
VisualAge Generator

External Source Format Reference
Version 4.5

SH23-0265-01

IBM

Note

Before using this document, read the general information under “Notices” on page vii.

First Edition (September 2000)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 3.1
v IBM VisualAge Generator Server for AS/400 Version 3.6
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 062, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii

Trademarks ix
Terminology used in this document x

Terminology differences between Java and
Smalltalk xi

About this document xiii
Who should use this reference xiii
Documentation provided with VisualAge
Generator xiii

Chapter 1. Introduction 1
External source format tags 1

Tag name 1
Tag attribute 2
Tag text 2
Format example of variable field definition 4
VFIELD tag attributes 4

Chapter 2. Program structures 7
Program definition 7

Program and table generation option
specification 7

Main function definition 14
:MAINFUN tag attributes 14

Table and additional records list definition . . 15
:TABREC tag attributes 16

Parameter specification 17
:CALLPARM tag attributes 17

Program prologue definition 18
:PROL tag values 18

Templates tracability information 19
Program definition syntax example 19

Chapter 3. GUI client structures 21
GUI client definition 21

:GUIAPP tag attributes 21
GUI interchange format 22

:SCRIPT tag attributes. 23
GUI unloaded format 24

:BENCODE tag attributes 24
GUI client definition syntax example. . . . 25

Chapter 4. Function structures 27
Function definition. 27

:FUNC tag attributes 27
Parameter definition 33

:PARM tag attributes 33
Local Storage Definition 38

:STORAGE tag attributes 38
Return Value Definition 42

:RETURN Tag Attributes 42
Logic definition before I/O option 44

:BEFORE tag values 45
Logic definition after I/O option 45

:AFTER tag values 46
SQL selection condition specification 46

:SQL tag attributes 47
DL/I call definition 49

:DLICALL tag attributes 49
Segment search argument definition 51

:SSA tag attributes 51
Qualification statement definition for the
segment search argument 54

:QUAL tag attributes 54
Templates tracability information 57
Function definition syntax example 58

Chapter 5. Record structures 59
Record and Erecord definition 59

:RECORD tag attributes 59
SQL table name definition 73

:SQLTABLE tag attributes 73
Default selection criteria definition 75

:JOINCON tag attributes 75
Record help definition 76

:RCDHELP tag values. 76
Record title definition 77

:TITLE tag values 77
Record prologue definition 77

:PROL tag values 77
Record item definition 78

:RECDITEM tag attributes 78
User interface properties definition 8686
Link properties definition 89

:LINKDATA tag attributes 89
Link parameter definition 90

:LINKPARM tag attributes 90

© Copyright IBM Corp. 1980, 2000 iii

Initial definition. 91
:INITIAL tag values 91

Initial value definition 92
:INITIAL tag values 92

General edit characteristic definition 92
:GENEDITS tag attributes 92

Message key definition 96
:UIMSGS tag attributes 96

Numeric edit characteristic definition . . . 98
:NUMEDITS tag attributes 98

Field help definition 101
:FLDHELP tag values 101

Label definition 101
:LABEL tag values 101

Templates tracability information 102
Record definition syntax example 102

Chapter 6. Table structures 105
Table definition 105

:TBLE tag attributes 105
Table generation option specification . . . 108

:GENOPTS tag attributes 108
Table prologue description 109

:PROL tag values 109
Table column definition 110

:DEFITEM tag attributes 110
Data content attribute identification 114

:CONTITEM tag attributes 115
Row specification 117

:ROW tag values 117
Templates tracability information. 118
Table definition syntax example 119

Chapter 7. Data item structures 121
Data item definition 121

:ITEM tag attributes 121
Map edit characteristic definition 125

:MAPEDITS tag attributes 125
Data item message definition 132

:MESSAGES tag attributes 133
User interface properties definition 134

:UIPROP tag attributes 134
General edit characteristic definition . . . 135

:GENEDITS tag attributes 135
Message key definition 138

:UIMSGS tag attributes 138
Numeric edit characteristic definition . . . 140

:NUMEDITS tag attributes 140
Field help definition 143

:FLDHELP tag values 143

Label definition 143
:LABEL tag values 143

Templates tracability information 144
Data item definition syntax example . . . 145

Chapter 8. Program specification block
structures 147
PSB definition 147

:PSB tag attributes 147
Program communication block (PCB)
specification 148

:PCB tag attributes 148
Segment sensitivity specification 150

:SENSEG tag attributes 150
Templates tracability information 151
PSB definition syntax example 152

Chapter 9. Map structures 153
Map definition 153

:MAP tag attributes 153
Presentation information definition 158

:PRESENT tag attributes 158
Constant field definition 159

:CFIELD tag attributes 160
Constant field attribute definition 161

:CATTR tag attributes 161
Variable field definition 167

:VFIELD tag attributes 167
Map edit characteristic definition 170

:MAPEDITS tag attributes 171
Field Edit Message Definition 178

:MESSAGES Tag Attributes 178
Variable Field Attribute Definition 180

:VATTR Tag Attributes 180
Templates tracability information 185
Map structure syntax example 186

Chapter 10. Map group structures . . . 189
Map group definition 189

:MAPG tag attributes 189
Floating area definition 190

:AREA tag attributes 190
Templates tracability information 192
Map group structure example. 192

Chapter 11. Options file structures . . . 193
Options file definition 193

:OPTIONS tag attributes 193
Text definition 194

:TEXT tag values 194

iv VisualAge Generator: External Source Format Reference

Templates tracability information 194
Options file structure example 195

Chapter 12. Resource association file
structures 197
Resource association file definition 197

:RSRCS tag attributes 197
Text definition 198

:TEXT tag values 198
Templates tracability information 199
Resource association file structure example 199

Chapter 13. Linkage table file structures 201
Linkage table file definition 201

:LINKAGE tag attributes 201
Text definition 202

:TEXT tag values 202
Templates tracability information 202
Linkage table file structure example. . . . 203

Chapter 14. Bind control file structures 205
Bind control file definition 205

:BNDCTRL tag attributes 205
Text definition 206

:TEXT tag values 206
Templates tracability information 207
Bind control file structure example 207

Chapter 15. Link edit file structures . . . 209
Link edit file definition 209

:LNKEDIT tag attributes 209
Text definition 210

:TEXT tag values 210
Templates tracability information 210
Link edit file structure example 211

Chapter 16. Templates traceability
information structures 213
Templates traceability information definition 213

:VAGT tag attributes 213
Trace bag information 216

:TRACBAG tag values 216
Templates traceability information syntax
example 216

Appendix A. External source format
functions with VisualAge Generator
commands 217
Import and export of VisualAge Generator
parts 217

External source format file 217
Error processing 218

Appendix B. DBCS support 221

Appendix C. Tags not supported by
VisualAge Generator 223
Program structures 223
GUI client structures 224
Process structures 224
Statement group structures. 224
Record structures 225
Table structures 225
Data item structures 225
Program specification block structures . . . 225
Map structures. 225
Map group structures 226

Index 227

Contents v

vi VisualAge Generator: External Source Format Reference

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2000 vii

viii VisualAge Generator: External Source Format Reference

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:
v AD/Cycle
v AIX
v AS/400
v CICS
v CICS OS/2
v CICS/ESA
v CICS/MVS
v CICS/VSE
v CICS/6000
v COBOL/370
v COBOL/400
v DB2
v IBM
v IMS
v IMS/ESA
v Language Environment
v MVS
v MVS/ESA
v Operating System/2
v OS/2
v OS/400
v SAA
v SQL/DS
v SQL/400
v System/370
v VisualAge
v VisualGen
v VM/ESA

The following are trademarks of other companies:

HP-UX Hewlett-Packard Company

Micro Focus Micro Focus Limited

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1980, 2000 ix

Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.
v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for

AIX, CICS for Windows NT, and CICS for Solaris.
v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.
v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to

message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:
– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.
v References to VM batch apply to any batch facility running on VM.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.

x VisualAge Generator: External Source Format Reference

v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal
Database (UDB) for AIX Version 5.

v Windows applies to Windows 95, Windows 98, Windows NT, and
Windows 2000.

v Unless a specific version of Windows NT is referenced, statements
regarding Windows NT also apply to Windows 2000.

Terminology differences between Java and Smalltalk
VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

Trademarks xi

xii VisualAge Generator: External Source Format Reference

About this document

This document is a reference for the VisualAge Generator Developer external
source format. This document describes the external source format syntax and
the VisualAge Generator structures only as they relate to the external source
format. For additional information on VisualAge Generator structures, refer to
the VisualAge Generator help facility.

Who should use this reference

This document is intended for application developers who want to convert
applications developed with a non-VisualAge Generator design tool into
VisualAge Generator Developer programs or who want to analyze and
modify the VisualAge Generator source code. It also provides application
developers a method to export VisualAge Generator definitions to other
systems.

For information on defining programs on a workstation using the VisualAge
Generator Developer product, refer to the VisualAge Generator library and the
VisualAge Generator help facility.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM and from the VisualAge

Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

© Copyright IBM Corp. 1980, 2000 xiii

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

4. This document is included when you order the VisualAge Generator Server product CD.

xiv VisualAge Generator: External Source Format Reference

Chapter 1. Introduction

The external source format feature of VisualAge Generator lets you define
VisualAge Generator parts in a readable format.

External source format provides the following capabilities to make program
development easier:
v Accepts program definitions into VisualAge Generator that were developed

using non-VisualAge Generator design tools
v Lets you export VisualAge Generator definitions to other systems
v Provides readable program definitions within VisualAge Generator
v Provides an external format of VisualAge Generator definitions that can be

used for centralized control and archiving
v Lets you access and analyze VisualAge Generator source code.

When you export a VisualAge Generator part, the part is saved in external
source format. See Appendix A. External source format functions with
VisualAge Generator commands, for information on using the external source
format with VisualAge Generator.

External source format tags

The external source format uses a set of mark-up language elements, called
tags, to define each of the parts found in a library. These tags identify the type
of part and the attributes and values assigned to that part. A unique tag
delimits each part type.

An example of the tag syntax follows:

Tag name
The tagname specifies the name of the tag. Tag names are prefixed with the
start tag open delimiter, the colon (:), which must be in column 1. Tags can be
specified in uppercase and lowercase. Examples of tag names used in external
source format are: MAP, ITEM, VFIELD, and PSB. Some tags require that you
mark the end of an element explicitly. Ending tags consist of the tag name
prefixed with the end tag open delimiter (:e). Both start and end tags close
with the tag’s closing delimiter, the period (.).

:tagname
keyword=value.
tag-content
:etagname.

© Copyright IBM Corp. 1980, 2000 1

Note: The tag’s closing delimiter is only required when you have text
following the tag name, but it is a good practice to always include it.

An external source format tag in column 1 marks the end of the preceding tag
and the beginning of the next tag.

Tag attribute
The second item in the example shown in External source format tags,
keyword=value, is an attribute of the tag. In this example, keyword is the name
of the attribute and value is the variable attribute data. In some cases, the
attribute value can be a list of numbers or alphabetic characters separated by
one or more blanks.

You must enclose attribute values within single quotation marks or double
quotation marks when the value contains a blank. If you need quotation
marks inside the value, you must use either two single quotation marks or
two double quotation marks, as in the following example:
:tagname keyword='value containing blanks, "single quoted text," and
""double quoted text.""'.

When an attribute value is a number that contains a decimal point, place at
least one digit to the right of the decimal point to distinguish it from the tag’s
closing delimiter.

An attribute and its value can span multiple lines. Multiple attributes
appearing on the same line must be delimited by one or more blanks.
Attributes can be specified in lowercase and uppercase.

Tag text
The tag-content is the text associated with that tag. The tag-content, which is
subject to national language translation, follows the period. The format shown
in “Format example of variable field definition” on page 4 is used throughout
this publication to describe the tag layouts.

The following information is provided for each tag.

Name
The name of the tag.

Description
A short description including all the required and optional tags.

Syntax
The tag syntax always appears in the left hand column. The tag being defined
is always listed in bold typeface.

2 VisualAge Generator: External Source Format Reference

Note: You must specify tags in the order they are listed under “Syntax.”
However, you do not have to specify the attributes in the order they
are listed under “Attributes.”

Attribute table
The table to the right of the syntax lists all the required and optional
attributes and values for the current tag. The tables list attributes in uppercase
letters. You can specify attributes in external source format in uppercase and
lowercase. These tables have three columns:

Attributes
Lists all possible attributes

Values
Lists all possible attribute values

The tables use several styles of highlighting to make the values more
readable:
v Italic — Italic typeface indicates a value name

When you specify this attribute, you give this value a quantity
particular to the part you are defining.

v Bold — Bold typeface indicates a default value
If you do not specify this attribute, VisualAge Generator
automatically uses this value.

v CAPS — Words in all capital letters indicate the choices you can
specify for this attribute

Uses Lists possible uses

Brackets ([]) surround attributes and values that are optional for the current
tag. Vertical bars (|) separate value options that are valid for an attribute.
Braces ({}) surround attribute value options that are mutually exclusive (you
can specify only one of them). Single quotation marks (‘ ’) surround attribute
value options when the value contains a blank or special character.

Some tags do not require keyword attributes. Tags such as PROL, JOINCON,
and STMTS have value content only. The syntax tables for these tags have
only two columns, Value and Usage.

Attribute description
A brief attribute description follows the syntax. This description contains two
kinds of information:
v Quick reference
v Usage

Chapter 1. Introduction 3

Attribute quick reference: The attribute quick reference information appears
inside labeled boxes. The boxes list all the attribute values, using the same
highlighting that appears in the attribute tables:
v Italic indicates a value name.
v The phrase (default value) indicates a default value.
v CAPS indicate a value choice.

Attribute usage: A description of how to use an attribute follows the quick
reference. In some cases, you might require a more detailed explanation of
how to use the attribute. Refer to the VisualAge Generator help facility for
more information about how to use the attributes.

Format example of variable field definition
The VFIELD tag specifies information about a variable field on the map. The
optional tags MAPEDITS, MESSAGES, and VATTR tags provide additional
information about a variable field. The EVFIELD tag closes the definition and
is required for each VFIELD.

VFIELD tag attributes
The VFIELD tag specifies information about a variable field on the map. The
optional tags MAPEDITS, MESSAGES, and VATTR provide additional
information about a variable field. The EVFIELD tag closes the definition and
is required for each VFIELD.

Syntax Attributes
:map
... :VFIELD

:vfield Attributes Values Uses
... BYTES= field length in bytes Specifies the number of

positions the variable field
occupies

:mapedits COLUMN= column number Specifies the column of the
byte immediately
preceding the variable
field

... [DECIMALS= {0|decimal places}] Specifies the number of
positions to the right of a
decimal point in numeric
items

:messages [DESC= ‘field description’] Describes what the field
represents

... [EDITORDR= number] Specifies the map edit
sequence

:vattr [INDEX= index value] Specifies the index value
when the field is an array

4 VisualAge Generator: External Source Format Reference

Syntax Attributes
... [NAME= field name] Identifies a map variable

field

:evfield ROW= row number Specifies the row of the
byte immediately
preceding the variable
field

... [TYPE= {CHA|DBCS|MIX|
NUM}]

Specifies the data type

:emap [.[initial value]] Specifies the initial value
of the field

:EVFIELD [.]

BYTES=

field length in bytes
Specifies the number of positions the variable field occupies

COLUMN=

column number
Specifies the column of the byte immediately preceding the
variable field

DECIMALS=

0 Specifies 0 decimal places (default value)

decimal places
Specifies a number of decimal places

DECIMALS are the number of positions to the right of an implied decimal
point in numeric items. Decimal places can be specified only for numeric data.
The maximum number of decimal positions is 18 or the number of digits
defined for the field, whichever is smaller.

DESC=

’field description’
Describes what the variable field represents

Chapter 1. Introduction 5

DESC is a text description of what the variable field represents. The text can
be up to 30 characters.

EDITORDR=

number
Specifies the map edit sequence

EDITORDR allows you to modify the editing sequence in which variable
fields on the map are checked on input to a program.

6 VisualAge Generator: External Source Format Reference

Chapter 2. Program structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator program. See “Chapter 3. GUI client structures”
on page 21 for information about Graphical User Interface (GUI) clients.

Program definition

The PROGRAM tag defines attributes for individual programs. The
PROGRAM tag defines a VisualAge Generator program that consists of
various VisualAge Generator objects, the parameter list of the program, the
type of program, and text describing the program. The following tags are
used with the PROGRAM tag to further define aspects of a program. They are
discussed later in this chapter.
v MAINFUN
v TABREC
v CALLPARM
v PROL

All these tags can have attributes. The EPROGRAM tag closes the definition
and is required.

Program and table generation option specification
The GENOPTS tag and the GENTABLE tag specify the saved generation
options associated with the program. These tags and their associated
attributes are supported to provide compatibility with Cross System Product
and to help you migrate programs to VisualAge Generator.

To migrate Cross System Product generation options to VisualAge Generator,
use the external source format conversion utility to extract the generation
options. For information on this utility, refer to the Migrating Cross System
Product Applications to VisualAge Generator document.

:PROGRAM tag attributes

Syntax Attributes
:program
...

:PROGRAM
:mainfun Attributes Values Uses
... [BYPKEY= number list] Specifies keys used to

bypass map edits and map
edit groups

© Copyright IBM Corp. 1980, 2000 7

Syntax Attributes
:emainfun [DATE= ‘modification date’] Specifies the date the

program part was last
modified

... [EXECMODE= {NONSEGMENTED|
SEGMENTED|
SINGLESEG}]

Specifies the execution
mode

:tabrec...

[FIRSTMAP= map name] Specifies the initial map to
be shown prior to running
the first function

[FIRSTUI= user interface record
name]

Specifies the name of the
record that is to contain
data to be used by the bean

... [HELPGRP= help map group name] Specifies the map group
that contains user-defined
help maps

:callparm [HELPKEY= number] Specifies a key to use for
requesting help

... [IMPLICIT= {Y|N}] Specifies whether generation
and test are to create
implicit data items

:prol [MAPGROUP= main map group
name]

Specifies the map group
that contains the first map
for the program, or the
maps to be specified as I/O
objects, or as received
parameters in the called
parameter list

... [MSGTABLE= message table prefix] Specifies the message table
name prefix

:eprol NAME= name Identifies the program being
developed

:vagt [PFEQUATE= {Y|N}] Makes pressing F13-24
equal to pressing F1-12

... [PSB= PSB name] Specifies a program
specification block definition
in the library

:tracbag [TIME= ‘modification time’] Specifies the time the
program part was last
modified

... [TYPE= {MAIN|
MAINBATCH|
CALLED|
CALLBATCH|
WEBMAIN}]

Defines the method of
processing to be used for a
program

8 VisualAge Generator: External Source Format Reference

Syntax Attributes
:etracbag [WORKSTOR= record name] Specifies a record with

working storage
organization

[.]
:eprogram :EPROGRAM [.]

BYPKEY=

number list
Specifies up to five keys that allow the user to bypass map edits
and map edit groups

Specify BYPKEY keys as integers from 1 to 24. Separate multiple keys with
blanks. No default bypass edit keys are designated.

Note: Specifying the bypass edit keys for a map overrides the program
specification bypass keys for that map. The bypass edit keys cannot be
the same as the help key.

DATE=

‘modification date’
Specifies the date the program part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

EXECMODE=

NONSEGMENTED
Specifies the program runs in conversational mode (default
value)

SEGMENTED
Specifies that the program runs in CICS pseudoconversational
mode, IMS conversational mode, or IMS nonconversational mode

SINGLESEG
Specifies the program runs in single-segment mode and is valid
for IMS/VS only

Chapter 2. Program structures 9

EXECMODE defines the mode in which programs run in the transactional
processing environments. Use the EZESEGM special function word in the
program to dynamically change the execution mode during execution.

NONSEGMENTED holds input/output locks, position, and main storage
resources across each CONVERSE I/O option.

SEGMENTED saves program information across each CONVERSE I/O option.
All main storage resources are freed while waiting for a terminal.
SEGMENTED is valid only when the program is a main transaction.

SINGLESEG specifies that the program runs in single-segment mode. It is
valid for IMS/VS only. A single-segment program processes a single input
from a terminal and ends after it responds to the input or after it transfers to
another program. Program information is not saved when the map is
displayed.

FIRSTMAP=

map name
Specifies the initial map to be shown prior to running the first
function

FIRSTMAP is the initial map on which you enter data prior to running the
first function. FIRSTMAP is valid only when the program is a main
transaction.

FIRSTUI=

user interface record name
Specifies the name of the record that is to contain data to be
used by the bean

FIRSTUI is valid only when the program is a WEB MAIN transaction.

HELPGRP=

help map group name
Specifies the map group that contains the user-defined help
maps

10 VisualAge Generator: External Source Format Reference

HELPGRP can be the same map group as the one specified in the map group
attribute. If so, the help map group attribute does not need to be specified.

Map group names cannot contain the characters $, #, or @.

HELPKEY=

number
Specifies a key to use for requesting help from program maps

Specify HELPKEY as an integer ranging from 1 to 24.

Note: The help key cannot be the same as any of the bypass edit keys.

IMPLICIT=

Y Creates implicits for all unqualified data items used in the
program that are not defined in any map, record, or table used
by the program (default value)

N Specifies that all processing involved in creating implicits is
bypassed

IMPLICIT specifies whether implicit data item definitions are created. If
IMPLICIT=N, test and generation issue error messages for any undefined
items.

MAPGROUP=

main map group name
Specifies the map group that contains the first map for the
program, or the maps to be specified as I/O objects, or as
received parameters in the called parameter list

MAPGROUP is the name of the map group that contains the first map for the
program, or the maps to be specified as I/O objects, or as received parameters
in the called parameter list. A called program can use a different map group
than the calling program unless a map is a parameter passed to the called
program. In this case, the same map group is used.

Map group names cannot contain the characters $, #, or @.

Chapter 2. Program structures 11

MSGTABLE=

message table prefix
Specifies the message table name prefix

MSGTABLE is the prefix that links the message table to the program. The
format of the message table name is XXXXyyy, where XXXX is the value of
the message table prefix, and yyy is the NLS code. MSGTABLE consists of 3
to 4 characters and should meet the following conventions:
v The first character is alphabetic (A-Z)
v The remaining characters are alphanumeric (A-Z, 0-9)
v The name cannot contain blanks or have an EZE prefix.

NAME=

name Identifies the program being developed

NAME identifies the program being developed. It consists of 1 to 7 characters
and must meet the following conventions:
v The first character is alphabetic (A-Z)
v The remaining characters are alphanumeric (A-Z, 0-9)
v The name cannot contain blanks or have an EZE prefix.

PFEQUATE=

Y Makes F13-24 equal to F1-12 (default value)

N Makes F13-24 not equal to F1-12

PFEQUATE makes pressing F13-24 equal to F1-12. If PFEQUATE=Y, you can
code key checks into the program as if there are only 12 keys. Statements
checking for a single key, such as F3, are treated as true if either F3 or F15 is
pressed.

PSB=

PSB name
Specifies a program specification block definition in the library

12 VisualAge Generator: External Source Format Reference

The PSB is used to generate default DL/I calls within the program.

TIME=

‘modification time’
Specifies the time the program part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

TYPE=

MAIN Specifies main transaction processing (default value)

MAINBATCH
Specifies main batch processing

CALLED
Specifies called transaction processing

CALLBATCH
Specifies called batch processing

WEBMAIN
Specifies main transaction processing with a WEB browser

TYPE defines the method of processing to be used for a program:
v MAIN

Specify MAIN for a program that interacts with a user at a display device.
The program is started through a transfer from the system, a non-VisualAge
Generator program, or a VisualAge Generator program. A block of working
storage data can be passed to the program upon transfer from another
non-VisualAge Generator program or VisualAge Generator program.

v MAINBATCH

Specify MAINBATCH for a program that processes without interacting with
a user at a display device. The program is started through a transfer from
the system, a non-VisualAge Generator program, or a VisualAge Generator
program. A block of working storage data can be passed to the program on
transfer from another non-VisualAge Generator program or VisualAge
Generator program.

v CALLED

Specify CALLED for a program that is called by and returns to another
VisualAge Generator program or non-VisualAge Generator program. The

Chapter 2. Program structures 13

program interacts with a user at a display device. Parameters can be passed
between the calling and the called VisualAge Generator programs or
non-VisualAge Generator programs.

v CALLBATCH

Specify CALLBATCH for a program that is called by and returns to another
VisualAge Generator program or non-VisualAge Generator program. The
program does not interact with a user at a display device. Parameters can
be passed between the calling and called VisualAge Generator programs or
non-VisualAge Generator programs.

v WEBMAIN

Specify WEBMAIN for a program that interacts with a user at a display
device when the user interface is designed with a WEB Browser.

WORKSTOR=

record name
Specifies a record with working storage organization

WORKSTOR defines a temporary data area, in addition to the defined maps
and records, that the program might need for processing. You can specify only
one record for WORKSTOR, but you can specify additional working storage
records in the Table and Additional Records List.

Main function definition

The MAINFUN tag is an optional tag that, with its attributes, further
describes the PROGRAM and EPROGRAM tag set. If repeated, the order the
functions are named determines the order they appear in the main function
list. The EMAINFUN tag is required and closes each specification of
MAINFUN.

:MAINFUN tag attributes

Syntax Attributes
:program
... :MAINFUN

:mainfun Attributes Values Uses
... NAME= name Identifies a function part

:emainfun [.[flow statements]] Specifies the flow
statements associated with a
function

14 VisualAge Generator: External Source Format Reference

Syntax Attributes
...

:eprogram :EMAINFUN [.]

NAME=

name Identifies a function part

NAME consists of 1 to 18 characters and must meet the following
conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters, hyphens,

or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 8 DBCS characters long with no
embedded blanks.

flow statements

flow statements
Specifies the flow statements, if any, associated with a function

Flow statements can consist of multiple lines of text. A statement line cannot
exceed 2000 bytes.

Table and additional records list definition

The TABREC tag, which can be repeated, specifies the following:
v Each table used in the program, including edit tables for data items on a

map. The list of tables is used to verify references to tables by processing
statements and to assure the tables are available when the program runs.
This list will not include message tables picked up because of the message
table prefix specified with the program.

v Each record used as an additional working storage area, an argument
passed on a call, or a record redefinition referred to in the program that is
not the object of one of the functions in the program.

This optional tag with its attributes further describes the PROGRAM and
EPROGRAM tag set.

Chapter 2. Program structures 15

:TABREC tag attributes

Syntax Attributes
:program
... :TABREC

:tabrec Attributes Values Uses
... NAME= name Specifies the name of the

table or additional record

:eprogram TYPE= {RECORD|TABLE} Specifies the type of part
[.]

NAME=

name Specifies the name of the table or additional record

NAME depends on the TYPE specification. If the NAME is the name of a
record part, the name consists of 1 to 18 characters and must meet the
following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters, hyphens,

or underscores (A-Z, 0-9, $, #, @, -, _)
v The record name cannot contain blanks or have an EZE prefix.

The record name can be a DBCS name up to 8 DBCS characters long with no
embedded blanks.

If the NAME is the name of the table part, it consists of 1 to 7 characters and
must meet the following conventions:
v The first character is alphabetic (A-Z)
v The remaining characters are alphanumeric (A-Z, 0-9)
v The table name cannot contain blanks or have an EZE prefix
v Table names cannot end in 0.

TYPE=

RECORD
Specifies that the additional part is a record

TABLE
Specifies that the part is a table

16 VisualAge Generator: External Source Format Reference

Parameter specification

The CALLPARM tag specifies the name and type of each parameter received
by a called program. This optional tag with its attributes further describes the
PROGRAM and EPROGRAM tag set.

The maximum number of parameters is 30. Parameters can be maps, records,
or data items. List the parameters in the same order as the arguments are
listed in the program’s CALL statement. The number of parameters must
equal the number of arguments.

The parameter definitions are the same as, or compatible with, the definitions
of the call arguments. If data types are not compatible or lengths are not the
same, errors might occur during execution. A data item parameter cannot be a
data item in a record, table, or map used by the called program. You can
define the data item using data item definition.

:CALLPARM tag attributes

Syntax Attributes
:program
... :CALLPARM

:callparm Attributes Values Uses
... NAME= name Specifies the name of the

parameter

:eprogram [TYPE= {RECORD|ITEM|
MAP}]

Specifies the type of
parameter

[.]

NAME=

name Specifies the name of the parameter

NAME depends on the TYPE specification. If NAME is the name of a record
part, the name consists of 1 to 18 characters and must meet the following
conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters, hyphens,

or underscores (A-Z, 0-9, $, #, @, -, _)
v The record name cannot contain blanks or have an EZE prefix.

Chapter 2. Program structures 17

The record name can be a DBCS name up to 8 DBCS characters long with no
embedded blanks.

If NAME is the name of a data item part, it consists of 1 to 32 characters and
must meet the following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters, hyphens,

or underscores (A-Z, 0-9, $, #, @, -, _)
v The item name cannot contain blanks or have an EZE prefix.

The item name can be a DBCS name up to 15 DBCS characters long with no
imbedded blanks.

Note: EZEDLPSB and EZEDLPCB can be specified as item names but cannot
both be specified in the same called parameter list. EZEDLPCB can be
subscripted with a numeric literal.

If NAME is the name of a map part, it consists of 1 to 8 characters and must
meet the following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters (A-Z, 0-9,

$, #, @)
v The map name cannot contain blanks or have an EZE prefix.

TYPE=

RECORD
Specifies that the parameter is a record

ITEM Specifies that the parameter is a data item

MAP Specifies that the parameter is a map

Program prologue definition

The PROL tag is a text description of a defined program. This optional tag
further describes the PROGRAM and EPROGRAM tag set. The EPROL tag
closes the description, and if you use the PROL tag, the EPROL tag is
required.

:PROL tag values

Syntax Usage
:program

18 VisualAge Generator: External Source Format Reference

Syntax Usage
... :PROL

:prol Value Usage
... [.[prologue lines]] Describes the program

:eprol :EPROL [.]
...

:eprogram

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 60 characters. You can use both uppercase
and lowercase in the prologue text. The text is saved as entered. When the
text is longer than 60 characters, it is split into multiple lines during import.

Templates tracability information

Templates tracability information is defined for a program part as described in
“Chapter 16. Templates traceability information structures” on page 213.

Program definition syntax example

:program name = xxxxxxx
date = 'mm/dd/yyyy' time = 'hh:mm:ss' type = xxxxxxxxx
execmode = xxxxxxxxxxxx
workstor = xxxxxxxxxxxxxxxxxx mapgroup = xxxxxx
helpgrp = xxxxxx helpkey = xx
psb = xxxxxxxx pfequate = x
implicit = x msgtable = xxxx
bypkey = xx xx xx xx xx firstmap = xxxxxxxx
firstui = xxxxxxxxxxxxxxxxxx.

:mainfun name = xxxxxxxxxxxxxxxxxx.
MOVE A TO B;
:emainfun.
:tabrec name = xxxxxxxxxxxxxxxxxx

type = xxxxxx.
:callparm name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

type = xxxx.
:prol.
Each prologue line can be up to 60 characters long. IMPORT
will split lines longer than 60 characters.
:eprol.
:eprogram.

Chapter 2. Program structures 19

Note: This example illustrates the syntax of all program definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

20 VisualAge Generator: External Source Format Reference

Chapter 3. GUI client structures

This chapter describes the tags and attributes that define a VisualAge
Generator GUI client.

Note: GUI clients are only valid on import.

When you import GUI client parts in character format, be aware that the
character format uses some characters that might not be in the same place on
all code pages. You must either use this function on machines with the same
code page or on machines whose code pages hold these characters in the
same ASCII position.

GUI client definition

The GUIAPP tag defines attributes for individual GUI client parts. There are
two ways to represent the structure of a GUI client program:

GUI interchange format
Supports the exchange of the GUI client definition with other tools.
The SCRIPT and ESCRIPT tags are used to specify the GUI
interchange format.

Unloaded format
Provides fast VisualAge Generator import, but it cannot be exchanged
with other tools. The BENCODE and EBENCODE tags are used to
specify the unloaded format.

Either the SCRIPT tag or the BENCODE tag is required. The EGUIAPP tag
closes the definition and is required.

:GUIAPP tag attributes

Syntax Attributes
:guiapp
... :GUIAPP

:script Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the GUI client

was last modified

:escript NAME= GUI client name Specifies the name of the GUI
client

© Copyright IBM Corp. 1980, 2000 21

Syntax Attributes
... [TIME= ‘modification time’] Specifies the time the GUI client

was last modified

or [.]
... :EGUIAPP

:bencode
...

:ebencode
...

:eguiapp

DATE=

modification date
Specifies the date the GUI client part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

GUI program name
Identifies the name of the GUI client

TIME=

modification time
Specifies the time the GUI client part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

GUI interchange format

The SCRIPT tag begins the set of GUI interchange format statements that
make up the GUI client definition. The ESCRIPT tag closes the statement and
is required.

22 VisualAge Generator: External Source Format Reference

The GUI client definition statements are in the IBM Smalltalk language syntax.
The statements are represented using the IBM Smalltalk external source
format.

Refer to the IBM Smalltalk Programmer’s Reference, SC34-4493, and the
Introduction to Object-Oriented Programming with IBM Smalltalk document,
SC34-4491, for information about IBM Smalltalk language.

:SCRIPT tag attributes

Syntax Usage
:guiapp
... :SCRIPT

:script Values Uses
... [.[GUI interchange format

statements]]
Specifies statements that describe the
GUI definition

:escript :ESCRIPT [.]
...

:eguiapp

Statements can contain character data and white space. Character data is case
sensitive. White space is represented by any of the following codes: space,
carriage return, tab, line feed, and form feed. You cannot use the null
character. A statement can span multiple lines of text and a line can be any
length.

Three categories of information are provided in a GUI client definition: the
public interface, the internal structure, and the visual layout. This information
is stored in the GUI client part in an object-oriented way as objects.

The GUI interchange format contains statements to recreate the objects that
represent the GUI client part. These statements are defined as class methods
of the GUI client.

The following table shows the objects, the class methods, and indicates
whether the methods are optional or required for a GUI client definition.

