

ibm.com/redbooks Redpaper

Technical Overview of
WebSphere Process Server and
WebSphere Integration
Developer

Geert Van de Putte
Lee Gavin

Understand the principles of SOA and
On Demand Business

Learn about the building blocks
of WebSphere Process Server

Build a Hello World
solution using
WebSphere Integration
Developer

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Technical Overview of WebSphere Process Server
and WebSphere Integration Developer

December 2005

International Technical Support Organization

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2005)

This edition applies to Version 6, Release 0, Modification 0 of WebSphere Process Server
(product number 5724-L01) and WebSphere Integration Developer (product number 5724-I66).

Note: Before using this information and the product it supports, read the information in
“Notices” on page v.

Contents

Notices . v
Trademarks . vi

Preface . vii
The team that wrote this Redpaper . vii
Become a published author . viii
Comments welcome. viii

Chapter 1. On Demand Business and service-oriented architecture 1
1.1 Overview of On Demand Business . 2

1.1.1 Key business attributes . 3
1.1.2 Key technology attributes . 3
1.1.3 Key requirements for integration flexibility . 7

1.2 Introduction to SOA . 8
1.2.1 Service granularity and choreography . 10
1.2.2 Implications of SOA. 12

1.3 On Demand Business and SOA . 13
1.4 The On Demand Business Operating Environment 15
1.5 Life cycle of an On Demand Business application and the role of WebSphere

Process Integration. 20

Chapter 2. Building blocks of WebSphere Process Server 23
2.1 WebSphere Process Integration programming model 24
2.2 WebSphere Process Integration architectural model 26
2.3 Invocation: SCA. 29

2.3.1 Anatomy of the SCA . 30
2.3.2 SCA client programming model . 35

2.4 Data: Business objects and SDO . 37
2.4.1 SDO design points . 38
2.4.2 Some SDO concepts. 40
2.4.3 Business objects and the business object framework. 41

2.5 Composition: BPEL . 44
2.5.1 WS-BPEL . 45
2.5.2 A business process as an SCA component 46
2.5.3 Business process examples . 47

2.6 Other service implementation types . 49
2.6.1 POJO . 49
2.6.2 Business state machine . 50
2.6.3 Human Task Manager. 52
© Copyright IBM Corp. 2005. All rights reserved. iii

2.6.4 Business rules. 55
2.7 Supporting services. 59

2.7.1 Interface maps . 59
2.7.2 Interface map: Bridging incompatible interfaces 60
2.7.3 Data maps. 61
2.7.4 Relationships. 61
2.7.5 Selectors . 64

Chapter 3. Developing a simple solution . 67
3.1 Getting started. 68
3.2 Setting up the development and test environment 69
3.3 Creating a new business integration module . 72
3.4 Using the interface editor to define a WSDL interface 76
3.5 Using the assembly editor . 80
3.6 Using your own implementation of the interface . 90
3.7 Building a client to invoke the service component. 93
3.8 Testing the service component invocation . 97

3.8.1 Using the end-to-end Test Framework . 98
3.8.2 Testing from the Web interface . 102

3.9 Summary . 105

Appendix A. Additional material . 111
Locating the Web material . 111
Using the Web material . 111

System requirements for using the Web material 112
How to use the Web material . 112

Abbreviations and acronyms . 113

Related publications . 115
IBM Redbooks . 115
Online resources . 115
How to get IBM Redbooks . 115
Help from IBM . 116
iv Technical Overview of WebSphere Process Server and WebSphere Integration Developer

© Copyright International Business Machines Corporation 2005. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®

CICS®
IBM®
Rational®
Redbooks™

Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Java, J2EE, JSP, JDBC, JavaServer Pages, JavaServer, Java Naming and Directory Interfac, EJB, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Microsoft, Visio, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
vi Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Preface

This IBM® Redpaper is a technical introduction to IBM WebSphere® Process
Server and WebSphere Integration Developer. Part of the WebSphere Process
Integration family of products, WebSphere Process Server and WebSphere
Integration Developer provide the core functionality for implementing a
Service-Oriented Architecture (SOA) in an On Demand Business environment.

In the first chapter, we introduce On Demand Business and SOAs, describing the
requirements for runtime and the development tools for implementing an SOA. In
the second chapter, we discuss the building blocks of WebSphere Process
Server and WebSphere Integration Developer and demonstrate how these
products allow you to develop services and how they can be mapped and
assembled together.

While the first two chapters of this redpaper provide you with theoretical
information about WebSphere Process Server and WebSphere Integration
Developer, the last chapter is an introduction to building solutions using these
products. We demonstrate how to develop and test a classic Hello World
application to give you a head start for developing your own solutions.

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Geert Van de Putte is a Consulting IT Specialist at the International Technical
Support Organization (ITSO), Raleigh Center. He is a subject matter expert for
messaging and business integration and has published redbooks and taught
classes on these subjects. He has nine years of experience with WebSphere
Business Integration solutions. Before joining the ITSO, Geert designed and
implemented Enterprise Application Integration solutions for clients in many
industries at IBM Global Services, Belgium. He has a Master of Information
Technology degree from the University of Ghent in Belgium.

Lee Gavin is a Consulting IT Specialist at the ITSO, Raleigh Center. She writes
extensively and teaches IBM classes worldwide on all areas of the WebSphere
family, WebSphere Business Integration, and Business Process Management.
Before joining the ITSO in 2001, Lee worked for IBM Global Services, Australia,
where she specialized in middleware and integration solutions for clients.
© Copyright IBM Corp. 2005. All rights reserved. vii

Thanks to the following people for their contributions to this project:

Forsyth Alexander
ITSO, Raleigh Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about
this Redpaper or other Redbooks™ in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8; HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
viii Technical Overview of WebSphere Process Server and WebSphere Integration Developer

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. On Demand Business and
service-oriented architecture

Increasing consideration is being given to the strategic initiative of On Demand
Business. This chapter provides an overview of On Demand Business concepts
and discusses the correlation with the service-oriented architecture (SOA). It
then discusses the life cycle of an application for On Demand Business and the
role of WebSphere Process Integration.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Overview of On Demand Business
The IBM vision of On Demand Business is to enable customers to succeed in an
environment with an unprecedented rate of change.

Businesses want to focus on core competencies, reduce spending, and reuse
existing information in new ways without a major overhaul of their existing
infrastructures. There exists a constant pressure to juggle the often conflicting
demands to provide flexibility, cost savings, and efficiency. The sections that
follow outline the key business and technical attributes that provide the basis for
the on demand message.

Figure 1-1 identifies the key components of On Demand Business.

Figure 1-1 On Demand Business overview diagram

IntegrationIntegration

AutomationAutomation

VirtualizationVirtualization

Security Availability Provisioning Optimization

Systems and policy management

Integration of people - business processes - information
Anywhere, anytime, from any device

Pools of virtual resources

Collaboration Transactional
processes

Information
management

Application development, deployment, and maintenance

Servers Storage Distributed
systems

Business
objectives

and
policies

Product
Life Cycle

Management

Customer
Relationship
Management

Enterprise
Resource
Planning

Value
Chain

Management

Legacy and
Strategic

Applications

Customer and
partner

applications Bu
si

ne
ss

pr
oc

es
se

s

O
pe

n
st

an
da

rd
s-

ba
se

d

2 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

1.1.1 Key business attributes
From a business perspective, On Demand Business is about providing a way for
companies to realign their business and technology environments to match the
request for reusable business functionality.

Business drivers can be summarized with the following key elements:

� Focused

The enterprise can focus on their core competencies: what makes them
successful and what makes them unique. Strategic alliances are formed to
provide needs external to these core competencies.

� Responsive

The business can respond with agility to customer demands, market
opportunities, or external threats. These decisions are guided through
insight-driven decision management features.

� Variable

The enterprise can achieve operational and business process flexibility and
adapt variable cost structures (fixed to variable) to provide a high level of
operational efficiency.

� Resilient

The business can respond robustly to changes in both business and technical
environments, managing changes and threats with predictable outcomes.

Companies can achieve these business imperatives by exploiting current
technological developments while drawing on experiences that have been
learned from past architectural builds.

1.1.2 Key technology attributes
The business drivers of On Demand Business must be supported by a
well-defined technical infrastructure. The following key technological attributes
deliver the flexibility, responsiveness, and efficiency that organizations require:

� Integration
� Virtualization
� Automation
� Open standards

Figure 1-2 on page 4 provides a high-level overview of the range of each On
Demand Business attribute.
 Chapter 1. On Demand Business and service-oriented architecture 3

Figure 1-2 Four key technology attributes of On Demand Business

In the sections that follow, we describe these attributes as they apply to On
Demand Business. Then, we expand these topics to demonstrate the correlation
between On Demand Business and s.

Integration
The fundamental component of an infrastructure designed for On Demand
Business is integration. In 2002, Sam Palmisano, Chief Executive Officer of IBM,
defined On Demand Business as: “An enterprise whose business processes,
integrated end-to-end with key partners, suppliers, and customers, can rapidly
respond to any customer demand, market opportunity, or external threat.”

Integration can occur at various levels:

� People

To function at an operating level that is suitable for On Demand Business,
human-to-human and human-to-process interaction requires integration
throughout the various levels that is not limited to those who use the finished
products. Business partners, customers, and employees are all important
resources for the value chain provided by On Demand Business. For
example, integration can occur for developers through open tooling
paradigms that are based on open standards, for business partners through
the creation of horizontal processes, and for employees through collaboration.

On Demand

Proprietary InteroperableOpen Standards

VirtualizationPhysical

AutomationManual

IntegrationSilos

Grid

Automated

Full Integration
4 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

� Process

Recurring elements (security, service level, monitoring, and so on) can be
shared by applications to provide horizontal services for decoupling these
reusable application components. The use of SOA and Web services to
implement these processes, including the emerging Business Process
Execution Language for Web Services (BPEL4WS), is likely to facilitate more
rapid changes in these processes so that the business can respond with
agility to changing market conditions.

� Applications

Organizations have invested enormous resources and capital into custom
designed and off-the shelf applications. The application integration goal is to
leverage, rather than replace, these assets by providing ways of connecting,
routing, and transforming the data that is stored or shared among them.
Applications sit on disparate systems in an enterprise or are installed
throughout many enterprises.

� Systems

Systems manage, process, and deliver data to the people and applications in
the solution environment. An On Demand Business Operating Environment
requires the system to be invisible to the elements that interact with it.

� Data

Data is the primary business element of a system. The data is the source of
the information and can more easily be shared through the adoption of
standards specifications.

Virtualization
Various areas of technology in our lives exploit virtualization concepts, including
cell phones, personal digital assistants, wireless connectivity, printers, and so
forth. Aspects of virtualization draw on widely adopted architectural concepts,
including object oriented design and development, Web services, and XML.

There is a spectrum of virtualization that begins with independent stand-alone
systems on one side (a large mainframe system, perhaps) and grid computing on
the other. In the middle are varying degrees of client-server implementations.

A grid paradigm, an absolute example of on demand virtualization, is a collection
of distributed computing resources that are available over a local or wide area
network and that appear to a user or application as one large virtual computing
system.

The Internet, the most widely recognized example of virtualization, provides a
virtual network that supplies access to content and applications.
 Chapter 1. On Demand Business and service-oriented architecture 5

The vision is to create virtual dynamic organizations with secure, coordinated
resource-sharing between individuals, institutions, and resources. Grid
computing is an approach to distributed computing that spans locations,
organizations, machine architectures, and software boundaries.

Figure 1-1 on page 2 depicts virtualization as a set of virtualized resource pools
based on:

� Servers

This might include partitioning, hypervisors, VM OS, emulators, I/O
virtualization, virtual Ethernet, and so forth.

� Storage

Here, the focus is on the addition of intelligence and value in the network.

� Distributed systems

This includes Web services, scheduling, provisioning, workload management,
billing and metering, and transaction management.

The goal of grid computing, and thus on demand virtualization, is to provide
unlimited power, collaboration, and information access to everyone connected to
a grid.

Automation
Autonomic computing addresses the need of an organization to limit the amount
of time and cost that occurs as a result of:

� Overprovisioning
� New applications and highly skilled labor
� Disparate technology platforms even within one organization
� Focus on maintenance, not problem resolution
� Complexities in operating heterogeneous systems

So how can organizations begin to address these common concerns by using On
Demand Business? This is where autonomic computing comes in. Autonomic
computing can be summarized by four key components:

� Self-healing

For a system to keep functioning, it must detect, prevent, and recover from
disruptions with minimal or no human intervention. This requirement is
directly proportional to increased business dependence on technical

Note: Open Grid Services Architecture (OGSA) is an important starting point
for grid enablement. For more information about OGSA, refer to the article at:

http://www-106.ibm.com/developerworks/grid/library/gr-visual/
6 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

http://www-106.ibm.com/developerworks/grid/library/gr-visual/

infrastructures. The need for self-healing is directly proportional to the
organization’s availability requirement.

� Self-configuring

The system can adapt dynamically to changing environments, add and
remove components to and from the systems, and change the environment to
adapt to variable workloads.

� Self-optimization

Configuration that maximizes operational efficiency, including resource tuning
and workload management, alleviates the constant drain on resources to
perform routine tasks. The goal is to tune systems to respond to the workload
changes. Systems must monitor and self-tune continuously, adapting and
learning from the environment around them.

� Self-protecting

Security is one of the inhibitors of the adoption of SOAs as organizations
prepare themselves to share data externally. Self-protection requires the
system to provide safe alternatives for securing information and data.
Self-protecting automation works by anticipating, detecting, identifying, and
protecting systems from external or internal threats.

Open standards
Open standards affect the On Demand Business Operating Environment across
the previously defined levels, including automation, integration, and virtualization.
Each of these elements leverage open standards specifications to achieve their
objectives. Open standards are the key element of flexibility and interoperability
throughout heterogeneous systems.

The global adoption of a standard specification enables the disparate systems to
interact with each other. The underlying platforms might be completely different
and independent, but open standards enable processes to be built despite (or
because of) these differences.

Open standards provide the On Demand Business Operating Environment with a
standard, open mechanism to invoke system services.

1.1.3 Key requirements for integration flexibility
For the business integration that is required by On Demand Business while
maintaining the maximum flexibility of implementation, the requirements shown
in Figure 1-3 on page 8 must be met.
 Chapter 1. On Demand Business and service-oriented architecture 7

Figure 1-3 Key requirements for integration flexibility

Each requirement poses several questions:

� Coupling business processes:

– How do we model the business?

– How do we refactor the business into processes, components, and
services that can interact dynamically and change in an agile manner?

� Decoupling technology:

– How do we support business behavior with systems that can interact
without joining them too tightly?

– How can we change and evolve the systems and interactions on the time
scales required by the business?

� Enabling infrastructure:

– How do we build the technical infrastructure to support, execute, manage,
and measure these interactions, services, components, and processes?

1.2 Introduction to SOA
SOA is an approach to defining integration architectures based on the concept of
a service. It applies successful concepts proved by Object Oriented
Development, Component Based Design, and Enterprise Application Integration
(EAI) technology. The goal of SOA can be described as bringing the benefits of
loose coupling and encapsulation to integration at an enterprise level.

To help you understand SOA, it is important that you first understand what is
meant by “service” in this context. This is key because, unless you are confident
that the services that you define really are well designed, you are not assured of
achieving the promoted benefits of SOA.

The most commonly agreed-upon aspects of the definition of a service in SOA
are:

Coupling business processes

Decoupling technology Enabling infrastructure
8 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

� Services are defined by explicit, implementation-independent interfaces.

� Services are loosely bound and invoked through communication protocols
that stress location transparency and interoperability.

� Services encapsulate reusable business function.

The use of explicit interfaces to define and encapsulate the function of services is
important and is illustrated in Figure 1-4.

