
IBM WebSphere

Standard and Advanced Editions

����������	
������
��������������������������������

 !��"#�%$���������������"'&�"#����(*)�+�+,$-����"#"#������"

Written by David Draeger and Jay Toogood
Document Revision Control: 1.1

Date: October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Intended Audience

This paper is intended for application architects, developers, management and anyone
else responsible for the development and deployment of well performing and scalable
WebSphere applications that use session persistence.

Acknowledgments

A special thanks to Gabe Montero for his insight into the topics discussed in this document.

WebSphere Application Server Best Practices using HTTP Sessions − Overview

This white paper contains tips and techniques to help developers program more efficiently and
administrators to tune WebSphere appropriately. This document first takes a brief look at the
options available in WebSphere for configuring how sessions are handled. In the second section,
a discussion of situations on when to use each option is presented to help the system
administrator or developer identify when and where an option is valuable to use or not. Finally
application development best practices for servlets and JSPs specifically focusing on HTTP
Sessions and Session Persistence are presented.

Note: This document only applies towards WebSphere Advanced/Standard Edition 3.02.2 and
greater. While some of the items mentioned may work in WebSphere versions prior to 3.02.2,
they were not tested while developing this document.

What are sessions?

A session is a series of requests to a servlet, originating from the same user at the same browser.
Sessions allow servlets running on a servlet engine to keep track of individual users, a concept
known as personalization.

For example, a servlet might use sessions to provide "shopping carts" to on−line shoppers.
Suppose the servlet is designed to record the items each shopper indicates he or she will
purchase from the Web site. It is important that the servlet be able to associate incoming requests
with particular shoppers. Otherwise, the servlet might mistakenly add Shopper_1’s choices to the
cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each
request. If the user’s browser is cookie−enabled,the session ID can be stored as a cookie.
Otherwise, it can conveyed to the servlet by URL rewriting, in which the session ID is appended
to the URL of the servlet or JavaServer Pages (JSP) file from which the user is making requests.

WebSphere provides facilities, grouped under the heading Session Manager, that support the
javax.servlet.http.HttpSession interface described in the Servlet API specification. Using the

Page 2 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

WebSphere Application Server 3.x implementation of the Java Servlet API (Version 2.1) session
framework, your server can maintain session state information.

What are persistent sessions (session cluster)?

The Session Manager session support allows multiple application server instances to share a
common pool of sessions, known as a session cluster. A cluster is the binding of two or more
virtual hosts that reside on separate nodes, such that each virtual host runs servlets across all of
the nodes and processes sessions on any one of those nodes.

The implementation of clustering in WebSphere Application Server Version 3.x allows failover.
This preserves session data integrity and the common pool of sessions in the event of a system
failure in one or more of the clustered Java virtual machines (JVMs) running servlets within a
virtual host group.

The session clustering implementation also allows load balancing (Work Load Management),
whereby the session workload is distributed among the virtual hosts comprising the cluster.

IBM WebSphere Application Server Version 3.x uses a database to maintain session clusters. In
a clustered environment, the session may be accessed on any virtual host in a cluster. Which
virtual host is actually accessed will be transparent to the end user. During a session transaction,
if the virtual host fails during the WebSphere HttpSession transaction, then the update to the
database does not occur. Still, the common pool of sessions continues to function, including the
session being processed during the failure, minus any updates made during the uncompleted
transaction.

For non−catastrophic failures (such as when the virtual host remains functional), any session
changes that cannot be completed are rolled back. The session reverts to its state prior to the start
of the transaction. If instead the transaction is completed successfully and the changes are
committed, the session is still accessible, regardless of the failure of an individual node.

At what point do you need to use persistent sessions?

Whenever data is shared across multiple application servers (JVMs), persistent sessions are used
as a method to share that data. This occurs when cloning application servers (WLM), having
two applications, in separate application servers, talk to each other using sessions, or when
configuring WebSphere clusters with fail−over support.

Page 3 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

What is session caching?

The IBM WebSphere Application Server session support maintains a list of the most recently
used sessions in memory. It avoids using the database to read in or access the session when it is
determined that the cache entry is still the most recently updated. To determine if the cached
session is still valid, WebSphere does a small read of the session’s last access time field from the
database and compares it to the last access time of the cached session.