Chapter 3. GUI client structures 23

Object Method
Required/
Optional

Interface specification

Defines the features that are added
to the public interface of the GUI
client

calculateInterfaceSpec

Recreates the interface specification
for the GUI client

Optional

Part builder

Defines the internal structure of the
GUI client, which consists of its
subpart tree, values for attribute
settings, and connections between
subparts

calculatePartBuilder

Recreates the part builder for the
GUI client

Required

Visual layout part builder

Defines the placement of non-visual
components on the free-form
surface

calculateVisualLayoutPartBuilder

Recreates the visual layout part
builder for the GUI client

Optional

Note: The calculateVisualLayoutPartBuilder method is not normally used to
interchange with other tools. If omitted, GUI client definition will place parts and
connections on the free-form surface by default.

The methods appear in the following sequence:
v publicMethods

– calculateInterfaceSpec
– calculatePartBuilder
– calculateVisualLayoutPartBuilder

v PrivateMethods

Private methods are only included if they are part of the implementation of
the public methods.

To determine the statements that represent a specific aspect of a GUI client,
use VisualAge Generator Developer to define a sample program, then export
the GUI client in GUI interchange format and browse or print the output file.

GUI unloaded format

The BENCODE tag begins the binary code that represents the GUI client
definition. The EBENCODE tag closes the statement and is required.

:BENCODE tag attributes

Syntax Usage
:guiapp

24 VisualAge Generator: External Source Format Reference

Syntax Usage
... :BENCODE

:bencode Values Uses
... [.[GUI unloaded format]] Specifies the GUI client definition in

a binary format

:ebencode :EBENCODE [.]
...

:eguiapp

GUI client definition syntax example

Note: This example illustrates the syntax of some of the GUI client definition
tags and attributes. Actual definitions do not require or use all tags and
attributes shown here.

:guiapp name = xxxxxxxx
date = 'mm/dd/yyyy' time = 'hh:mm:ss'

:script.
GUI definition in Interchange Format

:escript.
:eguiapp.

Chapter 3. GUI client structures 25

26 VisualAge Generator: External Source Format Reference

Chapter 4. Function structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator function.

Function definition

The FUNC tag replaces both the PROCESS and GROUP tags, which are logic
parts used in previous versions of VisualAge Generator. The PARM,
STORAGE, RETURN, BEFORE, AFTER, SQL, DLICALL, SSA, and QUAL tags
further define aspects of a function and can have attributes. The EFUNC tag
closes the definition, and if you use the FUNC tag, the EFUNC tag is
required.

:FUNC tag attributes

Syntax Attributes
:func
... :FUNC

:parm...
Attributes Values Uses

:storage...

[DATE= ‘modification date’] Specifies the date the
function part was last
modified

:return [DESC= ‘description’] Describes the function
... [ERRRTN= routine name] Specifies an error-handling

routine

:before...
:ebefore

[EXECBLD= {Y|N}] Specifies whether the SQL
statements are to be built as
static SQL statements or
prepared as dynamic
statements

:after [MODEL= {DELETE|UPDATE|
NONE}]

Specifies generation of a
model SQL statement

... NAME= name Identifies the function part

:eafter [OBJECT= object name] Specifies a record or map
accessed by OPTION

© Copyright IBM Corp. 1980, 2000 27

Syntax Attributes
:sql...

[OPTION= {EXECUTE|
CONVERSE|
DISPLAY|INQUIRY|
UPDATE|REPLACE|
ADD|DELETE|SCAN|
CLOSE|SETINQ|
SETUPD|SQLEXEC|
SCANBACK}]

Specifies the input/output
logic in a function

:esql [REFINE= {Y|N}] Specifies the method of
displaying logic for the
function

:dlicall [SINGROW= {Y|N}] Specifies whether a
single-row SELECT is to be
performed for an SQL
INQUIRY

... [TIME= ‘modification time’] Specifies the time the
function part was last
modified

:ssa [UPDFUNC= update function name] Specifies the name of an
UPDATE or SETUPD
function

...
:qual

[WITHHOLD= {Y|N}] Specifies whether the
DECLARE CURSOR
statement issued for a
SETINQ or SETUPD I/O
option includes a WITH
HOLD clause

... [.]

:vagt :EFUNC [.]
...

:tracbag
...

:etracbag
:efunc

DATE=

‘modification date’
Specifies the date the function part was last modified

28 VisualAge Generator: External Source Format Reference

DATE format is mm/dd/yyyy. Single quotation marks are optional.

DESC=

‘description’
Describes the function

DESC consists of 1 to 30 characters that can be entered in uppercase and
lowercase. Mixed data is also permitted. A function description is optional; it
does not affect execution.

ERRRTN=

routine name
Specifies an error-handling routine

ERRRTN calls an error routine when an error occurs during execution of a
function option that accesses a record. ERRRTN can be a main function or the
special function words EZERTN, EZEFLO, or EZECLOS. For information on
special function words, see the VisualAge Generator Developer help system.

If the error routine is a main function, control is transferred to that function if
an error occurs. Otherwise, control returns to the statement following the I/O
option after the error routine returns. If no error routine is specified, a
program ends when an error occurs and a message appears describing the
error condition.

Error routines cannot be specified for functions with map I/O objects or for
EXECUTE functions. DISPLAY or CONVERSE errors cause the program to
end.

EXECBLD=

Y Prepares and executes SQL statements as dynamic or extended
dynamic statements

N Uses the execution mode specified at generation or execution
(default value)

EXECBLD can only be used with the following I/O options:
v INQUIRY
v SETINQ

Chapter 4. Function structures 29

v SETUPD
v SQLEXEC
v UPDATE

MODEL=

DELETE
Specifies that a default DELETE SQL statement is to be
generated

UPDATE
Specifies that a default UPDATE SQL statement is to be
generated

NONE
Specifies that no model statement is to be generated (default
value)

You can specify MODEL for SQLEXEC functions only.

NAME=

name Identifies a function part

NAME consists of 1 to 18 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 8 DBCS characters long with no
embedded blanks.

OBJECT=

object name
Specifies a record or map accessed by OPTION

EXECUTE functions do not have an object, and SQLEXEC functions may or
may not have an object. Other functions must have an object.

30 VisualAge Generator: External Source Format Reference

OPTION=

option Specifies the input/output logic in a function

OPTION can be specified as any one of the following I/O options:

ADD places a new record in a file or database. The program should
initialize all fields in the record prior to executing the ADD option.

CLOSE
closes a file, disconnects a printer, or releases any unprocessed rows
in a set of SQL row records selected by UPDATE, SETUPD, or
SETINQ.

CONVERSE
displays a map at a terminal and waits for input to be entered by
the user at the terminal.

DELETE
removes a record from a file or database.

DISPLAY
sends a map to a printer or to a terminal output buffer.

EXECUTE
is not associated with an input/output operation. It can be used for
special processing such as control of flow between functions,
initialization, processing not to be repeated in an I/O function,
error handling, and termination processing. EXECUTE is the
default OPTION value.

INQUIRY
reads a single record from a file or database.

REPLACE
puts a changed record back into a file or database.

SCAN reads the next record in a file or database.

SCANBACK
reads the previous record in an indexed file.

SETINQ
selects a set of rows from a relational database for later retrieval
with the SCAN I/O option. The object must be an SQL row record.

SETUPD
selects a set of rows from a relational database for faster processing
with the SCAN I/O option. The records selected can be replaced or
deleted. The object must be an SQL row record.

Chapter 4. Function structures 31

SQLEXEC
executes an SQL statement that you define by using the SQL tag.

UPDATE
reads a record from a file or database with the implied intention of
replacing or deleting the record.

REFINE=

Y Displays the subtree of a function part in the structure
diagram

N Prevents the display of the subtree of a function part in the
structure diagram (default value)

REFINE corresponds to the default collapse attribute in VisualAge
Generator Developer. It prevents the details logically beneath the function
part from showing in the structure diagram. Default collapse for a function
part is only in effect when you select the default collapse attribute for the
program structure diagram. The attribute is preserved in the library, but it
has no effect when the generated program is run.

SINGROW=

Y Specifies that a single-row SELECT is to be performed for an
SQL INQUIRY

N Specifies that a single-row SELECT is not to be performed

SINGROW can be used only when a program is running in static mode (on
DB2 systems). The single row SELECT is not available when running
VisualAge Generator SQL programs in dynamic mode. SINGROW is not
valid when an ORDERBY clause exists. The default is Y.

TIME=

‘modification time’
Specifies the time that the function part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

32 VisualAge Generator: External Source Format Reference

UPDFUNC=

function name
Specifies the name of an UPDATE or SETUPD function that
selected the rows to be replaced by this function

UPDFUNC can be specified for a REPLACE function.

WITHHOLD=

Y Specifies that the cursor is not closed as a consequence of a
commit function. A SCAN option issued after the commit
retrieves the next row in the selected set of rows.

N Specifies that the cursor is closed after a commit.

If WITHHOLD is used with the SETUPD function option, a SCAN must
be issued after a commit before a REPLACE or DELETE option can be
issued for the row. WITHHOLD applies only to the SETINQ and
SETUPD function options.

WITHHOLD is not effective on rollback and connect functions at the end
of a segment when running on CICS or IMS. WITHHOLD is not
supported on DB2/VSE.

The default is Y.

Parameter definition

The PARM tag specifies the name and type of each parameter passed to a
function. Any number of parameters may be specified. This optional tag
further defines the FUNC and EFUNC tag set.

:PARM tag attributes

Syntax Attributes
:func
... :PARM

Attributes Values Uses
:parm [BYTES = length in bytes] Specifies the field length in

bytes based on the data item
type

Chapter 4. Function structures 33

Syntax Attributes
... [DECIMALS = {{0|decimal places}] Specifies the number of

decimal places

[DESC = ’description’] Specifies the description of
the parameter

NAME name Specifies the name of the
parameter

[PARMTYPE {RECORD|ITEM|
MAPITEM|SQLITEM}]

Specifies the type of the
parameter and how it it to
be used

[TYPE = {ANYCHA
|ANYDBCS
|ANYHEX
|ANYMIX
|ANYNUMERIC
|ANYUNICODE
|BIN |CHA |DBCS
|HEX |MIX |NUM
|NUMC |PACK
|PACF |UNICODE}]

Specifies the data type for
the parameter

[USAGE = {SHARED|
NONSHARED}]

Specifies the location of the
definition

:efunc

BYTES=

length in bytes
Specifies the length in bytes based on the data item type.

3 Default for CHA, MIX, NUM, and NUMC

2 Default for BIN, PACK, PACF, and HEX

6 Default for DBCS, UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type.

Item Type Byte Values

CHA, HEX, MIX 1-32,767

DBCS, UNICODE 2-32,766 (even only)

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

34 VisualAge Generator: External Source Format Reference

Note: The BYTES attribute can be specified only when PARMTYPE=ITEM,
MAPITEM, or SQLITEM, USAGE=NONSHARED, and TYPE is not one
of the ANY types.

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal position. The maximum number of decimal
positions is 18 or the number of digits defined for the data item, whichever is
smaller. The decimal point is not stored with the data.

Note: The DECIMALS attribute can be specified only when
PARMTYPE=ITEM, MAPITEM, or SQLITEM, USAGE=NONSHARED,
and TYPE is not CHA, DBCS, MIX, HEX, UNICODE or any one of the
ANY types.

DESC=

’description’
DESC describes what the parameter represents.

DESC is a text description of what the parameter represents. The text can
consist of up to 30 characters, not including the quotation marks, and can be
entered in uppercase and lowercase. Mixed data is also permitted.

NAME =

name Specifies the name of the parameter

EZEwords cannot be specified as parameters.

Chapter 4. Function structures 35

PARMTYPE=

RECORD
Specifies that the parameter is a record. The library part must be
a working storage record. The corresponding argument must be
a record with length at least as long as the parameter record.

ITEM Specifies that the parameter is an item. The corresponding
argument must be an item with a compatible definition or a
literal. (default value)

MAPITEM
Specifies that the parameter is a map item and has map item
state information. The corresponding argument must be a map
item with a compatible definition.

SQLITEM
Specifies that the parameter is an SQL item and has SQL state
information. The corresponding argument must be an SQL item
with a compatible definition.

PARMTYPE specifies the type of parameter that is expected to be passed to
the function. MAPITEM and SQLITEM indicate that certain state information
is available to be tested for or set in the logic of the function.

36 VisualAge Generator: External Source Format Reference

TYPE=

ANYCHAR
Character data. The corresponding argument must have type
CHA with any length.

ANYDBCS
DBCS data. The corresponding argument must have type DBCS
with any length.

ANYHEX
Hexadecimal data. The corresponding argument must have type
HEX with any length.

ANYMIXED
Mixed data. The corresponding argument must have type MIX
with any length.

ANYNUMERIC
Numeric item. The corresponding argument must have a
numeric type (BIN, NUM, NUMC, PACK, PACF). Any length or
number of decimal places is allowed.

ANYUNICODE
Unicode character data (only valid for Developer on JAVA). The
corresponding argument must have type UNICODE with any
length.

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

Chapter 4. Function structures 37

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements.

Defining item parameters as one of the ANY item types specifies loose typing
of the parameter. Bytes, decimals, and a specific numeric type are not
specified for these parameters. Instead, test and generation will determine the
appropriate conversion that needs to occur between the argument and the
parameter. This may result in multiple copies of the function being produced
in the generated code.

Defining item parameters with a data type other than one of the ANY item
types specifies strong typing of the parameter. Bytes, decimals, and a specific
numeric type are either specified or defaulted for you. Test and generation
will require exact matches between arguments and parameters when strong
typing is used.

For map item parameters, the only valid parameter item types are: NUM,
CHA, DBCS, MIX, ANYNUMERIC, ANYCHAR, ANYDBCS, and ANYMIX.

Note: The TYPE attribute can be specified only for PARMTYPE=ITEM,
MAPITEM, or SQLITEM, and USAGE=NONSHARED.

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The item definition stored in the library is used.

NONSHARED
Indicates that the definition of the item is unique to this use. The
item definition stored in the library is not used. (default value)

Note: The USAGE attribute can be specified only when PARMTYPE=ITEM,
MAPITEM, or SQLITEM.

Local Storage Definition

The STORAGE tag specifies the name and type of each local storage area
defined for the function. Any number of local storage areas may be specified.
This optional tag further defines the FUNC and EFUNC tag set.

:STORAGE tag attributes

Syntax Attributes
:func

38 VisualAge Generator: External Source Format Reference

Syntax Attributes
... :STORAGE

Attributes Values Uses
:storage [BYTES= length in bytes] Specifies the length in bytes

for the data item based on
the data item type

[DECIMALS= {0|decimal places}] Specifies the number of
decimal places

... [DESC= ’description’] Specifies the description of
the local storage area

NAME= name Specifies the name of the
local storage area

[STORTYPE = {RECORD|ITEM}] Specifies the type of the
storage area

[TYPE= {BIN |CHA |DBCS
|HEX |MIX |NUM
|NUMC |PACK
|PACF |UNICODE}]

Specifies the data type for a
local storage item

[USAGE= {SHARED
|NONSHARED}]

Specifies the location of the
item definition

:efunc

BYTES =

length in bytes
Specifies the length in bytes for the data item based on the data
item type.

3 Default for CHA, MIX, NUM, and NUMC

2 Default for BIN, PACK, PACF, and HEX

6 Default for DBCS, UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type.

Item Type Byte Values

CHA, HEX, MIX 1-32,767

DBCS, UNICODE 2-32,766 (even only)

NUM, NUMC 1-18

PACK, PACF 1-10

Chapter 4. Function structures 39

Item Type Byte Values

BIN 2, 4, 8 only

Note: The BYTES attribute can be specified only for STORTYPE=ITEM,
USAGE=NONSHARED.

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal position. The maximum number of decimal
positions is 18 or the number of digits defined for the data item, whichever is
smaller. The decimal point is not stored with the data.

Note: The DECIMALS attribute can be specified only when
STORTYPE=ITEM, USAGE=NONSHARED, and TYPE is not CHA,
DBCS, MIX, HEX or UNICODE.

DESC=

’description’
DESC describes what the local storage area represents.

DESC is a text description of what the local storage area represents. The text
can consist of up to 30 characters, not including the quotation marks, and can
be entered in uppercase and lowercase. Mixed data is also permitted.

NAME=

name Specifies the name of the local storage

EZEwords cannot be specified as local storage areas.

40 VisualAge Generator: External Source Format Reference

STORTYPE=

RECORD
Specifies that the local storage is a working storage record

ITEM Specifies that the local storage is an item. (default)

STORTYPE specifies the type of storage area to be defined for use by the
function. The area defined is known only to the function in which it is named.

If the storage type is RECORD, the name must be the name of a working
storage record part in the library. If the storage type is ITEM, this names a
data item which can only be referenced within this function.

TYPE=

BIN Binary number

CHA Character data (default)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements.

Note: The TYPE attribute can be specified only for STORTYPE=ITEM,
USAGE=NONSHARED.

Chapter 4. Function structures 41

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The definition stored in the library is used.

NONSHARED
Indicates that the definition of the item is unique to this use. The
definition stored in the library is not used. (default value)

Note: The USAGE attribute can be specified only when STORTYPE=ITEM.

Return Value Definition

The RETURN tag specifies the characteristics of the return value of the
function. This tag further defines the FUNC and EFUNC tag set. The
RETURN tag can appear only once within a function definition.

:RETURN Tag Attributes

Syntax Attributes
:func
... :RETURN

Attributes Values Uses
:return...

[BYTES= length in bytes] Specifies the length in bytes
for the return value based
on the data item type

[DECIMALS= {0|decimal places}] Specifies the number of
decimal places

[DESC= ’description’] Specifies the description of
the return value

[TYPE= {BIN |CHA |DBCS
|HEX |MIX |NUM
|NUMC |PACK
|PACF |UNICODE}]

Specifies the data type for
the return value

:efunc

42 VisualAge Generator: External Source Format Reference

BYTES=

length in bytes
Specifies the length in bytes for the return value based on the
data item type

3 Default for CHA, MIX, NUM, and NUMC

2 Default for BIN, PACK, PACF, and HEX

1 Default for DBCS, UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type.

Item Type Byte Values

CHA, HEX, MIX 1-32,767

DBCS, UNICODE 2-32,766 (even only)

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal positions. The maximum number of decimal
positions is 18 or the number of digits defined for the data item, whichever is
smaller. The decimal point is not stored with the data.

Note: The DECIMALS attribute can be specified only when the TYPE is not
CHA, DBCS, MIX, HEX, or UNICODE.

Chapter 4. Function structures 43

DESC=

DESC DESC describes what the return value represents.

DESC is a text description of what the data item represents. The text can
consist of up to 30 characters, not including the quotation marks, and can be
entered in uppercase and lowercase. Mixed data is also permitted.

TYPE=

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements. Return
values are defined with strong typing. Bytes, decimals, and a specific numeric
type are either specified or defaulted for you. Upon exit from the function, the
return value is assigned to the receiving data area according to move
compatibility rules.

Logic definition before I/O option

The BEFORE tag begins the set of statements that perform logic before the
I/O option is executed. This optional tag further defines the FUNC and
EFUNC tag set. The EBEFORE tag closes the definition, and if you use the
BEFORE tag, the EBEFORE tag is required.

44 VisualAge Generator: External Source Format Reference

The BEFORE tag can appear only once within a function definition. The
statement syntax is VisualAge Generator statement syntax. Validation is for
statement syntax only, not for part usage. Statements are limited to one per
line; however, a single statement can span multiple lines.
...
:before. before processing statement1

before processing statement2...
before processing statementn

:ebefore....

For an EXECUTE function, all statements specified on the BEFORE tag are
executed before any statements on the AFTER tag.

:BEFORE tag values

Syntax Usage
:func
... :BEFORE

:before Values Uses
... [.[before processing statements]] Specifies statements that perform

logic before the I/O option is
executed

:ebefore
... :EBEFORE [.]

:efunc

Statements can consist of multiple lines of text. A statement line cannot exceed
2000 bytes.

Logic definition after I/O option

The AFTER tag begins the set of statements that perform logic after the I/O
option is executed. This optional tag further defines the FUNC and EFUNC
tag set. The EAFTER tag closes the definition, and if you use the AFTER tag,
the EAFTER tag is required.

The AFTER tag can appear only once within a function definition. The
statement syntax is VisualAge Generator statement syntax. Validation is for
statement syntax only, not for part usage. Statements are limited to one per
line; however, a single statement can span multiple lines.
...

Chapter 4. Function structures 45

:after. after processing statement1
after processing statement2...
after processing statementn

:eafter....

For an EXECUTE function, all statements specified on the AFTER tag are
executed after any statements on the BEFORE tag.

:AFTER tag values

Syntax Usage
:func
... :AFTER

:after Values Uses
... [.[after processing statements]] Specifies statements that perform

logic after the I/O option is
executed

:eafter
... :EAFTER [.]

:efunc

Statements can consist of multiple lines of text. A statement line cannot exceed
2000 bytes.

SQL selection condition specification

The SQL tag specifies the SQL selection conditions that VisualAge Generator
uses to retrieve information from the SQL database. This optional tag further
defines the FUNC and EFUNC tag set. The ESQL tag closes the specification,
and if you use the SQL tag, the ESQL tag is required.

The SQL tag is valid for the INQUIRY, SETINQ, SETUPD, SQLEXEC,
UPDATE, ADD, and REPLACE I/O options. The SQL tag is not valid for the
EXECUTE, CONVERSE, DISPLAY, and SCANBACK I/O options because they
cannot have an SQL row record as the I/O object.

You can repeat the SQL tag for each SQL clause that you specify, but the tag
can appear only once for each type of clause.

46 VisualAge Generator: External Source Format Reference

:SQL tag attributes

Syntax Attributes
:func
... :SQL

:sql Attributes Values Uses
... CLAUSE= {SELECT|INTO|

SET|WHERE|
ORDERBY| SQLEXEC|
FORUPDATEOF|
VALUES|
INSERTCOLNAME}

Specifies the type of clause
described by this tag

:esql [HOSTVAR= {‘?’|‘@’}] Specifies the character used
within the clause text to
indicate the beginning of a
host variable name

... [.[clause text]] Specifies the clause for the
SQL statement

:efunc :ESQL [.]

CLAUSE=

SELECT
Specifies the SELECT clause

INTO Specifies the INTO clause

SET Specifies the SET clause

WHERE
Specifies the WHERE clause

ORDERBY
Specifies the ORDER BY clause

SQLEXEC
Specifies the SQLEXEC clause

VALUES
Specifies the VALUES clause

FORUPDATEOF
Specifies the FOR UPDATE OF clause

INSERTCOLNAME
Specifies the column names for the INSERT INTO clause

Chapter 4. Function structures 47

Certain CLAUSE specifications are valid for certain I/O options. The
following table identifies the applicable specifications:

I/O option
CLAUSE specification

INQUIRY
SELECT, INTO, WHERE, ORDERBY

SETINQ
SELECT, INTO, WHERE, ORDERBY

UPDATE
SELECT, INTO, WHERE, FORUPDATEOF

SETUPD
SELECT, INTO, WHERE, FORUPDATEOF

REPLACE
SET

SQLEXEC
SQLEXEC

ADD VALUES, INSERTCOLNAME

HOSTVAR=

‘?’ Specifies that a ? is used to begin host variable names

‘@’ Specifies that an @ is used to begin host variable names (default
value)

Export always uses a ? as the host variable name indicator so that an @ can be
properly interpreted as a valid character in a name. When variable names
contain an @ and the @ is also used as the host variable name indicator,
unpredictable results can occur on import.

clause text

clause text
Specifies the clause for the SQL statement

The clause text for the SELECT, INTO, SET, VALUES, INSERTCOLNAME, and
FORUPDATEOF clauses do not include their respective keywords.

The clause text for a WHERE clause is the clause that includes the WHERE
keyword. The WHERE clause can contain the ORDER BY clause if the ORDER

48 VisualAge Generator: External Source Format Reference

BY clause was not placed on a separate line during program definition of the
SQL statement. A WHERE clause without any clause text indicates that there
is no WHERE clause in the SQL statement.

The clause text for an ORDER BY clause is the clause that includes the
ORDER BY keywords. An ORDER BY clause without any clause text indicates
that there is no ORDER BY clause in the SQL statement.

The clause text for an SQLEXEC clause is the entire clause including all
keywords.

Within the clause text, SQL column names always begin with an exclamation
point (!). When produced from VisualAge Generator export, host variable
names always begin with a question mark (?).

Statements can consist of multiple lines of text. A statement line cannot exceed
2000 bytes.

DL/I call definition

The DLICALL tag begins the definition of calls to access data stored in DL/I
databases. This optional tag with its attributes further describes the FUNC
and EFUNC tag set.

:DLICALL tag attributes

Syntax Attributes
:func
... :DLICALL

:dlicall Attributes Values Uses
... DBDNAME= {database

name|number}
Specifies the database in the
application program
specification block that is to
be accessed by this DL/I
call

:efunc [MODIFIED= {Y|N}] Specifies whether the
segment search argument
(SSA) was modified

PSB= PSB name Specifies a program
specification block used by
this function

[SCANPAR= {Y|N}] Specifies whether the range
of the SCAN is limited to
the currently established
parent chain

Chapter 4. Function structures 49

Syntax Attributes
[SCANUPD= {Y|N}] Specifies whether a segment

retrieved by a SCAN
function can be replaced or
deleted

[.]

DBDNAME=

database name
Accesses the first program communication block in the program
specification block with this database name

number
Accesses this number program communication block in the
program specification block

DBDNAME identifies the database in the program specification block that is
to be accessed by this DL/I call.

MODIFIED=

Y Specifies that the segment search argument (SSA) was modified

N Specifies that the segment search argument (SSA) was not
modified

If the Segment Search Argument (SSA) tag is specified, the default is Y. If the
SSA tag is not specified, the default is N.

PSB=

PSB name
Specifies a program specification block used by this function

50 VisualAge Generator: External Source Format Reference

SCANPAR=

Y Specifies that the SCAN range is limited to the current parent
chain in the database hierarchy

N Specifies that the next segment of that type in the database is
retrieved regardless of parentage (default value)

SCANPAR can be specified only for a DL/I call for a SCAN function.

SCANUPD=

Y Specifies that the program can replace or delete the segments
retrieved by the SCAN

N Specifies that the program cannot replace or delete the segments
retrieved by the SCAN (default value)

SCANUPD can be specified only for a DL/I call for a SCAN function.

Segment search argument definition

The SSA tag identifies the segments in the database to be accessed on a DL/I
call. This optional tag with its attributes further describes the FUNC and
EFUNC tag set.

You can specify the SSA tag only if the DLICALL tag is specified. The SSA tag
can be repeated.

The order of the SSA tags determines the order of the DL/I segment search
arguments for the database call.

:SSA tag attributes

Syntax Attributes
:func
... :SSA

:dlicall Attributes Values Uses
... [CMDCODES= ‘codes’] Specifies special processing

to be performed by the
DL/I call

Chapter 4. Function structures 51

Syntax Attributes
:ssa SEGNAME= segment name Specifies the DL/I segment

accessed by the DL/I call
... [.]

:efunc

CMDCODES=

‘codes’
Specifies special processing to be performed by the DL/I call

You can specify up to four command codes. Refer to the DL/I manuals for a
more detailed description of the command codes. The valid command codes
are:

C Use the concatenated key to select this segment. When C is specified
as a command code, the Segment Field, Boolean Op, and Op fields of
the SSA must be left blank. The Comparison Value Item names a data
item that contains the entire concatenated key for the segment.

D This code allows the retrieval or insertion of multiple segments in a
hierarchical path. This code is not required for the lowest level
segment, since it is always retrieved or inserted. Specify this code for
any higher level segment to be retrieved on INQUIRY, UPDATE, or
SCAN options. For an ADD option, specify this code only for the
highest level segment you want inserted, to add that segment and all
segments at lower levels.

VisualAge Generator Developer handles I/O buffering for segments
retrieved or written using the D command code. If you retrieve
multiple segments for update using the D code, a REPLACE option
with the lowest level segment as the object will replace all the
segments that were retrieved with the D code.

The path call processing option (P) must be specified in DL/I PSB
generation if the D command code is used.

F For the SCAN option, start scanning from the first occurrence of this
segment type under its parent. For the ADD option, this code is
effective only for segments with non-unique or no sequence field, and
the segment is inserted at the first position within its parent.

L For INQUIRY, UPDATE, and SCAN options, retrieve the last
occurrence of this segment type under its parent. If qualification
statements are present, retrieve the last segment that satisfies the

52 VisualAge Generator: External Source Format Reference

search criteria. For the ADD option, this code is effective only for
segments with non-unique or no sequence field, and the segment is
inserted at the last position within its parent.

N Do not replace this segment on a replace call even though it was
retrieved on the get for update call.

P Set parent position for get next in parent (SCAN) at the hierarchy
level represented by this segment.

Q Lock the retrieved segments until checkpoint or PSB termination.

Note: If you used the Q command code in coding DL/I calls for CICS
in other languages, you followed the Q command code with an
A for IMS compatibility. However, do not enter the A here.
VisualAge Generator Developer supplies the A when it builds
the final SSA list at execution time.

U Do not move the database position from this segment while searching
its hierarchical dependents.

V Like U except that the command code is automatically set at all higher
levels in the call.

The following command codes are supported only in the IMS/VS, IMS BMP,
and CICS for MVS/ESA environments. Use these codes to access subsets of a
special type of database called a fast path data entry database (DEDB). To
identify the subset you are accessing, enter the command code followed by an
integer from 1 to 8.

M Move subset pointer to next occurrence of the segment in the segment
chain.

R Retrieve first occurrence of the segment in the subset.

S Set the subset pointer unconditionally to the current position.

W Set the subset pointer conditionally to the current position.

Z Set the subset pointer to 0.

Certain command codes are applicable only to certain I/O options. The
following table identifies the applicable command codes:

Option Command Codes Fast Path Command Code
INQUIRY D, L, Q, U, V, C, P M, R, S, W, Z
UPDATE D, L, Q, U, V, C, P M, R, S, W, Z
ADD D, L, F, U, V, C M, R, S, W, Z
REPLACE N M, S, W, Z
DELETE None Z
SCAN D, L, F, Q, U, V, C, P M, R, S, W, Z

Chapter 4. Function structures 53

Command codes are optional. If none are specified, none are used. The R and
F, R and Q, L and F, or U and V command codes cannot both be entered in
the command code field for the same SSA. In addition, only one of the M,S,W,
and Z command codes can be used in the same SSA.

You can only have one C command code in a set of SSAs. On an INSERT call,
the following apply:
v A qualified SSA cannot follow a D command code.
v A C command code cannot follow any SSA with a D command code.

SEGNAME=

segment name
Specifies the DL/I segment accessed by the DL/I call

Specify the name of a segment in the chain that goes from the object segment
back to the root segment in the database hierarchy. In addition, define the
segment to VisualAge Generator as a DL/I segment record before testing or
generating the program.

Qualification statement definition for the segment search argument

The QUAL tag specifies the qualification statement for the segment search
argument (SSA) consisting of a segment field, a relational operator, a
comparison value, and a Boolean operator. This optional tag with its attributes
further describes the FUNC and EFUNC tag set.

You can specify the QUAL tag only if the SSA tag is specified, and you can
use it multiple times for each SSA tag.

The order of the QUAL tags determines the order of the qualification
statements on the call.

:QUAL tag attributes

Syntax Attributes
:func
... :QUAL

:dlicall Attributes Values Uses

54 VisualAge Generator: External Source Format Reference

Syntax Attributes
... [BOOLOP= {& | AND | | | OR}] Identifies the presence of an

additional qualification
statement and shows how
the true or false values of
the qualification statements
are to be combined

:ssa COMPVAL= ‘comparison value’ Specifies the comparison
value item that contains the
value to be compared to the
contents of the segment field

... [RELOP= {=|EQ|>|GT|<|LT|
>=|=>|GE|<=|=<|
LE|¬=|=¬|NE}]

Specifies the comparison to
be done between the
segment field and the
comparison value item

:qual [SEGFIELD= field name] Specifies the field used for
segment selection

... [.]

:efunc

BOOLOP=

& or AND
AND operator

| or OR
OR operator

BOOLOP shows how the true or false values of this qualification statement
and the following qualification are to be combined.

If you specified command code C for the SSA, omit this attribute.

COMPVAL=

‘comparison value’
Specifies the comparison value item that contains the value to be
compared to the contents of the segment field.

At run time, VisualAge Generator uses the value in this item as the field value
in building the SSA for the DL/I call. The comparison value is compared to

Chapter 4. Function structures 55

the contents of the segment field. If the comparison is true, the search criteria
of this qualification statement is satisfied.

The maximum length for the comparison value item is 104 characters. If a
comparison value item is longer than 71 characters, place a continuation
character in column 72. Any character in column 72 is a continuation
character. The continuation character causes concatenation of the two lines on
import. The two lines concatenate with no blanks between the last character
on the first line and the first character on the second line. The length of the
concatenated comparison value item can never exceed 104 characters.

COMPVAL always applies when the command code is C.

RELOP=

= or EQ
Equal

> or GT
Greater than

< or LT
Less than

>=, =>, or GE
Greater than or equal

<=, =<, or LE
Less than or equal

¬= , =¬ , or NE
Not equal

Note: NLS Consideration: The “¬” character is not in the National Language
syntactic character set; therefore it might not be represented by
equivalent code points across different code pages. If you will be
transferring your program between machines with differing code pages
(particularly between System/370 host systems and workstations), use
NE rather than “¬=” or “=¬”. An alternative for handling
codepage-dependent characters is to use the hptcnv30 utility. See
Migration Guide for more information.

RELOP tells DL/I how to compare the values in the segment field and the
comparison value item.

RELOP is required unless you specified command code C for the SSA. If you
specified command code C for the SSA, omit the RELOP attribute.

56 VisualAge Generator: External Source Format Reference

SEGFIELD=

field name
Specifies the field used for segment selection

Specify the field name as defined in the DL/I database description.

SEGFIELD is required unless you specified command code C for the SSA. If
you specified command code C for the SSA, omit the SEGFIELD attribute.

Templates tracability information

Templates tracability information is defined for a function part as described in
“Chapter 16. Templates traceability information structures” on page 213.

Chapter 4. Function structures 57

Function definition syntax example

Note: This example illustrates the syntax of all function definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:func name = xxxxxxxxxxxxxxxxxx
date = 'mm/dd/yyyy' time = 'hh:mm:ss'
option = xxxxxxxx object = xxxxxxxxxxxxxxxxxx
errrtn = xxxxxxxxxxxxxxxxxx execbld = x model = xxxxxx
refine = x singrow = x updproc = xxxxxxxxxxxxxxxxxx
withhold = x
desc = 'This is a function description'.

