/1 databases,
VSAM, or Btrieve file systems is not
available.

CICS, as a target runtime system, is not
currently supported by VAGen Java
server programs . The generated VAGen
Java server program is simply a Java
application It is not a Java CICS
application and cannot access CICS
resources or participate in CICS
transaction processing.

Future directions

Future enhancements to Java program
generation will probably be focused on
adding new function and support for
additional target platforms. With the
inception of Java server generation,
VAGen has placed itself in an excellent
position to help our customers address
new challenges evolving from Java or
Internet environments.m

http:/www7.software.ibm.com/vad.nsf

What is VAGen Object Scripting all about

and why do | care?

by Beth Lindsey, VisualAge Generator Developer and Roger Newton, VisualAge Generator Developer

Ever wanted to control GUI parts from within your VisualAge
Generator (VAGen) business logic? Tired of GUIs with so many
visual connections you can't figure out what's what on the
composition editor? Confused about how to use the VAGen
PerformRequest function and irritated that its execution is
delayed? Want to communicate with other objects like EJBs,
etc? Well, if you answered ‘Yes’ to any of these questions,
Object Scripting support is just what you're looking for!

In VAGen V4.0, we've added a new language construct that
allows you to call out of a VAGen function to synchronously
execute an OO script. You can use these OO scripts to control
GUI parts and handle things you are doing today using visual
connections or PerformRequests. But | don’t know how to write
Smalltalk or Java scripts, you might say. Well then, check out
the new VAGen Script Wizard, which helps guide you through
the steps needed to build an OO script. You can use the
VAGen Script Wizard to build simple scripts and also learn
enough Smalltalk or Java syntax so you can build more
complex scripts on your own. To learn more about the VAGen
Script Wizard, see the Object Scripting Made Easy: Using the
VAGen Script Wizard article in this newsletter.

This article describes the function and use of Object Scripting
support. It also provides a real example that was used in our
system testing. The example shows how to rewrite an existing
GUI with many visual connections using the new capability of
invoking OO scripts from within VAGen functions. Many of the
OO scripts in the new GUI were written using the VAGen Script
Wizard. The resulting GUI is much easier to understand and
maintain. Things you are sure to be happy with!

Object Scripting overview

A new built-in function, EZESCRPT, allows you to invoke an OO
script in the middle of 4GL statement processing. In other
words, EZESCRPT allows you to make a “call” to a Smalltalk or
Java script from the 4GL logic. This capability enables you to
control non-VAGen obijects, such as GUI subparts, EJBs, etc.,
in the normal flow of your business logic.

EZESCRPT is only valid in functions that are invoked from a
Smalltalk or Java client. It is not supported in server programs.
The scripts that can be invoked must be defined as instance
methods of the class you are currently executing. For
example, suppose you have a Smalltalk or Java client part
named MYGUI, which has a visual connection to execute a
VAGen function named FUNCTION1. FUNCTION1 contains
the following statement:

“ EZESCRPT(“script1”); *

Since FUNCTIONT1 is invoked by a client part, the EZESCRPT

statement is valid. The script, “script1”, must be an instance
method in the MYGUI class.

The script cannot expect arguments and return values are
ignored by VAGen. Within the scripts, you can communicate
with any object that is on the visual layout or free-form surface
of Smalltalk or Java client parts, other Smalltalk or Java
classes, instance and class variables, Enterprise Java Beans
(EJBs), etc. EZESCRPT Statement The EZESCRPT function
accepts one argument, which is a character, mixed, or DBCS
literal or data item containing the name of the script to
execute. The method name must match the case, spelling,
il it WED]

B e G ek e

|] o e o oo | | || i | PR AT]
- R e i by e i LU A i el e J
L MM i]

[B e i [0 gt - il s O (e | i g [e
Y Bl A TR D Ry LT A - Tl ™
! T T R T T Ty 1 P Rl |

Ly S€

Alternative uses of EZESCRPT statement

and spacing of the script or it will not be found. Double quotes
should be used for VAGen literals to preserve case. Mixed and
DBCS script names are supported in Java but not in Smalltalk.

Synchronous execution

The invocation of the OO script named in the EZESCRPT
statement is executed synchronously like a CALL statement or
VAGen function invocation. The script and any triggered side
effects, including possible execution of other VAGen functions
or programs, execute before the next 4GL statement.

For example, we have a function, FUNCTION1, that contains
an EZESCRPT function that invokes a script. The script sends
the ‘enable’ message to a push button on a view. The push
button has a visual connection from the ‘enabled’ event to the
execution of another VAGen function, FUNCTION2. When the
EZESCRPT function in FUNCTION1 is executed, the triggered
‘enabled’ event will cause the FUNCTIONZ function to be
executed. Once FUNCTIONZ2 has completed and any other
statements in the script are executed, control is returned to the
4GL statement following the EZESCRPT statement in
FUNCTIONT.

Note that events that are deferred by VisualAge, like the
‘clicked’ event for push buttons, will have any triggered VAGen
side effects deferred as well. For example, if the script sends a
‘click’ message to a push button and the ‘clicked’ event is
connected to a VAGen function, the function will not execute
synchronously. You should not rely on the timing of such
deferred events.

Data modifications

For upward compatibility and efficiency, we still collect client
data modifications and do not fire them immediately. They are
fired before each EZESCRPT statement and at the end of the
4GL function. If no EZESCRPT statements are executed in the
function, then the data modifications are handled as they were
in previous releases of VAGen. This ensures that existing
client code will function predictably.

If EZESCRPT functions are used, the user expects any data
modifications from previous MOVE statements to already have
been communicated to the client. So, all collected data
modifications are fired prior to each EZESCRPT function and
any events triggered by the data modifications will execute
prior to the actual EZESCRPT message send.

Communication Between the 4GL and OO0
scripts

Although arguments cannot be passed to the scripts invoked
via EZESCRPT, information can be shared between VAGen
and the OO scripts through VAGen data items. Data items that
are in records or tables on the free-form surface are visible
inside Smalltalk or Java scripts because the records and
tables are subparts just like push buttons or text fields.
Therefore, if you want to set up information for the script to use,
you can move data into VAGen data items prior to the
EZESCRPT statement. Then, in the OO script, the data can be
accessed to control script logic. Likewise, if the script wants to
communicate information back to the 4GL, the script can
move data into a VAGen data item that the 4GL can check
upon return from the script.

This communication is especially useful in two areas: writing
reusable scripts and error processing. Instead of writing a
separate script for each text field the user wants to turn red,
they could write one reusable script that gets the subpart
name from a VAGen data item. The VAGen code would move
the appropriate subpart name into the data item prior to
invoking the script. For error processing, you could identify a
specific VAGen data item that is checked after invocation of a
script to see if an error occurred. The script could move a non-
zero value into the data item if an error occurred.

Error handling

If an error occurs in the script, or the script cannot be found,
VisualAge Generator does NOT attempt to mask the problem.
A Smalltalk or Java debugger will appear so you can see the
problem in the context of the OO language you are using and
can deal with it like you would other OO problems. You can set
breakpoints in the OO script which will also result in a
debugger window coming up. If you see an obvious problem
in the OO script, you can fix it in the debugger and resume
execution of the script. For example, in the following figure, the

== == = - X
I = wd

T, i e e re— -

T R e
[T ' =€
S
T =TT
e R F e B et Y
=i mrm feem Pree—siin Bl |
e

Debugger stopped on simple error in OO script

debugger came up because the script has the name of the text
field spelled incorrectly. You could correct the spelling
mistake, save the script method, and resume execution of the
script.

Interactive Test Facility behavior

There are several important differences you will notice in the
behavior of the VAGen Test Monitor when you use it to test
client code that uses EZESCRPT:

e When EZESCRPT statements trigger other VAGen logic
events, either directly from the script or from other GUI side
effects, the same Test Monitor window is used and the
subsequent VAGen functions or programs are shown in the
Execution Stack Monitor. When you use the Execution Stack
Monitor to view the history of VAGen logic execution, you
can see the original function that contained the EZESCRPT
statement that is in the middle of processing. This behavior
is very similar to the way function or CALL statements are
handled. The identifier ‘(from script)’ is displayed at the end
of the Execution Stack monitor entry to show which logic
events were triggered indirectly by an EZESCRPT statement.
See the figure below for an example of multiple events
being executed from the GUI.

e Shutting down the Test Monitor while you are testing a
VAGen logic part triggered via an EZESCRPT statement does
not affect the GUI client being tested. Execution of the
current logic part is cancelled, but control is returned to the
GUI client to continue script processing. If the GUI client
invokes another VAGen logic part, then a new Test Monitor
will open and run the requested logic. You must shutdown
the GUI client to completely quit the test.

e If, while executing an EZESCRPT statement or executing
logic parts triggered by an EZESCRPT statement, you
reposition the test or save a VAGen part that causes the test
facility to reposition the test, the OO script is cancelled and
no other script statements are executed. This means that no
other VAGen logic parts are invoked. If the test was

What is VAGen Object Scripting all about and why do | care? continued

repositioned prior to the EZESCRPT statement, you can
continue testing to execute the statement again and restart
the script.

RSTE

Ty
e

-

— ol _______________________________mEE
= :
AR

—

e
[Ty o —— ———

|-! A e gt o i s oy TS L
K11 | 5
it

Jr1 IS JERRT P

Figure 3: ITF executing LOGPRG, which was executed in the
‘setFieldRed’ script invoked from ADD_CUSTOMER_RECD via
EZESCRPT

Example: Object scripting comes to the rescue
of a complicated GUI

The following example illustrates how simple it is to use the
new Object Scripting capabilities in VisualAge Generator
Version 4 to control objects on your GUI from your 4GL logic.
In this example, an existing GUI application, G4TCS01, has
been modified to call various scripts using the EZESCRPT
function to control GUI objects/parts. The scripts that are
referred to in this example were all developed using the
VAGen Script Wizard.

In this example, a number of different objects are used to
demonstrate the capabilities of object scripting. The first object
is a window part. The following script is used to open the
EMPLOYEE INFORMATION window rather than a visual
connection.

/* Open GATCSDet ai | Vi ewSwi ng and set focus on */
/* enmpno field. */
public void Di spl ayGATCSDet ai | Vi ew() {

try {
get ATCSDet ai | Vi ewSwi ng() . show() ;

} catch (java.lang. Throwabl e i vj Exc) {

handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}

Script to open the EMPLOYEE INFORMATION window

Secondly, scripts are created to control the visibility of the
UPDATE push button. The UPDATE push button should only
appear when the UPDATE or DELETE operation is selected
and when a valid employee record is entered.

/* Hi de Update button fromuser until valid row*/
/* is returned. */
public voi d hi deUpdat eButton() {

try {
get JUpdat e2() . set Visi bl e(fal se);

} catch (java.lang. Throwabl e i vj Exc) {

handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}

/* Make Update button visible. */
public void showUpdat eButton() {

try {
get JUpdat e2().set Vi si bl e(true);

} catch (java.lang. Throwabl e i vj Exc) {

handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}

}

The scripts used to hide and show the UPDATE push button

The following scripts are used to control the message area
field. The setErrorMsg script illustrates how you can move data
between your VAGen working storage record data items and
the text and label fields on your GUI. It also shows how you
can change the color of your message area to indicate an
error condition.

/* Highlight nessage area with bright red. */
public void set Error Msg() {

try {
get JError _nmsg() . set Foreground(j ava. awt . Col or. red);

get JError _nsg().set Text (get RA6_GATCS01_02(). get Stri ngDat a(“ ERROR_MESSAGE")) ;

} catch (java.lang. Throwabl e i vj Exc) {
handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}
}

/* Cl ear/ Reset the nessage area before next operation. */
public void clearErrorMg() {
try {
get JError _nsg() . set Foreground(j ava. awt . Col or. bl ack) ;
get JError _msg().set Text(“ “);

} catch (java.lang. Throwabl e i vj Exc) {

handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}

}

Scripts to change and reset the color of the message area

/* Prevent user fromupdating the fields. */
public void di sabl ePanel () {
try {
get LASTdat aJText Fi el d1() . set Enabl ed(f al se);
get FI RSTdat aJText Fi el d1() . set Enabl ed(f al se);
get M DDLEdat aJText Fi el d1() . set Enabl ed(f al se);
get DEPTdat aJText Fi el d1() . set Enabl ed(f al se);
get SEXdat aJText Fi el d1() . set Enabl ed(f al se);
get STREETdat aJText Fi el d1() . set Enabl ed(f al se);
get Cl Tydat aJText Fi el d1() . set Enabl ed(f al se);
get STATEdat aJText Fi el d1(). set Enabl ed(f al se);
get ZI Pdat aJText Fi el d1() . set Enabl ed(f al se);

} catch (java.lang. Throwabl e i vj Exc) {

handl eExcepti on(i vj Exc) ;
hpt Handl eExcepti on(i vj Exc);
}

Scripts to disable all Fields in JPanell

This example code shows how the sample scripts were coded
inline with the rest of the 4GL logic using the EZESCRPT
function. In the case of the inquiry operation, fields are
disabled to prevent the user from updating any of the fields.
Without the ability to use EZESCRPT functions inline, these
updates would have had to be handled visually or with a
performRequest.

Object Scripting made easy using the VAGen Script Wizard

by Alex Akilov, VisualAge Generator Developer

The VisualAge family of products is based on the notion of
visual programming using the Visual Composition Editor. This
means that graphical user interfaces (GUIs) are constructed
visually using a palette of parts that are “wired” together using
connections that describe the application’s behavior.

Unfortunately, when you want to describe anything beyond
basic application behaviors, you either develop it with a
layered approach, which requires some understanding of
object-oriented concepts (e.g. encapsulation, public
interfaces) or you end up creating what is affectionately known
as “spaghetti” code.

Using hundreds of connections that overlap each other makes
it almost impossible to follow the flow of the graphical user
interface program (not to mention the startup time of opening
the composition editor on the window and/or the runtime costs
of having to create and manage all of those connection
objects).

To augment visual programming, you usually have to add 4GL
code to make conditional connections or to have a single
event trigger multiple operations. The 4GL has no built-in
constructs for working with GUI objects although you can use
a couple of data-structure-based mechanisms known as data
triggers and the performRequest construct to help
communicate from the 4GL logic to the GUI world. These
constructs are not easy to use and they don’t execute in
synchronous fashion inline in your 4GL, which makes it
difficult to schedule all of your GUI processing in a
manageable fashion. The communication between the 4GL
logic and the GUI objects is greatly enhanced in VisualAge
Generator Version 4 through the new EZESCRPT function.

In Version 3.x of VisualAge Generator you could also use
Event-to-Script connections to implement some of your GUI
behavior using Smalltalk scripts but that assumes you know
the Smalltalk language. VisualAge Smalltalk has a tool called
Subpart Feature Syntax, which does part of the job by
allowing you to paste a reference to a part or property or
method visible within the current context, into a free-form text
area.

However, you are still expected to complete the statement
manually by using the output of this tool in the free-form text
editor, which requires you to be comfortable with Smalltalk
syntax and the Smalltalk method structure. Version 4.0 of
VisualAge Generator adds another twist; you can now define
your GUIs in either Smalltalk or Java, which have very different
syntax rules. VisualAge for Java has an Add Method wizard
that helps you add an empty method definition to your class,
but you're still expected to type in its contents. Java also has a
contextual syntax assistant that allows you to get a list of
choices to complete what you've started typing, but that still
assumes that you know the basic syntax rules of the language.

The VAGen Script Wizard is designed to help you specify the
procedural portion of your object-oriented program without
having to know the syntax of the object-oriented scripting
language. Also, you do not need to remember the objects
involved in your program and the properties and protocols
implemented by these objects. Rather than dropping into a
free-form editor to code your logic, you can use the Script
Wizard (or SmartGuide) to specify your method in a step-by-
step, prompted fashion by simply picking objects, properties,
and methods from a filtered list based on the current
specification and context of your object.

After you make a selection, the appropriate code is
instantaneously displayed in the script composition area,
complete with any necessary type conversions and matching
parentheses. You do not need to overtype any portion of the
statement that gets pasted in. But if additional arguments are
required, then you are prompted as many times as are
necessary with a new list of valid object references that can
be used to complete this portion of the statement.

:":_ I J i i e
. { B
e —
e
e
| b s
sl
i:l--u-n-.'hl--ﬂ.ul
o ;‘.".".'.‘ﬁ:.'ﬂ..
Bl .
M== l | J o= |

You can enter as many statements as you need and the wizard
prompts you for local variables and automatically generates
some default exception handling logic that you can then
customize using a standard free-form editor. The wizard also
allows you to add free-form statements and/or literal
expressions to your method if you are familiar with the Java or
Smalltalk syntax or want to use a literal value instead of a
reference to one of the objects in your lists.

If you are not a Java or Smalltalk programmer, the wizard
enables you to add object-oriented code by simply dropping
some parts on the visual composition editor and connecting a
single event to this new script. This script can completely drive
the application procedurally and still provide the same ease of
use that visual connections provide in the visual composition
editor.

The script wizard is included in both the Java and Smalltalk
flavors of VisualAge Generator. The Smalltalk version is
customized for building scripts using Smalltalk syntax and the
Java version uses Java syntax. The “Action text” and “Assist
mode text” sections change as you proceed from step to step;
the “Status Area” contains contextual messages based on
user actions in the current step. The “Work area” changes to
show a different set of objects depending on the step you're
on.

Invoking the Script Wizard

On Smallitalk, if you are editing a visual class (one that has
visual composition information), you can now invoke the VAGen
Script Wizard from the Script Editor page of the Composition
Editor window by clicking the tool icon under the Subpart
Feature Syntax icon. It prompts you for the name of the new
Smalltalk method you're creating and it checks the name, as
you type it, for valid Smalltalk method names. A message is
displayed in a status area of the wizard as soon as an invalid
name specification is detected. The Next button is disabled until
you have entered a name that will be allowed by the compiler.

On Java, you can invoke the wizard from any browser that
contains a Classes or Methods menu or a menu that is related
to a selected Class in a list. For example, if you are working
with the main Workbench window of the VA Java environment,
you can expand a project and a package within it and select a
class in the package. Once a class or one of its methods is
selected, you can then go to the Selected menu and

choose VAGen Script Wizard to invoke the wizard to add a
method to that class.

After you have typed the name, you can optionally enter a
method comment. The text that you type is automatically
displayed in the composed script area of the wizard. You can
then press the Next button to go to the next step in the wizard.

The next step is to build the local variables list. You can type in
the name of a local variable that you think you’ll need and
press the Add button. You can add and remove as many
variable names as you need. You can also return to this step
later as you discover that you need more variables and add
them then without losing any of the code that you've already
composed. On Java you also need to enter the type for the
variable since Java is a typed language and expects
everything to be properly declared.

This figure shows the local variables page of the Script Wizard
on Smalltalk. Note how the “Action text” and “Assist mode text”
sections have changed to contain a new explanation of what’s
expected at this step. The Work area contains different objects
to prompt for the needed information, whereas the Composed
Script area show the specification you've entered so far, which
includes the name of the method and the comment as well as
the mylLocal1 variable specification.

Frim when o e wed sl L] e b i ﬂ
“”: H J- il e N §
S .ﬁrhm rid el Vo eledear nk o e =l
[0 ———]
el
55
e
s L 'l
¢l |
|
| il . ot | E- | | o

The same page on the Java wizard is shown below. Note that
the “Work area” is completely different since additional
information is needed for each local variable you declare. The
“Action text” prompts you to specify the type.

Trvm b o v e e) ikl dk e e b v ﬂ
E T

L i 3 2 2 3 "

e e L h i
[———]
Ti= | E=—p—r— z
E L &=

[i sprt | pmir | o | me |

The next step is called the statement pattern list. This list
allows you to choose what type of statement you'd like to build.
You can choose a free-form or a predefined statement type.
The following figure shows the current list of predefined
statement types that are included:

You do not need to remember the objects
involved in your program and

the properties and protocols implemented
by these objects.

Object Scripting made easy using the
VAGen Script Wizard, continued

Friss-lcem olslerent
o [l
f— [t all propesly
'— Digts itmen vshus
EiB acrsisi buiniicy
= Send pessage
|l
— = Exariiis
| L— Enscute detsned
L Bpan
= Rel mopewiy
— Coler
— Dofauk piopeiy
I Erahind
—— Vighdty

Once you select a statement type from the above list, you are
then shown a parts list (or beans list in Java terminology) that
contains the list of all the current parts that are visible within
the current class, that is, the parts that you dropped on the
free-form surface of your visual composition window. This list
of parts is filtered to show only the parts that are valid targets
for the statement pattern you've selected. Furthermore, if the
statement pattern is one that allows you to work with features
of this part (e.g. the color or some other property) the parts list
can be further refined to show the valid properties under that
part.

One of the advantages of the Smalltalk language is that it has a

very simple Backus Naur Form (BNF). All statements
essentially are composed of objects followed by messages
with potential arguments. Java is very similar, but it adds
traditional constructs such as looping and conditional
keywords (among others). The Script wizard uses this fact in
the way it collects the parts of the statement. Every statement
pattern is essentially composed of a target expression
specification followed by a source expression specification. A
target expression is either an object or one of its properties, or
an expression containing the object and a message (without
the arguments). The source expression is one or more
argument objects, properties or message sends (this time with
arguments). Therefore, a statement pattern is typically
concluded by prompting for a single target expression
followed by “O-to-many” source expressions. An expression
prompter is a list of parts with (or if not needed contextually,
without) the properties and methods that the object
implements.

For example, if you select the Get pattern, pick one of your
local variables as the target object (the Get pattern implicitly
defines the assignment operator as part of the target
expression), and then press Next, you'd potentially see the
following list of source parts that are valid to be assigned to
your local variable. Note that the Parts category contains
subcategories such as Label Parts and Data Parts that can
be further expanded to show the list of parts and their
Properties and Methods that can be used as the source
expression of the statement.

Ly psgimn
B Lol i
u bk
P

W e par

= L

I e pfa
— ot
—

Prglirmd wimvnbeg g e s g b | ok s rbed |
| mildis]

Once you pick the source object, you may be prompted again
to select additional source objects to be used as additional
arguments that might be needed by any part of your statement.
If no additional arguments are required, you are returned to the
statement pattern list where you can then start a new
statement, or finish and compile your composed script into the
class you're working with.

One of the limitations of the current implementation is that the
list of patterns does not yet include looping and conditional
statement patterns. In a future release, we hope to implement
this function, but in the meantime, the free-form statement
pattern can be used to create conditional and looping
statements as well as other statements that are not yet
included in the default pattern list.

The VAGen Script Wizard is one of the tools

provided to help you embrace object-oriented
programming at your own pace.

Summary

Constructing GUIs using VAGen has always been a little bit
awkward since the 4GL in VAGen wasn't originally designed to
operate with GUI constructs. The languages necessary to
express processing in a GUI program usually require
sophisticated object-oriented constructs, which are not
currently present in the VAGen 4GL. Visual programming
allows you to describe most of the processing in the GUI, but
when you want to exercise a little more control over your GUI,
beyond what the visual programming paradigm gives you, the
new EZESCRPT construct and the VAGen Script Wizard come
to your rescue.

The VAGen Script Wizard is one of the tools that VAGen
provides to help you embrace object-oriented programming at
your own pace. If you are comfortable with Java or Smalltalk,
the wizard still provides quite a bit of value in that it allows you
to code your logic in prompted fashion instead of having to
remember all the various objects involved in your program as
well as their properties and methods. And, if you're using Java,
all the complex type conversions that you might have to do are
handled for you. However, if you are not familiar with Smalltalk
or Java, this is a great way to learn the basics you need to
know to be able to take advantage of the powerful capabilities
of these languages.m

DB2 for 0S/390 hints and tips

by Mitch Johnson, WebSphere/VisualAge Consulting Services
and Jim Eberwein, VisualAge Generator Support

This article provides some hints and tips for working with and
administering DB2 on MVS and OS/390. These hints and tips
can help your team become more productive, improve
security, and simplify administration tasks.

