
Contents
A New Product Manager and the Year in Review 2

Texaco Brasil ... 3

IBM Delivers Successful VisualAge Generator Applications 4

Accessing OS/390 VSAM Files from ITF
and C++ Generated Programs ... 6

Running VisualAge Generator Programs
in a VM Saved Shared Segment ... 8

Developing Stored Procedures for DB2/MVS 11

Gathering the Necessary Documentation
for Problem Reports .. 14

The Most Common Migration Mistakes ... 17

Beyond Migration—Hints and Tips ... 20

Volume 4, Number 1
December 1998

The IBM VisualAge Generator Newsletter

VisualAge®

Generator
A Powerful New Vision

of ProgrammingTM

2

As always, if you have articles
that you would like to share,
please submit them to
gators@us.ibm.com or fax them
to (919) 254-0206.

A New Product Manager and the Year in Review
by A. Hayden Lindsey, VisualAge Generator Product Manager

The Year in Review

This year has been a very busy one for
the VisualAge Generator team. We
started the year having just shipped the
V3 Refresh in 12/97. Since then, we
have shipped a significant number of
new capabilities, including:

• V3.0, Fixpak 2 incorporated VisualAge
Generator Templates (VAGT) into the
base of VisualAge Generator. We also
added a set of Wizards on top of
VAGT that supports “extreme RAD”
creation of the core part of a business
system.

• V3.1 included many enhancements,
such as Java Gateway support on
OS/390 and AIX, native Oracle
support, ODBC support on HP-UX,
single-system testing of VisualAge
Generator Server programs called by
non-VisualAge Generator clients, built-
in math functions and many usability
and performance enhancements.

• V3.1, Fixpak 1 included enhancements
to the References utility, the VisualAge
Organizer and the VisualAge Genera-
tor Parts Browser to make it easier to
search for parts.

• V3.1 has recently been verified to
support client execution on Windows
98.

• V3.1, Fixpak 2 (soon to be available)
will include Euro currency support, ITF
access to OS/390 VSAM files.

While the enhancements shipped in
1998 are substantial, we also spent a
considerable amount of effort preparing
for the future. We ran several “incuba-
tor” projects for the line items that will
represent the core of our next version.
Themes for the next version, which you
will be reading more about in future
newsletters, should include:

• Easing the transition to e-business

• Easing the transition to Object
Technology

• Continuing our strong support
for Enterprise RAD

• Extending to more platforms.

Note: IBM plans are subject to
change (especially because of the
Y2K uncertainties).

In 1998, the VisualAge Generator
team participated in several very
well-attended customer meetings. Of
particular note, the VisualAge Generator
Great Lakes Users Group meeting was
held at our site in RTP, NC and drew
attendance from many companies
across North America. Because the
meeting was local to the laboratory,
many of the VisualAge Generator team
members were able to meet with you
and discuss ideas. The EMEA VisualAge
Generator Symposium was held at the
IBM facility in Stuttgart. Attendance was
so good that we had to split the agenda
and run a parallel track in a second
large room. These are the problems we
LIKE to have!

To improve customer-to-customer
interactions, as a result of your
suggestion, we have created an
Internet newsgroup for VisualAge
Generator. Thus far, the participation
has been great. Check out the details
and join us at:

http://www.software.ibm.com/ad
 visgen

I am VERY PLEASED with the progress
we made in 1998, and I am EXTREMELY
ENTHUSIASTIC about the prospects for
1999. ■

Once again, a new leader is at the helm
of VisualAge Generator! Let me intro-
duce myself, at least in my new role as
the Product Manager for VisualAge
Generator. I am Hayden Lindsey, and
I took the reins of the VisualAge
Generator area from Peter Spung in
June. I would like to thank Peter for his
stewardship in the first six months of the
year, and wish him well as he returns to
being the VisualAge Smalltalk Product
Manager.

If my name sounds familiar, it might be
due to the fact that my entire IBM career
(13 years and counting!) has been in
the CSP, VisualGen and VisualAge
Generator product areas. I started out
building the PC DOS generator and
interpreter, helped further our move to
the workstation and made a foray into
object technology with the Interactive
Test Facility. In addition, I have been
one of the area architects in the last few
years. In the past 13 years, I have had
the opportunity to meet many of you and
hope to expand these interchanges to
ensure that we are taking VisualAge
Generator in the directions that are
consistent with your needs and your
visions.

In this edition of the newsletter, we have
many articles that we hope are of value
to you. Some highlights are:

• How to turn your VisualAge Generator
server programs into DB2 stored
procedures on MVS

• How to access OS/390 VSAM files
from programs being debugged in the
ITF (enhancement in an upcoming
fixpak)

• How to exploit VM saved shared
segments.

We also have articles that describe how
VisualAge Generator customers, Texaco
Brasil and IBM Semea, have leveraged
various aspects of VisualAge Generator
to their advantage. As always, if you have articles

that you would like to share,
please submit them to
gators@us.ibm.com or fax them
to (919) 254-0206.

3

Texaco Brasil
by Luciana Beltrame, Software Account Manager—IBM Brasil
and Sue Royer, Worldwide VisualAge Generator Sales

A Customer Success Story

In Brazil, the government-owned oil
company is responsible for oil explora-
tion and refining; the real challenge is in
the area of distribution and sales. Brazil
is the fourth-largest country in the world,
so there is a lot of ground to cover.
Texaco Brasil uses VisualAge Generator
and DB2 to reach across the country.

Background

Texaco Brasil had invested in CSP
and SQL/DS in the 1980s to develop
applications for their VM host system.
These applications, which include
accounts payable, inventory control,
dealer loans, budgeting and marketing,
were still valuable, although not ready
for Year 2000, Texaco wanted to protect
its investment.

However, some staff members wanted
to use Software AG’s Natural. In
addition, Texaco had an international
contract with Oracle, which allowed
Texaco Brasil to obtain Oracle
application development and database
products at no cost. The stakes were
high, as IBM and Premier BESTeam
member ACE Informatica tried to win
the business.

Texaco Brasil evaluated Natural,
Oracle and VisualAge Generator with
DB2. IBM won the job for two key
reasons, according to Daniel Arany,
Manager of IS “With VisualAge
Generator, we get the ability to develop
applications on a single platform and
then generate for multiple targets.
VisualAge Generator and DB2 together
enables us to integrate our applications
and use our DB2 data across multiple
platforms. We also appreciate that
VisualAge Generator is translated into
Brazilian Portuguese. This makes it
easier for our staff.”

Texaco not only had the VM host
applications, they also had distributed
order processing and billing applica-
tions running all over the country. The
distributed applications, written in
Visual Basic and running on DOS, were
difficult to maintain and needed major
enhancements. J. Amorim Neto, the CIO
of Texaco Brasil, said, “One of the
reasons we chose IBM was that we had
confidence in IBM’s ability to meet our
requirements today, and to help us
make better use of our technology in the
future. VisualAge Generator and DB2
provide us real benefits across all of our
platforms.”

The Solution

Today, Texaco Brasil has completed
the migration of all six major systems
comprising almost 900 CSP applications
and has made them ready for Y2K.
Development and testing is done on
OS/2, and runtime is done on VM using
VisualGen Host Services, with access to
SQL/DS. The solution also includes
PComm, which proved to be a better
choice because of its technology and
price than other emulators the customer
was using.

In addition, Texaco is using VisualAge
Generator to create new systems to
replace the antiquated order processing
and invoicing systems. These applica-
tions run on Windows NT in 80 locations.
Each application uploads sales informa-
tion from local gas stations to one of five
regional AIX systems running VisualAge
Generator and DB2 Universal Database
(DB2 UDB). The five regional systems
communicate with the central VM
system using DRDA between DB2 UDB

and SQL/DS. If a communications link
failure occur between the gas stations
running on NT and the regional hubs,
the local offices can continue to operate
with the invoicing system, which is
running stand-alone on the NT worksta-
tions, until the link is restored. VisualAge
Generator enabled Texaco to rapidly
develop the application one time, then
generate the code for both Windows NT
and AIX.

ACE Informatica played a very key role
in the win and in the successful imple-
mentation of VisualAge Generator and
DB2 at Texaco. ACE also assisted in
the evaluation phase, and provided
VisualAge Generator education and
mentoring to the Texaco development
staff. ACE’s work was supplemented by
the VisualAge Generator Development
Services team, which provided configu-
ration assistance on-site.

Many of the end users at Texaco still
use 3270 devices. With VisualAge
Generator, Texaco can create Text User
Interface (TUI) applications for those
users, as well as Graphical User
Interface applications. The support in
VisualAge Generator for creating Web
Browser applications and the ability to
provide Java client access to all the
VisualAge Generator server environ-
ments, including VM, were important to
Texaco. Daniel Arany states, “Even
though we are not using all of its
capabilities today, we chose VisualAge
Generator as our strategic development
tool because we believe it will both
protect our investment and take us into
the future.” ■

4

IBM Delivers Successful
VisualAge Generator Applications
by Stefano Sergi, Angela Carella, Leonardo Degiglio, Flaviano Fiorino, Luigi Glorioso—
IBM Semea SISL Development Team

Who Are We?

IBM Semea Sud is a department of IBM
Italia SpA located in the beautiful south
of Italy. The mission of this unit is to
develop software systems specifically
designed to fullfill the requirements of
the Italian market. In the past year, a
dedicated team of specialists has been
involved in the development of
SISL2000, a new solution for the Italian
health care industry.