Figure 1-4 The key concepts of SOA

Note how the interface encapsulates those aspects of process and behavior that
are common to an interaction between two systems, while hiding the specifics of
each implementation. By explicitly defining the interaction in this way, those

SYSTEM 1

Internal code
and process

Interface code exposing
well-encapsulated services

Interoperable protocols with
location transparency

INTERFACE
Shared process, data,
and service definitions

Interoperable protocols with
location transparency

SYSTEM 2

Internal code
and process

Interface code exposing
well-encapsulated services
 Chapter 1. On Demand Business and service-oriented architecture 9

aspects of either system (for example, the platform that they are based on) that
are not part of the interaction can change without affecting the other system.

After the function has been encapsulated and defined as a service in an SOA, it
can be used and reused by one or more systems that participate in the
architecture. For example, when the reuse of a Java™ logging application
programming interface (API) is described as “design time” (when a decision is
made to reuse an available package and bind it into application code), the
intention of SOA is to achieve the reuse of services at:

� Runtime: Each service is deployed in one place and one place only and is
remotely invoked by anything that must use it. The advantage of this
approach is that changes to the service (for example, to the calculation
algorithm or the reference data that it depends on) need only be applied in a
single place.

� Deployment time: Each service is built once but redeployed locally to each
system or set of systems that must use it. The advantage of this approach is
the increased flexibility that is needed to achieve performance targets or to
customize the service (perhaps according to geography).

Note that, in contrast to reusing service implementations at runtime, the
encapsulation of functions as services and their definition with interfaces also
allows the substitution of one service implementation for another. For example,
the same service might be provided by multiple providers (such as a car
insurance quote service, which might be provided by multiple insurance
companies), and individual service requesters might be routed to individual
service providers through some intermediary agent.

The encapsulation of services by interfaces and their invocation through
location-transparent, interoperable protocols are the basic means by which SOA
increases flexibility and reusability.

1.2.1 Service granularity and choreography
Many descriptions of SOA also refer to “large-grained” services. However,
powerful counterexamples of successful, reusable, fine-grained services exist.
For example, getBalance is a useful service that is not large grained. More
realistically, there are many useful levels of service granularity in most SOAs:

� Technical functions (such as logging)
� Business functions (such as getBalance)
� Business transactions (such as openAccount)
� Business processes (such as applyForMortgage)

Some degree of choreography or aggregation is required between each
granularity level. It is unlikely that all organizations share identical definitions of
10 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

granularity, but each undoubtedly finds it beneficial to define their own. At each
level of granularity, it is important that service definitions encapsulate function
well enough that it is reusable. Figure 1-5 shows an example of service
granularities and the choreographies between them.

Figure 1-5 Service granularity and choreography

The interactions between services of various granularities (Figure 1-5) are:

1. A user submits a request to a self-service application to create a mortgage
account. The self-service application submits the business process service
request (createMortgageAccount) through the service infrastructure to a

Submit

Self-service
application

1

Public createCustomerRecord {
Check and validate parameters...
Request a unique ID
Check postcode against address
Store and commit data

}

4

Service Infrastructure

Authorization and
authentication

services
Log

Customer
management

system

External
service

1

9

Service choreographer 3

Submit

Authenticate and
authorize

createMortgageAccount

createCustomerRecord

createCustomerRecord

Implementation

Check Postcode
Log

a c
b

Steps a and b
omitted for clarity

Steps a and b
omitted for clarity

2

 Chapter 1. On Demand Business and service-oriented architecture 11

service choreographer component, the purpose of which is to choreograph
business transaction services into business process services.

2. When the service infrastructure receives the request for
createMortgageAccount, the service infrastructure first invokes
authentication and authorization technical function services to ensure that
the request is valid, then a log technical function service, and, finally,
createMortgageAccount in the service choreographer.

3. The service choreographer executes createMortgageAccount. If the request
is valid, then, after the other process elements are finished, the
choreographer invokes the createCustomerRecord business transaction
service through the service infrastructure to store the details of the new
customer. (Before doing this, it might already have invoked
storeMortgageDetails.)

4. In the implementation of the createCustomerRecord service, it is necessary
to validate the information for the new customer. Part of this validation is
checking whether the post code and address match. To do this, a
CheckPostCode business function service is invoked through the service
infrastructure.

To summarize, three aggregations or choreographies are performed by distinct
components for distinct granularity levels:

Service choreographer Choreographs business transaction services into
higher level business process services.

Service Infrastructure Choreographs technical function services to control
the invocation of business process services, business
transaction services, and business function services
(might be an Enterprise Service Bus).

Individual application components
Responsible for invoking business function services
where they are required to implement business
transaction services.

Of course, this is just one hypothetical example. Real organizations must
formulate their own definitions.

1.2.2 Implications of SOA
The encapsulation of reusable business functions, the achievement of loose
coupling, the definition of appropriate levels of granularity, and so forth are
analysis issues as much as they are technology issues. They are difficult issues
to grasp, so SOA cannot be successful without skilled architects and designers
who understand and are able to articulate them. It is easy to see these concerns
12 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

becoming hostage to time, skill, and cost issues, leading to another generation of
isolated systems that require integration.

Widespread implementation of an SOA and infrastructure is a long-term
endeavor that involves all of the usual hard business decisions, questions of
data, and process ownership. Implementing SOA requires serious, long-term
commitment by business and by the IT organization that supports it. The
implementation might involve upfront costs, centralized costs, and many other
challenges, such as:

� No specific technologies are ruled in or ruled out.

� Existing implementations are possible (for example, CICS® Transaction
Server “super router” transactions with simplified, text-based interfaces).

� EAI implementations are common (for example, XML over WebSphere
Message Broker).

� Web services are potentially a very good fit, but are still maturing.

1.3 On Demand Business and SOA

SOA is an approach to defining integration architectures based on the concept of
a service. The business and infrastructure functions that are required to make an
effective On Demand Business environment are provided as services. These
services are the building blocks of the system.

Services can be invoked independently by either external or internal service
requesters to process simple functions, or they can work together by
choreographic implementations to quickly devise new functionality for existing
processes.

SOAs can use Web services as a set of flexible and interoperable standards for
distributed systems. There is a strong complimentary nature between SOA and
Web services.

SOA touches on the four key attributes of On Demand Business as follows:

� Open standards

– SOA provides a standard method of invoking Web services (business logic
and functionality) for disparate organizations to share across network
boundaries.

– Web services use open standards to allow inter-enterprise connectivity
through networks and the Internet:

• Messaging protocols (Simple Object Access Protocol, or SOAP)
 Chapter 1. On Demand Business and service-oriented architecture 13

• Transport protocols (including HTTP, HTTPS, JMS).

• Security at the transport level (HTTPS), at a protocol level
(WS-Security), or at both levels

– Web Service Description Language (WSDL) allows Web services to be
self-describing for a loosely coupled architecture.

– Standards bodies, including WS-I, W3C, and OASIS, use technologists
from industry leading software vendors (IBM, BEA, Oracle, and
Microsoft®, for example) to accelerate and guide open standards creation
and adoption.

� Integration

– Interfaces are provided to wrap service endpoints for a
system-independent architecture and to promote cross-industry
communication.

– SOAs can provide dynamic service discovery and binding, which means
that on demand service integration can occur.

� Virtualization

– A key principle of SOA is that services should be invoked by service
requesters that are oblivious to service implementation details, including
location, platform, and, if appropriate to the business scenario, even the
identity of the service provider.

– Grid services and the very framework it all rests on is very much like
object-oriented programming.

� Automation

– Grid technologies are applying SOA principles to implementing
infrastructure services that provide an evolutionary approach to increased
automation.

For more information about the topics that are covered in this section, visit:

� IBM Web services

http://www.ibm.com/webservices

� IBM on demand Operating Environment

http://www-3.ibm.com/software/info/openenvironment/

� IBM developerWorks®: SOA and Web services zone

http://www.ibm.com/developerworks/webservices
14 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

http://www.ibm.com/webservices
http://www-3.ibm.com/software/info/openenvironment/
http://www.ibm.com/developerworks/webservices

1.4 The On Demand Business Operating Environment
To create truly successful On Demand Business, one must embrace the SOA,
which helps businesses wrap functions (services) to provide loosely coupled
accessibility to functions, flows, and applications.

So how does the Enterprise Service Bus address the IBM vision of On Demand
Business? This section describes the way that the Enterprise Service Bus can
help businesses create processes that meet the objectives of the capabilities of
an On Demand Business environment.

Figure 1-6 shows the On Demand Business Operating Environment based on
SOA.

.

Figure 1-6 Operating environment architecture for On Demand Business

The three core components of the On Demand Business Operating Environment
(integration services, Enterprise Service Bus, and infrastructure services) work
together so that the operating environment can meet defined business
objectives.

Business services leverage the application and infrastructure services, which are
mediated by the Enterprise Service Bus, to provide real business processes to all
users, including customers, employees, and business partners.

Business service management incorporates the policies and goals of the
organization, such as service levels, metrics, and other measurable business
guidelines.

Integration Services

Service level automation and orchestration

Information
management

services

Common
services

Business
function
services

Business
process

choreography
services

User
access

services

Security Message processing Modeling

Integration Mgmt & Autonomic Service level Intelligence Communication

Enterprise Service Bus

Utility business services

Resource virtualization

Infrastructure services

Business
performance
management

Business
service

Business
service

U
S
E
R

B
U
S
I
N
E
S
S

Business
services

Quality of serviceService interaction

User
interaction

services
 Chapter 1. On Demand Business and service-oriented architecture 15

Infrastructure services
The services in the infrastructure category provide and manage the infrastructure
into which business services and their constituents are deployed. These include:

� Utility business services

These services support functions such as billing, metering, rating, peering,
and settlement and are commonly used, for example, when hosting On
Demand Business services or their components.

� Service level automation and orchestration

Service level automation and orchestration provide services that facilitate
translation of service policy declarations that are associated with business
services into reality. This is achieved by services that implement autonomic
managers, which monitor the execution of services (more precisely, services
that are instrumented to be managed elements) in the On Demand Business
Operating Environment according to the policy declarations that they receive.
They then analyze their behavior, and if the analysis indicates problems, plan
a meaningful reaction to that problem and initiate execution of that plan. This
closed feedback loop is called an M-A-P-E (Monitor, Analyze, Plan, Execute)
loop.

Several specializations of such services focus, for example, on managing the
availability, the configuration, or the workload for the managed elements;
provisioning resources; performing problem management; handling
end-to-end security for services for the On Demand Business Operating
Environment; or managing data placement.

� Resource virtualization services

These services provide the instrumentation of server, storage, network, and
other resources. Included is structured (relational) and unstructured
information content that is held in a variety of data sources to allow
management and virtualization of those resources that are under the control
of operating environment resource managers for On Demand Business.
Virtualization services include mapping requirements of business services
and their components to available resources based on quality of service
declarations of the service and knowledge about the current utilization of
available resources.

Besides the fact that they implement very different capabilities that support a
variety of patterns for the On Demand Business Operating Environment, the
main difference between the two categories of services is which user roles build
them and which use them. Infrastructure elements are built by middleware
providers and Independent Software Vendors (ISVs), while integration elements
are constructed by infrastructure and application builders.
16 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

One of the most important insights regarding the On Demand Business
Operating Environment is that a common pattern supports both application
services and infrastructure services. For example:

� Adapters enable integration of existing infrastructure components into the
Enterprise Service Bus.

� Service choreography is often used for scripting of M-A-P-E execution plans.

� The Enterprise Service Bus provides the infrastructure for exchange of events
between managed elements and autonomic managers.

Users interact with infrastructure services using portal user interaction services.

Enterprise Service Bus
The Enterprise Service Bus is emerging as a service-oriented infrastructure
component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world.

Applications for On Demand Business are business services built from services
that provide a set of capabilities that are worth advertising for use by other
services. Typically, a business service relies on many other services in its
implementation. Services interact through the Enterprise Service Bus, which
facilitates mediated interactions between service endpoints. The Enterprise
Service Bus supports event-based interactions as well as message exchange for
service request handling. One innovation of the Enterprise Service Bus is a
common model for messages and events. All messages can become events if
deploying the service binds the message to a topic in the event space.

For both events and messages, mediations can be used to facilitate interactions
(for example, to find services that provide capabilities that a requestor is asking
for or to take care of interface mismatches between requesters and providers that
are compatible in terms of their capabilities). In this context, we use the term
service in a very general sense.

It is worth noting that, although from the perspective of the bus all application
components can be specified through WS-* standards (because the bus requires
a normalized representation for efficient mediated, capability-based match
making), this does not imply that they all communicate with SOAP or WS-*
protocol standards. The Enterprise Service Bus supports a broad spectrum of
ways to get on and off the bus, including on ramps for existing applications or
business connections that allow external partners in business-to-business (B2B)
interaction scenarios to participate in the service interaction game.
 Chapter 1. On Demand Business and service-oriented architecture 17

Although they all look the same from the perspective of the Enterprise Service
Bus, services implement different facets of an overall application for On Demand
Business, including:

� Realize interactions with people involved in the underlying business process.

� Provide adapters to existing applications that have to be integrated.

� Choreograph the interaction of several services to achieve a business goal.

� Watch for potential problems in the execution of the process, ready to take
action to fix them if they occur.

� Manage resources that are needed to perform required business functions.

Therefore, in addition to providing the basic infrastructure for service interactions,
the On Demand Business Operating Environment identifies a set of common
patterns for construction of applications and supports the realization of distinct
service categories that play particular roles in those patterns. The two distinct
service categories are integration and infrastructure service.

The capabilities that are provided by the Enterprise Service Bus facilitate the
interactions between the levels in the On Demand Business Operating
Environment.

Integration services
The programming model for On Demand Business services is based on
application development that uses component (service) assembly. The services
in the integration category are used by the builders of applications for On
Demand Business to create new business services; they include services that
facilitate integration and services that provide functions to be integrated:

� User access services

Handle adaptation from three orthogonal perspectives:

– Endpoint form factor such as display size, memory, and processor
limitations (ranging from desktop down to pervasive devices)

– Modes of interaction, including conventional display-keyboard interactions,
as well as speech-based interactions and combinations (multi-modality)

– Connection types such as peer-to-peer or client/server across a range of
reliabilty connections, including fully disconnected operations

� User interaction services

Handle direct interactions with people involved in the business process; for
example, processing work items that are spawned by choreography or
collaborative process elements
18 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

� Business process choreography services

Support the execution of other services that express their behavior using
process flow or rule technology. Process flows, for example, are used to
describe the interaction of other services (nearly any of the integration kinds,
including other process flow services) to perform the tasks required to realize
the functions offered by the new (combined or aggregated) business service

� Business function services

Provide the atomic business functions (those that are not composed from
other services) that are required by the overall business service; this includes
adapters to packaged or existing custom applications and brand new
application components that are created to realize a functional need that is
not already covered by existing applications

� Common services

Implement useful features, or helper functions, that are designed to be used
by many business services; for example, services that implement
personalization of user access and user interaction services, or for reporting
status and progress of business services

� Information management services

Help to integrate information hosted in a variety of data sources, such as
databases or existing applications; to access (query, update, and search) that
information; to analyze information from those sources in business
intelligence scenarios; or to take care of metadata about information and
services that are used and provided by the business services that are part of
the On Demand Business Operating Environment.

Integration services are hosted by application services that provide container
facilities for simplifying their participation in interactions with other integration
services and with the infrastructure services for the On Demand Business
Operating Environment. Integration service developers focus on realizing the
business logic that they care about, assembling integration services that provide
required business function and declaring expected quality of service.

Programmers and administrators annotate their applications and services with
policy declarations that specify quality of service. The application container (and
the Enterprise Service Bus) automates the interactions with infrastructure
services to achieve the expressed policies. An application container also
provides generic facilities such as taking care of security or transaction
management requirements for the services that it hosts, and kind-specific
facilities such as generating the events reporting status and the progress of
business process choreography services.
 Chapter 1. On Demand Business and service-oriented architecture 19

1.5 Life cycle of an On Demand Business application
and the role of WebSphere Process Integration

WebSphere Process Integration plays a key role in the overall On Demand
Business strategy.

