Visua

e-business

Volume 4, Number 3
July/August 1999

e IBM VisualAge Generator Newsletter

o
enerator

A Powerful New Vision
of Programming™

Special e-business issue

Contents

Special e-business editionccccciiiiiiii i 2

Building scalable e-business applications using
VisualAge GENEIatOr ... 3

VisualAge Generator on the Web—

The State of California MDL Projectccccccciiiiiiiiiiii i 6
VisualAge Generator Plans for e-business and

ENterprise Java Server ..o 12
Moving your application to the Internet using Javaccccccccin 16

L

Special e-business Edition

by Barry Stevenson, VisualAge Generator Development Manager

VisualAge Generator
and e-business

We're excited to bring you this special
newsletter issue featuring articles on
developing e-business solutions using
VisualAge Generator technology.

A growing number of customers are
beginning to utilize the strength of
VisualAge Generator to deploy real
enterprise e-business applications.
These web solutions are having a
significant impact on businesses and
provide increased value for companies.

With the accelerating demand for new
electronic commerce applications,
VisualAge Generator provides unique
application solutions capable of
leveraging and integrating complex
enterprise systems. These systems
typically represent core I/T business
processes.

What is e-business anyway?

Well, it's the transformation of key
business processes through Internet
technologies.

The Web is changing numerous aspects
of society and nothing is changing as
rapidly and significantly as the way
businesses operate.

To get the most out of their core
business systems, companies of all
sizes are now using the Web to
communicate with customers by
connecting to legacy back-end data-
systems that drive day-to-day business
workloads. This is e-business—where
the strength and reliability of traditional
information technology meets the
Internet.

The new Web + I/T model merges the
simplicity and connectivity of the Internet
with the core processes that are the
foundation of a business. These new

applications are interactive, transaction
and data intensive, and they let people
do business in more meaningful ways.

Enterprise e-business
solutions: the ingredients
of success

An e-business company is one that
effectively manages constant and
continual change. Successful e-business
deployments do two things well:

1. Use end-to-end AD tools that lower the
complexity of developing e-business
apps by quickly extending the reach
of web interfaces to core business
systems.

2. Build on the existing investment of I/T
systems and traditional application
development skillsets.

Whether you're just taking your first steps
or are already engaged in e-business
systems development, exploiting the
opportunities that e-business solutions
provide requires progressive AD tools.
This is where VisualAge Generator can
help you succeed.

Cool stuff in this issue:

e Why VisualAge Generator is the right
tool for building scalable e-business
application solutions: added support
from VisualAge for Java and the
WebSphere product families

e VisualAge Generator plans for
supporting e-business application
development using the Enterprise
JavaBeans standard

e An in-depth look at the unique
e-business architecture used in the
MDL project at the State of California

e A technigue for moving a VisualAge
Generator application to the Internet
using Java Servlets m

Powerful enterprise
e-business solutions

"ll.-;uu].-"agﬂ ‘Generator

@

-lrisiness

Building scalable e-business applications using
VisualAge Generator*

by John Casey, VisualAge Generator Sales Support

"Few business applications grow as
quickly - and unpredictably - as Internet
applications. Usage patterns can
change overnight, with spikes in
demand occurring from inscrutable
causes. Because it's so hard to gauge
traffic, Web applications must be
designed first and foremost with
scalability in mind."" But how can you
design scalable e-business
applications, such that they can survive
periods of rapid and unpredictable
growth? VisualAge Generator, with
VisualAge for Java and the WebSphere
family of tools, makes designing and
building scalable e-business solutions
easier.

E-business applications:
3-tier architecture

E-business applications typically divide
the processing load among tiers -
presentation, logic, and data servers.
This architecture for an e-business
application is depicted in Figure 1. In a
logical 3-tier structure, the web browser
uses HTML to present the end-user
interface. If Java applets are used, then
they will also run on the web browser.

HTML & Java

. 4
2

Name
Address
E-mail

JavalServiets;
Connectors

Data Beans

On tier 2, a web application server
services the request from the web
browser by using business logic in the
form of Java servlets and special Java
beans called connectors, which access
tier 3. Tier 3 consists of the enterprise
data and the transaction environment,
which is the source for the information
displayed via a web browser. The main
business applications reside on tier 3.

Two typical solutions

One way businesses choose to react to
increased demand on the web
application server is to add physical
servers until the demand is satisfied.
Initially, this solution is simple and
effective. The configuration remains
constant and workload is distributed
across the application servers. But as
the number of web application servers
grows, so do the costs to provide
concurrency, maintenance, and
support. These costs might eventually
drive businesses to reduce the number
of web application servers, add more
powerful technology, and upgrade the
system software.

VisualAge
Generator Server

Tier 1 Tier 2 Tier 3
Web browser Web application Enterprise Data &
interface server Transaction
Environment

Figure 1. E-business 3 tier architecture

VisualAge Generator, with
VisualAge for Java and the
WebSphere family of tools, makes

designing and building scalable
e-business solutions easier.

Using more powerful technology, which
is itself a second way to address the
scalability issue, means introducing new
system software to support the
technology. With a change in supporting
software, a rewrite of the business’s web
application will likely be required for this
new environment. Again scalability
comes at a cost when using traditional
development languages because they
must be adapted to the new technology.?

Design and build for scalability

Each of these scalability alternatives
assumes that the web application server
will perform all of the business logic. As
we have learned from implementing
client/server applications where fat
clients ran all of the business logic to
access remote database servers,
application performance suffered from
the larger amounts of data moving
across the network. So, we partitioned
the application’s business logic to run
on the server. This architecture provides
significant benefits, such as reduced
network traffic, which results in
significantly better application response
time. Today e-business applications can
also benefit from this architecture—
partitioning the business logic to run on
the server where data is accessed.?

But partitioning the application is only
one of the best practices for building an
e-business application. To implement
best practices, such as those listed in
Figure 2, is to design and build a
scalable e-business application. But
implementing these practices is best
accomplished if aided by the right tool.
VisualAge Generator, which continues
to be a leader in building scalable
applications, is a tool that can aid you in
implementing these practices.

Building scalable e-business applications, continued

1. Choose a development environment that lets the I/T department partition
application logic and distribute processing across multiple platforms

2. Pick a middleware platform that addresses the application integration needs of
most of the Web, database, legacy, and strategic business application platforms

you have in place

3. Choose a middleware product that shields developers from low-level coding

4. Institute a testing program for new Web applications prior to deployment

5. Design the application logic first, then select the appropriate hardware

infrastructure

Figure 2. Best practices for Web Scalability*

The right tool:
VisualAge Generator

VisualAge Generator is a powerful,
integrated development workbench
used by programmers to fully define,
test, build and deploy enterprise-level
systems on a variety of platforms in
record time. VisualAge Generator
enables developers to build systems
and programs for new computing
technologies, such as e-business and
network computing, as well as for
traditional host support.

VisualAge Generator enables I/T
managers to deliver scalable solutions,
notably high-end e-business
applications, that run on many different
operating system environments, that
leverage existing programs and data,
and that use the existing skill of their staff
to create these applications. With
VisualAge Generator, |/T managers can
rapidly deliver new function that works
with their existing environments.