Background

The obsolescence of SISL (Sistema
Informativo Sanitario Locale), a main-
frame-based Information System
designed to support the decentralized
and local administration of health care
providers thorughout Italy, gave impetus
to a total rewrite that could incorporate
the latest changes in the Health Care
Management legislation and at the same
time exploit the power of a client/server
system architecture: the SISL2000
project was born!

The original SISL system, developed in
IBM’s Cross System Product working
with the DB2 relational database,
allowed the integrated management of
the typical operations of a hospital or
similar health care institute (registration,
emergency room management, booking
and acceptance of clinical services,
clinical history, etc.).

From the time of the initial delivery
of the SISL application, a number of
changes that occurred in the Italian
health care system combined with the
transformation and evolution of the
Information Technology industry
dramatically highlighted several
limitations of the existing system.

The mainframe architecture of the
system translated into high costs of
development, and therefore into high
price of the solution, and imposed high
costs of system management and
maintenance: this severely limited the
adaptation of the SISL solution to the
needs of small to medium firms, thus
limiting its market.

Another serious inhibitor to the accep-
tance of SISL with new customers was
the inadequate text-based user inter-
face, which affected the system usability
and was perceived as old technology. In
addition, it was quite difficult to integrate
the SISL system with personal produc-
tivity PC- or LAN-based applications.

Such limitations not only seriously
inhibited the marketability and accep-
tance of SISL with new customers, but
also gave way to concerns and dissatis-
faction with the existing customer base.

The Action Plan

Once we realized that it was imperative
to develop a new, low-cost solution
matching the new market demands, in
1996 we began a study to identify the
Application Development platform that
would allow us to meet an ambitious set
of goals.

First and foremost, the existing data-
base design had to remain unchanged,
so the new AD environment had to fully
support it. Then the new applications
had to coexist peacefully with the
existing ones, and we wanted to
maximize the reuse of existing CSP
code while being able to develop
sophisticated graphical user interfaces
for a network-oriented system.

Another key goal was the ability to
deploy the new SISL2000 system on
a multitude of platforms so that hard-
ware and software constraints would
not limit the use of the application to
those customers who could meet the
prerequisites.

Just as important was the need for a
high-productivity tool that would allow us
to develop the new system in a very
short time, and that would keep the cost
of maintenance within reason. Finally,
since the old SISL system was very hard
to demonstrate at customer sites, one
key requirement was to be able to build
a PC-based demo system to take with
us when visiting prospective clients.

After a short but accurate analysis,
we concluded that VisualAge Generator
was the only tool in the marketplace
that could meet all of the above
requirements. The scripting language,
compatible with CSP, allowed us to
leverage existing skills and to reuse
part of the logic of the existing SISL
applications: the entire data manage-
ment and database integration portion
of the system could be fully reused
with significant reduction of the cost
of delivery. In addition, VisualAge
Generator integrated tightly with DB2
while at the same time allowed access
to other vendors’ database systems.

The graphical user interface develop-
ment facilities of VisualAge Generator
were found to be highly flexible and
productive, and particularly well suited
for developing reusable system compo-
nents, which was a major advantage for
reducing development time and cost.

A Customer Success Story

5

The VisualAge Generator portability of
the same source to a variety of popular
execution environments was superior to
any other tool in the marketplace, and
we found particularly convenient the fact
that we could use a LAN-based, low-
cost, development workbench for
targeting the creation of a system that
could scale up to any platform, includ-
ing mainframes! Finally, development of
a PC-based SISL2000 demo was not
only possible, but simple and quick.

The SISL2000 System

The SISL2000 system allows health care
institutions to manage all aspects of
patients’ care. These include hospital
admission and registration, first aid
patient management, management of
bedridden patients, day hospital
management, booking and scheduling
of clinical services, tracking patients’
clinical history, government subsidy
reimbursement process management
and functions and utilities for the
integrated management of data.

The system is composed of approxi-
mately 300 GUI client programs and
about 600 server programs. The client
programs were generated to run on
both OS/2 and Windows 95, while the
server applications were generated for
OS/400, OS/2 and AIX, accessing,
respectively, relational data on DB2/400,
DB2/2 and Informix via DataJoiner. The
client/server communication middleware
of the three topologies were CA/400,
TCP/IP and DCE, respectively.

SISL2000 has been sold and deployed
in production in two hospitals. The first
hospital includes approximately 100
OS/2 or Windows 95 (Pentium 166 MHz,
32MB) client machines connected, via
CA/400 on a TR-LAN, to an AS/400 S20
server accessing data on a DB2/400
database. The second hospital has
approximately 20 Windows 95 (Pentium
100 MHz, 32MB) client machines
connected, via TCP/IP on a LAN, to a
RISC/6000 server running an Informix
database, which is accessed by the
server program through the IBM
DataJoiner product. This second
hospital was also a previous SISL user,
and required the implementation of a
gradual migration strategy; therefore,
the SISL2000 applications have been
deployed and coexist with the pre-
existing system.

For demonstration purposes we also
created a fully functional demo/test/
education environment on a portable
OS/2 PC, running as a stand-alone
architecture using DB2/2.

The design principle of the SISL system
is based on the separation of the
programming logic responsible for the
user dialogs from the program specifi-
cations that implement the database
access. The GUI applications invoke
VisualAge Generator callable functions
in a two-tier client/server design model.
In this architecture, each server applica-
tion constitutes a separate logical unit of
work and it is the only program aware of

the database and authorized to access
it. This design improves security,
performance and data integrity by
preventing uncontrolled direct access
to the database from the clients.

Project Results

The SISL2000 project has been a great
success. Not only were we able to reuse
between 50 and 60 percent of the
existing SISL code, but we have
achieved all the major objectives that
have allowed us to enter the market with
a competitive and adaptable solution.

After an initial period of learning and
prototyping, we found the visual
programming techniques offered by
VisualAge Generator to be extremely
productive. The average development
time of complex GUIs and their respec-
tive server programs never exceeded 4
or 5 working days, thanks in particular to
the Interactive Test Facility and to the
ability to encapsulate complexity inside
reusable components.

Deployment of the system on totally
different client/server environments did
not require us to become familiar with
different programming languages and
with different system APIs. Except for
minor font, color and image problems,
the only differences between systems
we had to deal with were relative to
setting up the runtime environments: a
minor investment when compared to the
development effort!

Thanks to the RAD development and
test VisualAge Generator workbench,
which enables us to identify and rapidly
fix system anomalies, we are also
confident that the maintenance costs
of the system will be well below expec-
tations. ■

The 2nd VisualAge Generator International Symposium

On September 8th and 9th, VisualAge Generator held its 2nd International
Symposium in Stuttgart, Germany. Over 150 customers and business partners
from 18 countries overflowed the IBM Forum conference rooms. The attendance
was so great, IBM ran the two-day session split in two rooms and the speakers
were busy running from room to room. When they came together for the joint
sessions, people had to stand out in the halls!

This annual event gives VisualAge Generator customers and business partners an
opportunity to hear about IBM’s latest plans and to provide suggestions. This was
a very successful symposium, and we hope the next one will be even better.

6

Do you have VSAM files residing on
OS/390 that you want to access from a
VisualAge Generator program on your
workstation? Now, when you test your
program using ITF, you can use the
same VSAM file you will use in your

Accessing OS/390 VSAM Files from ITF and C++
Generated Programs
by Chuck Proffer and Joseph Allen, VisualAge Generator Development and Susan Lafera,
VisualAge Generator Information Development

production environment. This feature is
available for ITF with VisualAge Genera-
tor Version 3.1 Fixpak 2. Your C++
generated programs already have this
capability (since Version 2.2).

Software Prerequisites

System Local VSAM Remote VSAM

OS/2 Shipped with IBM VisualAge Generator IBM Personal Communications AS/400
and 3270 Version 4.11 (or later)

IBM VisualAge for COBOL

Windows NT Not Available IBM Personal Communications AS/400
and 3270 Version 4.11 (or later)

IBM VisualAge for COBOL

OS/390 IBM DFSMS/MVS Version 1.2 (or later)

Setup Required to Access
Remote VSAM Files on OS/390

After installing the required products,
configuring APPC and verifying that you
can establish an APPC session with your
OS/390 host, you need to start DFM on
the workstation.

Setup for OS/2

IBM VisualAge for COBOL for OS/2
ships a command file to start DFM
(startdfm) and a sample configuration
file (config.dfm). Modify the startdfm
command file to indicate the drive letter
that should be used for DFM. The
configuration file contains things like
USERID, LOCAL_LU, REMOTE_LU
and the OS/390 target system name.
You must modify the sample configura-
tion file based on your system. After
you start DFM, any file name prefaced
with the DFM drive letter is assumed to
reside on your OS/390 host. Refer to the
COBOL documentation for more infor-
mation on configuring DFM on OS/2.

Setup for Windows NT

IBM VisualAge for COBOL for Windows
NT ships a command (dfmlogon) to
associate the user’s remote user ID and
password with a server system and a
sample configuration file. You must
modify the sample configuration file
based on your system. DFM on Win-
dows NT uses a technique similar to the
Windows Universal Naming Convention
(UNC) to specify the remote file name.
The remote file name consists of two
back slashes (\\) followed by either the
machine name for the remote server or
a shortcut name, a single back slash (\),
and then the actual file name.

