Visua

Volume 4, Number 2
April/May 1999

e IBM VisualAge Generator Newsletter

o
enerator

A Powerful New Vision
of Programming™

Contents

What's Nnew With VAGEN? ... 2
Goodforyourhealth ..o 3
Partitioning VisualAge Generator SyStemscoooevveiiiiiiiieiiee, 7
1998 aresounding success for VisualAge Generatorcccccooeieiienn, 13

Demystifying the VisualAge Smalltalk environment,

Part 1: Applying layered architecturesccccc 14
1999 VisualAge Generator User Group Meetingooooeiiiiiiiiiiiiiis 18
Integral Systems, Inc., selects VisualAge Generator

as future development platform ... 19
Diagnosing runtime errors using VisualAge Generator3.1 20

Using FCWERRA with VisualAge Generator v3.1 C++
Programs onNCICS 21

What’s new with VAGen?

by Gary Johnston, VisualAge Generator Development Manager

Welcome to another
information packed issue
of the VisualAge Generator
Newsletter!

Now, | know what you're thinking.
You've noticed that the author of this
VisualAge Generator Newsletter
introduction is yet another unfamiliar
name. Being extremely alert, you've also
noticed that two out of the past three
times that the author changed from
issue to issue it's been because
VisualAge Generator had a new Product
Manager. So, you're asking yourself,
“Can it be that VisualAge Generator has
undergone still another leadership
change? Is there no stability in the
world? How will | cope? Help!”

Don’t worry. Hayden Lindsey remains
at the helm as VisualAge Generator
Product Manager. We're simply
continuing our informal program of
passing authorship of the newsletter
introduction around to other people in
the organization in order to give you the
chance to get a bit more familiar with
some of us. So, you see, there was
nothing to worry about after all.

Anyway, now that we've gotten that
resolved, allow me to introduce myself.

| am Gary Johnston, manager of one of
the VisualAge Generator development
departments. My team is primarily
responsible for the development and
maintenance of the VisualAge Generator
Developer development environment. |
joined IBM (as a software engineer in
this same department) in mid-1991, and
became manager of it last February. So,
I've been involved with the development
of VisualAge Generator (and its prior
incarnations, CSP and VisualGen) for
almost 8 years. Whoa! Has it been that
long already? Now it's my turn to panic!

What’s Here?

There is a lot of great information
crammed into this issue of the
newsletter. We hope you find it useful
and interesting. Highlights include:

e Arecap of some of the successes
that made 1998 VisualAge Generator’s
best year so far.

e A documentary that describes how
VisualAge Generator supported the
State of California in moving a critical
business application to the Internet.

e A How-to for using the Dynamic
Program Partitioning feature of
VisualAge Generator’s Interactive Test
Facility to help you figure out how best
to partition your system’s application
logic.

What Are We Doing?

As you might guess, our entire
development organization is in high gear
working on VisualAge Generator V4.0,
and has been since V3.1 was released
last June. We're making great progress,
and hope to make this significant
release available later this year.

Here is an incomplete list of some of the
things we're working on for V4.0:

¢ |Integration of the VisualAge Generator
Developer with VisualAge for Java.
You'll have the choice of whether to
use VisualAge Generator Developer
within either the VisualAge for
Smalltalk or VisualAge for Java
development environment.

¢ Integrated support for IBM’s
WebSphere Application Server.

e The first stage of Java generation
and support for Enterprise
JavaBeans™ (session beans).

Note: IBM’s plans are subject to
change, especially this year (due to Y2K
uncertainties).

Download fixpak 2 for V31, or fixpaks
for previous versions

e View and download previous issues of
this newsletter

e Learn more about how you can
use VisualAge Generator in your
e-business applications

e Find out about IBM's Application
Development Strategy for the 21st
Century.

Finally, remember to check out the

VisualAge Generator newsgroup! It's at
ibm.software.vagen on our news server
news.software.ibm.com. Amy Hawkins
tells you all the details later in this issue.

If you have articles you would like

to share or ideas for topics you'd like
to read about, send a note to
ahawk@us.ibm.com. &

VisualAge
Generator Training

Good for your health

State of California demonstrates power of e-business to deliver critical health data fast

by Mike Wu, Application Development Customer Reference Manager

In the movie Outbreak, scientists in
California raced the clock to track a
deadly new virus to its source. They had
less than 72 hours before the entire
population of the United States would be
at risk. In this scenario, access to
accurate information was not only
urgent; it was a matter of life and death.

Outside Hollywood, California is more
likely to face an outbreak of
salmonellosis or flu, than a Killer virus.
Still, the film underscores the
importance of the early diagnosis and
tracking of infectious diseases. That's
why, in real life, the State of California
Department of Health Services (DHS) is
working to speed the testing and
reporting process using new intranet
technologies.

Since 1981, DHS has used a Microbial
Diseases Laboratory (MDL) system to
track patients’ test samples and results
for illnesses related to food and water
bacteriology—specifically, diseases
caused by bacteria, fungi, and
parasites. In 1998 alone, 173,000 cases
of infectious diseases were reported in
the state.

With the clock ticking to the year 2000,
DHS knew it had to update this
important legacy system. The public’s
health and well-being depended on it.
The question was, how?

The answer was both unique and
innovative. It came through the
leadership and executive sponsorship of
Bryan Gillgrass, the Chief Information
Officer and Byron Roberts, DHS Health
Applications Support Unit 1 Chief,
working with the IBM Global Services
team.

Their strategy: make the MDL system
Y2K compliant by redeveloping the
system on the Web, while leveraging
both the legacy business logic and
data. In February, 1999, DHS launched
a new intranet version of MDL, built
using IBM VisualAge object-oriented
development tools.

Now, DHS is preparing to push the
envelope even further with a Web-
enabled version of MDL. The new
application showcases state-of-the-art
intranet technologies, including Java™
servlets. At the same time, it allows DHS
to make the most of its prior information
technology (I/T) investments. In this
sense, it provides a model of how to
successfully implement an e-business
solution.

“We had to take an existing legacy
system that was not Year 2000
compliant and bring it into the 21st
century,” says Roberts. “Compared to
our previous paper-based processes,
we knew intranet and Internet
technologies would offer a much more
responsive way to report and track test
results. A few months into the project,
we decided to partner with IBM to move
MDL onto the intranet.”

In addition to Year 2000 compliance,
DHS’s specific goals included:

* Improve data collection quality and
timeliness

* Provide a state-of-the-art application
to users

e Increase the availability of MDL data
to public health professionals through
intranet and, down the road, Internet
access

e Define an extensible architecture that
can be built on and reused for future
development projects

“The main benefit of MDL is the
timeliness of the information,” says
Marilyn Capener, Chief of MDL Training
and Quality Assurance Section. “As
users, we're very impressed with the
design. We can capture so much more
information than with our previous
system. And, we can run reports and
check test results whenever we need
them. It gives us a lot more control in
monitoring potential issues. We can
compare outbreak patterns between
counties and quickly identify trends.”

With the clock ticking to the year
2000, DHS knew it had to update this
important legacy system. The

public’s health and well-being
depended on it. The question was,
how?

Good for your health, continued

Choosing the right tools:
a critical first step

The first critical decision for the MDL
project concerned which tool set to use.
Roberts explains why DHS chose IBM
VisualAge:

“We were already familiar with VisualAge
Generator and knew we could use it to
quickly rewrite the data access code.
Just as important, we knew we would be
able to extend the VisualAge Generator
code quickly to the Web, using
VisualAge for Java. In fact, we were
able to reuse all of the VisualAge
Generator SQL data access modules for
the Web version of MDL. We simply
generated Java wrappers to call the
DB2 access modules. We didn’t have to
change anything.”

Using VisualAge for Java and VisualAge
Generator, DHS was able to leverage
much of its prior I/T investments,
including its S/390 based legacy data.
It's a strategy that makes sense for any
organization looking to move into e-
business, while preserving the
investment already made in enterprise
systems. For example, DHS decided to
convert its vast stores of historic MDL
data from a Natural ADABAS database
to new DB2 tables. The development
team used VisualAge Generator to write
the new data access code. And, they
continued to use CICS to manage the
transactions between the Web browser
and the S/390 Parallel Enterprise Server.

In fact, you could say this kind
of architecture brings the 3270

programming model into the 21st
century.

“This whole project was centered
around leveraging,” says Roberts. “We
were able to leverage our VisualAge
knowledge . . . leverage our legacy I/T
investments and skills. . . and leverage
IBM’s products and expertise. The result
is a state-of-the-art e-business solution
that showcases some very new
technologies, including Java servlets.”