DB2 authorization ID translation

To access remote DB2 Tables from VisualAge Generator
during development, many customers have adopted the
practice of sharing a common SQL userid and password
amongst their developers. This enables the database
administrator to define a manageable set of synonyms for all of
the relational tables that might be accessed by VisualAge
Generator. However, sharing a password could
easily be viewed as a serious violation of
security policy. There is an alternative available
to DB2 for MVS V4 and DB2 for OS/390 V5
administrators that alleviates the need to share a
userid and password. This alternative uses a facility provided
by DB2 and does not require any additional software.

INSERT INTO
INSERT INTO
INSERT INTO

For many customers, the SQL userid is the same as the DB2
authorization ID (AUTHID). An alternative to sharing a SQL
userid is to use a DB2 facility that can translate the SQL userid
(AUTHID) provided via a SNA DRDA connection to a different
authorization ID. Validation of the SQL userid and password
with the external security manager is still performed, but the
translated authorization ID is used to control access to DB2
resources. This facility is implemented by inserting information
into tables SYSIBM.LUNAMES and SYSIBM.USERNAMES (DB2
for OS/390 V5) and SYSIBM.SYSLUNAMES and
SYSIBM.SYSUSERNAMES (DB2 for MVS V4).

When DB2 receives a connection request, the LUNAME of the
remote client is checked for a match in the SYSIBM.LUNAMES
table. If the LUNAME is found in the table and the USERNAMES
column has a value of ‘I’ or ‘B’, then the SQL userid (AUTHID)

and/or the LUNAME in the request are checked for the best
match in the SYSIBM.USERNAMES table. If a match is found
(see Table 1) and the NEWAUTHID column has a non-blank
value, then this non-blank value is used as the DB2
authorization ID, otherwise the original SQL userid (AUTHID)is
retained. If no match is found, the connection request is
rejected with a SQL error code -904.

DB2 Authorization ID translation: Example

Step 1. Insert the following rows into the SYSIBM.LUNAMES
table:

SYSIBM.LUNAMES(LUNAME,USERNAMES) VALUES(* *,0’);
SYSIBM.LUNAMES(LUNAME,USERNAMES) VALUES(‘NR50C16lI",'’);
SYSIBM.LUNAMES(LUNAME,USERNAMES) VALUES(‘NR50506!’,'B’);

The USERNAMES values indicates the request direction a row
handles, ‘O’ handles outbound requests, ‘I’ handles inbound
requests, and ‘B’ handles both directions. If there are no
provisions for a particular LUNAME (either a blank LUNAME or
an explicit entry), that LUNAME is ignored and no
authorization ID translations are performed.

LUNAME USERNAMES
blank O
NR50C 16! |
NR50506I B

Step 2. Insert the following rows into the
SYSIBM.USERNAMES table to associate a translated
authorization ID with a connection authorization ID or
LUNAME.

AUTHID LUNAME NEW AUTHID Results

Userid LU Name blank Userid is used as the authorization
ID for this LU Name

Userid LU Name non-blank NEW AUTHID is used as the
authorization ID for this LU Name

Userid blank blank Userid is used as the
authorization ID for all LU Names

Userid blank non-blank NEW AUTHID is used as the
authorization for all LU Names

Blank LU Name blank SQL AUTHID is retained as the
authorization ID for this LU Name

Blank LU Name non-blank NEW AUTHID is used as the

authorization ID for this LU Name

Table 1. Precedence order when searching SYSIBM.USERNAMES

DB2 for 0S/390 hints and tips, continued

INSERT INTO SYSIBM.USERNAMES

INSERT INTO SYSIBM.USERNAMES

(TYPE,AUTHID,LINKNAME ,NEWAUTHID) VALUES('I'’MITCH ‘’NR50C16I’,");

INSERT INTO SYSIBM.USERNAMES

INSERT INTO SYSIBM.USERNAMES

(TYPE,AUTHID,LINKNAME,NEWAUTHID) VALUES(‘I’’MITCH’,NR50506I ‘," *);

AUTHID LINKNAME/LUNAME NEWAUTHID
blank NR50C 16l TESTSQL
MITCH NR50C16l blank

blank NR50506I blank

MATT NR50506! TESTSQL

In the following table, the results of these sample rows is
shown. SQL userids MATT, JIM, and ORION have been
translated to authorization 1D, TESTSQL.

SQL Userid (AUTHID)
from NR50C161

Final DB2 Authorization ID

MITCH MITCH

MATT TESTSQL
JIM TESTSQL
ORION TESTSQL

In the following table, SQL userid MATT has been translated to
authorization ID TESTSQL when using LUNAME NR50506I.

SQL Userid (AUTHID)
from NR505061

Final DB2 Authorization ID

MITCH MITCH
MATT TESTSQL
JIM JIM
ORION ORION

In the following table, LUNAME NRR5N60O, is not in
SYSIBM.LUNAMES with either an ‘I or a ‘B’ in the USERNAMES
column; therefore, no userid translations are performed.

SQL Userid (AUTHID)
from NRR5N600

Final DB2 Authorization ID

MITCH MITCH
MATT MATT
JIM JIM

ORION ORION

Simply by controlling the contents of these two tables, a
shared SQL userid is no longer needed. Each user can be
authenticated by the security manger using an unique userid
and password and each can connect directly or via a gateway
using a common authorization ID.

RACEF list of groups access

DB2 also provides a useful facility to control access to DB2
tables and to simplify administration. This facility controls
access to DB2 tables using RACF groups. In this case, an
individual user does not have explicit access to a table.
Instead, the user has access by being connected to a RACF
group that has table privileges. RACF group checking is
available when RACEF list of groups access checking is
enabled (SETROPTS GRPLIST) and when the sample DB2
connection (DSN3@ATH) and/or signon (DSN@SGN) exits are
enabled. The connection exit is invoked for a request from a
TSO user or for a remote client when the LUNAME is not in
SYSIBM.LUNAMES. The signon exit is invoked for a remote
client when the LUNAME is in SYSIBM.LUNAMES. Note: The
installation job (DSNTIJEX) that installs samples of these exits
is optional and may not have been submitted during the
installation of DB2.

The following scenarios demonstrate how the use of RACF list
of groups access checking along with DB2 authorization
translation can be used to simplify administration. Note that if
the sample signon exit is used in conjunction with SQL userid
translation, the translated authorization ID must be a valid
RACF user.

In this example we have 4 RACF userids which have the
following RACF group access:

Userid Default Group Group List
MITCH TSTVGEN TSTVGEN

MATT VISGEN VISGEN, TSTVGEN
JIM VISGEN VISGEN, TSTVGEN
ORION VISGEN VISGEN

In this scenario, we have granted select privileges on table
TESTSQL.EMPLOYEE to RACF group TSTVGEN and we have
enabled RACF list of groups access checking. The following
diagram represents the flow.

Is this a local request or

is the LUNAME of the

remote client in a row of

No SYSIMB.LUNAMES with
USERNAMES the column
equal to ‘I or ‘B'?

J7Yes

Run the Is there a row for this No Reject
connection AUTHIDand/orLUNAME ———]> Connection
exit inSYSIBM.USERNAMES? Request

ives

Ifa NEWAUTHID is
specified, then update
the connection’s
authorization 1D

i

Run the
sign-on exit

"

Flow diagram of the SQL authorization process

Default connection and signon exits

The following examples of default connection and signon exits
are based on the sample input to the DB2 tables provided in
the DB2 Authorization ID Translation section of this article.

On TSO, the SQL command, SELECT * FROM
TESTSQL.EMPLOYEE produces the following result: RACF list
of groups access checking is not enabled with the default
connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT MATT -551 (not authorized to SELECT from table)
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM EMPLOYEE, produces the
following result: MATT, JIM, and ORION have access to the
table because their authorization ID’s have been translated to
TESTSQL.

An alternative to
sharing an SQL userid
is to use a DB2 facility. . .

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in a
SQL -551 for MITCH because RACF list of groups access
checking is not enabled with the default signon exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR505061, the SQL
command, SELECT * FROM EMPLOYEE, produces the
following result: MATT has access to the table because his
authorization ID has been translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NR50506I, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in a
SQL error -551 for MITCH and JIM, because RACF list of
groups access checking is not enabled with the default signon
exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

DB2 for 0S/390 hints and tips, continued

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM EMPLOYEE, results in
authorization ID translations since there is no provision for
LUNAME NRR5N600 in SYSIBM.LUNAMES.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT MATT MATT.EMPLOYEE is an undefined name
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in
error SQL -551 for all users since RACF Group access is not
enabled with the default connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT MATT -551 (not authorized to SELECT from table)
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

Sample connection and signon exits examples

The following examples of DB2 user exits are based on the
sample input to the DB2 tables provided in the DB2
Authorization ID Translation section of this article.

On TSO, the SQL command, SELECT * FROM
TESTSQL.EMPLOYEE, produces the following result: RACF list
of groups access checking is enabled with the sample
connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT MATT Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM EMPLOYEE, produces the
following result: MATT, JIM, and ORION have access because
their authorization IDs have been translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, produces
the following result: MITCH now has access to the table for
users MITCH, MATT, and JIM because RACF group is enabled
with the sample connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR50506I, the SQL
command, SELECT * FROM EMPLOYEE, results in access to
the table for MATT since his authorization ID has been
translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NR50506I, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in
MITCH and JIM having access to the table because RACF list
of groups access checking is enabled with the sample signon
exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NRR5N600, the SQL

SQL DB2
command, SELECT * FROM EMPLOYEE, results in no Userid Auth. ID Results
authorization ID translations since there is no entry for) .
LUNAME NRR5N600 in SYSIBM.LUNAMES. MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
SQL DB2
Userid Auth. ID Results JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
MITCH MITCH MITCH.EMPLOYEE is an undefined name ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
MATT MATT MATT.EMPLOYEE is an undefined name Using a remote client with LUNAME NR50C16l, the SQL
JIM JIM JIM.EMPLOYEE is an undefined name command, SELECT * FROM TESTSQLEMPLOYEE, results in no
') access to the table for MITCH because RACF list of groups
ORION ~ ORION ORION.EMPLOYEE is an undefined name | 50655 checking is not enabled with the default signon exit.
Using a remote client with LUNAME NRR5NG00O, the SQL saL DB2
command, SELECT * FROM TESTSQL.EMPLOYEE, results in Userid Auth. ID Results
access to the table for users MITCH, MATT, and JIM because i
. . . . MITCH MITCH -551 (not authorized to SELECT from table)
RACF group is enabled with the sample connection exit.
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
SQL DB2
Userid Auth. ID Results JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
MATT MATT R trieved fl TESTSQL.EMPLOYEE) . .
ows refmeved from Using a remote client with LUNAME NR505061, the SQL
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE | command, SELECT * FROM EMPLOYEE, results in success
ORION ORION -851 (not authorized to SELECT from table) | ONIY for MATT because his authorization 1D has been

Sample connection and default signon exits

The following examples using the sample connection exit and
the default signon exit are based on the sample input to the
DB2 tables provided in the DB2 authorization ID Translation
section of this article.

On TSO, the SQL command, SELECT * FROM
TESTSQL.EMPLOYEE, produces the following result: RACF list
of groups access checking is enabled with the sample
connection exit.

translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME LU NR50506I, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in no
access for MITCH and JIM because RACF list of groups
access checking is not enabled with the default signon exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT MATT Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM EMPLOYEE, produces the
following result: MATT, JIM, and ORION have access because
their authorization IDs have been translated to TESTSQL SQL

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

DB2 for 0S/390 hints and tips, continued

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM EMPLOYEE, does not translate any
of the authorization IDs since there is no entry for LUNAME
NRR5N600 in SYSIBM.LUNAMES.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT MATT MATT.EMPLOYEE is an undefined name
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in
access to the table for user MITCH, MATT, and JIM because
RACEF list of groups access checking is enabled with the
sample connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT MATT Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE
ORION ORION -551 (not authorized to SELECT from table)

Default connection and sample signon exits

The following examples using the sample connection exit and
the default signon exit are based on the sample input to the
DB2 tables provided in the DB2 authorization ID Translation
section of this article.

On TSO, the SQL command, SELECT * FROM
TESTSQL.EMPLOYEE, produces the following result: RACF list
of groups access checking is not enabled with the default
connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT MATT -551 (not authorized to SELECT from table)
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM EMPLOVYEE, results in access to
the table for userid MATT, JIM, and ORION because their
authorization IDs have been translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR50C16l, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, produces
the following result: authorization ID Mitch now has access to
the table because RACEF list of groups access checking is
enabled with the sample signon exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
ORION TESTSQL Rows retrieved from TESTSQL.EMPLOYEE

Using a remote client with LUNAME NR505061, the SQL
command, SELECT * FROM EMPLOVYEE, results in access to
the table for user MATT because his authorization ID has been
translated to TESTSQL.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NR505061, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in
access to the table for MITCH and JIM because RACF group
access is enabled with the sample signon exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH Rows retrieved from TESTSQL.EMPLOYEE
MATT TESTSQL Rows retrieved from TESTSQL.EMPLOYEE
JIM JIM Rows retrieved from TESTSQL.EMPLOYEE
ORION ORION -551 (not authorized to SELECT from table)

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM EMPLOYEE, results in no
authorization ID translations since there is no provision for
LUNAME NRR5N600 in SYSIBM.LUNAMES.

SQL DB2

Userid Auth. ID Results

MITCH MITCH MITCH.EMPLOYEE is an undefined name
MATT MATT MATT.EMPLOYEE is an undefined name
JIM JIM JIM.EMPLOYEE is an undefined name
ORION ORION ORION.EMPLOYEE is an undefined name

Using a remote client with LUNAME NRR5N600, the SQL
command, SELECT * FROM TESTSQL.EMPLOYEE, results in no
access because RACF list of groups access checking is not
enabled with the default connection exit.

SQL DB2

Userid Auth. ID Results

MITCH MITCH -551 (not authorized to SELECT from table)
MATT MATT -551 (not authorized to SELECT from table)
JIM JIM -551 (not authorized to SELECT from table)
ORION ORION -551 (not authorized to SELECT from table)

Binding VisualAge Generator Developer

The VisualAge Generator access module must be bound with
the DB2 subsystem before tables can be accessed during
development and test of your application. To grant the
minimum DB2 authority required to perform this binding, the
DB2 system administrator should issue the following
commands:

GRANT BINDADD TO userid;
GRANT CREATE IN COLLECTION DEVELOP TO userid

After this authority has been granted, you can bind the
VisualAge Generator’'s access module by issuing the following
commands in a DB2 Command Window:

db2 connect to dbname user userid using password

db2 bind pathname\bindfile blocking all sglerror continue grant public
messages vgbind.msg datetime xxx

db2 connect reset

Parameters messages vgbind.msg and datetime xxx are
optional, pathname\ is the directory where you installed
VisualAge Generator, and bindfile is the name of the bind file
for your release (e.g., hptbnd231.bnd for V3.1 and
hptbnd240.bnd for V4.0).

If VisualAge Generator is not bound to the DB2 subsystem
prior to the first SQL access, VisualAge Generator will prompt
you to prepare the access module. If you do not bind the
access module prior to the first SQL access, you cannot
specify the datetime parameter, which controls the format of
date values. This might lead to SQL errors when accessing
DB2 tables that contain date columns. If this occurs, the
package must be freed to correct any bind-related errors. The

SELECT NAME FROM SYSIBM.SYSPACKAGE WHERE
COLLID="DEVELOP’

SQL command will provide a list of VisualAge Generator
package names:

DSN SYSTEM(DSN)
FREE PACKAGE(DEVELOP.HPT2W311)
END

To free or drop the package from DB2, invoke the following
sequence of commands:

The package name depends on the version, release and fix
pack level of the VisualAge Generator (e.g., HPT2W310 for
V3.1, HPT2W311 for V3.1 at fix pack 1, and HPT2W400 for
V4.0).m

Some frequently asked questions for
VisualAge Generator on 0S/400

by Audra Downey, VisualAge Generator Developer and Ying Chen, VisualAge Generator Developer

Q1: | have successfully generated and transferred an
application to a remote AS/400 machine, but | didn’t
receive a job execution message or spool files to indicate
a compilation of these programs. What happened?

If you generated an application for the AS/400 target
environment, but did not receive any job messages from the
spool file (WRKSPLF) or did not receive any job run
completion message (DSPMSQG), it is possible that you might
have incorrectly set up your compilation CL program from the
template efk24pbj.tpl.

First, you should determine if you can manually submit the
generated job. At an AS/400 interactive terminal type:

SBVDBJOB FI LE(dest i b/ QVGNIJOB) MBR(appnane)

where destlib is the target library (defaults to QGPL) and
appname is the name of the application. If you get the
following message:

Job j obnunm QSPLJOB/ j obnane not schedul ed. Error in
BCHJOB command. ,

there is an error in the batch job submitted. One common
problem is that the JOBD contained in the generated batch
program was not set correctly. In the default template
efk24pbj.tpl, %ezeuserid% is used to indicate the JOBD to
use. %ezeuserid% uses the current workstation userid, which
might not be the same as the remote AS/400 machine, which
would then cause an error. You can replace %ezeuserid% in
the template with a fixed value, or use a variable in place of
%ezeuserid% and set its value in the generation option. For
more information on templates, refer to the VisualAge
Generator Generation Guide (SH23-0263).

Next, if the SBMDBJOB command was successful, verify that
you are successful in submitting the job. In the generated
appname.PRP file, look for the following line:

: TYPE PART_TYPE=" EZECLJ' WORKSTATI ON_EXT=".CLJ’
PREP_SUBM T="Y’

At the same time, look for TYPE="EZECLJ’ under the last
CONTROL tag. This should be present to indicate that this file
needs to be submitted.

Last, if you are running VisualAge Generator V4.0, then you
should also check that you have the correct version of
ObjRexx (1.0.3.0 or later) installed on your workstation. The
required version of ObjRexx is included with VisualAge
Generator and must be installed.

Q2: How do | include debug view to the compile?

You can modify your template so that it will always create
debug information on compilation. Alternatively, you can
modify the CL program submitted for the compile, recompile i,
and obtain debug information. To modify the CL template so
you always have debug information, first make a backup of the
original. Depending on the type of program you have
generated, the names of the templates to be modified are:

ef k24pm. tpl - VAGened Mai n application without SQL
ef k24pcl . tpl - VAGened Cal |l ed application without SQ.
ef k24psm tpl - VAGened Main application with SQ.

ef k24psc.tpl - VAGened Cal | ed application w th SQ

Then, include the line:
DBGVI EW(* SOURCE)

in all CRTCBLMOD and CRTSQLCBLI (SQL application
contains both) commands. Use ‘+’ to continue the command.
For example:

CRTCBLMOD MODULE(%ezedest | i b% Y%ezenbr%) +
SRCFI LE(%ezedest | i b% QVGNCBLS) +
SRCMBR(%ezenbr % +
OUTPUT(* PRI NT) +
OPTI ON(* NOSRC) +
DBGVI EW * SOURCE) +
AUT(* LI BCRTAUT) +
OPTI M ZE(*BASI C) +
TEXT(* VAGEN MAI N appl i cation’)

Alternatively, if you do not always want debug information in
your generated programs, then modify the generated CL
program by adding the line, DGBVIEW (*SOURCE). The CL
program is contained in file QVGNCLS, and its member name
is the same as the application you generated. Resubmit the
job after you update the program using the following
command:

SBVDBJOB FI LE(dest | i b/ QUGNJOB) MBR(appnane)
Q3: How do | debug a server application?

First, you need to compile the server application with the
debug view. (See question #2)

Then, start the client/server program so that a connection is
established and maintained. A connection is established
when a server program is first requested by the client. To
maintain this connection, ensure that the client program does
not exit.

Next, on your AS/400 terminal (separate from the client), type
WRKACTJOB. Look for the job QZRCSRVS under subsystem
QSYSWRK or QUSRWRK depending on the installed OS/400
version on your machine. First, verify that this is the right job for
this client connection by selecting 5 - work with job option,
then selecting 10 - display job log. Look for “Servicing user
profile” in the job log. This should be followed by your profile
name. Look for “Client request - run program QVGN/
QVGNSRVR” and check the time stamp on the job as well.

If this is the correct job, write down its job number. You can
obtain the job number on top of the Display Job Log panel. Exit
WRKACTJOB.

On the command prompt, type:
STRSRVJOB JOB(j obnum QUSER/ QZRCSRVS)

where jobnum is the number you wrote down associated with
the job QZRCSRVS.

Then, type:
STRDBG appnane

to add breakpoints in the server program. Exit the server
program source.

Continue running your client program so that it calls the server
program. When the program reaches a breakpoint, your AS/
400 terminal will display source code for you to step through.

When finished debugging, type:
ENDDBG

followed by:

ENDSRVJ 0B

Q4: |1 have followed the instruction from Running VisualGen
Applications on OS/400 to move a prepared application to
other OS/400 Systems, but my program doesn’t run
correctly.

One common problem is moving the prepared application
from a V3R1/V3R2 machine to a V3R6 (or later) machine, or
vice versa. V3R1/V3R2 are IMPI machines, while V3R6 (or
later) are RISC machines. Thus, a program compiled on one
machine level will not run properly on the other.

The best way to move the application in this case is to
generate the application directly to the target machine, and
compile it there. You can also create a SAVF file from one
machine to another - but you must include all generated data.
After you restore your SAVF file on the target machine, you
should submit the CL job that will trigger the compile. The CL
job should be in your library, contained in the file QVGNJOB -
with the name the same as the application name. If you don'’t

use the same JOBD or library for your file, you will need to
modify the CL programs to reflect those values.

Q5: How do | find out what is the latest PTF available for
VisualAge Generator on the AS/4007?

You should contact your IBM customer representative for the
latest PTF for VisualAge Generator on the AS/400. There are
two information APARs that keep track of the latest PTFs for
VisualGen Runtime Services for OS/400. The APARs are as
follows:

| 108904 for 5763VGL
1109438 for 5716VGL

Q6: An application retrieves data from a database whose
date is stored in the format yyyy-mm-dd and the map mask
is yyyy-mm-dd. In test mode the date field appears in the
correct format but when the program is run on the AS/400
the TUI displays the date in the yy-mm-dd format.

You need to set an option when the SQL ILE COBOL object is
created. The default for the date format is *JOB. For the date to
be retrieved in the yyyy-mm-dd format, the date format needs
to be *ISO.

You can do this in two ways:

1) You can modify the templates efk24psc.tpl and efk24psm.tpl
to include the statement DATEFMT(*ISO). This statement is
inserted in the CRTSQLCBLI command. After this is done, you
need to re-issue the submit job command.

For example:

CRTSQLCBLI OBJ(%ezedest!li b% %ezenbryy +
SRCFI LE(%ezedest | i b% QVGNCBLS) +
SRCMBR(Yezenbr %9 +
OBJTYPE(* MODULE) +
DATFMT(*1 SO) + OUTPUT(*NONE) +
OPTION(*SQL /* or *SYS */ +
* QUOTE * APOSTSQL +
*NOGEN / * enabl es 2-step conpile */ +
) +
COW T(*CHG) +
CLOSQLCSR(* ENDACTGRP) +
/* DFTRDBCOL(default collection) */ +
TEXT(‘ VAGEN CALLED application w SQ.")

2) On the AS/400, modify the CRTSQLCBLI command in the
member destlib/QVGNCLS.appname (where destlib is the
destination library and appname is the name of the generated
application) to include DATFMT(*ISO). After modifying the
member, type the following command:

SBVDBJOB FI LE(dest | i b/ QVGNIJOB) MBR(appnane)

where destlib is the destination library and appname is the
name of the generated application.m

FUNCTIONS - Here at last!!

by Frieda Dollar, VisualAge Generator Developer

So, have you been a VAGen or CSP
customer for some time now and been
frustrated by not being able to pass
arguments to a process or statement
group? Have you been confused about
the differences between processes and
statement groups? Good news! VAGen
V4.0 solves both of those problems for
you! We have merged processes and
statement groups into a single part type
called a function.