:parm name = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
parmtype = XXXXXXX type = XXXX
bytes = XXXXX decimals = XX
desc = 'This is a parameter description'
usage = XXXXXXXXX.

:parm name = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
parmtype = XXXXXXX type = XXXX
bytes = XXXXX decimals = XX
desc = 'This is a parameter description'
usage = XXXXXXXXX

:storage name = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
stortype = XXXXXXX type = XXXX
bytes = XXXXX decimals = XX
desc = 'A local storage area description'
usage = XXXXXXXXX.

:return bytes = XXXXX decimals = XX
type = XXXX
desc = 'A return value description'.

:before.
MOVE A
TO B;
:ebefore.
:after.
MOVE A
TO B;
:eafter.
:sql hostvar =‘?’ clause = xxxxxxxxxxxxx.clause text
:esql.
:dlicall dbdname = xxxxxxxx psb = xxxxxxxx

scanupd = x scanpar = x
modified = x.

:ssa segname = xxxxxxxx cmdcodes = 'xxxx'.
:qual segfield = xxxxxxxx relop = xx

compval = 'Enter up to 104 characters'
boolop = xxx.

:qual segfield = xxxxxxxx relop = xx
compval = 'Enter up to 104 characters'.

:efunc.

58 VisualAge Generator: External Source Format Reference

Chapter 5. Record structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator record.

Record and Erecord definition

The RECORD tag defines attributes for individual record parts. The
SQLTABLE, JOINCON, PROL, and RECDITEM tags further define aspects of a
record and can have attributes.

The ERECORD tag closes the definition. If you use the RECORD tag, the
ERECORD tag is required.

:RECORD tag attributes

Syntax Attributes
:record
... :RECORD

:sqltable Attributes Values Uses
...
:joincon...

[ALTSPEC= record name] Specifies an existing record
whose data item structure is
to be used for this record

:ejoincon...

[DATE= ‘modification date’] Specifies the date the record
was last modified

... [EDITFUNC= edit function] Specifies the function used
for special data editing after
all edit record items have
occurred

... [EXCLUSIV= {Y| N}] Specifies that the MQSeries
input queue is to be opened
for exclusive use by this
transaction.

:rcdhelp...
:ercdhelp

[FILENAME= file name] Associates a record
specification with a physical
file

:title...
:etitle

[KEY= item name] Specifies the data item that
contains the record key or
relative record number

© Copyright IBM Corp. 1980, 2000 59

Syntax Attributes
... [MQGMOREC= record name] Specifies the MQSeries get

options record
... [MQMDREC= record name] Specifies the MQSeries

message descriptor record
... [MQODREC= record name] Specifies the MQSeries

queue descriptor record
... [MQOOREC= record name] Specifies the MQSeries open

options record
... [MQPMOREC= record name] Specifies the MQSeries put

options record

:prol...

NAME= name Specifies the record part

:eprol
:recditem...
:uiprop

[NUMOCCUR= number of occurrences
item name]

Specifies the data item that
contains the actual number
of occurrences for the array
that has a variable number
of entries or elements

...
:linkdata...
:linkparm
:initial
:einitial
:genedits...

[ORG= {INDEXED|
RELATIVE|
SERIAL|DLISEG|
SQLROW|
WORKSTOR|
REDEFREC|
USERINTERFACE|
MQMESSAGE}]

Specifies the organization of
the record

:uimsgs...

[REDEFREC= record name] Specifies a record to be
redefined

... [RUNATWEB= {Y| N}] Specifies whether the record
edit function is to be
performed at the Web site
or at the VAGen server

:numedits...
:fldhelp

[SBMITVAL= item name] Specifies the item that is to
contain the value of the
SUBMIT button that the
user pressed

...
:efldhelp

[TIME= ‘modification time’] Specifies the time the record
was last modified

... [TRANSACT= {Y| N}] Specifies that the MQSeries
message is to be included in
the transaction

60 VisualAge Generator: External Source Format Reference

Syntax Attributes
:label...

[USAGE= {SHARED|
NONSHRED}]

Specifies the default
definition location for items
in the record

:elabel
:euiprop
:vagt...
:tracbag...

[VARLENTH= variable length item
name]

Specifies a data item in a
DL/I segment that contains
the length of the rest of the
segment or a data item in
an indexed, serial or
message queue file that
contains the length value for
the record

:etracbag [.]
:erecord :ERECORD [.]

ALTSPEC=

record name
Specifies an existing record whose data item structure is to be
used for this record

ALTSPEC should not be specified for a record that is already defined as an
alternate specification. In addition, an SQL row record should not be defined
as an alternate specification for a record with another organization.
Conversely, records not defined as SQL row records should not be specified as
alternate specifications for SQL row records.

Note: If ALTSPEC is specified for any of the above records, the program will
not generate.

DATE=

‘modification date’
Specifies the date the record was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

EDITFUNC=

edit function
Specifies the name of a function used for special data editing.

Chapter 5. Record structures 61

EDITFUNC refers to a function that is run only in the following case:
v The value of at least one data item changed.
v All data item edits completed successfully at the location where the

function is performed, whether at the WEB site or at the VAGen server.

Data item edits that run at a location other than where the edit function
resides have no effect on whether the edit function is performed.

EXCLUSIV=

Y Specifies that the MQSeries input queue is to be opened for
exclusive use by this transaction.

N Specifies that the MQSeries input queue is to be allowed to be
shared with other transactions. (default value)

FILENAME=

file name
Associates a record specification with a physical file

FILENAME is specified for serial, relative, indexed and message queue files.

FILENAME consists of 1 to 8 characters and must meet the following
conventions:
v The first character is alphabetic or national (A-Z, $, #, @).
v The remaining characters are alphanumeric or national (A-Z, 0-9, $, #, @).
v The file name cannot contain blanks or have an EZE prefix. EZEPRINT is

not allowed on the FILENAME on the RECORD tag.

KEY=

item name
Specifies the data item that contains the record key for an
indexed file or DL/I segment record, the relative record number
for a relative file, or search field for an SQL row record

For indexed files: KEY must be defined in the data item list for the record.
The key item should have the same length and record offset as the key in the
records in the physical file.

62 VisualAge Generator: External Source Format Reference

For relative files: KEY does not need to be defined within the record data
structure. Define the key item with a numeric (NUM), packed (PACK), or
binary (BIN) data type, no decimal positions, and a maximum length of nine
digits.

When a relative record file is to be accessed at execution, the key item
contains a number that indicates the record position in a file relative to the
beginning of the file.

For SQL: KEY specifies the name of the item in an SQL row record that is to
be used as the search field in default SQL SELECT statements. The
KEY specification is optional. KEY is only valid when ALTSPEC is specified.

For DL/I: KEY specifies the name of an item in a DL/I segment record that
contains the segment key. The item must have the same name, length, and
offset that the segment sequence field has in the DL/I database description.
The key does not have a default value. Do not specify the KEY attribute if the
DL/I segment has no sequence field.

The item name in a DL/I record consists of 1 to 8 characters and must meet
the following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national (A-Z, 0-9, $, #, @)
v The name cannot contain blanks or have an EZE prefix.

MQGMOREC=

record name
Specifies the name of the record that contains the options to be
used on a get of an MQSeries message.

MQMDREC=

record name
Specifies the name of the record that contains the MQSeries
message descriptor.

Chapter 5. Record structures 63

MQODREC=

record name
Specifies the name of the record that contains the MQSeries
object descriptor.

MQOOREC=

record name
Specifies the name of the record that contains the options to be
used on an open of an MQSeries message queue.

MQPMOREC=

record name
Specifies the name of the record that contains the options to be
used on a put of an MQSeries message.

NAME=

name Specifies the record part

NAME consists of 1 to 18 characters and must meet the following
conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters, hyphens,

or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 8 DBCS characters long with no
embedded blanks.

The name for a DL/I segment name can consist of 1 to 8 characters. It cannot
contain underscores or hyphens, and it cannot be a DBCS name.

64 VisualAge Generator: External Source Format Reference

NUMOCCUR=

number of occurrences item name
Specifies the data item that contains the actual number of
occurrences for the array that has a variable number of entries or
elements

NUMOCCUR is supported only with indexed, serial and message queue
records. You can specify NUMOCCUR only for variable length records. The
data item NUMOCCUR has the following characteristics:
v A numeric (NUM or NUMC), binary (BIN), or packed (PACK or PACF)

data type
v A length of up to 9 digits with no decimal positions
v Located in the fixed length part of the record.

The NUMOCCUR item must precede the variably occurring item in the
record’s item list. The variably occurring item is the last item with the highest
level (lowest level number) in the record’s item list.

Chapter 5. Record structures 65

ORG=

INDEXED
Specifies indexed organization (default value)

DLISEG
Specifies DL/I segment organization

MQMESSAGE
Specifies message queue organization

REDEFREC
Specifies redefined record organization

RELATIVE
Specifies relative organization

SERIAL
Specifies serial organization

SQLROW
Specifies SQL row organization

WORKSTOR
Specifies working storage organization

USERINTERFACE
Specifies user(U) interface(I) organization

ORG describes how the file in which the record resides is organized. The
organization determines which I/O options can be used to access the record
in the program.

INDEXED: Indexed organization indicates the records are in a file and are
accessed by a key which is specified in the key element.

DLISEG: DL/I segment organization indicates the record is a segment in a
DL/I database. The record name must be the same as the name with which
the segment is defined to DL/I.

MQMESSAGE: Message queue organization indicates that the record
describes an MQSeries message.

REDEFREC: A redefined record is an alternate data item structure for an
existing record. The alternate data structure lets the program access the
information in a record using different data item names and definitions.

66 VisualAge Generator: External Source Format Reference

Redefined records cannot be used as I/O objects, but they can be used in
processing statements and as passed parameters.

RELATIVE: Relative organization indicates the file is an ordered set of fixed
length records accessed by a relative record number, that is found in the key
item specified for the record. For relative record access, the key item does not
need to be part of the record structure. It can be in any map, record, or table
used in the program.

SERIAL: Serial organization indicates the records are stored in the file in
sequential order. References to the records start at the beginning and go
consecutively to the end of the file.

SQLROW: SQL row organization indicates the record represents a row in a
table in a relational database.

WORKSTOR: Working storage records define storage areas for temporary
data items that are used in programs. The data items are not saved after
execution unless they have been moved to a record and placed in a file.

Working storage can be defined as a unit of related items (data structure) in
the same manner as a record. One or more single, unrelated data items can be
defined for working storage instead of or in addition to the structure. Single
data items are referred to as level-77 items. These items are defined with a
LEVEL of 77 after all data items in the working storage structure have been
defined.

USERINTERFACE: User interface records define the storage layout and the
input/output properties to be used when rendering a screen definition in a
JAVA client.

REDEFREC=

record name
Specifies a record to be redefined

REDEFREC identifies the name of the record that is being redefined when
record organization is specified as redefined record. You can specify
REDEFREC only for records with ORG=REDEFREC.

Chapter 5. Record structures 67

RUNATWEB=

Y Indicates that the edit function specified in the attribute
EDITFUNC is to be performed at the WEB site.

N Indicates that the edit function is to be run by the VAGen server
program. (default value)

SBMITVAL=

item name
Specifies the name of a data item in the UI record that will
contain the value of the actual submit button on the form
pressed by the user. EZEAID is the default.

SBMITVAL is supported only for UI records.

TIME=

‘modification time’
Specifies the time the record was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

The following table shows the tags and attributes valid for the record
organization types.

TRANSACT=

Y Specifies that the MQSeries message is to be included in the
transaction. (default value)

N Specifies that the MQSeries message is not to be included in the
transaction.

68 VisualAge Generator: External Source Format Reference

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The data item definition stored in the library is used.
(default value)

NONSHARED
Indicates that the definition of this item is unique to this use.
The data item definition stored in the library is not used.

USAGE defines the default usage for items within the record.

VARLENTH=

variable length item name
Specifies a data item in a DL/I segment that contains the length
of the rest of the segment or a data item in an indexed, serial or
message queue file that contains the length value for the record

For DL/I, VARLENTH is the name of a data item in a DL/I segment that
contains the length value for the record. Specify the name if the segment has a
variable length. You cannot specify VARLENTH if the segment has fixed
length. The data item must have the same length and offset as the length field
in the segment in the DL/I database description.

For DL/I, VARLENTH consists of 1 to 8 characters and must meet the
following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national (A-Z, 0-9, $, #, @)
v The name cannot contain blanks or have an EZE prefix.

For indexed, serial or message queue records, VARLENTH is the name of the
data item that contains the length value for the record. The VARLENTH item
does not have to be within the record. If the record has fixed length, do not
specify VARLENTH. VARLENTH must have the following characteristics:
v A numeric (NUM or NUMC), binary (BIN), or packed (PACK or PACF)

data type
v A length of up to 9 digits with no decimal positions.

Chapter 5. Record structures 69

The following table shows the tags and attributes valid for the record
organization types.

Tags and Attributes IN
D

E
X

E
D

R
E

L
A

T
IV

E

S
E

R
IA

L

W
O

R
K

S
T

O
R

D
L

IS
E

G

R
E

D
E

FR
E

C

S
Q

L
R

O
W

U
S

E
R

IN
T

E
R

FA
C

E

M
Q

M
E

S
S

A
G

E

:record R R R R R R R R R

ALTSPEC= v v v v v v v v

DATE= v v v v v v v v v

EDITFUNC= v

EXCLUSIV= v

FILENAME= R R R R

KEY= R R v v

MQGMOREC= v

MQMDREC= v

MQODREC= v

MQGOOREC= v

MQPMOREC= v

NAME= R R R R R R R R R

NUMOCCUR= v v v

ORG= v v v v v v v v v

REDEFREC= R

RUNATWEB= v

SBMITVAL= v

TIME= v v v v v v v v v

TRANSACT= v

USAGE= v v v v v v v v v

VARLENTH= v v v v

:sqltable v

LABEL= v

TABLEID= R

TBLNHVAR= v

:joincon v

70 VisualAge Generator: External Source Format Reference

Tags and Attributes IN
D

E
X

E
D

R
E

L
A

T
IV

E

S
E

R
IA

L

W
O

R
K

S
T

O
R

D
L

IS
E

G

R
E

D
E

FR
E

C

S
Q

L
R

O
W

U
S

E
R

IN
T

E
R

FA
C

E

M
Q

M
E

S
S

A
G

E

HOSTVAR= v

:ejoincon v

:rcdhelp v

:ercdhelp v

:title v

:etitle v

:prol v v v v v v v v v

:eprol v v v v v v v v v

:recditem v v v v v v v v v

BYTES= v v v v v v v v v

COLNAME= v

DATACODE= v

DECIMALS= v v v v v v v v v

DESC= v v v v v v v v v

EVENSQL= v v v v v v v v v

KEY= v

LEVEL= v v v v v v v v

NAME= R R R R R R R R R

OCCURS= v v v v v v v v

READONLY= v

TYPE= v v v v v v v v v

USAGE= v v v v v v v v v

:uiprop v

EDITORDR= v

UITYPE= v

OCCURSFR= v

SELINDEX= v

:linkdata v

FIRSTUI= v

Chapter 5. Record structures 71

Tags and Attributes IN
D

E
X

E
D

R
E

L
A

T
IV

E

S
E

R
IA

L

W
O

R
K

S
T

O
R

D
L

IS
E

G

R
E

D
E

FR
E

C

S
Q

L
R

O
W

U
S

E
R

IN
T

E
R

FA
C

E

M
Q

M
E

S
S

A
G

E

NEWWIN= v

PROGRAM= v

:linkparm v

NAME= v

VALUEITM= v

:initial v

:einitial v

:genedits v

EDITFUNC= v

EDITTBLE= v

EDITTYPE= v

FILLCHAR= v

FLDFOLD= v

INPUTREQ= v

MININPUT= v

RUNATWEB= v

SOSI= v

:uimsgs v

FUNCKEY= v

MININKEY= v

RANGEKEY= v

REQKEY= v

TBLEKEY= v

TYPEKEY= v

:numedits v

CURRENCY= v

CURRSYMB= v

NUMSEP= v

RANGE= v

72 VisualAge Generator: External Source Format Reference

Tags and Attributes IN
D

E
X

E
D

R
E

L
A

T
IV

E

S
E

R
IA

L

W
O

R
K

S
T

O
R

D
L

IS
E

G

R
E

D
E

FR
E

C

S
Q

L
R

O
W

U
S

E
R

IN
T

E
R

FA
C

E

M
Q

M
E

S
S

A
G

E

SIGN= v

ZEROEDIT= v

:fldhelp v

:efldhelp v

:label v

:elabel v

:euiprop v

:erecord R R R R R R R R R

Note:
v indicates the tags and attributes that are valid.
R indicates the tag or attribute is required.

SQL table name definition

The SQLTABLE tag specifies the name of a relational table that an SQL row
record represents. The SQLTABLE tag is required for an SQL row record
unless there is an alternate specification record specified (altspec). This
optional tag further describes the RECORD and ERECORD tag set.

Repeat the SQLTABLE tag for each table represented by the record.

:SQLTABLE tag attributes

Syntax Attributes
:record
... :SQLTABLE

:sqltable Attributes Values Uses
... [LABEL= ‘table label’] Specifies a shortened

version of the table name

:joincon TABLEID= ‘table ID’ Identifies the table
represented by the SQL row
record

Chapter 5. Record structures 73

Syntax Attributes
... [TBLNHVAR= {Y|N}] Identifies the TABLEID

value is a table name host
variable

:ejoincon [.]
...

:erecord

LABEL=

‘table label’
Specifies a shortened version of the table name

Use LABEL as a qualifier to uniquely identify column names in SQL row
definitions and SQL statements when the SQL row record represents two or
more tables joined together. The maximum length of a table label is 4 bytes.

Import automatically generates a table label if the label is not specified.

TABLEID=

‘table ID’
Identifies the table represented by the SQL row record

The format of the table ID is not checked except under the conditions
specified in the note below. The table ID can be any name that is coded in a
FROM clause in an SQL SELECT statement. The maximum length of the table
ID is 60 bytes. The table ID name is inserted in SQL statements and passed to
the database manager exactly as specified.

TBLNHVAR=

Y Specifies that the TABLEID value is a table name in host variable
format

N Specifies that the TABLEID value is not a table name in host
variable format (default value)

Note: If TBLNHVAR is set to Y, and the TABLEID value begins with a ?, the
TABLEID value is treated as a table name host variable, and the format

74 VisualAge Generator: External Source Format Reference

is checked. If TBLNHVAR is set to Y, but the TABLEID value does not
begin with a ?, the table identified by TABLEID will not be treated as a
table name host variable.

Default selection criteria definition

The JOINCON tag defines the default selection criteria used when SELECT
statements are built for functions that have an SQL row record as the I/O
object. An SQL join permits data retrieval from two or more tables based on
matching columns, and a join condition specifies a relationship between the
tables to be joined.

You can specify JOINCON only if you have specified values for TABLEID on
the SQLTABLE tag or ALTSPEC on the RECORD tag. The JOINCON tag is
optional and further describes the RECORD and ERECORD tag set. The
EJOINCON tag closes the default selection criteria, and if you use the
JOINCON tag, the EJOINCON tag is required.

:JOINCON tag attributes

Syntax Attributes
:record
... :JOINCON

:sqltable Attributes Values Uses
... [HOSTVAR= {‘?’|‘@’}] Specifies the character used

within the clause text to
indicate the beginning of a
host variable name

:joincon [.[clause text]] Contains the WHERE clause
of the join condition

... :EJOINCON [.]

:ejoincon
...

:erecord

HOSTVAR=

‘?’ Specifies a ? is used to begin host variable names

‘@’ Specifies an @ is used to begin host variable names (default
value)

Chapter 5. Record structures 75

Export always uses a ? as the host variable name indicator so that an @ can be
properly interpreted as a valid character in a name. Using the @ as the host
variable name indicator, when variable names also contain the @, is
ambiguous and can cause unpredictable results on import.

clause text

clause text
Specifies the clause for the SQL statement

CLAUSE TEXT is the WHERE clause of the join condition.

Note: ‘WHERE’ is not included in the WHERE clause.

Within the clause text, SQL column names always begin with the exclamation
point (!). When produced from VisualAge Generator export, host variable
names always begin with the question mark (?).

Statements can consist of multiple lines of text. A statement line cannot exceed
2000 bytes.

Record help definition

The RCDHELP tag begins the set of text lines that are to be displayed as help
for this record. This optional tag further defines the RECORD and ERECORD
tag set. The ERCDHELP tag closes the definition, and if you use the
RCDHELP tag, the ERCDHELP tag is required. The RCDHELP and
ERCDHELP tags are only allowed on user interface records.

The RCDHELP tag can appear only once within a record definition.

:RCDHELP tag values

Syntax Usage
:record
... :RCDHELP

:rcdhelp Values Uses
... [.[help text]] Specifies the help text for a UI record

:ercdhelp :ERCDHELP [.]
...

:erecord

76 VisualAge Generator: External Source Format Reference

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 2000 bytes. You can use both uppercase
and lowercase characters. The help text must be preceded by a period (.). Text
is saved as entered.

Record title definition

The TITLE tag begins the default text line that is to be displayed as the title
for this record. This optional tag further defines the RECORD and ERECORD
tag set. The ETITLE tag closes the definition, and if you use the TITLE tag, the
ETITLE tag is required. The TITLE and ETITLE tags are only allowed on user
interface records.

The TITLE tag can appear only once within a record definition.

:TITLE tag values

Syntax Usage
:record
... :TITLE

:title Values Uses
... [.[title text]] Specifies the title for a UI record

:etitle :ETITLE [.]
...

:erecord

Only one line of title text is allowed. This line can contain up to 2000 bytes.
You can use both uppercase and lowercase characters. The title text must be
preceded by a period (.). Text is saved as entered.

Record prologue definition

The PROL tag is a text description of a defined record. This optional tag
further defines the RECORD and ERECORD tag set. The EPROL tag closes the
description, and if you use the PROL tag, the EPROL tag is required.

:PROL tag values

Syntax Usage
:record

Chapter 5. Record structures 77

Syntax Usage
... :PROL

:prol Values Uses
... [.[prologue lines]] Describes the record

:eprol :EPROL [.]
...

:erecord

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 60 bytes. You can use both uppercase and
lowercase in the prologue. The prologue must be preceded by a period (.).
Text is saved as entered. When text is longer than 60 characters, it is split into
multiple lines during import.

Record item definition

The RECDITEM tag is a list of data items to be defined for this record. This
optional tag with its attributes further defines the RECORD and ERECORD
tag set.

Repeat the RECDITEM tag for each data item in the record except when it is
an alternate specification record. Specify the TYPE, BYTES, DECIMALS,
EVENSQL, and DESC attributes for nonshared data items only.

Define the shared data items in the list as separate parts using the ITEM tag.
The order of the RECDITEM tags determines the order of the data items
within the record.

:RECDITEM tag attributes

Syntax Attributes
:record
... :RECDITEM

:recditem Attributes Values Uses
... [BYTES= field length in bytes] Specifies the field length in

bytes for the data item
based on the data item type

78 VisualAge Generator: External Source Format Reference

Syntax Attributes
:erecord [COLNAME= ‘column name’] Specifies the column name

that identifies an item in an
SQL row record to the
relational database manager

[DATACODE= SQL data code] Specifies the SQL data type
of the data item in an SQL
row record to the relational
database manager

[DECIMALS= {0|decimal places}] Specifies the number of
decimal places

[DESC= ‘field description’] Describes a data item
[EVENSQL= {Y|N}] Specifies whether packed

fields of even length or odd
length are passed to a
relational database

[KEY= {Y|N}] Specifies whether the data
item is a key column for the
SQL table

[LEVEL= {10|number}] Indicates relative placement
of a data item to adjacent
data items

NAME= {*|item name} Specifies a data item name
[OCCURS= {1|number of

occurrences}]
Specifies the number of
repetitions of a data item in
a data structure

[READONLY= {Y|N}] Indicates whether an item in
an SQL row record can be
written to the relational
database

[TYPE= {BIN|CHA|DBCS|
HEX|MIX| NUM|
NUMC|PACK|
PACF|UNICODE}]

Specifies the data item type
for nonshared data items

[USAGE= SHARED|
NONSHARED]

Specifies the location of the
item definition

[.]

Chapter 5. Record structures 79

BYTES=

field length in bytes
Specifies the field length in bytes for the data item based on the
data item type.

3 Default for CHA, MIX, NUM and NUMC

2 Default for BIN, PACK, PACF, HEX

6 Default for DBCS and UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type:

Item Type Byte Values

CHA, HEX, MIX 1-32,767

DBCS, UNICODE 2-32,766 (even only)

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

BIN in SQL row record 2, 4 only

Note: The BYTES attribute can be specified only for nonshared data items on
the RECDITEM tag.

COLNAME=

‘column name’
Specifies the column name that identifies an item in an SQL row
record to the relational database manager

COLNAME can be up to 36 characters long and can be either of the
following:
v The actual name of a column in the relational table or view definition.

If the SQL row record is defined as a join of multiple tables or views, the
column name should be qualified by the table label defined for the table or
view to which it belongs.

v An SQL expression made up of column names and SQL operators,
constants, and built-in functions.

80 VisualAge Generator: External Source Format Reference

As an expression is entered into the SQL column name field, a virtual
column is defined which can be used as a read-only data item in the SQL
row record definition. The expression is calculated at the time the SQL row
is read from the database.
The specified name is not checked for validity. All single-byte characters not
within double quotation marks are folded to uppercase. The name is
inserted into generated SQL statements as entered. The name is validated
by the relational database manager during SQL statement preparation for a
program.

DATACODE=

SQL data code
Identifies the SQL data type of the data item to the relational
database manager

VisualAge Generator determines the SQL data codes for all data items except
HEX data items. You must enter the data code for HEX items. The
DATACODE attribute is produced on export for HEX, CHA, DBCS, and
UNICODE data items only.

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS specifies the number of decimal places in numeric data items.
This number is included in a data item’s length; however, the decimal point is
not stored with the data. The maximum number of decimal places is 18 or the
number of digits defined for the data item, whichever is smaller. The default
is 0 for no decimal places.

Note: The DECIMALS attribute can be specified only for nonshared data
items on the RECDITEM tag.

DESC=

‘field description’
Describes a data item

Chapter 5. Record structures 81

DESC consists of 1 to 30 characters that can be entered in uppercase and
lowercase. Mixed data is also permitted.

Note: The DESC attribute can be specified only for nonshared data items
on the RECDITEM tag.

EVENSQL=

Y Specifies whether packed fields of even length are passed to a
relational database

N Specifies whether packed fields of odd length are passed to a
relational database (default value)

EVENSQL indicates whether VisualAge Generator passes even- or
odd-length packed fields to relational databases. Specify EVENSQL as Y
only if you are using an SQL table that has even-length columns defined.

Note: The EVENSQL attribute can be specified only for nonshared data
items on the RECDITEM tag.

KEY=

Y Specifies that a data item is a key column for the SQL table

N Specifies that a data item is not a key column for the SQL
table (default value)

KEY specifies that the data item is a key column for the SQL table. One use
of KEY is when the SQL table is defined with a multiple-column key. This
enables VisualAge Generator to provide default SQL statements that use
the indexes in the SQL table correctly.

Note: KEY is used only with SQL row records.

LEVEL=

10 Default value

number
Specifies the relative placement of a data item to adjacent data
items in a data structure

82 VisualAge Generator: External Source Format Reference

LEVEL is a number (3-49, or 77 for single data items in working storage)
that is unique to a record, table, or working storage definition. Level
numbers can differ for the same data item that is used in several record,
table, or working storage definitions.

Data items with the lowest level number in a structure occupy the highest
position in the structure. Data items with higher level numbers represent
substructures of the previous item in the structure list with a lower level
number.

The total length of the data items in a substructure must equal the length
of the owning data item.

Working storage can contain single data items in addition to or in place of
a data structure. Single data items have a level specified as 77 and must
follow the structure if one exists.

NAME=

* Specifies a filler data item

item name
Specifies the data item part

For a DL/I item, NAME consists of 1 to 8 characters and meets the
following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national (A-Z, 0-9, $, #, @)
v The name cannot contain blanks or have an EZE prefix.

For a non-DL/I item, NAME consists of 1 to 32 characters and must meet
the following conventions:
v The first character is alphabetic or national (A-Z, $, #, @)
v The remaining characters are alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

For a non-DL/I item, the name can be a DBCS name up to 15 DBCS
characters long with no embedded blanks.

A data item name in a record structure can be specified with an asterisk.
This type of data item, called a filler, cannot be referred to by the program;
it acts as a space holder.

Chapter 5. Record structures 83

Note: SQL row records cannot contain a filler data item. A filler is always a
nonshared data item.

OCCURS=

1 Default data item OCCURS number

number of occurrences
Specifies the number of repetitions of a data item in a data
structure

You can specify OCCURS as a number from 1 to 32,767. Data items cannot
have nested occurrences. After you define a data item with OCCURS
greater than 1, no data item within its substructure can have an OCCURS
value greater than 1.

The OCCURS characteristic for a data item applies only for the record in
which the item is defined. If you use a data item in more than one record,
the OCCURS can be different in each.

READONLY=

Y Indicates an item in an SQL row record cannot be written to
the relational database

N Indicates an item in an SQL row record can be written to the
relational database

READONLY determines what columns are included in generated SQL
statements that write to the database. Specify READONLY=Y for columns
that cannot be updated and for columns that the program never needs to
change. In addition, the following items must be read only:
v Items with SQL column names that are expressions (not valid SQL

column names)
v Items that come from an SQL row defined as a join.

84 VisualAge Generator: External Source Format Reference

TYPE=

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

TYPE specifies the internal format or type of data. The data type
determines how the item is processed when referred to in processing
statements.

Note: The TYPE attribute can be specified for nonshared data items only
on the RECDITEM item tag. MIX, NUM, NUMC, and PACF
values are not allowed in SQL row records.

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The definition stored in the library is used.

NONSHARED
Indicates that the definition of the item is unique to this
use. The definition stored in the library is not used.

This USAGE value overrides the value specified on the USAGE attribute
of the :RECORD tag. If a USAGE value is not specified, the value
specified on the USAGE attribute of the :RECORD tag is the default.

Chapter 5. Record structures 85

User interface properties definition

The UIPROP tag specifies property information about a field in a user
interface record. This optional tag further defines the RECDITEM tag. The
optional tags LINKDATA, LINKPARM, GENEDITS, UIMSGS, NUMEDITS,
FLDHELP, and LABEL provide additional user interface information about the
field and are only allowed for nonshared data items within UI records. The
EUIPROP tag closes the definition and is required for each UIPROP tag.

Syntax Attributes
:record
... :UIPROP

Attributes Values Uses
:uiprop [EDITORDR= number] Specifies the position of the

field in the edit sequence
... [OCCURSFR= item name] Specifies the name of the

item that contains the
number of occurrences for
an array item.

:euiprop [SELINDEX= item name] Specifies the name of the
item that contains the
selection index for an array
item

... [UITYPE= FORM| HIDDEN|
INPUT|
INPUTOUTPUT|
NONE| OUTPUT|
PROGRAMLINK|
SUBMIT|
SUBMITBYPASS]

Specifies how the item is
used in the user interface
and together with the other
attributes helps determine
the default UI elements
used to implement the
HTML form

:erecord [.]
:EUIPROP [.]

EDITORDR=

number
Specifies the position of the field in the edit sequence

EDITORDR allows you to modify the sequence in which user interface fields
are checked on input to a program. It is allowed only for items with a
UITYPE of INPUT or INPUTOUTPUT. If you specify EDITORDR for any item
in the record, you must specify it for all INPUT or INPUTOUTPUT fields. If
not specified for any item in the record, the default edit order is the order in
which the items appear in the record.

86 VisualAge Generator: External Source Format Reference

OCCURSFR=

item name
Specifies the name of the item that contains the number of
occurrences for an array item

The values set into this item determine the number of occurs in the array item
that actually get displayed in a list. The item named must be a numeric data
item with no decimal places.

SELINDEX=

item name
Specifies the name of the item that contains the selection index
for an array item

The values set into this item are the indices of the elements that were selected
by the user. If the item named is a single element, the list will be a single
select list. If the item is an array, the list will be a multiple select list.

Chapter 5. Record structures 87

UITYPE=

FORM
Indicates that the item will contain a value or set of values that
can be received into the Submit Value Item when the user
submits a form back to the server. No other data is sent back to
the server. This is identical to PROGRAMLINK except that items
that are substructured under an item with this UITYPE are
considered to be part of the Form.

HIDDEN
Indicates that the field is not intended to show on the end user
page. However, the data of these fields is passed when a form
containing a hidden field is submitted.

INPUT
Indicates that the field is intended to be an input field. INPUT is
not allowed for superstructure items.

INPUTOUTPUT
Indicates that the field is intended to be used for both input and
output. INPUTOUTPUT is not allowed for superstructure items.

NONE
Indicates that the field is not intended to be displayed.

OUTPUT
Indicates that the field is intended to be an output field. (default
value)

PROGRAMLINK
Indicates that the item will contain a value or set of values that
can be received into the Submit Value Item when the user
submits a form back to the server. No other data is sent back to
the server.

SUBMIT
Indicates that the item will contain a value or set of values that
can be received into the Submit Value Item when the user
submits a form back to the server. Other data from the form is
sent back to the server.

SUBMITBYPASS
Same as SUBMIT except that input edits are bypassed at
runtime.

88 VisualAge Generator: External Source Format Reference

Link properties definition

The LINKDATA tag defines user interface properties that can be specified for
an item in a record, named on a RECDITEM tag, that has a UITYPE of FORM
or PROGRAMLINK. This optional tag further defines the UIPROP and
EUIPROP tag set.

:LINKDATA tag attributes

Syntax Attributes
:record
... :LINKDATA

:uiprop Attributes Values Uses
... [FIRSTUI= record name] Specifies the name of a user

interface record

:linkdata [NEWWIN= {Y|N}] Specifies whether or not a
new window is to be
created to present this
information

:euiprop PROGRAM = program name Specifies the name of a
program that is expected to
be invoked when this UI
record is used on a transfer.

...