Figure 1-7 illustrates the overall life cycle of an application in the On Demand
Operating Environment.

Figure 1-7 Life cycle of an On Demand application

WebSphere Process Integration plays a role in the green layer in Figure 1-7. This
is where WebSphere Business Modeler and the concepts that it can capture fit
in. Today, much of this work is done on napkins and using drawings that are
created in Visio or similar products. Very little simulation is done and much is lost
in the translation as you move from the business idea and associated model to
the implementation phase. If you use a tool that captures the model, you can feed
that down to the next layer in the process.

IntegrationIntegration

AutomationAutomation

VirtualizationVirtualization

Security Availability Provisioning Optimization

Policy-based orchestration

Integration of people - business processes - information
Anywhere, anytime, from any Device

Pools of Virtual Resources

Collaboration Transactional
processes

Information
Management

Application development, deployment and maintenance

Servers Storage Distributed
systems

Business
Objectives

and
Policies

Implement
Model

Move from programming
to assembly, customization

and installation

Autonomic
Business Activity Related

IT-Business

Adaptive allocation, provisioning
orchestration

solution modeling

Bridge the chasm between
business and IT

Conceive/modify
business idea

Define
model

Acquire/map to
Infrastructure

Monitor and
react

Business
Objectives

and
Policies
20 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

The blue implementation layer is where you accept the results of the modeling
activity and transform them into an implementation that will run in your runtime.
Abstract processes, for example, that are sketched out in WebSphere Business
Modeler are finished in this layer.

A key goal of WebSphere Process Integration is to transform the activities in this
later from writing code to scripting and assembly. This is achieved by building up
the appropriate services and components that are concrete representations of
the model. After these are available and they have interfaces at the correct level
of granularity, the scripting and assembly can be done. Scripting is a synonym for
flows and this is where BPEL-based choreography technology fits in. In this layer,
you can build flows that represent a business process and have the runtime to
execute them.

Assembly and customization is another aspect that is important. Here you wire
together components. This is a not a flow concept, but more of an assembly idea,
where high level components support specific interfaces and depend on other
interfaces for implementation.

As we move to the red layer, WebSphere Business Monitor provides the
business-level monitoring. You can build dashboards to see how the business is
performing and register actions to take place based on business level events that
are occurring in the system. WebSphere Business Monitor will work in
conjunction with the other tools that provide monitoring of the infrastructure
events. Because the IT and business events are both based on a Common Event
Infrastructure, there is correlation between business and IT events, thus
providing faster problem resolution because you can determine exactly what
happened where and when, and fix things at a business and infrastructure level.

The final pink layer speaks to the core runtime that provides workload
management across disparate resources and efficient utilization of all available
IT resources. Solution Modeling and part of the WebSphere Business Modeler
solution is a starting point for configurations and service level agreements (SLAs)
and thus has some affinity at this layer.

WebSphere Process Integration is based on the WebSphere Application Server,
which provides a number of the key technologies that otherwise would have to be
re-implemented by WebSphere Process Integration. Examples are infrastructure
services around transaction management and workload management.

WebSphere Process Integration also builds ideas upon the basic virtualizaton of
resources that are being enabled and extended in the base application server.
As the application server continues to enable On Demand Business, the process
server benefits from these features as well.
 Chapter 1. On Demand Business and service-oriented architecture 21

The remainder of this paper focuses on the key concepts and components of
WebSphere Process Server and WebSphere Integration Developer, two products
that constitute WebSphere Process Integration. WebSphere Process Server
allows the development and execution of standards-based business integration
applications in an SOA. Based on the robust J2EE 1.4 infrastructure and
associated platform services provided by WebSphere Application Server,
WebSphere Process Server can help you meet current business integration
challenges. This includes, but is not limited to, business process automation.

WebSphere Integration Developer delivers role-based development for
integration projects based on the Eclipse 3.0 platform. WebSphere Integration
Developer complements WebSphere Business Modeler and can be used in
conjunction with other Rational® tools to create a unique, integrated, and
powerful development platform. Each user has a tooling perspective based on
their particular role (J2EE Developer, Business Analyst, or Integration
Developer). This allows the user to focus on just the editors and tools that they
need for their role, which leads to unparalleled productivity.

Figure 1-8 shows which products and tools could be used in which phase of a
software development and deployment project.

Figure 1-8 WebSphere Process Integration and related products

Process execution/choreography

Services

Interaction
glue

Process modeling

Monitor Analysis

Optimize

Existing
components

Process
requirements

Manage
execution

Participate

Tool:
WebSphere
Integration
Developer

Tool:
WebSphere
Integration
Developer

Tool:
WebSphere
Business
Modeler

Tool:
WebSphere
Business
Modeler

Tool:
WebSphere
Business
Monitor

Tool:
WebSphere
Business
Monitor

WebSphere
Process
Server

WebSphere
Process
Server

Web and
portal
clients

Web and
portal
clients

Tool:
Rational

Application
Developer

Tool:
Rational

Application
Developer
22 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Chapter 2. Building blocks of
WebSphere Process Server

This chapter discusses the programming model and main building blocks of
WebSphere Process Server, grouped around three concepts:

� Invocation
� Data
� Composition

2

© Copyright IBM Corp. 2005. All rights reserved. 23

2.1 WebSphere Process Integration programming
model

Integration projects have long been very difficult because there is a myriad of
technologies. There are many ways to represent or interact with data and there
are many ways to describe or invoke existing application logic. Figure 2-1 shows
only a few relevant technologies in this area.

Figure 2-1 Traditional programming model

A third level in a typical integration project is composition. How do you combine
several components together in an overall flow? Here, too, a number of
technologies were in use in typical integration projects. These (and other)
technologies are likely to be used in the future as well as today to build IT
solutions.

WebSphere Process Server offers a new level of abstraction at each of these
levels so that the task of integrating applications and services becomes much
easier (see Figure 2-2 on page 25).

Data

Invocation

Composition

JDBC Row Set
Java Bean, JAXB Object
JMS Message, JCA Data

EJB Transfer Bean
JAX-RPC POJO, EMF Data, XML DOM

EJB Stateless
Session Bean

JAX-RPC, JDBC
JCA, JMS

EJB Stateless Session Bean Composition
Java Bean Composition

WebSphere InterChange Server Collaborations
Flow Definition Language (FDL)

BPEL4WS
24 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 2-2 New programming model

At the data level, WebSphere Process Integration offers Service Data Objects
(SDOs) as an abstraction level. SDO and a number of extensions are used to
implement business objects. Extensions to SDO that are implemented in
WebSphere Process Server include, for example, support for metadata, context
information, and change history.

The term business objects is also used for WebSphere InterChange Server.
However, in WebSphere Process Server, the term gets a much broader usage
because it provides a universal means of describing and accessing data.

At the invocation level, WebSphere Process Server offers Service Component
Architecture (SCA). SCA describes all integration artifacts as service
components with well-defined interfaces. SCA also introduces the concept of a
module, which groups together service components and provides further
specification and encapsulation of services.

WebSphere Integration Developer provides an assembly editor where the
developer groups service components into modules and specifies which service
interfaces are exposed by the module to outside consumers. Services that are
available include imported components such as Java Beans or Web services and
service components that WebSphere Process Server provides. Modules are then
connected to form complete integration solutions.

The concepts of SCA allow a developer to encapsulate integration logic within
modules. This means that a change to service components within a module does
not impact any of the other modules in the overall solution as long as the
interface of the changed module stays the same. This concept has been applied

Composition

Invocation

Data Service Data Objects (SDO)
(Plus extensions)

Service Components (SCA)
(Plus extensions)

WS-BPEL
(Plus extensions)
 Chapter 2. Building blocks of WebSphere Process Server 25

throughout WebSphere Process Server. All integration artifacts in WebSphere
Process Server (processes, business rules, human tasks, and so on) are
represented as SCA service components. This creates an environment with
great flexibility. It is possible, for example, to replace a human task for an
approval with a business rule for automatic approval simply by replacing the
service components in the assembly diagram without changing either a business
process or the caller of the business process.

With SCA, you can invoke service components using synchronous and
asynchronous programming styles. You can assemble modules into overall
solutions where asynchronous channels between service components and
modules can increase the overall throughput and flexibility of the system.

At the composition level, WebSphere Process Server offers business process
execution language for Web services (WS-BPEL), sometimes also referred to as
BPEL4WS.

2.2 WebSphere Process Integration architectural model
WebSphere Process Server is built on a robust J2EE runtime provided by
WebSphere Application Server. The architectural model is illustrated in
Figure 2-3.

Figure 2-3 Architectural model for WebSphere Process Server

The J2EE runtime offers Qualities of Service that WebSphere Process Server
exploits, such as clustering, failover, scalability, and security. The J2EE server
also includes a built-in messaging provider that can be configured to connect to
an existing WebSphere MQ network.

SOA Core SCA Business
objects

Common event
infrastructure

Human
tasks

Human
tasks

Business
state

machines

Business
state

machines

Business
rules

Business
rules

Business
processes
Business
processes

Service
components

WebSphere Application Server (J2EE runtime)

Supporting
services

Interface
maps

Business
object maps RelationshipsSelectors
26 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Also in the infrastructure layer is the Common Event Infrastructure, which is the
foundation for monitoring applications. IBM uses this infrastructure throughout
the IBM product portfolio; monitoring products from Tivoli® and WebSphere
(WebSphere Business Monitor) exploit it. The event definition (Common
Business Event, or CBE) is being standardized by the OASIS standards body so
that other companies and clients can use the same infrastructure to monitor their
environments.

On top of this infrastructure, WebSphere Process Server implements a layer
called the SOA core. To do integration in an SOA properly, you must have a
single invocation model and a single data model. SOA is this invocation model:
every integration component is described using an interface. These services can
then be assembled in a component assembly editor; the result is a very flexible,
encapsulated solution. Business objects are the universal data description. They
are being used as data going in and out of services and are based on the SDO
standard.

SCA Bindings describe the physical description of components. Services that
can be accessed include Plain Old Java Objects (POJOs), EJBs, Web services,
JMS messages, and adapters.

On top of this SOA core layer, WebSphere Process Server implements a number
of components and services that can be used in an integration solution:

� Business processes: The business process component in WebSphere
Process Server implements a WS-BPEL compliant process engine. Users
can develop and deploy business processes with support for long and short
running business processes and a robust compensation model in a highly
scalable infrastructure. WS-BPEL models can be created in WebSphere
Integration Developer or imported from a business model that has been
created in WebSphere Business Modeler.

� Human tasks: Human tasks in WebSphere Process Server are stand-alone
components that can be used to assign work to employees or to invoke any
other service. Additionally, the Human Task Manager supports the ad-hoc
creation and tracking of tasks. Existing Lightweight Directory Access Protocol
(LDAP) directories (and operating system repositories and the WebSphere
user registry) can be used to access staff information. Of course, WebSphere
Process Server supports multi-level escalation for human tasks, including
e-mail notification.

WebSphere Process Server also includes an extensible Web client that can
be used to work with tasks or processes. This Web client is built based on a
set of reusable Java Server Faces (JSF) components that can also be used to
create custom clients or embed human task functionality into other Web
applications.
 Chapter 2. Building blocks of WebSphere Process Server 27

� Business state machines: A business state machine provides another way of
modeling a business process. Businesses can represent their business
processes based on states and events that sometimes are easier to model
than a graph-oriented business process model. One example is an ordering
process where the order can be cancelled or modified at any time during the
order process.

� Business rules: Business rules are a means of implementing and enforcing
business policy through the externalization of business. This allows dynamic
changes of a business process for a more responsive business environment.
Business rule authoring is supported by an Eclipse-based desktop tool.
WebSphere Process Server also includes a Web-based runtime tool for
business analysts so that business rules can be updated as business needs
dictate without affecting other SCA services.

These components can use the features of a number of supporting services in
WebSphere Process Server. Most of these can be classified as some form of
transformation, which is not surprising. A number of the transformation
challenges in the process of connecting components and external services are
addressed by a component of WebSphere Process Server:

� Interface maps: Very often interfaces of existing components match
semantically but not syntactically (for example, updateCustomer versus.
updateCustomerInDB2). This is especially true for already existing
components and services. Interface maps translate these calls so that these
components can be invoked. Additionally, business object maps can be used
to translate the actual business object parameters of a service invocation.

� Business object maps: Used to translate one type of business object into
another type, these maps can be used in a variety of ways (for example, as an
interface map to convert one type of parameter data into another).

� Relationships: In business integration scenarios, it is often necessary to
access the same data, such as customer records, in various back-end
systems (for example, Enterprise Resource Planning and Customer
Relationship Management). A common problem with keeping business
objects in sync is that different back-end systems use different keys to
represent the same objects. The WebSphere Process Server relationship
service establishes relationship instances between objects in these disparate
systems. These relationships are typically accessed from a business object
map while one business object format is being transformed into another.

� Selector: Different services that all share the same interface can be selected
and invoked dynamically by a selector. For example, a customer support
process might use different human task implementations during different
times of the day. Work is routed to different support centers (Americas,
Europe, and Asia-Pacific) based on the time of day. WebSphere Process
28 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Server offers a Web-based interface for dynamic updates to selection criteria
and target services.

2.3 Invocation: SCA
Figure 2-4 shows a simple way to look at the important architectural constructs
that make up an SOA. To build an SOA, three concepts quickly emerge.
Specifically, there must be a way to represent the data that is exchanged
between services, there must be a mechanism for invoking services, and there
must be a way to compose services into a larger integrated business application.

In this section, we discuss the concept of invoking services in an SOA
(Figure 2-4).

Figure 2-4 Invocation in SOA: SCA

Today, there are many different programming models for supporting each
construct in Figure 2-4. This situation presents developers with the challenge of
not only needing to solve a particular business problem, but also choosing and
understanding the appropriate implementation technology. One of the important
goals of the WebSphere Process Server SOA solution is to mitigate these
complexities by converging the various programming models that are used for
implementing service-oriented business applications into a simplified
programming model.

SCABusiness objects
(SDO-based technology)

BPEL + extensions

Data Invocation

Composition
 Chapter 2. Building blocks of WebSphere Process Server 29

2.3.1 Anatomy of the SCA
SCA is the service-oriented component model. It provides an abstraction that
covers stateless session EJBs, Web services, POJOs, BPEL4WS processes,
database access, Enterprise Information System (EIS) access, and so on. SCA
separates business logic from infrastructure logic so that application
programmers can focus on the business problem. SCA covers both the usage of
services and the development of services. It provides a uniform model for
application programmers and for tools.

SCA is a universal model for business services that publish or operate on
business data. SDOs provide the universal model for business data. SDO is
discussed in 2.4, “Data: Business objects and SDO” on page 37.

Figure 2-5 shows the main terms of an SCA component:

� Interface
� Implementation
� Reference

Figure 2-5 Service component: overview

A service interface is defined by a Java interface or WSDL Port Type. Arguments
and return values are described with Java classes, simple Java types, or XML
schema. SDO generated Java classes are the preferred form of Java class
because of their integration with XML technologies. Arguments described in XML
schema are exposed to programmers as SDOs.

Human
TaskJava BPEL Business

Rule SelectorState
Machine

Implementation Types

Java

WSDL
Port Type Interface Reference

Java

WSDL
Port Type

Component

Implementation
30 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

A component exposes business-level interfaces to its application business logic
so that the service can be used or invoked. The interface of a component defines
the operations that can be called and the data that is passed, such as input
arguments, returned values, and exceptions. An import and export also has
interfaces so that the published service can be invoked.

All components have interfaces of the WSDL type. Only Java components
support Java-type interfaces. If a component, import or export, has more than
one interface, all interfaces must be the same type.