We have further enhanced the new
function part to allow arguments to be
passed into a function and to allow that
function to return a value. In addition,
you now have the opportunity to define
areas of storage that are known only to
that function. We call those local storage
areas. A side effect of all of this is that
you can now qualify an item name used
as a subscript! We even changed the
syntax of our statements to use square
brackets instead of round brackets to
denote subscripts. Terminology has
changed too. Scope now means what
you have always thought it should. Wow!
Let’s back up and take a look at these
thoughts one at a time to better
understand functions and what their
introduction into the product will mean to
you.

Scope

In the past, the term scope was used to
determine where the characteristics of a
data item were located. Were they local
to the record or table that contained the
item or were they global to the library
and shared by multiple records and/or
tables? This terminology proved
confusing for all of us. You tried to make
it mean what it means in other
programming languages - who has
access to the data in those items? a
single process? the entire program? So,
all existing references to global and
local scope are changed to use the
terminology shared and non-shared
definition. Scope is now used the way
you would expect. The scope of a data
item or record indicates whether the
data area is known to the entire program
or whether it’s use is restricted to the
function in which it is named.

Square brackets

As computer languages evolved, the
newer languages chose to use square
brackets (Ex: []) to denote subscripts
where older languages had used round
brackets (Ex: (), also known as
parentheses). Our use of round brackets
has frustrated many of our customers
who are familiar with the newer
computing languages. Since we needed
a way to denote the argument list when
invoking a function, it seemed like a
good time to ‘bite the bullet’ and change
our syntax. Therefore, round brackets
are now used to denote the argument list
and square brackets are now used to
denote the subscripts. Migration will
automatically change them for you. In
the long term this will make it easier to
switch between VAGen and other
languages.

Qualified subscript names

Subscript names no longer have to be
unique across an entire program.
Instead, you have the ability to qualify a
subscript item name with a record, table,
or map name.

Processes and statement
groups merge

Our use of both processes and
statement groups may have confused
many of you. If you never really figured
out all of the differences, you don’t have
to bother any more. We have merged
these two very similar part types into a
single part type - a function. Migration
understands how to read old processes
and statement groups and turn them into
functions, changing the statement
syntax as it goes. You don't have to re-
code these unless you want to take
advantage of the new capabilities
provided.

Local storage areas

For a function, you may specify any
number of working storage records or
items that are to be used as local
storage areas for that function. The
scope of reference for a record or item

named as local storage for a function is
limited to that function only. If it is to be
known by any other function, it must be
passed to that function as an argument.
If it is to be known to the caller, then it
should not be a local storage definition.
The same record or item can be named
in the local storage list for more than one
function. Each function gets a separate
copy of the storage mapped by the
definition. Local storage is not initialized
upon entry into a function. Therefore,
you should make no assumptions as to
any of the local storage data area
values.

Functions with parameters
and return values

All of the above enhancements were
really outgrowths of our original design
goal: to be able to pass arguments into a
function, have that function receive
those arguments as parameters, have
the statements in the function reference
the arguments by parameter names, and
then optionally return a value to the
calling function. Basically, we want to
help you write reusable code. In order to
do that, you need to be able to have a
piece of code (a function) that uses
generic names (parameter names) to
access the data that is passed to it as
arguments. We have given you the
capability to pass items, working storage
records, or literals as arguments. Within
the function, you reference the data
areas by the parameter names. Since
parameters are passed by reference, we
modify the storage areas for the
arguments.

Let’s look at how you invoke a function.
In the past, you either PERFROMed a
process or you invoked a statement
group simply by naming it. Since there
isn't a difference between processes
and statement groups any more, we
have dropped the PERFORM keyword.
Will we forget and type it in? Yes! Will
statement validation tell us that it is
invalid syntax? Yes! To invoke a
function, you simply state it's name and
follow the name by the argument list.

The argument list must be included in
round brackets and individual
arguments are separated by commas.
The round brackets are required even if
you don’t have any arguments. That's so
we can tell the difference between a
function name and a data item name.
Without the round brackets, there were
some cases that we had trouble with.
Oh, in case you're worried about all of
your old code, migration took care of
removing the PERFORM keyword for you
and it also put in empty argument lists on
all of your old process and statement
group invocations.

OK, that’s all very nice, you say. But,
sometimes what you really want to do is
to invoke a function and, when all is said
and done, have some resulting value
assigned to a variable. You could pass
that variable in as an argument, but that
is clumsy and doesn’t make for very
readable code. To solve that problem,
we have given you the ability to define a
return value for a function. You can then
specify an argument on the EZERTN
function word and the value of that
argument is what gets assigned to the
variable on exit from the function. That
means that you can say Bl GGEST =
MAX(A, B, C, D E); we call
invoking a function in this way using a
function “inline”.

Accessing state information
for parameters

State information for a record received
as a parameter is not available.
However, if you define an item
parameter as an SQL item or as a map
item and you pass an SQL item or map
item as an argument, then the SQL state
information or the map item state
information is available to the logic of
the receiving function. This is so you
can have reusable routines that test for
and modify the state of the item. For

Hmmmm . .. so now you can write
reusable functions, passing in

arguments and getting back a
return value.

example, you can code the following
statements in the receiving function:

TEST sql -item TRUNC true, fal se;
or SET map-item MODI FI ED;

Generic data typing

Defining item parameters with one of the
normal data types specifies strong
typing of the parameter. For these data
types, you specify the bytes and
decimals values. Test and generation
will require exact matches between
arguments and parameters when strong
typing is used.

But “Wait a minute,” you say. “I want to
be able to say BI GGEST = MAX (A, B,
C, D, E); and sometimes pass binary
values as arguments and sometimes
pass packed values. Or maybe | want a
function to do string manipulation on a
string that is sometimes 5 bytes long and
sometimes 10 bytes. Can | do that?”
Sure you can! We have relaxed the
typing restrictions by introducing a
number of ANY item types that can be
used only in the definition of parameters
for a function. For each of the string data
types, there is a corresponding ANY
data type that will accept any length
string of that basic type. There is also an
ANYNUMERIC data type that will accept
any length, any number of decimal
places, any numeric data type as input.
Using ANY data types specifies loose
typing of parameters.

What is really happening is that we are
allowing you to write a single function
and we are figuring out all of the
combinations of ways that you are
invoking that function within a program.
Where necessary, we are generating
multiple copies of the function code, one
copy for each unique combination of
loosely typed argument definitions used
within the program. If you invoke the
same function many different ways in the
same program, use care because your
generated program could get quite
large.

EZEwords become functions

Much of the support that we have
supplied in the past, via the special
EZEwords available on the CALL
statement, can really be viewed as
VAGen supplied functions. In keeping
with that thought, we have converted
their invocation syntax to match that of
the functions that you would define. Most
of these functions are string and math
functions, but there are a few others as
well. Some are appropriate to use as
“inline” while others are “standalone”. A
new EZEword, EZEREPLY, is provided for
use with the EZEword functions. It
controls the setting of EZERTS after the
function invocation in the same way as
the REPLY option on the CALL
statement. During migration, the CALL
statements for these EZEword
invocations are converted to a function
invocation for you. Statements to set the
value of EZEREPLY are added as
necessary.

The future

Hmmmm . . . so now you can write
reusable functions, passing in
arguments and getting back a return
value. Not bad! By looking at the
parameter list definition and the return
value definition, you can determine how
to invoke the function without having to
study the logic of the function to decide
what you need to add to your program.
Not bad! Do you want more? Sure you
do! We do too. We have lots of ideas for
additional capability to add. There are
numerous restrictions that we had to
enforce in this first pass at functions in
order to keep the scope and size of the
release under control. We'd like to lift
those restrictions. The list of possibilities
for the future is long, but instead of trying
to do everything all at once, we’d like
your input to help us set priorities. Let us
know using the online reader comment
form available on the VisualAge
Generator website, http://www.ibm.com/
software/ad/visgen/m

Functions, local storage, parameters:
everything you wanted to know and then some

by Guy Slade, VisualAge Generator Developer

This article consolidates several
important topics regarding the VAGen
Function part into one easy-to-read
document. The Function part replaces
the Statement Group and Process parts
used in all previous releases of
VisualAge Generator (VAGen) and Cross
System Product. There are some
concepts new to VAGen that are part of
the Function part such as passed
parameters and local storage. To help
you work effectively with these new
concepts, this article addresses the
following topics: name resolution,
argument passing, and the function
return value.

Name resolution

If you reference an unqualified data item
name or record/table name within 4GL
code in a function, how does VAGen
decide which object you are
referencing? The answer is obvious if it
is a data item that exists in a single
record but what happens if it exists
within two records? Version 4.0 of
VAGen adds to the complexity of this
scenario with the introduction of
functions. With the implementation of
functions, you have to think about
passed parameters and local function
storage. In this model, a data item can
exist in several different working storage
records. It can also be specified in the
function’s passed parameter list or its
local storage list, and it can be defined
as a data item that exists in the I/O object
(for example, if the function conversed a
map then the 1/O object would be the
map).

Name resolution rules

The following is a search order list
starting from the first place that VAGen
looks to resolve the name through to the
last place VAGen looks. The name could

be a record, table, or unqualified data
item.

1. VAGen checks to see if the name
corresponds to a data item specified in
the functions local storage list or passed
parameters list. Parameter and local
storage data items are not allowed to
have the same name so VAGen can
check both of these areas without fear of
ambiguous reference. For example, you
can't define a parameter data item with a
name of BOB and also define a local
storage data item called BOB. If the
name is resolved to a data item in the
functions local storage or parameters
list, then the resolution is successful.

2. VAGen checks to see if the name is:

e The function’s 1/O object or a data
item contained within the function
object.

e A record specified in the functions
parameter list or a data item
contained within the record

e A record specified in the functions
local storage list or a data item
contained within the record.

If the name is not unique across this
category, then it is an ambiguous
reference and an error is issued.

If the name is found (this could have
been resolved to either a data item,
record, or map) and is not ambiguous,
then the resolution is successful.

3. VAGen checks to see if the data item
is:

e Any other function’s I/O object or a
data item contained within any other
function’s object

® The program’'s main working storage
record or a data item in this record
e Arecord or table specified in the

program’s list of tables and additional
records

e A data item within a record or table
specified in the program'’s list of tables
and additional records

If the name is not unique across this
category, then it is an ambiguous
reference and an error is issued.

If the name is found (this could have
been resolved to either a data item,
record, or map) and is not ambiguous,
then the resolution is successful.

When writing 4GL code, it is important to
know and understand these resolution
rules so that when you reference a data
item or record, the action that you have
coded executes against the appropriate
object. It is a good coding practice to
qualify any data items used in 4GL
scripting; however, this is not always
possible. For example, data items that
are specified as a function’s parameter
or local storage would not be fully
qualified.

Passing arguments

When invoking a function, you can pass
arguments to the function. This, along
with the fact that you can specify local
storage for a function, allows you to write
a truly reusable, self-contained function.

You also have the ability to specify ANY
data types when defining a function’s
parameter list. For example, you may
have a function that accepts two
numbers as arguments, adds them
together and returns the result. To
provide the function with the flexibility to
accept any type of number (i.e. bin, pack
num) of any length, you would define the
two parameters as ANYNUMERIC types.

Arguments are passed by reference. For
example, program PROGA has working
storage record, WREC1, defined in its
additional tables and records list and
this record has a data item defined,

named BOB. PROGA has a main
function FUNCA defined. FUNCA has
the following code:

/* invoke funch passing a
par anmet er

WRECL. BOB = * XXX’ ;

FUNCB(WRECL1. BOB) ;

WRECL. TI M = WRECL. BOB;

FUNCB is defined to accept the
argument, SAM. FUNCB has the
following code:

SAM = * YYY

Because arguments are passed by
reference, this means that when FUNCB
assigns ‘'YYY’ to SAM, it also assigns
YYY’ to WREC1.BOB. So the last
statement in FUNCA, “WRECL. TIM =
WRECL. BOB; ", results in ‘'YYY’ being
assigned to WREC1.TIM.

Function return value

Rules for return values include the
following:

1. If you invoke an inline function (e.g. X
= FUNCA();) then you must specify a
return value for the function. The
characteristics that you specify for the
function’s return value must match the
characteristics of the data item that will
be returned (i.e. the argument used in
the EZERTN statement). For example, if
the function’s return value is defined as
char 12 and the following EZERTN
statement is used:
“EZERTN(WS.ITEM1);”, then ITEM1
would have to be defined as char 12 in
the working storage record, WS.
Currently you can not use the ANY data
type when defining a function’s return
value; therefore, tight type-matching is
performed.

2. If you specify a return value for a
function and then exit the function via an
EZERTN statement, you must supply an
argument in the EZERTN call (e.g.
EZERTN(TOTAL);). The argument must
either be a data item with characteristics
that match those of the function’s return
value or a literal that matches the
function’s return value characteristics. If
you are returning a numeric literal, the
function’s return value must be defined
as a NUM type . You can also exit from a
function that has a return value specified
without the use of an EZERTN statement.
In this case, a temporary data item is
returned with the characteristics of the
return value set to a default value (e.g., a
blank for CHAR and a zero for NUM).

3. If you do not specify a return value for
a function and you exit the function via
an EZERTN statement, you cannot
specify an argument in the EZERTN call.

Functions and segmented
transactions

The new flexibility that functions bring to
the 4GL is a great step forward.
Currently there are certain restrictions
regarding functions, some of which are
already mentioned in this article. One
further restriction concerns segmented
transactions. The restriction is that if you
have generated a program as a main
segmented transaction or have a
segmented converse in a non-
segmented program by using the
EZESEGTR EZEword, when the map is
CONVERSE(, functions in the current
processing stack cannot have
parameters, local storage, or a return
value defined. For example, suppose
there are three functions: FUNCA,
FUNCB, and FUNCC. FUNCA invokes

FUNCB, which in turn invokes FUNCC.
Now suppose FUNCB has a local
storage data item defined and FUNCC
converses a map in segmented mode. If
this occurs when you are testing in ITF,
a hard error is issued. If this occurs
when you are generating the program, a
warning message is issued. If this
occurs during runtime, an
unrecoverable error occurs.

If you want to include reusable functions
within a segmented program, then you
must make sure that at any CONVERSE
these functions are no longer in the
processing stack. The code in the
example could be designed so that
FUNCA invokes FUNCB, FUNCB
finishes processing and returns to
FUNCA, and FUNCA invokes FUNCC
which performs the CONVERSE without
error.

The introduction of function parts to the
VAGen 4GL language is an important
step in allowing the coding of truly
reusable functions. The new rules
involved in name resolution and
argument passing are more complex
than before. However, armed with the
information in this article, the
documentation that comes with the
VAGen product, and, of course, your
own common sense, you should be able
to code reusable parts and understand
their behavior.m

VisualAge Smalltalk vs. VisualAge for Java:

A simple comparison

by Jon Shavor, VisualAge Generator Developer

Now you have a choice! Prior to Version 4.0, VisualAge
Generator was available only on the VisualAge Smalltalk
environment. Now, with Version 4.0 you can also run
VisualAge Generator on the VisualAge for Java environment.
While there are some similarities, there are also some subtle,
but important, differences between the two environments. If
you are already familiar with VisualAge Generator V3.0 or V3.1,
understanding the terminology differences will help you
become more comfortable with the new VisualAge for Java
environment.

Library basics

Both VisualAge Smalltalk and VisualAge for Java have a library
management system, ENVY. In VisualAge Smalltalk, ENVY
components are stored in the manager or library. In VisualAge
for Java, it is called the repository. The terms manager, library,
and repository are synonyms. In VisualAge Smalltalk, your
“working set’ of objects is called an Image (abt.icx by default).
In VisualAge for Java, it is called a Workspace (ide.icx by
default). VisualAge Smalltalk uses “abt” as a prefix in many of
its files and VisualAge for Java uses the prefix “ide”. For
example, the VisualAge Smalltalk abt.ini file is similar to the
VisualAge for Java ide.ini file.

VisualAge VisualAge Description
Smalitalk for Java

manager, repository ENVY library

library management system

Image (abt.icx) Workspace (ide.icx) working set of objects

Windows

After starting VisualAge Smalltalk, the first window displayed is
the Organizer. The corresponding main window in VisualAge
for Java is the Workbench. The Workbench is the main
window that you will use to navigate within VisualAge for Java.
In VisualAge Smalltalk, there is a System Transcript window
which, among other things, logs ENVY messages. In VisualAge
for Java, the corresponding window is the Log. VisualAge
Smalltalk’'s Workspace dialog is displayed when you select
File>>New or when a file is opened. The corresponding
dialog in VisualAge for Java is the Scrapbook dialog. You can
use these dialogs to execute code or edit a text file. Both
VisualAge Smalltalk and VisualAge for Java provide browsers
to look at components contained in the ENVY repository. In
VisualAge Smalltalk there are the Configuration Map Browser
and the Application Editions Browser. In VisualAge for Java
there is a browser called the Repository Explorer.

VisualAge VisualAge Description
Smalitalk for Java

Organizer Workbench main window
System Log ENVY library
Transcript message log
Workspace Scrapbook Dialog to execute
dialog dialog code or edit a file
Configuration Map Repository Facility to view
browser, Application Explorer components in

Editions browser the ENVY repository

Library components

VisualAge Smalltalk has Configuration Maps to organize
Applications. VisualAge for Java has Projects to organize
Packages. In VisualAge for Java, a package cannot be loaded
independently like a VisualAge Smalltalk application can. A
package must be contained in a project. A Configuration Map
is a list of applications that can be conveniently acted upon as
a unit (load, import, export, etc). There is a “loose” relationship
between a Configuration Map and an Application. An
Application can be contained by multiple Configuration Maps.
If these Configuration Maps are loaded, the edition of the
Application released into the last Configuration Map loaded is
in the image.

A Project contains one or more Packages. There is a “tight”
connection between a Package and its containing Project. A
Package can be in multiple Projects, but only one of these
Projects can be in the workspace at a time. If you try to add
another Project, containing a Package that is already in the
workspace, an error occurs.

Another way to look at the “loose” vs. “tight” relationship is to
recognize that in VisualAge Smalltalk, an application can exist
by itself with no containing Configuration Map. However, in
VisualAge Java, a Package cannot exist outside of a Project. It
has to be contained in a Project.

In VisualAge Smalltalk, applications can have configuration
expressions, prerequisites, and SubApplications. There are no
equivalent constructs in VisualAge for Java. For example,
there is no such thing as a “SubPackage” in VisualAge for
Java. Configuration Maps can have configuration expressions
and required maps. There are no equivalent constructs of
these in VisualAge for Java.

Note: See the “VisualAge Generator” section for a
VAGen extension to VisualAge for Java that is similar
to required maps.

VisualAge VisualAge Description

Smalltalk for Java

Application Package a group of functionally-
related parts

Configuration Project a collection of related

Map applications or packages

Library management

The VisualAge for Java Workbench and the VisualAge Smalltalk
Organizer have some similarities. For example, various library-
related tasks (e.g. version, release, and copy) can be performed
from both of them. However, some of the terminology has
changed. For example, “Load Available” in VisualAge Smalltalk
is “Add” in VisualAge for Java. In VisualAge for Java, you can
use Add to load an existing component from the repository or
create a new component. VisualAge Smalltalk uses “New” to
create a component that does not already exist in the library.
When loading a different edition of a component, VisualAge
Smalltalk uses “Load Another Edition.” VisualAge for Java’s
equivalent is “Replace With.” “Unload” is used in VisualAge
Smalltalk to remove a component from the image. The
equivalent function in VisualAge for Java is “Delete.” Like
“Unload,” “Delete” removes the component from the workspace,
not the repository. To remove something from the repository, use
“Purge” for both VisualAge Smalltalk and VisualAge for Java.
Anything purged can be restored with “Salvage” in VisualAge
Smalltalk (“Restore” in VisualAge for Java) at a later time.
Purging does not really remove the component from the
repository, it just hides it from view.

VisualAge Smalltalk uses “Browse Changes” or “Browse
Differences” to compare components. VisualAge for Java uses
“Compare With.” In VisualAge Smalltalk, Configuration Maps and
Applications have a “manager” and Classes have an “owner.” In
VisualAge for Java, Projects, Packages, and Classes all have an
“owner.” There is no concept of managing a component in
VisualAge for Java. VisualAge for Java has combined the
“Copy,” “Move,” and “Rename” actions under a cascaded
menu called “Reorganize.” Also, “Version,” “Release,” and
“Create Open Edition” have been combined under a cascaded
menu called “Manage.”

VisualAge Generator

VAGen parts are stored conceptually as methods in both
VisualAge Smalltalk and VisualAge for Java. Thus, VAGen parts
have the same ownership issues. All VAGen Programs in one
Application must be owned by the same user. Similarly, all VAGen
Programs in one Package must be owned by the same user.

After the VAGen feature is loaded into VisualAge Smalltalk, the
Organizer window includes a third pane. This pane lists the
VAGen parts. The VAGen parts can be manipulated from the third
pane of the VisualAge Organizer. There is no equivalent in
VisualAge for Java. The Workbench is not modified to show
VAGen parts. If you select a VisualAge for Java method, which
represents a VAGen part in the Workbench, its corresponding
External Source Format is displayed. This is similar to VisualAge
Smalltalk. In VisualAge for Java, the primary window to work with
VAGen parts is the VAGen Parts Browser. In VisualAge Smalltalk,
you can navigate from the VisualAge Organizer or the VAGen
Parts Browser. When the VAGen feature is added to the VisualAge
for Java Workspace, the Open VAGen Parts Browser action, is
added to the Workspace menu of the Workbench. This action
opens the VAGen Parts Browser so you can work with the VAGen
parts.

In VisualAge Smalltalk, when generating in batch, you can specify
a Configuration Map to load. This Configuration Map and any
required maps are loaded prior to generation. Because VisualAge
for Java does not have the concept of required map or required
project, this was a potential problem for VAGen batch generation
on VisualAge for Java. To solve the problem, VAGen has added
an extension to VisualAge for Java to provide a similar function.
This extension is called Project List Part (PLP). The PLP is a
generation options part that specifies the projects required by this
project. When you start a batch generation in VisualAge for Java,
you will specify a Project to load. If this project has a PLP, that PLP
will be processed (required Projects will be loaded) prior to
loading the Project. The PLP in the specified Project potentially
could require other Projects that have PLPs. This extension
enables you to generate in batch using VisualAge for Java in a
similar way to VisualAge Smalltalk.

Miscellaneous

The GUI builder in VisualAge Smalltalk and VisualAge for Java are
similar. It is called the Composition Editor in VisualAge Smalltalk
and Visual Composition in VisualAge for Java.
There are many similar constructs and actions.
There are also differences. Part categories and

parts in the palette are displayed differently. Also,
because there is not a direct correspondence

between VisualAge Smalltalk parts and

VisualAge for Java parts, the available parts are
different between VisualAge Smalltalk and
VisualAge for Java. Dropping and connecting

parts are the same, but some of the available

connectable feature names are different. For

example, a button- clicked event in VisualAge
Smalltalk is a button actionPerformed in
VisualAge for Java. Another example is that “self”

VisualAge Smalitalk VisualAge Description
for Java
Load Available, New Add load an existing component or
Create anew component
LLoad Another Edition Replace With load another edition of acomponent
Unload Delete remove a componentfromthe
image/workspace
Purge Purge hide acomponent from view
Salvaged Restore restore a purged component to view
Browse Changes, Compare With compare components
Browse Differences
manager, owner owner Ownership of components

in VisualAge Smalltalk is “this” in VisualAge
Java.m

Pll never forget ... Whatshisname

By Jon Shavor, VisualAge Generator Developer
and John Ormerod, VisualAge Generator Product Specialist

Do you ever have trouble remembering names, dyslexic
fingers, typing long names over and over again? If you
recognize any, or perhaps all of the above, then help is at
hand.

A new feature that was introduced in VisualAge Generator
V3.1 has been improved in V4.0 and in V3.1 FixPak 3. This
feature enables you to paste the names of parts in your image
into the Function Editor statements area. Some performance
and usability issues were addressed to improve this feature,
including the ability to control it using only keyboard
commands.