:erecord [.]

FIRSTUI=

record name
Specifies the name of a user interface record

NEWWIN=

Y Specifies that a new window is to be created to present this
information

N Specifies that a new window will not be created to present this
information (default value)

Chapter 5. Record structures 89

PROGRAM=

program name
Specifies the name of a program that is expected to be invoked
when this UI record is used on a transfer

Link parameter definition

The LINKPARM tags define user interface properties that can be specified for
an item in a record, named on a RECDITEM tag, that has a UITYPE of FORM
or PROGRAMLINK. This optional tag further defines the UIPROP and
EUIPROP tag set.

The LINKPARM tag cannot be specified without the LINKDATA tag. Repeat
the LINKPARM tag for each data item that is to be a parameter when the UI
record is passed on an XFER statement. The order of the LINKPARM tags
determines the order of the parameters.

:LINKPARM tag attributes

Syntax Attributes
:record
... :LINKPARM

:uiprop Attributes Values Uses
...
:linkparm

NAME= item name Specifies the name of the
item that is a parameter to
the record bean

...
:euiprop

[VALUEITM= {item name |‘literal’}] Specifies the value that is to
be used for the named
parameter

...
:erecord

[.]

NAME=

item name
Specifies the name of the item that is a parameter to the record
bean

90 VisualAge Generator: External Source Format Reference

VALUEITM=

item name
Specifies the name of the item containing the value that is to be
used for the named parameter

‘literal’
Specifies a literal value that is to be used for the named
parameter. Character, Hex, DBCS, or Mixed strings must be
enclosed in single quotes.

Initial definition

The INITIAL tag begins the text lines that contain the initial value for a field.
This optional tag further defines the UIPROP and EUIPROP tag set. The
EINITIAL tag closes the definition, and if you use the INITIAL tag, the
EINITIAL tag is required. The INITIAL and EINITIAL tags are allowed only
on user interface records.

The INITIAL tag can appear only once for each item within a record
definition.

:INITIAL tag values

Syntax Usage
:record
... :INITIAL

:uiprop
:initial Values Uses
... [.[initial value]] Specifies the initial value for a field in a

UI record

:einitial :EINITIAL [.]
...

:euiprop
:erecord [.]

The initial value is a single line that can contain up to 2000 bytes. You can use
both uppercase and lowercase characters. The initial value must be preceded
by a period (.). Text is saved as entered.

Chapter 5. Record structures 91

Initial value definition

The INITIAL tag begins the set of text lines that define the initial value for a
field or button in a user interface record. This optional tag further defines the
RECORD and ERECORD tag set. The EINITIAL tag closes the definition, and
if you use the INITIAL tag, the EINITIAL tag is required. The INITIAL and
EINITIAL tags are only allowed on user interface records.

The INITIAL tag can appear only once within a record definition.

:INITIAL tag values

Syntax Usage
:record
... :INITIAL

:rcdhelp Values Uses
... [.[help text]] Specifies the help text for a UI record

:ercdhelp :EINITIAL [.]
...

:erecord

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 2000 bytes. You can use both uppercase
and lowercase characters. The initial value must be preceded by a period (.).
Text is saved as entered.

General edit characteristic definition

The GENEDITS tag defines a list of general editing characteristics that can be
specified for items in a UI record. This optional tag further defines the
UIPROP and EUIPROP tag set.

:GENEDITS tag attributes

Syntax Attributes
:record
... :GENEDITS

:uiprop Attributes Values Uses
... [EDITFUNC= function name] Specifies the function used

for special data editing

92 VisualAge Generator: External Source Format Reference

Syntax Attributes
:genedits [EDITTBLE= table name] Specifies the table used for

special data editing
... [EDITTYPE= {BOOLEAN|DATE|

TIME|NONE}]
Specifies the type of editing
to be done on the data item

:euiprop [FILLCHAR= ‘fill character’] Specifies the character used
to fill unused field positions

... [FLDFOLD= {Y|N}] Specifies whether data
entered into the field is
folded

:erecord [INPUTREQ= {Y|N}] Specifies whether valid data
must be entered

[MININPUT= {N|positions}] Specifies the minimum
number of required
characters

[RUNATWEB= {Y|N}] Specifies whether edits are
to be performed at the WEB
site or at the VG Server

[SOSI= {Y|N}] Specifies whether to check
mixed data to see if it will
fit into the field after
conversion.

[.]

EDITFUNC=

function name
Specifies the name of a function used for special editing of data
in a variable field

EDITFUNC indicates the name of a routine to be used for special editing
of data that the user enters in a variable field. You can specify one of the
following:
v The name of one of the following special funtion word subroutines:

– Modulus 10 check digit routine (EZEC10)
– Modulus 11 check digit routine (EZEC11)

v The name of an edit routine.

Chapter 5. Record structures 93

EDITTBLE=

table name
Specifies the name of a table used for special editing of data in a
variable field

EDITTYPE=

BOOLEAN
Specifies to the UI record that the data in the item is in the form
of a Boolean value.

DATE Specifies to the UI record that the data in the item is in the form
of a Date value.

TIME Specifies to the UI record that the data in the item is in the form
of a Time value.

NONE
Specifies to the UI record that the data in the item is in no
particular form. (default value)

FILLCHAR=

‘fill character’
Specifies the character used to fill unused field positions

FILLCHAR indicates the character used to fill unused field positions on
output.

FLDFOLD

Y Specifies that data is folded

N Specifies that data is not folded (default value)

FLDFOLD specifies whether lowercase alphabetic characters entered by the
user are to be folded (converted) to uppercase.

94 VisualAge Generator: External Source Format Reference

INPUTREQ=

Y Specifies that data must be entered in the field

N Specifies that input is not required in the field (default value)

INPUTREQ indicates whether data must be entered in a field. When a field
contains data other than blanks for character type or zeros for numeric types,
the field is considered to have input. Blanks in a character field and zero in a
numeric field do not satisfy the input required edit check. Even if blanks and
zeros are valid values, INPUTREQ returns an error message unless the user
types data into the field.

MININPUT=

N Specifies no minimum number of characters required (default
value)

positions
Specifies the minimum number of characters that must be
entered in a valid variable field

MININPUT specifies the minimum number of characters that must be entered
in a variable field if any data is entered.

RUNATWEB=

Y Specifies that the edits are to be performed at the WEB Server
site

N Specifies that the edits are to be performed by the VG Server
program

Chapter 5. Record structures 95

SOSI=

Y Specifies that mixed data entered in the field on an ASCII device
is to be checked to see if it will fit into the field after conversion
into the EBCDIC SO/SI format for mixed data (default for mixed
type fields)

N Specifies that mixed data entered in the field on an ASCII device
is not to be checked to see if it will fit into the field after
conversion into the EBCDIC SO/SI format for mixed data
(default for all fields except mixed type fields)

Message key definition

The UIMSGS tag specifies property information about message keys for a field
in a user interface record. This optional tag further defines the UIPROP and
EUIPROP tag set.

:UIMSGS tag attributes

Syntax Attributes
:record
... :UIMSGS

:uiprop Attributes Values Uses
... [FUNCKEY= ‘edit function message

key’]
Specifies the message key to
be used when an edit
function is used to
determine an error
condition exists

:uimsgs [MININKEY= ‘minimum input
message key’]

Specifies the message key to
be used when fewer than
the minimum characters are
input

... [RANGEKEY= ‘numeric range
message key’]

Specifies the message key to
be used when the user
enters data that is out of
range for this field

:euiprop [REQKEY= ‘input required
message key’]

Specifies the message key to
be used when the user does
not enter data into a field
that must contain data

96 VisualAge Generator: External Source Format Reference

Syntax Attributes
... [TBLEKEY= ‘edit table message

key’]
Specifies the message key to
be used when an edit table
is used to determine an
error condition exists

[TYPEKEY= ‘data type message
key’]

Specifies the message key to
be used when the type of
data entered by the user is
not valid for the field

:erecord [.]

FUNCKEY=

‘edit function message key’
Specifies the message key to be used when an edit function is
used to determine an error condition exists

MININKEY=

‘minimum input message key’
Specifies the message key to be used when fewer than the
minimum characters are input

RANGEKEY=

‘numeric range message key’
Specifies the message key to be used when the user enters data
that is out of range for this field

REQKEY=

‘input required message key’
Specifies the message key to be used when the user does not
enter data into a field that must contain data

Chapter 5. Record structures 97

TBLEKEY =

‘edit table message key’
Specifies the message key to be used when an edit table is used
to determine an error condition exists

TYPEKEY=

‘data type message key’
Specifies the message key to be used when the type of data
entered by the user is not valid for the field

Numeric edit characteristic definition

The NUMEDITS tag defines a list of numeric editing characteristics that can
be specified for items in a UI record. This optional tag further defines the
UIPROP and EUIPROP tag set. It can only be specified for numeric data
items.

:NUMEDITS tag attributes

Syntax Attributes
:record
... :NUMEDITS

:uiprop Attributes Values Uses
... CURRENCY= {Y|N}] Specifies whether a default

currency symbol is to be
used

:numedits
[CURRSYMB= ‘symbol’] Specifies a 1- to 3-character

currency symbol
... [NUMSEP= {Y|N}] Specifies whether data can

contain numeric separators

:uiprop
[RANGE= lowvalue highvalue] Specifies the range of valid

numeric values
... [SIGN= {LEA|TRA|N}] Specifies a sign in the field

as leading, trailing, or none

[ZEROEDIT= {Y|N}] Specifies the format for
fields that have zero values

:erecord [.]

98 VisualAge Generator: External Source Format Reference

CURRENCY=

Y Specifies that the currency symbol is to be used

N Specifies that no currency symbol is to be used (default value)

CURRENCY indicates whether the currency symbol is supported in the field.
Y is valid only for numeric fields. When defining field length, there must be
enough room for each character specified on CURRSYMB.

CURRSYMB=

‘symbol’
Specifies a 1- to 3-character currency symbol to be used if
CURRENCY is Y

NUMSEP=

Y Specifies that a numeric separator is to be used with the field

N Specifies that a numeric separator is not to be used with the field
(default value)

NUMSEP specifies whether data in a field can contain the previously defined
numeric separator. The default numeric separator is a comma. Your system
administrator can change the default character using the customization
procedures for language-dependent options.

If YES is specified, numeric separators are allowed in the field on input. After
input editing, the numeric separators are removed before the field is placed in
internal storage. On output, numeric separators are inserted between every
three significant digits. Every fourth position to the left of the decimal point
will be a separator. You can only specify NUMSEP=Y for numeric fields.
When defining field length, remember that each numeric separator takes up
one position. If NUMSEP=N is specified, validation is done to ensure that the
user did not enter a numeric separator in the field.

Chapter 5. Record structures 99

RANGE=

lowvalue
Specifies the smallest numeric value for a field

highvalue
Specifies the largest numeric value for a field

RANGE specifies the range of valid numeric values for a field. Lowvalue is
the smallest numeric value that can be entered in a specified field. Highvalue
is the largest numeric value that can be entered in a specified field. The high
and low values must have the same length, number of decimal positions, and
sign as defined for the field. Both low and high values must be specified if
this attribute is used. The values are separated by a space and cannot be
longer than the length of the field being defined. RANGE can be specified
only for numeric fields.

SIGN=

LEA Specifies a leading sign

TRA Specifies a trailing sign

N Specifies no sign (default value)

SIGN specifies whether a sign is displayed in a field and whether it is a
leading or a trailing sign. You can specify signs for numeric fields only. When
defining field length, remember the sign takes up one position.

ZEROEDIT=

Y Specifies the display format for numeric fields containing 0
values

N Specifies that no editing is done on 0 numeric fields (default
value)

ZEROEDIT specifies the display format for numeric fields that have 0 values.

100 VisualAge Generator: External Source Format Reference

Field help definition

The FLDHELP tag begins the set of text lines that are to be displayed as help
for this field. This optional tag further defines the UIPROP and EUIPROP tag
set. The EFLDHELP tag closes the definition, and if you use the FLDHELP
tag, the EFLDHELP tag is required. The FLDHELP and EFLDHELP tags are
only allowed on user interface records.

The FLDHELP tag can appear only once for each item within a record
definition.

:FLDHELP tag values

Syntax Usage
:record
... :FLDHELP

:uiprop Values Uses
... [.[field help text]] Specifies the help text for a field in a

UI record

:fldhelp...

:EFLDHELP [.]

:efldhelp
:erecord [.]

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 2000 bytes. You can use both uppercase
and lowercase characters. The help text must be preceded by a period (.). Text
is saved as entered.

Label definition

The LABEL tag begins the text lines that are to be displayed as the label text
for this field. This optional tag further defines the UIPROP and EUIPROP tag
set. The ELABEL tag closes the definition, and if you use the LABEL tag, the
ELABEL tag is required. The LABEL and ELABEL tags are only allowed on
user interface records.

The LABEL tag can appear only once for each item within a record definition.

:LABEL tag values

Syntax Usage
:record

Chapter 5. Record structures 101

Syntax Usage
... :LABEL

:label Values Uses
... [.[label text]] Specifies the label for an item in a UI

record

:elabel :ELABEL [.]
...

:erecord [.]

If the item is an array, one label is allowed for each element in the array.
Otherwise, only one label is allowed. Each label must be contained on a single
line. A single line cannot exceed 2000 bytes. You can use both uppercase and
lowercase characters. The label text must be preceded by a period (.). Text is
saved as entered.

Templates tracability information

Templates tracability information is defined for a record part as described in
“Chapter 16. Templates traceability information structures” on page 213.

Record definition syntax example
:record name = xxxxxxxxxxxxxxxxxx date = 'mm/dd/yyyy'

time = 'hh:mm:ss' org = xxxxxxxx
altspec = xxxxxxxxxxxxxxxxxx filename = xxxxxxxx
key = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
redefrec = xxxxxxxxxxxxxxxxxx
varlenth = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
numoccur = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
usage = xxxxxxxxx
sbmitval = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.

:sqltable tableid = 'Enter up to 60 characters'
tblnhvar = x
label = 'xxxx'.

:joincon hostvar = 'x'.
EMPNO IN (SELECT EMPNO FROM DSN8130.TEMPL WHERE
WORKDEPT = 'E11');

:ejoincon.
:rcdhelp.
This text is the help text for the record.
:ercdhelp.
:title.
This text is the default title for the UI record.
:etitle.
:prol.
Each prologue line can be up to 60 characters long. IMPORT

102 VisualAge Generator: External Source Format Reference

will split lines longer than 60 characters.
:eprol.
:recditem name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

level = xx occurs = xxxxx
usage = xxxxxxxxx
type = xxxx bytes = xxxxx
colname = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
readonly = x datacode = xxx
decimals = xx evensql = x
desc = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
key = x.

:uiprop uitype = xxxxxxxxxxx
editordr = xxxxx
occursfr = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
selindex = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.

:linkdata program = xxxxxxx
firstui = xxxxxxxxxxxxxxxxxx
newwin = x.

:linkparm name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
valueitm = 'xxx'.

:genedits edittype = xxxx
editfunc = xxxxxxxxxxxxxxxxxx
edittble = xxxxxxx
fillchar = 'x'
fldfold = x
inputreq = x
mininput = xxxxx
runatweb = x
sosi = x.

:uimsgs tblekey = 'xxxxxxxxxx'
funckey = 'xxxxxxxxxx'
mininkey = 'xxxxxxxxxx'
rangekey = 'xxxxxxxxxx'
reqkey = 'xxxxxxxxxx'
typekey = 'xxxxxxxxxx'.

:numedits currency = x sign = xxx numsep = x
currsymb = 'xxx'
range = xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx
zeroedit = x.

:fldhelp.
Field help text goes here
:efldhelp.
:label.
Field label text goes here
:elabel.
:euiprop.
:erecord.

Note: This example illustrates the syntax of all record definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

Chapter 5. Record structures 103

104 VisualAge Generator: External Source Format Reference

Chapter 6. Table structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator table.

Table definition

The TBLE tag and its attributes define table parts. The TBLE tag specifies data
that can be used for the following:
v Editing data that a user enters on a map
v Storing information that a program refers to during execution.

The GENOPTS, PROL, DEFITEM, CONTITEM, and ROW tags further define
aspects of a table part and can have attributes. The ETBLE tag closes the
definition, and if you use the TBLE tag, the ETBLE tag is required.

:TBLE tag attributes

Syntax Attributes
:tble
... :TBLE

:genopts Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the table

was last modified

:prol...
:eprol
:defitem

[FOLD= {Y|N}] Specifies whether character
data or single-byte data in
mixed fields in the table is
changed to uppercase or left
as entered in the table
contents

... NAME= name Identifies a table part

:contitem...
:row

[TABTYPE= {UNSPECIFIED|
MATCHVALID|
MATCHINVALID|
RANGEMATCH|
MESSAGE}]

Defines how the table is
used

... [TIME= ‘modification time’] Specifies the time the table
was last modified

:vagt [USAGE= {SHARED|
NONSHARED}]

Specifies the default location
of the item definition

© Copyright IBM Corp. 1980, 2000 105

Syntax Attributes
...
:tracbag...
:etracbag

[.]

:etble :ETBLE [.]

DATE=

‘modification date’
Specifies the date the table part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

DATE=

‘modification date’
Specifies the date the table part was last modified

FOLD=

Y Specifies that the contents of a table are folded to uppercase
when updated by the user, and that test facility and generation
fold the contents as they are used (default value)

N Specifies that the table contents will be used as they were last
entered

IMPORT does not fold the table contents. Table definition uses this flag to
determine if folding was requested.

NAME=

name Identifies a table part

NAME identifies a table part. It consists of 1 to 7 characters and must meet
the following conventions:
v The first character must be alphabetic (A-Z)
v The remaining characters must be alphanumeric (A-Z, 0-9)

106 VisualAge Generator: External Source Format Reference

v The name cannot contain blanks or have an EZE prefix
v Table names cannot end in 0.

TABTYPE=

UNSPECIFIED
The table is a reference table only. It cannot be used for editing
data (as an EDITRTN on the MAPEDITS tag). This type of table
can be used only with VisualAge Generator processing
statements. (default value)

MATCHVALID
The table can be used for editing data. Data entered by a user
must match a value in the first column of the table.

MATCHINVALID
The table can be used for editing data. Data entered by a user
must not match any of the values in the first column of the table.

RANGEMATCH
The table can be used for editing data. Data entered by a user
must be within a range of values that are contained in the table
data.

MESSAGE
The table is used for retrieving user messages when EZEMNO is
modified.

TABTYPE defines how the table is used.

TIME=

‘modification time’
Specifies the time the table part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Chapter 6. Table structures 107

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The definition stored in the library is used.
(default)

NONSHARED
Indicates that the definition of the item is unique to this use.
The definition stored in the library is not used.

Table generation option specification

The GENOPTS tag specifies the saved options associated with the table. This
optional tag further describes the TBLE and ETBLE tag set.

:GENOPTS tag attributes

Syntax Attributes
:tble
... :GENOPTS

:genopts Attributes Values Uses
... [RESIDENT= {Y|N}] Specifies whether or not a

shared table remains in
storage after the table use
count goes to zero

:etble [TYPEUSE= {SHARED|SINGLE}] Specifies whether the table
is shared by multiple
occurrences of a program

[.]

RESIDENT=

Y Specifies that the table remains in storage after the table use
count goes to zero

N Specifies that the table is deleted from storage after the table use
count goes to zero (default value)

108 VisualAge Generator: External Source Format Reference

TYPEUSE=

SHARED
Specifies that the table is shared by multiple occurrences of a
program or by multiple programs (default value)

SINGLE
Specifies that each occurrence of a program gets its own copy of
the table

SINGLE allows writing to a table for temporary storage. Resident tables must
be shared.

Table prologue description

The PROL tag begins a text description of a defined table. This optional tag
further describes the TBLE and ETBLE tag set. The EPROL tag closes the
description, and if you use the PROL tag, the EPROL tag is required.

:PROL tag values

Syntax Usage
:tble
... :PROL

:prol Values Uses
... [.[prologue lines]] Describes the table

:eprol :EPROL [.]
...

:etble

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 60 characters. You can use both uppercase
and lowercase in the prologue text. Prologues are saved as entered. When text
is longer than 60 characters, it is split into multiple lines during import.

Chapter 6. Table structures 109

Table column definition

The DEFITEM tag specifies the name and characteristics of the data item
defining a column (or part of a column) in a table row. This optional tag
further defines the TBLE and ETBLE tag set.

A table row corresponds to a record in a file.

RANGEMATCH and MESSAGE tables require two columns, while tables of
other types require one. A table can have more columns than required.

A MESSAGE table contains at least two columns. The first column is defined
with numeric data type (NUM only), with a length of 4 and no decimals. The
second column is defined with a character or mixed data type and must be no
longer than the EZEMSG field. Otherwise, the data will be truncated.

You can repeat the DEFITEM tag multiple times. The order of appearance of
DEFITEM tags determines the order of the columns in the table. Specify the
BYTES, DECIMALS, DESC, and TYPE attributes for nonshared data items
only.

When the column definition (as specified on the DEFITEM tag) matches the
table contents (as specified on the ROW tag), the CONTITEM tag is not
required. The contents definition is derived from the DEFITEM tag if no
CONTITEM tags are specified.

:DEFITEM tag attributes

Syntax Attributes
:tble
... :DEFITEM

:defitem Attributes Values Uses
... [BYTES= field length in bytes] Specifies the field length in

bytes for the data item
based on the data item type

:etble [DECIMALS= {0|decimal places}] Specifies the number of
decimal places

[DESC= ‘field description’] Describes a data item
[LEVEL= {10|number}] Specifies placement of a

data item relative to
adjacent data items

NAME= {*|item name} Specifies a data item name
[TYPE= {BIN|CHA|DBCS|HEX|

MIX|NUM| NUMC|
PACK|PACF|
UNICODE}]

Specifies the data item type

110 VisualAge Generator: External Source Format Reference

Syntax Attributes
[USAGE= {SHARED|SHARED}] Specifies the location of the

item definition
[.]

BYTES=

field length in bytes
Specifies the field length in bytes for the data item based on the
data item type.

3 Default for CHA, MIX, NUM and NUMC

2 Default for BIN, PACK, PACF, and HEX

6 Default for DBCS and UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type:

Item Type Byte Values

CHA, MIX 1-254

DBCS, UNICODE 2-254 (even only)

HEX 1-127

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

Note: BYTES only applies when the item is a nonshared data item or table
contents are supplied but the CONTITEM tags are not specified.

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal positions. The maximum number of decimal

Chapter 6. Table structures 111

positions is 18 or the number of digits defined for the data item, whichever is
smallest. The decimal point is not stored with the data.

Note: DECIMALS only applies when the item is a nonshared data item or
when table contents are supplied but the CONTITEM tag is not
specified.

DESC=

‘field description’
Describes a data item

DESC consists of 1 to 30 characters that can be entered in uppercase and
lowercase. Mixed data is also permitted.

Note: DESC only applies when the item is a nonshared data item.

LEVEL=

10 Default level number

number
Specifies the relative placement of a data item to adjacent data
items in a data structure

LEVEL is a number (3-49, or 77 for single data items in working storage) that
is unique to a record, table, or working storage definition. Level numbers can
differ for the same data item that is used in several record, table, or working
storage definitions.

Data items with the lowest level number in a structure occupy the highest
position in the structure. Data items with higher level numbers represent
substructures of the previous item in the structure list with a lower level
number. The data items with the lowest level number represent the table
columns.

The total length of the data items in a substructure must equal the length of
the owning data item.

112 VisualAge Generator: External Source Format Reference

NAME=

* Specifies a filler data item

item name
Specifies the data item name

NAME consists of 1 to 32 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 15 DBCS characters long with no
embedded blanks.

A data item name in a table structure can be specified with an asterisk. This
type of data item, called a filler, cannot be referred to by the program; it acts
as a space holder.

Note: A filler is always a nonshared data item.

TYPE=

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

Chapter 6. Table structures 113

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements.

Note: TYPE only applies when the item is a nonshared data item or when
table contents are supplied but the CONTITEM tag is not specified.

USAGE=

SHARED
Indicates that the definition of the item is shared with other
references. The definition stored in the library is used.

NONSHARED
Indicates that the definition of the item is unique to this use. The
definition stored in the library is not used.

This USAGE value overrides the value specified on the USAGE attribute of
the :TBLE tag. If a USAGE value is not specified, the value specified on the
USAGE attribute of the :TBLE tag is the default.

Data content attribute identification

The CONTITEM tag can be repeated multiple times. It specifies the contents
structure and identifies the attributes of the actual data contents. These
attributes may conflict with those in DEFITEM if the table definition has been
changed and the contents have not yet been updated. If the contents structure
derived from the DEFITEM tags matches the table contents, the CONTITEM
tag is not necessary. The following table lists the data items with the lowest
level of the table structure:

Table Structure Contents Structure

NAME
LAST
FIRST
MIDDLE

NAME

ADDRESS
LINE1
LINE2
LINE3

ADDRESS

If CONTITEM tags are not specified but ROW tags are specified, VisualAge
Generator derives the contents structure from the DEFITEM tag information
(name, level, type, bytes, and decimals). The order of appearance of the

114 VisualAge Generator: External Source Format Reference

CONTITEM tags determines the order of the columns in the table. The
CONTITEM tag is optional and further defines the TBLE and ETBLE tag set.

:CONTITEM tag attributes

Syntax Attributes
:tble
... :CONTITEM

:contitem Attributes Values Uses
... [BYTES= field length in bytes] Specifies the field length in

bytes for the data item
based on data item type

:etble [DECIMALS= {0|decimal places}] Specifies the number of
decimal places

NAME= {*|item name} Specifies a data item name
[TYPE= {BIN|CHA|DBCS|

HEX| MIX|NUM|
NUMC|PACK|
PACF|UNICODE}]

Specifies the data item type

[.]

BYTES=

field length in bytes
Specifies the field length in bytes for the data item based on the
data item type.

3 Default for CHA, MIX, NUM and NUMC

2 Default for BIN, PACK, PACF, and HEX

6 Default for DBCS and UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type:

Item Type Byte Values

CHA, MIX 1-254

DBCS, UNICODE 2-254 (even only)

HEX 1-127

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

Chapter 6. Table structures 115

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal positions. The maximum number of decimal
positions is 18 or the number of digits defined for the data item, whichever is
smallest. The decimal point is not stored with the data.

NAME=

* Specifies a filler data item

item name
Specifies the data item

NAME consists of 1 to 32 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 15 DBCS characters long with no
embedded blanks.

A data item name in a table structure can be specified with an asterisk. This
type of data item, called a filler, cannot be referred to by the program; it acts
as a space holder.

Note: A filler is always a nonshared data item.

116 VisualAge Generator: External Source Format Reference

TYPE=

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements.

Row specification

The ROW tag contains the contents of a single table row in character format.
This tag is optional, but you can repeat it once for each row of data in the
table. You cannot specify the ROW tag unless you specify the DEFITEM or
CONTITEM tags. If you do not specify the CONTITEM tag, VisualAge
Generator derives the contents structure from the DEFITEM tags. The order of
the ROW tags determines the order of the rows in the table.

:ROW tag values

Syntax Usage
:tble
... :ROW

:contitem Values Uses
... [.[row content]] Contains the contents of one row in

the table

:row

Chapter 6. Table structures 117

Syntax Usage
...

:etble

Columns of data must be separated by one or more blanks. If the data needs
to contain a blank, or starts with a single quotation mark, enclose the column
in single quotation marks. When the data needs to contain quotation marks,
use double sets of quotation marks. You can use multiple lines to specify a
row’s contents. To add a line to the specification of a row’s contents, place a
continuation character in column 72 of the last line currently defined and add
the new line immediately below. Any character in column 72 is considered a
continuation character. The continuation character causes concatenation of the
two lines on import. The two lines concatenate with the character in column
71 being immediately followed by the character in column 1 of the next line.
Add lines to a row’s contents specification until it is complete.

Templates tracability information

Templates tracability information is defined for a table part as described in
“Chapter 16. Templates traceability information structures” on page 213.

118 VisualAge Generator: External Source Format Reference

Table definition syntax example

Note: This example illustrates the syntax of all table definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:tble name = xxxxxxx date = 'mm/dd/yyyy'
time = 'hh:mm:ss'
tabtype = xxxxxxxxxxxx fold = x usage = xxxxxxxxx.

:genopts typeuse = xxxxxx jobname = xxxxxxxx
fold = x lines = xxx
resident = x print = x
options = 'xxxxxxxx.xxxxxxxx'.

:prol.
A prologue line will be split if it is more than 60 characters long.
:eprol.
:defitem name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

level = xx type = xxx bytes = xxx
decimals = xx desc = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
usage = xxxxxxxxx.

:contitem name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
type = xxxx bytes = xxx decimals = xx.

:row.'These are the row contents. This can span more than one line and
is split on character boundaries because table data is just a stream of
characters. The next row starts with another :row in column 1.'
:row.Thisrowhasnosurroundingquotesbecausetheyarenotnecessaryiftherearen
oblanksorquotesintherowcontents
:row.'This is another row''s contents. It also spans more than one line
and is split on character boundaries. The table contents are terminated
with a :etble in column 1 that is coming up.'
:etble.

Chapter 6. Table structures 119

120 VisualAge Generator: External Source Format Reference

Chapter 7. Data item structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator data item.

Data item definition

The ITEM tag defines attributes for individual data item parts. The
MAPEDITS, MESSAGES, UIPROP, GENEDITS, UIMSGS, NUMEDITS,
FLDHELP, and LABEL tags further define aspects of an item and can have
attributes. The EITEM tag closes the definition, and if you use the ITEM tag,
the EITEM tag is required.

:ITEM tag attributes

Syntax Attributes
:item
... :ITEM

:mapedits Attributes Values Uses
...
:messages

[BYTES= field length in bytes] Specifies the field length in
bytes for the data item
based on the data item type

... [DATE= ‘modification date’] Specifies the date the data
item was last modified

:uiprop [DECIMALS= {0|decimal places}] Specifies the number of
decimal places

:genedits [DESC= ‘field description’] Describes the field
...
:uimsgs...

[EVENSQL= {Y|N}] Specifies whether packed
fields of even length or odd
length are passed to a
relational database

:numedits NAME= item name Specifies a data item part in
the library

... [TIME= ‘modification time’] Specifies the time the data
item was last modified

:fldhelp...
:efldhelp

[TYPE= {BIN|CHA|DBCS|
HEX|MIX| NUM|
NUMC|PACF|
PACK|UNICODE}]

Specifies the data item type

:label [.]

© Copyright IBM Corp. 1980, 2000 121

Syntax Attributes
...
:elabel
:euiprop
:vagt...
:tracbag...
:etracbag
:eitem

:EITEM [.]

BYTES=

field length in bytes
Specifies the field length in bytes for the data item based on the
data item type

3 Default for CHA, MIX, NUM, and NUMC

2 Default for BIN, PACK, PACF, and HEX

6 Default for DBCS and UNICODE

BYTES is the number of bytes required to store a data item value internally.
The following table lists the valid BYTES values by data type:

Item Type Byte Values

CHA, HEX, MIX 1-32,767

DBCS, UNICODE 2-32,766 (even only)

NUM, NUMC 1-18

PACK, PACF 1-10

BIN 2, 4, 8 only

DATE=

‘modification date’
Specifies the date the data item part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

122 VisualAge Generator: External Source Format Reference

DECIMALS=

0 Specifies no decimal places (default value)

decimal places
Specifies the number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. The length specified for the data item must include
the places set aside for decimal positions. The maximum number of decimal
positions is 18 or the number of digits defined for the data item, whichever is
smaller. The decimal point is not stored with the data.

DESC=

‘field description’
Describes what the data item represents

DESC is a text description of what the data item represents. The text can
consist of up to 30 characters, not including the quotation marks, and can be
entered in uppercase and lowercase. Mixed data is also permitted.

EVENSQL=

Y Specifies whether packed fields of even length are passed to a
relational database

N Specifies whether packed fields of odd length are passed to a
relational database (default value)

EVENSQL indicates whether VisualAge Generator passes even- or odd-length
packed fields to relational databases. Specify EVENSQL as Y only if you are
using an SQL table that has even-length columns defined.

NAME=

name Specifies the data item part

NAME consists of 1 to 32 characters and must meet the following
conventions:

Chapter 7. Data item structures 123

v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _)
v The name cannot contain blanks or have an EZE prefix.

The name can be a DBCS name up to 15 DBCS characters long with no
embedded blanks.

TIME=

‘modification time’
Specifies the time the data item part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

TYPE=

BIN Binary number

CHA Character data (default value)

DBCS Double-byte character data

HEX Hexadecimal data

MIX DBCS data intermingled with single-byte character data

NUM Numeric characters with positive sign in F format

NUMC
Numeric characters with positive sign in C format

PACF Packed decimal characters with positive sign in F format

PACK Packed decimal characters with positive sign in C format

UNICODE
Unicode character data (only valid for Developer on JAVA)

TYPE specifies the internal format or type of data. The data type determines
how the item is processed when referred to in processing statements.

124 VisualAge Generator: External Source Format Reference

Map edit characteristic definition

The MAPEDITS tag defines the default map edit characteristics for a data
item. This optional tag with its attributes further describes the ITEM and
EITEM tag set.

:MAPEDITS tag attributes

Syntax Attributes
:item
... :MAPEDITS

:mapedits Attributes Values Uses
... [CURRSYMB= {Y|N}] Specifies whether the

currency symbol is
supported

:eitem [DATEFORM= {‘date edit mask’|
SYSGREGRN|
SYSJULIAN|
number}]

Specifies the date format
editing

[EDITRTN= edit routine] Specifies a routine or edit
table for special data editing

[FILLCHAR= {‘N’|‘fill character’}] Specifies the character used
to fill unused data item
positions

[FLDFOLD= {Y|N}] Specifies whether data
entered in this field is
folded

[HEXEDIT= {Y|N}] Specifies whether only
hexadecimal digits can be
entered in the input field

[INPUTREQ= {Y|N}] Specifies whether valid data
must be entered

[JUSTIFY= {LEF|RIG|N}] Specifies the position of
data when it is shorter than
the length of the field

[MININPUT= {N|positions}] Specifies the minimum
number of required
characters

[NUMSEP= {Y|N}] Specifies whether data can
contain numeric separators

[RANGE= lowvalue highvalue] Specifies the range of valid
numeric values

[SIGN= {LEA|TRA|N}] Specifies a sign in a field as
leading, trailing, or none

Chapter 7. Data item structures 125

Syntax Attributes
[SOSI= {Y|N}] Specifies whether to check

mixed data to see if it will
fit into the field after
conversion.