A component can be called synchronously or asynchronously; this is
independent of whether the implementation is synchronous or asynchronous.
The component interfaces are defined in the synchronous form and
asynchronous support is also generated for them. You can specify a preferred
interaction style as synchronous or asynchronous. The asynchronous type
advertises to users of the interface that it contains at least one operation that can
take a significant amount of time to complete. As a consequence, the calling
service must avoid keeping a transaction open while waiting for the operation to
complete and send its response. The interaction style applies to all the
operations in the interface.

You can also apply a role-based permission qualifier to an interface so that only
authorized applications can invoke the service with that interface. If the
operations require different levels of permission for their use, you must define
separate interfaces to control their access.

A service can be implemented in a range of languages (for example Java, BPEL,
state-machine definitions, and so on). When implementing a service, the focus is
on the business purpose and less on infrastructure technology.

SCA and non-SCA services can use other service components in their
implementations. They do not hard code the other services they use. They
declare soft links called service references. Service wires resolve service
references. You can use SCA wiring to create SCA applications by component
assembly.

Figure 2-6 on page 32 shows a service component and a number of references.
When a component wants to use the services of another component, it must
have a partner reference or simply a reference. We can consider an in-line
reference, which means that the referenced service component is defined within
the same scope of the referencing component. In other words, both components
are defined within the same module.

Applications that are not defined as SCA components (for example, JavaServer
Pages, or JSPs) can still invoke SCA components; they do so through the use of
stand-alone references. Stand-alone references contain partner references that
 Chapter 2. Building blocks of WebSphere Process Server 31

identify the components to call. Alone, stand-alone references do not have any
implementation or interface.

Figure 2-6 Service component and references

Components are assembled in a module (Figure 2-7), which is a basic unit of
deployment in the WebSphere Process Server.

.

Figure 2-7 Service module: overview

Used by a non-SCA component or
another component within the module

Stand-alone Reference

Used only by the component in which
the reference is defined

In-line reference

Identifies the target service component
or import for the reference definition

Wire

Import

Export

Standalone
Reference

Service
Component

Service
Component

Service Module

Wire
32 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

The module assembly contains a diagram of the integrated business application,
consisting of components and the wires that connect them. You use an assembly
editor to visually compose the integrated application with elements that you drag
from the palette or from the tree in the Business Integration view.

The implementations of components that are used in a module assembly might
reside within the module. Components that belong to other modules can be used
through imports, which are described later. Components in different modules can
be wired together by publishing the services as exports that have their interfaces
and dragging the exports into the required assembly diagram to create imports.

When wiring components, you can also specify quality of service qualifiers on the
implementations, partner references, and interfaces of the component.

An import allows you to use functions that are not part of the module that you are
assembling. Imports can be from components in other modules or non-SCA
components such as stateless session EJBs and Web services. Available
function (or business logic) that is implemented in remote systems (such as Web
services, EIS functions, EJBs, or remote SCA components) is modeled as an
imported service (Figure 2-8).

Imports have interfaces that are the same as or a subset of the interfaces of the
remote service that they are associated with so that those remote services can
be called. Imports are used in an application in exactly the same way as local
components. This provides a uniform assembly model for all functions,
regardless of their locations or implementations. The import binding does not
have to be defined at development time; it can be done at deployment time.

Figure 2-8 Service component and import

An import is a valid target for a wire

Describes how the external service is
bound to the current module

JMS Binding

Web
Service

Service
Component

Stateless
Session Bean

JMS
 Chapter 2. Building blocks of WebSphere Process Server 33

An export is a published interface from a component (Figure 2-9) that offers the
component business service to the outside world, for example, as a Web service.
Exports have interfaces that are the same as or a subset of the interfaces of the
component that they are associated with so that the published service can be
called. An export dragged from another module into an assembly diagram
automatically creates an import.

Figure 2-9 Service component and export

The service component details are stored in an XML file (Figure 2-10 on
page 35) using a new definition language: Service Component Definition
Language (SCDL).

Describes how the service is
bound externally

esbBinding

Identifies the component to be exported

Target

Web
Service

Service
Component JMS
34 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 2-10 Sample SCDL file

2.3.2 SCA client programming model
The SCA client programming model is designed to locate a service, to create
data objects, to invoke a service, and to handle exceptions that are raised by the
invoked component.

Clients locate services by using the ServiceManager class. There are a few ways
to instantiate the ServiceManager class, depending on the desired lookup scope
for the service. Once the ServiceManager is instantiated, you can use the
method locateService(String interface) to locate the service that implements the
requested interface.

The SCA supports both static (type-safe) and dynamic invocation. The following
snippet of pseudo-code shows how the service is located and how the method
someOperation is then invoked dynamically.

Service myService = (Service) serviceManager.locateService(“myService");
DataObject input = ...
myService.invoke(“someOperation”, input);

The dynamic invocation interface provides an invoke method for calling methods
dynamically. The invoke method takes (as input) the name of the method to
invoke and an input array of Object. The invoke method returns an array of

<?xml version="1.0" encoding="UTF-8"?>
<scdl:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:java="http://www.ibm.com/xmlns/prod/websphere/scdl/java/6.0.0"
xmlns:ns1="http://HelloWorld/HelloWorldInterface"
xmlns:scdl="http://www.ibm.com/xmlns/prod/websphere/scdl/6.0.0"
xmlns:wsdl="http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/6.0.0"
displayName="HelloWorld" name="HelloWorld">
 <interfaces>
 <interface xsi:type="wsdl:WSDLPortType" portType="ns1:HelloWorldInterface">
 <method name="sendMessage"/>
 </interface>
 </interfaces>
 <references>
 <reference name="HelloWorldInterfacePartner">
 <interface xsi:type="wsdl:WSDLPortType" portType="ns1:HelloWorldInterface"/>
 </reference>
 </references>
 <implementation xsi:type="java:JavaImplementation" class="sample.HelloWorldImpl"/>
</scdl:component>
 Chapter 2. Building blocks of WebSphere Process Server 35

Object also. Ideally, the input is an SDO; however, ordinary Java classes can be
used, too.

The following pseudo-code snippet shows the type-safe invocation:

MyServiceImpl myService =
(MyServiceImpl) serviceManager.locateService(“myService");

myService.someMethod(“input”);

With SCA, services can be called synchronously or asynchronously. There are
three types of asynchronous invocation models as shown in Figure 2-11.

Figure 2-11 Three types of asynchronous invocations

The first option is a simple one-way operation. The invocation returns
immediately and the client can continue further processing. The second option is
the deferred response. In this case, the client retrieves the output later, using a
ticket. The third option is the callback mechanism: the service calls a method on
the client side to return the response.

SCA interfaces are always defined in the synchronous form. For each
synchronous interface, one or more asynchronous interfaces can be generated.
When a callback mechanism is chosen by the client, the client component needs
to implement a class: <interface name>Callback.java. The interface of this class
is derived from the interface of the actual component that the client wants to use.

Figure 2-12 on page 37 summarizes the different interface types, the supported
invocation methods and models, and how data is passed between client and
service.

invokeAsync()

Client Service

further
processing

One way

invokeAsync()

Client Service

invokeResponse()

further
processing

Deferred response

invokeAsync()

Client Service

onInvokeResponse()

Request with callback

further
processing
36 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 2-12 SCA interactions

2.4 Data: Business objects and SDO
In the previous section, we discussed SCA and mentioned SDO briefly. We also
discussed the concept of business objects, the second architectural construct of
an SOA.

Business data that is exchanged in an integrated application in WebSphere
Process Server is represented by business objects. The objects are based on
SDO, which is a new data access technology (see Figure 2-13 on page 38). In
this section, we discuss SDO in greater detail.

YESYESJava
Interface

NOYESWSDL
Port Type

Type SafeDynamicRequest
with
Callback

Deferred
Response

One WaySynchronous

Invocation
MethodsInvocation Model

Interface
Type

Data passed by reference in the same SCA Module

Data passed by value
 Chapter 2. Building blocks of WebSphere Process Server 37

Figure 2-13 Data in SOA: SDO

2.4.1 SDO design points
When a programmer must access data, the programmer must select a
programming model that is based on where the data is stored. For example, a
Java programmer who wants to manipulate relational data can use the Java
Database Connectivity (JDBC) API. That same API can also be used to query
metadata. For an XML document, the programmer might use, for example, the
Simple API for XML (SAX).

Basically, the programmer must know and write infrastructure code, and the
business logic is tied to the location and type of data. If the data was first stored
in an XML data source and is moved to a relational data source, the programmer
needs to change the data access code in the program.

SDO changes all that. It unifies data representation across disparate data stores.
It supports a disconnected programming model and is integrated with XML. SDO
provides dynamic and static (strongly typed) data APIs. The SDO proposal was
published jointly by IBM and BEA as JSR 235. SDO Version 1.0 support is
introduced in WebSphere Application Server V6 and IBM Rational Application
Developer V6. The SDO V2.0 specification is currently available.

Table 2-1 on page 39 lists a number of data-oriented Java APIs and adds the
characteristics for SDO as well.

SCABusiness Objects
(SDO-based technology)

BPEL + Extensions

Data Invocation

Composition
38 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Table 2-1 Comparing data-oriented Java APIs

For each technology shown in the first column, the table lists some
characteristics in the following areas:

� Model

Connected or disconnected are the possible values. This refers to the
requirement of some APIs for an active connection to the data source. Active
connections are incompatible with SOAs.

� API

Static or dynamic are the possible values. Static code is generated in
advance while dynamic code has a reflective interface that avoids code
generation. However, dynamic code lacks compile-time checking.

� Data source

This refers to the intrinsic nature of the data. SDO works uniformly across all
kinds of data sources.

Technology Model API Data Source Meta-data API Query
Language

SDO Disconnected Dynamic and
static

Any SDO
Meta-data API
and Java
Introspection

Any

JDBC Rowset Connected Dynamic Relational Relational SQL

JDBC Cached
Rowset

Disconnected Dynamic Relational Relational SQL

Entity EJB Connected Static Relational Java
Introspection

EJBQL

JDO Connected Static Relational,
Object

Java
Introspection

JDOQL

JCA Disconnected Dynamic Record-based Undefined Undefined

DOM and SAX Disconnected Dynamic XML XML InfoSet XPath,
XQuery

JAXB Disconnected Static XML Java
Introspection

N/A

JAX-RPC Disconnected Static XML Java
Introspection

N/A
 Chapter 2. Building blocks of WebSphere Process Server 39

� Meta-data API

This refers to the API that can be used to obtain type information about the
data itself.

� Query Language

This column specifies what option is available for defining the data that is
accessed by a service. SDO can handle any query language.

In addition to providing a programming model that unifies data access, there are
several other key design features to note about SDO. First, built into the SDO
architecture is support for some common programming patterns. Most
significantly, SDO supports a disconnected programming model. Typically, with
this type of pattern, a client might be disconnected from a particular data access
service (DAS) while working with a set of business data. However, when the
client has completed processing and needs to apply changes to a back-end data
store by way of a DAS, a change summary is necessary to provide the
appropriate level of data concurrency control. This change summary information
has been built into the SDO programming model to support this common data
access scenario.

Another important design point to note is that SDO integrates well with XML. As a
result, SDO naturally fits in with distributed service-oriented applications where
XML plays a very important role.

Finally, SDO has been designed to support both dynamic and static data access
APIs. The dynamic APIs are provided with the SDO object model and provide an
interface that allows developers to access data even when the schema of the
data is not known until runtime. In contrast to this, the static data APIs are used
when the data schema is known at development time, and the developer prefers
to work with strongly typed data access APIs.

2.4.2 Some SDO concepts
There are a a few key SDO concepts that can provide a framework for
understanding business object architecture, including the design and use of
business objects in WebSphere Process Server.

The fundamental concept in the SDO architecture is the data object. In fact, the
term SDO is often used interchangeably with the term data object. A data object
is a data structure that holds primitive data, multi-valued fields (other data
objects), or both. The data object also has references to metadata that provide
information about the data found in the data object. In the SDO programming
model, data objects are represented by the commonj.sdo.DataObject Java
interface definition. This interface includes method definitions that allow clients to
obtain and set the properties associated with DataObject.
40 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

As an example, consider modeling customer data with an SDO data object. The
properties associated with the customer might be firstName (String), lastName
(String), and customerID (long). The following pseudo code shows how you
might use the DataObject API to obtain and set properties for the customer data
object:

DataObject customer = …
customer.setString("firstName","John");
customer.setString("lastName","Doe");
customer.setInt("customerID", 123);
int id = customer.getInt(“customerID”);

Another important concept in the SDO architecture is the data graph
(Figure 2-14). A data graph is a structure that encapsulates a set of data objects.
From the top level data object in the graph, all other data objects can be reached
by traversing the references from the root data object. In the SDO programming
model, data graphs are represented by the commonj.sdo.DataGraph Java
interface definition.

An important feature of the data graph is a change summary that is used to log
information about what data objects in the graph have changed during
processing. The change summary information is defined by the
commonj.sdo.ChangeSummary interface.

Figure 2-14 Data graph consisting of data objects and change summary

2.4.3 Business objects and the business object framework
The business object framework provides a data abstraction for SCA. For readers
that have experience with WebSphere InterChange Server, the WebSphere
Process Server business object framework provides capabilities similar to
business objects as used in WebSphere InterChange Server. Business objects

Data Graph

Root

Data Object

Change
Summary
 Chapter 2. Building blocks of WebSphere Process Server 41

are based on SDO v1.0 technology but provide some additional functionality not
found in SDO.

Both SCA and SDO (the basis of business objects) have been designed to be
complimentary service oriented technologies. Figure 2-15 illustrates how SCA
provides the framework to define service components and to compose these
services into integrated applications, and it further shows that business objects
represent the data that flows between each service. Whether the interface
associated with a particular service component is defined as a Java interface or a
WSDL port type, the input and output parameters are represented by business
objects.

Figure 2-15 Exchanging data in an SCA runtime

The business object framework consists of the following four concepts:

Business object (BO) Fundamental data structure for representing business
data

Business graph (BG) Wrapper for a business object or hierarchy of business
objects to provide enhanced information such as change
summary, event summary, and verb

BO Type Metadata Metadata that provides the ability to annotate business
objects with application specific information

BO Services A set of services provided to facilitate working with
business objects, available in addition to the capabilities
already provided by SDO V1.0

Service Module

BO

BO BO

BO

BO

BO = Business Object

Web

Web
42 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

The business object is directly related to the SDO data object concept discussed
previously. In fact, business objects in WebSphere Process Server are
represented in memory with the SDO type commonj.sdo.DataObject. Business
objects are modeled as XML schema. Two types of business objects are found in
the business object framework:

� Simple business objects, which are composed only of scalar properties

� Hierarchical business objects, which are composed of attributes that refer to
nested business objects

In the business object framework, a business graph is used to wrap a top level
business object and provide additional information that can enhance the data. In
particular, the business graph includes the change summary for the data in the
graph (similar to the SDO change summary information), the event summary,
and verb information (used for data synchronization between EISs).

The business graph is similar to the SDO data graph. However, the event
summary and the verb portion of the enhanced information is not included with
the SDO data graph concept. Figure 2-16 shows how these concepts fit together.

Figure 2-16 Business graph and business objects

Note: The term business object is occasionally used to refer to the entire
framework. However, in this paper, the term refers to the fundamental data
structure for representing business data and not to the overall architecture. For
the overall architecture, the term business object framework is used.

Change Summary
(from SDO)

Event Summary
(from WPS)

CustomerBG
(from Application)

0..1

0..1

1

1

Customer
(from Application)

lastName : string
firstName : string
custID : string
stocks : Stock []

1

1

Stock
(from Application)

symbol : string
numShares : int0..1

1

Business Graph
(from WPS)

verb : string
 Chapter 2. Building blocks of WebSphere Process Server 43

At the bottom of the graph is the simple business object, Stock. This business
object has only scalar attributes. The business object Customer is a hierarchical
business object. It has scalar attributes, but it also has an attribute that is an
array of business objects (BO Stock, in this case).