Refer to the COBOL documentation for
more information on remote file names,
shortcut names and configuring DFM on
Windows NT.

Accessing VSAM Files
from ITF

To specify that you want to use VSAM
files, select the Options menu on the
VisualAge Organizer window. Select
Preferences and the VisualAge Prefer-
ences notebook displays. Select the
VAGen—Test General tab. At the bottom
of the page, select either the Local VSAM

or Remote VSAM radio button and click
OK. This will cause ITF to use VSAM
files for all file accesses (on Windows
NT, there is only remote VSAM file
support). In a later Fixpak, this option
will be moved to the Resource Associa-
tion Editor so that the type of file
accessed can be specified on a file
basis. If you have changed your
preferences to use Remote VSAM and
you don’t have the communications
software setup and working, you will
receive an error.

In addition to changing your prefer-
ences, you also need to specify the
physical name and path in the ITF
Resource Association File editor. In the
Physical name field, specify the file
name as it is on your OS/390 system but
without the high-level qualifier. If the file
does not already exist on your OS/390
system, VisualAge Generator will create
it for you. On OS/2, in the Path field,
specify the machine name or a shortcut
name using the Universal Naming
Convention.

7

Accessing VSAM Files from
C++ Generated Programs

Access to VSAM files from a C++
generated program is determined by
the resource association file (RSC).
Specify /FILETYPE=VSAM in the
ASSOCIATE entry for a VSAM file.
Remember that there is no local VSAM
support on Windows NT, so all VSAM
file access is remote. If you do not have
the communications software set up
and working, you will get an error. To
access a remote VSAM file on OS/2,
preface the file name with the DFM drive
letter. On Windows NT, specify the file
name using the Universal Naming
Convention. Refer to the VisualAge
Generator Server Guide for OS/2,
Windows NT, HP-UX, and AIX for
more information on using VSAM and
resource association files.

Diagnosing Error Conditions
When Using VSAM with ITF

A trace facility has been provided to
assist in diagnosing error conditions.
The trace is controlled by the
HPTTROPT environment variable.
Specifying HPTTROPT=1 turns on the
trace, and specifying HPTTROPT=0
turns off the trace. The trace output is
written to a file named hpttrace.out
unless you change the name using the
HPTTROUT environment variable.

Diagnosing Error Conditions
When Using VSAM with C++
Generated Programs

The trace facility for C++ generated
programs is controlled by the
FCWTROPT environment varaible.
Specifying FCWTROPT=31 will turn on
trace for file I/O as well as other C++
program-related events. The trace
output is written to a file named
fcwtrace.out unless you change the
name using the FCWTROUT environ-
ment variable. Refer to the appendix in
the VisualAge Generator Server Guide
for OS/2, Windows NT, HP-UX, and AIX
for more information on the trace
environment variables. ■

VisualAge Generator
Web Pages

The VisualAge Generator
web address is:
www.software.ibm.com/ad/visgen

For IBM’s predecessor 4GL, Cross
System Product, the web address is:
www.software.ibm.com/ad/visgen/csp

7

8

Try the Example Yourself

If you want to try the example on your
system, you can download the example
programs from this web page:

http://www.software.ibm.com/ad/
visgen/downloads

From this web page, click on the down-
load link for the VisualAge Magazine
example, and download all the files on
the subsequent page.

After you download the files, you will
need to import A13MP01.ESF and
A13MP02.ESF into an existing program
on your system. The options file
(VMCMS1.OPT) contains example code
you can use to modify your own options
file.

Programmer’s Task—
Generate Programs

To generate the programs, the
programmer should do the following:

1. Generate program A13MP01, using
the VisualAge Generator defaults.

2. Edit the generated and uploaded
A13MP01 EXECP to change the
erase_text_option from Y to N.

3. Issue the following command:

PIPE REXX (A13MP01 EXECP A)

This command recompiles A13MP01
and leaves the file A13MP01 TEXT on
your A disk.

4. Verify that generated file A13MP01
TEXT is on your A disk.

Running VisualAge Generator Programs
in a VM Saved Shared Segment
by Debbie Prevost, VisualAge Generator Information, and Bert Paul, David Weiss and Blaine Laufmann,
VisualAge Generator Development

Note: This article was originally
published in the October 1998 issue
of VisualAge Magazine. You can find
out more about the magazine at web
site http://www.vamagazine.com.

A new feature of VisualAge Generator
Server for MVS, VSE and VM Version
1.2 (released in June 1998) enables
you to run programs generated with
VisualAge Generator from a VM saved
shared segment. A saved shared
segment is a range of pages in virtual
storage that you can define to hold
data and programs with reentrant code.
The saved shared segment is a public
space that can be shared by any
authorized virtual machines on a VM
system.

Benefits

You can gain the following benefits from
using the VM saved shared segments
feature of VisualAge Generator Server:

• You can avoid the problem of running
out of resources during program
execution, because the shared space
can be much larger than the typical
storage and memory allocated for an
individual user ID. Saved shared
segments attached to a virtual
machine can reside above that virtual
machine’s defined storage, and free
the individual user ID’s storage for
other purposes.

• Swapping is reduced when
programs are stored in a saved
shared segment. Using saved
segments decreases the I/O rate
and DASD paging space require-
ments, and improves virtual machine
performance.

• Overall storage use can be reduced,
because several users can access
the same physical storage.

Restrictions

Generated programs run from saved
shared segments cannot use the XCTL
command to transfer control to either a
VisualAge Generator generated pro-
gram (using XFER) or a non-VisualAge
Generator generated program (using
DXFR).

Example

This example is designed so you can
use it as a blueprint for:

• Generating programs that will be run
from a VM saved shared segment

• Setting up a saved shared segment
and storing your VisualAge Generator-
generated programs in it

• Running your programs from the
saved shared segment.

In the example, a program named
A13MP01 performs a DXFR call to
program A13MP02.

A13MP01 displays a menu panel, and
A13MP02 is a secondary screen
accessed through the A13MP01 menu.

A13MP01 contains no SQL processing,
and no file I/O is generated. For a
program using either SQL or file I/O,
more setup steps would be required.
Refer to the VM/ESA Planning and
Administration manual for more
information.

While some of the steps in the example
are performed by the VisualAge
Generator programmer, other steps
are done by the system administrator.
Each set of steps is labeled according
to who should complete those actions.

9

5. Copy and rename the following files: the disk containing SELALKED with
the disk containing SCEELKED:

GLOBAL TEXTLIB SELALKED VMLIB

SCEELKED

In this example, the disk containing
the VMLIB TXTLIB resides on the CMS
S disk.

5. Use XEDIT to create a physical
segment definition file named
PSEGBERT PSEG that contains these
lines:
LSEGMENT A13MP01 LSEG

LSEGMENT G13MP1FM LSEG

LSEGMENT HLPLI1FM LSEG

LSEGMENT TMAPOPS LSEG

Each line in the PSEGBERT file points
to a logical segment used by the
A13MP01 program.

6. Use XEDIT to create a logical seg-
ment definition file for each of the
logical segments listed in PSEGBERT
PSEG. In the following example, each
file contains one line:

Logical Segment File Contents
Definition File

A13MP01 LSEG TEXT A13MP01

G13MP1FM LSEG TEXT G13MP1FM

HLPLI1FM LSEG TEXT HLPLI1FM

TMAPOPS LSEG TEXT TMAPOPS

Refer to the chapter on planning and
defining CMS logical saved segments
in the VM/ESA Planning and Adminis-
tration manual for a description of
physical and logical saved segments.

7. Issue a DEFSEG command in the
following format to reserve space for
the saved shared segment:
DEFSEG (pseg_name) (range) SR

In our example, we used an address
range of 2900000 to 29FF000 by
issuing the command:
DEFSEG PSEGBERT 2900-29FF SR

Rename
Copy File Copy To Description

G13MP1FM G13MP1FM Map group
EZEFOBJ A TEXT A

HLPLI1FM HLPLI1FM Help map group
EZEFOBJ A TEXT A

TMAPOPS TMAPOPS Valid menu
EZEFOBJ A TEXT A options table

These renamed text decks and
A13MP01 TEXT make up the full
function of A13MP01.

6. Erase the generated EZEAPPL
LOADLIB file on your A disk to prevent
accidental access of A13MP01 from
your A disk loadlib and ensure the
program is accessed from the saved
shared segment.

Caution: If you have information
about other programs stored in
EZEAPPL LOADLIB, do not erase this
file. Instead, rename it so it will not be
accessed during this example.

7. Generate program A13MP02, using
the VisualAge Generator defaults.

Administrator’s Tasks—Set Up Saved
Shared Segment and Store Programs

The administrator should perform the
following tasks:

1. Ensure that your administrator ID
has authority to issue CP class E
commands and your virtual machine
storage is large enough to allow you
to define and generate a physical
segment outside the normal memory
range for user IDs.

2. Issue the command ELASETUP to link
to the disk with SELALKED TXTLIB.

3. Use the #CP LINK and ACC com-
mands to link to the disk that contains
SCEELKED TXTLIB.

4. Issue the following command to link

Where:

PSEGBERT Is the name of the saved
shared segment. You can use any
name.

2900-29FF Is the page range
reserved for the saved shared
segment.

SR Specifies that this segment is
shared (S) and read-only (R).

