
Generator
A Powerful New Vision of ProgrammingTM

VisualAge®

The IBM VisualAge Generator Newsletter

Volume 3, Number 2
April/May 1998

Contents
New Kid on the VisualAge
Generator Block 2

Client/Server Application
Development with VisualAge
Generator at Deutsche
Ausgleichsbank 3

SQL Joins, Unions, and
Subselects 5

Building Portable Views in
VisualAge Generator 6

Monitoring Java Client
Sessions 10

Interoperability—Calling
3GL Programs 14

Introduction to Automated
Testing of VisualAge
Generator Clients with
SilverMark’s Smalltalk
Test Mentor 19

Moving Your Application
to the Internet 22

2

New Kid on the VisualAge Generator Block
by Peter Spung, VisualAge Generator Product Manager

If you’ve read previous articles on
this page, you’ll notice I’m a new kid
on the block. My name is Peter
Spung, and I’ve recently been
named the VisualAge Generator
Product Manager. Sandra Johnson
has taken a new position in IBM,
managing the development of our
Web server product line—Lotus
Domino Go Webserver. I certainly
have some big shoes to fill but,
thankfully, Sandra and the team of
incredibly talented folks working on
VisualAge Generator have been
very helpful to me in my transition
to this new assignment. I want to
thank Sandra for her leadership,
vision, and inspiration and wish her
continued success.

I come to this job with a back-
ground in big systems integration
and development, having spent my
formative years in a part of IBM that
later became IBM Global Services.
Developing and integrating large,
complex software systems for
customers taught me a lot about
the kind of application development
issues and challenges you face
every day. And the importance of
development tools, like VisualAge
Generator, that help you attack
these problems and deliver the
application systems your users
expect while maximizing your
productivity and allowing you to
reuse existing programs and skills.
For the last eight years, I’ve been
developing various products in
IBM’s line of application develop-
ment products: ISPF/SCLM,
VisualAge C++, VisualAge
Smalltalk, and VisualAge Java. I’ve
learned that we can provide you
with very powerful tools by combin-
ing the flexibility and ease-of-use of
PC-based development tools, with
robust, high-performing, highly
scalable server solutions like CICS,
IMS, DB2 on platforms like OS/2,

Windows NT, AIX, and MVS. That’s
what really excites me about
VisualAge Generator, and the
prospect of working with people like
you who understand these issues
and the value that a product like
VisualAge Generator brings to you.

As you probably have read, the
Nagano Olympics was a big suc-
cess. What you may not know is
that two critical systems, the
Accreditation Enterprise Database
and the Games Staffing System,
were developed using VisualAge
Generator. The Accreditation
system provided around-the-clock
badging—validating credentials and
giving the right people access to the
right venue at the right time. The
Games Staffing System electroni-
cally distributed results to the
international trade press—automati-
cally gathering results from multiple
databases, reformatting the data,
and sending this information to
awaiting sports journalists who got
the story out. These systems
performed flawlessly, thanks in
large part to VisualAge Generator
and the powerful underlying
middleware from IBM. To read
more about these systems, or how
customers are using VisualAge
Generator to create solutions to
their business problems, check out
our Web page at http://
www.software.ibm.com/ad/visgen/.

One intriguing item you’ll find on the
Web page is a fact sheet about our
recent technology demonstration at
the JavaOne conference. We
showed how VisualAge Generator
can be used to develop Enterprise
JavaBeans (EJB) compliant ob-
jects. Enterprise JavaBeans provide
a single component model that
allows programmers to build new
distributed transactional server
systems, leveraging new and

existing function and data, in the
same plug-and-play fashion used
on some smaller desktop systems
(like client JavaBeans and ActiveX).
VisualAge Generator’s support for
EJB generation, a prototype of
which we demonstrated at
JavaOne, provides programmers
the same easy-to-use high-level
specification approach for develop-
ment for EJBs that has proved so
productive for the development of
your systems. Once again, we are
demonstrating our commitment to
continue to enhance VisualAge
Generator in order to incorporate
and support new technologies
without requiring you to learn all the
details and nuances of those
systems while, at the same time,
allowing you to leverage your
existing programs and skills, and
adopt the new technology at your
own rate and pace.

Our team here in the Lab is very
busy working on the next release of
VisualAge Generator. Since this is
work in progress, we will describe it
in detail in a subsequent edition of
the newsletter. You will be pleased
to know we are expanding our
native database support to another
database manager, expanding the
platforms we cover with our ODBC
and JavaBeans support, and
improving the performance of our
server runtimes.

Let me close by thanking you for
your interest in VisualAge Genera-
tor. It is through your use and
experience we learn how to improve
our product, and make it even
better. If you have suggestions for
me about the product, or topics
you’d like me to cover in future
letters, you can write to me in care
of this newsletter using the com-
ment form near the back. Or send
me e-mail; I’d like to hear from you:
paspung@us.ibm.com.

3

Who is the �Deutsche
Ausgleichsbank� (DtA)?

Although a financial institution,
Deutsche Ausgleichsbank (DtA) is
not a typical bank, but, rather, a
service-oriented development
agency for business start-ups of
small- to medium-size enterprises:
it promotes entrepreneurial ideas,
investments, and innovations on
behalf of the German government
by providing financial products at
favorable conditions, risk capital,
guarantees, and individual
consultancy. DtA finances invest-
ments in the fields of innovative
technology, environmental protec-
tion technology, and professional
training. With its 680 employees
and 83 billion deutsche marks of
assets, it has helped hundreds of
thousands of people establish new
businesses, mostly in central and
eastern Europe.

The Challenge

In the early 1990’s, DtA’s Informa-
tion Technology was facing a
classic “legacy” challenge. While
business pressures demanded
many new automated solutions,
delivering these solutions within the
existing IT infrastructure was a
daunting task. More than 80
percent of the programming staff
was required to maintain a rigid,
batch-oriented, VSAM-based set of
PL/I programs that represented the
organization’s core application
system. The use of PCs as a tool to
enhance knowledge workers’
productivity was sporadic and
isolated, and the system’s 3270-
based OLTP systems severely
limited users’ productivity.

After careful analysis and several
technology studies, DtA established
a set of key objectives and an
associated IT strategy.

1. Improve end-user productivity
by installing a networked
personal computer for each
end user and providing applica-
tions for personal productivity,
access to workgroup data, and
access to enterprise data and
applications.

2. Improve the reliability, flexibility,
and maintainability of enter-
prise data by storing and
managing it in a relational
database.

3. Deliver applications faster,
while ensuring that they are
easier to use, of higher quality,
and easier to maintain. This will
be made possible through the
use of data-model-driven
application development
methodologies and the use of a
RAD solution to replace PL/I-
based development.

Strategy Implementa-
tion Decisions

DtA quickly decided on an imple-
mentation approach. First they
defined the hardware and software
standards for each user’s worksta-
tion. Next they selected DB2 as
their strategic relational database
system. And then they selected
their primary tools suite to support
their RAD development approach.

The choice of a suitable RAD
application-generation tool was the
most difficult step. The tool had to
meet a rigorous set of technical
criteria and be able to:

• Deliver client/server systems
that could reuse and integrate
COBOL and PL/I code compo-
nents easily and without major
need for re-architecture

 • Generate applications for
Windows, OS/2, AIX, and MVS

• Support several data manage-
ment systems including DB2,
DB2/2, DB2/6000, and VSAM

• Provide superior programmer
productivity

• Be easy for programmers to
learn and use

• Deliver state-of-the-art worksta-
tion-based development facili-
ties for applications intended for
execution on local network
environments, as well as those
intended for execution on host
environments.

After evaluating AD tools from
several vendors, DtA chose IBM’s
VisualAge Generator, the only RAD
solution that met all their require-
ments.

The introduction of PCs on the
employees’ desktops quickly
resulted in a high level of accep-
tance of the graphical user inter-
face, and as a direct consequence
all requirements for new business
applications demanded standard
GUI-based access.

 A Customer Success Story

Client/Server Application Development with VisualAge
Generator at Deutsche Ausgleichsbank

4

VisualAge Generator provided DtA
with the ideal LAN-based single
programming tool to create the
required variety of system execu-
tion topologies: from traditional Host
batch programs, to OLTP transac-
tions, to PC or LAN systems. DtA
programmers were particularly
pleased with the ease of the 4GL
which, unlike PL/I, significantly
simplified the tedious task of low-
level programming to execution
environment APIs and did not
require the need to develop special-
ized skills for the new DtA execu-
tion platforms.

