

ibm.com/redbooks

Build a Business Process
Solution Using Rational
and WebSphere Tools

Peter Swithinbank
Hossam Badawi

Jenny He
Arisa Izuno

Parul Lewicke
Holger Schwarzer

Larry Yusuf

Explore IBM On Demand Business and
business-driven development

Learn to use modeling, UML, and
BPEL

Study implementation
and integration

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Build a Business Process Solution Using Rational
and WebSphere Tools

February 2006

International Technical Support Organization

SG24-6636-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2006)

This edition applies to Version 5 of the WebSphere platform.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The companies in this redbook . xiv
The team that wrote this redbook. xv
Become a published author . xvii
Comments welcome. xvii

Part 1. Background . 1

Chapter 1. Business context . 3
1.1 Setting the scene. 4

1.1.1 Company history . 4
1.1.2 Scope of the scenario . 5
1.1.3 Claim system. 6

1.2 Business goals . 7
1.2.1 Reduce cost . 8
1.2.2 Increase customer satisfaction . 8
1.2.3 Incorporate existing resources into the new solution 8
1.2.4 Provide a complete view of the external assessment process 9

1.3 IT goals and constraints . 9
1.4 Roles . 10
1.5 Summary . 12

Chapter 2. Current architecture . 13
2.1 Before the merger . 14
2.2 The merged solution context . 15
2.3 Integration solutions . 18

2.3.1 Quote and policy administration . 18
2.3.2 Claims Integration . 18

2.4 IT infrastructure . 23
2.4.1 User interfaces . 26
2.4.2 Application Servers . 27
2.4.3 Message Brokers . 28
2.4.4 Process managers . 30
2.4.5 Backend transaction servers and data centers 31

2.5 Extending the architecture. 33
2.6 Summary . 36
© Copyright IBM Corp. 2006. All rights reserved. iii

Part 2. Modeling . 37

Chapter 3. Our method . 39
3.1 Building the On Demand Business . 40

3.1.1 The on demand operating environment . 40
3.1.2 Service-oriented modeling . 41
3.1.3 The IBM Software Development Platform. 43

3.2 Building the External Claim Assessor solution . 45
3.2.1 Roles and responsibilities . 46
3.2.2 Responsibilities and contract-based development 52
3.2.3 Gather business requirements though modeling workshops 55
3.2.4 Establish a Reference Architecture. 56
3.2.5 The Patterns for e-business layered asset model 58
3.2.6 A process for using the Patterns for e-business asset model 59
3.2.7 Use a Model Driven Development approach 67
3.2.8 Tool chains . 70

3.3 Summary . 74

Chapter 4. Business Process . 75
4.1 Introduction to business process management. 76

4.1.1 Business Process Management . 76
4.1.2 IBM suite of BPM tools . 78
4.1.3 Why business process modelling . 80
4.1.4 WebSphere Business Integration Modeler . 81
4.1.5 Editions of WebSphere Business Integration Modeler 81

4.2 Using WebSphere Business Integration Modeler 82
4.2.1 Who uses WebSphere Business Integration Modeler?. 83

4.3 Modeling the claim investigation process . 84
4.3.1 Start WebSphere Business Integration Modeler 84
4.3.2 Import AS-IS process . 86
4.3.3 Analyzing the as-is process . 88
4.3.4 Create the to-be process. 95
4.3.5 Build a new process . 98
4.3.6 Features attractive to business analyst . 117

4.4 Simulate the process. 119
4.4.1 Create a simulation snapshot . 119
4.4.2 Define values for simulation . 122
4.4.3 Run a simulation . 127
4.4.4 Simulate the whole claim investigation process 129
4.4.5 Analyze the results . 130

4.5 Developing the process implementation . 134
4.5.1 Export processes . 135
4.5.2 Export as FDL process . 136
iv Build a Business Process Solution Using Rational and WebSphere Tools

4.5.3 Export RequestExternalReports as a BPEL4WS process 143
4.6 Summary . 151

Chapter 5. System Architecture . 153
5.1 Selecting the architectural patterns . 154
5.2 Step 0: Collating requirements . 155

5.2.1 Business goals . 156
5.2.2 Business use cases . 156
5.2.3 Roles . 162
5.2.4 Components . 163
5.2.5 Organization and architectural constraints 168
5.2.6 Limitations . 168

5.3 Step 1: Select a Business Integration Pattern. 169
5.4 Step 2: Select the application pattern . 171

5.4.1 Collaborations . 171
5.4.2 Application Patterns for the Extended Enterprise 173
5.4.3 Application patterns for Application Integration. 175

5.5 Step 3: Select and merge the runtime patterns. 176
5.5.1 Proposal 1: Broker focussed integration pattern 177
5.5.2 Proposal 2: Process focused integration pattern 179

5.6 Step 4: Apply product mappings . 180
5.6.1 Existing systems and platform investments 181
5.6.2 Available customer and developer skills . 181
5.6.3 Customer choice . 181
5.6.4 Product Mappings . 182

5.7 Reference architecture . 184
5.7.1 Omissions from the reference architecture 185

5.8 Summary . 185

Chapter 6. Solution Architecture . 187
6.1 Interaction Model. 188

6.1.1 Interaction descriptions . 188
6.1.2 Sequence diagram . 190

6.2 Interfaces. 194
6.2.1 Choice of interface description language . 195
6.2.2 Creating WSDL interfaces. 196
6.2.3 Sources of Interface Information for the scenario 198
6.2.4 Creating the interface definitions. 199
6.2.5 Incorporating the interfaces into the UML model 209
6.2.6 Summary of the interfaces . 211

6.3 The architect’s contracts . 213
6.4 Making materials available . 215
6.5 Conclusion. 215
 Contents v

Part 3. Implementation . 217

Chapter 7. Install and configure runtimes . 219
7.1 System Infrastructure . 220

7.1.1 Mobile computer configuration . 220
7.1.2 Communication implementation . 222

7.2 Install SAH414A . 223
7.2.1 WebSphere MQ . 223
7.2.2 DB/2 . 224
7.2.3 WebSphere Application Server . 225
7.2.4 Install and configure WebSphere MQ Workflow 227
7.2.5 Install and configure the Message Broker. 230

7.3 Install and Configure SAH414B. 234
7.3.1 WebSphere MQ . 235
7.3.2 DB/2 . 237
7.3.3 WebSphere Business Integration Server Foundation 237

Chapter 8. Test and deploy the application components 243
8.1 The Assessor Automation System . 244