8. Issue the following command to
generate the physical segment:

SEGGEN PSEGBERT

The above command creates six files
on your A disk:

• A13MP01 LSEGMAP

• G13MP1FM LSEGMAP

• HLPLI1FM LSEGMAP

• TMAPOPS LSEGMAP

• PSEGBERT PSEGMAP

• SYSTEM SEGID.

These LSEGMAP and PSEGMAP
files should resemble the examples
printed in the VM/ESA Planning
and Administration manual. If the
SEGGEN command fails, the
LSEGMAP files might be created, but
they will contain only error messages,
and the SYSTEM SEGID file will not
be created.

For a description of the SEGGEN
command, see the VM/ESA CMS
Command Reference.

9. Replace the file on your
administrator’s 190 disk with SYSTEM
SEGID and “resave” CMS. The
procedure for resaving CMS is
described in the VM/ESA Planning
and Administration manual.

10. Inform the programmers that the
saved shared segment is ready for
use.

10

Programmer’s Tasks—
Prepare User ID and Run
the Program

1. While the system administrator is
resaving CMS, take the following
steps on your own A disk:

a. Copy ELARUN EXEC to your A disk
and rename it to ELARUNSS EXEC.

b. Edit ELARUNSS EXEC A as follows:

1. Comment out or delete the line
‘OSRUN ’parm1.

2. Replace the deleted line with
this coding:

 do;

 address ‘COMMAND’

 ‘SEGMENT LOAD’ parm1

 address ‘COMMAND’

 parm1

 end;

Note: This code is part of an Else clause
and must come before the line
ApplRetcode = RC.

3. Copy A13MP01 EXECX A to
A13MP01 EXEC A. This exec is
used to execute A13MP01.

4. Edit A13MP01 EXEC and
change the line containing
ELARUN to point to ELARUNSS
instead.

Note: You might need to further modify
A13MP01 EXEC for it to run on your
system. For example, you might need to
change some access paths or dynamic
accessing file names.

2. After the system administrator has
resaved CMS, ensure that the virtual
storage for your user ID is less than
the address range defined for the
saved shared segment. If needed,
redefine your A disk’s virtual storage.
For example, if the saved shared
segment uses the range 29M–36M,
you might want to redefine your virtual
storage to 24M, using these com-
mands:

DEF STOR 24M

IPL CMS

3. Enter A13MP01 to run the program. In
this example, A13MP01, which resides
in a saved shared segment, performs
a DXFR call to A13MP02, which
resides on your A disk instead of in
the saved shared segment.

4. Exit the program and return to a CMS
Ready prompt.

5. Issue the following command:

QUERY SEGMENT

The output of this command shows
that A13MP01, G13MP1FM and
HLPLI1FM are listed with the other
system and product programs that
are loaded above the 29M line.
Thus, these programs did not get
loaded until you needed them during
execution.

Additional Information

See the following VM/ESA version 2.2
books for more information on saved
shared segments. It is highly recom-
mended that you refer to these books
before generating programs in saved
shared segments.

• VM/ESA Planning and Administration

• VM/ESA CMS Application
Development Guide

• VM/ESA CMS Command Reference

• CP Command and Utility Reference.
■

Correction

The previous issue of the newsletter
stated that Sue Royer was the author
of the article on Nikon Optical. This
was incorrect; Mike Wu, VisualAge
Marketing, was the author. My apology
to Mike for this error.

11

Transforming new or existing VisualAge
Generator client/server programs into
DB2 stored procedures for DB2/MVS
can be done with little effort. The
following sample programs and related
files have been created to guide you
through this process. The source code
for the sample files are included in
the self-exploding file, STORPROC.exe,
which can be obtained from the
VisualAge Generator ftp site at URL:
ftp://ps.software.ibm.com/ps/
 products/visualagegen/info/v3.1

The files included in the STORPROC.exe
file are:

STORPROC.htm Instructions for defining
a VisualAge Generator stored
procedure (in html format).

STFLIST.esf The stored procedure to be
executed on DB2/MVS

ASTPROC.esf The calling program that
invokes the stored procedure

STAFF.qmf STAFF table in QMF format.
To upload the file to the host using
PCOMM, issue the following
command:

send staff.qmf b:qmf.staff

[crlf recfm(f) lrecl(44)

STFPROC.sql SQL statements used to
catalog the stored procedure in the
DB2 system catalogs.

To unzip the files, issue STORPROC on
the command prompt.

Defining Stored Procedures

A stored procedure is defined as a
called batch application that accesses
only relational or DL/I databases, not
files. The stored procedure cannot
XFER to another program. The only
other special considerations for defining
stored procedures are in defining the
parameter list. The following is a list
of the special considerations for
defining the parameter list for a stored
procedure:

• Parameters can be individual data
items up to 254 bytes long or records
up to 32K bytes long.

Developing Stored Procedures for DB2/MVS
by Roger Newton, Paul Hoffman, and Denise Hendricks, VisualAge Generator Development

• Individual data item types are
restricted to the types supported by
SQL row records: CHA, DBCS, BIN,
PACK and HEX.

• Record definitions must be defined
with a top-level character item that
includes all of the other items in the
record. The top-level item is specified
as the parameter in the SQL CALL
coded in the calling program.

• Records up to 254 bytes long can be
passed as fixed-length SQL CHAR
parameters.

• Records greater than 254 bytes in
length must be passed as SQL
VARCHAR parameters, and a second
record definition must be defined for
use in the called parameter list with a
2-byte BIN data item added to the
front of the record structure.

Defining the Stored
Procedure Call

To define the stored procedure call,
do the following:

1. Use an SQLEXEC process to define
the SQL CALL statement to call the
stored procedure, specifying the
individual data item or top-level record
item for each parameter as a host
variable on the SQL CALL.

2. Since DB2 does not know about the
structure of record parameters, call
EZECONV for each record parameter
before the call to convert the param-
eter to host data format on the way to
the stored procedure, and after the
call to convert the parameter back to
client format.

3. Specify individual items or top-level
record items of up to 254 bytes long
as host variables on the SQL CALL
statement.

4. For records greater than 254 bytes,
define an SQL record item with the
same length as the record and with
SQL data code = 457 (VARCHAR).
Specify the SQL item as the host
variable and move the record con-
tents from the record to host variable
prior to the call, and back from the
host variable to the record after the
call.

Preparing a VisualAge
Generator Stored Procedure

You prepare a VisualAge Generator
stored procedure as you would prepare
any other MVS BATCH called program.
The program should be link-edited with
the Call Attachment Facility language
interface module, DSNALI. The tem-
plate, EFK2MPBC.TPL (shown below),
was permanently changed to use the
CAF interface module.EFK2MPBC.TPL

//***

//** EFK2MPBC - PREPARE MVSBATCH APPLICATION WITH DB2 ACCESS

//** AND NO DLI ACCESS

//** DB2 PRECOMPILE, COMPILE, LINK AND BIND

//***

//PCLB EXEC ELAPCLB,MBR=%EZEMBR%,ENV=%EZEENV%,DATA=%EZEDATA%,

//CGHLQ=’%EZEPID%’

//L.SYSIN DD *

CHANGE ELAAPPL(%EZEMBR%)

INCLUDE SELALMD(ELARMAIN)

INCLUDE SELALMD(ELARSINT)

INCLUDE SELALMD(ELASTB07)

INCLUDE SYSLIB(DSNALI)

ENTRY %EZEENTRY%

NAME %EZEMBR%(R)

/*

//B.SYSTSIN DD DISP=SHR DSN=%EZEPID%.%EZEENV%.EZEBIND(%EZEMBR%)

11

12

Declaring Stored Procedures

All stored procedures have to be
defined in the DB2 system table
SYSIBM.SYSPROCEDURES. The
following information was cataloged for
this example of a VisualAge Generator
stored procedure.

Note that the stored procedure name,
STFPROC, is different from the load
module name, STFLIST.

INSERT INTO SYSIBM.SYSPROCEDURES

(PROCEDURE, AUTHID, LUNAME, LOADMOD, COLLID, LINKAGE,

LANGUAGE, RUNOPTS, STAYRESIDENT, IBMREQD,

PARMLIST)

VALUES(‘STFPROC’, ‘ ‘, ‘ ‘, ‘STFLIST’, ‘STFLIST’,’ ‘,

‘COBOL’,‘ ’, ‘Y’, ‘N’,

‘STFPARM SMALLINT INOUT,

VARCHAR(1660) FOR BIT DATA INOUT’)

Parameter List Data Types

The parameters passed by DB2 to the
stored procedures can be in several
forms (using SQLDA, host variables,
constants, and NULL). Currently,
VisualAge Generator stored procedures
support passing parameters only as
host variables. The host variables for
records and hex data items should be
defined as binary data (FOR BIT DATA)
when defining the parameters in the
DB2 system catalog. This prevents
DB2 from performing conversion on the
data being passed. Refer to the section
“Declaring Stored Procedures” for
an example on how to define the
parameters.

Parameter Size

When calculating the size of a
VARCHAR parameter, do not include
the length of the additional 2-byte field
in the size. You will notice that the
parameter STFLIST_REQ_MSG was
defined with a length of 1660 to DB2.
The extra 2 bytes will be inserted by
DB2 when the parameter is passed up.