Choosing the right people: a
large-scale partnership effort

In August, 1998, roughly four months
into the development process, DHS
teamed up with IBM to begin working
with VisualAge for Java. It was a
ground-breaking effort, bringing
together a number of new technologies
on an unprecedented scale—including
IBM’'s new WebSphere application
server. In fact, even the integration of
VisualAge Generator and VisualAge for
Java together in one application was
relatively new.

The answer lay in partnership. The DHS
development team worked together with
people at a number of IBM development
labs, as well as with consultants:
namely, Denise Hendriks of IBM AlM
Product Affinity Services, Anthony Dailly
of IBM Global Services, and Martin
Rybczynski of Compete Inc., an IBM
Business Partner. Hendriks had
previously coauthored an IBM Redbook
on the integration of VisualAge
Generator and VisualAge for Java.

“Through this large-scale team effort, we
delivered a solid, flexible architecture
and a combination of new technologies
that will help DHS achieve all its critical
goals,” says Hendriks, who acted as
architect for the MDL project. “It's
designed to work equally well on an
intranet or the Internet; its components
can also be reused on future
development projects; and, it features
open, standards-based software. It's
truly a “write once, run anywhere”
solution.”

Planning the application
architecture: why Java
serviets

The new MDL system is based on a
three-tier architecture that can be
extended to multiple tiers or even used
in a two-tier configuration. DHS, for
example, plans to move the application
from an NT server to an AlX server . . .
but it could just as easily run under
S/390 UNIX Services.

“We can run MDL on any server platform
or client, and we won'’t have to change
the application,” says Mike Virga,
Technical Project Leader. “That’s the
kind of flexibility VisualAge Generator
and VisualAge for Java provide.”

Knowing the application would one day
run on the Internet, DHS chose to base
the architecture on Java servlets, rather
than applets—even though servlets are
considered fairly new territory in I/T
today. Where applets must be executed
on the client PC, Java servlets execute
on the Web server. The MDL servlets
process the business logic for the client
by accessing DHS's legacy system.
The result: an ultra thin client, offering
improved response times for intranet
applications.

“The servlet model takes us away from
distributed computing, back to a more
centralized model,” notes Virga. “Yet,
it’s truly platform independent. It makes
no difference what anyone uses on the
client side—not even which browser. If
they have intranet or Internet access
and the proper authorization, they can
access the MDL system.”

“This approach allows DHS to create a
fairly graceful, light solution,” adds
Hendriks. “It avoids overloading the
network with real-time transaction
processing. Everything takes place on
the server, instead of the client. In that
sense, it's a lot like 3270 programming
model. In fact, you could say this kind of
architecture brings the 3270
programming model into the 21st
century.”

Managing the learning curve:
how mentors make the
difference

As the Java development began, a team
of six DHS developers received two
weeks worth of education on VisualAge
for Java and its integration with
VisualAge Generator. Within two weeks,
they were busy writing code. With
assistance from IBM Global Services’
Anthony Dailly, it took them roughly four
months to complete the intranet version
of the MDL system.

“As with any project, no matter how
good the tools are, it's the methodology
that makes it successful,” says Virga.
“The key to our success with the MDL
project is that we got just-in-time
training, combined with strong
mentoring from IBM and Compete to
guide us through the issues and
obstacles. Through them, we also had
great connections with the IBM labs.
Their input helped ensure we did things
the right way.”

“Without our mentors, we couldn’t have
done it—not even if we had twice as
much time,” says Roberts. “Nor would
we have delivered as good a product or
infrastructure.”

Once the developers were ready to go,
Hendriks helped them divide up the
classes of objects into a logical order
and assign owners. Initially, the focus
was on building the user interface. The
team’s motto was, start simple and build
from there.

For example, they were able to split the
routing architecture out from the other
screen elements. That meant
developers could start with a relatively
easy challenge: building the screen
fields and buttons.

“In a couple of weeks, our developers
produced more than a dozen
maintenance applications,” recalls
Virga. “They literally just whipped
together a large chunk of the application
code. It was a great way to build up the
team’s confidence before we moved on
to the more complex functional areas of
the main system, such as architecting
the routing structure.”

Building on the principle of
reuse: a boost for developer
productivity

According to Virga, reuse was an
important aspect of the overall design
methodology for the project. Their
approach to building the user interface
offers a case in point. “We created a
standardized approach to give our
screens a common look and feel,”
explains Virga. “We were then able to
reuse objects, which accelerated our
development cycle significantly.”

For example, the DHS team divided up
the class structures in order to isolate all
the field validations. That meant the
objects could be used to validate
multiple fields, such as date, social
security number and so on. In addition,
the team was able to reuse the same
header and footer objects on each
screen.

“We estimate we reused more than 30
percent of our code,” says Virga. “Each
screen is unique, but behind it there are
reusable objects, including business
logic, graphical objects and resource
beans.”

“With every new VisualAge project, the
development cycle just gets faster and
faster,” he adds. “That’'s because our
basic methodology is to build basic
templates and core programs, which
can be reused among projects. In fact,
we were able to reuse some VisualAge
Generator programs from previous
application development projects to
build MDL.”

As an added benefit, developers could
respond swiftly to user requests for
changes. That's because the VisualAge
code is broken up into small, stand-
alone objects that developers can
quickly modify—without changing the
rest of the application or recompiling.
This supported an iterative development
process, where developers and users
worked closely together to optimize the
application design. When users
requested revisions to the prototype,
they were available quickly—usually
within days.

Testing for quality code:
a critical part of the process

Rapid turnaround to users made testing
that much more critical to the
development process. “Testing should
become the emphasis in project
management today,” says Virga. “Your
developers can whip an application
together quickly, but it needs volume
testing. If you don’t have resources and
people dedicated to this, you can create
bottlenecks fairly quickly.”

“The testing environment is critical,”
concurs Roberts. “It's another
infrastructure unto itself. We had to set
up separate regions for programming,
for acceptance testing and for
production—each with a separate
database and a separate group
ownership.”

Good for your health, continued

The prior MDL system:
a host-centric legacy solution

The new MDL System:

a distributed, Web-enabled

and Year 2000 compliant solution
featuring Java servlets

MVS/VM-based system

S/390 CICS and DB2-based system

100+ ADABAS Natural and COBOL
VSAM transactions

150+ CICS transactions
100+ SQL queries
30+ DB2 tables

Approximately 30"green screen” maps
(3270) in REXX and Natural

30+ Java Servlets and associated HTML

Business logic and rules

Business logic and rules

The ultimate test of
technology: improving the
quality of healthcare

Today, in its initial rollout, the new MDL
system is running on a secure intranet.
Primarily, users include local public
health officers at some 40 public health
laboratories throughout the State. They
use MDL to notify DHS when samples for
testing are about to be shipped. They
can also dial up and see DHS test
results as soon as they are posted. And,
through better access to statistical
reports, they can study trends and
identify potential outbreaks much more
quickly.

The next step for MDL is to move onto
the Internet. Then, clinics and doctors
will also be able to add patient data and
retrieve test results from the system. That
means statistical data will be collected
from the earliest possible moments.

The VisualAge Generator web address is:
www.software.ibm.com/ad/visge

For IBM’s predecessor 4GL, Cross System Product, t
www.software.ibm.com/ad/visge

VisualAge Generator Web Pages

“It will give us much earlier clues that
something is happening in a specific
geographic area, which will in turn help
us respond faster with the appropriate
health services,” says Roberts. “That’s
the ultimate reason for what we're doing:
we're using leading-edge technology to
improve the quality of healthcare for
everyone in the State of California. With
MDL, we have a Year 2000-compliant
certified solution that will take us into the
21st century of healthcare.”

“And,” he adds, “the beauty of it all is
that we did it through leveraging our
legacy business logic and data.” m

Partitioning VisualAge Generator Systems

by Beth Lindsey, VisualAge Generator Development; Doug Kimelman, IBM Thomas J. Watson Research Center;
and Amy Hawkins, VisualAge Generator Information Development

One of VisualAge Generator’s greatest
strengths is that it enables developers
to quickly write high-quality, complex
systems containing many different
software components. In client-server
or multitier environments, these
components are often spread across
multiple machines. The systems are
often object-based with many fine-
grained components handling the user
interface, data access, and logic
portions of the system.

While this kind of freedom is a
developer’s dream, it can also be fuel for
performance nightmares. Placing too
much of a system’s logic on the client
side or on the wrong tier can result in
poor performance due to many remote
procedure calls or remote database
accesses.

Ideally, distributed application systems
are partitioned to minimize
communications between machines,
which helps to achieve optimal
performance.