[ZEROEDIT= {Y|N}] Specifies the format for
numeric fields that have
zero values

[.]

CURRSYMB=

Y Specifies that the currency symbol is supported

N Specifies that the currency symbol is not supported (default
value)

CURRSYMB indicates whether the currency symbol is supported in the field.
Y is valid only for numeric fields. When defining field length, remember that
the currency symbol takes up one position.

DATEFORM=

‘date edit mask’
Specifies a valid date edit mask

SYSGREGRN
Specifies system default Gregorian format

SYSJULIAN
Specifies system default Julian format

number
Specifies a predefined date format is used when data is entered
or displayed

DATEFORM indicates the date edit format of a map field.

Date edit mask has a maximum length of 10 and consists of DD, MM, YY,
DDD, or YYYY in any order separated by a non-numeric single-byte character,
except D, M, and Y. If a single quotation mark is used as a separator character
it must be specified as two single quotation marks in succession.

126 VisualAge Generator: External Source Format Reference

When a Gregorian date edit is specified, the data item must follow these
conventions:
v Numeric data items must be at least 6 digits for the short format and 8

digits for the long format. Use the short format to refer to dates with a
2-digit year, and use the long format to refer to dates with a 4-digit year.

v Character data items must be at least 8 bytes for the short format and 10
bytes for the long format.

When a Julian date edit is specified, the data item must follow these
conventions:
v Numeric data items must be at least 5 digits for the short format and at

least 7 digits for the long format. Use the short format to refer to dates with
a 2-digit year, and use the long format to refer to dates with a 4-digit year.

v Character data items must be at least 6 bytes for the short format and at
least 8 bytes for the long format.

Number consists of any integer from 1 to 17 that represents a predefined date
edit mask, as indicated in the following table.

Option Number Short Date Format Long Date Format

1 MM/DD/YY MM/DD/YYYY

2 MM-DD-YY MM-DD-YYYY

3 MM:YY MM:YYYY

4 YY/MM/DD YYYY/MM/DD

5 YY-MM-DD YYYY-MM-DD

6 YY:MM YYYY:MM

7 DD/MM/YY DD/MM/YYYY

8 DD-MM-YY DD-MM-YYYY

9 DD:MM:YY DD:MM:YYYY

10 YY-DDD YYYY-DDD

11 YY:DDD YYYY:DDD

12 MM.DD.YY MM.DD.YYYY

13 YY.MM.DD YYYY.MM.DD

14 DD.MM.YY DD.MM.YYYY

15 YY.DDD YYYY.DDD

16 SYSGREGRN SYSGREGRN

17 SYSJULIAN SYSJULIAN

Field edits should be defined as follows when you specify a date edit option:
v CURRSYMB=N

Chapter 7. Data item structures 127

v DECIMALS=0
v HEXEDIT=N
v NUMSEP=N
v SIGN=N

The TYPE must be one of the following values when you specify the date edit
option:
v BIN
v PACK
v PACF
v NUM
v NUMC
v CHA

EDITRTN=

edit routine
Specifies a routine or edit table for special editing of data in a
variable field

EDITRTN indicates the name of a routine or edit table used for special editing
of data that a user entered in a variable field. You can specify one of the
following:
v The name of one of the following types of editing tables:

– Match valid table
– Match invalid table
– Range match valid table.

v The name of one of the following special function word subroutines:
– Modulus 10 check digit routine (EZEC10)
– Modulus 11 check digit routine (EZEC11).

v The name of a function used as an edit routine.

FILLCHAR=

‘N’ Specifies a null fill character

‘fill character’
Specifies the character used to fill unused data item positions

FILLCHAR indicates the character used to fill unused field positions on
output to the terminal or printer. The default fill character for CHA, MIX, and
DBCS fields is a null. The default for HEX fields is a 0 and for numeric data
(NUM, NUMC, PACK, PACF, or BIN) is a blank.

128 VisualAge Generator: External Source Format Reference

FLDFOLD=

Y Specifies that data entered in this field is folded

N Specifies that data entered in this field is not folded (default
value)

FLDFOLD specifies whether lowercase alphabetic characters that the user
enters are to be folded (converted) to uppercase.

Note: FLDFOLD is not allowed for DBCS fields.

HEXEDIT=

Y Specifies that only hexadecimal digits can be entered (default for
HEX fields)

N Specifies the map field is not checked for hexadecimal characters
(default for all fields except HEX fields)

HEXEDIT specifies whether the input field is checked for hexadecimal digits.
The data type of the variable field must be CHA or HEX for Y to be specified.

For HEX fields, the default is Y. Otherwise, the default is N.

INPUTREQ=

Y Specifies that data must be entered in a map field

N Specifies that input is not required in the field (default value)

INPUTREQ indicates whether data must be entered in a map field. When a
field contains data other than blanks for character type or zeros for numeric
types, the field is considered to have input. Blanks in a character field and
zero in a numeric field do not satisfy the input required edit check. Even if
blanks for character fields and zeros for numeric fields are valid values,
INPUTREQ will return an error message unless the user types data into the
field.

Chapter 7. Data item structures 129

JUSTIFY=

LEF Specifies left justification (default for character data)

RIG Specifies right justification (default for numeric data)

N Specifies no justification

JUSTIFY specifies the position of data in a variable field when the data is
shorter than the length of the field. If JUSTIFY is not specified, character data
is left justified and numeric data is right justified. Right justification is
required for numeric data with decimal positions or sign specified.
JUSTIFY=N is not valid for numeric fields.

MININPUT=

N Specifies no minimum number of characters required (default
value)

positions
Specifies the minimum number of characters that must be
entered in a valid variable field

MININPUT specifies the minimum number of characters that must be entered
in a variable field if any data is entered.

NUMSEP=

Y Specifies that data can contain numeric separators

N Specifies that data cannot contain numeric separators (default
value)

NUMSEP specifies whether data in a field can contain the previously defined
numeric separator. The default numeric separator is a comma. Your system
administrator can change the default character using the customization
procedures for language-dependent options.

If YES is specified, numeric separators are allowed in the field on input. After
input editing, the numeric separators are removed before the field is placed in
internal storage. On output, numeric separators are inserted between every
three significant digits. Every fourth position to the left of the decimal point
will be a separator. You can only specify NUMSEP=Y for numeric fields.

130 VisualAge Generator: External Source Format Reference

When defining field length, remember that each numeric separator takes up
one position. If NUMSEP=N is specified, validation is done to ensure that the
user did not enter a numeric separator in the field.

RANGE=

lowvalue
Specifies the smallest numeric value for a field

highvalue
Specifies the largest numeric value for a field

RANGE specifies the range of valid numeric values for a field. Lowvalue is
the smallest numeric value that can be entered in a specified field. Highvalue
is the largest numeric value that can be entered in a specified field. The high
and low values must have the same length, number of decimal positions, and
sign as defined for the field. Both low and high values must be specified if
this attribute is used. The values are separated by a space and cannot be
longer than the length of the field being defined. RANGE can be specified
only for numeric fields.

SIGN=

LEA Specifies a leading sign (default value for numeric fields)

TRA Specifies a trailing sign

N Specifies no sign (default value for character fields)

SIGN specifies whether a sign is displayed in a field and whether it is a
leading or a trailing sign. You can specify signs for numeric fields only. When
defining field length, remember that the sign takes up one position.

SOSI=

Y Specifies that mixed data entered in the map field on an ASCII
device is to be checked to see if it will fit into the field after
conversion into the EBCDIC SO/SI format for mixed data
(default value for mixed data items)

N Specifies that mixed data entered in the map field on an ASCII
device is not to be checked to see if it will fit into the field after
conversion into the EBCDIC SO/SI format for mixed data
(default value for all item types except mixed data items)

Chapter 7. Data item structures 131

ZEROEDIT=

Y Specifies the display format for numeric fields containing zero
values

N Specifies that no editing is done on numeric fields containing
zero values (default value)

ZEROEDIT specifies the display format for numeric fields containing zero
values. The following table gives a list of what a numeric field will contain
when ZEROEDIT is specified with either Y or N. The sample field has been
defined as right justified with a length of 11. A “b” represents a blank fill
character.

DEC (2)
CURRSYMB /

NUMSEP FILL ZEROEDIT= N ZEROEDIT= Y

N N N nulls 0

N N b blanks bbbbbbbbbb0

N N 0 00000000000 00000000000

N N * *********** **********0

Y N N nulls 0.00

Y N b blanks bbbbbbb0.00

Y N 0 00000000000 00000000.00

Y N * *********** *******0.00

Y Y N nulls $0.00

Y Y b blanks bbbbbb$0.00

Y Y 0 00000000000 $000,000.00

Y Y * *********** ******$0.00

Data item message definition

The MESSAGES tag specifies the data item messages from a user-defined
message table. This optional tag with its attributes further describes the ITEM
and EITEM tag set.

Message numbers must be in the range of -9999 to 9999.

132 VisualAge Generator: External Source Format Reference

:MESSAGES tag attributes

Syntax Attributes
:item
... :MESSAGES

:messages Attributes Values Uses
... [EDITMSG= message number] Specifies the message

number of the edit routine
error message

:eitem [INVALMSG= message number] Specifies the message
number of the data type
error message

[MININMSG= message number] Specifies the message
number of the minimum
input error message

[RANGEMSG= message number] Specifies the message
number of the value error
message

[REQMSG= message number] Specifies the message
number of the input required
error message

[.]

EDITMSG=

message number
Specifies the number of the message displayed when the data
fails a modulus check or table edit check

If you do not specify this attribute, the default error message for a modulus
check is “Modulus check error—reenter”, and the default error message for a
table edit check is “Table edit validity error—reenter”.

INVALMSG=

message number
Specifies the message number of the message displayed when
the data entered is incompatible with the variable field data type

If you do not specify this attribute, the default error message for invalid data
type is “Data type error in input—reenter”.

Chapter 7. Data item structures 133

MININMSG=

message number
Specifies the number of the message displayed when the
minimum input edit check fails

If you do not specify this attribute, the default error message for this error is
“Input minimum length error—reenter”.

RANGEMSG=

message number
Specifies the number of the message displayed when the
minimum or maximum value check fails

If you do not specify this attribute, the default error message is “Input not
within defined range—reenter”.

REQMSG=

message number
Specifies the number of the message displayed when the input
required edit check fails

If you do not specify this attribute, the default error message for this error is
“No input received for required field—reenter”.

User interface properties definition

The UIPROP tag specifies property information about an item. This optional
tag further defines the ITEM tag. The optional tags GENEDITS, UIMSGS,
NUMEDITS, FLDHELP, and LABEL provide additional user interface
information about the data item. The EUIPROP tag closes the definition and is
required.

:UIPROP tag attributes
There are no attributes for this tag set.

134 VisualAge Generator: External Source Format Reference

General edit characteristic definition

The GENEDITS tag defines a list of general editing characteristics. This
optional tag further defines the UIPROP and EUIPROP tag set.

:GENEDITS tag attributes

Syntax Attributes
:item
... :GENEDITS

:uiprop Attributes Values Uses
... [EDITFUNC= function name] Specifies the function used

for special data editing

:genedits [EDITTBLE= table name] Specifies the table used for
special data editing

... [EDITTYPE= {BOOLEAN|DATE|
TIME|NONE}]

Specifies the type of editing
to be done on the data item

:euiprop [FILLCHAR= ‘fill character’] Specifies the character used
to fill unused field positions

... [FLDFOLD= {Y|N}] Specifies whether data
entered into the field is
folded

:eitem [INPUTREQ= {Y|N}] Specifies whether valid data
must be entered

[MININPUT= {N|positions}] Specifies the minimum
number of required
characters

[RUNATWEB= {Y|N}] Specifies whether edits are
to be performed at the WEB
site or at the VG Server

[SOSI= {Y|N}] Specifies whether to check
mixed data to see if it will
fit into the field after
conversion.

[.]

Chapter 7. Data item structures 135

EDITFUNC=

function name
Specifies the name of a function used for special editing of data
in a variable field

EDITFUNC indicates the name of a routine to be used for special editing
of data that the user enters in a variable field. You can specify one of the
following:
v The name of one of the following special funtion word subroutines:

– Modulus 10 check digit routine (EZEC10)
– Modulus 11 check digit routine (EZEC11)

v The name of an edit routine.

EDITTBLE=

table name
Specifies the name of a table used for special editing of data in a
variable field

EDITTYPE=

BOOLEAN
Specifies to the UI record that the data in the item is in the form
of a Boolean value.

DATE Specifies to the UI record that the data in the item is in the form
of a Date value.

TIME Specifies to the UI record that the data in the item is in the form
of a Time value.

NONE
Specifies to the UI record that the data in the item is in no
particular form. (default value)

FILLCHAR=

‘fill character’
Specifies the character used to fill unused field positions

136 VisualAge Generator: External Source Format Reference

FILLCHAR indicates the character used to fill unused field positions on
output.

FLDFOLD

Y Specifies that data is folded

N Specifies that data is not folded (default value)

FLDFOLD specifies whether lowercase alphabetic characters entered by the
user are to be folded (converted) to uppercase.

INPUTREQ=

Y Specifies that data must be entered in the field

N Specifies that input is not required in the field (default value)

INPUTREQ indicates whether data must be entered in a field. When a field
contains data other than blanks for character type or zeros for numeric types,
the field is considered to have input. Blanks in a character field and zero in a
numeric field do not satisfy the input required edit check. Even if blanks and
zeros are valid values, INPUTREQ returns an error message unless the user
types data into the field.

MININPUT=

N Specifies no minimum number of characters required (default
value)

positions
Specifies the minimum number of characters that must be
entered in a valid variable field

MININPUT specifies the minimum number of characters that must be entered
in a variable field if any data is entered.

Chapter 7. Data item structures 137

RUNATWEB=

Y Specifies that the edits are to be performed at the WEB Server
site

N Specifies that the edits are to be performed by the VG Server
program

SOSI=

Y Specifies that mixed data entered in the field on an ASCII device
is to be checked to see if it will fit into the field after conversion
into the EBCDIC SO/SI format for mixed data (default for mixed
type fields)

N Specifies that mixed data entered in the field on an ASCII device
is not to be checked to see if it will fit into the field after
conversion into the EBCDIC SO/SI format for mixed data
(default for all fields except mixed type fields)

Message key definition

The UIMSGS tag specifies property information about message keys for a data
item. This optional tag further defines the UIPROP and EUIPROP tag set.

:UIMSGS tag attributes

Syntax Attributes
:item
... :UIMSGS

:uiprop Attributes Values Uses
... [FUNCKEY= ‘edit function message

key’]
Specifies the message key to
be used when an edit
function is used to
determine an error
condition exists

:uimsgs [MININKEY= ‘minimum input
message key’]

Specifies the message key to
be used when fewer than
the minimum characters are
input

138 VisualAge Generator: External Source Format Reference

Syntax Attributes
... [RANGEKEY= ‘numeric range

message key’]
Specifies the message key to
be used when the user
enters data that is out of
range for this field

:euiprop [REQKEY= ‘input required
message key’]

Specifies the message key to
be used when the user does
not enter data into a field
that must contain data

... [TBLEKEY= ‘edit table message
key’]

Specifies the message key to
be used when an edit table
is used to determine an
error condition exists

[TYPEKEY= ‘data type message
key’]

Specifies the message key to
be used when the type of
data entered by the user is
not valid for the field

:eitem [.]

FUNCKEY=

‘edit function message key’
Specifies the message key to be used when an edit function is
used to determine an error condition exists

MININKEY=

‘minimum input message key’
Specifies the message key to be used when fewer than the
minimum characters are input

RANGEKEY=

‘numeric range message key’
Specifies the message key to be used when the user enters data
that is out of range for this field

Chapter 7. Data item structures 139

REQKEY=

‘input required message key’
Specifies the message key to be used when the user does not
enter data into a field that must contain data

TBLEKEY =

‘edit table message key’
Specifies the message key to be used when an edit table is used
to determine an error condition exists

TYPEKEY=

‘data type message key’
Specifies the message key to be used when the type of data
entered by the user is not valid for the field

Numeric edit characteristic definition

The NUMEDITS tag defines a list of numeric editing characteristics. This
optional tag further defines the UIPROP and EUIPROP tag set. It can only be
specified for numeric data items.

:NUMEDITS tag attributes

Syntax Attributes
:item
... :NUMEDITS

:uiprop Attributes Values Uses
... CURRENCY= {Y|N}] Specifies whether a default

currency symbol is to be
used

:numedits
[CURRSYMB= ‘symbol’] Specifies a 1- to 3-character

currency symbol
... [NUMSEP= {Y|N}] Specifies whether data can

contain numeric separators

:uiprop
[RANGE= lowvalue highvalue] Specifies the range of valid

numeric values

140 VisualAge Generator: External Source Format Reference

Syntax Attributes
... [SIGN= {LEA|TRA|N}] Specifies a sign in the field

as leading, trailing, or none

[ZEROEDIT= {Y|N}] Specifies the format for
fields that have zero values

:eitem [.]

CURRENCY=

Y Specifies that the currency symbol is to be used

N Specifies that no currency symbol is to be used (default value)

CURRENCY indicates whether the currency symbol is supported in the field.
Y is valid only for numeric fields. When defining field length, there must be
enough room for each character specified on CURRSYMB.

CURRSYMB=

‘symbol’
Specifies a 1- to 3-character currency symbol to be used if
CURRENCY is Y

NUMSEP=

Y Specifies that a numeric separator is to be used with the field

N Specifies that a numeric separator is not to be used with the field
(default value)

NUMSEP specifies whether data in a field can contain the previously defined
numeric separator. The default numeric separator is a comma. Your system
administrator can change the default character using the customization
procedures for language-dependent options.

If YES is specified, numeric separators are allowed in the field on input. After
input editing, the numeric separators are removed before the field is placed in
internal storage. On output, numeric separators are inserted between every
three significant digits. Every fourth position to the left of the decimal point
will be a separator. You can only specify NUMSEP=Y for numeric fields.
When defining field length, remember that each numeric separator takes up

Chapter 7. Data item structures 141

one position. If NUMSEP=N is specified, validation is done to ensure that the
user did not enter a numeric separator in the field.

RANGE=

lowvalue
Specifies the smallest numeric value for a field

highvalue
Specifies the largest numeric value for a field

RANGE specifies the range of valid numeric values for a field. Lowvalue is
the smallest numeric value that can be entered in a specified field. Highvalue
is the largest numeric value that can be entered in a specified field. The high
and low values must have the same length, number of decimal positions, and
sign as defined for the field. Both low and high values must be specified if
this attribute is used. The values are separated by a space and cannot be
longer than the length of the field being defined. RANGE can be specified
only for numeric fields.

SIGN=

LEA Specifies a leading sign

TRA Specifies a trailing sign

N Specifies no sign (default value)

SIGN specifies whether a sign is displayed in a field and whether it is a
leading or a trailing sign. You can specify signs for numeric fields only. When
defining field length, remember the sign takes up one position.

ZEROEDIT=

Y Specifies the display format for numeric fields containing 0
values

N Specifies that no editing is done on 0 numeric fields (default
value)

ZEROEDIT specifies the display format for numeric fields that have 0 values.

142 VisualAge Generator: External Source Format Reference

Field help definition

The FLDHELP tag begins the set of text lines that are to be displayed as help
for this field. This optional tag further defines the UIPROP and EUIPROP tag
set. The EFLDHELP tag closes the definition, and if you use the FLDHELP
tag, the EFLDHELP tag is required.

The FLDHELP tag can appear only once for each item within a record
definition.

:FLDHELP tag values

Syntax Usage
:item
... :FLDHELP

:uiprop Values Uses
... [.[field help text]] Specifies the help text for a data item

:fldhelp...

:EFLDHELP [.]

:efldhelp
:eitem [.]

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 2000 bytes. You can use both uppercase
and lowercase characters. The help text must be preceded by a period (.). Text
is saved as entered.

Label definition

The LABEL tag begins the text lines that are to be displayed as the label text
for this field. This optional tag further defines the UIPROP and EUIPROP tag
set. The ELABEL tag closes the definition, and if you use the LABEL tag, the
ELABEL tag is required.

The LABEL tag can appear only once for an item within a record definition.

:LABEL tag values

Syntax Usage
:item
... :LABEL

Chapter 7. Data item structures 143

Syntax Usage
:label Values Uses
... [.[label text]] Specifies the label for an item

:elabel :ELABEL [.]
...

:eitem [.]

Each label must be contained on a single line. A single line cannot exceed
2000 bytes. You can use both uppercase and lowercase characters. The label
text must be preceded by a period (.). Text is saved as entered.

Templates tracability information

Templates tracability information is defined for a data item part as described
in “Chapter 16. Templates traceability information structures” on page 213.

144 VisualAge Generator: External Source Format Reference

Data item definition syntax example

Note: This example illustrates the syntax of all data item definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:item name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
assocto = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss' type = xxxx
bytes = xxxxx decimals = xx evensql = x
desc = 'A 30 character description'.

:mapedits fldfold = x
range = xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx
mininput = xx
fillchar = 'x'
editrtn = xxxxxxxxxxxxxxxxxx
dateform = 'xxxxxxxxxx'
currsymb = x sosi = x sign = xxx numsep = x
inputreq = x justify = xxx hexedit = x zeroedit = x.

:messages invalmsg = xxxxx
mininmsg = xxxxx
reqmsg = xxxxx
editmsg = xxxxx
rangemsg = xxxxx.

:uiprop.
:genedits edittype = xxxx

editfunc = xxxxxxxxxxxxxxxxxx
edittble = xxxxxxx
fillchar = 'x'
fldfold = x
inputreq = x
mininput = xxxxx
runatweb = x
sosi = x.

:uimsgs tblekey = 'xxxxxxxxxx'
funckey = 'xxxxxxxxxx'
mininkey = 'xxxxxxxxxx'
rangekey = 'xxxxxxxxxx'
reqkey = 'xxxxxxxxxx'
typekey = 'xxxxxxxxxx'.

:numedits currency = x sign = xxx numsep = x
currsymb = 'xxx'
range = xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx
zeroedit = x.

:fldhelp.
Field help text goes here
:efldhelp.
:label.
Field label text goes here
:elabel.
:euiprop.
:eitem.

Chapter 7. Data item structures 145

146 VisualAge Generator: External Source Format Reference

Chapter 8. Program specification block structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator program specification block (PSB).

PSB definition

The PSB tag and its attributes define PSB parts.

The PSB tag specifies a set of DL/I database structures that a program can
access. The PSB part contains a subset of the information in a DL/I PSB. The
PSB structure also identifies the PCBs used for terminal, printer, and message
queue support in the IMS/VS and IMS BMP environments.

The PCB and SENSEG tags further define aspects of a PSB part and can have
attributes. The EPSB tag closes the definition, and if you use the PSB tag, the
EPSB tag is required.

:PSB tag attributes

Syntax Attributes
:psb
... :PSB

:pcb Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the PSB

member was last modified

:senseg NAME= name Specifies a PSB member
... [TIME= ‘modification time’] Specifies the time the PSB

member was last modified

:vagt...
:tracbag...
:etracbag

[.]

:epsb :EPSB [.]

© Copyright IBM Corp. 1980, 2000 147

DATE=

‘modification date’
Specifies the date the PSB part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

name Specifies the PSB part

NAME specifies a PSB part. It consists of 1 to 8 characters and must meet the
following conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@)
v The name cannot contain blanks or have an EZE prefix.

TIME=

‘modification time’
Specifies the time the PSB part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Program communication block (PCB) specification

The PCB tag specifies a program communication block entry in the DL/I
program specification block. This tag further describes the PSB and EPSB tag
set.

The PCB tag can be repeated once for each program communication block in
the DL/I program specification block.

:PCB tag attributes

Syntax Attributes
:psb
... :PCB

148 VisualAge Generator: External Source Format Reference

Syntax Attributes
:pcb Attributes Values Uses
... [DBNAME= database name] Specifies a database used

with the PSB

:senseg [TYPE= {TP|DB|GSAM}] Specifies the type of PCB
... [.]

:epsb

DBNAME=

database name
Specifies a database used with the PSB

DBNAME is required for DB and GSAM PCBs and cannot be specified for TP
PCBs.

DBNAME consists of 1 to 8 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@)
v The database name cannot contain blanks or have an EZE prefix.

TYPE=

TP Specifies a teleprocessing PCB

DB Specifies a database PCB (default value)

GSAM
Specifies a GSAM PCB

TYPE specifies the type of PCBs.

Specify PCBs in the following order:
1. TP
2. DB
3. GSAM.

Chapter 8. Program specification block structures 149

Segment sensitivity specification

The SENSEG tag specifies segment sensitivity for a PCB entry in the DL/I
PSB. Its attributes further describe the PSB and EPSB tag set. This tag is
required for TYPE DB unless DBNAME is ELAWORK or ELAMSG.
ELAWORK and ELAMSG represent work and message databases required for
running the program with VisualAge Generator Server for MVS, VSE, and
VM. SENSEG is not allowed for teleprocessing (TP) and GSAM PCBs.

The SENSEG tag can be repeated for each sensitive segment in a DB PCB. The
order of the SENSEG tags determines the order of the sensitive segments in
the PCB.

:SENSEG tag attributes

Syntax Attributes
:psb
... :SENSEG

:pcb Attributes Values Uses
... [IKEY= secondary index field

name]
Specifies the secondary
index key field

:senseg [PARENT= {0|parent name}] Specifies the segment’s
parent segment

... SEGMENT= segment name Specifies a segment in the
database

:epsb [.]

IKEY=

secondary index field name
Specifies the secondary index key field

IKEY must be the name of an item defined in the segment or in working
storage. IKEY must also be the same name defined in the NAME operand in
the XDFLD statement that defines the secondary index field in the DL/I
database description (DBD). You can specify IKEY for the root segment only.

IKEY consists of 1 to 8 characters and must meet the following conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@)

150 VisualAge Generator: External Source Format Reference

v The secondary index field name cannot contain blanks or have an EZE
prefix.

PARENT=

0 Specifies 0 as the parent (only valid for the root segment)

parent name
Specifies the segment’s parent segment

PARENT must be the name defined in the PARENT operand in the SENSEG
statement in the DL/I PSB. PARENT is required for all but the root segment.

PARENT consists of 1 to 8 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@)
v The parent name cannot contain blanks or have an EZE prefix.

SEGMENT=

segment name
Specifies a segment in the database

SENSEG must be the same as defined in the NAME operand in the SENSEG
statement in the DL/I PSB.

SEGMENT consists of 1 to 8 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@)
v The segment name cannot contain blanks or have an EZE prefix.

Templates tracability information

Templates tracability information is defined for a PSB part as described in
“Chapter 16. Templates traceability information structures” on page 213.

Chapter 8. Program specification block structures 151

PSB definition syntax example

Note: This example illustrates the syntax of all PSB definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:psb name = xxxxxxxx date = 'mm/dd/yyyy' time = 'hh:mm:ss'
assocto = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'.

:pcb dbname = xxxxxxxx type = xxxx.
:senseg segment = xxxxxxxx parent = 0 ikey = xxxxxxxx.
:pcb dbname = xxxxxxxx type = xxxx.
:senseg segment = xxxxxxxx parent = 0 ikey = xxxxxxxx.
:senseg segment = xxxxxxxx parent = xxxxxxxx.
:pcb dbname = ELAWORK type = xxxx.
:pcb dbname = ELAMSG type = xxxx.
:pcb dbname = xxxxxxxx type = xxxx.
:epsb.

152 VisualAge Generator: External Source Format Reference

Chapter 9. Map structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator map.

Map definition

The MAP tag defines attributes for individual map parts. The PRESENT,
CFIELD, CATTR, VFIELD, MAPEDITS, MESSAGES, and VATTR tags further
define aspects of a map and can have attributes. The EMAP tag closes the
definition.

Naming fields on a map part does not define the associated data item parts or
create the data item parts for fields that are defined in external source format
when the map is edited with map definition.

The CFIELD and VFIELD tags describe constant and variable fields on the
map. You must describe the fields in the order that they appear on the map
(top to bottom, left to right). Therefore, the order of CFIELD and VFIELD tags
depends on the constant and variable fields defined on the map.

:MAP tag attributes

Syntax Attributes
:map
... :MAP

:present Attributes Values Uses
...
:cfield

[BYPKEY= number list] Specifies up to five keys
that allow the user to
bypass map edits and map
edit groups

... [DATE= ‘modification date’] Specifies the date the map
was last modified

:cattr...

DEVICES= device names Specifies the device or
devices for which the map
is defined

:ecfield GRPNAME= name Identifies a group of maps
used with a program

... [HELPKEY= number] Specifies the key that
displays help

© Copyright IBM Corp. 1980, 2000 153

Syntax Attributes
:vfield [HELPMAP= map name] Specifies the name of a

user-defined help map
... MAPNAME= name Identifies the map within a

map group

:mapedits [MAPSIZE= lines columns] Specifies the number of
lines and columns for the
map

...
:messages

[SOSIPOS= {Y|N}] Specifies whether SO and SI
delimiters take a position
(this value is valid for DBCS
or mixed data)

... [STARTPOS= {line column|1 1|
NEXT SAME}]

Specifies the starting
position of the map

:vattr [TIME= ‘modification time’] Specifies the time the map
was last modified

... [.]

:evfield :EMAP [.]
...

:vagt
...

:tracbag
...

:etracbag
:emap

BYPKEY=

number list
Specifies up to five keys that allow the user to bypass map edits
and map edit groups

Specify BYPKEY keys as integers from 1 to 24. Separate multiple keys with
blanks. No default bypass edit keys are designated.

Note: Specifying the bypass edit keys for a map overrides the program
specification bypass keys for that map. The help key cannot be the
same as any of the bypass edit keys.

154 VisualAge Generator: External Source Format Reference

DATE=

‘modification date’
Specifies the date the map part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

DEVICES=

device names
Specifies the device or devices for which the map is defined

You must specify at least one device. If you specify multiple devices, you
must separate them with a blank. The devices you specify must be compatible
with each other.

Devices are considered compatible when they are of the same type (display,
printer, DBCS display, or DBCS printer), and the map being defined fits
within the row and column limitations of the smallest physical device.

The following table lists the valid devices and their sizes.

Supported IBM Devices Rows Columns

3643-2 6 40

3277-1 12 40

3643-4 16 64

3278-1, 3278-1B, ANY-1D 12 80

3278-2, 3278-2B, ANY-2D 24 80

5550D (DBCS display device) 24 80

3278-3, 3278-3B, ANY-3D 32 80

3278-4, 3278-4B, ANY-4D 43 80

3278-5, 3278-5B, ANY-5D 27 132

ANY-D (3290 Configured as 62x160) 255 160

3767 PRINT-B PRINTER (physical size 66x132) 255 132

5550P (DBCS printer with size 66x158) 255 158

Chapter 9. Map structures 155

GRPNAME=

name Identifies a group of maps used with a program

GRPNAME identifies a group of maps used with one program. It consists of 1
to 6 characters and must meet the following conventions:
v The first character must be alphabetic (A-Z)
v The remaining characters are alphanumeric (A-Z, 0-9)
v The name cannot contain blanks or have an EZE prefix.

Map group names cannot contain the characters $, #, and @.

HELPKEY=

number
Specifies the key to use for requesting help from program maps

Specify HELPKEY as an integer ranging from 1 to 24. If you do not specify
this attribute, the help key defined for the program is used. You can only
specify a help key if a help map name is defined.

Note: The help key cannot be the same as any of the bypass edit keys.

HELPMAP=

map name
Specifies the name of a user-defined help map

HELPMAP must be in the help map group or the main map group specified
for the program. The help map cannot have variable fields, and it cannot be a
floating map. If the help map is a partial map, it replaces the full screen. The
help map must be for a display device and not a printer.

MAPNAME=

name Identifies the map within a map group

MAPNAME consists of 1 to 8 characters and must meet the following
conventions:

156 VisualAge Generator: External Source Format Reference

v The first character must be alphabetic or national (A-Z, $, #, and @).
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

and @).
v The name cannot contain blanks or have an EZE prefix.

MAPSIZE=

lines Specifies the number of lines

columns
Specifies the number of columns

In most cases, MAPSIZE defaults to the smallest of the devices specified for
the map. Printer maps default to a size of 66 lines but can be made larger. You
can specify the size as less than the default value to define a partial map.
Separate the lines value and the column value with a blank.

SOSIPOS=

Y Specifies that SO/SI positions are represented by blanks in the
printed output (default value)

N Specifies that SO/SI positions are not represented by blanks in
the printed output

SOSIPOS specifies whether shift-out (SO) and shift-in (SI) delimiters take a
position when printing mixed data from a program. When directing printer
output containing DBCS or mixed data to a system printer, specify
SOSIPOS=N if you do not want SO and SI to take a position.

STARTPOS=

line Specifies the line coordinate where the map starts

column Specifies the column coordinate where the map starts

1 Specifies line one (default value)

1 Specifies column one (default value)

NEXT Specifies the next available line within the floating area specified
on the AREA tag (in map group specification)

SAME Specifies the next available column within the floating area
specified on the AREA tag (in map group specification)

Chapter 9. Map structures 157

STARTPOS specifies the map’s starting position on a screen using a line
and column coordinate. Partial maps (maps smaller than the screen size)
can share the same screen display if their position allows all of them to be
vertically contained within the screen area. Separate the line value and the
column value with a blank space. Floating maps are defined by specifying
NEXT and SAME.

TIME=

‘modification time’
Specifies the time the map part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Presentation information definition

The PRESENT tag defines the presentation information used for the map. This
optional tag with its attributes further describes the MAP and EMAP tag set.

:PRESENT tag attributes

Syntax Attributes
:map
... :PRESENT

:present Attributes Values Uses
... [DEFFOLD= {Y|N}] Specifies whether character

data is folded during online
map definition processing

:emap [TABPOS= number list] Specifies tab positions used
during map definition

[VARFOLD= {Y|N}] Specifies whether all
character data and all
single-byte data in mixed
fields is folded at execution
time

[.]