To use this feature from the Function Editor, select Paste Part
Name from the context menu. From the cascading menu,
select the part type you want to paste. A window containing a
list of those parts is displayed.

ri An prosgde @ eviey gl
wri by dwdebed,

Is e v [i

™ _ Ll J._}lnll-p:l"“mrur 0 7]
. (=) e - |
A (=23

= ; L T TN AR o i

" o

To filter the list, select the Visibility option. The three choices
are: VAGen part, Package, and Image. The VAGen part choice
limits the selection to what is visible within the context of the
VisualAge Generator part. For example, if you open the
Program Editor and double-click on a function, the list of
records displayed in the Part Names window includes the
function object (if it is a record), the program’s working storage
record, and any records in the program’s table and additional
records list. The Package choice displays all the parts of this
type in the Java package where the function part is defined.
The Image choice displays all the parts of this type that are
loaded in the image.

:f_.__ Part Homes - Hecod

EMPLORDAWEEGIMEEY
EMPLOR0AWTHeREEY
| EMPLORDAWEND-KEY
S EMPLORDANMSTANCE
—— IMSTAMCEFELDS
—— EMFMO

— FIRSTHME

e LASTHAME

= DEFTHAME

f— FHOMEND

—— BIRTHOATE -
4] ;TJ
~Visiily

" WaGenpat ¥ Pagiage 1 Wokspace

|1

¥ Close windaw Fully caskbed name

F'Itl-h
1y

The Paste Part Name feature also provides you the ability to
paste a fully qualified part name. Fully qualified name is
enabled for records, tables, and maps and allows you to paste
a part referenced by the part, for example, an item within a
record. The item can be pasted with or without the qualified
record name (for example: EX99RSUPP.SUPPNO, which
includes the record name).

Performance improvements

In previous versions, when you opened the Part Names
window, all the part definitions from the library were read in
order to show the containing parts (eg: items in records).
Reading all the parts requires a lot of resources. Now, the
reading of the part definition is delayed until you expand the
part (using Ctrl+E, or from the context menu). So, when you list
records, you will not see the data items unless you expand the
part or expand all the parts. This “on-demand” approach to
displaying information significantly reduces the time it takes to
display the Part Names window, especially if you have a large
number of parts loaded into your image.

:f_.__ Fart Hames - FAecord

EMPLDRD-RINSTANCE -
EMPLORO-AMAMTEL

EMPLORD-LI-KEY

EMPLORD WEEGINEEY

EMPLOADWIHARKEY

EMPLORDWENDKEY Expand o pass

" EMPLORD-WNEXT-KEY CotPat.
EMPLORDWPAGE Pasa Pant Name
EMPLORD WREF

l] ¥
— ik
" WaGenpat ¥ Pagiage 1 Wokspace

¥ Close windaw Fully caskbed name

Faste

Help

Usability enhancements

If you prefer to use your mouse to paste part names, you still
can. But now, as you enter statements in the Function Editor
using the keyboard, you can use Paste Part Name without
touching the mouse.

Other enhancements include the addition of Accelerator keys
to expand a record, table, etc. The tabbing order on the Part
Names window has also been improved. A setting is now
available from the Part Names window to give you the option of
automatically closing the window after you paste the part
name. In addition, the settings on the Paste Part Name settings
are saved and used the next time the dialog is shown.

To add the selected part name to the statement area, pressing
Enter or clicking the Paste button adds the selected part name
to the statement area. In the example shown, it adds the fully
qualified item name after the IF statement.

Sy |

L
B o] ||| of|we|p| e]as] 6] [=] e

J#® BEsTER s BEEd EL
do GalCgarpl S

o QA LT able Dobr v b il . L a5 0 | o LG o i
{7 mrwrrsrressTresTrerressres Uawimg tressresvressTesvressTes
ifm This snihad L4 prarrated by W6 Teaplates e praide @ b
dm LE cam b oweeed oo sl Pied, Bl shewld sot e delebed.

Ju mamanm s - an

SFEH

IF 8L WL TRHEE e - |

o

Example

In this example, you are editing a Function part that you
opened from the Program Editor. You have already used the
Part Names window and saved the appropriate settings: a
Visibility setting of VAGen part, Close window, and Fully
qualified name. These settings are saved when you close the
Part Names window.

;._.:l.ll'r"': DT - Peogiom Ediftai

T £ Yoo [ure Tock Hib

e o=t @] ¥ || @lireeoma |
=| 3 pacrsnong Py

I—!l = TEes ared dejeiitmrug Fosmond:
L& 3 CadedPairsie
= =

|
L= [enpLOrD e

Ehuchae Lisgaars

ErEridt
OO wRETSFLRAT Wl Exmcatn
—= [EvPLOr-SELECT ¥ meruis o
— O EWFALORD &S ELHOE, Esanain
=] EHPLOFCHOADLEET gy (RPN AR
— O EHPLOADE SEL HINH Emtvide
— O EHPLOAD-TREAT ALILL Emmrada

4

You need the name of an item from the working storage
record. Hmm, you wonder, was that item named
EX99RSUPP.SUPPNUM or EX99RSUPP.SUPPNO? While your
cursor is in the statement area of the Function part, press
Alt+R to open the Parts Name window for record. Use the
down arrow to locate the record you want. Press the space bar
to select the record. Press Ctrl+E to expand the record. Use
the down arrow key to locate the item you want to paste. Press
the space bar to select the item. Press Enter. The fully qualified
data item is pasted into the Statement area and the Part Names
window is closed.m

1] |

SHARE in Long Beach,
February 25 - March 2, 2001

Keeping with SHARE’s exceptional tradition
of outstanding education and professional
connections for users of IBM technologies,
SHARE in Long Beach is a week-long event

that will deliver nearly 1,000 hours of learn-
ing opportunities across these high-interest
categories:

e Applications Development and Enablement
e Core Competencies for the IT Professional
e Domino on S/390 User Experiences

e ec-Business Access to and from the Mainframe
e ERP on the Mainframe with DB2 and Oracle
e Linux in the Enterprise

e LinuxonVM

e Linuxon S/390

e 0S/390 Release 10 User Experiences

e Software Asset Management

e Storage Area Networks (SANS)

e Systems Management

e Using Windows 2000 for e-Business

On Thursday, March1, the following VAGen sessions will be held:

Session Time Speaker Title

8385 9:30 Rusty Edmister VisualAge Generator - Your Application
Development Solution

8386 11:00 Rusty Edmister/ VisualAge Generator - A Strategic IBM

Pat Adams Application Development Environment

8387 1:30 To Be Determined VisualAge Generator - Customer
Experience

8388 3:00 Denise Hendriks VisualAge Generator - Rapidly Building

Web-enabled Java Apps

8389 4:30 Denise Hendriks VisualAge Generator - User Record
Technology Demo

Watch http://www.shareinlongbeach.org for the latest event, registration, travel and
housing information.

Planning for migration to VisualAge Generator 4.x

by Debbie Prevost, VisualAge Generator Information Developer

and Jeri Petersen, VisualAge Generator Services Consultant

With VisualAge Generator 4.x, the
development environment has been
ported from Smalltalk to the Java
platform on Windows NT. With VisualAge
Generator on Java, you can easily enter
the e-business arena with web
applications that mix your own
application components with reusable
Java components being developed by
other vendors and business partners.

Note: This article does not address
migration from VisualAge Generator 4.0
to 4.5. Refer to the VisualAge Generator
4.5 and corresponding VisualAge for
Java and VisualAge Smalltalk Readme
documents and Migration Guides for
information on migration from VisualAge
Generator 4.0 to 4.5.

Migration options available

Regardless of your current VisualAge
Generator or Cross System Product
release, you will need to migrate your
applications to be able to use them with
VisualAge Generator 4.x. Depending on
your current platform and whether you
want to migrate to 4.x on Smalltalk or
Java, different migration paths are
available and different considerations
apply. The following table gives a brief
overview of the migration options
available.

Migrating from Migrating to

2. If you are migrating to VisualAge
Generator 4.x on Smalltalk from
VisualAge Generator 3., you can use
the V3 to V4 Migration Tool to migrate
both GUI and non-GUI code, but
VAGen Import can only be used to
migrate non-GUI code.

3. If you are migrating to VisualAge
Generator 4.x on Smalltalk from
VisualAge Generator 2.x, you can use
the MSL Migration Assistance Tool or
VAGen Import to migrate both GUI and
non-GUI code.

Automatic conversions using
all migration tools

When you use any of the VisualAge
Generator 4.x migration tools, some
changes are made to your applications
by the tools. These changes are needed
to accommodate changes in the
product. Without these conversions, you
would not be able to use your existing
applications with VisualAge Generator
4.x. Some conversions are only made if
you are migrating from a specific
release, while others are made
regardless of your existing platform.

Tools to Use

VAGen 3.x VAGen 4.x on Smalltalk ® V3 to V4 Migration Tool
or Java (see notes 1 and 2) e VAGen Import
VAGen 2.x VAGen 4.x on Smalltalk ® MSL Migration Assistance Tool

(see notes 1 and 3)

® VVAGen Import

VAGen 4.x on Smalltalk
or Java

Cross System
Product

Notes:

1. None of the VisualAge Generator
tools can be used to migrate existing
GUIs to Java. You will need to recreate
the GUIs using VisualAge Generator
4.x on Java. Then you can add the
recreated GUI parts into the migrated
packages containing your non-GUI
code.

® MSL Migration Assistance Tool
® VVAGen Import

Conversions for all existing
applications

e Process and statement group parts
are converted to function parts.

e References to processes and
statement groups are converted to the
new syntax requirements for
functions with no parameters.

e PERFORM statements and
unconditional branch statements are
no longer supported and are migrated
to function invocation statements.

e Subscript parentheses are changed
to brackets in VisualAge Generator
item names in the following places:

e 4GL statements in functions
(processes and statement groups)

e Host variable names in SQL
statements

e Comparison value item in DL/I
specifications

e EZEDLPCB is used in a called
parameter list

Calls to EZE service routines are
converted to the corresponding function
invocation statement. A statement to set
the value of EZEREPLY is also added
before the function invocation.

Additional conversion only for
VisualAge Generator 3.x
applications

e \isualAge Generator-supplied string
and math functions are converted
from the CALL statement to a function
invocation statement or to an
assignment statement that contains
the function as the source of the
assignment. A statement to set the
value of EZEREPLY is also added
before the function invocation.

Additional conversions only for
VisualAge Generator 2.x and cross
system product applications

e Members become VAGen parts.

e Applications become VAGen
programs. VisualAge Generator 2.x
GUIs become Smalltalk visual parts
and are converted to the format
needed for Smalltalk interoperability.

e For migration from releases earlier
than CSP 3.3, additional syntax
changes occur.

Planning for migration to VisualAge Generator 4.x, continued

V3 to V4 migration tool for 3.x
migrations

The new V3 to V4 Migration Tool
shipped with VisualAge Generator 4.x
allows you to easily migrate 3.x
applications and configuration maps to
4.x on Java or Smalltalk. You can set
migration options for the V3 to V4
Migration Tool, which are applied when
you later select applications and
configuration maps for migration. For
example, you can choose whether to
maintain the existing ownership for all
migrated applications and configuration
maps, and you can set a naming
convention for automatic versioning of
the migrated code.

Special considerations for 3.x
to Java

You can reduce your total migration time
by considering these issues when you
are planning for migrations to the Java
platform:

e The basic containers for storing code
are different on Java and Smalltalk.
What the Smalltalk platform refers to
as applications are called packages
on Java. Similarly, configuration maps
on Smalltalk are replaced by projects
on Java. The V3 to V4 Migration Tool
automatically converts applications
to packages and configuration maps
to projects. You can set an option for a
naming convention to be used in
naming these packages and projects,
or you can specify the names
yourself during the tool's execution.

e Java does not support a concept
similar to subapplications. Therefore,
the V3 to V4 Migration Tool enables
you to set an option specifying
whether to convert subapplications to
separate packages or to merge
subapplications (or migrated
“subpackages”) into the containing
application (or migrated package).

e Although configuration maps are
optional on Smalltalk, every Java

package must be assigned to a
project. However, you cannot assign

required projects on Java the way you
can assign required maps to a
configuration map. Instead, VisualAge
Generator on Java introduces a new
part, called the Project List Part, that
enables you to specify all the projects
that need to be loaded together in
your workspace or generated
together to produce a runtime
application. Project List Parts are
created automatically by the V3 to V4
Migration Tool when you migrate 3.x
configuration maps that contain
required maps to Java. (For 4.0, You
will need to apply FixPak 2 for the
automatic creation of Project List
Parts to be available.)

e When applications containing GUI
code are selected for migration, the
GUI code is ignored and only the
non-GUI code is migrated. After you
recreate the GUI code on Java, you
can merge the GUI parts back into the
migrated package containing the
non-GUI code. Alternatively, put the
Java GUI code in different packages
from your 4GL code.

e Java expects package names to be in
all lowercase characters and to use
“dot notation.” You can set an option in
the V3 to V4 Migration Tool so that the
tool will automatically convert
application names to lowercase and
insert a period to the left of each
character (except the first) that it
changes from uppercase to
lowercase. For example, if an existing
application is named XYZpayrollAppl,
the converted Java package is
named x.y.zpayroll.appl. Some
common acronyms are preserved.

® You cannot use the V3 to V4 Migration
Tool to migrate an open edition of a
3.x application or configuration map.
You must use VisualAge Generator 3.x
to version and release each
application and configuration map
that you want to migrate to 4.x.

Note: Before you can start the V3 to
V4 Migration Tool on Java, you must
start VisualAge Generator using the

VAGen Developer on Java with
Migration option. This special option
is not required on Smallitalk.

Special considerations for 3.x to
Smalltalk

Migrations from VisualAge Generator 3.x
to 4.x on Smalltalk are mostly automated
when you use the V3 to V4 Migration
tool. However, there are a couple of
issues to consider:

e You cannot use the V3 to V4 Migration
Tool to migrate an open edition of a
3.x application or configuration map.
You must use VisualAge Generator 3.x
to version and release each
application and configuration map
that you want to migrate to 4.x.

e Before you can use the V3 to V4
Migration Tool to migrate 3.x code to
4.x on Smalltalk, you must import
each versioned application or
configuration map from your 3.x library
into 4.x. Although the tool performs
this step for you when you migrate to
the Java platform, you must do it
manually for Smalltalk migrations.

MSL migration assistance tool
for VisualAge Generator 2.x
and Cross System Product
migrations

The MSL Migration Assistance Tool
provides a work area, or “sandbox,” in
which you can organize your VisualAge
Generator 2.x or Cross System Product
code into units usable by VisualAge
Generator 4.x. When you are satisfied
with the organization, you can then use
the tool to commit your code to the 4.x
repository.

Note: The MSL Migration Assistance
Tool is sometimes called the MSL
Migration Tool.

Special considerations for 2.x and
Cross System Product to Java

You can reduce your total migration time
by considering these issues when you
are planning for migrations to the Java
platform:

The basic containers for storing code
on Java are projects and packages.
The MSL Migration Assistance Tool
assists you in organizing your
packages. When you commit a group
of packages to the repository, the tool
prompts you for the name of the
project that will contain those
packages.

Java expects package names to be in
all lowercase characters and to use
“dot notation.”

In VisualAge Generator 2.2, separate
files were used to store control
information such as linkage tables,
resource association files, generation
options, bind commands, and linkage
editor control statements. In VisualAge
generator 4.x, control information is
stored in parts in the repository. The
MSL Migration Assistance Tool does
not create these parts. You must
create them manually in VisualAge
Generator 4.x.

Performance is best when you limit a
package to a maximum of 600-700
VAGen parts per VAGen part type. It is
also recommended that you use no
more than 50 classes per package.
When considering this maximum,
remember that processes and
statement groups are both collapsed
into the VAGenFunctions class.

The MSL Migration Assistance Tool
identifies duplicate parts. You need to
resolve most duplicates by renaming
one of the parts and changing all
references to the renamed part.
However, there are two situations in
which you do not need to resolve the
duplicate part names:

1. Duplicates in an MSL
concatenation that are a result of
work-in-progress: For example, the
same part might exist in both a test
MSL and a production MSL. In this
case, migrate the production MSL
first and then migrate the test MSL
to create new editions for the test-
level parts.

2. Duplicates that exist in MSLs that
were never concatenated together
(such as MSLs from unrelated
subsystems): In this case, migrate
one subsystem and then delete
the code from your Java

workspace. Then migrate the
second subsystem. You will be
able to work with one migrated
subsystem or the other, but not
both at the same time.

¢ You will need to assign an owner for
each VAGen class within a package.
You will also need to assign an owner
for each package and project. In
planning your ownership strategy, you
might want to group parts into
packages that reflect how
development and maintenance
responsibilities are divided in your
company. In this way, you can ensure
that few people will need to work in
the same package at the same time
and access conflicts will be
minimized.

e Early releases of Cross System
Product allowed invalid data to be
stored in the MSLs. You must correct
the invalid data in all members before
migrating to VisualAge Generator 4.x.
Examples of invalid data include a
data item that has a length of 0 and a
map that contains a NUM field which
is intended to store dates but is not
long enough to store a date.

Special considerations for 2.x and
Cross System Product to Smalltalk

Special considerations for migrations to
the Smalltalk platform include:

e The basic containers for storing code
in Smalltalk are applications and
configuration maps. However,
VisualAge Generator 2.x and Cross
System Product applications are not
the same as Smalltalk applications.
Therefore, VisualAge Generator 2.x
and Cross System Product

applications are now called programs.

The MSL Migration Assistance Tool
assists you in organizing your MSL
members into Smalltalk applications.
After you commit the migrated
applications into the library, you have
the option of grouping the
applications.

e VisualAge Generator 4.x on Smalltalk
allows you to define a group of
application editions that should be
loaded together into your image.
These groups are called
configuration maps. For example, you

might create a configuration map that
represents all the application editions
that are currently used in your
production environment. If you decide
to use configuration maps, you should
avoid listing the same application in
multiple configuration maps, and you
should consider establishing a
naming convention for your
configuration maps.

In VisualAge Generator 2.2, separate
files were used to store control
information such as linkage tables,
resource association files, generation
options, bind commands, and linkage
editor control statements. In VisualAge
Generator 4.x, control information is
stored in parts in the library. The MSL
Migration Assistance Tool does not
create these parts. You must create
them manually in VisualAge
Generator 4.x.

Performance is best when you limit an
application to a maximum of 600-700
VAGen parts per VAGen part type. It is
also recommended that you use no
more than 50 classes per application.
When considering this maximum,
remember that processes and
statement groups are both collapsed
into the VAGenFunctions class.

The MSL Migration Assistance Tool
identifies duplicate parts. You need to
resolve most duplicates by renaming
one of the parts and changing all
references to the renamed part.
However, there are two situations in
which you do not need to resolve the
duplicate part names:

1. Duplicates in an MSL
concatenation that are a result of
work-in-progress: For example, the
same part might exist in both a test
MSL and a production MSL. In this
case, migrate the production MSL
first and then migrate the test MSL
to create new editions for the test-
level parts.

2. Duplicates that exist in MSLs that
were never concatenated together
(such as MSLs from unrelated
subsystems): In this case, migrate
one subsystem and then delete
the code from your Java
workspace or Smalltalk image.
Then migrate the second

Planning for migration to VisualAge Generator 4.x, continued

subsystem. You will be able to work
with one migrated subsystem or
the other, but not both at the same
time.

e You will need to assign an owner for
each class within an application
(including visual parts and VAGen
part classes). You will also need to
assign an owner for each application
and configuration map. In planning
your ownership strategy, you might
want to group parts into applications
that reflect how development and
maintenance responsibilities are
divided in your company. In this way;,
you can ensure that few people will
need to work in the same application
at the same time and access conflicts
will be minimized.

e Early releases of Cross System
Product allowed invalid data to be
stored in the MSLs. You must correct
the invalid data in all members before
migrating to VisualAge Generator 4.x.
Examples of invalid data include a
data item that has a length of 0 and a
map that contains a NUM field which
is intended to store dates but is not
long enough to store a date.

e VisualAge Generator 4.x on Smalltalk
allows you to break an application
into smaller components, called
subapplications, for organizational
purposes. You should not use
subapplications if the code contained
in them might need to be shipped
separately or if you plan to later
migrate the application to the Java
environment.

e \When GUIs are migrated to VisualAge
Generator 4.x on Smalltalk, the GUIs
are called views or visual parts. Each
GUI becomes a class in VisualAge
Smalltalk. Therefore, the GUIs are not
visible in the VAGen Parts Browser or
in the VAGen Parts pane shown on
several windows. It is best to put the
GUI code into different applications
from your 4GL code.

e Both the MSL Migration Assistance
Tool and VAGen Import write a list of
important GUI changes to a file
named hptguicvlog. The warning
messages in this log indicate
changes you must make to the view
after migration.

e After GUIs are migrated into VisualAge
Generator 4.x views, they cannot be
exported back into VisualAge
Generator 2.2 or earlier releases.
Therefore, you should do all
maintenance on the earlier release
before you migrate the GUIs.
Otherwise, you will need to maintain
the source in both 4.x and the earlier
release if you need to keep both
versions current.

e GUI parts and features are renamed
during conversion to VisualAge
Generator 4.x views. See the
VisualAge Generator Migration Guide
for a list of name conversions.

VAGen import

It is highly recommended that you use
either the V3 to V4 Migration Tool or the
MSL Migration Assistance Tool to
migrate your code to VisualAge
Generator 4.x. VAGen Import is intended
only for importing single parts or small
groups of parts that will be stored in the
same Java package or Smalltalk
application. Before you use VAGen
Import for migration, consider these
issues:

e You must use your existing release to
export your code to external source
format files before you can use VAGen
Import to migrate the external source
format files to VisualAge Generator
4.x. If you decide to use VAGen Import,
you could organize your code by
exporting one external source format
file for each Java package or
Smalltalk application that you want to
create.

e Before you use VAGen Import, you will
need to use VisualAge Generator 4.x
to manually create Java projects and
packages or Smalltalk applications to
contain your migrated code.

e VAGen Import tool can only be used
for GUIs coming from VisualAge
Generator 2.2 going to VisualAge
Generator 4.x on Smalltalk.

More information

For more information on migrating to
VisualAge Generator 4.x, see these
books:

e VisualAge Generator Migration Guide
(Version 4.0), SH23-0267-00

e VisualAge Generator Version 4
System Development Guide, SG24-
5467-00

e Migrating Cross System Product
Applications to VisualAge Generator
(Version 31), SH23-0244-01

The IBM VisualAge Generator
Consulting Services group can provide
education, help you plan for migration,
and even perform the entire migration for
you. To contact a VisualAge Generator
expert in the IBM VisualAge Generator
Consulting Services group:

e Call (919) 254-2196

e Send e-mail to vaconsul@us.ibm.com

e Go to http://www.ibm.com/software/
ad/visgen/services on the web.m

Client/Server configurations
for VisualAge Generator version 4.0

by Kristine Heaton, VisualAge Generator Tester and John Snyder, VisualAge Generator Developer

As VisualAge Generator is enhanced to
include new functions and additional
platforms, the matrices and tables
presented in this article can help you
determine the many possible
configurations. The following matrices
and charts can assist in providing
answers to questions, such as:

e Which environments are supported
for clients?

e \What are the supported server
platforms?

e \What protocols are supported and
where are they used?

e What is valid for 2- and 3-tier
configurations?

e What are the current options
available for VisualAge Generator
applications?

You can use the matrix and chart to

determine valid configurations. For

example, if you have a SmallTalk GUI
and Windows NT is your client platform
and you would like to implement a 3-tier
configuration using a CICS for NT
platform to connect to an IMS system,
you would first use the Usage vs Platform

Matrix table to determine that you can
execute a GUI on Windows NT. Then you
can verify that you can call to CICS for NT
using CICS Client using the Standard
Client/Server From/To Protocol Matrix.
From this same matrix (Standard Client/
Server From/To Protocol Matrix) you can
determine that CICS for NT cannot
connect to an IMS system. By using the
tables provided, you can determine that
the desired configuration is not
supported.