Business graph CustomerBG acts as a wrapper. It contains the top-level
business object. Since CustomerBG is a business graph, it has the additional
attribute verb and a reference to a change summary and event summary. The
change summary concept is inherited from SDO, while the concept of a verb and
event summary are provided by WebSphere Process Server itself.

2.5 Composition: BPEL
The third aspect of a process integration solution is composition. A process
component orchestrates multiple service components to achieve a given
business goal. A process component is described in BPEL, sometimes referred
to as BPEL4WS or WS-BPEL 2.0. Figure 2-17 illustrates this concept.

Figure 2-17 Composition in SOA: BPEL

Business processes are a unifying concept for integrating business-to-business
and enterprise applications by exposing the appropriate invocation and
interaction patterns. Processes are the building blocks for developing consistent
distributed applications in heterogeneous environments. Process-based
applications are composed of two distinct pieces:

Service Component
Architecture (SCA)

Business Objects
(SDO-based technology)

BPEL + Extensions

Data Invocation

Composition
44 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

� A process model that describes the logical order in which the different
activities of the process are being executed

� The individual services/components that implement the specific activities

As a result, a business process is the set of business-related activities, rules, and
conditions that are invoked in a defined sequence to achieve a business goal.

The purpose of the Business Flow Manager is to manage the life cycle of
business processes, to navigate through the associated process model, and to
integrate the appropriate business functions by invoking the appropriate
services. WSPEL is used to define the process model that the Business Flow
Manager navigates through.

2.5.1 WS-BPEL
WS-BPEL defines a model and grammar for describing the behavior of a
business process based on interactions between the process and its interactions
with external partners. It can be used to specify both the public interfaces for the
partners and the description of the executable process. A partner can be any
entity that provides a service, consumes a service, or both.

WS-BPEL provides the means to specify business processes that consist of
service invocations and the ability to expose the actual business process as Web
services. The interaction with each partner occurs through Web service
interfaces, and the structure of the relationship at the interface level is
encapsulated by partner links. The WS-BPEL process defines the sequencing of
service interactions with partners. The process also provides the coordination to
achieve a business goal, and the state management and the logic necessary for
the coordination.

WS-BPEL provides systematic mechanisms for dealing with business exceptions
and processing faults. WS-BPEL implements a framework for defining how
individual or composite activities in a process are to be compensated in cases
where exceptions occur or a partner requests the reversal of a scope of work.

WS-BPEL is founded on an XML notation for specifying business process
behavior based on Web services. The standard is being directed through OASIS.
Refer to the following Web site for more information:

http://www.oasisopen.org/committees/tc_home.php?wg_abbrev=wsbpel

The standard is based on WSDL 1.1, XML Schema 1.0, and XPath 1.0. WSDL
messages and XML schema type definitions provide the data model used by
WS-BPEL processes. XPath provides support for data manipulation. External
resources and partners are represented as WSDL services. A WS-BPEL
 Chapter 2. Building blocks of WebSphere Process Server 45

http://www.oasisopen.org/committees/tc_home.php?wg_abbrev=wsbpel

compliant process can be executed in any process execution environment that
supports that standard. Therefore, WS-BPEL process models are portable.

The technical features of WS-BPEL are:

� Compensation (compensation handlers, compensate activity) for undoing
process steps that have already been completed

� Event handlers for providing the ability to handle asynchronous event issues
during process execution

� Support for XPath as query and expression language (for example, in
conditions), which provides flexibility for modeling process conditions

� Explicit isolated scopes to allow for separation of internal error and event
handling

� Fault handlers for advanced internal process error handling

2.5.2 A business process as an SCA component
A BPEL process provides operations by implementing them through Receive
activities (for one-way operations) or Receive-Reply activity pairs (for
request-response operations). These operations are available in the external
interface of the process. A business process can be invoked as an SCA
component through that interface (Figure 2-18). Business process interfaces,
such as the Receive, Reply, and Receive Choice activities, are available to SCA
through Export and non-SCA components from a stand-alone reference.

Figure 2-18 A business process as an SCA component

A business process can also invoke SCA components. BPEL partner links in the
process are resolved to SCA components or external services using the
assembly editor. Partner links in the BPEL process are wired to SCA and
non-SCA components by an import. Partner links to SCA components in the
same module are wired directly.

Import

Export

Standalone
Reference

Service
Component

Service
Component
46 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

A BPEL process uses an invoke activity to invoke other services. That activity
specifies the partner and the operation that is to be called on behalf of the
process, the data that is used as the input message to that operation, and, in the
case of a request-response operation, where the result data is to be stored.

BPEL processes can transparently handle one-way, request-response
operations, and synchronous and asynchronous interaction modes, using the
same syntax for all cases. The business flow manager dynamically detects the
type of service implemented by the corresponding partner and uses the
appropriate invocation. This allows the business process modeler to create
processes that are independent from the physical realization of the involved
services.

Business processes execute in a dedicated container, the Business Flow
Manager component of Business Process Choreographer. This component
persistently and reliably:

� Manages process state
� Routes incoming requests to the correct instance
� Executes BPEL statements
� Interfaces with the Human Task Manager for people interactions
� Produces the right logging events for the Common Event Infrastructure (CEI)
� Deploys and manages processes

2.5.3 Business process examples
Business processes are used to solve a wide variety of business problems.
WebSphere Process Server implements functionality that maps to features that
are available in WebSphere Business Integration Server Foundation, WebSphere
InterChange Server, and WebSphere MQ Workflow. WebSphere Process Server
provides techniques for building solutions that mimic the functionality that is
available in each of these earlier products. This section briefly describes how
these tools provide business process support to illustrate the advanced
architecture of WebSphere Process Server.

WebSphere Business Integration Server Foundation
WebSphere Process Server is a direct evolution from WebSphere Business
Integration Server Foundation. As such, the business process model that is
available in WebSphere Business Integration Server Foundation is supported
and extended in WebSphere Process Server.

Figure 2-19 on page 48 shows a simple WebSphere Process Server solution that
represents a WebSphere Business Integration Server Foundation solution. On
the left is a Web services export that exposes the service as a standard Web
 Chapter 2. Building blocks of WebSphere Process Server 47

service. The business process is a WS-BPEL-based solution that integrates
partner links that are exposed as references and implemented as Web services.

Figure 2-19 WebSphere Business Integration Server Foundation scenario

WebSphere InterChange Server
WebSphere InterChange Server solutions utilize a set of adapter-integration
broker patterns for integration with source and target systems. WebSphere
InterChange Server is often used for integrations that synchronize enterprise
systems. WebSphere InterChange Server makes extensive use of
transformations and complex manipulation of data through graphical tools. The
underlying concepts of these solutions can be easily replicated in WebSphere
Process Server with import-export functions that support source and target
systems through Web services, JMS messaging resources, WebSphere
Adapters, and other access patterns. WebSphere Process Server uses
transformations to deliver the mapping functions needed for synchronization.

Figure 2-20 shows a WebSphere InterChange Server solution that was
implemented in WebSphere Process Server. On the left, the adapter provides the
source application specific business object. Using the transformation features of
WebSphere Process Server (that are conceptually based on WebSphere
InterChange Server concepts), the application-specific business object is
converted to a generic business object. Optionally, the generic business object
can be passed into a WS-BPEL-based business process for further
enhancement or action. As a final step, the generic business object can be
converted back to an application specific business object for output to target
systems through another adapter.

Figure 2-20 WebSphere InterChange Server scenario

BO BOWS Export

Business Process WS Import

AsBO GBO

AsBO

AsBO

GBO

Mediation

Adapter Business Process
48 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

WebSphere MQ Workflow
WebSphere MQ Workflow is a WebSphere MQ-based workflow solution. Many of
the human-related features of the Human Task Manager are derived from
WebSphere MQ Workflow. Figure 2-21 shows a simple example of a JMS export
receiving a message and interacting with a process. This process can support
multiple types of component interactions, including the Human Task Manager to
support traditional workflow interactions. The Human Task Manager provides all
the services to interact with the user and to manage that interaction. For more
detail, see 2.6.3, “Human Task Manager” on page 52. After the process is
complete, the output could be to another JMS location.

Figure 2-21 WebSphere MQ Workflow scenario

2.6 Other service implementation types
A BPEL business process is an important type of service implementation in SCA.
A BPEL business process is also an important technology for composing a larger
scale service by wiring together services. However, there are other types of
service implementations.

2.6.1 POJO
A POJO can act as the implementation of a service. Such a service has an
interface that is nothing more than a Java interface declaration. Figure 2-22
shows a simple Java interface called HelloWorld.

Figure 2-22 Java interface definition

A service is described in a service definition file that contains information about
the services that are called, if any, and the exposed interfaces. Figure 2-23 on
page 50 shows a simple service information file. The interfaces section describes

BO BOJMS Export

Business Process JMS Import

public interface HelloWorld {
public String sendMessage(String message);

}

 Chapter 2. Building blocks of WebSphere Process Server 49

the exposed interfaces, while the implementation section lists the Java class that
implements this service.

Figure 2-23 Service information file

Note that the interface type element in Figure 2-23 could also be:

<interface xsi:type=”java:JavaInterface” interface=”HelloWorldInterface”/>

For a POJO, you have the choice between a Java type of invocation or a WSDL
type of invocation. In Chapter 3, “Developing a simple solution” on page 67, we
discuss, in detail, the development of such a service.

2.6.2 Business state machine
A state machine model is a way to describe the dynamic behavior of an
application or business process by focusing on the events that cause a transition
from one state to another. A business state machine is an implementation of a
business model that executes (that is, it moves from state to state) based on real
time events. With a business state machine, you can model event-based
processes easily and efficiently. States and state transitions form the basis of the
process. Business logic is embedded in the transitions between two states. This
means that WebSphere Process Server contains two types of business
processes, BPEL and state machines.

You should use a BPEL process when:

� Steps in a process tend to happen in sequence.
� Some event handling and looping is present.

<?xml version="1.0" encoding="UTF-8"?>
<scdl:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:java="http://www.ibm.com/xmlns/prod/websphere/scdl/java/6.0.0"
xmlns:ns1="http://HelloWorld/HelloWorldInterface"
xmlns:scdl="http://www.ibm.com/xmlns/prod/websphere/scdl/6.0.0"
xmlns:wsdl="http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/6.0.0"
displayName="HelloWorld" name="HelloWorld">
 <interfaces>
 <interface xsi:type="wsdl:WSDLPortType"
portType="ns1:HelloWorldInterface">
 <method name="sendMessage"/>
 </interface>
 </interfaces>
 <implementation xsi:type="java:JavaImplementation"
class="com.ibm.itso.sca.sample.HelloWorldComponent"/>
</scdl:component>
50 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

You should use a business state machine when:

� The business process is heavily event-driven.
� The reaction to these events is dependent on the process state.
� The process may revert to prior states.
� Some sequential steps are involved.

A good example of a business process that is easily modeled as a state machine
is an ordering process where the buyer can cancel or modify the order at any
time. The cancel or modify could become an event that can occur at any time in
the state machine and that needs to be handled in the design. If an order cannot
be modified or canceled again after it has been submitted, you might as well
model the order processing as a generic BPEL process.

Note that at runtime, a process that is modeled as a state machine is still
described as a BPEL process. The process is deployed to the same business
process engine that is used for ordinary BPEL processes. The main difference
between a business state machine and a BPEL process is noticeable at
modeling time. One technology is better suited for a certain class of business
processes than another. But at runtime, the difference is minimal.

When discussing state machines, a number of terms are often used and they
have specific meaning in the context of state machines:

States A state is one of several discrete individual stages that are
organized in sequence to create a business transaction.

Composite states A composite state is an aggregate of one or more states
that can be used to decompose a complex state machine
diagram into an easy to comprehend hierarchy.

Operations/events An operation is an external prompt that attempts to trigger
a movement from one state to another.

Transitions A transition is the movement that occurs through the
recognition of an appropriate triggering operation, the
evaluation of the conditions necessary for execution to
flow through it, and the determination of what actions can
occur should execution be allowed.

Conditions A condition guards the transition and only allows the
transition to the next state if the incoming operation
evaluates to True. Otherwise, the current state is
maintained.

Actions An action is an operation that is executed at one of three
distinct locations in the business state machine: during a
transition, when a state is entered, or when a state is
exited.
 Chapter 2. Building blocks of WebSphere Process Server 51

Correlation The state machine uses correlations to distinguish the
parties in their initial interactions so that they can
recognize each other in the future. A correlation is the
record that is used to keep track of multiple participants in
the same business transaction.

Events map to the operations that are available in the SCA component of the
state machine. Business objects, primitives, or both can be used as I/O
parameters. Part of the input parameter is used to correlate to a state machine
instance.

A transition can be caused by a timeout. For example, a state transition can
occur when a certain duration is exceeded (1 day, for example) or when the state
becomes expired (for example, December 31, 2006).

If a transition has no event (operation) or timer, it is considered an automatic
transition. Automatic transitions enable sequential processing. Automatic
transitions in conjunction with conditions can provide default behavior.

A business state machine is an SCA component. The interfaces of such an SCA
component are used to define the events of the state machine. Or, in other
words, SCA operations are events in a state machine. The actions in a state
machine can refer to other SCA components. Business objects can be defined
and assigned to instance variables within the state machine.

2.6.3 Human Task Manager
Human interaction is key to many business integration applications. Human
interaction can be required for input and initiation of a process or for review and
approval of the business process. Human interaction can also be required to
review and correct an error or exception situation in a process that is otherwise
fully automated. This technique is sometimes called management by exception.

There are many challenges involved when you add human interaction to a
process integration solution, such as:

� How to make sure that the correct people are involved

� How to add capabilities that model real-life human task management, where
tasks are claimed, transferred, and completed or are overdue and need
escalation

� How to make sure the human interaction provides a suitable interface without
disrupting the flexibility to change the business process

The Human Task Manager provides different types of human tasks for different
integration situations.
52 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Participating Task A service creates a work item for human interaction (for
example, a service implemented in BPEL).

Originating Task Human interaction invokes a service (for example, a
business state machine).

Human Task Human interaction invokes a service that creates a work
item for another human to complete.

At runtime, human tasks are assigned to users based on mappings to a user
registry, which could be an LDAP server, local operating system user registry, or
a custom registry. When you model a human task, you can set a verb and a
parameter that can be used to build a query to the user registry. Tasks are then
created and assigned for all users in the result set of that query.

Figure 2-24 shows the link between modeling time and runtime. The attribute role
of an activity is set to Potential Owner. The verb is set to Group Members and
the parameter to Approvers. At runtime, this is used to build a SELECT ALL
query. This query returns two users, John and Jane. John and Jane are
members of the group Approvers and become potential owners of this new task.

Figure 2-24 Assigning tasks to users at runtime

We can use Figure 2-25 on page 54 to review the runtime portion of assigning
users to tasks. The Human Task Manager runs as a container within the
application server. It is accessible through SCA or by way of specific APIs. These
APIs or the client SCA interface can create a new task.

When a new task is created, the Human Task Manager retrieves information from
its database to build the query. The Human Task Manager passes the query to
the Staff Plug-in Provider using the Staff Service. The query is executed against
the staff repository to retrieve a user or group of users. The query results are

User
Registry

User: John

User: Jane

Group: Approvers

John

Jane

Role: Potential Owner

Verb: Group Members

Parameter: Approvers

item = $Verb

p1 = $Parameter

Human
Task

Potential Owner Task: John

Potential Owner Task: Jane

select all

where $item = $p1

Mapping (Transformation)
 Chapter 2. Building blocks of WebSphere Process Server 53

returned to the Human Task Manager. The new tasks that are created for the
selected users are then stored in the database by the Human Task Manager.

Staff plug-in providers are managed as resources in the application server and
are accessible through the Java Naming and Directory Interface (JNDI).