VisualAge Generator’s Interactive Test
Facility (ITF) has a feature called
Dynamic Program Partitioning (DPP) that
can help you solve partitioning
problems. This feature is derived from
technology that researchers at IBM’s
Thomas J. Watson Research Center
have been refining for several years.

Prior to generation and deployment, DPP
helps you partition the logic of your
systems onto the correct platforms. By
identifying potential partitioning
problems during the debugging phase,
you can build VisualAge Generator
systems that perform well—before they
go to System Test.

The DPP feature of ITF uses a Clustering
View window to visually display all the
components of the VisualAge Generator
system, including the target system
machines. During a test run under ITF,
the Clustering View window is updated
dynamically to provide you with a real-
time, visual presentation of what is
happening as the system runs. Icons
and colors are used to show interaction
between system components, making
potential problems easy to spot.

Components that communicate
frequently move toward each other on
the diagram while components that
communicate infrequently or not at all
repel each other. After you run a variety
of test cases, you should see
components forming clusters. These
clusters indicate groups of components
that should be kept together during
program placement for optimal
performance.

You can either place components on
target machines yourself or allow DPP to
automatically place them for you. Once
you are satisfied with the component
placement, you can generate programs
from the Clustering View window to
ensure that your components are
targeted for the right platform. The next
section provides an overview of DPP.
Following that is an example of DPP use
in practice.

Dynamic Program Partitioning
Overview

DPP is enabled when you select View
Clustering from the Test Monitor tool
bar or when you select the Partition
submenu from the Test Monitor Tools
menu. In the Clustering View window
you can watch the various components
of your system as your test runs and use
DPP options to determine optimal
partitioning.

There are two categories of icons that
appear on the Clustering View window.
First of all, you can describe your
runtime topology by dropping icons,
called Target Machines, to represent the
following machines:

i

Client
Database Server
Logic Server

You can assign meaningful names to
these icons and select the target
operating system platform. The second
category of icons, called Programs,
represent each type of component in
your system.

=

Client icons —User interface
components (GUI clients,
3270 maps, etc.)

Database icons —Components
that access data (process data
I/O options)

&
@

Logic icons —components
that perform neither Ul nor data
access

Partitioning VisualAge Generator Systems, continued

Program icons can be placed on
specific target machines and they will
remain on their target machine during
the entire test run. Program icons can
also be left unplaced, which allows them
to float on the diagram during the test
run. These floating icons will gravitate
toward their optimal placement on the
Clustering View window.

Icons are added to the Clustering View
window when one system component
calls another. When the call occurs,
appropriate icons for both components
appear on the Clustering View window
connected by a colored line. As the test
runs, DPP continually analyzes the
amount of communication that occurs
between system components. Both the
number of times two components
communicate and the amount of data
passed on the call are factored into the
communication algorithm. The more two
components communicate, the more
likely they are to move toward each
other to optimize performance. If one or
both of the program icons are free to
float, you will see the icons physically
move closer to each other as the test
continues.

The color of the lines connecting icons
is important as well. Lines approach red
as communication between the two
components across a network link
increases, or when one component is
being pulled towards two different
machines. Both situations indicate a
potential performance problem. The
color spectrum along the bottom of the
Clustering View window shows that blue
is used to depict ‘cold’ connections, and
that red is used to depict ‘hot’
connections.

So, as your test runs, you can use DPP to
dynamically see the optimal partitioning
of your systems and spot potential
problem areas. Components that have
gravitated toward each other are good
candidates to consider placing on the
same machine. You should examine
components that are connected by red
lines to determine whether modifications
could further optimize performance.

When you know the details about your
actual system configuration, you may
want to add target machine icons
yourself that accurately reflect your
runtime system. For example, if you have
a Windows NT client and an AIX server
machine, you can add those target
machines to the Clustering View window
yourself. As with any type of debugging,
you will probably need to run the test
numerous times to get the partitioning
correct. In order to ensure that your
partitioning is optimal, we recommend
viewing several representative runs of
your system, complete with a
representative mix of transactions. You
may also want to experiment with
several different machine configurations
to see which one provides you with the
best system performance.

Instead of adding your system target
machines each time, you can save this
information to a file and reuse it the next
time you test. The target machine
information is called the Clustering
View Topology. Once you have the
target machines set up correctly, with
both correct names and target
environments selected, you can save
the topology. To reuse the topology
during the next run, open an existing
Clustering View window instead of
creating a new one. You will then be
prompted for the name of the file from
which to read the topology information.

There are three component placement
options that are provided by DPP:

e Clustering only
* Manual partitioning
« Default partititioning (default)

These placement options allow you
to tailor the way Target Machine

and Program icons are added to the
Clustering View window.

With the Clustering only option, DPP
simply shows the component icons
and the connections between them.
No target machine icons are added
automatically and no placement of
programs onto target machines is
attempted.

With the Manual partitioning option,
you are prompted to specify the target
machine to place each program on as it
is added to the Clustering View window.
This option puts the responsibility of
determining initial machine location on
the user.

With the Default partitioning option,
Client and Database Server target
machine icons are added automatically
on the Clustering View window when a
component with user interface or data
access is added. Client programs are
placed by default on the Client target
machine and Database programs are
placed by default on Database Server
target machines. Logic programs, those
that do not perform user interface or
data access functions, are not
automatically placed on any target
machine. You can choose to be
prompted for target machine placement
any time a Logic program is about to be
added to the Clustering View window or
you can allow the Logic programs to be
added unplaced (free to float) during
the test run so that they naturally
gravitate to their ideal machine
placement.

After you've used DPP successfully to
determine the optimal partitioning, you
can actually drive the generation of the
system components from the Clustering
View window. Set up the Clustering View
window with your target machines, run
the test, and get all the programs
placed on the correct machines. You
can then select all the program
components and choose Generate from
the context menu of one of the
programs. Generation windows for each
target machine are displayed, listing all
the program components that should be
generated for each platform.

Using Dynamic Program
Partitioning-A Real Example

Before you can effectively use the DPP
feature, you need to have your
VisualAge Generator system at least
partially completed. You don’t have to
have all the business logic written, but
the structure of the program
components, communication between
them (including data that will be
passed), whether they perform user
interface, data access, or pure business
logic should already be defined. At this
level, you can use DPP to partition your
system.

In the following section we describe a
small sample VisualAge Generator
system that we will use throughout this
task-oriented example. The sample is
representative of actual VisualAge
Generator application systems and

allows us to show the usefulness of DPP.

The user interface is a VisualAge GUI
client called CUSTGUI that controls user
requests and calls numerous back-end
programs to handle the data access
and business logic. There will be three
platforms in the client-server system:
Windows NT, 0S/400, and MVS CICS.
This three-tier architecture is typical of
many VisualAge Generator systems.

1. Remember that DPP is a feature of the
Interactive Test Facility and is
activated from the Test Monitor
window. Since our starting point is a
VisualAge GUI client, we need to set
the Break on event entry option so
that the Test Monitor will be brought to
the foreground on the first event. Then
we can activate DPP before the first
VisualAge Generator CALL is made.

To set the Break on event entry

option:

a. From the VisualAge Organizer
window, select the Preferences

button. gﬁ}

b. On the VAGen-Test General page,
set Break on event entry for GUI

clients.
c. Select OK.
G Test Honito
 Custamers File Wiew Tools

2. Start the test run by selecting
CUSTGUI from the VisualAge
Organizer window and selecting the
Test button. The Manage Customers
client window is displayed. Select
Retrieve Customers to display the Test
Monitor.

3. Look at the current DPP options by
selecting Tools, then Partition, then
Setup. The Partitioning Setup
(defaults) dialog is displayed. You can
specify the partitioning Placement
Options, described above, which type
of connections to show, and an
animation delay that can be used to
slow down the graphics on the
Clustering View window.

1 [=] ES

Optionz Help

ol o] x| a|e|=| 7

Execution Stack kaonitar

CUSTGUI : Component List

i Partitioning Setup [defaults] E
‘wiatchpe - Placement options I
€ Clughering arly
Retrieve Customers I ¢ Manual partitioning
Statemet | & Default partitioni
I o]l
Niop Foun Eper FEIE =
Carmmit Chat — Show call paths Animation delay
Al ID— il
i~ Active (il 5]
millizeconds -
LI = None _Pl_l
Im ok | Cancel | Help |

D] bl (o]

b (5]

Figure 1. Test Monitor, Manage Customers, and Partitioning Setup Windows

The options that you select help you
tailor what you see in the Clustering
View window and are saved across
images so you only need to set them
once and they will apply to all DPP
test runs. If you want to modify the
options for one particular DPP run,
you can do so by selecting Options,
then Setup from the Clustering View
window to display the Partitioning
Setup dialog. We will select Prompt
for logic programs for this example.