Here is another example. If you have a
Java Application running on Windows NT
and you want to access VM as a
VisualAge Generator application server,
you can verify that Java Applications are
supported on Windows NT using the
Usage vs. Platform Matrix. Then, using
the Enterprise Java Bean chart you can
verify that VM/ESA is a valid VisualAge
Generator application server. Looking at
the Standard Client/Server From/To
Protocol Matrix you can then verify that
Windows NT can access VM/ESA via
TCP/IP. By using the tables provided, you
can determine that this configuration is
supported in VisualAge Generator.

With new releases of VisualAge
Generator these matrices will change
with additions and updates as new
platforms and functions are added. For
information on platforms and functions
added in VisualAge Generator 4.5, see
the VisualAge Generator website at
http://www.ibm.com/software/ad/visgen/

Editor's Note: Would you be interested in
a web based application that would
make the job of planning runtime
configurations easier? Let us know using
the online reader comment form available
on the VisualAge Generator website.

GUI/TUIl/Serviet Client/Server
Chart

This following table shows the GUI, TUI,
and Java Servlets that are supported in
VisualAge Generator in a traditional
client/server environment. It includes the
2nd-tier and 3rd-tier server configurations
and the VAGen code (as HS, WGS,CSO)
that is required at runtime. The supported
communications protocols used for the
various client and server platforms is
referenced and specifically listed on the
Standard Client/Server From/To Protocol
Matrix (SCSFTPM) which follows.

Client

Communications

2nd Tier Server

Communications

3rd Tier Server

ST GUI (CSO)

Java Application
(WGS/HS/CSO)*

Java Servlet (WGS/HS/CSO)*
C++ TUI (WGS)

COBOL TUI (WGS/HS)**

ITF (Developer)

* WGS for AIX, HS for OS/390,

and CSO for Windows and OS/2

** WGS for CICS for OS/2,
and HS for Host systems

Standard
Client/Server From/
To Protocol Matrix
(SCSFTPM)

(see below)

Note: this does not imply
that all clients can get to
all servers. Must use the
Usage vs. Platform Matrix
to confirm what you want
to do.

Chart Legend: WGS = VisualAge Generator Server
HS = VisualAge Generator Host Services
CSO = VisualAge Generator Communications Services

ITF = VisualAge Generator Interactive Test Facility

Developer = VisualAge Generator Developer

Windows NT (WGS)
0S/2 (WGS)

AIX (WGS)

Solaris (WGS)

HP-UX (WGS)

VM/ESA (HS)

IMS (HS)

AS/400 (HS)

CICS for Windows NT (WGS)
CICS for OS/2 (WGS)
CICS for AIX (WGS)
CICS for Solaris (WGS)
CICS for MVS/ESA (HS)
CICS for VSE/ESA (HS)

Standard
Client/Server
From/To Protocol
Matrix(SCSFTPM)
(see below)

Note: this does not
imply that all clients
can get to all servers.
Must use the Usage
vs. Platform Matrix to
confirm what you
want to do.

Widows NT (WGS)
0S/2 (WGS)

AIX (WGS)

Solaris (WGS)

HP-UX (WGS)
VM/ESA (HS)

IMS (HS)

AS/400 (HS)

CICS for Windows NT
(WGS)

CICS for OS/2 (WGS)
CICS for AIX (WGS)
CICS for Solaris (WGS)
CICS for MVS/ESA (HS)
CICS for VSE/ESA (HS)

Platforms not allowed to be a client or 2nd tier
of a 3 tier configuration: (can’t call out to
someplace else) HP-UX, VM/ESA, IMS, Solaris,

AS/400

Client/Server configurations
for VisualAge Generator version 4.0, continued

Java Applet to Server Chart

The Java Applet to Server chart lists the current supported configurations for Java

Applets to VisualAge Generator application servers.

Client Communications | 2nd Tier Server

Communications

VG Application Server

Web Browser - any platform | RMI Windows NT (CSO*)
0S/2 (CSO¥)

AIX (WGS)

* CSO code ships with
developer and can be
redistributed on the
Windows and OS/2
platforms.

Platforms where Web Server and VG Application Server can be the
same physical machine:

Windows NT (Native C++ and CICS for Windows NT)

0S/2 (Native C++ and CICS for 0S/2)

AIX (Native C++ and CICS for AIX)

Chart Legend: RMI = Remote Method Invocation

Enterprise Java Beans Chart

Standard Client/Server
From/To Protocol
Matrix

Note: this does not
imply that all clients
can get to all servers.
Must use the Usage
vs. Platform Matrix to
confirm what you
want to do.

Windows NT (WGS)
0S/2 (WGS)

AIX (WGS)

Solaris (WGS)

HP-UX (WGS)

VM/ESA (HS)

IMS (HS)

AS/400 (HS)

CICS for Windows NT (WGS)
CICS for OS/2 (WGS)
CICS for AIX (WGS)
CICS for Solaris (WGS)
CICS for MVS/ESA (HS)
CICS for VSE/ESA (HS)

This chart shows the supported EJB server environments and current supported VisualAge Application Server environments.

Note that there is no matrix associated with the Enterprise Java Server (EJS) Communications. In the chart the EJB Servers listed

are valid for all the listed clients.

Client Communications | EJB Server

Communications

VG Application Server

Java Application Enterprise Java Windows NT (CSO*)

(WGS/HS/CSO¥) Server (EJS) 0S/2 (CSO¥)

Java Servlet Communications AIX (WGS)
(WGS/HS/CSO*)

Java Applet** Note: Actual * CSO code ships with
(WGS/HS/CSO*) protocol used developer and can be

redistributed on the
Windows and 0S/2
platforms.

varies depending
on the EJS

being used.
WebSphere is
currently using IIOP.

* WGS for AIX, HS for OS/390
Unix System, and CSO for
Windows and OS/2.

** For this scenario, the “Client”
is the Web Server where the
EJB call is being made, not

the browser running the Applet.

Note: We are not using the
CSO code for the
communications. CSO is for
the VG Java runtime support.

0S/2 (Native C++ and CICS for OS/2)
AlIX (Native C++ and CICS for AIX)

Standard Client/Server
From/To Protocol
Matrix

Note: this does not
imply that all clients
can get to all servers.
Must use the Usage
vs. Platform Matrix to
confirm what you
want to do.

Windows NT (WGS)
0S/2 (WGS)

AIX (WGS)

Solaris (WGS)

HP-UX (WGS)

VM/ESA (HS)

IMS (HS)

AS/400 (HS)

CICS for Windows NT (WGS)
CICS for OS/2 (WGS)
CICS for AIX (WGS)
CICS for Solaris (WGS)
CICS for MVS/ESA (HS)
CICS for VSE/ESA (HS)

Platforms where the EJB Server and the Server can be the same physical machine:
Windows NT (Native C++ and CICS for Windows NT)

Websphere RAD (Ul Record) Chart

The Websphere RAD (Ul Record) table lists the currently-supported WebServer environments and runtime server environments
for VisualAge Generator 4.0 and the supported protocols to access the runtime servers.

Client Communications | EJB Server Communications VG Application Server
Web Browser - any platform HTTP Windows NT (WGS) TCP/IP to non-CICS Windows NT (WGS)
0S/2 (WGS) platforms. CICS 0S/2 (WGS)
AlIX (WGS) Transaction Gateway AIX (WGS)
Solaris (WGS) (CTG) to CICS Solaris (WGS)
HP-UX (WGS) platforms. HP-UX (WGS)
IMS (HS)

Platforms where Web Server and Server can be the same physical machine:
Windows NT (Windows NT or CICS for Windows NT)

0s/2
AIX (AIX or CICS for AlX)

Usage vs. Platform Matrix

AS/400 (HS)

CICS for Windows NT (WGS)
CICS for AIX (WGS)

CICS for Solaris (WGS)
CICS for MVS/ESA (HS)
CICS for VSE/ESA (HS)

The Usage vs. Platform Matrix shows which platforms support a specific type of execution. For example, you would use this
matrix to find the platforms which will support runtime execution of a SmallTalk GUI.

Platform Windows | Windows
Use 95 98 NT

Windows

0S/2 | AIX | Solaris

HP-UX | VM/

ESA

IMS | AS/

400

CICSfor
Windows
NT

CICSfor
0s/2

CICSfor
Solaris

CICSfor

CICSfor
MVS/ESA

CICS for
VSE/ESA

0S/390
Unix

STGUI X X X

Java X X X
Application

C++TUI X
and Called
Batch

Application

ITF X

COBOL
TUland
Called
Batch
Application

Java Servlet X X X

AppletWeb X
Server

Enterprise X
Java Server

UlWeb X
Server

Client/Server configurations
for VisualAge Generator version 4.0, continued

Standard Client/Server From/To Protocol Matrix

The Standard Client/Server From/To Protocol Matrix (SCSFTPM) lists the supported server platforms, the supported client

platforms, and the communications protocols used to connect to the server platforms.

If a platform is listed in the From (or client) column and also listed in the To (or server) column and it has a supported protocol at
the intersection of the columns, then it can be a 2nd-tier server of a three-tier configuration. (A 2nd-tier server has the capability
to act as a client and call out to another server).

Note that although HP-UX, VM/ESA, IMS, AS/400, OS/390, and Solaris are listed in the client column, they are not currently valid
2nd-tier platforms for a three-tier solution. They are listed under the client column of the Standard Client/Server From/To Protocal
matrix and under the 2nd-Tier Server column of the GUI/TUI/Servlet Client/Server chart for possible future reference only.

Standard Client/Server From/To Protocol Matrix

(SCSFTPM)
TO | Windows| CICSfor | OS/2 CICSfor | AIX CICSfor | Solaris CICSfor HP-UX VM/ESA | IMS AS/400 | CICSfor | CICSfor

NT Windows 0S/2 AIX Solaris MVS/ESA | VSE/ESA

FROM NT

Windows 95 | TCP/IP | CICS TCP/IP | CICS TCP/IP | CICS TCP/IP CICS TCP/IP TCP/IP APPC CA/400 | CICS CICS
DCE Client DCE Client DCE Client Client Client Client

Windows 98 | TCP/IP | CICS TCP/IP | CICS TCP/IP | CICS TCP/IP CICS TCP/IP TCP/IP APPC CA/400 | CICS CICS
DCE Client DCE Client DCE Client Client Client Client

WindowsNT | TCP/IP | CICS TCP/IP | CICS TCP/IP | CICS TCP/IP CICS TCP/IP TCP/IP APPC CA/400 | CICS CICS
DCE Client DCE Client DCE Client Client Client Client

0S/2 TCP/IP | CICS TCP/IP | CICS TCP/IP | CICS TCP/IP CICS TCP/IP TCP/IP APPC CA/400 | CICS CICS
DCE Client DCE Client DCE Client Client Client Client

LU2

AIX TCP/IP | CICS TCP/IP | CICS TCP/IP | CICS TCP/IP CICS TCP/P | TCP/IP CICs CICS
DCE Client DCE Client DCE Client Client Client Client

Solaris

HP-UX

VM/ESA

IMS

AS/400

CICS for CICs CICs CICS CICS CICs CICS

Windows NT DPL DPL DPL DPL DPL DPL

CICS for CICs CICs CICS CICS CICs CICS

0s2 DPL DPL DPL DPL DPL DPL

CICS for CICS CICS CICS CICS CICS CICS

AIX DPL DPL DPL DPL DPL DPL

CICS for CICS CICS CICS CICS CICS CICS

Solaris DPL DPL DPL DPL DPL DPL

CICS for CICS CICS CICS CICS CICS CICS

MVS/ESA DPL DPL DPL DPL DPL DPL

CICS for CICs CICs CICS CICS CICs CICS

VSE/ESA DPL DPL DPL DPL DPL DPL

0S/390

Unix System

Accessing VSAM files on 0S/390 from VisualAge Generator

by Chuck Proffer, VisualAge Generator Developer, Kristine Heaton, VisualAge Generator Tester

and Mitch Johnson, VisualAge Generator Consulting Services

l. Overview

VisualAge Generator provides the capability to access VSAM
files that reside on an OS/390 system or any other remote
system that supports the Distributed Data Management
architecture. VSAM files on OS/390 systems are typically
stored as EBCDIC data, although you can store ASCII data in
them as well. VSAM files on the workstation are stored as ASCII
data. If you use the OS/390 system only for data storage, you
do not need to convert the data to EBCDIC. However, if you
want to access the data from VisualAge Generator programs
on your workstation and from programs on the host system,
you need to store the data in EBCDIC. This means that your
VisualAge Generator programs running on the workstation
must convert the data between ASCII and EBCDIC. VisualAge
Generator provides an automatic data conversion
enhancement for remote VSAM files in V3.1 FixPak 3 and V4.0.
The data will be automatically converted to EBCDIC before
any write operations and converted to ASCII after any read
operations.

1. Software prerequisites

Before accessing remote VSAM files, there are several
products that must be installed and configured. VisualAge
Generator interfaces with Distributed File Manager (DFM) on
the workstation and on the OS/390 to provide the remote VSAM
access capability. DFM uses APPC for communications
between the workstation and the OS/390.

Provides the APPC communications
support on Windows NT and OS/2

IBM eNetwork Personal
Communications Version
4.21 or later

IBM DFSMS/MVS Version
1.2 or later

Provides the DFM support on
the OS/390

lil. Setup of Distributed File/Manager/MVS
(DFM/MVS) on 0S/390

Remote access to MVS/ESA and OS/390 VSAM data sets is
provided by Distributed FileManager/MVS (DFM/MVS), a
component of DFSMS/MVS. DFM/MVS communicates with
remote clients using MVS/APPC, which is a part of the base
control program (BCP) of each release of MVS/ESA and OS/
390. For detailed information on DFM/MVS, refer to the DFM/
MVS Guide and Reference - SC26-4915.

Using DFM/MVS for remote VSAM access requires the
following:

¢ MVS/APPC must be active - DFM/MVS uses the MVS/APPC'’s
base LU specified in member APPCPMxx in SYS1.PARMLIB.

LUADD ACBNAVE(NRAPCVS1)
BASE
TPDATA(SYS1. APPCTP)
TPLEVEL(SYSTEM
SI DEI NFO DATASET(SYS1. APPCSI)

SYS1.PARMLIB(APPCPMxXx)

Start MVS/APPC with the MVS command:
START APPC, SUB=MSTR, APPC=xx

e An APPC/MVS transaction scheduler - The DFM/MVS
transaction program (TP) is initiated when a remote request
is received. The scheduling information is provided in
member ASCHPMxx in SYS1.PARMLIB.

CLASSADD CLASSNANME(DEFAULT)
MAX(20)
M N(1)
MSGLI M T(5000)
RESPGOAL(1)

OPTI ONS DEFAULT(DEFAULT)

TPDEFAULT REGI ON(2M)
TI MES(5)
MSGLEVEL(1, 1)
OUTCLASS(T)

SYS1.PARMLIB(ASCHPMxXx)

Start the MVS/APPC transaction scheduler with the following
MVS command:
START ASCH, SUB=MSTR, ASCH=xx

/ | ATBSDFMU EXEC PGMEATBSDFMU
// SYSPRI NT DD SYSOUT=*
/1 SYSSDLI B DD DI SP=SHR, DSN=SYS1. APPCTP
/ / SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA, DLM=XX
TPADD TPNAVE(AX 07’ 001)
TPSCHED_DELI M TER(##)
CLASS(DEFAULT)
JCL_DELI M TER(ENDJCL)
/ | GDEDFM JOB MSGCLASS=T, MSGLEVEL=(1, 1) , CLASS=A
/ | GDEDFM EXEC PGVEGDE! SASB
ENDJ CL
#i
XX

Adding a DFM/MVS TP Profile

ACTI VE(YES)

A transaction program (TP) profile - A DFM/MVS agent is
started when MVS/APPC receives a request. The TP profile is
added to SYS1.APPCTP dataset with the ATBSDDMU utility.

Start the DFM task with the MVS command:
START DFM SUB=MSTR

The following example shows the VTAM definition for the MVS/
APPC LU name.

Accessing VSAM files on 0S/390 from VisualAge Generator, continued

EEEEE R R E R EEE SRS
* WS/ APPC Appl i cati on

R R R R

NRAPCVS1 APPL ACBNAME=NRAPCVS1,
APPC=YES,
AUTOSES=0,

DDRAI NL=NALLOW
DRESPL=NALLOW
DSESLI M=32,
EAS=32,

MODETAB=I STI NCLM
SECACPT=CONV,
SRBEXI T=YES,

VERI FY=NONE

OO0O0O0O00000O0

IV. Setup on Windows NT

Install IBM Personal Communications

e Select the Communications APls component
e Ensure that IBM LLC2 network protocol has been installed.

Configure an APPC session with the 0S/390 host

To configure Personal Communications to support APPC
connectivity, do the following:

Select the start button.

Select Programs.

Select IBM Personal Communications.

Select SNA Node Configuration, which opens the following
window.

M w2

llssidgd - Pepapsd [s gieey THA Hpds Cevnigpeseen [MEE

Desgaad

Gty o e Vs ey s ol o vl s s e e

i o i e ol ke

Hiin

| | [|
=
[

=

5. Select Configure Node in the Configuration options pane
and then click New...to open the Define the Node window.

e | advanced | DL Fomesier |
Conbad Foeed j2F)

Fully s OF marse

HEIEUH-:I » INRRGISE
CP ihaz

[

- Lol ade |11 -
Bleck 0.

e

Pl Ui 1D

oo

[] _owent | cov | e |

6. Define the host physical unit (PU) information for this
workstation. In this example, the Fully qualified CP name
should be USIBMNR.NRR50506. The Block ID is 05D and
the Physical Unit ID is 50506 (Note: Physical Unit ID can
be all zeros if IDNUM is not specified in the PU definition or
if VTAM dynamic LU support is enabled). The CP alias is
NRR50506 in this example but can be any value. This
information was obtained from SYS1.VTAMLST(APPCPUS).

7. Click OK when finished.
Next we need to define a LAN Device.

1. In the Configuration Options pane, select Configure
Devices and then click New...This opens the Define a LAN
Device window.

Bax | dotrabon| Perrrare |
[— o
I [1 vt s s LA i
|
e o
[] cwew | | |

2. Normally the default settings are okay. If the machine has
multiple LAN cards then the Adapter number might have to
be specified to correspond to the correct adapter.

3. Click OK when finished.

4. Next we need to configure connections to the host. In the Dindna 5 Paine Li & 2

Configuration options pane, select Configure Connections N ||| |
and then click New...This opens the Define a LAN
Connection window. E T -
|[EETEET] . [HRAPCEA
T - |
Parne UL glax
Bam | Acvarscend| et e | [med
e Fialy sk [rare
TECTE] [HRMDNCE
Jimwrs naw AW - =
o) oo |5 | |
Irizvr reterh acdwmz |
Sinton s e 2. On the Define a Partner LU 6.2 window, type the fully
hom o qualified control point name (CP name) of the MVS/APPC
7 foaniteg ™ Eowt subsystem. The fully qualified CP name is network ID plus
the LU name of the MVS/APPC subsystem. The network ID is
obtained from SYS1.VTAMLST(ATCSTRO00) and the LU name
is obtained from SYS1.PARMLIB(APPCPMxx). The Partner LU
) e SN alias will be used as the TARGET_SYSTEM in the dfm.rc
configuration file and the Fully qualified CP name is
5. On the Basic tab we need to specify the Destination obtained from SYS1.VTAMLST(ATCSTR00), which in this
address. This should be the LAN adapter address of the example is USIBMNR.NRMCMC2.
host (e.g. the TIC address of the communication controller). 3. Click OK when finished.
gf}o selsct the appropriate LAN type (Token-Ring or Finally, the workstation needs to know the LU name to use
ernet).

when connecting to the host applications.
6. On the Adjacent Node tab, specify the Adjacent CP Name.)) » i .
This is obtained from SYS1.VTAMLST(ATCSTRO0), which in 1. This LU name is specified by selecting Configure Local LU

this example is USIBMNRNRMCMC2. 6.2. The Local LU name is identified in
SYS1.VTAMLST(APPCPUS) by the LU which has a
[Defive s bl Cormectn. M| LOCADDR equal to 0 (LOCADDR=0). This local LU name
TR PPR—— should also be specified via the environment variable
- APPCLLU. See the section entitled Sample VTAM Definitions
FW__-' i for an example.
o o T
[o [|
L1 |
; ! Laed LU name:
i I [RFEmEm ™ Cepancient LU
Locallil sles = .
I]"’
7. Click OK when finished.
) o [k | e | | e |
Next we need to define the partner applications.

1. Return to the Configuration options pane, select Configure | o Cilick OK when finished and save the configuration.

Partner LU 6.2, and click New... If you installed Personal Communications in directory c:/

PComm and saved the configuration as file config.acg, then
the command csstart -a /PComm/private/config.acg can be
used to load Personal Communications automatically when
the system is started.

Accessing VSAM files on 0S/390 from VisualAge Generator, continued

Configure DFM

The workstation support for DFM is provided by the SmartData
Utilities component of IBM VisualAge for COBOL. If you have
IBM VisualAge for COBOL installed, specifically the SmartData
Utilities component, then you will have an
\ibmcobw\samples\hostdata directory with sample
configuration files. If you do not have IBM VisualAge for
COBOL, you can download vsamnt.zip from ftp:/
ps.software.ibm.com/ps/products/visualagegen/info/v4.0 and
perform the following steps:

1. Create a directory called vgdfm

2. Copy the zip file to the vgdfm directory and unzip it using
options -0 and -d.

Modify the DFM configuration file (dfm.rc) from either the IBM

COBOL directory or the vgdfm directory as follows:

1. There should be one DFM_TARGET statement for each
server system that you plan to access.

2. Specify the LU alias of the server system in the
TARGET_SYSTEM parameter as defined in the IBM Personal
Communications configuration files, Partner LU alias.

3. Specify a MODE_NAME (LOG MODE) that is known on both
the OS/390 and the workstation, such as #INTER.

4. Specify a MAX_SEND_LIMIT of 32767,
Modify the start DFM command (strtsdu.cmd) as follows:

1. Make sure that the configuration file name specified on the
dfmcfg command is the same as the one previously modified
(dfm.rc).

2. Replace the string machine-name on the dfmlogon
command with the LU alias of the server system.

3. Replace the string userid on the dfmlogon command with
the userid that will be used to access files on the server
system.

If you do not have IBM VisualAge for COBOL installed, you will
need to set the following environment variables:

CDRASRV=X:\VGDFM\CONVTABL
PATH=X:\VGDFM; %PATH%

Start DFM

To start DFM, issue the strtsdu command from a command
window. You will be prompted to enter the password for the
userid specified on the dfmlogon command. To verify that
everything is set up correctly, run the dfmtry command. It is
shipped in the VisualAge Generator Server samples directory.
Enter: dfmtry machine-name userid

It will prompt you for a password to the userid and then issue
messages indicating whether or not it was able to successfully
connect to the server system.

Stopping DFM

To stop DFM, shutdown and restart your workstation. When
you restart your workstation, do not start DFM.

Additional information on configuring, starting, and stopping
DFM can be found in Distributed FileManager User’s Guide,
SC26-7134. There is also information in the online
documentation that ships with IBM VisualAge for COBOL.

V. Accessing VSAM files from ITF on Windows NT

Before you can access VSAM files from ITF, you must modify
the VisualAge Generator Preferences. Select the Options
menu on the VisualAge Organizer window. Select
Preferences and the VisualAge Preferences notebook is
displayed. Select the VAGen - Test General tab. At the bottom
of the page, select the Remote VSAM radio button. This will
cause ITF to use remote VSAM files for all file accesses (on
Windows NT, there is only remote VSAM file support). In a later
FixPak, this option will be moved to the Resource Association
Editor so that the type of file accessed can be specified on a
file basis. If you want the data converted to EBCDIC, a
conversion table name must be specified in the VSAM
translation file name field. The field should be preset with a
default value based on your language setting. The list of valid
conversion tables is documented in the VisualAge Generator
Client/Server Communications Guide, Appendix B. When you
have finished modifying the preferences, click the OK button. If
you have changed your preferences to use Remote VSAM
and you don’t have APPC set up and working, you will receive
error F207, which indicates a communications error.