8.1.1 Assessor Management System . 244
8.1.2 Business Rules Engine . 248
8.1.3 Document Management System. 250

8.2 External Assessor System . 252
8.3 Deploy and test application components. 256

8.3.1 Deploying to WebSphere Application Server 256
8.3.2 Testing the deployed applications. 259

8.4 Summary . 260

Chapter 9. Build the Enterprise Service Bus . 261
9.1 Architecture . 262
9.2 WebSphere Business Integration Message Broker. 266

9.2.1 Components of message broker . 267
9.3 Component Design . 274

9.3.1 Message Sets . 274
9.3.2 Message flows and transport independence. 275
9.3.3 Database tables . 279
9.3.4 Distribution and aggregation . 281

9.4 Implementation of the message sets. 289
9.4.1 Convert the messages in wsdl files into schemas. 290
9.4.2 Create the Message Set Project . 293
9.4.3 Create the Message Set . 296
9.4.4 Import the schemas into the broker. 298
9.4.5 Using schemas to create MDFs . 299
9.4.6 Customizing the SOAP MDF (soap11.mxsd) 304
vi Build a Business Process Solution Using Rational and WebSphere Tools

9.4.7 Create the SOAP messages . 309
9.5 Implementation of the database tables . 314

9.5.1 Create the ASSESSOR Database . 314
9.5.2 Create the schema and tables . 315
9.5.3 Connect to the database from the broker workbench 317

9.6 Create the message flows. 319
9.6.1 Create the Message Flow projects and dependencies 319
9.6.2 Create message flows. 323
9.6.3 Create the CommonSOAPHttpFlows . 323
9.6.4 Create the AvailabilityFlows . 327
9.6.5 Create AssessorReport flows . 340

9.7 Create the ESQL code for the message flows . 351
9.7.1 ESQL functions to support Aggregation . 353
9.7.2 Setting the SOAP/Http destination dynamically 358
9.7.3 Common namespace prefix declarations . 359
9.7.4 ESQL Error handling code . 361

9.8 Deploy message set and flows . 365
9.8.1 Create the UNKNOWN flow . 365
9.8.2 Create a Broker Archive . 365
9.8.3 Deploying Assessor.bar to the broker . 367

9.9 Unit testing the deployed flows . 368
9.9.1 Test tools. 369
9.9.2 Scaffolded Assessor and Claim system . 370
9.9.3 Tracing and debugging flows . 372

Chapter 10. Build the Request External Reports process. 377
10.1 Overview . 378
10.2 Import WSDL and BPEL into the IDE . 379

10.2.1 Import WSDL from Rational Software Architect 380
10.2.2 Import BPEL from WebSphere Business Integration Modeler . . . 382

10.3 Integrate the process with its services . 385
10.4 Integrate the process with its services . 387

10.4.1 Correct the list of partner links in the model 388
10.4.2 Integrate the partner links with the process 390
10.4.3 Configure the partner links . 394
10.4.4 Configure the activities . 396
10.4.5 Configure the types of input and output variables. 398
10.4.6 Map data between input and output variables 400
10.4.7 Configuring the flow to wait for responses from the assessors. . . 416

10.5 Controlling the path through the process . 418
10.5.1 Checking the results from RequestAvailability 418
10.5.2 Create a While activity to test for a committed assessment 423

10.6 Implementing the Claim handler staff activity . 429
 Contents vii

10.7 Build . 436
10.7.1 Building the business process. 436
10.7.2 Building for a production server . 438

10.8 Test and debug the process . 439
10.8.1 Prepare to test. 439
10.8.2 Publishing the business process to the test server 440
10.8.3 Creating the test environment . 441
10.8.4 Check that downstream components are operational 445
10.8.5 Testing and debugging the business process. 445

10.9 Deploy the process to the server. 450
10.9.1 Installation of business process application 451
10.9.2 Verify the application. 452

10.10 Summary . 452

Chapter 11. Modify the Claim Investigation process 453
11.1 WebSphere MQ Workflow: long-running processes 454
11.2 Process Integration: WebSphere MQ Workflow 455

11.2.1 Implementing custom invocations in WebSphere MQ Workflow. . 455
11.3 Create the ClaimInvestigation_TOBE Workflow 458

11.3.1 Import the ASIS workflow . 458
11.3.2 Create the data structures for RequestExternalReports 459
11.3.3 Define the interface to RequestExternalReports. 462

11.4 Deploying the workflow process . 467
11.5 Summary . 468

Chapter 12. Integrate and test the business processes 469
12.1 Integrating WebSphere MQ Workflow and

WebSphere BI Server Foundation . 470
12.1.1 Candidate SupportPacs . 470

12.2 SupportPac WA0D overview . 471
12.2.1 WebSphere MQ Workflow interfaces . 471
12.2.2 Process Choreographer interfaces . 471
12.2.3 The SupportPac Architecture . 472
12.2.4 How the SupportPac works. 473

12.3 Installing and configuring the WA0D SupportPac 475
12.3.1 Upgrade WebSphere Business Integration Server Foundation . . 477
12.3.2 Define WPCUPESQ . 477
12.3.3 Install WA0D . 478
12.3.4 Configure the claim investigation process. 478
12.3.5 Generate FDL . 479
12.3.6 Generate WSDL for the proxy process . 479
12.3.7 Install the Supportpac Eclipse plug-in . 479
12.3.8 Create the RequestExternalReportsProxy process 479
viii Build a Business Process Solution Using Rational and WebSphere Tools

12.3.9 Add WMQ_Formatter.jar to the process . 481
12.3.10 Replace bpeInterop.jar in the server library 481
12.3.11 Install bpeInterop.ear . 481
12.3.12 Install the RequestExternalReportsProxy process 485

12.4 Test the integration . 485
12.5 Summary . 486

Chapter 13. Points to consider . 487
13.1 Lessons learned . 489

13.1.1 Business Modeling and IT Architecture. 489
13.1.2 Export BPEL from WebSphere Business Integration Modeler? . . 491
13.1.3 Naming . 492
13.1.4 Metadata . 493
13.1.5 Service Bus . 493
13.1.6 Conclusion . 494

13.2 Tooling and middleware changes . 495
13.2.1 WebSphere MQ . 495
13.2.2 WebSphere MQ Workflow. 495
13.2.3 WebSphere Application Server . 495
13.2.4 WebSphere Business Integration Message Broker 496
13.2.5 WebSphere Business Integration Server Foundation 496
13.2.6 WebSphere Studio Application Development

Integration Edition. 497
13.2.7 WebSphere Business Integration Modeler 497
13.2.8 Rational Software Architect . 498