. Set up your topology information so
that it can be reused on subsequent
test runs. From the Test Monitor, select
Tools, then Partition, then View
Clustering, and then New or select
the View Clustering button

from the tool bar. An empty
Clustering View window is displayed.

Select Options, then Add aTarget
Machine, and then Client to add the
target machine icon that will
represent the client Windows NT
system. On the New Target dialog that
appears, replace CLIENT1 with NT_
Client and select Windows NT from
the Target environment drop-down list.
Select OK to drop the target machine
on the Clustering View window.
Repeat the procedure to drop the
logic server machine, by selecting
Options, then Add aTarget Machine,
and then Logic Server, and
specifying OS/400 as the target
environment. Repeat the steps to add
the other target machine, by selecting
Options, then Add aTarget Machine,
and then Database Server, and
specifying MVS CICS as the target
environment. You can then move the
target machine icons to desirable
locations in the Clustering View
window.

Partitioning VisualAge Generator Systems, continued

& Clustering View 1 M=l E3
File Optionz Help
e
ASMO0_Server
B 0
NT_Client MVS_CICS Server
| B |

Figure 2. Clustering View Window
with Target Machines

Now that you have your target
machines set up correctly, you want
to save them away for future reuse. To
do this, select File, then Save
Topology As, and specify a file name.
When you want to use the topology to
initialize the Clustering View window
for future test runs, instead of opening
a new Clustering View window like
we did in this example, you can open
an existing one. You will be prompted
for the name of the topology file to
restore.

With the Clustering View window
options set and the target machines
initialized, you are ready to actually
run the test. Select the Run push
button on the Test Monitor. @l
The Clustering View window
changes as the test runs and looks
like Figure 3 when it finishes.

The first VisualAge Generator logic
part to run is a statement group
named RETRIEVE-CUSTOMERS. This
statement group contains a loop that
controls calling the server programs
to do the data access. As soon as you
execute the first CALL statement,
program icons are placed on the
Clustering View window. Since we are
using the default partitioning
placement option, a Client
program icon , named
CUSTGUI, is placed on the
NT_Client target machine. This icon is
placed there because it performs

()

user interface functions. The second
icon, named CUSRCCH1, &
represents the called cusrect |
program. Since it is not part of the user
interface and performs no database
access functions directly, it is
represented by a Logic program icon
and we are prompted for its
placement. Select the AS/400_Server
target machine. A line between the
two program icons represents the
call.

As the test continues, select
AS/400_Server each time you are
prompted to place logic programs.
Watch what happens on the
Clustering View window. Numerous
other program icons are added to the
diagram and DPP continually
evaluates the communications
between all the components that
make up the program system. Over
time, several of the icons are
connected on both sides by very red
lines pulling them to different target
machines. This indicates a potential
problem area and prompts
reevaluation of the program
partitioning.

[-IC[]

& Clustering View 1

File Options Help

Figure 3. Application System Requiring
Repatrtitioning

6. So that DPP can help us alleviate this
problem, let's release several logic
programs that we explicitly placed on
the AS/400_Server target machine.
Select the icons representing
CUSRCCA1, CUSRCC2, and
CUSRCDS and choose Release
Programs from the context menu.
This gives DPP the freedom to
determine the optimal target machine
placement for these logic programs.

7. You can now select Adjust
Configuration from the context menu
of the Clustering View window to
allow the DPP system to relieve some
of the tension in the diagrams (the red
lines). Now free to move, the program
icons move in the direction that will
lessen this tension. Adjust
Configuration can be used
repeatedly. In most cases, a stable
program system configuration can be
reached, and movement between
programs stops. However, it is
possible that the programs continue
to move each time Adjust
Configuration is selected. If the
system does not reach a stable
configuration, programs should be
broken into smaller pieces of logic.

After you select Adjust
Configuration, the Clustering View
window will look like Figure 4. Since
Adjust Configuration simulates a
separate test run, different colors have
been selected by chance for the
target machines. Notice that the
released logic programs, shown in
dark blue, have moved away from the
AS/400_Server target machine
toward the other machines. The red
lines pulling them in different
directions have changed color. This
shows a more optimal partitioning:
the logic programs that are called
often from the user interface are on
the NT_Client client machine, the
logic program that interacts closely
with the data access program is on
the MVS_CICS_Server database
server machine, and the other logic

& Clustering View 1 AEE
File Options Help
& @
cusnoss (77| cusneoz]
ASHMO0_Server
o
&
i MVS_CICS_Server
NT_Client
L P

Figure 4. Correctly Partitioned Application
System

programs are left on the middle
AS/400_Server logic server
machine.

8. Once the system configuration is
stable, we can run Automatic
Placement to allow DPP to place the
floating Logic programs on the target
machine that provides the optimal
performance. To do this, select
Options, and then Run Automatic
Placement. An information window,
shown in Figure 5, lists which
programs have been placed on each
target machines. If you don't like the
placement that DPP selects by
default, select Options, then Undo
Automatic Placement and manually
place the programs on the target
machine you want to use.

9 [

i Clustering View 1
Filz Options Help
@ Information
: Did the following placements:
On NT_Client:
.E CUSTGUI

CUSRCCT
CUSRCC2

On AS/400_Server:
CUSRCD
CUSRCDZ

| @ Dng—\l{;ﬁﬁgg&ﬁjewel:]
CUSTGUI m CUSRCD3

2l [cusreez
NT_Client

Figure 5. Clustering View Window with
Placement Information

For this application system, automatic
placement improved performance by
a factor of 15. The time to complete a
RETRIEVE-CUSTOMERS benchmark
decreased from 75 seconds to
approximately 5 seconds. These times
were measured for generated C++
code running on a small testbed
based on a 16 MB token-ring network.
Modest Windows NT 4.0 workstations
served as client machine, logic
server, and database server.

. Since the system is now partitioned

correctly and the test is successful,
you can generate the VisualAge
Generator programs from the
Clustering View window. Use the
mouse to draw a box around all the
program icons. A black line will
surround the name box below each
icon, indicating that it is selected.
From the context menu of the
Clustering View window, select
Generate.

Note: You will get an information
message that non-VisualAge
Generator components cannot be
generated from this window. This is
because we have the icon
representing the VisualAge GUI view
selected. Since the “generation” of that
part is controlled by Smalltalk
packaging, it isn't handled here. Client
icons could also represent web
pages or other user interfaces, which
must be handled in other ways as
well. Generation will continue for all
other selected VisualAge Generator
programs.

For this application system,
automatic placement improved

performance by a factor of 15.

Partitioning VisualAge Generator Systems, continued

Three separate Generate windows will = - Generate * - Generate - (O] x|
be displayed, as shown in Figure 6: one

Target systen: T arget zystem;
for each target system. The programs |W|Nouws NT IMVS ics =]
that should be generated for each &l

. ; . Batch fi 5 Batch fi Seifings. .
system will be listed on the appropriate L R - | Set Dptions... |
Generate window and the target system ™ Create individual commands [~ Create individual commands Freset Options |
will be preselected. You should now
create or modify the necessary lcon |Part Mame |Application lcon |Part Mame |Application LI
generation option and linkage table files, 7 |CUSRCCZ | GartherDemo 7 |CUSRCD3 |GartnerDema
select Set Options to specify Generation 7 |CUSRCCT | GartnerDema 7 INISREDY. | Batnelemn
options for each Generate window, and & - - Generate I E3
then select Generate to generate the Target spstem:
VisualAge Generator programs for the |0s/400 = Canel
. IN fivie stat |
right target platforms. B [~ Batch generation Cettings.. |

Set Options... |
[Create individual commands Reset Dptions |

If your system configuration changes in
the future, you can repeat the dynamic
partitioning and regenerate for the new
platforms. m

lcon |Part Mame |Application Help |

CUSRCD2 |GartherDemo

vy
7 |CUSRCD1 [GartnerDema

IND active status

Figure 6. Program Generation from the Clustering View Window

I
An invitation for you

We are currently seeking customers to The value to you will be hands-on
partner with the lab and with IBM experience to learn how to effectively
research to help us identify any changes | utilize the DPP feature, the ability to
that would make the tool even more greatly influence the direction of future
valuable to you. To participate, you will enhancements, and a better

need to host at least one IBM researcher | understanding of the performance
for approximately a week, provide of your systems. If you would like to

1998 a resounding success for VisualAge Generator !!!

by Rusty Edmister, VisualAge Generator Sales Support

The year just completed was by far the
most successful year that VisualAge
Generator has enjoyed since it became
generally available in 1994! Not only
did many new companies begin using
this increasingly powerful product, but
many current customers increased their
usage of the product as well.

