
VisualAge Generator

Migration Guide
Version 4.0

SH23-0267-00

IBM

Note

Before using this document, read the general information under “Notices” on page ix.

First Edition (October 1999)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.0
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.0
v IBM VisualGen Host Services for OS/400 Version 3.1
v IBM VisualGen Host Services for OS/400 Version 3.6
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/vagen

By FAX, use the following number:
v United States and Canada: 919-254-0206
v Other countries: 1-919-254-0206

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 062, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices ix

Trademarks xi

About This Document xiii
Who Should Use This Document xiii
How to Use This Document xiii
Terminology used in this document xiii

Terminology differences between Java and
Smalltalk xiv

Documentation provided with VisualAge
Generator xv

Part 1. Migrating from VAGen 3.x to
VAGen 4.0 on Java 1

Chapter 1. General migration considerations
for VAGen 3.x to Java 3
Migration paths 3
Overview of the V3 to V4 Migration Tool on
Java 4
Automatic conversions during 4.0 migration . 4
Migrating GUIs 5
Migrating applications, subapplications, and
configuration maps 6
Migrating VAGen Templates 7
Establishing naming conventions 8
Assigning ownership 10
Storing control information 10

Generation options 11
Dual maintenance 12
Migrating from OS/2 to Windows NT . . . 12

Chapter 2. Pre-migration checklist 15

Chapter 3. Using the V3 to V4 Migration
Tool to migrate VAGen 3.x code and
VAGen Templates parts to Java 17
Setting V3 to V4 Migration Tool options on
Java 18

Selection Criteria options. 19
Java Naming Convention option 21
Smalltalk Subapplications options 22
Library Management options 23

Ownership options. 24
Selecting and migrating applications and
configuration maps 24
Working with the status log 26
Resetting the V3 to V4 Migration window . . 28
Resetting Migration Status Information . . . 29

Chapter 4. Using VAGen Import to migrate
VAGen 3.x non-GUI code to Java 31

Chapter 5. Completing the ENVY setup on
Java 33

Chapter 6. Completing your migration on
Java 35
Defining control information 35
Generating programs 35
Importing work-in-progress 35
Recreating ITF resource association
information 36
Converting an RTABLE to a Linkage Table . . 36

Part 2. Migrating from VAGen 2.x
or Cross System Product to
VAGen 4.0 on Java 37

Chapter 7. Comparing MSLs and library
management on VAGen 4.0 on Java . . . 39
ENVY characteristics 39
Comparison of MSLs and ENVY 41

Member types 41
Storing members 42
Storing control information 42
MSL concatenation 43
Functional organization 44
Member associations 44

Chapter 8. General migration
considerations for VAGen 2.x and Cross
System Product to Java 47
Migration paths 47
Automatic conversions during 4.0 migration 48
Migrating GUIs 49
Resolving duplicate member names 49

© Copyright IBM Corp. 1997, 1999 iii

Establishing naming conventions 50
Organizing your code for ENVY 52

Functional organization 52
Assigning ownership 53
Storing control information 54

Multiple control packages 54
Single control package 55
Generation options. 56

Dual maintenance 57
Migrating from Cross System Product . . . 57
Migrating from OS/2 to Windows NT . . . 58
Using the migration log file 58

Chapter 9. Pre-migration checklist 59

Chapter 10. The MSL Migration Assistance
Tool on Java 61
Overview of using the MSL Migration
Assistance Tool 62

Building MSL directories 63
Selecting MSLs - using the MSL Library
Selection window 64
Selecting parts for a part list - using the
Part List Selection Criteria View window . 65
Selecting parts to move to ENVY - using
the MSL Migration Part List window . . 67
Working in the sandbox - using the VG
Part Prerequisites View window 70

Reloading previously migrated ENVY
packages back into the MSL Migration
Assistance Tool sandbox 72

Chapter 11. Migrating production and
work-in-progress MSLs to VAGen 4.0 on
Java 75
Production MSLs 76

Techniques for moving parts to the
sandbox 77

Work-in-progress MSLs 80
Using VAGen Import 81
Using the MSL Migration Assistance Tool 82

Chapter 12. VAGen on Java case studies
based on various MSL structures 85
Understanding the diagrams and terminology 85

MSL structure diagrams 85
Advance command in VisualAge
Generator 86

Multiple subsystems with no duplicates. . . 87
Recommendations 87

Multiple subsystems with controlled
duplicates 89

Recommendations 89
Separate production MSLs for each developer 92

Recommendations 93
MSLs that contain unintended duplicates . . 97

Recommendations 98
MSLs containing code from VisualAge
Generator Templates or BW*Wizard 98

Recommendations 100
Special considerations for VisualAge
Generator Templates 102

Complete set of MSLs for production and
deltas for test 102

Recommendations 104
Complete sets of MSLs for test and
production 106

Recommendations 108
MSLs from marketing or other
demonstrations. 111

Recommendations. 112

Chapter 13. Running the MSL Migration
Assistance Tool on Java 115
Starting VisualAge Generator 115
Creating users and setting the current user 116
Collecting your source code 117

From Cross System Product 117
From VisualAge Generator with
TeamConnection and no MSLs 117
From VisualAge Generator MSLs. . . . 117

Handling code page changes 118
Using the HPTRULES.NLS file 118
Changing from OS/2 to Windows NT 119

Starting the MSL Migration Assistance Tool 121
Building MSL directories 121
Resetting the sandbox from ENVY 123
Selecting your MSLs 125
Selecting and migrating VAGen parts . . . 126
Creating a new package. 129
Moving a VAGen part between packages 129
Controlling the creation of package.nodes 130
Renaming a package 131
Collapsing a package 132
Handling Duplicates 132

Controlled Duplicates 133
Unintended Duplicates 133
Duplicates for business logic 136

Finding the package in which a part is
located 137

iv VisualAge Generator: Migration Guide

Listing missing (not found) parts 138
Handling missing (not found) parts 139
Checking relationships among packages . . 140

Determining which programs are
referenced 140
Determining the parts that are referenced 141
Checking consistency of packages . . . 141

Updating the list of required packages . . . 142
Changing the list of required packages 142
Normalizing the list of required packages 143

Deleting a package.node 143
Deleting a package 144

Deleting one package 144
Deleting all packages 145

Committing to ENVY 145

Chapter 14. Using VAGen Import to
migrate VAGen 2.x and Cross System
Product non-GUI code to Java 149

Chapter 15. Completing the ENVY setup
on Java 151
Versioning and releasing a VAGen part class 151
Versioning and releasing a package 152
Versioning a project 153
Creating a Project List Part (PLP) 154
Changing the owner of a project 155
Assigning ownership of a VAGen part class 155

Adding group members 155
Changing the ownership of a VAGen part
class 156

Changing the owner of a package 156

Chapter 16. Completing your migration on
Java 159
Defining control information 159
Generating Programs 160
Importing work-in-progress 161
Migrating VSAM files 163
Converting an RTABLE to a Linkage Table 163

Part 3. Migrating from VAGen 3.x
to VAGen 4.0 on Smalltalk 165

Chapter 17. General migration
considerations for VAGen 3.x to 4.0 on
Smalltalk 167
Migration paths 167

Overview of the V3 to V4 Migration Tool on
Smalltalk. 168
Automatic conversions during 4.0 migration 169
Migrating GUIs 170
Migrating applications, subapplications, and
configuration maps 170
Migrating VAGen Templates 171
Establishing naming conventions. 172
Assigning ownership 173
Using subapplications 173
Storing control information 173
Dual maintenance. 173
Migrating from OS/2 to Windows NT . . . 174

Chapter 18. Pre-migration checklist . . . 175

Chapter 19. Using the V3 to V4 Migration
Tool to migrate VAGen 3.x code and
VAGen Templates parts on Smalltalk . . 177
Setting V3 to V4 Migration Tool options on
Smalltalk. 178

Selection Criteria options 179
Library Management options 181
Ownership options 182

Selecting and migrating applications and
configuration maps 183
Working with the status log 185
Resetting the V3 to V4 Migration window 187
Resetting Migration Status Information . . 188

Chapter 20. Using VAGen Import to
migrate VAGen 3.x non-GUI code to
Smalltalk 189

Chapter 21. Completing the ENVY setup
on Smalltalk 191
Versioning and releasing a view or a VAGen
part class 191
Versioning an application 192
Creating a configuration map 193

Adding a required map to a configuration
map 194
Versioning a configuration map 195
Changing the manager of a configuration
map 195
Testing a configuration map 196

Assigning ownership of a VAGen part class 196
Adding group members 196
Changing the ownership of a VAGen part
class 197

Contents v

Changing the manager of an application . . 197

Chapter 22. Completing your migration on
Smalltalk 199
Defining control information 199
Generating programs 199
Importing work-in-progress 199
Recreating ITF resource association
information 200
Converting an RTABLE to a Linkage Table 200

Part 4. Migrating from VAGen 2.x
or Cross System Product to
VAGen 4.0 on Smalltalk 203

Chapter 23. Comparing MSLs and ENVY
on VAGen 4.0 on Smalltalk 207
ENVY characteristics 207
Comparison of MSLs and ENVY 209

Member types 209
Storing members 210
Storing control information 210
MSL concatenation 211
Functional organization 212
Member associations 212

Chapter 24. General migration
considerations for VAGen 2.x and Cross
System Product to Smalltalk 215
Migration paths 215
Automatic conversions during 4.0 migration 216
Resolving duplicate member names. . . . 217
Establishing naming conventions. 217
Organizing your code for ENVY 219
Assigning ownership 220
Using subapplications 221
Storing control information 223

Multiple control applications 223
Single control application 224
Generation options 225

Using configuration maps 225
Migrating GUIs 226

Conversion of GUIs to VisualAge
Generator 4.0 228

Dual maintenance. 235
Migrating from Cross System Product . . . 236
Migrating from OS/2 to Windows NT . . . 237
Using the migration log file 237

Chapter 25. Pre-migration checklist . . . 239

Chapter 26. The MSL Migration
Assistance Tool on Smalltalk 241
Overview of using the MSL Migration
Assistance Tool 242

Building MSL directories 243
Selecting MSLs - using the MSL Library
Selection window 244
Selecting parts for a part list - using the
Part List Selection Criteria View window . 245
Selecting parts to move to ENVY - using
the MSL Migration Part List window . . 246
Working in the sandbox - using the VG
Part Prerequisites View window 250

Resetting the MSL Migration Assistance Tool
sandbox 252

Chapter 27. Migrating production and
work-in-progress MSLs to VAGen 4.0 on
Smalltalk 255
Production MSLs 256

Techniques for moving parts to the
sandbox 257

Work-in-progress MSLs 261
Using VAGen Import 263
Using the MSL Migration Assistance Tool 264

Chapter 28. VAGen on Smalltalk case
studies based on various MSL structures . 265
Understanding the diagrams and
terminology. 265

MSL structure diagrams. 265
Advance command in VisualAge
Generator 266

Multiple subsystems with no duplicates . . 267
Recommendations 267

Multiple subsystems with controlled
duplicates 269

Recommendations 269
Separate production MSLs for each
developer 272

Recommendations 273
MSLs that contain unintended duplicates 277

Recommendations 278
MSLs containing code from VisualAge
Generator Templates or BW*Wizard. . . . 278

Recommendations 280
Special considerations for VisualAge
Generator Templates 282

vi VisualAge Generator: Migration Guide

Complete set of MSLs for production and
deltas for test 282

Recommendations 284
Complete sets of MSLs for test and
production 285

Recommendations 287
MSLs from marketing or other
demonstrations 289

Recommendations 290

Chapter 29. Running the MSL Migration
Assistance Tool on Smalltalk 293
Starting VisualAge Generator 293
Creating users and setting the current user 294
Loading a feature 295
Collecting your source code 296

From Cross System Product 296
From VisualAge Generator with
TeamConnection and no MSLs 296
From VisualAge Generator MSLs . . . 297

Handling code page changes 297
Using the HPTRULES.NLS file 297
Changing from OS/2 to Windows NT 298

Starting the MSL Migration Assistance Tool 300
Building MSL directories 300
Resetting the sandbox from ENVY 302
Selecting your MSLs 304
Selecting and migrating VAGen parts . . . 305
Creating a new application. 308
Moving a VAGen part between applications 308
Controlling the creation of ApplicationNodes 310
Renaming an application 311
Collapsing an application 311
Handling Duplicates 312

Controlled Duplicates 312
Unintended Duplicates 313
Duplicates for business logic 315

Finding the application in which a part is
located 316
Listing missing (not found) parts 317
Handling missing (not found) parts 318
Checking relationships among applications 319

Determining which programs are
referenced 319
Determining the parts that are referenced 320
Checking consistency of applications . . 321

Updating the list of required applications 321
Changing the list of required applications 322
Normalizing the list of required
applications 322

Deleting an ApplicationNode 323
Deleting an application 324

Deleting one application 324
Deleting all applications 324

Committing to ENVY 325

Chapter 30. Using VAGen Import to
migrate VAGen 2.x and Cross System
Product code to Smalltalk 329

Chapter 31. Completing the ENVY setup
on Smalltalk 331
Versioning and releasing a view or a VAGen
part class 331
Versioning an application 332
Creating a configuration map 333

Adding a required map to a configuration
map 334
Versioning a configuration map 335
Changing the manager of a configuration
map 335
Testing a configuration map 335

Assigning ownership of a VAGen part class 336
Adding group members 336
Changing the ownership of a VAGen part
class 336

Changing the manager of an application . . 337

Chapter 32. Completing your migration on
Smalltalk 339
Defining control information 339
Generating programs and packaging views 340
Importing work-in-progress 341
Migrating VSAM files 343
Converting an RTABLE to a Linkage Table 344

Chapter 33. Hints and tips on Smalltalk 345
System Transcript Window. 345
VisualAge Organizer window. 345

VAGen Parts Browser window 345
Refreshing the MSL Migration Assistance
Tool 346

Part 5. Sharing VAGen 4.0 parts
between Java and Smalltalk . . . 349

Chapter 34. Sharing VAGen 4.0 parts
between Java and Smalltalk 351
Moving 4GL parts from Java to Smalltalk 351

Contents vii

Moving 4GL parts from Smalltalk to Java 352

Chapter 35. Sharing VAGen Templates 4.0
specifications between Java and
Smalltalk 355
Moving VisualAge Generator Templates
specifications from Java to Smalltalk . . . 355
Moving VisualAge Generator Templates
specifications from Smalltalk to Java . . . 357

Part 6. Appendixes 359

Appendix A. Name changes for parts and
part classes 361

Appendix B. Planning for Migrating Cross
System Product MSLs to ENVY 365
Collecting Information about Your
Environment 365
Collecting Information before Migration . . 378
Contact List 379

Appendix C. Planning for Migrating
VAGen MSLs to ENVY. 381
Collecting Information about Your
Environment 381

Collecting Information before Migration . . 392
Contact List 393

Appendix D. Notes on Cross System
Product migrations 395
Running Cross System Product applications
with VisualAge Generator Server for
workstation platforms 395
Updated Chapter 8, CSP/370RS 1.1 to
VisualAge Generator Server for MVS, VSE,
and VM 396

Installation considerations 396
Procedures 396
Upward compatibility — generating
applications, tables, and map groups
again 397
Error routines 397
Defining PSBs 397
User messages 397

Glossary 399

Index 411

viii VisualAge Generator: Migration Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1997, 1999 ix

x VisualAge Generator: Migration Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries:

AD/Cycle
AIX
AS/400
C Set ++
C/370
CICS
CICS/ESA
CICS for MVS/ESA
CICS for OS/2
CICS for VSE/ESA
CICS for AIX
COBOL/370
COBOL/400
DB2
DB2/VSE
DB2/2
DB2/400
DB2/6000
IBM
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
Operating System/2
OS/2
OS/400
PROFS
RACF
SAA
SQL/DS
SQL/400
TeamConnection
Virtual Machine/Enterprise Systems Architecture
VisualGen
VisualAge
VM
VM/ESA
VTAM

© Copyright IBM Corp. 1997, 1999 xi

The following terms are trademarks or products of other companies:

Acrobat Adobe Systems Incorporated

Adobe Adobe Systems Incorporated

C++ American Telephone & Telegraph Company

ENVY Object Technology International Inc.

HP-UX Hewlett-Packard Company

Lotus Notes Lotus Development Corporation

Solaris Sun Microsystems, Inc.

BW*Wizard is a product of Bridgewater Consultants, Inc. It is protected under
US copyright laws and can be used only under a license from Bridgewater
Consultants, Inc.

Solaris, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and/or
other countries.

Microsoft, Windows, Windows NT and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

xii VisualAge Generator: Migration Guide

About This Document

This document provides information needed to migrate to VisualAge
Generator 4.0 on Smalltalk and VisualAge Generator 4.0 on Java from
VisualAge Generator 3.x, VisualAge Generator 2.x, and Cross System Product.

Who Should Use This Document

This document assumes knowledge either of Cross System Product or of
VisualAge Generator releases prior to 4.0. It also assumes some knowledge of
ENVY.

This document is intended for use by team leads, Cross System Product or
VisualAge Generator administrators, or other developers responsible for
migrating applications to VisualAge Generator 4.0.

Note: Before you migrate, you might want to contact your local IBM
representative to learn more about VisualAge Generator service
offerings and how they can help you with migration.

How to Use This Document

This document is organized according to migration scenarios. Each part
includes all the information needed to migrate from a previous product to
VisualAge Generator 4.0. You only need to read the part that applies to your
current development product and your choice of VisualAge Generator 4.0
platform. It is recommended that you read the migration considerations and
pre-migration checklist before starting your migration.

Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.
v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for

AIX, CICS for Windows NT, and CICS for Solaris.
v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.

© Copyright IBM Corp. 1997, 1999 xiii

v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to
message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:
– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.
v References to VM batch apply to any batch facility running on VM.
v Windows applies to Windows 95, Windows 98, and Windows NT.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.
v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal

Database (UDB) for AIX Version 5.

Terminology differences between Java and Smalltalk
VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

xiv VisualAge Generator: Migration Guide

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

Documentation provided with VisualAge Generator

The documents are provided in one or more of the following formats:
v Printed and separately ordered using the individual form number.
v Printed and ordered as a set using the bill of forms number or the

document kit number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM and from the VisualAge

Generator web page (http://www.ibm.com/software/vagen).

The following books are shipped with the VisualAge Generator CD and are
included in the set you order when you use the single bill of forms
(SBOF-6728):
v VisualAge Generator Getting Started (GH23-0258-00) 1

v VisualAge Generator Installation Guide (GH23-0257-00) 1

v Introducing VisualAge Generator Templates (GH23-0272-00)

The following documents can be ordered as a set using the bill of forms
number (SBOF-6728) or the document kit number, or separately using the
individual order numbers.
v VisualAge Generator User’s Guide (SH23-0268-00) 1

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Client/Server Communications Guide (SH23-0261-00) 1

v VisualAge Generator Generation Guide (SH23-0263-00) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-00) 1

1. These documents are available as HTML files and PDF files on the product CD.

2. This document is included when you order the VisualAge Generator Server product CD.

About This Document xv

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-00) 1,2

v VisualAge Generator Programmer’s Reference (SH23-0262-00) 1

v VisualAge Generator System Development Guide (SG24-5467-00) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Templates User’s Guide - Standard Functions
(SH23-0269-00)

The following hardcopy documents are available in printed form for
VisualGen Host Services for OS/400 and VisualAge Generator Server for
MVS, VSE, and VM:
v Running VisualGen Applications on OS/400 (SH23-6549-01)
v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00)

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-00)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates on Java—Reference Guide (SH23-0271-00)
v VisualAge Generator Templates on Smalltalk—Reference Guide (SH23-0276-00)

xvi VisualAge Generator: Migration Guide

Part 1. Migrating from VAGen 3.x to VAGen 4.0 on Java

Chapter 1. General migration considerations
for VAGen 3.x to Java 3
Migration paths 3
Overview of the V3 to V4 Migration Tool on
Java 4
Automatic conversions during 4.0 migration . 4
Migrating GUIs 5
Migrating applications, subapplications, and
configuration maps 6
Migrating VAGen Templates 7
Establishing naming conventions 8
Assigning ownership 10
Storing control information 10

Generation options 11
/PROJECT generation option 11
Project List Part 11

Dual maintenance 12
Migrating from OS/2 to Windows NT . . . 12

Chapter 2. Pre-migration checklist 15

Chapter 3. Using the V3 to V4 Migration
Tool to migrate VAGen 3.x code and
VAGen Templates parts to Java 17
Setting V3 to V4 Migration Tool options on
Java 18

Selection Criteria options. 19
Java Naming Convention option 21
Smalltalk Subapplications options 22
Library Management options 23
Ownership options. 24

Selecting and migrating applications and
configuration maps 24
Working with the status log 26
Resetting the V3 to V4 Migration window . . 28
Resetting Migration Status Information . . . 29

Chapter 4. Using VAGen Import to migrate
VAGen 3.x non-GUI code to Java 31

Chapter 5. Completing the ENVY setup on
Java 33

Chapter 6. Completing your migration on
Java 35
Defining control information 35
Generating programs 35
Importing work-in-progress 35
Recreating ITF resource association
information 36
Converting an RTABLE to a Linkage Table . . 36

© Copyright IBM Corp. 1997, 1999 1

2 VisualAge Generator: Migration Guide

Chapter 1. General migration considerations for VAGen 3.x
to Java

Consider the following if you are migrating from VisualAge Generator 3.x to
VisualAge Generator 4.0 on Java:
v “Migration paths”
v “Overview of the V3 to V4 Migration Tool on Java” on page 4
v “Automatic conversions during 4.0 migration” on page 4
v “Migrating GUIs” on page 5
v “Migrating applications, subapplications, and configuration maps” on

page 6
v “Migrating VAGen Templates” on page 7
v “Establishing naming conventions” on page 8
v “Assigning ownership” on page 10
v “Storing control information” on page 10
v “Generation options” on page 11
v “Dual maintenance” on page 12
v “Migrating from OS/2 to Windows NT” on page 12

Also see “Chapter 2. Pre-migration checklist” on page 15 before you begin to
migrate code to VisualAge Generator 4.0.

Migration paths

Depending on your current platform and whether you want to migrate to
Smalltalk, Java, or both, different migration paths are available and different
considerations apply.

Table 2 on page 4 gives a brief overview of the migration options available for
the Java platform. See the referenced chapters for step-by-step procedures for
each migration option.

© Copyright IBM Corp. 1997, 1999 3

Table 2. Migration Options

Migrating from Tools to Use Details on Using the Tools

VisualAge Generator 3.x
(non-GUI)

v V3 to V4 Migration Tool

v VAGen Import

v “Chapter 3. Using the V3
to V4 Migration Tool to
migrate VAGen 3.x code
and VAGen Templates
parts to Java” on page 17

v “Chapter 4. Using
VAGen Import to
migrate VAGen 3.x
non-GUI code to Java”
on page 31

VisualAge Generator
Templates 3.x (non-GUI)

V3 to V4 Migration Tool “Chapter 3. Using the V3 to
V4 Migration Tool to
migrate VAGen 3.x code
and VAGen Templates
parts to Java” on page 17

VisualAge Generator 3.x
(GUI)

No tool available Recreate parts on Java
platform

VisualAge Generator 4.0 on
Smalltalk parts (non-GUI)

VAGen Import “Chapter 34. Sharing
VAGen 4.0 parts between
Java and Smalltalk” on
page 351

Overview of the V3 to V4 Migration Tool on Java

The V3 to V4 Migration Tool on Java does the following:
v Migrates versioned configuration maps or applications from VisualAge

Generator 3.x on Smalltalk
v Sets flags in the 3.x Smalltalk library to indicate what has been migrated
v Provides special handling for required maps, prerequisite applications, and

subapplications because these objects have no corresponding object in Java
v Provides options to control configuration map or application selections,

project and package naming conventions, and version, release, and
ownership information.

Automatic conversions during 4.0 migration

VisualAge Generator 4.0 automatically makes the following changes to your
applications during migration:
v Process and statement group parts are converted to function parts.
v References to processes and statement groups are converted to the new

syntax requirements for functions with no parameters.

4 VisualAge Generator: Migration Guide

v PERFORM statements and Unconditional Branch statements are no longer
supported and are migrated to Function Invocation statements.

v Subscript parentheses are changed to brackets in VisualAge Generator item
names in the following places:
– 4GL statements in functions (processes and statement groups)
– Host variable names in SQL statements
– Comparison value item in DL/I specifications
– EZEDLPCB is used in a called parameter list

v Calls to EZE service routines are converted to the corresponding function
invocation statement. A statement to set the value of EZEREPLY is also
added before the function invocation.

v VisualAge Generator-supplied string and math functions are converted
from the CALL statement to a function invocation statement or to an
assignment statement that contains the function as the source of the
assignment. A statement to set the value of EZEREPLY is also added before
the function invocation.

VisualAge Generator Templates 4.0 automatically makes the following changes
to your applications during migration:
v Definition and Generation Parameters of a VAGT instance are stored in

two different VAGTemplates part classes. (In version 3.x, these two types of
descriptions are stored in the same VAGTemplates part class.)

v Definition Extensions for all VAGT entities are stored in an appropriate
VAGTemplates part class. (In version 3.x, they are stored in the same
VAGTemplates part class as all the instances of the same VAGT entity type.)

In addition, the names of part classes, control information files, and VisualAge
Generator palette parts are changed during migration to VisualAge Generator
4.0:
v Table 20 on page 361 shows the changes made to VAGen part class names

during 4.0 migration.
v Table 21 on page 361 shows the changes made to VAGen control

information part class names during 4.0 migration.
v Table 22 on page 362 shows the changes made to VisualAge Generator

palette parts names during 4.0 migration.
v Table 23 on page 362 shows the changes made to VAGen Templates part

class names and repartition during 4.0 migration.

Migrating GUIs

VisualAge Generator 4.0 does not provide a way to migrate existing GUI parts
to the Java platform. You need to recreate your GUI parts for Java.

Chapter 1. General migration considerations for VAGen 3.x to Java 5

Migrating applications, subapplications, and configuration maps

The basic containers for storing code are different on Java and Smalltalk:
v What the Smalltalk platform refers to as applications are called packages

on Java.
v A VisualAge Generator on Smalltalk configuration map is similar to a

project on Java. Though configuration maps are optional on Smalltalk,
every Java package must be assigned to a project.

When you use the V3 to V4 Migration Tool, applications are automatically
converted to packages, and you must specify the names to assign to the Java
projects created by the tool. Subapplications are always migrated when the
containing application is migrated. Subapplications can be placed in separate
packages or in the package created for the parent application depending on
your migration options. Prerequisite applications and required maps are
migrated depending on your migration options and whether there are
multiple configuration expressions.

If you do not use the V3 to V4 Migration Tool, you must do the following:
v Plan how to organize your code
v Export external source format files from VisualAge Generator 3.x. Generally

it is best to use one .esf file for each package you plan to create.
v Manually create the projects and packages for each .esf file
v Import the .esf files, specifying the package names
v Version and release classes, packages and projects

Before you start migrating, you need to decide on a naming convention,
ownership structure, and versioning scheme for the packages and projects that
are created during migration. Using the V3 to V4 Migration Tool’s Migration
Options window, you can set defaults that the V3 to V4 Migration Tool then
uses during migration to automatically convert application names, version
numbers and ownership assignments.

While it is possible to create a project and package for each existing program,
you probably have logically grouped existing applications using prerequisites,
subapplications, and configuration maps. With VisualAge Generator on Java,
you cannot use prerequisites, subapplications or required maps. Instead, you
must ensure that you load all required packages before running a package
with prerequisites.

Note: You cannot load two projects at the same time that contain the same
package.

With VisualAge Generator on Java, you can either organize your code so that
all packages needed to run together are in the same project or you can create

6 VisualAge Generator: Migration Guide

separate projects and then create a list of projects that must run together in a
project list part (PLP). For more information about PLPs, see “Generation
options” on page 11.

Migrating VAGen Templates

The following table outlines considerations that apply when you select VAGen
Templates for migration using the V3 to V4 Migration Tool:

Table 3. VAGen Template Migration to VisualAge Generator 4.0 on Java

VisualAge Generator 3.x VisualAge Generator 4.0 on Java

Standard Generators The standard generators from VAGen
Templates 3.x are not migrated. They have
been rewritten for VisualAge Generator 4.0
on Java to make use of the new functions
and to provide Java GUI generators.

Customized Generators Your customized generators from VAGen
Templates 3.x are not migrated. You must
reapply your customization to the new
standard generators for VisualAge
Generator 4.0 on Java.

Specifications The VAGen Templates specifications are
migrated automatically by the V3 to V4
Migration Tool. If you want to make use
of any of the new functions in the new
generators, you can migrate your
specifications and then regenerate using
the new generators. For example, you
could use the migrated specification for a
GUI and regenerate it using the Java GUI
generators. In addition, you could
generate using a migrated specification
and one of the new Web generators.

Chapter 1. General migration considerations for VAGen 3.x to Java 7

Table 3. VAGen Template Migration to VisualAge Generator 4.0 on Java (continued)

VisualAge Generator 3.x VisualAge Generator 4.0 on Java

VAGen Templates-generated 4GL code The 4GL code generated by VAGen
Templates 3.x migrates like any other 4GL
code. The VAGen Templates generated
components include “traceability”
information that is used only by VAGen
Templates. This information is migrated
automatically by the V3 to V4 Migration
Tool. After migrating, the 4GL code is
ready to be used. Your custom business
logic is already incorporated and reacts as
a brand new one. This means that you just
need to generate the 4GL code using the
’normal’ generation option. (The ’override’
option would erase your custom business
logic.)

VAGen Templates-generated GUI code The GUIs generated by VAGen Templates
3.x cannot be migrated. However, you
could use the migrated specification for a
GUI and regenerate it using the Java GUI
generators. You would then need to create
the Java equivalent of any Smalltalk
business logic you had written in version
3.x. Custom business logic will need to be
reapplied after generation with the new
4.0 templates.

Establishing naming conventions

You probably already have naming conventions for parts like processes,
records, data items, and so on that you are migrating from VisualAge
Generator 3.x. You can continue to use your existing naming conventions,
because VisualAge Generator 4.0 retains existing part names during
migrations from VisualAge Generator 3.x.

However, VisualAge Generator does change some existing part types, as well
as making some syntax conversions. For example, process parts and statement
group parts are both changed to function parts. Therefore, you might want to
establish a naming convention for function parts that is similar to your
conventions for processes and statement groups.

See “Automatic conversions during 4.0 migration” on page 4 for a list of
changes that VisualAge Generator makes to your existing code during
migration.

8 VisualAge Generator: Migration Guide

When you use the V3 to V4 Migration Tool to migrate applications with part
types that are changed during migration, you can decide whether the
migrated projects and packages are automatically versioned and released
during migration. See “Setting V3 to V4 Migration Tool options on Java” on
page 18 for more information.

You need to establish naming conventions for the new package and project
objects that you must create in Java for your migrated code. Your naming
conventions might include the following:
v A unique prefix (possibly three characters) so that all of your packages will

be grouped together in the VisualAge on Java workspace. For example, you
might choose to prefix all your packages with a company prefix of xyz.
If more than one grouping of packages exists within a single project, each
group of packages could have a different secondary prefix. You can use
Java dot notation to include your global prefix as well as the secondary
prefix for each group.
For example, if you have an Accounting system and a Payroll system, you
could use your company prefix of xyz and then add a secondary prefix of
acct for the Accounting system and pay for the Payroll system. When your
packages are all loaded into your VisualAge workspace, they would appear
in this order:

xyz.acct.pkg1
xyz.acct.pkg2
xyz.pay.pkg1
xyz.pay.pkg2

As an alternative, you could leave off the company prefix and create
first-level prefixes that describe the tasks performed by the packages. Using
prefixes that start with different letters can be an advantage, because some
VisualAge windows allow you to enter one letter to quickly tab to the
group of packages that start with that letter.

v Unique version names to distinguish the existing applications from the
migrated packages. You can use the V3 to V4 Migration Tool to set defaults
for how the migrated packages will be versioned during migration. See
“Setting V3 to V4 Migration Tool options on Java” on page 18 for more
information.

In addition to your company-unique naming conventions, there are some
general Java naming conventions that you need to follow:
v Java expects package names to be in lowercase characters. When you select

the Java naming convention check box in the Options window of the V3 to
V4 Migration Tool, the tool automatically converts application names to all
lowercase characters.
When your migration selections are displayed in the V3 to V4 Migration
window, you can change any of the proposed package names created by

Chapter 1. General migration considerations for VAGen 3.x to Java 9

the V3 to V4 Migration Tool by typing over the name. If you change a
package name to include any uppercase letters, you will get a warning
message the first time the V3 to V4 Migration Tool begins to migrate a
package with a mixed-case name. However, you can manually override the
error message and use a mixed-case name without further errors. If you
check the box Do not show this message again in the warning window, the
warning is only shown for the first migrated package with a mixed-case
name.

v Java uses “dot notation” for package names. As part of the conversion to
Java conventions, when you select the Java naming convention check box
in the Options window, the V3 to V4 Migration Tool adds a period to the
left of each character (except the first) that it changes from uppercase to
lowercase during the migration. For example, if an existing application is
named XYZpayrollAppl, the converted package is named x.y.zpayroll.appl.
Some common acronyms are automatically preserved as acronyms, with
only one period at the end of the acronym. The acronyms that the V3 to V4
Migration Tool preserves are:

AIX HP RACF
CICS IBM SAA
COBOL IMS SQL
CSP ITF ST
DB MSL US
DLI MVS VM
ENVY OS VTAM
EZE PROFS

For example, if an existing application is named CSPwidgetClose, the
converted package is named csp.widget.close. If an existing application is
named USBpayApp, the converted package is named us.bpay.app.

Assigning ownership

Using the V3 to V4 Migration Tool, you can decide whether you want to
retain the existing ownership structure for applications and configuration
maps. When you set the V3 to V4 Migration Tool options, you can choose to
maintain the existing ownership structure or change the ownership to the
current user. See “Ownership options” on page 24 for more information.

Storing control information

Control information consists of generation option, linkage table, resource
association, bind control, and link edit command parts. In VisualAge
Generator 3.x, the control information is stored in ENVY parts. When you
migrate to 4.0 on Java, the control information is preserved.

10 VisualAge Generator: Migration Guide

Generation options
VisualAge Generator 3.x generation option parts are migrated like all other
VisualAge Generator 3.x parts. No special considerations apply.

/PROJECT generation option
A new /PROJECT option for the GENERATE command is available for
VisualAge Generator 4.0 on Java. Using /PROJECT, you can generate C++
and COBOL from VisualAge Generator parts stored in the Java repository.
Multiple /PROJECT options can be specified on the same GENERATE
command. For example, this command causes both My Project and Your
Project to be loaded:
hptcmd generate MYPROG /PROJECT="My Project","Version 1.0"
/PROJECT="Your Project","Version 29.5" ...

Note: You cannot use /PROJECT for two projects specified on the same
GENERATE command that contain packages with the same name.

See the VisualAge Generator Generation Guide for more information about the
/PROJECT option.

Project List Part
VisualAge Generator on Java also offers a new project list part (PLP). The PLP
is a generation options part in which you specify a list of projects to be loaded
prior to loading the project containing the PLP. You can specify the list of
projects once in the PLP part and maintain the list in only this one place. The
PLP eliminates the need to specify all related projects each time the projects
are loaded. You can create a PLP for each group of projects that you want to
load together. The PLP is a replacement for required maps in VisualAge
Generator on Smalltalk.

When you select the Select with required maps check box on the Migration
Options window and then select a top-level configuration map for migration,
the V3 to V4 Migration Tool creates PLPs automatically for each
corresponding project that has required projects. For example, suppose you
have the following scenario:
v The top-level configuration map is named map1, and it requires map2.
v map2 requires map3.

When you select map1 for migration after setting the Select with required
maps option, the V3 to V4 Migration Tool loads all three configuration maps
into the V3 to V4 Migration window. When you then select the Migrate
button, the tool migrates the three configuration maps into projects map1,
map2, and map3 respectively.

During migration, the V3 to V4 Migration Tool creates a default package in
map1 with a generation options part that contains the statement

Chapter 1. General migration considerations for VAGen 3.x to Java 11

/PROJECT="map2". The V3 to V4 Migration Tool also creates a default package
in map2 with a PLP options part that contains the statement /PROJECT="map3".
When map3 is created, there is no PLP because there are no required maps for
map3 — it is the end node of the old map structure.

If you select Auto version and release on the Migration Options window, the
version name is added as a second parameter in each /PROJECT entry of the
PLP.

See “Creating a Project List Part (PLP)” on page 154 and the VisualAge
Generator User’s Guide for information on how to create project list parts.

Dual maintenance

The external source format file for 4GL parts that you export from VisualAge
Generator 4.0 is not compatible with the external source format file for
VisualAge Generator 3.x. Therefore, if you migrate a subsystem that shares
common parts with a subsystem that you will migrate at a later time, you
have the following alternatives for maintenance of the common parts:
1. Maintain the common parts in VisualAge Generator 3.x, and when you are

satisfied with the changes:
a. Export an external source format file from the 3.x application for the

changed parts.
b. Import the external source format file into VisualAge Generator 4.0 on

Java using the Defined package radio button so the changes will go
into the same package in which the parts are already located.

2. Make the same changes to both the parts in VisualAge Generator 4.0 on
Java using VisualAge Generator 4.0 and to the corresponding 3.x parts
using VisualAge Generator 3.x.

For GUIs (views), you must make the changes in the corresponding views in
VisualAge Generator 4.0 on Java and in VisualAge Generator 3.x on Smalltalk.
This is because GUIs cannot be migrated from Smalltalk to Java.

Migrating from OS/2 to Windows NT

Note: If you use a DBCS code page, skip this section. Code page conversion
is not required for DBCS code pages.

If you are changing from the OS/2 to the Windows NT development
platform, do the following:

12 VisualAge Generator: Migration Guide

v Using VisualAge Generator 3.x on the OS/2 development platform, create a
test application containing one process or statement group. In this process
or statement group, as comment lines, include all the special characters that
you use. Version the test application.

v Migrate the test application using the V3 to V4 Migration Tool to the
Windows NT development platform.

v If all the special characters were transferred correctly, you can use the V3 to
V4 Migration Tool to do your migration.

v If some of the special characters were not transferred correctly, you must
use VAGen Import to migrate your code. See the following sections:
– “Chapter 4. Using VAGen Import to migrate VAGen 3.x non-GUI code to

Java” on page 31
– “Changing from OS/2 to Windows NT” on page 119

If you plan to use VAGen Import to migrate your code, you can run a similar
test using VAGen Import instead of the V3 to V4 Migration Tool to determine
whether you can skip the code page conversion step described in “Changing
from OS/2 to Windows NT” on page 119.

Chapter 1. General migration considerations for VAGen 3.x to Java 13

14 VisualAge Generator: Migration Guide

Chapter 2. Pre-migration checklist
1. Before you migrate, you should first read the following:
v “Chapter 1. General migration considerations for VAGen 3.x to Java” on

page 3
v “Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x

code and VAGen Templates parts to Java” on page 17
v VisualAge Generator 4.0 readme file

2. Save a clean copy of your VisualAge for Java workspace. This clean copy
should not contain any of your application code. Copy ide.icx to
ideclean.icx, and store the clean copy on your LAN so that all developers
have access to it. Saving copies of the hpt.ini, hptvgj40.ini, ide.ini, and ivj.dat
files is also recommended.

3. Check with IBM support to see if there are any fixes available for the
VisualAge Generator 4.0 V3 to V4 Migration Tool.

4. Contact your local IBM representative to learn more about VisualAge
Generator service offerings that can help you with migration.

5. Be sure that the configuration maps and applications that you plan to
migrate have been versioned on VisualAge Generator 3.x.

© Copyright IBM Corp. 1997, 1999 15

16 VisualAge Generator: Migration Guide

Chapter 3. Using the V3 to V4 Migration Tool to migrate
VAGen 3.x code and VAGen Templates parts to Java

VisualAge Generator 4.0 on Java includes a V3 to V4 Migration Tool for
migrating 3.x code and VAGen Templates parts to 4.0. The V3 to V4 Migration
Tool allows you to migrate applications and configuration maps from your 3.x
ENVY library to VisualAge Generator 4.0 on Java, using options that apply
across migration operations. You can change the options as needed. For
example, you can set options that apply for one group of applications and
configuration maps, migrate that group, and then set different options for the
next group to be migrated.

Note: The V3 to V4 Migration Tool migrates only non-GUI code to VisualAge
Generator 4.0 on Java. Because GUI migration to Java is not supported,
GUI parts are ignored when applications are selected for migration.

Use these steps to start the V3 to V4 Migration Tool:
1. From the IBM VisualAge Generator 4.0 folder, select VAGen Developer 4.0

on Java with Migration.
2. From the VisualAge for Java workspace, select Workspace->Open VAGen

Parts Browser. The VAGen Parts Browser window is displayed.
3. From the VAGen Parts Browser window, select Tools->Migration->V3 to

V4 Migration. The main V3 to V4 Migration Tool window, called V3 to V4
Migration, is displayed.

Figure 1 shows the V3 to V4 Migration window.

Figure 1. V3 to V4 Migration window

© Copyright IBM Corp. 1997, 1999 17

Note: You must start VisualAge Generator 4.0 on Java using the VAGen
Developer 4.0 on Java with Migration option for the migration tools to
be loaded in your workspace. After you have finished migrating all
your 3.x code, you can start VisualAge Generator 4.0 without the
migration tools to save memory and increase performance.

You can also start VisualAge Generator 4.0 with the V3 to V4 Migration Tool
from a command line, using these steps:
1. Open a command line window to the directory where the VisualAge

Generator 4.0 ide.icx file is stored, and enter the command ide /vgmig.
(Note the blank space after ide.)

2. From the Log window, select Workspace->Open VAGen Parts Browser.
The VAGen Parts Browser window is displayed.

3. From the VAGen Parts Browser window, select Tools->Migration->V3 to
V4 Migration. The main V3 to V4 Migration Tool window, called V3 to V4
Migration, is displayed.

From the V3 to V4 Migration window, you can perform the following tasks:
v Set migration options
v Select and migrate configuration maps and applications
v View and work with the status log
v Reset the V3 to V4 Migration window

These tasks are described in the following sections.

Setting V3 to V4 Migration Tool options on Java

The V3 to V4 Migration Tool allows you to set migration options that can be
applied for all applications and configuration maps that you later select for
migration.

When you select applications and configuration maps to be migrated to
VisualAge Generator 4.0, the V3 to V4 Migration Tool uses some of the
options you set in the Migration Options window to display the applications
and configuration maps that are available for migration. Other options are
used during the migration for versioning and ownership assignment. You can
migrate one group of applications or configuration maps using one set of
options, and then change the options before migrating another group.

To access the Migration Options window from the V3 to V4 Migration
window, select the Options push button.

Figure 2 on page 19 shows the Migration Options window.

18 VisualAge Generator: Migration Guide

In the Migration Options window, you can set defaults that are applied to all
applications and configuration maps you later select for migration. The
Migration Options window is divided into groups of options. These option
groups are described in the following sections.

Selection Criteria options
The Selection Criteria options allow you to specify options that aid in
application and configuration map selection when you later select Select
Applications or Select Config Maps from the V3 to V4 Migration window.

Figure 2. Migration Options window

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 19

Table 4. Selection criteria migration options

Option Migration processing

Specify name filter Allows you to use a naming convention to
select a group of applications or
configuration maps for migration. When
this box is checked, the Filter prompter
window is displayed each time you later
select the Select Applications and Select
Config Maps push buttons on the V3 to
V4 Migration window.

Select most recent application version With this box checked, when you later
select an application for migration, the
most recent version is automatically
selected for you.

Select with required maps With this box checked, when you later
select a configuration map for migration,
all the required configuration maps for
your selected configuration map are
automatically loaded into the V3 to V4
Migration Tool along with your selected
configuration map.
Note: If a configuration map has more
than one configuration expression,
VisualAge Generator 4.0 on Java cannot
determine which configuration expression
to use. In this case, no required maps are
loaded and a warning message is written
to the V3 to V4 Migration Tool’s status
log.

20 VisualAge Generator: Migration Guide

Table 4. Selection criteria migration options (continued)

Option Migration processing

Select with application prerequisites With this box checked, when you later
select an application for migration, all the
user-created prerequisite applications that
could contain VAGen parts are
automatically loaded into the V3 to V4
Migration Tool along with your selected
application. If more than one version of a
prerequisite application is available, when
you later select an application for
migration, you will be prompted to select
the version you want.
Note: If an application has more than one
configuration expression, VisualAge
Generator 4.0 on Java cannot determine
which configuration expression to use. In
this case, no prerequisite applications are
loaded and a warning message is written
to the V3 to V4 Migration Tool’s status
log.

Select most recent version of application
prerequisites

With this box checked, when you later
select an application for migration, the
most recent version of each prerequisite
for that application is automatically
loaded into the V3 to V4 Migration Tool
along with your selected application.

Java Naming Convention option
When you check the box for the Java Naming Convention option, the
following conversions are performed:
v When applications are converted to packages, the names are changed to

all-lowercase characters. Java naming conventions expect package names to
be in all-lowercase characters. If you do not check this box, you will get a
warning message the first time the V3 to V4 Migration Tool begins to
migrate an application with a mixed-case name. However, you can
manually override the error message and use a mixed-case name without
further errors. If you check the box ″Do not show this message again″ in
the warning window, the warning is only shown for the first migrated
application.

v When applications are converted to packages, the names are converted to
dot notation. Java naming conventions use “dot notation” for package
names. As part of the conversion to Java conventions, the V3 to V4
Migration Tool adds a period to the left of each character (except the first)
that it changes to lowercase during the migration. For example, if an

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 21

existing application is named XYZpayrollAppl, the converted package is
named x.y.zpayroll.appl when you check this box.
Some common acronyms are automatically preserved as acronyms, with
only one period at the end of the acronym. The acronyms that the V3 to V4
Migration Tool preserves are:

AIX HP RACF
CICS IBM SAA
COBOL IMS SQL
CSP ITF ST
DB MSL US
DLI MVS VM
ENVY OS VTAM
EZE PROFS

For example, if an existing application is named CSPwidgetClose, the
converted package is named csp.widget.close when you check this box. If
an existing application is named USBpayApp, the converted package is
named us.bpay.app.

Smalltalk Subapplications options
The Java platform does not support the concept of subapplications. You
cannot create ″subpackages″ on Java. Therefore, you must decide how to
reorganize subapplications when you migrate them to VisualAge Generator
4.0 on Java.

The Smalltalk Subapplications options allow you to specify whether
subapplications will be migrated into the same package as the parent
application or a different package when you later select applications for
migration that include subapplications.

Note: If an application has more than one configuration expression,
VisualAge Generator 4.0 on Java cannot determine which configuration
expression to use. In this case, all possible subapplications are migrated
with the parent application.

Table 5. Smalltalk subapplications migration options

Option Migration processing

Move subapp to separate package Each subapplication is migrated to a
separate package from its parent
application. The separate package is
included in the same project as the
package that corresponds to the parent
application.

Move subapp to parent package The VAGen parts in each subapplication
are added to the same package as the
parent application.

22 VisualAge Generator: Migration Guide

Library Management options
The Library Management options allow you to specify naming conventions
for migrated configuration maps, applications, and classes. This group of
options also enables you to specify versioning and releasing conventions for
migration.

Table 6. Library management migration options

Option Migration processing

Append suffix to project/package name Adds a suffix to the end of each existing
application or configuration map name as
it is migrated to a package or project. In
the text box to the right of this option, you
can specify the suffix to be appended.

Auto version and release All configuration maps, applications, and
classes are automatically versioned and
released during migration.

When you check this box, you can also
select Append suffix to existing version
name or Specify new version name.

If you do not check this option, all
editions of migrated projects, packages,
and classes are left open, and developers
and owners must version and release their
own projects, packages, and classes after
migration. Also, if you do not check this
box, you cannot select either of the
sub-options under this option.

Append suffix to existing version name Adds a suffix to the existing version name.
In the text box to the right of this option,
you can specify the suffix to be appended.
Using a suffix can help in associating the
migrated version with the original version
and in determining which other versions
you still need to migrate. If you check this
box but do not specify a suffix to append,
the error message Text
required if selected is displayed.

Specify new version name Enables you to specify a new version
name to be assigned for all your migrated
projects, packages, and classes. If you
check this box but do not specify a version
name, the error message
Text required if selected is displayed.

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 23

Ownership options
The Ownership options allow you to specify whether the ownership
assignments for your current configuration maps, applications, and classes
will be preserved during migration or changed.

Note: Regardless of the Ownership option you select, you can select the Auto
version and release option under Library Management.

Table 7. Ownership migration options

Option Migration processing

Maintain original ownership Allows you to maintain the existing
ownership structure for all migrated
projects, packages, and classes.

Change ownership to current user Assigns ownership for all migrated
projects, packages, and classes to the user
who performs the migrations.

After the migration process completes,
you can change the ownership back to the
original owner or any other owner.

Selecting and migrating applications and configuration maps

Follow these steps to migrate applications and configuration maps using the
V3 to V4 Migration Tool:

Note: You cannot use the V3 to V4 Migration Tool to migrate an open edition
of a 3.x application or configuration map. You must use VisualAge
Generator 3.x to version and release each application and configuration
map that you want to migrate to VisualAge Generator 4.0.

1. Open the VAGen Parts Browser and then select Tools->Migration->V3 to
V4 Migration to start the V3 to V4 Migration Tool.

2. Select the Options push button to set migration preferences that will be
used during the migration process. (Some options can be changed again
before you select the Migrate push button.)

3. Display a list of applications or configuration maps available for
migration by selecting one of the following:
v Select the Select Applications push button if you want to migrate

applications.
v Select the Select Config Maps push button if you want to migrate

configuration maps.

Note: You cannot select a mixture of configuration maps and individual
applications for migration at the same time. You can migrate a

24 VisualAge Generator: Migration Guide

group of applications or a group of configuration maps, but not
both together. When you select one of these buttons, the other
button is disabled until you select the Reset button. When you
select Reset, the list of selections currently in the V3 to V4
Migration window is deleted, and both Select Applications and
Select Config Maps are available for selection again.

4. In the window requesting the IP address or host name running the
server, enter the name of the machine where your 3.x ENVY library
resides, and select OK.

5. In the window requesting the full path name of the library, enter the
directory and file name of your 3.x ENVY library, and select Open.

6. If you selected the Specify name filter option on the Migration Options
window, the Filter prompter window is displayed. Enter a case-sensitive
prefix to be used in filtering the application list. For example, if you want
to see only applications that begin with Xyz, such as XyzPayApp and
XyzEmployeeApp, enter Xyz in this window. You can use the * (asterisk)
wildcard in specifying the search string. For example, use Xyz*Sample*
to find applications such as Xyz03SampleApp, XyzMMediaSampleApp,
and XyzPaySampleOpnsApp.

7. On the Selection Required window, select an application or configuration
map and a version to be migrated, and then select the >> arrow button
to add your selection to the Selected Versions column.
After you have selected a version for each application or configuration
map that you want to migrate, select OK.
For applications only, if you selected the Select most recent application
version option under the Selection Criteria section of the Migration
Options window, this window shows only a single-column list of
applications, because the versions have been selected for you. You can
select multiple applications for migration. When you are finished
selecting applications, select OK.

8. For applications only, the Java Project name prompter window is
displayed next. Enter the name of a new project in which the migrated
packages for your selected applications will be stored, or enter the name
of an existing project, and select OK. If you enter the name of a new
project, the V3 to V4 Migration Tool creates the project for you. If you
enter the name of an existing project, the V3 to V4 Migration Tool opens
a new edition of the project if an edition is not already open.

9. A populated version of the V3 to V4 Migration window is displayed. It
lists the applications and configuration maps you selected for migration
as well as the project and package names that will be used to store the
migrated applications and configuration maps.
Before migrating, you can add more applications or configuration maps
to this list, using the above steps.

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 25

You can delete any application or configuration map from the list to be
migrated by selecting it in the Smalltalk Config Maps/Applications
column and then selecting Remove selected from the context menu for
that column. You cannot delete applications within a selected
configuration map.
You can change the project and package names in the second column of
this window by typing over the names in the window or by using the
Find/Replace option in the context menu for the second column.
Find/Replace works on all selected applications and configuration maps.
You can select Select All before selecting Find/Replace to make a change
to all names listed in the V3 to V4 Migration window. The string you
enter in the Find/Replace prompter window can be a full name or a
partial name, such as a prefix.

10. When you are ready to migrate the listed applications and configuration
maps, select the Migrate push button. All applications and configuration
maps listed in the window are migrated. Flags are set in the Smalltalk
library to indicate which applications and configuration maps have been
migrated. The current settings for the Smalltalk Subapplications, Library
Management, and Ownership migration options are used for all of the
applications or configuration maps that are being migrated.
During migration, the V3 to V4 Migration window is refreshed with
status information in the Migration Status column. When all the
applications and configuration maps have been successfully migrated, the
Migration Status column shows a status of Migrated for each application
and configuration map. The status information is also written to the
status log. If an application or configuration map shows a status of
Migration Error...check status log, you can check the status log to see
which step in the migration process was the last to complete successfully
for that application.

Working with the status log

The V3 to V4 Migration Tool stores a record of each step in the migration
process in a status log. To view the status log, from the V3 to V4 Migration
window, select the View Status Log push button.

Figure 3 on page 27 shows the Migration Status Log window.

26 VisualAge Generator: Migration Guide

The status log is stored in the file mgstatus.log. This log is cumulative. The
information in this log is only deleted when you select File->Clear from the
menu in the Status Log window.

If you have hundreds of applications and configuration maps to migrate, the
status log can become quite large. At some point, you might want to clear the
status log of the information from previous migration operations before you
begin migrating the next group of applications and configuration maps.

Before clearing the status log, however, you might want to print it (by
selecting File->Print) or copy it to another file (by selecting File->Save as).
When you use Save as to save the status log to another file, if that other file
exists, a prompt appears asking if you want to overwrite the file or append to
it.

Figure 3. Migration Status Log window

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 27

To clear the status log, select File->Clear from the menu in the Status Log
window.

So that you do not have to search the entire, cumulative log to find
information of interest to you, several filtering options are available that allow
you to view selected portions of the status log:

All Select this menu choice to view the entire
status log contents.

Applications Select this menu choice to view only the
information about applications that have
been migrated.

Errors Select this menu choice to view only the
error messages in the log.

Information Select this menu choice to view only the
information messages in the log.

Warnings Select this menu choice to view only the
warning messages in the log.

Search for string Select this menu choice to search for a text
string in the status log. Enter your search
string in the dialog that is displayed after
you select this option. The search string is
case-sensitive.

For more information about the error, information, and warning messages
displayed in the status log, see the VisualAge Generator Messages and Problem
Determination Guide.

Resetting the V3 to V4 Migration window

The V3 to V4 Migration Tool can keep information in the V3 to V4 Migration
window on all completed migration operations. As each new migration is
started, the V3 to V4 Migration Tool automatically appends information to the
existing contents of the window.

There might be times, however, when you do not want information on
already migrated code to remain in the V3 to V4 Migration window while
you are migrating the next group of applications and configuration maps. For
example, you might have migrated several groups of applications and
configuration maps that share common code among them but that do not
contain any code shared by your remaining unmigrated applications and
configuration maps. In this case, the information on past migrations is not
needed for the next migration operation. To remove the unneeded
information, you can reset the V3 to V4 Migration window before migrating
the next group.

28 VisualAge Generator: Migration Guide

When you reset the V3 to V4 Migration window, all information about past
migration operations is deleted from the window. To reset the window, select
the Reset push button. When you select Reset, the information on past
migrations is still stored in the migration status log, mgstatus.log, and both
the Select Config Maps and Select Applications buttons are enabled again.

Resetting Migration Status Information

The V3 to V4 Migration Tool sets flags in the Smalltalk library to record the
migration status of configuration maps and application. There might be times
when you want to reset this status. For example, after completing a pilot
migration, you might want to reset the migration status before doing the final
migration. To reset the status, from the V3 to V4 Migration window, select the
configuration maps and applications that you want to reset. Then press mouse
button 2 and select Mark Not Migrated. The flags in the Smalltalk library are
reset to indicate that the selected configuration maps and applications have
not been migrated.

Note: Selecting Mark Not Migrated does not delete the migrated parts in the
Java repository.

Chapter 3. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts to Java 29

30 VisualAge Generator: Migration Guide

Chapter 4. Using VAGen Import to migrate VAGen 3.x
non-GUI code to Java

When you use VAGen Import instead of the V3 to V4 Migration Tool to
migrate 3.x code to VisualAge Generator 4.0, the following restrictions apply:
v All configuration map information is lost. You will need to create projects

from scratch in VisualAge Generator 4.0.
v Existing ownership information is lost. Ownership is set to the userid of

whichever user creates the projects and packages and imports the parts.
v The steps in this section assume that you want to migrate each ENVY

application to a separate Java package. If you want to reorganize your code,
export one .esf file for each Java package that you want to create.

v Do not forget to migrate prerequisite applications and subapplications that
might not be loaded into your VisualAge Generator 3.x image based on the
configuration expressions used for the parent application.

To migrate VisualAge Generator 3.x non-GUI code to VisualAge Generator 4.0
on the Java platform, use these steps:

1. Start VisualAge Generator 3.x on Smalltalk.
2. Export your existing applications to external source format files. You

must use your existing VisualAge Generator 3.x product to create these
.esf files.
From the VisualAge Organizer window for VisualAge Generator 3.x,
select Applications->Import/Export->VAGen Export to create the
external source format files. Export one external source format file for
each existing ENVY application.

Notes:

a. If you are migrating from VisualAge Generator 3.x on an OS/2
development platform to VisualAge Generator 4.0 on a Windows NT
development platform, see section “Migrating from OS/2 to Windows
NT” on page 12 for information on code page conversions.

b. You should not modify the export files.
3. Start VisualAge Generator 4.0 on Java.
4. In VisualAge Generator 4.0, create a Java project and package to store the

code you want to import:
a. From the VisualAge for Java Workbench window, open the context

menu by clicking the right mouse button on an empty part of the
workspace.

b. Select Add->Project from the context menu.

© Copyright IBM Corp. 1997, 1999 31

c. In the Add Project window, enter a name for the new project and select
the Finish push button.

d. From the Workbench window, select the project you just created, and
open the context menu.

e. From the context menu, select Add->Package.
f. In the Add Package window, enter a name for the new package and

select the Finish push button.

Create one Java package for each .esf file that you created in step 2. For
more information about creating packages, see the VisualAge Generator
User’s Guide.

5. From the VisualAge for Java Workbench window, select Workspace->Open
VAGen Parts Browser to open the VAGen Parts Browser.

6. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import.

7. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select the Open
button.

8. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of the .esf file. When
there are no parts with errors, proceed to the next step.

9. In the VAGen Import window, specify the name of your package in the
Target package field. Move all parts to be imported from the Available
parts list to the Selected parts list. Then select the Import push button. The
selected parts are imported into the package you specified.

10. In the VAGen Import window, select the New File push button and then
repeat steps 7, 8, and 9 for each external source format file you need to
import. When you have finished importing your .esf files to VisualAge
Generator 4.0, select the Cancel push button in the VAGen Import
window to return to the VAGen Parts Browser window.

11. Create the default packages and Project List Parts as required based on
your planned repository architecture.

12. Version and release all classes, packages and projects for the existing
applications you have imported.

13. Save your VisualAge Generator 4.0 workspace.
14. See “Chapter 5. Completing the ENVY setup on Java” on page 33 and

“Chapter 6. Completing your migration on Java” on page 35 for more
steps you should take to complete the migration.

32 VisualAge Generator: Migration Guide

Chapter 5. Completing the ENVY setup on Java

When you use the V3 to V4 Migration Tool to migrate from VisualAge
Generator 3.x to VisualAge Generator 4.0 on Java, all of the ENVY setup tasks
are completed for you automatically by the V3 to V4 Migration Tool, provided
you select the V3 to V4 Migration Tool option Auto version and release. If
you do not set this option before using the V3 to V4 Migration Tool to
migrate 3.x code, or if you do not use the V3 to V4 Migration Tool to migrate,
you will need to version the migrated 4.0 code manually. In that case, see
“Chapter 15. Completing the ENVY setup on Java” on page 151 for
information on how to complete the setup tasks manually.

© Copyright IBM Corp. 1997, 1999 33

34 VisualAge Generator: Migration Guide

Chapter 6. Completing your migration on Java

The following sections describe specific tasks you might need to perform to
complete your migration to VisualAge Generator 4.0. These tasks include:
v “Defining control information”
v “Generating programs”
v “Importing work-in-progress”
v “Recreating ITF resource association information” on page 36

Defining control information

Control information that is needed for test and generation must be stored in
ENVY packages. This control information consists of:
v Generation options
v Linkage table
v Resource associations
v Bind control information
v Link edit information

When you use the V3 to V4 Migration Tool to migrate your 3.x applications,
you can migrate control information to VisualAge Generator 4.0 on Java
packages just as you would migrate any other ENVY applications.

Generating programs

After you finish migrating a group of Smalltalk applications to Java packages,
you might want to generate the programs to help ensure that you have
migrated the correct version of your code.

If you are migrating from VisualAge Generator 3.0, any programs for the C++
target environment must be regenerated.

Importing work-in-progress

Suppose you have already migrated and versioned a development system.
Then, three weeks after migration, you discover 50 4GL parts have been
changed on the VisualAge Generator 3.x development system. The 4GL parts
are contained in several applications. You can use the V3 to V4 Migration Tool
to migrate the new versions of the changed applications. Be sure to set your
migration options to the same settings as in your original migration. The V3
to V4 Migration Tool will create new editions of all 4GL parts from the
corresponding parts in the modified applications.

© Copyright IBM Corp. 1997, 1999 35

The advantage of using the V3 to V4 Migration Tool is that you only need to
identify the applications that must be re-migrated. Another advantage is that
migration of this version of the applications is logged in the status log,
mgstatus.log. The disadvantage is that all the 4GL parts in the changed
applications are re-migrated and result in new editions in the Java repository.

Alternatively, you can export an external source format file that contains only
the 4GL parts that have been changed. You can then use VAGen Import to
migrate the parts. See “Importing work-in-progress” on page 161 for
information on how to use VAGen Import to migrate your work-in-progress.
Using VAGen Import requires you to load the affected projects and packages
into your workspace. The advantage of using VAGen Import is that you only
need to migrate the 4GL parts that were changed, rather than all the 4GL
parts in the affected applications.

Recreating ITF resource association information

If you use serial, indexed or relative files in the Interactive Test Facility, you
use resource association information to point to the files. ITF resource
association information is not stored as a resource association part. You need
to recreate the ITF resource association information for VisualAge Generator
4.0 on Java.

Converting an RTABLE to a Linkage Table

If you have been using the VisualAge Generator middleware RTABLE for
communications routing, the RTABLE entries must be moved from the
RTABLE to a linkage table. The following example shows a mapping of
RTABLE entries to linkage table entries:

RTABLE
app1 - - - - - - lu2 LU2C - 1
app2 - - - - - - lu2 LU2C - 1
app3 - - - - - - lu2 LU2C - 1
app4 - - - - - - lu2 LU2B - 1
$ANY - - - - - - lu2 LU2K - 1

LINKAGE TABLE
:calllink applname=app1 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app2 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app3 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app4 linktype=remote remotecomtype=LU2
serverid=LU2B.
:calllink applname=* linktype=remote remotecomtype=LU2
serverid=LU2K.

36 VisualAge Generator: Migration Guide

Part 2. Migrating from VAGen 2.x or Cross System
Product to VAGen 4.0 on Java

Chapter 7. Comparing MSLs and library
management on VAGen 4.0 on Java . . . 39
ENVY characteristics 39
Comparison of MSLs and ENVY 41

Member types 41
Storing members 42
Storing control information 42
MSL concatenation 43
Functional organization 44
Member associations 44

Chapter 8. General migration
considerations for VAGen 2.x and Cross
System Product to Java 47
Migration paths 47
Automatic conversions during 4.0 migration 48
Migrating GUIs 49
Resolving duplicate member names 49
Establishing naming conventions 50
Organizing your code for ENVY 52

Functional organization 52
Assigning ownership 53
Storing control information 54

Multiple control packages 54
Single control package 55
Generation options. 56

/PROJECT generation option 56
Project List Part 57

Dual maintenance 57
Migrating from Cross System Product . . . 57
Migrating from OS/2 to Windows NT . . . 58
Using the migration log file 58

Chapter 9. Pre-migration checklist 59

Chapter 10. The MSL Migration Assistance
Tool on Java 61
Overview of using the MSL Migration
Assistance Tool 62

Building MSL directories 63
Selecting MSLs - using the MSL Library
Selection window 64

Selecting parts for a part list - using the
Part List Selection Criteria View window . 65
Selecting parts to move to ENVY - using
the MSL Migration Part List window . . 67

Special columns in the MSL Migration
Part List window 68
Other MSL Migration Part List
functions 70

Working in the sandbox - using the VG
Part Prerequisites View window 70

Identifying common code 70
Identifying missing parts. 71
Other sandbox functions 71

Reloading previously migrated ENVY
packages back into the MSL Migration
Assistance Tool sandbox 72

Chapter 11. Migrating production and
work-in-progress MSLs to VAGen 4.0 on
Java 75
Production MSLs 76

Techniques for moving parts to the
sandbox 77

All data items, records, and tables are
used 77
All records and tables are used. . . . 78
Some records and tables might not be
used 78
Considerations for the migration
techniques 79

Work-in-progress MSLs 80
Using VAGen Import 81
Using the MSL Migration Assistance Tool 82

Chapter 12. VAGen on Java case studies
based on various MSL structures 85
Understanding the diagrams and terminology 85

MSL structure diagrams 85
Advance command in VisualAge
Generator 86

Multiple subsystems with no duplicates. . . 87
Recommendations 87

© Copyright IBM Corp. 1997, 1999 37

Multiple subsystems with controlled
duplicates 89

Recommendations 89
Separate production MSLs for each developer 92

Recommendations 93
Creating a core common set of packages 93
Creating stand-alone subsystems . . . 95

MSLs that contain unintended duplicates . . 97
Recommendations 98

MSLs containing code from VisualAge
Generator Templates or BW*Wizard 98

Recommendations 100
Special considerations for VisualAge
Generator Templates 102

Complete set of MSLs for production and
deltas for test 102

Recommendations 104
Complete sets of MSLs for test and
production 106

Recommendations 108
MSLs from marketing or other
demonstrations. 111

Recommendations. 112
Using a single package 112
Using multiple packages 113

Chapter 13. Running the MSL Migration
Assistance Tool on Java 115
Starting VisualAge Generator 115
Creating users and setting the current user 116
Collecting your source code 117

From Cross System Product 117
From VisualAge Generator with
TeamConnection and no MSLs 117
From VisualAge Generator MSLs. . . . 117

Handling code page changes 118
Using the HPTRULES.NLS file 118
Changing from OS/2 to Windows NT 119

Starting the MSL Migration Assistance Tool 121
Building MSL directories 121
Resetting the sandbox from ENVY 123
Selecting your MSLs 125
Selecting and migrating VAGen parts . . . 126
Creating a new package. 129
Moving a VAGen part between packages 129
Controlling the creation of package.nodes 130
Renaming a package 131
Collapsing a package 132
Handling Duplicates 132

Controlled Duplicates 133

Unintended Duplicates 133
Duplicates for business logic 136

Finding the package in which a part is
located 137
Listing missing (not found) parts 138
Handling missing (not found) parts 139
Checking relationships among packages . . 140

Determining which programs are
referenced 140
Determining the parts that are referenced 141
Checking consistency of packages . . . 141

Updating the list of required packages . . . 142
Changing the list of required packages 142
Normalizing the list of required packages 143

Deleting a package.node 143
Deleting a package 144

Deleting one package 144
Deleting all packages 145

Committing to ENVY 145

Chapter 14. Using VAGen Import to
migrate VAGen 2.x and Cross System
Product non-GUI code to Java 149

Chapter 15. Completing the ENVY setup
on Java 151
Versioning and releasing a VAGen part class 151
Versioning and releasing a package 152
Versioning a project 153
Creating a Project List Part (PLP) 154
Changing the owner of a project 155
Assigning ownership of a VAGen part class 155

Adding group members 155
Changing the ownership of a VAGen part
class 156

Changing the owner of a package 156

Chapter 16. Completing your migration on
Java 159
Defining control information 159
Generating Programs 160
Importing work-in-progress 161
Migrating VSAM files 163
Converting an RTABLE to a Linkage Table 163

38 VisualAge Generator: Migration Guide

Chapter 7. Comparing MSLs and library management on
VAGen 4.0 on Java

In both Cross System Product and releases of VisualAge Generator prior to
3.0, code was written in small pieces called members. Members were stored in
Member Specification Libraries (MSLs). In VisualAge Generator 3.0 or later,
the code must be stored in the VisualAge for Java repository.

If you plan to use code from Cross System Product and previous releases of
VisualAge Generator, you must migrate the code from the MSLs to ENVY.
This chapter explains the following:
v “ENVY characteristics”
v “Comparison of MSLs and ENVY” on page 41

ENVY characteristics

To provide interoperability with VisualAge for Java, VisualAge Generator 4.0
shares the VisualAge for Java library management system. This library
management system is called ENVY.

There are new terms that are important for the ENVY environment. The
following terms are new for VisualAge Generator 4.0:

New Term Relationship to MSL Concepts

VAGen part class Each 4GL member type (all member types
except GUIs) becomes a VAGen part class.
The VAGen part classes created for the
member types are prefixed by VAGen (for
example, VAGenRecords).

There are five additional VAGen part classes
that are used to contain control information
that was stored outside the MSL in previous
releases of VisualAge Generator. These VAGen
part classes are for linkage table, resource
association, generation options, bind control,
and linkage editor information.

VAGen part Each 4GL member is now stored as a VAGen
part. A VAGen part is associated with a Java
method in its VAGen part class. The VAGen
parts appear in the VAGen Parts pane of the

© Copyright IBM Corp. 1997, 1999 39

VAGen Parts Browser window when the
package and type containing that part are
selected.

View Each GUI is now a view.

Note: VisualAge Generator 2.x GUIs cannot
be migrated to VisualAge Generator 4.0
on Java. You must recreate the GUIs as
Java classes.

Program The application member type has been changed
to program to distinguish it from an ENVY
application in VisualAge Generator on
Smalltalk.

Package A package is a group of classes and methods
that are closely related in function. A package
can include VAGen part classes and VAGen
parts.

Project A project is a group of package editions that
should be loaded together into a developer’s
workspace.

The following ENVY concepts are new for VisualAge Generator 4.0:

Concept Description

Functional Organization ENVY enables you to group parts into
packages. These packages can (and should) be
organized along functional lines. Similarly,
packages are organized into projects. Each
project should be a group of functionally
related packages.

Ownership Each project and each package has an
assigned owner who is responsible for the
integrity of the code that is placed in the
project or package.

Each part (class) or VAGen part class has an
assigned owner who is responsible for the
integrity of the code that is placed in the class.
For 4GL parts, this means that the owner of
the class VAGenRecords within package xyz is
responsible for the integrity of all record
definitions stored as part of package xyz.
Because each GUI is a separate view (visual
part), each GUI within package xyz can have

40 VisualAge Generator: Migration Guide

a different owner. 4GL parts used within the
GUI become VAGen parts.

Note: In releases of VisualAge Generator prior
to 3.0, the closest concept to ownership
was write-protecting the staging, test, or
production MSLs and only giving a
team leader the authority to advance
members into these MSLs.

Edition Each change that is made to a 4GL VAGen
part results in a new edition of the VAGen
part being stored in the ENVY repository.
Editions of parts, packages, and projects are
also stored in the ENVY repository.

Version Editions can be frozen to prevent further
changes to that level of code. The frozen
edition is called a version. After a part,
package, or project is versioned, the only way
to make changes is to open a new edition.

Workspace A workspace is the developer’s current view
of the ENVY repository. It contains the version
or edition of the projects, packages, and parts
that the developer wants to work on.

Comparison of MSLs and ENVY

This section describes how concepts you are familiar with for MSLs relate to
concepts in the ENVY library manager.

Member types
In Cross System Product and releases of VisualAge Generator prior to 3.0,
there was one member type for each type of code that could be written.

With VisualAge Generator 3.0 and later, each 4GL member type is a VAGen
part class that is prefixed with VAGen (for example, VAGenRecords). For GUIs,
there is no corresponding VAGen part class because each GUI is a separate
class.

Table 20 on page 361 shows the correspondence between member types and
VAGen part classes.

Chapter 7. Comparing MSLs and library management on VAGen 4.0 on Java 41

Storing members
In releases of VisualAge Generator prior to 3.0, an MSL was an OS/2
directory and each member was a file within the directory. In Cross System
Product, an MSL was a VSAM file and each member was stored as records
within the file.

With VisualAge Generator 3.0 and later, all information is stored in the ENVY
repository. Each 4GL member is a VAGen part and is associated with a Java
method. Each GUI is a view (visual part) and is a Java class.