Figure 2-25 Interaction between Human Task Manager and User Registry

Human tasks themselves can be invoked as SCA components. Thus, integration
with other SCA components, such as a BPEL business processes, becomes very
easy (Figure 2-26). As with any SCA component, SDO provides the standard
data format for passing data to and receiving data from human tasks.

A human task can also invoke SCA components and provides an invocation point
for someone to invoke SCA components. At the same time, it adds escalation
and notification to the invocation of any other SCA component, including
non-human tasks.

Figure 2-26 Human tasks in an SCA environment

User
Registry

HTMDB

Staff Service

Human Task Manager

2

3

4

Create Task

1

Staff Plug-in Provider

Import

Export

Standalone
Reference

Service
Component

Service
Component
54 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

2.6.4 Business rules
Business rule groups are a means of implementing and enforcing business policy
through the externalization of business functions. Externalization allows the
business rules to be managed independently from other aspects of an
application. This independence provides dynamic updating capabilities to the
business rules, which can result in a more agile business.

Often business analysts focus on business policy to describe guidelines that
drive a business and can range from marketing heuristics, to accounting
principles, to government regulations, to manufacturing standards, to supply
management quality of service levels, or to any other aspect of the business that
relies on specific conventions. Business rules represent a common way for
implementing and enforcing these business policies.

There are two styles of business rules:

� If-then rule set
� Decision table

Business rules are invoked through a business rule group component. A
business rule group component provides the interface for the business rule. Each
operation defines a business need and not a specific rule implementation.

Business rules, by their nature, change over time to support, for example,
changing business policy or changing government regulations. The ability to
schedule rules to be in effect during specific time periods provides the flexibility
for an organization to respond to changes. With the integrated effective dates,
the operation can be implemented with more than one business rule with each
implementation, which is effective for a specified period of time. Effective dates
allow a client application to invoke the business rule group component as though
it were a time in the past, present, or future.

WebSphere Integration Developer (for the developer) and a Web-based business
rules manager to support rule management for runtime changes both support
Business rule authoring. The business rule group component includes support
for deploying, installing, dynamically authoring, and executing the business rules.
Updated business rules can be exported from the runtime and re-imported into
the development tool.

Business rules are invoked through a business rule group component, never
directly. The business rule group component can be invoked as an SCA service.
The client application does not have to be concerned with the type of
implementation or which implementation is used to process the request. The
client application simply interfaces with the SCA component type to meet a
desired business need. This construct allows business rules to be encapsulated
and invoked as a service from other consumers.
 Chapter 2. Building blocks of WebSphere Process Server 55

The business rule group component is the artifact used to interface and invoke
rules. As mentioned previously, rule sets and decision tables (representing the
two forms of business rules that are supported in WebSphere Process Server)
are never invoked directly. The rule group component provides a means for the
user to form logical groupings of the business rules. The integrated effective
dates allow the user to build one interface (component) for their logical rule group
and associate one-to-many implementations of a business rule with each
operation on the component as shown in Figure 2-27.

Figure 2-27 Business rule group as an SCA component

A rule set is a set of one or more if-then condition/action statements that are
evaluated sequentially. Therefore, the first business rule listed is going to be the
first one evaluated when called upon at runtime. The second is evaluated
second, the third is third, and so forth until the last one is evaluated.

Rule sets hold any number of action/if-then conditions. To explain further, an
action does not have an if-then condition; it simply initializes or sets variables.
The if-then condition does all the decision work for a variable change. A rule set
can evaluate multiple conditions and can fire multiple rules. This might be
necessary when a rule is found true and fired, but more processing must be done
to fire any other business rules in that rule set.

A decision table represents a multi-dimensional nested if-then structure. Think of
it as a rule set that can handle more complex decisions than a simple if-then. The
decision table is broken down into a tree decision structure, a set of “if”
conditions with “then” actions that are defined at the intersection points of the
table. Conditions are evaluated in a nested order (tree view). The decision table

Interface (WSDL)

input1
output1

Business Rule Group Business Rules

Default Business Rule: RuleSet1 RuleSet1

DecisionTable1

Business Rules

Business Rules

DecisionTable11/1/066/24/05
RuleSet16/24/051/1/05

Parameter Method:
Current time, Java, or XPath

Start Date End Date Business Rule•Provides the
inputs and
outputs

•Interface is
needed to create a
rule group
56 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

evaluates one or more conditions, but fires only one rule. Most rules fall under a
decision tree because most business rules are called to fire one rule.

Use decision tables when:

� You have rules with multiple clauses/variables in the conditional statements.
� You want to fire only one rule.

Use rule sets when:

� You have rules with a few clauses/variables in the conditional statements.
� You want to fire multiple rules.

Templates provide the mechanism for supporting Web-based rule authoring at
runtime. The templates provide a constrained method for a business analyst to
author rules in real time in the application server. If a rule, condition case, or
action is not characterized as a rule template, then the business rule cannot be
exposed with the Web tools for rule authoring.

Templates allow application developers to:

� Control which aspects (conditions/actions) of a business rule can be modified
by the Web user

� Define constraints (that is, valid discount range, customer status,
gold/silver/bronze, and so on)

� Define the structure of an if-then rule and then create instances of this
template

� Define the structure of a condition case, action, or both for a decision table

� Define a natural language string that is used in the Web-based tool for
presenting the rule to the business analyst

Templates are applicable to both if-then rule set and decision table business
rules.

Business rules are also important for supporting Business Process Management
(BPM) because they help businesses of any size proactively change processes
for future events or speed response to changing customer demand. Big
businesses with a great deal of processes can move slowly when responding to
customer demand changes. With business rules, processes can be changed in
minutes so that the big business can turn the ship around quicker. Small
businesses must be able to scale and grow fast, to add processes as needed,
and change them fast. This is where business rules shine.

Businesses of all sizes are realizing how important IT flexibility and efficiency is.
Business rules help keep IT flexible because developers are freed from tasks that
a more business experienced person can do. In other words, a developer does
 Chapter 2. Building blocks of WebSphere Process Server 57

not have to be bothered every time a simple rule needs to be changed. A
business analyst who is more in tune to business needs can make that change
swiftly. Another attribute of business rules that improve IT efficiency is the ability
to have multiple processes call a business rule at the same time. This
multi-threading allows multiple processes to run at the same time.

The developer and business analyst roles are separated by the red line shown in
the middle of Figure 2-28. The more technical skills are assigned to the
developer role. The developer uses WebSphere Integration Developer to create
or manage the technical details of the business rules. The developer role works
with the architect to implement the business process plan.

On the other side, there is the business analyst role. This person is more in tune
with changing business needs. They use the business rule manager Web tool to
change the business rules when necessary. The business analyst also works
with the developer to update and create new business rules for the company.

Figure 2-28 Roles and tools when manipulating business rules

When a business rule is part of a running business process application, clients
access a business rule group to find which implementation to use and to fire one
to many business rules. These clients could be non-SCA components (called
stand-alone references) like JSPs or other SCA components like POJOs,
selectors, BPEL, or other business rules. While the business process is
deployed, you can use a Web tool that is part of WebSphere Process Server to
edit business rules that are created as templates.

Tools UsedTools Used Role TasksRole Tasks

Developer RoleDeveloper Role

Business Analyst RoleBusiness Analyst Role

More Technical Skills

WebSphere
Integration
Developer

WebSphere
Integration
Developer

Business Rule
Manager
Web Tool

Business Rule
Manager
Web Tool

•The day to day administrator
Implements the business rule
changes

•More in tune with the business
and customer demand changes

•The day to day administrator
Implements the business rule
changes

•More in tune with the business
and customer demand changes

•The Developer codes the
Business Rules that are editable
via the Business Rule Web tool
(by using templates in WID)

•Implements what the Architect
has laid out

•More in tune with technical
development and architecture

•The Developer codes the
Business Rules that are editable
via the Business Rule Web tool
(by using templates in WID)

•Implements what the Architect
has laid out

•More in tune with technical
development and architecture

More Business Skills
58 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 2-29 Clients of a business rule group

2.7 Supporting services
Supporting services provide the transformation primitives for the WebSphere
Process Server service components. This layer provides a common mapping
and transformation service. The mapping of interface signatures is done through
the interface map, and correlation and synchronization of key relationship
interfaces between systems are accomplished with the relationship service. The
selector component provides for dynamic component and target invocation with
flexible administration control at runtime.

2.7.1 Interface maps
Flexible and scalable business integration and SOA-based solutions often
require support for different types of transformations. WebSphere Process
Server delivers flexible and powerful transformation capabilities through its
interface map functions. The transformation capabilities in WebSphere Process
Server can be used in different combinations to meet the transformation
requirements of problem domains.

Interface maps can be applied to business objects or to events or requests
(interfaces) that are associated with business objects. An interface map is an
SCA component that is logically separate from the source and target
components. Figure 2-30 on page 60 shows the high level view of the
relationship between maps, imports/exports, and the business process.

Clients RuleSet

Business Rule Group

Decision Table

Like...
JSPs

POJOs
Selectors

SCA Components

Web Tool

Uses templates to
allow the Business
Analyst role to
change the
Business Rules on
a live server
 Chapter 2. Building blocks of WebSphere Process Server 59

Figure 2-30 Role of mapping components in a WebSphere Process Server flow

Interface maps provide operation binding and parameter transformation between
components. The data map provides the structural and semantic transformation
of business objects. The relationship manager provides identity relationship
maintenance and tracking and relationship lookup in custom transformations.
Finally, the selector component supports dynamic determination of the target
implementation or destination.

These technologies help developers connect components. For example,
adapters produce events that have specific signatures (operation names and
parameters). These events can be converted into different formats for
downstream components in the overall solution.

2.7.2 Interface map: Bridging incompatible interfaces
The interface map component provides resolution and reconciliation of
differences between interfaces found between SCA components. A map can be
created that understands one interface (cancelOrder) and invokes another
interface (updateOrderStatus) as shown in Figure 2-31. The interfaces can
additionally map the data on these interface calls through a data map.

Figure 2-31 Interface mediation component

Map

EIS2 importEIS1 export Mapping component Mapping vomponent

EIS1EIS1 EIS2EIS2

Business rocess

Map
P

60 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

2.7.3 Data maps
WebSphere Integration Developer contains a rich graphical mapping tool that
offers move, join, extract, and assign functionality for data fields and custom
mapping (through custom activities or Java code). It also offers sub-maps for
complex business object structures and relationship mapping.

In Figure 2-32, an adapter interacts with a back-end enterprise information
system (for example, SAP) to create, read, update, or delete events of application
specific business objects (for example, SAPCustomer and SAPOrder). The
adapter publishes these events to a set of business processes that are modeled
using generic business objects (for example, Customer and Order) for further
processing. In this case, the data map, which is called from within the interface
map, allows the request to be transformed into a canonical, or generic, format
(generic business object) from an application specific format (application specific
business object). The result of this built-in functionality is the transformation of
the operation name (interface map) and the content and structure of the
parameters that are being passed as part of the operation (data map).

Figure 2-32 Data maps used by an interface map

2.7.4 Relationships
In business integration scenarios, accessing the same data (for example,
customer records) in various back-end systems is often a requirement. A
common problem for keeping data in sync is that different back-end systems use
different keys to represent the same data. The relationship service in WebSphere
Process Server is used to relate these disparate data sources. As a business
object is converted from one application specific representation into another,
WebSphere Process Server can dynamically maintain a database of keys, which
enables the mapping of one data record into another between disparate
back-end systems.
 Chapter 2. Building blocks of WebSphere Process Server 61

Figure 2-33 shows the concept of a dynamic identity relationship with a customer
identifier being maintained in four different applications. These four systems use
different identifiers and store customer information in a different format or object
model. A typical integration requirement is to propagate new or changed records
in all four systems. In conventional middleware solutions, this is an extremely
difficult solution to develop and, more importantly, to manage continuously.
WebSphere Process Server automates this activity through a set of capabilities
that provide an integrated framework for managing dynamic relationships.

Figure 2-33 Multiple sources of customer record information

Figure 2-34 on page 63 shows us how WebSphere Process Server maintains
information about each application. Basically, a new identifier is created for each
customer and that identifier refers to the specific identifiers in each application.
Thus, when information is received from the application that is carrying identifier
108, then that identifier is replaced with the generic identifier 42 during
processing in WebSphere Process Server. When the business object is sent to
one or more target applications, the generic identifier 42 is replaced with the
appropriate identifier for that system, for example 3496 in the second application.

11527
John
Doe

Active
2005-12-31

EIS3_Customer.Create

108
John
Doe

Active
December 31, 2005

EIS1_Customer.Create

3496
John Doe

0
12/31/2005

EIS2_CUST.Create

TK421
John
Doe

A
20051231

EIS4_CustomerMaster.Create

Customer EIS2CustEIS1Cust

EIS4CustEIS3Cust

Relationship Role
definitions

Relationship Role
definitions

Relationship
definition
62 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 2-34 Relationship instances linking multiple customer identifiers

Creating and maintaining these links between identifiers is completely automatic
in WebSphere Process Server. Relationships are available directly from business
object maps and simplify the management of disparate back-end data
representations.

Consider the example shown in Figure 2-35 on page 64. A new customer is
created in EIS1. This is an application event that is delivered to the integration
solution. The business object that holds the new customer record contains the
new identifier and the verb Create. Within the context of event delivery, the
mediation component is called to transform the EIS1 specific business object to a
generic object. The map then uses the services of the relationship manager.
Given the context of event delivery and the verb, the relationship manager
creates a new relationship instance and generates a new relational identifier. In
other words, a new record is added to the relationship tables that link EIS1
customer 108 to generic customer 42.

Customer EIS2CustEIS1Cust

SAPCustOraCust

RIID CustomerId
40 3494
41 3495
42 3496
43 3497
44 3498

customer_id RIID
11525 40
11526 41
11527 42
11528 43
11529 44

RIID MasterId
40 RB328
41 RN455
42 TK421
43 DD164
44 RB456

Cust_ID RIID
106 40
107 41
108 42
109 43
110 44

Relationship
Role instances

Relationship
Role instances

Relationship
instance

Relationship
instance
 Chapter 2. Building blocks of WebSphere Process Server 63

Figure 2-35 Relationship invoked during the execution of a map

After the business process is executed, the generic business object is
transformed to the business object specific for EIS2. The creation of a new
customer record in EIS1 should trigger the creation of a new customer record in
EIS2. A service call request is issued to achieve this. Upon return, a new
identifier for this customer record in EIS2 is passed back to the business process.
The new customer record for EIS2 is mapped back to the generic object and
during the mapping, in the context of the service call response, the relationship
manager creates a new relationship instance to link the generic identifier to the
newly created identifier for EIS2. That is, identifier 3496 is linked to the generic
customer identifier 42. A similar process takes place when an event is passed to
the business process for updated or deleted customer records.

Similarly, the relationship service could be called from a data map to perform a
lookup of a value or other static information. In addition to dynamic identity
relationship management, WebSphere Process Server also supports lookup, or
static, relationships. This feature can be used to define static lookup tables where
one entry always represents another entry and this relationship never changes
(for example: LT = liter, KM = kilometer, and so forth).

Both dynamic and static relationships are created using the relationship editor in
WebSphere Integration Developer. Relationships are stored in a database and
are maintained automatically or administered through the relationship manager.

2.7.5 Selectors
The selector component provides a dynamic selection mechanism for invoking
components at runtime. The objective of the selector component is to:

� Determine dynamically which implementation of a target destination to invoke
based on some defined set of criteria, data, and logic (currently the selector
component only supports selection based on date and time).

EIS1EIS1 EIS2EIS2

EIS importEIS Export Business processMediation component

Map

Relationship

Mediation component

Relationship

Map
64 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

� Decouple the client application from a specific target destination
implementation allowing for dynamic selection and invocation of a target
destination.

� Allow new implementations of target destinations to be added to the system
without requiring changes to the client application.

� Allow new SCA implementations of a target destination to be added to the
selector component dynamically through a Web interface without requiring a
restart of the application or server.