Among new users for VisualAge
Generator were one of the world’s
largest consulting firms, one of the
world’s largest credit card companies,
and one of the largest banks in the US.
All came to the product because of its
productivity, its versatility, its scalability,
and its portability. On the other end of
the scale, some of the new users
included organizations with only a
handful of developers and one with only
one programmer! Whether in the hands
of a single developer or in the hands of
hundreds, VisualAge Generator
continued to prove its worth as a tool
allowing development of applications
that range from batch programs to web-
enabled applications and everything in
between!

And speaking of the Web, the State of
California - Department of Health
Services, an award-winning
development organization in
Sacremento, developed and delivered
its first web application called Microbial
Disease Laboratory System (MDL) in
record time using VisualAge for Java
and VisualAge Generator in late 1998!
Details of the application appear in
another story in this edition of the
newsletter.

1998 was also a very good year for
VisualAge Generator with industry
consultants. The Gartner Group placed
VisualAge Generator and some of its
VisualAge peer products in its
“Leadership Quadrant,” a distinction
reserved for products that it deems will
be the leaders in the area of application
development in the coming decade!
Other industry consultants, including
Ovum and Meta Group, wrote very
positive articles about the product last
year as well.

1998 was the year of User Group
Meetings. In July, a North American
User Group meeting was held in RTP,
the home of VAGen, and was attended
by more than 40 companies represented
by more than 100 people. A similar
meeting was held in Stuttgart, Germany.
That event was attended by nearly 160
people from more than 70 companies
that are either using or considering
using the product. The 1999 North
American meeting is described in
another article in this edition of the
newsletter and will be held in Chapel
Hill, NC, on June 15 & 16. Please see
the article mentioned or visit VAGen'’s
web page for details.

1998 was also the year the VisualAge
Generator User Forum moved to the web
at the request of a multitude of its users
from around the world. It is a newsgroup
and is accessible from the VAGen web
page at www.software.ibm.com/ad/
visgen. It provides users a way to ask
questions about the use of the product.
Answers come from both RTP
developers and VAGen customers.

1999 and the years ahead promise to be
even more successful and exciting for
the product and its users. Early this year,
new customers in Peru and Qatar began
using VAGen. That brings to 52 the
number of countries in which it is being
used. Product plans for the future
include new production environments,
an enhanced scripting language, and
interoperability with VisualAge for Javal
With all of that said, the Development
Team in RTP understands that the
product cannot be successful and has
no future without its customers and
thanks you very much for your continued
use of and confidence in VisualAge
Generator! m

Demystifying the VisualAge Smalltalk environment,
Part 1: Applying layered architectures

by Tony Cianchetta, VisualAge Information Development Manager, Generator, Java and Smalltalk

This article was previously published in
VisualAge Magazine (http.//
www.vamagazine.com).

Editor’s Note: This is the first in a series
of articles geared toward making
VisualAge Generator users more
comfortable in the VAST environment.
You don't have to learn Smalltalk to
develop systems with VisualAge
Generator, but a grounding in the
underlying concepts, especially those
outlined in this series, will certainly help
you build better application systems.
The author of this article is a longtime
VisualAge Smalltalk instructor. He has
taught users from all backgrounds, so
whether you’re new to the VA
environment or you've been nervously
ignoring it for a while, this article will
help you clean up your connections and
get plugged into the power of reuse.

When applications get more
sophisticated, the value of visual

programming begins to diminish in

a “green haze” of tangled connec-
tions.

It is widely accepted that visual
programming is a viable tool for building
user interfaces and small applications
quickly. Reusable components, instance
collaboration through connections, and
a point-and-click development interface
all contribute to meet the need for rapid
application development. But when
applications get more sophisticated, part
responsibilities become more complex,
and the value of visual programming
begins to diminish in a “green haze” of
tangled connections. These
circumstances raise a serious question:
“Can the visual programming metaphor
provide a practical solution for building
large scale enterprise applications?”

The answer is “Yes.” But the visual tool
must allow you to move easily between
visual programming and writing
specialized code. With VisualAge
Smalltalk, the two coexist and you can
work with either at will. Event-to-script
connections allow you to communicate
“things” that happen at the user
interface to actions implemented in
Smalltalk code. But the need remains for
a level of discipline to avoid that “green
haze.”

By adopting an architecture appropriate
to the scale of your application[1], you
can successfully use all the features of
VisualAge Smalltalk to meet your
development needs. When parts are
separated into layers by responsibility or
service, the increased complexity
associated with large applications is
spread across those layers.

By applying a “divide-and-conquer”
approach to complexity, the total
number of connections per part can be
kept reasonable. Components, in turn,
become more reusable and certainly
more understandable.

The result may be more components in
the solution space, but this is not
necessarily a bad thing. The more
reusable components your team
develops, the less they’ll have to do later
in the development process.

This article explores the various ways a
layered architecture can be applied to

visual programming and compares the

complexity level of layered versus non-
layered component development.

Getting back to basics

Think back to the early days of OO
technology. There were many
discussions, and volumes written about,
layered applications, multitiered
architectures, and the separation of the
Model, View, and Controller (MVC)[2]. If
we take those concepts and apply them
to a VisualAge Smalltalk project today,
some pretty extraordinary things
happen; we find it can reduce the
complexity of our composite parts and
make them reusable.

Layered or multitiered architecture
concepts map well into the world of
VisualAge Smalltalk. With a team
development environment that enables
us to logically separate the parts in each
layer, all we need to do is work with an
available object model and define those
layers. Let's define a simple domain and
step through the concept.

Simple objects

Let’s keep it simple and start with a
model that contains name, address, and
person objects. Because we can
prototype this quickly, let's use the
VisualAge Organizer to define the
classes for these domain objects as
Smalltalk classes:

WastName (Smalltalk class) VastAdoress (Smalltalk class)

Attributes
firsthl ame (String)
middleName (String)
lastM ame (String)
namestring” (Sting)

Aftriputes
street (String)
City (String)
state (String)
zipCode (string
addressString® (String)

Actions
Actions

Ewents Events
*na setter needed

“no setter needed

VastPerson (Smalltalk class)

Aftributes
name (Wasthame)
address (VastAddress)
phone (String)
mailingLabel® (String)
nameString * (String)

Actions

Events
"no setter needed

Let's also say that the following list is a
subset of the behavior we need to
provide for these objects:

e (Create new instances

e (Collect all the instances into
a manageable group

e Work with the instances as a group

e Select individual instances from the
collection

s Person List

FirstName |

e Display attributes of an instance
as read-only

e Display attributes of an instance
to allow value update

There’s nothing astounding about the
list. It includes routine functionality,
some of which we take for granted in
Smalltalk because of class behavior. If
we were to visually build a part to satisfy
these requirements, the result might look
like this:

/:er gnF actary

Exit |

'

MiddleName |

LastName I

Street
City
State

y

ZipCode

Phone

Add

em

By applying a “divide-and-
conquer” approach to
complexity, the total
number of connections
per part can be kept
reasonable.

| — ==
2-=

Personlist

OK- so this is, perhaps, an exaggeration.
But even this simple example shows that
the visual metaphor tends to orient
development towards a visual solution
(...when you think your only tool is a
default window, every specification
looks like a Ul problem...). It's just so
easy to drag, drop, and connect that the
overall design process often gets
ignored or, at the very least,
compressed.

There’s nothing wrong with this style for
simple parts. However, when you build
parts to satisfy the need for more
complex behavior, separating parts into
layers will serve to reduce the
complexity of implementing that
behavior.

If we back up and look at this model from
the perspective of separating parts by
responsibility, we can work to fit the
implementation into layers. Here’s one
potential view of separation:

User Interface

Broker

Defining layers

If we work our way up from any existing
database to the user interface, we can
define each layer in the diagram as
follows:

Broker layer

This layer is responsible for translating
whatever is returned from the database
into collections of domain objects. If a
MultiRow Query part is used to query a
relational table that contains person
information, a collection of dictionaries
representing person records is returned.
A broker part is responsible for creating
a VastPerson instance for each person
record returned from the database and
setting the appropriate attributes from
the corresponding record values. Each
VastPerson instance should then be
added to an OrderedCollection for use
within the application domain.