Because of the breadth of the
enabled solutions it provides,
VisualAge Generator requires the
right mix of skills. A critical success
factor in DtA adoption of VisualAge
Generator was the gradual and
mentored introduction of the
technology. A management spon-
sor was nominated for the initial
deployment of the new AD environ-
ment, and a pilot project was
identified and staffed with a core
team of developers that consisted
of both DtA employees and external
consultants.

The pilot project was extremely
successful and DtA proceeded in
deploying the new development
technology throughout the organiza-
tion. The knowledge gained during
the pilot project was then extended
to other applications areas while the
core team became the in-house
mentoring staff necessary for large-
scale training and consulting.

It is with Customers such as DtA in
mind that IBM designed and
brought to market VisualAge
Generator, and DtA’s success is a
clear confirmation that the product
strengths combined with intelligent
planning and serious commitment
are a true recipe for success.

Acronyms
3GL third-generation language
4GL fourth-generation language
AIX Advanced Interactive Executive
API Application Programming Interface
AS/400 Application System/400
CAE/2 Client Application Enabler/2
CASE Computer-aided Software Engineering
CICS Customer Information Control System
CICS OS2 Customer Information Control System Operating System/2
CPU central processing unit
CSP Cross System Product
DB2 Database 2
DBCS double-byte character set
DBMS database management system
DCE distributed computing environment
GUI graphical user interface
IBM International Business Machine
IMS Information Management System
ISPF Interactive System Productivity Facility
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Notes
OS/2 Operating System/2
OS/400 Operating System/400
RAD rapid application development
SQL Structured Query Language
TCP/IP Transmission Control Protocol/Internet Protocol
VM Virtual Machine
VSAM virtual storage access method
VSE Virtual Storage Extended
WWW World Wide Web

5

In many cases in VisualAge Gen-
erator, the default SQL created for
you based on the SQL row records
is what you need. However, joins,
unions, and subselects have special
requirements.

Joins

For a join, create a SQL row record
that includes all the tables. Then
use that record in a process. The
process is automatically created
with default SQL for all the columns
in the record and with a FROM
statement for all the tables listed in
the properties of that record. This is
fairly basic, and information about it
can be found in the VisualAge
Generator online Help.

Unions and Subselects

Unions may not be as obvious as
joins, but they are very simple. As
shown in the diagram, the Union
statement is coded into the space
that has been preallocated to the
WHERE clause. This space is not
restricted to being used only for the
WHERE clause. Selecting the View
Statement tab to display the entire
SQL statement should make this
evident.

The main point is that with a union
there is only one INTO clause used.
Both SELECT statements will
return rows into the same host
variables as specified in the INTO
clause.

The Union must follow the rules of
the database. For example, the
number and definition of selected
columns must match. Use of the
Validate push button will ensure
that the SQL statement will validate
against the database and all rules
have been adhered to.

Similar rules can be applied for the
creation of subselects.

Ninety percent of the time, the
default SQL statement that is
created will be what you need.
However, when there is a require-
ment to use unions and subselects,
you should code these in the space
reserved for the WHERE clause.

SQL Joins, Unions, and Subselects
by Fiona Mader and Jeri Petersen

6

Building Portable Views in VisualAge Generator

VisualAge Generator supports the
creation of Graphical User Inter-
faces (GUIs) by exploiting the
construction-from-parts paradigm
common to the VisualAge family of
products. In fact, VisualAge Gen-
erator V3.0 is built on top of
VisualAge for Smalltalk. Thus, all of
the visual programming facilities
provided by VisualAge Smalltalk
are also available in VisualAge
Generator. While VisualAge Gen-
erator provides much in the way of
visual programming, creating
visually appealing, usable, and
portable GUIs requires more than
simply dropping controls inside a
window shell in the Composition
Editor. In this article, we describe
techniques that can be employed to
ensure portability of the GUIs you
produce with VisualAge Generator.
This portability allows you to deploy
GUIs on machines that vary from
the machine you used to develop
the GUI, while maintaining their full
function and attractive appearance.

Portability of user interfaces is an
area that is often misunderstood or
overlooked. When a GUI is built on
a particular machine, it may be
sized and positioned appropriately.
However, when the end-user sees
this GUI, controls may be over-
lapped, truncated, or completely
hidden. This can happen because
the portability of a GUI is affected
by the following factors: differences
in screen resolutions, fonts, operat-
ing systems, and end-user lan-
guage translations. To achieve
portability, one must understand the
basic techniques of attachments in
order to eliminate these factors.

Attachments specify the positional
relationship between controls within
a window. When a control is
dropped in a VisualAge Generator
window frame, it is actually being
placed within another control—its
parent. Each side of a control can
be attached to its parent or another
control. The nature of these attach-
ments are the primary factor in
determining the relative portability
of the resulting GUI.

Each side of a control can be
attached in one of the following
ways:

• Fixed position within the parent
form.

This is the default behavior
within VisualAge Generator.
When a push button is dropped,
the exact position as seen in
the Composition Editor is the
same position that will be used
at runtime. While this is truly
WYSIWYG, this does not
accommodate portability. Thus,
this default attachment style
should be appropriately altered
using one of the following
methods.

• Relative position with the parent
form

A somewhat more flexible
manner of attachment is to
associate the sides of a control
to relative positions (that is, 1–
100) within the parent. For
example, if a list box is included
within a window and attached to
the parent form on the left to
position 5 and on the right to
position 95, it will grow and

shrink whenever the parent
window frame is resized. This is
a very useful form of attach-
ment, especially when dividing
the client region of the window
between more than one control
(that is, if two list boxes need to
be displayed side-by-side).
Within VisualAge Generator,
this attachment type is known
as ATTACHPOSITION.

• To the parent form

When a control needs to be
positioned close to the bound-
ary of the parent control, you
can attach the control to its
parent. Additionally, an offset
can be specified. In fact, this is
the same attachment type
(fixed position within the parent
form) as in the first bullet
above. The difference is the
offset is used as a margin
specification, rather than an
absolute position within the
parent. In the list box example
above, a similar appearance
could be achieved by attaching
the left and right sides to the
parent form, and then specify-
ing a common offset such as 10
pixels. On initial display, this
may be indistinguishable from a
window built using relative
positioning. However, when the
window is resized, the margin
(10 pixels) will not change,
whereas the margin will change
when using relative positioning.
This type of attachment is
known as ATTACHFORM.

by Jay Cagle, Rebecca Schaller, and Hayden Lindsey, VisualAge Generator Development

7

• To a peer control

When a control is positioned
close to another control, you
can attach one or more of the
control’s sides to the adjacent
control. As when attaching to
the parent, an offset can be
specified. This form of attach-
ment is particularly useful when
building more complex GUIs
where a control is adjacent to
another control and not the
parent. For example, if a
window is to have two side-by-
side list boxes, then the
rightmost list box could be
attached on the left to the right
side of the leftmost list box, with
an offset to improve the appear-
ance. Once done, if the leftmost
list box should grow, the
rightmost one will simply slide
over, making room for its larger
peer control. This method of
attachment is known as
ATTACHWIDGET. The term
widget comes from Motif, on
which the VisualAge GUI
architecture is based.

• To itself

This attachment type applies to
the height and width of a
control. For example, if a push
button is dropped and resized,
by default the bottom and right
sides will be attached to its top
and left sides, respectively. The
offset for the attachments will
be fixed, so that at runtime the
push button will be sized
exactly as it was in the Compo-
sition Editor. As with the first
bullet, this will not be portable.
This attachment type is called
ATTACHSELFOPPOSITE.

• To nothing

To allow controls to grow, two of
the sides generally need to be
unattached. If controls are
being attached from top to
bottom and left to right, then
the bottom and right sides of a
control should be unattached,
thus determining the directions
in which the control will grow or
shrink should its contents
change. With no attachment,
the system will size the control
appropriately. In the case of a
push button, it will be sized to
contain its label. Within
VisualAge Generator, this type
of attachment is known as
ATTACHNONE.

Finally, when attaching a control to
its parent or to another control,
there are two modes worth men-
tioning: adjacent and opposite.
ATTACHFORM and
ATTACHWIDGET specify that the
side of the control is attached to the
adjacent side of the parent or peer.
For instance, if ATTACHFORM is
specified for the left side of a push
button, it will be attached to the left
side (the adjacent side) of the
parent form, using the given offset.
If two buttons are side by side, and
ATTACHWIDGET is specified for
the left side of the right button, it will
be attached to the right side (the
adjacent side) of the left button.
You may also use
ATTACHOPPOSITEFORM and
ATTACHOPPOSITEWIDGET.
These two attachment types specify
that the side of the control is
attached to the opposite side of the
parent or peer. With two buttons
side by side, specifying
ATTACHOPPOSITEWIDGET for
the left side of the right button will
attach it to the left side (the oppo-
site side) of the left button. While
this doesn’t make sense if the
buttons are side by side, it could be
used if one button were below the
other. With an offset of zero, the left
sides of the buttons would be
aligned.