Part 4. Appendixes . 499

Appendix A. Additional material . 501
Locating the Web material . 501
Using the Web material . 501

System requirements for downloading the Web material 502
How to use the Web material . 502

Appendix B. Integration considerations . 505
Integrating WebSphere Business Integration Modeler

andRational Software Architect . 506
Business Process and Application Development Use Case 508

Abbreviations and acronyms . 511

Related publications . 513
IBM Redbooks . 513
Other publications . 513
 Contents ix

Online resources . 514
How to get IBM Redbooks . 514
Help from IBM . 514

Index . 515
x Build a Business Process Solution Using Rational and WebSphere Tools

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
ClearQuest®
Cloudscape™
DB2®
developerWorks®
Eserver®
Eserver®
Holosofx®
IBM®

IMS™
MQSeries®
Netfinity®
Rational Rose®
Rational Unified Process®
Rational®
Redbooks (logo) ™
Redbooks™
Requisite®
RUP®

SupportPac™
Trading Partner®
TXSeries®
VisualAge®
WebSphere®
XDE™
xSeries®
z/OS®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, JavaBeans, JDBC, JSP, JVM, J2EE, Solaris, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Visio, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xii Build a Business Process Solution Using Rational and WebSphere Tools

Preface

This IBM® Redbook is based on the experiences of a team in the IBM Hursley
laboratory. They built an auto-claim insurance solution to put the WebSphere®
software platform through its paces. The team worked with WebSphere
developers to use the experience of building the solution to improve the design of
WebSphere version 6 platform products.

They thought it would be valuable to share their experiences with a wider
audience. The result is a tour de force, showing how the team went about using
IBM’s software development platform to understand business requirements and
then architect, design and build the solution.

Their experiences will help you plan, design and build a business driven
development solution using products from IBM’s WebSphere Business
Integration portfolio.

This redbook is written from the perspective of three types of developer: the
business analyst, the software architect, and the IT specialist. Individual chapters
in the book show how each member of the team developed their part of the
solution, and how the team integrated the solution together.

This redbook helps you plan, design, and build a business-driven development
solution using products from the IBM WebSphere Business Integration portfolio.

Unusually for an IBM Redbook team, we are not primarily focused on a product
or technology. Instead, this book is focused on using a business-driven
development methodology and applying it in a practical way to a specific
scenario drawn from the insurance industry.

The solution on which this redbook is based is defined and built by the IBM
System House development team in their Hursley laboratories in England, with
help from IBM insurance clients. The subject of the solution is not important in
itself. What is important, is that it is has been developed similar to a real solution.
Normally IBM tests what individual products are built to do. But building a
solution with our methodology forces our attention onto what products haven’t
been built to do. Building the solution reveals real cracks in the ways software
needs to be used together to solve business problems.

The System House team was formed as part of an extensive effort within the
Software Group at IBM to experience the real issues of using the many different
products in IBM’s software portfolio before they are released. The System House
© Copyright IBM Corp. 2006. All rights reserved. xiii

team identified improvements for future releases of software (many of which are
reflected in the changes to version 6 or the WebSphere discussed in Chapter 13,
“Points to consider” on page 487), and worked with development and service
teams to produce fixes and work-a-rounds for integration problems found in the
current release of products - such as problems integrating long running
processes using the WA0D SupportPac™ described in Section 12.2,
“SupportPac WA0D overview” on page 471.

This IBM Redbook closely follows the work of the System House team and can
be of value to you in a number of ways:

1. We write about a significantly large part of the development process, from the
business requirements, through modeling the requirements, choosing an
architecture for the solution and then designing and building the solution. If
you are involved in planning a development project, then you should find this
account useful, if not in providing a blueprint, at least in providing an example
of one way to go about developing a solution.

2. If you have been thinking about the ideas contained in IBM’s Software
Development Platform introduced by Alan Brown, in papers such as
“Realizing the IBM Software Development Platform”, found at

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SD
P_WP_Final.pdf

If you would like an example of the ideas put in to practice you will find this
book interesting.

3. Many of the chapters deal with using one or other of the software tools to
implement the solution. They show how we used the tools to build the
solution. Nothing is left out.

The materials we used are available on the IBM Redbooks™ Web site along
with this book. If you are using one or other of these tools and are stuck, or
think there might be another way of doing something, then find the relevant
chapter for the tool in this book, and see what we did. It might help.

There is a four-day workshop that is offered by ITSO based on this book, and
that gives you an opportunity to go through many of the steps in building the
solution.

The companies in this redbook
We emphasize that the company names used in this redbook are entirely imaginary,
and do not refer to any real company, past, present, or future. There is no connection
with the firms called DirectCar in Brazil, Spain or elsewhere, nor with Liberty Global
(LGI).
xiv Build a Business Process Solution Using Rational and WebSphere Tools

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SDP_WP_Final.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SDP_WP_Final.pdf

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The team that wrote this redbook

Peter Swithinbank is a Project Leader at the International Technical Support
Organization, Raleigh Center. He edits Redbooks and teaches IBM classes
worldwide building business integration solutions. Before joining the ITSO last
year, Peter worked in other capacities at IBM for 27 years. He has a diploma in
software engineering from Oxford University and a Master of Arts in Geography
from the University of Cambridge.

Arisa Izuno is a WebSphere technical sales in Japan. She has two years of
experience in the field of business integration. Her areas of expertise include
business process modeling. She has written extensively on WebSphere Studio
Application Developer Integration Edition. She holds a degree in sociology.

Hossam Badawi is a software engineer in Egypt. He has four years of
experience in software engineering and development. He holds a Bachelor of
Science in Systems and Biomedical Engineering from Cairo University and is
pursuing a Master of Science in signal processing. He worked for two years in
the development labs in Cairo in which he contributed to the development of
WebSphere Business Integration Workbench and WebSphere Business
Integration Modeler. His areas of expertise also include modeling and
deployment of WebSphere MQ Workflow processes. Hossam is also a
Microsoft® certified .NET application developer for Web services.
 Preface xv

Jenny He is a Solution Test Specialist in the United Kingdom. She has three
years of experience in solution test area across various software and platforms.
She holds a Ph.D degree in the field of Optical Networks from University of
Essex in the United Kingdom. She has been actively involved in modeling and
monitoring business processes since she joined IBM three years ago. Her areas
of expertise include WebSphere MQ Workflow, WebSphere Business Integration
Modeler, WebSphere Business Integration Workbench and WebSphere
Business Integration Modeler. Jenny is a member of IEEE.