= e
=
- I s
ug i ST
e
T
- —
= o iriam
= T N
e s

[T
e e e e
Kt el &ar
o
" ea L3 4 ek
e i
T T

In addition to changing your preferences, you also need to
specify the physical name and path in the ITF Resource
Association File editor. In the Physical name field, specify the
file name as it is on your OS/390 system but without the high
level qualifier. In the Path field, specify the machine name or a
shortcut name using a technique similar to the Windows

Universal Naming Convention used for network file access. In
the example below, the dataset name on the OS/390 is
PROFFER.FIO1IR1.DATA. In the Physical name field,
FIO1IR1.DATA is specified and W\CARMVS1\PROFFER is
specified in the Path field. CARMVS1 is the machine name
and PROFFER is the userid/high level qualifier.

i |Piimay File Soperil ioatess - FRITERD

| Ele

'F%.Fr«mnm:rrem

== 5

Mz |- ey

™ Wamabis lesphh ™ Biray

Lenghe [~ | | lewh =

o —

imm

ihu-l:l."w'ue i'l i:qq.-nw --]
[or | cuwe | beo |

If the file doesn't already exist on your OS/390 system,
VisualAge Generator will create it for you the first time your
program tries to add a record.

VI. Accessing VSAM files from C++ generated
programs on Windows NT

Access to VSAM files from a C++ generated program is
determined by the resource association file (RSC). Specify /
FILETYPE=VSAM in the ASSOCIATE entry for a VSAM file.
Because there is no local VSAM support on Windows NT, all
VSAM file access is remote. Specify the file name using a
technique similar to the Windows Universal Naming
Convention used for network file access. If you want the data
converted to EBCDIC, specify the /ICONTABLE option,
otherwise the data will be written in ASCII. See the following
example:

ASSOCI ATE FI LE=FI O1I R1 /
SYSNAME=\ \ CARWS1\ PROFFER. FI O11 R1
/ FI LETYPE=VSAM / CONTABLE=ELACNENU

If you do not have APPC set up and working, you will receive
error F207, which indicates a communications error. Refer to
the VisualAge Generator Server Guide for OS/2, Windows NT,
HP-UX, and AIX for more information on using VSAM and
resource association files.

VIl. Setup on 0S/2 Warp

Install IBM Personal Communications - 0S/2 Access
Feature

Ensure that IBM IEEE 802.2 protocol has been added to the
LAN adapter

Configure an APPC session with the 0S/390 host

To configure OS/2 Access Feature for APPC connectivity, do
the following:

1. Open the Personal Communications folder.

2. Select the Access Feature Configuration tool.

3. On the Communications Manager Setup window, select
Setup and then open the configuration to added or updated,
which opens the following window.

[]
o s -
armrapan el rm nom e
TP e — Ly ———
g i b mmi Char piee Ve omd e siee

E o sl bt el i
1A P e T ke ey [1578 v s mpen i e
AT AFET @ e e o

AT o S el G AT AN weel | el
LA A e DML T T S A Y]

. L

B R L e

(o] ==

4. Select APPC APIs over Token-ring or APPC APIs over
Ethernet and then click Configure to display the APPC
APIs over ... window.

T T T
fwe

Lrosl rmis news | HEEERN

merasaih 10

(K= TRTET]) |“-
= bl md - fa Dol (el nEreE

[mache - b8 e arark o eEee
EE—

5. Define the the host physical unit (PU) information for this
workstation. In this example, the Network ID is USIBMNR
and the Local node name is NRR50C16. This information
was obtained from SYS1.VTAMLST(APPCPUS) and
SYS1.VTAMLST(ATCSTROQO). Select Advanced. .. to display
the Communication Manager Profile List window.

6. From the Communications Manager Profile List window,
SNA APPC profiles are configured.

B el LTTH gy | e ey | po—————— i—

P PRSP SRRy (M

Rl B, W R o W S D 6 R et
PR Fanflin b

- L - ki ey o e |

LT IRE. i W L
Tip e Thi e w1 S v el Db
Dyl Tha dGapans
&l T i
T

Accessing VSAM files on 0S/390 from VisualAge Generator, continued

7. Select the SNA local node characteristics profile and then
click Configure... to bring up the Local Node
Characteristics window.

8. Confirm that the Network ID matches the NETID from
SYS1.VTAMLST(ATCSTRO00) and that the Local Node name
(PU label) and the Local node ID (IDBLK and IDNUM)
match the values from SYS1.VTAMLST(APPCPUS).

s g

Faliwink @1

T
s el o

e

ar

HETwEy CCRPIFEFED | ars r (L]

& ACTwElE BHET MRS W I i

| juwrsh e

ks rpmpwd |

(o] memwwen.

9. Click OK to return to the Communications Manager Profile
List window. On this window select the SNA Connections
profile, then Configure....

Lrssie M fps of ress W I B CTRSE COPRSCTERR
im relen wi il g

| Frd s rees
LEge sads 1Y
(R o T

Carwet | [g

HEErEag @ pErisE e =8 BIph) METECEET W
iy o fhwi bpen LR i

Fariver e
Topriewt sl . To e eds = 1o fad
i Rl e
FiEEE b LgEE LI]
A8 -l

(G] Cowms | geme | | Qe | Sey

10.1f there are already LU2 sessions defined, then a host
connection might already exist. If this is true, then select this
connection and then select Change... to continue,
otherwise select Create....

11. Select the appropriate adapter to display the Connections
to a Host window.

fm TRt by o vy
—

o W o —

e TR T L e e L

e e -

s i e |
dewm Ermene LLF |

e el —n

In prvme e @i ErEE pae s e e e e
i il m B B b ey gt ol e | By e

[E Ll

Cammi i

E B R T

12. For the Partner LU definitions, specify the Partner network
ID and Partner node name, obtained from

SYS1.VTAMLST(ATCSTRO00), which in this example are
USIBMNR and NRMCMC2. Specify the LAN Destination
address, which should be the LAN adapter address of the
host (e.g. the TIC address of the communication controller).
Also select the appropriate Address format (Token-Ring or
Ethernet). Next, click Define Partner LUs... to display the
Partner LUs window.

13.0n the Partner LUs window, type the Network ID and LU
name of the MVS/APPC subsystem. The Network ID is
obtained from SYS1.VTAMLST(ATCSTRO00) and the LU name
is obtained from SYS1.PARMLIB(APPCPMxx). The Alias will
be used as the TARGET_SYSTEM in the dfm.rc configuration
file. When finished, select ADD.

To md o Paviees LK ol S 0 o s, s commeres. 1w bl B

Tl e B g Py e ey P L p— s
- o— e i |

18 B B RS LU R LN R B e L

Eeiees @ SN e ——
[T T T '
g Elpen L]
[—
FEEH LU ek -l o &
e — Chmg | psin
[—

| el | Sy

14.Select OK or Close until the Communication Manager
Profile List window is displayed. On this window select the
SNA features profile and select Configure...

The workstation needs to know which LU name it should use
when connecting to the host applications. This LU name is
specified by creating a local LU profile by selecting the Local
LUs feature and then clicking Create.... The local LU is
identified in SYS1.VTAMLST(APPCPUS) by the LU which has a
LOCADDR equal to 0 (LOCADDR=0). This local LU name
should also be specified via the environment variable,
APPCLLU. See the section entitled Sample VTAM Definitions
for an example.

e] e ———=
Ll pome ROISAEH
Hilin firatan
[T TR
= |rdmperdant LU
IDepedent LW [00 o
Heat five posTmer
s o 2 I

o e fhin hacel LI ax ynor defmadt Incal LU pilns

Cigdlimnml roommmers

|
E Cancel | foip |

15.Select OK and Close until OS/2 Access Features verifies the
configuration. After the verification is complete, follow the
instructions to activate the changes.

16.Open the Personal Communications folder and start the
Access Feature by double- clicking on the icon.

Configure DFM

The workstation support for DFM is provided by the SmartData
Utilities component of IBM VisualAge for COBOL. If you have IBM
VisualAge for COBOL installed, specifically the SmartData
Utilities component, then you will have an
\ibmcobol\samples\sdu directory with sample configuration files.
If you do not have IBM VisualAge for COBOL, you can download
vsamos2.zip fromftp://ps.software.ibm.com/ps/products/
visualagegen/info/v4.0 and perform the following steps:

1. Create a directory called vgdfm

2. Copy the zip file to the vgdfm directory and unzip it using
options -0 and -d.

Modify the DFM configuration file (config.dfm) from either the IBM

COBOL samples\sdu directory or the vgdfm samples directory as

follows:

1. Locate the DFM_TARGET statement. There should be one
DFM_TARGET statement for each server system that you plan
to access.

2. Specify the LU alias of the server system in the REMOTE_LU
parameter as defined in the IBM Personal Communications
configuration files, Partner LU alias.

3. Specify a MAX_SEND_LIMIT of 32767,

4. Specify the userid that will be used to access files on the
server system in the USERID parameter.

5. Locate the LOCAL_LU statement and specify the LU name of
the local system as defined in the IBM Personal
Communications configuration files, Local LU.

6. Locate the MODE_NAME statement and specify a mode
name (log mode) that is known on both the OS/390 and the
workstation, such as #INTER.

7 Locate the DEFAULT_DFM_TARGET statement and specify
the LU alias of the server system (same as in step 2 above).

Modify the start DFM command (startdfm.cmd) as follows:

1. Locate the DFMDRIVE statement and specify the drive letter of
an unassigned drive and the LU alias of the target system you
wish to access.

If you do not have IBM VisualAge for COBOL installed, you will
need to set the following environment variables:

FMTCDRA=X:\VGDFM\CONVTABL
LIBPATH=X\VGDFM;...
PATH=X:\VGDFM;...

Starting DFM

After the configuration steps are complete, start DFM by running
the startdfm command file. If everything started successfully, you
should be able to issue the dir command with the drive letter
specified on the DFMDRIVE statement and see a list of the files
on your OS/390 system.

Stopping DFM
There are two ways to stop DFM:

1. Shutdown and restart your workstation. When you restart your
workstation, do not start DFM.

2. Run the command DFMDRIVE RELEASE * to release all of
your DFM drive assignments.

Additional information on configuring, starting, and stopping
DFM can be found in Smartdata Utilities for OS/2: VSAM in a
Distributed Environment, SC26-7063. There is also information in
the online documentation that ships with IBM VisualAge for
COBOL.

VIIl. Accessing VSAM files from ITF on 0S/2

Before you can access VSAM files from ITF, you must modify the
VisualAge Generator Preferences. Select the Preferences from
the Options menu on the VisualAge Organizer window to
display the VisualAge Preferences pages. Select the VAGen -
Test tab. At the bottom of the page, select either the Local VSAM
or Remote VSAM radio button and click OK to have ITF use
local or remote VSAM files for all file access. (In a later FixPak,
this option will be moved to the Resource Association Editor so
that the type of file accessed can be specified on a file basis.) If
you want the data converted to EBCDIC, a conversion table
name must be specified in the VSAM translation file name field.
The field should be preset with a default value based on your
language setting. The list of valid conversion tables is
documented in the VisualAge Generator Client/Server
Communications Guide, Appendix B. When you have finished
modifying the preferences, select OK. If you have changed your
preferences to use Remote VSAM and you don't have APPC set
up and working, you will receive error F207, which indicates a
communications error.

If you have selected Local VSAM, ITF will create and access
VSAM files residing on your local drive. No translation is
required, so the VSAM translation file name field is ignored and
the data is written in ASCII.

g e e] |
e
= LIL fm

= EZTHE b 10N e [11l

- |pESE—

Vi e L
Sares ey e
¢ e oy
P Ry iy B e
Homm e et e g b Tl b

[e—— ————
e =k

Srrmr rr N mnaar e
| e ——
1Mia s

0 | b b

Accessing VSAM files on 0S/390 from VisualAge Generator, continued

In addition to changing your preferences, you also need to
specify the physical name and path in the ITF Resource
Association File editor. In the Physical name field, specify the
file name as it is on your OS/390 system but without the high
level qualifier. In the Path field, specify the drive letter of the
DFM drive. In the example below, the dataset name on the OS/
390 is PROFFER.FIO1IR1. In the Physical name field, FIO1IR1
is specified and the drive letter M is specified in the Path field.

Privisiny File Speecilionlm

Fie

L igjiitnl pieiiies Ftiysbiail bt
|r-|i1||Ht FOTIH]

Fagh

M

Chyygsai s alion

h.l.'t sl =
Peenid Ky

! W anabls engii | Py

i mnggth E:T'"""" = | Leng® E;*

‘:.:!uﬂl' ﬁ

LRERL A

Appnpss pontml
Aocess modn
hl:‘ﬂﬂ"v'-l'ﬂ‘l!

Zhinm modo:
= [Deny Hone |

' %] 3 I Gzl

If the file doesn't already exist on your OS/390 system,
VisualAge Generator will create it for you the first time your
program tries to add a record.

Help |

IX. Accessing VSAM files from C++ generated
programs on 0S/2

Access to VSAM files from a C++ generated program is
determined by the resource association file (RSC). Specify /
FILETYPE=VSAM in the ASSOCIATE entry for a VSAM file. To
access a remote VSAM file, preface the file name with the DFM
drive letter. See the following example:

ASSOCI ATE FI LE=FI O1I R1 / FI LETYPE=VSAM /
SYSNAME=D: \ PROFFER. FI Ol R1
/ CONTABL E=EL ACNENU

If you do not have APPC set up and working, you will receive
error F207 indicating a communications error. Refer to the
VisualAge Generator Server Guide for OS/2, Windows NT, HP-
UX, and AlX for more information on using VSAM and resource
association files.

X. Diagnosing error conditions

Diagnosing error conditions when using VSAM with ITF

A trace facility has been provided to assist in diagnosing error
conditions. The trace is controlled by the HPTTROPT
environment variable. Specifying HPTTROPT=1 turns on the
trace, specifying HPTTROPT=0 turns off the trace. The trace

output is written to a file named hpttrace.out unless you
change the name using the HPTTROUT environment variable.

Diagnosing error conditions when using VSAM with C++
generated programs

The trace facility for C++ generated programs is controlled by
the FCWTROPT environment variable. Specifying
FCWTROPT=31 will turn on trace for file 1/O as well as other
C++ program- related events. The trace output is written to a
file named fcwtrace.out unless you change the name using
the FCWTROUT environment variable. Refer to the appendix in
the VisualAge Generator Server Guide for OS/2, Windows NT,
HP-UX, and AlX for more information on the trace environment
variables.

The I/O return codes found in both the HPT trace and the FCW
trace files are VSAM reply messages. They are documented in
VSAM in a Distributed Environment, SC26-7064. Some of the
more common ones are listed below:

1207’ Duplicate File Name

‘1208’ Duplicate key, different index
‘1209’ Duplicate key, same index
‘1208’ End of file

‘120C’ File is full

‘120D’ File in use

‘120F’ File not found

1225’ Record not found

‘1250’ Function not supported
‘1251 Parameter not supported
‘125A File damaged

‘125F Parameter not supported on target system
‘F207’ Communications error

XI. Sample VTAM definitions

SYS1.VTAMLST(ATCSTRO00)...
SSCPNAME=NRMCMC2,
NETID=USIBMNR,

SYS1.VTAMLST(APPCPUS) - Sample Static PU Definition

NRR50506 PU ADDR=04,
IDBLK=05D,
DBLK=05D,
IDNUM=505086,
DISCNT=NO,
IRETRY=NO,
ISTATUS=ACTIVE,
MAXDATA=1024,
MAXOUT=7,
PUTYPE=2,
PACING=0,
VPACING=0,
USSTAB=ALLUSS,
DLOGMOD=ISTINCLM,
SSCPFM=USSSCS,
MODETAB=HUBMODE

XX XX X X X X X X X X X X X

NR505061 LU LOCADDR=0,SSCPFM=FSS,USSTAB=
ISTINCDT,DLOGMOD=#INTER

Testing modifications to generated Ul Record JSPs

By Henry Koch, VisualAge Generator Architect

Author-Time Values is one of several VisualAge Generator
features that help you move a Web transaction from prototype
to production. This feature is of particular interest to Web
designers, who can now customize a generated Ul record JSP
and review the Web page that results from that customization,
all without deploying the generated program.

In addition to giving Web designers greater control of their
work environment, Author-Time Values empowers project
managers because it further separates the task of designing a
user interface from the task of writing business logic. Web
design can even reside at a location separate from code
development. To display a web page at web transaction run
time, the VisualAge Generator gateway servlet invokes a Ul
record JSP, which does the following:

e Produces an HTML stream that is based on the
characteristics of a Ul record.

e Embeds run-time values in the HTML by invoking methods
in a Ul record bean.

For example, in the following line from a Ul record JSP, the
value of field LASTNAME is placed within the HTML
structure, which directs the browser to display the string in
boldface:

<%=LASTNAME.getTextValue()%>

Instead of relying on the gateway servlet, however, the web
designer can invoke the Ul record JSP directly if Author-Time
Values is in effect. In this case, the data values in the resulting
web page have initial values, and simulated error messages
may be displayed.

To make Author-Time Values available, generate the web
transaction or Ul record with option
GENAUTHORTIMEVALUES, which adds both a scriptlet to the
Ul record JSP and a method, initAuthorTimeValues(), to the Ul
record bean.

The scriptlet invokes initAuthorTimeValues() at run time, but
the effect depends on how the Ul record JSP itself is invoked: If
the Ul record JSP is invoked by the gateway servlet, the call to
initAuthorTimeValues() has no effect, and data values are
made available to the Ul record JSP as usual. If the Ul record
JSP is invoked directly, however, initAuthorTimeValues()
initializes the values that are to be returned to the Ul record
JSP. By default, the initial values reflect only the data item
characteristics. For example, the value 99.99 is displayed for
an item of Ul type Output, data type Num, length 4, and
decimals 2. By changing method initAuthorTimeValues() in a
simple way, however, the web designer can replace the
default values with a realistic set.

Understanding the default initial values

By default, the initial values depend on the Ul type and data
type of the Ul record items.

Ul type Input, Output, or Input/Output

Table 1 shows the default values for data items that are of Ul
type Input, Output, or Input/Output.

Data Type Length Decimals Author Time Value

BIN, NUM, N/A 0 A 9 for each integer digit; for

NUMC, example, 999999999 for a

PACK, PACF numeric item with a length of 9.

BIN, NUM, N/A >0 A 9 for each digit, with a decimal

NUMC, point as appropriate; for example,

PACK, 999999.999 for a numeric data

PACF item with a length of 9 and 3
positions after the decimal point.

CHA <=254 N/A An A for each character; for
example, AAA for a character
item with a length of 3.

CHA >254 N/A A series of 254 A’s.

MIX <=254 N/A An M for each character; for
example, MMM for a mix item with
a length of 3.

MIX >254 N/A A series of 254 M's.

DBCS <=254 N/A A double-byte D for each
character; for example, DDD for
a DBCS character with a length
of 3.

DBCS >254 N/A A series of 254 double-byte D’s.

Unicode <=254 N/A A U for each character; for
example, UUU for a Unicode item
with a length of 3.

Unicode >254 N/A A series of 254 U’s.

HEX <=254 N/A An E for each character; for
example, EEE for a hex item of
length 3.

HEX >254 N/A A series of 254 E’s.

Table 1. Default values

If a data item of Ul type Input, Output, or Input/Output has an
occurs value > 1 but has no OCCURS data item defined, a
value is set for each occurrence of the data item. If an
OCCURS data item is defined, the OCCURS data item value is
set to two, and values are set for two occurrences of the data
item.

Testing modifications to generated Ul Record JSPs, continued

If a data item of Ul type Input, Output, or Input/Output has an
occurs value > 1 and has a SELECTED data item defined, the
SELECTED data item is set to a default value of 1 to cause the
first occurrence to be selected when the page is displayed.

If data item edits are defined that could cause an error
message to be displayed for a data item, a comment is added
to the initAuthorTimeValues() method. The comment encloses
Java scriplet code. If the web designer removes the comment
delimiters for a particular data item, the scriplet causes an
error message to be displayed for that data item, despite the
fact that no error checking occurs when the Ul record JSP is
accessed directly.

For example, if data item QUANTITY (data type NUM) has a
minimum value of 0 and a maximum value of 1000, the
following comment lines are added to the
initAuthorTimeValues() method:

/* Uncomment the following statement to simulate an error
message being */

/* displayed for QUANTITY when displaying author time values */

/* getQuantity().setErrorMsg(0, “Value entered for data item
QUANTITY is invalid”); */

When the web designer removes the “/*” and “*/” delimiters of
the last comment ling, the remaining Java code causes the
error message Value entered for data item QUANTITY is
invalid to be displayed below data item QUANTITY. The web
designer can change the method code to display a more
specific message.

Ul type Submit or Submit Bypass

If a data item of Ul type Submit or Submit Bypass has an initial
value, the method initAuthorTimeValues() uses that value. The
statement making the assignment has the following syntax:

<UIRecordName>.<dataltemName>.assign(<occursindex>,
<initialValue>);

If a data item of Ul type Submit or Submit Bypass has occurs >
1 and only one initial value is specified, that initial value
applies to all occurrences of the data item.

If a data item of Ul type Submit or Submit Bypass has no initial

value but has a label, the method initAuthorTimeValues() uses
the label as the initial value. (The web transaction must set the
value of that data item to display the button at run time.)

The statement making the assignment is as follows:

<UIRecordName>.<dataltemName>.assign(<occursindex>,
<label>);

If the data item of Ul type Submit or Submit Bypass has no
initial value and no label, the method initAuthorTimeValues()
sets the data item’s value to No Label. (The web transaction
must set the value of that data item to display the button at run
time.) The statement making the assignment is as follows:

<UIRecordName>.<dataltemName>.assign(<occursindex>,
“No Label”);

Ul type Program Link

If a data item of Ul type Program Link has a label, no value is
assigned to the data item, and the label is displayed as the
value. If a data item of Ul type Program Link has no label, the
method initAuthorTimeValues() assigns a value A Link to the
data item. The statement making the assignment is as follows:

<UIRecordName>.<dataltemName>.assign(<occursindex>,
“A Link”);

Customizing the initial values

To allow review of a web page, web designers may want to
change method initAuthorTimeValues() to display realistic
values rather than values that reflect only the data types.

For example, a statement that assigns a value to Ul record
EMPLOYEE, data item LASTNAME might be as follows:

EMPLOYEE.LASTNAME.assign(0,
‘AAAAAAAAAAAAAAAAAAAR);

As shown, the statement includes the Ul record and data item
names as qualifiers for a method assign(). The first parameter
of that method refers to an occurrence index, which starts at
zero. The first parameter is also zero if the data item is not an
array. The second parameter is the value to be displayed.

To display the last name Doe, change the statement as
follows:

EMPLOYEE.LASTNAME.assign(0, “Doe”);

If the LASTNAME data item is part of an array, the second
occurrence could be changed as follows:

EMPLOYEE.LASTNAME.assign(1, “Smith”);

If a data item of type Input, Output, or Input/Output has an
occurs value > 1 and has an OCCURS data item defined, the
OCCURS data item is set to a default value of 2 to cause two
rows to be displayed. If you want to display more occurrences
you need to change the value assigned to the OCCURS data
item. For example, if the OCCURS data item for a data item in
the EMPLOYEES Ul record is NUMBEREMPLOYEES, and you
want to display 10 occurrences of employees returned in a Ul
record, use the following statement:

EMPLOYEES.NUMBEREMPLOYEES.assign(0, 10L);

You would have to add assignment statements for the third
through 10th occurrences of the data item as well.

If a data item of type Input, Output, or Input/Output has an
occurs value > 1 and has a SELECTED data item defined, the
SELECTED data item is set to a default value of 1 to cause the
first occurrence to be selected when the page is displayed.
The statement making the assignment is as follows:

<UIRecordName>.<selectedDataltemName>.assign(0, 1L);

You can modify the second parameter of this assign statement
to have a different occurrence selected when the web page is
displayed.

To simulate what a web page looks like when a web
transaction does not display a SUBMIT button, comment out
(enclose in /* */ delimiters) the initAuthorTimeValues() code
that assigns a value to the data item of Ul type Submit or
Submit Bypass. For example, change the following entry to the
subsequent one:

EMPLOYEE.BUTTONS.assign(0, “EXIT");
/* EMPLOYEE.BUTTONS.assign(0, “EXIT”"); *

It is important that the web designer affect only method
initAuthorTImeValues() when changing the Ul record bean.
Otherwise, changes may interfere with run-time processing.