Since no single mode of attachment
is appropriate for all the controls
within a GUI, several attachment
styles listed above can be used in
combination. However, the styles of
bullets 1 and 5 should be voided if
at all possible. Within VisualAge
Generator, attachments are speci-
fied using the framingSpec dialog
box from a control’s property sheet.

Now that we have introduced
attachments as the general archi-
tecture upon which GUIs in
VisualAge Generator are built, the
remainder of this article provides
suggestions about how to use this
information and the associated
capabilities to build portable GUIs.

The basic idea of attachments is
that you describe the relationships
between parts in your GUI, and let
the system take care of sizing and
positioning them. For the most part,
you should not make assumptions
about the size of a part, because
this size will vary as a result of NLS
translation, fonts, screen resolution,
and operating system. When
adding attachments to a view, in
general you should start in the
upper left corner and work your way
down and to the right. As you
proceed, you attach each part to
one or more parts surrounding it.

For parts that contain static text,
such as labels, push buttons, and
toggle buttons, one attachment in
each direction should be set to
ATTACHNONE. For example, a
label might be attached to a parent
form on the top and left, with the
bottom and right set to
ATTACHNONE. This tells the
system to make the label as wide
and tall as necessary to accommo-
date the text using the current font.

8

For parts with dynamic text, such
as entry fields, drop-down lists,
MLEs, and list boxes,
ATTACHNONE is also useful.
These parts all have attributes to
tell the system how to size the part
when ATTACHNONE is specified.
Entry fields and MLEs have a
columns attribute, which is a
number indicating how many
characters wide the part should be.
For instance, if you have an entry
field with columns set to 10, with
the left side attached to the form
and the right side ATTACHNONE,
the entry field will be sized to
display 10 characters (based on the
average width of the characters in
the current font).

List boxes, drop-down lists, and
combo-boxes have a
visibleItemCount attribute,
which indicates how many lines to
display. So, if you have a list box
with visibleItemCount set to 5,
with top as ATTACHFORM and
bottom as ATTACHNONE, the list
box will be sized to display 5 lines
(again based on the current font).
The list parts do not have a col-
umns attribute. Instead they will set
their width to the size of the widest
item. In order for this to happen,
however, the items of the list must
be set before the view is laid out. If
the items are set dynamically, you
can do this in a
finalInitialize Smalltalk
method, but AboutToOpenWidget
and openedWidget are too late. In
this case, if the list doesn’t contain
any items when the view is laid out,
it will be sized to a default width. In
the case of drop-down lists and
combo-boxes, the width will be 20
characters. List boxes don’t have a
default width, so if the list is initially
empty, it will be sized very narrow.
In this case, you’ll have to do
something else to set a reasonable
initial size.

Container parts, such as container
details, do not have either columns
or visibleItemCount attributes,
so you must handle sizing both the
width and height yourself.

In addition to their use when
ATTACHNONE is specified, these
sizing algorithms and attributes are
also used when a part is attached
to the form or another part. In these
cases, the calculated size will be
used to set the initial size of the
part. For instance, suppose you
have a window that contains a
single list box. The items of the list
box are set to (‘a’ ‘bb’ ‘cccc’) in the
list box properties.
visibleItemCount is set to 7,
and the top, left, bottom, and right
attachments are all set to
ATTACHFORM. When the window
is initially displayed, the listbox will
be sized wide enough to display
‘cccc’ and tall enough to display 7
items. However, as you size the
window, the list box will shrink and
stretch.

The last category of parts is what
VisualAge calls Canvas parts.
These include windows, forms, and
group boxes. When ATTACHNONE
is specified, these parts will size
themselves to fit their contents. If
ATTACHFORM or
ATTACHWIDGET is used, the
parts’ initial size will be set to fit
their contents. As a simplified
example, consider a group box that
contains two label parts whose
strings are ‘aa’ and ‘bbbb’. The
upper label is attached on the top
and left to the form (the group box
in this case), and the bottom and
right are ATTACHNONE. The lower
label is attached on top to the upper
label, on left to the form, and
bottom and right are
ATTACHNONE. The group box is
attached on top and left to the form,
and bottom and right are
ATTACHNONE. When displayed,
the two labels will size themselves
to fit their strings, and the group
box will set its width and height just
large enough to contain the two
labels. In this case, the width of the
group box is set to contain the width
of the lower label string ‘bbbb’. If,
during language translation, the
upper string is translated to
‘xxxxxxxx’, the group box will now
be sized large enough to hold it.

The fact that canvas parts size
themselves to contain their largest
child part can be used to make a
set of parts all the same size.
Consider the case where you have
three push buttons aligned in a
column. Because the labels will
change during translation, you want
to set the attachments so the
buttons determine their own size.
However, you would also like the
buttons to be the same width. You
can solve this by placing the
buttons within a form. Each button
is attached on the left and right to
the form. The bottom and right
attachments of the form are
ATTACHNONE. When displayed,
each button will set its initial size
based on its label. The width of the
form will then be sized based on the
widest button. However, since the
buttons are attached to the form,
the two narrower buttons will be
stretched to the width of the form,
which is the width of the largest
button.

The equivalent of setting
ATTACHNONE for a window is to
blank out the Width and Height
entry fields in the window’s
framingSpec property dialog. If this
is done, the window will size itself
just large enough to contain its
contents. If you blank out the X and
Y entry fields, the initial position of
the window will be left to the
system.

9

However, due to a limitation of the Composition Editor, if you blank out
these fields, when you reopen your view in the editor, the window will be
sized very small. In order to get around this limitation, a little Smalltalk
coding is required. Leave the fields as is, and implement the following:

AbtShellView>>xyzSetSizeAndPositionToDefault
self initWidgetSize: nil.

AbtBasicView>>xyzSetSizeAndPositionToDefault
self framingSpec: nil.

where ‘xyz’ is some unique prefix to avoid collisions with any future system
methods. Then, add the method finalInitialize to your view class.
Its method body should be simply ‘self xyzSetSizeAndPositionToDefault’.
Since finalInitialize is a message sent to each view when it has
been created but before it is opened, this will have the same effect as
blanking out the X, Y, Width, and Height fields but will not cause a problem
when the view is reopened in the Composition Editor.

Finally, to ensure that canvas parts (such as group boxes and forms)
within a window behave properly, you must also do a similar trick to them.
You’ll want to specify ATTACHNONE for two sides of your canvas parts,
so that the system will size them according to their contents. But again,
due to the Composition Editor limitation, if you do so these parts will be
sized very small when you reopen your view in the editor. Instead, specify
ATTACHSELFOPPOSITE where you would normally specify
ATTACHNONE, and implement the following:

 AbtBasicView>>xyzSetCompositeAttachmentsToDefault
�Do nothing. This catches the Message for all non-composite widgets.�

 AbtCompositeView>>xyzSetCompositeAttachmentsToDefault
| fs |
(fs := self framingSpec) notNil ifTrue: [
 fs bottomEdge xyzSetAttachmentToDefault.
 fs topEdge xyzSetAttachmentToDefault.
 fs leftEdge xyzSetAttachmentToDefault.
 fs rightEdge xyzSetAttachmentToDefault].
self components do: [:comp | comp hptSetCompositeAttachmentsToDefault].

 AbtEdgeConstant>>xyzSetAttachmentToDefault
�Not a constraint; don�t do anything.�

 AbtEdgeConstraint>>xyzSetAttachmentToDefault
self attachment = XmATTACHSELFOPPOSITE ifTrue: [
 self attachment: XmATTACHNONE].

You will also need to add
“self xyzSetCompositeAttachmentsToDefault ” to your
finalInitialize method.
xyzSetCompositeAttachmentsToDefault is similar to
xyzSetSizeAndPositionToDefault . For all composite (canvas) parts
in your window, it will change all occurrences of ATTACHSELFOPPOSITE
to ATTACHNONE. This is the only case where you should use
ATTACHSELFOPPOSITE.

With these attachment techniques you can account for differences in the
developer’s and the end-user’s machines. While creating the proper
attachments can be a time-consuming process, it is necessary to solve the
portability issues introduced by differing screen resolutions, fonts, operat-
ing systems and end-user language translations. By following these
recommendations, you can be confident the interfaces you design will be
displayed correctly for the end-user.