VisualAge Generator:
supporting these practices

Building e-business applications with
VisualAge Generator will automatically
provide scalable servers that do not
have to be rewritten when the
technology changes. From the same
4GL source, VisualAge Generator can
generate e-business application servers

that will run on MVS, VSE, VM, AS/400,
AlX, HP-UX, OS/2, Windows/NT, and in a
future release, Solaris. In addition, by
using VisualAge Generator, developers
can easily create their web applications
with additional scalability features. Let's
examine how VisualAge Generator
supports implementation of the best
practices.

e VisualAge Generator enables
application logic partitioning and
distributing of processing across
multiple platforms. Dynamic
Application Partitioning, a VisualAge
Generator feature, provides visual and
numeric feedback to aid in optimal
placement of partitioned logic.

e VisualAge Generator has built-in
middleware that addresses the
application integration complexity of
most of the Web, database, legacy, and
strategic business application
platforms you have in place.

e VisualAge Generator's built-in
middleware shields developers from
low-level coding and the complexities
of building web-based applications.

e VisualAge Generator enables testing
prior to deployment of both the client
and server for an e-business application
on the developer’s desktop.

e VisualAge Generator enables
developers to design the application
logic first. When the application is

defined and tested, then you generate
the applications for the appropriate
hardware infrastructure. Retargeting
the application for a different platform
is easy, just regenerate.

Delivering networked
solutions

Building e-business applications using
VisualAge Generator is possible today
through two of its features.

The VisualAge
WebConnection feature

The VisualAge WebConnection feature,
a part of the VisualAge Generator
Developer V3 product, provides a set of
parts that enable a programmer to
visually define web pages without
having to know languages like HTML or
PERL. This feature, although not Java
based, provides a much simpler
approach to creating dynamic web
pages than CGI programming. These
web applications can dynamically build
web pages and invoke server programs.
It provides an elegant and easy way to
include tier-3 transactions in a web-
based system all from within the
VisualAge Generator development
environment.

VisualAge Generator middleware
and JavaBean support

VisualAge Generator provides the Java
programming required to connect a
Java client to a VisualAge Generator
server program. This support is provided
through VisualAge Generator
middleware and through Java beans
created for a server program. For a
programmer using VisualAge for Java,
WebSphere Studio, or other Java tool,
these VisualAge Generator created Java
beans simplify and speed up the
development of e-business applications
where the web client needs to access a
tier-3 server. During execution of the e-
business application these Java beans
and the VisualAge Generator

middleware automatically perform all the
data marshaling and data conversion
necessary to connect the Java client to
the traditional back-end transactions.

Development scenario using
VisualAge Generator

To build a web application using
VisualAge Generator you need to use
VisualAge Generator and VisualAge for
Java or WebSphere Studio.

Using VisualAge Generator:

1. Develop and test the tier 3 transaction

2. Generate the tier 3 transaction for the
server platform and compile into its
executables

3. Generate the Java connector beans
for the tier 3 transaction

Using VisualAge for Java
or WebSphere Studio

1. Import the Java connector beans for
the tier 3 transaction.

2. Create the client as a servlet, applet,
or application and use the imported
Java connector beans to define the
tier 3 server access.

3. Test the client together with the tier 3
transaction all on the same
workstation.

4. Publish or extend with your favorite
HTML tools.

Working together: VisualAge
Generator, VisualAge for Java,
and WebSphere

The State of California Department of
Health Services has recently
implemented their Microbial Diseases
Laboratory System using web browsers
and Java servlets that run on IBM's
WebSphere Application Server and
connect to a new MVS back-end
transaction using VisualAge Generator
provided middleware (Figure 3). The
Java servlets were developed with
VisualAge for Java and the back-end

VisualAge for Java WebSphere
Browser
- Application
service
\ adapters:
— Presentation
<+ ~ VisualAge
Generator
—>
User Input
NT Web Server
-WebSphere
-Lotus GO

-Java Servlets

VisuaIAge Generator

LU62

MVS/CICS Server
VisualAge Generator Server
DB2

-VisualAge Generator Java Gtw

-CICS Client
-PCOMM

Figure 3. An integrated Web VAGen solution

server transaction was created with
VisualAge Generator. With education
and mentoring provided by the IBM
Services team, the State of California
developed, tested, and deployed their
new e-business MDL application in just
four months (see the article in this issue,
"VisualAge Generator on the Web").

Future directions

In a future release, IBM plans to make all
the productivity, scalability, and
networking features of VisualAge
Generator V3 available in the VisualAge
for Java development environment. In
addition, planned WebSphere
integration enhancements will enable
traditional host programmers to build
e-business applications that run on a
WebSphere application server. As the
architecture of e-business solutions
continues to evolve towards thin clients
and component-based servers, the
Enterprise JavaBean (EJB) open
industry standards will become the key
technology for deploying scalable and
flexible solutions. VisualAge Generator
plans to enable generation of Java-based
servers that support the EJB standard
(see the article in this issue, "VisualAge
Generator Plans for e-Business and
Enterprise Java Server").

E-Business applications must be
designed and built with scalability in
mind. VisualAge Generator, combined with
VisualAge for Java and WebSphere,
provides a powerful solution for building and
running e-business applications:
applications that meet the most stringent
reliability, scalability, and availability
requirements of today's—and tomorrow's—
networked business world. m

*This article discusses plans which
are subject to change.

! ‘Scalable Web Apps' by David Baum,
InformationWeek, February 2, 1992

2 Java's portability can avoid this initially;
but support for transaction rates that
are higher than what Java can
provide today and support for non-
relational data access methods will
require the use of traditional
languages.

3 This shifting of business logic to the
data server should also have some
additional benefits. Because each tier
2 application now executes less
business logic and has less
interactions with the network, the web
application server will have additional
capacity that can support a larger
number of concurrent users.

4 '‘Scalable Web Apps' by David Baum,
InformationWeek, February 2, 1992

VisualAge Generator on the Web—
The State of California MDL Project

by Denise A. Hendriks, VisualAge Services

Introduction

Wouldn't you want to know if there was a
disease outbreak in your community?
Like many other states, the Department
of Health Services for the State of
California is responsible for protecting
the public. They track disease outbreaks
within the state and the systems they rely
on track samples and specimens,
testing, and test results. The Microbial
Disease Laboratory (MDL) system is the
mechanism the State of California
Health Services uses for tracking
microbial diseases. This article
describes how a small team of
developers moved this vitally important
system, written in Natural and Adabas,
from a proprietary implementation to an
open, web-based solution and
simultaneously brought it into Y2K
compliance.

To provide an open, web-based
solution, the deployed MDL application
is a Java servlet-based system
consisting of approximately 40 servlets,
100 MVS CICS transactions and 30 DB2
tables. This implementation provides a
thin-client solution, leveraging their

| User Interface Servlets

* User Interface Logic
Navigation Servlets

Business Logic

Web Client

¥ = 2
Http

Http
] .
Web Client

O

Figure 1. MDL Logical Implementation

enterprise system. The new web-based
implementation at State of California was
developed using VisualAge Generator,
VisualAge for Java Enterprise Edition,
Domino Go Web Server, WebSphere
Application Server 2.0, CICS Client, MVS
CICS and DB2.

The article "Health Dept. uses Java to
Spot disease faster; leading-edge,
server-side technology speeds access,
enables detailed reports," published in
the May17th issue of Computer World,
describes the MDL project and the
details of this leading-edge technology.
Tim Sloane, an analyst at Boston-based
Aberdeen Group Inc. is quoted in the
article as saying, "There are a lot of
companies that wish they were in this
position now." He estimated that only
5% of companies have deployed such
an application.

The MDL System:
why change the original
system?

The MDL system was originally a
combination of software written in
VSAM, Natural and Adabas. The State
of California wanted to upgrade and
enhance their existing system by:

Enterprise Access

Lue2

Application Server

MVS CICS and DB2

VisualAge Generator Programs
* DB2 Access Logic (ISUD Servers)
* Business Logic

e Making the system Y2K compliant

* |mproving data collection quality and
timeliness

e Providing a state-of-the-art
application for users

¢ Increasing availability of MDL data to
Public Health professionals through
intranet and Internet access

e Minimizing their use of proprietary
hardware and software

e Defining an extensible architecture
that can be built on and reused for
future projects.