DB2 Linkage Conventions

Parameters for VisualAge Generator
stored procedures should be defined as
INOUT (input/output) parameters.
INOUT means that data will be flowing
to and from the stored procedure. The
sample called program was tested with
both SIMPLE and SIMPLE WITH NULLS.
The SIMPLE linkage convention was the
only parameter list convention that
worked successfully for VisualAge
Generator. To specify the SIMPLE
linkage convention, enter a blank value
for the LINKAGE column when the
stored procedure is defined to DB2.

Binding the Stored
Procedure Package

The following bind command was used
to create the package for the sample
VisualAge Generator stored procedure,
STFLIST. If your program calls other
generated programs using the
VisualAge Generator CALL or DXFR
statement, include the DBRMs for these
programs in the stored procedure
package.

DSN SYSTEM(DSNE)

* EFK2MBDD

* BIND TSO APPLICATION WITH DB2 ACCESS AND NO DLI ACCESS

* BIND MVSBATCH APPLICATION WITH DB2 ACCESS AND NO DLI ACCESS

BIND PACKAGE(STFLIST) -

MEMBER(STFLIST) -

ACT(REP) -

VALIDATE(BIND) -

ISOLATION(CS)

* OWNER(OWNERGRP)

BIND PACKAGE(STFLIST) -

MEMBER(ELADBRM4) -

ACT(REP) -

VALIDATE(BIND) -

ISOLATION(CS)

* OWNER(OWNERGRP)

13

Calling a VisualAge
Generator Stored Procedure

Stored procedures are invoked using
the SQL statement CALL. The program,
ASTPROC, contains an example of how
to call a stored procedure. The program
was generated to run as a C++ program
in the Windows NT environment. The
steps to prepare ASTPROC to call
stored procedures, STFLIST, are
discussed in more detail below.

Host Variables

1. Create host variables for each
parameter passed to the stored
procedure.

2. Define host variables corresponding
to working storage records greater
than 254 bytes long as VARCHAR,
data code 457.

3. Use the default SQL data code for the
item type for host variables that are
less than or equal to 254 bytes long.

For our sample, two host variables that
correspond to the two parameters were
created, TEST_REC.STARTING_ID and
TEST_REC.STFLIST_DATA. Both
variables were defined in the same SQL
row record. We could have defined an
SQL row record for each parameter.

Invoking the Stored
Procedure

Invoke the stored procedure (as shown
below) from a SQLEXEC process,
passing the host variables in the order
expected by the called program.
CALL STFPROC

(:TEST_REC.STARTING_ID,

 :TEST_REC.STFLIST_DATA)

Data Conversion

Because DB2 does not understand how
to work with VisualAge Generator data
structures, the record parameter is
defined as bit data to DB2. As a result,
the calling program is responsible for
converting the data before and after
calling the stored procedure. The
following is an example of how this was
coded in the main process,
PSTPROC_MAIN.

EZEFEC = 1;

PERFORM PSHOW_MSTFMN;

WHILE EZEAID NOT PF3;

STFLIST_SEARCH_ROW.STARTING_ID = MSTFMN.STARTING_ID;

TEST_REC.STARTING_ID = STFLIST_SEARCH_ROW.STARTING_ID;

CALL EZECONV STFLIST_REQ_MSG2,’L’,’ELACNENU’;

PERFORM PCALL_STORED_PROC;

; /* CALL STFLIST STFLIST_SEARCH_ROW, STFLIST_REQ_MSG2;

IF EZESQCOD NE 0;

MOVE EZESQCOD TO MSTFMN.STAFFIDX_WS(1);

CALL EZEROLLB;

END;

STFLIST_REQ_MSG2.STFLIST_DATA = TEST_REC.STFLIST_DATA;

CALL EZECONV STFLIST_REQ_MSG2,’R’,’ELACNENU’;

MOVEA STFLIST_REQ_MSG2.STAFFIDX_WS TO MSTFMN.STAFFIDX_WS FOR 10;

MOVEA STFLIST_REQ_MSG2.NAME_WS TO MSTFMN.NAME_WS FOR 10;

MOVEA STFLIST_REQ_MSG2.SALARY_WS TO MSTFMN.SALARY_WS FOR 10;

MOVEA STFLIST_REQ_MSG2.COMM_WS TO MSTFMN.COMM_WS FOR 10;

PERFORM PSHOW_MSTFMN;

END;

Testing Stored Procedures

The dynamic SQL interface used by the
Test Facility does not support calling a
stored procedure. The best way to test
a stored procedure is to test it as a
normal client/server program using the
CALL statement. The following list
describes what we did to test our stored
procedure:

• Commented out the SQLEXEC
process containing the DB2 SQL
statement CALL and replaced it with
a VisualAge Generator CALL

• Commented out the calls to the
conversion routines

• Commented out the statements that
moved the data back and forth
between the working storage records
and the host variables

• Removed the VARCHAR length
variable from the parameters on the
called parameter list.

When you are ready to generate the
called program for MVS BATCH,
reverse the steps above. Be sure to
insert the VARCHAR length variable
back into the appropriate working
storage record. For this example, record
STFLIST_REQ_MSG was the only record
that required the VARCHAR length
variable.

After the stored procedure has been
prepared and ready to start, the calling
program can be generated and tested.

Tracing and Debugging

To debug your VisualAge Generator
client/server program, set the environ-
ment variable CSO_DUMP_CONV=YES
to show the conversion of data before
and after the call to the stored proce-
dure as follows:
SET CSO_DUMP_CONV=YES ■

14

In previous issues of the VisualAge
Generator Newsletter, we have docu-
mented processes you can follow to
diagnose some of the problems you
might have encountered executing your
VisualAge Generator programs. Unfortu-
nately, there might come a time when
these processes do not provide enough
information for you to diagnose the
problem. Your only option at this time
might be to open a problem record
(PMR) with the IBM Support Center.
Appendix D of the VisualAge Generator
Installation Guide contains instructions
for opening a PMR via telephone
support.

Once the PMR has been routed to the
VisualAge Generator Support Team, the
support representative might request
specific product documentation to assist
in problem diagnosis. The August 1997
edition (Vol. 2, No. 3) of the VisualAge
Generator newsletter contained the
article “Tracking Down Those Bugs,”
which documented the steps necessary
to produce trace information. In addition
to this trace information, additional
documentation might be requested that
will be used to diagnose the reported
problem. The goal of this article is to
explain how to produce the requested
documentation.

Gathering the Necessary Documentation
for Problem Reports
by Jim Eberwein and Jim McVea, VisualAge Generator Support Team

When a problem is reported to the
Support Center and is not a known
defect, one of the first goals of the
support team is to try and re-create the
problem. Unless you have already
determined the exact cause of the
problem, the support representative
might request your program definition,
data files and environment information.
The following examples illustrate how to
perform the commands to generate the
requested documentation:

Program Definitions

Program definitions can be forwarded to
IBM via the following VisualAge utilities:

VisualAge Smalltalk “Export
Applications”

GUI class definitions are no longer
considered VisualAge Generator
members. If the problem you are
experiencing uses GUI classes, you
must use the VisualAge Smalltalk Export
utility to transfer your GUI class defini-
tions to IBM. To export your GUI class
definitions, do the following:

1. Change the name of the application
manager and the name of the class
owners to “Library Supervisor.”

2. Version the application.

3. Select the application you want to
export from the VisualAge Organizer
window.

4. From the Applications pull-down
menu, select Import/Export, then
select Export.

5. When prompted for a library name,
enter the name of a .dat file you
would like the versioned application
to be copied to. By default, all
subapplication versions are copied to
the library file. If the application has
prerequisites, you will need to export
these applications as well.

VisualAge Generator “Export”

Depending on the number of applica-
tions you need to export, it might be
easier to use the VisualAge Generator
Export command to create an ESF file
that contains the definitions for the
VisualAge Generator members. If this
techique is used, care must be taken to
ensure that the member’s associates
are also exported. To expand a program
and its associates, do the following:

1. From the VisualAge Organizer
window, select the VisualAge Genera-
tor program part that you want to
export. This part is in the Organizer’s
third pane.

2. From the VAGen Parts pull-down
menu, select Associates.

3. On the Associates window, choose
the View pull-down menu and select
Select All.

4. On the Associates window,
choose the Parts pull-down menu
and select VAGen Export.

5. When prompted for a file name, enter
the file name you want to export the
VisualAge Generator members to.

Program Data

When re-creating problems, it is likely
that the program data must also be
forwarded to IBM. The two common
database managers used by customers
are DB2 and Oracle. The following
describes how to transfer the data used
by the programs to IBM.

DB2 Export

To export data from DB2, do the
following:

1. Open a DB2 Command prompt.

2. Connect to the database by issuing
the following command:
CONNECT TO <databasename>

15

3. Issue following command to transfer
data and table information to a file:
EXPORT TO <filename>.lXF

OF IXF MESSAGES MSGS.TXT

SELECT * FROM <tablename>

On completion of the above command,
two files are produced. The .IXF file
contains the table definition and data.
Messages are recorded in the
MSGS.TXT file.

Oracle Export

Oracle database export supports only
exporting into an Oracle binary format.
To export data from Oracle, do the
following:

1. Open the Oracle Data Manager and
logon to the database.

2. Select the Export tab and specify a
file name and location for your data.

3. Select the Specify button and select
the tables that will be required to
reproduce your testcase.

4. Click on the Export button and
Oracle generates the required file.

The above steps exports an entire
table and all of its data. If the problem
re-creation does not require that the
database tables contain data, a data
definition language (DDL) file will work.
The DDL file will need to be typed
manually and it needs to contain only
the creation of the table and its
columns.