10

Monitoring Java Client Sessions
by Henry Koch, VisualAge Generator Development

The Java Wrapper support shipped with VisualAge
Generator V3.0 FixPak2 includes a new graphical
interface, called the session manager, to help you
monitor Java client sessions started on the web server
machine. The session manager, written in Java, allows
you to:

• Display response time statistics on client sessions
started on the web server machine

• Automatically cancel sessions that have been
inactive for a specified time, or explicitly cancel any
active session

• Trace activity on any active session

• Log requests made through the Web server

Installing the Java Wrapper Support

To install the new features in the Java Wrapper support
of FixPak2, run the javao command file for OS/2 or the
javaw batch command file for Windows. These com-
mand files are found in the directory where you in-
stalled VisualAge Generator Common Services.
Installing the Java support enhancements causes the
session manager to appear when you start the
UnitOfWorkServer on the web server machine. You
can find details of how to install and use the Java
Wrapper in the section “Calling Server Programs via
VisualAge Generator JavaBeans” of the VisualAge
Generator Client/Server Communications Guide
(SH23-6602) or by using a web browser to browse file
csojava.html. This html file is found in the directory
specified as the target directory when running javao or
javaw. The csojava.html file contains instructions on
how to use the session manager’s user interface.

Starting the UnitOfWorkServer

Before you can download an applet from the web
server, you must do the following:

 1. Start web server software, for example Lotus Go
WebServer, to enable downloading html pages that
have an <applet> tag referencing the applet.

 2. Start the Java RMI registry on the web server
machine with the command rmiregistry

 3. Start the UnitOfWorkServer with the command:

where:

trace_level Level of request reporting.
Controls the reporting of
requests handled by the
UnitOfWorkServer.

0 = no reporting
1 = report errors (default value)
2 = report all activity

timeout_interval Interval for automatic closing of
inactive sessions in minutes.
0 = no closing. Default is 60
minutes.

refresh_interval Server session report interval
in minutes. 0 = no report.
Default is 5 minutes.

The Session List Window

When the UnitOfWorkServer starts, it brings up the
session list window as shown in Figure 1.

java ibm.cso.UnitOfWorkServerImpl trace_level timeout_interval refresh_interval

Figure 1. Initial Session List Window

At the end of each refresh interval the session list
window is updated with the sessions currently active as
shown in Figure 2. Average response time statistics
are displayed for all calls made for each session in the
list. You can click on the Refresh push button at any
time to end the current refresh interval and display the
active sessions.

11

Figure 2. List of Active Sessions

If you want to view average response time statistics for
all UnitOfWorkServer requests since the
UnitOfWorkServer was started, click on the Show
Stats push button. The window shown in Figure 3 is
then displayed, showing statistics for calls made during
the last refresh interval as well as statistics for all
calls.

Figure 3. Response Time Statistics for All Sessions

If you want to view statistics for a particular session,
select the session in the session list, click on Selected
in the menu bar, then click on the Show details menu
item. A dialog appears similar to Figure 4, giving
average response times for all requests made for the
session.

Figure 4. Response Time Statistics for A Session

Changing Session Manager Settings

You can initialize settings for refresh interval, timeout
interval, and trace level reporting when you start the
UnitOfWorkServer. You can change these options, and
set others, using the Settings window shown in
Figure 5. Open the Settings window by clicking on
Windows in the menu bar, then click on the
Settings menu item.

Figure 5. Settings Window

You change refresh interval and timeout interval by
entering their new values in their respective entry
fields. A value of zero means no automatic refreshing
of the session list or no automatic closing of sessions.

You can control the initial trace level set in new trace
windows using the Trace level drop-down list shown in
Figure 6. If No trace is selected, you cannot open new
trace windows. If Trace errors only is selected, you
may open new trace windows, and those trace win-
dows will contain entries only for requests that result in
an error. If Trace all is selected, you may open new
trace windows, and those trace windows will contain an
entry for each request.

12

If you set trace level to Trace conversions by appli-
cation and you enter the name of a server program to
be traced, parameters for all calls to the specified
program are dumped to file CSODUMP.OUT in the
directory where the UnitOfWorkServer was started.
You can dump all parameters for all calls to all server
programs by selecting Trace all conversions . The
VisualAge Generator Client/Server Communications
Guide (SH23-6602) provides information on interpreting
the data dumped to CSODUMP.OUT. No new trace
windows can be opened when the trace level is set to
Trace all conversions or to Trace conversions by
application .

Figure 7. Session Trace Window

You can have UnitOfWorkServer requests logged using
the Log level drop-down list and the Log file name
entry field. Select No log to log no requests. Select
Log errors only to log only requests resulting in
errors. Select Log all to log all requests. You can
specify the name of the log file, or let it default to
CSOJAVA.LOG in the directory where the
UnitOfWorkServer was started.

Changes made to the settings window are not applied
until you click on the OK push button.

Tracing Active Sessions

When developing your Java classes it is convenient to
see all activity on the web server for your session. The
AppletUnitOfWork class is provided in the VisualAge
Generator Java support package (ibm.cso) to establish
a communication session to a server program from a
Java applet. The first time you call a server program
using a given AppletUnitOfWork, the communications
session is established. After the first call, if you click on
the Refresh push button of the session list, you should
see your session in the list of active sessions. Session
names default to Session-x, where x is a number
generated by the session manager. You can name
your session to make it more recognizable. You do this
when testing your Java applet by using an
AppletUnitOfWork constructor that includes a session
name in its signature.

To open a session trace window like that shown in
Figure 7, select your session in the session list, click on
Selected in the menu bar, then click on the Trace
menu item. The resulting trace window then displays all
requests of that session that meet the trace level
criteria. Information about each request includes the
time of the request, the type of request, the return
code, and the response time for the request. If there
were any errors, the error message is added.

Sometimes it is convenient to have the trace window
open automatically each time a session is started to
indicate whether the web server is connected, or to
include the first call in the trace. To do this, use the
Trace new sessions option as described in the
section “Changing Session Manager Settings” earlier in
this article.

Figure 6. Trace Level Selection In Settings Window

You can have the session manager open a trace
window for each new session by clicking on the Trace
new sessions check box. (This check box is disabled
unless the trace level selected is Trace all or Trace
errors only .) Each new trace window is opened with
the trace level of the Settings . An example of a trace
window is shown in Figure 7. Once open, the trace
level for a session can be changed at any time using
the Trace level drop-down list on the session’s trace
window.

13

Explicitly Closing a Session

When developing Java applets, you might make a
mistake that causes the applet to terminate abnormally
after the communications session is established, and
before it is closed. End-users running an applet also
might go on to other work without ending the applet.
This causes the communications session to remain
open on the web server. If you have the timeout
interval set, the session manager will eventually close
the session because of inactivity. You can close the
session immediately by selecting the session in the
session list, clicking on Selected in the menu bar, then
clicking on the Close menu item.

Bringing Trace Windows to the
Forefront

When you have a lot of trace windows open, you will
need to bring a hidden window to the forefront of your
desktop. To do this, click on Windows in the menu
bar, then click on the menu item for the session name
of the trace window you want brought to the forefront.

Summary

In general, the new session manager provides:

• Trace facilities that aid in debugging Java applets
that call VisualAge Generator server programs

• Response time statistics that help you monitor the
performance of the web server

• The ability to monitor the activity of a session on
the web server and to cancel a session immedi-
ately if desired

• A logging facility that helps in tracking problems
that occurred with sessions established on the web
server

The VisualAge Generator web address
is:

www.software.ibm.com/ad/visgen

For IBM’s predecessor 4GL, Cross
System Product, the web address is:

www.software.ibm.com/ad/visgen/csp

VisualAge Generator
Web Pages

14

Interoperability�Calling 3GL Programs

VisualAge Generator provides
application programmers a robust
language to develop their programs
with. There are times when
VisualAge Generator programs
must interface with legacy applica-
tions written in another program-
ming language, usually a 3GL
language such as C, COBOL, or
PL/I. This article demonstrates how
to call 3GL programs from
VisualAge Generator programs and
call VisualAge Generator programs
from 3GL programs. Although
VisualAge Generator V3.0 supports
many different environments, this
article focuses on the environments
where C++ code is generated: AIX,
HP-UX, OS/2, and Windows NT.

This is the second in a series of
articles that will cover the
interoperability between VisualAge
Generator and programs written in
3GL languages. Follow-on articles
will cover advanced debugging, and

by Chuck Proffer, Chris Biega, and Rob Swofford, VisualAge Generator Development

conversion between host data files
and the various workstation file
formats.