Parul Lewicke is a Software Engineer in the United States. She has three years
of experience in z/OS® Integration Test, specifically testing WebSphere
Business Integration Message Broker and WebSphere MQ. She holds a degree
in Computer Science from Clarkson University in Potsdam, New York and is
looking for new opportunities in Minneapolis and St Paul, Minnisota.

Holger Schwarzer is a Senior IT Architect in Switzerland. He has over sixteen
years of experience in multiple facets of information technology and is a
consultant for a large number of financial services projects in Switzerland,
Germany,and the United States. His previous experience includes software
development Tools of Smalltalk Server on z/OS, Unix and MS. He holds a
degree in Master of Business Administration from School of Business:
Fachhochschule in Muenster, Germany.

Larry Yusuf is a Solution Designer with Software Group Strategy and
Technology based at the Hursley Labs in the United Kingdom. He has four years
experience in Business Integration and modeling, with a particular focus on
Business Process Management, Event and Solution Management, and
Integration patterns. He has written and presented extensively on these topics.

Thanks to the following people for their contributions to this project:

Jim Amsden, Model Driven Development, Raleigh, made early versions of the
Modeler integration with Rational® Software Architect available to us, made such
an excellent job of the integration and contributing Appendix B, “Integration
considerations” on page 505.

Andre Weiser, WebSphere MQ Workflow Development in Boeblingen,
championed the need for the WA0D Supportpac to integrate WebSphere MQ
Workflow and WebSphere Business Integration Server Foundation simply, and
then worked long hours to get it working properly with long running processes.

Many people in the Hursley System House and Application Integration
Middleware Service team, who built the initial solution, helped to solve technical
problems getting the solution in the redbook to work, and helped with the
development methodology. Pete Edwards, Mick Lickman (WebSphere
Business Integration Message Broker), Keiron Scott, Nick Maynard
xvi Build a Business Process Solution Using Rational and WebSphere Tools

(WebSphere Studio Application Development Integration Edition and
WebSphere Business Integration Server Foundation), Alan Chivers, Mike
Starkey (IT Architects), Milena Litoiu (Rational products), Andy Gibbs, Paul
Versheuren and Jean Pierre Paillet (Process Integration Design Approach) and
Sue Horn, Rosanne de Vries, Mohammed Abdula and Louise Cheung who
sponsored and managed the System House teams involved in the solution.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 MP 206
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Build a Business Process Solution Using Rational and WebSphere Tools

Part 1 Background

In the first part of this redbook, we discuss the background behind building the
new business solution to automate the claims assessment process in a large
auto insurance company.

Chapter 1, “Business context” on page 3 introduces the insurance companies,
LGI and DirectCar, which have recently merged. The chapter explains the goals
of the merger, and why having merged the policy and claim systems, LGI are
now considering automating the process of sending claims adjusters in the U.S.,
or claim assessors in the U.K. and elsewhere, to inspect vehicle accidents.

Chapter 2, “Current architecture” on page 13 describes the merged policy and
claim systems, the solution architecture, and the products that were used to
implement the solution.

Together, the business and system context are the background for Part 2,
“Modeling” on page 37, where we explain more detail behind the existing claim
system and then develop the new external claim assessor automation solution.

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 1. Business context

In this chapter we introduce the business scenario on which this Redbook is
based. We tell the history of the company involved in this scenario and introduce
the roles of the people involved. We discuss the business goals that shape the
scenario, as well as the IT goals that drive the implementation.

The integration issues described in this Redbook are not unique to the insurance
industry or to company mergers. For any company, continual business change
and organizational consolidation can result in a myriad of pieces of hardware,
software components, and applications that need to be made to work together to
implement a new solution rapidly. The insurance industry integration scenario we
present is an example that can be applied to other industries.

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Setting the scene
Continual business change and organizational consolidation through a merger,
an acquisition, or other event often results in a myriad collection of hardware,
software, and applications that rapidly must work together as one solution. From
the IT perspective, the response to business integration has focused traditionally
on consolidating data and applications. Although this is a valid approach, it is a
long-term, high-cost activity that must be balanced with the need for a more
immediate return on investment.

A faster approach that provides rapid return involves exploiting a combination of
process management and enterprise application integration. Rather than
rewriting existing applications to combine their functionality, we use tools to
understand the processes that current applications execute and link them
together with application integration software. The goal is to provide a single,
integrated view of a process to customers and business partners across multiple
companies with minimal disturbance to the existing applications. The term
Business Driven Development is sometimes given to this approach. Business
Driven Development is applied specifically to IT projects with a major incentive to
achieve business goals measured by a revenue or profit growth in a specific line
of business.

In this Redbook, we present you with a scenario focusing on an imaginary
insurance company, ITSO Lord General Insurance, hereafter referred to as LGI.
LGI is a 50-year-old, well-established business with existing, mainframe-based
IT systems.

1.1.1 Company history
LGI recently acquired a new company, DirectCar, with an Internet-based
infrastructure. Both LGI and DirectCar had their own processes and very different
back-end systems. To appreciate some of the challenges that LGI faced when
integrating DirectCar into its IT infrastructure, we first need to understand the two
companies.

LGI
LGI has been in business for 50 years and focuses on auto, home, and home
contents insurance and has over five million policyholders. Prior to the
acquisition of DirectCar, contact with customers was through the traditional
channels of independent agents and a recently outsourced call center. Thus, the
only way that customers could buy, update, or make claims against LGI policies
was through an LGI agent or by calling the call center. Prior to the merger with
DirectCar, no internet-based channels existed. LGI systems are
4 Build a Business Process Solution Using Rational and WebSphere Tools

mainframe-based. LGI has not invested in mainframe-based internet channels,
and has no plans to develop new mainframe-based applications.

DirectCar
DirectCar had less than one million policyholders, but was an expanding new
company focused on auto insurance through the Internet. It interacted with
customers solely through a direct customer Internet channel. DirectCar used
desktops and server-based systems, rather than mainframe-based, and
supported J2EE™, open, architecture. It had an e-business focused
infrastructure based on WebSphere Application Servers, Oracle databases, and
TXSeries®.

Motivation for the merger
As a traditional personal lines insurance company, LGI realized it needed to
expand its market share by establishing a direct customer channel to
complement the existing agent and call center channels. To this end, it acquired
an insurance newcomer, DirectCar, to provide a quick entry into the direct
insurance market and to utilize this company's Internet-based IT skills and
infrastructure. The merged company continues to be known as LGI.

1.1.2 Scope of the scenario
This merger required LGI to re-engineer significantly its processes and integrate
many of its existing applications with DirectCar to provide a unified view of the
business to customers, business partners, and employees, all while minimally
disrupting the vastly different existing systems.