Page 4 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Understanding the Session Manager in WebSphere
Listed below are brief descriptions of the components of the WebSphere Session Manager.
Understanding how each option affects WebSphere sessions is valuable both with tuning
WebSphere and with developing applications that run on WebSphere. Along with the brief
description listed here, more in−depth descriptions can be found online in section 6.6.11.1.4 of
the WebSphere InfoCenter. (See the Online Resources section at the end of this document.)

Session Manager − Enable Tab

Label Options Default Description

Enable Sessions Yes/No Yes Specifies whether session tracking is
enabled, meaning the session−related
methods for the request and response objects
will be functional.

Enable Cookies Yes/No Yes Specifies whether session tracking uses
cookies to carry sessions IDs.

Enable URL Rewriting Yes/No No Specifies whether the Session Manager uses
rewritten URLs to carry the session IDs. If it
is enabled, the Session Manager recognizes
session IDs that arrive in the URL and, if
necessary, rewrites the URL to send the
session IDs.

Enable Protocol Switch
Rewriting

Yes/No No Specifies whether the session ID is added to
URLs when the URL requires a switch from
HTTP to HTTPS or HTTPS to HTTP.

Enable Persistent Sessions Yes/No No Specifies whether to save session data in a
database, or lose the session data when the
server shuts down.

Page 5 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Session Manager − Cookies Tab

Label Options Default Description

Cookie Name Valid String* sesessionid Specifies a unique name for the cookie.

Cookie Comment Valid String* Servlet session
support

Specifies information about the cookie.

Cookie Domain Valid String* Specifies the value of the domain field of a
session cookie. This value will restrict
where the cookie is sent. For example, if
you specify a particular domain, session
cookies will be sent only to hosts in that
domain.

Cookie
Maximum Age

Positive Integer
or −1

−1

Specifies the maximum number of
milliseconds the cookie will live on the
client browser. Corresponds to the Time to
Live (TTL) value described in the Cookie
specification.

When value is −1, cookie timeouts when
browser session is closed.

Cookie Path Any valid path
on the server

/ Specifies the value of the path field that
will be sent for session cookies. Specify a
value to restrict which paths on the server
the cookie will be sent to. By restricting
paths, you can keep the cookie from being
sent to certain servlets, JHTML, and
HTML files.

Cookie Secure Yes/No No Specifies whether session cookies include
the secure field. Specify Yes to restrict the
exchange of cookies to only HTTPS
sessions.

* See the cookie specification at http://www.netscape.com/newsref/std/cookie_spec.html

Page 6 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Session Manager − Persistence Tab

Label Options Default Description

Persistence Type Directodb / EJB Directodb Specifies the mechanism to use for
recording persistent session data.

Note: EJB is not fully implemented in
WebSphere 3.0 − 3.5

Datasource Defined Datasource Specifies the data source object from
which the Session Manager will obtain
database connections.

Userid Valid Userid for
given datasource

Specifies the user ID for accessing the
session database and tables.

Password Valid Password for
given Userid

Specifies the password for accessing the
session database and tables.

Note: Changes on the Persistence tabbed page take effect the next time the application server
containing the Session Manager is started.

Session Manager − Intervals Tab

Label Options Default Description

Invalidate Time (seconds) Positive Integer
or −1

1800 Specifies the number of seconds a session
is allowed to go unused before it will no
longer be considered valid.

When value is −1, no timeout.

Note: Changes on the Interval tabbed page take effect immediately.

Page 7 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Session Manager − Tuning Tab

Label Options Default Description

Using Multirow Sessions Yes/No No Specifies whether to place each instance of
application data in a separate row in the
database, allowing larger amounts of data to
be stored per session. This can yield better
performance in certain usage scenarios.

Using Cache Yes/No No Specifies whether to maintain an in−memory
list of the most recently used sessions. In
some cases, the list (cache) can help avoid
database accesses.

Using Manual Update Yes/No No Specifies whether to automatically send
session updates to the database. By default,
Application Server updates the database with
the last access time and any changes effected
by the servlet, such as updating or removing
application data.