Program Traces

In addition to the traces described in the
“Tracking Down those Bugs” article, the
support representative might request
additional VisualAge traces. This section
describes how to produce these
additional traces.

Connection Tracing

Sometimes the problem might be that
some of your GUI connections are not
firing correctly or they are not in the
sequence that you expect. In these

cases, you can generate a connection
trace to examine the connection
sequences by doing the following:

1. Open the GUI Composition Editor.

2. From the Options pull-down menu,
select Debug. This opens a Connec-
tion Trace Log window and a test of
your GUI begins automatically. A
debugger window might also open
because, by default, the connection
tracing breaks on all connections.

3. Before closing any debuggers, go to
the Connection Trace Log window
and select the Break On: None radio
button and make sure that the Trace:
All radio button is selected.

4. If a debugger window opened, press
the Resume button to continue
testing your GUI.

5. Interact with your GUI as you would
during a normal test. As each
connection is fired, it is written to the
Trace Log window.

6. After completing your testing, you will
need to select all of the text in the
Trace Log window, copy and paste it
into a text document that can be
saved and sent to support.

ODBC Tracing

New ODBC tracing capabilities were
introduced with VisualAge Generator
V3.1. To generate ODBC trace state-
ments from your C++ applications, you
need to set the FCWTROPT=159
environment variable. This produces an
FCWTRACE.OUT file as described in
the “Tracking Down those Bugs” article.

Product Message Information

System Transcript

If you are experiencing an error during
an import/export or load/unload, then
the messages printed in the System
Transcript might prove useful to the
support team. You need to select only
Save As... from the File pull-down
menu in the System Transcript window
to save its contents.

Packaged Image Runtime Errors

If you receive an error during execution
of a packaged image, the support team
needs a copy of the walkback.log (if
created) and possibly a copy of the *.es
files, which describe the classes and
methods packaged with the runtime
image. These *.es files can be found in
the same directory as the executable file
created during the packaging process.

Debugger

If you get a debugger window, the
support rep will request the “debugger
stack trace text.” This provides the
support team with a listing of the
Smalltalk classes and methods that
might be causing the failure. When the
debugger window opens, select Save
Stack Trace Text As... from the Stack
pull-down menu, then specify the file
name and location of the stack
trace file.

Determining Fixpak Level

To determine the fixpak level of
VisualAge Generator V3.x, do the
following:

1. Go to the VisualAge Organizer
window and select Parts Browser
from the VAGen Parts pull-down
menu.

2. From the Parts Browser window,
select Product Information from the
Help menu. The build information will
be located in the lower left corner of
the splash screen.

16

System Environment
Information

One of the first questions the support
representative will ask is the name of the
operating system on which the error
occurred. On some occasions, you
might be asked specific questions
regarding the system environment. Past
experiences have indicated that this
information is usually helpful when
debugging problems that occur in the
AIX environment. In this section, we
discuss the information that might be
helpful when working with problems that
occur under AIX.

AIX Environment

If the reported problem is occurring
under AIX, the support representative
might request some information regard-
ing the environment setup. The following
list details the information that might be
requested. Commands to produce this
information are also included:

1. The profile for the userid that is
logged in:

 /home / userid/.profile

If this is a CICS problem, also get the
CICS environment file:

 /var/cics_regions/

region_name/environment

where region_name is the CICS
region where the problem is occurring.

2. The current environment settings:
set > env.lst

3. What the file systems look like:
df > filesys.lst

4. A file list of the home directory:
Is -la $HOME> home.lst

5. A file list of the genout directory:
Is -la genoutdir > genout.lst

where genoutdir is the genout
directory.

6. A list of the software on the system:
Islpp -h all > software.lst

7. A dump showing the version of
Workgroup Services that a .dll was
prepped with:
dump -H <dllname>> wgsprep.lst

LE/370 Debugging

LE/370 is the common runtime environ-
ment used by the generated COBOL
programs running under MVS, VM and
VSE. Diagnosing problems under LE is
a bit different prior to LE/370, since
LE/370 converts traditional system
abend codes into U40xx abend codes.
If you experience an abend running your
COBOL program, check to see if a
dump was written to the CEEDUMP
dataset.

CEEDUMPs are useful for finding the
cause of the abend and the module in
which the abend occurred. Sections of
the CEEDUMP that are of interest are
the “Traceback” and “Condition informa-
tion for Active Routines.”

The “Traceback” section shows the
current program stack. Usually the
module CEEHDSP is the top module in
the “Traceback” section. This module is
used by LE to schedule the CEEDUMP.
It should be ignored. Instead, look at the
status field in the “Traceback” section.
This field indicates the condition that
resulted in the module giving up control
to the previous program in the trace.
For abending programs, you will want to
see which program experienced the
abend. This is indicated by the “Excep-
tion” keyword in the status field.

After determining the failing module, you
need to determine the type of abend.
This information is included in the
“Condition information for Active
Routines” section. Under the heading
“Original Condition:” is a message
prefixed by CEE that indicates the type
of abend. For common program
interruption codes, (ABENDOCy) LE/370
issues message CEE32xx, where xx is
the hex equivalent of y. For example, an
ABEND0C7 is reported as CEE3207.

Using the information from the
“Traceback” and “Condition information
for Active Routines” sections, the IBM
support representative might be able to
determine if the problem is a known
defect. If it is, you will be informed of the
APAR number that is being used to
track the problem and if a fix is avail-
able. If this is a new problem, the
support representative will most likely
request a system dump to diagnose the
problem. LE/370 has documented
instructions for obtaining system dumps
in information APAR II10573. If you do
not have access to this APAR, the
support representative can provide you
with a copy of the APAR. ■

17

The Most Common Migration Mistakes
by Jeri Petersen, VisualAge Generator Consulting Services,
and Nina Newton, VisualAge Generator Information Development

When mistakes are made, you can
benefit from those mistakes. One of the
ways you can take advantage of others’
mistakes are through forums. You can
read about the problems others have
run into and the solutions that they
recommend. This article discusses
common mistakes made by VisualAge
Generator users, when migrating from
one version to another. The information
for this article was obtained from looking
through past forum entries, talking to
other consultants in the group and
personal experiences working with
customers. The list of mistakes is based
on when they typically occur. Other than
that, there is no particular order.

Installation Mistakes

1. Installing versus Loading

The most common problem related to
installation is missing the distinction
between install and load. VisualAge
Generator is a feature of the VisualAge
Smalltalk product. You must install
VisualAge Smalltalk, then install
VisualAge Generator Developer and
finally load the VisualAge Generator
Developer feature code into the library
manager and the client’s image. If you
bring up VisualAge Generator Developer
and you see only two panes in the
VisualAge Organizer window, this
means the feature is not loaded.

2. Omitting the Prerequisites
Installation

Another mistake we run into frequently
when doing services is that the cus-
tomer do not have the proper prerequi-
sites installed. VisualAge Generator
Developer requires a minimum of 64MB
of memory. This 64MB does not include
other products like notes or mail,
multiple host sessions, web browsers,
or other tools that you might want to run
at the same time you run VisualAge
Generator. The more memory you have,
the better.

For those of you already on VisualAge
Generator V2, you might be using LAN
generation. REXX was the tool used to
implement LAN generation. REXX is part
of OS/2, but is not included with
Windows NT. Therefore, if you plan to
do LAN generation on Windows NT,
you need to get IBM Object REXX for
each client and each LAN generation
machine.

PCOMM is the only tool supported for
upload using SNA. However, TCP/IP is
the preferred upload technique. It is
much faster and more reliable than the
SNA upload. However, you do need to
install TCP/IP on your host machine.

Mistakes Before Migration

3. Lacking ENVY Education

It is difficult, if not impossible, to plan
your migration without having some
ENVY education. If you cannot attend a
class, we recommend that you read the
IBM Smalltalk User’s Guide (SC34-4536)
and the VisualAge Generator System
Development Guide (SG24-4230).

4. Forgetting to Save an Empty
Manager and an Empty Image
for Future Use

Before you start storing any of your own
code in the library manager, you should
do the following:

• Save an empty manager and an
empty image.

• Save a copy of the abt.ini file.

The empty image is not really empty,
but contains the VisualAge Smalltalk and
VisualAge Generator code. You can
copy the abt.icx file and the abt.ini file to
other developers’ machines so that they
do not each have to load the VisualAge
Generator Developer feature. The empty
image also gives you a starting point for
building baseline images. For example,
if you do a weekly build, you would add
your current level of code to the empty
image to create the new baseline for the
week.

The empty manager is also not really
empty, but contains the VisualAge
Smalltalk and VisualAge Generator
code. You will use the empty manager
when you want to reset your manager
after your pilot migration and before
starting your real migration. You can
also use the empty manager when you
want to get rid of old code. To do this,
just export the most recent versions of
your configuration maps and applica-
tions to the empty manager.

5. Underestimating the Number
of Parts

Underestimating the number of missing,
duplicate, and unused parts is another
problem. We have not worked with a
customer yet who was not surprised by
at least one missing or duplicate part.
Unused parts do not present a real
problem. You can put the unused parts
in an “UnusedPartsApp” or not migrate
them to ENVY. However, missing parts
have to be located and unintended
duplicate parts must be resolved. This
takes time. In addition, if you discover a
lot of missing or duplicate parts, you
really need to generate and test to be
sure you have found the real source
code that matches production.