One business system that was merged was the claim system. The merged claim
system is not a brand new implementation, but an evolution of the existing LGI
and DirectCar claim systems. In this Redbook, we assume that this merged claim
system has already been developed and is fully operational. We do not discuss
the integration of the LGI and DirectCar claim systems.

Even though it has successfully merged the two claim systems, LGI wants to
further reduce cost of assessing claims by automating the process of getting loss
adjustments from external assessors. We focus on using WebSphere Business
Integration to automate this portion of the claim system. The scope of this
scenario is limited to automating getting assessment reports from claims
adjusters, or claim assessors as they are known outside the United States. The
goals of providing both a business and an IT view of the process to monitor the
performance of the claims process is something we hope to include in a later
redbook based on this same scenario.
 Chapter 1. Business context 5

1.1.3 Claim system
We use the term claim system to refer to the set of processes and IT systems
that are used to process a claim filed by an auto insurance customer or agent of
the merged LGI company.

Claims process overview
When an LGI customer has a car accident, he or she reports the accident and
details surrounding the accident to LGI, the insurance provider. This is what we
consider filing claim. The LGI Claim handler then reviews the information and
can request more information such as a police report, medical report, or a report
from an external assessor. External assessors are not LGI employees and must
be contacted each time their services are needed. They make a visual inspection
of the automobile in question, assess the damage, and report back to LGI. LGI
can then make a decision on how to settle the claim with the customer. More on
the claims process can be found in Chapter 3, “Our method” on page 39.

Although this might seem like a straightforward procedure, there are many
activities and parties involved. Executing the external assessor’s portion of the
claims process manually is expensive and time consuming.

External assessor and the claims process
Though LGI has merged its claims processes with DirectCar, resulting in a single
claims process, LGI still feels its view of the claims process is fragmented. There
are still parts of the flow which are outside of LGI control and cannot be
monitored from one single point. In analyzing the claim system, LGI has
identified a particular problem in the external assessors portion of the claims
process where costly delays have been identified in the selection and follow-up
of external claim assessors. LGI would like to automate this selection process
and get a more comprehensive view of the progress and efficiency of the
assessors.

Currently, after a claim handler reviews a a particular claim and determines that
an external assessor report is needed, he or she goes through a manual process
to determine which of the external assessors that LGI works with are in the same
geographic area as the vehicle to be inspected and have expertise in assessing
that type of car. This is time consuming and expensive, making it an ideal task for
automation.

The Automated Assessor Management system that LGI would like to develop will
be responsible for identifying and selecting an assessor based on geographic
6 Build a Business Process Solution Using Rational and WebSphere Tools

location, availability and knowledge of the type vehicle. The system must have
the following capabilities:

� Manage the communications between the LGI and the external claim
assessor through the initial selection process and the stages of the
assessment.

� Hold details of the available external assessors and their contact information.

� Link to the main claim system and allow authorized LGI claims personnel to
monitor the progress of an claim assessment

� Hold details of a claim assessment through its life cycle.

� Allow event points to be established. These event points can feed event
information, including status, to the main claims process for display on a
business monitor or dashboard.

� Provide a rules engine that can be updated with business rules to determine
which external claim assessor to select for a particular claim.

Using business integration to automate the external assessor process will
provide the following benefits:

� LGI claims personnel can concentrate on other tasks.

� LGI with have the ability to monitor and analyze the external assessment
process in more detail,

� LGI will be able to make process improvements based information collected
by the claims monitoring system.

1.2 Business goals
Design and development of the Automated Assessor Management system is
driven by a number of business goals and constraints. These goals can be
divided into four main categories:

� Reduce total business cost of obtaining external assessment reports.
� Increase customer satisfaction by reducing administrative delays on claims.
� Provide a complete view of the external assessor business process to LGI.
� Incorporate existing systems and resources into the Automated Assessor

Management system.

Because the project is regarded as technically innovative and therefore high-risk,
the choice of the Automated Assessor Management System must not jeopardize
the business by too rapid deployment. The solution must be brought in
incrementally, gradually replacing the existing manual process.

We discuss each of these business goals in more detail in the following sections.
 Chapter 1. Business context 7

1.2.1 Reduce cost
A major and obvious goal of any business change is to reduce costs. LGI wants
to reduce the administrative costs of obtaining assessment reports from external
assessors. Currently, claim handlers use a manual process to match claims with
external assessors who are in the same geographic area and who specialize in
the type of vehicle in question. Automating the process will allow claim handlers
to focus on other tasks, thus driving down the overall cost of getting external
assessment reports.

1.2.2 Increase customer satisfaction
Another important goal of the Automated Assessor Management system is to
increase customer satisfaction by reducing the total time for claims to be
processed. Delays often occur because the assessor for a particular claim either
cannot be reached, or the claim handler is backed up trying to find assessors for
other claims.

LGI also expects the Automated Assessor Management system to increase
satisfaction by reducing administrative delays on claims queries. Currently, when
a customer contacts LGI to check on the status of his or her claim, it can take
days before the exact status of the claim can be determined, due to the many
steps involved in selecting an external assessor. Automating the system will
allow Claim handlers to easily pinpoint exactly where in the process a claim is,
thus allowing them to keep the customer better informed.

1.2.3 Incorporate existing resources into the new solution
It is important to LGI to incorporate current resources into the new automated
solution. These resources include not only hardware and software, but also the
people who currently perform the manual, external assessor process. The goal is
not to replace the Claim handlers with an automated external assessor process,
but rather to incorporate the solution into the Claim handler’s existing job. The
workload on the Claim handler should be reduced, allowing them to focus on
other claims and customer tasks.

Additionally, LGI does not want to scrap their existing systems that deal with
external assessors, but rather build an automated solution that takes advantage
of these systems. For example, LGI currently has several systems and
applications that hold basic information about the external assessors, past
assessment reports, and business rules used to select an assessor for a
particular claim. LGI wants to reuse these systems in the Automated Assessor
Management system, resulting in minimal impact to the existing systems and
maximizing ease of development of the new system. The new Automated
8 Build a Business Process Solution Using Rational and WebSphere Tools

Assessor Management system also needs to be responsive to business needs
so that future enhancements to it will require minimal rework and redesign.

1.2.4 Provide a complete view of the external assessment process
LGI currently feels that it has a fragmented view of the external assessment
process. There are still parts of the flow that are outside of LGI control and
cannot be monitored from one single point. The Automated Assessor
Management system must give LGI a complete view of the external assessment
process, including activities performed by external parties such as the assessors.