Using Native Access Yes/No No N/A for V3.02.2 and V3.5

Allow Overflow Yes/No Yes Specifies whether to allow the number of
sessions in memory to exceed the value
specified by Base In−memory Size property.

Base Memory Size 0..Memory
Max

1000

Specifies the number of sessions to maintain
in memory. The meaning differs somewhat,
depending on whether you are using in−
memory or persistent sessions.

Note: Changes on the Tuning tabbed page take effect the next time the application server
containing the Session Manager is started.

Page 8 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Understanding When to Use the Session Options in WebSphere

When to use single row sessions or multi row sessions

The decision on using single row session persistence or multirow session persistence is largely
dependent on how much data a developer wants to store for each session. The following
graphics represent how the data is stored in the database for persistent sessions.

Column Ids of a WebSphere Session Record:

ID PROPID APPNAME LISTENERCNT LAST
ACCESS

CREATION
TIME

MAX
INACTIVETIME

USERNAME SMALL MEDIUM LARGE

Example of a Single Row Session Record:

WW3QP2
YAAAAA
GCIFO5A
CTBA

WW3QP2
YAAAAA
GCIFO5A
CTBA

MyApp 0 969416563671 969416561625 1800 anonymous java.lang.Integer,"My String","My Large
String"

Example of a Multi Row Session Record:

WWTVE
1YAAAA
ACCIFO5
AH53Q

WWTVE1YA
AAAACCIFO
5AH53Q

MyApp 0 969415276250 969415273031 1800 anonymous

WWTV... IntVariable java.lang.Integer

WWTV... StrVariable "My String"

WWTV... LargeStrVar "My Large String"

The following items help an administrator or developer decide whether to use single row or
multi row sessions in WebSphere.

Reasons to use single row:

1. Can read or write all values with just one record read/write.
2. Takes up less space in a database since you are guaranteed that each session is only one

record long.

Reasons not to use single row:

1. 2 MegaByte limit of stored data per session.

Page 9 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Reasons to use multi row:

1. The application can store an unlimited amount of data. (Limited only by size of
database and 2 MB per record limit)

2. The application can read in individual fields instead of the whole record. When larger
amounts of data are stored in the session but only small amounts are specifically
accessed during a given servlet’s processing of a http request, multi row sessions can
improve performance by avoiding unneeded Java object serialization.

Reasons not to use multi row:

1. If data is small in size, you don’ t want the extra overhead of multiple row reads when
everything can be stored in one row.

MultiRow Gotcha: In the case of multirow usage, design your application data objects not to
have references to each other, and to prevent circular references. For example, suppose you are
storing two objects A and B in the session using HttpSession.put(..) , and A contains a reference
to B. In the multirow case, because objects are stored in different rows of the database, when
objects A and B are retrieved later, the object graph between A and B is different than stored. A
and B behave as independent objects.

When to use the cache option

The decision of using the cache option is dependent on the administrator and the WebSphere
configuration.

Note: It is highly recommended to use this feature to improve WebSphere performance.

Reasons to use the cache:
1. Session affinity is being used.

Reasons not to use the cache:
1. The server has limited memory available for a cache.

Page 10 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

When to use the Manual Update option

The decision on the Manual Update option is entirely dependent on the developer as they need to
use the com.ibm.websphere.servlet.session.IBMSession object instead of the HttpSession object.
This is so that the sync() function can be used to commit the information to the database.

Reasons to use Manual Update:
1. The servlets of an application typically read in the session data but don’ t write it back as

much.
2. The developer wants direct control over when the session information is persisted to the

database.
3. The servlets of an application take a long time to finish processing, thereby holding

locks on the database records for a long time.

(Note: The latest versions of WebSphere no longer perform select for updates when
request.getSession() is called. The session manager will now release any database lock
before returning back to the servlet engine and the servlet. Not using the database for
locking now places a hard requirement on affinity and not allowing multiple web
applications to access a session concurrently.)

Reasons not to use Manual Update:
1. The developer doesn’ t want to explicitly control when to persist data to the database

using the com.ibm.websphere.servlet.session.IBMSession object and wants to let
WebSphere control persisting to the database.

2. The servlets of an application are updating (writing) session information frequently.
3. The developer needs to be completely compliant with the servlet 2.1 specifications.