The VisualAge Generator language
has three ways of transferring
control to another program: CALL,
DXFR, and XFER. The examples
used in this article all use the CALL
interface to transfer control to the
3GL program. The CALL interface
transfrs control to the target pro-
gram and returns control to the
calling program. The DXFR and
XFER interfaces transfer control to
the target program but do not return
control to the calling program.

Each of the following sections will
discuss considerations unique to
each environment and present
examples for several different
scenarios. A summary of the
examples is presented in the
following table. The source code for
each example is located on the

following VisualAge Generator ftp
site. Its URL is:

ftp://ps.software.ibm.com/ps/
products/visualagegen/info/v30

The examples can be found in the
following files:

AIX vagexaix.tar

HP vagexhp.tar

OS/2 vagexos2.zip

NT vagexnt.zip

Instructions for compiling, linking,
and executing the examples are
included in a readme file with the
source code.

The AIX Environment

The VisualAge Generator Server for
AIX Version 3.0 product provides
the runtime support necessary to
execute VisualAge Generator
programs on the AIX platform.
It requires AIX Version 4.1.4 or
later. AIX runtime support was also
provided in VisualAge Generator
Version 2.2. It required AIX version
3.2.5 or later.

VisualAge Generator programs on
AIX are subject to the following
considerations:

• VisualAge Generator programs
on AIX must be compiled and
linked into shared libraries. The
script file generated for each
VisualAge Generator program
does this automatically.

• If VisualAge Generator pro-
grams are called by a 3GL
program and parameters are
being passed, the VisualAge
Generator program must be a
CALLED BATCH type of
program. If no parameters are
being passed, the VisualAge
Generator program can be a
MAIN BATCH program.

Example Description

AIX

1 AIX C calling VA/G called program, dynamic loading

2 AIX VA/G program calling C, dynamic loading

3 AIX VA/G program calling script file via RUNKSH

4 AIX VA/G program calling IBM COBOL shared library

HP-UX

5 HP-UX C calling VA/G program, dynamic loading

6 HP-UX VA/G program calling C, dynamic loading

OS/2

7 OS/2 C calling VA/G called program, dynamic loading

8 OS/2 VA/G program calling C, dynamic loading

9 OS/2 VA/G program calling REXX via RUNCMD

10 OS/2 VA/G program calling IBM COBOL

11 OS/2 VA/G program calling PL/I

Windows NT

12 NT ‘C’ calling VA/G called program, dynamic loading

13 NT VA/G program calling C, dynamic loading

14 NT VA/G program calling BAT file via RUNBAT

15

• VisualAge Generator programs
on AIX can call only programs
(3GL or otherwise) that are
compiled and linked into shared
libraries. They cannot directly
call script files or executable
files directly. These types of
programs must be called
through a stub program that is
compiled and linked as a
shared library. See example 3.

• When calling a script file via
RUNKSH from a VisualAge
Generator program (as shown
in example 3), only character
parameters can be passed to
the script file.

• When calling programs written
in COBOL or any other 3GL
language (except C++) on AIX,
you must specify a linkage
table at generation time that
contains the
LINKTYPE=AIXLOAD param-
eter. This causes the VisualAge
Generator runtime to use the
AIX subroutine load instead of
loadAndInit to dynamically
load the program. The
loadAndInit subroutine is used
to load C++ programs. See
example 4 for a sample linkage
table.

Examples on AIX

The examples in this section were
compiled and executed on an AIX
Version 4.1.5 system. The C
examples were compiled using the
IBM C Set ++ for AIX compiler
Version 3.1.4. The COBOL ex-
ample was compiled using the IBM
COBOL Set for AIX compiler
Version 1.1.

Example 1
In this example, a C program is
calling a VisualAge Generator
Called program. The VisualAge
Generator program is dynamically
loaded by the C program using the
AIX routine loadAndInit . To be
consistent with the behavior of
VisualAge Generator Server
programs running on AIX, the C

program is coded so that the
environment variable
FCWLIBPATH must be set to
contain the directories that will be
searched to locate the VisualAge
Generator program (that is, export
FCWLIBPATH=/home/aixuser1/
genout). A structure (working
storage record) containing most of
the VisualAge Generator data
types is passed to the VisualAge
Generator program. The VisualAge
Generator program initializes each
data item, sets a return code, and
returns to the C program. The C
program formats and displays the
value of each data item.

Example 2
In this example, a VisualAge
Generator Main program is calling a
C program. The C program is
dynamically loaded by the
VisualAge Generator Server. The C
program is located using the
contents of the FCWLIBPATH
environment variable. This example
passes each data item to the C
program individually instead of
passing a structure. The VisualAge
Generator program initializes each
data item. The C program formats
and displays the value of each data
item.

Example 3
In this example, a VisualAge
Generator Main program is calling a
Korn shell script file. Since a
VisualAge Generator program
cannot directly call script files or
executables, an intermediate C
program (RUNKSH) must be called.
The name of the script file and any
parameters that the script file needs
are passed to RUNKSH. RUNKSH
then invokes the script file. In this
case, one parameter is passed.
Only character parameters may be
passed using this technique.

Example 4
In this example, a VisualAge
Generator Main program is calling a
COBOL program. The COBOL
program is dynamically loaded
by the VisualAge Generator Server.

The COBOL program is located
using the contents of the
FCWLIBPATH environment vari-
able. This example individually
passes each data item to the
COBOL program instead of passing
a structure. The VisualAge Genera-
tor program initializes each data
item. The COBOL program formats
and displays the value of each data
item in a file called AVG2B1B.dat.

The HP-UX
Environment

The VisualAge Generator Server for
HP-UX Version 3 product provides
the runtime support necessary to
execute VisualAge Generator
programs on the HP-UX platform. It
requires HP-UX Version 10.10 or
later and HP’s Advanced C++
compiler (aCC).

VisualAge Generator programs on
HP-UX are subject to the following
considerations:

• VisualAge Generator programs
on HP-UX must be compiled
and linked into shared libraries.
The script file that is generated
for each VisualAge Generator
program does this automati-
cally.

• If they are called by a 3GL
program and parameters are
being passed, the VisualAge
Generator program must be a
CALLED BATCH program. If no
parameters are being passed,
the VisualAge Generator
program can be a MAIN
BATCH program.

• VisualAge Generator programs
on HP-UX can call only pro-
grams (3GL or otherwise) that
are compiled and linked into
shared libraries. They cannot
call script files or executable
files directly. These types of
programs must be called
through a stub program that is
compiled and linked as a
shared library. See example 3;
the HP-UX environment is very
similar to AIX.

16

• When calling a script file via
RUNKSH from a VisualAge
Generator program, only
character parameters can be
passed to the script file.

• The C++ compiler on HP-UX
does not have an option to
pack structures. Therefore,
when you pass data to 3GL
programs using structures,
ensure that numeric data items
are properly aligned; otherwise,
bus errors will occur. Bus errors
are synonymous with data
exceptions. Character data
items are not a problem be-
cause they are aligned on a
byte boundary; however, the 2-,
4-, and 8-byte integer data
items (short, int, double in C)
might need pad bytes inserted
to ensure that each data type is
aligned properly. For more
information on passing data to
3GL programs, refer to the
technical report VisualAge
Generator Interoperability—
Passing Data to 3GL Programs.

Examples on HP-UX

The examples in this section were
compiled and executed on an
HP-UX Version 10.20 system using
the HP aCC compiler Version
A.01.00.

Example 5
In this example, a C program is
calling a VisualAge Generator
Called program. The VisualAge
Generator program is dynamically
loaded by the C program using the
HP-UX routine shl_load . To be
consistent with the behavior of
VisualAge Generator Server
programs running on HP-UX, you
must set the environment variable
SHLIB_PATH to contain the
directories of the VisualAge Gen-
erator program as well as the
VisualAge Server runtime modules
(that is, export SHLIB_PATH=/opt/
vgwgs22/lib:/home/hpuser1/
genout). A structure (working
storage record) containing most of
the VisualAge Generator data types

is passed to the VisualAge Genera-
tor program. The VisualAge Gen-
erator program initializes each data
item, sets a return code, and
returns to the C program. The C
program formats and displays the
value of each data item.

Example 6
In this example, a VisualAge
Generator Main program is calling a
C program. The C program is
dynamically loaded by the
VisualAge Generator Server
runtime. The C program is located
using the contents of the
SHLIB_PATH environment variable.
This example passes each data
item to the C program individually
instead of passing a structure. The
VisualAge Generator program
initializes each data item. The C
program formats and displays the
value of each data item.