Before the project began, the State of
California moved the Natural/Adabas
system, to a 3270-based application
using VisualAge Generator. The
VisualAge Generator application was
targeted for MVS CICS and DB2. This
application was implemented by a
developer with no previous experience
in VisualAge Generator, CICS or DB2.
The VisualAge Generator 3270-based
solution took approximately six months
to complete. This application satisfied
the Y2K requirement and removed the
dependency on proprietary software.

The State of California Department of
Health Services still wanted a state-of-

the-art system for their end users. As part
of their long term strategy, they also
wanted to make the system available to
other users outside of the MDL testing
labs via the World Wide Web (WWW).
With this in mind, developers started the
State of California MDL project in
September of 1998 and completed it
three months later in December.

The investment:
people, skills, and education

The MDL application was developed by
a team of six programmers from the State
of California Department of Health
services assisted by two technical
mentors. Four of the six team members
had no previous experience with
VisualAge Generator. None of the team
members had previous experience with
Java or web technologies. With strong
technical leadership and mentoring from
myself (of IBM VisualAge Consulting
Services) and Martin Rybczynski of
Compete, Inc., the State of California
team developed the MDL web-based
application in approximately 12 weeks.
The effort began with a week of Java
education and a VisualAge Generator/
VisualAge for Java mentored workshop
provided by Pat McCarthy of the IBM
ITSO organization. As the project
progressed, other informal education
was provided including GUI
programming techniques, ENVY training,
as well as servlet and web concepts.

The overall architecture:
a serviet-based system

The first decision made in implementing
the MDL system on the WWW was to use
a servlet-based architecture. We did not
use an applet-based architecture
because the invocation of an applet
from a web page requires that the Java
code for the applet and all its supporting
code be downloaded to the web
browser. This architecture has
performance implications and all web
clients accessing the applet must

support the level of Java used to
develop the applet. To free the system
from compatibility restrictions and
ensure good performance, we chose a
servlet-based architecture to implement
the MDL System on the Web.

Servlets provide the thinnest client, they
run on the web server, and they may or
may not produce user interfaces.
Servlets produce user interface code in
HTML, and only HTML is downloaded to
the web client in a servlet-based
architecture. The generated HTML is a
small footprint and therefore downloads
very quickly. All Java code in a servlet
stays on the web server, removing Java
compatibility issues across web clients.

The servlet-based MDL implementation
consists of approximately 40 servlets
and over 100 CICS/DB2 transactions.
Figure 1 illustrates the logical pieces of
the application and their deployment.
The servlets running on the web server
are responsible for delivering user
interfaces to the web client and handling
navigation through the system. Java
beans are used for user interface
validation, business logic, and
enterprise data access.

VisualAge Generator V31

VisualAge for Java 2.0 Enterprise

(Servlet Builder Feature)

DB2 Client Application Enabler V2.1

Internet Explorer V4.0

TCP/IP

The development:
tools and technology

The MDL application was developed in
VisualAge for Java and VisualAge
Generator and deployed using
WebSphere Application Server and
Lotus Domino Go HTTP server.
VisualAge for Java and VisualAge
Generator work together to provide
developers with a powerful end-to-end
development platform. The developers
are able to use the debugging facilities
in both VisualAge for Java and
VisualAge Generator. Figure 2 shows
the software and configuration details
of the development platform for the
MDL application.

The team did all development and unit
testing for the MDL project on NT based
machines. The developer's machines
had VisualAge Generator 3.1, VisualAge
for Java Enterprise 2.0, and Internet
Explorer installed for code development
and unit testing. The data used during
development resided on the enterprise
system in DB2 on MVS CICS. Access to
the data during development was
provided by the DB2 Client Application
Enabler V2.1.

Application Server
MVS CICS V5
DB2 V50

Figure 2. MDL Development Environment

VisualAge Generator on the Web, continued

Since the State of California had already
migrated their system from Natural and
Adabas to VisualAge Generator and
DB2 before this project began, the
important goal was to leverage as much
of that legacy work as possible. By using
the VisualAge Generator Java wrapper
functionality, we were able to leverage
the existing development investment
and reuse all of the existing VisualAge
Generator data access modules without
modifying them.

VisualAge Generator

The VisualAge Generator Java wrapper
functionality enables developers to
generate Java wrappers for VisualAge
Generator programs. These wrappers
can be used from within Java to call
VisualAge Generator server programs
and pass data. This functionality allows
developers to easily put a Java front end
on VisualAge Generator applications,
bringing the enterprise to the Web. For
more information on the VisualAge
Generator Java Wrapper functionality,
see Martin Rybczynski's white paper,
"Accessing the Enterprise from a Java
Applet" in the May 1998 issue of
VisualAge Magazine.

VisualAge for Java Enterprise
Edition

The MDL Development team used the
Servlet Builder feature of VisualAge for
Java to construct the servlets of their
application. The Servlet Builder feature
provides a visual programming environ-
ment for building and testing servlets.

By using the VisualAge Genera-
tor Java Wrapper functionality,
we were able to leverage the
existing development invest-
ment and reuse all of the
existing VisualAge Generator

data access modules without

modifying them.

User Requested
Action

Default ey %
Action ! !
{ O Next Default
User Requested ! X X Action
) e . User \
Action - L
. I Interface
W 4
-

NavigationiServiet

s

Default
Action

"

User Requested e
Action

Figure 3. User Interface Serviets and Navigation Serviets

MDL on the web:
the implementation

One of the main keys to the successful
implementation of an enterprise
application on the Web is the separation
of the user interface from the business
logic and enterprise data access. This
provides not only the best performance
but also the most flexible and scaleable
solution. In deploying an enterprise
application on the Web there are several
areas that need to be addressed: the
user interface, user interface validation,
navigation, business logic, enterprise
access, and message handling. This
section examines how these issues are
addressed in the State of California
MDL application.

Basic processing

Servlets are coded in Java and deployed
on the server, so all processing done in a
servlet takes place on the web server.
The servlet-based architecture is defined
by a request/response interaction. A
request is submitted to the web server,
and the specified servlet produces a
response. In the case of a servlet, the
response is HTML presented to the user

in a web browser on the client system. In
the case of a non-visual servlet, the
response is the invocation of another
servlet. Upon the completion of this
response, the servlet is not active until
another request is received by that
servlet. This is the underlying
architecture in the MDL application.

The user interface

The MDL application is a series of non-
visual servlets, called navigation
servlets, and visual servlets, called user
interface servlets. The MDL user
interface servlets and navigation
servlets were developed using the
Servlet Builder feature of VisualAge for
Java Enterprise Edition. The user
interface servlet, implemented as a
visual servlet, produces an HTML
interface for the application. Each user
interface servlet is coupled with a
navigation servlet to control navigation
through the application as shown in
Figure 3.

The navigation servlets are non-visual
servlets and therefore do not produce
HTML. Their role is to process requests
from the user interface servlets and

determine the next servlet to be invoked—
either a user interface servlet or another
navigation servlet. The combination of
user interface servlets and navigation
servlets form the user interface portion of
the MDL application.

The basic flow through the MDL
application is via the backbone of
navigation servlets. Figure 4 details the
flow through the navigation and user
interface servlets. The basic processing
steps are:

1. Arequestis submitted to the web
server from the web client.

2. A navigation servlet is invoked to
handle the submitted request.

3. If the request contains no user action,
the navigation servlet invokes a user
interface servlet.

a. The navigation servlet's response
is to produce HTML.

The user sees HTML in the web
browser and completes input
of data.

b. A request containing the user action
is submitted to the web server.

4. If the request contains a user action,
the navigation servlet processes the
action.

a. If the action was processed
without error:

A request with no user action is
submitted to the next navigation
servlet.

b. If the an error occurred while
processing the user action:

A request containing no user
action and the error message is
submitted to the web server.