When the application uses the sync() function that is part of the IBMSession object, this
code may not be portable to other systems since session persistence is not part of the
servlet 2.1 specifications, but is an IBM extension to the specifications.

When to Allow Overflow

The decision on when to Allow Overflow is dependent on the administrator and the resources of
the WebSphere server.

Reasons to Allow Overflow:
1. You do not want to be limited by the amount of memory specified in the Base−memory

field.

Page 11 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Reasons not to Allow Overflow:
1. Malicious users can turn off cookies and use a script to make new session requests

causing the server to use up all its resources to fill those requests.
2. You want to limit the amount of physical memory used as a cache.

What value to use for Base Memory Size

The decision on what value to make the Base Memory size depends on the resources of the
WebSphere server and whether the cache is on or not. Also, the value means different things
depending on how other session options are configured.

For in−memory sessions, this value specifies the number of sessions in the base session table.
Use the Allow Overflow property to specify whether to limit sessions to this number for the
entire Session Manager, or allow additional sessions to be stored in secondary tables.

For persistent sessions, this value specifies the size of the general cache. If the Cache property is
enabled, the Base In−memory Size specifies how many session updates will be cached before the
Session Manager reverts to reading session updates from the database automatically.

This value holds when you are using in−memory sessions, persistent sessions with caching, or
persistent sessions with manual updates. (The manual update cache keeps the last n time stamps
representing "last access" times, with n being the Base Memory Size value).

The default is 1000. How you customize this setting will depend on your hardware system, the
usage characteristics of your site, and your willingness to increase the stack sizes of the Java
processes for your Application Servers to accommodate a larger value.

Additional Notes about WebSphere

The latest versions of WebSphere (WS 3.5 PTF 3 and greater, WS 3.02.2 plus e−fix PQ42166)
no longer perform select for updates when request.getSession() is called. The session manager
will now release any database lock before returning back to the servlet engine and the servlet.
Not using the database for locking now places a hard requirement on affinity and not allowing
multiple web applications to access a session concurrently. The responsibility of not accessing
sessions concurrently is placed on the developer of the applications. This complies with the
servlet 2.2 API.

Page 12 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Best Practices for Using HTTP Sessions

1. With the latest e−fixes that remove the notion of locking the session for the scope of the
servlet service() method, you now have to be aware of your servlets accessing a session
concurrently. For example, if two servlets are changing the same session property at the
same time, or if one servlet invalidates the session while another one is still trying to use it,
data inconsistencies may occur. If these situations are not handled in your application, you
may want to consider synchronizing on the session object following the request.getSession()
call, along with checking the validity of the session as the first step following that java
synchronization. This, along with the points on http session affinity mentioned below, should
ensure single access if that is desirable for you.

2. When developing new objects which will be stored in the HTTP session, make sure to
implement the Ser ializable class. This allows the object to properly serialize to the database
when using persistent sessions. Without this extension, the object will not persist correctly
and will throw an error. An example of this is:
public class MyObject implements java.io.Serializable

3. When adding Java objects to a session, make sure they are in the correct classpath. If
Java objects will be added to a session, be sure to place the class files for those objects in the
application server classpath or in the directory containing other servlets used in WebSphere
Application Server. In the case of session clustering, this applies to every node in the cluster.

Because the HttpSession object is shared among servlets that the user might access, consider
adopting a site−wide naming convention to avoid conflicts.

Additionally if objects are only in the web application classpath and there is more than one
web application sharing sessions, the following restrictions apply:

1. You cannot use single row session persistence due to the fact that the applications which
do not have the objects in the classpath will not be able to read in the session data.

2. You cannot have two web applications reading in the same session concurrently (i.e. via a
multiframed JSP)

4. Don’ t store large Object graphs in HttpSession. In most applications each servlet only
requires a fraction of the total session data. However, by storing the data in the HttpSession as
one large object, an application forces WebSphere to process all of it each time.
(See IBM WebSphere Whitepaper − WebSphere Application Development Best Practices for
Performance and Scalability written by Harvey W. Gunther for more details.)