For example in the current system, if a customer inquires about a claim that is
awaiting assessment by an external assessor, all that the Claim handler can tell
the customer is that the claim is stalled at this point in the overall process. It is
difficult for a Claim handler to give more detail, such as whether or not an
assessor has begun the assessment report, been assigned to the claim, or even
been chosen for this claim. A goal of the new solution is to remove this inability to
give customers more details on the status of their claims.

Another reason that LGI wants a complete view of the external assessment
process is so that in the future it can monitor the process more closely to
measure the performance of assessors and identify any delays or weak spots in
the process. Information from the external claims assessment process about
past performance can be used by the Business Rules Engine to choose the best
assessor to deal with a future insurance claim.

1.3 IT goals and constraints
In addition to business goals, IT considerations play a large part in the design
and development of the Automated Assessor Management system. These IT
goals can be divided into several categories:

� Minimize IT costs. Keeping IT costs low is an ongoing goal of LGI. With the
Automated Assessor Management system, LGI hopes to minimize IT costs by
reusing many of the existing systems that deal with external assessors.

� Deliver in the short-term. LGI wants rapid results, so they need the system
implemented in one year.

� Minimize the impact of the Automated Assessor Management system on
existing applications and processes. The new solution has to work with the
existing claims process without requiring any changes to it.

� Reuse existing applications and back-end systems. The new solution must
reuse the existing systems that keep track of assessor information, business
rules, and prior assessment reports. Additionally, it must support external
 Chapter 1. Business context 9

assessors who have different interfaces and back-end systems (Web
interfaces, WebSphere Application Server, CICS®, and so forth).

� Demonstrate development productivity improvements by using modern tools
and technology. The new system will implement a Service-Oriented
Architecture (SOA) based on Web services. It will be developed using Model
Driven Development (MDD) and use open standards based technologies
such as J2EE, BPEL, and UML2. The development project will serve as a
reference for using these technologies in the future, showing how to achieve
development productivity improvements.

� Use Automated Assessor Management system as a proof-of-concept for
automation of other processes in the future. The Automated Assessor
Management system must be built in such a way that it can be used as a
basis for future efforts to enhance more business critical components of LGI’s
infrastructure, such as the policy management system or claims process as a
whole. There are two main questions to answer:

– What are the problems in integrating existing processes and applications
with applications integrated or created in J2EE and Web services
technologies?

• Can existing FDL processes interoperate with BPEL processes?
• What problems are there migrating from a message-oriented

middleware backbone to a service-oriented architecture?

– What are the best practices to adopt for an MDD approach to development
and what benefits in terms of speed and cost of development does it
deliver?

1.4 Roles
In the scenario for this Redbook, there are several roles that have to be filled. At
LGI, there are the claim handler and external assessor. Additionally, to design
and implement the solution, we need to understand the roles that the business
analyst, solution architect, and application developer (or IT specialist) play.

A brief description of the more important roles in the solution follows in this
section. Figure 1-1 on page 11 puts these roles into their business context. They
are described in more detail in Chapter 3.2.1, “Roles and responsibilities” on
page 46.

Business analyst
The business analyst is the specialist in the company's particular business
domain (insurance, in the case of LGI) and knows the business inside out. The
analyst fully understands the specific functions of the business for which they are
10 Build a Business Process Solution Using Rational and WebSphere Tools

responsible and is expected to plan and deliver changes to meet business goals.
Furthermore, the business analyst is proficient in the modeling tools used to
document and analyze business processes.

Solution architect
The solution architect understands the business goals of the Automated
Assessor Management system to be developed and has specialized
understanding of particular aspects of the business, especially the claims
process. The solution architect fully understands the current IT architecture and
is responsible for mapping new business goals to technical solutions compatible
with current IT structure. The solution architect also understands industry
patterns and approaches related to the solution such as SOA and Web services.

Figure 1-1 Business and development roles at LGI

Application developer or IT specialist
The application developer has a thorough understanding of the business
components involved in the proposed solution and is able to program them as
required, for example, using J2EE for new applications or working with existing
data in existing formats.

Claim System

Claims Payment

Claims
Handling

Claim System

Claims Payment

Claims
Handling

In-force
system

New Business
system

Policy Admin System

Agent

Customer Call
Centre

Direct

Customer contact
Service Provider

Service Provider

Admin

S/vice Providers
Payment system

Billing/Payment
System

Content Manager

Finance

Service
Provider
(External
Assessor)

Agent
Customer

Customer
call center

Claims
Handler

Accountant Salesman

Application
Developer

solution
build/test

manage claim, service
providers, payment

Manage reserves,
billings, cash flow

requests for service
monitor service level

Business
Analyst business flow

design

System
Programmer

System
Administrator

Install/config
/PD

security
/admin

Policy
Handler

generate customer
quotes, policies, claims

generate /monitor
sales campaign

manage policy,
billing, risk

Solution

Architect
solution
design
 Chapter 1. Business context 11

LGI Claim handler
The LGI claim handler manages claim payment, policy administration, and
generation of external reports as necessary to complete the claim. The claim
handler currently talks, faxes or e-mails the external assessors to assign
assessment tasks. The claim handler is also responsible for the overall
completion of the claim.

External service provider (external assessor)
External assessors are not employees of LGI, but rather work for assessment
firms external to LGI. They provide the important service of being impartial loss
adjusters for vehicles being considered in LGI claims. After committing to
assessing a particular claim, the external assessor is responsible for visiting the
vehicle in question and determining the amount of damage. The external
assessor then prepares a report of his or her findings and sends this back to LGI.

1.5 Summary
This chapter addresses integration issues that arise when a recently merged
company wants to improve its IT infrastructure further. It focuses on describing
the two companies in this scenario, their merger, their claims processes, and
their decision to automate the external assessor management portion of the
merged claims process. The following chapters lay out the Automated Assessor
Management system in more detail, including business processes, solution
architecture, and implementation.

The integration issues described in this redbook are not unique to the insurance
industry or to company mergers. For any business, continual business change
and organizational consolidation can result in a myriad of hardware, software,
and applications that rapidly need to work together as one solution. The
integration scenario that we present is meant to be an example that can be
extended to other situations.
12 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 2. Current architecture

This chapter describes the architecture of the environment that supports the
existing claim system. We also describe the interaction between users and
components, and between the components and any other remaining
components.

The system has been built by the System House eMerge Solution Test team in
the development laboratories in Hursley1. The laboratories at Hursley are used to
prototype new capabilities and to test the integration of new releases of the
WebSphere platform. The solution test team run a customer partnership program
that provides short residencies for clients to work alongside the developers in
Hursley to prototype solution extensions. For details, contact your account
representative.