Demystifying the VisualAge Smalltalk environment,continued

Caching, to improve performance, and
transaction processing, to preserve data
integrity as well as enable rollback, can
be added in this layer. Brokers also
provide the opportunity to implement
update notifications for concurrency
protection and collaboration with other
broker parts when an object requires
data from multiple tables that have their
own brokers. Broker parts are also
responsible for transposing domain part
instances into a form suitable for saving
into the database. We can either build
this layer from nonvisual and database
parts or it can be implemented by add-
on features like ObjectExtender.

Domain layer

This one’s easy. Here we build Smalltalk
classes that model the real-world
objects of our business domain problem
space. These objects are the result of
OOA&D and are defined in the resulting
object model.

Mediator layer[3]

There’s more going on here than you
may think. This layer prepares domain
objects for collaboration with the user
interface. We can define sub-layers to
handle form parts, display parts, and
controller parts.

Form parts are reusable views of part
attributes that enable the end user to
update or modify attribute values (sort of
like read/write access to instance
attributes). Display parts are reusable
views that show attribute values in a
manner that is read-only (like a label).
Controller parts enable us to create,
modify and remove domain instances
from their respective collections during
run time. By utilizing VisualAge’s event
handling capabilities, controllers give us
a vehicle for implementing behavior
associated with the Observer pattern[4].

Ul Layer

The user interface is made up of the
navigation windows and visual parts that
enable the end user to see, manipulate,
and work with business domain
information. From a VisualAge Smalltalk
application perspective, we can make
the relationship of these layers more
intuitive (visually) by creating the
following hierarchy:

| tProje: 1
— r:] WastBrokerPartz[9/4,/98 12:33:15 PM)

— rﬁ YWastDomainPartz[3/4./98 12:38:40 P)

—= rﬂ WagthediatorParts(3/4/98 12:39.32 PM)
rﬂ WastControllerPartz[3/4/38 12:40:42 Pi)
rﬂ WastDizplayParts(9/4./98 12:40:26 Ph)
rﬂ Y astFormParte(9/4./98 12:40:05 Ph)

L— [T vastlIPans(3/4/98 12:39:47 PM]

We then define and implement the
following parts in each layer:

astFroject
YastDomainP arts
wasthame (Smalltalk class)
vasthddress (Smalltalk class)
WastFerson (Smalltalk class)
YasthediatorParts
“astFomm Parts
wasthameFomn (visual part)
YastiddressFom (visual part)
YastPersonFomm (visual part)
YastPersonListForm fvisual part)
YastDisplayParts
wasthlameDisplay (visual part)
WastAddressDisplay (visual part)
YastPersonDisplay (visual part)
“astControllerParts
wastPersonList (norwisual part)
wastBrokerP arts
“astPersonBroker (nonvisual part)
“astlIP arts
“astMameEditor (visual part)
“asthddressE ditor fvisual part)
“astPersonEditor (visual part)

By building the parts in the above list, a
“vertical slice” through the domain
space is implemented. That vertical slice
enables our application to process from
the database up through to the user
interface for a particular domain object
or set of domain objects. The
implementation of all these classes, and
an explanation of how they fit in a

layered architecture, is best explained in
a series of hints & tips papers. These
part definitions are key to this example.

Leveraging layers

By building reusable form and display
parts as subcomponents (like
VastNameForm or VastAddressForm) we
can create more complex reusable
components like the VastPersonForm.
This technique serves to reduce the

[\VastAddressFom (visual part) \astiameFom fvisual part)

Attributes

vastadaress (Vastaddress)
(promoted variable)

Actions

Aftributes
vastMame (vVasthame)
(promoted varable)
Actions

Events Everts

['vastPersonEditor (visual party ‘astPersonFomn (visual par)
Aftributes
wastPerson (YastPerson)
(promoted variable)
Actions

Affributes

wastPerson (YastPerson)
(promoted variable)

Actions

Everts Events

[\vastPersoniList (non-visual part) astPersonListview (visual part)
Aftributes

selecteditern (promoted)
items {promoted)
selectionisvalid {promoted)

Aftributes

allPersons (OrderedCollection)
personToEdit (VastPersor)
newCustomerEditor (private)
existingCustom erEditor (private)

personFactory (private) Actions

Actions Everts

addPerson
remaovererson
editPersan
doneEditing (private)

VastPersonEditor (visual part)

Aftributes

wastPerson (vastPersony
Everts (promoted varable)
addPersorEvent
removePersonEvent
editPersonEvent

Actions

Everts

number of connections required at each
level of component complexity, as
shown in the following VastPersonForm
example:

3 First Name
! Middle Name

Last Name

e

i Phone

If the name and address forms were not
used, this particular view would require
a minimum of eight connections to
represent the attributes of a person
instance.

The difference becomes even more
pronounced by the time we get to the
user interface.

i Person List

| First Name

! Middle Name
i Add
3 Last Name
| Street

| city

i State

| [

!
! ZipCode %lsor_lsl
3 Phone

Person List

This is the same part that was
implemented earlier as a single view.
The number of connections required to
represent the name, address, and
phone attributes of a person reduce to
one on this visual part. Earlier, it
required eight connections and two
tear-off attributes to get what we needed.
In fact, the total number of connections
was reduced from 16 to 7, and this part
implements an edit function.

The implementation of a controller part
(VastPersonList) eliminates the need for
parameter-passing connections to
satisfy the add: and remove: keyword
connections. Controllers also provide
the opportunity to open editor views on
new and existing person instances to
allow the end user the chance to modify
attribute values.

The following figure shows the
completed VastPersonList controller.
When this controller receives the
addPerson message several things
happen. It's PersonFactory
subcomponent creates a new instance
of VastPerson and passes it to a
NewPersonEditor view through an
attribute-to-attribute connection. The
NewPersonEditor is then opened by the
same addPerson message. When the
end user closes the NewPersonEditor,
the instance is then added to the
allPersons collection.

E siztingPerzonE ditor

H

MewPer®onE ditor

e el

PersonF actaory

Instances of VastPerson are removed
directly from the allPersons collection,
or edited in another instance of the
person editor called
ExistingPersonEditor. The result is a very
flexible controller that is capable of
working with a group of VastPerson
instances or a single instance. It
receives three different messages and
implements each of them internally,
separating the complexity of that
implementation from collaborating parts.
If this implementation comes too close
to “green haze”, then the behavior
implemented here can be split out into
separate controller parts.

The simple nature of the example has
no bearing on the scalability of its
concept. It's just as easy to implement
layers for policies, accounts, schedules,
set tops, or any other domain object.

O] %]

& Person List

IFirsl

[Middie

ILa st d
fsreet [

City City

[state
EipCode
[oro 5551985

First Middle Last

FirstName Exit |

MiddleName

LastName

Street

State
ZipCode
Phone

Conclusion

In the early days of object technology,
we struggled with a new paradigm that
was defined by concepts that were
considered, at that time, abstract at best.
We struggled because we lacked the
tools to make those new concepts work
for us. After a lot of hard work there are
some highly productive tools in our
hands but, as developers, we seem to
forget why those tools were created. By
not applying layering techniques to
software development with VisualAge
Smalltalk, we miss something
fundamental. Call a hardware support
representative with a problem and their
first question will most likely be “Is it
plugged in?” Maybe it's time to ask
ourselves that same question about the
way we use VisualAge Smalltalk.

References

[1] Kyle Brown. “Remembrance of Things
Past: Layered Architectures for
Smalltalk Applications’, The Smalltalk
Report, 4:9, pp. 4-7, July-August 1995.

[2] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Elements of Reusable
Object-Oriented Software, pp. 4-6,
Addison-Wesley, Reading, MA, 1995.

[3] ibid. pp. 273-282.

[4] ibid. pp. 293-303. m

1999 VisualAge Generator User Group Meeting

The 1999 North American VisualAge
Generator User Group Meeting has
been announced. It will be held in the
McColl Building of the Kenan-Flagler
Business School on the campus of the
University of North Carolina in Chapel
Hill, NC. The dates of the meeting are
June 15 & 16, 1999.

The two-day event begins at 9am EDT
on Tuesday, June 15, and will conclude
no later than 4pm EDT on Wednesday,
June 16. Topics will include a variety of
subjects of interest to current and
prospective users of the product.
Speakers will include current customers,
IBM VisualAge Generator Architects and
Developers from the RTP, NC
Development Lab, and IBM Business
partners. A detailed agenda may be
found on the VisualAge Generator web
page at

www.software.ibm.com/ad/visgen.

There will be a $50 fee charged to each
attendee to cover the cost of meals and
other expenses of the event. Travel and
living expenses are the responsibility of
the attendee. Enrollment details for the
event may be found on the Web.