Storing control information
For Cross System Product and releases of VisualAge Generator prior to 3.0,
most control information related to test and generation was stored outside the
MSL. This control information included:
v Generation options that indicate how an application is to be generated. For

example, generation options control whether working storage records are to
be initialized, what high-level qualifier on the host is to be used for
preparation, and what linkage table is to be used.
For Cross System Product, only COBOL generation used generation options
and these were stored in separate files outside the MSL. For releases of
VisualAge Generator prior to 3.0, COBOL generation options were stored in
separate files.

v Linkage table that indicates how a CALL, DXFR, or XFER is to be
implemented. For the CICS target environment, the linkage table is also
used to indicate whether a VSAM or transient data queue is to be accessed
locally or remotely. For example, the linkage table might specify that a
CALL to application XYZ in the MVS CICS target environment is to be
implemented as a remote call passing data in the CICS COMMAREA.
For Cross System Product prior to 4.1, there was no linkage table. For Cross
System Product 4.1 and releases of VisualAge Generator prior to 3.0, the
linkage table was in a separate file.

v Resource association file that indicates for a specific file how it is to be
implemented in a specific target environment. For example, a serial file in
the MVS CICS target environment might be implemented as a VSAM file,
as a transient data queue, as a temporary storage queue, or as a CICS spool
file.
For Cross System Product, resource association information was stored in
the MSL. For releases of VisualAge Generator prior to 3.0, resource
association information was stored in a resource association file outside the
MSL.

v Bind control commands that provide information needed for binding the
DB2 application plan on an MVS system.
For Cross System Product/AE, bind control information was not used.
Cross System Product COBOL generation used bind control commands and

42 VisualAge Generator: Migration Guide

these were stored in separate files outside the MSL. For releases of
VisualAge Generator prior to 3.0, bind control commands were stored in
separate files.

v Linkage editor control statements that provide linkage editor information
for MVS, VSE, and VM systems.
For Cross System Product/AE, linkage editor control statements were not
used. Cross System Product COBOL generation used linkage editor control
statements and these were stored in separate files outside the MSL. For
releases of VisualAge Generator prior to 3.0, linkage editor control
statements were stored in separate files.

With VisualAge Generator 3.0 and later, generation options files, linkage
tables, resource association files, bind control commands, and linkage editor
control statement files are methods within VAGen part classes in ENVY. Thus
all the data required for test and generation is contained in a single library
management system.

Table 8 shows the correspondence between the types of control information
and VAGen part classes.

Table 8. Control Information and VAGen Part Classes

Control Information VAGen Part Class

Generation Options VAGenOptions

Linkage Table VAGenLinkages

Resource Associations VAGenResources

Bind Control Commands VAGenBindControls

Linkage Editor Control Statements VAGenLinkEdits

MSL concatenation
In Cross System Product and releases of VisualAge Generator prior to 3.0,
MSLs could be concatenated. Specifying the MSL concatenation sequence was
the way in which you specified where to look for the members needed by
your applications. When MSLs were concatenated, for test and generation,
only the first found member with a given name was used. For viewing,
members from MSLs other than where the first found member was located
could be referenced. If changes were made to a member in the MSL
concatenation sequence, the changed member was stored in the read/write
MSL (first MSL in the concatenation sequence).

With VisualAge Generator 4.0, there is no concept similar to the first found
member in an MSL concatenation. All editions are available in the ENVY
repository. However, only one edition of a part can be loaded into your
workspace at a time. Browsers are available to compare editions within the

Chapter 7. Comparing MSLs and library management on VAGen 4.0 on Java 43

ENVY repository before loading them into your workspace to determine
which one is the required level of code.

You can use projects to group the code for a particular level. For example, you
might have a project for production that indicates the version of each package
that is in production. You can also specify a Project List Part that includes a
list of projects to be loaded with a particular project.

Specifying a Project List Part for a project is similar to specifying the MSL
concatenation sequence. Project List Parts provide a way for you to ensure
that all the parts needed to run a particular group of programs are loaded
into your workspace together. Project List Parts must be defined in such a
way that only one edition of a part is loaded into your workspace. Therefore,
PLPs resolve the problem of first found parts. For more information on Project
List Parts, see:
v “Project List Part” on page 57
v “Creating a Project List Part (PLP)” on page 154

Functional organization
In Cross System Product and releases of VisualAge Generator prior to 3.0,
members were grouped together into MSLs. Generally, an MSL contained all
the members for a particular subsystem. Because the MSL was the only
method for grouping members by function, the functions tended to be large.
In Cross System Product the number of MSLs in a concatenation sequence
was limited to 6. This also contributed to having a large number of members
in each MSL.

With VisualAge Generator 4.0, the project and the ENVY package provide a
two-level capability for grouping parts. The project is the higher level of
organization and more closely resembles an MSL in terms of the number of
parts. ENVY packages enable you to organize your parts into smaller groups
than was reasonable to do with MSLs. This provides more capabilities in
terms of controlling access to the parts, finding a part, and limiting the
number of parts displayed in the VAGen Parts Browser window.

Member associations
For Cross System Product and releases of VisualAge Generator prior to 3.0,
members could have associates — other members that were referenced within
the member. With VisualAge Generator 4.0, the same associations between
4GL VAGen parts still exist. For example:

Member Type Member Types of Possible Associates

Data Item None

Process None

Statement Group None

44 VisualAge Generator: Migration Guide

Record Any global data items

Table Any global data items

PSB Records for the segment records, any global
data items used by those records, and any
item named as a secondary index field in the
PSB

Map Any other maps in the same map group, any
statement group or table used as an edit
routine, and any global data item in the table

Map Group Any maps in the map group and their
associates

Application Map groups, maps, records, tables, PSB,
processes, statement groups, and their
associates. Any global data item referenced
directly or indirectly was included. For
example, a data item used as a called
parameter was included as an associate of the
application. Only maps that were actually
used by the application were included in the
associates.

Notes:

1. References to processes and statement groups in the above list represent
the MSL terminology. These VAGen part types have been merged into the
new VAGen function part type.

2. References to global data items in the above list represent the MSL
terminology. Global data items have been renamed to shared data items in
VisualAge Generator 4.0.

3. References to applications in the above list represent the MSL terminology.
Applications have been renamed to programs in VisualAge Generator 3.0
and later.

For a specific member (for example, application XYZ), the only associations
that could be detected were those that existed in the current MSL
concatenation sequence, using the first found members.

For VisualAge Generator 4.0, the only associations that can be detected are the
ones that exist within the current workspace.

For releases of VisualAge Generator prior to 3.0, the associates of GUIs were
records, tables, processes, statement groups, or other embedded GUIs, and
their associates. An external GUI and its associates were not included.

With VisualAge Generator 4.0, for a view, the following are associates:

Chapter 7. Comparing MSLs and library management on VAGen 4.0 on Java 45

v 4GL parts — records, tables, and functions and their associates.
v For any embedded view, its associates. However, the embedded view itself

is not included as an associate.

46 VisualAge Generator: Migration Guide

Chapter 8. General migration considerations for VAGen 2.x
and Cross System Product to Java

Consider the following if you are migrating from VisualAge Generator 2.x or
Cross System Product to VisualAge Generator 4.0 on Java:
v “Migration paths”
v “Automatic conversions during 4.0 migration” on page 48
v “Migrating GUIs” on page 49
v “Resolving duplicate member names” on page 49
v “Establishing naming conventions” on page 50
v “Organizing your code for ENVY” on page 52
v “Assigning ownership” on page 53
v “Storing control information” on page 54
v “Dual maintenance” on page 57
v “Migrating from Cross System Product” on page 57
v “Migrating from OS/2 to Windows NT” on page 58

Also see “Chapter 9. Pre-migration checklist” on page 59 before you begin to
migrate code to VisualAge Generator 4.0.

In addition, if you are migrating from Cross System Product, it is strongly
recommended that you read Migrating Cross System Product Applications to
VisualAge Generator and “Appendix D. Notes on Cross System Product
migrations” on page 395 before you migrate.

Migration paths

Depending on your current platform and whether you want to migrate to
Smalltalk, Java, or both, different migration paths are available and different
considerations apply.

Table 9 gives a brief overview of the migration options available for the Java
platform. See the referenced chapters for step-by-step procedures for each
migration option.

Table 9. Migration Options

Migrating from Tools to Use Details on Using the Tools

VisualAge Generator 2.x
(GUI)

No tool Recreate parts on Java
platform

© Copyright IBM Corp. 1997, 1999 47

Table 9. Migration Options (continued)

Migrating from Tools to Use Details on Using the Tools

VisualAge Generator 2.x or
Cross System Product
(non-GUI)

v MSL Migration
Assistance Tool

v VAGen Import

v “Chapter 10. The MSL
Migration Assistance
Tool on Java” on page 61

v “Chapter 13. Running
the MSL Migration
Assistance Tool on Java”
on page 115

v “Chapter 14. Using
VAGen Import to
migrate VAGen 2.x and
Cross System Product
non-GUI code to Java”
on page 149

Automatic conversions during 4.0 migration

VisualAge Generator 4.0 automatically makes the following changes to your
applications during migration:
v Members become VAGen parts.
v Process and statement group members are converted to function parts.
v References to processes and statement groups are converted to the new

syntax requirements for functions with no parameters.
v PERFORM statements and Unconditional Branch statements are no longer

supported and are migrated to Function Invocation statements.
v Subscript parentheses are changed to brackets in VisualAge Generator item

names in the following places:
– 4GL statements in functions (processes and statement groups)
– Host variable names in SQL statements
– Comparison value item in DL/I specifications
– EZEDLPCB is used in a called parameter list

v Calls to EZE service routines are converted to the corresponding function
invocation statement. A statement to set the value of EZEREPLY is also
added before the function invocation.

In addition, the names of part classes, control information files, and VisualAge
Generator palette parts are changed during migration to VisualAge Generator
4.0:
v Table 20 on page 361 shows the conversions made between member types

and VAGen 4.0 part classes during 4.0 migration.

48 VisualAge Generator: Migration Guide

v Table 21 on page 361 shows the correspondence between control information
files and VAGen 4.0 part classes.

v Table 22 on page 362 shows the changes made to VisualAge Generator
palette parts names during 4.0 migration.

v Table 23 on page 362 shows the changes made to VAGen Templates part
class names and repartition during 4.0 migration.

Migrating GUIs

VisualAge Generator 4.0 does not provide a way to migrate existing GUI parts
to the Java platform. You need to recreate your GUI parts for Java.

When you are migrating MSLs that contain both GUIs and 4GL parts, only
the 4GL parts can be migrated to VisualAge Generator 4.0 on Java using the
MSL Migration Assistance Tool. After you migrate the 4GL parts, recreate the
GUI parts in VisualAge Generator 4.0 on Java and add them to the migrated
package containing the corresponding 4GL parts.

For example, suppose MSL1 has the following parts:
App1
Process1
Record1
Gui1
Gui2

When you use the MSL Migration Assistance Tool to migrate App1 into pkg1 in
VisualAge Generator 4.0 on Java, Process1 is migrated to Function1 and
Record1 is migrated to Record1. You must create (rewrite) new GUI parts in
pkg1 to replace Gui1 and Gui2 from the MSL.

Resolving duplicate member names

Duplicate member names should be resolved (or at least understood) before
starting the migration. Duplicates can arise in the following situations:
v A duplicate member was accidentally copied into the wrong MSL and was

never deleted. In this case, you must determine which is the correct version
of the member.

v Duplicate members that have the same name, but are different member
types must be resolved. This might require renaming one of the members
and changing all references to it.

v The duplicate member is in a staging MSL or test MSL and represents
work-in-progress. In this case, the changed member should be loaded after
the production MSL(s) are loaded and versioned within ENVY.
Alternatively, these duplicate members might be ones that were created,
then forgotten, and never intended for production.

Chapter 8. General migration considerations for VAGen 2.x and Cross System Product to Java 49

v The duplicate member is due to a demonstration that needs to reflect the
state of the demonstration at different times (for example, the initial state of
the MSL, the MSL after some changes have been made, and the MSL after
another set of changes have been made). In this case, it might be better to
create a complete MSL representing the entire set of code at various times
during the demonstration and make a separate package for each complete
MSL.

Establishing naming conventions

You probably already have naming conventions for parts like programs,
processes, records, and so on that you are migrating from Cross System
Product or VisualAge Generator 2.x. You can continue to use your existing
naming conventions, because VisualAge Generator 4.0 retains existing part
names during migrations from Cross System Product and VisualAge
Generator 2.x.

However, VisualAge Generator does change some existing part types, as well
as making some syntax conversions. For example, process members and
statement group members are both changed to the function part type.
Therefore, you might want to establish a naming convention for function parts
that is similar to your conventions for processes and statement groups.

See “Automatic conversions during 4.0 migration” on page 48 for a list of
changes that VisualAge Generator makes to your existing code during
migration.

You need to establish naming conventions for the new package and project
objects that you must create in Java for your migrated code. Your naming
conventions should include the following:
v A unique prefix (possibly three characters) so that all of your packages will

be grouped together in the VisualAge on Java workspace. For example, you
might choose to prefix all your packages with a company prefix of xyz.
If more than one grouping of packages exists within a single project, each
group of packages could have a different secondary prefix. You can use
Java dot notation to include your global prefix as well as the secondary
prefix for each group.
For example, if you have an Accounting system and a Payroll system, you
could use your company prefix of xyz and then add a secondary prefix of
acct for the Accounting system and pay for the Payroll system. When your
packages are all loaded into your VisualAge workspace, they would appear
in this order:

xyz.acct.pkg1
xyz.acct.pkg2
xyz.pay.pkg1
xyz.pay.pkg2

50 VisualAge Generator: Migration Guide

As an alternative, you could leave off the company prefix and create
first-level prefixes that describe the tasks performed by the packages. Using
prefixes that start with different letters can be an advantage, because some
VisualAge windows allow you to enter one letter to quickly tab to the
group of packages that start with that letter.

v Try to avoid having the same package appear in multiple projects, because
projects containing duplicate packages cannot be loaded together.

v A naming convention for your projects. For example, if you decide to use
different projects for development, system test, acceptance test, and
production, you might use the following as the projects names:

Project Name: xxxxxxxxDevTestProject
xxxxxxxxSysTestProject
xxxxxxxxAccTestProject
xxxxxxxxProdProject

Version Names: could just be sequential

In this naming scheme, xxxxxxxx is the subsystem name.

If you decide to use a single project and use a build approach in which you
build (generate programs) once a week, you might use the following:

Project Name: xxxxxxxxProject

Version Names rrr nn.p

In this naming scheme:

xxxxxxxx Is the subsystem name.

rrr Is the release name.

nn Is the build within the release.

p Is a point between builds.

Use the same version naming scheme for the packages and classes. The p
allows the class owners and package managers to create as many versions
as they need to between builds. The rrr nn means that the classes,
packages, and projects changed during the same week all carry the same
release and version number. This helps everyone remember when changes
were made.

v Unique version names for your migrated packages and projects. Using the
default naming convention (1.0, 1.1, and so on) might be the best way to
start.

In addition to your company-unique naming conventions, there are some
general Java naming conventions that you need to follow:
v Java expects package names to be in lowercase characters.

Chapter 8. General migration considerations for VAGen 2.x and Cross System Product to Java 51

v Java uses “dot notation” for package names, where each word in the name
is separated by a dot (.).

Organizing your code for ENVY

For an overview of the differences between MSLs and ENVY, see “Chapter 7.
Comparing MSLs and library management on VAGen 4.0 on Java” on page 39.

Note: Performance is best when you limit a package to a maximum of
600-700 VAGen parts per VAGen part type. It is also recommended that
you use no more than 50 classes per package. When considering this
maximum, remember that processes and statement groups are both
collapsed into the VAGenFunctions class.

Functional organization
ENVY works best when packages are organized along functional lines. This
provides some benefits:
v Helps limit the scope of a change to one or a few packages.
v Supports the concept of ownership described in “Assigning ownership” on

page 53.

You should divide your MSLs into functional areas, with one package for each
functional area. Some examples are:
v A DBA MSL that contains data items and record definitions. This might be

small enough to become a single package. However, you might also decide
to organize it into smaller packages by dividing it using one or more of the
following suggestions:
– One package for the tables and data items that are shared by multiple

subsystems and a separate package for each subsystem that contains
data items and records that are unique to that subsystem.

– One package for the tables and data items used in a particular target
environment.

– One package for a group of closely related tables, where you want
smaller packages than any of the previously mentioned techniques.

v An MSL containing common code might be small enough (if you only have
a few common parts) to become a single package. However, you should
consider organizing it along functional lines such as:
– Error and message handling
– Security support
– Audit log or journal support
– Tools only used during development, not in the production system

You can also use the following techniques to assist you in organizing your
parts into functional areas:

52 VisualAge Generator: Migration Guide

v You might have used a naming convention to help you identify parts of a
system. For example, PAYWK might be the prefix for all the parts that are
unique to processing the weekly payroll. PAYSL might be the prefix for all
the parts that are unique to the salary payroll system. In this case, you
could put all the parts that start with PAYWK into one package (named
pay.weekly) and the parts that start with PAYSL into a different package
(named pay.salary). Then combine these two packages into one payroll
project.

v For a menu system, if there are 10 items on the main menu, you might start
by putting all programs that are used when the user selects option 1 into
one package, all programs that are used when the user selects option 2 into
another package, and so on. If you use this technique, consider called
programs as well as programs that are transferred to using XFER or DXFR.
Then combine all the menu-item packages into one project for this menu
system.
This technique has the advantage of including programs that pass data
among themselves into the same package. If you have multiple layers of
menus, you could use this technique at the lowest level of menus.

v You might have designed and organized your applications in the past using
a technique that is unique to your organization. Using the same organizing
scheme when you migrate to Java would provide continuity for your
development organization and reduce the time needed for skills transfer to
the new development environment.

With any of these techniques, if you use the MSL Migration Assistance Tool, it
can help you identify common code that will be shared by several packages
and help you split this common code into separate packages and projects.

Assigning ownership

Each class within a package has an owner. This includes visual parts and
VAGen part classes. Each package and each project has an owner. The classes
within a package can have different owners, and the owners can be different
from the owner of the package and project containing those classes.

Your ownership strategy should reflect how development and maintenance
responsibilities are divided in your company. You need to provide a backup
mechanism in case an owner is unavailable.

Keep the following in mind when assigning ownership:
v In general, parts should be grouped into functional components so that

ownership can be assigned for maintenance.
v If one developer typically handles an entire program, then that developer

should be the owner for the corresponding package and all the classes in
that package.

Chapter 8. General migration considerations for VAGen 2.x and Cross System Product to Java 53

v Make the packages small enough that a single developer does not own the
entire system (unless the single developer is the only person who ever
works on that system).

v Make the packages small enough that very few people are working in the
same package at the same time.

Storing control information

In VisualAge Generator 2.2, files were used to store the following control
information:
v Linkage table
v Resource association file
v Generation options
v Bind commands
v Linkage editor control statements

In VisualAge Generator 4.0, the control information is stored in parts in the
ENVY repository.

You probably need to use different generation options for development,
system test, acceptance test, and production. For example, you might need to
specify different load libraries for the outputs of preparation or point to
different DB2 systems for different levels of testing. Similarly, you might need
different resource associations, linkage editor control statements, and bind
statements.

There are two alternative techniques for organizing control information:
v Use multiple control packages.
v Use a single control package.

Multiple control packages
One option is to store the control information for each level of test in a
different package. The package names could use the naming convention:

sss.control.common
sss.control.dev
sss.control.sys.test
sss.control.acc.test
sss.control.prod
sss.control.emergency

where:

sss Is the subsystem ID that is the same prefix you use for the
other packages in the project.

common Is used for control information that is common to test and

54 VisualAge Generator: Migration Guide

production. None of the part names in Common is duplicated
in dev, sys.test, acc.test, prod, or emergency.

dev Is for the developers to use.

sys.test Is for systems test.

acc.test Is for acceptance test.

prod Is for production.

emergency Is for emergency fixes.

The parts might be named as follows:
sssMvsCicsGenOpts
sssVseCicsGenOpts

sssResourceAssociations

sssLinkageTable

ppppppp.BDC (for bind information that is unique to a program)

ppppppp.LED (for linkage editor information that is unique to a program)

With this technique, you have sss.control.common and only one of the other
sss.control.xxxx projects loaded into your workspace. During test and
generation, the part name you specify for a particular type of control
information is the same part name regardless of whether you are working at
the development, system test, acceptance test, or production level of code.

The projects for development, system test, acceptance test, and production
each include the sss.control.common and sss.control.xxxx packages that
correspond to their level of testing.

sss.control.emergency is a special control package that is very similar to
sss.control.production. However, it specifies the load libraries needed for
emergency fixes rather than the normal production load libraries.

Single control package
A second option is to collect all the control information into a single package.
This can make it easier to maintain the control information. The parts might
be named as follows:
sssCommonMvsCicsGenOpts
sssXxxMvsCicsGenOpts

sssCommonVseCicsGenOpts
sssXxxVseCicsGenOpts

sssXxxMvsResourceAssociations

Chapter 8. General migration considerations for VAGen 2.x and Cross System Product to Java 55

sssXxxVseResourceAssociations

sssXxxMvsLinkageTable

sssXxxVseLinkageTable

ppppppp.BDC (for bind information that is unique to a program)

ppppppp.LED (for linkage editor information that is unique to a program)

In this naming scheme:

sss Is the subsystem name.

Common
Is used for control information that is common to test and production.

Xxx Is the level of test or production (for example, dev, sys.test, acc.test,
prod, or emergency).

ppppppp
Is the name of a program.

Generation options
/DESTNAME, /COBOL, and /NLS are gone.

/BIND and /LINKEDIT have changed. They do not point to a directory, just
to a suffix. For example, if your naming convention for linkage editor control
parts is ppppppp.LED, where ppppppp is the program name, you should set
/LINKEDIT=LED for the generation option.

/OPTIONS, /LINKAGE, and /RESOURCE have also changed. They do not
point to a directory, just to a part. For example, you might set
/OPTIONS=sssMvsCicsGenOpts.

/PROJECT generation option
A new /PROJECT option for the GENERATE command is available for
VisualAge Generator 4.0 on Java. Using /PROJECT, you can generate C++
and COBOL from VisualAge Generator parts stored in the Java repository.
Multiple /PROJECT options can be specified on the same GENERATE
command. For example, this command causes both My Project and Your
Project to be loaded:
hptcmd generate MYPROG /PROJECT="My Project","Version 1.0"
/PROJECT="Your Project","Version 29.5" ...

Note: You cannot use /PROJECT for two projects specified on the same
GENERATE command that contain packages with the same name.

See the VisualAge Generator Generation Guide for more information about the
/PROJECT option.

56 VisualAge Generator: Migration Guide

Project List Part
VisualAge Generator on Java also offers a new Project List Part (PLP). The
PLP is a generation options part in which you specify a list of projects to be
loaded together. You can specify the list of projects once in the PLP part and
maintain the list in only this one place. The PLP eliminates the need to specify
all related projects each time the projects are loaded. You can create a PLP for
each group of projects that you want to load together.

See “Creating a Project List Part (PLP)” on page 154 for information on how to
create project list parts.

Dual maintenance

The external source format file for 4GL parts that you export from VisualAge
Generator 4.0 is not compatible with the external source format file for
VisualAge Generator 2.2 or Cross System Product. Therefore, if you migrate a
subsystem that shares common parts with a subsystem that you will migrate
at a later time, you have the following alternatives for maintenance of the
common parts:
1. Maintain the common parts on VisualAge Generator 2.2 or earlier using

MSLs, and when you are satisfied with the changes:
a. Export an external source format file from the MSL for the changed

parts.
b. Import the external source format file into ENVY using the Defined

package radio button so the changes will go into the same ENVY
package in which the parts are already located.

2. Make the same changes to both the part in ENVY using VisualAge
Generator 4.0 and the corresponding MSL member using VisualAge
Generator 2.2.

Migrating from Cross System Product

When you migrate from Cross System Product, you have the following
additional considerations:
v If you are migrating from Cross System Product 3.3 or earlier, you are

migrating from interpretive CSP/AE to generated COBOL or C++. Refer to
Migrating Cross System Product Applications to VisualAge Generator
(SH23-0244-01) for information on the compatibility considerations involved
in this portion of the migration.

v You must also plan for how to handle the workstation environment:
– Backup and recovery
– Whether data will reside on the workstation or on the host
– How to handle calls to non-VisualAge Generator packages when you are

using the test facility

Chapter 8. General migration considerations for VAGen 2.x and Cross System Product to Java 57

– How to handle functions that were only supported when running the
test facility in the CICS environment (for example, CREATX and the use
of transient data queues).

v Early releases of Cross System Product allowed invalid data to be stored in
the MSLs. If an external source format file contains an invalid member, you
must either correct the member on Cross System Product and export the
external source format file for the member again or correct the external
source format file by editing it. The following are examples of the types of
problems that you might encounter:
– A data item that has a length of 0
– A map that contains a NUM field with a date edit, but the field is not

long enough to contain a date
– Members in the MSL that contain generated Cross System Product code

that really should have been stored in an ALF
v VisualAge Generator does not allow generation of packages that check a

non-SQL data item for the NULL state. VisualAge Generator rejects as
invalid any conditional statement (IF, TEST, WHILE) that tests the state of a
non-SQL data item for the NULL condition. However, this type of
statement was allowed in CSP 3.3. Therefore, you should rewrite any
statements that check non-SQL data items for the NULL state before
migrating CSP-generated applications that contain them.

Migrating from OS/2 to Windows NT

If you are changing from the OS/2 to the Windows NT development
platform, be sure to review “Changing from OS/2 to Windows NT” on
page 119 before you start to migrate.

Using the migration log file

The migration log file is named mslmig.log and is located in the same
directory as your workspace. This log file stores the results of Write to File
operations. You can use a text editor to view and print the log file.

58 VisualAge Generator: Migration Guide

Chapter 9. Pre-migration checklist
1. Before you migrate, you should first read the following:
v “Chapter 7. Comparing MSLs and library management on VAGen 4.0 on

Java” on page 39
v “Chapter 8. General migration considerations for VAGen 2.x and Cross

System Product to Java” on page 47
v “Chapter 10. The MSL Migration Assistance Tool on Java” on page 61
v “Chapter 11. Migrating production and work-in-progress MSLs to

VAGen 4.0 on Java” on page 75
v “Chapter 12. VAGen on Java case studies based on various MSL

structures” on page 85
v VisualAge Generator 4.0 readme file

2. Save a clean copy of your VisualAge for Java workspace. This clean copy
should not contain any of your application code. Copy ide.icx to
ideclean.icx, and store the clean copy on your LAN so that all developers
have access to it. Saving copies of the hpt.ini, ide.ini and ivj.dat files is also
recommended.

3. Check with IBM support to see if there are any fixes available for the
VisualAge Generator 4.0 MSL Migration Assistance Tool. If there are,
import the fixes and then load them into your 4.0 image.

4. For better performance during migration, you might want to do the
following:
v Dedicate a single workstation or server to use for migration. Attempting

to use multiple workstations limits VisualAge Generator’s ability to
detect duplicates and common code and to determine when previously
missing parts have been found. Having the product provide this
information more than compensates for any potential time savings that
might be gained by using several workstations.

v Copy your MSLs to the workstation you set up to run the VisualAge
Generator migration tools, or make sure your code libraries are on a
server that your migration workstation can access. This improves
performance for the migration tools.

v If you are migrating from VisualAge Generator 2.x or Cross System
Product, you will probably use the MSL Migration Assistance Tool to
migrate to VisualAge Generator 4.0. Run the tool on the server where
the ENVY repository is located. This improves performance for
committing parts to ENVY.
If you plan to use the MSL Migration Assistance Tool, review
“Collecting your source code” on page 117 and “Handling code page
changes” on page 118 for information on how to make your code from

© Copyright IBM Corp. 1997, 1999 59

Cross System Product or previous versions of VisualAge Generator
available to the MSL Migration Assistance Tool.

5. Contact your local IBM representative to learn more about VisualAge
Generator service offerings that can help you with migration.

60 VisualAge Generator: Migration Guide

Chapter 10. The MSL Migration Assistance Tool on Java

The MSL Migration Assistance Tool is designed to assist in migrating MSLs to
the ENVY library manager.

Note: Although the MSL Migration Assistance Tool can help determine when
members are not found, it cannot locate missing members. Similarly,
the MSL Migration Assistance Tool can help determine when duplicates
of a given member exist, but it cannot make the determination as to
which is the correct or current level of the member.

The migration process works from an MSL directory structure. In some cases,
you will not have an MSL on the workstation. For example, if you are
migrating from Cross System Product, your MSLs are VSAM files on the host.
The MSL Migration Assistance Tool enables you to create MSL directories
from external source format files. You can then use these MSL directories
during your migration. You do not need to install VisualAge Generator 2.2 to
create the MSL directories to use during migration.

The MSL Migration Assistance Tool enables you to select parts (members)
from an MSL or MSL concatenation, group them into a package or series of
packages, and move them to a “sandbox”. When you move a part to the
“sandbox”, its associates also move. The packages in the sandbox are in the
workspace, but are not in the ENVY repository yet. This allows you to
manipulate the packages and to rearrange the VAGen parts within the
packages until you are satisfied with the organizational structure. Only one
version of a part can be in the sandbox at a time.

After you are satisfied with your organizational structure for the packages,
you can commit the packages to the ENVY repository. Committing the
packages creates the following:
v An edition of the project in the ENVY repository
v An edition of the packages in the ENVY repository
v Any needed VAGen part classes for the 4GL member types
v The VAGen parts for the 4GL members

After the packages are in ENVY, you can use any of the ENVY library
management functions such as:
v Versioning and releasing the VAGen part classes and parts
v Versioning and releasing the packages
v Creating Project List Parts (PLPs)
v Versioning projects

© Copyright IBM Corp. 1997, 1999 61

v Assigning a class owner or a package owner

Overview of using the MSL Migration Assistance Tool

You can use these steps to start the MSL Migration Assistance Tool:
1. From the IBM VisualAge Generator 4.0 folder, select VAGen Developer 4.0

on Java with Migration.
2. From the VisualAge for Java Workbench window, select Workspace->Open

VAGen Parts Browser. The VAGen Parts Browser window is displayed.
3. From the VAGen Parts Browser window, select Tools->Migration->MSL

Migration. The main MSL Migration Assistance Tool window, called MSL
Migration Part List, is displayed, as shown in Figure 4.

Note: You must start VisualAge Generator 4.0 on Java using the VAGen
Developer 4.0 on Java with Migration option for the migration tools to
be loaded in your workspace. After you have finished migrating all
your code, you can start VisualAge Generator 4.0 without the migration
tools to save memory and increase performance.

You can also start VisualAge Generator 4.0 with the MSL Migration Assistance
Tool from a command line, using these steps:
1. Open a command line window to the directory where the ide.icx file is

stored, and enter the command ide /vgmig. (Note the blank space after
ide.)

2. From the VisualAge for Java Workbench window, select Workspace->Open
VAGen Parts Browser. The VAGen Parts Browser window is displayed.

3. From the VAGen Parts Browser window, select Tools->Migration->MSL
Migration. The main MSL Migration Assistance Tool window, called MSL
Migration Part List, is displayed.

Figure 4. MSL Migration Assistance Tool window

62 VisualAge Generator: Migration Guide

The sections that follow provide an overview of how to use the MSL
Migration Assistance Tool and the purpose of each window. Reading these
sections will help you understand the following chapters that describe how
you might organize your members into ENVY packages:
v “Chapter 8. General migration considerations for VAGen 2.x and Cross

System Product to Java” on page 47
v “Chapter 11. Migrating production and work-in-progress MSLs to VAGen

4.0 on Java” on page 75
v “Chapter 12. VAGen on Java case studies based on various MSL structures”

on page 85

After you have read the chapters on organizing your members into ENVY
packages, you will be ready to use the more detailed procedures provided in
“Chapter 13. Running the MSL Migration Assistance Tool on Java” on
page 115.

Building MSL directories
Before you can begin the migration process, you must have MSLs to migrate.
One of the following situations will apply:
v You are migrating from Cross System Product, so you have never had

MSLs on the workstation. Create one external source format file for each
host MSL and download the external source format files to the workstation.

v You are migrating from VisualAge Generator but have used
TeamConnection and do not have MSLs. You might want to create one
external source format file for each component to help preserve the
organizational structure you created in TeamConnection.

v You are migrating from VisualAge Generator and are changing from an
OS/2 development environment to a Windows NT development
environment. If you have not used special characters, you might be able to
use the OS/2 MSLs. However, some special characters are at different code
points in Windows NT and OS/2. If you have special characters other than
the not sign (¬), you cannot use the OS/2 MSLs due to code page
differences between the two environments. Create one external source
format file for each MSL. See “Changing from OS/2 to Windows NT” on
page 119 for information on converting between code pages using these
external source format files before you create MSLs on Windows NT.

After you have created your external source format files, from the MSL
Migration Part List window, select the ESF to MSL push button. The MSL
Migration Assistance Tool prompts you for the name of an external source
format file, as shown in Figure 5 on page 64.

Chapter 10. The MSL Migration Assistance Tool on Java 63

The MSL Migration Assistance Tool then prompts you for the name of a
directory into which the MSL members are to be placed, as shown in Figure 6.

After you have specified this information, the MSL Migration Assistance Tool
creates the MSL members from the external source format file. If you specify a
directory that does not exist, the MSL Migration Assistance Tool creates it for
you.

Note: The VisualAge Generator 4.0 automatic conversions occur at this time.
Therefore, processes and statement groups will become functions.

Selecting MSLs - using the MSL Library Selection window
Before you can begin moving parts to the sandbox, you first need to specify
the MSLs that you want to process. From the MSL Migration Part List

Figure 5. Prompting for an external source format file name

Figure 6. Prompting for an MSL directory name

64 VisualAge Generator: Migration Guide

window, select the MSL Library Selection push button. The MSL Library
Selection window is displayed, as shown in Figure 7.

From the MSL Library Selection window, you can specify the drive and path
for one or more MSL directories. Specify the drive and path for one MSL in
the Basic MSL directory field and then select the Add push button. Repeat this
until you have specified the information for all the basic MSLs in the
concatenation sequence that you want to process. You can use the Move Up,
Move Down, and Remove push buttons to change the concatenation
sequence.

After you specify the MSLs and the MSL concatenation sequence, select the
OK push button. The Part List Selection Criteria View window is displayed
and lists the MSL directories.

Selecting parts for a part list - using the Part List Selection Criteria View
window

The Part List Selection Criteria View window is similar to a Member Selection
List in Cross System Product or VisualAge Generator.

The Part List Selection Criteria View window is shown in Figure 8 on page 66.

Figure 7. MSL Library Selection window — Adding an MSL to the concatenation

Chapter 10. The MSL Migration Assistance Tool on Java 65

From the Part List Selection Criteria View window, you can do the following:
v Specify a portion of a part name using a wildcard.
v Specify which part types you want to appear on the MSL Migration Part

List window.

However, the Part List Selection Criteria View window differs from a Member
Selection List in the following ways:
v It allows you to specify whether you want to see all parts that satisfy the

part type criteria or whether you only want to see those parts that satisfy
the part type criteria that have not yet been moved to the sandbox. This is
controlled by the Only parts not processed toggle button.

v It does not allow you to specify which MSLs from the concatenation
sequence are to be used. All listed MSLs are always used. If duplicate
members exist, they are all shown.

v Function is listed as a part type. If you are migrating using external source
format files to create pseudo MSLs, select the function part type. If you are
migrating using your VisualAge Generator 2.x MSLs, select the Process and
Statement Group part types.

Note: The check box for the GUI part type is disabled in Figure 8 because
GUIs cannot be migrated to VisualAge Generator 4.0 on Java.

When you select the Build List push button, the parts that satisfy the
selection criteria appear in the MSL Migration Part List window.

Figure 8. Part List Selection Criteria View window

66 VisualAge Generator: Migration Guide

Selecting parts to move to ENVY - using the MSL Migration Part List
window

The MSL Migration Part List window lists the parts that satisfy the selection
criteria specified in the Part List Selection Criteria View window.

From the MSL Migration Part List window, you can select the parts that are to
be moved to the sandbox. The MSL Migration Assistance Tool moves the
selected parts with their associates to the sandbox. You can specify that the
selected parts are to be moved in the following ways:
v Into a single package
v Into multiple packages, with each selected program becoming a different

package
v Into a package that is already in the sandbox

When you move parts to the sandbox, it is possible that an associate of the
part you are currently moving is already in the sandbox, but in a different
package from the one that you have specified as the target for this move.

In this case, the associates that are shared by more than one package are
automatically moved into a separate package called package.noden, where n
is a number to distinguish different package nodes. Each package.node
represents a group of parts that have the same set of required packages.

When you move one or more parts to the sandbox, the VG Part Prerequisites
View window is displayed and shows the current state of the sandbox.

For the purposes of migration, the associates of a part are the same as in
Cross System Product or VisualAge Generator 2.x or earlier.

Figure 9. MSL Migration Part List window with parts

Chapter 10. The MSL Migration Assistance Tool on Java 67

Note: Process parts and statement group parts are displayed in the MSL
Migration Part List window as function parts. If you used the ESF to
MSL push button to create an MSL that you could migrate, all your
process and statement group parts were converted to function parts
when the MSL was created. These parts are displayed in the MSL
Migration Part List window with a type of function. The MSL
Migration Assistance Tool is unable to discern the origin of these
function parts. If, however, you used the MSL Library Selection push
button to select an existing MSL for migration, your process and
statement group parts are displayed in the MSL Migration Part List
window with a type of function (process) or function (statement
group). This allows you to determine which function parts were
originally process parts and which were originally statement group
parts.

After you think you have moved all the parts to the sandbox, you can verify
this from the Part List Selection Criteria View window by selecting the Only
parts not processed toggle button, then selecting the All Types push button,
and then selecting the Build List push button. If everything has been moved
to the sandbox, the MSL Migration Part List window will not list any parts.

Special columns in the MSL Migration Part List window
The MSL Migration Part List window provides information to help in
determining which parts to move to the sandbox. The Status, Duplicate, and
Last Migration Library Timestamp work together to help you resolve
duplicate or missing parts.

The Status column indicates the following:

Status Meaning

<blank> A part with the same name and timestamp
has not yet been moved to the sandbox. The
Duplicate column indicates whether a part
with the same name but a different timestamp
has been moved to the sandbox.

Processed A part with the same name and timestamp
has been moved to the sandbox but has not
yet been committed to ENVY.

Migrated A part with the same name and timestamp
has been moved to the sandbox and
committed to ENVY. The sandbox has not
been reset from ENVY as described in
“Reloading previously migrated ENVY
packages back into the MSL Migration
Assistance Tool sandbox” on page 72.

68 VisualAge Generator: Migration Guide

Not Found The part is an associate of a part that was
already moved to the sandbox from a different
MSL concatenation sequence. This part was
not found in that previous concatenation
sequence, and thus is identified in the
sandbox as a Not Found part. You can update
the sandbox with this newly found part.

In ENVY Only The part is in your ENVY workspace, but has
not been loaded into the sandbox from either
an MSL or from ENVY. This might occur if
you have deleted all the packages from the
sandbox and have not yet reset the sandbox
from your ENVY workspace.

The Duplicate column indicates True if the part is a duplicate:
v Another part with the same name but a different timestamp is already in

the sandbox.
v Another part with the same name is in the same MSL concatenation

sequence.

When Duplicate is True, the Last Migration Library Timestamp provides the
timestamp of the part in the sandbox to help in determining which of the
duplicates you really want to migrate to ENVY.

The value displayed in the Last Migration Library Timestamp depends on
whether the sandbox has been reloaded from ENVY:
v If the sandbox has not been reloaded (for example, you are working with

your initial set of MSLs or continuing with additional MSLs after
committing some packages), then the timestamp is the timestamp from the
MSL of the part in the sandbox.

v If you have reloaded the sandbox from ENVY (for example, you migrated
one subsystem several months ago and now are ready to do the remaining
subsystems), then the timestamp is the timestamp of the edition of the part
that is currently loaded in your workspace.

The Last Migration Library Timestamp is not displayed in the following
situations:
v A version of the part is not in the sandbox. This occurs if the duplicates are

both in the current MSL concatenation sequence or when you have cleaned
out the sandbox, but have not reloaded from your ENVY repository.

v The part in the sandbox is identified as a Not Found part. There is no
timestamp available for a Not Found part.

v The part in the MSL Migration Part List window has the same timestamp
as the part in the sandbox.

Chapter 10. The MSL Migration Assistance Tool on Java 69

v The part is not a duplicate.

Other MSL Migration Part List functions
From the MSL Migration Part List window, you can perform the following
tasks:
v Add a previously Not Found part that you have now found to the sandbox.
v Resolve duplicates by:

– Removing the duplicate from further consideration so that it no longer
appears on the MSL Migration Part List window and will not be
considered when looking for associates of other parts.

– Replacing a part in the sandbox with a different version of the part.
v Add new parts or replace existing parts in packages that are in the

sandbox, but which have already been committed to ENVY. This enables
you to update an existing ENVY package with a new version of the part.

Working in the sandbox - using the VG Part Prerequisites View window
The VG Part Prerequisites View window shows the ENVY packages that have
been created in the sandbox. The number of parts in the package is shown to
the right of the package name. When you select one of the packages from the
left pane, the parts contained in the package and the required and dependent
packages for the package appear in the other panes.

Figure 10 shows the VG Part Prerequisites View window.

Identifying common code
The MSL Migration Assistance Tool helps you identify parts that are
associated with more than one program. A package.node is created
automatically whenever a common part is used by more than one package.
The MSL Migration Assistance Tool does this by automatically moving the
common part into a new package.node. This removes the common part from
the original package. Both the original package and the package currently
being created specify the package.node for the common part as a prerequisite

Figure 10. VG Part Prerequisites View window

70 VisualAge Generator: Migration Guide

in the Required Packages pane. If several parts are shared by two packages,
they are all automatically moved to the same package.node. package.nodes
are the mechanism that the MSL Migration Assistance Tool uses to prevent
putting the same part into two different ENVY packages. package.nodes help
you identify common code that might need to be placed in different ENVY
packages rather than in the package in which the part was originally placed.

For example, if record ABC is used by Program1, then ABC is initially
included in the same package as Program1. Later, if Program2 is placed in a
different package in the sandbox and Program2 also uses record ABC, then
record ABC will be automatically moved from the package that contains
Program1 and placed in a new package.noden, where n is a number to
distinguish different package nodes.

Identifying missing parts
The MSL Migration Assistance Tool also helps you identify parts that are
missing. For example, if you migrate Program1 and it has record DEF defined
in its Tables and Additional Records List, record DEF might not exist
anywhere in the MSL concatenation sequence. In this case, the record DEF is
temporarily included in the same package as Program1, but is identified with
the notation Not Found in the VAGen Parts pane. You can create a package
called my.notfound.pkg and move the missing parts to that package as you
migrate parts to the sandbox. Alternatively, the MSL Migration Assistance
Tool moves any missing parts that are included in a package being committed
to ENVY to a notfound.pkg during the commit process. This is because ENVY
does not support empty parts.

You can create a list of the missing parts and write the list to the log file,
mslmig.log. Then you can use the list to find the missing parts in your MSLs
that have not yet been loaded into the sandbox.

Other sandbox functions
From the VG Part Prerequisites View window, you can perform the following
tasks:
v Create a new package. If you have not previously created a

common.data.pkg by moving data items, records, and tables to the sandbox,
you might decide to create one to contain shared data items and records
that you discover when they are moved to package.nodes as you migrate
programs and views.

v Mark a package unexplodable. Marking a package unexplodable means that if
parts in this package are used by a program that is moved to the sandbox
later, they are not moved to a new, shared package.node. For example, if
you have a common.data.pkg that contains all your common data items,
records, and tables, you should mark it as unexplodable so that these
common parts are not continually moved to new package.nodes as you
migrate other programs.

Chapter 10. The MSL Migration Assistance Tool on Java 71

v Collapse a package into another package. If you decide that two separate
packages would be more useful if they were combined into a single
package, the collapse function allows you to merge one package into the
other.

v Rename a package if you change your mind about the name.
v Check the consistency of a package to ensure that all required packages are

specified.
v Normalize a package to ensure that only the packages that are needed are

listed as required packages. This avoids unnecessary entries in the PLP part.
v Change the required packages for a package.
v When you are satisfied with the organization of your packages, you can

commit them to ENVY. You are prompted to provide the name of the
project in which the selected packages should be stored. If the project does
not exist, it is automatically created. If the project does exist, an edition is
opened. The commit process then creates the packages, classes, and VAGen
parts in ENVY.
If you have modified a package that is already in ENVY, the commit
process creates a new edition of the project and package and any affected
classes and VAGen parts. New classes and VAGen parts are created within
the package as needed.

Reloading previously migrated ENVY packages back into the MSL Migration
Assistance Tool sandbox

You might want to migrate one subsystem, work with it for a while in ENVY
to gain some experience, and then migrate your other subsystems. If you do
this, you need to reset the MSL Migration Assistance Tool from ENVY to
reflect the parts that are currently in ENVY. For example, if you added any
new parts to ENVY, these new part names might also exist in an MSL that
you want to load into the sandbox for migration to ENVY. These parts in the
MSL would thus need to be treated as duplicate parts.

Use these steps to load packages into the sandbox from ENVY:
1. From the Workbench window, add into your workspace any packages

(such as your common packages) that you need to have in the sandbox
when you migrate your new MSLs.
Alternatively, from the Workbench, add the projects that contain the
packages you need in your workspace.

2. From the MSL Migration Part List window, select the ENVY Pkg Selection
push button.
If there are packages already in the sandbox, a message is displayed
asking if the packages can be deleted. By deleting the packages currently
in the sandbox (from your last migration operation), you can ensure that

72 VisualAge Generator: Migration Guide

you start from a consistent set of packages (all loaded from MSLs or all
from ENVY). If you choose not to delete the packages, your new selections
are added to the existing sandbox list.

3. After you respond Yes or No to the message about existing packages, a
Selection Required window appears. In this window, select the packages
from your workspace that you want to have in the sandbox when you
continue your migration with your other subsystems. For example, in most
situations, you will want to load your common packages. Loading
common packages avoids the MSL Migration Assistance Tool identifying
these common parts as Not Found when you migrate your other
subsystems.

4. From the MSL Migration Part List window, select MSL Library Selection
to load into the sandbox the next group of MSLs that you want to migrate.

Notes:

1. When packages are loaded into the sandbox from ENVY, the timestamp
for their parts in the sandbox reflects the timestamp of the parts in your
ENVY workspace, not the timestamp of the original MSL member.
Therefore, the Last Migration Library Timestamp also reflects the
timestamp from ENVY.

2. When packages are loaded into the sandbox from ENVY, there is no
analysis to determine if these packages use any parts that have not yet
been found.

3. You cannot load a package into the sandbox from your ENVY workspace
in the following situations:
v After migration to ENVY, you added a nonvisual part or a Java class.
v After migration to ENVY, you added parts for VisualAge Generator

control information (generation options, linkage table, resource
associations, bind control commands, or linkage editor control
statements).

If you try to load packages that have been changed in these ways, you
will receive a message saying:
Unsuccessful in reading ENVY pkg into tool

When you receive this message, the log file (mslmig.log) lists the parts
that prevent the package from being loaded into the sandbox. To load the
package into the sandbox, you must first remove the classes that are
causing the problem.

If the package and the class are already versioned, use the following steps:
a. Open a new edition for the package.
b. Delete the class.
c. Load the packages into the sandbox.

Chapter 10. The MSL Migration Assistance Tool on Java 73

d. Re-add the original package back into your workspace (so that it is in
your workspace when you version and release classes after committing
the next set of packages in the sandbox).

If the package and the class are not versioned yet, use the following steps:
a. Version the class.
b. Delete the class.
c. Load the package into the sandbox.
d. Re-add the class (so that it is in your workspace when you version and

release classes after committing the next set of packages in the
sandbox).

74 VisualAge Generator: Migration Guide

Chapter 11. Migrating production and work-in-progress
MSLs to VAGen 4.0 on Java

Your organization might have many MSLs, each used for different purposes.
For example, your Database Administrator might be responsible for
maintaining one MSL that contains the data item and SQL row record
definitions. You might have MSLs that reflect the code that is currently in
production, and other MSLs contain the changes that are in the process of
being made. These MSLs containing changes include the developers’
read/write MSLs, staging MSLs, system test MSLs, and acceptance test MSLs.
These MSLs containing changes will be referred to in this document as
work-in-progress MSLs.

In general, for a system or subsystem, you should migrate your production
MSLs first and then migrate your work-in-progress. There are different
recommended techniques for migrating production and work-in-progress
MSLs.

Migration of your production MSLs involves using the MSL Migration
Assistance Tool. The MSL Migration Assistance Tool helps you structure your
VisualAge Generator code into ENVY packages by using the sandbox
approach explained in “Chapter 10. The MSL Migration Assistance Tool on
Java” on page 61. This is easier than using VAGen Import for external source
format files and then trying to rearrange the parts into ENVY packages.

Migration of your work-in-progress MSLs varies depending on the number of
new members in the MSLs:
v If all (or most) members already exist in the production MSLs, you

arranged the parts into packages when you migrated your production
MSLs. Therefore, to migrate your work-in-progress MSLs you can use
VAGen Import to import the external source format files directly into
ENVY.
VAGen Import allows you to specify that each part in the external source
format file is to be placed in the same ENVY package in which it is already
defined. This preserves the structure of your ENVY packages that you
created using the MSL Migration Assistance Tool.

v If you have many new members that did not exist in the production MSLs,
you need to assign these members to packages. For a large number of new
members, it is easier to use the MSL Migration Assistance Tool to migrate
your work-in-progress MSLs.

© Copyright IBM Corp. 1997, 1999 75

The techniques for migrating production and work-in-progress MSLs are
explained in:
v “Production MSLs”
v “Work-in-progress MSLs” on page 80

You might want to migrate one subsystem, work with it in ENVY for a while
and then migrate your remaining subsystems. To do this, you need to reset
the MSL Migration Assistance Tool from ENVY so that any changes you have
made to previously migrated parts is reflected in the sandbox. This is
described in “Resetting the MSL Migration Assistance Tool sandbox” on
page 252.

Production MSLs

Migrating production MSLs involves the following general steps:
1. If you are migrating from Cross System Product, do the following:
v Export external source format files for each production MSL.
v Download the external source format files to the workstation.
v Use the MSL Migration Assistance Tool to create an MSL directory

structure on the workstation.
2. If you are migrating from previous versions of VisualAge Generator, your

MSLs should already exist on the workstation or LAN. However, to avoid
any problems with code page differences, you should:
v Export external source format files for each production MSL.
v Convert the external source format files to the Windows NT code page

as described in “Changing from OS/2 to Windows NT” on page 119.
v Use the MSL Migration Assistance Tool to create an MSL directory

structure on the workstation.
3. Move parts into the sandbox as described in “Techniques for moving parts

to the sandbox” on page 77.
4. Commit the packages in the sandbox to ENVY. When you are prompted

for a project name, enter the name of the production-level project (for
example, MyProdProject).

5. In ENVY, do the following:
v Version and release the parts.
v Version the packages.
v Create the Project List Parts (PLPs).
v Version the projects.
v Generate the programs. Then test to be sure that what you migrated

matches your production code.

76 VisualAge Generator: Migration Guide

Techniques for moving parts to the sandbox
There are three basic techniques that can be used to move parts into the
sandbox. The choice partly depends on how clean your MSLs are in terms of
the following:
v There are no missing parts
v All code is currently used
v There are no duplicates

Each of the three techniques involves using the MSL Migration Assistance
Tool and migrating only the MSLs that contain the production level code. The
three techniques are described in the following sections:
v “All data items, records, and tables are used”
v “All records and tables are used” on page 78
v “Some records and tables might not be used” on page 78

“Considerations for the migration techniques” on page 79 provides
information that applies to all three techniques.

All data items, records, and tables are used
If you know the data items, records, and tables are all actually being used,
move the parts to the sandbox in the following order:
1. Data items
2. Records and tables
3. Mark the packages created for data items, records, and tables as

unexplodable, as described in “Other sandbox functions” on page 71.
4. Programs — their associates that have not yet been moved will be moved

to the sandbox with them
5. Any processes, statement groups, functions, maps, map groups, and PSBs

that are no longer used or that are not used by the current MSL
concatenation.

This technique has the advantage of creating the fewest package.nodes when
common parts are discovered (see “Identifying common code” on page 70).
Because all data items are migrated first, followed by all records and tables,
this technique assumes that all data items, records, and tables are actually
used. If this is not the case, there is the disadvantage of migrating parts to
ENVY that are never used.

This technique works well if you have an MSL that contains all your common
global data items, records, and tables and you know that all these parts are
actually used. This might occur if a database administrator maintains the MSL
that contains the common global data items, records, and tables.

Chapter 11. Migrating production and work-in-progress MSLs to VAGen 4.0 on Java 77

All records and tables are used
If you know that all records and tables are used, but are not sure whether all
the data items are used, move the parts to the sandbox in the following order:
1. Records and tables — their associated data items will be moved to the

sandbox with them
2. Mark the package(s) created for the records and tables as unexplodable

3. Move any remaining data items to a package called my.unused.items.pkg.
Do not mark this package as unexplodable so items that are used directly by
packages (for example, called parameters) will be automatically moved to
a new package.node. After the data items are identified, you can then
move them to the package containing records and tables. What remains in
my.unused.items.pkg after everything is moved to the sandbox are all the
global data items that are no longer used by this MSL concatenation.
If you will be migrating other MSL concatenation sequences that might
use these data items, do not commit my.unused.items.pkg to ENVY until
you have migrated the other MSL concatenations. Waiting to commit
enables you to move data items that are used by the later concatenation
sequences to other packages in the sandbox.

4. Programs — their associates that have not yet been moved will be moved
to the sandbox with them

5. Any processes, statement groups, functions, maps, map groups, and PSBs
that are no longer used or that are not used by the current MSL
concatenation

This technique has the advantage of minimizing the package.nodes that are
created automatically. Some data items that are initially thought to be unused
might be moved to a package.node. For example, this occurs when the only
use of a global data item is as a called parameter for a package.

Because records and tables are migrated first, this technique assumes that all
records and tables are actually used. If this is not the case, there is the
disadvantage of migrating records and tables (and their associated data items)
that are never used.

Some records and tables might not be used
If you are not sure whether some records and tables are currently used, move
the parts to the sandbox in the following order:
1. Programs — their associates will be moved to the sandbox with them
2. Whatever is left — this might involve data items, records, tables,

processes, statement groups, functions, maps, map groups, and PSBs that
are no longer used or which are not used by the current MSL
concatenation

78 VisualAge Generator: Migration Guide

This technique has the advantage of identifying any parts that are no longer
used for this MSL concatenation sequence. It has the disadvantage of
potentially creating many package.nodes during migration. This is because
data items, records, and tables tend to be shared among many packages. You
will be identifying common data items, records, and tables when you move
packages to the sandbox rather than taking care of them prior to dealing with
programs and GUIs as described in the other techniques.

Considerations for the migration techniques
The following notes apply to all three techniques:
v If you have naming conventions that help you identify common parts, you

can use your naming conventions to help you separate parts into ENVY
packages.For example, if records starting with V* indicate a common record
and records starting with W* belong to a program, you might choose to
only move common records (the ones starting with V*) when moving
records and tables to the sandbox using the first two techniques.

v The order in which you migrate parts to the sandbox affects how parts are
assigned to packages.

v For each MSL or each MSL concatenation sequence, be sure to check that
everything in the MSL was moved to the sandbox. Just migrating all the
programs does not guarantee that everything in the MSL was migrated —
there might be records, tables, data items, and so on that are used by
packages in other MSL concatenation sequences but are not used in the
current concatenation sequence. You can use the toggle button Only parts
not processed on the Part List Selection Criteria View window to limit the
list of VAGen parts to those that have not yet been processed by the MSL
Migration Assistance Tool. For each part that has not been processed, you
need to decide whether it needs to be migrated or is no longer used.

v For each MSL concatenation sequence:
– After committing the packages to ENVY, generate the programs, map

groups, and tables. Then test to be sure that what you migrated matches
your production code. For programs, you might want do the following:
- Generate each program without any of its tables
- Generate each table

This avoids generating common tables multiple times.

If some programs or tables cannot be generated, then this highlights an
area where there are problems in migration. To determine whether the
problem is in the organization of the ENVY packages or whether the
problem is in the original source code, try generating the failing
program, map group, or table on the original Cross System Product or
VisualAge Generator system using your original MSLs.

Chapter 11. Migrating production and work-in-progress MSLs to VAGen 4.0 on Java 79

Notes:

1. Any programs for the C++ target environments must be regenerated
for VisualAge Generator 4.0 or later. There is no coexistence of C++
runtime services between VisualAge Generator 2.2 and 4.0 or later. In
addition, it is strongly recommended that you regenerate all
programs for the COBOL environments and package all views to be
sure that you migrated the correct level of code.

2. For CICS OS/2, the default parmform option in the linkage table was
COMMDATA. With VisualAge Generator 4.0 or later, the new option
COMMPTR is the default. Therefore, if you never specified linkage
tables for CICS OS/2, you might need a linkage table now.

– Test the generated programs.

Work-in-progress MSLs

After you have completed the following tasks, you are ready to migrate your
work-in-progress MSLs:
v Migrate your production MSLs using the MSL Migration Assistance Tool
v Version and release the parts (views and VAGen part classes)
v Version the packages
v Create Project List Parts (PLPs) for your production level code
v Version the projects
v Generate the programs
v Test your migrated production level code

The process for migrating your work-in-progress MSLs assumes you have
separate MSLs for staging, system test, and acceptance test as shown in
Figure 11 on page 81.

Depending on the number of new members in your work-in-progress MSLs,
use one of the following techniques:
v If there are no (or very few) new members in your work-in-progress MSLs,

see “Using VAGen Import” on page 81.
v If there are many new members, see “Using the MSL Migration Assistance

Tool” on page 82.

80 VisualAge Generator: Migration Guide

Using VAGen Import
If you have no (or very few) new members in your work-in-progress MSLs,
you can migrate them using VAGen Import by working backward through
your MSL concatenation sequence from the production MSLs, and doing the
following:

1. Create a test-level project (for example, MyAccTestProj), and add the
same packages and versions to the test-level project as are in the
production-level project.

2. With the test-level project in your workspace, open editions of the
projects and packages so that you will be able to import into them.

3. Export external source format files for the acceptance test (ACCTEST)
MSL.

Figure 11. Sample MSL Concatenation for Complete Production MSL and Deltas for Test

Chapter 11. Migrating production and work-in-progress MSLs to VAGen 4.0 on Java 81

4. Use VAGen Import to import the external source format files into ENVY,
after selecting the Defined package radio button. This causes parts that
are in the external source format files that already exist in ENVY to be
imported into the same package in which they are already defined.

5. Version and release the classes (VAGen part classes and views).
6. Version the ENVY packages. This provides a base line for the code that

was in acceptance test.
7. Create the default package for the current test level (MyAccTestProj).

Update the PLP part in the default package, and version the default
package.

8. Version the project that contains the version of the packages that are in
acceptance test.

9. Generate the programs, map groups, and tables that have changed for the
acceptance test level. Then test to be sure that everything migrated
successfully at this level.

10. If there are additional levels of test MSLs:
a. Create a project for the next level of test (for example, MySysTestProj)

and initialize to the same packages and versions as are in the
previously migrated test level (in MyAccTestProj).

b. Repeat steps 1-8 for each level of testing, working backward through
your MSL concatenation sequence. For example, for the MSLs shown
in Figure 11 on page 81, you should do the SYSTEST MSL next,
followed by the STAGING MSL.

11. After all work-in-progress MSLs have been migrated, other than the
developers’ read/write MSLs, assign ownership of the projects, packages,
and classes.

12. Developers can then migrate their read/write MSLs by doing the
following:
v Open editions of the Development projects and packages.
v Export external source format files for their read/write MSL.
v Use VAGen Import to import the external source format files into

ENVY after selecting the Defined package radio button. This causes
parts that are in the external source format files that already exist in
ENVY to be imported into the same package in which they are already
defined.

v The developers can then continue with their normal development and
test work and wait to version and release the classes until their testing
is completed.

Using the MSL Migration Assistance Tool
You should create projects for each level of test and seed them from the
previous level of test (or production) before migrating the corresponding
test-level of MSL using the MSL Migration Assistance Tool.

82 VisualAge Generator: Migration Guide

If you have many new members in your work-in-progress MSLs, it might be
easier to use the MSL Migration Assistance Tool so that you have the same
flexibility to arrange parts into ENVY packages as you did when you
migrated your production MSLs. To migrate your work-in-progress MSLs
using the MSL Migration Assistance Tool, you have the following options:
v If you have not made any changes to the parts you have committed to

ENVY and your sandbox is still available, you can use the same repository
and sandbox that you previously used during migration. The advantage of
this is that the Last Migration Library Timestamp reflects the timestamp
from the MSL(s) that you previously migrated.

v If you have made any changes to the organization of your parts within
ENVY or you have added or deleted parts from ENVY, then you must
reload the sandbox as described in “Reloading previously migrated ENVY
packages back into the MSL Migration Assistance Tool sandbox” on page 72.

All the functions of the MSL Migration Assistance Tool are available to you to
assist in migrating your work-in-progress.

Chapter 11. Migrating production and work-in-progress MSLs to VAGen 4.0 on Java 83

84 VisualAge Generator: Migration Guide

Chapter 12. VAGen on Java case studies based on various
MSL structures

There are several common ways that you might have organized your MSLs.
These include the following techniques:
v Techniques for Production MSLs

– “Multiple subsystems with no duplicates” on page 87
– “Multiple subsystems with controlled duplicates” on page 89
– “Separate production MSLs for each developer” on page 92
– “MSLs that contain unintended duplicates” on page 97
– “MSLs containing code from VisualAge Generator Templates or

BW*Wizard” on page 98
v Techniques for Work-in-Progress MSLs

– “Complete set of MSLs for production and deltas for test” on page 102
– “Complete sets of MSLs for test and production” on page 106
– “MSLs from marketing or other demonstrations” on page 111

Combinations of the above techniques might be used in your organization. In
particular, one of the techniques for production MSLs might be combined
with one of the techniques for work-in-progress MSLs.

In addition, because Cross System Product and VisualAge Generator had no
formal library management, it is common to find unintended duplicates or
even triplicates of members in MSLs. An example of this is described in
“MSLs that contain unintended duplicates” on page 97.

Understanding the diagrams and terminology

This chapter uses diagrams to represent MSL concatenation sequences. These
diagrams are explained in “MSL structure diagrams”.

This chapter also uses the advance command in explaining how some of the
MSL concatenation sequences were used. The advance command, which was
not supported in Cross System Product, is explained in “Advance command
in VisualAge Generator” on page 86.

MSL structure diagrams
Figure 12 on page 86 shows a diagram of an MSL structure similar to the ones
that are used in the rest of this chapter.

© Copyright IBM Corp. 1997, 1999 85

In Figure 12, each box represents a different MSL. The four MSLs are
SUBSYS1, SUBSYS2, COMMON, and DBA. The lines between the boxes
represent MSL concatenation sequences. Figure 12 shows two MSL
concatenation sequences. The first concatenation sequence is SUBSYS1,
followed by COMMON and then DBA. The second concatenation sequence is
SUBSYS2, followed by COMMON and then DBA.

Advance command in VisualAge Generator
Releases of VisualAge Generator prior to 3.0 provided an advance command
that was not available in Cross System Product. Advance moves members
from one MSL of a concatenation (the source) to the next MSL of the
concatenation sequence (the target). After a member is moved to the target
MSL, it is deleted from the source MSL. In Figure 12, you can advance a
member from SUBSYS1 to COMMON, from SUBSYS2 to COMMON, and
from COMMON to DBA. However, you cannot advance a member from
SUBSYS1 to DBA.

For Cross System Product, the equivalent function is done by the following
steps:
1. Concatenate the target MSL first (read/write) and the source MSL second

(read-only).
2. Copy the members from the source MSL to the target MSL.
3. Change the MSL concatenation sequence so the source MSL is first

(read/write).
4. Delete the members from the source MSL.

Figure 12. Sample MSL Concatenation

86 VisualAge Generator: Migration Guide

In the sections that follow, advance is used to describe how members are
moved from one MSL to the next.

Multiple subsystems with no duplicates

The scenario for separate MSLs for each subsystem has the following MSL
structure:

In this scenario, there are no duplicate members. Each member exists in one
and only one MSL.

Recommendations
Consider migrating the MSLs to ENVY as follows:

1. Verify that there are no duplicates in the MSLs. If there are duplicates,
either resolve the duplicates by deleting the obsolete version of the
member or see one of the following sections:
v “Multiple subsystems with controlled duplicates” on page 89
v “Separate production MSLs for each developer” on page 92
v “MSLs that contain unintended duplicates” on page 97

2. Move the parts in the DBA and COMMON MSLs to the sandbox. Use a
single concatenation sequence for these two MSLs.

3. Commit the packages created from the DBA and COMMON MSLs to
ENVY. Specify a project name that reflects that this is common code (for
example, CommonProject).

4. Version and release the classes (VAGen part classes).

Figure 13. Sample MSL Concatenation for Multiple Subsystems with no Duplicates

Chapter 12. VAGen on Java case studies based on various MSL structures 87

5. Version the packages created from the DBA and COMMON MSLs.
6. Version the project (CommonProject).
7. Keep the packages created from the DBA and COMMON MSLs in the

workspace and the sandbox. This enables the MSL Migration Assistance
Tool to specify these packages as required packages where appropriate
when migrating the subsystems.

8. Migrate one of the subsystems (for example, SUBSYS1).
9. Commit this group of packages to ENVY. Specify a project name that

reflects that this is SUBSYS1 (for example, Subsys1Project).
10. Version and release the classes (VAGen part classes).
11. Create a default package and a Project List Part for Subsystem 1. This

Project List Part should specify the project created from the DBA and
COMMON MSLs as a required project.

12. Version the packages created from the SUBSYS1 MSL.
13. Version the project (Subsys1Project).
14. Generate the programs moved to ENVY from the SUBSYS1 and

COMMON MSLs. Test the code migrated for Subsystem 1.
15. Migrate the next subsystem (SUBSYS2). The packages created from the

DBA, COMMON, and SUBSYS1 MSL can all be available in the
workspace so they can be specified as prerequisites where appropriate.

16. Commit this group of packages to ENVY. Specify a project name that
reflects that this is SUBSYS2 (for example, Subsys2Project).

17. Version and release the classes (VAGen part classes).
18. Create a default package and a Project List Part for Subsystem 2. This

Project List Part should specify the project created from the DBA and
COMMON MSLs as a required project.

19. Version the packages created from the SUBSYS2 MSL.
20. Version the project (Subsys2Project).
21. Generate the programs moved to ENVY from the SUBSYS2 MSL. You

should not need to generate programs in COMMON again unless
SUBSYS2 is for a different target environment. Test the code migrated for
Subsystem 2.

22. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 102
v “Complete sets of MSLs for test and production” on page 106
v “MSLs from marketing or other demonstrations” on page 111

Because there are no duplicate parts, the projects for both SUBSYS1 and
SUBSYS2 can be loaded into the same workspace.

88 VisualAge Generator: Migration Guide

Multiple subsystems with controlled duplicates

The scenario for separate MSLs for each subsystem, but with controlled
duplicates has the following MSL structure:

Although the scenario in Figure 14 appears the same as the scenario in
Figure 13 on page 87, the Figure 14 scenario is different in that the same
member might exist in the SUBSYS1, SUBSYS2, and SUBSYSx MSLs. For
example, the COMMON MSL might contain a message handling program that
obtains the messages from a VisualAge Generator table. Each subsystem has
its own VisualAge Generator message table.

This results in duplicates, but only intentional duplicates, between the
subsystems. There are no duplicates between a subsystem and the COMMON
MSL.

For CICS and IMS target environments, this assumes that the subsystems run
in separate regions — duplicate program, table, or map group names are not
permitted in the same region.

Recommendations
Consider migrating the MSLs to ENVY as follows:

1. Determine the list of members that have been intentionally duplicated
between the subsystems. Ensure that there are no duplicates between the
DBA or COMMON MSLs and any of the subsystems.

Figure 14. Sample MSL Concatenation for Multiple Subsystems with Controlled Duplicates

Chapter 12. VAGen on Java case studies based on various MSL structures 89

2. Move the parts in the DBA and COMMON MSLs to the sandbox. Use a
single concatenation sequence for these two MSLs. There might be a
number of parts marked as Not Found because each subsystem contains
its own version of the part. Be sure that these parts are included in the
subsystem MSLs. For example, if each subsystem has its own message
table, the table would not be in either the DBA or COMMON MSL and
would be reported as Not Found when you migrate these two MSLs.

3. Commit the packages created from the DBA and COMMON MSLs to
ENVY. Specify a project name that reflects that this is common code (for
example, CommonProject).

4. Version and release the classes (VAGen part classes).
5. Version the packages created from the DBA and COMMON MSLs.
6. Version the project (CommonProject).
7. Keep the packages created from the DBA and COMMON MSLs in the

workspace and the sandbox. This enables the MSL Migration Assistance
Tool to specify these packages as required packages where appropriate
when migrating the subsystems.

8. Migrate one of the subsystems (for example, SUBSYS1).
v Some of the intentional duplicates might have a Status of Not Found on

the MSL Migration Part List window. For example, if an error handling
program from COMMON uses different message tables for each
subsystem, the message table would be identified as a Not Found part
until you migrate it to the sandbox for the first subsystem.

v Put the intentional duplicates for this subsystem into one or more
packages that have a name that identifies them as duplicates. For
example:
xxx.yyyyyy.zzzzzz

where:

xxx Is the subsystem ID.

yyyyyy
Is something that indicates a duplicate (such as duplicate,
overwrite, special, subsystem).

zzzzzz Is what is being duplicated (such as messages, menu.table,
helptext).

v Mark the packages created for the intentional duplicates as
unexplodable.

v Move the other parts from this MSL concatenation to the sandbox.
9. Commit this group of packages to ENVY. Specify a project name that

reflects that this is SUBSYS1 (for example, Subsys1Project). Include the
packages created for this subsystem’s intentional duplicates in the project.

90 VisualAge Generator: Migration Guide

10. Version and release the classes (VAGen part classes).
11. Create a default package and a Project List Part for Subsystem 1. This

Project List Part should specify the project created from the DBA and
COMMON MSLs as a required project.

12. Version the packages created from the SUBSYS1 MSL.
13. Version the project (Subsys1Project).
14. Generate the programs moved to ENVY from the SUBSYS1 and

COMMON MSLs. Test the code migrated for Subsystem 1.
15. Prepare to migrate the next subsystem by doing the following:

v From the Workbench window, delete the project created for SUBSYS1
from the workspace. Keep the project created from DBA and
COMMON in the workspace.

v From the VG Part Prerequisites View window, delete the packages
created for SUBSYS1 from the VG Part Prerequisites View window so
that duplicates between Subsystem 1 and Subsystem 2 will not be
detected. Before you can delete a package, you must first remove it
from the Required Packages list of all other packages in the sandbox.

16. Move the next subsystem (SUBSYS2) to the sandbox. Use the same
process that is described in 8 on page 90.

17. Commit this group of packages to ENVY. Specify a project name that
reflects that this is SUBSYS2 (for example, Subsys2Project). Include the
packages created for this subsystem’s intentional duplicates in the project.

18. Version and release the classes (VAGen part classes).
19. Create a default package and a Project List Part for Subsystem 2. This

Project List Part should specify the project created from the DBA and
COMMON MSLs as a required project.

20. Version the packages created from the SUBSYS2 MSL.
21. Version the project (Subsys2Project).
22. Generate the programs moved to ENVY from the SUBSYS2 MSL. If the

migration of Subsystem 2 replaced any parts used by the COMMON
code, you would need to generate the programs created from COMMON
again. For example, if each subsystem has its own version of Record1,
then any program created from COMMON that used Record1 would
need to be generated for Subsystem 2. Test the code migrated for
Subsystem 2.

23. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 102
v “Complete sets of MSLs for test and production” on page 106
v “MSLs from marketing or other demonstrations” on page 111

Chapter 12. VAGen on Java case studies based on various MSL structures 91

Either the project for SUBSYS1 or for SUBSYS2 can be added into a
workspace, but both cannot be added at the same time.

Separate production MSLs for each developer

The scenario for separate production MSLs for each developer has the
following MSL structure:

Although the scenario in Figure 15 appears very similar to Figure 14 on
page 89, the situation in Figure 15 is different in that each subsystem was
written by a different developer without regard to what the other developers
were doing. In this scenario, the same member can exist in the COMMON,
SUBSYS1, and SUBSYS2 MSLs. This is because developers are free to modify
the common code to suit their own needs. Thus some developers might use
the common member unchanged (and still in COMMON) and other
developers might each have a different version of the common member. This
results in lots of duplicate members, all at different and very likely conflicting
levels of code.

There should be a core set of common code, without duplicates in any MSL.
However, the following situation could also arise:

SUBSYS1 MSL - members A, B, C from COMMON: D
SUBSYS2 MSL - members B, C from COMMON: A, D
SUBSYS3 MSL - members A from COMMON: B, C, D
SUBSYS4 MSL - members C from COMMON: A, B, D
COMMON MSL - members A, B, C, D

Figure 15. Sample MSL Concatenation when Each Subsystem Replaces Common Code

92 VisualAge Generator: Migration Guide

In this situation, the COMMON MSL would need to create the following
packages:
CommonCore: part D
CommonA: part A
CommonB: part B
CommonC: part C

As you can see from this small example, determining how the members could
be partitioned efficiently might be quite difficult.

Recommendations
How you migrate when each subsystem has been able to modify the
COMMON and DBA code depends on whether you want to define a core set
of code that no one is allowed to modify or whether you want each
subsystem to have its own version of all code and thus work on a stand-alone
basis.

Creating a core common set of packages
If you want to change the philosophy that each developer can modify the
common code, consider migrating the MSLs into ENVY as follows:

1. Determine the core set of members from the COMMON and DBA MSLs
that none of the developers have modified for any subsystem.

2. Build an external source format file containing only this core set of
members.

3. Use the MSL Migration Assistance Tool to create an MSL called CORE for
this external source format file.

4. Build a second external source format file containing all the members
from COMMON and DBA that are not in the core set (members that are
changed in one or more subsystems).

5. Use the MSL Migration Assistance Tool to create an MSL called
CHANGED for this external source format file.

6. Move the parts from the CORE MSL to the sandbox. There might be a
number of parts marked as Not Found because individual subsystems
have modified these parts.

7. Commit the packages created from the CORE MSL to ENVY. Specify a
project name that reflects that this is the core common code (for example,
CoreCommonProject).

8. Version and release all the classes (VAGen part classes).
9. Version the packages.

10. Version the project (CoreCommonProject).
11. Keep the packages created from the CORE MSL in the workspace and the

sandbox. This enables the MSL Migration Assistance Tool to specify these
packages as required packages where appropriate when migrating the

Chapter 12. VAGen on Java case studies based on various MSL structures 93

subsystems. This also avoids associated parts being marked as Not Found
if they are part of the core common code.