The following topics are discussed in this chapter:

� Before the merger
� The merged solution context
� Integration solutions
� IT infrastructure

2

1 Now called the Horizontal Integration team.
© Copyright IBM Corp. 2006. All rights reserved. 13

2.1 Before the merger
In this section, we look at LGI and DirectCar IT infrastructures before the merger,
which are shown in Figure 2-1 on page 14.

The claim system for DirectCar is based around a three-tiered, net-centric
architecture that lets clients register claims online and receive updates on the
status of their claims through e-mail or traditional mail. The IT infrastructure that
supports the claims processing consists of a cluster of application servers that
handle both the transformation and collation of data provided by the client, and
sends this data in the form of requests to an off-the-shelf claims application in the
back-end system. Replies from the back-end applications are sent to the
application servers, where they are presented dynamically to the client as Web
pages. Other processing is performed manually or in the back-end system.

LGI has a message-based, hub-and-spoke infrastructure with all client
applications sending requests to a central broker that handles the transformation
and routing to the back-end applications or workflow systems. All replies from the
applications are sent to the message hub for transformation and routing to the
client application. A customer registers a claim by contacting a call center or their
insurance agent where the claim agent collects the required information and
uses EDI or a dedicated client to input the information to LGI. As with DirectCar,
all the claims processing in LGI is done manually, or through dedicated client
applications accessible by the claim handler and claims supervisor. LGI provides
channels for business partners into the message broker.

Figure 2-1 LGI and DirectCar IT infrastructure before merge
14 Build a Business Process Solution Using Rational and WebSphere Tools

The business vision for the merger, as shown in Figure 2-2, was to create a
one-company-for-all-channels view that hides the customer and staff involved in
the claims process from the complexity of the LGI and DirectCar back-end
applications.

Figure 2-2 Business vision of merged companies process

2.2 The merged solution context
The solution context in Figure 2-3 on page 16 related to the merger scenario
involves LGI and DirectCar.com billing, claims and policy processes and
systems. The parts we are concerned with are outlined in red in the top right of
the picture: the claims handling in LGI and interfacing to the external claim
assessors. To put this in context, we give a brief description of the other
components of the solution.
 Chapter 2. Current architecture 15

Figure 2-3 Mergers & acquisitions scenario solution context

Customer contact
The responsibility of this subsystem is to enable customers to obtain policy
quotations, sign up for policies, check their policies, and submit claims for
processing. LGI claims come from several sources. A customer may directly
enter a claim using the Internet. A Web application is required to provide this
functionality. Alternatively, claims can be submitted indirectly by agents or
through EDI (Electronic Data Interchange), or a call center (EDI/ XML) where the
call centre agent uses a specialized client-server application.

Quote and policy administration
The policy administration system is the central repository for policy and customer
information. It provides facilities to record and update policy and customer
details.
16 Build a Business Process Solution Using Rational and WebSphere Tools

Claims handling
The claims handling system is a separate subsystem that is responsible for
supporting all aspects of a claim. There are extensive interactions between the
business process manager and the claims handling system. It is assumed that
updates to claims are always initiated by the business process manager.

Both the policy administration and claims handling systems record customer
related information. The policy administration system records information about
policy holders and their policies. The claims handling system records information
about other third parties such as other insurance companies, other claimants,
licensing authorities and so forth. The policy administration and claims handling
systems share data about policy holders.

Claims payment
This subsystem is responsible for initiating payment to a customer, repairer, or
third party. It could be part of the claims handling system or the financial system.
In auto insurance, repair payments are usually made directly to the repairer, and
only payments for personal items lost or damaged are paid directly to the
customer.

Financials
The financials subsystem is responsible for maintaining all financial information
and managing payments and receipts. The business process manager will
communicate directly with the financial system information about potential
payments (reserves). Information about payments will be communicated
indirectly using the claims handling and claims payment systems.

Service providers
Assessors, repairers, and other third parties are all various types of service
providers.

� Assessors are specialist companies that provide estimates and
recommendations concerning vehicle repairs.

� Repairers perform the actual repairs on a vehicle.

� Service providers could be organizations that provide vehicle recovery or car
hire services.

� Other third parties can include organizations such as the police, and vehicle
licensing authorities.

In general, the claims handling system supports the exchange of information with
such parties with a variety of means.
 Chapter 2. Current architecture 17

2.3 Integration solutions
The integration solutions developed for the merged LGI are briefly described in
this section. They are based on the merger and the development of common
claims and policy administration processes that support the integration across
the two companies. The solutions fall into two broad areas: quote and policy
administration and claims. We briefly review the quote and policy solution. We
then discuss the existing claim system and the proposed new external claim
assessor integration solution.

2.3.1 Quote and policy administration
The goal is to integrate disparate applications into a single insurance quote and
policy accept system which selects the best quotation from different insurance
applications for a customer to accept, and presents a single view of policies to
both customers and the rest of the insurance system. The componentization of
the solution enabled the creation of a single company Web application to work
alongside LGI’s existing EDI and dedicated call centre applications.

After the customer's information is validated, the merged quote and policy accept
solution accesses the policy quote systems of both LGI and DirectCar using a
message broker. Based on rules, the broker selects and returns the best
insurance quote.

When a customer accepts the insurance quote, the next step is to verify the
customer's previous history. This involves requesting and receiving the
prospective customer's motor vehicle information (MVR) and credit check rating
from external agencies. This part of the solution involves building a subprocess
to handle the multiple requests for external information and integrating these
steps with the existing LGI or DirectCar quote and policy systems. The process
handles the timing issue of delayed responses from the external agencies, while
continuing the process to the point of acceptance.

2.3.2 Claims Integration
The claims process is composed of four main steps or processes that are
executed sequentially.
18 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 2-4 Basic claim handling process

� Register claim

The client provides details about their policy and the claim.

� Validate claim

The insurance company validates the claim . Is the policy paid up, and is the
claim appropriate on the policy?

� Investigate/Assess claim

The insurance company investigates the claim, gathering information from
external parties such as police and medical reports, as well as assessing the
claim.

� Judge claim

Based on the results of the external reports and the assessment, the claim
handler makes a decision whether the claim is valid or the claim is rejected.
The claims supervisor might be involved if there are unusual aspects to the
claim.

A process engine, WebSphere MQ Workflow, is used to integrate the LGI and
DirectCar claim systems into the overall claims handling process. It gives
visibility to the overall progress of a claim, whether it is in DirectCar or LGI.
Integrating LGI and DirectCar claim systems with a common process engine also
enables the development of new common functions in the claims process such
as the gathering of claims assessments from external claim assessors.