158 VisualAge Generator: External Source Format Reference

DEFFOLD=

Y Specifies that character data is folded during map presentation
processing

N Specifies that character data is not folded during map
presentation processing (default value)

DEFFOLD indicates whether characters entered in the map presentation
display of VisualAge Generator map definition are folded. Folding affects
online definition processing only. See FLDFOLD on page 174 and VARFOLD
for information on how to affect execution processing.

TABPOS=

number list
Specifies tab positions used during map definition

TABPOS allows you to specify ten tab positions; import sorts them into
ascending order. You must separate tab positions with blanks. The default is
one tab of 1.

VARFOLD=

Y Specifies that all character data and all single-byte data in mixed
fields on the map are folded to uppercase (default value)

N Specifies that all character data and all single-byte data in mixed
fields remains as entered (uppercase and lowercase) or are
folded on a field-to-field basis as specified on the MAPEDITS tag
for each VFIELD.

VARFOLD specifies whether all character and all single-byte data entered on a
map during execution is folded to uppercase. Folding does not affect numeric
or DBCS data.

Constant field definition

The CFIELD tag specifies information about a constant field on the map. The
optional tag CATTR provides additional information about a constant field.
The ECFIELD tag closes the definition and is required for each CFIELD.

Chapter 9. Map structures 159

:CFIELD tag attributes

Syntax Attributes
:map
... :CFIELD

:cfield Attributes Values Uses
... BYTES= field length in bytes Specifies the number of

positions the constant field
occupies

:cattr COLUMN= column number Specifies the column of the
byte immediately preceding
the constant field

... ROW= row number Specifies the row of the
byte immediately preceding
the constant field

:ecfield [TYPE= {CHA|DBCS|MIX}] Specifies the type of data
... [.[field text]] Specifies the value of the

constant field

:emap :ECFIELD [.]

BYTES=

field length in bytes
Specifies the number of positions the constant field occupies

COLUMN=

column number
Specifies the column of the byte immediately preceding the
constant field

ROW=

row number
Specifies the row of the byte immediately preceding the constant
field

160 VisualAge Generator: External Source Format Reference

TYPE=

CHA Specifies any character data (default value)

DBCS Specifies double-byte character set, ideographic character data
that requires two positions for each character

MIX Specifies DBCS and single-byte data in the same field

field text

field text
Specifies the value of the constant field

Field text begins in the next available byte immediately following the period.
The period is required if field text is supplied. If a line of text in the external
source format file is longer than 71 characters, place a continuation character
in column 72. Any character in column 72 is a continuation character. The
continuation character causes concatenation of the two lines on import.

Constant field attribute definition

The CATTR tag defines attributes for the constant described in the CFIELD
tag.

:CATTR tag attributes

Syntax Attributes
:map
... :CATTR

:cfield Attributes Values Uses
... [COLOR= {MONO|BLUE|RED|

PINK|GREEN|
TURQUOISE|YELLOW|
WHITE}]

Specifies the color of the
text in the field

:cattr [CURSOR= {Y|N}] Specifies if the cursor is
positioned on this field

... [DATA= {ALPHA|NUMERIC}] Specifies the field data type

:ecfield [DETECT= {Y|N}] Specifies whether the field
is light pen detectable

Chapter 9. Map structures 161

Syntax Attributes
... [ENTER= {Y|N}] Specifies if data is required

to be entered into the field

:emap [FILL= {Y|N}] Specifies whether an error
occurs when a user does not
enter enough characters to
fill the field

[HILITE= {NOHILITE| BLINK|
RVIDEO| USCORE}]

Specifies the highlighting
characteristics of the
constant field

[INTENSE= {NORMAL| DARK|
BRIGHT}]

Specifies the light intensity
of the constant field

[MDT= {Y|N}] Controls the default setting
of the modified data tag
indicator

[OUTLINE= {NOUTLINE|BOX|
[ORIGHT][OLEFT]
[OOVER][OUNDER]}]

Specifies if lines are to be
drawn at the edges of fields
on DBCS devices

[PROTECT= {UNPROTECT|
PROTECT| ASKIP}]

Specifies whether data can
be entered into the field

[.]

COLOR=

MONO
Specifies monochrome (default value)

BLUE Specifies blue

RED Specifies red

PINK Specifies pink

GREEN
Specifies green

TURQUOISE
Specifies turquoise

YELLOW
Specifies yellow

WHITE
Specifies white

COLOR specifies the color of the text in the field when displayed on a color
device.

162 VisualAge Generator: External Source Format Reference

CURSOR=

Y Specifies that the cursor is positioned on this field when the map
is displayed

N Specifies that the cursor is not positioned in this field when the
map is displayed

CURSOR specifies if the cursor is positioned on this field when the map is
displayed. The cursor attribute can be overridden by the program using the
SET map item CURSOR processing statement. The default is the first
unprotected named variable field on the display.

DATA=

ALPHA
Specifies the field will accept character data (default value)

NUMERIC
Specifies the field will accept only numeric data

DATA specifies the data type for the field. Devices that support numeric shift
will automatically shift to numeric mode when data is entered in this field if
NUMERIC is specified.

DETECT=

Y Specifies that a light pen will cause a display device interrupt

N Specifies that a light pen will not cause a display device
interrupt (default value)

DETECT specifies whether a light pen can be used to cause a display device
interrupt in this field. If DETECT=Y and a light pen is pointed at the field (or
it can be cursor selected on some devices), the program is notified.

Chapter 9. Map structures 163

ENTER=

Y Specifies data is required in this field before the Enter or action
key is pressed

N Specifies data is not required in this field (default value)

ENTER specifies whether the device enforces required input entry.

FILL=

Y Specifies an execution error if a user does not enter enough
characters to fill the field

N Specifies no error if less data is entered into a field than is
required to fill the field (default value)

FILL specifies whether the device enforces filling an entire input field. This
specification does not imply that input is required for a field. It means that if
a user enters any characters in a field that has this attribute, the entire field
must be filled.

HILITE=

NOHILITE
Specifies the field has no special highlighting (default value)

BLINK
Specifies the field flashes on and off when a map displays

RVIDEO
Specifies the field displays in reverse video—a dark or light
background with contrasting light or dark text

USCORE
Specifies the field is underlined

164 VisualAge Generator: External Source Format Reference

INTENSE=

NORMAL
Specifies that text is displayed at normal light intensity (default
value)

DARK
Specifies that text is not visible on a terminal display
(passwords, for example)

BRIGHT
Specifies that text is displayed at higher or brighter light
intensity than normal

INTENSE specifies the brightness of the value in the field when displayed on
a screen.

MDT=

Y Specifies the MDT is set on for a field

N Specifies the MDT is set off for a field (default value)

MDT (modified data tag) controls the default setting of the modified data tag
indicator for the field when the field is displayed.

If a field has MDT set on, default data can be presented to the user during
execution. When the map is displayed during execution, the default data for
the field is displayed; the user can accept that data and press the Enter key or
enter new data over the default data. On import, if MDT=Y for a constant
field, it is changed to N.

Chapter 9. Map structures 165

OUTLINE=

NOUTLINE
Draws no outline (default value)

BOX Draws all four outline lines

ORIGHT
Draws a vertical outline on the right side of the field

OLEFT
Draws a vertical outline on the left side of the field

OOVER
Draws a line between the previous row and the current row of
the field

OUNDER
Draws a line between the current row and the next row of the
field

OUTLINE allows lines to be drawn at the edges of fields on the DBCS
devices. When using this attribute, you must specify either NOUTLINE, BOX,
or any combination of the remaining values. This is the only attribute that
applies to both displays and printers.

PROTECT=

UNPROTECT
Specifies that data can be entered in a field

PROTECT
Specifies that data cannot be entered in a field

ASKIP
(Autoskip) Specifies that the field is automatically skipped by
the cursor when the tab key is used (default value)

PROTECT specifies whether data can be entered in a field. A field with ASKIP
specified is also protected.

166 VisualAge Generator: External Source Format Reference

Variable field definition

The VFIELD tag specifies information about a variable field on the map. The
optional tags MAPEDITS, MESSAGES, and VATTR provide additional
information about a variable field. The EVFIELD tag closes the definition and
is required for each VFIELD.

:VFIELD tag attributes

Syntax Attributes
:map
... :VFIELD

:vfield Attributes Values Uses
... BYTES= field length in bytes Specifies the number of

positions the variable field
occupies

:mapedits COLUMN= column number Specifies the column of the
byte immediately preceding
the variable field

... [DECIMALS= {0|decimal places}] Specifies the number of
positions to the right of a
decimal point in numeric
items

:messages [DESC= ‘field description’] Describes what the field
represents

... [EDITORDR= number] Specifies the position in the
map edit sequence

:vattr [INDEX= index value] Specifies the index value
when the field is an element
in an array

... [NAME= field name] Identifies a map variable
field

:evfield ROW= row number Specifies the row of the byte
immediately preceding the
variable field

... [TYPE= {CHA|DBCS|MIX|
NUM}]

Specifies the data type

:emap [.[initial value]] Specifies the initial value of
the field

:EVFIELD [.]

Chapter 9. Map structures 167

BYTES=

field length in bytes
Specifies the number of positions the variable field occupies

COLUMN=

column number
Specifies the column of the byte immediately preceding the
variable field

DECIMALS=

0 Specifies 0 decimal places (default value)

decimal places
Specifies a number of decimal places

DECIMALS is the number of positions to the right of an implied decimal
point in numeric items. Decimal places can be specified only for numeric data.
The maximum number of decimal positions is 18 or the number of digits
defined for the field, whichever is smaller.

DESC=

‘field description’
Describes what the variable field represents

DESC is a text description of what the variable field represents. The text can
be up to 30 characters.

EDITORDR=

number
Specifies the position in the map edit sequence

EDITORDR allows you to modify the sequence in which map variable fields
are checked on input to a program. If you specify EDITORDR for any variable
named field on the map, you must specify it for all named fields, unless the

168 VisualAge Generator: External Source Format Reference

field is in an array. EDITORDR can only be specified for the first element of
an array. If not specified for any variable field, the default edit order is the
order in which the variable fields appear on the map.

INDEX=

index value
Specifies the index value when the field on the map is an
element of an array

INDEX must be a number between one and 9999. When the index value is 1,
any of the attributes of the VFIELD tag can be specified. If the field is part of
an array, then INDEX must be specified.

If INDEX is greater than 1, the following attributes can be specified:
v ROW
v COLUMN
v BYTES
v TYPE
v NAME
v INITIAL VALUE.

If INDEX is greater than 1, the following attributes cannot be specified:
v DECIMALS
v DESC
v EDITORDR.

If INDEX is greater than 1, the following tags cannot be specified:
v MAPEDITS
v MESSAGES.

NAME=

field name
Identifies a map variable field

NAME consists of 1 to 32 characters and must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @)
v The remaining characters must be alphanumeric or national characters,

hyphens, or underscores (A-Z, 0-9, $, #, @, -, _).
v The name cannot contain blanks or have an EZE prefix, except EZEMSG.

Chapter 9. Map structures 169

The name can be a DBCS name up to 15 DBCS characters long with no
embedded blanks.

ROW=

row number
Specifies the row of the byte immediately preceding the variable
field

TYPE=

CHA Specifies any character data (default value)

DBCS Specifies double-byte character set, ideographic character data
that requires two positions for each character

MIX Specifies DBCS and single-byte data in the same field

NUM Specifies numeric data

TYPE specifies the type of data that is acceptable for the variable field. Data
input is checked to ensure the type of data entered is valid for the field.

initial value

initial value
Specifies the initial value for the variable field

Field text begins in the next available byte immediately following the period.
The period is required if field text is supplied. If a line of text in the external
source format file is longer than 71 characters, place a continuation character
in column 72. Any character in column 72 is a continuation character. The
continuation character causes concatenation of the two lines on import.

Map edit characteristic definition

The MAPEDITS tag defines a list of map editing characteristics that can be
specified for variable fields described with the VFIELD tag. This optional tag
and its attributes further describes the VFIELD tag.

170 VisualAge Generator: External Source Format Reference

:MAPEDITS tag attributes

Syntax Attributes
:map
... :MAPEDITS

:vfield Attributes Values Uses
... [CURRSYMB= {Y|N}] Specifies whether the

currency symbol is
supported

:mapedits [DATEFORM= {‘date edit mask’|
SYSGREGRN|
SYSJULIAN|
number}]

Specifies the date format
editing

... [EDITRTN= edit routine] Specifies a routine or edit
table for special data editing

:messages [FILLCHAR= {‘N’|‘fill character’}] Specifies the character used
to fill unused field positions

... [FLDFOLD= {MAP|Y|N}] Specifies whether data
entered into the field is
folded

:vattr [HEXEDIT= {Y|N}] Specifies whether only
hexadecimal digits can be
entered in the input field

... [INPUTREQ= {Y|N}] Specifies whether valid data
must be entered

:evfield [JUSTIFY= {LEF|RIG|N}] Specifies the position of
data when it is shorter than
the length of the field

... [MININPUT= {N|positions}] Specifies the minimum
number of required
characters

:emap [NUMSEP= {Y|N}] Specifies whether data can
contain numeric separators

[RANGE= lowvalue highvalue] Specifies the range of valid
numeric values

[SIGN= {LEA|TRA|N}] Specifies a sign in the field
as leading, trailing, or none

[SOSI= {Y|N}] Specifies whether to check
mixed data to see if it will
fit into the field after
conversion

[ZEROEDIT= {Y|N}] Specifies the format for
numeric fields that have
zero values

[.]

Chapter 9. Map structures 171

CURRSYMB=

Y Specifies the currency symbol is supported

N Specifies the currency symbol is not supported (default value)

CURRSYMB indicates whether the currency symbol is supported in the field.
Y is valid only for numeric fields. When defining field length, remember the
currency symbol takes up one position.

DATEFORM=

‘date edit mask’
Specifies a valid date edit mask

SYSGREGRN
Specifies a system default Gregorian format

SYSJULIAN
Specifies a system default Julian format

number
Specifies a predefined date format is used when data is entered
or displayed

DATEFORM indicates the date format of a map field.

Date edit mask has a maximum length of 10 and consists of DD, MM, YY,
DDD, or YYYY in any order separated by a non-numeric single-byte character,
except D, M, and Y. If a single quote is used as a separator character, it must
be specified as two single quotes in succession.

For all dates, the map field length must be the same length as the valid date
edit mask. For example, for date edit mask ’MM/DD/YYYY’ the map field
length must be 10, while for ’MM/DD/YY’ the map field length must be 8.

Number consists of an integer from 1 to 17 that represents a predefined date
edit mask, as indicated in the following table.

Number Short Format Long Format

1 MM/DD/YY MM/DD/YYYY

2 MM-DD-YY MM-DD-YYYY

3 MM:YY MM:YYYY

172 VisualAge Generator: External Source Format Reference

Number Short Format Long Format

4 YY/MM/DD YYYY/MM/DD

5 YY-MM-DD YYYY-MM-DD

6 YY:MM YYYY:MM

7 DD/MM/YY DD/MM/YYYY

8 DD-MM-YY DD-MM-YYYY

9 DD:MM:YY DD:MM:YYYY

10 YY-DDD YYYY-DDD

11 YY:DDD YYYY:DDD

12 MM.DD.YY MM.DD.YYYY

13 YY.MM.DD YYYY.MM.DD

14 DD.MM.YY DD.MM.YYYY

15 YY.DDD YYYY.DDD

16 SYSGREGRN SYSGREGRN

17 SYSJULIAN SYSJULIAN

Field edits should be defined as follows when specifying date edit option:
v CURRSYMB=N
v DECIMALS=0
v HEXEDIT=N
v NUMSEP=N
v SIGN=N.

The TYPE value must be CHA or NUM.

EDITRTN=

edit routine
Specifies a routine or edit table for special editing of data in a
variable field

EDITRTN indicates the name of a routine or edit table used for special editing
of data that a user enters in a variable field. You can specify one of the
following:
v The name of one of the following types of editing tables:

– Match valid table
– Match invalid table
– Range match valid table.

Chapter 9. Map structures 173

v The name of one of the following special function word subroutines:
– Modulus 10 check digit routine (EZEC10)
– Modulus 11 check digit routine (EZEC11).

v The name of a function used as an edit routine.

FILLCHAR=

‘N’ Specifies a null fill character

‘fill character’
Specifies the character used to fill unused field positions

FILLCHAR indicates the character used to fill unused field positions on
output to the terminal or printer. The default fill character is a null.

FLDFOLD

MAP Specifies folding on all character variable fields

Y Specifies that data is folded

N Specifies that data is not folded

FLDFOLD specifies whether lowercase alphabetic characters entered by the
user are to be folded (converted) to uppercase. MAP means that all character
variable fields and all single-byte data entered into mixed fields are folded
when a user enters data into the fields. This field must be MAP if you specify
VARFOLD=Y. If you specify VARFOLD=N, this value can be either Y or N.
For more information, see VARFOLD= on page 159.

HEXEDIT=

Y Specifies that only hexadecimal digits can be entered

N Specifies the map field is not checked for hexadecimal characters
(default value)

HEXEDIT specifies whether the input field is checked for hexadecimal digits.
The data type of the variable field must be CHA for Y to be specified.

174 VisualAge Generator: External Source Format Reference

INPUTREQ=

Y Specifies that data must be entered in the map field

N Specifies that input is not required in the field (default value)

INPUTREQ indicates whether data must be entered in a map field. When a
field contains data other than blanks for character type or zeros for numeric
types, the field is considered to have input. Blanks in a character field and
zero in a numeric field do not satisfy the input required edit check. Even if
blanks and zeros are valid values, INPUTREQ returns an error message
unless the user types data into the field.

JUSTIFY=

LEF Specifies left justification (default for character data)

RIG Specifies right justification (default for numeric data)

N Specifies no justification

JUSTIFY specifies the position of data in a variable field when the data is
shorter than the length of the field. If JUSTIFY is not specified, character
data is left justified and numeric data is right justified. Right justification is
required for numeric data with decimal positions or sign specified.
JUSTIFY=N is not valid for numeric fields.

MININPUT=

N Specifies no minimum number of characters required (default
value)

positions
Specifies the minimum number of characters that must be
entered in a valid variable field

MININPUT specifies the minimum number of characters that must be
entered in a variable field if any data is entered.

Chapter 9. Map structures 175

NUMSEP=

Y Specifies that data can contain numeric separators

N Specifies that data cannot contain numeric separators (default
value)

NUMSEP specifies whether data in a field can contain the previously
defined numeric separator. The default numeric separator is a comma. Your
system administrator can change the default character using the
customization procedures for language-dependent options.

If YES is specified, numeric separators are allowed in the field on input.
After input editing, the numeric separators are removed before the field is
placed in internal storage. On output, numeric separators are inserted
between every three significant digits. Every fourth position to the left of
the decimal point will be a separator. You can only specify NUMSEP=Y for
numeric fields. When defining field length, remember that each numeric
separator takes up one position. If NUMSEP=N is specified, validation is
done to ensure that the user did not enter a numeric separator in the field.

RANGE=

lowvalue
Specifies the smallest numeric value for a field

highvalue
Specifies the largest numeric value for a field

RANGE specifies the range of valid numeric values for a field. Lowvalue is
the smallest numeric value that can be entered in a specified field.
Highvalue is the largest numeric value that can be entered in a specified
field. The high and low values must have the same length, number of
decimal positions, and sign as defined for the field. Both low and high
values must be specified if this attribute is used. The values are separated
by a space and cannot be longer than the length of the field being defined.
RANGE can be specified only for numeric fields.

176 VisualAge Generator: External Source Format Reference

SIGN=

LEA Specifies a leading sign

TRA Specifies a trailing sign

N Specifies no sign (default value)

SIGN specifies whether a sign is displayed in a field and whether it is a
leading or a trailing sign. You can specify signs for numeric fields only.
When defining field length, remember the sign takes up one position.

SOSI=

Y Specifies that mixed data entered in the map field on an
ASCII device is to be checked to see if it will fit into the field
after conversion into the EBCDIC SO/SI format for mixed
data (default for mixed type fields)

N Specifies that mixed data entered in the map field on an
ASCII device is not to be checked to see if it will fit into the
field after conversion into the EBCDIC SO/SI format for
mixed data (default for all fields except mixed type fields)

ZEROEDIT=

Y Specifies the display format for numeric fields containing 0
values

N Specifies that no editing is done on 0 numeric fields (default
value)

ZEROEDIT specifies the display format for numeric fields that have 0
values. The following table gives a list of what a numeric field will contain
when ZEROEDIT is specified with either Y or N. The sample field has been
defined as right justified with a length of 11. A “b” represents a blank fill
character.

DEC (2)
CURRSYMB /

NUMSEP FILL ZEROEDIT= N ZEROEDIT= Y

N N N nulls 0

N N b blanks bbbbbbbbbb0

Chapter 9. Map structures 177

DEC (2)
CURRSYMB /

NUMSEP FILL ZEROEDIT= N ZEROEDIT= Y

N N 0 00000000000 00000000000

N N * *********** **********0

Y N N nulls 0.00

Y N b blanks bbbbbbb0.00

Y N 0 00000000000 00000000.00

Y N * *********** *******0.00

Y Y N nulls $0.00

Y Y b blanks bbbbbb$0.00

Y Y 0 00000000000 $000,000.00

Y Y * *********** ******$0.00

Field Edit Message Definition

The MESSAGES tag specifies the user-defined messages for the field defined
on the previous VFIELD tag that are generated when the corresponding field
edits are called as specified on the MAPEDITS tag. This optional tag and its
attributes further describes the VFIELD tag.

The message number specified must correspond with a number in the
user-defined message table.

:MESSAGES Tag Attributes

Syntax Attributes
:map
... :MESSAGES

:vfield Attributes Values Uses
... [EDITMSG= message number] Specifies the number of the

edit routine error message

:mapedits [INVALMSG= message number] Specifies the number of the
data type error message

... [MININMSG= message number] Specifies the number of the
minimum input error
message

:messages [RANGEMSG= message number] Specifies the number of the
value error message

... [REQMSG= message number] Specifies the number of the
input required error
message

178 VisualAge Generator: External Source Format Reference

Syntax Attributes
:vattr [.]
...

:evfield
...

:emap

EDITMSG=

message number
Specifies the number of the message displayed when the data
fails a modulus check or table edit check

If you do not specify this attribute, the default error message for a modulus
check is “Modulus check error—reenter”, and the default error message for a
table edit check is “Table edit validity error—reenter”.

INVALMSG=

message number
Specifies the number of the message displayed when the data
entered is incompatible with the variable field data type

If you do not specify this attribute, the default error message for invalid data
type is “Data type error in input—reenter”.

MININMSG=

message number
Specifies the number of the message displayed when the
minimum input edit check fails

If you do not specify this attribute, the default error message for this error is
“Input minimum length error—reenter”.

Chapter 9. Map structures 179

RANGEMSG=

message number
Specifies the number of the message displayed when the
minimum or maximum value check fails

If you do not specify this attribute, the default error message is “Input not
within defined range—reenter”.

REQMSG=

message number
Specifies the number of the message displayed when the input
required edit check fails

If you do not specify this attribute, the default error message for this error is
“No input received for required field—reenter”.

Variable Field Attribute Definition

The VATTR tag defines attributes for individual variable fields described in
the VFIELD tag. This tag is optional.

:VATTR Tag Attributes

Syntax Attributes
:map
... :VATTR

:vfield Attributes Values Uses
... [COLOR= {MONO|BLUE|RED|

PINK|GREEN|
TURQUOISE|WHITE|
YELLOW}]

Specifies the color of the
text in the field

:mapedits [CURSOR= {Y|N}] Identifies if the cursor is
positioned on the field

... [DATA= {ALPHA|NUMERIC}] Specifies the field data type
attribute

:messages [DETECT= {Y|N}] Specifies whether the field
is light pen detectable

... [ENTER= {Y|N}] Specifies if data is required
to be entered into the field

180 VisualAge Generator: External Source Format Reference

Syntax Attributes
:vattr [FILL= {Y|N}] Specifies whether an error

occurs when a user does
not enter enough characters
to fill the field

... [HILITE= {NOHILITE|BLINK|
RVIDEO| USCORE}]

Specifies highlighting
characteristics of the
variable field

:evfield [INTENSE= {NORMAL|DARK|
BRIGHT}]

Specifies the light intensity
of the variable field

... [MDT= {Y|N}] Controls the default setting
of the modified data tag
indicator

:emap [OUTLINE= {NOUTLINE|BOX|
[ORIGHT][OLEFT]
[OOVER][OUNDER]}]

Specifies if lines are to be
drawn at the edges of fields
on DBCS devices

[PROTECT= {UNPROTECT|PROTECT|
ASKIP}]

Specifies whether data can
be entered into the field

[.]

COLOR=

MONO
Specifies monochrome (default value)

BLUE Specifies blue

RED Specifies red

PINK Specifies pink

GREEN
Specifies green

TURQUOISE
Specifies turquoise

YELLOW
Specifies yellow

WHITE
Specifies white

COLOR specifies the color of the text in the field when displayed on a color
device.

Chapter 9. Map structures 181

CURSOR=

Y Specifies that the cursor is positioned on this field when the map
is displayed

N Specifies that the cursor is not positioned in this field when the
map is displayed (default value)

CURSOR specifies if the cursor is positioned on this field when the map is
displayed. The cursor attribute can be overridden by the program using the
SET map item CURSOR processing statement. If CURSOR=Y, the default
cursor position is the first unprotected named variable field on the display.

DATA=

ALPHA
Specifies that the field will accept character data (default value)

NUMERIC
Specifies that the field will accept only numeric data

DATA specifies the data type for the field. Devices that support numeric shift
will automatically shift to numeric mode when data is entered in this field if
NUMERIC is specified.

DETECT=

Y Specifies that a light pen will cause a display device interrupt

N Specifies that a light pen will not cause a display device
interrupt (default value)

DETECT specifies whether a light pen can be used to cause a display device
interrupt in this field. If DETECT=Y and a light pen is pointed at the field (or
it can be cursor selected on some devices), the program is notified.

182 VisualAge Generator: External Source Format Reference

ENTER=

Y Specifies data is required in this field before the Enter or an
action key is pressed

N Specifies data is not required in this field (default value)

ENTER specifies whether the device enforces required input entry.

FILL=

Y Specifies an execution error if a user does not enter enough
characters to fill the field

N Specifies no error if less data is entered into a field than is
required to fill the field (default value)

FILL specifies whether the device enforces filling an entire input field. This
specification does not imply that input is required for a field. It means that if
a user enters any characters in a field that has this attribute, the entire field
must be filled.

HILITE=

NOHILITE
Specifies the field has no special highlighting (default value)

BLINK
Specifies the field flashes on and off when a map displays

RVIDEO
Specifies the field displays in reverse video—a dark or light
background with contrasting light or dark text

USCORE
Specifies the field is underlined

Chapter 9. Map structures 183

INTENSE=

NORMAL
Specifies that text is displayed at normal light intensity (default
value)

DARK
Specifies that text is not visible on a terminal display
(passwords, for example)

BRIGHT
Specifies that text is displayed at higher or brighter light
intensity than normal

INTENSE specifies the brightness of the value in the field when displayed on
a screen.

MDT=

Y Specifies the MDT is set on for a field

N Specifies the MDT is set off for a field (default value)

MDT (modified data tag) controls the default setting of the modified data
indicator for the field when the field is displayed.

If a field has MDT set on, default data can be presented to the user during
execution. When the map is displayed during execution, the definition data
for the field is displayed; the user can accept that data and press Enter or
enter new data over the default data. On import, if MDT=Y for a constant
field, it is changed to N.

184 VisualAge Generator: External Source Format Reference

OUTLINE=

NOUTLINE
Draws no outline (default value)

BOX Draws all four outline lines

ORIGHT
Draws a vertical outline on the right side of the field

OLEFT
Draws a vertical outline on the left side of the field

OOVER
Draws a line between the previous row and the current row of
the field

OUNDER
Draws a line between the current row and the next row of the
field

OUTLINE allows lines to be drawn at the edges of fields on the DBCS
devices. When using this attribute, you must specify either NOUTLINE, BOX,
or any combination of the remaining values. This is the only attribute that
applies to both displays and printers.

PROTECT=

UNPROTECT
Specifies that data can be entered in a field (default value)

PROTECT
Specifies that data cannot be entered in a field

ASKIP
(Autoskip) Specifies the field is automatically skipped

PROTECT specifies whether data can be entered in a field. A field with ASKIP
specified is also protected.

Templates tracability information

Templates tracability information is defined for a map part as described in
“Chapter 16. Templates traceability information structures” on page 213.

Chapter 9. Map structures 185

Map structure syntax example
:map grpname = xxxxxx mapname = xxxxxxxx

date = 'mm/dd/yyyy' time = 'hh:mm:ss'
mapsize = xxx xxx startpos = xxx xxx sosipos = x
helpmap = xxxxxxxx helpkey = xx
bypkey = xx xx xx xx xx
devices = xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx
xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx
xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx.

:present varfold = x deffold = x
tabpos = xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx.

:cfield row = xxx column = xxx
type = xxxx bytes = xxxxx

.field text--X
field text continued---------------

:cattr hilite = xxxxxxxx intense = xxxxxx protect = xxxxxxxxx
color = xxxxxxxxx data = xxxxxxx enter = x
mdt = x fill = x cursor = x
detect = x outline = xxxxxxxx

:ecfield.
:vfield row = xxx column = xxx

type = xxxx bytes = xxxxx decimals = xx
name = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx index = xxxx
desc = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
editordr = xxx

.initial value---X
initial value continued------------
:mapedits fldfold = x

range = xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx
mininput = xx
sosi = x
fillchar = 'x'
editrtn = xxxxxxxxxxxxxxxxxx
dateform = 'xxxxxxxxxx' currsymb = x sign = xxx
numsep = x
inputreq = x justify = xxx hexedit = x
zeroedit = x.

:messages invalmsg = xxxxx
mininmsg = xxxxx
reqmsg = xxxxx
editmsg = xxxxx
rangemsg = xxxxx.

:vattr hilite = xxxxxxxx intense = xxxxxx protect = xxxxxxxxx
color = xxxxxxxxx data = xxxxxxx
enter = x mdt = x fill = x cursor = x detect = x
outline = xxxxxxxx.

:evfield.
:emap.

186 VisualAge Generator: External Source Format Reference

Note: This example illustrates the syntax of all map definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

Chapter 9. Map structures 187

188 VisualAge Generator: External Source Format Reference

Chapter 10. Map group structures

This chapter describes the external source format tags and attributes that
define a VisualAge Generator map group.

Map group definition

The MAPG tag defines attributes for individual map group parts. The AREA
tag further defines aspects of a map group and can have attributes. A map
group part defines the floating areas used by the maps in the map group.

The EMAPG tag is required to close the definition.

Note: The MAPG tag is required only for maps with floating areas.

:MAPG tag attributes

Syntax Attributes
:mapg
... :MAPG

:area Attributes Values Uses
...
:vagt

[DATE= ‘modification date’] Specifies the date the map
group part was last
modified

... GRPNAME= name Identifies the map group

:tracbag [TIME= ‘modification time’] Specifies the time the map
group part was last
modified

... [.]

:etracbag :EMAPG [.]
:emapg

DATE=

‘modification date’
Specifies the date the map group part was last modified

© Copyright IBM Corp. 1980, 2000 189

DATE format is mm/dd/yyyy. Single quotes are optional.

GRPNAME=

name Identifies a group of maps used with a program

GRPNAME identifies a group of maps used with one program. GRPNAME
consists of 1 to 6 characters and must meet the following conventions:
v The first character must be alphabetic (A-Z)
v The remaining characters must be alphanumeric (A-Z, 0-9)
v The name cannot contain blanks or have an EZE prefix.

Map group names in generated COBOL programs cannot contain the
characters $, #, or @.

TIME=

‘modification time’
Specifies the time the map group part was last modified

TIME format is hh:mm:ss. Single quotes are optional.

Floating area definition

The AREA tag defines a floating area. This required tag further describes the
MAPG and EMAPG tag set. If multiple areas are specified, they must have
unique devices specified.

:AREA tag attributes

Syntax Attributes
:mapg
... :AREA

:area Attributes Values Uses
... DEVICE= device name Specifies the device

associated with the floating
area

:emapg [SIZE= depth width] Specifies the size of the
floating area

[STARTPOS= {1 1|line column}] Specifies the starting
position of the floating area

[.]

190 VisualAge Generator: External Source Format Reference

DEVICE=

device name
Specifies the device associated with the floating area

You can specify each device only once in the map group.

The following table gives the valid devices and their sizes.

Supported IBM Devices Rows Columns

3643-2 6 40

3277-1 12 40

3643-4 16 64

3278-1, 3278-1B, ANY-1D 12 80

3278-2, 3278-2B, ANY-2D 24 80

5550D (DBCS display device) 24 80

3278-3, 3278-3B, ANY-3D 32 80

3278-4, 3278-4B, ANY-4D 43 80

3278-5, 3278-5B, ANY-5D 27 132

ANY-D (3290 Configured as 62x160) 255 160

3767 PRINT-B PRINTER (physical size 66x132) 255 132

5550P (DBCS printer with size 66x158) 255 158

SIZE=

depth Specifies the depth of the floating area in number of lines

width Specifies the width of the floating area in number of columns

SIZE is the size of the floating area. Specify size in terms of depth (number of
lines) and width (number of columns). Separate the depth and width values
by a space.

Chapter 10. Map group structures 191

STARTPOS=

1 Specifies line one (default value)

1 Specifies column one (default value)

line Specifies the line coordinate where the floating area starts

column
Specifies the column coordinate where the floating area starts

STARTPOS is the starting position for the floating area. Specify the starting
position in terms of the beginning line and column. Separate the line and
column values by a space.

Templates tracability information

Templates tracability information is defined for a map group part as described
in “Chapter 16. Templates traceability information structures” on page 213.

Map group structure example

Note: This example illustrates the syntax of all map definition tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:mapg grpname = xxxxxx
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:area size = xxx xxx startpos = xxx xxx
device = xxxxxxx.

:emapg.

192 VisualAge Generator: External Source Format Reference

Chapter 11. Options file structures

This chapter describes the tags and attributes that define a VisualAge
Generator options file part.

Options file definition

The OPTIONS tag defines attributes for individual options file parts. The
TEXT tag further defines aspects of the options file part. The EOPTIONS tag
closes the definition and is required.