Business logic

The user interface servlet's primary role
is to define and present the user interface
for the application. The user interface in
a servlet-based architecture is defined
as HTML. The domain data for the
application is accessed via data beans.
Data beans are Java beans that contain
data accessed from the enterprise

system or data derived from business
logic accessing the enterprise system.

If the navigation servlet is invoked by a
user-requested action, such as pressing
a button, the navigation servlet is given
control and proceeds in processing the
user requested action.

Processing the user requested action in
the MDL system requires user interface
data beans, validation beans, user
action service beans, resource beans,
and data beans as shown in Figure 5.

Processing of the user request action
starts with validating the user input.
Validating the user input in the MDL
system is accomplished via validation
beans. The role of the validation bean is
to take the data submitted by the user via
the user interface data bean and
perform validation based on the desired
action. In a servlet, the user-submitted
data is available to the servlet through
form data in the submitted request. The
VisualAge for Java Servlet Builder
feature, used to develop the user
interface servlets, provides a form data
bean to be used by the servlet. The form
data bean is the user interface data
bean for the MDL system. The form data

Request
Name e .
Address
E-mail
=
Response
HTML
Request
(with User Action)
Name .
Address
E-mail a
Response

HTML

Name
Address

E-mail

Response

HTML

Figure 4. MDL Application Flow

bean is validated by a validation bean.
The validation beans are non-visual
beans written in Java and are specific to
the user interface they validate.

Once the user data has been validated
by the validation bean, the navigation
servlet processes the requested action
by performing the necessary business
logic in the action service bean. The
business logic of the MDL application is
written in Java as a part of the action
service bean.

The Java code that executes the
business logic in the action service
bean uses resource beans. Like
validation beans and action service
beans, the resource beans are written in
Java. The resource beans encapsulate
the access to the enterprise system.

NavigationiServiet
]

User Interface Serviet

Default Action

NavigationsServiet
i
User Interface Serviet &

Error in
User Action

Successful

> o : = User Action
NavigationiServiet '

User Interface Serviet

Default Action

VisualAge Generator on the Web, continued

They handle translation of user data

(in this case from Unicode to EBCDIC),
transport of user data to the enterprise
system, invocation of the server
program, and the return of data from the
server program.

The server application used to access
the enterprise data in the MDL
application was developed using
VisualAge Generator and targeted for
MVS CICS and DB2. Access to these
server programs by the resource beans
makes use of generated Java wrappers
to call the VisualAge Generator Server
programs. The wrappers handle all
communication with the enterprise
system, both in transporting and
translating the data submitted from the
user interface and invoking the server
program on the enterprise system.

Upon completion of the business logic
via the resource beans, control returns
to the navigation servlet, which
determines the next action. In the case
of successful completion of the
requested action, control is transferred
to the next navigation servlet, which
invokes its user interface servlet. This
presents the next portion of user
interface to the end user and the
process is repeated.

Message handling

If an error occurs in processing the user-
requested action, an exception is
thrown. Throwing an exception stops
execution. The exception returns control
to the navigation servlet so that the
originating user interface servlet can be
re-invoked with a message indicating
the source of the error. The exception
itself contains the error message text.
The message text is obtained through a
message bean. The message bean
encapsulates a message table and the
processing necessary to retrieve a
message based on a key. The message
table used for the MDL application is a

hash table keyed by message number.
When an error occurs while the user-
requested action is being processed,
message text is requested from the
message bean. The message key and
any inserts to the message are supplied
to the message bean. The message
bean responds to this request by
returning a message string including
inserts. The message is placed in the
exception before it is thrown. The
exception is caught by the navigation
servlet and passed to the user interface
servlet so it can be displayed to the user
for an appropriate response.

Deployment—
The run-time environment

Figure 6 shows details for the software
used in the deployment of the MDL
system. The MDL web server is Lotus

User Interface Servlet

Name
Address
E-mail

User Input

Default
Action

Validation
Bean

Navigation|Serviet

Message Handler
.., Bean ‘

User Interface Data Bean

User Requested Action

Domino GO with the WebSphere
Application Server Standard Edition.
Lotus Domino GO provides the HTTP
server and WebSphere Application
Server Standard Edition provides the
servlet engine necessary to run the user
interface servlets and navigation
servlets along with the validation,
message, action service, and resource
beans. The resource beans also make
use of VisualAge Generator NT server
for access to the enterprise server. The
enterprise system is DB2 on an MVS
CICS system.

Communication in the MDL web system
is a combination of HTTP and LU6.2.
The web clients communicate through
HTTP to the web server. The MDL
resource beans communicate through
CICS Client over LU 6.2 to the MVS CICS
enterprise system.

User
Requested
Action

Action Service
Bean a-

Resource Bean
Enterprise Access
Data Bean "

Figure 5. Navigation Serviet and User Interface Serviet Implementation

Windows NT V4.0
Web Client Domino Go Web Server V465
Internet Explorer V4.0 WebSphere Application Server Standard Edition V2.0
VisualAge Generator Server for NT V31
CICS Client V2,04
IBM Personal Communications V4.2

Web Client
Internet Explorer V4.0

Figure 6. MDL Run-time System

Conclusion

The MDL project exemplifies the power of
VisualAge Generator and VisualAge for
Java in deploying a web-based enter-
prise application. In a very short period of
time, a small team of developers brand
new to the technology were able to
successfully develop and deploy a key
business application. The State of
California MDL system has been
successfully deployed and the end-user
feedback is extremely positive with
respect to both performance and usability.

Application Server

MVS CICS V5

DB2 V50

VisualAge Generator Host Services 1.2

A special thanks to the dedicated
support from the RTP Development Lab,
especially Larry Smith of the VisualAge
for Java Servlet Builder team, Henry
Koch and John Snyder of the VisualAge
Generator Development team and Jeff
Tennenbaum of the CICS Client support
team. Also of invaluable help was Nik
Teshima of the VisualAge for Java
Support team in Toronto Development
Lab and Andrew Cornwall of OTIl. m

e-husiness

VisualAge Generator Plans for e-business

and Enterprise Java Server*

by Tim W. Wilson, VisualAge Generator Architect

As the topology of e-business solutions
continues to evolve towards thin clients
and component-based servers, the
Enterprise JavaBeans (EJB) open
industry standard will establish itself as
the key technology for deploying
scalable and flexible solutions.

VisualAge Generator is designed to
enable enterprise developers to create
application systems through very
productive high level abstractions that
simplify the programming complexity of
a wide range of run-time platforms and
transactional environments. As the EJB
platforms become available, the need
for high productivity tooling will extend to
such new environments, and VisualAge
Generator intends to support the
emerging Enterprise Java Server (EJS)
as new run-time environments within the
context of web application development.

Several enhancements to the VisualAge
Generator environment, such as the use
of VisualAge for Java as the base
development platform, the addition of
high level constructs that simplify the
development of thin client systems and
the automatic generation of EJB, are
planned to be developed by IBM in the
near future. This will enable customers
to continue to rapidly build and deploy
e-business systems that meet the most
stringent availability, scalability, and
performance requirements of today’s
and tomorrow’s networked business
world.

This article was written by Tim Wilson,
one of the lead architects of VisualAge
Generator. Tim describes how
VisualAge Generator is uniquely
positioned to provide a highly productive
solution for creating web-enabled
systems. Although all these planned
enhancements are very exciting, there is
no need to wait. Read the other articles
in this newsletter that describe how you
can build e-business solutions with
VisualAge Generator TODAY.

Introduction

VisualAge Generator has earned a
reputation for being more than just a
highly productive rapid application
development (RAD) environment.
Customers have embraced VisualAge
Generator for the creation of scalable
enterprise systems for a wide range of
run-time platforms. But what happens
when the paradigm shifts to web-
enablement, and new metaphors for
programming evolve? The answer is still
VisualAge Generator, which allows our
customers to leverage their skills and
investments while keeping pace with the
latest trends in technology. This article
describes how VisualAge Generator
plans to support the development of web
applications, using a programming
model that incorporates the emerging
standard of Enterprise JavaBeans (EJB).