12. Move the parts for the SUBSYS1 MSL into the sandbox. Include the
CHANGED MSL at the bottom of the concatenation sequence. This
enables you to locate any associated parts that are not included in the
CORE MSL, but which were not modified for SUBSYS1. Do not add or
replace any parts in the packages created from the CORE MSL.

13. Commit the packages created from the SUBSYS1 and CHANGED MSLs
to ENVY. Specify a project name that reflects that this is SUBSYS1 (for
example, Subsys1Project). This project represents the parts that existed for
Subsystem 1.

14. Version and release all the classes (VAGen part classes).
15. Create a default package and a Project List Part for Subsystem 1. This

Project List Part should specify the project created from the CORE MSL
as a required project.

16. Version the packages.
17. Version the project (Subsys1Project).
18. Generate the programs moved to ENVY for Subsystem 1. Test the code

migrated for Subsystem 1.
19. Prepare to migrate the next subsystem by doing the following:

v From the Workbench window, delete the project created for SUBSYS1
and CHANGED from the workspace. Keep the project created from the
CORE MSL in the workspace.

v From the VG Part Prerequisites View window, delete the packages
created for SUBSYS1 and CHANGED from the VG Part Prerequisites
View window so that duplicates between Subsystem 1 and Subsystem
2 will not be detected. Before you can delete a package, you must first
remove it from the Required Packages list of all other packages in the
sandbox.

20. Move the next subsystem (SUBSYS2) to the sandbox. Include the
CHANGED MSL at the bottom of the concatenation sequence. This
enables you to locate any associated parts that are not included in the
CORE MSL, but which were not modified for SUBSYS2.
Be sure the project created from the CORE MSL is loaded into the
workspace and the sandbox. This avoids associated parts being marked
as Not Found if they are part of the core common code. Do not add or
replace any parts in the packages created from the CORE MSL.

21. Commit the packages created from the SUBSYS2 and CHANGED MSLs
to ENVY. Specify a project name that reflects that this is SUBSYS2 (for
example, Subsys2Project). This project represents the parts that existed for
Subsystem 2.

22. Version and release all the classes (VAGen part classes).

94 VisualAge Generator: Migration Guide

23. Create a default package and a Project List Part for Subsystem 2. This
Project List Part should specify the project created from the CORE MSL
as a required project.

24. Version the packages.
25. Version the project (Subsys2Project).
26. Generate the programs moved to ENVY for Subsystem 2. If the migration

of Subsystem 2 replaced any parts used by the CORE code, you would
need to generate the programs created from CORE again. For example, if
each subsystem has its own version of Record1, then any program created
from CORE that used Record1 would need to be generated for Subsystem
2. Test the code migrated for Subsystem 2.

27. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 102
v “Complete sets of MSLs for test and production” on page 106
v “MSLs from marketing or other demonstrations” on page 111

Creating stand-alone subsystems
If you want to each subsystem to have its own version of all code so its
developers can work on a stand-alone basis, consider migrating your MSLs to
ENVY as follows:

1. For the first subsystem, move parts to the sandbox using a concatenation
sequence of SUBSYS1, COMMON, and DBA. The concatenation sequence
should be the same concatenation sequence that you use to generate
programs for Subsystem 1.
If there are parts in COMMON and DBA that are not currently used by
Subsystem 1, consider putting them into a package called
xxx.unused.parts.pkg, where xxx is the subsystem ID. Using this
technique means that the common definition of these unused parts will
be available in the project for Subsystem 1.

2. Commit the packages created for Subsystem 1 to ENVY. Specify a project
name that reflects that this is SUBSYS1 (for example, Subsys1Project).
This project represents the parts that existed for Subsystem 1. Include
xxx.unused.parts.pkg with the packages you commit to ENVY. The other
subsystems will develop their own lists of unused parts.

3. Version and release all the classes (VAGen part classes).
4. Version the packages.

Note: A Project List Part is not needed because all the parts used by
Subsystem 1 are in a single project.

5. Version the project (Subsys1Project).
6. Generate the programs moved to ENVY for Subsystem 1. Test the code

migrated for Subsystem 1.

Chapter 12. VAGen on Java case studies based on various MSL structures 95

7. Prepare to migrate the next subsystem by doing the following:
v From the Workbench window, delete the project created for Subsystem

1 from the workspace.
v From the VG Part Prerequisites View window, delete all the packages

created for Subsystem 1, including the packages created from the
COMMON or DBA MSLs and the xxx.unused.parts.pkg

8. Move the next subsystem to the sandbox using a concatenation sequence
of SUBSYS2, COMMON, and DBA. The concatenation sequence should
be the same concatenation sequence that you use to generate programs
for Subsystem 2.

Note: This technique means that identical code for a part might exist in
the packages created for Subsystem 1 and Subsystem 2. This
occurs if both of these subsystems used the version of the part that
was previously in COMMON or DBA. However, some other
subsystem might have modified the part or the developers for
Subsystem 1 might need to have their own version of the part in
the future. This technique enables the developers of Subsystem 1
and Subsystem 2 to continue to develop in an independent
manner, without regard to how the other subsystem uses the part.

9. Commit the packages created for Subsystem 2 to ENVY. Specify a project
name that reflects that this is SUBSYS2 (for example, Subsys2Project).
This project represents the parts that existed for Subsystem 2. Include
xxx.unused.parts.pkg with the packages you commit to ENVY.

10. Version and release all the classes (VAGen part classes).
11. Version the packages.

Note: A Project List Part is not needed because all the parts used by
Subsystem 2 are in a single project.

12. Version the project (Subsys2Project).
13. Generate the programs moved to ENVY for Subsystem 2. Because each

subsystem has its own complete set of code, you should generate all the
programs for Subsystem 2. Test the code migrated for Subsystem 2.

14. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 102
v “Complete sets of MSLs for test and production” on page 106
v “MSLs from marketing or other demonstrations” on page 111

96 VisualAge Generator: Migration Guide

MSLs that contain unintended duplicates

This scenario contains unintended duplicates. There are multiple subsystems,
with the following intended MSL structure:

Each member was intended to be in one and only one MSL. However, the
MSL structure contained the following:
v Some members were never advanced to the production MSLs; they were

still in the developer’s read/write MSLs even though the changes were
complete and were in the production load libraries.

v Some members that were shared between subsystems were not contained in
the COMMON MSL; they were in only one subsystem’s MSLs. For
example, this occurred for records and their associated global data items
that were passed when transferring between two subsystems. In this case
the real concatenation sequence was SYS1CODE, SYS1DATA, SYS2DATA,
and COMMON. In some cases several additional data MSLs were required
to generate a subsystem.

Figure 16. Sample MSL Concatenation when Using VisualAge Generator Templates

Chapter 12. VAGen on Java case studies based on various MSL structures 97

v Applications, processes, statement groups, and maps existed both in the
SYSnCODE and SYSnDATA MSL — with the same names. This was
because they were accidentally put into the wrong MSLs.

v The same members existed in multiple subsystems. For example, the same
process might appear in SYS1CODE, SYS3CODE and SYSnCODE.

v Two subsystems used a different COMMON MSL, called COMMON2.
COMMON2 contained 10 - 20 programs, as well as other members, that
were also included in COMMON.

Recommendations
Before attempting to migrate this set of MSLs, do the following:
v Be sure you know the real MSL concatenation sequences that are required

for generation. This will help to minimize the number of Not Found
members during migration. One possibility is to validate existing
applications in the MSLs prior to attempting migration to determine which,
if any, members are missing.

v Try to resolve as many duplicates as possible. One possibility is to use the
MSL Migration Assistance Tool for a trial migration to determine what
duplicates exist and which members are missing. Then go back to the
MSLs, make any corrections required to resolve duplicates, restore the
missing members, and correct any other errors in the parts.

v After you have resolved the problems, then migrate using the scenario that
best matches your new environment.

MSLs containing code from VisualAge Generator Templates or BW*Wizard

The scenario for VisualAge Generator Templates or BW*Wizard has the
following MSL structure:

98 VisualAge Generator: Migration Guide

Programs built with VisualAge Generator Templates or BW*Wizard are
imported into the MSL called BUILTMBR. Then the BUSLOGIC read/write
MSL is concatenated in front of the read-only BUILTMBR MSL and all business
logic changes are made in BUSLOGIC. The advantages of this technique are:
v The program can be built again from the template and imported into the

BUILTMBR MSL without destroying the business logic.
v If necessary, a comparison of the newly built member in BUILTMBR with

the old business logic version of the member can be done to determine if
any business logic changes are required to incorporate function that has
been added to the newly built member.

This same pairing of a business logic MSL and “built member” MSL can be
extended from the developer’s MSLs to the staging, test, and production
MSLs. In some cases, the separation of the business logic might be used for
the developer’s, staging, and test MSLs, but not be used for the production
MSLs.

The COMMON MSL contains any members that are used across subsystems.
There might also be a DBA MSL that contains data item definitions.

This example assumes that all the code in BUILTMBR and BUSLOGIC are for
a single subsystem called Subsystem 1. If you have multiple subsystems, you
would need to extrapolate the example for your situation.

Figure 17. Sample MSL Concatenation when Using VisualAge Generator Templates or BW*Wizard

Chapter 12. VAGen on Java case studies based on various MSL structures 99

Recommendations
Consider migrating the MSLs to ENVY as follows:

1. Move the parts from the COMMON MSL to the sandbox.

Note: If there is a DBA MSL, migrate it with the COMMON MSL in a
single concatenation sequence.

2. Commit the packages created from the COMMON MSL (and DBA MSL if
used) to ENVY. Specify a project name that reflects that this is common
code (for example, CommonProject).

3. Version and release all the classes (VAGen part classes). You can use 1.0
(the default) as the version number.

4. Version the packages. You can use 1.0 (the default) as the version
number.

5. Version the project (CommonProject).
6. Keep the packages created from the COMMON MSL (and DBA MSL if

used) in the workspace and the sandbox. This enables the MSL Migration
Assistance Tool to specify these packages as required packages where
appropriate when migrating the subsystems.

7. Move parts from the BUILTMBR MSL to the sandbox.
8. Commit the packages created from the BUILTMBR MSL to ENVY. Specify

a project name that reflects that this is Subsystem 1 (for example,
Subsys1Project).

9. Version and release all the classes (VAGen part classes). Name the
version to indicate that it is for parts built by the templates. For example,
you could use Built-1.0.

10. Create a default package and a Project List Part for Subsystem 1. This
Project List Part should specify the project created from the COMMON
MSL (and DBA MSL if used) as a required project.

11. Version the packages. Name the version to indicate it is for parts built by
the templates. For example, you could use Built-1.0. Versioning the
package enables you to reload the level of code that was built by the
template without having to load each class individually.

12. If you might frequently need to load the level of code built from the
templates, version the project, using a version of Built-1.0.

13. Keep all the packages from the COMMON and BUILTMBR MSLs in the
sandbox and in your workspace. This enables you to replace parts in the
packages created from the BUILTMBR MSL.

14. Move the parts in the BUSLOGIC MSL to the sandbox. You might have
two types of parts in the business logic MSL:
v Parts that you added for business logic that were not originally built

by the templates. These parts will have blanks in the Duplicate and
Last Migration Library Timestamp columns. You can create new

100 VisualAge Generator: Migration Guide

packages for these parts or add them into an existing (committed)
package. If you add or change parts in an existing package, the MSL
Migration Assistance Tool marks the package as Modified and you will
be able to commit the package to ENVY again to put the new parts
into the ENVY library manager.

v Parts that were originally built for the templates that you modified for
business logic. These parts will have True in the Duplicate column and
the timestamp from the template-built MSL in the Last Migration
Library Timestamp column. Move these parts to the sandbox using
Handle Duplicate Parts and specifying that they should Replace
Existing parts. This causes each part to be placed in the same package
where it already exists. The MSL Migration Assistance Tool marks the
package as Modified and you will be able to commit the package to
ENVY again to put the new parts into the ENVY library manager.

This technique preserves the package organization you created when you
migrated the BUILTMBR MSL, but to include the business logic version
of existing parts and any new parts that were not created by the
templates.

Note: If you do not have any new parts created for business logic in the
BUSLOGIC MSL, you can:
v Create an external source format file for the BUSLOGIC MSL.
v Use VAGen Import to import the external source format file and

create new editions of the changed parts. Select the Defined
package radio button to put the changed editions of the parts
into the packages in which they are already defined.

15. Commit any packages that were created or modified for the BUSLOGIC
MSL to ENVY. Specify the same project name that you used when
committing the BUILTMBR parts (Subsys1Project). This project now
represents the actual system that was contained in the concatenation
sequence for the BUSLOGIC, BUILTMBR, and COMMON MSLs.

16. Version and release all the classes (VAGen part classes). Name the
version to indicate that it is for parts changed for business logic. For
example, you could use BusLogic-1.1.

17. You should not need to change the Project List Part because the
CommonProject has not changed.

18. Version the packages. Name the version to indicate it is for parts changed
for business logic. For example, you could use BusLogic-1.1.

Note: Not all of the classes or packages will have new versions created
when you migrate the BUSLOGIC MSL. Only those classes and
packages modified for business logic will have a new version.

19. Version the project (Subsys1Project) using version BusLogic-1.1.

Chapter 12. VAGen on Java case studies based on various MSL structures 101

20. Generate the programs moved to ENVY. Test the code.
21. Migrate the work-in-progress MSLs using one of the following

techniques:
v “Complete set of MSLs for production and deltas for test”
v “Complete sets of MSLs for test and production” on page 106
v “MSLs from marketing or other demonstrations” on page 111

You will need to adapt these techniques to capture both the parts built
from the templates and the parts that have business logic.

Special considerations for VisualAge Generator Templates
Make sure you change all Statement Group part names to uppercase before
migration. The VisualAge Generator Templates product generates Statement
Group part names as either all lowercase or mixed case. However, VisualAge
Generator searches for these part names in all uppercase (when generating
runtime code) and cannot find the parts when the names are in mixed case or
lowercase.

Complete set of MSLs for production and deltas for test

This scenario has the following MSL structure. The Database Administrator
(DBA) MSLs might be combined with the corresponding STAGING, SYSTEST,
or PROD MSL depending on your environment.

Note: There might be one series of the MSLs shown in Figure 18 on page 103
for each subsystem.

102 VisualAge Generator: Migration Guide

The PROD and PRODDBA MSLs are the only complete pair of MSLs. In other
words, this is the only pair of MSLs in which all members exist. SYSTEST and
SYSTDBA contain only the members that have been added or changed and
which are undergoing system test. STAGING and STAGEDBA contain only
the members that have been added or changed and which are still in
development testing, but which need to be shared by multiple developers.

Figure 18. Sample MSL Concatenation for Complete Production MSLs and Deltas for Test

Chapter 12. VAGen on Java case studies based on various MSL structures 103

Two additional MSL concatenation sequences are used for advancing (moving)
members through the MSL hierarchy.

DEVnMSL+STAGING+SYSTEST+PROD - to advance members not controlled by DBA

DEVDBA+STAGEDBA+SYSTDBA+PRODDBA - to advance members controlled by DBA

As newly added or changed members progress through testing, they advance
from the developer’s read/write MSL to the staging MSL, then from staging
to the appropriate development level MSL, then from development to the
corresponding system test MSL, and finally from system test to the
corresponding production level MSL. Thus the developer read/write, staging,
and system test MSLs represent work-in-progress. Similarly, the DEVDBA,
STAGEDBA, and SYSTDBA MSLs represent work-in-progress for the DBA.

If there are multiple subsystems, each has its own staging, system test, and
production MSLs. There are no duplicate members between the subsystems.

Recommendations
Consider migrating the MSLs to ENVY as follows:
1. Migrate the production MSLs by doing the following:
v Load the production level MSLs using the MSL Migration Assistance

Tool. When you commit to ENVY, specify a project name that indicates
that this is production level code (for example, xxxProductionProject,
where xxx is the subsystem ID).

v Version and release the changed classes (VAGen part classes).
v Version the packages.
v Create a default package and a Project List Part for the production

project (xxxProductionProject).
v Version the project (xxxProductionProject).
v Generate the programs. Then test to be sure that what you migrated

matches your production code.
2. Migrate the system test MSLs by doing the following:
v Delete the xxxProductionProject from your workspace.
v Create a system test level project with a name that reflects that this is

the system test level of code (for example, xxxSysTestProject, where xxx
is the subsystem ID). Include the same version of all the packages from
the xxxProductionProject. Add the xxxSysTestProject to your workspace.

v Version the system test project (xxxSysTestProject) and then open a new
edition of it.

v Open new editions of the packages.
v Export an external source format file for the SYSTEST MSL and another

external source format file for the SYSTDBA MSL.

104 VisualAge Generator: Migration Guide

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the package(s) in
which they are already defined.

v Version and release the changed classes (VAGen part classes).
v Version any packages that had new editions of classes.
v Create a default package and a Project List Part for the system test

project (xxxSysTestProject).
v Version the project (xxxSysTestProject).
v Generate the programs for the system test level of code. You should

only need to generate programs, map groups, and tables that have
changed. Then test to be sure that what you migrated matches your
system test level of code.

3. Migrate the staging MSLs by doing the following:
v Delete the xxxSysTestProject from your workspace.
v Create a staging level project with a name that reflects that this is the

staging level of code (for example, xxxStagingProject, where xxx is the
subsystem ID). Include the same version of all the packages from the
xxxSysTestProject. Add the xxxStagingProject to your workspace.

v Version the staging project (xxxStagingProject) and then open a new
edition of it.

v Open new editions of the packages.
v Export an external source format file for the STAGING MSL and another

external source format file for the STAGEDBA MSL.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

v Version and release the changed classes (VAGen part classes).
v Version any packages that had new editions of classes.
v Create a default package and a Project List Part for the staging project

(xxxStagingProject).
v Version the project (xxxStagingProject).
v Generate the programs for the staging level of code. You should only

need to generate programs, map groups, and tables that have changed.
Then test to be sure that what you migrated matches your staging level
of code.

4. Assign ownership of the classes, packages, and projects.
5. Developers can then load their own work-in-progress doing the following:
v Export an external source format file for their own read/write MSL.

Chapter 12. VAGen on Java case studies based on various MSL structures 105

v Load the project for the staging level of code (xxxStagingProject) into
their workspace.

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

Note that this scenario is easier to load into ENVY than “Complete sets of
MSLs for test and production” because the added/changed members for the
system test MSL are already determined (everything in the SYSTEST MSL)
and because there is no development level set of MSLs to load.

Complete sets of MSLs for test and production

This scenario has the following MSL structure:

106 VisualAge Generator: Migration Guide

This scenario differs from that described in “Complete set of MSLs for
production and deltas for test” on page 102 in that in Figure 19 the SUBSYS1,
COMMON, and DBA MSLs at each of the development, system test, and
production levels are complete sets of MSLs. In other words, most members
exist in all three MSL concatenation sequences with the same date/time
stamp. If a member is in the COMMON development MSL, it is also in the
COMMON system test MSL, and the COMMON production MSL.

As members progress through testing, the added or changed members
advance from the developer’s read/write MSL to the staging MSL and then

Figure 19. Sample MSL Concatenation for Complete Sets of Development, System Test, and Production

Chapter 12. VAGen on Java case studies based on various MSL structures 107

from staging to the appropriate development level MSL. As further testing
occurs, members are copied (not moved or advanced) from the development
level MSL to the corresponding system test MSL and then from the system
test MSL to the corresponding production MSL.

The developer read/write, staging, development level MSLs, and system test
MSLs represent work-in-progress. However, the development level MSLs and
the system test MSLs are not true work-in-progress. For example, the system
test SUBSYS1 MSL contains the same members as the production SUBSYS1
MSL. Most of the members are identical between system test and production.
Perhaps only 5% of the members in the system test SUBSYS1 MSL are
currently undergoing system test and represent different versions of the
members from what is in the production SUBSYS1 MSL. Similarly, the
development level SUBSYS1 MSL for the most part duplicates the members in
the system test and production SUBSYS1 MSLs. Perhaps another 5% of the
members differ from what is in the system test MSL and represent work that
is in development testing (not yet put into system test).

In the same way, the COMMON and DBA MSLs are virtually identical at the
development, system test, and production levels. Because the members in
these MSLs change less frequently, in many cases there might be no members
that differ between the three levels of these MSLs.

This means that there are many members in the development level and
system test MSLs that should not really be put into ENVY because they are no
different than the members that will be migrated using the production MSLs.

Note: If there are multiple subsystems, they can share the COMMON and
DBA MSLs, but each subsystem has its own SUBSYSn MSL, where n is
the subsystem number. The SUBSYSn MSLs do not have any duplicate
member names.

Recommendations
Consider migrating the MSLs to ENVY as follows:
1. Migrate the production MSLs by doing the following:
v Load the production level MSLs using the MSL Migration Assistance

Tool. When you commit to ENVY, specify a project name that indicates
that this is production level code (for example, xxxProductionProject,
where xxx is the subsystem ID).

v Version and release the changed classes (VAGen part classes).
v Version the packages.
v Create a default package and a Project List Part for the production

project (xxxProductionProject).
v Version the project (xxxProductionProject).

108 VisualAge Generator: Migration Guide

v Generate the programs. Then test to be sure that what you migrated
matches your production code.

2. Migrate the system test MSLs by doing the following:
v Delete the xxxProductionProject from your workspace.
v Create a system test level project with a name that reflects that this is

the system test level of code (for example, xxxSysTestProject, where xxx
is the subsystem ID). Include the same version of all the packages from
the xxxProductionProject. Add the xxxSysTestProject to your workspace.

v Version the system test project (xxxSysTestProject) and then open a new
edition of it.

v Open new editions of the packages.
v Determine the list of members that have been added/changed in system

test by eliminating the members that match production based on the
date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the system test and production versions
of the SUBSYS1 MSL, a second external source format file for the
changes between the system test and production versions of the
COMMON MSL, and a third external source format file for the changes
between the system test and production versions of the DBA MSL.

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

v Version and release the changed classes (VAGen part classes).
v Version any packages that had new editions of classes.
v Create a default package and a Project List Part for the system test

project (xxxSysTestProject).
v Version the project (xxxSysTestProject).
v Generate the programs for the system test level of code. You should

only need to generate programs, map groups, and tables that have
changed. Then test to be sure that what you migrated matches your
system test level of code.

3. Migrate the development level MSLs by doing the following:
v Delete the xxxSysTestProject from your workspace.
v Create a development level project with a name that reflects that this is

the staging level of code (for example, xxxDevelopmentProject, where
xxx is the subsystem ID). Include the same version of all the packages
from the xxxSysTestProject. Add the xxxDevelopmentProject to your
workspace.

v Version the development project (xxxDevelopmentProject) and then
open a new edition of it.

Chapter 12. VAGen on Java case studies based on various MSL structures 109

v Open new editions of the packages.
v Determine the list of members that have been added/changed in

development by eliminating the members that match system test based
on the date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the development and system test
versions of the SUBSYS1 MSL, a second external source format file for
the changes between the development and system test versions of the
COMMON MSL, and a third external source format file for the changes
between the development and system test versions of the DBA MSL.

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

v Version and release the changed classes (VAGen part classes).
v Version any packages that had new editions of classes.
v Create a default package and a Project List Part for the development

project (xxxDevelopmentProject).
v Version the project (xxxDevelopmentProject).
v Generate the programs for the development level of code. You should

only need to generate programs, map groups, and tables that have
changed. Then test to be sure that what you migrated matches your
development level of code.

4. Migrate the staging MSLs by doing the following:
v Delete the xxxSysTestProject from your workspace.
v Create a staging level project with a name that reflects that this is the

staging level of code (for example, xxxStagingProject, where xxx is the
subsystem ID). Include the same version of all the packages from the
xxxDevelopmentProject. Add the xxxStagingProject to your workspace.

v Version the staging project (xxxStagingProject) and then open a new
edition of it.

v Open new editions of the packages.
v Determine the list of members that have been added/changed in the

staging MSL by eliminating the members that match development based
on the date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the STAGING MSL and development
MSLs.

v Use VAGen Import to import the external source format file and create
new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

110 VisualAge Generator: Migration Guide

v Version and release the changed classes (VAGen part classes).
v Version any packages that had new editions of classes.
v Create a default package and a Project List Part for the staging project

(xxxStagingProject).
v Version the project (xxxStagingProject).
v Generate the programs for the staging level of code. You should only

need to generate programs, map groups, and tables that have changed.
Then test to be sure that what you migrated matches your staging level
of code.

5. Assign ownership of the classes, packages, and projects.
6. Developers can then load their own work-in-progress doing the following:
v Export an external source format file for their own read/write MSL.
v Load the project for the staging level of code (xxxStagingProject) into

their workspace.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined package radio
button to put the changed editions of the parts into the packages in
which they are already defined.

MSLs from marketing or other demonstrations

The scenario for MSLs used in demonstrations reflects the need to have
snapshots of the same MSL from various stages of development.

Chapter 12. VAGen on Java case studies based on various MSL structures 111

The three MSLs are used as follows:
v STRTDEMO is the MSL at the start of the demonstration. It might contain

some partially developed members, as well as a completed server program.
v MIDDEMO contains members that are added or changed during the first

part of the demonstration.
v ENDDEMO represents members that are added or changed during the

entire demonstration.

This technique enables the person doing the demonstration to quickly reset
the demonstration to specific scenarios.

Recommendations

Using a single package
For a small demonstration, for which all the parts can be stored into a single
package, consider migrating as follows:

1. Create an external source format file for each of the three MSLs.
2. Create a new project with a name that reflects that this is for a demo (for

example, DemoProject).
3. Create a new package within the project.

Figure 20. Sample MSLs for a Demonstration

112 VisualAge Generator: Migration Guide

4. Use VAGen Import to import the external source format file for the
STRTDEMO MSL.

5. Version and release the classes (VAGen parts).
6. Version the package.
7. Version the project.
8. Open a new edition of the project.
9. Create a new edition of the package.

10. Use VAGen Import to import the external source format file for the
MIDDEMO MSL.

11. Version and release the classes (VAGen parts).
12. Version the package.
13. Version the project.
14. Open a new edition of the project.
15. Create a new edition of the package.
16. Use VAGen Import to import the external source format file for the

ENDDEMO MSL.
17. Version and release the classes (VAGen parts).
18. Version the package.
19. Version the project.

You can now reset the demonstration to specific points by adding the correct
version of the project to your workspace.

Using multiple packages
For a larger demonstration, for which the parts need to be separated into
several packages, consider migrating as follows:

1. Create an external source format file for each of the three restructured
MSLs.

2. Using the MSL Migration Assistance Tool load the parts from the
STRTDEMO MSL, separating them into packages as needed for your
demonstration. Do not be concerned about missing parts because you
know that these will be developed during the demonstration. When you
commit to ENVY, specify a project name that reflects that this is a
demonstration project (for example, DemoProject).

3. Version and release the classes (VAGen parts).
4. Version the packages.
5. Version the project (DemoProject).
6. Open a new edition of the project.
7. Create a new edition for each of the packages.

Chapter 12. VAGen on Java case studies based on various MSL structures 113

8. Create any new packages that are needed to contain parts that are added
during the first part of the demonstration.

9. Use VAGen Import to import the external source format file for the
MIDDEMO MSL. For new parts, move each part to the corresponding
package. For existing parts, use the Defined package radio button to put
the changes into the packages in which the parts are already defined.

10. Version and release the classes (VAGen parts).
11. Version the packages.
12. Version the project (DemoProject).
13. Open a new edition of the project.
14. Create a new edition of each of the packages.
15. Create any new packages that are needed to contain parts that are added

during the second part of the demonstration.
16. Use VAGen Import to import the external source format file for the

ENDDEMO MSL. For new parts, move each part to the corresponding
package. For existing parts, use the Defined package radio button to put
the changes into the packages in which the parts are already defined.

17. Version and release the classes (VAGen parts).
18. Version the packages.
19. Version the project (DemoProject).

You can now reset the demonstration to specific points by adding the correct
version of the project to your workspace.

114 VisualAge Generator: Migration Guide

Chapter 13. Running the MSL Migration Assistance Tool on
Java

The sections that follow describe tasks you need to perform during migration,
including:
v Getting ready to migrate:

– “Starting VisualAge Generator”
– “Creating users and setting the current user” on page 116
– “Collecting your source code” on page 117
– “Handling code page changes” on page 118
– “Starting the MSL Migration Assistance Tool” on page 121
– “Building MSL directories” on page 121
– “Resetting the sandbox from ENVY” on page 123
– “Selecting your MSLs” on page 125

v Moving parts to the sandbox and working with the sandbox:
– “Selecting and migrating VAGen parts” on page 126
– “Creating a new package” on page 129
– “Moving a VAGen part between packages” on page 129
– “Controlling the creation of package.nodes” on page 130
– “Renaming a package” on page 131
– “Collapsing a package” on page 132
– “Handling Duplicates” on page 132
– “Finding the package in which a part is located” on page 137
– “Listing missing (not found) parts” on page 138
– “Handling missing (not found) parts” on page 139
– “Checking relationships among packages” on page 140
– “Updating the list of required packages” on page 142
– “Deleting a package.node” on page 143
– “Deleting a package” on page 144

v “Committing to ENVY” on page 145

Note: ENVY provides a variety of ways of doing most tasks and supports
multiple development scenarios. This chapter is intended to provide a
way, but not necessarily the only way, of performing tasks related to
migrating MSLs to ENVY.

Starting VisualAge Generator

This section describes how to start VisualAge Generator Version 4.0 or later,
create user IDs, set the user ID for the current user, and then import and load
the MSL Migration Assistance Tool.

© Copyright IBM Corp. 1997, 1999 115

Action Description

Start VisualAge Generator using the VAGen Developer 4.0
on Java with Migration icon.

Alternatively, from a Windows NT command prompt, change
to the directory where VisualAge Generator Version 4.0 is
installed and type:

ide /vgmig

The Log window is displayed, and then
the Selection Required window is
displayed, prompting for the name of the
user who owns this workspace.

Select Administrator from the list of users. This enables you to define other users
before running the MSL Migration
Assistance Tool.

When the message saying “You must connect the repository
to the current library” is displayed, select OK.

When the message saying “Done connecting repository to the
library” is displayed, select OK.

The VisualAge for Java Workbench
window is displayed.

Creating users and setting the current user

You must be the Administrator to create new users.

Action Description

From the VisualAge on Java Workbench window, select File
and then Quick Start.

The Quick Start window is displayed.

Select Team Development, then Administer Users and then
OK.

The User Administration window is
displayed, listing the available users. The
Current user is displayed on the lower
left side above the push buttons.

Select New. The Users Dialog window is displayed.

Specify the following:

Unique Name This could be the user’s
logon ID or employee
number.

Full Name This is the first and last
name for the person.

Network Login Name This is the user’s network
logon ID.

Select OK.

The User Administration window is
displayed with the new user added.

Repeat the above steps to define all of your developers.

From the Workbench window, select Workspace and then
Change Workspace Owner.

A window appears prompting you to
select the user.

116 VisualAge Generator: Migration Guide

Action Description

Select the user that corresponds to the team leader and then
select OK.

The VisualAge for Java Workbench
window is displayed and indicates in the
title bar that the team leader is now the
owner of the workspace.

Setting the user ID for the workspace to
the team leader means that the team
leader becomes the class owner and
package owner for all the views, VAGen
part classes, and packages that are
created with the MSL Migration
Assistance Tool. After migration, the
team leader can assign ownership to the
individual developers if needed.

Collecting your source code

You need to collect your source code before you can use the MSL Migration
Assistance Tool. The steps necessary to do this vary depending on the
environment from which you are migrating.

From Cross System Product
If you are migrating from Cross System Product, you must create an external
source format file for each of your MSLs and then use the MSL Migration
Assistance Tool to create an MSL directory structure. Before downloading all
your external source format files, be sure to test your download program to
ensure that special characters are converted correctly. You might need to
define a conversion table for the download program. Also review “Using the
HPTRULES.NLS file” on page 118 for information on handling the not sign
(¬).

From VisualAge Generator with TeamConnection and no MSLs
If you are migrating from a previous release of VisualAge Generator and use
TeamConnection, you might not have MSLs. In this case you must create
external source format files for your parts in TeamConnection and then use
the MSL Migration Assistance Tool to create an MSL directory structure. You
might want to create an external source format file for each component to
help you in preserving your existing organizational structure.

In addition, if you are changing from developing on OS/2 to developing on
Windows NT, be sure to review “Using the HPTRULES.NLS file” on page 118
and “Changing from OS/2 to Windows NT” on page 119.

From VisualAge Generator MSLs
If you already have VisualAge Generator MSLs and have been using the OS/2
development platform, you must migrate to the Windows NT development

Chapter 13. Running the MSL Migration Assistance Tool on Java 117

platform. Be sure to review “Using the HPTRULES.NLS file” and “Changing
from OS/2 to Windows NT” on page 119.

Handling code page changes

If you are migrating from Cross System Product, the code page on the host is
EBCDIC and the code page on the workstation is ASCII. You should review
“Using the HPTRULES.NLS file”.

If you are migrating from VisualAge Generator, the code pages for SBCS
languages are different between OS/2 and Windows NT. You should review
both “Using the HPTRULES.NLS file” and “Changing from OS/2 to
Windows NT” on page 119.

If you are migrating from VisualAge Generator and use a DBCS language,
you can skip this section because the code pages are the same for OS/2 and
Windows NT.

Using the HPTRULES.NLS file
The not sign used for Cross System Product is the ¬. However, some
download programs convert ¬ to ¼. For VisualAge Generator, the code point
for ¬ differs between the OS/2 and Windows NT code pages.

The hptrules.nls file in the \IBMVJava\IDE\program\hptvgj40\nls directory
enables you to specify national language information and can help with
handling the not sign. One section of the file enables you to enter your three
national language characters, the | for the not sign, and an alternate not sign.
If you determine that the only special character that you need to convert is
the ¬ or ¼, you can do the following to handle the conversion:
1. Shut down VisualAge Generator Developer.
2. Edit hptrules.nls

3. Read the comments in the file. The section you need to change is the first
section of the file, called :nlsrules.

4. In the :nlsrules section, there are three columns: the locale, 5 special
characters, and the default language code.
The five special characters are:

Column Description

1 - 3 The three national language characters ($#@ for
English-US).

4 The | which is the standard not sign for VisualAge
Generator.

118 VisualAge Generator: Migration Guide

5 An alternate not sign, which you can set to ¬, ¼, or
whatever character your download program turned your
not sign into.

5. Bring VisualAge Generator Developer back up.

When you use the ESF to MSL function (described in “Building MSL
directories” on page 300), the MSL Migration Assistance Tool converts any
occurrence of the alternate not sign specified in hptrules.nls to the |. This
conversion only applies to occurrences in processes, statement groups, or
functions. The constant delimiter for a map is not converted, but because the
constant delimiter is stored with each map, conversion is not necessary.
Conversion of the alternate not sign also happens when you use VAGen
Import. Conversion does not occur when you save changes to functions.
Therefore, you should use the | for any new development work.

If your only code page conversion problems (whether from downloading
Cross System Product code or from moving external source format files from
OS/2 to Windows NT) are due to your not sign, you should be able to
manipulate the hptrules.nls file to handle the conversion for you.

Changing from OS/2 to Windows NT

Note: If you are migrating from Cross System Product, or if you are
migrating from VisualAge Generator and use a DBCS code page, skip
this section. Code page conversion is not required in these situations.

The code pages from some languages differ between OS/2 and Windows NT.
For example, the code point for the ¬ is different for the English-US code
pages for OS/2 and Windows NT. Therefore, you must convert your
VisualAge Generator code if you are moving from the OS/2 development
environment to the Windows NT environment. To convert between the code
pages, do the following:
1. If you are migrating from VisualAge Generator 3.0 or 3.1 on OS/2, create

an external source format file for each ENVY application. When migrating
from any other VisualAge Generator release on OS/2, create an external
source format file for each MSL. However, because GUIs cannot be
migrated to Java, do not export the GUIs to the external source format file
for VisualAge Generator 2.x or earlier.

2. Make the external source format file available to Windows NT.
3. From Windows NT, change to the directory in which hptcnvXY.exe is

located. (Substitute the number of your VisualAge Generator version for
the X and your release for the Y.) If you used the default directories when
you installed, the directory will be c:\IBMVJava\IDE\program.

4. Convert the external source format file by running the following:
hptcnvXY esf-file-name conversion-table

Chapter 13. Running the MSL Migration Assistance Tool on Java 119

where:

X Is the number of your version of VisualAge Generator —
for example, use a 4 for VisualAge Generator 4.0

Y Is the number of your release of VisualAge Generator —
for example, use a 0 (hptcnv40) for VisualAge Generator
4.0.

esf-file-name Is the drive, path, and file name for the external source
format file you want to convert.

conversion-table
Is the name of a conversion table that translates from the
OS/2 code page to the Windows NT code page.

The converted external source format file is stored as esf-file-name.cnv
in the directory in which hptcnvXY.exe is located.

Use
hptcnvXY ?

(substituting your version and release numbers for X and Y) to see a short
(English) description of the conversion tool.

5. Use a comparison tool to do a byte-by-byte comparison of the external
source format file and the converted file.
If the only character being converted is the not sign, you might be able to
use the technique described in “Using the HPTRULES.NLS file” on
page 297 to avoid converting all your files. However, use caution if you
skip the conversion step — some of your other files might have characters
other than the not sign that require conversion.
Be especially alert for any characters being converted that should not be.
For example, if you have coded:
MOVEA "special-character" TO HIGH-VALUES-CHAR;

as a method of setting the high end of a range of keys that you are
searching in a file or database, you might not want the special-character
to be converted or you might not like the hex value that results from the
conversion. If this is the case, you will need to modify your code. A better
technique would be to code:

MOVEA "special-hex-characters" TO HIGH-VALUES-HEX;

This technique would keep the same special-hex-characters in the
external source format and converted files.

6. Use the converted external source format file as input to the MSL
Migration Assistance Tool or VAGen Import.

120 VisualAge Generator: Migration Guide

Notes:

1. hptcnvXY does not support binary GUI tags.
2. Do not use hptcnvXY if you transferred your external source format file to

Windows NT in such a way that the code page conversion was
performed. For example, if you transferred the file using ftp with the ascii
option, then the code page conversion should have already been done. You
need to check that special characters were converted correctly.

3. Refer to the VisualAge Generator Client/Server Communications Guide for
information about the conversion tables.

Starting the MSL Migration Assistance Tool

You can run the MSL Migration Assistance Tool on either OS/2 or Windows
NT.

Action Description

From the VisualAge on Java Workbench window, select
Workspace and then Open VAGen Parts Browser.

The VAGen Parts Browser window is
displayed.

From the VAGen Parts Browser window, select
Tools->Migration->MSL Migration.

The MSL Migration Part List window is
displayed.

Building MSL directories

After you have collected your external source format files as described in
“Collecting your source code” on page 117 and handled any code page issues
as described in “Handling code page changes” on page 118, you are ready to
create MSL directories. The ESF to MSL push button on the MSL Migration
Part List window enables you to build an MSL directory structure from an
external source format file.

Note: Be sure that the drive where you plan to create the MSL directory
supports long names. If this is not done, you might receive a return
code 13 when trying to create the MSLs.

Action Description

From the MSL Migration Part List window, select the ESF to
MSL push button.

A window is displayed prompting you
for the name of your external source
format file.

Select the drive, path, and file name of the external source
format file from which you want to build an MSL directory
structure.

An Information Required window is
displayed prompting you for the name
of a directory into which the MSL
Migration Assistance Tool can build the
MSL.

Chapter 13. Running the MSL Migration Assistance Tool on Java 121

Action Description

Enter the drive and path for the directory and select the OK
push button.

If the directory you specified exists, a
message is displayed prompting you to
confirm the directory name.

If the directory does not exist, a message
is displayed asking if you want the MSL
Migration Assistance Tool to create the
directory.

After you have responded Yes to either
message, an Operation in Progress
window is displayed. When the window
disappears, the parts (members) from the
external source format file have been
created in the MSL directory that you
specified. All the actions in “Automatic
conversions during 4.0 migration” on
page 48 have been performed.

If there were any parts that contained errors in the external
source format files, a List of parts that could not be read
window is displayed followed by the VAGen Parser Messages
window.

The list contains the names of the parts
that were not written to the MSL
directory. You can write this list to the
mslmig.log file for future reference.

The VAGen Parser Messages window
contains both information and error
messages. Parts that had no messages or
only information messages are already in
the MSL directory. You should ignore the
information messages. Examples of the
information messages include:

HPT.PE.290.i The CICS/OS attribute
value was replaced with the
MVS CICS attribute value

HPT.PE.17.i The transaction name
on the SEGTRAN attribute is
not valid

HPT.PE.21.i The FILETYPE VSAMCICS
is no longer supported. It was
changed to VSAM.

Parts with error messages were not written to the MSL
directory. You need to correct these errors by:

v Correcting the part in Cross System Product or VisualAge
Generator and then exporting the external source format
file for the part again and using the ESF to MSL push
button to add the part to the MSL directory.

v Correcting the external source format file and using the
ESF to MSL push button to process the external source
format file again.

122 VisualAge Generator: Migration Guide

Resetting the sandbox from ENVY

If you have previously migrated a subsystem and are now ready to do
another subsystem, you might need to reset the MSL Migration Assistance
Tool to reflect the parts that are currently in ENVY. This can happen if you
migrate one subsystem, work with it for a while in ENVY, and then decide to
migrate your remaining subsystems. Particularly if the subsystems to be
migrated now share code with the subsystem that was previously migrated,
you should reset the MSL Migration Assistance Tool to reflect the current code
in ENVY.

Note: You cannot load a package into the sandbox from your ENVY
workspace in the following situations:
v You added a nonvisual part or a Java class.
v You added parts for VisualAge Generator control information

(generation options, linkage table, resource associations, bind control
commands, or linkage editor control statements).

However, you can unload these classes so that the package can be
reloaded into the sandbox.

Action Description

From the VisualAge for Java Workbench window, add into
your workspace any packages (such as your common
packages) that you need to have in the sandbox when you
migrate your new MSLs.

Alternatively, from the Projects Browser window, add the
projects that contain the packages you need in your
workspace.

The packages you need should be
displayed in the VisualAge on Java
Workbench window.

Chapter 13. Running the MSL Migration Assistance Tool on Java 123

Action Description

From the MSL Migration Part List window, select the ENVY
Pkg Selection push button.

If there are any packages in the sandbox,
a message is displayed asking if they can
be deleted.

If you respond Yes to the message about
deleting existing packages or if there
were no packages, a Selection Required
window is displayed, prompting you to
specify the packages already in ENVY
that you want to load into the sandbox.
Only packages in your workspace can be
loaded into the sandbox.

If you respond No, the list of existing
packages in the sandbox is not cleared,
and your new selections are added to the
existing sandbox list. A Selection
Required window is displayed,
prompting you to specify the packages
already in ENVY that you want to load
into the sandbox. Only packages in your
workspace can be loaded into the
sandbox.

If you respond Cancel, the sandbox is
not reset from ENVY.

Select one or more packages from the left pane and then
select >> to move them to the right pane.

The packages you selected are listed in
the right pane.

Select the OK push button. The packages and the parts they contain
are loaded into the sandbox and marked
as Committed.

v There is no analysis of the parts to
determine if there were missing (Not
Found) parts.

v The timestamp of the part in the
sandbox is the timestamp from the
edition currently loaded in your
workspace, not the timestamp from
the original MSL.

You must specify your MSL library selections again (see
“Selecting your MSLs” on page 125).

124 VisualAge Generator: Migration Guide

Action Description

If you receive a message saying “Unsuccessful in reading
ENVY pkg into tool”, it is because you have added a
nonvisual part, a Smalltalk class, or a VisualAge Generator
control information part (generation options, linkage table,
resource associations, bind control commands, or linkage
editor control statements) to the package. The migration log
file (mslmig.log) lists the parts that prevent the package from
being loaded into the sandbox. Do the following so that you
can load the package into the sandbox:

v If the package and the class are already versioned:

– Open a new edition for the package.

– Delete the classes that cause a problem.

v If the package and the class are not versioned yet:

– Version the classes that cause a problem.

– Delete the classes that cause a problem.

Then reload the package into the sandbox.

After you have reloaded the package into the sandbox, add
those classes back into your workspace now. This ensures
that when you version and release classes after committing
new or changed packages to ENVY all the classes for this
package will be there.

Selecting your MSLs

The MSL Migration Assistance Tool works from an MSL concatenation
sequence to move parts into the sandbox. You specify your MSLs and the
concatenation sequence as follows:

Action Description

From the MSL Migration Part List window, select the MSL
Library Selection push button.

The MSL Library Selection window is
displayed.

In the Basic MSL directory, enter the drive and directory for a
basic MSL that you want to process. For example:

f:\msls\mymsl

The basic MSL directory that you specify can be an MSL from
a previous release of VisualAge Generator or an MSL that
you created using the technique described in “Building MSL
directories” on page 121.

Select the Add push button.

The directory you specified is added to
the MSL concatenation area at the bottom
of the MSL Library Selection window.

Chapter 13. Running the MSL Migration Assistance Tool on Java 125

Action Description

Repeat the previous step until you have all your basic MSLs
defined.

The MSL Library Selection window lists
all your basic MSLs. The order in which
they are listed is the order in which they
will be searched for parts.

If you need to change the MSL concatenation sequence, select
one MSL in the MSL concatenation area.

Then select one of the following to change the concatenation
order:

Move Up To move the selected MSL one position
higher (earlier) in the concatenation
sequence.

Move Down To move the selected MSL one position
lower (later) in the concatenation sequence.

Remove To delete the selected MSL from the
concatenation sequence. The MSL directory
is not deleted; only the concatenation
sequence is affected.

The MSL concatenation area changes to
reflect the new MSL concatenation
sequence.

Repeat this step until you are satisfied
with the concatenation sequence.

When you have the MSL directories listed in proper order for
your concatenation sequence, select OK.

The Part List Selection Criteria View
window is displayed, with the MSL
directories you specified listed under
Libraries. The VG Part Prerequisites View
window is also displayed.

Selecting and migrating VAGen parts

To migrate a VAGen part and its associates to an ENVY package, you first
select the part and then indicate whether you want it to be placed in an
existing ENVY package or in a new package. You can work with a group of
VAGen parts or a single VAGen part at a time.

This step only moves the parts to the sandbox; they are not moved to the
ENVY repository until you commit the packages to ENVY. It is easier to
change the organization of your parts while they are in the sandbox than after
they are in the ENVY repository.

126 VisualAge Generator: Migration Guide

Action Description

From the Part List Selection Criteria View window:

v Select the VAGen part type(s) you want to process. Use the
All Types push button to select all the part types. Use the
Reset push button to deselect all the part types. If you are
migrating from existing MSLs, select the Process and/or
Statement Group part types. If you are migrating from
pseudo MSLs created from external source format files,
select the Function part type.

v Use a wildcard in the Part name field to limit the search.

v Select the Only parts not processed toggle button to limit
the list of VAGen parts to those that have not been
processed by the MSL Migration Assistance Tool. Deselect
the Only parts not processed toggle button to include all
the parts that satisfy the part type and wildcard search
criteria.

v Select the Build List push button.

Note: Unlike the VisualAge Generator Member Selection List,
all libraries listed in the Libraries area of the Part List
Selection Criteria View window are searched for parts. You
cannot limit the search to certain MSLs by highlighting the
directories listed in the Libraries area.

The MSL Migration Part List window is
displayed with the selected VAGen parts.

The Status column is set to Processed for
any parts that have already been moved
to the sandbox.

To help locate parts within the MSL Migration Part List
window, you can sort the parts by selecting VAGen Parts and
then selecting one of the following:
v Sort by Type
v Sort by Name
v Sort by Library

The order of the parts is changed to
match your specified sort criteria.

Chapter 13. Running the MSL Migration Assistance Tool on Java 127

Action Description

From the MSL Migration Part List window, select the VAGen
part(s) that you want to process with the MSL Migration
Assistance Tool. The selected VAGen part and any of its
associates that have not yet been migrated will be processed
together.

To select multiple parts, hold down the Ctrl while you select
each of the parts you want to process.

You can also select VAGen Parts and then one of the
following to help in selecting parts:

v Find to select one or more parts that satisfy your selection
criteria. You can use a wildcard when you specify the
selection criteria. For example, if you specify V*, all parts
that begin with V are selected. If you specify only a V, the
part named V (if it exists) is selected.

v Select All to select all parts on the list.

v Deselect All to deselect all parts on the list.

v Select Parts Not Processed to select only those parts that
are not yet in the sandbox.

v Select Not Found Parts to select only those parts that are
listed as Not-Found in the Status column.

v Select Duplicate Parts to select only those parts that are
listed in the Duplicate column.

The selected parts are highlighted. If you
use Find, Select All, or Select Parts Not
Processed any previously selected parts
are deselected.

Select VAGen Parts, then Selected and then one of the
following:

v Create Single Package to place all of the selected VAGen
parts and their associates into the same new package. An
Information Required window is displayed prompting you
for the name of the new package.

v Create Multiple Packages to place each of the selected
programs with its associates into a separate package. Each
package will be named xxxxx.pkg where xxxxx is the name
of the corresponding program.

v Add into Package to place all of the selected VAGen parts
and their associates into the same package that already
exists in the sandbox. In the Selection Required window
that is displayed, select the package into which these parts
will be added.

The VG Part Prerequisites View window
is displayed. You can then look at the
packages that have been changed and
see the parts in them.

If any associates of the parts that were
just moved to the sandbox were already
in the sandbox, one or more package.nodes
might be created. A package.node is
created for each part or parts that are
shared by two explodable packages.

128 VisualAge Generator: Migration Guide

Creating a new package

If you add VAGen parts with their associates to an ENVY package, and then
review the list of VAGen parts that are now in the ENVY package, you might
find that there are some parts (for example, common code) that would be
better placed in a separate package, but this separate package does not yet
exist.

This section describes how to create a new ENVY package using the MSL
Migration Assistance Tool.

Action Description

From the VG Part Prerequisites View window, select
Packages and then Create Package.

An Information Required window is
displayed, prompting you for the
package name.

Type the name of the ENVY package. The VG Part Prerequisites View window
is refreshed and includes the name of the
new package.

See “Moving a VAGen part between
packages” for information about moving
VAGen parts from another package into
this new package.

Moving a VAGen part between packages

After adding VAGen parts to a package, particularly after adding a program
and its associates to a package, you should review the list of VAGen parts for
the package in the VG Part Prerequisites View window to determine whether
any VAGen parts have been included that would be better placed in a
different package. For example, some common code might have been included
in the associates list for a program being moved. Reviewing the list of VAGen
parts for the package helps to find common code that is better placed in a
separate package. If you used naming conventions to distinguish common
code, these common VAGen parts are fairly easy to find in the VAGen Parts
pane of the VG Part Prerequisites View window.

This section describes the steps to move a VAGen part from one package
(FromPackage) to another (ToPackage) using the VG Part Prerequisites View
window.

Note: After you commit a package to ENVY, you can no longer move its
parts to a different package using the MSL Migration Assistance Tool.
Refer to the VisualAge for Java Getting Started document for information
on moving parts between packages in ENVY.

Chapter 13. Running the MSL Migration Assistance Tool on Java 129

Action Description

From the VG Part Prerequisites View window:

v In the Packages pane, select the FromPackage — the
package from which you want to move VAGen parts.

v In the VAGen Parts pane, select the VAGen parts you want
to move.

You can select VAGen Parts and then select one of the
following to help in selecting parts:

– Find Parts to select one or more parts that satisfy your
selection criteria. You can use a wildcard when you
specify the selection criteria. For example, if you specify
V*, all parts that begin with V are selected. If you specify
only a V, the part named V (if it exists) is selected. When
you use Find Parts, any previously selected parts are
deselected.

– Sort Parts by Type to group parts based on the part
type. Any previously selected parts are still selected.

– Sort Parts by Name to sort the parts based on the part
name. Any previously selected parts are still selected.

Select VAGen Parts and then Move or Move with associates.

The Selection Required window is
displayed, listing the other packages.

Select the ToPackage.

Select the OK push button.

The VG Part Prerequisites View window
is displayed, showing the FromPackage
without the VAGen parts you moved.

If you selected Move, only the selected
parts were moved.

If you selected Move with associates,
the selected parts and their associates in
the FromPackage are moved to the
ToPackage.

You might need to update the prerequisites for the
FromPackage to include the ToPackage.

See “Checking consistency of packages” on page 141 for
information about doing a consistency check to determine
which prerequisites need to be changed. You should do a
consistency check on the FromPackage and all its dependent
packages.

Controlling the creation of package.nodes

Some parts are used by many programs and views. For example, records,
tables, and data items are typically shared by multiple programs and views.
Similarly functions (processes and statement groups) might also be shared.

130 VisualAge Generator: Migration Guide

You might need to have programs and views that share common parts in
different ENVY packages. A common part can be stored in one of the ENVY
packages that uses the part or placed in an ENVY package that contains just
common parts.

When you migrate a part, its associates are considered at the same time. An
associate that is not yet in the sandbox is placed in the same ENVY package.
An associate that is already in the sandbox is treated differently based on the
following:
v If the package containing the associate is marked explodable, the associate is

moved to a new package.node. The original package and the package being
created for the part now being moved to the sandbox specify the new
package.node as a prerequisite.

v If the package containing the associate is marked unexplodable, the associate
is not moved to a new package.node. The package for the part now being
moved to the sandbox adds the package containing the associate as a
prerequisite.

You can change whether a package is explodable or unexplodable by changing it
in the VG Part Prerequisites View window.

Note: After a package is committed to ENVY, it is unexplodable.

Action Description

To change all packages in the sandbox, select Packages and
then one of the following:

v Set All Unexplodable to mark all the packages in the
sandbox as unexplodable.

v Set All Explodable to mark all the packages in the
sandbox as explodable.

The VG Part Prerequisites View window
is displayed.

Unexplodable packages are prefixed with
an asterisk (*). The * is not part of the
package name.

Explodable packages do not have a prefix.

To change a single package in the sandbox, select the
package, then select Packages, then Selected and then one of
the following:

v Toggle Explode to change the current setting for the
selected package.

v Set Unexplodable to mark the selected package as
unexplodable.

v Set Explodable to mark the selected package as explodable.

The VG Part Prerequisites View window
is displayed.

Unexplodable packages are prefixed with
an asterisk (*). The * is not part of the
package name.

Explodable packages do not have a prefix.

Renaming a package

You might want to rename a package in the following situations:

Chapter 13. Running the MSL Migration Assistance Tool on Java 131

v All the parts in a package.node belong together and should become a
package with a more meaningful name.

v The name you originally chose for the package would be more meaningful
if it was changed.

v You typed the package name incorrectly when you created the package.

Action Description

From the VG Part Prerequisites View window, select the
package you want to rename, then select Packages and then
Selected → Rename.

An Information Required window is
displayed prompting you for the new
package name.

Type the new name for the package. The VG Part Prerequisites View window
is displayed and shows the new package
name.

Packages that specified the renamed
package as a prerequisite have been
updated to reflect the new name.

Collapsing a package

You might want to merge one package into another package. This might occur
if you decide that the two packages will be maintained by the same developer
or that they share so many parts that it would be better to combine them. The
MSL Migration Assistance Tool calls this process collapsing.

Action Description

From the VG Part Prerequisites View window, select the
package you want to collapse, then select Packages and then
Selected → Collapse.

An Information Required window is
displayed with a combo box listing the
packages that exist in the sandbox.

Select the name of the package into which you want to merge
and then select the OK push button.

The VG Part Prerequisites View window
is displayed. The package that you
collapsed no longer appears.

If you select the package into which you
merged, the parts displayed include the
parts from the package you collapsed.

Any package that specified the collapsed
package as a required package has been
updated to reflect the name of the
package into which you merged.

Handling Duplicates

You might have duplicate members. This can occur due to:

132 VisualAge Generator: Migration Guide

v Controlled duplicates such as a message table that differs between
subsystems as described in “Multiple subsystems with controlled
duplicates” on page 89.

v Unintended duplicates as described in “MSLs that contain unintended
duplicates” on page 97.

v Duplicates due to using templates and then using a separate MSL for
members that were modified due to business logic as described in “MSLs
containing code from VisualAge Generator Templates or BW*Wizard” on
page 278.

The MSL Migration Assistance Tool helps identify the duplicates and enables
you to select the version that you want to migrate. However, it cannot
determine for you which level of code is the current version.

Within a single MSL concatenation sequence, to find duplicates easily in the
MSL Migration Part List window, select VAGen Parts and then Sort by Name.

Controlled Duplicates
When you have controlled (intended) duplicates between subsystems, do the
following after committing the first subsystem to ENVY, but before starting to
migrate the second subsystem.

Action Description

From the VisualAge on Java Workbench window, delete the
project and packages for the first subsystem from your
workspace. Do not delete the project(s) for common code.

The deleted project and packages should
no longer appear in the VisualAge on
Java Workbench window.

From the VG Part Prerequisites View window, delete all the
packages for the first subsystem from the sandbox. See
“Deleting a package” on page 144 for information on how to
do this.

Only the packages created for the
common code that is shared by the
subsystems should be listed in the VG
Part Prerequisites View window.

If you are not able to delete all the packages for the first
subsystem from the VG Part Prerequisites View window,
select Packages and then Delete All.

All of the packages are deleted from the
VG Part Prerequisites View window.
Now you can reload the common
packages from ENVY as described in
“Resetting the sandbox from ENVY” on
page 123.

Unintended Duplicates
When you have unintended duplicates, you need to determine which version
of the part is the one that should be committed to ENVY. These parts will
have True in the Duplicate column. The options for handling duplicates are:
v Remove Duplicate
v Replace Existing

If you remove a duplicate part:

Chapter 13. Running the MSL Migration Assistance Tool on Java 133

v The version of the part is removed from future consideration and will no
longer appear on the MSL Migration Part List window, even if you specify
Only parts not processed.

v The removed duplicate part is ignored for any other processing. For example,
if the part is an associate of something moving to the sandbox, the first
found version that has not been removed, is what will be moved to the
sandbox.

If you replace an existing part in the sandbox:
v The part and any associates that are not currently in the sandbox are

moved to the sandbox. The part is moved to the same package where the
existing part is already located. The associates are handled as follows:
– If the associate is already in the sandbox, then

- If the associate is in the same package as the part, nothing happens.
- If the associate is in a different package from the part, and is in an

unexplodable package, nothing happens.
- If the associate is in an different package from the part, and is in an

explodable package, a package.node is created.
– If the associate is not yet in the sandbox, then:

- If the associate is not a duplicate (or you have previously removed
duplicates so this is the only version of the associate still in
consideration) in the current MSL concatenation sequence, it is moved
to the sandbox in the same package as the part that is being replaced.

- If the associate is a duplicate in the current MSL concatenation
sequence, the first found version from the concatenation sequence is
moved to the sandbox in the same package as the part that is being
moved. If you display the MSL Migration Part List window, the
duplicates will be listed and you can then Replace Existing if you
want something other than the first found associate to go into the
sandbox.

– All parts with the same name in the MSL Migration Part List window
are updated so their Status and Last Migration Library Timestamp
reflect the part that is now in the sandbox. In addition, any associated
parts that are moved to the sandbox are updated on the MSL Migration
Part List.

Which options are available for a particular duplicate part depends on the
version of the part listed on the MSL Migration Part List and on the version
in the sandbox.
v If the Last Migration Library Timestamp is filled in on the MSL Migration

Part List window, you can:
– Replace duplicate (put this version of the part into the sandbox,

replacing the part that is already there)

134 VisualAge Generator: Migration Guide

– Remove duplicate (remove this version from future consideration)
v If the Last Migration Library Timestamp is blank, what you can do

depends on whether this version of the part is from the same MSL as what
is in the sandbox:
– If the Status is Not Found, you can remove the duplicate, but you cannot

replace the existing part. This situation occurs when you have a part that
was previously identified as Not Found, but you have now found two or
more versions of it in your current MSL concatenation sequence. After
you have removed duplicate versions of the Not Found part, you can use
Add Not Found Part to update the sandbox (see “Handling missing (not
found) parts” on page 139).

– If this version is from the same MSL, you cannot remove the duplicate or
replace the existing part.

– If this version is from a different MSL, you can remove the duplicate, but
you cannot replace the existing part. A blank Last Migration Library
Timestamp in this situation indicates that this version of the part has the
same timestamp as the part in the sandbox and is therefore the same
version, but from a different MSL.

Action Description

To remove a duplicate from further consideration:

v From the MSL Migration Part List window, select the
version of the part that you do not want to move to the
sandbox.

v Select VAGen Parts and then Selected → Handle Duplicate
Parts → Remove Duplicate.

The MSL Migration Part List window is
updated and this version of the part is
no longer included in the list.

Chapter 13. Running the MSL Migration Assistance Tool on Java 135

Action Description

To replace an existing part in the sandbox:

v From the MSL Migration Part List window, select the
version of the part that you want to use to update the
sandbox.

v Select VAGen Parts and then Selected → Handle Duplicate
Parts → Replace Existing.

The MSL Migration Part List window is
updated and the Status and Last
Migration Library Timestamp columns
are updated.

The part is updated in the sandbox. Any
associated parts that were not yet in the
sandbox have now been moved to the
sandbox.

If you replaced a part in a package that
has already been committed to ENVY:

v The package name in the VG Part
Prerequisites View window is changed
to indicate that it has been Modified
and that a consistency check must be
performed. The need for a consistency
check is indicated by a tilde (˜) to the
right of the package name. See
“Checking consistency of packages” on
page 141 for information on how to
check that all required packages are
specified. After you have done the
required consistency check, you can
commit the Modified packages to
ENVY. This creates a new edition of
the duplicate parts in ENVY.

v The part names of the duplicate parts
also have a tilde beside them to
indicate that they have been modified.

Duplicates for business logic
Duplicates occur for business logic when you have built a program from
templates, imported it into one MSL, and then made changes to some
members in another MSL. These duplicates appear during migration after you
have migrated and committed the template-built parts from their MSL and
then change to the MSL that contains the business logic. When you try to
migrate the business logic MSL, there will be two types of parts:
v Parts that were not originally built by the templates, but which you added

for business logic. These parts will have blanks in the Duplicate and Last
Migration Library Timestamp columns in the MSL Migration Part List
window. You handle them like any other parts. In most cases, you will
want to add them into an existing (committed) package. The MSL
Migration Assistance Tool will mark the package as having been Modified
and you will be able to commit the package to ENVY again to put the new
parts into the ENVY repository.

136 VisualAge Generator: Migration Guide

v Parts that were originally built for the templates that you modified for
business logic. These parts will have True in the Duplicate column and the
timestamp from the template-built MSL in the Last Migration Library
Timestamp column. You handle these parts as described in the following
steps.

Action Description

Select the duplicate parts. Select VAGen Parts and then
Select Duplicate Parts to select all the duplicates at one time.

Next select VAGen Parts and then Selected → Handle
Duplicate Parts → Replace Existing.

Each selected part is moved to the
sandbox and placed in the same package
in which it already exists.

The package name in the VG Part
Prerequisites View window is changed to
indicate that it has been Modified and
that a consistency check must be
performed. The need for a consistency
check is indicated by a tilde (˜) to the
right of the package name. See
“Checking consistency of packages” on
page 141 for information on how to
check that all required packages are
specified. After you have done the
required consistency check you will be
able to commit the Modified packages to
ENVY. This creates a new edition of the
duplicate parts in ENVY

The part names of the duplicate parts
also have a tilde beside them to indicate
that they have been modified.

Finding the package in which a part is located

You might need to determine which package a part or group of parts is
currently located in. For example, you might have some common code for
which the part names all start with XYZ and you want to verify that you
have placed all the parts that begin with XYZ into the same package.

Action Description

From the VG Part Prerequisites View window, select
Packages and then Find Parts.

An Information Required window is
displayed.

Chapter 13. Running the MSL Migration Assistance Tool on Java 137

Action Description

You can use a wildcard when you specify the selection
criteria. For example, if you specify V*, all parts that begin
with V are selected. If you specify only a V, the part named V
(if it exists) is selected. When you use Find Parts, any
previously selected parts are deselected.

If parts satisfying the selection criteria
are located in several packages, a
Selection Required window is displayed
and you can select the package you want
to review.

If parts satisfying the selection criteria
are located in only one package, the VG
Part Prerequisites View window is
displayed with this package highlighted
and all the parts within this package that
satisfy the selection criteria also
highlighted.

Listing missing (not found) parts

When you move parts to the sandbox, their associates generally move with
them. However, in some cases the associates might not exist in your MSL
concatenation sequence. This can occur for the following reasons:
v Some parts have not yet been developed for a new project.
v Some parts are intentional duplicates that exist in MSLs that will be

processed later. For example, see “Multiple subsystems with controlled
duplicates” on page 89.

v Some parts have been lost over time or possibly are in MSLs that you have
not considered for migration.

You need to resolve these associates that cannot be found — either determine
that there is not a problem or locate the missing code. The steps described in
the following table enable you to obtain a list of the missing parts. However,
you must handle the resolution.

Action Description

From the VG Part Prerequisites View window, you can list
missing parts for all packages in the sandbox, by selecting
Packages and then List All Not Found Parts.

A List of not-found parts is displayed. It
shows all parts that should have been
moved to the sandbox but for which
source could not be found in the MSL
concatenation sequence. The package
name that expected to contain the
missing part is also displayed.

If all associated parts are found in the
sandbox, an Information window is
displayed, indicating that there are no
not found parts.

138 VisualAge Generator: Migration Guide

Action Description

Select Write To File to put a copy of this list in the migration
log file, mslmig.log.

If you scroll to the bottom of the
migration log file, it displays the list of
parts that could not be found.

You can print the migration log file if
you need a hardcopy to help in finding
the parts.

From the VG Part Prerequisites View window, you can list
missing parts for one package in the sandbox, by selecting
the package, then select Packages and then Selected → List
Not Found Parts.

A List of not-found parts is displayed. It
shows all parts within the selected
package that should have been moved to
the sandbox but for which source could
not be found in the MSL concatenation
sequence. The package name that
expected to contain the missing part is
also displayed.

If all associated parts are found in the
sandbox, an Information window is
displayed indicating that there are no not
found parts.

Select Write To File to put a copy of this list in the migration
log file, mslmig.log.

If you scroll to the bottom of the
migration log file, it displays the list of
parts that could not be found.

You can print the migration log file if
you need a hardcopy to help in finding
the parts.

Handling missing (not found) parts

When you find the MSL that contains a part that was identified as Not found,
you need to move the part to the sandbox. Parts in the current MSL that were
previously identified as Not found are identified in the MSL Migration Part
List window by a Status of Not Found.

Note: If you have now located multiple versions of the previously Not Found
part, you must first remove duplicates, as described in “Unintended
Duplicates” on page 133. This enables the MSL Migration Assistance
Tool to know which of the versions you want to move to the sandbox.

Chapter 13. Running the MSL Migration Assistance Tool on Java 139

Action Description

From the MSL Migration Part List window, select the part. If
there are several Not Found parts, you can select them all at
once by selecting VAGen Parts and then selecting Select Not
Found Parts.

Next select VAGen Parts and then Selected → Add Not
Found Part.

The part is moved to the package in the
sandbox that currently contains the part.
The Not Found indicator to the right of
the part name in the sandbox is
removed.

If the part was moved to the notfound.pkg because you had
already committed packages to ENVY, you can

v Move the part to the committed package which expected to
have the part. This changes the status of the committed
package to Modified and you will need to commit the
package to ENVY again.

v Move the part to a package that has not yet been
committed to ENVY. This situation occurs in the scenario
described in “Multiple subsystems with controlled
duplicates” on page 89 for the message table part. The
message table part is Not found when the COMMON and
DBA MSLs are migrated. However, it exists in the SUBSYS1
MSL and needs to be placed into one of the packages being
created for SUBSYS1 when you migrate the SUBSYS1 MSL.

This situation can also occur in the scenario described in
“Separate production MSLs for each developer” on
page 272. In this scenario, each subsystem must develop its
own version of any previously Not found parts.

Checking relationships among packages

You might want to determine what parts in a package are referenced by
another package or confirm that all prerequisite relationships have been
established. You do this using the techniques described in the following
sections:
v “Determining which programs are referenced”
v “Determining the parts that are referenced” on page 141
v “Checking consistency of packages” on page 141

Determining which programs are referenced
Called programs are not identified as associates of the functions (processes or
statement groups) that call them. However, when you are testing, you need to
have any called programs available. Therefore, when you define your projects,
you might want to include the packages containing both the called and calling
programs in the same project.

140 VisualAge Generator: Migration Guide

Note: Checking called programs can only be done before you commit
packages to ENVY.

Action Description

Select the package for which you want to determine the
programs called by any functions (processes or statement
groups) it contains.

Select Packages and then Selected → Programs Referenced.

A list of called programs is displayed.

Select Write To File to put a copy of this list in the
mslmig.log file.

Determining the parts that are referenced
In some cases, you might want to determine which parts from one package
are referenced by another. For example, if there is only one part that is used in
a required package, you might want to move the part to reduce the number of
required packages. This function can be done even if one of the packages
involved has been committed to ENVY.

Action Description

Method 1 - Determining which parts in a package are
referenced by parts in a particular dependent package.

Select the package and then select one of its dependent
packages.

Select Dependent Packages and then Parts Referenced.

A list of associated parts in the selected
package that are referenced by parts in
the dependent package is displayed.

The chain of required packages is not
considered.

You can save this list of referenced parts by selecting Write
To File. The list is copied to the migration log file,
mslmig.log.

Scroll to the bottom of the migration log
file to see the list of dependent packages.
You can also print the migration log file
to use this list as a reference.

Method 2 - Determining which parts in a particular required
package are referenced by parts in a package.

Select the package and then select one of its required
packages.

Select Required Packages and then Cross Reference.

A list of associated parts in the required
package (and its required packages) that
are referenced by parts in the selected
package is displayed.

The chain of required packages is
considered.

You can save this list of referenced parts by selecting Write
To File. The list is copied to the migration log file,
mslmig.log.

Scroll to the bottom of the migration log
file to see the list of referenced parts. You
can also print the migration log file to
use this list as a reference.

Checking consistency of packages
When you move parts from one package to another in the sandbox or when
you replace a duplicate part in the sandbox, the required packages might not

Chapter 13. Running the MSL Migration Assistance Tool on Java 141

be updated correctly. To check that all the necessary required packages are
specified, do the steps described in this section.

Note: In the VG Part Prerequisites View window, if a package name has a
tilde (˜) to the right of the name, its required packages might not be
correct. Until you check consistency for this package, the MSL
Migration Assistance Tool will not allow you to commit the package to
ENVY.

Action Description

From the VG Part Prerequisites View window, you can verify
that all required packages are specified for a package, by
selecting the package, then selecting Packages and then
Selected → Check Consistency.

If the associates of all parts in the selected package can be
found in one of the required packages, an Information
window is displayed stating No inconsistency found.

Select the OK push button to close the
Information window.

If one or more of the associates of some parts in the selected
package cannot be found in the required packages, the “List
of inconsistency” window is displayed. It shows the parts
that could not be referenced based on the current required
packages. The package which needed to use each of the parts
is also shown.

Select Write To File to put a copy of this list in the
mslmig.log file.

See “Finding the package in which a part
is located” on page 137 for information
about how to find a part in the sandbox.

See “Changing the list of required
packages” for information about how to
change the list of required packages.

Updating the list of required packages

After you have checked the consistency of a package, you might need to
modify its list of required packages. In addition, you might want to ensure
that the list of required packages does not include any unnecessary packages.
These techniques are described in:
v “Changing the list of required packages”
v “Normalizing the list of required packages” on page 143

Changing the list of required packages
Sometimes you might want to add or delete a required package from the list.
For example, after running a consistency check as described in “Checking
consistency of packages” on page 141, you might need to add a required
package.

142 VisualAge Generator: Migration Guide

Action Description

From the VG Part Prerequisites View window, select the
package for which you want to change its list of required
packages. Then select Required Packages and then Change.

A Selection Required window is
displayed.

You can:

v Add a required package by moving it from the left pane to
the right pane.

v Remove a required package by moving it from the right
pane to the left pane.

When you are satisfied with the list of required packages,
select the OK push button.

The VG Part Prerequisites View window
is refreshed and shows the updated list
of required packages.

Normalizing the list of required packages
You might want to check that unnecessary packages are not included in the
list of required packages. However, when you commit a package to ENVY, the
package’s list of prerequisites is not used. However, you might want to record
this information for use in creating PLPs.

Action Description

From the VG Part Prerequisites View window, select the
package for which you want to normalize the required
packages.

Then select Packages, and then Selected → Normalize
Prerequisites.

The Required Packages pane is refreshed.
Any unnecessary packages have been
removed.

Deleting a package.node

A package.node is created when a VAGen part that is already being used by
an existing package is an associate of the VAGen parts being put into another
package. The new package.node reflects the VAGen parts that are common
with an existing package and the existing package is not marked as
unexplodable.

You should review the VAGen parts in the new package.node and determine
where they should be placed — in the existing package, in the package to
which you were moving VAGen parts, or possibly in a third package that
contains common VAGen parts.

If all parts in the package.node should be moved to the same package, it is
easier to collapse the package.node as described in “Collapsing a package” on
page 132.

Chapter 13. Running the MSL Migration Assistance Tool on Java 143

However, when parts must be moved to different packages, if you move a
part with its associates, all other parts in the package.node might be associates
of the part you moved. This creates a situation in which the package.node
exists, but contains no parts. See “Moving a VAGen part between packages”
on page 129 for information about moving a VAGen part to a different
package.

This section describes how to delete a package node after all VAGen parts in
it have been moved to other nodes and all dependents have been removed.

Action Description

From the VG Part Prerequisites View window, select the
package.node to be deleted.

The VAGen parts, required packages,
and dependent packages for the selected
package appear in the VG Part
Prerequisites View window.

If there are VAGen parts, see “Moving a VAGen part between
packages” on page 129 for information on how to move a
VAGen part or “Collapsing a package” on page 132 for
information on collapsing the entire package.node into one
package.