:OPTIONS tag attributes

Syntax Attributes
:options :OPTIONS

Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the

options file part was last
modified

:text NAME= ’options file name’ Specifies the name of the
options file part

... [TIME= ‘modification time’] Specifies the time the
options file part was last
modified

:etext [.]
... :EOPTIONS [.]

:vagt
...

:tracbag
...

:etracbag
:eoptions

DATE=

modification date
Specifies the date the options file was last modified

© Copyright IBM Corp. 1980, 2000 193

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

‘options file part name’
Identifies the name of the options file part

Note: This attribute is not folded. In order for the part to be found during
generation, the case of the referenced part name must exactly match the
actual part name.

TIME=

modification time
Specifies the time the options file part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Text definition

The TEXT tag begins the character text that represents the options file part
definition. The ETEXT tag closes the text area and is required.

:TEXT tag values

Syntax Usage
:options :TEXT
... Values Uses

:text [.[Options file text]] Specifies the options file definition
... :ETEXT[.]

:etext
...

:eoptions

Templates tracability information

Templates tracability information is defined for an options file part as
described in “Chapter 16. Templates traceability information structures” on
page 213.

194 VisualAge Generator: External Source Format Reference

Options file structure example

Note: This example illustrates the syntax of all options file tags and attributes.
Actual definitions do not require or use all tags and attributes shown
here.

:options name = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:text.options file text
:etext.
:eoptions.

Chapter 11. Options file structures 195

196 VisualAge Generator: External Source Format Reference

Chapter 12. Resource association file structures

This chapter describes the tags and attributes that define a VisualAge
Generator resource association file part.

Resource association file definition

The RSRCS tag defines attributes for individual resource association file parts.
The TEXT tag further defines aspects of the resource association file part. The
ERSRCS tag closes the definition and is required.

:RSRCS tag attributes

Syntax Attributes
:rsrcs :RSRCS

Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the

resource association file part
was last modified

:text NAME= ’resource association
file name’

Specifies the name of the
resource association file part

... [TIME= ‘modification time’] Specifies the time the
resource association file part
was last modified

:etext [.]
... :ERSRCS [.]

:vagt
...

:tracbag
...

:etracbag
:ersrcs

© Copyright IBM Corp. 1980, 2000 197

DATE=

modification date
Specifies the date the resource association file part was last
modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

resource association file part name
Identifies the name of the resource association file part

Note: This attribute is not folded. In order for the part to be found during
generation, the case of the referenced part name must exactly match the
actual part name.

TIME=

modification time
Specifies the time the resource association file part was last
modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Text definition

The TEXT tag begins the character text that represents the resource association
file part definition. The ETEXT tag closes the text area and is required.

:TEXT tag values

Syntax Usage
:rsrcs :TEXT
... Values Uses

:text [.[Resource association
file text]]

Specifies the resource association file
definition

... :ETEXT[.]

198 VisualAge Generator: External Source Format Reference

Syntax Usage
:etext
...

:ersrcs

Note: The Resource association file text is not folded.

Templates tracability information

Templates tracability information is defined for a resource association file part
as described in “Chapter 16. Templates traceability information structures” on
page 213.

Resource association file structure example

Note: This example illustrates the syntax of all resource association file tags
and attributes. Actual definitions do not require or use all tags and
attributes shown here.

:rsrcs name = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:text.resource association file text
:etext.
:ersrcs.

Chapter 12. Resource association file structures 199

200 VisualAge Generator: External Source Format Reference

Chapter 13. Linkage table file structures

This chapter describes the tags and attributes that define a VisualAge
Generator linkage table file part.

Linkage table file definition

The LINKAGE tag defines attributes for individual linkage table file parts.
The TEXT tag further defines aspects of the linkage table file part. The
ELINKAGE tag closes the definition and is required.

:LINKAGE tag attributes

Syntax Attributes
:linkage :LINKAGE

Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the

linkage table file part was
last modified

:text NAME= ’linkage table file
name’

Specifies the name of the
linkage table file part

... [TIME= ‘modification time’] Specifies the time the
linkage table file part was
last modified

:etext [.]
... :ELINKAGE [.]

:elinkage

DATE=

modification date
Specifies the date the linkage table file part was last modified

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

‘linkage table file part name’
Identifies the name of the linkage table file part

© Copyright IBM Corp. 1980, 2000 201

Note: This attribute is not folded. In order for the part to be found during
generation, the case of the referenced part name must exactly match the
actual part name.

TIME=

modification time
Specifies the time the linkage table file part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Text definition

The TEXT tag begins the character text that represents the linkage table file
part definition. The ETEXT tag closes the text area and is required.

:TEXT tag values

Syntax Usage
:linkage :TEXT
... Values Uses

:text [.[Linkage table file
text]]

Specifies the linkage table file definition

... :ETEXT[.]

:etext
...

:elinkage

Templates tracability information

Templates tracability information is defined for a linkage table file part as
described in “Chapter 16. Templates traceability information structures” on
page 213.

202 VisualAge Generator: External Source Format Reference

Linkage table file structure example

Note: This example illustrates the syntax of all linkage table file tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:linkage name = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:text.linkage table file text
:etext.
:elinkage.

Chapter 13. Linkage table file structures 203

204 VisualAge Generator: External Source Format Reference

Chapter 14. Bind control file structures

This chapter describes the tags and attributes that define a VisualAge
Generator bind control file part.

Bind control file definition

The BNDCTRL tag defines attributes for individual bind control file parts. The
TEXT tag further defines aspects of the bind control file part. The EBNDCTRL
tag closes the definition and is required.

:BNDCTRL tag attributes

Syntax Attributes
:bndctrl :BNDCTRL

Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the bind

control file part was last
modified

:text NAME= ’bind control file name’ Specifies the name of the
bind control file part

... [TIME= ‘modification time’] Specifies the time the bind
control file part was last
modified

:etext [.]
... :EBNDCTRL [.]

:vagt
...

:tracbag
...

:etracbag
:ebndctrl

DATE=

modification date
Specifies the date the bind control file part was last modified

© Copyright IBM Corp. 1980, 2000 205

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

‘bind control file part name’
Identifies the name of the bind control file part

Note: This attribute is not folded. In order for the part to be found during
generation, the case of the referenced part name must exactly match the
actual part name.

TIME=

modification time
Specifies the time the bind control file part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Text definition

The TEXT tag begins the character text that represents the bind control file
part definition. The ETEXT tag closes the text area and is required.

:TEXT tag values

Syntax Usage
:bndctrl :TEXT
... Values Uses

:text [.[Bind control file
text]]

Specifies the bind control file definition

... :ETEXT[.]

:etext
...

:ebndctrl

206 VisualAge Generator: External Source Format Reference

Templates tracability information

Templates tracability information is defined for a bind control file part as
described in “Chapter 16. Templates traceability information structures” on
page 213.

Bind control file structure example

Note: This example illustrates the syntax of all bind control file tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:bndctrl name = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:text.bind control file text
:etext.
:ebndctrl.

Chapter 14. Bind control file structures 207

208 VisualAge Generator: External Source Format Reference

Chapter 15. Link edit file structures

This chapter describes the tags and attributes that define a VisualAge
Generator link edit file part.

Link edit file definition

The LNKEDIT tag defines attributes for individual link edit file parts. The
TEXT tag further defines aspects of the link edit file part. The ELNKEDIT tag
closes the definition and is required.

:LNKEDIT tag attributes

Syntax Attributes
:lnkedit :LNKEDIT

Attributes Values Uses
... [DATE= ‘modification date’] Specifies the date the link

edit file part was last
modified

:text NAME= ’link edit file name’ Specifies the name of the
link edit file part

... [TIME= ‘modification time’] Specifies the time the link
edit file part was last
modified

:etext [.]
... :ELNKEDIT [.]

:vagt
...

:tracbag
...

:etracbag
:elnkedit

DATE=

modification date
Specifies the date the link edit file part was last modified

© Copyright IBM Corp. 1980, 2000 209

DATE format is mm/dd/yyyy. Single quotation marks are optional.

NAME=

‘link edit file part name’
Identifies the name of the link edit file part

Note: This attribute is not folded. In order for the part to be found during
generation, the case of the referenced part name must exactly match the
actual part name.

TIME=

modification time
Specifies the time the link edit file part was last modified

TIME format is hh:mm:ss. Single quotation marks are optional.

Text definition

The TEXT tag begins the character text that represents the link edit file part
definition. The ETEXT tag closes the text area and is required.

:TEXT tag values

Syntax Usage
:lnkedit :TEXT
... Values Uses

:text [.[Link edit file text]] Specifies the link edit file definition
... :ETEXT[.]

:etext
...

:elnkedit

Templates tracability information

Templates tracability information is defined for a link edit file part as
described in “Chapter 16. Templates traceability information structures” on
page 213.

210 VisualAge Generator: External Source Format Reference

Link edit file structure example

Note: This example illustrates the syntax of all link edit file tags and
attributes. Actual definitions do not require or use all tags and
attributes shown here.

:lnkedit name = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
date = 'mm/dd/yyyy' time = 'hh:mm:ss'.

:text.link edit file text
:etext.
:elnkedit.

Chapter 15. Link edit file structures 211

212 VisualAge Generator: External Source Format Reference

Chapter 16. Templates traceability information structures

This chapter describes the external source format tags and attributes that
define the traceability information that can be associated with any VisualAge
Generator part. These tags exist only in Templates generated 4GL parts. They
contain information about the VAGT source definition (the instance from
which the 4GL part has been generated by Templates), and information about
the contents of the 4GL parts when it was generated. This information enables
VAGTemplates ’smart regeneration’ capabilities.

For each part, the :VAGT :TRACBAG, and :ETRACBAG tags are the last tags
that can appear before the tag to end the part.

Templates traceability information definition

:VAGT tag attributes

Syntax Attributes
:vagt
... :VAGT

Attributes Values Uses

:tracbag [PARMVERS= ‘time stamp’] Specifies when the VAGT
generation parameter was
last modified

... [TRACECAT= { NONE |API
|HOOK |INTERNAL
|RAD}]

Specifies the trace category

:etracbag [VISITNAM= ‘visitable name’] Specifies the name of the
VAGT source definition

[VISITTYP= {BUSINESSOBJECT
|DATAELEMENT
|INTERFACEUNIT
|RELATIONALTABLE
|VALUESTYPE
|WORKSPACE}]

Specifies the entity type of
the VAGT source definition

[VISITVER= ‘time stamp’] Specifies when the VAGT
source definition was last
modified

[WSPCNAME= ‘workspace name’] Specifies the name of the
VAGT workspace definition

© Copyright IBM Corp. 1980, 2000 213

Syntax Attributes
[WSPCVERS= ‘time stamp’] Specifies when the VAGT

workspace definition was
last modified

[.]

PARMVERS=

‘time stamp’
Specifies the timestamp of the generation parameter associated
with the VAGT definition. This generation parameter object has
been used to generate the current 4GL part.

PARMVERS format is yyyy-mm-dd-hh.mm.ss.

TRACECAT=

NONE
Indicates that no trace category is specified. (default value)

API Specifies that the 4GL part can be used but will be regenerated
by Templates

HOOK
Specifies that the 4GL part is a place of customization and will
not be overriden if not asked

INTERNAL
Specifies that the 4GL part should not be used and not
customized. It is generated for internal purposes only

RAD Specifies that the 4GL part is a place of customization and will
not be overriden if not asked

Note: For VisualAge Generator parts, RAD and HOOK components are
equivalent.

VISITNAM=

‘visitable name’
Specifies the name of the VAGT definition. It is from this
definition and the generation parameter object that the current
4GL part has been generated.

214 VisualAge Generator: External Source Format Reference

VISITTYP=
VISITTYP is the entity type of the VAGT definition. The current 4GL part
has been generated from an instance of this type.

BUSINESSOBJECT
The entity type is a Business Object.

DATAELEMENT
The entity type is a Data Element.

INTERFACEUNIT
The entity type is an Interface Unit.

RELATIONALTABLE
The entity type is an Relational Table.

VALUESTYPE
The entity type is a Value Style.

WORKSPACE
The entity type is a Workspace. (default value)

VISITVER=

‘time stamp’
Specifies the timestamp of the VAGT source instance.

VISITVER format is yyyy-mm-dd-hh.mm.ss.

WSPCNAME=

‘workspace name’
Specifies the name of the workspace, if relevant, that has been
used during the generation of the source instance.

WSPCVERS=

‘time stamp’
Specifies the timestamp of the VAGT workspace definition.

WSPCVERS format is yyyy-mm-dd-hh.mm.ss.

Chapter 16. Templates traceability information structures 215

Trace bag information

The TRACBAG tag begins the code that represents the traceability information
for the contents of the 4GL part, used by VisualAge Generator Templates. This
optional tag further defines the tag set for each VisualAge Generator part. The
ETRACBAG tag closes the definition, and if you use the TRACBAG tag, the
ETRACBAG tag is required.

The TRACBAG tag can appear only once within a part definition.

:TRACBAG tag values

Syntax Usage
:vagt
... :TRACBAG

:tracbag Values Uses
... [.[trace bag information]] Specifies the traceability

information needed for
VisualAge Generator Templates.
It describes the composition of
the 4GL part when it was
generated.

:etracbag
:ETRACBAG [.]

Only the library size and machine size limit the number of lines that you can
specify. Each line can contain up to 2000 bytes. You can use both uppercase
and lowercase characters. The trace information must be preceeded by a
period.

Templates traceability information syntax example

Note: This example illustrates the syntax of all Templates traceability
information tags and attributes. Actual definitions do not require or use
all tags and attributes shown here.

:vagt visittyp = Business Object
tracecat = API
vistinam = 'MyBusinessObject'
visitver = 'yyyy-mm-dd-hh.mm.ss'
wspcname = 'MyWorkspace'
wspcname = 'yyyy-mm-dd-hh.mm.ss'
parmvers = 'yyyy-mm-dd-hh.mm.ss'

:tracbag.tracebag text
:etracbag

216 VisualAge Generator: External Source Format Reference

Appendix A. External source format functions with
VisualAge Generator commands

This appendix introduces the VisualAge Generator commands that control
external source format functions.

Import and export of VisualAge Generator parts

External source format files are serial files. On import, the external source
format provides the necessary defaults for tags and attributes that are optional
and not specified. Export produces all tags and attributes, except in the
following cases:
v If the data item and the map field map editing attributes are default values
v If the SQL clauses are unmodified default values
v If the DL/I SSAs are unmodified default values

After using external source format to define your programs and parts, use the
IMPORT subcommand to import from a serial file to a library and use the
EXPORT subcommand to export from a library to a serial file.

External source format file
In VisualAge Generator, the first 72 columns within each record contain
library definitions in the external source format. Columns 73-80 may contain a
sequence number that is ignored on import. The format of definitions within
the external source format file varies depending on the library part type.

Note: The following parts do not observe the 72 column limit and do not
contain sequence numbers:
v GUI parts in interchange format
v Logic definition statements and SQL statements
v Options file structures
v Resource Association file structures
v Linkage Table file structures
v Bind Control file structures
v Link Edit file structures
v Record help for UI records
v Title for UI records
v Field help for UI records
v Label for UI records
v Field help for UI items

© Copyright IBM Corp. 1980, 2000 217

v Label for UI items

In VisualAge Generator Developer, the external source format file is a serial
file. Variable length records are accepted on import.

Header record
VisualAge Generator produces a new header each time an export is requested.
A single file might contain multiple headers. On the batch command, the
default is to append to the end of the file unless you specify the /REPLACE
option.

The following table shows the format of the first 50 bytes of the first record of
an external source format file. For any external source format files that do not
have the header, VisualAge Generator Developer (VGD) returns message
HPT.PE.282.e, “The external source format file cannot be imported because it
does not contain a valid external source format header line.”

Field description Data type Length (bytes)

Identifier and meaning
:EZEE External source format files

Character 6

Version number and product release
322 CSP 3.2.2
330 CSP 3.3.0
410 CSP 4.1; CSP2AD 1.0 and 1.1;

VGD 1.0, 1.1, 2.0, and 2.2
430 VGD 3.0 and 3.1
440 VGD 4.0

Character 3

Reserved Character 1

Reserved for enabled products Character 12

Reserved Character 1

File creation date - mm/dd/yy Character 8

Reserved Character 1

File creation time - hh:mm:ss Character 8

Reserved Character 10

Error processing

In VisualAge Generator Developer, the VisualAge Generator IMPORT
subcommand validates the external source format parts individually to
prevent invalid parts from getting in the library. However, parts in the same
import file are not validated against each other. When multiple parts in the

218 VisualAge Generator: External Source Format Reference

external source format file have the same name, only one of them remains in
the library. Which part remains depends on the options you specify. If you
specify /dupapp=none, the first valid part in the external source format file is
imported provided no parts by that name already exist in the library before
import begins. If you specify any other value for the /dupapp option, the last
valid part in the file imported by that name is the one that remains in the
library.

When invalid parts are in the import file, you receive an error message. Error
messages are written to STDOUT.

Import does not compare definitions to be imported with parts that exist in
the library. This can cause errors. For example, if the part you import is
already in the library as an EXECUTE or file input/output function, and you
replace the imported part with a CONVERSE function, then any batch
program in the library that uses the function is now in error.

Conditions detected by the test facility or by the preprocessor are not checked
for on import and do not prevent the IMPORT. For example, IMPORT does
not detect the following:
v Statements that refer to parts of the wrong part types
v Function objects that do not match the I/O option
v Map edit routines that cause screen input/output

Conditions detected by program, data, or map definition are verified on
import and prevent the import. For a complete list of the detected error
conditions for VisualAge Generator Developer, refer to the VisualAge Generator
Messages and Problem Determination Guide, and especially see the messages
with prefixes of HPT.PE and HPT.PL. Some examples are as follows:
v Invalid syntax in processing statements
v Invalid level numbers in record structures
v Hex edit only valid for character fields on a map
v Maximum number of occurs exceeded.

Prologue lines that are too long are an example of a condition that is corrected
on IMPORT and does not prevent IMPORT. They are split into multiple lines
if they are too long.

Appendix A. External source format functions with VisualAge Generator commands 219

220 VisualAge Generator: External Source Format Reference

Appendix B. DBCS support

The HPTRULES.NLS file contains the set of national characters for all
supported language versions of VisualAge Generator. For information on
EZERDEV.NLS, refer to the VisualAge Generator Installation Guide document.

Tags and attributes are always exported in lowercase.

Note: The information below for DBCS data applies only when exporting and
importing on a DBCS device. When exporting or importing on a
single-byte device, DBCS data is treated the same as single-byte data.

Whenever DBCS data is produced in the external source format file,
VisualAge Generator inserts the necessary shift-out (SO: X'0E') and shift-in (SI:
X'0F') characters into the boundaries between SBCS and DBCS data, so that:
v The file can be displayed on an EBCDIC DBCS-supported device
v The file has a common definition form across all IBM platforms.

On import, VisualAge Generator verifies the external source format file and
ensures the following:
v DBCS and mixed data are legal DBCS or mixed strings
v SO and SI characters are present and placed in correct positions on either

EBCDIC systems or ASCII systems
v Pairs of SO and SI characters are completed within a single line.

Note: When planning for NLS and translation, remember that the $, #, @, ¬,
and | characters are not in the National Language syntactic character
set and might not be represented by equivalent code points across
different code pages. Avoid using these characters if your program will
be transferred between machines with differing code pages. This is
particularly true in transfers between System/370 host machines and
workstations. An alternative for handling codepage-dependent
characters is to use the hptcnv30 utility. See Migration Guide for more
information.

For DBCS constant and variable fields and for table contents (but not for
literals in statements), the SO and SI characters are stripped from the data
before it is placed in the library. For mixed constant and variable fields, for
table contents, and for comments (but not for literals in statements),
contiguous SO and SI characters that appear at the end of one line and at the
beginning of the next are stripped from the data before it is placed in the

© Copyright IBM Corp. 1980, 2000 221

library. This allows extra SO and SI characters to be added to the data in the
external source format file when data must be split across multiple lines.

On the workstation, when importing on a DBCS device, SO and SI characters
are stripped from DBCS and mixed data before storing.

Figure 1 shows several ways to split data across multiple lines.

When splitting data to fill column 71 of the external source format file causes
a DBCS character to be split in half, place an SI character in column 71, a
continuation character in column 72, and the rest of the data on the next line
(with an SO character in column 1). See «1¬ in Figure 1.

When column 71 is filled with the second half of a DBCS character, put an SI
character in column 72 (it has the double duty of being an SI character and a
continuation character) and put the rest of the data on the next line (with an
SO character in column 1). See «2¬ in Figure 1.

When you want a contiguous SO and SI character set in the data and the data
must be split between the SO and the SI characters, put an extra pair of SI
and SO characters in the external source format file. See «3¬ in Figure 1.

External Source Format file Data as stored in the library
1 6 7 8

1234567890 ... 012345678901234567890
«1¬ za<DiDjDkDl>x za<DiDjDkDlDmDnDo>ab

<DmDnDo>ab
«2¬ a<DiDjDkDlDm> a<DiDjDkDlDmDnDo>abc

<DnDo>abc
«3¬ za<DiDjDkDl>x za<DiDjDkDl><DmDnDo>

<><DmDnDo>

where <, >, and Dx mean SO, SI, and a DBCS character, respectively.

Figure 1. External Source Format Data Storage

222 VisualAge Generator: External Source Format Reference

Appendix C. Tags not supported by VisualAge Generator

This appendix lists, by structure type, obsolete external source format tags,
attributes, and attribute values from the Cross System Product. Substituted
attributes and values are listed where applicable other tags are accepted by
VisualAge Generator for compatibility with Cross System Product.

Program structures

v The APPL tag is replaced by the PROGRAM tag.
v The MAINPRC tag is replaced by the MAINFUN tag.
v MSGTABLE is equivalent to the MSGFILE attribute. Either MSGFILE or

MSGTABLE may be specified but not both.
v The EXECMODE attribute is moved from the GENOPTS tag tothe APPL

tag. The following rules apply to the EXECMODE attribute value:
– If the EXECMODE attribute is specified on both the APPL and the

GENOPTS tag, the value specified on the APPL tag is used. The value on
the GENOPTS tag is ignored.

– If the EXECMODE attribute is specified on the GENOPTS tag only, the
value on the GENOPTS tag is used. On export, the EXECMODE attribute
appears on the APPL tag.

– An EXECMODE value of EITHER is accepted only on the GENOPTS tag
but is changed to one of the valid values. If EITHER is specified for the
EXECMODE attribute on the GENOPTS tag, the value is changed to
SEGMENTED for a MAIN transaction. Otherwise, it is changed to
NONSEGMENTED.

v The following GENOPTS attributes are supported to provide compatibility
with Cross System Product and to help you migrate your programs to
VisualAge Generator. Use the external source format file conversion utility
to extract the generation options from an external source format file into a
generation options file. Refer to the Migrating Cross System Product
Applications to VisualAge Generator document for more information on this
utility.
– ANSIGEN
– ANSIMOD
– CLIST
– CREATREF
– DB2GEN
– DB2MOD
– DDSGEN
– FOLD

© Copyright IBM Corp. 1980, 2000 223

– GENGRP1
– GENGRP2
– JOBNAME
– LINKAGE
– LINES
– LOADLIB
– MAPGRP1
– MAPGRP2
– OPTIONS
– PRINT
– SEGTRAN
– SQLBLOCK
– SQLGEN
– SQLID
– SQLMOD
– VALIDLOC
– VALIDSQL

v TARGSYS and its attribute, SYSTEM, are obsolete and ignored on import.
v GENFILE and its attributes, FILENAME, FILETYPE, PCBNO, SYSNAME,

and SYSTEM, are obsolete and ignored on import.
v GENTABLE and its attributes, KEEP, NAME, and TABLEGEN are obsolete

and ignored on import.
v HTFFILE and its attributes, HOSTTRAN, HTFERITM, HTFWKITM, and

ASYNC are obsolete and ignored on import.
v The COMPONENT attribute is obsolete and ignored on import.

GUI client structures

v The COMPT attribute is obsolete and ignored on import.

Process structures

v The PROCESS tag is migrated to the FUNC tag on import.
v The COMPONENT attribute is obsolete and ignored on import.
v The UPDPROC attribute is replaced by the UPDFUNC attribute.

Statement group structures

v The GROUP tag is migrated to the FUNC tag on import.
v The COMPONENT attribute is obsolete and ignored on import.

224 VisualAge Generator: External Source Format Reference

Record structures

v The FILELOC attribute on the RECORD tag is obsolete and is ignored on
import.

v The CREATOR and TBLENAME attributes are no longer required to
uniquely identify a table in a relational database. The TABLEID attribute
now serves this function. If CREATOR and TBLENAME are used, their
values will be concatenated (separated by a period) and combined into a
value for the TABLEID attribute.

v The COMPONENT attribute is obsolete and ignored on import.

Table structures
v The following GENOPTS attributes are supported to provide compatibility

with Cross System Product. They are ignored on import:
– FOLD
– LOADLIB
– JOBNAME
– LINES
– OPTIONS
– PRINT
– TYPEUSE

v The COMPONENT attribute is obsolete and ignored on import.
v The ASSOCTO attribute is obsolete and ignored on import.

Data item structures

v The COMPT attribute is obsolete and ignored on import.
v The ASSOCTO attribute is obsolete and ignored on import.

Program specification block structures

v The COMPT attribute is obsolete and ignored on import.
v The ASSOCTO attribute is obsolete and ignored on import.

Map structures

v The DEVICES values 8775-1C, 8775-2C, 8775-3C, and 8775-4C are obsolete
and ignored on import. If only DEVICES values are specified, the following
substitutions occur:
– 8775-1C is changed to ANY-1D
– 8775-2C is changed to ANY-2D
– 8775-3C is changed to ANY-3D
– 8775-4C is changed to ANY-4D.

v The following attributes are obsolete and ignored on import:

Appendix C. Tags not supported by VisualAge Generator 225

– COMPT
– CONSTANT
– DBCSCONS
– DBCSVAR
– MIXCONS
– MIXVAR
– SPACER
– VARIABLE

Map group structures

v The DEVICE values 8775-1C, 8775-2C, 8775-3C, and 8775-4C are obsolete
and ignored on import. If only DEVICE values are specified, the following
substitutions occur:
– 8775-1C is changed to ANY-1D
– 8775-2C is changed to ANY-2D
– 8775-3C is changed to ANY-3D
– 8775-4C is changed to ANY-4D.

v The COMPT attribute is obsolete and ignored on import.

226 VisualAge Generator: External Source Format Reference

Index

A
ADD I/O option 31
AFTER tag 45
ALTSPEC attribute 61
ANSIGEN attribute, on GENOPTS

(program) tag 223
ANSIMOD attribute, on GENOPTS

(program) tag 223
APPL tag 223
AREA tag 190
ASSOCTO attribute 225
ASYNC attribute 224
attributes

ALTSPEC 61
ANSIGEN, on GENOPTS

(program) tag 223
ANSIMOD, on GENOPTS

(program) tag 223
ASSOCTO 225
ASYNC 224
BOOLOP 55
BYPKEY

on MAP tag 154
on PROGRAM tag 9

BYTES
on CFIELD tag 160
on CONTITEM tag 115
on DEFITEM tag 111
on ITEM tag 122
on PARM tag 34
on RECDITEM tag 80
on RETURN tag 43
on STORAGE tag 39
on VFIELD tag 168

CLAUSE 47
CLAUSE TEXT

on JOINCON tag 76
on SQL tag 48

CLIST, on GENOPTS (program)
tag 223

CMDCODES 52
COLNAME 80
COLOR

on CATTR tag 162
on VATTR tag 181

COLUMN
on CFIELD tag 160
on VFIELD tag 168

COMPONENT 224, 225

attributes (continued)
COMPT 224, 225, 226
COMPVAL 55
CONSTANT 225
CREATOR 225
CREATREF, on GENOPTS

(program) tag 223
CURRENCY

on NUMEDITS (item)
tag 141

on NUMEDITS (record)
tag 99

CURRSYMB
on MAPEDITS tag 126
on NUMEDITS (item)

tag 141
on NUMEDITS (record)

tag 99
on VFIELD tag 172

CURSOR
on CATTR tag 163
on VATTR tag 182

DATA
on CATTR tag 163
on VATTR tag 182

DATACODE 81
DATE

on BNDCTRL tag 205
on FUNC tag 28
on GUIAPP tag 22
on ITEM tag 122
on LINKAGE tag 201
on LNKEDIT tag 209
on MAP tag 155
on MAPG tag 189
on OPTIONS tag 193
on PROGRAM tag 9
on PSB tag 148
on RECORD tag 61
on RSRCS tag 198
on TBLE tag 106

DATEFORM
on MAPEDITS (item)

tag 126
on MAPEDITS (map)

tag 172
DB2GEN, on GENOPTS

(program) tag 223

attributes (continued)
DB2MOD, on GENOPTS

(program) tag 223
DBCSCONS 225
DBCSVAR 225
DBDNAME 50
DBNAME 149
DDSGEN, on GENOPTS

(program) tag 223
DECIMALS

on CONTITEM tag 116
on DEFITEM tag 111
on ITEM tag 123
on PARM tag 35
on RECDITEM tag 81
on RETURN tag 43
on STORAGE tag 40
on VFIELD tag 168

DEFFOLD 159
DESC

on DEFITEM tag 112
on FUNC tag 29
on ITEM tag 123
on PARM tag 35
on RECDITEM tag 81, 85
on RETURN tag 44
on STORAGE tag 40
on VFIELD tag 168

DETECT
on CATTR tag 163
on VATTR tag 182

DEVICE
changes 226
description 191

DEVICES
changes 225
description 155

EDITFUNC 61
on GENEDITS (ITEM)

tag 136
on GENEDITS (recditem)

tag 93
EDITMSG

on MESSAGES tag 133
on VFIELD tag 179

EDITORDR 86, 168
EDITRTN

on MAPEDITS (item)
tag 128

© Copyright IBM Corp. 1980, 2000 227

attributes (continued)
on MAPEDITS (map)

tag 173
EDITTBLE

on GENEDITS (ITEM)
tag 136

on GENEDITS (recditem)
tag 94

EDITTYPE
on GENEDITS (ITEM)

tag 136
on GENEDITS (recditem)

tag 94
ENTER

on CATTR tag 164
on VATTR tag 183

ERRRTN 29
EVENSQL

on ITEM tag 123
on RECDITEM tag 82

EXCLUSIV 62
EXECBLD 29
EXECMODE

changes 223
description 9

field text 161
FILELOC 225
FILENAME 224

on RECORD tag 62
FILETYPE 224
FILL

on CATTR tag 164
on VATTR tag 183

FILLCHAR
on GENEDITS (item) tag 136
on GENEDITS (recditem)

tag 94
on MAPEDITS (item)

tag 128
on MAPEDITS (map)

tag 174
FIRSTMAP 10
FIRSTUI 89
FLDFOLD

on GENEDITS (item) tag 137
on GENEDITS (recditem)

tag 94
on MAPEDITS (item)

tag 129
on MAPEDITS (map)

tag 174
flow statement 15
FOLD

on GENOPTS (program)
tag 223

attributes (continued)
FOLD (continued)

on GENOPTS (tble) tag 225
on TBLE tag 106

FUNCKEY
on ITEM 139
on RECDITEM 97

GENGRP1, on GENOPTS
(program) tag 223

GENGRP2, on GENOPTS
(program) tag 223

GRPNAME
on MAP tag 156
on MAPG tag 190

HELPGRP 10
HELPKEY

on MAP tag 156
on PROGRAM tag 11

HELPMAP 156
HEXEDIT

on MAPEDITS (item)
tag 129

on MAPEDITS (map)
tag 174

HILITE
on CATTR tag 164
on VATTR tag 183

HOSTTRAN 224
HOSTVAR

on JOINCON tag 75
on SQL tag 48

HTFERITM 224
HTFWKITM 224
IKEY 150
IMPLICIT 11
INDEX 169
initial value 170
INPUTREQ

on GENEDITS (item) tag 137
on GENEDITS (recditem)

tag 95
on MAPEDITS (item)

tag 129
on MAPEDITS (map)

tag 175
INTENSE

on CATTR tag 165
on VATTR tag 184

INVALMSG
on MESSAGES tag 133
on VFIELD tag 179

JOBNAME
on GENOPTS (program)

tag 223
on GENOPTS (tble) tag 225

attributes (continued)
JUSTIFY

on MAPEDITS (item)
tag 130

on MAPEDITS (map)
tag 175

KEY
on RECDITEM tag 82
on RECORD tag 62

LABEL 74
LEVEL

on DEFITEM tag 112
on RECDITEM tag 82

LINES
on GENOPTS (program)

tag 223
on GENOPTS (tble) tag 225

LINKAGE, on GENOPTS
(program) tag 223

LOADLIB
on GENOPTS (program)

tag 223
on GENOPTS (tble) tag 225

MAPGROUP 11
MAPGRP1, on GENOPTS

(program) tag 223
MAPGRP2, on GENOPTS

(program) tag 223
MAPNAME 156
MAPSIZE 157
MDT

on CATTR tag 165
on VATTR tag 184

MININKEY
on ITEM 139
on RECDITEM 97

MININMSG
on MESSAGES tag 134
on VFIELD tag 179

MININPUT
on GENEDITS (item) tag 137
on GENEDITS (recditem)

tag 95
on MAPEDITS (item)

tag 130
on MAPEDITS (map)

tag 175
MIXCONS 225
MIXVAR 225
MODEL 30
MODIFIED 50
MQGMOREC 63
MQMDREC 63
MQODREC 64
MQOOREC 64

228 VisualAge Generator: External Source Format Reference

attributes (continued)
MQPMOREC 64
MSGFILE 223
MSGTABLE

changes 223
description 12

NAME
on BNDCTRL tag 206
on CALLPARM tag 17
on CONTITEM tag 116
on DEFITEM tag 113
on FUNC tag 30
on GUIAPP tag 22
on ITEM tag 123
on LINKAGE tag 201
on LINKPARM tag 90
on LNKEDIT tag 210
on MAINFUN tag 15
on OPTIONS tag 194
on PARM tag 35
on PROGRAM tag 12
on PSB tag 148
on RECDITEM tag 83
on RECORD tag 64
on RSRCS tag 198
on STORAGE tag 40
on TABREC tag 16
on TBLE tag 106
on VFIELD tag 169