A solid foundation

VisualAge Generator has a long history
of providing programmers with a highly
productive environment for developing
application systems that execute across
a wide range of run-time platforms: most
notably, CICS and IMS. There are
several basic reasons why VisualAge
Generator is an excellent tool for
programmers developing for complex
environments like these. VisualAge
Generator provides:

e A high-level abstraction for writing
psuedoconversational applications.
In this type of application each
display to a 3270 terminal is the end
of a transaction. A complete
application is written by stringing a
set of these transactions together and
caching the session state between
them. VisualAge Generator simplifies
this task by letting programmers work
as if they were developing a simple
single-threaded program. At run time,
each "serving" of a text screen
causes the program to terminate.
However, the program state for this
session is saved by VisualAge

Generator, so when the user submits
a request (PF key) back to the server,
this program is reinvoked and picks
up where it left off. All of this is part of
the code that VisualAge Generator
generates; the programmer does not
need any special knowledge.

¢ A set of high-level and polymorphic
1/O, Unit of Work (UOW) and remote
procedure call (RPC) abstractions in
the 4GL that hide the complexity of
underlying system services.

* A simulated execution environment
and a powerful interpretive debugger
that is linked with VisualAge
Generator's specification facilities.
This environment facilitates rapid
iteration between specification and
verification, freeing the developers
from the costly process of repeatedly
generating and deploying
applications to the real run-time
environment until all logic errors have
been uncovered and fixed.

Now, let's compare this to a
conversational web application. An
important point to make here is that a
conversational web application looks, in
form, like a CICS or IMS
psuedoconversational application, i.e.
the same processes are carried out in
both environments:

e Users fill in forms and submit
requests to the server.

e Server programs run business logic
and serve the results to users.

® The processes are repeated until the
program ends.

The logical question to ask, therefore, is
can the 4GL programming model that
worked so well for CICS also work for e-
business applications that are
conversational in nature? We think the
answer is . . . a resounding yes!

Consider the skills

So, what skills do you need to build a
robust e-business application? The flood
of new technologies from IBM, Microsoft,

and other vendors are either client-
centric in nature or simply make the mid-
tier an extended client. So programmers
envision having to learn new languages,
programming models, and environments
to make it all work together. Gaining
these skKills is time-consuming and
expensive and it is these up-front costs
that keep many customers from quickly
adopting these new technologies. Many
customers have huge install bases of
IBM systems, but the programmers who
write applications for these systems
already have most of the critical skills
necessary for building robust e-business
applications: transactions, data access,
security, recovery, etc.

So is now a good time to go to the Web?
We think the answer is . . . and how!

In order to make e-business work, it's
critical to make the cost of entry into this
technology as low as possible. The
easier IBM makes it for your company to
use the skills and systems you already
have, the lower the cost of entry. The
support that VisualAge Generator and
WebSphere Studio plan to provide will
allow programmers to build e-business
applications using their current skills
and existing platforms with all the
benefits of reliability and scalability that
this implies. This environment also
allows for the adoption of new platforms,
such as Enterprise Java Server, without
requiring developers to learn Java or OO
programming. In addition, VisualAge
Generator will be open, so that the
adoption of OO, Java, etc. can be done
at a pace set by you that makes sense
for your business.

VisualAge Generator support
for web application
development

The basic idea for how VisualAge
Generator will support web applications
is to use the programming model that
already exists for building CICS
applications. In this model, the
programmer codes what appears to be a

single-threaded, structured 4GL
program with a series of screens that
take input data from and show output
data to the user. When it is generated for
CICS, this program becomes a
psuedoconversational COBOL program
that handles saving session state
between screens, commit processing,
and remembering the execution stack
so that when this program is restarted as
the result of a submit request, it can get
back to where it left off. For a web
application, the programmer codes the
same application; however, instead of
sending out a character-based screen
to a terminal, the program will send and
receive the defined I/O data to and from
a web browser. The result is an e-
business application, whose business
logic can run on any of the platforms that
VisualAge Generator targets (MVS, VSE,
NT, OS/2, AIX, HP-UX, OS/400, VM, and
more to come).

The new User
Interface Record

A key difference in the way developers
code their programs is in the definition of
the screen I/O data. With the classic text
user interface (TUI), programmers
defined a 4GL construct called a Map:
a definition of a text screen including
high-level definitions of input and output
fields. Developers can define input/output
edit routines (system or user-defined) and
various other useful attributes on these
fields. The fields are accessible by the
4GL language as data items to be
manipulated. There is another construct
called a Record that contains a set of
data items. Depending on the type of
record created (Working Storage, SQL,
DL/I Segment, etc.), developers can
define certain higher-level attributes for
each type. For instance, with an SQL
record developers can define which
database Table or View the record is
associated with, the columns to which
the data items correspond, the SQL data
type for each item, etc. Another way to
think of a Map is as a Record with an

associated presentation (3270 screen
layout). With these principles in mind,
the VisualAge Generator team is
planning to define a new Record type -
User Interface Record. It will define the
input/output data formats and the
validation edits in much the same way
they are defined for the fields in a Map,
but there will be no definition of screen
layout anywhere in the program.

Default Java Server Pages
created for you

Once the Ul Record is defined, VisualAge
Generator will generate JavaBeans and
Java Server Pages, which contain all the
code defined by the programmer for input
validation and output formatting but
nothing about how this data is to be
displayed. The definition of how data is to
be displayed becomes the job of a web
Ul developer. An HTML page designer
using WebSphere Studio tools enhances
the default JSPs, which use the
generated beans as the source of
business data that should be displayed
to the end user. A key point here is that
Ul developers don't have to code
anything about the actual business
processing. They are only responsible
for displaying the relevant data and
providing whatever services in the
presentation are deemed necessary to
make the program, as a whole, easily
understood by the end user. This clear
separation of concerns between the
programmers who code the business
logic and those who code user
interfaces has many benefits for the
process of developing and maintaining
applications.

The definition of the presentation is a
completely separate step to be carried
out by someone conversant in the Ul
technology of choice (JSP, GUI, HTML,
XML, etc). Clearly, this can be the same
programmer. Still, separating the tasks
makes the project easier for even a
single programmer to manage.

VisualAge Generator Plans, continued

Same program—
any user interface

Why is it important to the business as a

whole to separate business processing

from presentation? Business processing
includes these basic elements:

¢ Input/output data edits and validation.

e Navigation logic between steps of the
business process; there can be other
screens that have no intrinsic part to
play in the steps of the business
process, but instead act as aids to the
current screen or gather extra
information. These screens in our
model would not "submit" back to the
server. Navigation to these screens is
seen as a natural part of the
presentation.

e Data access and results processing.
e FError conditions

Most of the consequences of linking
these elements into the presentation
logic have to do with the problems of
change management. For instance, if
developers associate a validation rule
with a particular entry field of a GUI, any
change to this rule requires changes in
the GUI. If navigation between the steps
of the business process are embedded
in the GUI code, then changes in the
business process require changes to
the GUIs. Clearly, if developers surface
the layout of actual data to presentation
logic, then again, changes to that data
cause widespread havoc. So hard
coding business process concerns into

Can the 4GL programming model
that worked so well for CICS also
work for e-business applications
that are conversational in nature?

We think the answer is . . .

a resounding yes!

the presentation logic makes even small
changes expensive.