If there are dependents, see “Changing the list of required
packages” on page 142 for information on deleting the
dependents.

After all the VAGen parts and dependents have been
removed, then select Packages and then Selected → Delete.

The VG Part Prerequisites View window
is refreshed and the package.node has
been deleted.

Deleting a package

After you have migrated one subsystem to ENVY, you might need to delete
the packages created for that subsystem from the sandbox. This occurs in the
scenarios described in “Multiple subsystems with controlled duplicates” on
page 89, “Separate production MSLs for each developer” on page 272 and
“MSLs that contain unintended duplicates” on page 97.

Deleting one package
To delete one package, follow the steps described below.

Action Description

From the VG Part Prerequisites View window, select the
package to be deleted.

The VAGen parts, required packages and
dependent packages for the selected
package appear in the VG Part
Prerequisites View window.

144 VisualAge Generator: Migration Guide

Action Description

The package you want to delete must not be specified as a
required package by any other package. For example, if
AppA lists AppB as a Dependent Package, AppB also lists
AppA as a Required Package. You cannot delete AppA until
you remove AppA from the list of required packages for
AppB.

The packages listed in the Dependent Packages pane are the
packages that specify the package you want to delete as a
required package. If there are dependents, see “Changing the
list of required packages” on page 142 for information on
deleting this package from the dependents’ list of required
packages.

The list of Dependent packages must be
empty.

Select Packages and then Selected → and then Delete. If the package has no dependents, it is
deleted.

If it has dependents, an error message is
displayed and the package is not
deleted.

Deleting all packages
You might want to delete all packages in the sandbox in the following
situations:
v After a pilot migration, you might want to clear the sandbox without

committing any packages to ENVY so that you can try a different
organizational structure for your packages.

v You have finished migrating a group of packages that shared one set of
common parts and you want to reset the sandbox before migrating another
group of packages with a different set of common parts.

Action Description

Select Packages and then Delete All. The VG Part Prerequisites View window
is refreshed with all packages cleared
from the window.

Committing to ENVY

When you are satisfied with the packages, their VAGen parts, and their lists
of required packages, you need to commit this work to the ENVY repository
to save it. You can commit one package at a time or all packages at once.

Note: All packages committed at the same time must go into the same
project.

Chapter 13. Running the MSL Migration Assistance Tool on Java 145

Action Description

To make sure that all parts have been considered, from the
Part List Selection Criteria View window, do the following:
v Select the All Types push button
v Select the Only parts not processed toggle button
v Select the Build List push button.

The MSL Migration Part List window is
refreshed and contains any parts that
have not been moved to the sandbox.

Generally, there should not be any parts
on this list. If there are, you should
determine whether they represent
obsolete parts or parts that should be
migrated now. For example, you might
have parts in your common MSL that are
not referenced within the MSL itself but
which will be referenced when you
migrate MSLs for your subsystems. You
should migrate these common parts at
this time

This helps to insure that all parts are
considered by the MSL Migration
Assistance Tool.

From the VG Part Prerequisites View window, you should
also do the following:

v Review the number of parts in each package. This number
is listed to the right of the package name in the VG Part
Prerequisites View window. If the number of parts of any
one type is greater than 600-700, you might want to
consider splitting this package into smaller packages to
improve performance.

v List any parts not found (see “Listing missing (not found)
parts” on page 138).

v For any package with a tilde (˜) to the right of its name,
check that the required packages are specified (see
“Checking consistency of packages” on page 141).

v Check which programs are called by a package (see
“Determining which programs are referenced” on
page 140).

v Normalize packages to remove unnecessary required
packages (see “Normalizing the list of required packages”
on page 143).

From the VisualAge on Java Workbench window, make sure
that the team leader is the current user. This ensures that the
team leader will become the owner for all the packages and
the owner for all the classes that are created when you
commit to ENVY. See “Creating users and setting the current
user” on page 116 for information on how to define and
change users.

146 VisualAge Generator: Migration Guide

Action Description

From the VG Part Prerequisites View window, select the
packages you want to commit. You can select individual
packages or use the following to select packages:
v Find Packages
v Select All
v Deselect All

Be sure to select only packages that are to be placed in the
same project.

You can specify:

v A package that has never been committed.

v A package that was previously committed to ENVY but
which now indicates that it has been Modified. A Modified
package is one that was committed to ENVY, but which
you have added parts to or replaced parts within the
package.

Note: You cannot commit a package that is already
committed into ENVY unless it has been modified.

Select Packages and then Selected → Commit Into ENVY.

When you are prompted for a project name, enter the name
of the project that is to contain all the selected packages. The
package does not need to exist. If it does not, the MSL
Migration Assistance Tool creates it for you.

If you are committing modified packages
a warning message is displayed for each
package. Select OK to commit the
modified package to ENVY.

If there were any Not Found parts in any
of the selected packages, a Warning
message window is displayed. You can
select Cancel to prevent committing any
parts into ENVY if you want to resolve
the Not Found parts first. You can select
OK if you want to commit the existing
parts to ENVY and resolve the Not Found
parts later. Select OK if you know that
the parts are in MSLs that you plan to
migrate later (for example, if your
scenario matches the one described in
“Multiple subsystems with controlled
duplicates” on page 89).

After the messages, a progress window
is displayed. Committing the packages
takes about 2 seconds per VAGen part.

When all packages have been committed,
the VG Part Prerequisites View window
is refreshed and each of the packages has
the notation Committed beside it.

If there were any missing parts, a
package called notfound.pkg was created
and contains a list of the missing parts.
The notfound.pkg was not committed to
ENVY.

If there were any missing parts listed in notfound.pkg, you
can print a list of them by using the technique described in
“Listing missing (not found) parts” on page 138.

Based on the MSL migration scenario that you are following,
you should not delete the packages from the VG Part
Prerequisites View window until you are certain you do not
need them when you migrate additional MSLs. These
committed packages can be used if you migrate additional
MSLs to determine where duplicates exist and to help resolve
the duplicates.

Chapter 13. Running the MSL Migration Assistance Tool on Java 147

Action Description

See “Chapter 15. Completing the ENVY setup on Java” on
page 151 and “Chapter 16. Completing your migration on
Java” on page 159 for information on additional steps you
might need to take.

148 VisualAge Generator: Migration Guide

Chapter 14. Using VAGen Import to migrate VAGen 2.x and
Cross System Product non-GUI code to Java

To migrate VisualAge Generator 2.x or Cross System Product non-GUI code to
VisualAge Generator 4.0 on the Java platform, use these steps:

1. Export your existing applications to external source format files. You
must use your existing Cross System Product or VisualAge Generator
product to create these .esf files.
Export one external source format file for each Java package you want to
create. See the 2.x product documentation and the online help for
information about how to create external source format files.
For VisualAge Generator 2.x or earlier, GUIs cannot be migrated to
VisualAge Generator 4.0 on Java. Therefore, do not include GUIs in your
external source format files. VisualAge Generator 4GL parts that were
used in an existing GUI by being dropped on the freeform surface can be
migrated to VisualAge Generator 4.0 along with other non-GUI parts.
If you are migrating from Cross System Product, also read the book
Migrating Cross System Product Applications to VisualAge Generator (Version
3.1) for information about other tasks you must perform when migrating
from Cross System Product to VisualAge Generator.
If you are changing from the OS/2 to the Windows NT development
platform, be sure to review “Changing from OS/2 to Windows NT” on
page 119 before you start to migrate.

Note: You should not modify the export files.
2. Start VisualAge Generator 4.0 on Java.
3. In VisualAge Generator 4.0, create a Java project and package to store the

code you want to import:
a. From the VisualAge for Java Workbench window, open the context

menu by clicking the right mouse button on an empty part of the
workspace.

b. Select Add->Project from the context menu.
c. In the Add Project window, enter a name for the new project and

select the Finish push button.
d. From the workspace, select the project you just created, and open the

context menu.
e. From the context menu, select Add->Package.
f. In the Add Package window, enter a name for the new package and

select the Finish push button.

© Copyright IBM Corp. 1997, 1999 149

Create one Java package for each .esf file that you created in step 1. For
more information about creating packages, see the VisualAge Generator
User’s Guide.

4. In VisualAge Generator 4.0, from the VisualAge for Java Workbench, select
Workspace->Open VAGen Parts Browser to open the VAGen Parts
Browser.

5. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import.

6. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select the Open
button.

7. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of the .esf file. When
there are no parts with errors, proceed to the next step.

8. In the VAGen Import window, specify the name of your package in the
Target package field. Move all parts to be imported from the Available
parts list to the Selected parts list. Then select the Import push button. The
selected parts are imported into the package you specified.

9. In the VAGen Import window, select the New File push button and then
repeat steps 6, 7, and 8 for each external source format file you need to
import. When you have finished importing your .esf files to VisualAge
Generator 4.0, select the Cancel push button in the VAGen Import window
to return to the VAGen Parts Browser window.

10. Version and release all classes, packages and projects for the existing
applications you have imported.

11. Save your VisualAge Generator 4.0 workspace.
12. See “Chapter 15. Completing the ENVY setup on Java” on page 151 and

“Chapter 16. Completing your migration on Java” on page 159 for
information on additional steps you might need to take.

150 VisualAge Generator: Migration Guide

Chapter 15. Completing the ENVY setup on Java

The following sections describe specific tasks you might need to perform after
running the MSL Migration Assistance Tool. These tasks include:
v “Versioning and releasing a VAGen part class”
v “Versioning and releasing a package” on page 152
v “Versioning a project” on page 153
v “Creating a Project List Part (PLP)” on page 154
v “Changing the owner of a project” on page 155
v “Assigning ownership of a VAGen part class” on page 155
v “Adding group members” on page 155
v “Changing the ownership of a VAGen part class” on page 156
v “Changing the owner of a package” on page 156

Note: ENVY provides a variety of ways of doing most tasks and supports
multiple development scenarios. This chapter is intended to provide
one way, but not necessarily the only way, of performing tasks related
to migrating MSLs to ENVY.

Versioning and releasing a VAGen part class

After you have committed your production level VAGen parts to ENVY, you
should version and release the VAGen part classes to provide a base line that
matches the code that runs in your production system. The steps below
describe how to version and release VAGen part classes for a package.

Action Description

From the VisualAge for Java Workbench window:

v Select the Managing tab.

v In the Projects pane, select a project.

v In the Packages pane, select a package.

v In the Types pane, select all the VAGen part classes. These
are the classes that start with VAGen (for example,
VAGenRecords).

Note: In the Types pane, VAGen part
classes that need to be versioned appear
in the format:

>VAGenRecords(06/03/99 10:15:30 AM)

The date and time stamp next to the
class name are also repeated in the status
line at the bottom of the Workbench
window, in the place where the version
name is normally displayed.

© Copyright IBM Corp. 1997, 1999 151

Action Description

In the Types pane, press mouse button 2 and select
Manage->Version.

The Versioning Selected Items window
appears.
Note: You must be the developer of a
class to version the class.

Select one of the following:

v Automatic (Recommended) to use the ENVY-determined
defaults for each of the classes you are versioning. The
default might be different for each class.

v One Name to specify the same version name for all of the
classes you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Name Each to specify a different version name for each of
the classes you are versioning.

Also select Release selected items, and then select OK.

The Types pane in the VisualAge for
Java Workbench window is refreshed
and shows the version number for each
VAGen part class.

Notes:

1. In the Types pane, VAGen part
classes that have been versioned but
not released appear in the format:

>VAGenRecords 1.0

2. In the Types pane, VAGen part
classes that have been versioned and
released appear in the format:

VAGenRecords 1.0

3. You must be the owner of a class to
release the class.

Versioning and releasing a package

You should version and release your packages to provide a base line that
reflects the level of code that you migrated to ENVY.

Action Description

From the VisualAge for Java Workbench window, in the
Packages pane of the Managing tab, select one or more
packages to be versioned and released.

Note: In the Packages pane, packages
that need to be versioned and released
appear in the format:

>trb.common.data.pkg (06/03/99 10:15:30 AM)

In the Packages pane, press mouse button 2 and select
Manage->Version.

The Versioning Selected Items window
appears.
Note: You must be the owner of a
package to version the package.

152 VisualAge Generator: Migration Guide

Action Description

Select one of the following:

v Automatic (Recommended) to use the ENVY-determined
defaults for each of the packages you are versioning. The
default might be different for each package.

v One Name to specify the same version name for all of the
packages you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Name Each to specify a different version name for each of
the packages you are versioning.

Also select Release selected items, and then select OK.

The Packages pane in the VisualAge for
Java Workbench window is refreshed
and shows the version number for each
package.

Notes:

1. In the Packages pane, packages that
have been versioned but not released
appear in the format:

>trb.common.data.pkg 1.0

2. In the Packages pane, packages that
have been versioned and released
appear in the format:

trb.common.data.pkg 1.0

3. You must be the owner of the
package or the owner of the project
to release the package.

Versioning a project

To provide a base line for your projects that reflects the level of code you
migrated to ENVY, you should version them.

Action Description

From the VisualAge for Java Workbench window, in the
Projects pane of the Managing tab, select one or more
projects to be versioned.

Note: In the Projects pane, projects that
need to be versioned appear in the
format:

TrbCommonDataProj (06/03/99 10:15:30 AM)

In the Projects pane, press mouse button 2 and select
Manage->Version.

The Versioning Selected Items window
appears.

Select one of the following:

v Automatic (Recommended) to use the ENVY-determined
defaults for each of the projects you are versioning. The
default might be different for each project.

v One Name to specify the same version name for all of the
projects you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Name Each to specify a different version name for each of
the projects you are versioning.

Then select OK.

The Projects pane in the VisualAge for
Java Workbench window is refreshed
and shows the version number for each
project.

Notes:

1. In the Projects pane, projects that
have been versioned appear in the
format:

TrbCommonDataProj 1.0

2. You must be the owner of the project
to version the project.

Chapter 15. Completing the ENVY setup on Java 153

Creating a Project List Part (PLP)

A Project List Part (PLP) is a VisualAge Generator generation options part. It
is used to identify projects to load before the containing project is loaded. The
PLP is the VisualAge Generator on Java way of implementing VisualAge
Generator on Smalltalk required maps.

A PLP allows you to define a group of project editions or versions that should
all be loaded together into your workspace. A PLP is used for storing a list of
/PROJECT generation options. In the PLP, you define one /PROJECT option
for each project in the group you want to load together. For example, you
might have a project that defines the package versions that are currently in
your production system.

Use these steps to create a Project List Part that you can use to load a group
of projects before loading this project:
1. Create an open edition of the project by selecting the project and then

selecting Manage->Create Open Edition from the context menu.
2. Select the open edition of the project and then select Add->Package from

the context menu.
3. When the Add Package Wizard dialog is displayed, select the Create a

default package radio button to create a default package for the project.
4. Select the default package in the Workbench window and select

Packages->Manage->Release to release the default package into the
project.

5. Open the VAGen Parts Browser, and create a new generation options part
in this package with the following name:
VAGEN_project_name.PLP

where:

VAGEN_
Is the required prefix for all PLP parts

project_name
Is the name of the project, with all blanks converted to
underscores (_).

If this name is longer than 22 bytes, the name must be truncated
on the right to 22 bytes. If the name is mixed SBCS and DBCS, and
the 22nd byte is the first byte of a DBCS character, the name
should be truncated to 21 bytes.

.PLP Is the required suffix for all PLP parts.
6. Insert the desired /PROJECT options in the PLP options part.
7. Version and release the class VAGenOptions in the default package.

154 VisualAge Generator: Migration Guide

8. Version the default package and project.

Note: For more information about the /PROJECT generation option, see
“Generation options” on page 56 and the VisualAge Generator Generation
Guide.

Changing the owner of a project

Each project can have a different owner. To change the owner assigned to a
project during migration, follow these steps:

Action Description

From the VisualAge on Java Workbench window:

v Select the Managing tab.

v In the Projects pane, select the project for which you want
to change the owner.

Select the Projects menu, select Manage, and then select
Change Owner.

The Change Owner window is displayed
showing the available users. The current
owner is highlighted.

Select the new owner and select OK. The new project owner is displayed in
the Project Owner pane.
Note: You must be the owner of a
project to change the owner of that
project.

Assigning ownership of a VAGen part class

Each VAGen part class within a package can have a different owner. Although
developers can version a VAGen part class, the class owner controls the
release of VAGen part classes into the package. The following sections
describe how to add members to the group for a package and how to change
the owner for a class within a package.

Adding group members
To change the owner of the class, the new owner must be a member of the
group. Group members must be defined for one package at a time.

Action Description

From the VisualAge on Java Workbench window, select the
package for which group members are to be added.

The current group members are shown
in the Package Group Members pane.
The current group owner is indicated by
a > beside the name.

Select the Packages menu and then select Manage->Add User
to Group.

The Add Users window showing all
defined users for the package is
displayed.

Chapter 15. Completing the ENVY setup on Java 155

Action Description

Select a user to add to the group, and then select OK. Use the
Ctrl key to select several users before selecting OK.

All the new users are added to the list in
the Package Group Members pane.
Note: You must be the owner of a
package to add group members for that
package.

Changing the ownership of a VAGen part class
The same owner can be assigned for multiple classes within a single package
at the same time. During migration, it is easiest to assign the same owner to
all the VAGen part classes within a package. The owner of these classes might
also (most likely) be the owner of the containing package.

Action Description

From the VisualAge on Java Workbench window:

v Select the Managing tab.

v In the Packages pane, select the package for which VAGen
part class owners are to be assigned.

v In the Types pane, select the VAGen part classes for which
the same owner is to be assigned.

Select the Types menu and then select Manage->Change
Owner.

A Change Owner window is displayed
showing the current group members for
the package. The current owner is
highlighted.
Note: You must be a package group
member to change the owner of a class
within the package.

Select the new owner and select OK. The new owner is shown in the Type
Owner pane.

Changing the owner of a package

Each package can have a different owner. The owner of a package can create
an edition of the package and can version the package.

To change the owner of the package, the new owner must be a member of the
group. See “Adding group members” on page 155 for information on adding
users to a group.

Action Description

From the VisualAge on Java Workbench window:

v Select the Managing tab.

v In the Packages pane, select the package for which you
want to change the owner.

Select the Packages menu and then select Manage->Change
Owner.

A Change Owner window is displayed
showing the current group members for
the package. The current owner is
highlighted.
Note: You must be the owner of a
package to change the owner of that
package.

156 VisualAge Generator: Migration Guide

Action Description

Select the new owner and select OK. The new owner is indicated by a >
beside the name in the Package Group
Members pane.

Chapter 15. Completing the ENVY setup on Java 157

158 VisualAge Generator: Migration Guide

Chapter 16. Completing your migration on Java

The following sections describe specific tasks you might need to perform to
complete your migration to VisualAge Generator 4.0. These tasks include:
v “Defining control information”
v “Generating Programs” on page 160
v “Importing work-in-progress” on page 161
v “Migrating VSAM files” on page 163

In addition, “Chapter 33. Hints and tips on Smalltalk” on page 345 provides
information to help you use the VisualAge Organizer and VAGen Parts
Browser windows.

Note: ENVY provides a variety of ways of doing most tasks and supports
multiple development scenarios. This chapter is intended to provide
one way, but not necessarily the only way, of performing tasks related
to migrating MSLs to ENVY.

Defining control information

Control information that is needed for test and generation must be stored in
ENVY packages. This control information consists of:
v Generation options
v Linkage table
v Resource associations
v Bind control information
v Link edit information

The technique for migrating your existing control information is the same for
each of the control files. The only difference is the part type that you specify
when you create the part.

Action Description

Make sure you have open editions of the project and package
to which you want to add a control information part.

If you do not have open editions, from the VisualAge on Java
Workbench window:

v Select the project, select the Projects menu, and then select
Manage->Create Open Edition.

v Select the package, select the Packages menu, and then
select Manage->Create Open Edition.

The project and package show the date
and time stamp when the edition of each
was created.

© Copyright IBM Corp. 1997, 1999 159

Action Description

From the VAGen Parts Browser, select the VAGen Parts menu
and then Add->New Part.

The New VAGen Part window is
displayed.

Specify the name of the new part.

Select the Other radio button and then from the drop-down
list, select the type that corresponds to the control
information you need to add:
v Generation Options
v Linkage Table
v Resource Associations
v Bind Control
v Link Edit

From the drop-down combination box, select the package to
which you want to add the part. The drop-down list shows
packages with open editions and packages that already
contain the type of control information you specified.

Select the OK push button.

An editor window is displayed.

To load the control information from an existing file, select
File and then Read From File.

A File Specification window is displayed.

Select the drive, directory, and file name from which you
want to load an existing control file. Double-click on the file
name or select the Open push button to load the file.

The text from the file you specified
appears in the editor window.
Note: Be sure to review your options for
any that need to be changed. For
example, /OPTIONS, /LINKAGE,
/RESOURCE, /BIND, and /LINKEDIT
specified a directory in VisualAge
Generator 2.2. Now they should specify
a part name that is stored in ENVY.

If you do not have an existing file, you can use the editor to
specify your control information. If you loaded an existing
file, you can also use the editor to make changes to the
control information.

Close the editor window and specify Yes when asked if you
want to save the changes.

The VAGen Parts Browser is displayed.

Press F5 to refresh the contents of the VAGen Parts Browser
window.

Generating Programs

After you complete the migration of a group of MSLs (for example, after
migrating your production MSLs), you should generate all the programs for
your target environments. Then test the results in the runtime environments.
This helps to ensure that you have migrated the correct version of your code.

160 VisualAge Generator: Migration Guide

Refer to the VisualAge Generator Generation Guide for more information on how
to generate your programs.

Note:

1. Any programs for the C++ target environments must be regenerated
for VisualAge Generator 4.0. There is no coexistence of C++ runtime
services between VisualAge Generator 2.2 and 4.0. In addition, it is
strongly recommended that you regenerate all programs for the
COBOL environments to be sure that you migrated the correct level
of code.

2. For CICS OS/2, the default parmform option in the linkage table was
COMMDATA. With VisualAge Generator 4.0, the new option
COMMPTR is the default. Therefore, if you never specified linkage
tables for CICS OS/2, you might need a linkage table now.

Importing work-in-progress

To migrate your work-in-progress MSLs, use VAGen Import.

Action Description

Make sure you have an open edition of the project and
package for which you want to change or add parts.

If you do not have open editions, the project owner and
package owner can open editions from the VisualAge on Java
Workbench window by:

v Selecting the project, selecting the Projects menu and then
selecting Add->Project.

v Selecting the package, selecting the Packages menu and
then selecting Add->Package.

Note: During migration, you probably want to open an
edition of the project and package because you will be
versioning after importing the external source format file
from each work-in-progress MSL. After migration, you can
use a scratch edition when you import if you will not be
adding any classes (no new VAGen part classes).

The package shows the date and time
stamp when the edition was created.

Make sure you are a group member of all the packages for
which you want to change or add parts.

If you are not a group member, the package owner can add
you to the group by following the steps in “Adding group
members” on page 155.

Chapter 16. Completing your migration on Java 161

Action Description

If some of the parts you will be importing should be placed
into new packages, create the new packages.

From the VisualAge on Java Workbench window, select the
Packages menu and Add->Package.

The New Package window is displayed.

Type the name of the package you want to create.

Select the OK push button.

The VisualAge on Java Workbench
window is displayed with the new
package listed in the Packages pane.

From the VisualAge on Java Workbench window, select the
Workspace menu and then Open VAGen Parts Browser.

The VAGen Parts Browser window is
displayed.

From the VAGen Parts Browser window, select Parts and then
Import.

The VAGen Import File Selection
window is displayed, requesting
information about the external source
format file that you want to import.

Specify the drive, directory, and file name and then press the
OK push button.

The VAGen Import window is displayed.
The Parts with errors pane lists any
parts that encountered problems during
external source format validation. The
Available parts pane lists the parts that
successfully passed the external source
format validation.

Specify the Destination for duplicate parts and the Target
package.

Destination for duplicate parts specifies
how duplicate parts (parts that are
already in your workspace) are to be
treated. When you import your
work-in-progress, you should select the
Defined package radio button as the
Destination for duplicate parts. This
means that any part listed in the
Selected Parts field that already exists in
your workspace is replaced in the
package in which it already exists. This
preserves the package organization that
you created in the sandbox with the MSL
Migration Assistance Tool.

Target package is the default package
into which you want to place the parts.
When you select Defined package as the
method for handling duplicates, only
new parts are imported into the target
package.

162 VisualAge Generator: Migration Guide

Action Description

Select parts from the Available parts pane and move them to
the Selected parts pane using the >> push button.

When you select the Import push button, only parts in the
Selected parts pane are imported. This allows you to import
some parts into one target package and another group of
parts from the same external source format file into a
different target package.

After you select the Import push button,
the selected parts are imported and the
VAGen Import window is displayed
again. The parts you imported are
removed from the Selected parts pane
and also do not appear in the Available
parts pane. This enables you to see what
parts from the external source format file
have not yet been processed.

Migrating VSAM files

If you are migrating from Cross System Product, you might have VSAM files
that you need to access during test. Copies of these files must be moved to
the workstation for use with the Interactive Test Facility. To migrate these
VSAM files, do the following:
v If you use variable-length VSAM files on an MVS host system, see the

VisualAge Generator Installation Guide for information on how to upload and
install a VisualAge Generator utility that is required to prepare these files
for download.

v For VM, VSE, and MVS host systems, see Migrating Cross System Product
Applications to VisualAge Generator (SH23-0244-01) for information on how to
REPRO and download your VSAM files.

v For information on how to run the VSAM conversion utility for your
downloaded MVS files, from the VAGen Parts Browser window, select
Tools and then Data File Conversion. Then select the Help push button.

Converting an RTABLE to a Linkage Table

If you have been using the VisualAge Generator middleware RTABLE for
communications routing, the RTABLE entries must be moved from the
RTABLE to a linkage table. The following example shows a mapping of
RTABLE entries to linkage table entries:

RTABLE
app1 - - - - - - lu2 LU2C - 1
app2 - - - - - - lu2 LU2C - 1
app3 - - - - - - lu2 LU2C - 1
app4 - - - - - - lu2 LU2B - 1
$ANY - - - - - - lu2 LU2K - 1

LINKAGE TABLE
:calllink applname=app1 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app2 linktype=remote remotecomtype=LU2

Chapter 16. Completing your migration on Java 163

serverid=LU2C.
:calllink applname=app3 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app4 linktype=remote remotecomtype=LU2
serverid=LU2B.
:calllink applname=* linktype=remote remotecomtype=LU2
serverid=LU2K.

164 VisualAge Generator: Migration Guide

Part 3. Migrating from VAGen 3.x to VAGen 4.0 on
Smalltalk

Chapter 17. General migration
considerations for VAGen 3.x to 4.0 on
Smalltalk 167
Migration paths 167
Overview of the V3 to V4 Migration Tool on
Smalltalk. 168
Automatic conversions during 4.0 migration 169
Migrating GUIs 170
Migrating applications, subapplications, and
configuration maps 170
Migrating VAGen Templates 171
Establishing naming conventions. 172
Assigning ownership 173
Using subapplications 173
Storing control information 173
Dual maintenance. 173
Migrating from OS/2 to Windows NT . . . 174

Chapter 18. Pre-migration checklist . . . 175

Chapter 19. Using the V3 to V4 Migration
Tool to migrate VAGen 3.x code and
VAGen Templates parts on Smalltalk . . 177
Setting V3 to V4 Migration Tool options on
Smalltalk. 178

Selection Criteria options 179
Library Management options 181
Ownership options 182

Selecting and migrating applications and
configuration maps 183
Working with the status log 185
Resetting the V3 to V4 Migration window 187
Resetting Migration Status Information . . 188

Chapter 20. Using VAGen Import to
migrate VAGen 3.x non-GUI code to
Smalltalk 189

Chapter 21. Completing the ENVY setup
on Smalltalk 191
Versioning and releasing a view or a VAGen
part class 191
Versioning an application 192

Creating a configuration map 193
Adding a required map to a configuration
map 194
Versioning a configuration map 195
Changing the manager of a configuration
map 195
Testing a configuration map 196

Assigning ownership of a VAGen part class 196
Adding group members 196
Changing the ownership of a VAGen part
class 197

Changing the manager of an application . . 197

Chapter 22. Completing your migration on
Smalltalk 199
Defining control information 199
Generating programs 199
Importing work-in-progress 199
Recreating ITF resource association
information 200
Converting an RTABLE to a Linkage Table 200

© Copyright IBM Corp. 1997, 1999 165

166 VisualAge Generator: Migration Guide

Chapter 17. General migration considerations for VAGen
3.x to 4.0 on Smalltalk

Consider the following if you are migrating from VisualAge Generator 3.x to
VisualAge Generator 4.0 on Smalltalk:
v “Migration paths”
v “Overview of the V3 to V4 Migration Tool on Smalltalk” on page 168
v “Automatic conversions during 4.0 migration” on page 169
v “Migrating GUIs” on page 170
v “Migrating applications, subapplications, and configuration maps” on

page 170
v “Migrating VAGen Templates” on page 171
v “Establishing naming conventions” on page 172
v “Assigning ownership” on page 173
v “Using subapplications” on page 173
v “Storing control information” on page 173
v “Dual maintenance” on page 173
v “Migrating from OS/2 to Windows NT” on page 174

Also see “Chapter 18. Pre-migration checklist” on page 175 before you begin to
migrate code to VisualAge Generator 4.0.

Migration paths

Depending on your current platform and whether you want to migrate to
Smalltalk, Java, or both, different migration paths are available and different
considerations apply.

Table 10 on page 168 gives a brief overview of the migration options available
for the Smalltalk platform. See the referenced chapters for step-by-step
procedures for each migration option.

© Copyright IBM Corp. 1997, 1999 167

Table 10. Migration Options

Migrating from Tools to Use Details on Using the Tools

VisualAge Generator 3.x
(GUI and non-GUI)

v V3 to V4 Migration Tool

v VAGen Import

v “Chapter 19. Using the
V3 to V4 Migration Tool
to migrate VAGen 3.x
code and VAGen
Templates parts on
Smalltalk” on page 177

v “Chapter 20. Using
VAGen Import to
migrate VAGen 3.x
non-GUI code to
Smalltalk” on page 189

VisualAge Generator
Templates 3.x

V3 to V4 Migration Tool “Chapter 19. Using the V3
to V4 Migration Tool to
migrate VAGen 3.x code
and VAGen Templates
parts on Smalltalk” on
page 177

VisualAge Generator 4.0 on
Java parts

VAGen Import “Chapter 34. Sharing
VAGen 4.0 parts between
Java and Smalltalk” on
page 351

Overview of the V3 to V4 Migration Tool on Smalltalk

Migration from VisualAge Generator 3.x to 4.0 on Smalltalk is a two step
process:
v Import configuration maps and/or applications from the VisualAge

Generator 3.x library into the 4.0 library using the normal Smalltalk import
process.

v Run the V3 to V4 Migration Tool to convert the 4GL parts and GUIs that
use 4GL parts for use in VisualAge Generator 4.0

The V3 to V4 Migration Tool on Smalltalk does the following:
v Migrates versioned configuration maps or applications from VisualAge

Generator 3.x
v Sets flags in the 4.x library to indicate what has been migrated
v Provides options to control configuration map or application selections,

project and package naming conventions, and version, release, and
ownership information.

168 VisualAge Generator: Migration Guide

Automatic conversions during 4.0 migration

VisualAge Generator 4.0 automatically makes the following changes to your
applications during migration:
v Process and statement group parts are converted to function parts.
v References to processes and statement groups are converted to the new

syntax requirements for functions with no parameters.
v PERFORM statements and Unconditional Branch statements are no longer

supported and are migrated to Function Invocation statements.
v Subscript parentheses are changed to brackets in VisualAge Generator item

names in the following places:
– 4GL statements in functions (processes and statement groups)
– Host variable names in SQL statements
– Comparison value item in DL/I specifications
– EZEDLPCB is used in a called parameter list

v Calls to EZE service routines are converted to the corresponding function
invocation statement. A statement to set the value of EZEREPLY is also
added before the function invocation.

v VisualAge Generator-supplied string and math functions are converted
from the CALL statement to a function invocation statement or to an
assignment statement that contains the function as the source of the
assignment. A statement to set the value of EZEREPLY is also added before
the function invocation.

VisualAge Generator Templates 4.0 automatically makes the following changes
to your applications during migration:
v Definition and Generation Parameters of a VAGT instance are stored in

two different VAGTemplates part classes. (In version 3.x, these two types of
descriptions are stored in the same VAGTemplates part class.)

v Definition Extensions for all VAGT entities are stored in an appropriate
VAGTemplates part class. (In version 3.x, they are stored in the same
VAGTemplates part class as all the instances of the same VAGT entity type.)

In addition, the names of part classes, control information files, and VisualAge
Generator palette parts are changed during migration to VisualAge Generator
4.0:
v Table 20 on page 361 shows the changes made to VAGen part class names

during 4.0 migration.
v Table 21 on page 361 shows the changes made to VAGen control

information part class names during 4.0 migration.
v Table 22 on page 362 shows the changes made to VisualAge Generator

palette parts names during 4.0 migration.

Chapter 17. General migration considerations for VAGen 3.x to 4.0 on Smalltalk 169

v Table 23 on page 362 shows the changes made to VAGen Templates part
class names and repartition during 4.0 migration.

Migrating GUIs

VisualAge Generator 4.0 provides two ways to migrate existing GUIs to the
Smalltalk platform.
1. Use the V3 to V4 Migration Tool. See “Chapter 19. Using the V3 to V4

Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on
Smalltalk” on page 177 for step-by-step instructions on how to migrate
your GUIs using the V3 to V4 Migration Tool.

2. Use ENVY import:
a. From VisualAge Generator 4.0, use these steps to import the

applications and configuration maps from your 3.x library:
1) From the VisualAge Organizer window, select Applications-

>Import/Export->Import Applications to import all the application
versions that you want to migrate.

2) From the System Transcript window, select Tools->Browse
Configuration Maps to open the Configuration Maps Browser.
From the Configuration Maps Browser window, select
Names->Import to import all the configuration map versions that
you want to migrate.

b. On the VisualAge Organizer window, select the applications you want
to migrate, and then select Migrate VAGen GUIs.

Note: You must run the V3 to V4 Migration Tool to convert any applications
that contain GUIs that use 4GL parts.

Migrating applications, subapplications, and configuration maps

Your current structure of applications, subapplications, and configuration
maps is preserved during migration to VisualAge Generator 4.0 on Smalltalk.

Note: The V3 to V4 Migration Tool loads the configuration maps and
applications into your image as part of the migration process.
Therefore, if you have used multiple configuration expressions for
configuration maps and/or applications, you must migrate on each of
the platforms that corresponds to one of your configuration
expressions. Required maps, prerequisite applications, and
subapplications can only be migrated when their corresponding
configuration expression evaluates to true.

170 VisualAge Generator: Migration Guide

Migrating VAGen Templates

The following table outlines considerations that apply when you select VAGen
Templates for migration using the V3 to V4 Migration Tool:

Table 11. VAGen Template Migration to VisualAge Generator 4.0 on Smalltalk

VisualAge Generator 3.x VisualAge Generator 4.0 on Smalltalk

Standard Generators The standard generators from VAGen
Templates 3.x are not migrated. They have
been rewritten for VisualAge Generator 4.0
on Smalltalk to make use of the new
functions.

Customized Generators Your customized generators from VAGen
Templates 3.x are not migrated. You must
reapply your customization to the new
standard generators for VisualAge
Generator 4.0 on Smalltalk. To ease
migration for users who customized the
VisualAge Generator 3.x generators, the
standard generators from VisualAge
Generator 3.1 are shipped with VisualAge
Generator Templates Customizer 4.0
(Smalltalk Version). These 3.x obsolete
standard generators will produce
VisualAge Generator 4.0 components (for
example, functions instead of statement
groups or processes). You can reapply
your customization to the 3.x obsolete
standard generators or to the new,
enhanced standard generators.

Specifications The VAGen Templates specifications are
migrated automatically by the V3 to V4
Migration Tool. If you want to make use
of any of the new functions in the new
generators, you can migrate your
specifications and then regenerate using
the new generators. For example, you
could generate using a migrated
specification and one of the new Web
generators.

Chapter 17. General migration considerations for VAGen 3.x to 4.0 on Smalltalk 171

Table 11. VAGen Template Migration to VisualAge Generator 4.0 on
Smalltalk (continued)

VisualAge Generator 3.x VisualAge Generator 4.0 on Smalltalk

VAGen Templates-generated 4GL code The 4GL code generated by VAGen
Templates 3.x migrates like any other 4GL
code. The VAGen Templates generated
components include “traceability”
information that is used only by VAGen
Templates. This information is migrated
automatically by the V3 to V4 Migration
Tool. After migrating, the 4GL code is
ready to be used. Your custom business
logic is already incorporated and reacts as
a brand new one. This means that you just
need to generate the 4GL code using the
’normal’ generation option. (The ’override’
option would erase your custom business
logic.)

VAGen Templates-generated GUI code The GUIs generated by VAGen Templates
3.x migrate like any other GUI code.
Therefore, all your custom business logic
is preserved in the migrated GUI parts.
But, in order to update your GUI parts
using the new V4 templates, generate your
GUI parts with the ’normal’ generation
option.

Establishing naming conventions

You probably already have naming conventions for parts like processes,
records, data items, and so on that you are migrating from VisualAge
Generator 3.x. You can continue to use your existing naming conventions,
because VisualAge Generator 4.0 retains existing part names during
migrations from VisualAge Generator 3.x.

However, VisualAge Generator does change some existing part types, as well
as making some syntax conversions. For example, process parts and statement
group parts are both changed to function parts. Therefore, you might want to
establish a naming convention for function parts that is similar to your
conventions for processes and statement groups.

See “Automatic conversions during 4.0 migration” on page 169 for a list of
changes that VisualAge Generator makes to your applications during
migration.

172 VisualAge Generator: Migration Guide

When you use the V3 to V4 Migration Tool to migrate applications with part
types that are changed during migration, you can decide whether the
migrated applications are automatically versioned and released during
migration. See “Setting V3 to V4 Migration Tool options on Smalltalk” on
page 178 for more information.

Assigning ownership

Using the V3 to V4 Migration Tool, you can decide whether you want to
retain the existing ownership structure for applications, subapplications, and
configuration maps. When you set the V3 to V4 Migration Tool options, you
can choose to maintain the existing ownership structure or change the
ownership to the current user. See “Ownership options” on page 182 for more
information.

Using subapplications

Your existing subapplication structure is preserved during migration.
However, you still need to consider the ownership issues discussed in
“Assigning ownership”.

Storing control information

Control information consists of generation options, linkage table, resource
association, bind control, and link edit command parts. In VisualAge
Generator 3.x, the control information is stored in ENVY parts. When you
migrate to 4.0 on Smalltalk, the control information is preserved. No special
migration considerations apply.

Dual maintenance

The external source format file for 4GL parts that you export from VisualAge
Generator 4.0 is not compatible with the external source format file for
VisualAge Generator 3.x. Therefore, if you migrate a subsystem that shares
common parts with a subsystem that you will migrate at a later time, you
have the following alternatives for maintenance of the common parts:
1. Maintain the common parts in VisualAge Generator 3.x, and when you are

satisfied with the changes:
a. Export an external source format file from the 3.x application for the

changed parts.
b. Import the external source format file into VisualAge Generator 4.0 on

Smalltalk using the Defined application radio button so the changes
will go into the same ENVY application in which the parts are already
located.

Chapter 17. General migration considerations for VAGen 3.x to 4.0 on Smalltalk 173

2. Make the same changes to both the parts in VisualAge Generator 4.0 on
Smalltalk using VisualAge Generator 4.0 and to the corresponding 3.x
parts using VisualAge Generator 3.x.

With VisualAge Generator 4.0, you cannot export external source format files
for views. Therefore, the only option for views is to make the same changes to
the view using VisualAge Generator 4.0 and to the corresponding view in
VisualAge Generator 3.x. If the view does not contain any 4GL parts, you
could use the Smalltalk export and import facilities to transfer the modified
view from VisualAge Generator 3.x to VisualAge Generator 4.0.

Migrating from OS/2 to Windows NT

Note: If you use a DBCS code page, skip this section. Code page conversion
is not required for DBCS code pages.

If you are changing from the OS/2 to the Windows NT development
platform, do the following:
v Using VisualAge Generator 3.x on the OS/2 development platform, create a

test application containing one process or statement group. In this process
or statement group, as comment lines, include all the special characters that
you use. Version the test application.

v Migrate the test application using the V3 to V4 Migration Tool to the
Windows NT development platform.

v If all the special characters were transferred correctly, you can use the V3 to
V4 Migration Tool to do your migration.

v If some of the special characters were not transferred correctly, you must
use VAGen Import to migrate your code. See the following sections:
– “Chapter 20. Using VAGen Import to migrate VAGen 3.x non-GUI code

to Smalltalk” on page 189
– “Changing from OS/2 to Windows NT” on page 298

If you plan to use VAGen Import to migrate your code, you can run a similar
test using VAGen Import instead of the V3 to V4 Migration Tool to determine
whether you can skip the code page conversion step described in “Changing
from OS/2 to Windows NT” on page 298.

174 VisualAge Generator: Migration Guide

Chapter 18. Pre-migration checklist
1. Before you migrate, you should first read the following:
v “Chapter 17. General migration considerations for VAGen 3.x to 4.0 on

Smalltalk” on page 167
v “Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x

code and VAGen Templates parts on Smalltalk” on page 177
v VisualAge Generator 4.0 readme file

2. Load any features you need for migration.
3. Save a clean copy of your VisualAge Smalltalk image. This clean copy

should not contain any of your application code. Copy abt.icx to
abtclean.icx, and store the clean copy on your LAN so that all developers
have access to it. Saving copies of the hpt.ini, abt.ini, and mgr50.dat files is
also recommended.

4. Check with IBM support to see if there are any fixes available for the
VisualAge Generator 4.0 V3 to V4 Migration Tool.

5. Contact your local IBM representative to learn more about VisualAge
Generator service offerings that can help you with migration.

6. Be sure that the configuration maps and applications that you plan to
migrate have been versioned on VisualAge Generator 3.x.

© Copyright IBM Corp. 1997, 1999 175

176 VisualAge Generator: Migration Guide

Chapter 19. Using the V3 to V4 Migration Tool to migrate
VAGen 3.x code and VAGen Templates parts on Smalltalk

VisualAge Generator 4.0 on Smalltalk includes a V3 to V4 Migration Tool for
migrating 3.x code and VAGen Templates parts to 4.0. The V3 to V4 Migration
Tool allows you to migrate your 3.x applications and configuration maps to
VisualAge Generator 4.0 on Smalltalk, using options that apply across
migration operations. You can change the options as needed. For example,
you can set options that apply for one group of applications and configuration
maps, migrate that group, and then set different options for the next group to
be migrated.

Use these steps to start the V3 to V4 Migration Tool:
1. Start VisualAge Generator 4.0 on Smalltalk.
2. From the VisualAge Organizer window, select VAGen Parts->Parts

Browser. The VAGen Parts Browser window is displayed.
3. From the VAGen Parts Browser window, select Tools->Migration->V3 to

V4 Migration. The main V3 to V4 Migration Tool window, called V3 to V4
Migration, is displayed.

Figure 21 shows the V3 to V4 Migration window.

From the V3 to V4 Migration window, you can perform the following tasks:
v Set migration options
v Select and migrate configuration maps and applications
v View and work with the status log

Figure 21. V3 to V4 Migration window

© Copyright IBM Corp. 1997, 1999 177

v Reset the V3 to V4 Migration window

These tasks are described in the following sections.

Setting V3 to V4 Migration Tool options on Smalltalk

The V3 to V4 Migration Tool allows you to set migration options that can be
applied for all applications and configuration maps that you later select for
migration.

When you select applications and configuration maps to be migrated to
VisualAge Generator 4.0, the V3 to V4 Migration Tool uses some of the
options you set in the Migration Options window to display the applications
and configuration maps that are available for migration. Other options are
used during the migration for versioning and ownership assignment. You can
migrate one group of applications or configuration maps using one set of
options, and then change the options before migrating another group.

To access the Migration Options window from the V3 to V4 Migration
window, select the Options push button.

Figure 22 on page 179 shows the Migration Options window.

178 VisualAge Generator: Migration Guide

In the Migration Options window, you can set defaults that are applied to all
applications and configuration maps you later select for migration. The
Migration Options window is divided into groups of options. These option
groups are described in the following sections.

Selection Criteria options
The Selection Criteria options allow you to specify options that aid in
application and configuration map selection when you later select Select
Applications or Select Config Maps from the V3 to V4 Migration window.

Figure 22. Migration Options window

Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on

Smalltalk 179

Table 12. Selection criteria migration options

Option Migration processing

Specify name filter Allows you to use a naming convention to
select a group of applications or
configuration maps for migration. When
this box is checked, the Filter prompter
window is displayed each time you later
select the Select Applications and Select
Config Maps push buttons on the V3 to
V4 Migration window.

Select most recent application version With this box checked, when you later
select an application for migration, the
most recent version is automatically
selected for you.

Select with required maps With this box checked, when you later
select a configuration map for migration,
all the required configuration maps for
your selected configuration map are
automatically loaded into the V3 to V4
Migration Tool and your 4.0 image along
with your selected configuration map.
Note: If a configuration map has more
than one configuration expression,
VisualAge Generator 4.0 on Smalltalk uses
the expression that evaluates to true when
loading the configuration map. In this
case, only the required maps that
correspond to the true configuration
expression are migrated.

180 VisualAge Generator: Migration Guide

Table 12. Selection criteria migration options (continued)

Option Migration processing

Select with application prerequisites With this box checked, when you later
select an application for migration, all the
user-created prerequisite applications that
could contain VAGen parts are
automatically loaded into the V3 to V4
Migration Tool and your 4.0 image along
with your selected application. If more
than one version of a prerequisite
application is available, when you later
select an application for migration, you
will be prompted to select the version you
want.
Note: If an application has more than one
configuration expression, VisualAge
Generator 4.0 on Smalltalk uses the
expression that evaluates to true when
loading the application. In this case, only
the prerequisite applications that
correspond to the true configuration
expression are migrated.

Select most recent version of application
prerequisites

With this box checked, when you later
select an application for migration, the
most recent version of each prerequisite
for that application is automatically
loaded into the V3 to V4 Migration Tool
along with your selected application.

Library Management options
The Library Management options allow you to specify versioning and
releasing conventions for migrated configuration maps, applications, and
classes.

Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on

Smalltalk 181

Table 13. Library management migration options

Option Migration processing

Auto version and release All configuration maps, applications, and
classes are automatically versioned and
released during migration.

When you check this box, you can also
select Append suffix to existing version
name or Specify new version name.

If you do not check this option, all
editions of migrated configuration maps,
applications, and classes are left open, and
developers and owners must version and
release their own configuration maps,
applications, and classes after migration.
Also, if you do not check this box, you
cannot select either of the sub-options
under this option.

Append suffix to existing version name Adds a suffix to the existing version name.
In the text box to the right of this option,
you can specify the suffix to be appended.
Using a suffix can help in associating the
migrated version with the original version
and in determining which other versions
you still need to migrate. If you check this
box but do not specify a suffix to append,
the error message Text
required if selected is displayed.

Specify new version name Enables you to specify a new version
name to be assigned for all your migrated
configuration maps, applications, and
classes. If you check this box but do not
specify a version name, the error message
Text required
if selected is displayed.

Ownership options
The Ownership options allow you to specify whether the ownership
assignments for your current configuration maps, applications, and classes
will be preserved during migration or changed.

Note: Regardless of the ownership option you select, you can select the Auto
version and release option under Library Management.

182 VisualAge Generator: Migration Guide

Table 14. Ownership migration options

Option Migration processing

Maintain original ownership Allows you to maintain the existing
ownership structure for all migrated
configuration maps, applications, and
classes.

Change ownership to current user Assigns ownership for all migrated
configuration maps, applications, and
classes to the user who performs the
migrations.

After the migration process completes,
you can change the ownership back to the
original owner or any other owner.

Selecting and migrating applications and configuration maps

Follow these steps to migrate applications and configuration maps using the
V3 to V4 Migration Tool:

Note: You cannot use the V3 to V4 Migration Tool to migrate an open edition
of a 3.x application or configuration map. You must use VisualAge
Generator 3.x to version and release each application and configuration
map that you want to migrate to VisualAge Generator 4.0.

1. From VisualAge Generator 4.0, use these steps to import the applications
and configuration maps from your 3.x library:
a. From the VisualAge Organizer window, select Applications-

>Import/Export->Import Applications to import all the application
versions that you want to migrate.

b. From the System Transcript window, select Tools->Browse
Configuration Maps to open the Configuration Maps Browser. From
the Configuration Maps Browser window, select Names->Import to
import all the configuration map versions that you want to migrate.

2. Open the VAGen Parts Browser and then select Tools->Migration->V3 to
V4 Migration to start the V3 to V4 Migration Tool.

3. Select the Options push button to set migration preferences that will be
used during the migration process. (Some options can be changed again
before you select the Migrate push button.)

4. Display a list of applications or configuration maps available for migration
by selecting one of the following:
v Select the Select Applications push button if you want to migrate

applications.

Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on

Smalltalk 183

v Select the Select Config Maps push button if you want to migrate
configuration maps.

Note: You cannot select a mixture of configuration maps and individual
applications for migration at the same time. You can migrate a
group of applications or a group of configuration maps, but not
both together. When you select one of these buttons, the other
button is disabled until you select the Reset button. When you
select Reset, the list of selections currently in the V3 to V4
Migration window is deleted, and both Select Applications and
Select Config Maps are available for selection again.

5. If you selected the Specify name filter option on the Migration Options
window, the Filter prompter window is displayed. Enter a case-sensitive
prefix to be used in filtering the application list. For example, if you want
to see only applications that begin with Xyz, such as XyzPayApp and
XyzEmployeeApp, enter Xyz in this window. You can use the * (asterisk)
wildcard in specifying the search string. For example, use Xyz*Sample* to
find applications such as Xyz03SampleApp, XyzMMediaSampleApp, and
XyzPaySampleOpnsApp.

6. On the Selection Required window, select an application or configuration
map and a version to be migrated, and then select the >> arrow button to
add your selection to the Selected Versions column.
After you have selected a version for each application or configuration
map that you want to migrate, select OK.
For applications only, if you selected the Select most recent application
version option under the Selection Criteria section of the Migration
Options window, this window shows only a single-column list of
applications, because the versions have been selected for you. You can
select multiple applications for migration. When you are finished selecting
applications, select OK.

Note: The V3 to V4 Migration Tool loads the selected configuration maps
and applications into your image as part of the migration.
Therefore, only select configuration maps or applications that can be
loaded together.

7. A populated version of the V3 to V4 Migration window is displayed. It
lists the applications and configuration maps you selected for migration.
Before migrating, you can add more applications or configuration maps to
this list, using the above steps.
You can delete any application or configuration map from the list to be
migrated by selecting it in the Smalltalk Config Maps/Applications
column and then selecting Remove selected from the context menu for
that column. You cannot delete applications within a selected configuration
map.

184 VisualAge Generator: Migration Guide

8. When you are ready to migrate the listed applications and configuration
maps, select the Migrate push button. All applications and configuration
maps listed in the window are migrated. Flags are set in the Smalltalk
library (default name mgr50.dat) to indicate which applications and
configuration maps have been migrated. The current settings for the
Library Management and Ownership migration options are used for all of
the applications or configuration maps that are being migrated.
During migration, the V3 to V4 Migration window is refreshed with status
information in the Migration Status column. When all the applications and
configuration maps have been successfully migrated, the Migration Status
column shows a status of Migrated for each application and configuration
map. The status information is also written to the status log. If an
application or configuration map shows a status of Migration Error...check
status log, you can check the status log to see which step in the migration
process was the last to complete successfully for that application.

Working with the status log

The V3 to V4 Migration Tool stores a record of each step in the migration
process in a status log. To view the status log, from the V3 to V4 Migration
window, select the View Status Log push button.

Figure 23 on page 186 shows the Migration Status Log window.

Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on

Smalltalk 185

The status log is stored in the file mgstatus.log. This log is cumulative. The
information in this log is only deleted when you select File->Clear from the
menu in the Status Log window.

If you have hundreds of applications and configuration maps to migrate, the
status log can become quite large. At some point, you might want to clear the
status log of the information from previous migration operations before you
begin migrating the next group of applications and configuration maps.

Before clearing the status log, however, you might want to print it (by
selecting File->Print) or copy it to another file (by selecting File->Save as).
When you use Save as to save the status log to another file, if that other file
exists, a prompt appears asking if you want to overwrite the file or append to
it.

Figure 23. Migration Status Log window

186 VisualAge Generator: Migration Guide

To clear the status log, select File->Clear from the menu in the Status Log
window.

So that you do not have to search the entire, cumulative log to find
information of interest to you, several filtering options are available that allow
you to view selected portions of the status log:

All Select this menu choice to view the entire
status log contents.

Applications Select this menu choice to view only the
information about applications that have
been migrated.

Errors Select this menu choice to view only the
error messages in the log.

Information Select this menu choice to view only the
information messages in the log.

Warnings Select this menu choice to view only the
warning messages in the log.

Search for string Select this menu choice to search for a text
string in the status log. Enter your search
string in the dialog that is displayed after
you select this option. The search string is
case-sensitive.

For more information about the error, information, and warning messages
displayed in the status log, see the VisualAge Generator Messages and Problem
Determination Guide.

Resetting the V3 to V4 Migration window

The V3 to V4 Migration Tool can keep information in the V3 to V4 Migration
window on all completed migration operations. As each new migration is
started, the V3 to V4 Migration Tool automatically appends information to the
existing contents of the window.

There might be times, however, when you do not want information on
already migrated code to remain in the V3 to V4 Migration window while
you are migrating the next group of applications and configuration maps. For
example, you might have migrated several groups of applications and
configuration maps that share common code among them but that do not
contain any code shared by your remaining unmigrated applications and
configuration maps. In this case, the information on past migrations is not
needed for the next migration operation. To remove the unneeded
information, you can reset the V3 to V4 Migration window before migrating
the next group.

Chapter 19. Using the V3 to V4 Migration Tool to migrate VAGen 3.x code and VAGen Templates parts on

Smalltalk 187

When you reset the V3 to V4 Migration window, all information about past
migration operations is deleted from the window. To reset the window, select
the Reset push button. When you select Reset, the information on past
migrations is still stored in the migration status log, mgstatus.log, and both
the Select Config Maps and Select Applications buttons are enabled again.

Resetting Migration Status Information

The V3 to V4 Migration Tool sets flags in the Smalltalk library (default name
mgr50.dat) to record the migration status of configuration maps and
application. There might be times when you want to reset this status. For
example, after completing a pilot migration, you might want to reset the
migration status before doing the final migration. To reset the status, from the
V3 to V4 Migration window, select the configuration maps and applications
that you want to reset. Then press mouse button 2 and select Mark Not
Migrated. The flags in the Smalltalk library (default name mgr50.dat) are reset
to indicate that the selected configuration maps and applications have not
been migrated.

Note: Selecting Mark Not Migrated does not delete the migrated parts in the
Smalltalk library (default name mgr50.dat).

188 VisualAge Generator: Migration Guide

Chapter 20. Using VAGen Import to migrate VAGen 3.x
non-GUI code to Smalltalk

When you use VAGen Import instead of the V3 to V4 Migration Tool to
migrate 3.x code to VisualAge Generator 4.0, the following restrictions apply:
v You can only migrate non-GUI code using VAGen Import.
v All configuration map information is lost. You will need to recreate

configuration maps in VisualAge Generator 4.0.
v Existing ownership information is lost. Ownership is set to the userid of

whichever user creates the applications and imports the parts.
v The steps in this section are for applications. If you used subapplications,

you will need to create one .esf file for each subapplication that you want
to migrate and then manually create each subapplication in VisualAge
Generator 4.0.

v Do not forget to migrate prerequisite applications and subapplications that
might not be loaded into your VisualAge Generator 3.x image based on the
configuration expressions used for the parent application.

To migrate VisualAge Generator 3.x non-GUI code to VisualAge Generator 4.0
on the Smalltalk platform, use these steps:

1. Start VisualAge Generator 3.x on Smalltalk.
2. Export your existing applications to external source format files. You

must use your existing VisualAge Generator 3.x product to create these
.esf files.
From the VisualAge Organizer window in VisualAge Generator 3.x, select
Applications->Import/Export->VAGen Export to create the external
source format files. Export one external source format file for each
existing ENVY application.

Notes:

a. If you are migrating from VisualAge Generator 3.x on an OS/2
development platform to VisualAge Generator 4.0 on a Windows NT
development platform, see section “Migrating from OS/2 to Windows
NT” on page 174 for information on code page conversions.

b. You should not modify the export files.
3. Start VisualAge Generator 4.0 on Smalltalk.
4. In VisualAge Generator 4.0, create a VisualAge Smalltalk application using

these steps:
a. From the VisualAge Organizer, select Applications->New.

© Copyright IBM Corp. 1997, 1999 189

b. In the New Application window, enter a name for the application and
select OK. You will use this new application to receive the contents of
one of the external source format files that you want to import into
VisualAge Generator 4.0.

Create one ENVY application for each .esf file that you created in step 2.
For more information about creating applications, see the VisualAge
Generator User’s Guide.

5. Using VisualAge Generator 4.0, from the VisualAge Organizer window,
select VAGen Parts->Parts Browser to open the VAGen Parts Browser.

6. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import.

7. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select the Open
button.

8. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of your application. When
there are no parts with errors, proceed to the next step.

9. In the VAGen Import window, specify the name of your application in the
Target application field. Move all parts to be imported from the Available
parts list to the Selected parts list. Then select the Import push button. The
selected parts are imported into the application you specified.

10. In the VAGen Import window, select the New File push button and then
repeat steps 7, 8, and 9 for each external source format file you need to
import. When you have finished importing your .esf files to VisualAge
Generator 4.0, select the Cancel push button in the VAGen Import
window to return to the VAGen Parts Browser window.

11. Version and release all classes and applications you have imported.
12. Save your VisualAge Generator 4.0 image.
13. See “Chapter 21. Completing the ENVY setup on Smalltalk” on page 191

and “Chapter 22. Completing your migration on Smalltalk” on page 199
for information about additional steps you might need to take.

190 VisualAge Generator: Migration Guide

Chapter 21. Completing the ENVY setup on Smalltalk

The following sections describe specific tasks you might need to perform after
running the V3 to V4 Migration Tool. These tasks include:
v “Versioning and releasing a view or a VAGen part class”
v “Versioning an application” on page 192
v “Creating a configuration map” on page 193
v “Adding a required map to a configuration map” on page 194
v “Versioning a configuration map” on page 195
v “Changing the manager of a configuration map” on page 195
v “Assigning ownership of a VAGen part class” on page 196
v “Adding group members” on page 196
v “Changing the ownership of a VAGen part class” on page 197
v “Changing the manager of an application” on page 197

Versioning and releasing a view or a VAGen part class

After migration, you should version your views and VAGen part classes to
provide a base line that reflects the level of code you migrated to VisualAge
Generator 4.0. If you selected the Auto version and release check box on the
V3 to V4 Migration Tool’s Migration Options window, all the VAGen part
classes were automatically versioned and released for you during the
migration process. If you did not migrate with this option, however, you now
need to version and release the classes.

The steps below describe how to version and release views and VAGen part
classes for an application.

Note: You can version and release a view or VAGen part class in two separate
steps as described below or in a single step by selecting
Version/Release Owned. Multiple views and VAGen part classes
within a single application can be versioned or released at the same
time.

Action Description

From the VisualAge Organizer window:

v In the Applications pane, select an application.

v In the Parts pane, select all the VAGen part classes. These
are the classes that start with VAGen (for example,
VAGenRecords).

Note: In the Parts pane, VAGen part
classes that need to be versioned appear
in the format:

>VAGenRecords (06/03/99 10:15:30 AM)

© Copyright IBM Corp. 1997, 1999 191

Action Description

In the Parts pane, press mouse button 2 and select Version →
and then one of the following:

v Name Each to specify a different version name for each of
the classes you are versioning.

v One Name to specify the same version name for all of the
classes you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Use Defaults to use the ENVY-determined defaults for
each of the classes you are versioning. The default might
be different for each class.

The Parts pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
VAGen part class.

Notes:

1. In the Parts pane, VAGen part classes
that have been versioned but not
released appear in the format:

>VAGenRecords
1.0

2. You must be the developer of a class
to version the class.

In the Parts pane, press mouse button 2 and select Release →
Current Version.

The Parts pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
VAGen part class.

Notes:

1. In the Parts pane, VAGen part classes
that have been versioned and
released appear in the format:

VAGenRecords
1.0

2. You must be the owner of a class to
release the class.

Versioning an application

After migration, you should version your applications to provide a base line
that reflects the level of code you migrated to VisualAge Generator 4.0. If you
selected the Auto version and release check box on the V3 to V4 Migration
Tool’s Migration Options window, all the applications were automatically
versioned and released for you during the migration process. If you did not
migrate with this option, however, you now need to version and release the
applications.

The steps below describe how to version and release an application.

Action Description

From the VisualAge Organizer window, in the Applications
pane, select one or more applications to be versioned.

Note: In the Applications pane,
applications that need to be versioned
appear in the format:

TrbCommonDataApp (06/03/97 10:15:30 AM)

192 VisualAge Generator: Migration Guide

Action Description

In the Applications pane, press mouse button 2 and select
Version → and then one of the following:

v Name Each to specify a different version name for each of
the applications you are versioning.

v One Name to specify the same version name for all of the
applications you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Use Defaults to use the ENVY-determined defaults for
each of the applications you are versioning. The default
might be different for each application.

The Applications pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
application.

Notes:

1. In the Applications pane,
applications that have been versioned
but not released appear in the format:

TrbCommonDataApp 1.0

2. You must be the manager of an
application to version the application.

Creating a configuration map

A configuration map allows you to define a group of application editions that
should all be loaded together into your image. For example, you might have a
configuration map that defines the application versions that are currently in
your production system.

If you used the V3 to V4 Migration Tool to migrate your 3.x configuration
maps to VisualAge Generator 4.0, all your configuration maps were preserved
for you during migration. The relationships between configuration maps (such
as required maps) were also preserved. However, you might want to
reorganize some of your code after migration to VisualAge Generator 4.0

This section describes how to create a configuration map, release applications
into the configuration map, and specify any required maps for the
configuration map.

Action Description

From the VisualAge Organizer window, select Tools and then
Configuration Maps.

The Configuration Maps Browser is
displayed.

Select Names and then Create. An Information Required window is
displayed prompting you for the name
of the configuration map.

Type the name of the configuration map and select the OK
push button.

The Configuration Maps Browser is
displayed, with the name of the new
configuration map included in the list.
The new configuration map is
highlighted.

In the Description pane in the lower right corner, type a
description of the configuration map.

Chapter 21. Completing the ENVY setup on Smalltalk 193

Action Description

In the Applications pane, press mouse button 2 and select
Add.

A Selection Required window is
displayed listing the names of existing
applications.

In the Selection Required window:

v In the Names pane, select an application to add to the
configuration map.

v In the Editions pane, select the edition of the application.

v Select the >> push button to add the application edition to
the Selected Editions pane.

Repeat this process until all the needed applications are
included in the Selected Editions pane.

Select the OK push button.

The Configuration Maps Browser is
displayed, with the applications listed in
the Applications pane.
Note: You must be the manager of a
configuration map to add applications to
the configuration map.

Adding a required map to a configuration map
You can define a hierarchy of configuration maps by specifying required
maps. For example, in the configuration map for a subsystem, you might
want to specify the configuration map for common code as a required map.

Action Description

From the Configuration Maps Browser, in the Config.
Expressions pane, press mouse button 2 and then select Add.

An Information Required window is
displayed prompting you to specify an
expression.
Note: You must be the manager of a
configuration map to add a configuration
expression.

Select the OK push button to accept the default value of true
for the configuration expression.

The Configuration Maps Browser is
displayed, with true listed in the Config.
Expressions pane.

Specifying true means that the
configuration maps listed in the
Required Maps pane will always be
loaded before loading the applications
for this configuration map.

From the Required Maps pane, press mouse button 2, and
then select Add → As First.

A Selection Required window is
displayed prompting you for a
configuration map and its edition.
Note: You must be the manager of a
configuration map to add a required
map.

194 VisualAge Generator: Migration Guide

Action Description

Select the prerequisite map and its edition and then select the
OK push button.

The Configuration Maps Browser is
displayed, with the configuration map
listed in the Required Maps pane.

Versioning a configuration map
After migration, you should version your configuration maps to provide a
base line that reflects the level of code you migrated to VisualAge Generator
4.0. If you selected the Auto version and release check box on the V3 to V4
Migration Tool’s Migration Options window, all the configuration maps were
automatically versioned for you during the migration process. If you did not
migrate with this option, however, you now need to version the configuration
maps.

The steps below describe how to version a configuration map.

Action Description

From the Configuration Maps Browser, select the following:

v In the Names pane, select the name of the configuration
map.

v In the Editions and Versions pane, select the edition you
want to version.

v In the Editions and Versions pane, press mouse button 2
and then select Version.

An Information Required window is
displayed prompting you to specify a
version number.
Note: You must be the manager of a
configuration map to version the
configuration map.

In the Information Required window, select the OK push
button to use the default version of 1.0.

The Configuration Maps Browser is
displayed with the version showing in
the Editions and Versions pane.

Changing the manager of a configuration map
Each configuration map can have a different manager. Follow these steps to
change the manager of a configuration map.

Action Description

From the Configuration Maps Browser, in the Editions and
Versions pane, press mouse button 2 and then select Change
Manager.

A Selection Required window is
displayed showing the current group
members for the configuration map. The
current manager is highlighted.
Note: You must be the manager of a
configuration map to change the
manager of that configuration map.

Select the new manager and select the OK push button. The Configuration Maps Browser is
displayed.

Chapter 21. Completing the ENVY setup on Smalltalk 195

Testing a configuration map
You need to test that any new configuration maps you create will load
successfully. To do this, you can unload the applications and then reload them
using the configuration maps as described below. Alternatively, test the
configuration maps by trying to load them into a clean image.

Action Description

From the VisualAge Organizer window, select all the
applications you created.

Select Applications and then Unload.

The VisualAge Organizer window is
refreshed and no longer shows the
applications you created.

From the Configuration Maps Browser, select a configuration
map and then select the current version.

From the Editions and Versions pane, press mouse button 2
and then select Load With Required Maps (or Load if there
are no required maps for this configuration map).

The applications in the configuration
map are loaded and now appear in the
VisualAge Organizer window.

Check the System Transcript window for any error messages.

Assigning ownership of a VAGen part class

Each VAGen part class within an application can have a different owner.
Although developers can version a VAGen part class, the class owner controls
the release of VAGen part classes into the application.

The following sections describe how to add members to the authorized group
for an application and how to change the owner of a VAGen part class
accessed by that application group.

Adding group members
To change the owner of the class, the new owner must be a member of the
group. Group members must be defined for one application at a time.

Action Description

From the VisualAge Organizer window, select the application
for which group members are to be added.

Select Applications and then Group Members.

A window showing all defined users and
the current group members for the
application is displayed. The current
manager is indicated by a >.
Note: You must be the manager of an
application to add group members for
that application.

From the Users pane, select a user and select the >> push
button to move the user to the Group Members pane.

Repeat this step to add any additional users to the group.

196 VisualAge Generator: Migration Guide

Action Description

When all new users have been moved to the Group
Members pane, select the OK push button.

The VisualAge Organizer window is
displayed.

Changing the ownership of a VAGen part class
The same owner can be assigned for multiple classes within a single
application at the same time. During migration, it is easiest to assign the same
owner to all the VAGen part classes within an application. The owner of these
classes might also (most likely) be the manager of the containing application.

During the V3 to V4 Migration Tool processing, ownership of all the classes
was automatically assigned for you. However, you can use the steps below to
change the ownership of any VAGen part class.

Action Description

From the VisualAge Organizer window:

v In the Applications pane, select the application for which
VAGen part class owners are to be assigned.

v In the Parts pane, select the VAGen part classes for which
the same owner is to be assigned.

Select Parts and then Owner → Change Owner.

A Selection Required window is
displayed showing the current group
members for the application. The current
owner is highlighted.
Note: You must be the manager of an
application or the owner of a class to
change the owner of that VAGen part
class.

Select the new owner and select the OK push button. The VisualAge Organizer window is
displayed.

Changing the manager of an application

Each application can have a different manager. The manager of an application
can create an edition of the application and can version the application.

To change the manager of an application, the new manager must be a
member of the group for that application. See “Adding group members” on
page 196 for information on adding users to a group.

Action Description

From the VisualAge Organizer window, in the Applications
pane, select the application for which the manager is to be
changed.

Select Applications and then Manager → Change Manager.

A Selection Required window is
displayed showing the current group
members for the application. The current
manager is highlighted.
Note: You must be the manager of an
application to change the manager of
that application.

Chapter 21. Completing the ENVY setup on Smalltalk 197

Action Description

Select the new manager and select the OK push button. The VisualAge Organizer window is
displayed.

198 VisualAge Generator: Migration Guide

Chapter 22. Completing your migration on Smalltalk

The following sections describe specific tasks you might need to perform to
complete your migration to VisualAge Generator 4.0. These tasks include:
v “Defining control information”
v “Generating programs”
v “Importing work-in-progress”
v “Recreating ITF resource association information” on page 200

Defining control information

Control information that is needed for test and generation must be stored in
ENVY applications. This control information consists of:
v Generation options
v Linkage table
v Resource associations
v Bind control information
v Link edit information

When you use the V3 to V4 Migration Tool to migrate your 3.x applications,
you can migrate control information just as you would migrate any other
ENVY applications.

Generating programs

After you finish migrating a group of Smalltalk applications to VisualAge
Generator 4.0, you might want to generate the programs to help ensure that
you have migrated the correct version of your code.

If you are migrating from VisualAge Generator 3.0, any programs for the C++
target environment must be regenerated.

Importing work-in-progress

Suppose you have already migrated and versioned a development system.
Then, three weeks after migration, you discover 50 4GL parts have been
changed on the VisualAge Generator 3.x development system. The 4GL parts
are contained in several applications. You can use Smalltalk export / import
and the V3 to V4 Migration Tool to migrate the new versions of the changed
applications. Be sure to set your migration options to the same settings as in
your original migration. The V3 to V4 Migration Tool will do the following:

© Copyright IBM Corp. 1997, 1999 199

v Load the affected applications.
v Create new editions of all 4GL parts from the corresponding parts in the

modified applications.

The advantage of using the V3 to V4 Migration Tool is that you only need to
identify the applications that must be re-migrated. Another advantage is that
migration of this version of the applications is logged in the status log,
mgstatus.log. The disadvantage is that all the 4GL parts in the changed
applications are re-migrated and result in new editions in the Smalltalk
library.

Alternatively, you can export an external source format file that contains only
the 4GL parts that have been changed. You can then use VAGen Import to
migrate the parts. See “Importing work-in-progress” on page 341 for
information on how to use VAGen Import to migrate your work-in-progress.
Using VAGen Import requires you to load the affected applications into your
image. The advantage of using VAGen Import is that you only need to
migrate the 4GL parts that were changed, rather than all the 4GL parts in the
affected applications.

Recreating ITF resource association information

If you use serial, indexed or relative files in the Interactive Test Facility, you
also use resource association information to point to the files. ITF resource
association information is not stored as a resource association part. You need
to recreate the ITF resource association information for VisualAge Generator
4.0 on Smalltalk.

Converting an RTABLE to a Linkage Table

If you have been using the VisualAge Generator middleware RTABLE for
communications routing, the RTABLE entries must be moved from the
RTABLE to a linkage table. The following example shows a mapping of
RTABLE entries to linkage table entries:

RTABLE
app1 - - - - - - lu2 LU2C - 1
app2 - - - - - - lu2 LU2C - 1
app3 - - - - - - lu2 LU2C - 1
app4 - - - - - - lu2 LU2B - 1
$ANY - - - - - - lu2 LU2K - 1

LINKAGE TABLE
:calllink applname=app1 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app2 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app3 linktype=remote remotecomtype=LU2

200 VisualAge Generator: Migration Guide

serverid=LU2C.
:calllink applname=app4 linktype=remote remotecomtype=LU2
serverid=LU2B.
:calllink applname=* linktype=remote remotecomtype=LU2
serverid=LU2K.