NEWWIN 89
NUMOCCUR 65
NUMSEP

on MAPEDITS (item)
tag 130

on MAPEDITS (map)
tag 176

on NUMEDITS (item)
tag 141

on NUMEDITS (record)
tag 99

OBJECT 30
obsolete 223
OCCURS 84
OCCURSFR 87
OPTION 31
OPTIONS

on GENOPTS (program)
tag 223

on GENOPTS (tble) tag 225
ORG 66
OUTLINE

on CATTR tag 166
on VATTR tag 185

PARENT 151

attributes (continued)
PARMTYPE

on PARM tag 36
PARMVERS 214
PCBNO 224
PFEQUATE 12
PRINT

on GENOPTS (program)
tag 223

on GENOPTS (tble) tag 225
PROGRAM 90
PROTECT

on CATTR tag 166
on VATTR tag 185

PSB
on DLICALL tag 50
on PROGRAM tag 10, 12

RANGE
on ITEM 139
on MAPEDITS (item)

tag 131
on MAPEDITS (map)

tag 176
on NUMEDITS (item)

tag 142
on NUMEDITS (record)

tag 100
on RECDITEM 97

RANGEMSG
on MESSAGES tag 134
on VFIELD tag 180

READONLY 84
REDEFREC 67
REFINE

on FUNC tag 32
RELOP 56
REQKEY

on ITEM 140
on RECDITEM 97

REQMSG
on MESSAGES tag 134
on VFIELD tag 180

RESIDENT 108
ROW

on CFIELD tag 160
on VFIELD tag 170

RUNATWEB 68
on GENEDITS (item) tag 138
on GENEDITS (recditem)

tag 95
SBMITVAL 68
SCANPAR 51
SCANUPD 51
SEGFIELD 57
SEGMENT 151

attributes (continued)
SEGNAME 54
SEGTRAN

on GENOPTS (program)
tag 223

SELINDEX 87
SIGN

on MAPEDITS (item)
tag 131

on MAPEDITS (map)
tag 177

on NUMEDITS (item)
tag 142

on NUMEDITS (record)
tag 100

SINGROW 32
SIZE 191
SOSI

on GENEDITS (item) tag 138
on GENEDITS (recditem)

tag 96
on MAPEDITS (item)

tag 131
on MAPEDITS (map)

tag 177
SOSIPOS 157
SPACER 225
SQLBLOCK, on GENOPTS

(program) tag 223
SQLGEN, on GENOPTS

(program) tag 223
SQLID, on GENOPTS (program)

tag 223
SQLMOD, on GENOPTS

(program) tag 223
STARTPOS

on AREA tag 192
on MAP tag 157

STORTYPE
on STORAGE tag 41

SYSNAME 224
SYSTEM 224
TABLEID 74
TABPOS 159
TABTYPE 107
TBLEKEY

on ITEM 140
on RECDITEM 98

TBLENAME 225
TBLNHVAR 74
TIME

on BNDCTRL tag 206
on FUNC tag 32
on GUIAPP tag 22
on ITEM tag 124

Index 229

attributes (continued)
on LINKAGE tag 202
on LNKEDIT tag 210
on MAP tag 158
on MAPG tag 190
on OPTIONS tag 194
on PROGRAM tag 13
on PSB tag 148
on RECORD tag 68
on RSRCS tag 198
on TBLE tag 107

TRACECAT 214
TRANSACT 68
TYPE

on APPL tag 13
on CALLPARM tag 18
on CFIELD tag 161
on CONTITEM tag 117
on DEFITEM tag 113
on ITEM tag 124
on PARM tag 37
on PCB tag 149
on RECDITEM tag 85
on RETURN tag 44
on STORAGE tag 41
on TABREC tag 16
on VFIELD tag 170

TYPEKEY
on ITEM 140
on RECDITEM 98

TYPEUSE 109
UITYPE 88
UPDFUNC 33
UPDPROC 224
USAGE

on DEFITEM tag 114
on PARM tag 38
on RECORD tag 69
on STORAGE tag 42
on TBLE tag 108

VALIDLOC, on GENOPTS
(program) tag 223

VALIDSQL, on GENOPTS
(program) tag 223

VALUEITM 91
VARFOLD 159
VARIABLE 225
VARLENTH 69
VISITNAM 214
VISITTYP 215
VISITVER 215
WITHHOLD 33
WORKSTOR 14
WSPCNAME 215
WSPCVERS 215

attributes (continued)
ZEROEDIT

on MAPEDITS (item)
tag 132

on MAPEDITS (map)
tag 177

on NUMEDITS (item)
tag 142

on NUMEDITS (record)
tag 100

B
BEFORE tag 44
BENCODE tag 24
bind control file

structure example 207
bind control file structures 205
BNDCTRL tag 205
BOOLOP attribute 55
BYPKEY attribute

on MAP tag 154
on PROGRAM tag 9

BYTES attribute
on CFIELD tag 160
on CONTITEM tag 115
on DEFITEM tag 111
on ITEM tag 122
on PARM tag 34
on RECDITEM tag 80
on RETURN tag 43
on STORAGE tag 39
on VFIELD tag 168

C
CALLPARM tag 17
CATTR tag 161
CFIELD tag 159
changed

attributes 223
values 223

CLAUSE attribute 47
CLAUSE TEXT attribute

on JOINCON tag 76
on SQL tag 48

CLIST attribute, on GENOPTS
(program) tag 223

CLOSE I/O option 31
CMDCODES attribute 52
COLNAME attribute 80
COLOR attribute

on CATTR tag 162
on VATTR tag 181

COLUMN attribute
on CFIELD tag 160
on VFIELD tag 168

command codes 52, 54
COMPONENT attribute 224, 225
COMPT attribute 224, 225, 226
COMPVAL attribute 55
CONSTANT attribute 225
constant field

attribute definition 161
definition 159

CONTITEM tag 114
CONVERSE I/O option 31
CREATOR attribute 225
CREATREF attribute, on GENOPTS

(program) tag 223
CURRENCY attribute

on NUMEDITS (item) tag 141
on NUMEDITS (record) tag 99

CURRSYMB attribute
on MAPEDITS (item) tag 126
on MAPEDITS (map) tag 172
on NUMEDITS (item) tag 141
on NUMEDITS (record) tag 99

CURSOR attribute
on CATTR tag 163
on VATTR tag 182

D
DATA attribute

on CATTR tag 163
on VATTR tag 182

data content attribute 114
data item

defining 121
definition syntax example 145
message definition 132
structures 121

DATACODE attribute 81
DATE attribute

on BNDCTRL tag 205
on FUNC tag 28
on GUIAPP tag 22
on ITEM tag 122
on LINKAGE tag 201
on LNKEDIT tag 209
on MAP tag 155
on MAPG tag 189
on OPTIONS tag 193
on PROGRAM tag 9
on PSB tag 148
on RECORD tag 61
on RSRCS tag 198
on TBLE tag 106

DATEFORM attribute
on MAPEDITS (item) tag 126
on MAPEDITS (map) tag 172

230 VisualAge Generator: External Source Format Reference

DB2GEN attribute, on GENOPTS
(program) tag 223

DB2MOD attribute, on GENOPTS
(program) tag 223

DBCS support 221
DBCSCONS attribute 225
DBCSVAR attribute 225
DBDNAME attribute 50
DBNAME attribute 149
DDSGEN attribute, on GENOPTS

(program) tag 223
DECIMALS attribute

on CONTITEM tag 116
on DEFITEM tag 111
on ITEM TAG 123
on PARM tag 35
on RECDITEM tag 81
on RETURN tag 43
on STORAGE tag 40
on VFIELD tag 168

default selection criteria 75
DEFFOLD attribute 159
defining

bind control files 205
constant field 159
constant field attribute 161
data item 121
data item message 132
default selection criteria 75
DL/I call 49
field edit message 178
floating area 190
function part 27, 33
GUI client part 21
initial field value 91
item

field help 143
general edit

characteristic 135
label 143
message keys 138
numeric edit characteristic

definition 140
user interface properties 134

link edit files 209
linkage table files 201
logic definition

after I/O option 45
before I/O option 44

main function 14
map 153
map edit characteristic 125, 170
map group 189
options files 193
presentation information 158

defining (continued)
program 7
program prologue 18
PSB 147
qualification statement 54
record 59

field help 101
general edit characteristic 92
initial value 92
item 78
label 101
link parameters 90
link properties 89
message keys 96
numeric edit characteristic

definition 98
prologue 77
record help 76
title 77
user interface properties 86

resource association files 197
segment search argument 51
SQL table name 73
table 105
table and additional records

list 15
table column 110
templates traceability

information 213
variable

field 167
field attribute 180

DEFITEM tag 110
DELETE I/O option 31
DESC attribute

on DEFITEM tag 112
on FUNC tag 29
on ITEM tag 123
on PARM tag 35
on RECDITEM tag 81, 85
on RETURN tag 44
on STORAGE tag 40
on VFIELD tag 168

DETECT attribute
on CATTR tag 163
on VATTR tag 182

DEVICE attribute
changes 226
description 191

DEVICES attribute
changes 225
description 155

DISPLAY I/O option 31
DLICALL tag 49

E
EAFTER tag 45
EBEFORE tag 44
EBENCODE tag 24
EBNDCTRL tag 205
ECFIELD tag 159
EDITFUNC attribute 61

on GENEDITS (ITEM) tag 136
on GENEDITS (recditem) tag 93

EDITMSG attribute
on MESSAGES tag 133
on VFIELD tag 179

EDITORDR attribute 86, 168
EDITRTN attribute

on MAPEDITS (item) tag 128
on MAPEDITS (map) tag 173

EDITTBLE attribute
on GENEDITS (ITEM) tag 136
on GENEDITS (recditem) tag 94

EDITTYPE attribute
on GENEDITS (ITEM) tag 136
on GENEDITS (recditem) tag 94

EFUNC tag 27
EGUIAPP tag 21
EITEM tag 121
EJOINCON tag 75
ELINKAGE tag 201
ELNKEDIT tag 209
EMAINFUN tag 14
EMAP tag 153
EMAPG tag 189
ENTER attribute

on CATTR tag 164
on VATTR tag 183

EOPTIONS tag 193
EPROGRAM tag 7
EPROL tag

with PROL tag 18
with RECORD tag 77
with TBLE tag 109

EPSB tag 147
ERECORD tag 59
error processing 218
ERRRTN attribute 29
ERSRCS tag 197
ESCRIPT tag 22
ESQL tag 46
ETBLE tag 105
ETEXT tag

with BNDCTRL tag 206
with LINKAGE tag 202
with LNKEDIT tag 210
with OPTIONS tag 194
with RSRCS tag 198

ETRACBAG tag 216

Index 231

EVENSQL attribute
on ITEM tag 123
on RECDITEM tag 82

EVFIELD tag 167
example

data item definition syntax 145
function definition syntax 58
map group structure 192
map structure syntax 186
program definition syntax 19
PSB definition syntax 152
record definition syntax 102
table definition syntax 119
Templates traceability

information 216
variable field definition 4

EXCLUSIV attribute 62
EXECBLD attribute 29
EXECMODE attribute

description 9
changes 223

EXECUTE I/O option 31
export

of library parts 217
external source format

data storage 222
file 217

EZEE 218

F
field

edit message 178
initial value 91
text attribute 161

field help 101, 143
FILELOC attribute 225
FILENAME attribute 224

on RECORD tag 62
FILETYPE attribute 224
FILL attribute

on CATTR tag 164
on VATTR tag 183

FILLCHAR attribute
on GENEDITS (item) tag 136
on GENEDITS (recditem) tag 94
on MAPEDITS (item) tag 128
on MAPEDITS (map) tag 174

FIRSTMAP attribute 10
FIRSTUI attribute 89
FLDFOLD attribute

on GENEDITS (item) tag 137
on GENEDITS (recditem) tag 94
on MAPEDITS (item) tag 129
on MAPEDITS (map) tag 174

FLDHELP tag
with ITEM tag 143

FLDHELP tag (continued)
with RECDITEM tag 101

floating area 190
flow statement attribute 15
FOLD attribute

on GENOPTS (program) tag 223
on GENOPTS (tble) tag 225
on TBLE tag 106

FUNC tag 27, 33
FUNCKEY attribute

on ITEM 139
on RECDITEM 97

function
definition syntax example 58
part 27, 33
structure 27

G
GENEDITS tag

with ITEM tag 135
with RECDITEM tag 92

GENFILE tag 224
GENGRP1 attribute, on GENOPTS

(program) tag 223
GENGRP2 attribute, on GENOPTS

(program) tag 223
GENOPTS tag

obsolete attributes 223, 225
with PROGRAM tag 7
with TBLE tag 108

GENTABLE tag 7
GROUP tag 224
GRPNAME attribute

on MAP tag 156
on MAPG tag 190

GUI
client part 21
interchange format 21, 22
unloaded format 24

GUIAPP tag 21

H
header record 218
HELPGRP attribute 10
HELPKEY attribute

on MAP tag 156
on PROGRAM tag 11

HELPMAP attribute 156
HEXEDIT attribute

on MAPEDITS (item) tag 129
on MAPEDITS (map) tag 174

HILITE attribute
on CATTR tag 164
on VATTR tag 183

HOSTTRAN attribute 224

HOSTVAR attribute
on JOINCON tag 75
on SQL tag 48

HTFERITM attribute 224
HTFFILE tag

ASYNC 224
HOSTTRAN 224
HTFERITM 224
HTFWKITM 224

HTFWKITM attribute 224

I
IKEY attribute 150
IMPLICIT attribute 11
import

of library parts 217
INDEX attribute 169
initial field value 91
INITIAL tag

with RECORD tag 91, 92
initial value 92
initial value attribute 170
INPUTREQ attribute

on GENEDITS (item) tag 137
on GENEDITS (recditem) tag 95
on MAPEDITS (item) tag 129
on MAPEDITS (map) tag 175

INQUIRY I/O option 31
INTENSE attribute

on CATTR tag 165
on VATTR tag 184

introduction 1
INVALMSG attribute

on MESSAGES tag 133
on VFIELD tag 179

item
field help 143
label 143

ITEM tag 121

J
JOBNAME attribute

on GENOPTS (program) tag 223
on GENOPTS (tble) tag 225

JOINCON tag 75
JUSTIFY attribute

on MAPEDITS (item) tag 130
on MAPEDITS (map) tag 175

K
KEY attribute

on RECDITEM tag 82
on RECORD tag 62

232 VisualAge Generator: External Source Format Reference

L
label 101, 143
LABEL attribute 74
LABEL tag

with ITEM tag 143
with RECORD tag 101

LEVEL attribute
on DEFITEM tag 112
on RECDITEM tag 82

library part
defining 1
export 217
import 217

LINES attribute
on GENOPTS (program) tag 223
on GENOPTS (tble) tag 225

link edit file
structure example 211

link edit file structures 209
link parameters 90
link properties 89
LINKAGE attribute, on GENOPTS

(program) tag 223
linkage table file

structure example 203
linkage table file structures 201
LINKAGE tag 201
LNKEDIT tag 209
LOADLIB attribute

on GENOPTS (program) tag 223
on GENOPTS (tble) tag 225

logic definition
defining after I/O option 45
defining before I/O option 44

M
main function definition 14
MAINFUN tag 14
MAINPRC tag 223
map changes 225
map definition 153
map edit characteristic definition

on ITEM tag 125
on MAPEDITS tag 170

map group
changes 226
definition 189
structure 189
structure example 192

map structure
description 153
syntax example 186

MAP tag 153
MAPEDITS tag

with ITEM tag 125

MAPEDITS tag (continued)
with VFIELD tag 170

MAPG tag 189
MAPGROUP attribute 11
MAPGRP1 attribute, on GENOPTS

(program) tag 223
MAPGRP2 attribute, on GENOPTS

(program) tag 223
MAPNAME attribute 156
MAPSIZE attribute 157
MDT attribute

on CATTR tag 165
on VATTR tag 184

MESSAGES tag
with ITEM tag 132
with VFIELD tag 178

MININKEY attribute
on ITEM 139
on RECDITEM 97

MININMSG attribute
on MESSAGES field 134
on VFIELD tag 179

MININPUT attribute
on GENEDITS (item) tag 137
on GENEDITS (recditem) tag 95
on MAPEDITS (item) tag 130
on MAPEDITS (map) tag 175

MIXCONS attribute 225
MIXVAR attribute 225
MODEL attribute 30
MODIFIED attribute 50
MQGMOREC attribute 63
MQMDREC attribute 63
MQODREC attribute 64
MQOOREC attribute 64
MQPMOREC attribute 64
MSGTABLE attribute 12

N
NAME attribute

on BNDCTRL tag 206
on CALLPARM tag 17
on CONTITEM tag 116
on DEFITEM tag 113
on FUNC tag 30
on GUIAPP tag 22
on ITEM tag 123
on LINKAGE tag 201
on LINKPARM tag 90
on LNKEDIT tag 210
on MAINFUN tag 15
on OPTIONS tag 194
on PARM tag 35
on PROGRAM tag 12
on PSB tag 148
on RECDITEM tag 83

NAME attribute (continued)
on RECORD tag 64
on RSRCS tag 198
on STORAGE tag 40
on TABREC tag 16
on TBLE tag 106
on VFIELD tag 169

NEWWIN attribute 89
NUMEDITS tag

with ITEM tag 140
with RECDITEM tag 98

NUMOCCUR attribute 65
NUMSEP attribute

on MAPEDITS (item) tag 130
on MAPEDITS (map) tag 176
on NUMEDITS (item) tag 141
on NUMEDITS (record) tag 99

O
OBJECT attribute 30
obsolete tags, attributes, and

attribute values 223
OCCURS attribute 84
OCCURSFR attribute 87
OPTION attribute 31
OPTIONS attribute

on GENOPTS (program) tag 223
on GENOPTS (tble) tag 225

options file
structure example 195

options file structures 193
OPTIONS tag 193
ORG attribute 66
OUTLINE attribute

on CATTR tag 166
on VATTR tag 185

P
parameter specification 17
PARENT attribute 151
PARMTYPE attribute

on PARM tag 36
PARMVERS attribute 214
part

defining 1
export 217
import 217

PCB tag 148
PCBNO attribute 224
PFEQUATE attribute 12
PRESENT tag 158
presentation information

definition 158
PRINT attribute

on GENOPTS (program) tag 223

Index 233

PRINT attribute (continued)
on GENOPTS (tble) tag 225

PROCESS tag 224
PROGRAM attribute 90
program communication block

(PCB) 148
program definition syntax

example 19
program specification block (PSB)

structure 147
syntax example 152

program structures
changes 223
generation option

specification 7
program definition 7, 21
prologue definition 18

PROGRAM tag 7
PROL tag

with EPROL tag 18
with RECORD tag 77
with TBLE tag 109

PROTECT attribute
on CATTR tag 166
on VATTR tag 185

PSB attribute
on DLICALL tag 50
on PROGRAM tag 10, 12

PSB tag 147

Q
QUAL tag 54

R
RANGE attribute

on ITEM 139
on MAPEDITS (item) tag 131
on MAPEDITS (map) tag 176
on NUMEDITS (item) tag 142
on NUMEDITS (record) tag 100
on RECDITEM 97

RANGEMSG attribute
on MESSAGES tag 134
on VFIELD tag 180

RCDHELP tag 76
READONLY attribute 84
RECDITEM tag 78
record

changes 224, 225
definition syntax example 102
field help 101
initial value 92
item 78
label 101
link parameters 90
link properties 89

record (continued)
prologue 77
record help 76
structures 59
title 77
user interface properties 86

record help 76
RECORD tag 59
REDEFREC attribute 67
REFINE attribute

on FUNC tag 32
RELOP attribute 56
REPLACE I/O option 31
REQKEY attribute

on ITEM 140
on RECDITEM 97

REQMSG attribute
on MESSAGES tag 134
on VFIELD tag 180

RESIDENT attribute 108
resource association file

structure example 199
resource association file

structures 197
ROW attribute

on CFIELD tag 160
on VFIELD tag 170

row specification 117
ROW tag 117
RSRCS tag 197
RUNATWEB attribute 68

on GENEDITS (item) tag 138
on GENEDITS (recditem) tag 95

S
SBMITVAL attribute 68
SCAN I/O option 31
SCANBACK I/O option 31
SCANPAR attribute 51
SCANUPD attribute 51
SCRIPT tag 22
SEGFIELD attribute 57
SEGMENT attribute 151
segment search argument

definition 51
qualification statement 54

segment sensitivity
specification 150

SEGNAME attribute 54
SEGTRAN attribute

on GENOPTS (program) tag 223
SELINDEX tag 87
SENSEG tag 150
SETINQ I/O option 31
SETUPD I/O option 31

SIGN attribute
on MAPEDITS (item) tag 131
on MAPEDITS (map) tag 177
on NUMEDITS (item) tag 142
on NUMEDITS (record) tag 100

SINGROW attribute 32
SIZE attribute 191
SOSI attribute

on GENEDITS (item) tag 138
on GENEDITS (recditem) tag 96
on MAPEDITS (item) tag 131
on MAPEDITS (map) tag 177

SOSIPOS attribute 157
SPACER attribute 225
specifying

parameter 17
PCB 148
program generation option 7
row 117
segment sensitivity 150
SQL selection condition 46
table generation 7
table generation option 108

SQL tag 46
SQLBLOCK attribute, on GENOPTS

(program) tag 223
SQLEXEC I/O option 32
SQLGEN attribute, on GENOPTS

(program) tag 223
SQLID attribute, on GENOPTS

(program) tag 223
SQLMOD attribute, on GENOPTS

(program) tag 223
SQLTABLE tag 73
SSA tag 51
STARTPOS attribute

on AREA tag 192
on MAP tag 157

STORTYPE attribute
on STORAGE tag 41

syntax
data item definition 145
function definition 58
map structure 186
program definition 19
PSB definition 152
record definition 102
table definition 119
Templates traceability

information 216
variable field definition 4

SYSNAME attribute 224
SYSTEM attribute 224

234 VisualAge Generator: External Source Format Reference

T
table

changes 225
data content attribute 114
defining 105
defining a column 110
definition syntax example 119
generation option

specification 108
prologue description 109
structure 105

table and additional records list 15
table generation specification 7
TABLEID attribute 74
TABPOS attribute 159
TABREC tag 15
TABTYPE attribute 107
tag syntax

description 1
examples 58

data item definition 145
GUI client definition 25
map definition 186
program definition 19
PSB definition 152
record definition 102
table definition 119

tags
AFTER 45
APPL 7, 223
AREA 190
BEFORE 44
BENCODE 24
BNDCTRL 205
CALLPARM 17
CATTR 161
CFIELD 159
CONTITEM 114
DEFITEM 110
DLICALL 49
EAFTER 45
EAPPL 7
EBEFORE 44
EBENCODE 24
EBNDCTRL 205
ECFIELD 159
EFLDHELP

with ITEM tag 143
with RECDITEM tag 101

EFUNC 27
EGUIAPP 21
EINITIAL

with RECORD tag 91, 92
EITEM 121
EJOINCON 75

tags (continued)
ELABEL

with ITEM tag 143
with RECORD tag 101

ELINKAGE 201
ELNKEDIT 209
EMAINFUN 14
EMAP 153
EMAPG 189
EOPTIONS 193
EPROL

with PROGRAM tag 18
with RECORD tag 77
with TBLE tag 109

EPSB 147
ERCDHELP

with RECORD tag 76
ERECORD 59
ERSRCS 197
ESCRIPT 22
ESQL 46
ETBLE 105
ETEXT

with BNDCTRL tag 206
with LINKAGE tag 202
with LNKEDIT tag 210
with OPTIONS tag 194
with RSRCS tag 198

ETITLE
with RECORD tag 77

ETRACBAG 216
EUIPROP

with RECORD tag 86
EUIPROP with ITEM tag 134
EVFIELD 167
FLDHELP

with ITEM tag 143
with RECDITEM tag 101

FUNC 27, 33
GENEDITS

with ITEM tag 135
with RECDITEM tag 92

GENFILE 224
GENOPTS

changes 223, 225
with PROGRAM tag 7
with TBLE tag 108

GENTABLE 7
GROUP 224
GUIAPP 21
HTFFILE 224
INITIAL

with RECORD tag 91, 92
ITEM 121
JOINCON 75

tags (continued)
LABEL

with ITEM tag 143
with RECORD tag 101

LINKAGE 201
LINKDATA

with RECORD tag 89
LINKPARM

with RECORD tag 90
LNKEDIT 209
MAINFUN 14
MAINPRC 223
MAP 153
MAPEDITS

with ITEM tag 125
with VFIELD tag 170

MAPG 189
MESSAGES

with ITEM tag 132
with VFIELD tag 178

NUMEDITS
with ITEM tag 140
with RECDITEM tag 98

obsolete 223
OPTIONS 193
PCB 148
PRESENT 158
PROCESS 224
PROL

with PROGRAM tag 18
with RECORD tag 77
with TBLE tag 109

PSB 147
QUAL 54
RCDHELP

with RECORD tag 76
RECDITEM 78
RECORD 59
ROW 117
RSRCS 197
SCRIPT 22
SENSEG 150
SQL 46
SQLTABLE 73
SSA 51
TABREC 15
TBLE 105
TEXT

with BNDCTRL tag 206
with LINKAGE tag 202
with LNKEDIT tag 210
with OPTIONS tag 194
with RSRCS tag 198

TITLE
with RECORD tag 77

Index 235

tags (continued)
TRACBAG 216
UIMSGS

with ITEM tag 138
with RECDITEM tag 96

UIPROP
with RECORD tag 86

UIPROP with ITEM tag 134
VAGT 213
VATTR 180
VFIELD 167

TARGSYS tag 224
TBLE tag 105
TBLEKEY attribute

on ITEM 140
on RECDITEM 98

TBLENAME attribute 225
TBLNHVAR attribute 74
templates

structure 213
Templates traceability information

syntax example 216
TEXT tag

with BNDCTRL tag 206
with LINKAGE tag 202
with LNKEDIT tag 210
with OPTIONS tag 194
with RSRCS tag 198

TIME attribute
on BNDCTRL tag 206
on FUNC tag 32
on GUIAPP tag 22
on ITEM tag 124
on LINKAGE tag 202
on LNKEDIT tag 210
on MAP tag 158
on MAPG tag 190
on OPTIONS tag 194
on PROGRAM tag 13
on PSB tag 148
on RECORD tag 68
on RSRCS tag 198
on TBLE tag 107

title 77
TITLE tag

with RECORD tag 77
TRACBAG tag 216
traceability

templates 213
TRACECAT attribute 214
TRANSACT attribute 68
TYPE attribute

on CALLPARM tag 18
on CFIELD tag 161
on CONTITEM tag 117

TYPE attribute (continued)
on DEFITEM tag 113
on ITEM tag 124
on PARM tag 37
on PCB tag 149
on PROGRAM tag 13
on RECDITEM tag 85
on RETURN tag 44
on STORAGE tag 41
on TABREC tag 16
on VFIELD tag 170

TYPEKEY attribute
on ITEM 140
on RECDITEM 98

TYPEUSE attribute 109

U
UIMSGS tag

with ITEM tag 138
with RECDITEM tag 96

UIPROP tag
with ITEM tag 134
with RECORD tag 86

UITYPE attribute 88
unloaded format 21
UPDATE I/O option 32
UPDFUNC attribute 33
UPDPROC attribute 224
USAGE attribute

on DEFITEM tag 114
on PARM tag 38
on RECORD tag 69
on STORAGE tag 42
on TBLE tag 108

user interface properties
on item 134
on RECORD 86

V
VAGT tag 213
VALIDLOC attribute, on GENOPTS

(program) tag 223
VALIDSQL attribute, on GENOPTS

(program) tag 223
VALUEITM attribute 91
VARFOLD attribute 159
VARIABLE attribute 225
variable field

attribute definition 180
definition 167
definition example 4

VARLENTH attribute 69
VATTR tag 180
VFIELD tag 167
VISITNAM attribute 214
VISITTYP attribute 215

VISITVER attribute 215

W
WITHHOLD attribute 33
WORKSTOR attribute 14
WSPCNAME attribute 215
WSPCVERS attribute 215

Z
ZEROEDIT attribute

on MAPEDITS (item) tag 132
on MAPEDITS (map) tag 177
on NUMEDITS (item) tag 142
on NUMEDITS (record) tag 100

236 VisualAge Generator: External Source Format Reference

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
External Source Format Reference
Version 4.5

Publication No. SH23-0265-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH23-0265-01

SH23-0265-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0265-01

	Contents
	Notices
	Trademarks
	Terminology used in this document
	Terminology differences between Java and Smalltalk

	About this document
	Who should use this reference
	Documentation provided with VisualAge Generator

	Chapter 1. Introduction
	External source format tags
	Tag name
	Tag attribute
	Tag text
	Name
	Description
	Syntax
	Attribute table
	Attribute description

	Format example of variable field definition
	VFIELD tag attributes

	Chapter 2. Program structures
	Program definition
	Program and table generation option specification
	:PROGRAM tag attributes

	Main function definition
	:MAINFUN tag attributes

	Table and additional records list definition
	:TABREC tag attributes

	Parameter specification
	:CALLPARM tag attributes

	Program prologue definition
	:PROL tag values

	Templates tracability information
	Program definition syntax example

	Chapter 3. GUI client structures
	GUI client definition
	:GUIAPP tag attributes

	GUI interchange format
	:SCRIPT tag attributes

	GUI unloaded format
	:BENCODE tag attributes

	GUI client definition syntax example

	Chapter 4. Function structures
	Function definition
	:FUNC tag attributes

	Parameter definition
	:PARM tag attributes

	Local Storage Definition
	:STORAGE tag attributes

	Return Value Definition
	:RETURN Tag Attributes

	Logic definition before I/O option
	:BEFORE tag values

	Logic definition after I/O option
	:AFTER tag values

	SQL selection condition specification
	:SQL tag attributes

	DL/I call definition
	:DLICALL tag attributes

	Segment search argument definition
	:SSA tag attributes

	Qualification statement definition for the segment search argument
	:QUAL tag attributes

	Templates tracability information
	Function definition syntax example

	Chapter 5. Record structures
	Record and Erecord definition
	:RECORD tag attributes

	SQL table name definition
	:SQLTABLE tag attributes

	Default selection criteria definition
	:JOINCON tag attributes

	Record help definition
	:RCDHELP tag values

	Record title definition
	:TITLE tag values

	Record prologue definition
	:PROL tag values

	Record item definition
	:RECDITEM tag attributes

	User interface properties definition
	

	Link properties definition
	:LINKDATA tag attributes

	Link parameter definition
	:LINKPARM tag attributes

	Initial definition
	:INITIAL tag values

	Initial value definition
	:INITIAL tag values

	General edit characteristic definition
	:GENEDITS tag attributes

	Message key definition
	:UIMSGS tag attributes

	Numeric edit characteristic definition
	:NUMEDITS tag attributes

	Field help definition
	:FLDHELP tag values

	Label definition
	:LABEL tag values

	Templates tracability information
	Record definition syntax example

	Chapter 6. Table structures
	Table definition
	:TBLE tag attributes

	Table generation option specification
	:GENOPTS tag attributes

	Table prologue description
	:PROL tag values

	Table column definition
	:DEFITEM tag attributes

	Data content attribute identification
	:CONTITEM tag attributes

	Row specification
	:ROW tag values

	Templates tracability information
	Table definition syntax example

	Chapter 7. Data item structures
	Data item definition
	:ITEM tag attributes

	Map edit characteristic definition
	:MAPEDITS tag attributes

	Data item message definition
	:MESSAGES tag attributes

	User interface properties definition
	:UIPROP tag attributes

	General edit characteristic definition
	:GENEDITS tag attributes

	Message key definition
	:UIMSGS tag attributes

	Numeric edit characteristic definition
	:NUMEDITS tag attributes

	Field help definition
	:FLDHELP tag values

	Label definition
	:LABEL tag values

	Templates tracability information
	Data item definition syntax example

	Chapter 8. Program specification block structures
	PSB definition
	:PSB tag attributes

	Program communication block (PCB) specification
	:PCB tag attributes

	Segment sensitivity specification
	:SENSEG tag attributes

	Templates tracability information
	PSB definition syntax example

	Chapter 9. Map structures
	Map definition
	:MAP tag attributes

	Presentation information definition
	:PRESENT tag attributes

	Constant field definition
	:CFIELD tag attributes

	Constant field attribute definition
	:CATTR tag attributes

	Variable field definition
	:VFIELD tag attributes

	Map edit characteristic definition
	:MAPEDITS tag attributes

	Field Edit Message Definition
	:MESSAGES Tag Attributes

	Variable Field Attribute Definition
	:VATTR Tag Attributes

	Templates tracability information
	Map structure syntax example

	Chapter 10. Map group structures
	Map group definition
	:MAPG tag attributes

	Floating area definition
	:AREA tag attributes

	Templates tracability information
	Map group structure example

	Chapter 11. Options file structures
	Options file definition
	:OPTIONS tag attributes

	Text definition
	:TEXT tag values

	Templates tracability information
	Options file structure example

	Chapter 12. Resource association file structures
	Resource association file definition
	:RSRCS tag attributes

	Text definition
	:TEXT tag values

	Templates tracability information
	Resource association file structure example

	Chapter 13. Linkage table file structures
	Linkage table file definition
	:LINKAGE tag attributes

	Text definition
	:TEXT tag values

	Templates tracability information
	Linkage table file structure example

	Chapter 14. Bind control file structures
	Bind control file definition
	:BNDCTRL tag attributes

	Text definition
	:TEXT tag values

	Templates tracability information
	Bind control file structure example

	Chapter 15. Link edit file structures
	Link edit file definition
	:LNKEDIT tag attributes

	Text definition
	:TEXT tag values

	Templates tracability information
	Link edit file structure example

	Chapter 16. Templates traceability information structures
	Templates traceability information definition
	:VAGT tag attributes

	Trace bag information
	:TRACBAG tag values

	Templates traceability information syntax example

	Appendix A. External source format functions withVisualAge Generator commands
	Import and export of VisualAge Generator parts
	External source format file
	Header record

	Error processing

	Appendix B. DBCS support
	Appendix C. Tags not supported by VisualAge Generator
	Program structures
	GUI client structures
	Process structures
	Statement group structures
	Record structures
	Table structures
	Data item structures
	Program specification block structures
	Map structures
	Map group structures

	Index
	Readers’ Comments — We'd Like to Hear from You