5. Release HttpSessions When Finished

HttpSession objects live inside the WebSphere servlet engine until:
1. The application explicitly and programmatically releases it using the API,

Page 13 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

javax.servlet.http.HttpSession.invalidate(); quite often, programmatic invalidation is
part of an application logout function.

2. WebSphere destroys the allocated HttpSession when it expires (default = 1800 seconds
or 30 minutes). WebSphere can only maintain a certain number of HttpSessions in
memory. When this limit is reached, WebSphere simply does not cache any new
sessions and session updates are automatically sent back to the database, without
checking for their presence in the cache.
(See IBM WebSphere Whitepaper − WebSphere Application Development Best
Practices for Performance and Scalability written by Harvey W. Gunther for more
details.)

6. Do not try to save and reuse the HttpSession object outside of each servlet/JSP. The
HttpSession object is a function of the HttpRequest (you can only get if via req.getSession)
and a copy of it is only valid for the life of the service() method of the servlet or JSP. You
cannot cache the HttpSession object and reference it outside the scope of a servlet or JSP.

7. Utilize Session Affinity to help achieve higher cache hits in WebSphere. In addition to
information listed in the InfoCenter, WebSphere 3.02.2 and WebSphere 3.5 have
functionality in the HTTP Server Plugin to help with session affinity. The plugin will read
the cookie data (or encoded URL) from the browser and help direct the request to the
appropriate application or clone based on the assigned session key. This helps to achieve a
greater use of the in−memory cache and reduces hits to the session database.

8. Maximize use of session affinity and prevent breaking affinity. Using session affinity
properly can enhance the performance of WebSphere. Session affinity in WebSphere is a
way to maximize the use of the in−memory cache of session objects and reduce the amount of
reads to the backend database. Session affinity works by caching the session objects in the
JVM of the application a user is interacting with. If there are multiple clones of this
application, the user can be directed to any one of the clones which are also in their own
JVM. If the users starts on clone1 and then a comes in on clone2 a little later, all the session
information must be persisted to the backend database and then read in by the JVM that
clone2 is running in. This database read can be avoided by using session affinity. With
session affinity, the user would start on clone1 for the first request and then for every
successive request, the user would be directed back to clone1. By doing this, clone1 only has
to look at the cache to get the session information and never has to make a call to the session
database to get the information.

You can improve performance by not breaking session affinity. Some suggests to help
prevent breaking session affinity are:

1. Do not use multiframed JSPs where the frames point to different web applications. This
will break affinity and will cause separate JVMs to process a session concurrently. When

Page 14 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

this happens, consistent state cannot be guaranteed.

2. If possible, combine all web applications into a single JVM (Application Server) and use
modeling / cloning to provide fail−over support.

3. See #9 − "When using multiframe Java Server Pages (JSP) create the session using the
frame page (JSP) but don’ t create it in the pages (JSPs) within the frame" below.

9. When applying secur ity to servlets/JSPs that use sessions, make sure you secure all the
pages not just some of the pages. When it comes to security and sessions, it’ s all or
nothing. It does not make sense to protect access to session state only part of the time. When
WebSphere security is enabled, every resource from which sessions are created or accessed
must be secured or or it must be unsecured. You cannot mix secured and unsecured resources.
The problem with securing only a couple of pages is that sessions created in secured pages are
created under the identity of the authenticated user. They can only be accessed in other
secured pages by the same user. To protect these sessions from use by unauthorized users,
they cannot be accessed from an insecure page. When a request from an unsecure page
occurs access is denied and an UnauthorizedSessionRequest Exception is throw.
(UnauthorizedSessionRequest Exception is a runtime exception and does not need to be
explicitly caught)

10.Use Manual Update and sync() in applications that mostly read session data but update
infrequently. When an application is using sessions, anytime data is read from or written to
that session, the LastAccess time field is updated. If persistent sessions are being used, this
produces a new write to the database. This is a performance hit that can be avoided by using
Manual Update and having the record written back to the database only when data values are
updated, not on every read/write of the record.

To use manual update, you first need to turn it on in the session manager. (See the tables
above to show where it is located.) Additionally, the application code must use the
com.ibm.websphere.servlet.session.IBMSession instead of the generic HttpSession. Within
the IBMSession there is a method called sync(). This method tells WebSphere that the data in
the session object should be written out to the database. This allows the developer to improve
overall performance by having the session information persist only when necessary.