Chapter 22. Completing your migration on Smalltalk 201

202 VisualAge Generator: Migration Guide

Part 4. Migrating from VAGen 2.x or Cross System
Product to VAGen 4.0 on Smalltalk

Chapter 23. Comparing MSLs and ENVY
on VAGen 4.0 on Smalltalk 207
ENVY characteristics 207
Comparison of MSLs and ENVY 209

Member types 209
Storing members 210
Storing control information 210
MSL concatenation 211
Functional organization 212
Member associations 212

Chapter 24. General migration
considerations for VAGen 2.x and Cross
System Product to Smalltalk 215
Migration paths 215
Automatic conversions during 4.0 migration 216
Resolving duplicate member names. . . . 217
Establishing naming conventions. 217
Organizing your code for ENVY 219
Assigning ownership 220
Using subapplications 221
Storing control information 223

Multiple control applications 223
Single control application 224
Generation options 225

Using configuration maps 225
Migrating GUIs 226

Conversion of GUIs to VisualAge
Generator 4.0 228

Tasks that take place during GUI
conversion 229
Obsolete parts maintained for
compatibility 232
Tasks you must do after migrating
GUIs 234

Dual maintenance. 235
Migrating from Cross System Product . . . 236
Migrating from OS/2 to Windows NT . . . 237
Using the migration log file 237

Chapter 25. Pre-migration checklist . . . 239

Chapter 26. The MSL Migration
Assistance Tool on Smalltalk 241
Overview of using the MSL Migration
Assistance Tool 242

Building MSL directories 243
Selecting MSLs - using the MSL Library
Selection window 244
Selecting parts for a part list - using the
Part List Selection Criteria View window . 245
Selecting parts to move to ENVY - using
the MSL Migration Part List window . . 246

Special columns in the MSL Migration
Part List window 248
Other MSL Migration Part List
functions. 250

Working in the sandbox - using the VG
Part Prerequisites View window 250

Identifying common code 250
Identifying missing parts 251
Other sandbox functions 251

Resetting the MSL Migration Assistance Tool
sandbox 252

Chapter 27. Migrating production and
work-in-progress MSLs to VAGen 4.0 on
Smalltalk 255
Production MSLs 256

Techniques for moving parts to the
sandbox 257

All data items, records, and tables are
used 257
All records and tables are used . . . 258
Some records and tables might not be
used 259
Considerations for the migration
techniques 259

Work-in-progress MSLs 261
Using VAGen Import 263
Using the MSL Migration Assistance Tool 264

Chapter 28. VAGen on Smalltalk case
studies based on various MSL structures . 265

© Copyright IBM Corp. 1997, 1999 203

Understanding the diagrams and
terminology. 265

MSL structure diagrams. 265
Advance command in VisualAge
Generator 266

Multiple subsystems with no duplicates . . 267
Recommendations 267

Multiple subsystems with controlled
duplicates 269

Recommendations 269
Separate production MSLs for each
developer 272

Recommendations 273
Creating a core common set of
applications 273
Creating stand-alone subsystems. . . 275

MSLs that contain unintended duplicates 277
Recommendations 278

MSLs containing code from VisualAge
Generator Templates or BW*Wizard. . . . 278

Recommendations 280
Special considerations for VisualAge
Generator Templates 282

Complete set of MSLs for production and
deltas for test 282

Recommendations 284
Complete sets of MSLs for test and
production 285

Recommendations 287
MSLs from marketing or other
demonstrations 289

Recommendations 290
Using a single ENVY application . . 290
Using multiple ENVY applications . . 291

Chapter 29. Running the MSL Migration
Assistance Tool on Smalltalk 293
Starting VisualAge Generator 293
Creating users and setting the current user 294
Loading a feature 295
Collecting your source code 296

From Cross System Product 296
From VisualAge Generator with
TeamConnection and no MSLs 296
From VisualAge Generator MSLs . . . 297

Handling code page changes 297
Using the HPTRULES.NLS file 297
Changing from OS/2 to Windows NT 298

Starting the MSL Migration Assistance Tool 300
Building MSL directories 300

Resetting the sandbox from ENVY 302
Selecting your MSLs 304
Selecting and migrating VAGen parts . . . 305
Creating a new application. 308
Moving a VAGen part between applications 308
Controlling the creation of ApplicationNodes 310
Renaming an application 311
Collapsing an application 311
Handling Duplicates 312

Controlled Duplicates 312
Unintended Duplicates 313
Duplicates for business logic 315

Finding the application in which a part is
located 316
Listing missing (not found) parts 317
Handling missing (not found) parts 318
Checking relationships among applications 319

Determining which programs are
referenced 319
Determining the parts that are referenced 320
Checking consistency of applications . . 321

Updating the list of required applications 321
Changing the list of required applications 322
Normalizing the list of required
applications 322

Deleting an ApplicationNode 323
Deleting an application 324

Deleting one application 324
Deleting all applications 324

Committing to ENVY 325

Chapter 30. Using VAGen Import to
migrate VAGen 2.x and Cross System
Product code to Smalltalk 329

Chapter 31. Completing the ENVY setup
on Smalltalk 331
Versioning and releasing a view or a VAGen
part class 331
Versioning an application 332
Creating a configuration map 333

Adding a required map to a configuration
map 334
Versioning a configuration map 335
Changing the manager of a configuration
map 335
Testing a configuration map 335

Assigning ownership of a VAGen part class 336
Adding group members 336

204 VisualAge Generator: Migration Guide

Changing the ownership of a VAGen part
class 336

Changing the manager of an application . . 337

Chapter 32. Completing your migration on
Smalltalk 339
Defining control information 339
Generating programs and packaging views 340
Importing work-in-progress 341
Migrating VSAM files 343
Converting an RTABLE to a Linkage Table 344

Chapter 33. Hints and tips on Smalltalk 345
System Transcript Window. 345
VisualAge Organizer window. 345

VAGen Parts Browser window 345
Refreshing the MSL Migration Assistance
Tool 346

Part 4. Migrating from VAGen 2.x or Cross System Product to VAGen 4.0 on Smalltalk 205

206 VisualAge Generator: Migration Guide

Chapter 23. Comparing MSLs and ENVY on VAGen 4.0 on
Smalltalk

In both Cross System Product and releases of VisualAge Generator prior to
3.0, code was written in small pieces called members. Members were stored in
Member Specification Libraries (MSLs). In VisualAge Generator 3.0 and later,
the code must be stored in ENVY, a library management system.

If you plan to use code from Cross System Product and previous releases of
VisualAge Generator, you must migrate the code from the MSLs to ENVY.
This chapter explains the following:
v “ENVY characteristics”
v “Comparison of MSLs and ENVY” on page 209

ENVY characteristics

To provide interoperability with VisualAge Smalltalk, VisualAge Generator 4.0
shares the VisualAge Smalltalk library management system. This library
management system is called ENVY.

There are new terms that are important for the ENVY environment. The
following terms are new for VisualAge Generator 4.0:

New Term Relationship to MSL Concepts

VAGen part class Each 4GL member type (all member types
except GUIs) becomes a VAGen part class. A
VAGen part class is an extension of a class in
Smalltalk. The VAGen part classes appear in
the Parts pane of the VisualAge Organizer
window. The VAGen part classes created for
the member types are prefixed by VAGen (for
example, VAGenRecords).

There are five additional VAGen part classes
that are used to contain control information
that was stored outside the MSL in previous
releases of VisualAge Generator. These VAGen
part classes are for linkage table, resource
association, generation options, bind control,
and linkage editor information.

VAGen part Each 4GL member is now stored as a VAGen
part. A VAGen part is associated with a

© Copyright IBM Corp. 1997, 1999 207

Smalltalk method in an extension of its
VAGen part class. The VAGen parts appear in
the VAGen Parts pane of the VisualAge
Organizer window and in the VAGen Parts
Browser window.

View Each GUI is now stored as a view, which is a
visual part. A view is a class in Smalltalk. The
views appear in the Parts pane of the
VisualAge Organizer window. Views do not
appear on the VAGen Parts Browser in ENVY.

Program The application member type has been
changed to program to distinguish it from an
ENVY application.

ENVY Application An ENVY application is a group of classes
and methods that are closely related in
function. An ENVY application can include
VAGen part classes and VAGen parts. An
ENVY application is also called an
application.

Configuration Map A configuration map is a group of application
editions that should be loaded together into a
developer’s image.

The following ENVY concepts are new for VisualAge Generator 3.0 and later:

Concept Description

Functional Organization ENVY enables you to group parts into
applications. These applications can (and
should) be organized along functional lines.

Ownership Each configuration map and each application
has an assigned manager who is responsible
for the integrity of the code that is placed in
the configuration map or application.

Each part (class) or VAGen part class has an
assigned owner who is responsible for the
integrity of the code that is placed in the class.
For 4GL parts, this means that the owner of
the class VAGenRecords within application XYZ
is responsible for the integrity of all record
definitions stored as part of application XYZ.
Because each GUI becomes a separate view
(visual part), each GUI within application XYZ

208 VisualAge Generator: Migration Guide

can have a different owner. 4GL parts used
within the GUI become VAGen parts.

Note: In Cross System Product and VisualAge
Generator 2.x or earlier, the closest
concept to ownership was
write-protecting the staging, test, or
production MSLs and only giving a
team leader the authority to advance
members into these MSLs.

Edition Each change that is made to a 4GL VAGen
part results in a new edition of the VAGen
part being stored in the ENVY library
manager. Editions of parts, applications, and
configuration maps are also stored in the
ENVY library manager.

Version Editions can be frozen to prevent further
changes to that level of code. The frozen
edition is called a version. After a part,
application, or configuration map is versioned,
the only way to make changes is to open a
new edition.

Image An image is the developer’s current view of
the ENVY library manager. It contains the
version or edition of the configuration maps,
applications, and parts that the developer
wants to work on. Only one copy of a VAGen
part can be loaded into the image at one time.

Comparison of MSLs and ENVY

This section describes how concepts you are familiar with for MSLs relate to
concepts in the ENVY library manager.

Member types
In Cross System Product and releases of VisualAge Generator prior to 3.0,
there was one member type for each type of code that could be written.

With VisualAge Generator 3.0 or later, each 4GL member type is a VAGen
part class that is prefixed with VAGen (for example, VAGenRecords). For GUIs,
there is no corresponding VAGen part class because each GUI becomes a
separate class.

Table 20 on page 361 shows the correspondence between member types and
VAGen part classes.

Chapter 23. Comparing MSLs and ENVY on VAGen 4.0 on Smalltalk 209

Storing members
In releases of VisualAge Generator prior to 3.0, an MSL was an OS/2
directory and each member was a file within the directory. In Cross System
Product, an MSL was a VSAM file and each member was stored as records
within the file.

With VisualAge Generator 3.0 or later, all information is stored in the ENVY
library manager. Each 4GL member is a VAGen part and is associated with a
Smalltalk method. Each GUI is a view (visual part) and is a Smalltalk class.

Storing control information
For Cross System Product and releases of VisualAge Generator prior to 3.0,
most control information related to test and generation was stored outside the
MSL. This control information included:
v Generation options that indicate how an application is to be generated. For

example, generation options control whether working storage records are to
be initialized, what high-level qualifier on the host is to be used for
preparation, and what linkage table is to be used.
For Cross System Product, only COBOL generation used generation options
and these were stored in separate files outside the MSL. For releases of
VisualAge Generator prior to 3.0, COBOL generation options were stored in
separate files.

v Linkage table that indicates how a CALL, DXFR, or XFER is to be
implemented. For the CICS target environment, the linkage table is also
used to indicate whether a VSAM or transient data queue is to be accessed
locally or remotely. For example, the linkage table might specify that a
CALL to application XYZ in the MVS CICS target environment is to be
implemented as a remote call passing data in the CICS COMMAREA.
For Cross System Product prior to 4.1, there was no linkage table. For Cross
System Product 4.1 and releases of VisualAge Generator prior to 3.0, the
linkage table was in a separate file.

v Resource association file that indicates for a specific file how it is to be
implemented in a specific target environment. For example, a serial file in
the MVS CICS target environment might be implemented as a VSAM file,
as a transient data queue, as a temporary storage queue, or as a CICS spool
file.
For Cross System Product, resource association information was stored in
the MSL. For releases of VisualAge Generator prior to 3.0, resource
association information was stored in a resource association file outside the
MSL.

v Bind control commands that provide information needed for binding the
DB2 application plan on an MVS system.
For Cross System Product/AE, bind control information was not used.
Cross System Product COBOL generation used bind control commands and

210 VisualAge Generator: Migration Guide

these were stored in separate files outside the MSL. For releases of
VisualAge Generator prior to 3.0, bind control commands were stored in
separate files.

v Linkage editor control statements that provide linkage editor information
for MVS, VSE, and VM systems.
For Cross System Product/AE, linkage editor control statements were not
used. Cross System Product COBOL generation used linkage editor control
statements and these were stored in separate files outside the MSL. For
releases of VisualAge Generator prior to 3.0, linkage editor control
statements were stored in separate files.

With VisualAge Generator 3.0 and later, generation options files, linkage
tables, resource association files, bind control commands, and linkage editor
control statement files are methods within VAGen part classes in ENVY. Thus
all the data required for test and generation is contained in a single library
management system.

Table 15 shows the correspondence between the types of control information
and VAGen part classes.

Table 15. Control Information and VAGen Part Classes

Control Information VAGen Part Class

Generation Options VAGenOptions

Linkage Table VAGenLinkages

Resource Associations VAGenResources

Bind Control Commands VAGenBindControls

Linkage Editor Control Statements VAGenLinkEdits

MSL concatenation
In Cross System Product and VisualAge Generator 2.x and earlier, MSLs could
be concatenated. Specifying the MSL concatenation sequence was the way in
which you specified where to look for the members needed by your
applications. When MSLs were concatenated, for test and generation, only the
first found member with a given name was used. For viewing, members from
MSLs other than where the first found member was located could be
referenced. If changes were made to a member in the MSL concatenation
sequence, the changed member was stored in the read/write MSL (first MSL
in the concatenation sequence).

With VisualAge Generator 4.0, there is no concept similar to the first found
member in an MSL concatenation. All editions are available in the ENVY
library manager. However, only one edition of a part can be loaded into your

Chapter 23. Comparing MSLs and ENVY on VAGen 4.0 on Smalltalk 211

image at a time. Browsers are available to compare editions within the ENVY
library manager before loading them into your image to determine which one
is the required level of code.

You can use configuration maps to group the code for a particular level. For
example, you might have a configuration map for production that indicates
the version of each application that is in production. Specifying required maps
for a configuration map is similar to specifying the MSL concatenation
sequence. The required maps provide a way for you to ensure that all the
parts needed to run a particular group of programs are loaded into your
image together. Therefore, required maps resolve the problem of first found
parts. For more information, see the following:
v “Using configuration maps” on page 225
v “Creating a configuration map” on page 333
v “Adding a required map to a configuration map” on page 334

Functional organization
In Cross System Product and VisualAge Generator 2.x and earlier, members
were grouped together into MSLs. Generally, an MSL contained all the
members for a particular subsystem. Because the MSL was the only method
for grouping members by function, the functions tended to be quite large. In
Cross System Product the number of MSLs in a concatenation sequence was
limited to 6. This also contributed to having a large number of members in
each MSL.

With VisualAge Generator 4.0, the configuration map and the ENVY
application provide a two-level capability for grouping parts. The
configuration map is the higher level of organization and more closely
resembles an MSL in terms of the number of parts. ENVY applications enable
you to organize your parts into smaller groups than was reasonable to do
with MSLs. This provides more capabilities in terms of controlling access to
the parts, finding a part, and limiting the number of parts displayed in the
VAGen Parts Browser window.

Member associations
For Cross System Product and VisualAge Generator 2.x and earlier, members
could have associates — other members that were referenced within the
member. With VisualAge Generator 4.0, the same associations between 4GL
VAGen parts still exist. For example:

Member Type Member Types of Possible Associates

Data Item None

Process None

Statement Group None

212 VisualAge Generator: Migration Guide

Record Any global data items

Table Any global data items

PSB Records for the segment records, any global
data items used by those records, and any
item named as a secondary index field in the
PSB

Map Any other maps in the same map group, any
statement group or table used as an edit
routine, and any global data item in the table

Map Group Any maps in the map group and their
associates

Application Map groups, maps, records, tables, PSB,
processes, statement groups, and their
associates. Any global data item referenced
directly or indirectly was included. For
example, a data item used as a called
parameter was included as an associate of the
application. Only maps that were actually
used by the application were included in the
associates.

Notes:

1. References to processes and statement groups in the above list represent
the MSL terminology. These VAGen part types have been merged into the
new VAGen function part type.

2. References to global data items in the above list represent the MSL
terminology. Global data items have been renamed to shared data items in
VisualAge Generator 4.0.

3. References to applications in the above list represent the MSL terminology.
Applications have been renamed to programs in VisualAge Generator 3.0
and later.

For a specific member, for example application XYZ, the only associations that
could be detected were those that existed in the current MSL concatenation
sequence, using the first found members.

For VisualAge Generator 4.0, the only associations that can be detected are the
ones that exist within the current image.

For VisualAge Generator 2.x and earlier, the associates of GUIs were records,
tables, processes, statement groups, or other embedded GUIs, and their
associates. An external GUI and its associates were not included.

With VisualAge Generator 4.0, for a view, the following are associates:

Chapter 23. Comparing MSLs and ENVY on VAGen 4.0 on Smalltalk 213

v 4GL parts — records, tables, and functions and their associates.
v For any embedded view, its associates. However, the embedded view itself

is not included as an associate.

214 VisualAge Generator: Migration Guide

Chapter 24. General migration considerations for VAGen
2.x and Cross System Product to Smalltalk

Consider the following if you are migrating from VisualAge Generator 2.x or
Cross System Product to VisualAge Generator 4.0 on Smalltalk:
v “Migration paths”
v “Automatic conversions during 4.0 migration” on page 216
v “Resolving duplicate member names” on page 217
v “Establishing naming conventions” on page 217
v “Organizing your code for ENVY” on page 219
v “Assigning ownership” on page 220
v “Using subapplications” on page 221
v “Storing control information” on page 223
v “Using configuration maps” on page 225
v “Migrating GUIs” on page 226
v “Dual maintenance” on page 235
v “Migrating from Cross System Product” on page 236
v “Migrating from OS/2 to Windows NT” on page 237

Also see “Chapter 25. Pre-migration checklist” on page 239 before you begin to
migrate code to VisualAge Generator 4.0.

In addition, if you are migrating from Cross System Product, it is strongly
recommended that you read Migrating Cross System Product Applications to
VisualAge Generator and “Appendix D. Notes on Cross System Product
migrations” on page 395 before you migrate.

Migration paths

Depending on your current platform and whether you want to migrate to
Smalltalk, Java, or both, different migration paths are available and different
considerations apply.

Table 16 on page 216 gives a brief overview of the migration options available
for the Smalltalk platform. See the referenced chapters for step-by-step
procedures for each migration option.

© Copyright IBM Corp. 1997, 1999 215

Table 16. Migration Options

Migrating from Tools to Use Details on Using the Tools

VisualAge Generator 2.x or
Cross System Product (GUI
and non-GUI)

v MSL Migration
Assistance Tool

v VAGen Import

v “Chapter 26. The MSL
Migration Assistance
Tool on Smalltalk” on
page 241

v “Chapter 29. Running
the MSL Migration
Assistance Tool on
Smalltalk” on page 293

v “Chapter 30. Using
VAGen Import to
migrate VAGen 2.x and
Cross System Product
code to Smalltalk” on
page 329

Automatic conversions during 4.0 migration

VisualAge Generator 4.0 automatically makes the following changes to your
applications during migration:
v Members become VAGen parts.
v Process and statement group members are converted to function parts.
v References to processes and statement groups are converted to the new

syntax requirements for functions with no parameters.
v PERFORM statements and Unconditional Branch statements are no longer

supported and are migrated to Function Invocation statements.
v Subscript parentheses are changed to brackets in VisualAge Generator item

names in the following places:
– 4GL statements in functions (processes and statement groups)
– Host variable names in SQL statements
– Comparison value item in DL/I specifications
– EZEDLPCB is used in a called parameter list

v Calls to EZE service routines are converted to the corresponding function
invocation statement. A statement to set the value of EZEREPLY is also
added before the function invocation.

In addition, the names of part classes, control information files, and VisualAge
Generator palette parts are changed during migration to VisualAge Generator
4.0:
v Table 20 on page 361 shows the conversions made between member types

and VAGen 4.0 part classes during 4.0 migration.

216 VisualAge Generator: Migration Guide

v Table 21 on page 361 shows the correspondence between control information
files and VAGen 4.0 part classes.

v Table 22 on page 362 shows the changes made to VisualAge Generator
palette parts names during 4.0 migration.

v Table 23 on page 362 shows the changes made to VAGen Templates part
class names and repartition during 4.0 migration.

Resolving duplicate member names

Duplicate member names should be resolved (or at least understood) before
starting the migration. Duplicates can arise in the following situations:
v A duplicate member was accidentally copied into the wrong MSL and was

never deleted. In this case, you must determine which is the correct version
of the member.

v Duplicate members that have the same name, but are different member
types must be resolved. This might require renaming one of the members
and changing all references to it.

v The duplicate member is in a staging MSL or test MSL and represents
work-in-progress. In this case, the changed member should be loaded after
the production MSL(s) are loaded and versioned within ENVY.
Alternatively, these duplicate members might be ones that were created,
then forgotten, and never intended for production.

v The duplicate member is due to a demonstration that needs to reflect the
state of the demonstration at different times (for example, the initial state of
the MSL, the MSL after some changes have been made, and the MSL after
another set of changes have been made). In this case, it might be better to
create a complete MSL representing the entire set of code at various times
during the demonstration and make a separate ENVY application for each
complete MSL.

Establishing naming conventions

You probably already have naming conventions for parts like programs,
processes, records, and so on that you are migrating from Cross System
Product or VisualAge Generator 2.x. You can continue to use your existing
naming conventions for these parts, because VisualAge Generator 4.0 retains
existing part names during migrations from VisualAge Generator 2.x and
Cross System Product.

However, VisualAge Generator does change some existing part types, as well
as making some syntax conversions. For example, process members and
statement group members are both changed to the function part type.
Therefore, you might want to establish a naming convention for function parts
that is similar to your conventions for processes and statement groups.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 217

See “Automatic conversions during 4.0 migration” on page 216 for a list of
changes that VisualAge Generator makes to your existing code during
migration.

You need to establish naming conventions for the new application and
configuration map objects that you must create in Smalltalk for your migrated
code. Your naming conventions should include the following:
v Your applications should have a unique prefix (possibly three characters) so

that all of your applications will be grouped alphabetically in the VisualAge
Organizer. Using a single prefix for your applications means that all of your
applications appear together on the VisualAge Organizer. If there are
several subsystems, each subsystem could have a different prefix, but this
means that they might not appear together on the VisualAge Organizer.
For example, if you have an Accounting system and a Payroll system, you
might choose to prefix your ENVY applications with Acct for the
Accounting system and Pay for the Payroll system. However, there are also
sample applications that ship with VisualAge Generator. These are prefixed
with Hpt. If you have the applications for accounting, payroll, and the
VisualAge Generator sample applications all loaded into your image at the
same time, the order in which the applications appear on the VisualAge
Organizer window is:

Acct
Hpt
Pay

Using prefixes that start with different letters can be an advantage, because
some VisualAge windows allow you to enter one letter to quickly tab to the
group of applications that start with that letter.

If you want all your applications to appear together, use a naming
convention such as XyzAcct for the Accounting system and XyzPay for the
Payroll system, where Xyz is an acronym for your company name. In this
case, the order in which the applications appear on the VisualAge
Organizer window is:

Hpt
XyzAcct
XyzPay

Note: There is no published list of prefixes reserved for IBM use. However,
Abt is used by VisualAge Smalltalk and Hpt is used by VisualAge
Generator.

v Versions should also have a naming convention. Using the default naming
convention (1.0, 1.1, and so on) might be the best way to start.

In addition, you need to consider the following VisualAge Smalltalk naming
conventions:

218 VisualAge Generator: Migration Guide

v The first character of each application or configuration map name must be
an uppercase, alphabetic character. For the rest of each name, it is
customary to capitalize the first letter of each word in the name.

v It is customary for the phrase App to be appended to the end of application
names.

v It is customary for the phrase Cfmap or Map to be appended to the end of
configuration map names.

Organizing your code for ENVY

For an overview of the differences between MSLs and ENVY, see “Chapter 23.
Comparing MSLs and ENVY on VAGen 4.0 on Smalltalk” on page 207.

ENVY works best when applications are organized along functional lines. This
provides several benefits:
v Helps limit the scope of a change to one or just a few applications.
v Supports the concept of ownership described in “Assigning ownership” on

page 220.

Note: Performance is best when you limit an application to a maximum of
600-700 VAGen parts per VAGen part type. It is also recommended that
you use no more than 50 classes per application. When considering this
maximum, remember that processes and statement groups are both
collapsed into the VAGenFunctions class.

You should divide your MSLs into functional areas, with one ENVY
application for each functional area. Some examples are:
v A DBA MSL that contains data items and record definitions. This might be

small enough to become a single ENVY application. However, you might
also decide to organize it into smaller applications by dividing it using one
or more of the following suggestions:
– One application for the tables and data items that are shared by multiple

subsystems and a separate application for each subsystem that contains
the data items and records that are unique to that subsystem.

– One application for the tables and data items used in a particular target
environment.

– One application for a group of closely related tables, where you want
smaller applications than any of the previously mentioned techniques.

v An MSL containing common code might be small enough (if you only have
a few common parts) to become a single ENVY application. However, you
should consider organizing it along functional lines such as:
– Error and message handling
– Security support
– Audit log or journal support

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 219

– Tools only used during development, not in the production system

You can also use the following techniques to assist you in organizing your
parts into functional areas:
v You might have used a naming convention to help you identify parts of a

system. For example, PAYWK might be the first five characters of all the parts
that are unique to processing the weekly payroll. PAYSL might be the first
five characters of all the parts that are unique to the salary payroll system.
In this case, you could put all the parts that start with PAYWK into one ENVY
application and the parts that start with PAYSL into a different ENVY
application.

v For a menu system, if there are 10 items on the main menu, you might start
by putting all programs that are used when the user selects option 1 into
one application, all programs that are used when the user selects option 2
into another application, and so on. If you use this technique, consider
called programs as well as programs that are transferred to using XFER or
DXFR. This technique has the advantage of including programs that pass
data among themselves into the same ENVY application. If you have
multiple layers of menus, you could use this technique at the lowest level
of menus.

v You might have designed and organized your applications in the past using
a technique that is unique to your organization. Using the same organizing
scheme when you migrate to Smalltalk would provide continuity for your
development organization and reduce the time needed for skills transfer to
the new development environment.

With any of these techniques, if you use the MSL Migration Assistance Tool, it
can help you identify common code that will be shared by several ENVY
applications and help you split this common code into a separate applications.

Assigning ownership

Each class within an ENVY application has an owner. This includes visual
parts and VAGen part classes. Each ENVY application and each configuration
map has a manager. The classes within an ENVY application can have
different owners and the owners can be different from the manager of the
application.

Your ownership strategy should reflect how development and maintenance
responsibilities are divided in your company. You need to provide a backup
mechanism in case an owner is unavailable.

Keep the following in mind when assigning ownership:
v In general, parts should be grouped into functional components so that

ownership can be assigned for maintenance.

220 VisualAge Generator: Migration Guide

v If one developer typically handles an entire program, then that developer
should be the owner for the corresponding ENVY application and all the
classes in that ENVY application.

v Make the applications small enough that a single developer does not own
the entire system (unless the single developer is the only person who ever
works on that system).

v Make the applications small enough that very few people are working in
the same application at the same time.

v The owner of a subapplication can be different from the owner of the
application. The owner of a class within a subapplication can be different
from the owner of the same class for the application.

v If a single developer handles both the view and the server program, then
they can be grouped in a single ENVY application.
If one group of developers handles the views and a different group of
developers handles the server programs, then it might be best to separate
the views and server programs into different ENVY applications.

Using subapplications

You can use subapplications to break an application into smaller components.
Subapplications should only be used for organizational purposes. They should
not be used if the functions they represent might be shipped separately. For
example, if an accounting system will always ship accounts receivable and
accounts payable as a single system, then the use of subapplications to
separate them within a single application would work. However, if the
accounts receivable system might be shipped separately from accounts
payable, then each system should have its own application, with a third
application containing the common parts.

Notes:

1. The MSL Migration Assistance Tool does not support subapplications.
Therefore, until all MSLs have been migrated to ENVY, it is best not to
start using subapplications.

2. If you might eventually migrate to VisualAge Generator on Java, it would
be best not to use subapplications at all, because VisualAge for Java does
not support subapplications.

If you plan to use subapplications after completing migration, there are two
alternatives:
1. Use the MSL Migration Assistance Tool to organize the parts into what

will eventually be the subapplications and name each subapplication with
a suffix such as SubAppMig. This is because ENVY does not allow you to
use the same name for both a subapplication name and an application
name.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 221

The advantage of this technique is that the MSL Migration Assistance Tool
can help you organize your parts into applications. However, if you use
this technique, when you are ready to create the subapplications, you will
need to:
a. Create the containing application.
b. Determine the prerequisites for all the subapplications that will be part

of this containing application and add them to the prerequisites list for
the containing application. You can find the prerequisites from the
VisualAge Organizer window by selecting one of the candidate
subapplications and then selecting Applications → Prerequisites. The
list of Prerequisite applications at the top of the window is the list that
must be added to the prerequisites list for the containing application.
Only the immediate prerequisites need to be added to the containing
application. Candidate subapplications for this containing application
do not need to be added to the containing application.

c. For each application that specifies one of the candidate subapplications
as a prerequisite, open an edition of that application and change it to
add the new containing application as a prerequisite. The list of
Dependent applications at the bottom of the Prerequisites window is the
list that should specify the candidate subapplication as a prerequisite.
Only the immediate dependents need to have their prerequisites
changed.

d. Create the new subapplications.
e. Move the parts from the old applications to the new subapplications.
f. For each configuration map that includes one of the candidate

subapplications, open an edition of that configuration map and change
it to include the containing application and remove the old candidate
subapplications.

g. For each application that specifies one of the candidate subapplications
as a prerequisite, change that application to delete the old candidate
subapplication as a prerequisite.

h. Purge the old candidate subapplications.
2. Put all the parts for all the subapplications of a given application into that

application. The disadvantage of this technique is that you cannot use the
MSL Migration Assistance Tool to organize your eventual subapplications.
However, when you are ready to create the subapplications, you only need
to do the following:
a. Create the subapplications.
b. Move the parts from the containing application to each of the

subapplications.

With this technique, the prerequisites for other applications do not need to
be changed because they already use the containing application. Similarly,
configuration maps do not need to be updated.

222 VisualAge Generator: Migration Guide

Storing control information

In VisualAge Generator 2.2, files were used to store the following control
information:
v Linkage table
v Resource association file
v Generation options
v Bind commands
v Linkage editor control statements

In VisualAge Generator 4.0, the control information is stored in parts in the
ENVY library manager.

You probably need to use different generation options for development,
system test, acceptance test, and production. For example, you might need to
specify different load libraries for the outputs of preparation or point to a
different DB2 system depending on your level of testing. Similarly, you might
need different resource associations, linkage editor control statements, and
bind statements.

There are two alternative techniques for organizing control information:
v Use multiple control applications.
v Use a single control application.

Multiple control applications
One option is to store the control information for each level of test in a
different ENVY application. The application names could use the naming
convention:
sssControlCommon
sssControlDev
sssControlSysT
sssControlAccT
sssControlProd
sssControlEmergency

where:

sss Is the subsystem ID that is the same prefix you use for the
other applications in the subsystem.

Common Is used for control information that is common to test and
production. None of the part names in Common is duplicated
in Dev, SysT, AccT, Prod, or Emergency.

Dev Is for the developers to use.

SysT Is for systems test.

AccT Is for acceptance test.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 223

Prod Is for production.

Emergency Is for emergency fixes.

The parts might be named as follows:
sssMvsCicsGenOpts
sssVseCicsGenOpts

sssResourceAssociations

sssLinkageTable

ppppppp.BDC (for bind information that is unique to a program)

ppppppp.LED (for linkage editor information that is unique to a program)

With this technique, you have sssControlCommon and only one of the other
sssControlxxxx applications loaded into your image. During test and
generation, the part name you specify for a particular type of control
information is the same part name regardless of whether you are working at
the development, system test, acceptance test, or production levels of code.

The configuration maps for development, system test, acceptance test, and
production each include sssControlCommon and the sssControlxxxx
application that corresponds to their level of testing.

sssControlEmergency is a special control application that is very similar to
sssControlProduction. However, it specifies the load libraries needed for
emergency fixes rather than the normal production load libraries.

Single control application
A second option is to collect all the control information into a single
application. This can make it easier to maintain the control information. The
parts might be named as follows:

sssCommonMvsCicsGenOpts
sssXxxMvsCicsGenOpts

sssCommonVseCicsGenOpts
sssXxxVseCicsGenOpts

sssXxxMvsResourceAssociations

sssXxxVseResourceAssociations

sssXxxMvsLinkageTable

sssXxxVseLinkageTable

ppppppp.BDC (for bind information that is unique to a program)

ppppppp.LED (for linkage editor information that is unique to a program)

224 VisualAge Generator: Migration Guide

In this naming scheme:

sss Is the subsystem name.

Common
Is used for control information that is common to test and production.

Xxx Is the level of test or production (for example, Dev, SysT, AccT, Prod,
or Emergency).

ppppppp
Is the name of a program.

Generation options
/DESTNAME, /COBOL, and /NLS are gone.

/BIND and /LINKEDIT have changed. They do not point to a directory, just
to a suffix. For example, if your naming convention for linkage editor control
parts is ppppppp.LED, where ppppppp is the program name, you should set
/LINKEDIT=LED for the generation option.

/OPTIONS, /LINKAGE, and /RESOURCE have also changed. They do not
point to a directory, just to a part. For example, you might set
/OPTIONS=sssMvsCicsGenOpts.

Using configuration maps

Configuration maps are a way of defining a group of application editions that
should be loaded as a group into your image. For example, you might have a
configuration map that represents the application versions that are currently
in your production environment. When defining configuration maps, consider
the following:
v Try to avoid having the same application appear in multiple configuration

maps.
v Establish a naming convention for your configuration maps. For example, if

you decide to use different configuration maps for development, system
test, acceptance test, and production, you might use the following as the
configuration map names:

Configuration Map Name: xxxxxxxxDevTestCfmap
xxxxxxxxSysTestCfmap
xxxxxxxxAccTestCfmap
xxxxxxxxProdCfmap

Version Names: could just be sequential

In this naming scheme, xxxxxxxx is the subsystem name.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 225

If you decide to use a single configuration map and use a build approach in
which you build (generate programs and package views) once a week, you
might use the following:

Configuration Map Name: xxxxxxxxCfmap

Version Names rrr nn.p

In this naming scheme:

xxxxxxxx Is the subsystem name.

rrr Is the release name.

nn Is the build within the release.

p Is a point between builds.

Use the same version naming scheme for the applications and classes. The p
allows the class owners and application managers to create as many
versions as they need to between builds. The rrr nn means that the classes,
applications, and configuration maps changed during the same week all
carry the same release and version number. This helps everyone remember
when changes were made.

Migrating GUIs

VisualAge Generator 4.0 provides more than one way to migrate existing GUI
parts to the Smalltalk platform. See the following chapters for step-by-step
instructions on how to migrate your GUI parts.
v MSL Migration Assistance Tool: “Chapter 26. The MSL Migration

Assistance Tool on Smalltalk” on page 241 and “Chapter 29. Running the
MSL Migration Assistance Tool on Smalltalk” on page 293

v VAGen Import: “Chapter 30. Using VAGen Import to migrate VAGen 2.x
and Cross System Product code to Smalltalk” on page 329

Regardless of whether you use the MSL Migration Assistance Tool or VAGen
Import, the following considerations apply when migrating GUIs to views:
v Each GUI becomes a class in VisualAge Smalltalk. Therefore, the GUIs are

not visible in the VAGen Parts pane or in the VAGen Parts Browser.
v Because VisualAge Smalltalk does not permit national characters such as $,

#, or @ in class names, you must rename GUIs that contain these characters
in their names before you attempt to migrate them to VisualAge Generator
4.0. If you do not rename them, a walkback will occur during migration.

v GUIs are called views or visual parts in VisualAge Smalltalk.
v If you have GUIs that contain any multimedia parts (from the Multimedia

category) or DDE parts (from the External Functions category), you must
load the following features before trying to migrate:

226 VisualAge Generator: Migration Guide

– VisualAge: Multimedia
– VisualAge: DDE Support

v You might receive a warning message from the MSL Migration Assistance
Tool or from VAGen Import that says:
name failed to load reason

where:

name Is the name of your GUI (view)

reason Is optional

If a reason is given, it indicates that either the Multimedia or the DDE
Support features are required for this view. These features must be loaded
before you will be able to migrate this GUI.

If no reason is given, you might be trying to migrate a GUI that contains an
OS/2 part, but you are running on a Windows NT system. You must
modify the GUI so that it no longer contains the OS/2 part before you can
migrate the GUI to Windows NT. Alternatively, you can migrate the GUI on
OS/2, but you will not be able to use it from a Windows NT client.

v If you have GUIs that contain any parts from the OS/2 category, you
should migrate them using the OS/2 version of VisualAge Generator 4.0.
This results in fewer migration problems because the OS/2 applications
needed to support the OS/2 category parts are only available on the OS/2
platform.
After migration:
– To change the view on OS/2, you must first load the configuration map

called VAGen VA Edit Obsolete.
– Before trying to load the application containing the view on Windows

NT, you must change the view to be platform independent.
- If the old view used an OS/2-Windows Notebook, you can change it

to a portable notebook by selecting Morph into from the context menu
for the part.

- If the old view used an OS/2 Container, you can replace it with one of
the Container parts within the Lists category.

v Both the MSL Migration Assistance Tool and VAGen Import write a list of
important changes to a file named hptguicv.log. This log file is located in one
of the following:
– The directory specified by the TEMP environment variable
– If TEMP is not specified, the directory specified by the TMP

environment variable
– If neither TEMP nor TMP is specified, the current working directory

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 227

The warning messages in this log indicate changes that you must make to
the view after migration. See “Tasks you must do after migrating GUIs” on
page 234 for examples of the changes required.

v After GUIs are imported into VisualAge Smalltalk using either VAGen
Import or the MSL Migration Assistance Tool, they cannot be exported as
external source format files. Therefore, the views cannot be used in
VisualAge Generator 2.2 or earlier. This means that if you migrate a
subsystem that shares embedded GUIs with a subsystem that you will
migrate at a later time, you have the following alternatives for maintenance
of the embedded GUIs:
1. Do all maintenance on VisualAge Generator 2.2 or earlier using MSLs

and when you are satisfied with the change:
a. Export an external source format file from the MSL for the changed

parts.
b. Create an edition of the ENVY applications to which the changed

parts belong.
c. Import the external source format file into ENVY using the Defined

application radio button so the changes will go into the same ENVY
application in which the parts are already located.

2. Make the same changes to both the view in ENVY using VisualAge
Generator 4.0 and to the corresponding GUI in an MSL using VisualAge
Generator 2.2. Due to the changes that occur when GUIs are migrated to
views, you might not be able to make identical changes to the view and
its corresponding GUI. For example, in VisualAge Generator 4.0, the
visual table part no longer appears on the parts palette. Additional
changes to the GUIs are described below.

VAGen Container Details and VAGen Variable have equivalent VisualAge
Smalltalk parts. Refer to the VisualAge Generator Programmer’s Reference for
details about the differences between the VisualAge Generator and
VisualAge Smalltalk versions of these parts.

v The visual table part from the Data Entry category on the parts palette is
now obsolete. The visual table part will continue to work in the migrated
GUIs, but no longer appears on the parts palette. For new views, use the
Container Details part, which provides function similar to the visual table
part.

Conversion of GUIs to VisualAge Generator 4.0
Conversion is the process of transforming an existing GUI to a new view in
VisualAge Generator 4.0. VisualAge Generator 2.2 and earlier added some
features to VisualAge Smalltalk parts, some of which are now in the base
VisualAge Smalltalk and some of which are part of the VisualAge Generator
extension to VisualAge Smalltalk. The features that are part of the VisualAge
Generator extension are prefixed with VAGen and therefore, they must be
renamed during conversion. Many other tasks are also performed during

228 VisualAge Generator: Migration Guide

conversion to maximize the chance of existing applications working the same
as they did in previous releases. The following sections give a complete list of
tasks performed during conversion.

Note: The tasks performed during conversion occur automatically when you
commit parts to ENVY using the MSL Migration Assistance Tool or
when you import parts into ENVY using VAGen Import.

Tasks that take place during GUI conversion
The following occur during GUI conversion:
1. Each GUI is created as a subclass of HptAppBldrView, which is the

VisualAge Generator subclass of AbtAppBldrView. HptAppBldrView is
needed to provide the following features that were added to GUIs in
VisualAge Generator 2.2 or earlier releases:
#message:title:iconType:buttonType:
#message:title:iconType:buttonType:helpFile:helpTopic:

Because there are other ways to accomplish these actions now, these
features are obsolete in VisualAge Generator 4.0 and are no longer
available at edit time.

2. Parts are renamed. Table 17 shows the relationship between the old and
new part names.

Table 17. Part Name Changes after Migrating a GUI to a View

Old Part Name New Part Name

Record Member VAGen Record

Table Member VAGen Table

Process Member VAGen Function

Statement Group Member VAGen Function

Callable Function VAGen Callable Function

Container Details VAGen Container Details

Variable VAGen Variable

File Accessor VAGen File Accessor

3. Features are renamed. Table 18 on page 230 lists all features in different
part classes that are renamed in VisualAge Generator 4.0. VisualAge
Generator 4.0 extensions to VisualAge Smalltalk parts are prefixed with
VAGen. For example, #destroyPart is renamed to #destroyView. This indicates
that it is in the VisualAge Smalltalk base, not a VisualAge Generator
extension to VisualAge Smalltalk.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 229

Table 18. Feature Name Changes after Migrating a GUI to a View

Old Feature Name (VisualAge Generator 2.2) New Feature Name (VisualAge Generator 4.0)

Class: AbtAppBldrPart (views and nonvisual parts)

#inheritsCommunicationSession: #’VAGen inheritsCommSession:’

#performRequest: #’VAGen performRequest:’ (should use object
scripting instead)

#removeTopLevelSubpartNamed: #’VAGen destroyTopLevelSubpartNamed:’

#topLevelSubpartNamed: #’VAGen topLevelSubpartNamed:’

#topLevelSubpartNamed:put: #’VAGen topLevelSubpartNamed:put:’

Class: AbtAppBldrViewWrapper (View Wrapper)

#backgroundCreatePart #backgroundCreateView

#createPart #createView

#destroyPart #destroyView

#destroyedPart #destroyedView

Class: AbtBasicView (all visual parts in the Buttons, Data Entry, Lists, Menus, Canvas, and OS/2
categories)

#height #’VAGen setHeight’

#width #’VAGen setWidth’

#x #’VAGen setX’

#y #’VAGen setY’

Classes: AbtCompositeView (visual parts that can contain other parts) and AbtContainerDetailsView
(Container Details Tree View, Container Details View, Packeting Container Details View, and VAGen
Container Details View)

#removeSubpartNamed: #’VAGen destroySubpartNamed:’

#subpartNamed: #’VAGen subpartNamed:’

#subpartNamed:put: #’VAGen subpartNamed:put:’

#subpartNamed:put:beforePartNamed: #’VAGen subpartNamed:put:beforePartNamed:’

#subpartNamed:putOpened: #’VAGen subpartNamed:putOpened:’

#subpartNamed:putOpened:beforePartNamed: #’VAGen
subpartNamed:putOpened:beforePartNamed:’

Class: AbtFormView (Form, Group Box, Window)

#topLevelEnabled #’VAGen topLevelEnabled’

Class: AbtShellView (Window)

#cancelCloseRequest: #’VAGen cancelCloseRequest:’

#getFocusPart #’VAGen getFocusPart’

230 VisualAge Generator: Migration Guide

Table 18. Feature Name Changes after Migrating a GUI to a View (continued)

Old Feature Name (VisualAge Generator 2.2) New Feature Name (VisualAge Generator 4.0)

#getOSFrameHandle #’VAGen getOSFrameHandle’ (now obsolete - do
not use)

Class: AbtTextView (Text View)

#removeSelectedText #remove (it was renamed in VisualAge Generator
2.2, but this conversion was not performed in that
version)

Class: HptLogicPart (VAGen 4GL Parts)

#’has executed’ #hasExecuted

The following actions are taken to handle the renamed features:
v Connections referencing old feature names are changed to reference new

names.
v Promoted features of old feature names are changed to reference new

names.
v All settings applied to old feature names are changed to apply to new

names.

Important Notes:

a. Renaming features connected through a variable — For a variable or
tear-off part, because it is unknown at migration time what type of
parts it will hold at runtime, VisualAge Generator 4.0 applies all
feature name changes listed above to a variable and tear-off part. For
example, suppose you have the connection:

Button1(#clicked) -> Variable1(#x)

is converted to:

Button1(#clicked) -> Variable1(#'VAGen setX')

If #x is a user-defined feature (promoted feature) and not the action #x
of AbtBasicView, this conversion is wrong, and must be corrected before
the application works correctly again. However, the chance of collision
is probably very small. When converting a GUI, all renaming events
that involve a variable are logged to the hptguicv.log file.

b. #performRequest — Although VisualAge Generator tolerates old
feature names used with #performRequest so that current applications
will continue to work, functions that set up data items used with this
action need to be changed to use new feature names.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 231

4. Attribute-to-attribute connections to a View Wrapper (not connections
inside the GUI wrapped by the View Wrapper) where the View Wrapper is
the source are reversed to maintain VisualAge Generator 2.2 behavior:
when the view being wrapped is created, the connections to the wrapper
are aligned as if the wrapper is the target regardless of how the connection
was made. In VisualAge Smalltalk 5.0 (VisualAge Generator 4.0), View
Wrapper’s two-way attribute-to-attribute connections are initialized
consistently with all other two-way attribute-to-attribute connections: if the
source is not nil and the target is not read-only, the target is aligned with
the source’s value.

5. An attribute connection to a parameter of another connection is converted
to a parameter-to-attribute connection, which is one of the connection
types newly created to specifically handle parameters. In VisualAge
Smalltalk 5.0, any connection made to a parameter is created as a
parameter connection. This conversion ensures that the correct data type
conversion for the VAGen data part can take place.

6. In VisualAge Generator 2.2 and previous releases, the default of
inheritsCommSession was false. VisualAge Generator 4.0 sets the default to
true for any new views you define because this is the recommended
technique. However, to maintain the same behavior for existing GUIs that
are being converted to VisualAge Generator 4.0, if inheritsCommSession is
not set, conversion sets it to false. Refer to the VisualAge Generator
Programmer’s Reference for more details on inheritsCommSession.

Obsolete parts maintained for compatibility
The following parts have been maintained for compatibility, but no longer
appear on the parts palette:
v VAGen View Wrapper
v VAGen Object Factory

View wrapper: The View Wrapper available in VisualAge Generator 2.2 or
previous releases was the VisualAge Generator version, not the VisualAge
Smalltalk version. The difference between the two is in the signalling of
events in connection initialization. During the process of initializing its parent
part’s attribute-to-attribute connections that involve it, the VisualAge
Generator View Wrapper does not signal events, but instead holds on to them
and signals them in order after the initialization is done.

To see the difference between the VisualAge Generator version and the
VisualAge Smalltalk version, examine the following example:
ParentView(string1) <-> ViewWrapper(string1)

ViewWrapper(string1) -> SETSTRING2_STMTGRP(execute)
(which is in ParentView and does nothing)

SETSTRING2_STMTGRP(hasExecuted) -> ParentView(string2)
(The parameter of this connection

232 VisualAge Generator: Migration Guide

is connected to the ViewWrapper's string2)

ParentView(string1)<->ViewWrapper(string2)

If at the time the View Wrapper initializes the connection, you have:
ParentView(string1): 'A'
ParentView(string2): 'B'
ViewWrapper(string1): nil
ViewWrapper(string2): nil

The results are:
VisualAge Smalltalk VisualAge Generator
View Wrapper View Wrapper

ParentView(string1): 'A' 'A'
ParentView(string2): nil 'A'
ViewWrapper(string1): 'A' 'A'
ViewWrapper(string2): 'A' 'A'

However, the VisualAge Generator implementation, which can potentially
reduce the number of events signalled, also causes each attribute-to-attribute
connection to the View Wrapper to align twice. This side effect is explained in
the following example:
ParentView(attribute1) <-> ViewWrapper(attribute2)

When the View Wrapper creates the view, it causes the connection to be
initialized.

With the VisualAge Smalltalk View Wrapper:
v ViewWrapper’s attribute2 gets the value of ParentView’s attribute1
v ViewWrapper signals that attribute2 has changed. Because the connection is

in the middle of being aligned, the signalling of attribute2 does not cause
ParentView’s attribute1 to be aligned with ViewWrapper’s attribute2, and
therefore, ParentView’s attribute1 does not signal its changed event.

With the VisualAge Generator View Wrapper:
v ViewWrapper’s attribute2 gets the value of ParentView’s attribute1.
v The event of attribute2 changed is pended until all other connections get

initialized.
v After all connections are initialized, ViewWrapper now signals its attribute2

has changed. This causes ParentView’s attribute1 to be aligned with
ViewWrapper’s attribute2 (to the same value).

v ParentView signals that attribute2 has changed, causing other connections
to this attribute to execute or align.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 233

Because of the side effect, the VisualAge Generator View Wrapper is
maintained in VisualAge Generator 4.0 only to leave existing GUIs working
unchanged. Any new View Wrapper dropped is the VisualAge Smalltalk View
Wrapper.

Object factory: The Object Factory of VisualAge Generator 2.2 or previous
releases is now obsolete. After migration, existing GUI applications that use
Object Factory still use the old VAGen Object Factory (the one from the
palette of VisualAge Generator 2.2, which is HptObjectFactory). However, the
Object Factory on the palette of VisualAge Smalltalk 5.0 (VisualAge Generator
4.0) is the VisualAge Smalltalk Object Factory (AbtObjectFactory). The only
difference between the two is that the VisualAge Generator obsolete one, at
instance creation time, checks to see if the instance is a GUI, and if it is, it tells
the instance to use the communication session owned by its parentPart. For
new views, you should use the newly added VisualAge Generator features
that have to do with communication sessions to ensure correct behavior.

Tasks you must do after migrating GUIs
You need to do the following after migrating existing GUIs to ensure that they
will work:
v Verify that all connections involving variable parts are renamed

appropriately. See ″Important Notes″ on 3a on page 231 for more
information.

v Previous releases of VisualAge Generator were more tolerant of connections
with mismatched types such as a string connecting to an integer. Because it
is a feature of VisualAge Smalltalk, VisualAge Generator 4.0 no longer has
control to tolerate these mismatched connections, and therefore walkbacks
result. When a GUI is converted to VisualAge Generator 4.0, the
type-mismatched connections are logged in hptguicv.log. All of the logged
connections reflect problems in the views that must be corrected before you
test or package your applications.
Example 1: You might have a type-mismatched connection such as:
List1(selectionIndex) <----> Button1(enabled)

The intention for this connection is to enable Button1 if there an item
selected from List1. This connects an integer to a Boolean and will result in
a walkback in VisualAge Generator 4.0. You can change this connection to:
List1(selectionIsValid) <----> Button1(enabled)

Example 2: You might have a mismatched connection such as:
List1(selectionIndex) <----> Label1(object)

where Label1 is a string with a value of 1. This connects a string to an
integer and results in a walkback in VisualAge Generator 4.0. You can
change Label1 to an integer by doing the following:

234 VisualAge Generator: Migration Guide

– In the VisualAge Organizer window, select Options and then
Preferences. On the General page, consider changing the Preferred
Settings View to Properties Table (Recommended).

– Double-click on Label1 to open the properties list.
– Select converter and then select the ellipsis (...) button that appears

beside converter.
– Select Integer as the Data type.
– Press OK to close the Converters window.
– Press OK to close the Properties window.

VisualAge Generator 4.0 still handles implicit conversion between
VisualAge Generator data item types and VisualAge Smalltalk types. Refer
to the VisualAge Generator Programmer’s Reference for more details on the
VisualAge Generator Data Part.

v In past releases of VisualAge Generator, fonts were not always sized
correctly when a VisualAge Generator dialog was displayed on a Windows
NT or Windows 95 system. This problem is corrected in VisualAge
Generator 3.1 and later, and all dialog windows now use the Windows NT
and Windows 95 standard dialog font. However, if you are unhappy with
the fonts on any VisualAge Generator window, you can use the Fonts
selection on the Control Panel in Windows NT or Windows 95 to change
the window’s fonts.

Dual maintenance

The external source format file for 4GL parts that you export from VisualAge
Generator 4.0 is not compatible with the external source format file for
VisualAge Generator 2.2 or Cross System Product. Therefore, if you migrate a
subsystem that shares common parts with a subsystem that you will migrate
at a later time, you have the following alternatives for maintenance of the
common parts:
1. Maintain the common parts on VisualAge Generator 2.2 or earlier using

MSLs and when you are satisfied with the changes:
a. Export an external source format file from the MSL for the changed

parts.
b. Import the external source format file into ENVY using the Defined

application radio button so the changes will go into the same ENVY
application in which the parts are already located.

2. Make the same changes to both the part in ENVY using VisualAge
Generator 4.0 and to the corresponding member in an MSL using
VisualAge Generator 2.2.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 235

With VisualAge Generator 4.0, you cannot export external source format files
for views. See the bullet that begins ″After GUIs are imported...″ on 228 for
information about handling dual maintenance of embedded GUIs.

Migrating from Cross System Product

When you migrate from Cross System Product, you have the following
additional considerations:
v If you are migrating from Cross System Product 3.3 or earlier, you are

migrating from interpretive CSP/AE to generated COBOL or C++. Refer to
Migrating Cross System Product Applications to VisualAge Generator
(SH23-0244-01) for information on the compatibility considerations involved
in this portion of the migration.

v You must also plan for how to handle the workstation environment:
– Backup and recovery
– Whether data will reside on the workstation or on the host
– How to handle calls to non-VisualAge Generator programs when you are

using the test facility
– How to handle functions that were only supported when running the

test facility in the CICS environment (for example, CREATX and the use
of transient data queues).

v Early releases of Cross System Product allowed invalid data to be stored in
the MSLs. If the external source format files contain invalid members, you
must either correct the member on Cross System Product and export the
external source format file for the member again or correct the external
source format file by editing it. The following are examples of some of the
types of problems that you might encounter:
– A data item that has a length of 0
– A map that contains a NUM field with a date edit, but the field is not

long enough to contain a date
– Members in the MSL that contain generated Cross System Product code

that really should have been stored in an ALF.
v VisualAge Generator does not allow generation of applications that check a

non-SQL data item for the NULL state. VisualAge Generator rejects as
invalid any conditional statement (IF, TEST, WHILE) that tests the state of a
non-SQL data item for the NULL condition. However, this type of
statement was allowed in Cross System Product 3.3. Therefore, you should
rewrite any statements that check non-SQL data items for the NULL state
before migrating Cross System Product-generated applications that contain
them.

236 VisualAge Generator: Migration Guide

Migrating from OS/2 to Windows NT

If you are changing from the OS/2 to the Windows NT development
platform, be sure to review “Changing from OS/2 to Windows NT” on
page 298 before you start to migrate.

Using the migration log file

The migration log file is named mslmig.log and is located in the same
directory as your image. This log file stores the results of Write to File
operations. You can use a text editor to view and print the log file.

Chapter 24. General migration considerations for VAGen 2.x and Cross System Product to Smalltalk 237

238 VisualAge Generator: Migration Guide

Chapter 25. Pre-migration checklist
1. Before you migrate, you should first read the following:
v “Chapter 23. Comparing MSLs and ENVY on VAGen 4.0 on Smalltalk”

on page 207
v “Chapter 24. General migration considerations for VAGen 2.x and Cross

System Product to Smalltalk” on page 215
v “Chapter 26. The MSL Migration Assistance Tool on Smalltalk” on

page 241
v “Chapter 27. Migrating production and work-in-progress MSLs to

VAGen 4.0 on Smalltalk” on page 255
v “Chapter 28. VAGen on Smalltalk case studies based on various MSL

structures” on page 265
v VisualAge Generator 4.0 readme file

2. Load any features you need for migration.
If you are migrating GUIs from MSLs to VisualAge Generator 4.0 on
Smalltalk, you might need to load the VisualAge Smalltalk Multimedia or
DDE Support features before you migrate.

Note: If you use the multimedia feature, refer to the VisualAge Smalltalk
installation documentation and readme file for information on how
to obtain this feature.

3. Save a clean copy of your VisualAge Smalltalk image. This clean copy
should not contain any of your application code. Copy abt.icx to
abtclean.icx, and store the clean copy on your LAN so that all developers
have access to it. Saving copies of the hpt.ini, abt.ini, and mgr50.dat files is
also recommended.

4. Check with IBM support to see if there are any fixes available for the
VisualAge Generator 4.0 MSL Migration Assistance Tool. If there are,
import the fixes and then load them into your 4.0 image.

5. For better performance during migration, you might want to do the
following:
v Dedicate a single workstation or server to use for migration. Attempting

to use multiple workstations limits VisualAge Generator’s ability to
detect duplicates and common code and to determine when previously
missing parts have been found. Having the product provide this
information more than compensates for any potential time savings that
might be gained by using several workstations.

© Copyright IBM Corp. 1997, 1999 239

v Copy your MSLs to the workstation you set up to run the VisualAge
Generator migration tools, or make sure your code libraries are on a
server that your migration workstation can access. This improves
performance for the migration tools.

v You will probably use the MSL Migration Assistance Tool to migrate to
VisualAge Generator 4.0. Run the tool on the server where the
VisualAge Generator 4.0 ENVY library manager is located. This
improves performance for committing parts to ENVY.
If you plan to use the MSL Migration Assistance Tool, review
“Collecting your source code” on page 296 and “Handling code page
changes” on page 297 for information on how to make your code from
Cross System Product or previous versions of VisualAge Generator
available to the MSL Migration Assistance Tool.

6. Contact your local IBM representative to learn more about VisualAge
Generator service offerings and how they can help you with migration.

240 VisualAge Generator: Migration Guide

Chapter 26. The MSL Migration Assistance Tool on
Smalltalk

The MSL Migration Assistance Tool is designed to assist in migrating MSLs to
the ENVY library manager.

Note: Although the MSL Migration Assistance Tool can help determine when
members are not found, it cannot locate missing members. Similarly,
the MSL Migration Assistance Tool can help determine when duplicates
of a given member exist, but it cannot make the determination as to
which is the correct or current level of the member.

You can run the MSL Migration Assistance Tool from either OS/2 or Windows
NT.

The migration process works from an MSL directory structure. In some cases,
you will not have an MSL on the workstation. For example, if you are
migrating from Cross System Product, your MSLs are VSAM files on the host.
The MSL Migration Assistance Tool enables you to create MSL directories
from external source format files. You can then use these MSL directories
during your migration. You do not need to install VisualAge Generator 2.2 to
create the MSL directories to use during migration.

The MSL Migration Assistance Tool enables you to select parts (members)
from an MSL or MSL concatenation, group them into an application or series
of applications, and move them to a “sandbox”. When you move a part to the
“sandbox”, its associates also move. For a GUI, its referenced embedded GUIs
and external GUIs and their associates are moved. The applications in the
sandbox are in the current image, but are not in the ENVY library manager
yet. This allows you to manipulate the applications and to rearrange the
VAGen parts within the applications until you are satisfied with the
organizational structure. Only one version of a part can be in the sandbox at a
time. Each part can only be in one ENVY application within the sandbox.

After you are satisfied with your organizational structure for the applications,
you can commit the applications to the ENVY library manager. Committing
the applications creates an edition of the applications in the ENVY library
manager, creates any needed VAGen part classes for the 4GL member types,
creates views for GUIs, and creates the VAGen parts for the 4GL members.

After the applications are in ENVY, you can use any of the ENVY library
management functions such as:

© Copyright IBM Corp. 1997, 1999 241

v Versioning and releasing the VAGen part classes and parts
v Versioning and releasing the applications
v Creating configuration maps
v Dividing applications into subapplications
v Assigning a class owner or an application manager

Overview of using the MSL Migration Assistance Tool

You can start the MSL Migration Assistance Tool from the VisualAge
Organizer window by selecting Tools and then VAGen MSL Migration. The
MSL Migration Part List window is displayed, as shown in Figure 24.

The sections that follow provide an overview of how to use the MSL
Migration Assistance Tool and the purpose of each window. Reading these
sections will help you understand the following chapters that describe how
you might organize your members into ENVY applications:
v “Chapter 24. General migration considerations for VAGen 2.x and Cross

System Product to Smalltalk” on page 215
v “Chapter 27. Migrating production and work-in-progress MSLs to VAGen

4.0 on Smalltalk” on page 255
v “Chapter 28. VAGen on Smalltalk case studies based on various MSL

structures” on page 265

After you have read the chapters on organizing your members into ENVY
applications, you will be ready to use the more detailed procedures provided
in “Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk” on
page 293.

Figure 24. MSL Migration Part List window

242 VisualAge Generator: Migration Guide

Building MSL directories
Before you can begin the migration process, you must have MSLs to migrate.
There are some situations in which you will not have MSLs on the
workstation or you cannot use the MSLs for migration. This occurs in the
following situations:
v You are migrating from Cross System Product, so you have never had

MSLs on the workstation. Create one external source format file for each
host MSL and download the external source format files to the workstation.

v You are migrating from VisualAge Generator but have used
TeamConnection and do not have MSLs. You might want to create one
external source format file for each component to help preserve the
organizational structure you created in TeamConnection.

v You are migrating from VisualAge Generator but are changing from an
OS/2 development environment to a Windows NT development
environment. You cannot use the OS/2 MSLs due to code page differences
between the two environments. Create one external source format file for
each MSL. See “Changing from OS/2 to Windows NT” on page 298 for
information on converting between code pages using these external source
format files before you create MSLs on Windows NT.

After you have created your external source format files, from the MSL
Migration Part List window, select the ESF to MSL push button. The MSL
Migration Assistance Tool prompts you for the name of an external source
format file, as shown in Figure 25.

Figure 25. Prompting for an external source format file name

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 243

The MSL Migration Assistance Tool then prompts you for the name of a
directory into which the MSL members are to be placed, as shown in
Figure 26.

After you have specified this information, the MSL Migration Assistance Tool
creates the MSL members from the external source format file. If you specify a
directory that does not exist, the MSL Migration Assistance Tool creates it for
you.

Note: The VisualAge Generator 4.0 automatic conversions occur at this time.
Therefore, processes and statement groups will become functions.

Selecting MSLs - using the MSL Library Selection window
Before you can begin moving parts to the sandbox, you first need to specify
the MSLs that you want to process. From the MSL Migration Part List
window, select the MSL Library Selection push button. The MSL Library
Selection window is displayed, as shown in Figure 27 on page 245.

Figure 26. Prompting for an MSL directory name

244 VisualAge Generator: Migration Guide

From the MSL Library Selection window, you can specify the drive and path
for one or more MSL directories. Specify the drive and path for one MSL in
the Basic MSL directory field and then select the Add push button. Repeat this
until you have specified the information for all the basic MSLs in the
concatenation sequence that you want to process. You can use the Move Up,
Move Down, and Remove push buttons to change the concatenation
sequence.

After you specify the MSLs and the MSL concatenation sequence, select the
OK push button. The Part List Selection Criteria View window is displayed
and lists the MSL directories.

Selecting parts for a part list - using the Part List Selection Criteria View
window

The Part List Selection Criteria View window is similar to a Member Selection
List in Cross System Product or VisualAge Generator.

The Part List Selection Criteria View window is shown in Figure 28 on
page 246.

Figure 27. MSL Library Selection window — Adding an MSL to the concatenation

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 245

From the Part List Selection Criteria View window, you can do the following:
v Specify a portion of a part name using a wildcard.
v Specify which part types you want to appear on the MSL Migration Part

List window.

However, the Part List Selection Criteria View window differs from a Member
Selection List in the following ways:
v It allows you to specify whether you want to see all parts that satisfy the

part type criteria or whether you only want to see those parts that satisfy
the part type criteria that have not yet been moved to the sandbox. This is
controlled by the Only parts not processed toggle button.

v It does not allow you to specify which MSLs from the concatenation
sequence are to be used. All listed MSLs are always used. If duplicate
members exist, they are all shown.

v Function is listed as a part type. If you are migrating using external source
format files to create pseudo MSLs, select the function part type. If you are
migrating using your VisualAge Generator 2.x MSLs, select the Process and
Statement Group part types.

When you select the Build List push button, the parts that satisfy the
selection criteria appear in the MSL Migration Part List window.

Selecting parts to move to ENVY - using the MSL Migration Part List
window

The MSL Migration Part List window lists the parts that satisfy the selection
criteria specified in the Part List Selection Criteria View window.

Figure 28. Part List Selection Criteria View window

246 VisualAge Generator: Migration Guide

From the MSL Migration Part List window, you can select the parts that are to
be moved to the sandbox. The MSL Migration Assistance Tool moves the
selected parts with their associates to the sandbox. You can specify that the
selected parts are to be moved in the following ways:
v Into a single application
v Into multiple applications, with each selected program becoming a different

application
v Into an application that is already in the sandbox

When you move parts to the sandbox, it is possible that an associate of the
part you are currently moving is already in the sandbox, but in a different
application from the one that you have specified as the target for this move.

In this case, the associates that are shared by more than one application are
automatically moved into a separate application called ApplicationNoden,
where n is a number to distinguish different application nodes. Each
ApplicationNode represents a group of parts that have the same set of
required applications.

When you move one or more parts to the sandbox, the VG Part Prerequisites
View window is displayed and shows the current state of the sandbox.

For the purposes of migration, the associates of a part are the same as in
Cross System Product or VisualAge Generator 2.x. However, to assist in
setting the prerequisites for views (GUIs) correctly, the MSL Migration
Assistance Tool also moves external GUIs and their associates when you move
a GUI to the sandbox.

Note: Process parts and statement group parts are displayed in the MSL
Migration Part List window as function parts. If you used the ESF to
MSL push button to create an MSL that you could migrate, all your

Figure 29. MSL Migration Part List window with parts

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 247

process and statement group parts were converted to function parts
when the MSL was created. These parts are displayed in the MSL
Migration Part List window with a type of function. The MSL
Migration Assistance Tool is unable to discern the origin of these
function parts. If, however, you used the MSL Library Selection push
button to select an existing MSL for migration, your process and
statement group parts are displayed in the MSL Migration Part List
window with a type of function (process) or function (statement
group). This allows you to determine which function parts were
originally process parts and which were originally statement group
parts.

After you think you have moved all the parts to the sandbox, you can verify
this from the Part List Selection Criteria View window by selecting the Only
parts not processed toggle button, then selecting the All Types push button,
and then selecting the Build List push button. If everything has been moved
to the sandbox, the MSL Migration Part List window will not list any parts.

Special columns in the MSL Migration Part List window
The MSL Migration Part List window provides information to help in
determining which parts to move to the sandbox. The Status, Duplicate, and
Last Migration Library Timestamp work together to help you resolve
duplicate or missing parts.

The Status column indicates the following:

Status Meaning

<blank> A part with the same name and timestamp
has not yet been moved to the sandbox. The
Duplicate column indicates whether a part
with the same name but a different timestamp
has been moved to the sandbox.

Processed A part with the same name and timestamp
has been moved to the sandbox but has not
yet been committed to ENVY.

Migrated A part with the same name and timestamp
has been moved to the sandbox and
committed to ENVY. The sandbox has not
been reset from ENVY as described in
“Resetting the MSL Migration Assistance Tool
sandbox” on page 252.

Not Found The part is an associate of a part that was
already moved to the sandbox from a different
MSL concatenation sequence. This part was
not found in that previous concatenation

248 VisualAge Generator: Migration Guide

sequence, and thus is identified in the
sandbox as a Not Found part. You can update
the sandbox with this newly found part.

In ENVY Only The part is in your ENVY image, but has not
been loaded into the sandbox from either an
MSL or from ENVY. This might occur if you
have deleted all the applications from the
sandbox and have not yet reset the sandbox
from your ENVY image.

The Duplicate column indicates True if the part is a duplicate:
v Another part with the same name but a different timestamp is already in

the sandbox.
v Another part with the same name is in the same MSL concatenation

sequence.

When Duplicate is True, the Last Migration Library Timestamp provides the
timestamp of the part in the sandbox to help in determining which of the
duplicates you really want to migrate to ENVY.

The value displayed in the Last Migration Library Timestamp depends on
whether the sandbox has been reloaded from ENVY:
v If the sandbox has not been reloaded (for example, you are working with

your initial set of MSLs or continuing with additional MSLs after
committing some applications), then the timestamp is the timestamp from
the MSL of the part in the sandbox.

v If you have reloaded the sandbox from ENVY (for example, you migrated
one subsystem several months ago and now are ready to do the remaining
subsystems), then the timestamp is the timestamp of the edition of the part
that is currently loaded in your image.

The Last Migration Library Timestamp is not displayed in the following
situations:
v A version of the part is not in the sandbox. This occurs if the duplicates are

both in the current MSL concatenation sequence or when you have cleaned
out the sandbox, but have not reloaded from your ENVY image.

v The part in the sandbox is identified as a Not Found part. There is no
timestamp available for a Not Found part.

v The part in the MSL Migration Part List window has the same timestamp
as the part in the sandbox.

v The part is not a duplicate.

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 249

Other MSL Migration Part List functions
From the MSL Migration Part List window, you can perform the following
tasks:
v Add a previously Not Found part that you have now found to the sandbox.
v Resolve duplicates by:

– Removing the duplicate from further consideration so that it no longer
appears on the MSL Migration Part List window and will not be
considered when looking for associates of other parts.

– Replacing a part in the sandbox with a different version of the part.
v Add new parts or replace existing parts in applications that are in the

sandbox, but which have already been committed to ENVY. This enables
you to update an existing ENVY application with a new version of the part.

Working in the sandbox - using the VG Part Prerequisites View window
The VG Part Prerequisites View window shows the ENVY applications that
have been created in the sandbox. The number of parts in the application is
shown to the right of the application name. When you select one of the
applications from the left pane, the parts contained in the application and the
required and dependent applications for the application appear in the other
panes.

Figure 30 shows the VG Part Prerequisites View window.

Identifying common code
The MSL Migration Assistance Tool helps you identify parts that are
associated with more than one program. An ApplicationNode is created
automatically whenever a common part is used by more than one application.
The MSL Migration Assistance Tool does this by automatically moving the
common part into a new ApplicationNode. This removes the common part
from the original application. Both the original application and the application
currently being created specify the ApplicationNode for the common part as a
prerequisite in the Required Applications pane. If several parts are shared by

Figure 30. VG Part Prerequisites View window

250 VisualAge Generator: Migration Guide

two applications, they are all automatically moved to the same
ApplicationNode. ApplicationNodes are the mechanism that the MSL
Migration Assistance Tool uses to prevent putting the same part into two
different ENVY applications. ApplicationNodes help you identify common
code that might need to be placed in different ENVY applications rather than
in the application in which the part was originally placed.

For example, if record ABC is used by Program1, then ABC is initially
included in the same application as Program1. Later, if Program2 is placed in
a different application in the sandbox and Program2 also uses record ABC,
then record ABC will be automatically moved from the application that
contains Program1 and placed in a new ApplicationNoden, where n is a
number to distinguish different application nodes.

Identifying missing parts
The MSL Migration Assistance Tool also helps you identify parts that are
missing. For example, if you migrate Program1 and it has record DEF defined
in its Tables and Additional Records List, record DEF might not exist
anywhere in the MSL concatenation sequence. In this case, the record DEF is
temporarily included in the same application as Program1, but is identified
with the notation Not Found in the VAGen Parts pane. You can create an
application called MyNotFoundApp and move the missing parts to that
application as you migrate parts to the sandbox. Alternatively, the MSL
Migration Assistance Tool moves any missing parts that are included in an
application being committed to ENVY to a NotFoundApp during the commit
process. This is because ENVY does not support empty parts.

You can create a list of the missing parts and write the list to the System
Transcript window. From the System Transcript, you can save to a file or print
the list.

Other sandbox functions
From the VG Part Prerequisites View window, you can perform the following
tasks:
v Create a new application. If you have not previously created a

CommonDataApp by moving data items, records, and tables to the sandbox,
you might decide to create one to contain shared data items and records
that you discover when they are moved to ApplicationNodes as you
migrate programs and views.

v Mark an application unexplodable.Marking an application unexplodable means
that if parts in this application are used by a program that is moved to the
sandbox later, they are not moved to a new, shared ApplicationNode. For
example, if you have a CommonDataApp that contains all your common data
items, records, and tables, you should mark it as unexplodable so that these
common parts are not continually moved to new ApplicationNodes as you
migrate other programs.

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 251

v Collapse an application into another application. If you decide that two
separate applications would be more useful if they were combined into a
single application, the collapse function allows you to merge one
application into the other.

v Rename an application if you change your mind about the name.
v Check the consistency of an application to ensure that all required

applications are specified.
v Normalize an application to ensure that only the applications that are

needed are listed as required applications. This avoids unnecessary
prerequisites being created in ENVY and is most beneficial when views
(GUIs) are being migrated.

v Change the required applications for an application.
v When you are satisfied with the organization of your applications, you can

commit them to ENVY. This creates the applications, classes, and VAGen
parts in ENVY. When a GUI (view) in one application uses an embedded or
external GUI in another application, the prerequisites for the ENVY
application are also established.
If you have modified an application that is already in ENVY, the commit
process creates a new edition of the application and any affected classes
and VAGen parts. New classes and VAGen parts are created within the
application as needed.

Resetting the MSL Migration Assistance Tool sandbox

You might want to migrate one subsystem, work with it for a while in ENVY
to gain some experience, and then migrate your other subsystems. If you do
this, you need to reset the MSL Migration Assistance Tool from ENVY to
reflect the parts that are currently in ENVY. For example, if you added any
new parts to ENVY, these new part names might also exist in an MSL that
you want to load into the sandbox for migration to ENVY. These parts in the
MSL would thus need to be treated as duplicate parts.

Use these steps to load applications into the sandbox from ENVY:
1. From the VisualAge Organizer window, load into your image any

applications (such as your common applications) that you need to have in
the sandbox when you migrate your new MSLs.
Alternatively, from the Configuration Maps Browser, load the
configuration maps that contain the applications you need in your image.

2. From the MSL Migration Part List window, select the ENVY App
Selection push button.
If there are applications already in the sandbox, a message is displayed
asking if the applications can be deleted. By deleting the applications
currently in the sandbox (from your last migration operation), you can

252 VisualAge Generator: Migration Guide

ensure that you start from a consistent set of applications (all loaded from
MSLs or all from ENVY). If you choose not to delete the applications, your
new selections are added to the existing sandbox list.

3. After you respond Yes or No to the message about existing applications, a
Selection Required window appears. In this window, select the
applications from your image that you want to have in the sandbox when
you continue your migration with your other subsystems. For example, in
most situations, you will want to load your common applications. Loading
common applications avoids the MSL Migration Assistance Tool
identifying these common parts as Not Found when you migrate your
other subsystems.

4. From the MSL Migration Part List window, select MSL Library Selection
to load into the sandbox the next group of MSLs that you want to migrate.