6. Ignoring Special Considerations

If you are migrating from Cross System
Product (CSP) V3.3 or earlier, you must
regenerate. Some customers have no
serious problems with the generated
COBOL. Others have to make some
code changes. For example, if you have
used a COBOL reserved word as a
program name, you must change the
program name and all references to it.

If you are migrating from any release of
CSP, you will be moving to a workstation
development environment. You need to
allow time to set up that environment.

For GUIs, you must generate the
VisualAge Generator runtime code,
package, and test your GUI.

18

Last but not least of the special consid-
erations (and the only one that saves
you time) is the use of HPTRULES.NLS.
This is a control file that enables you to
specify an alternate not sign that is to be
converted to the primary not sign when
you use VisualAge Generator import.
This means that if the only special
character you are having a problem with
is the not sign, you can modify
HPTRULES.NLS so that you do not have
to modify the esf files or your download
table.

7. Igoring that ENVY is Different
from MSLs

Another mistake is ignoring that ENVY is
just different from your MSL environ-
ment. Locking into your current MSL
process and expecting to carry it over
intact is not necessarily the most
efficient way of using ENVY. For ex-
ample, because ENVY automatically
creates new editions of the VAGen parts
each time you do a save, having a list of
associates might be better than having
an esf export file. The list of associates
tells the VAGen part name, its edition
time stamp, and the ENVY application
name.

Ownership is much more important in
ENVY. Ownership is also a completely
new concept. You need to understand
what it will do for you and to you so you
can plan your development environment
and processes accordingly.

Mistakes During Migration

8. Using a Machine That is Too Small

During migration, you want an even
bigger machine than what you might
have for your typical clients. You want
the migration tool to be able to analyze
your source code. To do that the
migration tool needs as much memory
as you can make available. Processor
speed is important, but memory seems
to be the most critical for migration.
128MB or more is best. One thing
that can help is to install VisualAge
Generator Developer on the same
machine as the VAST Library Manager.
Then use the server machine to do your
migrations. Typically the server is bigger
and faster than most client workstations.

9. Ignoring Ownership Issues

Ownership is very important. Here are
some considerations to follow:

• It is recommended that you put
just one program into an ENVY
application. This is one technique for
addressing ownership. It helps to
ensure that two developers are not
trying to modify the same ENVY
application at the same time. How-
ever, you should temper based on
your own systems.

• If you have common code that is
maintained by only one person and
is relatively stable, dividing along
functional lines within the common
code might make more sense.

 • If you already have ownership in
place, such that one person and only
one person maintains a subsystem,
then dividing along functional lines
rather than one program per applica-
tion might reduce the number of
ENVY applications and simplify the
ENVY administration functions.

10. Making Applications Too Large

Trying to size the ENVY applications
properly is difficult. However, there are
a few general guidelines:

• Do not put 30,000 data items into a
single ENVY application. You will not
be happy with the performance. You
will not be happy with even 3,000 data
items in a single application. It is
recommended that you put no more
than 500 parts of a single type in an
application.

• If you have lots of DB2 tables and a
set of programs for each table that
controls all access to the table, you
might want to create one ENVY
application per table and include all
the programs that control access to
that table in that application.

11. Forgetting to Set the User ID
Before a Commit

To save time, it is recommended that
you set the user ID to the application
manager’s ID before you commit to
ENVY using the Migration Assistance
Tool.

If you set the user ID to the ID of the
person who is to manage the application
before you commit the application to
ENVY, when the application is created,
that person will automatically become
the application manager and the class
owner for all the classes within the
application. This avoids having to go
back later and change the application
managers and class owners.

12. Forgetting to Save the Image
Frequently

If you are running on a small machine,
you might (most likely will) hang the
machine several times while you are
migrating. Be sure to do the following:

• Save the image frequently so that if
your machine hangs, you do not lose
a lot of work.

• Save the image before committing to
ENVY.

19

13. Skipping the Pilot Change Cycles

Migration is not just the act of getting
your source code into ENVY. You also
need to determine how you will operate
with this new library management
system, for example:

• What your development process
will be

• How you will record the code that has
gone into production.

When you have done your pilot migra-
tion, use the migrated code to run
through several pilot change cycles.
For example, do the following:

• Make a set of assumptions about how
your change process should work.

• Make some changes.

• Test whether your process works.

If it does not work, change your
assumptions and try another pilot
change cycle. Doing these pilot change
cycles can be invaluable in gaining a
better understanding of how ENVY
works, as well as helping to identify
tools that you might use to make your
development processes easier.

Mistakes After Migration

14. Forgetting That a Pilot Really
is a Pilot

A pilot really should be a pilot. You
should plan on documenting what you
have done. Especially for GUIs, you
want to document any code changes
you had to make so that you can make
the same changes in other GUIs you
migrate. In some cases, you might be
able to make the changes in V2.2 so
that you do not need to do anything
when you actually do the migration.

In addition, you should plan to throw
away the pilot and do the real migration
based on what you have learned about
naming conventions, new development
processes, and so on.

15. Forgetting Library Management
Tools

Based on your pilot, you will likely want
some tools to help manage your
development process. These tools
typically require Smalltalk skills, so plan
to either acquire Smalltalk education or
contract with a service provider for help
in writing the tools.

You undoubtedly spent time developing
procedures and tools for your MSL
library system. You should expect to
spend time putting procedures and
tools in place for ENVY, too.

16. Locking into the Organization
Chosen During Migration

Even after you perform your real
migration, you are not locked into the
application structure that you chose
during migration. You can move parts
from one ENVY application to another.
There are just more rules to follow than
when you moved parts from one
application to another with the Migration
Assistance Tool. As long as you follow
the rules, you can change your applica-
tion organization to suit your changing
development needs. ■

20

This article discusses some techniques that are useful in a
development environment. Remember, these are hints and
tips that we have found to be useful for VisualAge Generator
as of V3.1 Fixpak 1.

Recommended Default Settings

The following shows the default settings that we have found to
be useful when starting to work with your image. To set your
default settings, do the following:

From the VisualAge Organizer window, do the following:

1. Select Options, then Full Menus. Full Menus enables you
to see all the menu options.

2. Select Options, then Preferences, then do the following:

a. On the General page, deselect the Show Quick Start
window and select Properties Table.

b. On the VAGen-Map page, set the Supported devices.

c. On the VAGen-SQL page, set the Database name and
SQL date/time.

d. On the VAGen-Test Linkage page, set the Linkage
table part and Programs in library to bypass.

e. On the VAGen-Generation page, set Generation
options and Batch generation command .

3. Select VAGen Parts, then View, then Name and Edition.

4. Optionally, select Applications, then View, then Set
Prefixes and set the prefixes for commonly referenced
applications. Then select Applications, then View and then
Matching Prefixes.

The Preferences notebook enables you to set things such
as your SQL database name, generation options part, and
others.

Using Name and Edition for VAGen parts enables you see
the time stamp for each VAGen part just below the part name.

For Applications, you might want to select View, then Show
VisualAge Applications, or View, then Show Applications
Matching Prefixes. This partly depends on how many ENVY
applications you have and whether you typically work with all
of the code or just one or two subsystems.

If you create a baseline image or if you have an empty image
that each developer can copy to his or her own machine,
you should set the user ID to unknown before you save the
image. This keeps you from having to go to each developer’s
machine, enter your password and then stand by while the
developer changes to his or her own user ID. We will explain
how to do this later in this article.

Beyond Migration—Hints and Tips
by Jeri Petersen, VisualAge Generator Consulting Services and Nina Newton, VisualAge Generator Information Development

Creating Your Own Workspace

A workspace is a place in ENVY where you can save Smalltalk
code that you want to be able to run again without actually
making an ENVY application from the code.

To create and use your own workspace, do the following:

1. From the VisualAge Organizer window, select File and
then New Workspace.

2. Enter the commands you want to remember.

3. Select File, then Save As and then specify a path and file
name.

4. To go back to your work space later, from the VisualAge
Organizer window, select File, then Open Workspace and
point to the saved workspace.

Setting the User ID to Unknown

Figure 1 shows the first command you should store in your
own workspace. This is the Smalltalk code to set the user ID
to unknown. Type in this code, then swipe the code with your
mouse, press mouse button 2 and then select Execute.
This changes the user ID for the image to unknown, creating
a default image that can be copied to each developer’s
machine.

Figure 1

21

VAGen Workspace

VisualAge Generator provides a predefined workspace that
you can access from the System Transcript window. This
workspace (shown in figure 2) contains Smalltalk code that
we think would be useful to you.

To access the VAGen Workspace, go to the System
Transcript window, select Tools and then Open VAGen
Tools Workspace.

Developer Configuration Maps

Configuration maps are required for LAN generation.
However, you do not necessarily want each developer to
be modifying the system test level of configuration maps.
This technique provides each developer with a private
configuration map so that they can easily make changes.

To start, do the following:

1. Define your applications and your common generation
options parts. In figure 3, there is a COMMONGENOPTS
part that is the default generation options part, which is
specified in the hpt.ini file. COMMONGENOPTS specifies
generation options that apply to all target environments and
indicates which generation options cannot be overridden.
The COMMONMVSCICSGENOPTS part contains just those
generation options that apply for the MVS CICS target
environment.