A special program number has been
established with SATO Travel, an
agency with which IBM does much of its
travel business. This firm MAY be able to
help attendees save money on airline
tickets due to IBM corporate contracts
with some of the airlines serving
Raleigh-Durham International Airport.
SATO can also help with hotel
reservations at a number of hotels in the
Chapel Hill area. SATO'’s telephone
number and the program number for this
event can be found in the event
description at the web site mentioned
above. Last year's meeting was judged
a great success by those who attended!
There were more than 47 companies
represented by more than 110 people at
the July, 1998, event. More are expected
when the meeting commences on the
third Tuesday in June this year. Those
who come can expect to enjoy
informative speaker presentations as
well as opportunities to share
information with fellow attendees.

Tuesday, June 15

e VisualAge Generator V4- Presentation
& Demo

e \isualAge Generator Templates V4-
Presentation & Demo

e State of California MDL Project—
A Management Perspective
(Customer Speaker)

e State of California MDL Project-
A Developer’s Perspective

¢ Meet the VisualAge Generator
Development Team- VAGen
Managers and Architects User Dinner

Wednesday, June 16

e VisualAge Generator User Group
Business Customer Testimonial—
Customer Speaker ENVY Tips &
Techniques

e VisualAge Generator Assist—
Presentation & Demo

¢ VisualAge Generator/VA for Java/
WebSphere- Your Path to the Web

While it is not on the agenda, one of the
most valuable parts of the meeting is
NETWORKING, NETWORKING,
NETWORKING! Before the meeting
starts each day, during the breaks, at

Setting up your web browser to access the
VisualAge Generator newsgroup is pretty
easy. If your browser is not already set up to
use a manual proxy, contact your system
administrator for configuration instructions
before you get started.

If you are using Netscape(R) Communicator
4.5 to access the newsgroup:
1. Start your browser.
2. From the Edit menu, select Preferences.
3. Expand the Advanced category
and select Proxies.
4. Select the Manual radio button, then select
View.

5. When your manual proxy has been set,
select OK on the View window and on the
Preferences window.

6. From the Communicator menu, select
Newsgroups.

7. From the Netscape Communications
Services window, select File, then
Subscribe.

8. On the All tab, select the Add Server
button.

lunch, and over dinner, customers and
prospective customers get the chance
to talk with one another about their
experiences with VAGen. Networking
alone is reason enough to attend.

Registration

By going to the VAGen web page,
anyone interested in attending the
meeting may register. The web page is
www.software.ibm.com/ad/visgen. Once
there, you will find a link to information
about the meeting. From that point,
another click will take the reader to a
registration form. That registration will
come immediately to RTP. Our
confirmation will include information
about how the attendee might save
money on both the airline fare and the
hotel. The confirmation will be returned
to the registrant within 48 hours of
receipt in RTP. If you do not have access
to the web, you can also register by
calling Kaleigh Horn at 919-254-1788 or
by sending her a note at
khorn@us.ibm.com. Contact Rusty
Edmister at 919-254-1706 for more
information and assistance. Y’all come!
[

9. On the Add Server window, select News
Server and click Continue.

10. In the Server field on the Communicator:
Subscribe to Newsgroups window, type
news.software.iom.com and select OK.
The new server appears in the Netscape
Communications Services window and a
collapsed list of newsgroups is displayed
on the All tab in the Communicator:
Subscribe to Newsgroups window.
Depending on system speeds, this step
may take a few minutes.

11. In the Newsgroup field on the
Communicator: Subscribe to Newsgroups
window, type ibm.software.vagen and
select the Subscribe button.

12. Select OK.

13. In the Netscape Communications Services
window, click on ibm.sofware.vagen.

14. In the Download headers window, select
Download to view posts to the newsgroup.

If these instructions do not work for you, see

your system administrator for additional

information.

Integral Systems, Inc., Selects VisualAge Generator
as Future Development Platform

by Mike Rhoads, Manager, VisualAge Generator, Smalltalk Sales and Rusty Edmister, VisualAge Generator Sales Support

Integral Systems, Inc., a long time user of
IBM’s 4GL product called Cross System
Product, announced to its users that it
plans to use VisualAge Generator as its
development platform of choice for
future software development. This
announcement was made at its annual
Users’ Conference in San Diego, CA, in
August, 1998, and restated in its Fall/
Winter newsletter, INSIGHTS, last fall.

Cheryl Coleman, at the time Integral
Vice President of Product Development
and Professional Service, said in the
newsletter article, “We're very pleased
to join together with IBM and move
forward with our future development
plans. This will enable us to advance
the product into the 21st century both
technologically and functionally.”

Integral’s stated rollout strategy at the
San Diego conference was to deliver a
VAGen version of its product by mid-year
1999. Its next opportunity to release
such a product would be 2Q-3Q, 2000.
This first release would use a text
interface only but would allow Integral
and its customers to take advantage of
VAGen graphical and browser interfaces
and other product features in its future
releases.

JAT Computer Consulting, Inc., is a
business partner of both Integral and
IBM and will be assisting Integral with
the migration to VisualAge Generator.
Mary Carr Sarracino, JAT western
regional vice president, was quoted in
Insights as saying, “We are in the
process of training our technical staff in
VAGen to assist CSP clients of both IBM
and Integral with their migration from
CSP to VAGen.”

According to the newsletter article,
Integral had been leaning toward
VisualAge Generator for some time,
“Other options abounded, but each
lacked the comprehensive range of
features and strong points provided by
VAGen. Among Integral’s criteria in
making the decision to go with VAGen
were:

e familiarity with IBM products, staff,
and standards in the Integral user
community

e the capability to support text,
graphical and browser interfaces

e feedback from Integral customers

Additionally, the product supports VSAM
and VSE. The future possibilities for our
online system are infinite.” M

_
&

Mike Rhoads, VisualAge Generator Sales and Kelvin Kwok,
then Integral’s interim CEO

Diagnosing runtime errors using VisualAge Generator 3.1

by Jim Eberwein and Jim McVea, VisualAge Generator Support Team

Customers have recently reported
walkbacks when executing their
packaged images. These errors did not
occur while their programs were running
under the interactive test facility. Their
WALKBACK.LOG files showed the error
message: “AbtNLSCoordinator class
does not understand
defaultReplacementRules”.

Due to a defect with VisualAge
Generator 3.1, the proper runtime error
messages are not always issued when a
runtime error is detected. This defect will
be fixed in fixpak 3 of VisualAge
Generator when it is available.

For the short term, the support team has
written this article to help you with
problem source identification by
documenting the runtime error
messages and explaining how to
decipher the runtime error in the
walkback.log. Customers should be able
to follow these instructions to resolve
most of their runtime problems without
opening a problem record with the IBM
Support Center.

When a runtime error occurs, VisualAge
writes a stack trace to the file
WALKBACK.LOG. If VisualAge
Generator did not issue the correct error
message, the first entry in the file
following the date/time stamp would be
the message “AbtNLSCoordinator class
does not understand
defaultReplacementRules.” To detect
the actual runtime error, browse the file
and search for the text string
“CxRunMsg.” Immediately following this
string, you will see an integer that
correlates to the runtime message that
VisualAge Generator is trying to display.
For example, in the case that a call to an
executable failed, you should see the
following text in the WALKBACK.LOG:

AbtMRI>>#hptRules receiver =
[CxRunMsg.8] CxRunMsg is not a
registered message group. temp1 = nil

To determine the runtime message associated with the integer value, refer to the
following table:

1 The number of columns in table contents file %2 does not match the number of
columns in table %1.

2 Record this information and contact your system administrator.

38 Could not call a remote program because the client/server communications
support is not installed correctly.

4 Client/server communications error %1 was detected: %2

5 Could not abort the transaction in GUI client %1.

6 Client initialization for GUI client %1 failed.

7 %1 A value stored in the EZE data word is not valid. %2 cannot hold %3.

8 A call to %1 failed because the executable could not be found.

9 Service request from GUI application %1 to remote client %2 failed.

10 Transaction initiation for GUI client %1 failed.

11 An internal error occurred while calling %1 in DLL %2. The error code is %3.

12 One or more columns in table contents file %2 do not match the columns in
table %1.

13 An internal error related to argument %4 occurred while calling %1 in DLL %2.
The error code is %3.

14 %1 %2 contains invalid numeric data.

15 %1 User variable overflow occurred. %2 cannot hold %3.

16 An error occurred in remote application %1 date %2 time %3 error %4.

17 Subscript value %1 is not valid for data item %2.

19 An error occurred while calling %1 in DLL %2. The error code is %3.

20 Could not commit transaction in GUI client %1.

21 %1 Maximum value overflow occurred.