Notes:

1. When applications are loaded into the sandbox from ENVY, the timestamp
for their parts in the sandbox reflects the timestamp of the parts in your
ENVY image, not the timestamp of the original MSL member. Therefore,
the Last Migration Library Timestamp also reflects the timestamp from
ENVY.

2. When applications are loaded into the sandbox from ENVY, there is no
analysis to determine if these applications use any parts that have not yet
been found.

3. You cannot load an application into the sandbox from your ENVY image
in the following situations:
v After migration to ENVY, you added a nonvisual part or a Smalltalk

class.
v After migration to ENVY, you added parts for VisualAge Generator

control information (generation options, linkage table, resource
associations, bind control commands, or linkage editor control
statements).

If you try to load applications that have been changed in these ways, you
will receive a message saying:
Unsuccessful in reading ENVY app into tool

When you receive this message, the System Transcript window lists the
parts that prevent the application from being loaded into the sandbox. To
load the application into the sandbox, you must first remove the classes
that are causing the problem.

If the application and the class are already versioned, use the following
steps:
a. Open a new edition for the application.
b. Unload the class.

Chapter 26. The MSL Migration Assistance Tool on Smalltalk 253

c. Load the application into the sandbox.
d. Reload the original application back into your image (so that it is in

your image when you version and release classes after committing the
next set of applications in the sandbox).

If the application and the class are not versioned yet, use the following
steps:
a. Version the class.
b. Unload the class.
c. Load the application into the sandbox.
d. Reload the class (so that it is in your image when you version and

release classes after committing the next set of applications in the
sandbox).

254 VisualAge Generator: Migration Guide

Chapter 27. Migrating production and work-in-progress
MSLs to VAGen 4.0 on Smalltalk

Your organization might have many MSLs, each used for different purposes.
For example, your Database Administrator might be responsible for
maintaining one MSL that contains the data item and SQL row record
definitions. You might have MSLs that reflect the code that is currently in
production, and other MSLs contain the changes that are in the process of
being made. These MSLs containing changes include the developers’
read/write MSLs, staging MSLs, system test MSLs, and acceptance test MSLs.
These MSLs containing changes will be referred to in this document as
work-in-progress MSLs.

In general, for a system or subsystem, you should migrate your production
MSLs first and then migrate your work-in-progress. There are different
recommended techniques for migrating production and work-in-progress
MSLs.

Migration of your production MSLs involves using the MSL Migration
Assistance Tool. The MSL Migration Assistance Tool helps you structure your
VisualAge Generator code into ENVY applications by using the sandbox
approach explained in “Chapter 26. The MSL Migration Assistance Tool on
Smalltalk” on page 241. This is easier than using VAGen Import for external
source format files and then trying to rearrange the parts into ENVY
applications.

Migration of your work-in-progress MSLs varies depending on the number of
new members in the MSLs:
v If all (or most) members already exist in the production MSLs, you

arranged the parts into applications when you migrated your production
MSLs. Therefore, to migrate your work-in-progress MSLs you can use
VAGen Import to import the external source format files directly into
ENVY.
You can use either of the following selection paths to access VAGen Import:
– From the Applications menu in the VisualAge Organizer window, select

Import/Export and then VAGen Import.
– From VAGen Parts menu in the VisualAge Organizer window, select

Import/Export and then VAGen Import.

Note: While other references in this book to VAGen Import only describe
access through the VAGen Parts menu, both paths are usually valid.

© Copyright IBM Corp. 1997, 1999 255

VAGen Import allows you to specify that each part in the external source
format file is to be placed in the same ENVY application in which it is
already defined. This preserves the structure of your ENVY applications
that you created using the MSL Migration Assistance Tool.

v If you have many new members that did not exist in the production MSLs,
you need to assign these members to applications. For a large number of
new members, it is easier to use the MSL Migration Assistance Tool to
migrate your work-in-progress MSLs.

The techniques for migrating production and work-in-progress MSLs are
explained in:
v “Production MSLs”.
v “Work-in-progress MSLs” on page 261.

You might want to migrate one subsystem, work with it in ENVY for a while
and then migrate your remaining subsystems. To do this, you need to reset
the MSL Migration Assistance Tool from ENVY so that any changes you have
made to previously migrated parts is reflected in the sandbox. This is
described in “Resetting the MSL Migration Assistance Tool sandbox” on
page 252.

Production MSLs

Migrating production MSLs involves the following general steps:
1. If you are migrating from Cross System Product, do the following:
v Export external source format files for each production MSL.
v Download the external source format files to the workstation.
v Use the MSL Migration Assistance Tool to create an MSL directory

structure on the workstation.
2. If you are migrating from previous versions of VisualAge Generator and

continuing to use the OS/2 development environment, your MSLs should
already exist on the workstation or LAN.

3. If you are migrating from previous versions of VisualAge Generator and
changing to use the Windows NT development environment, you must:
v Export external source format files for each production MSL.
v Convert the external source format files to the Windows NT code page

as described in “Changing from OS/2 to Windows NT” on page 298.
v Use the MSL Migration Assistance Tool to create an MSL directory

structure on the workstation.
4. Move parts into the sandbox as described in “Techniques for moving parts

to the sandbox” on page 257.
5. Commit the applications in the sandbox to ENVY.

256 VisualAge Generator: Migration Guide

6. In ENVY, do the following:
v Version and release the parts.
v Version the applications.
v Create configuration maps that reflect the code that is in your

production system.
v Package the views and generate the programs. Then test to be sure that

what you migrated matches your production code.

Techniques for moving parts to the sandbox
There are three basic techniques that can be used to move parts into the
sandbox. The choice partly depends on how clean your MSLs are in terms of
the following:
v There are no missing parts
v All code is currently used
v There are no duplicates

Each of the three techniques involves using the MSL Migration Assistance
Tool and migrating only the MSLs that contain the production level code. The
three techniques are described in the following sections:
v “All data items, records, and tables are used”
v “All records and tables are used” on page 258
v “Some records and tables might not be used” on page 259

“Considerations for the migration techniques” on page 259 provides
information that applies to all three techniques.

All data items, records, and tables are used
If you know the data items, records, and tables are all actually being used,
move the parts to the sandbox in the following order:
1. Data items
2. Records and tables
3. Mark the applications created for data items, records, and tables as

unexplodable, as described in “Other sandbox functions” on page 251.
4. Programs and GUI applications — their associates that have not yet been

moved will be moved to the sandbox with them
5. Any processes, statement groups, functions, maps, map groups, and PSBs

that are no longer used or that are not used by the current MSL
concatenation.

This technique has the advantage of creating the fewest ApplicationNodes
when common parts are discovered (see “Identifying common code” on
page 250). Because all data items are migrated first, followed by all records

Chapter 27. Migrating production and work-in-progress MSLs to VAGen 4.0 on Smalltalk 257

and tables, this technique assumes that all data items, records, and tables are
actually used. If this is not the case, there is the disadvantage of migrating
parts to ENVY that are never used.

This technique works well if you have an MSL that contains all your common
global data items, records, and tables and you know that all these parts are
actually used. This might occur if a database administrator maintains the MSL
that contains the common global data items, records, and tables.

All records and tables are used
If you know that all records and tables are used, but are not sure whether all
the data items are used, move the parts to the sandbox in the following order:
1. Records and tables — their associated data items will be moved to the

sandbox with them
2. Mark the application(s) created for the records and tables as unexplodable

3. Move any remaining data items to an application called MyUnusedItemsApp.
Do not mark this application as unexplodable so items that are used directly
by applications (for example, called parameters) will be automatically
moved to a new ApplicationNode. After the data items are identified, you
can then move them to the application containing records and tables. What
remains in MyUnusedItemsApp after everything is moved to the sandbox are
all the global data items that are no longer used by this MSL
concatenation.
If you will be migrating other MSL concatenation sequences that might
use these data items, do not commit MyUnusedItemsApp to ENVY until you
have migrated the other MSL concatenations. Waiting to commit enables
you to move data items that are used by the later concatenation sequences
to other applications in the sandbox.

4. Programs and GUI applications — their associates that have not yet been
moved will be moved to the sandbox with them

5. Any processes, statement groups, functions, maps, map groups, and PSBs
that are no longer used or that are not used by the current MSL
concatenation

This technique has the advantage of minimizing the ApplicationNodes that
are created automatically. Some data items that are initially thought to be
unused might be moved to an ApplicationNode. For example, this occurs
when the only use of a global data item is as a called parameter for an
application.

Because records and tables are migrated first, this technique assumes that all
records and tables are actually used. If this is not the case, there is the
disadvantage of migrating records and tables (and their associated data items)
that are never used.

258 VisualAge Generator: Migration Guide

Some records and tables might not be used
If you are not sure whether some records and tables are currently used, move
the parts to the sandbox in the following order:
1. Programs and GUI applications — their associates will be moved to the

sandbox with them
2. Whatever is left — this might involve data items, records, tables,

processes, statement groups, functions, maps, map groups, and PSBs that
are no longer used or which are not used by the current MSL
concatenation

This technique has the advantage of identifying any parts that are no longer
used for this MSL concatenation sequence. It has the disadvantage of
potentially creating many ApplicationNodes during migration. This is because
data items, records, and tables tend to be shared among many applications.
You will be identifying common data items, records, and tables when you
move applications to the sandbox rather than taking care of them prior to
dealing with programs and GUIs as described in the other techniques.

Considerations for the migration techniques
The following notes apply to all three techniques:
v If you have naming conventions that help you identify common parts, you

can use your naming conventions to help you separate parts into ENVY
applications. For example, if records starting with V* indicate a common
record and records starting with W* belong to a program, you might choose
to only move common records (the ones starting with V*) when moving
records and tables to the sandbox using the first two techniques.

v If you plan to put GUIs and their corresponding server programs into
different ENVY applications, consider moving the server programs to the
sandbox first. This places any 4GL part that is shared between the GUI and
the server program in the same application as the server program. Before
you move the GUIs to the sandbox, set the applications that contain the
server programs based on how you want to handle the shared 4GL parts.
Set the applications as:
– explodable if you want to identify the shared 4GL parts — for example, if

you want to put the shared parts into a common code application.
– unexplodable if you want to keep the shared 4GL parts with the server

programs.
v When moving a GUI to the sandbox, the MSL Migration Assistance Tool

includes its associates and also any external GUIs and their associates. This
is to ensure that the prerequisites for the GUI are set according to
VisualAge Smalltalk rules. (VisualAge Smalltalk requires an ENVY
application that contains a View Wrapper part to list the application that
contains the View Wrapper part as a prerequisite. For example, if GUIA
uses external GUIB and GUIB is not already in the sandbox, when you
migrate GUIA, GUIB will also be put into the sandbox in the same

Chapter 27. Migrating production and work-in-progress MSLs to VAGen 4.0 on Smalltalk 259

application as GUIA. If GUIB is already in the sandbox, the application that
contains GUIA specifies the application that contains GUIB as a
prerequisite.)
If you have a menu system in which the menu GUI includes external GUIs
for all your subsystems, do not migrate the menu GUI first. Migrating the
menu GUI first would cause your entire system to be moved to the
sandbox at the same time. This results in a very large application. Instead
do the following:
– Move the GUI for each subsystem to a separate ENVY application.
– Mark the ENVY applications for the subsystems as unexplodable.
– Move the menu GUI. The menu GUI will then include the applications

created for the subsystems as prerequisites.

If you have several layers of menus, you could start at the lowest level
menus or at one of the intermediate levels of menus.

See “Migrating GUIs” on page 226 for more details about what happens
when you migrate GUIs to views.

v The order in which you migrate parts to the sandbox affects how parts are
assigned to applications. For example, in one small test case, GUIs were
moved to the sandbox first and then the server programs. The same test
was repeated, but this time moving the programs to the sandbox first. In
both tests, the first application was marked as unexplodable. The results, in
terms of number of parts, were:

Table 19. Number of Parts

Application Number of Parts - Moving
GUIs First

Number of Parts - Moving
Programs First

GuiApplication 110 86

ServerProgram 117 141

In both cases, 227 parts were moved to the sandbox. The difference is due
to which application contains the parts that are shared by the GUIs and
server programs.

v For each MSL or each MSL concatenation sequence, be sure to check that
everything in the MSL was moved to the sandbox. Just migrating all the
GUIs and programs does not guarantee that everything in the MSL was
migrated — there might be records, tables, data items, and so on that are
used by applications in other MSL concatenation sequences but are not
used in the current concatenation sequence. You can use the toggle button
Only parts not processed on the Part List Selection Criteria View window
to limit the list of VAGen parts to those that have not yet been processed by

260 VisualAge Generator: Migration Guide

the MSL Migration Assistance Tool. For each part that has not been
processed, you need to decide whether it needs to be migrated or is no
longer used.

v For each MSL concatenation sequence:
– After committing the applications to ENVY, package the views and

generate the programs, map groups, and tables. Then test to be sure that
what you migrated matches your production code. For programs, you
might want do the following:
- Generate each program without any of its tables
- Generate each table

This avoids generating common tables multiple times.

If some programs or tables cannot be generated or if some views cannot
be packaged, then this highlights an area where there are problems in
migration. To determine whether the problem is in the organization of
the ENVY applications or whether the problem is in the original source
code, try generating the failing GUI, program, map group, or table on
the original Cross System Product or VisualAge Generator system using
your original MSLs.

Notes:

1. Any programs for the C++ target environments must be regenerated
for VisualAge Generator 4.0. There is no coexistence of C++ runtime
services between VisualAge Generator 2.2 and 4.0. In addition, it is
strongly recommended that you regenerate all programs for the
COBOL environments and package all views to be sure that you
migrated the correct level of code.

2. For CICS OS/2, the default parmform option in the linkage table was
COMMDATA. With VisualAge Generator 4.0, the new option
COMMPTR is the default. Therefore, if you never specified linkage
tables for CICS OS/2, you might need a linkage table now.

– Test the generated programs.

Work-in-progress MSLs

After you have completed the following tasks, you are ready to migrate your
work-in-progress MSLs:
v Migrated your production MSLs using the MSL Migration Assistance Tool
v Versioned and released the parts (views and VAGen part classes)
v Versioned the applications
v Created configuration maps for your production level programs
v Generated the programs and packaged the views
v Tested your migrated production level code

Chapter 27. Migrating production and work-in-progress MSLs to VAGen 4.0 on Smalltalk 261

The process for migrating your work-in-progress MSLs assumes you have
separate MSLs for staging, system test, and acceptance test as shown in
Figure 31.

Depending on the number of new members in your work-in-progress MSLs,
use one of the following techniques:
v If there are no (or very few) new members in your work-in-progress MSLs,

see “Using VAGen Import” on page 263.
v If there are many new members, see “Using the MSL Migration Assistance

Tool” on page 264.

Figure 31. Sample MSL Concatenation for Complete Production MSL and Deltas for Test

262 VisualAge Generator: Migration Guide

Using VAGen Import
If you have no (or very few) new members in your work-in-progress MSLs,
you can migrate them using VAGen Import by working backward through
your MSL concatenation sequence from the production MSLs, and doing the
following:

1. Open editions of the applications so that you will be able to import into
them.

2. Export external source format files for the acceptance test (ACCTEST)
MSL.

3. Use VAGen Import to import the external source format files into ENVY,
after selecting the Defined application radio button. This causes parts
that are in the external source format files that already exist in ENVY to
be imported into the same application in which they are already defined.

4. Version and release the classes (VAGen part classes and views).
5. Version the ENVY applications. This provides a base line for the code

that was in acceptance test.
6. Create a configuration map that contains the version of the applications

that are in acceptance test.
7. Package the views and generate the programs, map groups, and tables

that have changed for the acceptance test level. Then test to be sure that
everything migrated successfully at this level.

8. If there are additional levels of test MSLs, repeat the above steps for each
level of testing, working backward through your MSL concatenation
sequence. For example, for the MSLs shown in Figure 31 on page 262, you
should do the SYSTEST MSL next, followed by the STAGING MSL.

9. After all work-in-progress MSLs have been migrated, other than the
developers’ read/write MSLs, assign ownership of the configuration
maps, applications, and classes.

10. Developers can then migrate their read/write MSLs by doing the
following:
v Open editions of the applications.
v Export external source format files for their read/write MSL.
v Use VAGen Import to import the external source format files into

ENVY after selecting the Defined application radio button. This causes
parts that are in the external source format files that already exist in
ENVY to be imported into the same application in which they are
already defined.

v The developers can then continue with their normal development and
test work and wait to version and release the classes until their testing
is completed.

Chapter 27. Migrating production and work-in-progress MSLs to VAGen 4.0 on Smalltalk 263

Using the MSL Migration Assistance Tool
If you have many new members in your work-in-progress MSLs, it might be
easier to use the MSL Migration Assistance Tool so that you have the same
flexibility to arrange parts into ENVY applications as you did when you
migrated your production MSLs. To migrate your work-in-progress MSLs
using the MSL Migration Assistance Tool, you have the following options:
v If you have not made any changes to the parts you have committed to

ENVY and your sandbox is still available, you can use the same image and
sandbox that you previously used during migration. The advantage of this
is that the Last Migration Library Timestamp reflects the timestamp from
the MSL(s) that you previously migrated.

v If you have made any changes to the organization of your parts within
ENVY or you have added or deleted parts from ENVY, then you must
reload the sandbox as described in “Resetting the MSL Migration Assistance
Tool sandbox” on page 252.

All the functions of the MSL Migration Assistance Tool are available to you to
assist in migrating your work-in-progress.

264 VisualAge Generator: Migration Guide

Chapter 28. VAGen on Smalltalk case studies based on
various MSL structures

There are several common ways that you might have organized your MSLs.
These include the following techniques:
v Techniques for Production MSLs

– “Multiple subsystems with no duplicates” on page 267
– “Multiple subsystems with controlled duplicates” on page 269
– “Separate production MSLs for each developer” on page 272
– “MSLs that contain unintended duplicates” on page 277
– “MSLs containing code from VisualAge Generator Templates or

BW*Wizard” on page 278
v Techniques for Work-in-Progress MSLs

– “Complete set of MSLs for production and deltas for test” on page 282
– “Complete sets of MSLs for test and production” on page 285
– “MSLs from marketing or other demonstrations” on page 289

Combinations of the above techniques might be used in your organization. In
particular, one of the techniques for production MSLs might be combined
with one of the techniques for work-in-progress MSLs.

In addition, because Cross System Product and VisualAge Generator had no
formal library management, it is common to find unintended duplicates or
even triplicates of members in MSLs. An example of this is described in
“MSLs that contain unintended duplicates” on page 277.

Understanding the diagrams and terminology

This chapter uses diagrams to represent MSL concatenation sequences. These
diagrams are explained in “MSL structure diagrams”.

This chapter also uses the advance command in explaining how some of the
MSL concatenation sequences were used. The advance command, which was
not supported in Cross System Product, is explained in “Advance command
in VisualAge Generator” on page 266.

MSL structure diagrams
Figure 32 on page 266 shows a diagram of an MSL structure similar to the
ones that are used in the rest of this chapter.

© Copyright IBM Corp. 1997, 1999 265

In Figure 32, each box represents a different MSL. The four MSLs are
SUBSYS1, SUBSYS2, COMMON, and DBA. The lines between the boxes
represent MSL concatenation sequences. Figure 32 shows two MSL
concatenation sequences. The first concatenation sequence is SUBSYS1,
followed by COMMON and then DBA. The second concatenation sequence is
SUBSYS2, followed by COMMON and then DBA.

Advance command in VisualAge Generator
Releases of VisualAge Generator prior to 3.0 provided an advance command
that was not available in Cross System Product. Advance moves members
from one MSL of a concatenation (the source) to the next MSL of the
concatenation sequence (the target). After a member is moved to the target
MSL, it is deleted from the source MSL. In Figure 32, you can advance a
member from SUBSYS1 to COMMON, from SUBSYS2 to COMMON, and
from COMMON to DBA. However, you cannot advance a member from
SUBSYS1 to DBA.

For Cross System Product, the equivalent function is done by the following
steps:
1. Concatenate the target MSL first (read/write) and the source MSL second

(read-only).
2. Copy the members from the source MSL to the target MSL.
3. Change the MSL concatenation sequence so the source MSL is first

(read/write).
4. Delete the members from the source MSL.

Figure 32. Sample MSL Concatenation

266 VisualAge Generator: Migration Guide

In the sections that follow, advance is used to describe how members are
moved from one MSL to the next.

Multiple subsystems with no duplicates

The scenario for separate MSLs for each subsystem has the following MSL
structure:

In this scenario, there are no duplicate members. Each member exists in one
and only one MSL.

Recommendations
Consider migrating the MSLs to ENVY as follows:

1. Verify that there are no duplicates in the MSLs. If there are duplicates,
either resolve the duplicates by deleting the obsolete version of the
member or see one of the following sections:
v “Multiple subsystems with controlled duplicates” on page 269
v “Separate production MSLs for each developer” on page 272
v “MSLs that contain unintended duplicates” on page 277

2. Move the parts in the DBA and COMMON MSLs to the sandbox. Use a
single concatenation sequence for these two MSLs.

3. Commit the applications created from the DBA and COMMON MSLs to
ENVY.

4. Version and release the classes (VAGen part classes and views).

Figure 33. Sample MSL Concatenation for Multiple Subsystems with no Duplicates

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 267

5. Version the applications created from the DBA and COMMON MSLs.
6. Create a configuration map for the ENVY applications created from the

DBA and COMMON MSLs.
7. Version this configuration map.
8. Keep the applications created from the DBA and COMMON MSLs in the

image and the sandbox. This enables the MSL Migration Assistance Tool
to specify these applications as required applications where appropriate
when migrating the subsystems.

9. Migrate one of the subsystems (for example, SUBSYS1).
10. Commit this group of applications to ENVY.
11. Version and release the classes (VAGen part classes and views).
12. Version the applications created from the SUBSYS1 MSL.
13. Create a configuration map for the ENVY applications created from the

SUBSYS1 MSL. This configuration map should specify as a prerequisite
the configuration map created for the applications created from the DBA
and COMMON MSLs.

14. Version this configuration map.
15. Package the views and generate the programs moved to ENVY from the

SUBSYS1 and COMMON MSLs. Test the code migrated for Subsystem 1.
16. Migrate the next subsystem (SUBSYS2). The ENVY applications created

from the DBA, COMMON, and SUBSYS1 MSL can all be available in the
image so they can be specified as prerequisites where appropriate.

17. Commit this group of applications to ENVY.
18. Version and release the classes (VAGen part classes and views).
19. Version the applications created from the SUBSYS2 MSL.
20. Create a configuration map for the ENVY applications created from the

SUBSYS2 MSL. This configuration map should specify as a prerequisite
the configuration map created for the applications created from the DBA
and COMMON MSLs.

21. Version this configuration map.
22. Package the views and generate the programs moved to ENVY from the

SUBSYS2 MSL. You should not need to generate the programs or package
the views in COMMON again unless SUBSYS2 is for a different target
environment. Test the code migrated for Subsystem 2.

23. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 282
v “Complete sets of MSLs for test and production” on page 285
v “MSLs from marketing or other demonstrations” on page 289

268 VisualAge Generator: Migration Guide

Because there are no duplicate parts, the configuration maps for both
SUBSYS1 and SUBSYS2 can be loaded into the same ENVY image.

Multiple subsystems with controlled duplicates

The scenario for separate MSLs for each subsystem, but with controlled
duplicates has the following MSL structure:

Although the scenario in Figure 34 appears the same as the scenario in
Figure 33 on page 267, the Figure 34 scenario is different in that the same
member might exist in the SUBSYS1, SUBSYS2, and SUBSYSx MSLs. For
example, the COMMON MSL might contain a message handling program that
obtains the messages from a VisualAge Generator table. Each subsystem has
its own VisualAge Generator message table.

This results in duplicates, but only intentional duplicates, between the
subsystems. There are no duplicates between a subsystem and the COMMON
MSL.

For CICS and IMS target environments, this assumes that the subsystems run
in separate regions — duplicate program, table, or map group names are not
permitted in the same region.

Recommendations
Consider migrating the MSLs to ENVY as follows:

Figure 34. Sample MSL Concatenation for Multiple Subsystems with Controlled Duplicates

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 269

1. Determine the list of members that have been intentionally duplicated
between the subsystems. Ensure that there are no duplicates between the
DBA or COMMON MSLs and any of the subsystems.

2. Move the parts in the DBA and COMMON MSLs to the sandbox. Use a
single concatenation sequence for these two MSLs. There might be a
number of parts marked as Not Found because each subsystem contains
its own version of the part. Be sure that these parts are included in the
subsystem MSLs. For example, if each subsystem has its own message
table, the table would not be in either the DBA or COMMON MSL and
would be reported as Not Found when you migrate these two MSLs.

3. Commit the applications created from the DBA and COMMON MSLs to
ENVY.

4. Version and release the classes (VAGen part classes and views).
5. Version the applications created from the DBA and COMMON MSLs.
6. Create a configuration map for the ENVY applications created from the

DBA and COMMON MSLs.
7. Version this configuration map.
8. Keep the applications created from the DBA and COMMON MSLs in the

image and the sandbox. This enables the MSL Migration Assistance Tool
to specify these applications as required applications where appropriate
when migrating the subsystems.

9. Migrate one of the subsystems (for example, SUBSYS1).
v Some of the intentional duplicates might have a Status of Not Found on

the MSL Migration Part List window. For example, if an error
handling program from COMMON uses different message tables for
each subsystem, the message table would be identified as a Not Found
part until you migrate it to the sandbox for the first subsystem.

v Put the intentional duplicates for this subsystem into one or more
ENVY applications that have a name that identifies them as duplicates.
For example:
xxxyyyyyyzzzzzz

where:

xxx Is the subsystem ID.

yyyyyy
Is something that indicates a duplicate (such as Duplicate,
Overwrite, Special, Subsystem).

zzzzzz Is what is being duplicated (such as Messages, MenuTable,
HelpText).

v Mark the applications created for the intentional duplicates as
unexplodable.

270 VisualAge Generator: Migration Guide

v Move the other parts from this MSL concatenation to the sandbox.
10. Commit this group of applications to ENVY.
11. Version and release the classes (VAGen part classes and views).
12. Version the applications created from the SUBSYS1 MSL.
13. Create a configuration map for the ENVY applications created from the

SUBSYS1 MSL. This configuration map should specify as a prerequisite
the configuration map created for the applications created from the DBA
and COMMON MSLs. Include the ENVY applications created for this
subsystem’s intentional duplicates in the configuration map.

14. Version this configuration map.
15. Package the views and generate the programs moved to ENVY from the

SUBSYS1 and COMMON MSLs. Test the code migrated for Subsystem 1.
16. Prepare to migrate the next subsystem by doing the following:

v From the VisualAge Organizer window, unload the applications
created for SUBSYS1 from the image. Keep the applications created
from DBA and COMMON in the image.

v From the VG Part Prerequisites View window, delete the applications
created for SUBSYS1 from the VG Part Prerequisites View window so
that duplicates between Subsystem 1 and Subsystem 2 will not be
detected. Before you can delete an application, you must first remove it
from the Required Applications list of all other applications in the
sandbox.

17. Move the next subsystem (SUBSYS2) to the sandbox. Use the same
process that is described in 9 on page 270.

18. Commit this group of applications to ENVY.
19. Version and release the classes (VAGen part classes and views).
20. Version the applications created from the SUBSYS2 MSL.
21. Create a configuration map for the ENVY applications created from the

SUBSYS2 MSL. This configuration map should specify as a prerequisite
the configuration map created for the applications created from the DBA
and COMMON MSLs.

22. Version this configuration map.
23. Package the views and generate the programs moved to ENVY from the

SUBSYS2 MSL. If the migration of Subsystem 2 replaced any parts used
by the COMMON code, you would need to package the views or
generate the programs created from COMMON again. For example, if
each subsystem has its own version of Record1, then any program created
from COMMON that used Record1 would need to be generated for
Subsystem 2. Similarly, any view that uses Record1 would need to be
packaged again. Test the code migrated for Subsystem 2.

24. Migrate the work-in-progress MSLs using one of the following
techniques:

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 271

v “Complete set of MSLs for production and deltas for test” on page 282
v “Complete sets of MSLs for test and production” on page 285
v “MSLs from marketing or other demonstrations” on page 289

Either the configuration map for SUBSYS1 or for SUBSYS2 can be loaded into
an ENVY image, but both cannot be loaded at the same time.

Separate production MSLs for each developer

The scenario for separate production MSLs for each developer has the
following MSL structure:

Although the scenario in Figure 35 appears very similar to Figure 34 on
page 269, the situation in Figure 35 is different in that each subsystem was
written by a different developer without regard to what the other developers
were doing. In this scenario, the same member can exist in the COMMON,
SUBSYS1, and SUBSYS2 MSLs. This is because developers are free to modify
the common code to suit their own needs. Thus some developers might use
the common member unchanged (and still in COMMON) and other
developers might each have a different version of the common member. This
results in lots of duplicate members, all at different and very likely conflicting
levels of code.

There should be a core set of common code, without duplicates in any MSL.
However, the following situation could also arise:

Figure 35. Sample MSL Concatenation when Each Subsystem Replaces Common Code

272 VisualAge Generator: Migration Guide

SUBSYS1 MSL - members A, B, C from COMMON: D
SUBSYS2 MSL - members B, C from COMMON: A, D
SUBSYS3 MSL - members A from COMMON: B, C, D
SUBSYS4 MSL - members C from COMMON: A, B, D
COMMON MSL - members A, B, C, D

In this situation, the COMMON MSL would need to create the following
ENVY applications:
CommonCore: part D
CommonA: part A
CommonB: part B
CommonC: part C

As you can see from this small example, determining how the members could
be partitioned efficiently might be quite difficult.

Recommendations
How you migrate when each subsystem has been able to modify the
COMMON and DBA code depends on whether you want to define a core set
of code that no one is allowed to modify or whether you want each
subsystem to have its own version of all code and thus work on a stand-alone
basis.

Creating a core common set of applications
If you want to change the philosophy that each developer can modify the
common code, consider migrating the MSLs into ENVY as follows:

1. Determine the core set of members from the COMMON and DBA MSLs
that none of the developers have modified for any subsystem.

2. Build an external source format file containing only this core set of
members.

3. Use the MSL Migration Assistance Tool to create an MSL called CORE for
this external source format file.

4. Build a second external source format file containing all the members
from COMMON and DBA that are not in the core set (members that are
changed in one or more subsystems).

5. Use the MSL Migration Assistance Tool to create an MSL called
CHANGED for this external source format file.

6. Move the parts from the CORE MSL to the sandbox. There might be a
number of parts marked as Not Found because individual subsystems
have modified these parts.

7. Commit the applications created from the CORE MSL to ENVY.
8. Version and release all the classes (VAGen part classes and views).
9. Version the applications.

10. Keep the applications created from the CORE MSL in the image and the
sandbox. This enables the MSL Migration Assistance Tool to specify these

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 273

applications as required applications where appropriate when migrating
the subsystems. This also avoids associated parts being marked as Not
Found if they are part of the core common code.

11. Move the parts for the SUBSYS1 MSL into the sandbox. Include the
CHANGED MSL at the bottom of the concatenation sequence. This
enables you to locate any associated parts that are not included in the
CORE MSL, but which were not modified for SUBSYS1. Do not add or
replace any parts in the applications created from the CORE MSL.

12. Commit the applications created from the SUBSYS1 and CHANGED
MSLs to ENVY.

13. Version and release all the classes (VAGen part classes and views).
14. Version the applications.
15. Create a configuration map that reflects the current version of the

applications. This configuration map represents the parts that existed for
Subsystem 1.

16. Version this configuration map.
17. Package the views and generate the programs moved to ENVY for

Subsystem 1. Test the code migrated for Subsystem 1.
18. Prepare to migrate the next subsystem by doing the following:

v From the VisualAge Organizer window, unload the applications
created for SUBSYS1 and CHANGED from the image. Keep the
applications created from the CORE MSL in the image.

v From the VG Part Prerequisites View window, delete the applications
created for SUBSYS1 and CHANGED from the VG Part Prerequisites
View window so that duplicates between Subsystem1 and Subsystem 2
will not be detected. Before you can delete an application, you must
first remove it from the Required Applications list of all other
applications in the sandbox.

19. Move the next subsystem (SUBSYS2) to the sandbox. Include the
CHANGED MSL at the bottom of the concatenation sequence. This
enables you to locate any associated parts that are not included in the
CORE MSL, but which were not modified for SUBSYS2.
Be sure the applications created from the CORE MSL are loaded into the
image and the sandbox. This avoids associated parts being marked as Not
Found if they are part of the core common code. Do not add or replace
any parts in the applications created from the CORE MSL.

20. Commit the applications created from the SUBSYS2 and CHANGED
MSLs to ENVY.

21. Version and release all the classes (VAGen part classes and views).
22. Version the applications.

274 VisualAge Generator: Migration Guide

23. Create a configuration map that reflects the current version of the
applications. This configuration map represents the parts that existed for
Subsystem 2.

24. Version this configuration map.
25. Package the views and generate the programs moved to ENVY for

Subsystem 2. If the migration of Subsystem 2 replaced any parts used by
the CORE code, you would need to package the views or generate the
programs created from CORE again. For example, if each subsystem has
its own version of Record1, then any program created from CORE that
used Record1 would need to be generated for Subsystem 2. Similarly, any
view that uses Record1 would need to be packaged again. Test the code
migrated for Subsystem 2.

26. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 282
v “Complete sets of MSLs for test and production” on page 285
v “MSLs from marketing or other demonstrations” on page 289

Creating stand-alone subsystems
If you want to each subsystem to have its own version of all code so its
developers can work on a stand-alone basis, consider migrating your MSLs to
ENVY as follows:

1. For the first subsystem, move parts to the sandbox using a concatenation
sequence of SUBSYS1, COMMON, and DBA. The concatenation sequence
should be the same concatenation sequence that you use to generate
programs for Subsystem 1.
If there are parts in COMMON and DBA that are not currently used by
Subsystem 1, consider putting them into an application called
xxxUnusedPartsApp, where xxx is the subsystem ID. Using this technique
means that the common definition of these unused parts will be available
in the set of applications for Subsystem 1.

2. Commit the applications created for Subsystem 1 to ENVY. If you think
that Subsystem 1 might need parts from xxxUnusedPartsApp in the future,
commit it to ENVY. The other subsystems will develop their own lists of
unused parts.

3. Version and release all the classes (VAGen part classes and views).
4. Version the applications.
5. Create a configuration map that reflects the current version of the

applications. This configuration map represents the parts that existed for
Subsystem 1.
If you created an xxxUnusedPartsApp, you can include it in the
configuration map if you think the parts are likely to be used in the

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 275

future or omit it from the configuration map if there are a large number
of parts or you do not expect them to be used in the future.

6. Version this configuration map.
7. Package the views and generate the programs moved to ENVY for

Subsystem 1. Test the code migrated for Subsystem 1.
8. Prepare to migrate the next subsystem by doing the following:
v From the VisualAge Organizer window, unload all the applications

created for Subsystem 1 from the image.
v From the VG Part Prerequisites View window, delete all the

applications created for Subsystem 1, including the applications created
from the COMMON or DBA MSLs and the xxxUnusedPartsApp

9. Move the next subsystem to the sandbox using a concatenation sequence
of SUBSYS2, COMMON, and DBA. The concatenation sequence should
be the same concatenation sequence that you use to generate programs
for Subsystem 2.

Note: This technique means that identical code for a part might exist in
the applications created for Subsystem 1 and Subsystem 2. This
occurs if both of these subsystems used the version of the part that
was previously in COMMON or DBA. However, some other
subsystem might have modified the part or the developers for
Subsystem 1 might need to have their own version of the part in
the future. This technique enables the developers of Subsystem 1
and Subsystem 2 to continue to develop in an independent
manner, without regard to how the other subsystem uses the part.

10. Commit the applications created for Subsystem 2 to ENVY.
11. Version and release all the classes (VAGen part classes and views).
12. Version the applications.
13. Create a configuration map that reflects the current version of the

applications. This configuration map represents the parts that existed for
Subsystem 2.

14. Version this configuration map.
15. Package the views and generate the programs moved to ENVY for

Subsystem 2. Because each subsystem has its own complete set of code,
you should generate all the programs and package all the views for
Subsystem 2. Test the code migrated for Subsystem 2.

16. Migrate the work-in-progress MSLs using one of the following
techniques:
v “Complete set of MSLs for production and deltas for test” on page 282
v “Complete sets of MSLs for test and production” on page 285
v “MSLs from marketing or other demonstrations” on page 289

276 VisualAge Generator: Migration Guide

MSLs that contain unintended duplicates

This scenario contains unintended duplicates. There are multiple subsystems,
with the following intended MSL structure:

Each member was intended to be in one and only one MSL. However, the
MSL structure contained the following:
v Some members were never advanced to the production MSLs; they were

still in the developer’s read/write MSLs even though the changes were
complete and were in the production load libraries.

v Some members that were shared between subsystems were not contained in
the COMMON MSL; they were in only one subsystem’s MSLs. For
example, this occurred for records and their associated global data items
that were passed when transferring between two subsystems. In this case
the real concatenation sequence was SYS1CODE, SYS1DATA, SYS2DATA,
and COMMON. In some cases several additional data MSLs were required
to generate a subsystem.

Figure 36. Sample MSL Concatenation when Using VisualAge Generator Templates

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 277

v Applications, processes, statement groups, and maps existed both in the
SYSnCODE and SYSnDATA MSL — with the same names. This was
because they were accidentally put into the wrong MSLs.

v The same members existed in multiple subsystems. For example, the same
process might appear in SYS1CODE, SYS3CODE and SYSnCODE.

v Two subsystems used a different COMMON MSL, called COMMON2.
COMMON2 contained 10 - 20 programs, as well as other members, that
were also included in COMMON.

Recommendations
Before attempting to migrate this set of MSLs, do the following:
v Be sure you know the real MSL concatenation sequences that are required

for generation. This will help to minimize the number of Not Found
members during migration. One possibility is to validate existing
applications in the MSLs prior to attempting migration to determine which,
if any, members are missing.

v Try to resolve as many duplicates as possible. One possibility is to use the
MSL Migration Assistance Tool for a trial migration to determine what
duplicates exist and which members are missing. Then go back to the
MSLs, make any corrections required to resolve duplicates, restore the
missing members, and correct any other errors in the parts.

v After you have resolved the problems, then migrate using the scenario that
best matches your new environment.

MSLs containing code from VisualAge Generator Templates or BW*Wizard

The scenario for VisualAge Generator Templates or BW*Wizard has the
following MSL structure:

278 VisualAge Generator: Migration Guide

Programs built with VisualAge Generator Templates or BW*Wizard are
imported into the MSL called BUILTMBR. Then the BUSLOGIC read/write
MSL is concatenated in front of the read-only BUILTMBR MSL and all business
logic changes are made in BUSLOGIC. The advantages of this technique are:
v The program can be built again from the template and imported into the

BUILTMBR MSL without destroying the business logic.
v If necessary, a comparison of the newly built member in BUILTMBR with

the old business logic version of the member can be done to determine if
any business logic changes are required to incorporate function that has
been added to the newly built member.

This same pairing of a business logic MSL and “built member” MSL can be
extended from the developer’s MSLs to the staging, test, and production
MSLs. In some cases, the separation of the business logic might be used for
the developer’s, staging, and test MSLs, but not be used for the production
MSLs.

The COMMON MSL contains any members that are used across subsystems.
There might also be a DBA MSL that contains data item definitions.

This example assumes that all the code in BUILTMBR and BUSLOGIC are for
a single subsystem called Subsystem 1. If you have multiple subsystems, you
would need to extrapolate the example for your situation.

Figure 37. Sample MSL Concatenation when Using VisualAge Generator Templates or BW*Wizard

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 279

Recommendations
Consider migrating the MSLs to ENVY as follows:

1. Move the parts from the COMMON MSL to the sandbox.

Note: If there is a DBA MSL, migrate it with the COMMON MSL in a
single concatenation sequence.

2. Commit the applications created from the COMMON MSL (and DBA
MSL if used) to ENVY.

3. Version and release all the classes (VAGen part classes and views). You
can use 1.0 (the default) as the version number.

4. Version the applications. You can use 1.0 (the default) as the version
number.

5. Create a configuration map that contains the applications created from
the COMMON MSL. If there was a DBA MSL, also include the
applications created from the DBA MSL.

6. Version this configuration map.
7. Keep the applications created from the COMMON MSL (and DBA MSL if

used) in the image and the sandbox. This enables the MSL Migration
Assistance Tool to specify these applications as required applications
where appropriate when migrating the subsystems.

8. Move parts from the BUILTMBR MSL to the sandbox.
9. Commit the applications created from the BUILTMBR MSL to ENVY.

10. Version and release all the classes (VAGen part classes and views). Name
the version to indicate that it is for parts built by the templates. For
example, you could use Built-1.0.

11. Version the applications. Name the version to indicate it is for parts built
by the templates. For example, you could use Built-1.0. Versioning the
application enables you to reload the level of code that was built by the
template without having to load each class individually.

12. If you might frequently need to load the level of code built from the
templates, create a configuration map that reflects the current version of
the applications. Version this configuration map, using a version of
Built-1.0.

13. Keep all the applications from the COMMON and BUILTMBR MSLs in
the sandbox and in your image. This enables you to replace parts in the
applications created from the BUILTMBR MSL.

14. Move the parts in the BUSLOGIC MSL to the sandbox. You might have
two types of parts in the business logic MSL:
v Parts that you added for business logic that were not originally built

by the templates. These parts will have blanks in the Duplicate and
Last Migration Library Timestamp columns. You can create new
applications for these parts or add them into an existing (committed)

280 VisualAge Generator: Migration Guide

application. If you add or change parts in an existing application, the
MSL Migration Assistance Tool marks the application as Modified and
you will be able to commit the application to ENVY again to put the
new parts into the ENVY library manager.

v Parts that were originally built for the templates that you modified for
business logic. These parts will have True in the Duplicate column and
the timestamp from the template-built MSL in the Last Migration
Library Timestamp column. Move these parts to the sandbox using
Handle Duplicate Parts and specifying that they should Replace
Existing parts. This causes each part to be placed in the same
application where it already exists. The MSL Migration Assistance Tool
marks the application as Modified and you will be able to commit the
application to ENVY again to put the new parts into the ENVY library
manager.

This technique preserves the application organization you created when
you migrated the BUILTMBR MSL, but to include the business logic
version of existing parts and any new parts that were not created by the
templates.

Note: If you do not have any new parts created for business logic in the
BUSLOGIC MSL, you can:
v Create an external source format file for the BUSLOGIC MSL.
v Use VAGen Import to import the external source format file and

create new editions of the changed parts. Select the Defined
application radio button to put the changed editions of the parts
into the applications in which they are already defined.

15. Commit any applications that were created or modified for the
BUSLOGIC MSL to ENVY.

16. Version and release all the classes (VAGen part classes and views). Name
the version to indicate that it is for parts changed for business logic. For
example, you could use BusLogic-1.1.

17. Version the applications. Name the version to indicate it is for parts
changed for business logic. For example, you could use BusLogic-1.1.

Note: Not all of the classes or applications will have new versions
created when you migrate the BUSLOGIC MSL. Only those classes
and applications modified for business logic will have a new
version.

18. Create a configuration map that reflects the current version of the
applications. This configuration map represents the actual system that
was contained in the concatenation sequence for the BUSLOGIC,
BUILTMBR, and COMMON MSLs.

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 281

This configuration map should include the BusLogic-1.1 version of the
applications created from the BUILTMBR and BUSLOGIC MSLs. This
configuration map should specify as a required map the configuration
map for the applications created from the COMMON (and DBA) MSL.

19. Version this configuration map using version BusLogic-1.1.
20. Package the views and generate the programs moved to ENVY. Test the

code.
21. Migrate the work-in-progress MSLs using one of the following

techniques:
v “Complete set of MSLs for production and deltas for test”
v “Complete sets of MSLs for test and production” on page 285
v “MSLs from marketing or other demonstrations” on page 289

You will need to adapt these techniques to capture both the parts built
from the templates and the parts that have business logic.

Special considerations for VisualAge Generator Templates
Make sure you change all Statement Group part names to uppercase before
migration. The VisualAge Generator Templates product generates Statement
Group part names as either all lowercase or mixed case. However, VisualAge
Generator searches for these part names in all uppercase (when generating
runtime code) and cannot find the parts when the names are in mixed case or
lowercase.

Complete set of MSLs for production and deltas for test

This scenario has the following MSL structure. The Database Administrator
(DBA) MSLs might be combined with the corresponding STAGING, SYSTEST,
or PROD MSL depending on your environment.

Note: There might be one series of the MSLs shown in Figure 38 on page 283
for each subsystem.

282 VisualAge Generator: Migration Guide

The PROD and PRODDBA MSLs are the only complete pair of MSLs. In other
words, this is the only pair of MSLs in which all members exist. SYSTEST and
SYSTDBA contain only the members that have been added or changed and
which are undergoing system test. STAGING and STAGEDBA contain only
the members that have been added or changed and which are still in
development testing, but which need to be shared by multiple developers.

Figure 38. Sample MSL Concatenation for Complete Production MSLs and Deltas for Test

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 283

Two additional MSL concatenation sequences are used for advancing (moving)
members through the MSL hierarchy.

DEVnMSL+STAGING+SYSTEST+PROD - to advance members not controlled by DBA

DEVDBA+STAGEDBA+SYSTDBA+PRODDBA - to advance members controlled by DBA

As newly added or changed members progress through testing, they advance
from the developer’s read/write MSL to the staging MSL, then from staging
to the appropriate development level MSL, then from development to the
corresponding system test MSL, and finally from system test to the
corresponding production level MSL. Thus the developer read/write, staging,
and system test MSLs represent work-in-progress. Similarly, the DEVDBA,
STAGEDBA, and SYSTDBA MSLs represent work-in-progress for the DBA.

If there are multiple subsystems, each has its own staging, system test, and
production MSLs. There are no duplicate members between the subsystems.

Recommendations
Consider migrating the MSLs to ENVY as follows:
1. Migrate the production MSLs by doing the following:
v Load the production level MSLs using the MSL Migration Assistance

Tool.
v Create a configuration map for the production level code.
v Version this configuration map.
v Package the views and generate the programs. Then test to be sure that

what you migrated matches your production code.
2. Migrate the system test MSLs by doing the following:
v Open new editions of the applications.
v Export an external source format file for the SYSTEST MSL and another

external source format file for the SYSTDBA MSL.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the application(s) in
which they are already defined.

v Version and release the changed classes (views and VAGen part classes).
v Version any ENVY applications that had new editions of classes.
v Create a configuration map for the system test level of code.
v Version this configuration map.
v Package the views and generate the programs for the system test level

of code. You should only need to package the views and generate
programs, map groups, and tables that have changed. Then test to be
sure that what you migrated matches your system test level of code.

284 VisualAge Generator: Migration Guide

3. Migrate the staging MSLs by doing the following:
v Open new editions of the applications.
v Export an external source format file for the STAGING MSL and another

external source format file for the STAGEDBA MSL.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

v Version and release the changed classes (views and VAGen part classes).
v Version any ENVY applications that had new editions of classes.
v Create a configuration map for the staging level of code.
v Version this configuration map.
v Package the views and generate the programs for the staging level of

code. You should only need to package the views and generate
programs, map groups, and tables that have changed. Then test to be
sure that what you migrated matches your staging level of code.

4. Assign ownership of the classes and assign managers for the applications
and configuration maps.

5. Open new editions of the applications.
6. Developers can then load their own work-in-progress doing the following:
v Export an external source format file for their own read/write MSL.
v Load the configuration map for the staging level of code into their

image.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

Note that this scenario is easier to load into ENVY than “Complete sets of
MSLs for test and production” because the added/changed members for the
system test MSL are already determined (everything in the SYSTEST MSL)
and because there is no development level set of MSLs to load.

Complete sets of MSLs for test and production

This scenario has the following MSL structure:

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 285

This scenario differs from that described in “Complete set of MSLs for
production and deltas for test” on page 282 in that in Figure 39 the SUBSYS1,
COMMON, and DBA MSLs at each of the development, system test, and
production levels are complete sets of MSLs. In other words, most members
exist in all three MSL concatenation sequences with the same date/time
stamp. If a member is in the COMMON development MSL, it is also in the
COMMON system test MSL, and the COMMON production MSL.

As members progress through testing, the added or changed members
advance from the developer’s read/write MSL to the staging MSL and then

Figure 39. Sample MSL Concatenation for Complete Sets of Development, System Test, and Production

286 VisualAge Generator: Migration Guide

from staging to the appropriate development level MSL. As further testing
occurs, members are copied (not moved or advanced) from the development
level MSL to the corresponding system test MSL and then from the system
test MSL to the corresponding production MSL.

The developer read/write, staging, development level MSLs, and system test
MSLs represent work-in-progress. However, the development level MSLs and
the system test MSLs are not true work-in-progress. For example, the system
test SUBSYS1 MSL contains the same members as the production SUBSYS1
MSL. Most of the members are identical between system test and production.
Perhaps only 5% of the members in the system test SUBSYS1 MSL are
currently undergoing system test and represent different versions of the
members from what is in the production SUBSYS1 MSL. Similarly, the
development level SUBSYS1 MSL for the most part duplicates the members in
the system test and production SUBSYS1 MSLs. Perhaps another 5% of the
members differ from what is in the system test MSL and represent work that
is in development testing (not yet put into system test).

In the same way, the COMMON and DBA MSLs are virtually identical at the
development, system test, and production levels. Because the members in
these MSLs change less frequently, in many cases there might be no members
that differ between the three levels of these MSLs.

This means that there are many members in the development level and
system test MSLs that should not really be put into ENVY because they are no
different than the members that will be migrated using the production MSLs.

Note: If there are multiple subsystems, they can share the COMMON and
DBA MSLs, but each subsystem has its own SUBSYSn MSL, where n is
the subsystem number. The SUBSYSn MSLs do not have any duplicate
member names.

Recommendations
Consider migrating the MSLs to ENVY as follows:
1. Migrate the production MSLs by doing the following:
v Load the production level MSLs using the MSL Migration Assistance

Tool.
v Create a configuration map for the production level code.
v Version this configuration map.
v Package the views and generate the programs. Then test to be sure that

what you migrated matches your production code.
2. Migrate the system test MSLs by doing the following:
v Open new editions of the applications.

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 287

v Determine the list of members that have been added/changed in system
test by eliminating the members that match production based on the
date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the system test and production versions
of the SUBSYS1 MSL, a second external source format file for the
changes between the system test and production versions of the
COMMON MSL, and a third external source format file for the changes
between the system test and production versions of the DBA MSL.

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

v Version and release the changed classes (views and VAGen part classes).
v Version any ENVY applications that had new editions of classes.
v Create a configuration map for the system test level of code.
v Version this configuration map.
v Package the views and generate the programs for the system test level

of code. You should only need to package the views and generate
programs, map groups, and tables that have changed. Then test to be
sure that what you migrated matches your system test level of code.

3. Migrate the development level MSLs by doing the following:
v Open new editions of the applications.
v Determine the list of members that have been added/changed in

development by eliminating the members that match system test based
on the date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the development and system test
versions of the SUBSYS1 MSL, a second external source format file for
the changes between the development and system test versions of the
COMMON MSL, and a third external source format file for the changes
between the development and system test versions of the DBA MSL.

v Use VAGen Import to import the external source format files and create
new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

v Version and release the changed classes (views and VAGen part classes).
v Version any ENVY applications that had new editions of classes.
v Create a configuration map for the development level of code.
v Version this configuration map.
v Package the views and generate the programs for the development level

of code. You should only need to package the views and generate

288 VisualAge Generator: Migration Guide

programs, map groups, and tables that have changed. Then test to be
sure that what you migrated matches your development level of code.

4. Migrate the staging MSLs by doing the following:
v Open new editions of the applications.
v Determine the list of members that have been added/changed in the

staging MSL by eliminating the members that match development based
on the date/time stamp.

v Export an external source format file that contains only the members
that actually changed between the STAGING MSL and development
MSLs.

v Use VAGen Import to import the external source format file and create
new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

v Version and release the changed classes (views and VAGen part classes).
v Version any ENVY applications that had new editions of classes.
v Create a configuration map for the staging level of code.
v Version this configuration map.
v Package the views and generate the programs for the staging level of

code. You should only need to package the views and generate
programs, map groups, and tables that have changed. Then test to be
sure that what you migrated matches your staging level of code.

5. Assign ownership of the classes and assign managers for the applications
and configuration maps.

6. Open new editions of the applications.
7. Developers can then load their own work-in-progress doing the following:
v Export an external source format file for their own read/write MSL.
v Load the configuration map for the staging level of code into their

image.
v Use VAGen Import to import the external source format files and create

new editions of the changed parts. Select the Defined application radio
button to put the changed editions of the parts into the applications in
which they are already defined.

MSLs from marketing or other demonstrations

The scenario for MSLs used in demonstrations reflects the need to have
snapshots of the same MSL from various stages of development.

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 289

The three MSLs are used as follows:
v STRTDEMO is the MSL at the start of the demonstration. It might contain

some partially developed members, as well as a completed server program.
v MIDDEMO contains members that are added or changed during the first

part of the demonstration.
v ENDDEMO represents members that are added or changed during the

entire demonstration.

This technique enables the person doing the demonstration to quickly reset
the demonstration to specific scenarios.

Recommendations

Using a single ENVY application
For a small demonstration, for which all the parts can be stored into a single
ENVY application, consider migrating as follows:

1. Create an external source format file for each of the three MSLs.
2. Using the VisualAge Organizer window, create a new application.
3. Use VAGen Import to import the external source format file for the

STRTDEMO MSL.

Figure 40. Sample MSLs for a Demonstration

290 VisualAge Generator: Migration Guide

4. Version and release the classes (views and VAGen parts).
5. Version the application.
6. Create a new edition of the application.
7. Use VAGen Import to import the external source format file for the

MIDDEMO MSL.
8. Version and release the classes (views and VAGen parts).
9. Version the application.

10. Create a new edition of the application.
11. Use VAGen Import to import the external source format file for the

ENDDEMO MSL.
12. Version and release the classes (views and VAGen parts).
13. Version the application.

You can now reset the demonstration to specific points by loading the correct
version of the application.

Using multiple ENVY applications
For a larger demonstration, for which the parts need to be separated into
several ENVY applications, consider migrating as follows:

1. Create an external source format file for each of the three restructured
MSLs.

2. Using the MSL Migration Assistance Tool load the parts from the
STRTDEMO MSL, separating them into ENVY applications as needed for
your demonstration. Do not be concerned about missing parts because
you know that these will be developed during the demonstration.

3. Version and release the classes (views and VAGen parts).
4. Version the applications.
5. Create a configuration map that represents the starting point for the

demonstration.
6. Version this configuration map.
7. Create a new edition for each of the applications.
8. Create any new applications that are needed to contain parts that are

added during the first part of the demonstration.
9. Use VAGen Import to import the external source format file for the

MIDDEMO MSL. For new parts, move each part to the corresponding
application. For existing parts, use the Defined application radio button
to put the changes into the applications in which the parts are already
defined.

10. Version and release the classes (views and VAGen parts).
11. Version the applications.

Chapter 28. VAGen on Smalltalk case studies based on various MSL structures 291

12. Open a new edition of the configuration map and modify it so that it
contains the versions of applications that are added or changed during
the first part of the demonstration.

13. Version this configuration map.
14. Create a new edition of each of the applications.
15. Create any new applications that are needed to contain parts that are

added during the second part of the demonstration.
16. Use VAGen Import to import the external source format file for the

ENDDEMO MSL. For new parts, move each part to the corresponding
application. For existing parts, use the Defined application radio button
to put the changes into the applications in which the parts are already
defined.

17. Version and release the classes (views and VAGen parts).
18. Version the applications.
19. Open a new edition of the configuration map and modify it so that it

contains the versions of applications that are added or changed during
the first part of the demonstration.

20. Version this configuration map.

You can now reset the demonstration to specific points by loading the correct
version of the configuration map.

292 VisualAge Generator: Migration Guide

Chapter 29. Running the MSL Migration Assistance Tool on
Smalltalk

The sections that follow describe tasks that you will need to do during
migration, including:
v Getting ready to migrate:

– “Starting VisualAge Generator”.
– “Creating users and setting the current user” on page 294.
– “Loading a feature” on page 295.
– “Collecting your source code” on page 296.
– “Handling code page changes” on page 297.
– “Starting the MSL Migration Assistance Tool” on page 300.
– “Building MSL directories” on page 300.
– “Resetting the sandbox from ENVY” on page 302.
– “Selecting your MSLs” on page 304.

v Moving parts to the sandbox and working with the sandbox:
– “Selecting and migrating VAGen parts” on page 305.
– “Creating a new application” on page 308.
– “Moving a VAGen part between applications” on page 308.
– “Controlling the creation of ApplicationNodes” on page 310.
– “Renaming an application” on page 311.
– “Collapsing an application” on page 311.
– “Handling Duplicates” on page 312.
– “Finding the application in which a part is located” on page 316.
– “Listing missing (not found) parts” on page 317.
– “Handling missing (not found) parts” on page 318.
– “Checking relationships among applications” on page 319.
– “Updating the list of required applications” on page 321.
– “Deleting an ApplicationNode” on page 323.
– “Deleting an application” on page 324.

v “Committing to ENVY” on page 325.

Note: ENVY provides a variety of ways of doing most tasks and supports
multiple development scenarios. This chapter is intended to provide a
way, but not necessarily the only way, of performing tasks related to
migrating MSLs to ENVY.

Starting VisualAge Generator

This section describes how to start VisualAge Generator Version 4.0, create
user IDs, set the user ID for the current user, and then import and load the
MSL Migration Assistance Tool.

© Copyright IBM Corp. 1997, 1999 293

Action Description

Start VisualAge Generator from either the VisualAge
Smalltalk or VisualAge Generator icon.

Alternatively, from an OS/2 window or Windows NT
command prompt, change to the directory where VisualAge
Generator 4.0 is installed and type:

start abt

The System Transcript window is
displayed, then the Selection Required
window is displayed prompting for the
name of the user who owns this image.

Select Library Supervisor from the list of users. This enables you to define other users
before running the MSL Migration
Assistance Tool.

When the message saying “You must connect the image to
the current library” is displayed, select the OK push button.

When the message saying “Done connecting image to the
library” is displayed, select the OK push button.

The VisualAge Organizer window is
displayed.

From the VisualAge Organizer window, select Options and
then Full Menus.

Selecting full menus enables you to see
all the options, including the options to
change the owner of a class or the
manager of an application.

From the VisualAge Organizer window, select Options and
then Preferences.

The VisualAge Preferences window is
displayed.

On the General page, consider changing the Preferred Settings
View to Properties Table (Recommended). Do not make this
change if some of the tools you use with VisualAge Smalltalk
do not yet support properties tables.

The examples in “Tasks you must do
after migrating GUIs” on page 234 use
the properties tables in explaining
changes you might need to make to
GUIs after they are migrated to views.

Select the OK push button to close the VisualAge Preferences
window.

The VisualAge Organizer window is
displayed.

Creating users and setting the current user

You must be the Library Supervisor to create new users.

Action Description

From the VisualAge Organizer window, select Options and
then Users.

The Users window is displayed listing
the available users. The Current user is
displayed on the lower left side above
the push buttons.

Select the Add push button. The Users Dialog window is displayed.

294 VisualAge Generator: Migration Guide

Action Description

Specify the following:

Unique Name This could be the user’s
logon ID or employee
number.

Full Name This is the first and last
name for the person.

Network Name This is the user’s network
logon ID.

Select the OK push button.

The Users window is displayed with the
new user added.

Repeat the above steps to define all of your developers.

From the Users window, select the user that corresponds to
the team leader and select the Change User push button.

A Question window is displayed asking
you to confirm that you want to change
to this user.

Select the Yes push button to confirm you want to change to
the new user.

The Users window is displayed and
shows the team leader as the Current
user on the lower left side.

Setting the user ID for the image to the
team leader means that the team leader
becomes the class owner and application
manager for all the views, VAGen part
classes, and applications that are created
with the MSL Migration Assistance Tool.
After migration, the team leader can
assign ownership to the individual
developers if needed.

Select the OK push button. The VisualAge Organizer window is
displayed and indicates in the title bar
that the team leader is now the owner of
the image.

Loading a feature

You might need to load the VisualAge Smalltalk Multimedia or DDE Support
features before you migrate your GUIs.

Note: If you use the multimedia feature, refer to the VisualAge Smalltalk
installation documentation and readme file for information on how to
obtain this feature.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 295

Action Description

From the VisualAge Organizer window, select Options and
then Load/Unload Features.

A Selection Required window appears.

The two features you might need to migrate your GUIs are
VisualAge: Multimedia and VisualAge: DDE Support.

Select each feature in the left pane and then select >> to
move the feature to the right pane.

When you have moved both features to the right pane, select
the OK push button.

A progress window appears indicating
the status of the load. The load might
take 5 to 10 minutes.

After the load completes, another
progress window appears indicating the
status for recaching the pointers.

After recaching, a Question window
appears prompting you to save your
image. Select the OK push button and
save the image.

Check the System Transcript window for any error messages.

Collecting your source code

You need to collect your source code before you can use the MSL Migration
Assistance Tool. The steps necessary to do this vary depending on the
environment from which you are migrating.

From Cross System Product
If you are migrating from Cross System Product, you must create an external
source format file for each of your MSLs and then use the MSL Migration
Assistance Tool to create an MSL directory structure. Before downloading all
your external source format files, be sure to test your download program to
ensure that special characters are converted correctly. You might need to
define a conversion table for the download program. Also review “Using the
HPTRULES.NLS file” on page 297 for information on handling the not sign
(¬).

From VisualAge Generator with TeamConnection and no MSLs
If you are migrating from a previous release of VisualAge Generator and use
TeamConnection, you might not have MSLs. In this case you must create
external source format files for your parts in TeamConnection and then use
the MSL Migration Assistance Tool to create an MSL directory structure. You
might want to create an external source format file for each component to
help you in preserving your existing organizational structure.

In addition, if you are changing from developing on OS/2 to developing on
Windows NT, be sure to review “Using the HPTRULES.NLS file” on page 297
and “Changing from OS/2 to Windows NT” on page 298.

296 VisualAge Generator: Migration Guide

From VisualAge Generator MSLs
If you already have VisualAge Generator MSLs and plan to remain on the
OS/2 development platform, you can skip this step. The MSL Migration
Assistance Tool can use your existing MSLs.

If you are changing from developing on OS/2 to developing on Windows NT,
be sure to review “Using the HPTRULES.NLS file” and “Changing from OS/2
to Windows NT” on page 298.

Handling code page changes

If you are migrating from Cross System Product, the code page on the host is
EBCDIC and the code page on the workstation is ASCII. You should review
“Using the HPTRULES.NLS file”.

If you are migrating from VisualAge Generator and changing from an OS/2 to
a Windows NT development platform, the code pages for SBCS languages are
different. You should review both “Using the HPTRULES.NLS file” and
“Changing from OS/2 to Windows NT” on page 298.

If you are migrating from VisualAge Generator and use a DBCS language,
you can skip this section because the code pages are the same for OS/2 and
Windows NT.

Using the HPTRULES.NLS file
The not sign used for Cross System Product is the ¬. However, some
download programs convert ¬ to ¼. For VisualAge Generator, the code point
for ¬ differs between the OS/2 and Windows NT code pages.

The hptrules.nls file in the \vast\nls directory enables you to specify national
language information and can help with handling the not sign. One section of
the file enables you to enter your three national language characters, the | for
the not sign, and an alternate not sign. If you determine that the only special
character that you need to convert is the ¬ or ¼, you can do the following to
handle the conversion:
1. Shut down VisualAge Generator Developer.
2. Edit hptrules.nls

3. Read the comments in the file. The section you need to change is the first
section of the file, called :nlsrules.

4. In the :nlsrules section, there are three columns: the locale, 5 special
characters, and the default language code.
The five special characters are:

Column Description

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 297

1 - 3 The three national language characters ($#@ for
English-US).

4 The | which is the standard not sign for VisualAge
Generator.

5 An alternate not sign, which you can set to ¬, ¼, or
whatever character your download program turned your
not sign into.

5. Bring VisualAge Generator Developer back up.

When you use the ESF to MSL function (described in “Building MSL
directories” on page 300), the MSL Migration Assistance Tool converts any
occurrence of the alternate not sign specified in hptrules.nls to the |. This
conversion only applies to occurrences in processes, statement groups, or
functions. The constant delimiter for a map is not converted, but because the
constant delimiter is stored with each map, conversion is not necessary.
Conversion of the alternate not sign also happens when you use VAGen
Import. Conversion does not occur when you save changes to functions.
Therefore, you should use the | for any new development work.

If your only code page conversion problems (whether from downloading
Cross System Product code or from moving external source format files from
OS/2 to Windows NT) are due to your not sign, you should be able to
manipulate the hptrules.nls file to handle the conversion for you.

Changing from OS/2 to Windows NT

Note: If you are migrating from Cross System Product, or if you are
migrating from VisualAge Generator and use a DBCS code page, skip
this section. Code page conversion is not required in these situations.

The code pages from some languages differ between OS/2 and Windows NT.
For example, the code point for the ¬ is different for the English-US code
pages for OS/2 and Windows NT. Therefore, you must convert your
VisualAge Generator code if you are moving from the OS/2 development
environment to the Windows NT environment. To convert between the code
pages, do the following:
1. If you are migrating from VisualAge Generator 3.0 or 3.1 on OS/2, create

an external source format file for each ENVY application. When migrating
from any other VisualAge Generator release on OS/2, create an external
source format file for each MSL. Be sure to export external source format,
not binary, for your GUIs.

2. Make the external source format file available to Windows NT.
3. From Windows NT, change to the directory in which hptcnvXY.exe is

located. (Substitute the number of your VisualAge Generator version for

298 VisualAge Generator: Migration Guide

the X and your release for the Y.) If you used the default directories when
you installed, the directory will be c:\vast.

4. Convert the external source format file by running the following:
hptcnvXY esf-file-name conversion-table

where:

X Is the number of your version of VisualAge Generator —
for example, use a 4 for VisualAge Generator 4.0.

Y Is the number of your release of VisualAge Generator —
for example, use a 0 (hptcnv40) for VisualAge Generator
4.0.

esf-file-name Is the drive, path, and file name for the external source
format file you want to convert.

conversion-table
Is the name of a conversion table that translates from the
OS/2 code page to the Windows NT code page.

The converted external source format file is stored as esf-file-name.cnv
in the directory in which hptcnvXY.exe is located.

Use
hptcnvXY ?

(substituting your version and release numbers for X and Y) to see a short
(English) description of the conversion tool.

5. Use a comparison tool to do a byte-by-byte comparison of the external
source format file and the converted file.
If the only character being converted is the not sign, you might be able to
use the technique described in “Using the HPTRULES.NLS file” on
page 297 to avoid converting all your files. However, use caution if you
skip the conversion step — some of your other files might have characters
other than the not sign that require conversion.
Be especially alert for any characters being converted that should not be.
For example, if you have coded:
MOVEA "special-character" TO HIGH-VALUES-CHAR;

as a method of setting the high end of a range of keys that you are
searching in a file or database, you might not want the special-character
to be converted or you might not like the hex value that results from the
conversion. If this is the case, you will need to modify your code. A better
technique would be to code:

MOVEA "special-hex-characters" TO HIGH-VALUES-HEX;

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 299

This technique would keep the same special-hex-characters in the
external source format and converted files.

6. Use the converted external source format file as input to the MSL
Migration Assistance Tool or VAGen Import.

Notes:

1. hptcnvXY does not support binary GUI tags.
2. Do not use hptcnvXY if you transferred your external source format file to

Windows NT in such a way that the code page conversion was
performed. For example, if you transferred the file using ftp with the ascii
option, then the code page conversion should have already been done. You
need to check that special characters were converted correctly.

3. Refer to the VisualAge Generator Client/Server Communications Guide for
information about the conversion tables.

Starting the MSL Migration Assistance Tool

You can run the MSL Migration Assistance Tool on either OS/2 or Windows
NT.

Action Description

From the VisualAge Organizer window, select Tools and then
VAGen MSL Migration.

The MSL Migration Part List window is
displayed.

Building MSL directories

After you have collected your external source format files as described in
“Collecting your source code” on page 296 and handled any code page issues
as described in “Handling code page changes” on page 297, you are ready to
create MSL directories. The ESF to MSL push button on the MSL Migration
Part List window enables you to build an MSL directory structure from an
external source format file.

Note: Be sure that the drive where you plan to create the MSL directory
supports long names. For OS/2 this means the drive must be formatted
for High Performance File System (HPFS). If this is not done, you
might receive a return code 13 when trying to create the MSLs.

Action Description

From the MSL Migration Part List window, select the ESF to
MSL push button.

A window is displayed prompting you
for the name of your external source
format file.

300 VisualAge Generator: Migration Guide

Action Description

Select the drive, path, and file name of the external source
format file from which you want to build an MSL directory
structure.

An Information Required window is
displayed prompting you for the name
of a directory into which the MSL
Migration Assistance Tool can build the
MSL.

Enter the drive and path for the directory and select the OK
push button.

If the directory you specified exists, a
message is displayed prompting you to
confirm the directory name.

If the directory does not exist, a message
is displayed asking if you want the MSL
Migration Assistance Tool to create the
directory.

After you have responded Yes to either
message, an Operation in Progress
window is displayed. When the window
disappears, the parts (members) from the
external source format file have been
created in the MSL directory that you
specified. All the actions in “Automatic
conversions during 4.0 migration” on
page 216 have been performed.

If there were any parts that contained errors in the external
source format files, a “List of parts that could not be read”
window is displayed followed by the VAGen Parser Messages
window.

The list contains the names of the parts
that were not written to the MSL
directory. You can write this list to the
System Transcript for future reference.

The VAGen Parser Messages window
contains both information and error
messages. Parts that had no messages or
only information messages are already in
the MSL directory. You should ignore the
information messages. Examples of the
information messages include:

HPT.PE.290.i The CICS/OS attribute
value was replaced with the
MVS CICS attribute value

HPT.PE.17.i The transaction name
on the SEGTRAN attribute is
not valid

HPT.PE.21.i The FILETYPE VSAMCICS
is no longer supported. It was
changed to VSAM.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 301

Action Description

Parts with error messages were not written to the MSL
directory. You need to correct these errors by:

v Correcting the part in Cross System Product or VisualAge
Generator and then exporting the external source format
file for the part again and using the ESF to MSL push
button to add the part to the MSL directory.

v Correcting the external source format file and using the
ESF to MSL push button to process the external source
format file again.

Resetting the sandbox from ENVY

If you have previously migrated a subsystem and are now ready to do
another subsystem, you might need to reset the MSL Migration Assistance
Tool to reflect the parts that are currently in ENVY. This can happen if you
migrate one subsystem, work with it for a while in ENVY, and then decide to
migrate your remaining subsystems. Particularly if the subsystems to be
migrated now share code with the subsystem that was previously migrated,
you should reset the MSL Migration Assistance Tool to reflect the current code
in ENVY.

Note: You cannot load an application into the sandbox from your ENVY
image in the following situations:
v You added a nonvisual part or a Smalltalk class.
v You added parts for VisualAge Generator control information

(generation options, linkage table, resource associations, bind control
commands, or linkage editor control statements).

However, you can unload these classes so that the application can be
reloaded into the sandbox.

Action Description

From the VisualAge Organizer window, load into your image
any applications (such as your common applications) that
you need to have in the sandbox when you migrate your new
MSLs.

Alternatively, from the Configuration Maps Browser, load the
configuration maps that contain the applications you need in
your image.

The applications you need should be
displayed in the VisualAge Organizer
window.

302 VisualAge Generator: Migration Guide

Action Description

From the MSL Migration Part List window, select the ENVY
App Selection push button.

If there are any applications in the
sandbox, a message is displayed asking
if they can be deleted.

If you respond Yes to the message about
deleting existing applications or if there
were no applications, a Selection
Required window is displayed,
prompting you to specify the
applications already in ENVY that you
want to load into the sandbox. Only
applications in your image can be loaded
into the sandbox.

If you respond No, the list of existing
applications in the sandbox is not
cleared, and your new selections are
added to the existing sandbox list. A
Selection Required window is displayed,
prompting you to specify the
applications already in ENVY that you
want to load into the sandbox. Only
applications in your image can be loaded
into the sandbox.

If you respond Cancel, the sandbox is
not reset from ENVY.

Select one or more applications from the left pane and then
select >> to move them to the right pane.

The applications you selected are listed
in the right pane.

Select the OK push button. The applications and the parts they
contain are loaded into the sandbox and
marked as Committed.

v There is no analysis of the parts to
determine if there were missing (Not
Found) parts.

v The timestamp of the part in the
sandbox is the timestamp from the
edition currently loaded in your
image, not the timestamp from the
original MSL.

You must specify your MSL library selections again (see
“Selecting your MSLs” on page 304).

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 303

Action Description

If you receive a message saying “Unsuccessful in reading
ENVY app into tool”, it is because you have added a
nonvisual part, a Smalltalk class, or a VisualAge Generator
control information part (generation options, linkage table,
resource associations, bind control commands, or linkage
editor control statements) to the application. The System
Transcript window lists the parts that prevent the application
from being loaded into the sandbox. Do the following so that
you can load the application into the sandbox:

v If the application and the class are already versioned:

– Open a new edition for the application.

– Unload the classes that cause a problem.

v If the application and the class are not versioned yet:

– Version the classes that cause a problem.

– Unload the classes that cause a problem.

Then reload the application into the sandbox.

After you have reloaded the application into the sandbox,
load those classes back into your image now. This ensures
that when you version and release classes after committing
new or changed applications to ENVY all the classes for this
application will be there.

Selecting your MSLs

The MSL Migration Assistance Tool works from an MSL concatenation
sequence to move parts into the sandbox. You specify your MSLs and the
concatenation sequence as follows:

Action Description

From the MSL Migration Part List window, select the MSL
Library Selection push button.

The MSL Library Selection window is
displayed.

In the Basic MSL directory, enter the drive and directory for a
basic MSL that you want to process. For example:

f:\msls\mymsl

The basic MSL directory that you specify can be an MSL from
a previous release of VisualAge Generator or an MSL that
you created using the technique described in “Building MSL
directories” on page 300.