Figure 2

Figure 3

Figure 4

2. Define a configuration map for your system. This configura-
tion map contains all the code that is part of the system,
including the application (TrbControlApp) that contains the
generation options parts (as shown in figure 4).

3. Next, each developer defines his or her own control
application to contain their private generation options. In this
case, the application is called TrbJeriControlApp. One of the
parts contained in this application is the generation options
part that is unique to this developer. The developer’s
generation options part cascades to the generation options
for the MVS CICS environment by using the /OPTIONS
generation option.

Now the developer is ready to make code changes. In figure
5, the changes have been made to TrbStringApp.

Figure 5

22

4. The developer then creates a configuration map that
includes his or her control application and the application
that contains the code changes (see figure 6). The applica-
tions and the configuration map do not need to be
versioned for LAN generation. However, be sure that the
Windows NT Regional Settings are identical on all your
clients, LAN generation servers, and your Library Manager
server. Otherwise, the edition of the configuration map might
not be found. The developer’s configuration map specifies
the normal test configuration map as a required map.

When the developer’s configuration map is loaded with
required maps, the normal test map and its applications are
loaded first and then any applications in the developer’s
configuration map are reloaded for the version/edition
specified by the developer’s configuration map.

In practice, setting up the developer’s control application and
the developer’s configuration map is a one-time activity. For
most changes, the developer would just need to make the
change and update his or her configuration map to contain
the applications that they have changed.

Exporting ESF or LISTA

Many of you probably interface your MSLs to an existing
library management system, most likely by exporting your esf
at the time you generate. Because ENVY automatically saves
editions of the VAGen parts whenever you make a change,
you might not need to export esf any longer. Alternatively, just
having a list associates might be enough. Other things to
consider are:

• If you use LAN generation, you specify the configuration
map name and edition on the GENERATE command.

• Generation loads the configuration map into the image on
the LAN generation server and then does the generate.

• Unlike MSLs, you cannot just export the esf or do the list
associates before the generate command. You need
generation to run to get the correct configuration map
loaded.

Figure 6

This technique shows how to split the generate and prepare
steps and include an export or list associates in between
the generate and prepare. It assumes that the /NOPREP
generation option is never included in a generation options
part, but only specified in the Generation Options notebook
or on the command line.

EFKSERV is the REXX command that runs on the LAN
generation server. The following shows some examples of
code that are needed to implement this technique. You need
to do the following:

• Check to see if /NOPREP was explicitly specified.

• If it was, you do not need to include it on the GENERATE
command. The following is an example of the code:

/* Determine if /NOPREP was explicitly specified */

gen_command = gen_subcommand_string

preprc = POS(‘/NOPREP’, gen_command, 1)

• If it was not explicitly specified, then you need to force
/NOPREP so that you have the opportunity to do the esf
export or list associates after generation, but before
preparation occurs. The following is an example of the code:

prog_list = prog_name /* split prog_list into individual programs */

do while prog_list < > “

 parse value prog_list with program_name ‘,’ prog_list

 lista_file = gen_listing_dir || program_name || ‘.LSA’

 lista_err = gen_listing_dir || program_name || ‘.LSE’

 lista_cmd = ,

 ‘LISTA /NAME=’ || program_name || ‘ /TYPE=ALL /OUTFILE=’ || ,

 lista_file

 ‘erase’ lista_file ‘2>nul’ /* erase old .lsa file */

 HPTCMD ‘ ‘ lista_cmd ‘ >>’lista_err ‘ 2>>&1’

 ‘erase’ lista_err ‘2>nul’ /*no need to save .lse file */

end /* end LISTA loop */

/* /NOPREP was not explicitly specified, force it /*

/* on the GENERATE command */

if preprc = 0 then do

 symparm_value = symparm_value || ‘/NOPREP’

end

/* Build Generate command back up */

if sub_comand< > ‘PREPARE’ then do /* add symparm for generate */

 symparm_value = “/SYMPARM=OUTPGEN,” || “”’userid’””

 GEN_SUBCOMMAND_STRING=GEN_SUBCOMMAND_STRING symparm_value

end

• After the GENERATE command has completed, add logic
to do the esf export or the list associates. The following
example shows only the list associates. If you need to
export esf, you first need to list associates and then use the
output from the list as input to tell export what to do. There
is no longer an export with associates.

23

• Finally, in EFKSERV, if /NOPREP was not explicitly requested,
run the prepare command to send the outputs of generation
for compilation. The code is as follows:

• On MVS, modify the CLIST that allocates the files for
preparation outputs so the results of the esf export or list
associates can be stored on the host.

Minimizing Display of Passwords

There has been a number of entries on the forums related to
showing the passwords in the clear. This technique works if
you are using LAN generation. However, be aware that this
technique is release dependent. For this to work, you need to
do the following:

• Assign a user ID and password to the LAN generation
server machine.

• Create that user ID and password on MVS and set the
password so that it never changes.

• Set up RACF to enable that user ID to update the
developer’s data sets where the outputs of generate will be
placed.

• Modify EFKSERV to split generation and preparation.

• Change the PREPARE command to invoke EFKSNDxx
directly, where xx is 30 or 31 depending on your version of
VisualAge Generator. When you use EFKSNDxx directly, you
can specify the /DESTUID and /DESTPASSWORD genera-
tion options for EFKSNDxx. This hardcodes the user ID and
password in the REXX exec.

• Ensure that EFKSERV is on a drive and directory that the
developers cannot see.

With this technique, the developers no longer specify
/DESTUID and /DESTPASSWORD, because it is the user ID
for the LAN generation server that does the upload to the
host. The password does not appear in the .PRP file that is
created by generation.

We hope you find the information in this article helpful in your
development process. ■

23

/* Run the prepare step if /NOPREP was not explicitly specified */

If preprc = 0 then do

 prep_name = gen_listing_dir || prog_name || ‘.PRP’

 HPTCMD ‘ PREPARE ‘ prep_name ‘>>’gen_listing_file ‘2>>&1’

end

The following example assumes that you are using an MVS
host, but similar techniques would be possible for other target
environments. You need to:

• Modify the template that controls the upload to MVS. The
following code adds :TYPE commands to define transfer to
the host:

:TYPE PART_TYPE=’EZELSA ‘ WORKSTATION_EXT=’.LSA’

MVS_EXT=’EZELSA’

This code adds :CONTROL commands to cause transfer to
occur:

:CONTROL

HAS_DBCS=’N’

NAME=’%ezegmbr%’

TYPE=’EZELSA’

HAS_SQL=’N’

USE_EXT_ALT=’N’

Acronyms
3GL third-generation language

4GL fourth-generation language

AIX Advanced Interactive Executive

API Application Programming Interface

AS/400 Application System/400

CAE/2 Client Application Enabler/2

CASE Computer-aided Software Engineering

CICS Customer Information Control System

CICS OS2 Customer Information Control System Operating System/2

CPU central processing unit

CSP Cross System Product

DB2 Database 2

DBCS double-byte character set

DBMS database management system

DCE distributed computing environment

DRDA distributed relational database architecture

EMEA Europe/Middle East/Africa

GUI graphical user interface

IBM International Business Machines

IMS Information Management System

LAN Local Area Network

MSL member specifications library

MVS Multiple Virtual Storage

NT Notes

OS/2 Operating System/2

OS/390 Operating System/390

OS/400 Operating System/400

RAD rapid application development

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

VM Virtual Machine

VSE Virtual Storage Extended

WWW World Wide Web

24

Name Title

Company Name

Street Address/P.O. Box

City State/Province

ZIP/Postal Code Country

Phone No. FAX No.

Comment Form

Please check any appropriate boxes:

❏ I’d like to receive future issues of this newsletter.
(You need to check this item only if you have not already responded.)

❏ I’d like more information about Version 3.1.

❏ I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:

❏ I’m interested in participating in an AD users’ group meeting.

❏ I’m interested in participating in a VisualAge Generator users’ group meeting.

I have a question I’d like to submit for the Question & Answer section of this newsletter:

Are we putting the type of information you want to see in the newsletter?
If not, what would you like to see in the newsletter?

Any comments you’d like to share with us about VisualAge Generator or about this newsletter?
(Include your comments or concerns about VisualAge Generator’s future directions here.)

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Cut or
Fold
Along
Line

Cut or
Fold
Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-10

G242-0315-10

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
TF6B/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

A Question From Us To You

Do you have questions? If so, use the Comment Form in this newsletter to send us your questions.

Then, in future issues of the newsletter we will provide you with articles in response to your questions.

27

The VisualAge Generator Newsletter

This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter

Managing Editor
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1998. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DataJoiner, DB2, DB2/2, DB2/400, DB2/6000,
IBM, IMS, LE/370, MQSeries, MVS, VM, VSE, Operating System/2, OS/2, OS/390, OS/400, RISC System/6000, SQL/DS,
VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U. S. and other countries.

Texaco is a trademark of Texaco, Inc.

Informix is a trademark of the Informix Corporation.

Oracle is a trademark of Oracle Corporation.

Nikon is a trademark of Nikon Corporation.

ENVY is a trademark of Object Technology International, Inc.

HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, Visual Basic, and ActiveX are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those
described here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These
articles are for information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