After making changes to initAuthorTimeValues(), the web
designer must compile the Ul record bean. This compilation
occurs automatically if the web designer uses VisualAge for
Java, which also provides a versioning mechanism by which
the web designer can retain the original, generated Ul record
bean.

Viewing customized JSPs
To view customized JSPs, do the following:

1. Deploy the Ul record bean and the Ul record object to the
classpath of your web application server. The name of the
Ul record bean is of the form <UI_record_name>Bean.class.
The name of the Ul record object is of the form
VGUir<UI_record_name>.class.

If you are using VisualAge for Java's WebSphere Test
Environment, fulfill this step by importing the Ul record bean
and Ul record object into a VisualAge for Java project,
making sure that the project is included in the VisualAge for
Java Servlet Engine classpath. (When importing into
VisualAge for Java, import the .java files for these classes.)

Chapter 4 of the VisualAge Generator Web Transaction
Development Guide (SH23-0281) describes how to set up
the VisualAge for Java WebSphere Test Environment. If you
do not have edition 2 of that document, it is strongly
recommended that you download the latest version from the
following web site:

http://www.ibm.com/software/ad/visgen/library/v45docs.html

Deploy the enhanced JSP to the document root of your web
server, which may be the WebSphere Test Environment’s
Servlet Engine.

2. In your browser, enter the URL, which is composed of the
document root URL concatenated with the Ul record JSP
name. For example, if the URL of the web server’s document
root is http.//www.myCompany.com and the JSP name is
myUIRecord.jsp, enter the following:

http://www.myCompany.com/myUIRecord.jsp

If you are using the default web server configuration in the
VisualAge for Java WebSphere Test Environment, enter the
following:

http://localhost:8080/myUIRecord.jsp

Accessing a Ul record JSP directly causes the Ul record
bean to be initialized with author time values, if any.
Although you can view enhancements to a single JSP
without running the gateway servlet or the web transaction,
you cannot test links to other web pages in this
circumstance.

Example

Figure 1 and Figure 2 show Ul records LISTRW-UI-Page and

DETAIRW-UI-Page, respectively. These Ul records are used in
a web transaction that displays a list of employees, as well as
detailed information about an employee selected from the list.

L

11

ie

Figure 2. Employee detail Ul record

Figure 3 and Figure 4 show the JSPs generated for the
LISTRW-UI-Page and DETAIRW-UI-Page Ul records.

Testing modifications to generated Ul Record JSPs, continued

<% @ page import = “com.ibm.vgj.uibean.VGDataElement” %>
<HTML><HEAD>

<jsp;useBean id="LISTRWx002DUIx002DPAGE"scope="request” class="my.pkg.LISTRWx002DUIx002DPAGEBean”/>
<l—

This is JAVA code that gets the individual data elements
from the Ul Bean that are to be used by this page to
access all dynamic data. —>

<% LISTRWx002DUIx002DPAGE.initAuthorTimeValues(); %>
<%
VGDataElement INSTANCEx002DFIELDS = LISTRWx002DUIX002DPAGE.getINSTANCEX002DFIELDS();
VGDataElement EMPNO = LISTRWx002DUIX002DPAGE.getEMPNO();
VGDataElement FIRSTNME = LISTRWx002DUIx002DPAGE.getFIRSTNME();
VGDataElement MIDINIT = LISTRWx002DUIX002DPAGE.getMIDINIT();
VGDataElement LASTNAME = LISTRWx002DUIX002DPAGE.getLASTNAME();
VGDataElement WORKDEPT = LISTRWx002DUIX002DPAGE.getWORKDEPT();
VGDataElement PHONENO = LISTRWx002DUIx002DPAGE.getPHONENO();
VGDataElement HIREDATE = LISTRWx002DUIx002DPAGE.getHIREDATE();
VGDataElement JOB = LISTRWx002DUIx002DPAGE.getJOB();
VGDataElement EDLEVEL = LISTRWx002DUIx002DPAGE.getEDLEVEL();
VGDataElement SEX = LISTRWx002DUIx002DPAGE.getSEX();
VGDataElement BIRTHDATE = LISTRWx002DUIx002DPAGE.getBIRTHDATE();
VGDataElement NEXTX002DKEY = LISTRWx002DUIX002DPAGE.getNEXTX002DKEY();
VGDataElement LINKxO02DNEXT = LISTRWx002DUIX002DPAGE.getLINKxO02DNEXT();
VGDataElement ROWSx002DTOx002DDISPLAY = LISTRWx002DUIx002DPAGE.getROWSx002DTOX002DDISPLAY();
VGDataElement INFORMATIONXO02DMESSAGE = LISTRWx002DUIx002DPAGE.getINFORMATIONXO02DMESSAGE();
VGDataElement SELECTEDX002DACTION = LISTRWx002DUIX002DPAGE.getSELECTEDX002DACTION(); %>
<TITLE><%= LISTRWx002DUIx002DPAGE.getTitle() %></TITLE>
</HEAD>
<BODY><H1><%= LISTRWX002DUIX002DPAGE.getTitle() %></H1>
<TABLE BORDER="4" CELLPADDING="20">
<TR>
<TD>
<TABLE ALIGN="left">
<TR>
<TD>
<FORM METHOD="POST” ACTION="<%= LISTRWx002DUIx002DPAGE.getGatewayURL() %>">
<!— No comment defined for item INSTANCE-FIELDS —>
<% if (INSTANCEXO02DFIELDS.notEmpty()) { %>
<TABLE BORDER="1">
<CAPTION ALIGN="top”><%= INSTANCEx002DFIELDS.getLabel() %> </CAPTION>
<TR>
<% { %>
<%
java.util.Enumeration columns = INSTANCEX002DFIELDS.subElements();
while (columns.hasMoreElements()) {
VGDataElement column = (VGDataElement)columns.nextElement(); %>
<TH><%= column.getLabel() %></TH>
<% } %>
<% } %>
</TR>
<% { %>
<%
java.util.Enumeration rows = INSTANCExO02DFIELDS.occurrences();
while (rows.hasMoreElements()) {
VGDataElement row = (VGDataElement)rows.nextElement();
int i = row.getlndex(); %>

Figure 3. Generated employee list JSP

<TR>
<TD ALIGN="left">
<!— No comment defined for item EMPNO —>
<A HREF="<%= EMPNO.getGatewayURL(i) %>"><%= EMPNO.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item FIRSTNME —>
<%= FIRSTNME.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item MIDINIT —>
<%= MIDINIT.getTextValue(i) %></TD>
<TD ALIGN="left">
<!— No comment defined for item LASTNAME —>
<%= LASTNAME.getTextValue(i) %></TD>
<TD ALIGN="left">
<!— No comment defined for item WORKDEPT —>
<%= WORKDEPT.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item PHONENO —>
<%= PHONENO.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item HIREDATE —>
<%= HIREDATE.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item JOB —>
<%= JOB.getTextValue(i) %></TD>
<TD ALIGN="right">
<l— No comment defined for item EDLEVEL —>
<%= EDLEVEL .getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item SEX —>
<%= SEX.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item BIRTHDATE —>
<%= BIRTHDATE.getTextValue(i) %></TD>
</TR>
<% } %>
<% } %>
</TABLE>
<% } %>

<!— No comment defined for item LINK-NEXT —>
<A HREF="<%= LINKXO02DNEXT.getGatewayURL() %>"><%= LINKXO02DNEXT.getLabel() %>

<!— No comment defined for item INFORMATION-MESSAGE —>
<%= INFORMATIONXO02DMESSAGE.getLabel() %> <%= INFORMATIONXO02DMESSAGE.getTextValue() %>

<P>
<!— VG Gateway control fields - DO NOT MODIFY —>
<INPUT TYPE=HIDDEN NAME="hptAppld” VALUE="<%= LISTRWx002DUIx002DPAGE.getAppID()%>">
<INPUT TYPE=HIDDEN NAME="hptSessionld” VALUE="<%= LISTRWx002DUIx002DPAGE.getSessionID() %>">
<INPUT TYPE=HIDDEN NAME="hptPageld” VALUE="<%= LISTRWx002DUIx002DPAGE.getPagelD()%>">
</FORM>
</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY></HTML>

Figure 3. Generated employee list JSP, continued

Testing modifications to generated Ul Record JSPs, continued

<%@ page import = “com.ibm.vgj.uibean.VGDataElement” %>
<HTML><HEAD>
<jsp:useBean id="DETAIRWx002DUIx002DPAGE" scope="request” class="my.pkg.DETAIRWx002DUIx002DPAGEBean” />
<l—
This is JAVA code that gets the individual data elements
from the Ul Bean that are to be used by this page to
access all dynamic data. —>

<% DETAIRWx002DUIX002DPAGE.initAuthorTimeValues(); %>
<%
VGDataElement EMPNO = DETAIRWx002DUIx002DPAGE.getEMPNO();
VGDataElement FIRSTNME = DETAIRWx002DUIxX002DPAGE.getFIRSTNME();
VGDataElement MIDINIT = DETAIRWx002DUIx002DPAGE.getMIDINIT();
VGDataElement LASTNAME = DETAIRWx002DUIX002DPAGE.getL ASTNAME();
VGDataElement WORKDEPT = DETAIRWx002DUIX002DPAGE.getWORKDEPT();
VGDataElement PHONENO = DETAIRWx002DUIX002DPAGE.getPHONENO();
VGDataElement HIREDATE = DETAIRWx002DUIxX002DPAGE.getHIREDATE();
VGDataElement JOB = DETAIRWx002DUIx002DPAGE.getJOB();
VGDataElement EDLEVEL = DETAIRWx002DUIx002DPAGE.getEDLEVEL();
VGDataElement SEX = DETAIRWx002DUIx002DPAGE.getSEX();
VGDataElement BIRTHDATE = DETAIRWx002DUIx002DPAGE.getBIRTHDATE();
VGDataElement SALARY = DETAIRWx002DUIX002DPAGE.getSALARY();
VGDataElement BONUS = DETAIRWx002DUIx002DPAGE.getBONUS();
VGDataElement COMM = DETAIRWx002DUIx002DPAGE.getCOMM();
VGDataElement INFORMATIONXO02DMESSAGE = DETAIRWx002DUIX002DPAGE.getINFORMATIONXO02DMESSAGE();
VGDataElement SELECTEDx002DACTION = DETAIRWx002DUIX002DPAGE.getSELECTEDX002DACTION(); %>
<TITLE><%= DETAIRWx002DUIX002DPAGE.getTitle() %></TITLE>
</HEAD>
<BODY><H1><%= DETAIRWx002DUIx002DPAGE.getTitle() %></H1>
<TABLE BORDER="4" CELLPADDING="20">
<TR>
<TD>
<TABLE ALIGN="left">
<TR>
<TD>
<FORM METHOD="POST” ACTION="<%= DETAIRWx002DUIx002DPAGE.getGatewayURL() %>">
<l— No comment defined for item EMPNO —>
<%= EMPNO.getLabel() %> <%= EMPNO.getTextValue() %>

<!— No comment defined for item FIRSTNME —>
<%= FIRSTNME.getLabel() %> <%= FIRSTNME.getTextValue() %>

<l— No comment defined for item MIDINIT —>
<%= MIDINIT.getLabel() %> <%= MIDINIT.getTextValue() %>

<!— No comment defined for item LASTNAME —>
<%= LASTNAME.getLabel() %> <%= LASTNAME.getTextValue() %>

<l— No comment defined for item WORKDEPT —>
<%= WORKDEPT.getLabel() %> <%= WORKDEPT.getTextValue() %>

<!— No comment defined for item PHONENO —>
<%= PHONENO.getLabel() %> <%= PHONENO.getTextValue() %>

<l— No comment defined for item HIREDATE —>
<%= HIREDATE.getLabel() %> <%= HIREDATE.getTextValue() %>

<!— No comment defined for item JOB —>

Figure 4. Generated empoyee detail JSP

<%= JOB.getLabel() %> <%= JOB.getTextValue() %>

<l— No comment defined for item EDLEVEL —>
<%= EDLEVEL.getLabel() %> <%= EDLEVEL.getTextValue() %>

<!— No comment defined for item SEX —>
<%= SEX.getLabel() %> <%= SEX.getTextValue() %>

<!— No comment defined for item BIRTHDATE —>
<%= BIRTHDATE.getLabel() %> <%= BIRTHDATE.getTextValue() %>

<!— No comment defined for item SALARY —>
<%= SALARY.getLabel() %> <%= SALARY.getTextValue() %>

<!— No comment defined for item BONUS —>
<%= BONUS.getLabel() %> <%= BONUS.getTextValue() %>

<!— No comment defined for item COMM —>
<%= COMM.getLabel() %> <%= COMM.getTextValue() %>

<!— No comment defined for item INFORMATION-MESSAGE —>
<% if INFORMATIONX002DMESSAGE.notEmpty()) { %>
<%= INFORMATIONX002DMESSAGE.getLabel() %>
<%
out.printin(“<pre>");
java.util.Enumeration lines = INFORMATIONx002DMESSAGE.occurrences();
while (lines.hasMoreElements()) {
VGDataElement line = (VGDataElement)lines.nextElement();
out.printin(line.getTextValue());
}
out.printin(“</pre>"); %>
<% } %>

<P>
<l— VG Gateway control fields - DO NOT MODIFY —>
<INPUT TYPE=HIDDEN NAME="hptAppld” VALUE="<%= DETAIRWx002DUIx002DPAGE.getAppID()%>">
<INPUT TYPE=HIDDEN NAME="hptSessionld” VALUE="<%= DETAIRWx002DUIxX002DPAGE.getSessionID() %>">

<INPUT TYPE=HIDDEN NAME="hptPageld” VALUE="<%= DETAIRWx002DUIx002DPAGE.getPagelD()%>">
</FORM>

</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY></HTML>

Figure 4. Generated empoyee detail JSP, continued

Testing modifications to generated Ul Record JSPs, continued

S G e e
P d & & m @k 0 N ol A e A
i P Y ek s P L i r
T T T e e e] A i | i [i ﬁ"ﬁ i
n — e T F1 o
LR R = R .lh-' =
Lisi | Bocenahs 4 Locam[sodor SEETeG
ot e 5 et] ook] Weellomd
¥ g .:Iu:; _.“.Hf:l._ ':a:l.hp r:— Fa v Fula '.I::" T;:.-"- Dﬂﬂi :
EETaD b T i TH I ey
T TN L e L | ol BF mdiwiEt
= L WTRE ! e I T
L I 2] i 10 VI]'r'u-l:I'l.'l'.II:I
Tk r FULASK T ' INF_ mLewiNTH Farrtnine CHREESTINE
(IOER 4 RIS R *1 S ETLL EF i
THRE = sk =4 S5] I|." :-':] 8 e o e :::J --.:..- St |
FHCER] ITNEE: fun LIE TP S AR T LR IR L] Lastname HALS
TT] RCWINLL (s [PWT AIMCUEE | (AW | Rawisg Warkdept 200
| Phanens 1975
Hiveduwte HLOLA5ES
= ey - O TR Jok FEES
Figure 5. Employee list as displayed by the generated JSP i.'l";"i I8
T
Figure 5 and Figure 6 show the output when running web E:”';;_ﬁ:f_"[g?”
. . . i3 [)
transactions that display the employee list and employee Tarrms £1000 (65
detail. The generated Ul record JSPs are in use... Carrum 3422000
| — _ b
i 15 gk e) |
Figure 6. Employee detail as displayed by the generated JSP
Figure 7 shows the employee list JSP enhanced to use
alternating light and dark background colors for the rows of the
employee list. A program link was also added to return to the
gateway servlet entry page. Changes are highlighted.

<%@ page import = “com.ibm.vgj.uibean.VGDataElement” %>
<HTML><HEAD>
<jsp:useBean id="LISTRWx002DUIX002DPAGE” scope="request”’ class="my.pkg.LISTRWx002DUIx002DPAGEBean” />
<l—
This is JAVA code that gets the individual data elements
from the Ul Bean that are to be used by this page to
access all dynamic data. —>
<% LISTRWx002DUIx002DPAGE..initAuthorTimeValues(); %>
<%
VGDataElement INSTANCEX002DFIELDS = LISTRWx002DUIx002DPAGE.getINSTANCEx002DFIELDS();
VGDataElement EMPNO = LISTRWx002DUIX002DPAGE.getEMPNO();
VGDataElement FIRSTNME = LISTRWx002DUIx002DPAGE.getFIRSTNME();
VGDataElement MIDINIT = LISTRWx002DUIX002DPAGE.getMIDINIT();
VGDataElement LASTNAME = LISTRWx002DUIx002DPAGE.getLASTNAME();
VGDataElement WORKDEPT = LISTRWx002DUIX002DPAGE.getWORKDEPT();
VGDataElement PHONENO = LISTRWx002DUIx002DPAGE.getPHONENO();
VGDataElement HIREDATE = LISTRWx002DUIx002DPAGE.getHIREDATE();
VGDataElement JOB = LISTRWx002DUIx002DPAGE.getJOB();
VGDataElement EDLEVEL = LISTRWx002DUIx002DPAGE.getEDLEVEL();
VGDataElement SEX = LISTRWx002DUIx002DPAGE.getSEX();
VGDataElement BIRTHDATE = LISTRWx002DUIX002DPAGE.getBIRTHDATE();
VGDataElement NEXTx002DKEY = LISTRWx002DUIX002DPAGE.getNEXTx002DKEY();
VGDataElement LINKxO02DNEXT = LISTRWx002DUIX002DPAGE.getLINKx002DNEXT();
VGDataElement ROWSx002DTOx002DDISPLAY = LISTRWx002DUIX002DPAGE.getROWSx002DTOx002DDISPLAY();
VGDataElement INFORMATIONxO02DMESSAGE = LISTRWx002DUIx002DPAGE.getINFORMATIONXO02DMESSAGE();
VGDataElement SELECTEDx002DACTION = LISTRWx002DUIx002DPAGE.getSELECTEDXx002DACTION(); %>
<TITLE><%= LISTRWx002DUIX002DPAGE.getTitle() %></TITLE>
<SCRIPTLANGUAGE="JavaScript”">
<!— Hide script

Figure 7. Enhanced employee list JSP

var ph = null;

var dirwin = null;

function Popup()

{ ph = window.open(“”,’'DefaultPopup’,'toolbar=no,location=no,directories=no,status=no,
scrollbars=yes,resizable=yes,copyhistory=no,width=350,height=325');
ph.document.write(“<p>
<p>
Loading data, please wait ...");
if (navigator.appName == “Netscape”)
{
ph.focus();

1
// End script hiding —>
</SCRIPT>
</HEAD>
<BODY><H1><%= LISTRWx002DUIX002DPAGE.getTitle() %></H1>
<!— No comment defined for item INSTANCE-FIELDS —>

<% if INSTANCEXO02DFIELDS.notEmpty()) { %>

<TABLE border=0>
<CAPTION ALIGN="top"><%= INSTANCEX002DFIELDS.getLabel() %> </CAPTION>
<TR>
<% { %>
<%
java.util.Enumeration columns = INSTANCEX002DFIELDS.subElements();
while (columns.hasMoreElements()) {
VGDataElement column = (VGDataElement)columns.nextElement(); %>
<TH><%= column.getLabel() %></TH>
<% } %>
<% } %>
</TR>
<% { %>
<%
java.util.Enumeration rows = INSTANCExO02DFIELDS.occurrences();
while (rows.hasMoreElements()) {
VGDataElement row = (VGDataElement)rows.nextElement();
int i = row.getindex(); %>
<% if (%2 == 1) { %>
<TR bgcolor=#4f60af>
<% } else { %>
<TR bgcolor=#aaaaaa>
<% } %>
<TD ALIGN="left">
<!— No comment defined for item EMPNO —>
<A HREF="<%= EMPNO.getGatewayURL(i) %>" onClick="Popup()”
target="DefaultPopup” >
<%= EMPNO.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item FIRSTNME —>
<%= FIRSTNME.getTextValue(i) %></TD>
<TD ALIGN="left">
<!— No comment defined for item MIDINIT —>
<%= MIDINIT.getTextValue(i) %></TD>
<TD ALIGN="left">
<!— No comment defined for item LASTNAME —>
<%= LASTNAME.getTextValue(i) %></TD>
<TD ALIGN="left">

Figure 7. Enhanced employee list JSP, continued

Testing modifications to generated Ul Record JSPs, continued

<%= HIREDATE.getTextValue(i) %></TD>
<TD ALIGN="left">
<!— No comment defined for item JOB —>
<%= JOB.getTextValue(i) %></TD>
<TD ALIGN="right">
<!— No comment defined for item EDLEVEL —>
<%= EDLEVEL.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item SEX —>
<%= SEX.getTextValue(i) %></TD>
<TD ALIGN="left">
<l— No comment defined for item BIRTHDATE —>
<%= BIRTHDATE.getTextValue(i) %></TD>
</TR>
<% } %>
<% } %>
</TABLE>
<% } %>

<l— No comment defined for item LINK-NEXT —>
<A HREF="<%= LINKxXO02DNEXT.getGatewayURL() %>"><%= LINKXO02DNEXT.getLabel() %>

<A HREF="<%= LISTRWx002DUIx002DPAGE.getGatewayURL() %>" target="_top”">Home

<!— No comment defined for item INFORMATION-MESSAGE —>

<%= INFORMATIONXO02DMESSAGE.getLabel() %> <%= INFORMATIONx002DMESSAGE.getTextValue() %>

<P>

</BODY></HTML>

Figure 7. Enhanced employee list JSP, continued

Figure 8 shows an enhanced JSP for the employee detail. The
highlighted changes cause the following:

e Aligned labels and attribute values in columns

<%@ page import = “com.ibm.vgj.uibean.VGDataElement” %>
<HTML><HEAD>
<jsp:useBean id="DETAIRWx002DUIx002DPAGE” scope="request” class="my.pkg.DETAIRWx002DUIx002DPAGEBean” />
<l—
This is JAVA code that gets the individual data elements
from the Ul Bean that are to be used by this page to
access all dynamic data. —>
<% DETAIRWx002DUIx002DPAGE.initAuthorTimeValues(); %>
<%
VGDataElement EMPNO = DETAIRWx002DUIx002DPAGE.getEMPNO();
VGDataElement FIRSTNME = DETAIRWx002DUIx002DPAGE.getFIRSTNME();
VGDataElement MIDINIT = DETAIRWx002DUIx002DPAGE.getMIDINIT();
VGDataElement LASTNAME = DETAIRWx002DUIX002DPAGE.getLASTNAME();
VGDataElement WORKDEPT = DETAIRWx002DUIX002DPAGE.getWORKDEPT();
VGDataElement PHONENO = DETAIRWx002DUIxX002DPAGE.getPHONENO();
VGDataElement HIREDATE = DETAIRWx002DUIx002DPAGE.getHIREDATE();
VGDataElement JOB = DETAIRWx002DUIx002DPAGE.getJOB();
VGDataElement EDLEVEL = DETAIRWx002DUIX002DPAGE.getEDLEVEL();

Figure 8. Enhanced Employee Detail JSP

VGDataElement SEX = DETAIRWx002DUIx002DPAGE.getSEX();
VGDataElement BIRTHDATE = DETAIRWx002DUIx002DPAGE.getBIRTHDATE();
VGDataElement SALARY = DETAIRWx002DUIX002DPAGE.getSALARY();
VGDataElement BONUS = DETAIRWx002DUIx002DPAGE.getBONUS();
VGDataElement COMM = DETAIRWx002DUIX002DPAGE.getCOMM();
VGDataElement INFORMATIONXO02DMESSAGE = DETAIRWx002DUIx002DPAGE.getiINFORMATIONXxO02DMESSAGE();
VGDataElement SELECTEDx002DACTION = DETAIRWx002DUIX002DPAGE.getSELECTEDx002DACTION(); %>
<TITLE><%= DETAIRWx002DUIX002DPAGE.getTitle() %></TITLE>
</HEAD>
<BODY>
<%= LASTNAME.getTextValue() %>, <%= FIRSTNME.getTextValue() %>

<TABLE BORDER=0 bgcolor=#aaaaaa WIDTH=300><TR><TD bgcolor=#4f60af colspan=2 align=center><%= DETAIRWx002DUIx002DPAGE.getTitle() %></TD>
<TR>
<!— No comment defined for item EMPNO —>
<TD><%= EMPNO.getLabel() %> </TD><TD><%= EMPNO.getTextValue() %></TD>
</TR>
<TR>
<!l— No comment defined for item WORKDEPT —>
<TD><%= WORKDEPT.getLabel() %> </TD><TD><%= WORKDEPT.getTextValue() %></TD>
</TR>
<TR>
<!— No comment defined for item PHONENO —>
<TD><%= PHONENO.getLabel() %> </TD><TD><%= PHONENO.getTextValue() %></TD>
</TR>
<TR>
<l— No comment defined for item HIREDATE —>
<TD><%= HIREDATE.getLabel() %> </TD><TD><%= HIREDATE.getTextValue() %></TD>
</TR>
<TR>
<l— No comment defined for item JOB —>
<TD><%= JOB.getLabel() %> </TD><TD><%= JOB.getTextValue() %></TD>
</TR>
<TR>
<l— No comment defined for item EDLEVEL —>
<TD><%= EDLEVEL.getLabel() %> </TD><TD><%= EDLEVEL.getTextValue() %></TD>
</TR>
<TR>
<!— No comment defined for item SEX —>
<TD><%= SEX.getlLabel() %> </TD><TD><%= SEX.getTextValue() %></TD>
</TR>
<TR>
<l—No comment defined for item BIRTHDATE —>
<TD><%= BIRTHDATE.getLabel() %> </TD><TD><%= BIRTHDATE.getTextValue() %></TD>
</TR>
<TR>
<l— No comment defined for item SALARY —>
<TD><%= SALARY.getLabel() %> </TD><TD><%= SALARY.getTextValue() %></TD>
</TR>
<TR>
<l— No comment defined for item BONUS —>
<TD><%= BONUS.getLabel() %> </TD><TD><%= BONUS.getTextValue() %></TD>
</TR>
<TR>
<!— No comment defined for item COMM —>
<TD><%= COMM.getLabel() %> </TD><TD><%= COMM.getTextValue() %></TD>
</TR>
</TABLE>
</BODY></HTML>

Figure 8. Enhanced Employee Detail JSP, continued

Testing modifications to generated Ul Record JSPs, continued

Figure 9 shows the employee list, which is presented by the
enhanced JSP and includes author-time values that were set
by the generated method initAuthorTimeValues().