Select the Add push button.

The directory you specified is added to
the MSL concatenation area at the bottom
of the MSL Library Selection window.

304 VisualAge Generator: Migration Guide

Action Description

Repeat the previous step until you have all your basic MSLs
defined.

The MSL Library Selection window lists
all your basic MSLs. The order in which
they are listed is the order in which they
will be searched for parts.

If you need to change the MSL concatenation sequence, select
one MSL in the MSL concatenation area.

Then select one of the following to change the concatenation
order:

Move Up To move the selected MSL one position
higher (earlier) in the concatenation
sequence.

Move Down To move the selected MSL one position
lower (later) in the concatenation sequence.

Remove To delete the selected MSL from the
concatenation sequence. The MSL directory
is not deleted; only the concatenation
sequence is affected.

The MSL concatenation area changes to
reflect the new MSL concatenation
sequence.

Repeat this step until you are satisfied
with the concatenation sequence.

When you have the MSL directories listed in proper order for
your concatenation sequence, select OK.

The Part List Selection Criteria View
window is displayed, with the MSL
directories you specified listed under
Libraries. The VG Part Prerequisites View
window is also displayed.

Selecting and migrating VAGen parts

To migrate a VAGen part and its associates to an ENVY application, you first
select the part and then indicate whether you want it to be placed in an
existing ENVY application or in a new application. You can work with a
group of VAGen parts or a single VAGen part at a time.

This step only moves the parts to the sandbox; they are not moved to the
ENVY library manager until you commit the applications to ENVY. It is easier
to change the organization of your parts while they are in the sandbox than
after they are in the ENVY library manager.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 305

Action Description

From the Part List Selection Criteria View window:

v Select the VAGen part type(s) you want to process. Use the
All Types push button to select all the part types. Use the
Reset push button to deselect all the part types. If you are
migrating from MSLs on OS/2, select the Process and/or
Statement Group part types. If you are migrating from
pseudo MSLs created from external source format files,
select the Function part type.

v Use a wildcard in the Part name field to limit the search.

v Select the Only parts not processed toggle button to limit
the list of VAGen parts to those that have not been
processed by the MSL Migration Assistance Tool. Deselect
the Only parts not processed toggle button to include all
the parts that satisfy the part type and wildcard search
criteria.

v Select the Build List push button.

Note: Unlike the VisualAge Generator Member Selection List,
all libraries listed in the Libraries area of the Part List
Selection Criteria View window are searched for parts. You
cannot limit the search to certain MSLs by highlighting the
directories listed in the Libraries area.

The MSL Migration Part List window is
displayed with the selected VAGen parts.

The Status column is set to Processed for
any parts that have already been moved
to the sandbox.

To help locate parts within the MSL Migration Part List
window, you can sort the parts by selecting VAGen Parts and
then selecting one of the following:
v Sort by Type
v Sort by Name
v Sort by Library

The order of the parts is changed to
match your specified sort criteria.

306 VisualAge Generator: Migration Guide

Action Description

From the MSL Migration Part List window, select the VAGen
part(s) that you want to process with the MSL Migration
Assistance Tool. The selected VAGen part and any of its
associates that have not yet been migrated will be processed
together.

To select multiple parts, hold down the Ctrl while you select
each of the parts you want to process.

You can also select VAGen Parts and then one of the
following to help in selecting parts:

v Find to select one or more parts that satisfy your selection
criteria. You can use a wildcard when you specify the
selection criteria. For example, if you specify V*, all parts
that begin with V are selected. If you specify only a V, the
one part named V (if it exists) is selected.

v Select All to select all parts in the list.

v Deselect All to deselect all parts in the list.

v Select Parts Not Processed to select only those parts that
are not yet in the sandbox.

v Select Not Found Parts to select only those parts that are
listed as Not-Found in the Status column.

v Select Duplicate Parts to select only those parts with True
in the Duplicate column.

The selected parts are highlighted. If you
use Find, Select All, or Select Parts Not
Processed any previously selected parts
are deselected.

Select VAGen Parts, then Selected and then one of the
following:

v Create Single Application to place all of the selected
VAGen parts and their associates into the same new
application. An Information Required window is displayed
that prompts you for the name of the new application.

v Create Multiple Applications to place each of the selected
programs and its associates into a separate application.
Each application will be named xxxxxApp, where xxxxx is
the name of the corresponding program.

v Add into Application to place all of the selected VAGen
parts and their associates into the same application that
already exists in the sandbox. In the Selection Required
window that is displayed, select the application into which
these parts will be added.

The VG Part Prerequisites View window
is displayed. You can then look at the
applications that have been changed and
see the parts in them.

If any associates of the parts that were
just moved to the sandbox were already
in the sandbox, one or more
ApplicationNodes might be created. An
ApplicationNode is created for each part
or parts that are shared by two
explodable applications.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 307

Creating a new application

If you add VAGen parts with their associates to an ENVY application, and
then review the list of VAGen parts that are now in the ENVY application,
you might find that there are some parts (for example, common code) that
would be better placed in a separate application, but this separate application
does not yet exist.

This section describes how to create a new ENVY application using the MSL
Migration Assistance Tool.

Action Description

From the VG Part Prerequisites View window, select
Applications and then Create Application.

An Information Required window is
displayed, prompting you for the
application name.

Type the name of the ENVY application. The VG Part Prerequisites View window
is refreshed and includes the name of the
new application.

See “Moving a VAGen part between
applications” for information about
moving VAGen parts from another
application into this new application.

Moving a VAGen part between applications

After adding VAGen parts to an application, particularly after adding a
program and its associates to an application, you should review the list of
VAGen parts for the application in the VG Part Prerequisites View window to
determine whether any VAGen parts have been included that would be better
placed in a different application. For example, some common code might have
been included in the associates list for a program being moved. Reviewing the
list of VAGen parts for the application helps to find common code that is
better placed in a separate application. If you used naming conventions to
distinguish common code, these common VAGen parts are fairly easy to find
in the VAGen Parts pane of the VG Part Prerequisites View window.

This section describes the steps to move a VAGen part from one application
(FromApplication) to another (ToApplication) using the VG Part Prerequisites
View window.

Note: After you commit an application to ENVY, you can no longer move its
parts to a different application using the MSL Migration Assistance
Tool. Refer to the IBM Smalltalk User’s Guide for information on moving
parts between applications in ENVY.

308 VisualAge Generator: Migration Guide

Action Description

From the VG Part Prerequisites View window:

v In the Applications pane, select the FromApplication — the
application from which you want to move VAGen parts.

v In the VAGen Parts pane, select the VAGen parts you want
to move.

You can select VAGen Parts and then select one of the
following to help in selecting parts:

– Find Parts to select one or more parts that satisfy your
selection criteria. You can use a wildcard when you
specify the selection criteria. For example, if you specify
V*, all parts that begin with V are selected. If you specify
only a V, the part named V (if it exists) is selected. When
you use Find Parts, any previously selected parts are
deselected.

– Sort Parts by Type to group parts based on the part
type. Any previously selected parts are still selected.

– Sort Parts by Name to sort the parts based on the part
name. Any previously selected parts are still selected.

Select VAGen Parts and then Move or Move with associates.

The Selection Required window is
displayed, listing the other applications.

Select the ToApplication.

Select the OK push button.

The VG Part Prerequisites View window
is displayed, showing the
FromApplication without the VAGen
parts you moved.

If you selected Move, only the selected
parts were moved.

If you selected Move with associates,
the selected parts and their associates in
the FromApplication are moved to the
ToApplication.

You might need to update the prerequisites for the
FromApplication to include the ToApplication.

See “Checking consistency of applications” on page 321 for
information about doing a consistency check to determine
which prerequisites need to be changed. You should do a
consistency check on the FromApplication and all its
dependent applications.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 309

Controlling the creation of ApplicationNodes

Some parts are used by many programs and views. For example, records,
tables, and data items are typically shared by multiple programs and views.
Similarly functions (processes and statement groups) might also be shared.

You might need to have programs and views that share common parts in
different ENVY applications. A common part can be stored in one of the
ENVY applications that uses the part or placed in an ENVY application that
contains just common parts.

When you migrate a part, its associates are considered at the same time. An
associate that is not yet in the sandbox is placed in the same ENVY
application. An associate that is already in the sandbox is treated differently
based on the following:
v If the application containing the associate is marked explodable, the associate

is moved to a new ApplicationNode. The original application and the
application being created for the part now being moved to the sandbox
specify the new ApplicationNode as a prerequisite.

v If the application containing the associate is marked unexplodable, the
associate is not moved to a new ApplicationNode. The application for the
part now being moved to the sandbox adds the application containing the
associate as a prerequisite.

You can change whether an application is explodable or unexplodable by
changing it in the VG Part Prerequisites View window.

Note: After an application is committed to ENVY, it is unexplodable.

Action Description

To change all applications in the sandbox, select Applications
and then one of the following:

v Set All Unexplodable to mark all the applications in the
sandbox as unexplodable.

v Set All Explodable to mark all the applications in the
sandbox as explodable.

The VG Part Prerequisites View window
is displayed.

Unexplodable applications are prefixed
with an asterisk (*). The * is not part of
the application name.

Explodable applications do not have a
prefix.

310 VisualAge Generator: Migration Guide

Action Description

To change a single application in the sandbox, select the
application, then select Applications, then Selected and then
one of the following:

v Toggle Explode to change the current setting for the
selected application.

v Set Unexplodable to mark the selected application as
unexplodable.

v Set Explodable to mark the selected application as
explodable.

The VG Part Prerequisites View window
is displayed.

Unexplodable applications are prefixed
with an asterisk (*). The * is not part of
the application name.

Explodable applications do not have a
prefix.

Renaming an application

You might want to rename an application in the following situations:
v All the parts in an ApplicationNode belong together and should become an

application with a more meaningful name.
v The name you originally chose for the application would be more

meaningful if it was changed.
v You typed the application name incorrectly when you created the

application.

Action Description

From the VG Part Prerequisites View window, select the
application you want to rename, then select Applications and
then Selected → Rename.

An Information Required window is
displayed prompting you for the new
application name.

Type the new name for the application. The VG Part Prerequisites View window
is displayed and shows the new
application name.

Applications that specified the renamed
application as a prerequisite have been
updated to reflect the new name.

Collapsing an application

You might want to merge one application into another application. This might
occur if you decide that the two applications will be maintained by the same
developer or that they share so many parts that it would be better to combine
them. The MSL Migration Assistance Tool calls this process collapsing.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 311

Action Description

From the VG Part Prerequisites View window, select the
application you want to collapse, then select Applications
and then Selected → Collapse.

An Information Required window is
displayed with a combo box listing the
applications that exist in the sandbox.

Select the name of the application into which you want to
merge and then select the OK push button.

The VG Part Prerequisites View window
is displayed. The application that you
collapsed no longer appears.

If you select the application into which
you merged, the parts displayed include
the parts from the application you
collapsed.

Any application that specified the
collapsed application as a required
application has been updated to reflect
the name of the application into which
you merged.

Handling Duplicates

You might have duplicate members. This can occur due to:
v Controlled duplicates such as a message table that differs between

subsystems as described in “Multiple subsystems with controlled
duplicates” on page 269.

v Unintended duplicates as described in “MSLs that contain unintended
duplicates” on page 277.

v Duplicates due to using templates and then using a separate MSL for
members that were modified due to business logic as described in “MSLs
containing code from VisualAge Generator Templates or BW*Wizard” on
page 278.

The MSL Migration Assistance Tool helps identify the duplicates and enables
you to select the version that you want to migrate. However, it cannot
determine for you which level of code is the current version.

Within a single MSL concatenation sequence, to find duplicates easily in the
MSL Migration Part List window, select VAGen Parts and then Sort by Name.

Controlled Duplicates
When you have controlled (intended) duplicates between subsystems, do the
following after committing the first subsystem to ENVY, but before starting to
migrate the second subsystem.

312 VisualAge Generator: Migration Guide

Action Description

From the VisualAge Organizer window, unload the
applications from the first subsystem from your image.

The unloaded applications should no
longer appear in the Applications pane
of the VisualAge Organizer window.

From the VG Part Prerequisites View window, delete all the
applications for the first subsystem from the sandbox. See
“Deleting an application” on page 324 for information on how
to do this.

Only the applications created for the
common code that is shared by the
subsystems should be listed in the VG
Part Prerequisites View window.

If you are not able to delete all the applications for the first
subsystem from the VG Part Prerequisites View window,
select Applications and then Delete All.

All of the applications are deleted from
the VG Part Prerequisites View window.
Now you can reload the common
applications from ENVY as described in
“Resetting the sandbox from ENVY” on
page 302.

Unintended Duplicates
When you have unintended duplicates, you need to determine which version
of the part is the one that should be committed to ENVY. These parts will
have True in the Duplicate column. The options for handling duplicates are:
v Remove Duplicate
v Replace Existing

If you remove a duplicate part:
v The version of the part is removed from future consideration and will no

longer appear on the MSL Migration Part List, even if you specify Only
parts not processed.

v The removed duplicate part is ignored for any other processing. For example,
if the part is an associate of something moving to the sandbox, the first
found version that has not been removed, is what will be moved to the
sandbox.

If you replace an existing part in the sandbox:
v The part and any associates that are not currently in the sandbox are

moved to the sandbox. The part is moved to the same application where
the existing part is already located. The associates are handled as follows:
– If the associate is already in the sandbox, then

- If the associate is in the same application as the part, nothing happens.
- If the associate is in a different application from the part, and is in an

unexplodable application, nothing happens.
- If the associate is in an different application from the part, and is in an

explodable application, an ApplicationNode is created.
– If the associate is not yet in the sandbox, then:

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 313

- If the associate is not a duplicate (or you have previously removed
duplicates so this is the only version of the associate still in
consideration) in the current MSL concatenation sequence, it is moved
to the sandbox in the same application as the part that is being
replaced.

- If the associate is a duplicate in the current MSL concatenation
sequence, the first found version from the concatenation sequence is
moved to the sandbox in the same application as the part that is being
moved. If you display the MSL Migration Part List window, the
duplicates will be listed and you can then Replace Existing if you
want something other than the first found associate to go into the
sandbox.

– All parts with the same name on the MSL Migration Part List window
are updated so their Status and Last Migration Library Timestamp
reflect the part that is now in the sandbox. In addition, any associated
parts that are moved to the sandbox are updated on the MSL Migration
Part List.

Which options are available for a particular duplicate part depends on the
version of the part listed on the MSL Migration Part List and on the version
in the sandbox.
v If the Last Migration Library Timestamp is filled in on the MSL Migration

Part List window, you can:
– Replace duplicate (put this version of the part into the sandbox,

replacing the part that is already there)
– Remove duplicate (remove this version from future consideration)

v If the Last Migration Library Timestamp is blank, what you can do
depends on whether this version of the part is from the same MSL as what
is in the sandbox:
– If the Status is Not Found, you can remove the duplicate, but you cannot

replace the existing part. This situation occurs when you have a part that
was previously identified as Not Found, but you have now found two or
more versions of it in your current MSL concatenation sequence. After
you have removed duplicate versions of the Not Found part, you can use
Add Not Found Part to update the sandbox (see “Handling missing (not
found) parts” on page 318).

– If this version is from the same MSL, you cannot remove the duplicate or
replace the existing part.

– If this version is from a different MSL, you can remove the duplicate, but
you cannot replace the existing part. A blank Last Migration Library
Timestamp in this situation indicates that this version of the part has the
same timestamp as the part in the sandbox and is therefore the same
version, but from a different MSL.

314 VisualAge Generator: Migration Guide

Action Description

To remove a duplicate from further consideration:

v From the MSL Migration Part List window, select the
version of the part that you do not want to move to the
sandbox.

v Select VAGen Parts and then Selected → Handle Duplicate
Parts → Remove Duplicate.

The MSL Migration Part List window is
updated and this version of the part is
no longer included in the list.

To replace an existing part in the sandbox:

v From the MSL Migration Part List window, select the
version of the part that you want to use to update the
sandbox.

v Select VAGen Parts and then Selected → Handle Duplicate
Parts → Replace Existing.

The MSL Migration Part List window is
updated, and the Status and Last
Migration Library Timestamp columns
are updated.

The part is updated in the sandbox. Any
associated parts that were not yet in the
sandbox have now been moved to the
sandbox.

If you replaced a part in an application
that has already been committed to
ENVY:

v The application name in the VG Part
Prerequisites View window is changed
to indicate that it has been Modified
and that a consistency check must be
performed. The need for a consistency
check is indicated by a tilde (˜) to the
right of the application name. See
“Checking consistency of applications”
on page 321 for information on how
to check that all required applications
are specified. After you have done the
required consistency check, you can
commit the Modified applications to
ENVY. This creates a new edition of
the duplicate parts in ENVY.

v The part names of the duplicate parts
also have a tilde beside them to
indicate that they have been modified.

Duplicates for business logic
Duplicates occur for business logic when you have built a program from
templates, imported it into one MSL, and then made changes to some
members in another MSL. These duplicates appear during migration after you
have migrated and committed the template-built parts from their MSL and
then change to the MSL that contains the business logic. When you try to
migrate the business logic MSL, there will be two types of parts:

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 315

v Parts that were not originally built by the templates, but which you added
for business logic. These parts will have blanks in the Duplicate and Last
Migration Library Timestamp columns in the MSL Migration Part List
window. You handle them like any other parts. In most cases, you will
want to add them into an existing (committed) application. The MSL
Migration Assistance Tool will mark the application as having been Modified
and you will be able to commit the application to ENVY again to put the
new parts into the ENVY library manager.

v Parts that were originally built for the templates that you modified for
business logic. These parts will have True in the Duplicate column and the
timestamp from the template-built MSL in the Last Migration Library
Timestamp column. You handle these parts as described in the following
steps.

Action Description

Select the duplicate parts. Select VAGen Parts and then
Select Duplicate Parts to select all the duplicates at one time.

Next select VAGen Parts and then Selected → Handle
Duplicate Parts → Replace Existing.

Each selected part is moved to the
sandbox and placed in the same
application in which it already exists.

The application name in the VG Part
Prerequisites View window is changed to
indicate that it has been Modified and
that a consistency check must be
performed. The need for a consistency
check is indicated by a tilde (˜) to the
right of the application name. See
“Checking consistency of applications”
on page 321 for information on how to
check that all required applications are
specified. After you have done the
required consistency check you will be
able to commit the Modified applications
to ENVY. This creates a new edition of
the duplicate parts in ENVY

The part names of the duplicate parts
also have a tilde beside them to indicate
that they have been modified.

Finding the application in which a part is located

You might need to determine which application a part or group of parts is
currently located in. For example, you might have some common code for
which the part names all start with XYZ and you want to verify that you
have placed all the parts that begin with XYZ into the same application.

316 VisualAge Generator: Migration Guide

Action Description

From the VG Part Prerequisites View window, select
Applications and then Find Parts.

An Information Required window is
displayed.

You can use a wildcard when you specify the selection
criteria. For example, if you specify V*, all parts that begin
with V are selected. If you specify only a V, the part named V
(if it exists) is selected. When you use Find Parts, any
previously selected parts are deselected.

If parts satisfying the selection criteria
are located in several applications, a
Selection Required window is displayed
and you can select the application you
want to review.

If parts satisfying the selection criteria
are located in only one application, the
VG Part Prerequisites View window is
displayed with this application
highlighted and all the parts within this
application that satisfy the selection
criteria also highlighted.

Listing missing (not found) parts

When you move parts to the sandbox, their associates generally move with
them. However, in some cases the associates might not exist in your MSL
concatenation sequence. This can occur for the following reasons:
v Some parts have not yet been developed for a new project.
v Some parts are intentional duplicates that exist in MSLs that will be

processed later. For example, see “Multiple subsystems with controlled
duplicates” on page 269.

v Some parts have been lost over time or possibly are in MSLs that you have
not considered for migration.

You need to resolve these associates that cannot be found — either determine
that there is not a problem or locate the missing code. The steps described in
the following table enable you to obtain a list of the missing parts. However,
you must handle the resolution.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 317

Action Description

From the VG Part Prerequisites View window, you can list
missing parts for all applications in the sandbox, by selecting
Applications and then List All Not Found Parts.

A List of not-found parts is displayed. It
shows all parts that should have been
moved to the sandbox but for which
source could not be found in the MSL
concatenation sequence. The application
name that expected to contain the
missing part is also displayed.

If all associated parts are found in the
sandbox, an Information window is
displayed indicating that there are no not
found parts.

Select Write To Transcript to put a copy of this list in the
System Transcript window.

If you scroll to the bottom of the System
Transcript, it displays the list of parts
that could not be found.

You can save the System Transcript to a
file or print it if you need a hardcopy to
help in finding the parts.

From the VG Part Prerequisites View window, you can list
missing parts for one application in the sandbox, by selecting
the application, then select Applications and then Selected →
List Not Found Parts.

A List of not-found parts is displayed. It
shows all parts within the selected
application that should have been moved
to the sandbox but for which source
could not be found in the MSL
concatenation sequence. The application
name that expected to contain the
missing part is also displayed.

If all associated parts are found in the
sandbox, an Information window is
displayed indicating that there are no not
found parts.

Select Write To Transcript to put a copy of this list in the
System Transcript window.

If you scroll to the bottom of the System
Transcript, it displays the list of parts
that could not be found.

You can save the System Transcript to a
file or print it if you need a hardcopy to
help in finding the parts.

Handling missing (not found) parts

When you find the MSL that contains a part that was identified as Not found,
you need to move the part to the sandbox. Parts in the current MSL that were
previously identified as Not found are identified in the MSL Migration Part
List window by a Status of Not Found.

318 VisualAge Generator: Migration Guide

Note: If you have now located multiple versions of the previously Not Found
part, you must first remove duplicates, as described in “Unintended
Duplicates” on page 313. This enables the MSL Migration Assistance
Tool to know which of the versions you want to move to the sandbox.

Action Description

From the MSL Migration Part List window, select the part. If
there are several Not Found parts, you can select them all at
once by selecting VAGen Parts and then selecting Select Not
Found Parts.

Next select VAGen Parts and then Selected → Add Not
Found Part.

The part is moved to the application in
the sandbox that currently contains the
part. The Not Found indicator to the right
of the part name in the sandbox is
removed.

If the part was moved to the NotFoundApp because you had
already committed applications to ENVY, you can

v Move the part to the committed application which
expected to have the part. This changes the status of the
committed application to Modified and you will need to
commit the application to ENVY again.

v Move the part to an application that has not yet been
committed to ENVY. This is situation occurs in the scenario
described in “Multiple subsystems with controlled
duplicates” on page 269 for the message table part. The
message table part is Not found when the COMMON and
DBA MSLs are migrated. However, it exists in the SUBSYS1
MSL and needs to be placed into one of the applications
being created for SUBSYS1 when you migrate the SUBSYS1
MSL.

This situation can also occur in the scenario described in
“Separate production MSLs for each developer” on
page 272. In this scenario, each subsystem must develop its
own version of any previously Not found parts.

Checking relationships among applications

You might want to determine what parts in an application are referenced by
another application or confirm that all prerequisite relationships have been
established. You do this using the techniques described in the following
sections:
v “Determining which programs are referenced”.
v “Determining the parts that are referenced” on page 320.
v “Checking consistency of applications” on page 321

Determining which programs are referenced
Called programs are not identified as associates of the functions (processes or
statement groups) that call them. However, when you are testing, you need to

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 319

have any called programs available. Therefore, when you define your
configuration maps, you might want to include the applications containing
both the called and calling programs in the same configuration map.

Note: Checking called programs can only be done before you commit
applications to ENVY.

Action Description

Select the application for which you want to determine the
programs called by any functions (processes or statement
groups) it contains.

Select Applications and then Selected → Programs
Referenced.

A list of called programs is displayed.

Select Write To Transcript to put a copy of this list in the
System Transcript window.

Determining the parts that are referenced
In some cases, you might want to determine which parts from one application
are referenced by another. For example, if there is only one part that is used in
a required application, you might want to move the part to reduce the
number of required applications. This function can be done even if one of the
applications involved has been committed to ENVY.

Action Description

Method 1 - Determining which parts in an application are
referenced by parts in a particular dependent application.

Select the application and then select one of its dependent
applications.

Select Dependent Applications and then Parts Referenced.

A list of associated parts in the selected
application that are referenced by parts
in the dependent application is
displayed.

The chain of required applications is not
considered.

You can save the list of dependent applications by selecting
Dependent Applications and then Write To File. The list is
copied to the migration log file, mslmig.log.

Scroll to the bottom of the migration log
file to see the list of dependent
applications. You can also print the
migration log file to use this list as a
reference.

Method 2 - Determining which parts in a particular required
application are referenced by parts in an application.

Select the application and then select one of its required
applications.

Select Required Applications and then Cross Reference.

A list of associated parts in the required
application (and its required
applications) that are referenced by parts
in the selected application is displayed.

The chain of required applications is
considered.

320 VisualAge Generator: Migration Guide

Action Description

You can save the list of referenced parts by selecting
Required Applications and then Write To File. The list is
copied to the migration log file, mslmig.log.

Scroll to the bottom of the migration log
file to see the list of referenced parts. You
can also print the migration log file to
use this list as a reference.

Checking consistency of applications
When you move parts from one application to another in the sandbox or
when you replace a duplicate part in the sandbox, the required applications
might not be updated correctly. To check that all the necessary required
applications are specified, do the steps described in this section.

Note: In the VG Part Prerequisites View window, if an application name has a
tilde (˜) to the right of the name, its required applications might not be
correct. Until you check consistency for this application, the MSL
Migration Assistance Tool will not allow you to commit the application
to ENVY.

Action Description

From the VG Part Prerequisites View window, you can verify
that all required applications are specified for an application,
by selecting the application, then selecting Applications and
then Selected → Check Consistency.

If the associates of all parts in the selected application can be
found in one of the required applications, an Information
window is displayed stating No inconsistency found.

Select the OK push button to close the
Information window.

If one or more of the associates of some parts in the selected
application cannot be found in the required applications, the
List of inconsistency window is displayed. It shows the parts
that could not be referenced based on the current required
applications. The application which needed to use each of the
parts is also shown.

Select Write To Transcript to put a copy of this list in the
System Transcript window.

See “Finding the application in which a
part is located” on page 316 for
information about how to find a part in
the sandbox.

See “Changing the list of required
applications” on page 322 for information
about how to change the list of required
applications.

Updating the list of required applications

After you have checked the consistency of an application, you might need to
modify its list of required applications. In addition, you might want to ensure
that the list of required applications does not include any unnecessary
applications. These techniques are described in:
v “Changing the list of required applications” on page 322
v “Normalizing the list of required applications” on page 322

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 321

Changing the list of required applications
Sometimes you might want to add or delete a required application from the
list. For example, after running a consistency check as described in “Checking
consistency of applications” on page 321, you might need to add a required
application.

Action Description

From the VG Part Prerequisites View window, select the
application for which you want to change its list of required
applications. Then select Required Applications and then
Change.

A Selection Required window is
displayed.

You can:

v Add a required application by moving it from the left pane
to the right pane.

v Remove a required application by moving it from the right
pane to the left pane.

When you are satisfied with the list of required applications,
select the OK push button.

The VG Part Prerequisites View window
is refreshed and shows the updated list
of required applications.

Normalizing the list of required applications
You might want to check that unnecessary applications are not included in the
list of required applications. However, when you commit the applications to
ENVY:
v For GUIs (views), only the applications that are actually required are

included in the application’s list of prerequisites.
v For 4GL parts, the application’s list of prerequisites is not set by the MSL

Migration Assistance Tool because these prerequisites are not used.
However, you might want to record this information for use in building
configuration maps.

Action Description

From the VG Part Prerequisites View window, select the
application for which you want to normalize the required
applications.

Then select Applications, and then Selected → Normalize
Prerequisites.

The Required Applications pane is
refreshed. Any unnecessary applications
have been removed.

322 VisualAge Generator: Migration Guide

Deleting an ApplicationNode

An ApplicationNode is created when a VAGen part that is already being used
by an existing application is an associate of the VAGen parts being put into
another application. The new ApplicationNode reflects the VAGen parts that
are common with an existing application and the existing application is not
marked as unexplodable.

You should review the VAGen parts in the new ApplicationNode and
determine where they should be placed — in the existing application, in the
application to which you were moving VAGen parts, or possibly in a third
application that contains common VAGen parts.

If all parts in the ApplicationNode should be moved to the same application,
it is easier to collapse the ApplicationNode as described in “Collapsing an
application” on page 311.

However, when parts must be moved to different applications, if you move a
part with its associates, all other parts in the ApplicationNode might be
associates of the part you moved. This creates a situation in which the
ApplicationNode exists, but contains no parts. See “Moving a VAGen part
between applications” on page 308 for information about moving a VAGen
part to a different application.

This section describes how to delete an application node after all VAGen parts
in it have been moved to other nodes and all dependents have been removed.

Action Description

From the VG Part Prerequisites View window, select the
ApplicationNode to be deleted.

The VAGen parts, required applications,
and dependent applications for the
selected application appear in the VG
Part Prerequisites View window.

If there are VAGen parts, see “Moving a VAGen part between
applications” on page 308 for information on how to move a
VAGen part or “Collapsing an application” on page 311 for
information on collapsing the entire ApplicationNode into
one application.

If there are dependents, see “Changing the list of required
applications” on page 322 for information on deleting the
dependents.

After all the VAGen parts and dependents have been
removed, then select Applications and then Selected →
Delete.

The VG Part Prerequisites View window
is refreshed and the ApplicationNode
has been deleted.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 323

Deleting an application

After you have migrated one subsystem to ENVY, you might need to delete
the applications created for that subsystem from the sandbox. This occurs in
the scenarios described in “Multiple subsystems with controlled duplicates”
on page 269, “Separate production MSLs for each developer” on page 272 and
“MSLs that contain unintended duplicates” on page 277.

Deleting one application
To delete one application, follow the steps described below.

Action Description

From the VG Part Prerequisites View window, select the
application to be deleted.

The VAGen parts, required applications
and dependent applications for the
selected application appear in the VG
Part Prerequisites View window.

The application you want to delete must not be specified as a
required application by any other application. For example, if
AppA lists AppB as a Dependent Application, AppB also
lists AppA as a Required Application. You cannot delete
AppA until you remove AppA from the list of required
applications for AppB.

The applications listed in the Dependent applications pane
are the applications that specify the application you want to
delete as a required application. If there are dependents, see
“Changing the list of required applications” on page 322 for
information on deleting this application from the dependents’
list of required applications.

The list of Dependent applications must
be empty.

Select Applications and then Selected → and then Delete. If the application has no dependents, it is
deleted.

If it has dependents, an error message is
displayed and the application is not
deleted.

Deleting all applications
You might want to delete all applications in the sandbox in the following
situations:
v After a pilot migration, you might want to clear the sandbox without

committing any applications to ENVY so that you can try a different
organizational structure for your applications.

v You have finished migrating a group of applications that shared one set of
common parts and you want to reset the sandbox before migrating another
group of applications with a different set of common parts.

324 VisualAge Generator: Migration Guide

Action Description

Select Applications and then Delete All. The VG Part Prerequisites View window
is refreshed with all applications cleared
from the window.

Committing to ENVY

When you are satisfied with the applications, their VAGen parts, and their
lists of required applications, you need to commit this work to the ENVY
manager to save it. You can commit one application at a time or all
applications at once.

If you commit a single application that contains GUIs and its required
applications have not already been committed to ENVY, the MSL Migration
Assistance Tool automatically commits the required applications before
committing the application you specified. This ensures that the prerequisites
for applications that contain views (GUIs) are established correctly.

If an application does not contain GUIs, its required applications are not
automatically committed.

Action Description

To make sure that all parts have been considered, from the
Part List Selection Criteria View window, do the following:
v Select the All Types push button
v Select the Only parts not processed toggle button
v Select the Build List push button.

The MSL Migration Part List window is
refreshed and contains any parts that
have not been moved to the sandbox.

Generally, there should not be any parts
on this list. If there are, you should
determine whether they represent
obsolete parts or parts that should be
migrated now. For example, you might
have parts in your common MSL that are
not referenced within the MSL itself but
which will be referenced when you
migrate MSLs for your subsystems. You
should migrate these common parts at
this time

This helps to insure that all parts are
considered by the MSL Migration
Assistance Tool.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 325

Action Description

From the VG Part Prerequisites View window, you should
also do the following:

v Review the number of parts in each application. This
number is listed to the right of the application name in the
VG Part Prerequisites View window. If the number of parts
of any one type is greater than 600-700, you might want to
consider splitting this application into smaller applications
to improve performance.

v List any parts not found (see “Listing missing (not found)
parts” on page 317).

v For any application with a tilde (˜) to the right of its name,
check that the required applications are specified (see
“Checking consistency of applications” on page 321).

v Check which programs are called by an application (see
“Determining which programs are referenced” on
page 319).

v Normalize applications to remove unnecessary required
applications (see “Normalizing the list of required
applications” on page 322).

From the VisualAge Organizer window, make sure that the
team leader is the current user. This ensures that the team
leader will become the manager for all the applications and
the owner for all the classes that are created when you
commit to ENVY. See “Creating users and setting the current
user” on page 294 for information on how to define and
change users.

326 VisualAge Generator: Migration Guide

Action Description

From the VG Part Prerequisites View window, select the
applications you want to commit. You can select individual
applications or use the following to select applications:
v Find Applications
v Select All
v Deselect All

You can specify:

v An application that has never been committed.

v An application that was previously committed to ENVY
but which now indicates that it has been Modified. A
Modified application is one that was committed to ENVY,
but which you have added parts to or replaced parts
within the application.

If there are relationships among GUIs (views) in different
applications, the MSL Migration Assistance Tool will
automatically commit:

v Any specified required applications that have not yet been
committed to ENVY

v Any specified required applications that were previously
committed but which now have been Modified.

Note: You cannot commit an application that is already
committed into ENVY unless it has been modified.

Select Applications and then Selected → Commit Into ENVY.

If you are committing modified
applications a warning message is
displayed for each application. Select OK
to commit the modified application to
ENVY.

If there were any Not Found parts in any
of the selected applications or their
required applications, a Warning
message window is displayed. You can
select Cancel to prevent committing any
parts into ENVY if you want to resolve
the Not Found parts first. You can select
OK if you want to commit the existing
parts to ENVY and resolve the Not Found
parts later. Select OK if you know that
the parts are in MSLs that you plan to
migrate later (for example, if your
scenario matches the one described in
“Multiple subsystems with controlled
duplicates” on page 269).

After the messages, a progress window
is displayed. Committing the
applications takes about 2 seconds per
VAGen part and somewhat longer for a
GUI (view).

When all applications have been
committed, the VG Part Prerequisites
View window is refreshed and each of
the applications has the notation
Committed beside it.

If there were any missing parts, an
application called NotFoundApp was
created and contains a list of the missing
parts. The NotFoundApp was not
committed to ENVY.

If you migrated GUIs, be sure to review the messages in
hptguicv.log. See “Migrating GUIs” on page 226 for details
about the conversion of GUIs to views.

If there were any missing parts listed in NotFoundApp, you can
print a list of them by using the technique described in
“Listing missing (not found) parts” on page 317.

Chapter 29. Running the MSL Migration Assistance Tool on Smalltalk 327

Action Description

Based on the MSL migration scenario that you are following,
you should not delete the applications from the VG Part
Prerequisites View window until you are certain you do not
need them when you migrate additional MSLs. These
committed applications can be used if you migrate additional
MSLs to determine where duplicates exist and to help resolve
the duplicates.

See “Chapter 31. Completing the ENVY setup on Smalltalk”
on page 331 and “Chapter 32. Completing your migration on
Smalltalk” on page 339 for information on additional steps
you might need to take.

328 VisualAge Generator: Migration Guide

Chapter 30. Using VAGen Import to migrate VAGen 2.x and
Cross System Product code to Smalltalk

Follow these steps to migrate VisualAge Generator 2.x and Cross System
Product code to VisualAge Generator 4.0:

1. Export your existing code to external source format files. You must use
your existing VisualAge Generator 2.x or Cross System Product release to
create these .esf files.
Export one external source format file for each ENVY application you
want to create. See the product documentation for information about how
to create external source format files.

Note: If you are migrating from Cross System Product, also read the
book Migrating Cross System Product Applications to VisualAge
Generator (Version 3.1) for information about other tasks you must
perform when migrating from Cross System Product to VisualAge
Generator.

If you are changing from the OS/2 to the Windows NT development
platform, be sure to review “Changing from OS/2 to Windows NT” on
page 298 before you start to migrate.

Note: You should not modify the export files.
2. Start VisualAge Generator 4.0.
3. In VisualAge Generator 4.0, create a VisualAge Smalltalk application

using these steps:
a. From the VisualAge Organizer window, select Applications->New.

The New Application window is displayed.
b. In the New Application window, enter a name for the application

and select OK. You will use this new application to receive the
contents of one of the external source format files that you want to
import into VisualAge Generator 4.0.

Create one ENVY application for each .esf file that you created in step 1.
For more information about creating applications, see the VisualAge
Generator User’s Guide.

4. From VisualAge Generator 4.0, from the VisualAge Organizer window,
select VAGen Parts->Parts Browser to open the VAGen Parts Browser.

5. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import.

© Copyright IBM Corp. 1997, 1999 329

6. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select the Open
button.

7. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of your application. When
there are no parts with errors, proceed to the next step.

8. In the VAGen Import window, specify the name of your application in the
Target application field. Move all parts to be imported from the Available
parts list to the Selected parts list. Then select the Import push button. The
selected parts are imported into VisualAge Generator 4.0 in the application
you specified.

9. In the VAGen Import window, select the New File push button and then
repeat steps 6, 7, and 8 for each external source format file you need to
import. When you have finished importing your external source format
files to VisualAge Generator 4.0, select the Cancel push button in the
VAGen Import window to return to the VAGen Parts Browser window.

10. Version and release all classes and applications you have imported.
11. Save your VisualAge Generator 4.0 image.
12. See “Chapter 31. Completing the ENVY setup on Smalltalk” on page 331

and “Chapter 32. Completing your migration on Smalltalk” on page 339
for information on additional steps you might need to take.

330 VisualAge Generator: Migration Guide

Chapter 31. Completing the ENVY setup on Smalltalk

The following sections describe specific tasks you might need to perform after
running the MSL Migration Assistance Tool. These tasks include:
v “Versioning and releasing a view or a VAGen part class”
v “Versioning an application” on page 332
v “Creating a configuration map” on page 333
v “Adding a required map to a configuration map” on page 334
v “Versioning a configuration map” on page 335
v “Changing the manager of a configuration map” on page 335
v “Assigning ownership of a VAGen part class” on page 336
v “Adding group members” on page 336
v “Changing the ownership of a VAGen part class” on page 336
v “Changing the manager of an application” on page 337

Versioning and releasing a view or a VAGen part class

After you have committed your production level VAGen parts to ENVY, you
should version and release the views and VAGen part classes to provide a
base line that matches the code that runs in your production system. The
steps below describe how to version and release views and VAGen part
classes for an application.

Note: You can version and release a view or VAGen part class in two separate
steps as described below or in a single step by selecting
Version/Release Owned. Multiple views and VAGen part classes
within a single application can be versioned or released at the same
time.

Action Description

From the VisualAge Organizer window:

v In the Applications pane, select an application.

v In the Parts pane, select all the VAGen part classes. These
are the classes that start with VAGen (for example,
VAGenRecords).

Note: In the Parts pane, VAGen part
classes that need to be versioned appear
in the format:

>VAGenRecords
(06/03/99 10:15:30 AM)

© Copyright IBM Corp. 1997, 1999 331

Action Description

In the Parts pane, press mouse button 2 and select Version →
and then one of the following:

v Name Each to specify a different version name for each of
the classes you are versioning.

v One Name to specify the same version name for all of the
classes you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Use Defaults to use the ENVY-determined defaults for
each of the classes you are versioning. The default might
be different for each class.

The Parts pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
VAGen part class.

Notes:

1. In the Parts pane, VAGen part classes
that have been versioned but not
released appear in the format:

>VAGenRecords
1.0

2. You must be the developer of a class
to version the class.

In the Parts pane, press mouse button 2 and select Release →
Current Version.

The Parts pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
VAGen part class.

Notes:

1. In the Parts pane, VAGen part classes
that have been versioned and
released appear in the format:

VAGenRecords
1.0

2. You must be the owner of a class to
release the class.

Versioning an application

You should version your applications to provide a base line that reflects the
level of code that you migrated to ENVY.

Action Description

From the VisualAge Organizer window, in the Applications
pane, select one or more applications to be versioned.

Note: In the Applications pane,
applications that need to be versioned
appear in the format:

TrbCommonDataApp
(06/03/99 10:15:30 AM)

332 VisualAge Generator: Migration Guide

Action Description

In the Applications pane, press mouse button 2 and select
Version → and then one of the following:

v Name Each to specify a different version name for each of
the applications you are versioning.

v One Name to specify the same version name for all of the
applications you are versioning. Use this option if you are
migrating parts built with VisualAge Generator Templates
or BW*Wizard or the business logic for those parts.

v Use Defaults to use the ENVY-determined defaults for
each of the applications you are versioning. The default
might be different for each application.

The Applications pane in the VisualAge
Organizer window is refreshed and
shows the version number for each
application.
Note:

Notes:

1. In the Applications pane,
applications that have been versioned
but not released appear in the format:

TrbCommonDataApp
1.0

2. You must be the manager of an
application to version the application.

Creating a configuration map

A configuration map allows you to define a group of application editions that
should all be loaded together into your image. For example, you might have a
configuration map that defines the application versions that are currently in
your production system. This section describes how to create a configuration
map, release applications into the configuration map, and specify any required
maps for the configuration map.

Action Description

From the VisualAge Organizer window, select Tools and then
Configuration Maps.

The Configuration Maps Browser is
displayed.

Select Names and then Create. An Information Required window is
displayed prompting you for the name
of the configuration map.

Type the name of the configuration map and select the OK
push button.

The Configuration Maps Browser is
displayed, with the name of the new
configuration map included in the list.
The new configuration map is
highlighted.

In the Description pane in the lower right corner, type a
description of the configuration map.

In the Applications pane, press mouse button 2 and select
Add.

A Selection Required window is
displayed listing the names of existing
applications.

Chapter 31. Completing the ENVY setup on Smalltalk 333

Action Description

In the Selection Required window:

v In the Names pane, select an application to add to the
configuration map.

v In the Editions pane, select the edition of the application.

v Select the >> push button to add the application edition to
the Selected Editions pane.

Repeat this process until all the needed applications are
included in the Selected Editions pane.

Select the OK push button.

The Configuration Maps Browser is
displayed, with the applications listed in
the Applications pane.
Note: You must be the manager of a
configuration map to add applications to
the configuration map.

Adding a required map to a configuration map
You can define a hierarchy of configuration maps by specifying required
maps. For example, in the configuration map for a subsystem, you might
want to specify the configuration map for common code as a required map.

Action Description

From the Configuration Maps Browser, in the Config.
Expressions pane, press mouse button 2 and then select Add.

An Information Required window is
displayed prompting you to specify an
expression.
Note: You must be the manager of a
configuration map to add a configuration
expression.

Select the OK push button to accept the default value of true
for the configuration expression.

The Configuration Maps Browser is
displayed, with true listed in the Config.
Expressions pane.

Specifying true means that the
configuration maps listed in the
Required Maps pane will always be
loaded before loading the applications
for this configuration map.

From the Required Maps pane, press mouse button 2, and
then select Add → As First.

A Selection Required window is
displayed prompting you for a
configuration map and its edition.
Note: You must be the manager of a
configuration map to add a required
map.

Select the prerequisite map and its edition and then select the
OK push button.

The Configuration Maps Browser is
displayed, with the configuration map
listed in the Required Maps pane.

334 VisualAge Generator: Migration Guide

Versioning a configuration map
To provide a base line for your configuration maps that reflects the level of
code that you migrated to ENVY, you should version them.

Action Description

From the Configuration Maps Browser, select the following:

v In the Names pane, select the name of the configuration
map.

v In the Editions and Versions pane, select the edition you
want to version.

v In the Editions and Versions pane, press mouse button 2
and then select Version.

An Information Required window is
displayed prompting you to specify a
version number.
Note: You must be the manager of a
configuration map to version the
configuration map.

In the Information Required window, select the OK push
button to use the default version of 1.0.

The Configuration Maps Browser is
displayed with the version showing in
the Editions and Versions pane.

Changing the manager of a configuration map
Each configuration map can have a different manager. Use these steps to
change the manager of a configuration map.

Action Description

From the Configuration Maps Browser, in the Editions and
Versions pane, press mouse button 2 and then select Change
Manager.

A Selection Required window is
displayed showing the current group
members for the configuration map. The
current manager is highlighted.
Note: You must be the manager of a
configuration map to change the
manager of that configuration map.

Select the new manager and select the OK push button. The Configuration Maps Browser is
displayed.

Testing a configuration map
You need to test that the configuration maps you have created will load
successfully. To do this, you can unload the applications and then reload them
using the configuration maps as described below. Alternatively, test the
configuration maps by trying to load them into a clean image.

Action Description

From the VisualAge Organizer window, select all the
applications you created.

Then select Applications->Unload.

The VisualAge Organizer window is
refreshed and no longer shows the
applications you created.

Chapter 31. Completing the ENVY setup on Smalltalk 335

Action Description

From the Configuration Maps Browser, select a configuration
map and then select the current version.

From the Editions and Versions pane, press mouse button 2
and then select Load With Required Maps (or Load if there
are no required maps for this configuration map).

The applications in the configuration
map are loaded and now appear in the
VisualAge Organizer window.

Check the System Transcript window for any error messages.

Assigning ownership of a VAGen part class

Each VAGen part class within an application can have a different owner.
Although developers can version a VAGen part class, the class owner controls
the release of VAGen part classes into the application.

The following sections describe how to add members to the authorized group
for an application and how to change the owner of a VAGen part class
accessed by that application group.

Adding group members
To change the owner of the class, the new owner must be a member of the
group. Group members must be defined for one application at a time.

Action Description

From the VisualAge Organizer window, select the application
for which group members are to be added.

Select Applications and then Group Members.

A window showing all defined users and
the current group members for the
application is displayed. The current
manager is indicated by a >.
Note: You must be the manager of an
application to add group members for
that application.

From the Users pane, select a user and select the >> push
button to move the user to the Group Members pane.

Repeat this step to add any additional users to the group.

When all new users have been moved to the Group
Members pane, select the OK push button.

The VisualAge Organizer window is
displayed.

Changing the ownership of a VAGen part class
The same owner can be assigned for multiple classes within a single
application at the same time. During migration, it is easiest to assign the same
owner to all the VAGen part classes within an application. The owner of these
classes might also (most likely) be the manager of the containing application.
After migration, you can use these steps to change the owner of a class.

336 VisualAge Generator: Migration Guide

Action Description

From the VisualAge Organizer window:

v In the Applications pane, select the application for which
new VAGen part class owners are to be assigned.

v In the Parts pane, select the VAGen part classes for which
you want to assign the same owner.

Select Parts and then Owner → Change Owner.

A Selection Required window is
displayed showing the current group
members for the application. The current
owner is highlighted.
Note: You must be the manager of an
application or the owner of a class to
change the owner of that VAGen part
class.

Select the new owner and select the OK push button. The VisualAge Organizer window is
displayed.

Changing the manager of an application

Each application can have a different manager. The manager of an application
can create an edition of the application and can version the application.

To change the manager of an application, the new manager must be a
member of the group for that application. See “Adding group members” on
page 336 for information on adding users to a group.

Action Description

From the VisualAge Organizer window, in the Applications
pane, select the application for which the manager is to be
changed.

Select Applications and then Manager → Change Manager.

A Selection Required window is
displayed showing the current group
members for the application. The current
manager is highlighted.
Note: You must be the manager of an
application to change the manager of
that application.

Select the new manager and select the OK push button. The VisualAge Organizer window is
displayed.

Chapter 31. Completing the ENVY setup on Smalltalk 337

338 VisualAge Generator: Migration Guide

Chapter 32. Completing your migration on Smalltalk

The following sections describe specific tasks that you might need to do to
complete your migration to ENVY. These tasks include:
v “Defining control information”
v “Generating programs and packaging views” on page 340
v “Importing work-in-progress” on page 341
v “Migrating VSAM files” on page 343

In addition, “Chapter 33. Hints and tips on Smalltalk” on page 345 provides
information to help you use the VisualAge Organizer and VAGen Parts
Browser windows.

Note: ENVY provides a variety of ways of doing most tasks and supports
multiple development scenarios. This chapter is intended to provide
one way, but not necessarily the only way, of performing tasks related
to migrating MSLs to ENVY.

Defining control information

Control information that is needed for test and generation must be stored in
ENVY applications. This control information consists of:
v Generation options
v Linkage table
v Resource associations
v Bind control information
v Link edit information

The technique for migrating your existing control information is the same for
each of the control files. The only difference is the part type that you specify
when you create the part.

Action Description

Make sure you have an open edition of the application to
which you want to add a control information part.

If you do not have an open edition, from the VisualAge
Organizer window, select the application and then select
Applications and then New Edition.

The application shows the date and time
stamp when the edition was created.

From the VAGen Parts Browser window, select Parts and then
New.

The New VAGen Part window is
displayed.

© Copyright IBM Corp. 1997, 1999 339

Action Description

Specify the name of the new part.

Select the Other radio button and then from the drop-down
list, select the type that corresponds to the control
information you need to add:
v Generation Options
v Linkage Table
v Resource Associations
v Bind Control
v Link Edit

From the drop-down combination box, select the application
to which you want to add the part. The drop-down list shows
applications with open editions and applications that already
contain the type of control information you specified.

Select the OK push button.

An editor window is displayed.

To load the control information from an existing file, select
File and then Read From File.

A File Specification window is displayed.

Select the drive, directory, and file name from which you
want to load an existing control file. Double-click on the file
name or select the Open push button to load the file.

The text from the file you specified
appears in the editor window.
Note: Be sure to review your options for
any that need to be changed. For
example, /OPTIONS, /LINKAGE,
/RESOURCE, /BIND, and /LINKEDIT
specified a directory in VisualAge
Generator 2.2. Now they should specify
a part name that is stored in ENVY.

If you do not have an existing file, you can use the editor to
specify your control information. If you loaded an existing
file, you can also use the editor to make changes to the
control information.

Close the editor window and specify Yes when asked if you
want to save the changes.

The VAGen Parts Browser is displayed.

Press F5 to refresh the contents of the VAGen Parts Browser
window.

Generating programs and packaging views

After you complete the migration of a group of MSLs (for example, after
migrating your production MSLs), you should generate all the programs and
package all the views for your target environments. Then test the results in
the runtime environments. This helps to ensure that you have migrated the
correct version of your code.

340 VisualAge Generator: Migration Guide

Refer to the VisualAge Generator Generation Guide for more information on how
to generate your programs and package your views.

Note:

1. Any programs for the C++ target environments must be regenerated
for VisualAge Generator 4.0. There is no coexistence of C++ runtime
services between VisualAge Generator 2.2 and 4.0. In addition, it is
strongly recommended that you regenerate all programs for the
COBOL environments and package all views to be sure that you
migrated the correct level of code.

2. For CICS OS/2, the default parmform option in the linkage table was
COMMDATA. With VisualAge Generator 4.0, the new option
COMMPTR is the default. Therefore, if you never specified linkage
tables for CICS OS/2, you might need a linkage table now.

3. You must generate the VAGen runtime code before you can package
a view that contains a 4GL part. From the VisualAge Organizer
window, select the application and then Applications and then
Generate→VAGen Runtime Code.
After the VAGen runtime code is generated, you can package the
application. From the VisualAge Organizer window, select the
application, then Applications, and then Make Executable.

4. When you package an application, you might receive a Debugger
window with a message saying “key not found”. This indicates that
a part was used in the view, but does not exist. Scroll down through
the stack and find a method that includes at:. Select this line and
the name of the missing part should appear on the right side of the
window. To remove the message, you need to find the part, load it
in your image, and add the application that contains the part to the
list of prerequisites for the application you are trying to package.
Alternatively, you can remove the part from the view (for example,
if the part was a place-holder part in a view built from a template).

Importing work-in-progress

To migrate your work-in-progress MSLs, use VAGen Import.

Chapter 32. Completing your migration on Smalltalk 341

Action Description

Make sure you have an open edition of the application for
which you want to change or add parts.

If you do not have an open edition, the application manager
can open an edition from the VisualAge Organizer window
by selecting the application and then selecting Applications
and then New Edition.

Note: During migration, you probably want to open an
edition of the application because you will be versioning after
importing the external source format file from each
work-in-progress MSL. After migration, you can use a scratch
edition when you import if you will not be adding any
classes (no new views or VAGen part classes).

The application shows the date and time
stamp when the edition was created.

Make sure you are a group member of all the applications for
which you want to change or add parts.

If you are not a group member, the application manager can
add you to the group by following the steps in “Adding
group members” on page 336.

If some of the parts you will be importing should be placed
into new applications, create the new applications.

From the VisualAge Organizer window, select Applications
and then New.

The New Application window is
displayed.

Type the name of the application you want to create.

Select the OK push button.

The VisualAge Organizer window is
displayed with the new application listed
in the Applications pane.

From the VisualAge Organizer window, select VAGen Parts
and then Parts Browser.

The VAGen Parts Browser window is
displayed.

From the VAGen Parts Browser window, select Parts and then
Import/Export → VAGen Import.

The VAGen Import File Selection
window is displayed, requesting
information about the external source
format file that you want to import.

Specify the drive, directory, and file name and then press the
OK push button.

The VAGen Import window is displayed.
The Parts with errors pane lists any
parts that encountered problems during
external source format validation. The
Available parts pane lists the parts that
successfully passed the external source
format validation.

342 VisualAge Generator: Migration Guide

Action Description

Specify the Destination for duplicate parts and the Target
application.

Destination for duplicate parts specifies
how duplicate parts (parts that are
already in your image) are to be treated.
When you import your work-in-progress,
you should select the Defined
application radio button as the
Destination for duplicate parts. This
means that any part listed in the
Selected Parts pane that already exists in
your image is replaced in the application
in which it already exists. This preserves
the application organization that you
created in the sandbox with the MSL
Migration Assistance Tool.

Target application is the default
application into which you want to place
the parts. When you select Defined
application as the method for handling
duplicates, only new parts are imported
into the target application.

Select parts from the Available parts pane and move them to
the Selected parts pane using the >> push button.

When you select the Import push button, only parts in the
Selected parts pane are imported. This allows you to import
some parts into one target application and another group of
parts from the same external source format file into a
different target application.

After you select the Import push button,
the selected parts are imported and the
VAGen Import window is displayed
again. The parts you imported are
removed from the Selected parts pane
and also do not appear in the Available
parts pane. This enables you to see what
parts from the external source format file
have not yet been processed.

Migrating VSAM files

If you are migrating from Cross System Product, you might have VSAM files
that you need to access during test. Copies of these files must be moved to
the workstation for use with the Interactive Test Facility. To migrate these
VSAM files, do the following:
v If you use variable-length VSAM files on an MVS host system, see the

VisualAge Generator Installation Guide for information on how to upload and
install a VisualAge Generator utility that is required to prepare these files
for download.

v For VM, VSE, and MVS host systems, see Migrating Cross System Product
Applications to VisualAge Generator (SH23-0244-01) for information on how to
REPRO and download your VSAM files.

Chapter 32. Completing your migration on Smalltalk 343

v For information on how to run the VSAM conversion utility for your
downloaded MVS files, from the VAGen Parts Browser window, select
Tools and then Data File Conversion. Then select the Help push button.

Converting an RTABLE to a Linkage Table

If you have been using the VisualAge Generator middleware RTABLE for
communications routing, the RTABLE entries must be moved from the
RTABLE to a linkage table. The following example shows a mapping of
RTABLE entries to linkage table entries:

RTABLE
app1 - - - - - - lu2 LU2C - 1
app2 - - - - - - lu2 LU2C - 1
app3 - - - - - - lu2 LU2C - 1
app4 - - - - - - lu2 LU2B - 1
$ANY - - - - - - lu2 LU2K - 1

LINKAGE TABLE
:calllink applname=app1 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app2 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app3 linktype=remote remotecomtype=LU2
serverid=LU2C.
:calllink applname=app4 linktype=remote remotecomtype=LU2
serverid=LU2B.
:calllink applname=* linktype=remote remotecomtype=LU2
serverid=LU2K.

344 VisualAge Generator: Migration Guide

Chapter 33. Hints and tips on Smalltalk

The following sections provide hints and tips related to the various windows
in VisualAge Generator.

System Transcript Window

The following tips apply to the System Transcript window:
v If you are not able to unload an application because there are instances of

one or more of its classes, try executing one of the following in the System
Transcript window:
System abtScrubImage

or

<defined-class-name> allInstances do: [:each |
each become: nil]

In the second command, you replace <defined-class-name> with the name
of the class that appeared in the error message when you tried to unload
the application.

VisualAge Organizer window

The following tips apply to the VisualAge Organizer window:
v Select Options and then Full Menus to see all the options on the

drop-down menus.
v Select Options and then Preferences to change your preferences. On the

General page, consider changing the Preferred Settings View to Properties
Table (Recommended). Do not make this change if some of the tools you
use with VisualAge Smalltalk do not yet support properties tables.

v EM-API is the category that is used for the ENVY APIs. These methods are
useful for writing tools. To see the methods in this category, select Tools,
then Category, and then type EM-API when you are prompted for the
category.

VAGen Parts Browser window
The following tips apply to the VAGen Parts Browser window:
v Under View there is an option to Save as Defaults. This saves your current

Filter so that you can bring up the same parts list later. For better

© Copyright IBM Corp. 1997, 1999 345

performance in opening the VAGen Parts Browser, you might want to set
the Filter to only display programs (or no parts at all) and then use
View->Save as Defaults.

v Under View, there is a Font setting to set the font used in the VAGen Parts
Browser window.

v Under View, there is Reorder Columns to hide, add, or change the order of
columns in the VAGen Parts Browser.

v If you sort by Description, the performance of bringing up the part list
degrades. This is because each part must be opened to read the description
for the sort. If you want to see the description for a particular part, select
the part. Its description is displayed in the status area at the bottom of the
window.

Refreshing the MSL Migration Assistance Tool

Note: This step is only necessary if there is an updated version (for
example, a fix test) sent separately from the VAGen 4.0 product
fixpaks.

If an updated version of the MSL Migration Assistance Tool is provided in a
separate .dat file, it must be imported into the ENVY library and then loaded
into your image before you can run it. Make sure the .dat file is located on a
drive and path that is known to the library management server (EMSRV).

Action Description

From the VisualAge Organizer window, select Applications,
then Import/Export → Import Applications.

An Information Required window is
displayed.

In the Information Required window, type the IP name of
your library management server (EMSRV) and select OK.

The
Enter the full path name of the library
window is displayed.

In the Enter the full path name of the library window,
select the drive, directory, and file name for the file
containing the MSL Migration Assistance Tool (for example,
e:\vagen40\dat\migrate.dat) and select Open.

The Selection Required window is
displayed.

346 VisualAge Generator: Migration Guide

Action Description

Under Names, select the first application listed.

Under Versions, select the current version.

Select the >> push button to move the current version of the
application into the Selected Versions list.

Repeat these steps until all the applications are moved from
the left pane to the right pane.

Make a note of the application names. They are also recorded
in the System Transcript window.

Select the OK push button.

A message is displayed indicating that
the application is being imported.

From the VisualAge Organizer window, select Applications
and then View → Show All Applications.

The VisualAge Organizer window is
refreshed and now shows all
applications.

Select the first application name that was included in the .dat
file. Then select Applications and Load → Another Edition.

A list of editions for the application.
appears.

Select the current version and select the OK push button. The VisualAge Organizer window is
refreshed and now shows the current
version of the application.

You might receive a message about
pointers being recached.

Repeat the steps to load all the applications included in the
.dat file.

From the System Transcript window, select File and then
Save Image As.

A window asking for the “File name for
image?” is displayed.

Chapter 33. Hints and tips on Smalltalk 347

Action Description

Select the drive and directory for where you installed
VisualAge Generator 4.0 and specify a file name, for example
mig1.icx.

Saving a copy of the image as mig1.icx
file enables you to start the migration
from this point, without having to
import and load the MSL Migration
Assistance Tool again. To restart from
this point at a later time, do the
following from an OS/2 window or
Windows NT command prompt:

/* rename your current image
/* (abt.icx) to a backup name
/* where xxxxx is an identifier
/* to help you
/* remember the point
/* in time from which
/* the abt file was
/* renamed
rename abt.icx abtxxxxx.icx

/* copy the image that
/* includes the refreshed
/* MSL Migration Assistance Tool to
/* be the new current image
copy mig1.icx abt.icx

/* start VisualAge from the
/* image with the refreshed
/* MSL Migration Assistance Tool
start abt

348 VisualAge Generator: Migration Guide

Part 5. Sharing VAGen 4.0 parts between Java and
Smalltalk

Chapter 34. Sharing VAGen 4.0 parts
between Java and Smalltalk 351
Moving 4GL parts from Java to Smalltalk 351
Moving 4GL parts from Smalltalk to Java 352

Chapter 35. Sharing VAGen Templates 4.0
specifications between Java and
Smalltalk 355
Moving VisualAge Generator Templates
specifications from Java to Smalltalk . . . 355
Moving VisualAge Generator Templates
specifications from Smalltalk to Java . . . 357

© Copyright IBM Corp. 1997, 1999 349

350 VisualAge Generator: Migration Guide

Chapter 34. Sharing VAGen 4.0 parts between Java and
Smalltalk

If you have installed VisualAge Generator 4.0 on both the Java and Smalltalk
platforms, you might need to move code between the platforms. For example,
you might have common code that needs to be available in both the Java and
Smalltalk development environments. The VAGen Import tool enables you to
do this.

Note: VisualAge Generator 4.0 only enables you to move non-GUI (4GL) code
between the Java and Smalltalk platforms.

Moving 4GL parts from Java to Smalltalk

To migrate VisualAge Generator 4.0 4GL parts from the Java platform to the
Smalltalk platform, use these steps:

1. Start VisualAge Generator 4.0 on Java.
2. From the VisualAge for Java Workbench, select Workspace->Open

VAGen Parts Browser to open the VAGen Parts Browser window.
3. From the VAGen Parts Browser window, select the projects, packages,

and parts you want to export, and then select VAGen
Parts->Import/Export->VAGen Export.

4. In the VAGen Export File Selection window, specify the file you want to
contain the output of your export operation, and then select Open.
Export one external source format file for each ENVY package you want
to export to Smalltalk.

Note: You should not modify the export files.
5. Start VisualAge Generator 4.0 on Smalltalk.
6. From the VisualAge Organizer window, create applications that are

needed for any new 4GL parts. Open editions of the applications that
contain existing parts you want to copy from Java to Smalltalk.

7. From the VisualAge Organizer window, select VAGen Parts->Parts
Browser. The VAGen Parts Browser window is displayed.

8. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import to import the external source format files into VisualAge
Generator 4.0 on Smalltalk.

9. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select Open.

© Copyright IBM Corp. 1997, 1999 351

10. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of your application.
When there are no parts with errors, proceed to the next step.

11. In the VAGen Import window, specify the name of your application in
the Target application field. Move all parts to be imported from the
Available parts pane to the Selected parts pane. Then select Import. The
selected parts are imported into VisualAge Generator 4.0 on Smalltalk in
the application you specified.

12. In the VAGen Import window, select the New File push button and then
repeat steps 9, 10, and 11 for each external source format file you need to
import. When you have finished importing your applications to
VisualAge Generator 4.0 on Smalltalk, select Cancel in the VAGen Import
window to return to the VAGen Parts Browser window.

13. Version and release all classes and applications for the parts you have
imported.

14. Save your VisualAge Generator 4.0 on Smalltalk image.

Moving 4GL parts from Smalltalk to Java

To migrate VisualAge Generator 4.0 4GL parts from the Smalltalk platform to
the Java platform, use these steps:

1. Start VisualAge Generator 4.0 on Smalltalk.
2. From the VisualAge Organizer window, select VAGen Parts->Parts

Browser to open the VAGen Parts Browser window.
3. From the VAGen Parts Browser window, select the parts you want to

export and then select VAGen Parts->Import/Export->VAGen Export.
4. In the VAGen Export File Selection window, specify the file you want to

contain the output of your export operation, and then select Open.
Export one external source format file for each ENVY application you
want to export to Java.

Note: You should not modify the export files.
5. Start VisualAge Generator 4.0 on Java.
6. From the VisualAge for Java Workbench, create Java projects and

packages that are needed for any new 4GL parts. Open editions of
projects and packages that contain existing parts you want to copy from
Smalltalk to Java.

7. From the VisualAge for Java Workbench, select Workspace->Open
VAGen Parts Browser to open the VAGen Parts Browser.

8. From the VAGen Parts Browser window, select Parts->Import/Export-
>VAGen Import to import the external source format files into VisualAge
Generator 4.0 on Java.

352 VisualAge Generator: Migration Guide

9. In the VAGen Import File Selection window, select one external source
format (*.esf) file that you want to import and then select Open.

10. In the VAGen Import window, check to see if there are any parts listed in
the Parts with errors list box. If there are, you need to debug the errors
before those parts can be imported with the rest of the .esf file. When
there are no parts with errors, proceed to the next step.

11. In the VAGen Import window, specify the name of your package in the
Target package field. Move all parts to be imported from the Available
parts pane to the Selected parts pane. Then select Import. The selected
parts are imported into the package you specified.

12. In the VAGen Import window, select the New File push button and then
repeat steps 9, 10, and 11 for each external source format file you need to
import. When you have finished importing your .esf files to VisualAge
Generator 4.0 on Java, select Cancel in the VAGen Import window to
return to the VAGen Parts Browser window.

13. Version and release all classes, packages and projects for the Smalltalk
applications you have imported.

14. Save your VisualAge for Java workspace.

Chapter 34. Sharing VAGen 4.0 parts between Java and Smalltalk 353

354 VisualAge Generator: Migration Guide

Chapter 35. Sharing VAGen Templates 4.0 specifications
between Java and Smalltalk

If you have installed VisualAge Generator Templates 4.0 on both the Java and
Smalltalk platforms, you might need to move code between the platforms.
The VAGT Import/Export function enables you to do this.

Moving VisualAge Generator Templates specifications from Java to Smalltalk

To migrate VisualAge Generator Templates 4.0 specifications from the Java
platform to the Smalltalk platform, use these steps:

1. Start VisualAge Generator 4.0 on Java.
2. From the VisualAge for Java workspace, select Workspace->Open VAG

Templates Browser to open the VAG Templates Browser window.
3. From the Select Workspace window, select the VAG Templates workspace

that you want to export and select the OK button.
4. From the VAG Templates Browser window, select Tools->VAGT

Import/Export.
5. In the VAGT Import/Export window, select an entity from the left pane,

select the instances you want to export in the right pane, and then select
the Export button.

6. In the File Selection window, select or enter the name of the file into
which you want to export the VisualAge Generator Templates
specifications, and select Open.

7. Export one external source format file for each VisualAge Generator
Templates entity that you want to export to Smalltalk. Repeat steps 4, 5
and 6 to export VisualAge Generator Templates instances for each entity
you want to export.

Notes:

a. The export of a VisualAge Generator Templates specification x
overwrites the old record of this instance x if it exists; otherwise, x is
added to the export file.

b. All you VisualAge Generator Templates specifications can be saved in
the same file. This includes the entity definition, generation
parameters and workspace. However, if you have several workspaces,
you must create a separate file for each workspace and its
corresponding generation parameters. For example, suppose you have
two workspaces WS1 and WS2 and a Business Object BO1. You
should save the BO1 definition in one file, WS1 and its corresponding

© Copyright IBM Corp. 1997, 1999 355

BO1 generation parameters in a second file, and WS2 and its
corresponding BO1 generation parameters in a third file.

c. You should not modify the export files.
8. Start VisualAge Generator 4.0 on Smalltalk.
9. Create a VisualAge Smalltalk application by selecting Applications->New

from the VisualAge Organizer. In the New Application window, enter a
name for the application and select OK. You will use this new application
to receive the contents of one VisualAge Generator Templates workspace
and its specifications that you want to import from Java.
Create an application for each VisualAge Generator Templates workspace
that you want to import. For more information about creating applications,
see the VisualAge Generator User’s Guide.

10. From the VisualAge Organizer window, select Tools->VAGT
Tools->Open VAG Templates Browser to open the VAG Templates
Browser window.

11. From the Select Workspace window, in the application you created in step
8, create the VisualAge Generator Templates workspace you want to
import.

12. From the VAG Templates Browser window, select Tools->VAGT
Import/Export to import the workspace.

13. From the VAG Templates Import/Export window, select the Import
button.

14. In the File Selection window, select or enter the name of the file into
which you want to import the VisualAge Generator Templates
specifications and then select the Open button.

15. In the Available Entities window, select the VisualAge Generator
Templates specifications you want to import and then select the OK
button.

16. To import VisualAge Generator Templates specifications corresponding to
generation parameters for another workspace, open a new VisualAge
Generator Templates workspace. In the VAG Templates Browser window,
select Workspace->Open and create a VisualAge Generator Templates
workspace in a VisualAge Smalltalk application. Then repeat steps 12–15.

17. When you have finished importing your VisualAge Generator Templates
specifications, close the VAGT Import/Export window and close the VAG
Templates Browser window.

18. Version and release all classes and applications for the VisualAge
Generator Templates specifications you have imported.

19. Save your VisualAge Generator 4.0 on Smalltalk image.

356 VisualAge Generator: Migration Guide

Moving VisualAge Generator Templates specifications from Smalltalk to Java

To migrate VisualAge Generator Templates 4.0 specifications from the
Smalltalk platform to the Java platform, use these steps:

1. Start VisualAge Generator 4.0 on Smalltalk.
2. From the VisualAge Organizer window, select Tools->VAGT

Tools->Open VAG Templates Browser to open the VAG Templates
Browser window.

3. From the Select Workspace window, select the VAG Templates workspace
that you want to export and select the OK button.

4. From the VAG Templates Browser window, select Tools->VAGT
Import/Export.

5. In the VAGT Import/Export window, select an entity from the left pane,
select the instances you want to export in the right pane, and then select
the Export button.

6. In the File Selection window, select or enter the name of the file into
which you want to export the VisualAge Generator Templates
specifications, and select Open.

7. Export one external source format file for each VisualAge Generator
Templates entity that you want to export to Smalltalk. Repeat steps 4, 5
and 6 to export VisualAge Generator Templates instances for each entity
you want to export.

Notes:

a. The export of a VisualAge Generator Templates specification x
overwrites the old record of this instance x if it exists; otherwise, x is
added to the export file.

b. All of your VisualAge Generator Templates specifications can be
saved in the same file. This includes the entity definition, generation
parameters and workspace. However, if you have several workspaces,
you must create a separate file for each workspace and its
corresponding generation parameters. For example, suppose you have
two workspaces WS1 and WS2 and a Business Object BO1. You
should save the BO1 definition in one file, WS1 and its corresponding
BO1 generation parameters in a second file, and WS2 and its
corresponding BO1 generation parameters in a third file.

c. You should not modify the export files.
8. Start VisualAge Generator 4.0 on Java.
9. Create a Java project and package to store the code you want to import

from Smalltalk:
a. From the VisualAge for Java Workbench window, open the context

menu by clicking the right mouse button on an empty part of the
Workbench window.

Chapter 35. Sharing VAGen Templates 4.0 specifications between Java and Smalltalk 357

b. Select Add->Project from the context menu.
c. In the Add Project window, enter a name for the new project and select

the Finish push button.
d. From the Workbench window, select the project you just created, and

open the context menu.
e. From the context menu, select Add->Package.
f. In the Add Package window, enter a name for the new package and

select the Finish push button.

Create one Java project and package for each VisualAge Generator
Templates workspace you want to import from Smalltalk. For more
information about creating packages and projects, see the VisualAge
Generator User’s Guide.

10. Open the VAG Templates Browser window. From the VisualAge for Java
Workbench window, select Tools->VAGT Tools->Open VAG Templates
Browser.

11. From the Select Workspace window, in the Java package you created in
step 10, create the VisualAge Generator Templates workspace you want
to import.

12. From the VAG Templates Browser window, select Tools->VAGT
Import/Export to import the workspace.

13. From the VAG Templates Import/Export window, select the Import
button.

14. In the File Selection window, select or enter the name of the file into
which you want to import the VisualAge Generator Templates
specifications and then select the Open button.

15. In the Available Entities window, select the VisualAge Generator
Templates specifications you want to import and then select the OK
button.

16. To import VisualAge Generator Templates specifications corresponding to
generation parameters for another workspace, open a new VisualAge
Generator Templates workspace. In the VAG Templates Browser window,
select Workspace->Open and create a VisualAge Generator Templates
workspace in a Java package. Then repeat steps 13-16.

17. When you have finished importing your VisualAge Generator Templates
specifications, close the VAGT Import/Export window and close the VAG
Templates Browser window.

18. Version and release all classes, packages and projects for the VisualAge
Generator Templates specifications you have imported.

19. Save your VisualAge Generator 4.0 workspace.

358 VisualAge Generator: Migration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1997, 1999 359

360 VisualAge Generator: Migration Guide

Appendix A. Name changes for parts and part classes

Table 20 shows the changes made to VAGen part class names during 4.0
migration.

Table 20. Migration of VAGen Part Class Names

Member Type
(VisualAge Generator
2.x and Cross System
Product)

VAGen Part Class
(VisualAge Generator 3.x)

VAGen Part Class
(VisualAge Generator
4.0 on Smalltalk)

Java Class (VisualAge
Generator 4.0 on Java)

Application VAGenPrograms VAGenPrograms VAGenPrograms

GUI (for VisualAge
Generator only)

Not Applicable (GUIs
become views)

Not Applicable (GUIs
become views)

Not Applicable

Record VAGenRecords VAGenRecords VAGenRecords

Table VAGenTables VAGenTables VAGenTables

Data Item VAGenDataItems VAGenDataItems VAGenDataItems

Map Group VAGenMapGroups VAGenMapGroups VAGenMapGroups

Map VAGenMaps VAGenMaps VAGenMaps

Process VAGenProcesses VAGenFunctions VAGenFunctions

Statement Group VAGenStatementGroups VAGenFunctions VAGenFunctions

PSB (Program
Specification Block)

VAGenPSBs VAGenPSBs VAGenPSBs

Table 21 shows the changes made to VAGen control information part names
during 4.0 migration.