A selector is an SCA component itself and therefore has an interface as well
(Figure 2-36). Note that the interface of the selector is the same as all the
interfaces of the target components.

Figure 2-36 How selectors work

Figure 2-37 on page 66 illustrates the design of the selector component.

Interface (WSDL)

input1
output1

Selector
Target

implementation

Default destination:
SCA component1 SCA Component1

SCA Component2SCA
Component2

1/1/066/24/05

SCA
Component1

6/24/051/1/05

Parameter method:
Current Date, Java, or XPath

Start date End date Destination

Like... POJOs, business tule
groups, or any SCA

vomponent in WebSphere
Integration Developer that

you can place on the
Assembly Editor

•Provides the
inputs and
outputs

•Interface is
needed to create a
Selector
 Chapter 2. Building blocks of WebSphere Process Server 65

Figure 2-37 Participants of a selector

The selector component design involves three participants:

� Client: The client component makes a call to the selector component. A client
can be anything that can access an SCA component.

� Selector: The selector component is a generated SCA component where
each operation reflects a business need or task and the target destinations
provide the implementation. The selector component chooses which target
destination to invoke using a declared selection implementation.

� Destination: The selector component can choose any SCA target destination
type. The destinations for each operation on the selector component are
associated with the specific selector component.

Clients

JSPs

POJOs

SCA components

SCA
components

Selector
Destinations

1 2 3
66 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Chapter 3. Developing a simple
solution

In Chapter 2, “Building blocks of WebSphere Process Server” on page 23, we
introduced some of the major concepts and terminology that you need to be
familiar with when starting to build a process integration solution. In this chapter,
we go a little further and build a simple example to reinforce these concepts.

As with all good IT-related beginnings, we start with a classic Hello World
application. In our example, we show how to use WebSphere Integration
Developer to create a very simple application that is built upon SCA.

3

© Copyright IBM Corp. 2005. All rights reserved. 67

3.1 Getting started
The Hello World application in this example consists of a single service
component that is associated with a simple WSDL interface definition. This
definition includes a sendMessage operation. The service component in the
application uses a Java implementation (POJO) to provide the sendMessage
functionality.

Once the simple service component is built, we define a stand-alone reference
that enables the HelloWorld service to be invoked by a service client (such as a
JSP) using the SCA client programming model.

Figure 3-1 shows the Service Component Architecture module that is built in this
example.

Figure 3-1 HelloWorld module

Our example consists of the following steps:

1. Set up the development and test environment.

2. Create a new business integration module.

3. Use the interface editor to define a simple WSDL interface.

4. Use the assembly editor to:

– Define a simple service component with a single WSDL port type interface
and a Java implementation.

HelloWorld component
Standalone Reference

Implementation

Java

IR
Uses

index.jsp

HelloWorldInterface.wsdl

HelloWorldComponent.java

HelloWorld Module
68 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

– Define a stand-alone reference to the simple service component.

– Assemble a service module.

5. Use the SCA client programming model to invoke the service component from
within a service client.

6. Test the service component invocation from:

– A client JSP

– The test framework

3.2 Setting up the development and test environment
The first thing to do before starting to build the solution is to start WebSphere
Integration Developer and set up the environment to allow the WebSphere
Process Server to be used as the WebSphere Test Environment.

1. Start the WebSphere Integration Developer by selecting:

Start → Programs → IBM WebSphere → Integration Developer V6.0 →
WebSphere Integration Developer V6.0

2. When prompted, enter a location for your workspace (for example,
HelloWorld) as shown in Figure 3-2. Or, you can accept the default location.

Figure 3-2 Workspace launcher

3. The Welcome page (Figure 3-3 on page 70) opens. You can close this tab in
the window by clicking the cross icon.

Tip: You can select Use this as the default and do not ask again (see
Figure 3-2). Once this option is selected, you can still use other workspaces
by selecting File → Switch Workspace.
 Chapter 3. Developing a simple solution 69

Figure 3-3 Welcome page

4. Select the WebSphere Process Server V6.0 runtime as your target test server
as follows:

a. Select Window → Preferences

b. Expand Server (in the left pane) and expand the list of installed runtimes.

c. Select WebSphere Process Server v6.0 as shown in Figure 3-4 on
page 71.

d. Click OK.
70 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-4 Installed runtimes

5. If it is not already open, open the Business Integration perspective. Select
Window → Open Perspective → Business Integration.

6. Select the Servers tab in the pane at the bottom and to the right.

Figure 3-5 Servers view

7. Double-click the server name to open the configuration editor.

8. In the Server setting, select SOAP as the Server connection type and admin
port.

9. In the Publishing section, select Run server with resources within the
workspace.
 Chapter 3. Developing a simple solution 71

Figure 3-6 Using the server configuration editor

10.Save these settings and close the configuration editor.

3.3 Creating a new business integration module
You are now ready to start building your HelloWorld module. The fundamental
project type for building SCA applications is called a module. To begin building
the Hello World application, create a new module called HelloWorld as follows:

1. Select File → New → Other.

2. Select Module as shown in Figure 3-8 on page 74.

3. Click Next.

Tip: You can maximize the editor by double-clicking the title of the tab. To
return to the previous size, double-click the title of the tab once more.
72 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-7 Wizard

4. Enter HelloWorld for the module name (see Figure 3-8 on page 74) and click
Finish.
 Chapter 3. Developing a simple solution 73

Figure 3-8 New module

5. Expand the HelloWorld module.

Figure 3-9 on page 75 shows the structure of the module and how artifacts are
organized. The structure maps to the building blocks of WebSphere Process
Server that we discussed in Chapter 2, “Building blocks of WebSphere Process
Server” on page 23.

Note: As you can see in Figure 3-8, we used the default location.
74 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-9 HelloWorld module

All artifacts belong to a certain category and are stored in their respective folders.

As shown in Figure 3-10 on page 76, at the top of the tree and below the module
name, you have access to the assembly diagram for this module. In the assembly
diagram, you can connect the different components together into a single SCA
module called HelloWorld.
 Chapter 3. Developing a simple solution 75

Figure 3-10 Properties of the assembly diagram

Components within the workspace are built automatically whenever a resource is
edited. While this feature is handy for detecting errors quickly, it is often easier to
take control of when a module or project is built or rebuilt yourself. To turn this
option off or on, select Project → Build Automatically.

3.4 Using the interface editor to define a WSDL interface
The SCA component in this application is specified by a WSDL interface called
HelloWorldInterface. To create such an interface, follow these steps:

1. In the expanded HelloWorld module, right-click Interfaces and select New →
Interface as shown in Figure 3-11 on page 77.
76 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-11 New interface

2. This starts the New Interface Wizard (Figure 3-12). Enter
HelloWorldInterface for the name and verify that the selected module is
HelloWorld.

3. Click Finish.

Figure 3-12 New interface wizard

The HelloWorldInterface has a single operation called sendMessage that
takes a string (message) as input and returns a string (status) as output.

4. After you use the wizard to create the new interface, the WSDL editor opens.
Click the Add Request Response Operation icon in the WSDL editor as
shown in Figure 3-13 on page 78.
 Chapter 3. Developing a simple solution 77

Figure 3-13 Add Request Response Operation action button

5. Change the operation name to sendMessage as shown in Figure 3-14.

Figure 3-14 New operation

6. Click the Add Input icon (Figure 3-15 on page 79).

Note: The name of the operation can be changed from either the properties
view or in the interface editor (see Figure 3-14).
78 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-15 Add input

7. Change the input1 name to message and accept string as the type for the
input parameter.

Figure 3-16 Renamed input parameter

8. Click the Add Output icon.

9. Change the output1 name to status and accept string as the type for the
output parameter. The resulting interface is shown Figure 3-17 on page 80.
 Chapter 3. Developing a simple solution 79

Figure 3-17 Completed interface

10.Save and close the WSDL file.

3.5 Using the assembly editor
The assembly editor is the primary tool for composing an SCA based application.
Now that you have created the interface called HelloWorldInterface, you can use
the assembly editor to create the simple HelloWorld component with the
HelloWorld interface as follows:

1. Return to the Business Integration view.

2. Expand the HelloWorld project.

3. Double-click the HelloWorld module.

This opens the assembly editor (Figure 3-18 on page 81) in the workspace.
80 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-18 Assembly editor

4. Add a service component to the diagram by clicking the component icon
and clicking anywhere in the canvas of the assembly diagram (Figure 3-19 on
page 82).

5. Select the Properties view.

6. Change the Display name and Name to HelloWorld.

7. In the assembly diagram (Figure 3-19 on page 82), select the HelloWorld
component and click the Add Interface icon .

Note: The assembly editor consists of a canvas area and a palette for
selecting components to add to the diagram. The palette is located to the left
of the canvas area. There are nested items within the palette; access these by
clicking the grey > (greater than) symbol next to the parent item (see
Figure 3-18).
 Chapter 3. Developing a simple solution 81

Figure 3-19 Properties of a component in the assembly editor

Figure 3-20 Interface icon

8. When the Add Interface dialog opens (Figure 3-21 on page 83), select
HelloWorldInterface.

9. Click OK.

Tip: Select the HelloWorld component and position your mouse over it to see
the icons shown in Figure 3-20.
82 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-21 Add interface dialog

As we mentioned earlier in this chapter, our SCA component uses a Java
implementation. The implementation does not yet exist at this time; however, you
can ask to generate a skeleton as follows:

1. In the assembly diagram, right-click the HelloWorld component and select
Generate Implementation → Java.

2. When the Generate Implementation wizard (Figure 3-22 on page 84) starts,
you can select an existing package or ask to use a new package. Click New
Package.

Tip: If you have many interfaces defined to your workspace, you can use
the filter to narrow the list.

In this case, when the Add Interface dialog appears, begin typing
HelloWorldInterface into the Filter by interface or qualifier field and select
the HelloWorldInterface from the Matching interfaces list when it appears.
 Chapter 3. Developing a simple solution 83

Figure 3-22 Select package for generated class

3. In the window that opens, provide the name of the new package (for example,
com.ibm.itso.sca.sample) as shown in Figure 3-23.

Figure 3-23 Provide name of new package

4. Return to the Generate Implementation window (see Figure 3-22), select the
newly created package as shown in Figure 3-24 on page 85, and click OK.
84 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-24 Select newly created package

The new class is now generated and is shown in the Java editor (Figure 3-25).
This skeleton can be used to adapt the implementation of the sendMessage
method.

Figure 3-25 Generated skeleton for HelloWorld interface
 Chapter 3. Developing a simple solution 85

If you wish, you can alter the implementation of sendMessage to return a string
that includes the original message. See Example 3-1.

Example 3-1 New implementation of sendMessage method

public String sendMessage(String message) {
System.out.println("MESSAGE>> " + message);
return "Did you say? " + message;

}

Figure 3-26 shows the current state of the assembly editor. You can see that the
icon of the HelloWorld component has a character, J, added to it, indicating that
the component is implemented by a Java class. In the Properties view and
Details section, you can see that the interface has been added and that this
interface has one single operation, sendMessage.

Figure 3-26 Assembly editor after selecting the implementation
86 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

The SCA component is called by a client implemented as a JSP. To allow this,
you need to add a stand-alone reference to the component as follows.

1. Using the palette, select the stand-alone reference icon and add it to the
canvas.

Figure 3-27 Stand-alone reference

2. In the assembly diagram, select the stand-alone references component and
click the Add Reference icon from the menu that opens when you move
your mouse over HelloWorld.

3. When the Add Reference dialog (Figure 3-28 on page 88) opens, enter
HelloWorldInterfacePartner and select HelloWorldInterface.

4. Click OK.
 Chapter 3. Developing a simple solution 87

Figure 3-28 Add Reference

Depending on the settings of your workspace, you might see the message
box shown in Figure 3-29 on page 89. Basically, you can always invoke a
component by using the WSDL interface for that component. However, if the
component is a Java component, you can also invoke it natively as a Java
class. Invoking our component using the Java interface is likely to be quicker
and easier. However, to demonstrate the generic case, we continue to use the
WSDL method.
88 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-29 Select the type of reference, Java or WSDL

5. To choose the generic WSDL technique, click No.

6. Now you must connect the reference to the component. Select the wire icon
 from the palette.

7. Click the reference box icon on the stand-alone reference.

8. Now click the HelloWorld component.

9. Your assembly diagram resembles that shown in Figure 3-30 on page 90.
Click the wire that is now connecting the stand-alone reference and the
HelloWorld component. From the Properties view, you can see the definition
of the wire.

In the assembly diagram itself, you can see that the stand-alone reference
named HelloWorldInterfacePartner makes calls to the HelloWorldInterface
(which we know is a single WSDL port type with a Java implementation; refer
to Figure 3-1 on page 68 as a check point).

Tip: You can also right-click the Stand-alone Reference component and select
Wire to Existing. The assembly editor then searches itself for an interface
that matches the reference. In our example, this target interface is obvious.
 Chapter 3. Developing a simple solution 89

Figure 3-30 Completed assembly diagram

10.Save and close the assembly diagram.

3.6 Using your own implementation of the interface
In the previous section, we asked WebSphere Integration Developer to generate
an implementation skeleton for a given interface. However, you might already
have an implementation, possibly even with a different class name than the one
that is used by the Java generator. In this section, we show how to use an
existing class.

1. To make this existing class available to the project in WebSphere Integration
Developer, you can import it by selecting File → Import.

2. Select File System as the source for the import.

3. In the next window (Figure 3-31 on page 91), click Browse to point to the
directory that contains the Java source file.
90 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

4. After the directory has been identified, select the file that you want to import
(HelloWorldComponent.java in our example in Figure 3-31).

Figure 3-31 Import a Java source file

5. Select the folder in the project where you want to import the Java source file
(for example HelloWorld).

6. Click Finish.

You might notice that the class name HelloWorldComponent is not the same as
the name of the generated class. Also, if you look at the source shown in
Example 3-2 on page 92, there is no reference to anything related to SCA. There
is not even a reference to an interface.

Note: The Java source file used in this section is available for download as
part of the additional materials for this redpaper. Refer to Appendix A,
“Additional material” on page 111 to obtain it.
 Chapter 3. Developing a simple solution 91

Example 3-2 Implementation of the class HelloWorldComponent

package com.ibm.itso.sca.sample;

public class HelloWorldComponent {

public String sendMessage(String message) {
System.out.println("MESSAGE>> " + message);
return "Did you say? " + message;

}

}

The import of the Java class might not be immediately visible in the Business
Integration view. To show the physical files associated with a module, right-click
HelloWorld and select Show Files. Or, you can select Window → Show
View → Physical Resources.

Figure 3-32 shows the new view (called Physical Resources). In this view, you
can locate the Java class file that you imported.

Figure 3-32 Physical resources view

To use this imported class as the HelloWorld component implementation, open
the assembly for this module again and follow these steps:

1. Right-click the HelloWorld component and select Select Implementation.
92 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

2. In the Pick Implementation window (Figure 3-33), alter the selection filter until
the Matching types list shows the HelloWorldComponent class.

3. Select the class and click OK.

Figure 3-33 Pick implementation

4. Save and close the assembly diagram.

3.7 Building a client to invoke the service component
There are many ways to invoke the service component that we have developed in
the previous sections. In this section, we discuss how to use a JSP Web page to
invoke the Hello World application.

To get started, import a client JSP file that includes the appropriate client code to
invoke the HelloWorld service that you created previously:

1. Select File → Import.

Note: The development of JSPs is beyond the scope of this book. A sample
JSP is provided as part of the additional materials of this redpaper. To obtain
the additional materials, please refer to Appendix A, “Additional material” on
page 111.
 Chapter 3. Developing a simple solution 93

2. Select File System and click Next.

3. Browse to the folder that contains the unzipped additional material.

4. Select the index.jsp file (Figure 3-34).

Figure 3-34 Select the JSP file

5. Click Browse to provide the name of the destination folder (for example,
HelloWorldWeb/WebContent) as shown in Example 3-35 on page 95.
94 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-35 Import into folder

6. Click OK.

7. In the Import window, click Finish.

8. Open the Web perspective by selecting Window → Open Perspective →
Other.

9. If you receive a prompt that requests confirmation for enabling the Web
Development capability, click OK to continue.

10.From the Web perspective (Figure 3-36 on page 96), expand Dynamic Web
Projects → HelloWorldWeb → WebContent.
 Chapter 3. Developing a simple solution 95

Figure 3-36 Find index.jsp

11.Double-click the index.jsp file. This opens the JSP editor (Figure 3-37).