11.When using multiframe Java Server Pages (JSP) create the session using the frame page
(JSP) but don’ t create it in the pages (JSPs) within the frame. By default JSPs create
HTTPSessions using the request.getSession(true) method. By doing this, each page in the
browser is requesting a new session, but only one session is used per browser instance.
A developer can use <%@ page session="false"%> to turn off the automatic session creation.
Then if the page needs to access session information use <% HttpSession session =
javax.servlet.http.HttpServletRequest.getSession(false); %> to get the already existing session
which was created by the frame JSP. This allows you to not break session affinity on the
initial loading of the frame pages.

Page 15 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

12.Utilize the following suggestions to achieve high per formance.

1. Turn on Caching.

2. Use Network Dispatcher taking advantage of the session affinity capabilites. Also use
WebSphere 3.02.2 or higher to utilize the web server plugin session affinity capabilites.

3. If your applications do not change the session data frequently, use Manual Update and the
sync() function to efficiently persist session information.

4. Keep the amount of data stored in the session as small as possible. With the ease of using
sessions to hold data, sometimes too much data is stored in the session objects. A proper
balance of data storage and performance must be determined to effectively use sessions.

5. Use a dedicated database for the session database. Don’ t use the WebSphere repository
database or another application’s database. This helps to avoid contention for JDBC
connections and allows for better database performance.

6. Verify that you have the latest e−fixes for WebSphere.
http://www−4.ibm.com/software/webservers/appserv/efix.html

13.Utilize the following tools to help monitor session per formance.

1. Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug servlet.
− To be able to run this servlet, you must have the servlet invoker running in the web
application you want to run this from.
− OR−
−You can explicitly configure this servlet in the application you want to run it from.

2. Use the WebSphere Resource Analyzer.
http://www−
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/atsepm02.html

3. Use Database tracking tools such as "Monitoring" in DB2.
(See the respective documentation for the database system used.)

4. Turn on the object level tracing in WebSphere for the session manager. This can be done
by right clicking on the Application Server and choosing Trace. Then select
Components−>com−>ibm−>servlet−>personalization−>sessiontracking. Right click
on the box in front of sessiontracking and choose the level of tracing you wish to export.
Click the "Set" button. Run the application you are monitoring the session on. Return to
the Trace Administration screen and enter a filename of where to export the trace dump.
Click on the "Dump" button.
(For information on how to read the dump file, see section 8.4 of the InfoCenter
documentation.)

Page 16 IBM Corporation October 20, 2000

WebSphere Application Server White Paper
Best Practices using HTTP Sessions

Online Resources:
InfoCenter for WebSphere V 3.5
http://www−4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter /index.html

The following are chapters of the InfoCenter the per tain specifically to HTTP Sessions or
this documentation.
0.11.2 − What is session cluster ing (i.e. persistent sessions)
1.2.3.8 − Miscellaneous database tips
4.4.1.1 − Session programming model and environment
4.4.1.1.1 − Deciding between session tracking approaches
4.4.1.1.1.1 − Using cookies to track sessions
4.4.1.1.1.2 − Using URL rewr iting to track sessions
4.4.1.1.2 − Locking and unlocking session transactions
4.4.1.1.3 − Secur ing Sessions
4.4.1.1.4 − Switching from single to multirow schema
4.4.1.1.5 − Using sessions in a clustered environment
4.4.1.1.6 − Session Limitations
4.4.1.1.7 − Tuning Session Support
4.4.1.1.7.2 − Tuning Session Support − Session Affinity
4.4.1.1.7.3 − Tuning Session Support − Multirow Schema
4.4.1.1.7.4 − Tuning Session Support − Manual Update
4.4.1.1.7.5 − Tuning Session Support − Base in−memory session pool size
6.6.11.1 − Administer ing Session Support
6.6.11.1.4 − Session Manager proper ties
6.6.0.1.6− Java command line arguments reference

8.4 − Viewing Traces

Session Management Tips
http://www−
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter /was/08010301_v35.html#5.4

Page 17 IBM Corporation October 20, 2000