VisualAge Generator solves most of
these problems through the use of the Ul
Record for data validation and
formatting, and the server program for
doing all the navigation and data access
logic. Changes to the server have no
effect on the presentation code and
vice-versa. Most changes to the Ul
Record would not cause changes to the
presentation. However, changes such
as adding/removing elements to/from the
Ul Record would cause changes, as
expected.

This separation of business and
presentation processing has another
key benefit: it is possible to use different
Ul technologies with the same server,
even at the same time. Programmers
can choose a user interface format such
as HTML without locking the whole
development organization into
everything that goes with these
technologies. Developers have this kind
of flexibility because most of the
processing that is important to the
business has been moved to the server
platform (CICS, IMS, etc.), while only the
presentation logic is left on the client.

A basic problem for customers who are
coming from traditional IBM systems is
that most of the AD tools that exist on the
workstation come from the perspective
of the client. They force business
processing to be distributed to the
clients, which then forces all of the
developers writing business logic to
learn these new tools and programming
models. IBM is in a unique position to
provide AD tools that put the highly
reliable, scalable, well understood IBM
systems into the driver's seat rather than
under utilizing them as back-end servers
that access legacy data. VisualAge
Generator provides an environment that
can achieve this goal.

Bridging to Enterprise
Java Server (EJS)

What we have described is an approach
to using CICS, IMS, or other systems that
VisualAge Generator targets to drive e-
business applications. This is a very
good thing for the near term. However,
because our customers have invested in
various types of systems, we need to
provide them with an environment in
which their applications can access
many different systems. The need is very
similar to the situation that existed before
CICS or IMS. The emerging standard of
Enterprise JavaBeans (and the implied
server on which they exist - Enterprise
Java Server) is the industry's answer to
this problem. In fact, the short
description for EJB/EJS is "CICS for
Objects.” Over time, more and more
businesses will want to move into this
new environment. A key question is how
can VisualAge Generator most easily
bring our customers forward into this
new environment.

Here again, the skills required to build
applications that run on an EJS are an
issue to consider. This knowledge is in
addition to what is already required to
build an e-business application today.
VisualAge Generator addresses this by
taking advantage of the solution
described previously; a web application
still looks essentially the same running
under EJS as it does running under
CICS. In the future, VisualAge Generator

ce Manager(s) of

about 00?

o far, nothing has been said about OO.
~ After all, EJB is "CICS for Objects.” No
matter how much OO developers use,
there is still a "business process" that
describes the steps and controls flow
from screen to screen; Program is still a
very good way to describe this process
to a computer. Thus, the next step for
VisualAge Generator is to allow an OO
model first to be accessed by the
Program code and then be created
using the VisualAge Generator 4GL.

nd send messages to these
objects. These objects can obviously be
Enterprise Java Entity Beans. Enterprise
Java Entity Beans allow the creation of
high-level abstractions such as
"Customer" or "Account" that hide the
implementation details of data access
and layout and group together the
business processes relevant to that
data.

A future release of VisualAge Generator
will also enable developers to generate
a session bean for any server program.
When deployed in an EJB server, the
session bean provides a call method
that accepts parameters of the server
program and calls the server program
using the VisualAge Generator
middleware. The session bean
essentially acts as a gateway to the
server program.

market blossoms, they can take
advantage of these technologies with
VisualAge Generator, but do so at
whatever pace makes sense for your
business.

Conclusion

To put it simply, we believe that it is
possible to allow your company to move
to e-business through a route that is
already secure and well-traveled.
VisualAge Generator enables
businesses to use their existing systems,
skills, and programming models to build
e-business applications. With the maps
already drawn and the road already in
place, your organization will be able to
move to e-business at a quick pace. m

*This article discusses plans which
are subject to change.

Moving your application to the Internet using Java

by Reginaldo W. Barosa, Certified AD Specialist—IBM Brasil

Editor's note: In his article “Moving Your Application to the
Internet” (April/May 1998 issue of the newsletter), Reginaldo
showed us step-by-step how to web enable a VisualAge
Generator application system using Smalltalk Web parts. To get

a full understanding of the purpose of the system he discusses
here, glance back at the previous article. If you don't have it
handy, you can look at it in PDF on our web site at: http:/
www.software. ibm.com/ad/visgen/library/#newsletters.

One easy way to move VisualAge Generator application
systems to the Internet is by using Java Servlets. In this article
we will walk through building the same application system we
built in a previous article, but this time we'll use Java Servlets
instead of Smalltalk Web parts. It is a good idea to use the
Smalltalk Web parts to prototype your solution. Then rewriting
the presentation portion using VisualAge for Java is relatively
simple.

For this example, we will use VisualAge for Java Enterprise
Version 2 and VisualAge Generator Version 3.1. The
application system will access a DB2 database using
VisualAge for Java Data Base Access beans and then read
the details using the JavaBeans and code generated by
VisualAge Generator. We could also use Java applets, but for
this example, we'll use Java Servlets.

The application we will build has two windows:

e The first screen shown in the figure queries the STAFF table
when the List DB using Java beans button is selected. It is
built using VisualAge for Java and Database Access beans.

B i gew GOo [Coemsoss s
T B Fabenl hrms Sewh Hebwaps Paed Beowiy |
" Bitenmbi A Lt 1 3 1 100 s s Soesn Seaeie =] A e P

A 1

Ligl OB g e tmere. |

0 =
Coll Yiraahiga 0 fuenitor 11 g

-"E--—F"l.'é_.ﬂ

Note that the query to the DB2 is done on the client side
(that runs on the Web Server).

ol | Dacuraar Dams
F

e On the first screen, we selected the id 50 and pressed the
CallVisualAge Generator v3.1 button.

The second screen queries the details of the selected ID. This
second screen was built using VisualAge for Java using
Servlet beans and the JavaBeans generated by VisualAge
Generator. The VisualAge Generator program runs on the
Server, where the query is done (this could be on MVS/CICS).

Cia [Yae Go [owssnicmss Heip
| Bem Falinl baes Beseh Pieeps Ped Senes - |
| B A Lok [BB et G o e v it -:-E..-"hnﬂﬂnf_

m F.l"'
o mi
Liep

i Demurmrs Cr=a BN T

To develop these two windows:

1. Create the first screen using VisualAge for Java with Servlet
Builder and Data Access Beans.

2. Create a VisualAge Generator program, prepare to pass the
selected ID to the second screen and generate the
JavaBeans to be used in VisualAge for Java.

3. Import into VisualAge for Java the classes provided by
VisualAge Generator and the beans generated by VisualAge
Generator.

4. Create the second screen using VisualAge for Java with
Servlet Builder and the beans generated by VisualAge
Generator.

5. Test the programs.

1 - Create the first screen using VisualAge
for Java

The activities here are:

1. Using VisualAge for Java, create a class using the
SmartGuide, options File/Quick Start/ Servlet/Create Servlet
and name it ScreenOneWeb , as shown in the figure.

ieiwas
B

2. Using the category Servlet, add the beans: Htimimage ,
HtmlForm , 1 HtmlPush Button |, HtmlList and
HtmlLineBreakers .