Note: In VisualAge Generator 2.x and Cross System Product, the control
information was in files outside of the MSL.

Table 21. Migration of VAGen Control Information Part Names

File (VisualAge
Generator 2.x and
Cross System Product)

VAGen Part Class
(VisualAge Generator 3.x)

VAGen Part Class
(VisualAge Generator
4.0 on Smalltalk)

Java Class (VisualAge
Generator 4.0 on Java)

Generation Options VAGen Options VAGen Options VAGen Options

Linkage table VAGenLinkages VAGenLinkages VAGenLinkages

Resource Associations VAGenResources VAGenResources VAGenResources

Bind Control
Commands

VAGenBindControls VAGenBindControls VAGenBindControls

© Copyright IBM Corp. 1997, 1999 361

Table 21. Migration of VAGen Control Information Part Names (continued)

File (VisualAge
Generator 2.x and
Cross System Product)

VAGen Part Class
(VisualAge Generator 3.x)

VAGen Part Class
(VisualAge Generator
4.0 on Smalltalk)

Java Class (VisualAge
Generator 4.0 on Java)

Linkage Editor Control
Statements

VAGenLinkEdits VAGenLinkEdits VAGenLinkEdits

Table 22 shows the changes made to VAGen GUI composition editor part
names during 4.0 migration.

Note: GUIs did not exist for Cross System Product.

Table 22. Migration of GUI Composition Editor Part Names

Member Type
(VisualAge
Generator 2.x)

VAGen Part
(VisualAge
Generator 3.x)

VAGen Part
(VisualAge
Generator 4.0 on
Smalltalk)

Java Part
(VisualAge
Generator 4.0 on
Java)

Data VAGen Data VAGen 4GL VAGen 4GL

Logic VAGen Logic VAGen 4GL VAGen 4GL

Container Details VAGen Container
Details

VAGen Container
Details

VAGen Container
Details

Variable VAGen Variable VAGen Variable VAGen Variable

File Accessor VAGen File
Accessor

VAGen File
Accessor

VAGen File
Accessor

Table 23 shows the changes made to VAGTemplates part class names and
repartition during 4.0 migration.

Table 23. Migration of VAGTemplates part class names and repartition

Entity type Description type VAGTemplates part
class (VisualAge
Generator
Templates 3.x)

VAGTemplates part
class (VisualAge
Generator
Templates 4.x on
Smalltalk and Java)

Business Object Definition VAGTemplates
BusinessObjects

VAGTBusinessObjects

Generation
Parameters

VAGTemplates
BusinessObjects

VAGTBusinessObject
Prms

Definition
Extensions

VAGTemplates
BusinessObjects

VAGTExtensions

Data Element Definition VAGTemplates
DataElements

VAGTDataElements

362 VisualAge Generator: Migration Guide

Table 23. Migration of VAGTemplates part class names and repartition (continued)

Entity type Description type VAGTemplates part
class (VisualAge
Generator
Templates 3.x)

VAGTemplates part
class (VisualAge
Generator
Templates 4.x on
Smalltalk and Java)

Generation
Parameters

VAGTemplates
DataElements

VAGTDataElement
Prms

Definition
Extensions

VAGTemplates
DataElements

VAGTExtensions

Interface Unit Definition VAGTemplates
InterfaceUnits

VAGTInterface Units

Generation
Parameters

VAGTemplates
InterfaceUnits

VAGTInterface
UnitPrms

Definition
Extensions

VAGTemplates
InterfaceUnits

VAGTExtensions

Relational Table Definition VAGTemplates
RelationalTables

VAGTRelationalTables

Generation
Parameters

VAGTemplates
RelationalTables

VAGTRelational
TablePrms

Definition
Extensions

VAGTemplates
RelationalTables

VAGTExtensions

Value Style Definition VAGTemplates
ValueStyles

VAGTValueStyles

Generation
Parameters

no parameters no parameters

Definition
Extensions

VAGTemplates
ValueStyles

VAGTExtensions

Workspace Definition VAGTemplates
Workspaces

VAGTWorkspaces

Generation
Parameters

no parameters no parameters

Definition
Extensions

VAGTemplates
Workspaces

VAGTExtensions

Appendix A. Name changes for parts and part classes 363

364 VisualAge Generator: Migration Guide

Appendix B. Planning for Migrating Cross System Product
MSLs to ENVY

The following sections list information that you should consider when
planning your migration from Cross System Product to VisualAge Generator
4.0. The information is organized as a series of questions to help you collect
the information that will be needed during the migration process. These
sections focus on the migration of Cross System Product applications to
VisualAge Generator 4.0. Refer to the appropriate installation manuals for
information about the following:
v Hardware prerequisites
v Software prerequisites
v Installing the hardware
v Installing the software
v Customizing the software
v Performance tuning of development environment
v Performance tuning of target environment

See “Appendix C. Planning for Migrating VAGen MSLs to ENVY” on page 381
you are migrating from an earlier version of VisualAge Generator.

Collecting Information about Your Environment

Use the following tables to collect information about your environment:
v Environment Overview (Table 24 on page 366)
v Application Details (Table 25 on page 369)
v Application Management (Table 26 on page 372)
v DB2 Details (Table 27 on page 374)
v DL/I Details (Table 28 on page 374)
v VSAM Details (Table 29 on page 375)
v Special Scheduling Situations (Table 30 on page 375)
v Education Requirements (Table 31 on page 376)
v Integral-Specific (Table 32 on page 376)
v Migration Difficulty Summary - COBOL Generation Issues (Table 34 on

page 377)
v Migration Difficulty Summary - General Issues (Table 34 on page 377)

© Copyright IBM Corp. 1997, 1999 365

Table 24. Environment Overview Questions

Description Information

Cross System Product (Version & Releases)?
Development
Runtime

Note:

1. If 3.2.1 or earlier, external source format is not
available to use in migrating to VisualAge
Generator.

2. If 3.2.2 or earlier, CSP/AE (interpretive) was
used.

3. If 3.3, determine if COBOL or interpretive was
used for the MVS Batch environment; IMS/VS
and IMS BMP used generated COBOL; all other
environments used interpretive code.

What are the current Cross System Product
development environments?

MVS/TSO
MVS CICS (list release)
VSE CICS (list release)
VM
OS/2 (using CSP/2AD)

What are the current Cross System Product target
(runtime) environments?

MVS Batch
MVS/TSO
IMS/VS or IMS/ESA (list release)
IMS BMP
MVS CICS (list release)
CICS OS/2 (list release)
VSE CICS (list release)
VSE Batch
VM CMS
VM Batch
OS/400
EZ-PREP/EZ-RUN

What is the planned VisualAge Generator
development environment?

OS/2
Windows NT

____Smalltalk only
____Smalltalk
____Java

366 VisualAge Generator: Migration Guide

Table 24. Environment Overview Questions (continued)

Description Information

What are the planned VisualAge Generator target
(runtime) environments?

MVS Batch
MVS/TSO
IMS/VS or IMS/ESA (list release)
IMS BMP
MVS CICS (list release)
CICS OS/2 (list release)
CICS/6000 (list release)
VSE CICS (list release)
VSE Batch
VM CMS
VM Batch
OS/2
OS/400
AIX
HP-UX
Solaris
Windows NT CICS
Windows NT
____GUI Client____
OS/2
Windows 95
Windows NT

__GUI Client__

What databases are used?
DB2 (list release)
SQL/DS (list release)
VSAM
DL/I (list release)
Other (list)

How many application developers use Cross
System Product?

Are there any Cross System Product application
naming conventions:

Documented
Followed

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 367

Table 24. Environment Overview Questions (continued)

Description Information

Are there any Cross System Product application
development standards:

Documented
Followed

Can you provide a copy of the documentation?

When was Cross System Product first used in the
company?

What Cross System Product features are favorable?
Unfavorable?

What are the near-term application development
plans?

What are the long-term application development
plans?

What is the support structure for applications? (For
example, are there separate development and
maintenance groups or is each developer
responsible for both development and maintenance
on a set of applications)

What are you hoping to achieve with this
migration?

What kind of expertise do you have in the
following areas:

COBOL
VisualAge C++
PL/I
OS/2
Proposed target environment(s) if these are
changing

368 VisualAge Generator: Migration Guide

Table 25. Application Details Questions

Description Information

Application Information
Number of application systems
Number of application subsystems
Number of applications within each subsystem
Number of applications that are:

Simple
Medium
Complex

MSL Information
Number of MSLs shared by developers (exclude
individual developer’s MSLs)
Are there separate sets of MSLs (for example,
one set of MSLs for use by the developers and
another parallel set for use by the librarian OR
several sets of parallel MSLs, each set matching
the code that is at various levels of test or
production)
Number of MSLs with common code, records,
data items that are shared across subsystems
What concatenation sequences are used for
testing with ITF?
What concatenation sequences are used for
generation:

For the developers
For system test
For acceptance test
For production

Native COBOL usage
Do any applications call native COBOL?
Are any applications called by native COBOL?
If so:

What is the COBOL release?
How many native COBOL programs are
used?
How many Cross System Product
applications call native COBOL programs?

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 369

Table 25. Application Details Questions (continued)

Description Information

PL/I usage
Do any applications call PL/I?
Are any applications called by PL/I?
If so:

What is the PL/I release?
How many PL/I programs are used?
How many Cross System Product
applications call PL/I programs?

Other non-Cross System Product languages
Do any applications call a program written in
something other than COBOL or PL/I?
Are any applications called by a program
written in the other language?
If so:

What is the language?
What is the release?
How many non-Cross System Product
programs are used?
How many Cross System Product
applications call non-Cross System Product
programs?

Did you develop applications using Kimberly
Clarke’s CSP/ADE models? ______________

Do you market any Cross System Product
applications to other companies? ______________

Are there any other special application interfaces?
Printers
CICS Temporary Storage Queue
CICS Transient Data Queue
IMS SPA
Interfaces to non-Cross System Product systems

370 VisualAge Generator: Migration Guide

Table 25. Application Details Questions (continued)

Description Information

Segmentation
Are segmented applications used?
Are there any non-segmented applications?
Are there segmented transaction IDs other than
XSPS?
Is EZESEGTR used?
Is EZESEGM used?

Coding Practices
Do you have the same member in more than
one MSL?
Any environment-specific code (for example,
EZEUSR or CREATX)?
Any long running applications?
Is the Cross System Product message file used?
Are any parameter groups used?
Do any applications have more than 5000 lines
of code?
Do any map groups have more than one map,
excluding help maps?
Do you use floating maps?
Is the presentation logic in a separate
application from the file or database I/O?
Can any main transaction application transfer to
any other main transaction application?
What is the usage of local data items?
Are packed and character fields substructured
under one another? (If so, might require work
to avoid data exceptions when blanks are in the
packed fields.)

Can you provide:
High level application documentation
User documentation

How many of the applications do not have source
code?

Number due to product use (e.g. a licensed
product for which you only have object code)
Number due to loss of source code

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 371

Table 25. Application Details Questions (continued)

Description Information

What kind of expertise do you have in the
following areas:

ENVY
VisualAge Smalltalk
Windows NT
OS/2
REXX
Proposed production environment(s) if these are
changing

Table 26. Application Management Questions

Description Information

What library management system do you currently
use:

TeamConnection
SCLM
Other (specify)

372 VisualAge Generator: Migration Guide

Table 26. Application Management Questions (continued)

Description Information

What is your library management process?

For host environments, consider the following:
Are there separate regions for development,
system test, acceptance test, production and so
on?
Does each region have a complete load library
or is the acceptance test library concatenated in
front of production and so on?
How do you move applications from one region
to another - by regenerating or by just copying
the load module?

For all environments:
Do you have a build administrator or librarian?
Do the developers and build administrator use
different versions of:

Generation options
Resource associations
Linkage table (4.1 only)
Special linkage editor command files (3.3
COBOL or 4.1)
Special bind command files (3.3 COBOL or
4.1)

How do you handle any common code? Consider:
Who has authority to change common code?
How frequently does common code change?
How do you determine what to regenerate after
changes?

How do you handle emergency fixes? ______________________________________

What is your backup and recovery process? ______________________________________

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 373

Table 26. Application Management Questions (continued)

Description Information

Is there any customization or special initialization
set up for a developer?

Do you distribute the programs / systems to
multiple CPUs or workstations? If so, how?

Table 27. DB2 Details Questions

Description Information

For testing, will the DB2 tables be located on the
host or workstation? ______________

Table Information
Number of tables
For each table:

Number of columns
Number of rows

Are DB2 tables from multiple databases and/or on
multiple platforms required. ______________

Table 28. DL/I Details Questions

Description Information

For testing, will the DL/I databases be located on
the host or workstation? (For a VSE host, the DL/I
databases must be on the workstation.) ______________

374 VisualAge Generator: Migration Guide

Table 28. DL/I Details Questions (continued)

Description Information

Database Information
Number of databases
For each database:

Number of segments
Number of fields per segment
Number of occurrences for each segment

Table 29. VSAM Details Questions

Description Information

For testing, where will the VSAM files be located? ______________

File Information
Number of files
For each file:

Number of fields
Number of records in the file

Do any of the files have multiple record types? ______________

Table 30. Special Scheduling Situations Questions

Description Information

Are there any software changes that must also be
made at the same time? For example, are you
migrating to a new release of CICS at the same
time VisualAge Generator Server for MVS, VSE,
and VM is being installed?

Are there any system changes that have to be
scheduled around? For example, is there a
mainframe CPU change that must not be in conflict
with the migration schedule?

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 375

Table 30. Special Scheduling Situations Questions (continued)

Description Information

Are there any critical dates that must be met or
avoided? For example, is there a peak period of
business activity in which system changes must not
be scheduled?

Are there any hardware availability considerations? ______________________________________

Table 31. Education Requirements

Description Information

Have you made arrangements for the following
education?

Platform (Windows NT or OS/2)
VisualAge Generator
ENVY
VisualAge Smalltalk
VisualAge for Java
LAN Administration
DB2/2 or DB2/NT Administration

Table 32. Integral-Specific Questions

Description Information

What products / modules do you own and use?
Position Control
Benefits
Payroll
Pension
Other (specify)

Do you want to migrate all of these modules? If
not, then which ones will you migrate? ______________

376 VisualAge Generator: Migration Guide

Table 32. Integral-Specific Questions (continued)

Description Information

Have you modified, customized, or enhanced any
of the Integral modules to be converted? If so, then
which ones? ______________

Which types of data does your Integral system use?
DB2
VSAM

Table 33. Migration Difficulty Summary - COBOL Generation Issues

Description Points

Are you at Cross System Product 3.2.2 or lower +1

If you not using generated COBOL today (for example, you are at Cross
System Product 3.2.2 or lower or are using Cross System Product 3.3 for
interpretive code)

If interpretive, and you have packed or numeric data substructured under
character data or vice versa

If interpretive, and you use dynamic SQL

If interpretive, and you use segmented transaction IDs

+1

+2

+2

+2

You have applications created using Kimberly Clarke’s CSP/ADE models +1

You use CICS as the primary development environment +1

You have limited COBOL development and problem determination
experience

+1

You use (or plan to migrate to) COBOL and / or LE +1

Total number of points _____

Table 34. Migration Difficulty Summary - General Issues

Description Points

You have duplicate member names +2

You have traditionally found numerous Cross System Product APARs,
indicating that you exercise the Cross System Product product code
differently from other customers

+1

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 377

Table 34. Migration Difficulty Summary - General Issues (continued)

Description Points

You market Cross System Product applications you write to other customers +1

Applications interface using CALL or DXFR to PL/I or other non-COBOL
programs. Or for CICS target environments, the non-Cross System Product
programs expect the COMMAREA to contain pointers to the data.

+1

For the CICS target environment, the Cross System Product applications go
through a non-Cross System Product program at the CONVERSE.

+1

You use CICS pseudoconversational (Cross System Product segmented)
processing

+1

You have limited or unskilled system programmer resources, especially in the
Cross System Product target environments

+1

Application developers are unfamiliar with workstation environment for the
planned VisualAge Generator Developer environment

+2

You are changing target environments during migration to VisualAge
Generator

+3

Number of products (CICS, DB2, IMS) requiring support for multiple release
levels

+____

Number of target environments +____

You have a complex release structure for the systems and subsystems that
will be migrated

+3

Release cycle is less than 1 month long +1

You use home-grown tools for build/promote +2

You use unsupported tools for build/promote +3

Total points from COBOL Generation Issues (Table 33 on page 377) _____

Total number of points _____

Collecting Information before Migration

Use the following table to collect information that you will need during the
migration:

378 VisualAge Generator: Migration Guide

Table 35. Environment Details Questions

Description Default Your Value

High level qualifiers
CSP/AD (V3.3 or earlier)
CSP/AE (V3.3 or earlier)
CSP/370RS (V3.3)
CSP/370AD (V4.1)
CSP/370RS (V4.1)
VisualGen Host Services (V1.1)
VisualAge Generator Server for MVS,
VSE, and VM (V1.2)

CSP330________
CSP330________
CRS110________
CSP410________
CRS210________
ELA110________

ELA.V1R2M0___

DB2 information
High level qualifier
Subsystem ID

DSN_________
DSN_________

Other product high-level qualifiers
CICS
COBOL

DFH_________
COB2 for VS COBOL II
or IGY for COBOL and
CEE for LE

Contact List

The following table provides a place to record key contacts in your
organization.

Table 36. Contact List

Support Needed Person Phone Number

Cross System Product System
Administrator

Cross System Product Build Administrator
/ Librarian

PC Coordinator / Expert

LAN Administrator

DBA

RACF authorization

CICS systems programmer

IMS systems programmer

VTAM systems programmer

Appendix B. Planning for Migrating Cross System Product MSLs to ENVY 379

Table 36. Contact List (continued)

Support Needed Person Phone Number

Installer for VisualAge Generator
Developer

Installer for VisualAge Generator Server for
MVS, VSE, and VM

Installer for VisualGen Host Services for
OS/400

Installer for VisualAge Generator Server for
OS/2, AIX, Windows NT, HP-UX, and
Solaris

MVS/TSO Logon Procedures

Cancelling TSO session

APAR support (installing)

Reporting PMRs to Level 1/2

Access to locked areas

Access to the building after hours

How/where to get print outs

380 VisualAge Generator: Migration Guide

Appendix C. Planning for Migrating VAGen MSLs to ENVY

The following sections list information that you should consider when
planning your migration from VisualAge Generator 2.x or earlier to VisualAge
Generator 4.0. The information is organized as a series of questions to help
you collect the information that will be needed during the migration process.
These sections focus on the migration of VisualAge Generator applications to
VisualAge Generator 4.0. Refer to the appropriate installation manuals for
information about the following:
v Hardware prerequisites
v Software prerequisites
v Installing the hardware
v Installing the software
v Customizing the software
v Performance tuning of development environment
v Performance tuning of target environment

See “Appendix B. Planning for Migrating Cross System Product MSLs to
ENVY” on page 365 if you are migrating from Cross System Product.

Collecting Information about Your Environment

Use the following tables to collect information about your environment:
v Environment Overview (Table 37 on page 382)
v Application Details (Table 38 on page 385)
v Application Management (Table 39 on page 388)
v DB2 Details (Table 40 on page 389)
v DL/I Details (Table 41 on page 390)
v VSAM Details (Table 42 on page 390)
v Special Scheduling Situations (Table 43 on page 390)
v Education Requirements (Table 44 on page 391)
v Migration Difficulty Summary - General Issues (Table 45 on page 391)

© Copyright IBM Corp. 1997, 1999 381

Table 37. Environment Overview Questions

Description Information

VisualAge Generator (Version & Fixpaks)?
Development
Runtime

What is the current VisualAge Generator
development environment?

OS/2 ______________

What are the current VisualAge Generator target
(runtime) environments?

MVS Batch
MVS/TSO
IMS/VS or IMS/ESA (list release)
IMS BMP
MVS CICS (list release)
CICS OS/2 (list release)
CICS/6000 (list release)
VSE CICS (list release)
VSE Batch
VM CMS
VM Batch
OS/2
OS/400
AIX
Windows NT CICS
Windows NT
____GUI Client____
OS/2
Windows 95
Windows NT

__GUI Client__

What is the planned VisualAge Generator
development environment?

OS/2
Windows NT

____OS/2 (Smalltalk only)
____Windows NT (Smalltalk)
____Windows NT (Java)

382 VisualAge Generator: Migration Guide

Table 37. Environment Overview Questions (continued)

Description Information

What are the planned VisualAge Generator target
(runtime) environments?

MVS Batch
MVS/TSO
IMS/VS or IMS/ESA (list release)
IMS BMP
MVS CICS (list release)
CICS OS/2 (list release)
CICS/6000 (list release)
VSE CICS (list release)
VSE Batch
VM CMS
VM Batch
OS/2
OS/400
AIX
HP-UX
Solaris
Windows NT CICS
Windows NT
____GUI Client____
OS/2
Windows 95
Windows NT

__GUI Client__

What databases are used?
DB2 (list release)
SQL/DS (list release)
VSAM
DL/I (list release)
Other (list)

How many application developers use VisualAge
Generator? ______________

Are there any VisualAge Generator application
naming conventions:

Documented
Followed

Appendix C. Planning for Migrating VAGen MSLs to ENVY 383

Table 37. Environment Overview Questions (continued)

Description Information

Are there any VisualAge Generator application
development standards:

Documented
Followed

Can you provide a copy of the documentation?

When was Cross System Product or VisualAge
Generator first used in the company?

What VisualAge Generator features are favorable?
Unfavorable?

What are the near-term application development
plans?

What are the long-term application development
plans?

What is the support structure for applications? (For
example, are there separate development and
maintenance groups or is each developer
responsible for both development and maintenance
on a set of applications)

What are you hoping to achieve with this
migration?

What kind of expertise do you have in the
following areas:

COBOL
VisualAge C++
PL/I
OS/2
Proposed target environment(s) if these are
changing

384 VisualAge Generator: Migration Guide

Table 38. Application Details Questions

Description Information

Application Information
Number of application systems
Number of application subsystems
Number of applications within each subsystem
Number of applications that are:

Simple
Medium
Complex

MSL Information
Number of MSLs shared by developers (exclude
individual developer’s MSLs)
Are there separate sets of MSLs (for example,
one set of MSLs for use by the developers and
another parallel set for use by the librarian OR
several sets of parallel MSLs, each set matching
the code that is at various levels of test or
production)
Number of MSLs with common code, records,
data items that are shared across subsystems
What concatenation sequences are used for
testing with ITF?
What concatenation sequences are used for
generation:

For the developers
For system test
For acceptance test
For production

Native COBOL usage
Do any applications call native COBOL?
Are any applications called by native COBOL?
If so:

What is the COBOL release?
How many native COBOL programs are
used?
How many VisualAge Generator
applications call native COBOL programs?

Appendix C. Planning for Migrating VAGen MSLs to ENVY 385

Table 38. Application Details Questions (continued)

Description Information

PL/I usage
Do any applications call PL/I?
Are any applications called by PL/I?
If so:

What is the PL/I release?
How many PL/I programs are used?
How many VisualAge Generator
applications call PL/I programs?

Other non-VisualAge Generator languages
Do any applications call a program written in
something other than COBOL or PL/I?
Are any applications called by a program
written in the other language?
If so:

What is the language?
What is the release?
How many non-VisualAge Generator
programs are used?
How many VisualAge Generator
applications call non-VisualAge Generator
programs?

Do you market any VisualAge Generator
applications to other companies? ______________

Are there any other special application interfaces?
Printers
CICS Temporary Storage Queue
CICS Transient Data Queue
IMS SPA
Interfaces to non-VisualAge Generator systems

386 VisualAge Generator: Migration Guide

Table 38. Application Details Questions (continued)

Description Information

Coding Practices
Do you have the same member in more than
one MSL?
Any environment-specific code (for example,
EZEUSR or CREATX)?
Do any map groups have more than one map,
excluding help maps?
Do you use floating maps?
Is the presentation logic in a separate
application from the file or database I/O?
Can any main transaction application transfer to
any other main transaction application?
What is the usage of local data items?

Can you provide:
High level application documentation
User documentation

How many of the applications do not have source
code?

Number due to product use (e.g., a licensed
product for which you only have object code)
Number due to loss of source code

What kind of expertise do you have in the
following areas:

ENVY
VisualAge Smalltalk
Windows NT
OS/2
REXX
Proposed production environment(s) if these are
changing

Appendix C. Planning for Migrating VAGen MSLs to ENVY 387

Table 39. Application Management Questions

Description Information

What library management system do you currently
use:

TeamConnection
SCLM
Other (specify)

What is your library management process?

For host environments, consider the following:
Are there separate regions for development,
system test, acceptance test, production and so
on?
Does each region have a complete load library
or is the acceptance test library concatenated in
front of production and so on?
How do you move applications from one region
to another - by regenerating or by just copying
the load module?

For all environments:
Do you have a build administrator or librarian?
Do the developers and build administrator use
different versions of:

Generation options
Resource associations
Linkage table
Special linkage editor command files
Special bind command files

How do you handle any common code? Consider:
Who has authority to change common code?
How frequently does common code change?
How do you determine what to regenerate after
changes?

How do you handle emergency fixes? ______________________________________

388 VisualAge Generator: Migration Guide

Table 39. Application Management Questions (continued)

Description Information

What is your backup and recovery process? ______________________________________

Is there any customization or special initialization
set up for a developer?

Do you distribute the programs / systems to
multiple CPUs or workstations? If so, how?

Table 40. DB2 Details Questions

Description Information

For testing, will the DB2 tables be located on the
host or workstation? ______________

Table Information
Number of tables
For each table:

Number of columns
Number of rows

Are DB2 tables from multiple databases and/or on
multiple platforms required? ______________

Appendix C. Planning for Migrating VAGen MSLs to ENVY 389

Table 41. DL/I Details Questions

Description Information

For testing, will the DL/I databases be located on
the host or workstation? (For a VSE host, the DL/I
databases must be on the workstation.) ______________

Database Information
Number of databases
For each database:

Number of segments
Number of fields per segment
Number of occurrences for each segment

Table 42. VSAM Details Questions

Description Information

For testing, where will the VSAM files be located? ______________

File Information
Number of files
For each file:

Number of fields
Number of records in the file

Do any of the files have multiple record types? ______________

Table 43. Special Scheduling Situations Questions

Description Information

Are there any software changes that must also be
made at the same time? For example, are you
migrating to a new release of CICS at the same
time VisualAge Generator Server for MVS, VSE,
and VM is being installed?

390 VisualAge Generator: Migration Guide

Table 43. Special Scheduling Situations Questions (continued)

Description Information

Are there any system changes that have to be
scheduled around? For example, is there a
mainframe CPU change that must not be in conflict
with the migration schedule?

Are there any critical dates that must be met or
avoided? For example, is there a peak period of
business activity in which system changes must not
be scheduled?

Are there any hardware availability considerations? ______________________________________

Table 44. Education Requirements

Description Information

Have you made arrangements for the following
education?

VisualAge Generator
ENVY
VisualAge Smalltalk
VisualAge for Java
Optional if changing platforms:

– Windows NT

– DB2/NT

Table 45. Migration Difficulty Summary - General Issues

Description Points

You have duplicate member names +2

You traditionally found numerous VisualAge Generator APARs, indicating
that you exercise the VisualAge Generator product code differently from
other customers.

+1

Appendix C. Planning for Migrating VAGen MSLs to ENVY 391

Table 45. Migration Difficulty Summary - General Issues (continued)

Description Points

You market any Cross System Product applications to other customers. +1

Applications interface using CALL or DXFR to PL/I or other non-COBOL
programs. Or for CICS target environments, the non-VisualAge Generator
programs expect the COMMAREA to contain pointers to the data. +1

For the CICS target environment, the VisualAge Generator applications go
through a non-VisualAge Generator program at the CONVERSE.

+1

You use CICS pseudoconversational (VisualAge Generator segmented)
processing

+1

You have limited or unskilled system programmer resources, especially in the
VisualAge Generator target environments

+1

Application developers are unfamiliar with workstation environment for the
planned VisualAge Generator Developer environment

+2

You are changing target environments during migration to VisualAge
Generator

+3

Number of products (CICS, DB2, IMS) requiring support for multiple release
levels

+____

Number of target environments +____

You have a complex release structure for the systems and subsystems that
will be migrated.

+3

Release cycle is less than 1 month long +1

You use home-grown tools for build/promote. +2

You use unsupported tools for build/promote. +3

Total number of points _____

Collecting Information before Migration

Use the following table to collect information that you will need during the
migration:

Table 46. Environment Details Questions

Description Default Your Value

High level qualifiers
VisualGen Host Services (V1.1)
VisualAge Generator Server for MVS,
VSE, and VM (V1.2)

ELA110______
ELA.V1R2M0___

392 VisualAge Generator: Migration Guide

Table 46. Environment Details Questions (continued)

Description Default Your Value

DB2 information
High level qualifier
Subsystem ID

DSN_________
DSN_________

Other product high-level qualifiers
CICS
COBOL

DFH________
COB2 for VS COBOL II
or IGY for COBOL and
CEE for LE

Contact List

The following table provides a place to record key contacts in your
organization.

Table 47. Contact List

Support Needed Person Phone Number

VisualAge Generator System Administrator

VisualAge Generator Build Administrator /
Librarian

PC Coordinator / Expert

LAN Administrator

DBA

RACF authorization

CICS systems programmer

IMS systems programmer

VTAM systems programmer

Installer for VisualAge Generator
Developer

Installer for VisualAge Generator Server for
MVS, VSE, and VM

Installer for VisualGen Host Services for
OS/400

Installer for VisualAge Generator Server for
OS/2, AIX, Windows NT, HP-UX, and
Solaris

MVS/TSO Logon Procedures

Appendix C. Planning for Migrating VAGen MSLs to ENVY 393

Table 47. Contact List (continued)

Support Needed Person Phone Number

Cancelling TSO session

APAR support (installing)

Reporting PMRs to Level 1/2

Access to locked areas

Access to the building after hours

How/where to get print outs

394 VisualAge Generator: Migration Guide

Appendix D. Notes on Cross System Product migrations

This appendix describes updates to the Migrating Cross System Product
Applications to VisualAge Generator Version 3.1 document (SH23-0244-01). The
information in this appendix should be used in conjunction with that book.
References in this appendix without page numbers are to chapters and
appendixes in Migrating Cross System Product Applications to VisualAge
Generator.

Running Cross System Product applications with VisualAge Generator Server
for workstation platforms

The following considerations apply for running Cross System Product
applications on VisualAge Generator Server for workstation platforms:
v VisualAge Generator Server for workstation platforms now includes a client

for the Solaris platform.
v Support for migrating applications from host environments supported by

Cross System Product is extended to the Solaris platform.
v When migration from Cross System Product interpretive to C++ on

VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and
Solaris:
– The print destination in VisualAge Generator Server is the resource that

is associated to the file name EZEPRINT in the resource association file.
– Three new NLS codes are available:

VisualAge Generator Code
Description

CHT Traditional Chinese

FRA French

ITA Italian
v Chapter 8, ″CSP/370RS 1.1 to VisualAge Generator Server for MVS, VSE,

and VM,″ has changed substantially. The updated chapter is printed below
and replaces the chapter in the Migrating Cross System Product Applications to
VisualAge Generator document.

© Copyright IBM Corp. 1997, 1999 395

Updated Chapter 8, CSP/370RS 1.1 to VisualAge Generator Server for MVS, VSE,
and VM

CSP/AD 3.3 required CSP/370RS 1.1 to generate COBOL programs. The
following sections list the considerations for migrating CSP/370RS 1.1 using
generated COBOL programs to using VisualAge Generator Server for MVS,
VSE, and VM.

You can use VisualAge Generator Server for MVS, VSE, and VM to replace
CSP/370RS 1.1 as a runtime environment. You can modify any JCL (batch,
IMS, CICS, or MVS/TSO) or CLIST that allocated the CSP/370RS 1.1 load
library to use the VisualAge Generator Server for MVS, VSE, and VM load
library.

Installation considerations
VisualAge Generator Server for MVS, VSE, and VM must be installed in a
separate SMP/E zone and have different target libraries from CSP/370RS 1.1.
VisualAge Generator Server for MVS, VSE, and VM does not include any of
the COBOL generation function that was included in CSP/370RS 1.1, so do
not delete CSP/370RS 1.1 from your system until you have migrated both the
COBOL generation and runtime services functions to VisualAge Generator.

If you continue to run CSP/370AD and CSP/370RS after you install
VisualAge Generator Server for MVS, VSE, and VM 1.2:
1. You must run CSP/370AD and CSP/370RS in a different CICS region or

MVS/TSO system from VisualAge Generator Server for MVS, VSE, and
VM 1.2.

2. You cannot transfer (CALL or DXFR) between an application generated
with CSP/370RS and one generated with VisualAge Generator 4.0. XFER
can only be used for applications running in different IMS regions. The
transaction code for the application must be set up to run in the IMS
region that uses CSP/370RS or VisualAge Generator Server for MVS, VSE,
and VM 1.2, based on the product that the application was generated with.

Procedures
The preparation procedures are shipped in VisualAge Generator Server for
MVS, VSE, and VM 1.2. The procedure names are not changed from
CSP/370RS 1.1 to VisualAge Generator Server for MVS, VSE, and VM.

However, the VisualAge Generator Server for MVS, VSE, and VM procedures
do not work with the preparation JCL generated using CSP/370RS 1.1.
Therefore, you must:
1. Install and tailor the VisualAge Generator Server for MVS, VSE, and VM

1.2 procedures, replacing the CSP/370RS procedures.
2. Delete any preparation JCL that was created by CSP/370RS COBOL

generation.

396 VisualAge Generator: Migration Guide

Upward compatibility — generating applications, tables, and map groups
again

Applications, tables, and map groups generated with CSP/370RS 1.1 must be
regenerated using with VisualAge Generator 4.0.

Error routines
If EZEFEC is set to 1 and there is an error routine specified, VisualAge
Generator Server for MVS, VSE, and VM returns control to the program on
OPEN and CLOSE errors. CSP/370RS 1.1 does not.

Defining PSBs
The ELAPCB macro for VisualAge Generator Server for MVS, VSE, and VM
supports only the work database. PSBs for applications generated using
CSP/370RS 1.1 might also have used a message database.

If you used a message database, you need to generate the PSB again using the
ELAPCB macro from VisualAge Generator Server for MVS, VSE, and VM 1.2.

User messages
The message utility is not shipped with VisualAge Generator. User messages
are no longer in VSAM files, DL/I databases, or DB2 tables. Instead, they are
in VisualAge Generator tables. You will need to convert your messages to a
VisualAge Generator message table and then change the text of any messages
in the VisualAge Generator message table. See Appendix F, ″Using the
Message File Conversion Utility,″ for more information on converting to
message tables.

Appendix D. Notes on Cross System Product migrations 397

398 VisualAge Generator: Migration Guide

Glossary

This glossary uses the following
cross-references:

Compare to Indicates a term or terms
that have a similar but not
identical meaning.

Contrast with Indicates a term or terms
that have an opposed or
substantially different
meaning.

See also Refers to a term whose
meaning bears a
relationship to the current
term.

A

advance. In VisualAge Generator prior to V3.0,
a command that moves members from one MSL
of a concatenation (the source) to the next MSL
of the concatenation sequence (the target). After a
member is moved to the target MSL, it is deleted
from the source MSL.

For Cross System Product, the equivalent
function is done by the following steps:

v Concatenate the target MSL first (read/write)
and the source MSL second (read-only).

v Copy the members from the source MSL to the
target MSL.

v Change the MSL concatenation sequence so
the source MSL is first (read/write).

v Delete the members from the source MSL.

application. (1) The use to which an
information processing system is put; for
example, a payroll application or an order-entry
application. (2) From Smalltalk, a collection of
defined and extended classes that provides a
reusable piece of functionality. An application
contains and organizes functionally related
classes. It also can contain subapplications and

specify prerequisites. (3) In Cross System Product
or VisualAge Generator prior to V3.0, a set of
definitions that performs a systematic sequence
of operations to produce a specific result when
generated using the VisualAge Generator, and
run using workgroup or host services. For
VisualAge Generator V3.0 or later, compare to
program.

application controls. Policies that determine
which users of a library can access specific
applications. See also image and library controls.

application manager. (1) A team member who
is responsible for the overall state of an
application. An application manager coordinates
the activities of the application’s developers and
assigns ownership of classes to team members.
(2) A browser from which users can create,
delete, manage, or configure applications in their
image.

associated member. In Cross System Product or
VisualAge Generator prior to V3.0, a member
that is associated and shares a commonality with
other members.

associated part. In VisualAge Generator V3.0 or
later, a VAGen part that is associated and shares
a commonality with other VAGen parts.

associates. See associated member or associated
part.

attribute. (1) In VisualAge, data that represents
a property of a part. For example, a customer
part could have a name attribute and an address
attribute. Attributes enable a part’s public
interface to give other parts access to its
properties. An attribute can itself be a part, with
its own behavior and attributes. (2) In Cross
System Product and VisualAge Generator, within
an external source format tag, a keyword that
variable data is assigned to. For example, part of
an external source format tag is in the form

© Copyright IBM Corp. 1997, 1999 399

keyword=value, where keyword= is the attribute
and value is the variable data assigned to the
attribute.

B

behavior. (1) The set of external characteristics
that an object exhibits. (2) The abstract class that
provides common behavior for Class and
Metaclass objects.

browser. A window that supports one or more
programming activities, such as creating new
classes or methods, modifying existing classes or
methods, or viewing library members.

business logic. Code that is specific to the
business function that must be accomplished
rather than used for infrastructure. Code for
business logic might perform a specific payroll
calculation or a complex edit function. Code for
business logic must be written for the specific
program. Code for infrastructure typically
provides error handling, message display,
transfer of control between programs, and other
functions that are standard for many programs.
Code for infrastructure can be built from
templates.

C

called parameter list. In Cross System Product
or VisualAge Generator, the list of maps, records,
and data items passed to a called application.
The list is defined during application definition
for the called application.

class. The specification of an object, including
its attributes and behavior. Once defined, a class
can be used as a template for the creation of
object instances. Class, therefore, can also refer to
the collection of objects that share those
specifications. A class exists within a hierarchy of
classes in which it inherits attributes and
behavior from its superclasses, which exist closer
to the root of the hierarchy. See also inheritance,
polymorphism, metaclass, defined class, and extended
class.

class definition. The definition of a class,
containing:
v The class name
v The type of class
v The immediate superclass for the class
v The variables: instance, class, and class

instance
v The pool dictionaries the class uses

class developer. A team member who develops
and changes classes. The team member who
created an edition of a class is that edition’s class
developer. Contrast with class owner.

class extension. An extension to the
functionality of a class defined by another
application. The extension consists of one or
more methods that define the added
functionality or behavior. These methods cannot
modify the existing behavior of the defined class;
they can only add behavior specific to the
application that contains the extended class.

class hierarchy. A tree structure that defines the
relationships between classes. A class has
subclasses down the hierarchy from itself and
superclasses up the hierarchy from itself. The
methods and variables of a class are inherited by
its subclasses.

class instance variable. Private data that
belongs to a class. The defining class and each
subclass maintain their own copy of the data.
Only the class methods of the class can directly
reference the data. Changing the data in one
class does not change it for the other classes in
the hierarchy. Contrast with class variable.

class method. A method that provides behavior
for a class. Class methods are usually used to
define ways to create instances of the class.
Contrast with instance method.

class owner. Team member responsible for the
integrity of that class in an application edition.
The class owner is responsible for releasing class
versions. Contrast with class developer.

class variable. Data that is shared by the
defining class and its subclasses. The instance
methods and class methods of the defining class

400 VisualAge Generator: Migration Guide

and its subclasses can directly reference this data.
Changing the data in one class changes it for all
of the other classes. Contrast with class instance
variable.

clean image. An image that was saved after the
initial installation of VisualAge Smalltalk and
which already has the VisualAge Generator
feature and any other features loaded into the
image. A backup copy of this image should be
stored on the LAN. This backup copy can then
be copied and used as necessary for testing the
load of configuration maps, building a new
development image with your application code,
and so on.

collapse. During migration, the process of
merging one application into another.

component. A functional grouping of classes
and related files within a product. See also system
component.

concatenated MSL. In Cross System Product or
VisualAge Generator prior to V3.0, a group of
logically connected member specification libraries
(MSLs) that are treated as one MSL.

configuration map. A named group of
application editions. A configuration map usually
represents a product or one of its major parts.

configuration map manager. A team member
who maintains the integrity of a configuration
map.

containing application. The application to
which a class definition belongs. A class can only
be defined in one application in the image. Also
referred to as the defining application.

D

data item. In Cross System Product or
VisualAge Generator, a unit of information
defined by length, data type, and other
characteristics.

debugger. A software tool used to detect, trace,
and eliminate errors in computer programs or
other software.

defined class. A new class that a containing
application adds to the system. It consists of a
textual definition (which defines elements such
as instance variables) and zero or more methods
(which define behaviors). Contrast with extended
class.

defining application. The application to which
a class definition belongs. A class can only be
defined in one application in the image. Also
referred to as the containing application.

dictionary. In Smalltalk, an unordered collection
whose elements are accessed by an explicitly
assigned external key. See also pool dictionary.

duplicate MSL member. In Cross System
Product or VisualAge Generator prior to V3.0, a
member with the same name in a member
specification library (MSL) exists in more than
one of the MSLs currently accessed. One might
be a copy of the other, or they might be totally
different definitions.

E

edit routine. In Cross System Product or
VisualAge Generator, a routine specified for
special editing of data that an application user
types in a map field. It can be a Cross System
Product or VisualAge Generator subroutine
(EZEC10 or EZEC11), the name of a statement
group, or a table used for editing.

edit table. In Cross System Product or
VisualAge Generator, a table named in place of
an edit routine in the definition of a map
variable field edit. See also edit routine.

edition. In VisualAge, a software component
that is subject to further change. A software
component can have one or more editions,
identified by a timestamp stating the date and
time of the edition’s creation. Many changes can
be made to a single edition of a class. In contrast,
every change to a method creates a new edition
of that method. In its broadest sense, edition can
include scratch edition and version.

encapsulation. The hiding of a software object’s
internal data representation. The object provides

Glossary 401

an interface that queries and manipulates the
data without exposing its underlying structure.

error routine. In Cross System Product or
VisualAge Generator, a routine called when an
error occurs while running a process option that
accesses a record. The error routine can be a
valid EZE word, the name of a process, or the
name of a statement group. If an error routine is
not specified, the application or program ends
when an error occurs, displaying a message
describing the error condition.

explodable. For the MSL Migration Assistance
Tool, marking an application as explodable means
that the parts within the application will be
automatically moved to a new ApplicationNode
if the parts are associates of parts being migrated
to a different application. Contrast with
unexplodable.

export. (1) In Cross System Product or
VisualAge Generator prior to V3.0, a command
that copies one or more members of a member
specification library (MSL) to a serial file. For
VisualAge Generator, only external source format
files could be exported. Contrast with import. For
VisualAge Generator V3.0 or later, compare to
VAGen export. (2) From Smalltalk, a command for
moving application versions from your team’s
current library to a different library. Export
works with binary files. Contrast with File Out.

ESF. See external source format.

extended class. A class that uses and extends
the functionality of a class defined by another
application. It consists of one or more methods
that define the added functionality or behavior.
These methods cannot modify the existing
behavior of the defined class; they can only add
behavior specific to the application that contains
the extended class. Contrast with defined class.

external source format (ESF). In Cross System
Product or VisualAge Generator, a data format
that makes it possible for Cross System Product
or VisualAge Generator to import member
definitions developed outside the product. The
format consists of a readable set of tags and
attributes. The external source format is also

used to export member specification library
(MSL) members for hard-copy printing, editing,
and analysis.

F

File In. A Smalltalk command for compiling
external definitions of applications, classes, and
methods from a text file.

File Out. A Smalltalk command for writing
definitions of applications, classes, and methods
to an external text file.

first-found member. In Cross System Product
or VisualAge Generator prior to V3.0, the
member definition that is located first when
searching for a specifically-named member in a
concatenated member specification library (MSL).

flow stage. In Cross System Product or
VisualAge Generator, an optional form of the
connecting logic between processes in an
application or program. The flow stage contains
instructions that control the sequence of the main
processes in an application. If flow stage
statements are not defined, the next main process
in the list is performed by default.

G

generate. In Cross System Product or VisualAge
Generator, a command that produces an
application, (or program), map group, or table
suitable to prepare and run using workgroup
services or host services. For VisualAge
Generator prior to V3.0, GUI applications could
also be generated. Contrast with package.

generation options default file. In Cross
System Product or VisualAge Generator, a file
that contains values for generation options. The
name of this file is specified on the EZEROPT
environment variable. This is the only options
file in which NOOVERRIDE can be specified for
an option.

generation options file. In Cross System
Product or VisualAge Generator, an input to the

402 VisualAge Generator: Migration Guide

generation process. A file that contains values for
generation options in addition to the generation
option defaults file.

global data item. (1) In Cross System Product
or VisualAge Generator prior to V3.0, a data item
that is saved in the member specification library
(MSL) and can be referenced by any other
member in addition to the record or table for
which it was created. Changes to global data
items affect all records and tables that include
that item as a global item. Contrast with local
data item. (2) In VisualAge Generator V3.0 or
later, a data item that is saved as a VAGen part
and can be referenced by any other VAGen part
in addition to the record or table for which it
was created. Changes to global data items affect
all records and tables that include that item as a
global item. Contrast with local data item.

global variable. A variable that any method in
any object can access.

graphical user interface (GUI). A type of
interface that enables users to communicate with
a program by manipulating graphical elements,
rather than by typing commands. Typically, a
graphical user interface includes a combination
of graphics, pointing devices, menu bars,
overlapping windows, and icons.

group member. A team member who belongs to
a group that is responsible for developing an
application.

GUI. See graphical user interface.

GUI application. In VisualAge Generator prior
to V3.0, a definition of a window or set of
windows defining the graphical user interface for
an application, including connections to
VisualAge Generator data and logic, that
performs operations to produce a specific result.
For VisualAge Generator V3.0 or later, compare
to view and visual part.

I

icon. A small pictorial representation of an
object.

image. (1) A Smalltalk file that provides a
development environment on an individual
workstation. An image contains object instances,
classes, and methods. It must be loaded into the
Smalltalk virtual machine in order to run. (2) In
the Distributed feature, the file in which an
object space has been saved; a static collection of
objects along with the environment in which
they execute.

image and library controls. Access controls that
protect the integrity of major system
components. For example, such controls can bind
the ownership of an image to a specific user with
password protection. See also application controls.

import. (1) In Cross System Product or
VisualAge Generator prior to V3.0, a command
that copies one or more members from a serial
file to a member specification library (MSL). For
VisualAge Generator, only external source format
files could be imported. Contrast with export. For
VisualAge Generator V3.0 or later, compare to
VAGen import. (2) From Smalltalk, a command for
loading application or subapplication versions
from a library other than the one your team is
currently using. Import works with binary files.
Contrast with File In.

inheritance. A relationship among classes in
which one class shares the structure and
behavior of another. A subclass inherits from a
superclass.

Inspector. A Smalltalk tool for viewing the data
of any Smalltalk object.

instance. An object that is a single occurrence of
a particular class. An instance exists in memory
or external media in persistent form.

instance method. In Smalltalk, a method that
provides behavior for particular instances of a
class. Messages that invoke instance methods are
sent to particular instances, rather than to the
class as a whole. Contrast with class method.

instance variable. Private data that belongs to
an instance of a class and is hidden from direct
access by all other objects. Instance variables can

Glossary 403

only be accessed by the instance methods of the
defining class and its subclasses.

L

LAN. Local area network.

level. In Cross System Product or VisualAge
Generator prior to V3.0, the degree of
subdivision of a data structure. The level
numbers subdivide a record or table. In general,
higher level numbers indicate subdivisions of
preceding lower level numbers. See also level-77.

level-77. In Cross System Product or VisualAge
Generator, a level that can be defined for
unstructured or single data items in working
storage. See also level.

library. A shared repository represented by a
single file. It stores source code, object (compiled)
code, and persistent objects, including editions,
versions, and releases of software components.
See also system component.

library supervisor. A user ID that has the
capability to add new users to the system.

lineup. A configuration of prerequisites and
subapplications that an application requires in
order to run on a platform. Boolean expressions
specify the platform or conditions under which
the applications in the lineup can load.

linkage table. For Cross System Product or
VisualAge Generator, an input to the generation
process. A file that defines the
environment-dependent linkage to be generated
for the following:
v transfers to applications or programs
v called applications or programs receiving

parameters
v starting asynchronous transactions using the

CREATX service routine
v file operations to specific files

list of associates. See associated member and
associated part.

load. A system operation that links the
compiled code for a software component from a

library into an active image. Loading also
performs other operations that enable the
component to run, such as linking prerequisites.
Contrast with unload.

loaded. Designation for a software component
that has been linked from a library into an
image.

local area network (LAN). A computer network
located in a user’s establishment within a limited
geographical area. A LAN typically consists of
one or more server machines providing services
to a number of client workstations.

local data item. In Cross System Product or
VisualAge Generator, a data item that is stored
with the record or table for which it was defined.
Changes to local data items have no effect on
definitions of items with the same name in other
records or tables. Contrast with global data item.

M

map. In Cross System Product or VisualAge
Generator, a definition of the format of all or part
of what will appear on a screen or printer page.
A map is used to define the layout and
characteristics of information presented on a
display or printer while running an application
or program.

map group. In Cross System Product or
VisualAge Generator, contains all the maps used
by an application or program. Maps from the
same map group can be used in several
applications or programs.

member. In Cross System Product or VisualAge
Generator prior to V3.0, part of a member
specification library (MSL), consisting of a name
and a complete definition. A member can be a
data item, record, table, map, map group,
application, process, statement group, PSB, or
GUI application. For VisualAge Generator V3.0
or later, compare to VAGen part, view, and visual
part.

member specification library (MSL). In Cross
System Product or VisualAge Generator prior to
V3.0, a single library containing information that

404 VisualAge Generator: Migration Guide

contains the definitions, such as data items,
records, maps, and processes, that are used to
generate an application. In Cross System Product,
an MSL is a VSAM file. In VisualAge Generator,
an MSL is a directory. See also read-only MSL and
read/write MSL.

member type. In Cross System Product or
VisualAge Generator prior to V3.0, the type of
code a member contains. The member types are:
data item, record, table, map, map group,
application, process, statement group, PSB, and
GUI application. For VisualAge Generator V3.0
or later, compare to VAGen part class.

metaclass. The specification of a class; the
complete description of a class’s attributes,
behavior, and implementation. Every class has a
metaclass, of which it is the sole instance.
Contrast with class.

method. Executable code that implements the
logic of a particular message for a class. In
VisualAge, methods are also called scripts. See
also class method and instance method.

MSL. See member specification library.

MSL member. See member.

N

not found part. For the MSL Migration
Assistance Tool, a part that is associated with
another part, but which could not be found in
the MSL concatenation sequence.

nonvisual class. A class in a VisualAge
application that specifies a nonvisual part. For
example, Person, Address, and BankAccount are
nonvisual classes. Contrast with view.

nonvisual part. A part that has no visual
representation at run time. A nonvisual part
typically represents some real-world object that
exists in the business environment. Contrast with
view and visual part.

O

object. The basic building block in Smalltalk
development. An object is anything that exhibits
behavior. All code and data in Smalltalk must be
part of an object.

owning application. The application to which a
method in a class belongs. The owning
application does not have to be the same
application as the defining application. The
owning application does not have to be the same
for all methods of a class.

P

package. (1) In Smalltalk, the process of making
a visual part executable. Packaging must be done
on the platform in which the visual part will run.
(2) In Java, a group of classes and methods that
are closely related in function. A package can
include VAGen part classes and VAGen parts.
Java packages are stored in projects. See also
project.

pane. A section of a window that shows a
particular type of data. For example, the
Applications pane of the VisualAge Organizer
window shows a list of ENVY applications. See
also window.

part. A self-contained software object with a
standardized public interface, consisting of a set
of external features that enable the part to
interact with other parts. The parts on the
VisualAge parts palette can be used as templates
to create instances of objects.

polymorphism. The ability of different objects
to respond to the same message in different
ways. This means that different objects can have
very different method implementations for the
same message. An object can send a message
without concern for its underlying
implementation

pool dictionary. A dictionary object whose keys
define variables that can be shared by multiple
classes. All methods for a class can access the

Glossary 405

variables in a pool dictionary if the class declares
the pool dictionary as part of its scope.

prerequisite. In Smalltalk, prerequisite usually
refers to a prerequisite application.

prerequisite application. A particular version or
edition of an application required by another
application for it to function successfully. An
application can extend or reference one or more
of the prerequisite application’s classes.

prerequisite class. A class in a prerequisite
application. An application can subclass, extend,
and send messages to a prerequisite class.

prerequisite relationship. A relationship that
specifies that a particular component must exist
before a second component can exist.

process. (1) In Cross System Product or
VisualAge Generator, a unit of an application or
program. A process is divided into a process
option and processing statements. Each process
does one task. Main processes can be connected
by branching instructions in the flow stage of the
application or program. Processes provide a
modular design approach. See also process object,
process option, and processing statement. Contrast
with statement group. (2) In Smalltalk, a sequence
of actions described by expressions and
performed by the system’s virtual machine.

processing statement. In Cross System Product
or VisualAge Generator, a statement in a process,
statement group, or flow definition for a main
process. When the application or program runs,
processing statements perform the tasks that are
needed. Processing statements can be grouped in
the following categories: arithmetic statements,
data manipulation statements, external branching
statements (unconditional), and internal
branching statements (conditional and
unconditional). See also process and statement
group.

process object. In Cross System Product or
VisualAge Generator, the name of a record or
map accessed by the process option. See also
process and process option.

process option. In Cross System Product or
VisualAge Generator, the function to be
performed by the process. Only one process
option is permitted in a process. Process options
except EXECUTE represent I/O operations. The
EXECUTE option is the default process option.

The process options are: ADD, CLOSE,
CONVERSE, DELETE, DISPLAY, EXECUTE,
INQUIRY, REPLACE, SCAN, SCANBACK,
SETINQ, SETUPD, SQLEXEC, and UPDATE. See
also process and process option.

program. In VisualAge Generator V3.0 or later,
a set of definitions that performs a systematic
sequence of operations to produce a specific
result when generated using the VisualAge
Generator, and run using workgroup or host
services. Contrast with application.

program specification block (PSB). A formal
DL/I description of the hierarchical data base
structures that an application can access. The PSB
shows the hierarchical relationship that exists
between types of segments. In the IMS
environment, program communication blocks
(PCBs) for the IMS message queue or GSAM
databases are also included. For Cross System
Product or VisualAge Generator, the PSB is a
subset of the information stored in the DL/I PSB.

project. A group of package editions that
should be loaded together into a developer’s
workspace. See also package.

project list part (PLP). A VisualAge Generator
generation options part. It is used to identify
projects to load before the containing project is
loaded. The PLP is the VisualAge Generator on
Java way of implementing VisualAge Generator
on Smalltalk required maps. See also project.

PSB. See program specification block.

R

read-only MSL. In Cross System Product or
VisualAge Generator prior to V3.0, a type of
access to data that permits it to be read but not
modified. All MSLs except the first one in the

406 VisualAge Generator: Migration Guide

concatenation sequence are read-only MSLs. See
also member specification library. Contrast with
read/write MSL.

read/write MSL. In Cross System Product or
VisualAge Generator prior to V3.0, a type of
access to data that permits it to be read and
modified. Only the first MSL in an MSL
concatenation is a read/write MSL. The other
MSLs in the concatenation sequence are
read-only MSLs. See also member specification
library. Contrast with read-only MSL.

record. In Cross System Product or VisualAge
Generator, a collection of related data items
treated as one unit. Records are the information
units that form a file or database.

release. A system operation on a component
that changes its containing component’s
configuration. Releasing a component adds its
released edition or version to the configuration
for its containing component. When a containing
component is loaded into an image, the released
editions or versions of the components it
contains are also loaded.

repository. (1) An organized, shared body of
information that can support business and
data-processing activities. (2) In VisualAge, the
multi-user library that stores components such as
applications, classes, and methods created by
application developers. It stores source code,
object code, and persistent objects.

resource association file. In VisualAge
Generator, an input to generation. A file that
defines how a serial, relative, or indexed file, or
printer map is to implemented for a specific
target environment. The default values for
system resource names, file type, and program
communication block (PCB) numbers can be
changed in the resource association file. For
Cross System Product, compare to resource
association information.

resource association information. In Cross
System Product, an input to generation that
defines how a serial, relative, or indexed file, or
printer map is implemented for a specific target
environment. The default values for system

resource names, file type, and program
communication block (PCB) numbers can be
changed by specifying different resource
association information. Resource association
information is stored in the MSL. For VisualAge
Generator, compare to resource association file.

R-O. See read-only MSL.

R/W. See read/write MSL.

S

sandbox. For the MSL Migration Assistance
Tool, the applications and parts displayed in the
VG Part Prerequisites View window in which
you can experiment with your organizational
structure without committing the parts to ENVY.

scratch edition. A modifiable and private copy
of an application for a user who is not
necessarily the application’s manager. The scratch
edition only exists in that user’s image. Using a
scratch edition, you can modify an application
version, and the existing classes contained in it,
without actually creating a new edition. Each
scratch edition has <<>> displayed around the
edition timestamp or version name. Contrast
with edition and version.

script. A series of Smalltalk statements that
implement an action for a part. Scripts are
equivalent to Smalltalk methods.

Smalltalk (ST). (1) A complete programming
environment for developing object-oriented
applications. Smalltalk is a pure implementation
of object-oriented concepts; every entity in the
environment is an object. (2) The name of the
programming language that the Smalltalk
programming environment supports. (3) In
VisualAge, the name of the System Dictionary
containing the global variables.

statement group. In Cross System Product or
VisualAge Generator, a set of processing
statements that perform processing only. No I/O
operations are permitted in a statement group.
When a statement group finishes running,
control is returned to the processing statement

Glossary 407

that started running the statement group. See
also processing statement. Contrast with process.

status area. A part of a window where
information appears that shows the state of an
object or the state of a particular view of an
object.

subapplication. An application contained by
another application. Using subapplications, you
can organize the classes of an application into a
tree of subapplications, or isolate the parts of an
application that are platform-specific.

subclass. A class that inherits behaviors and
specifications (in other words, methods and
variables) from another class. Contrast with
superclass.

superclass. A class from which another class
inherits behaviors and specifications (in other
words, methods and variables). Contrast with
subclass.

system component. A component that manages
storage of code and access to that stored code. A
library file is a system component that stores and
manages code. A user object is a system
component that represents a person who can use
the library. See also component.

T

table. In Cross System Product or VisualAge
Generator, a collection of related data items
structured as a two-dimensional array of
columns and rows. Two kinds of tables can be
defined:

v A Cross System Product or VisualAge
Generator table refers to a member in the MSL
that can be used for map validation, user
messages, or as an internal data structure for
an application. For VisualAge Generator 3.0,
this table is defined as a VAGen part.

v A relational table refers to a table in a
relational database accessed by SQL. A
relational table is represented in Cross System
Product or VisualAge Generator by a record
with SQL row organization.

target environment. For Cross System Product
or VisualAge Generator, the runtime
environment for the generated application or
program.

team programming. Development of a system,
program, or application suite by a team of two
or more programmers or application developers.

tool bar. In the VisualAge Organizer,
Composition Editor, and VAGen Parts Browser
windows, the strip of icons along the top of the
freeform surface. The tool bar contains tools to
help construct composite parts. These tools are
also available through pull-down menus of the
windows.

Transcript window. The main controlling
window in Smalltalk.

U

unload. A system operation that removes a
software component from an image by unlinking
it. Contrast with load.

unexplodable. For the MSL Migration
Assistance Tool, marking an application as
unexplodable means that the parts within the
application will not be automatically moved to a
new ApplicationNode, even if the parts are
associates of parts being migrated to a different
application. Contrast with explodable.

V

VAGen export. In VisualAge Generator V3.0 or
later, a command that copies one or more VAGen
parts from a library to a serial file using external
source format. Contrast with VAGen import and
File Out. For Cross System Product or VisualAge
Generator prior to V3.0, compare to export.

VAGen import. In VisualAge Generator V3.0 or
later, a command that copies one or more VAGen
parts from a serial file to a library. The serial file
must be in external source format. Contrast with
VAGen export and File In. For Cross System
Product or VisualAge Generator prior to V3.0,
compare to import.

408 VisualAge Generator: Migration Guide

VAGen part. In VisualAge Generator V3.0 or
later, a portion of VisualAge Generator 4GL code
that is associated with a Smalltalk method in an
extension of its VAGen part class. It consists of a
name and a complete definition. A VAGen part
can be a data item, record, table, map, map
group, program, process, statement group, PSB,
or control information (linkage table, resource
association file, generation options, bind
command file, and linkage editor control
statements). See also VAGen part class. Compare
to view, visual part, and method. For Cross System
Product or VisualAge Generator prior to V3.0,
compare to member.

VAGen part class. In VisualAge Generator V3.0
or later, the type of code a VAGen part contains.
The VAGen part classes are:
v VAGenDataItems
v VAGenRecords
v VAGenTables
v VAGenMaps
v VAGenMapGroups
v VAGenPrograms
v VAGenFunctions
v VAGenProcesses
v VAGenStatementGroups
v VAGenPSBs
v VAGenLinkages
v VAGenResources
v VAGenOptions
v VAGenBindControls
v VAGenLinkEdits

The VAGen part classes are extensions of a class.
See also VAGen part. Compare to class and
extended class. For Cross System Product or
VisualAge Generator prior to V3.0, compare to
member type.

validation. In Cross System Product or
VisualAge Generator, the process that precedes
the generation process. The validation process
collects definition information for the object
being generated. Validation also includes
cross-checking to ensure the definitions are
complete and correct.

variable. (1) A storage place within an object for
a data element. The data element is an object,
such as a number or date, stored as an attribute

of the containing object. (2) In VisualAge, a part
that receives an identity at run time. A variable
by itself contains no data or program logic; it
must be connected such that it receives runtime
identity from a part elsewhere in the application.

version. In the team programming environment
an edition of a software component that cannot
be changed. Each version has a version name,
such as R4.0. Contrast with edition and scratch
edition.

view. A composite visual part. A view can
display and change the underlying nonvisual
objects of an application. In VisualAge, views are
both the end result of developing an application
and the basic unit of composition of user
interfaces. Compare to visual part.

visual part. A part that has a visual
representation at run time. Visual parts, such as
windows, push buttons, and entry fields, make
up the user interface of an application. Compare
to view. Contrast with nonvisual part.

W

window. A rectangular area of the screen with
visible boundaries in which information is
displayed. Windows can overlap on the screen,
giving the appearance of one window being on
top of another. See also pane.

work-in-progress. Members or parts that are
currently undergoing change or testing of
changes made to them.

workspace. A Java file that provides a
development environment on an individual
workstation. A workspace contains object
instances, classes, and methods.

Special Characters

4GL. Parts written in the VisualAge Generator
language including programs, records, tables,
data items, map groups, maps, processes,
statement groups, and PSBs. Views (GUIs) are
not considered to be 4GL parts.

Glossary 409

410 VisualAge Generator: Migration Guide

Index

Special Characters
/PROJECT generation option on

Java 11, 56

A
application

assigning a manager 197, 337
definition 208
versioning 192, 332

ApplicationNode 250, 251, 310
associations

4GL parts 44, 212
GUIs 45, 213
views 45, 213

B
business logic 98, 136, 278, 315
BW*Wizard 98, 278

C
code page conversion 118, 119, 297,

298
common parts 70, 71, 130, 250, 251,

310
configuration map

adding a required map 194, 334
assigning a manager 195, 335
creating 193, 333
definition 208
naming conventions 225
testing 196, 335
versioning 195, 335

control information
defining 35, 159, 199, 339
general 42, 210
naming conventions 10, 54, 173,

223
storing in ENVY 10, 35, 43, 54,

159, 173, 199, 211, 223, 339
Cross System Product

additional considerations 57,
236, 395

collecting your source 117, 296
control information 42, 210
equivalent of advance

command 86, 266
migrating VSAM files 163, 343
migration questionnaire 365

D
Data File Conversion utility 163,

344
data types, mismatched 234
dual maintenance 12, 57, 173, 235
duplicate names

controlled duplicates 133, 312
for business logic 136, 315
unintended duplicates 133, 313

duplicate parts 49, 61, 69, 217, 241,
249

E
ENVY

APIs 345
characteristics 39, 207
comparison to MSL 39, 207
completing the setup 33, 151,

191, 331
concepts 40, 208
functional organization 44, 212
part associations 44, 212
part types 41, 209
storing control information 10,

42, 54, 173, 210, 223
storing parts 42, 210

explodable 131, 310

F
feature

DDE support 295
loading 295
multimedia 295

functional organization 40, 44, 52,
208, 212, 219

G
generation

/PROJECT on Java 11, 56
changes to generation

options 11, 56, 173, 225
programs 160, 340
project list part on Java 11, 57
target environment

considerations 79, 261
VAGen runtime code 160, 340

group member 155, 196, 336
GUI

associates moved to
sandbox 259

GUI (continued)
automatic conversion 229
connection changes 232
dual maintenance on 2.x and

4.0 228
inheritsCommSession 232
log file 227
migrating OS/2 category

parts 227
migration considerations 5, 49,

170, 226
migration order 259
mismatched data types 234
moving to sandbox 259
national characters 226
Object Factory 234
obsolete parts 232
part associations 45, 213
renamed features 229, 231
renamed parts 229
tasks after migrating 234
View Wrapper 232

H
hptcnv40 119, 298
hptguicv.log 227
hptrules.nls 118, 297

I
inheritsCommSession 232

M
member type

associations among 44, 212
correspondence to VAGen part

class 41, 209
migration

collecting your source 117, 296
completing 35, 159, 199, 339
considerations

assigning ownership 10, 53,
173, 220

determining functional
organization 52, 219

establishing naming
conventions 8, 50, 172, 217

general 3, 47, 79, 167, 215,
259

GUIs 5, 49, 170, 226
resolving duplicate member

names 49, 217

© Copyright IBM Corp. 1997, 1999 411

migration (continued)
storing control

information 10, 42, 54, 173,
210, 223

using configuration
maps 225

using subapplications 6, 173,
221

VSAM files for Cross System
Product 163, 343

options for V3 to V4 Migration
Tool 18, 178

preparing for migration 15, 59,
175, 239

status log for V3 to V4 Migration
Tool 26, 185

technique
all data items first 77, 257
programs and GUIs first 78,

259
records and tables first 78,

258
mismatched data types 234
missing parts 61, 71, 124, 135, 138,

139, 147, 241, 251, 303, 314, 317,
318, 327

MSL
building directories using MSL

Migration Assistance Tool 63,
121, 243, 300

checking for unused parts 79,
260

comparison to ENVY 39, 207
concatenation 43, 211
functional organization 44, 212
member associations 44, 212
member types 41, 209
migrating production 76, 256
migrating production and

work-in-progress 75, 255
migrating work-in-progress 35,

80, 161, 199, 261, 341
production 75, 76, 255, 256
scenario

complete set of MSLs for
test 106, 285

delta MSLs for test 102, 282
general 85, 265
MSLs containing code from

BW*Wizard 98, 278
MSLs containing code from

VisualAge Generator
Templates 98, 278

MSLs from marketing or other
demonstrations 111, 289

MSL (continued)
scenario (continued)

MSLs that contain unintended
duplicates 97, 277

multiple subsystems with
controlled duplicates 89,
269

multiple subsystems with no
duplicates 87, 267

separate productions MSLs for
each developer 92, 272

understanding diagrams 85,
265

understanding
terminology 85, 265

selecting MSLs for MSL
Migration Assistance Tool 64,
125, 244, 304

storing control information 42,
210

storing members 42, 210
work-in-progress 75, 80, 255,

261

MSL Library Selection window 64,
125, 244, 304

MSL Migration Assistance Tool

before starting migration 59, 239
building MSL directories 63,

121, 243, 300
changing required

applications 322
changing required packages 142
checking consistency 141, 321
checking relationships among

applications 319
checking relationships among

packages 140
collapsing a package 132
collapsing an application 311
committing to ENVY 72, 145,

252, 325
controlling creation of

ApplicationNodes 251, 310
controlling creation of

package.nodes 71, 130
creating new application 308
creating new package 129
deleting a package.node 143
deleting all applications 324
deleting all packages 145
deleting an

ApplicationNode 323
deleting one application 324
deleting one package 144

MSL Migration Assistance Tool
(continued)

determining the parts that are
referenced 141, 320

determining which programs are
referenced 140, 319

diagram 61, 241
finding a part 137, 316
handling duplicates 132, 312
handling missing parts 139, 318
identifying common code 70,

250
identifying missing parts 71,

251
listing missing parts 138, 317
moving a part between

applications 308
moving a part between

packages 129
MSL Library Selection

window 64, 244
MSL Migration Part List

window 62, 67, 242, 246
normalizing required

applications 322
normalizing required

packages 143
other sandbox functions 71, 251
overview 62, 242
Part List Selection Criteria View

window 65, 245
performance 59, 239, 240
preparing for migration 59, 239
ready to migrate 59, 239
refreshing for a fix test 346
renaming a package 131
renaming an application 311
resetting from ENVY 72, 123,

252, 302
resetting the sandbox 72, 123,

252, 302
running 61, 115, 241, 293
selecting and migrating VAGen

parts 126, 305
selecting MSLs 64, 125, 244, 304
selecting parts for part list 65,

127, 245, 306
selecting parts for sandbox 67,

127, 246, 306
starting 62, 121, 242, 300
updating required

applications 321
updating required packages 142
using for work-in-progress

MSLs 82, 264

412 VisualAge Generator: Migration Guide

MSL Migration Assistance Tool
(continued)

VG Part Prerequisites View
window 70, 250

working in the sandbox 70, 250
MSL Migration Part List window

Duplicate column 69, 249
Last Migration Library

Timestamp column 69, 73, 249,
253

other functions 70, 250
selecting parts 67, 127, 246, 306
special columns 68, 248
Status column 68, 248

N
naming conventions 8, 50, 51, 53,

54, 79, 172, 217, 220, 223, 225, 259
not found parts 61, 69, 71, 124, 135,

138, 139, 147, 241, 248, 251, 303,
314, 317, 318, 327

O
Object Factory 234
ownership 10, 40, 53, 155, 173, 196,

208, 220, 336

P
package

changing the owner 24, 156
creating 31, 149
definition 40
naming conventions 8, 21, 50
versioning 152

package.node 70, 71, 130
Part List Selection Criteria View

window 65, 127, 245, 306
performance 59, 239
program

definition 40, 208
generating 160, 340

project
changing the owner 155
creating 31, 149
definition 40
versioning 153

project list part (PLP)
creating 154
definition 11, 57, 154
generation 11, 57, 154
organizing your code 7

Q
questionnaire

Cross System Product 365
VisualAge Generator 381

R
renamed features 229, 231
renamed parts 229

S
sandbox

changing required
applications 322

changing required packages 142
checking consistency 141, 321
checking relationships among

applications 319
checking relationships among

packages 140
collapsing a package 132
collapsing an application 311
committing to ENVY 72, 145,

252, 325
controlling creation of

ApplicationNodes 251, 310
controlling creation of

package.nodes 71, 130
creating new application 308
creating new package 129
deleting a package.node 143
deleting all applications 324
deleting all packages 145
deleting an

ApplicationNode 323
deleting one application 324
deleting one package 144
determining the parts that are

referenced 141, 320
determining which programs are

referenced 140, 319
finding a part 137, 316
handling duplicates 132, 312
handling missing parts 139, 318
identifying common code 70,

250
identifying missing parts 71,

251
listing missing parts 138, 317
moving a part between

applications 308
moving a part between

packages 129
moving parts to 67, 126, 246,

305
normalizing required

applications 322
normalizing required

packages 143
other functions 71, 251
renaming a package 131

sandbox (continued)
renaming an application 311
resetting from ENVY 72, 123,

252, 302
updating required

applications 321
updating required packages 142
working in 70, 250

subapplications 6, 173, 221
System Transcript window 345

T
TeamConnection, collecting your

source code 117, 296

U
unexplodable 71, 131, 251, 310
user

adding as group member 155,
196, 336

creating new user 116, 294
setting current user 116, 294

utility, Data File Conversion 163,
344

V
V3 to V4 Migration Tool

before starting migration 15, 175
marking not migrated 29, 188
migrating applications and

configuration maps 24, 183
migration options 18, 178
migration status log 26, 185
preparing for migration 15, 175
ready to migrate 15, 175
resetting 28, 187

VAGen
changing from OS/2 to Windows

NT 119, 298
VAGen Import 35, 75, 81, 161, 199,

255, 263, 341
VAGen part class

changing ownership 156, 197,
336

correspondence to member
type 41, 209

definition 39, 207
names of 41, 209
releasing 151, 191, 331
versioning 151, 191, 331

VAGen Parts Browser window 345
VG Part Prerequisites View

window 70, 250
view

definition 208
packaging 340

Index 413

view (continued)
part associations 45, 213
releasing 151, 191, 331
versioning 151, 191, 331

View Wrapper 232

VisualAge Generator

additional considerations 12, 58,
117, 174, 237, 297

advance command 86, 266
collecting your source code 117,

297
control information 42, 210
hints and tips 345
loading a feature 295
migration questionnaire 381
setting preferences 294
starting 4.0 115, 293
using existing MSLs 117, 297

VisualAge Generator Templates 7,
98, 171, 278

VisualAge Organizer window 242,
345

VSAM file 163, 343

414 VisualAge Generator: Migration Guide

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0267-00