The OS/2 Environment

VisualAge Generator Server for
OS/2 Version 3.0 provides the
runtime support necessary to
execute VisualAge Generator
programs on the OS/2 platform.
It requires OS/2 Warp Version 3.0
or later. OS/2 runtime support was
also provided in VisualAge Genera-
tor Version 2.2. It also required
OS/2 Warp version 3.0 or later.

VisualAge Generator programs on
OS/2 are subject to the following
considerations:

• VisualAge Generator programs
on OS/2 must be compiled and
linked into dynamic link libraries
(dlls). The command file that is
generated for each VisualAge
Generator program does this
automatically.

• If VisualAge Generator pro-
grams are called by a 3GL
program and parameters are
being passed, the VisualAge
Generator program must be a
CALLED BATCH program. If no
parameters are being passed,
the VisualAge Generator
program can be a MAIN

BATCH program.

• VisualAge Generator programs
on OS/2 can call only programs
(3GL or otherwise) that are
compiled and linked into
dynamic link libraries. They
cannot call command files or
executable (EXE) files directly.
These types of programs must
be called through a stub
program that is compiled and
linked as a dynamic link library.
See example 9.

• When calling a command file
via RUNCMD from a VisualAge
Generator program (see
example 9), only character
parameters can be passed to
the command file.

Examples on OS/2

The examples in this section were
compiled and executed on an OS/2
Warp Version 3.0 system. The C
examples used the IBM VisualAge
C++ for OS/2 compiler Version 3.
The COBOL examples used the
IBM VisualAge COBOL compiler
Version 2.0. The PL/I examples
used the IBM PL/I for OS/2 com-
piler Version 1.1.

Example 7
In this example, a C program is
calling a VisualAge Generator
CALLED program. The VisualAge
Generator program is dynamically
loaded by the C program using the
OS/2 routine DosLoadModule. Its
entry point is then obtained by
calling the OS/2 routine
DosQueryProcAddr. To be consis-
tent with the behavior of VisualAge
Generator Server programs running
on OS/2, the environment variable
LIBPATH must be set to contain the
directories that will be searched to
locate the VisualAge Generator
program. A structure (working
storage record) containing most of
the VisualAge Generator data
types is passed to the VisualAge
Generator program. The VisualAge
Generator program initializes each

17

data item, sets a return code, and
returns to the C program. The C
program formats and displays the
value of each data item.

Example 8
In this example, a VisualAge
Generator Main program is calling a
C program. The C program is
dynamically loaded by the
VisualAge Generator Server
runtime. The C program is located
using the contents of the LIBPATH
environment variable. This example
passes each data item to the C
program individually instead of
passing a structure. The VisualAge
Generator program initializes each
data item. The C program formats
and displays the value of each data
item.

Example 9
In this example, a VisualAge
Generator Main program is calling a
REXX command file. Since a
VisualAge Generator program
cannot directly call command files
or executables, an intermediate C
program (RUNCMD) must be
called. The name of the script file
and any parameters that the script
file needs are passed to RUNCMD,
which in turn invokes the script file.
In this case, one parameter is
passed. Only character parameters
may be passed using this tech-
nique.

Example 10
In this example, a VisualAge
Generator Main program is calling a
COBOL program. The COBOL
program is dynamically loaded by
the VisualAge Generator Server
runtime. The COBOL program is
located using the contents of the
LIBPATH environment variable.
This example passes each data
item to the COBOL program
individually instead of passing a
structure. The COBOL program
formats and displays the value of
each data item in a file called
OVG2B1B.dat.

Example 11
In this example, a VisualAge
Generator Main program is calling a
PL/I program. The PL/I program is
dynamically loaded by the
VisualAge Generator Server
runtime. The PL/I program is
located using the contents of the
LIBPATH environment variable.
This example passes each data
item to the PL/I program individually
instead of passing a structure. The
PL/I program formats and displays
the value of each data item in a file
called OVG2P1P.dat.

The Windows NT
Environment

The VisualAge Generator Server for
Windows NT Version 3.0 provides
the runtime support necessary to
run VisualAge Generator programs
on the Windows NT platform. It
requires Windows NT Version 3.51
or 4.0. Windows NT runtime
support was also provided in
VisualAge Generator Version 2.2. It
also required Windows NT version
3.51 or 4.0.

VisualAge Generator programs on
Windows NT are subject to the
following considerations:

• VisualAge Generator programs
on Windows NT must be
compiled and linked into
dynamic link libraries (dlls). The
batch file that is generated for
each VisualAge Generator
program does this automati-
cally.

• If VisualAge Generator pro-
grams are called by a 3GL
program and parameters are
being passed, the VisualAge
Generator program must be a
CALLED BATCH program. If no
parameters are being passed,
the VisualAge Generator
program can be a MAIN
BATCH program.

• VisualAge Generator programs
on Windows NT can call only
programs (3GL or otherwise)
that are compiled and linked
into dynamic link libraries. They
cannot call batch files or
executable (EXE) files directly.
These types of programs must
be called through a stub
program that is compiled and
linked as a dynamic link library.
See example 14.

• When calling a script file via
RUNBAT from a VisualAge
Generator program (example
14), only character parameters
can be passed to the batch file.

Examples on Windows
NT

The examples in this section were
compiled and executed on an
Windows NT Version 4.0 system
using the IBM VisualAge C++ for
Windows NT compiler Version 3.5.

Example 12
In this example, a C program is
calling a VisualAge Generator
CALLED program. The VisualAge
Generator program is dynamically
loaded by the C program using the
Windows NT routine LoadLibrary.
Its entry point is then obtained by
calling the Windows NT routine
GetProcAddress. To be consistent
with the behavior of VisualAge
Generator Server programs running
on Windows NT, the environment
variable PATH must be set to
contain the directories that will be
searched to locate the VisualAge
Generator program. A structure
(working storage record) containing
most of the VisualAge Generator
data types is passed to the
VisualAge Generator program. The
VisualAge Generator program
initializes each data item, sets a
return code, and returns to the C
program. The C program formats
and displays the value of each data
item.

18

Example 13
In this example, a VisualAge
Generator Main program is calling a
C program. The C program is
dynamically loaded by the
VisualAge Generator Server
runtime. The C program is located
using the contents of the PATH
environment variable. This example
passes each data item to the C
program individually instead of
passing a structure. The VisualAge
Generator program initializes each
data item. The C program formats
and displays the value of each data
item.

Example 14
In this example, a VisualAge
Generator Main program is calling a
BAT command file. Since a
VisualAge Generator Main program
cannot directly call command files
or executables, an intermediate C
program (RUNBAT) must be called.
The name of the command file and
any parameters that the command
file needs are passed to RUNBAT.
RUNBAT invokes the command
file. In this case, one parameter is
passed. Only character parameters
can be passed using this technique.

Summary

Interfacing VisualAge Generator
programs with programs written in
one of the 3GL languages is often a
necessity in today’s complex
system environments. In some
cases, it involves interfacing with
legacy applications and other times
it might be necessary to implement
an algorithm in a 3GL because of
performance reasons. Using the
information contained in this article,
an application programmer can
easily implement the changes
necessary to interface their
VisualAge Generator programs with
new or existing 3GL programs.

VisualAge Generator
Calendar of Events

June 10–11 Second VisualAge Generator
International Symposium

July 19–21 Australasian GUIDE

July 23–24 Singapore SHARE and GUIDE

July 27–28 Malaysian SHARE and GUIDE

Stuttgart, Germany

Melbourne, Australia

Singapore

Malaysia

19

Introduction to Automated Testing of VisualAge Genera-
tor Clients with SilverMark�s Smalltalk Test Mentor
By Michael Silverstein, SilverMark, Inc. and John Casey, VisualAge Generator Sales Support

Large enterprises are adopting VisualAge Generator on
a grand scale as the development environment of
choice for building business-critical, multi-tier client/
server applications. As companies increase their
reliance on these applications for their day-to-day
operations, reliability, availability, and performance
become increasingly critical.

Defects can creep in at any time during code develop-
ment or maintenance. Seemingly trivial changes to
complex applications can have far-reaching conse-
quences. Failure to adequately ensure quality often
shows up in headlines, causing embarrassment and
financial hardships to companies that have not ad-
equately tested their applications prior to deployment.
The later a defect is discovered, the greater the
economic penalty it exacts in the form of increased
support cost and customer dissatisfaction.

Given this, it is clear that testing is an important piece
of the software development puzzle. In order to ad-
equately test an application, tests should be created
that exercise paths within the context of many of the
varied states that the application may be in. Writing
test scripts to be executed manually is usually the
starting point for formalized testing, but with frequent
development cycles, repeated manual testing quickly
becomes the dominant consumer of valuable human
resources.