A — k= T whars Fokaied
jdfs2endnny i ..g_imm
e T CE T s e e

| G e i e =
List

e Ty — [y . kb Pl Basiedas
| lidslildsih skbbddailliisbiiss jdas slidasbbis sikiidask B bleskidis
© ilakiddal L slbllisklldeibiies dddh skbiliabild dkbdesk SS=00 Lideskllad

T
[l

o T L o |
Figure 9. Enhanced employee list JSP with generated author-
time values

Figure 10 shows the employee detail, which is presented by
the enhanced JSP and includes author-time values that were
set by the generated method initAuthorTimeValues().

Figure 10. Enhanced employee detail JSP with generated
author-time values

Figure 11 shows the generated method initAuthorTimeValues()
for the employee list Ul record. This version of the method was
used to set the initial values displayed in Figure 9.

// Set author time initial values for data items associated with HTML elements.
/[The initial values are based only on Ul Type and data item of the items.
public void initAuthorTimeValues()
{
if (!getGatewayURL().equals(NOGATEWAYURL))
return;
try
{
LISTRWx002DUIx002DPAGE .setlnitialValues();
LISTRWx002DUIx002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.EMPNO.assign(0, “A Link”);
LISTRWx002DUIX002DPAGE.EMPNO.assign(1, “A Link”);
LISTRWx002DUIx002DPAGE.ROWSx002DTOX002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.FIRSTNME.assign(0, “AAAAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.FIRSTNME.assign(1, “AAAAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.MIDINIT.assign(0, “A”);
LISTRWx002DUIx002DPAGE.MIDINIT.assign(1, “A”);
LISTRWx002DUIx002DPAGE.ROWSXx002DTOX002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.LASTNAME .assign(0, “AAAAAAAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.LASTNAME .assign(1, “AAAAAAAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(0, “AAA”);
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(1, “AAA”);
LISTRWx002DUIx002DPAGE.ROWSXx002DTOX002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.PHONENO.assign(0, “AAAA”);
LISTRWx002DUIXx002DPAGE.PHONENO.assign(1, “AAAA”);

Figure 11. Generated method initAuthorTimeValues() for the Employee List bean

LISTRWx002DUIx002DPAGE.ROWSXx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIX002DPAGE.HIREDATE.assign(0, “AAAAAAAAAA”);
LISTRWx002DUIX002DPAGE.HIREDATE.assign(1, “AAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.ROWSXx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIX002DPAGE.JOB.assign(0, “AAAAAAAA”);
LISTRWx002DUIX002DPAGE.JOB.assign(1, “AAAAAAAA”);
LISTRWx002DUIx002DPAGE.ROWSX002DTOX002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.EDLEVEL .assign(0, 9999L);
LISTRWx002DUIx002DPAGE.EDLEVEL .assign(1, 9999L);
/* Uncomment the following statement to simulate an error message being */
/* displayed for EDLEVEL when displaying author time values. */
/* getEDLEVEL().setErrormsg(O, “Value entered for data item EDLEVEL is invalid”); */
LISTRWx002DUIx002DPAGE.ROWSX002DTOX002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.SEX.assign(0, “A”);
LISTRWx002DUIx002DPAGE.SEX.assign(1, “A”);
LISTRWx002DUIx002DPAGE.ROWSXx002DTOx002DDISPLAY.assign(0, 2L);
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(0, “AAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(1, “AAAAAAAAAA”);
LISTRWx002DUIx002DPAGE.LINKXO02DNEXT.assign(0, “A Link”);
LISTRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE.assign(0,
“AA);
}

catch (Exception e)

{

System.out.printin(“Exception received trying to initialize author time values:
+ e.getMessage());

}

Figure 11. Generated method initAuthorTimeValues() for the Employee List bean, continued

Figure 12 shows the generated method initAuthorTimeValues()
for the employee detail Ul record. This version of the method
was used to set the initial values displayed in Figure 10.

/| Set author time initial values for data items associated with HTML elements.
/| The initial values are based only on Ul Type and data item of the items.
public void initAuthorTimeValues()
{
if (lgetGatewayURL().equals(NOGATEWAYURL))
return;
try
{
DETAIRWx002DUIx002DPAGE .setlInitialValues();
DETAIRWx002DUIx002DPAGE.EMPNO.assign(0, “AAAAAA”);
DETAIRWx002DUIX002DPAGE.FIRSTNME.assign(0, “AAAAAAAAAAAA”);
DETAIRWx002DUIx002DPAGE.MIDINIT.assign(0, “A”);
DETAIRWx002DUIx002DPAGE.LASTNAME .assign(0, “AAAAAAAAAAAAAAA”);
DETAIRWx002DUIx002DPAGE.WORKDEPT.assign(0, “AAA”);
DETAIRWx002DUIx002DPAGE.PHONENO.assign(0, “AAAA”);
DETAIRWx002DUIX002DPAGE.HIREDATE .assign(0, “AAAAAAAAAA”);
DETAIRWx002DUIX002DPAGE.JOB.assign(0, “AAAAAAAA”);
DETAIRWx002DUIx002DPAGE.EDLEVEL .assign(0, 9999L);
/* Uncomment the following statement to simulate an error message being */
/* displayed for EDLEVEL when displaying author time values. */
/* getEDLEVEL().setErrormsg(O, “Value entered for data item EDLEVEL is invalid”); */
DETAIRWx002DUIx002DPAGE.SEX.assign(0, “A”);
DETAIRWx002DUIX002DPAGE .BIRTHDATE.assign(0, “AAAAAAAAAA”);
DETAIRWx002DUIx002DPAGE.SALARY .assign(0, new VGJBigNumber(“9999999.99”));
/* Uncomment the following statement to simulate an error message being */
/* displayed for SALARY when displaying author time values. */
/* getSALARY().setErrormsg(0, “Value entered for data item SALARY is invalid”); */

Figure 12. Generated method initAuthorTimeValues() for the Employee Detail bean

Testing modifications to generated Ul Record JSPs, continued

/* Uncomment the following statement to simulate an error message being */

/* displayed for BONUS when displaying author time values. */

/* getBONUS().setErrormsg(0, “Value entered for data item BONUS is invalid”); */

DETAIRWx002DUIx002DPAGE.COMM.assign(0, new VGJBigNumber(“9999999.99”));

/* Uncomment the following statement to simulate an error message being */

/* displayed for COMM when displaying author time values. */

/* getCOMM().setErrormsg(0, “Value entered for data item COMM is invalid”); */

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(O,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(1,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(2,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONXx002DMESSAGE .assign(3,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(4,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(5,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(6,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(7,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(8,
“AA

DETAIRWx002DUIx002DPAGE.INFORMATIONx002DMESSAGE .assign(9,
“AA);

}
catch (Exception e)

{

—_ = = = = =~ o~

—

System.out.println(“Exception received trying to initialize author time values: “
+ e.getMessage());

}

Figure 13 shows the employee list, which is presented by the
enhanced JSP and includes author-time values that were
customized in the method initAuthorTimeValues() as shown in
Figure 15. It was not necessary to run a web transaction to
see this result.

i — oy .

i e R b]
Figure 13. Web page based on an enhanced employee list JSP
and initAuthorTimeValues() enhanced with realistic values

Figure 14 shows the employee detail, which is presented by
the enhanced JSP and includes author-time values that were
customized in the method initAuthorTimeValues() as shown in
Figure 16. It was not necessary to run a web transaction for the
page designer to see this result.

+ Dol - Hri sama
e B8 M G Deseasa pe

i A2 230

M=

Tl mmineni 4 Losston [irp S =] 0 et e
L e
ELAAN. CHHISTINE
Fampne Do0o
Werkdepe Al
Fluznenn. .
Harwsduse RN
Tuh TERES
Fdlevel n
San: E
Salury Bmne
Hemau Eloen
Coonm. Bz
| e L T i

Figure 14. Web page based on an enhanced employee detail JSP
and initAuthorTimeValues() enhanced with realistic values

Figure 15 shows an enhanced method initAuthorTimeValues()
for the employee list Ul record Changes are highlighted. This
version of the method was used to set the initial values
displayed in Figure 13.

/| Set author time initial values for data items associated with HTML elements.
// The initial values are based only on Ul Type and data item of the items.
public void initAuthorTimeValues()
{
if (lgetGatewayURL().equals(NOGATEWAYURL))
return;
try
{
LISTRWx002DUIx002DPAGE .setlInitialValues();
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.EMPNO.assign(0, “000010”);
LISTRWx002DUIx002DPAGE.EMPNO.assign(1, “000020”);
LISTRWx002DUIx002DPAGE.EMPNO.assign(2, “000030");
LISTRWx002DUIx002DPAGE.EMPNO.assign(3, “000050");
LISTRWx002DUIx002DPAGE.EMPNO.assign(4, “000060");
LISTRWx002DUIx002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIX002DPAGE.FIRSTNME.assign(0, “CHRISTINE”);
LISTRWx002DUIXx002DPAGE.FIRSTNME.assign(1, “MICHAEL”);
LISTRWx002DUIx002DPAGE.FIRSTNME.assign(2, “SALLY");
LISTRWx002DUIx002DPAGE.FIRSTNME.assign(3, “JOHN");
LISTRWx002DUIx002DPAGE.FIRSTNME.assign(4, “IRVING”);
LISTRWx002DUIx002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIXx002DPAGE.MIDINIT.assign(0, “I");
LISTRWx002DUIx002DPAGE.MIDINIT.assign(1, “L");
LISTRWx002DUIx002DPAGE.MIDINIT.assign(2, “A”);
LISTRWx002DUIx002DPAGE.MIDINIT.assign(3, “B");
LISTRWx002DUIx002DPAGE.MIDINIT.assign(4, “F");
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIX002DPAGE.LASTNAME.assign(0, “HAAS”);
LISTRWx002DUIx002DPAGE.LASTNAME.assign(1, “THOMPSON");
LISTRWx002DUIx002DPAGE.LASTNAME.assign(2, “KWAN");
LISTRWx002DUIx002DPAGE.LASTNAME.assign(3, “GEYER”);
LISTRWx002DUIx002DPAGE.LASTNAME.assign(4, “STERN”);
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.WORKDEPT .assign(0, “A0Q0");
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(1, “B01”);
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(2, “C01");
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(3, “E01");
LISTRWx002DUIx002DPAGE.WORKDEPT.assign(4, “D11");
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.PHONENO.assign(0, “3978");
LISTRWx002DUIx002DPAGE.PHONENO.assign(1, “3476");
LISTRWx002DUIx002DPAGE.PHONENO.assign(2, “4738");
LISTRWx002DUIx002DPAGE.PHONENO.assign(3, “6789");
LISTRWx002DUIx002DPAGE.PHONENO.assign(4, “6423");
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.HIREDATE.assign(0, “01/01/1965”);
LISTRWx002DUIx002DPAGE.HIREDATE .assign(1, “10/10/1973");
LISTRWx002DUIx002DPAGE.HIREDATE.assign(2, “04/05/1975");
LISTRWx002DUIx002DPAGE.HIREDATE.assign(3, “08/17/1949");
LISTRWx002DUIx002DPAGE.HIREDATE.assign(4, “09/14/1973");
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.JOB.assign(0, “PRES”);
LISTRWx002DUIx002DPAGE.JOB.assign(1, “MANAGER");
LISTRWx002DUIx002DPAGE.JOB.assign(2, “MANAGER");

Figure 15. Enhanced method initAuthorTimeValues() for the Employee List bean

Testing modifications to generated Ul Record JSPs, continued

LISTRWx002DUIx002DPAGE.JOB.assign(3, “MANAGER”);
LISTRWx002DUIx002DPAGE.JOB.assign(4, “MANAGER”);
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY .assign(0, 5L);
LISTRWx002DUIx002DPAGE.EDLEVEL .assign(O, 18L);
LISTRWx002DUIx002DPAGE.EDLEVEL.assign(1, 18L);
LISTRWx002DUIx002DPAGE.EDLEVEL.assign(2, 20L);
LISTRWx002DUIx002DPAGE.EDLEVEL.assign(3, 16L);
LISTRWx002DUIx002DPAGE.EDLEVEL .assign(4, 16L);
/* Uncomment the following statement to simulate an error message being */
/* displayed for EDLEVEL when displaying author time values. */
/* getEDLEVEL().setErrorMsg(O, “Value entered for data item EDLEVEL is invalid”); */
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.SEX.assign(0, “F");
LISTRWx002DUIx002DPAGE.SEX.assign(1, “M”);
LISTRWx002DUIx002DPAGE.SEX.assign(2, “F");
LISTRWx002DUIx002DPAGE.SEX.assign(3, “M”);
LISTRWx002DUIx002DPAGE.SEX.assign(4, “M”);
LISTRWx002DUIX002DPAGE.ROWSx002DTOx002DDISPLAY.assign(0, 5L);
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(0, “08/24/1933");
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(1, “02/02/1948");
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(2, “05/11/1941”);
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(3, “09/15/1925");
LISTRWx002DUIx002DPAGE.BIRTHDATE.assign(4, “07/07/1945”);
LISTRWx002DUIx002DPAGE.LINKXO02DNEXT.assign(0, “Next”);
/
LISTRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(0,
“AA”),

*/

}

catch (Exception e)

{
System.out.println(“Exception received trying to initialize author time

values: “ + e.getMessage());
}
}

Figure 15. Enhanced method initAuthorTimeValues() for the Employee List bean, continued

Figure 16 shows an enhanced method initAuthorTimeValues()
for the employee detail Ul record Changes are highlighted.
This version of the method was used to set the initial values
displayed in Figure 14.

/| Set author time initial values for data items associated with HTML elements.
/| The initial values are based only on Ul Type and data item of the items.
public void initAuthorTimeValues()
{
if (!getGatewayURL().equals(NOGATEWAYURL))
return;
try
{
DETAIRWx002DUIx002DPAGE .setlInitialValues();

DETAIRWx002DUIx002DPAGE.EMPNO.assign(0, “000010”);
DETAIRWx002DUIx002DPAGE.FIRSTNME.assign(0, “CHRISTINE”);
DETAIRWx002DUIx002DPAGE.MIDINIT.assign(0, “I");
DETAIRWx002DUIx002DPAGE.LASTNAME.assign(0, “HAAS”);
DETAIRWx002DUIx002DPAGE.WORKDEPT.assign(0, “A00”);
DETAIRWx002DUIx002DPAGE.PHONENO.assign(0, “3978”);
DETAIRWx002DUIx002DPAGE.HIREDATE.assign(0, “01/01/1965”);
DETAIRWx002DUIx002DPAGE.JOB.assign(0, “PRES”);
DETAIRWx002DUIx002DPAGE.EDLEVEL .assign(0, 18L);

/* Uncomment the following statement to simulate an error message being */
/* displayed for EDLEVEL when displaying author time values. */
/* getEDLEVEL().setErrorMsg(O, “Value entered for data item EDLEVEL is invalid”); */
DETAIRWx002DUIx002DPAGE.SEX.assign(0, “F”);
DETAIRWx002DUIx002DPAGE.BIRTHDATE.assign(0, “08/24/1933");
DETAIRWx002DUIX002DPAGE.SALARY.assign(0, new VGJBigNumber(“52750.00"));
/* Uncomment the following statement to simulate an error message being */
/* displayed for SALARY when displaying author time values. */
/* getSALARY().setErrorMsg(0, “Value entered for data item SALARY is invalid”); */
DETAIRWx002DUIx002DPAGE.BONUS .assign(0, new VGJBigNumber(“1000.00"));
/* Uncomment the following statement to simulate an error message being */
/* displayed for BONUS when displaying author time values. */
/* getBONUS().setErrorMsg(O, “Value entered for data item BONUS is invalid”); */
DETAIRWx002DUIX002DPAGE.COMM.assign(0, new VGJBigNumber(“4220.00"));
/* Uncomment the following statement to simulate an error message being */
/* displayed for COMM when displaying author time values. */
/* getCOMM().setErrorMsg(O, “Value entered for data item COMM is invalid”); */
/
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(0,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(1,
“AA"
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(2,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(3,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(4,
“AA"
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(5,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONXO002DMESSAGE.assign(6,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(7,
“AA"
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(8,
“AA”
DETAIRWx002DUIx002DPAGE.INFORMATIONX002DMESSAGE.assign(9,
“AA”
*/
}
catch (Exception e)
{
System.out.println(“Exception received trying to initialize author time values: *
+ e.getMessage());

}
Figure 16. Enhanced method initAuthorTimeValues() for the Employee List bean
Conclusion

Web page designers who customize Ul record JSPs do not
need to access a web transaction to view the web pages
produced by those JSPs. The web pages can include initial
values (either default or realistic), as well as error messages.m

ustomer Information Control System
CICS 0S2 Customer Information Control System Operating System/2
CPU central processing unit
CSP Cross System Product
DB2 Database 2
DBCS double-byte character set
DBMS database management system
DCE distributed computing environment
DRDA distributed relational database architecture
EMEA Europe/Middle East/Africa
GUI graphical user interface
IBM International Business Machines
IMS |Information Management System
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Microsoft Windows NT
0S/2 Operating System/2
0S/390 Operating System/390
0S/400 Operating System/400
RAD rapid application development
SQL Structured Query Language
TCP/IP Transmission Control Protocol/Internet Protocol
VM Virtual Machine
VSE Virtual Storage Extended
WWW World Wide Web

Instantiations, Inc. announces

the release of VA Assist Enterprise/G™ Version 2

VA Assist Enterprise/G is a product that follows in the rich
tradition of providing major new capabilities to IBM’s popular
VisualAge® Generator. In addition to providing the extensive
set of power tools for repository management, GUI building
and code development - VA Assist Enterprise/G supports
both the Java and Smalltalk language options in VisualAge
Generator! VA Assist Enterprise/G integrates seamlessly into
the familiar parts browsers and visual composition editors,
adding hundreds of new features and commands.

Bimis P
e
=

In summary, VA Assist Enterprise/G lets new and
experienced VisualAge Generator developers easily
harness the power that Java brings to the environment.

Developers will find that VA Assist Enterprise/G encourages
them to use a much broader spectrum of VisualAge
Generator’s capabilities, increasing their productivity and
ease of use along the way.

Instantiations is an IBM Business Partner and has been
providing products and services to VisualAge customers for
years. Thousands of developers are currently using
Instantiations’ VisualAge productivity tools.

VA Assist Enterprise/G Expands on our Triple Your Productivity
Claim by Providing VisualAge Generator Users with Powerful
Repository Management, Code Development and GUI Building
Capabilities.

— Eric Clayberg, Sr. Vice President of Product Development,
Instantiations, Inc.

“We are delighted that Instantiations has developed VA Assist
Enterprise/G that fully supports Java

“From the powerful library administration aides to the fast-path GUI
building capabilities, | have found VA Assist Enterprise/G to be a
valuable add-on to VisualAge Generator. Check it out!”

— Gary Johnston, Product Manager, VisualAge Generator.

Some of the Repository Management features included:

e \ersion renaming commands — baseline app names with ease!

e \ersion name templates allow the developer to specify the
scheme used for generating new version names from prior
releases.

e Super user features — manipulate editions and version regardless
of ownership.

e Super group - enables the Administrator to set up special
ownership and modification rules for specific packages.

e New commands to copy projects, compare different projects and
packages, create new editions of projects, packages and types.

* Replace a project with an arbitrary instance of any other
(unloaded) project.

Some of the Code Development features included:

e Color highlighting of modified, scratch and unreleased editions.

e Enhanced import and export Wizard for efficient naming and
saving.

e Powerful nesting capabilities with batch export sets.

¢ Intuitive and integrated drag-an-drop for moving or copying
classes or projects.

e Keyboard shortcuts (accelerators) that can be assigned to any
menu items. Multiple menu key profiles may be created!

e Handy view filtering allows the developer to filter project and
package lists to show only the items of interest.

e Problem filtering allows developers to filter the problems page by
project and type of problem.

Some of the GUI Building features included:

e Unravel the visual complexity by filtering connections.

e Gain workspace clarity by auto- hiding all connections except
those originating from or terminating at selected components.

e Alt-click on a widget to change its label or title with direct editing.

e Developers are able to easily select all components or all
component of the same type.

* Any visual component may be auto-sized with newly added
commands.

e Move or adjust the size of selected components in pixel
increments.

e Set the size of the VCE script editor according to your preference!

B\ Assist Enterprise’is

You can download a free, fully functional 30-day
evaluation version of VA Assist Enterprise/G from
Instantiations’ web site:
http:/www.instantiations.com/assist

For more information, contact Instantiations at
800-808-3737.

The VisualAge Generator Newsletter

This newsletter is published by the IBM Software Solutions Division, Research Triangle
Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor

IBM Corporation

Dept. EQWB/503

P.O. Box 12195

3039 Cornwallis Road

RTP, NC 27709

USA

ahawk@us.ibm.com

© Copyright International Business Machines Corporation 2001. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DataJoiner, DB2, DB2/2, DB2/400, DB2/6000,
IBM, IMS, LE/370, MQSeries, MVS, VM, VSE, Operating System/2, 0S/2, 0S/390, OS/400, RISC System/6000, SQL/DS,
WebSphere, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U. S. and other countries.

Informix is a trademark of the Informix Corporation.

Oracle is a trademark of Oracle Corporation.

ENVY is a trademark of Object Technology International, Inc.
HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, Visual Basic, and ActiveX are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those
described here. IBM does not warrant any non-IBM programs or products, which are described in this newsletter. These
articles are for information only, and you should contact the stated company with your questions.