Figure 3-37 Design view of the JSP editor

12.Select the Source view in the JSP editor.
96 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

The portion of the JSP that actually invokes the component is shown in
Figure 3-38.

Figure 3-38 Service invocation

Note the following elements:

� Name of the stand-alone reference (HelloWorldInterfacePartner)

� The creation of the Data Object input

� Name space for the sendMessage input type in the WSDL
(http://HelloWorld/HelloWorldInterface)

� The invocation of the service (service.invoke)

� Getting the status property from the output Data Object

3.8 Testing the service component invocation
Now that you have completed your service component, there are two ways to test
the invocation from a service client:

� Using the end-to-end Test Framework
� From a Web interface

We start with the use of the end-to-end Test Framework.

<%
if (request.getParameter("message") != null) {

try {
ServiceManager serviceManager = new ServiceManager();
Service service = (Service) serviceManager.locateService("HelloWorldInterfacePartner");
BOFactory bofactory = (BOFactory)

serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
DataObject input = bofactory.createByElement("http://HelloWorld/HelloWorldInterface",

"sendMessage");
input.set("message", request.getParameter("message"));

System.out.println("Sending message: " + request.getParameter("message"));
DataObject resp = (DataObject) service.invoke("sendMessage",input);
System.out.println("Response: " + resp.getString("status"));
if (resp != null) {

out.println("<p>" + resp.getString("status") + "</p>");
}

} catch (Exception e) {
System.out.println(e);

}
}
%>
 Chapter 3. Developing a simple solution 97

3.8.1 Using the end-to-end Test Framework
The end-to-end Test Framework can be invoked on a service component from
the assembly diagram.

Start by opening the assembly diagram:

1. From the Business Integration perspective, expand the HelloWorld project.

2. Double-click the HelloWorld module to open the assembly diagram.

3. Right-click anywhere in the assembly diagram and select Test Module from
the context menu.

The test editor (Figure 3-39) opens. On the left, you can see that you are
going to invoke something. On the right, you can select the module,
component, interface, and operation that you want to invoke. Below that, there
is the opportunity to provide values for the operation input message. Note
also the Datapool option. You can save and reuse input data if you must test a
component several times or to manage sets of test data.

4. Provide text as the input message and click Continue.

Figure 3-39 Test editor

Note: You can also test a single component by right-clicking it and selecting
Test Component. In our example, there is basically little difference because
the module contains only one component.
98 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

5. In the Deployment Location dialog (Figure 3-40), verify that WebSphere
Process Server v6.0 is selected. Click Finish.

Figure 3-40 Deployment location

The application is deployed to the test server and the application server starts
(Figure 3-41).

Figure 3-41 Starting the test client

Once the test has completed, you can see the response message in the Detailed
Properties pane (Figure 3-42 on page 100) as status.
 Chapter 3. Developing a simple solution 99

Figure 3-42 Result of test

In the events pane, you can see the successful invocation and response.

In the Configurations pane, you can see the details of the module that you have
been testing (see Figure 3-43). Notice the concept of an emulator. If the module
diagram contains interfaces for the implementation that are not yet ready for
testing, you can ask to emulate that component. This gives the tester the option
to provide output using the test facility, instead of invoking the actual
implementation of that interface.

Figure 3-43 Configurations pane
100 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

To see the details of what is being monitored for the test run, select
HelloWorldInterfacePartner → HelloWorld (this matches the link between our
stand-alone reference and the HelloWorld component in the assembly diagram).
You can see the details in the Detailed Properties pane (Figure 3-44). Close the
test editor without saving the data from this test run.

Figure 3-44 Detailed properties

For more complex interfaces and multi-level business objects, saving and reusing
test data and test configurations can be very helpful. Saving the test editor file (by
clicking Yes in the Save Resource prompt shown in Figure 3-45) can help you
re-run the test with similar data. There is, however, little value in saving the file for
the Hello World example.

Figure 3-45 End test run
 Chapter 3. Developing a simple solution 101

3.8.2 Testing from the Web interface
To test from the Web interface, you have to start the server and add the project to
the server. If you used the test client option, this has already been done. If not,
follow these steps:

1. From the Server view, right-click the Server and select Start.

2. After the server has successfully started, from the Server view, right-click the
server.

3. Select Add and remove projects from the context menu.

4. Select HelloWorldApp from the list of available projects as shown in
Figure 3-46.

Figure 3-46 Selected project

5. Select Add and click Finish.

After the server has been updated successfully, you can test your service
component. First, you must enter the URL of the client in a Web browser. There
are a few ways to achieve this. One way is to locate the index.jsp file in the Web
perspective and select the option Run → Run on Server, which launches the
internal browser and goes straight to the requested Web page.

If you do not want to leave the Business Integration perspective, you can easily
configure that perspective to open a browser from the tool bar:
102 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

1. Select Window → Customize Perspective.

2. In the Customize Perspective window (Figure 3-47), click the Commands tab.

Figure 3-47 Customize perspective dialog

3. Scroll to the end of the available commands.

4. Select Web Browser.

5. Click OK.

6. The Web browser icon is now visible in the tool bar. Click this icon to open
the embedded Web browser.

7. Enter the following URL:

http://localhost:9080/HelloWorldWeb/index.jsp

8. Your browser should display a page similar to that shown in Figure 3-48 on
page 104. Enter a message and click Submit.
 Chapter 3. Developing a simple solution 103

Figure 3-48 Enter a message

9. Verify that you received your original message, which is preceded by “Did
you say?” (Figure 3-49).

Figure 3-49 Response
104 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

3.9 Summary
Figure 3-50 shows the schematic overview of the application developed in this
chapter. It includes the HelloWorld component, implemented in Java as
HelloWorldComponent.java.

The component is formally described as an interface in HelloWorldInterface.wsdl.
The stand-alone reference acts as a place holder for an external client, such as a
JSP. We used the index.jsp sample.

Figure 3-50 Schematical overview of files and components

The wiring of these components is done in the assembly editor, which stores
elements such as references and wires in a file called sca.references. Part of that
XML file (Figure 3-51 on page 106) shows that the reference is WSDLPortType
(versus a Java reference). Information about the component is stored in another
XML file, called HelloWorld.component.

HelloWorld Component
Standalone Reference

Implementation

Java

IR
Uses

index.jsp

HelloWorldInterface.wsdl

HelloWorldComponent.java

HelloWorld Module
 Chapter 3. Developing a simple solution 105

Figure 3-51 XML files behind the assembly editor

While you should not edit these XML files by hand, it is good to know where
these files are located. Using the physical resources view, you can see these and
other files that are manipulated by the editors and wizards in the Business
Integration perspective (Figure 3-52 on page 107).

<scdl:references ... >
<reference name="HelloWorldInterfacePartner">

<interface xsi:type="wsdl:WSDLPortType"
portType="nsl:HelloWorldInterface"/>

<wire target="HelloWorld"/>
</reference>

</scdl:references>

HellowWorld
Component

Stand-alone
Reference

sca.references

<scdl:component displayName="HelloWorld" name="HelloWorld" ...>
<interfaces>

<interface "xsi:type="wsdl:WSDLPortType"
portType="nsl:HelloWorldInterface">

<method name="sendMessage"/>
</interface>

</interfaces>
<implementation xsi:type="java:JavaImplementation"

class = "sample.HelloWorldImpl"/>
</scdl:component>

HelloWorld.component
106 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Figure 3-52 Physical resources

Returning to the schematical overview in Figure 3-50 on page 105 and index.jsp,
a portion of the source (Figure 3-53 on page 108) details clearly the generic
steps for invoking a service:

� Use the Service Manager to locate the HelloWorldInterfacePartner service,
which is the name of the partner in the stand-alone reference.

� Create a data object and populate it.

� Invoke the required operation of the service.

� Retrieve the output value.
 Chapter 3. Developing a simple solution 107

Figure 3-53 Service invocation

Notice that the name of the operation, sendMessage, is actually the value of the
first parameter of the method invocation. The object service does not inherit the
interface of the component. Or, in other words, it is not some kind of proxy for the
actual component.

<%
if (request.getParameter("message") != null) {

try {
ServiceManager serviceManager = new ServiceManager();
Service service = (Service) serviceManager.locateService("HelloWorldInterfacePartner");
BOFactory bofactory = (BOFactory)

serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
DataObject input = bofactory.createByElement("http://HelloWorld/HelloWorldInterface",

"sendMessage");
input.set("message", request.getParameter("message"));

System.out.println("Sending message: " + request.getParameter("message"));
DataObject resp = (DataObject) service.invoke("sendMessage",input);
System.out.println("Response: " + resp.getString("status"));
if (resp != null) {

out.println("<p>" + resp.getString("status") + "</p>");
}

} catch (Exception e) {
System.out.println(e);

}
}
%>
108 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Finally, consider the overlaid figure in Figure 3-54. At the top, you see the
graphical representation of an operation and its input and output. Below that is
the implementation of that operation as a public method in a Java class.

Figure 3-54 Completed interface and implementation
 Chapter 3. Developing a simple solution 109

110 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Appendix A. Additional material

This Redpaper refers to additional material that can be downloaded from the
Internet.

Locating the Web material
The Web material associated with this Redpaper is available in soft copy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/REDP4041

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, REDP4041.

Using the Web material
The additional Web material that accompanies this Redpaper includes the files
listed in Figure A-1 on page 112.

A

© Copyright IBM Corp. 2005. All rights reserved. 111

ftp://www.redbooks.ibm.com/redbooks/REDP4041
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Table A-1 Provided Web materials

System requirements for using the Web material
The intended use of the Web materials is importing an installed copy of
WebSphere Integration Developer. The system requirements for running this
product are documented at:

http://www-306.ibm.com/software/integration/wps/sysreqs/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. The use of each file is described in
Chapter 3, “Developing a simple solution” on page 67.

The file HelloWorld.zip contains the completed sample and can be imported in
WebSphere Integration Developer by selecting File -> Import. Select Project
Interchange as the source for the import and point the wizard to the location of
the downloaded zip file.

File Name Description

HelloWorldComponent.java Java class written by a developer

HelloWorldImpl.java Generated Java class

index.jsp Sample JSP invoking an SCA component

HelloWorld.zip Project Interchange file
112 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

http://www-306.ibm.com/software/integration/wps/sysreqs/

acronyms
API Application Programming
Interface

BO Business Object

BPEL Business Process Execution
Language

BPM Business Process
Management

CBE Common Business Event

CEI Common Event Infrastructure

CICS Customer Information Control
System

CRM Customer Relationship
Management

EAI Enterprise Application
Integration

EIS Enterprise Information
System

ERP Enterprise Resource Planning

HTTP HyperText Transfer Protocol

HTTPS Secure HyperText Transfer
Protocol

I/O Input/Output

IBM International Business
Machines

ISV Independent Software Vendor

IT Information Technology

ITSO International Technical
Support Organization

JDBC Java Database Connectivity

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JSF Java Server Faces

JSP JavaServer Pages

JSR Java Specification Request

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
LDAP Lightweight Directory Access
Protocol

OASIS Organization for the
Advancement of Structured
Information Standards

POJO Plain Old Java Object

SAX Simple API for XML

SCA Service Component
Architecture

SCDL Service Component
Description Language

SDO Service Data Object

SLA Service Level Agreement

SOA Service-oriented Architecture

SOAP Simple Object Access
Protocol

UI User Interface

URL Universal Resource Locator

VM Virtual Machine

WSDL Web Service Description
Language

WS-I Web Services Interoperability

WSDL Web Service Description
Language

XML Extensible Mark-up Language
 113

114 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this Redpaper.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 115. Note that some of the documents referenced here may be available
in soft copy only.

� Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

Online resources
These Web sites and URLs are also relevant as further information sources:

� Business Process Execution Language (BPEL) Specification

http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel

� Service Data Object (SDO) Specification

http://www.ibm.com/developerworks/java/library/j-commonj-sdowmt/

� WebSphere Process Server InfoCenter

http://www-306.ibm.com/software/integration/wps/library/infocenter/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2005. All rights reserved. 115

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel
http://www.ibm.com/developerworks/java/library/j-commonj-sdowmt/
http://www-306.ibm.com/software/integration/wps/library/infocenter/

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
116 Technical Overview of WebSphere Process Server and WebSphere Integration Developer

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Redpaper

Technical Overview of
WebSphere Process Server and
WebSphere Integration
Developer
Understand the
principles of SOA and
On Demand Business

Learn about the
building blocks of
WebSphere Process
Server

Build a Hello World
solution using
WebSphere
Integration
Developer

This IBM Redpaper is a technical introduction to WebSphere
Process Server and WebSphere Integration Developer. Part of
the WebSphere Process Integration family of products,
WebSphere Process Server and WebSphere Integration
Developer provide the core functionality for implementing a
Service-Oriented Architecture (SOA) in an On Demand
Business environment.

In the first chapter, we introduce On Demand Business and
SOAs, describing the requirements for runtime and the
development tools for implementing an SOA. In the second
chapter, we discuss the building blocks of WebSphere
Process Server and WebSphere Integration Developer and
demonstrate how these products allow you to develop
services and how they can be mapped and assembled
together.

While the first two chapters of this redpaper provide you with
theoretical information about WebSphere Process Server and
WebSphere Integration Developer, the last chapter is an
introduction to building solutions using these products. We
demonstrate how to develop and test a classic Hello World
application to give you a head start for developing of your own
solutions.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this Redpaper
	Become a published author
	Comments welcome

	Chapter 1. On Demand Business and service-oriented architecture
	1.1 Overview of On Demand Business
	1.1.1 Key business attributes
	1.1.2 Key technology attributes
	1.1.3 Key requirements for integration flexibility

	1.2 Introduction to SOA
	1.2.1 Service granularity and choreography
	1.2.2 Implications of SOA

	1.3 On Demand Business and SOA
	1.4 The On Demand Business Operating Environment
	1.5 Life cycle of an On Demand Business application and the role of WebSphere Process Integration

	Chapter 2. Building blocks of WebSphere Process Server
	2.1 WebSphere Process Integration programming model
	2.2 WebSphere Process Integration architectural model
	2.3 Invocation: SCA
	2.3.1 Anatomy of the SCA
	2.3.2 SCA client programming model

	2.4 Data: Business objects and SDO
	2.4.1 SDO design points
	2.4.2 Some SDO concepts
	2.4.3 Business objects and the business object framework

	2.5 Composition: BPEL
	2.5.1 WS-BPEL
	2.5.2 A business process as an SCA component
	2.5.3 Business process examples

	2.6 Other service implementation types
	2.6.1 POJO
	2.6.2 Business state machine
	2.6.3 Human Task Manager
	2.6.4 Business rules

	2.7 Supporting services
	2.7.1 Interface maps
	2.7.2 Interface map: Bridging incompatible interfaces
	2.7.3 Data maps
	2.7.4 Relationships
	2.7.5 Selectors

	Chapter 3. Developing a simple solution
	3.1 Getting started
	3.2 Setting up the development and test environment
	3.3 Creating a new business integration module
	3.4 Using the interface editor to define a WSDL interface
	3.5 Using the assembly editor
	3.6 Using your own implementation of the interface
	3.7 Building a client to invoke the service component
	3.8 Testing the service component invocation
	3.8.1 Using the end-to-end Test Framework
	3.8.2 Testing from the Web interface

	3.9 Summary

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for using the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