Automated Testing

The answer to this problem is to move effort expendi-
ture from repetitious manual testing to an up-front
investment in automation that can be amortized over
the development and maintenance lifetime of an
application. This encourages frequent testing through-
out the application life cycle so defects are caught early
when they are less costly to fix.

Automated testing implies adoption of a test automa-
tion tool. An ideal test automation tool should automate
test case creation, strongly encourage the use of
reusable test components, and be designed specifically
with an application’s operating and development
environment in mind.

In Version 3.0 of VisualAge Generator, the underlying
Smalltalk development environment was exposed,
providing exciting opportunities for creating robust,
GUI-rich intelligent clients. This has also opened up the

opportunity to use tools and add-ons previously avail-
able only to VisualAge for Smalltalk developers. The
Smalltalk Test Mentor by SilverMark, Inc. (http://
www.silvermark.com) is an add-on designed specifi-
cally for testing VisualAge for Smalltalk-based applica-
tions. As such, it is ideally suited for testing VisualAge
Generator client applications.

This article introduces the Smalltalk Test Mentor and
how it can be applied to testing VisualAge Generator
GUI applications. In a later article we will discuss other
aspects of testing VisualAge Generator client applica-
tions, including testing business objects and reusing
test cases.

Testing the Smalltalk Client

One of the strengths of VisualAge for Smalltalk is that it
provides a rich set of graphical user interface (GUI)
components and that these GUI components may be
subclassed and aggregated to form new, specialized
GUI components. Unfortunately, this strength presents
a serious challenge to traditional automated GUI
testing tools. From outside of the Smalltalk image,
many of the most useful components, such as note-
books and containers are only recognized as simple
drawing areas to these testing tools. At best, they can
record and play back mouse clicks over coordinates
within the UI components.

Because the Smalltalk Test Mentor records and plays
back GUI interactions from within the Smalltalk image,
it has direct knowledge and access to the state of all
GUI components. Any GUI interactions can be re-
corded and played back, and GUI component state (for
example, selected items in a container) can be verified.

The other advantage of testing within the Smalltalk
image is that the testing tool has access to all objects,
both visual and nonvisual. This means that client-side
business logic and domain objects can be tested along
with the user interface.

A Simple Example

The best way to illustrate is by example. In this ex-
ample, we will create a simple automated test for the
sample GUI view, SAMPGUI, shown below, that
performs maintenance on rows in the staff table of the
DB2 sample database.

20

it. For example:
(ActiveWindow widget: ‘Push Button1’) click clicks
on ‘Push Button1’ in the window that currently has
focus.

Verifying Application State

Exercising your application will certainly flush out hard
exceptions, but you should also verify that your
application’s state is correct. You can verify the
application’s state through its GUI by comparing the
contents of visual parts to a ‘gold standard’. The
Smalltalk Test Mentor enables you to do this by
providing a visual part verification tool that enables you
to click on a part in your running view and select from a
list of attributes to be verified. Once you do this, the
verification code is automatically generated as steps
and added to the test scenario.

The Completed Test

The following shows the test editor with all of the steps
for this scenario:

In the Type column you can see the different types of
elements. At the top level is the suite
SampguiTestSuite, which contains the single scenario
Simple HR Query. This scenario contains three steps:
Open View, Simple Query, and Close View. Open view
specifies the launch code to start the view under test.
The Smalltalk code for this is:

SAMPGUI new openWidget.

For this example, we have chosen a use-case-driven
approach to testing, where we will exercise the applica-
tion under test with a real-world scenario. The scenario
we have chosen retrieves a particular employee’s
record. As part of the test, we will verify that the
expected employee information was retrieved.

Test Case Structure

Tests created using the Smalltalk Test Mentor are
structured in terms of suites, scenarios and steps. A
suite is a set of related scenarios. A scenario corre-
sponds to a particular usage of the application under
test, or use-case. Scenarios are composed of steps.
Each step performs a discrete action on the application
under test. There are several different types of steps to
choose from. Step types include some that execute
scripts, a type of step that prompts for operator inter-
vention, one that iterates over test data in a file, and
steps that reference reusable test components. In this
example, we will concern ourselves mostly with those
related to recording and playing back GUI interactions.

Recording a Test

Ideally a test tool should automate the task of test
creation. The Smalltalk Test Mentor does this by
recording your interactions with the application and
generating test steps. To record a test, you simply add
a UI recording step for some set of interactions to
record, press the record button, and then start using
your application. Each recorded step is generated as a
short, Smalltalk script with a comment to make it easier
to read the flow of interactions. The generated scripts
follow a simple, consistent pattern in the form of visual
part retrieval followed by an action to be performed on

21

The Simple Query and Close view steps are UI record-
ing steps that contain generated steps for the recorded
UI interactions and verifications. We chose to break up
the query and close operations into two UI recording
steps simply for the sake of clarity.

The Smalltalk Test Mentor automatically measures
code (Smalltalk method) coverage during execution, if
you specify the applications covered by the test. In this
case, we specified the HRMStaffSubsystem applica-
tion.

Executing a Test and Viewing
Results

You run tests either by pressing the Run button or, if
you need fine control over execution, by opening the
advanced runner view (not shown). The advanced
runner view provides the ability to set breakpoints in
your test and walk through step execution. When tests
are run, all exceptions are logged and metrics like
individual step execution timings and method coverage
are measured.

The results of executing a test are displayed in the
Test Results Browser (below) using the same structure
as the test itself, with traffic lights to show whether the
steps passed or failed.

Had there been any exceptions, they would have been
indicated by red lights, along with detailed information
about the nature of their failures, including the execu-
tion stack trace. Summarized metrics and the result
returned by each step are shown on the bottom of the
view.

You can store test results persistently for comparison
with later results. The Smalltalk Test Mentor provides
tools for quickly finding anomalies between test runs,
including out-of-tolerance execution times. This can be
especially useful for highlighting subtle performance
problems.

You can view method coverage details with the Cover-
age Browser shown below:

Coverage is separated by suite, application, and class.

As you can see, only a small part of the
HRMStaffSubsystem application, which happens to
have about 20 classes, was covered by this one simple
scenario. Clearly, more testing needs to be done
before this application is deployed!

Conclusion

Testing is as important a part of the software develop-
ment process as design or coding. If you omit testing,
you risk delivering defective products, with the accom-
panying economic penalties. Because manual testing is
so labor intensive, the only practical way to effectively
test enterprise applications is by automating the testing
effort.

Successful test automation rests largely on using a test
automation tool that fits the development environment
and automates test creation as well as execution. In
this article, we presented the Smalltalk Test Mentor, a
tool designed specifically for automated testing of
Smalltalk-based applications. We then discussed how it
can be applied to client-side GUI testing of applications
created using VisualAge Generator V3.0. In a future
article, we will discuss how to structure tests for reuse,
how to test business objects, and how to use the
metrics that the Smalltalk Test Mentor gathers to
measure the health of your applications.

22

Moving your Application to the Internet

One easy way to move a VisualAge Generator applica-
tion to the Internet is by using the VisualAge Smalltalk
Web Connection Parts. The objective of this article is
to show how to implement a sample application that
accesses a DB2 database using the VisualAge data-
base parts and then reads the details using a
VisualAge Generator, but does it on the Internet.

The application we will build has two screens:

• The first screen shown in the figure below queries
all the STAFF table when the List DB using
SMALLTALK parts button is pressed. It is built
using the VisualAge Smalltalk Database parts and
Web Connection Parts.

Note that the query to DB2 is done on the client
side (that runs in the Web Server).

• On the first screen, we selected the ID 50 and
pressed the Call VisualAge Generator v3.0
button.

The second screen, shown below, queries the details
of the selected ID. This second screen was built using
VisualAge Smalltalk Web Connection parts and
VisualAge Generator. The VisualAge Generator
application runs on the server, where the query is done
(this could be on MVS/CICS).

The main activities to produce the screens shown
above are:

1. Install the VisualAge Web Connection parts and
load it in your Image

2. Create the first screen using VisualAge Database
and Web Connection parts

3. Create a VisualAge Generator application and
prepare to pass the selected ID to the second
screen

4. Create the second screen using VisualAge Web
Connection parts and a VisualAge Generator
application.

By Reginaldo W. Barosa—Certified AD Specialist, IBM Brasil

23

1�Install VisualAge Web parts and
load it at the image
This is not complex; just follow the installation proce-
dure. After you have it loaded, the feature VisualAge
Web Connection will appear as it is loaded in the
image. See the figure below:

Also, the Web parts icons will be shown at the
VisualAge Composition Editor:

Now you’re ready to start the coding.