22 The table contents file named %2 for table %1 could not be opened. The error
code is %3.

23 Client finalization for GUI client %1 failed.

24 %1 can not run because its VAGen runtime code has not been generated.

*18 is not a registered message. This is not a misprint and was omitted intentionally.

If the message contains placeholders
(indicated by a ‘%’ sign), then the value
for the placeholder(s) can also be
located within the walkback. The
method preceding the
AbtMRI>>#hptRules method (either
AbtMRI>>hptAsAnnotatedStringReplace:
or AbtMRI>>hptAsStringReplace:) will
have one argument which is indicated
“arg1 =" in the walkback.

by

The value for arg1 will contain the
values for the placeholders in the error
message in the table above. To
determine what the complete text of the
error message should be, simply
replace the value(s) in arg1 for each
corresponding placeholder.

From the “missing executable” example:

AbtMRI>>#hptRules
receiver = [CxRunMsg.8 |
templ = nil

AbtMRI>>#hptAsStringReplace:
receiver = [CxRunMsg.8 |
argl = (‘MYDLL")

CxRunMsg is not a registered message group.

CxRunMsg is not a registered message group.

Using the information above from the walkback, we can determine that our error message is: “A
call to MYDLL failed because the executable could not be found.”

For users who feel comfortable with filing in Smalltalk code, the following code will fix the current

defect:

IAbtMRI publicMethods !

hptRules

“Broken out from the rules calculation code in #displayButtonType:replace:.”

[gp |
(grp := self grouplnstance) == nil

ifTrue: [AbtNLSCoordinator current defaultReplacementRules]
ifFalse: [grp replacementRules]! !

In order to file In the fix, you will need to type the text above into a new workspace, select all of the text, then
choose File In... from the Edit menu. After filing in the fix, you will be prompted to make a scratch edition of

the HptBaseMessageSupport application. Click OK and be sure to save your image. &

Using FCWERRA with VisualAge
Generator V3.1 C++ programs on CICS

by Chuck Proffer, VisualAge Generator Development

VisualAge Generator Server for Windows
NT and AlX ships a sample error
transaction, FCWERRA, for the CICS
environments. FCWERRA displays a
screen whenever a VisualAge Generator
program terminates showing the most
recent runtime errors. To activate
FCWERRA, the following steps need to
be performed by the CICS administrator.

Place the following line in the CICS
environment file (/var/cics_regions/
RegionName/environment):
FCWOPT=2 Run script fcwcicsinstall.

It is located in directory /usr/lpp/
vgwgs31/bin on AlX and directory
x:\vgservw\exe on Windows NT. This
script will add the necessary CICS
definitions for FCWERRA as well as
other VisualAge Generator utility
programs. Make sure that the
CICSREGION environment variable
contains the name of the region where
you want to activate FCWERRA. Restart
the CICS region.

FCWERRA is a VisualAge Generator
program. The ESF for FCWERRA is
located in directory /usr/lpp/vgwgs31/
samples on AlX and directory x:\\vgservw
on Windows NT. Minor customization
changes can be made to the maps;
however, the input parameter list should
not be modified. ®

IMS
LAN
MSL
MVS

NT
0S/2
0S/390
0S/400

RAD
SQL

TCP/IP
VM

VSE

wWww

Information Management System

Local Area Network

member specifications library
Multiple Virtual Storage
Microsoft Windows NT
Operating System/2

Operating System/390
Operating System/400

rapid application development
Structured Query Language
Transmission Control Protocol/Internet Protocol
Virtual Machine

Virtual Storage Extended
World Wide Web

VA Generator Assist(tm) Provides VisualAge® Generator Users
with Powerful ENVY Management and GUI Building Capabilities

Instantiations, Inc. is very pleased to announce the release of VA Generator Assist

“We are delighted that Instantiations,
Inc. has developed VA Generator

Assist,”

said Hayden Lindsey, IBM STSM

& Product Manager, VisualAge

Generator.

“From the powerful ENVY

Some of the ENVY
management features include:

Powerful change propagation tools—
modify an app and update all affected
maps in one step.

Advanced Configuration Map tools—
release latest applications and
required maps, identify maps needing
to be updated, etc.

Recursive application, subapplication
and class versioning— version an
entire application in a single step.

Prerequisite and dependent path
determination- find out why an
application is listed as a prerequisite
or dependent.

Super user features— manipulate
editions and versions regardless of
ownership.

Version renaming commands—
baseline app names with ease!

Browse Changes Including Required
Maps- browse the changes between
any two config map editions
including any changes in their
required maps.

String Search- find arbitrary strings
within classes or applications.

Some of the GUI building
features include:

Attribute tools— apply attribute
changes to multiple widgets
simultaneously.

Attachment styles— create complex
layouts with ease.

Link filtering— concentrate on just the
event or attribute links you are
interested in.

administration aides to the fastpath GUI
building capabilities, | have found Gen
Assist to be a valuable add-on to VA

Generator.

Check it out!”

Some of the code
development features include:

Dynamic & Batch-oriented spell
checking— catch spelling errors and
common typos instantly.

Fully customizable color syntax
highlighting.

Customizable toolbars for all code
browsers.

Advanced editing features—
comment/uncomment, indent/
unindent, auto indent, insert matching
brackets, etc.

Customizable Application and
Configuration filtering— hide the apps
and configs you aren't interested in.

In summary, Gen Assist lets new and
experienced Generator developers
easily harness the new power that ENVY
and Smalltalk bring to the environment.

ZuMyClass1 - Composition Editor

Edit View ut Connections Options Help

T™.

Users will find that Gen Assist
encourages them to use a much
broader spectrum of Generator’s
capabilities, increasing their productivity
and ease of use.

Instantiations is a premier member of
IBM’s Object Connection Program and
has been providing products and
services to VisualAge customers for
years. Thousands of developers are
currently using Instantiations’ VisualAge
productivity products.

Youlcanidownloadaireey
rallyinctional S0 day;
evalliation\CopyoGENASSIST
auinstanbiationsiaSmalltialk
Systemsiwebisitehitp://
WivavrsmalltalksSystems:com)r

Eorimoreunformationycontact
Instantiations ati800*808B*3 737

=[0]]

=

Selup

k2l
[i]

|DE,EU“ @ Comect to: HtriggerCallback:withArguments:?

I [= B3

Info Opfions Breakpoints

B R

; |

s | | e |l | e |
o . =
e = L e == = = s
Is HB: StsPowerT aols> > sampleMethod:with:
Ej u W“,?ﬂﬂﬁfﬂffe{, HE BN O Awleeion Coemms s
| G DS H| @] % BB
=1 StsPowerT ools
o StsPouei Tookin
. Subeépplication
. Appization
B 2o ZaDefault Version N T
. " W Wame Templat
¢ T e
i |l - %V %l - %D] e
5 [1231s -anassa) temp = Anay wit; argl with inst
“Ancther comment”
Norson Terglel |1t empl s o [sk
| I o2
{temp2 = temp at: blackera)
setSensitiver frue;
= _ﬂ 2 (7] setlabek CwConstants Sk
— backaroundColar: (CaAGEColar blue:
== Defaul Date Format b
I~ Sticky . B foae ;
self calCalbacks: temp? calDala insiVar2)]
limaa Date Fomat_ | .o
—— [awdy propeil

L

SR 54 HE 3

EER3R M 2+ 1)

o

5] 11 ¢)[(273/995:33:13 PH) fom StsFomerT ook n 515 Pawer Tooks

e |

3121993

Il
| of)

7T Day of Month [T31]
% - Day of Week [0.6)
%A - Day of week [Ful)
%a - Day of Week [Bbbr.)

The VisualAge Generator Newsletter

This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor

IBM Corporation

Dept. TF6B/062

P.O. Box 12195

3039 Cornwallis Road

RTP, NC 27709-2195

USA

FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1998. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AlX, AS/400, CICS, CICS OS2, COBOL, Database 2, DataJoiner, DB2, DB2/2, DB2/400, DB2/6000,
IBM, IMS, LE/370, MQSeries, MVS, VM, VSE, Operating System/2, OS/2, OS/390, OS/400, RISC System/6000, SQL/DS,
VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U. S. and other countries.

Texaco is a trademark of Texaco, Inc.

Informix is a trademark of the Informix Corporation.

Oracle is a trademark of Oracle Corporation.

Nikon is a trademark of Nikon Corporation.

ENVY is a trademark of Object Technology International, Inc.
HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, Visual Basic, and ActiveX are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those
described here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These
articles are for information only, and you should contact the stated company with your questions.

G242-0315-11