The settings of the image should point to the gif to be

shown. In our example, code:)

5. From the category Servlet, add the bean FormData to the
free form surface and select ScreenOneWebFormData as
the class name:

-localFileName = Hﬁld!lﬁ Hﬁl_lh!ﬂ :

c:\IBMVjava\ide\project_resources\SunJFCSwingSet Fistiam [# = eny chesalar, * = any shing)

\Images\duke2.gif |*Formbseiz

-source = http://127.0.0.1/duke2.gif. Cimss Mames:
[T e =l

Cha_nge the names and text of the buttons. Name them E':?;ﬂgf;ﬁ%iﬂ

pbListaDB and pbCallVG . Change the name of the List to Ersl-lnasl FormData

efList . See below: Ermpfdmmest BesulFomDeis

Emphlam IFomiliats
FoimDeleBeaninio

TH_ﬂuEaH'E:l'.m Cig'e -!'I

_'

Save what you have done so far using options Bean/Save
Bean. 6. Make the connections as listed in the table.
3. From the category Database, add the Select bean to the
free form surface (white area). Alter its properties to query
the STAFF table. In our example, the query will be: ScreeOneWebForm | pbListaDBPressed | Select 1 execute()

Datat
SELECT STAFF.IDFROM STAFFORDERBY STAFF.IDASC

Frombean/connect| Property/Event Tobean/connection | Method/Parameter

ScreeONeWebForm | pbListaDBPressed | free form surface loadList (Select)
4. Since the eflList needs an array of Strings to show the query Data (event to Code)

and the Select does not have this property, we need to

create a Java method that receives the query Select result
and creates that array. This method is called loadList and is | |[connectionabove | normalResult efList ftems
shown here:

Select1 this connectionabove | queryResult

[*Receivetheinstance ofthe Selectwiththeresults.

*create anarray of Stringswiththe query result
andloadthecolumnID

returnthe array of Strings/

publicjava.lang.String[]
loadList(com.ibm.ivj.db.uibeans.SelectqueryResult){

inti;//loop counter

intnumberRows =queryResult.getNumRows();
[I#ofrows

Stringarray[]=new String[numberRows];
llcreatearray

for(i=0;i<array.length;i++)//
loopuntilreadallrows

{
array(i]=queryResult.getColumnValueToString For details and instructions on how to move
55 {T AR the code to the production environment,
getSelectl().nextRow(); see the redbook, Unlimited Enterprise Access
}catch (java.lang.ThrowableiviExc){
handleException(iVjExc); with Java and VisualAge Generator—SG24-5246,
} } published by ITSO.
returnarray;

Moving your application to the Internet using Java, continued

7. Now we can test the application. Be sure you are using a The SQL statements are:
browser that supports JDK 11. When you select the List DB

button, the list field will have the IDs from the STAFF table. SEII'E’CNTAME’ DEPT, JOB, YEARS, SALARY, COMM
INTO
5': w10 ”:""“"m_”"' e /D, :NAME, :DEPT, :JOB, :YEARS, :SALARY, :COMM
| J Bocireackn | Lovaton [11 G0 et s Famabs e el v] 00 Whels Rkl FROMSTAFFTI1
p = WHEREID=:1D
{"i This program will receive a record called SE01W. This
i record will be the linkage between the VisualAge for Java
Lisi D sk i ity and the code generated by VisualAge Generator. The field
E?w | ID will receive the parameter from the first screen we built
2 ; (Screen One Web screen).

Note that we do not need to start a Web Server to test
Servlets with VisualAge for Java, since VisualAge for Java
generates the HTML and emulates a Web Server.

The next step is to select one ID (example 50) and select a
second button (not implemented yet) that will call a
VisualAge Generator program. This VisualAge Generator

program will run on the server (could be an MVS server) and £l] _l"rJ
send the details of the selected ID. 2. Test the execution of this called program. Use the test facility

to be sure that the program is working and all data is

2 - Create a VisualAge Generator program and returned in the SEOTW working area.

generate JavaBeans.

Now let's play with the generator. Assume that the server will We are now ready to generate the code. We will need to
be an NT machine. the same machine where the client is perform the generation twice. The first generation will create
running. the server program (to run on MVS, for example) and the

second generation will create the JavaBeans that we will

1. Create a VisualAge Generator program that will access the later add to VisualAge for Java to build the second screen.

details of the ID received from the first screen. Name this
program SEOQ1A. Itis a called program and the.logic is To better understand the next steps, refer to the redbook
straightforward. (See the graphical representation.) Unlimited Enterprise Access with Java and VisualAge

m Generator (5G24-5246) published by ITSO Santa Teresa.
Fil= £t Miew [efne Tools Help i i

3. Create the Generation Options (JAVAVGGEN):

|&I G'J IEJ * iﬁ'|'-=_=]j|3="ﬂ' Baich =1 | /system=winnt/GENOUT=c:\javavg /LINKAGE=JAVAVG.LKG
s B Specboationm = /sqldb=sample
B2 Tahies and Addionsl Reconds /dbuser=userid /dbpassword=password /prep
= 3 CalodParsweinn
| %5 & sEMw 4. Create the Linkage Table (JAVAVG):
= =3 Sruchrs Diagram
s[CEmINOURY Bouey SEDIRSTAFF EZERTH :calllink applname=*remotebind=runtime
&7 SENRSTAFF linktype=remote remotecomtype=tcpip
ﬁ EPEETN luwcontrol=serverlocation=localhost
serverid=VAGenerator
4] sl | contable=CSOI1252.

e e 5. Generate the server program. Since | do not have MVS on

—__ hand to test, we will generate for NT, that is, we will generate
|h||_,|_1r I FEI'HF!- E £ 48 5]

J{%ﬁﬂ{—u 5 and compile using C++ (you will need in this case the C++

................... CHARY SEOTASTAFF <o e ntiin compiler and the VisualAge Generator Server). See the
SEDIRSTALT TO JEW, . generation options:

i SEO1A - Genemin

I™ Balch generation

|- =nta COTIMIans
leon |ParMame |Applicaton
= |sEma [Tesmigp

e WIMOOWSE NT Genoraiion Opions

Gesarmion ophors: | L avGEEH =
Lirkngemble [devan =

T

Ti sysam;

JAVAWRAPPER =]

I~ Baich ration Z{E1 g
- |

I- TEEIE FTHAOUE mmsnas Fl"'rum I
Icon [Parbame [Agplicaticn i I
£ |SEmA [Teseapp

Generation creates the files SeO1a.java and SeO1w.java.
Those are the beans that we will import into VisualAge for
Java.

7. Since the linkage table has the option remotebind=runtime,
we need to create an external file using this option. We
could just use cut/paste from the linkage table and create
the file c\javavg\JAVAVG.LKG . The file contains the
linkage table defined before.

8. Enable TCP/IP client/server communication support and
add an entry at the TCP/IP services file. Edit the file located
at c:\winnt\system32\drivers\etc\services.tc and
add the line below at any place:

VAGenerator 4200/tcp # VG Link to server

9. Create a command (like startTCRcmd) that will start the TCP/
IP server before executing the application. This server
program is provided by VisualAge Generator. Example |
used:

/* Start TCP/IP listener */

start csotcps

10.Using the NT System Properties, go to the Environment page
and add the variable CSOLINKTBL , pointing to where the
VisualAge Generator linkage table is present. That could be
defined for the user variable, so you do not need to reboot
the system.

11. Using the same dialog, add to the system variable the
directory where the dll generated by VisualAge Generator
was created. This change will require you to reboot the
system.

Yeawiabla: [Pt

Wil |II:IHE"|5I:I.I.IH'.3AMF".E5'|_F|E H_E'HSELLIE'.FEL@-
| Eml I Delot

Reboot your system to NT.

3 - Import into VisualAge for Java the classes
and beans

Now, before you start coding the second page screen, ensure
that VisualAge for Java has all necessary classes and beans.
To do this:

1. Import the Csojava.jar classes shipped with VisualAge
Generator Developer and VisualAge Generator Server.
Using VisualAge for Java, create a project (example
VGJavaSupport) and import it.

Import from A [arfsp ke !! E

e
"ol R O Wlel Ch i wEEE 0D ity

F glasi Do | wilBlay enivcied
g TTiT, 2 L | =ik]
Ei i B £ B 2o LpCl Y el D
Papit [vOJenaSappon

| B |

&u,ul

2. Import the beans generated by VisualAge Generator:

Sedme anuns S brim C i)

I_m

;J o Dﬂlll'l'-nm
¥ [Sellhw s

Moving your application to the Internet using Java, continued

3. The classes available will be:
Bh=" e 121050 41240 1 (R

= 8 GoHerdets 12
i} SereanDretves 0 12
513 SaipealwetebFoaelian |
PSS] P VLWL 4 17 5 A
=i =Sl 1270638 £:1755 P
[] w1716 4173 P

4 - Create the second screen using VisualAge
for Java and beans generated by VisualAge
Generator

Now we can create the second web page. We will name it
ScreenTwoWeb .