2�Create the first screen using
VisualAge Database and Web
Connection parts
The activities here are:

1. Create an application and add a New Part named
ScreenOneWeb . The Part type is Web Connec-
tion part . See below:

2. Using the categories Web Connection and Web
Form Parts , add these visual elements: Image,
Form, 2 Push Button, List and Line Breakers.

The settings of the image should point to the gif to
be shown. In our example, code

imageURL = /vamast.gif and
localFileName=vamast.gif.

Change the names and text of the buttons. Call
them pbListaDB and pbCallVG .

Change the name of the List to efList . See below:

3. From the category Database Functions , add the
Multi-row query part to the free form surface
(white part). Alter its setting to perform a query to
the STAFF table. In our example, the query will be:

 SELECT STAFF.NAME, STAFF.ID, STAFF.JOB, STAFF.DEPT, STAFF.SALARY

FROM STAFF

ORDER BY STAFF.ID ASC

24

4. Using the Multi-row, perform the Tear-Off attribute
of resultTable and connect the rows attribute to
the items attribute of efList (List):

5. Change the attributeName of efList to get the
column ID of the STAFF table. The settings will be:

6. To perform the database query, we must connect
the List DB button to the Multi-row Query. From
the category Web Connection add the part
FormData . Open its settings and enter
ScreenOneWeb in the field pagePart .

7. Connect:
From To

FormData: Multi-rowQuery

event listaDB clicked action executeQueryAsTransaction

See below:

8. Now we can test the application. But first be sure
that the Web Connection Server is started, the
Web Server Interface Monitor is on, and the
Browser (Netscape) is active. If you are stand-
alone, you must configure TCP/IP to use the loop-
back; the local address is 127.0.0.1.

Also, all the setup necessary to have the Web
parts working must be complete. See the Web
Connection installation documentation
(\vast\webconn\server.txt) .

To start the Web Server Interface Monitor, use the
Options/Open Web Server Interface Monitor.

To start the application, enter the command:

See below the result of this input:

When the List DB button is pressed, the List field
will have the IDs from the STAFF table:

The next step is to select one ID (for example, 50)
and press the second button (Call VisualAge
Generator V3.0). Doing this will invoke a VisualAge
Generator application that will be run on the server
(this could be an MVS server) and send the
details.

http://127.0.0.1/cgi-bin/abtwsac.exe/ScreenOneWeb

25

3�Create a VisualAge Generator
application and prepare to pass the
selected ID to the second screen.

Now let’s play with the generator.

1. Create a VisualAge Generator application that will
access the details of the ID received from the first
screen. This application will be named SE01A. It is
a called application and the logic is straightforward.

See below the graphical representation:

The SQL statements are:

SELECT
ID, NAME, DEPT, JOB, YEARS, SALARY, COMM
INTO
:ID, :NAME, :DEPT, :JOB, :YEARS, :SALARY, :COMM
FROM STAFF T1
WHERE ID = :ID

The VisualAge application is ready to be tested.
Now let’s go back to the Web stuff.

To keep the data entered in the Internet screens
persistent in the session (lifetime default is 900
seconds), I recommend creating a nonvisual class
that will hold the data across the Internet screens.
This is optional but useful in applications with
multiple screens. The steps to be performed are:

2. Create a nonvisual class that will hold the data.
Create a new nonvisual part named StaffRecord .
Add the part VAGen Record Part, created in the
previous step, named SE01RSTAFF. Perform a
tear-off attribute of self and promote the attribute
selfOfSE01RSTAFFID data, since the ID must be
used in future connection. This nonvisual part will
be used as an object that will store the data across
the screens on the Internet. See below:

3. From Web Connection category add the part
cgiLinkSession Data . Change its properties,
adding StaffRecord (built in the previous step) in
the field valueClass . See below:

The value 900 (seconds) is the time this data will
be alive when the Internet session is initiated. If
the Internet user will take longer than 900 seconds
to interact with the Browser, it could be increased.

4. From the cgiLinkSessionData, perform a tear-off of
value (StaffRecord) . Perform another tear-off of
self StaffRecord and connect:

See the Composition Editor now:

26

At this point the selected ID is kept in the
cgiLinkSessionData. It is on the instance of the
class StaffRecord, attribute ID data.

When we need the data between screens, we just
drop this part in the class that needs such informa-
tion. This is one of the nice features of these Web
Parts.

5. Now we have to make an action for the button that
Call VisualAge. We will add a part named Page
Wrapper from Category Web Connection. Open
its settings and add to the field pagePart the
second web page named ScreenTwoWeb .

6. Connect from formData the event pbCallVG
clicked to action transferRequest of
pageWrapper:

4�Create the second screen using
VisualAge Web Connection parts
and a VisualAge Generator
application.

Now we have to create the second web page. We will
name it ScreenTwoWeb .

1. Create a new Part named ScreenTwoWeb . It
must be Web Connection part in Part Type. See
below:

2. Go to the ScreenOneWeb part you did before and
make a copy of the cgiSessionLinkData and
paste it on this new Web part. Also tear off the
attributes as shown below. The ID is going to pass
from ScreenOneWeb to this new screen, since it is
kept in that instance.

3. Add the VAGen Record Part named
SE01RSTAFF you did before. Connect from
SE01RStaff attribute ID data to self of
selfOfSE01RSTAFFID data:

4. Add a Form part to the page:

5. Click mouse button 2 to the part SE01W and
select Quick HTML... and self . Many entry fields
will be generated. Do a cleanup and delete the
ones without the word data in their names:

27

6. Using the category VAGen Logic Parts, add the
part VAGen Callable Functions and select the
application SE01A you built before.

Click mouse button 2 on this part and select Build
parameters from definition to generate the
attributes to pass the data.

This application will receive the ID from the record
SE01W and will return the other data. So you must
connect from SE01A attribute SE01W to the
attribute self of SE01W:

7. Add the part CGI Link Request from category
Web Connection. This part will send the event
requestReceived when this page is shown on the
Internet. We then have to connect from
cgiLinkRequest the event requestReceived to the
action execute of SE01A:

The final connections will be:

8. Change the converter of the field salary from
Generic Converter to Decimal Amount .

9. It is time to test now. The first screen is shown.
The user presses the List DB button and gets all
the IDs in the List. The user selects the number 50
and presses the Call VisualAge Generator v 3.0
button:

The second screen is showing and the Test
Monitor is active, since the application SE01A is
executed as soon the request is received. The
VisualAge Test Monitor that is started:

28

The second Web screen is below:

See below the HTML generated:

Conclusion

It is very easy to connect existing VisualAge Generator
Server applications to the Web Browser. That could be
a nice option if users don’t want to write Java clients or
if the solution must be HTML. There are situations
where Java is not acceptable since it requires JDK 1.1
and some browsers still don’t support it.

29

Please check any appropriate boxes:

I’d like to receive future issues of this newsletter. (You need to check this item only if
you have not already responded.)

I’d like more information about Version 3.0.

I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:__

I’m interested in participating in an AD users’ group meeting.

I’m interested in participating in a VisualAge Generator users’ group meeting.

Comment Form

I have a question I’d like to submit for the Question & Answer sec-
tion of this newsletter:

Any comments you’d like to share with us about VisualAge
Generator or about this newsletter? (Include your comments or
concerns about VisualAge Generator’s future directions here.)

Name Title
Company Name
Street Address/P.O. Box
City State/Province
ZIP/Postal Code Country
Phone No. FAX No.

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Are we putting the type of information you want to see in the
newsletter? If not, what would you like to see in the newsletter?

30

Cut or
Fold Along
Line

Cut or
Fold Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-08

G242-0315-08

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
TF6B/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

31

A Question From Us To You
Do you have questions on how to attach individual parts on your windows/forms/dialogs, etc.
so that they look consistent and size appropriately? If so, use the Comment Form in this news-
letter to send us your questions. Then, in future issues of the newsletter we will provide you
with articles on how to perform the various tasks.

The VisualAge Generator Newsletter
This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1997. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, C Set ++, CICS, CICS OS2, Database 2, DB2, DB2/2, IBM, IMS, MQSeries, MVS,
VSE, Operating System/2, OS/2, OS/400, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and JavaBeans are trademarks of Sun Microsystems, Inc.

Lotus Notes is a trademark or registered trademark of Lotus Development Corporation.

ENVY is a trademark of Object Technology International, Inc..

HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, and ActiveX are trademarks or registered trademarks of Microsoft
Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those described
here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These articles are for
information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