1. Create a new class ScreenTwoWe b, that has VisualServiet
as its superclass:

Prop [agunserag:
Packags [GaSerdsty

T Cremis m e Cis
Sorman Tty

ul

mire nervied bip s ol

2. Using the category Servlet, add the beans: HtmlForm ,
HtmTable , HtmIText and HtmlEntryField . Change them
according to the figure:

Screen Two Web

U —

FErRr ey e P L e L

|

SRITNINAIENTE

Trepar

b
i i
ARV 1 LR LT VL LR LR LR LA

3. Add the classes ApplicationUnitOfWork and Se0la that we
imported previously. Note that Se07a and SeO1w are
generated by VisualAge Generator and
ApplicationUnitOfWork is provided by the product.

From the bean Se01la, tear-off the property Se01w and build
the connections. The connections must be from each

attribute of the SeO7w to the property string of
HtmiEntryField. Save the class to generate the code.

4. Edit and modify the first screen (ScreenOneWeb) by adding a
new HtmlPushButton that will call the second screen and
change this bean name to pbCallVGPressed . Save the beans.
Add the second screen (class ScreenTwoWeb) to the free form
surface. Build the connections as shown in the table.

| Frombean/connect | Property/Event | Tobean/connection| Method/Parameter
1 | ScreenOneWebForm| pbCallVGPressed | free form surface | method
Datal
transferToService
Handler
2 | ScreenTwoWeb1 this connection 1 above| value
3 | ScreenOneWebForm| pbCallVGPressed | free form surface | method
Data 1 isTransferring
4 | connection 3 above Set parameters..
to true
1 i H
Sirein Dire Wil jl“ "
SrrassCasVWabl sl ins 1
& :
&, .
uuulmmh-nl.- B T —— B
_____—'-___ Zoreen Tweivebi
]
il WriritkAgu Ganrater L1 %
I Inactl b

5. Add the class ScreenOneWebFormData to the free form
surface. This object will hold the selected /D in the first
screen (efList of ScreenOneWeb). Build the connections as
shown in the table.

Frombean/connect | Property/Event | Tobean/connection| Method/Parameter
ScreenOneWebForm | efListSelected HtmiIEntryField1 string

Datat ItemString (ID)

free form surface initialize() SeO1ail unitOfWork

ApplicationUnitOf this connection 2 above| value

Work1
ScreenOneWebForm | pbCallVGPressed | Se01al execute()
Data1
ScreenOneWebForm | eflistSelected Se01wl id
ItemString
Cined e ormbinest
_H
Serl17 a1
i SR e ;|
Joo T =L ,
o mell wr B

Applicativnl InitCWerk]

Save your work. We are now ready to test it.

5 - Test the programs

Now we can test what you have done. You can test all the
programs on the same machine using NT 4.0 and service
pack 4. To do this:

1. Start the TCP/IP listener executing c:\javavg\startTCP.cmd
The result of this execution is shown in the figure.

2. Using VisualAge for Java, test the class ScreenOneWeb .
Ensure that Class Path is assigned. Click the button List DB
using Java beans , select one ID (like 50) and select the
button Call VisualAge Generator 3.1 . Your screen should
look like this.

SoosanTwai¥ek Memcoga
B Edd yi#w o Lesvsesosis Hep
T Eam | Paload Hore ek

rwsoape Pev teoun O
" Desroreain & .,.'\.'a.'l-l['u e T ———"_——rT .]ﬂ"f\'r".-'i.m: |
——
e I-.I-.
[I.|-I':-I.
Dept [
o [HaE

Yearn [L0

al eyt Diwa | e a0 gl |

The HTML code generated by the Java Servlet looks like this.

ME=E|

wime Canerated by IOM Yiacaldge for Java (im) Serviet Buil e
LHTHL>

LHE AL

LTITLE> Boosan Two Ball /T ITLES

o HE RO

SHOETx

LFHE HETHID="Foars™ HRE="HeplFform]l ™

CIHFUT THRLOE= el Fscvistn. ScressnTwclsh™ TTPE="HILCEH™ WNELED

W, Sowoes of: bip /2

¢ 001 FOA p e el ol e ndeiz SceenpCan'@a b - Kaisr

T ADLES
CTRATE PI0E/TO0CTD FIHPUT SLEE="10" YALEE="50" T¥PH="T
LTHSCTL dHamad/TOCTH > THROT ETER="10" ¥ALEE="Hansa" ™A
CTAMTD »Dwpk/TEOCTD B{IHPOT FIIE=~10° TALEE=~15° TYPE=
CTHINTD *JobdfTOGOTD SCIHPUT STIZE="10° TALEE=“Hi: " TTRE=
ATHATD FYarsc/IoeCTn >CINPUT FIZE="10" FALEE="10" TTFE
LTASCTD 3 Enlary</TIGCTn SLINPET AIZE="10" TALUR="20&57, B
CTAPCTD >Comm</TCOCTD >{INPUT EIZE="10° TALESE="0.0° TYFE
L FTARLED
LS —
A ANDYs =
o | ﬂ‘l
Conclusion

It is easy to connect existing VisualAge Generator Server
applications to Java Servlets. If you want to use Java Applets
instead, the process is the same, but in this case the Java RMI
is used. For details and instructions on how to move the code
to the production environment, see the redbook Unlimited
Enterprise Access with Java and VisualAge Generator - SG24-
5246, published by ITSO. m

IMS
LAN
MSL
MVS

NT
0S/2
0S/390
0S/400

RAD
SQL

TCP/IP
VM

VSE

wWww

Information Management System

Local Area Network

member specifications library
Multiple Virtual Storage
Microsoft Windows NT
Operating System/2

Operating System/390
Operating System/400

rapid application development
Structured Query Language
Transmission Control Protocol/Internet Protocol
Virtual Machine

Virtual Storage Extended
World Wide Web

VisualAge Generator Training

Correction: The next VisualAge Generator class is scheduled for
September 20 in Research Triangle Park. For more information
see the IBMLink website: http://www.ibm.com/ibmlink.
Companies interested in enrolling employees should send e-mail
to: websphere_consulting@us.ibm.com.

IR/ WAVAVABMICOM/Software/swebsphere

LR/ WaAVAbmIcomy/soitware/vajava

.

LR/ AV BMIC oM ?)fﬁb‘jzjf 2f fzle)21)

hitthy/WaasvAabmercom/e*business;

hitp://Wiwwibmreom/redbooks

The VisualAge Generator Newsletter

This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor

IBM Corporation

Dept. TF6B/062

P.O. Box 12195

3039 Cornwallis Road

RTP, NC 27709-2195

USA

FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1998. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AlX, AS/400, CICS, CICS OS2, COBOL, Database 2, DataJoiner, DB2, DB2/2, DB2/400, DB2/6000,
IBM, IMS, LE/370, MQSeries, MVS, VM, VSE, Operating System/2, 0S/2, 0S/390, OS/400, RISC System/6000, SQL/DS,
WebSphere, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U. S. and other countries.

Informix is a trademark of the Informix Corporation.

Oracle is a trademark of Oracle Corporation.

ENVY is a trademark of Object Technology International, Inc.
HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, Visual Basic, and ActiveX are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those
described here. IBM does not warrant any non-IBM programs or products, which are described in this newsletter. These
articles are for information only, and you should contact the stated company with your questions.

G242-0315-12