We briefly describe the claims processes of the two companies here. But, from
the perspective of the External Claim Assessors, the important point is that the
existing claims process integration has made possible the simple extension of a
common process to provide a new level of automation in the handling of external
assessors.
 Chapter 2. Current architecture 19

LGI claims process
LGI already has an infrastructure for the claim system with all client applications
sending requests to a central message hub that handles the transformation and
routing to the required back-end applications or workflow systems. All replies
from the applications are sent to the message hub for transformation and routing
for the required client application.

The LGI claims processes are:

1. Register the claim.

The client contacts the call center or an independent agent. A claim handler
records accident details, manually completes the required forms, and enters
the required information in the claims database. The claim handler then gives
the client a claim reference number. This step can be considered as a manual
step.

2. Validate the claim.

The raised claim is authenticated to confirm that the client's policy is valid and
not expired, that the details provided are accurate, and that the driver is
insured on the auto policy.

3. Investigate the claim.

In the investigate claims process, the claim handler requests external reports
from a number of external agencies or companies as shown in Figure 2-5.

Figure 2-5 Investigate Claim sub-process

One of these is the external assessors claims assessment report. The LGI
claim handler manually selects an assessor from the assessors database and
requests an assessment report as shown in Figure 2-6 on page 21.
20 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 2-6 Manually requesting assessments reports from external assessors

4. Judge the claim.

Based on the results of the assessment, the claim handler decides whether
the claim is valid or the claim is rejected. The claim handler might decide to
involve the supervisor in the decision, if there are any unusual aspects to the
claim.

Figure 2-7 and Figure 2-8 on page 22 show the use cases in the LGI existing
claim system.

Figure 2-7 LGI claim registration process
 Chapter 2. Current architecture 21

Figure 2-8 LGI Claim handler and claim supervisor activities

DirectCar claims process
The claim system for DirectCar is based around a three-tiered, net-centric
architecture that lets clients register claims online with their Web browsers and
receive updates on the status of their claims through e-mail or traditional mail.
The IT infrastructure that supports the claims processing consists of a cluster of
application servers that handle both the transformation and collation of data
provided by the client, and sends this data in the form of requests to an
off-the-shelf claims application in the back-end system. Replies from the
back-end applications are sent to the application servers, where they are
presented dynamically to the client as Web pages. Other processing is
performed manually or in the back-end system.

The DirectCar claims processes are:

1. Register the claim.

The client logs on to the DirectCar Web site and registers a claim online. The
client is recognized as a policy holder, then a claim reference number is
presented to the client. No actions are required from the claim handler at this
point. This is an automated process.

2. Validate the claim.
3. Investigate the claim.
4. Judge the claim.

These steps are the same for DirectCar as for LGI.

Figure 2-9 and Figure 2-10 on page 23 show the use cases of DirectCar existing
system.
22 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 2-9 DirectCar claim registration process

Figure 2-10 DirectCar Claim handler and claim supervisor activities

In the existing LGI and DirectCar systems, certain applications are used in
various steps of the process. These applications are different and used only for
storing data and tracking claims status. Much of the interaction with the client
and between departments is performed manually, on paper using the mail or fax.

2.4 IT infrastructure
In this section, we describe the high-level architecture of the environment that
supports the merged claim system. We also describe the interactions between
users and components.

The solution is built assuming the reuse of the existing infrastructure and claims
applications from LGI and DirectCar while rebuilding the DirectCar Web
application for LGI. This choice is driven by the following reasons:

� Business and strategic reasons:

– LGI strategy in acquiring DirectCar was to acquire market share and the
Web channel, rather than effect cost reduction by rationalization of the LGI
and DirectCar back offices.
 Chapter 2. Current architecture 23

– The IT architecture must support the possibility of a future demerger.

– The merger of the two companies must be associated with a change of the
look and feel of the combined Web site. However, the same insurance
policies will continue to be offered, though now to both LGI and DirectCar
customers.

� Technical reasons:

– Current DirectCar IT hardware infrastructure is not sized for the new
expected workload: DirectCar has less than one million policies while LGI
has more than five million.

i. Claims from LGI policy holders must be serviced by the existing LGI
backend.

ii. The existing DirectCar Web application will need modification to handle
the new LGI policies as well as to handle the increased work volume.

Architecture overview diagram
Figure 2-11 shows the proposed architecture overview diagram for the merged
claim system.

Figure 2-11 Merged claim process architecture overview diagram
24 Build a Business Process Solution Using Rational and WebSphere Tools

As shown in the figure the solution architecture is based on the following
decisions:

� Separation of the presentation layer from the backend applications by routing
and process management engines

– The presentation layer does not access backend services directly.
Interactions with backend services are mediated by the transformation and
routing engine and orchestrated by the process engine. The mediation
engine connects a presentation service to the process engine, and the
process engine to a backend service.

� Complete reuse of both back-end components such as business logic, data
access and connectors

� Removal of the DirectCar Web layer (presentation and controller).

Figure 2-12 explains the products and technologies used to implement each of
the claim system components.

Figure 2-12 Products used to implement the claim system architecture

We decided to retain the existing IBM WebSphere MQ infrastructure of the LGI
Company and extend it to incorporate the new common front-end Web
application and existing DirectCar back-end systems. The WebSphere MQ
infrastructure consists of multiple WebSphere MQ clusters configured to transfer
 Chapter 2. Current architecture 25

data among the different application components running in different products on
various operating systems. This takes advantage of WebSphere MQ's assured
delivery mechanisms and its wide platform coverage.

Each component displayed in Figure 2-12 on page 25 is described in more detail
below.

2.4.1 User interfaces
User interfaces include the Internet, intranet, branch offices, and business
partners. The combined claim system provides a user interface to register an
auto insurance claim in the form of:

� An intranet Web interface for DirectCar customers.

� A Java™ Swing application for the LGI branch offices and call centers

The application uses WebSphere MQ clients to transmit the information to
and from the transformation and routing engine.

� An EDIFACT interface for business partners. The application sends EDI 835
data to the Data Interchange gateway.

The decision that leads us to choosing the products is that existing interfaces
used by DirectCar customers, LGI call center, business partners, and branch
offices must be retained unchanged.

Runtime
The products used for runtime of the user interfaces part are listed in Table 2-1.

Table 2-1 Products used in user interfaces runtime

Product Platform Version

Java runtime engine (JRE) Microsoft Windows® 2000 1.3, 1.4.x

Web browser to view Web
pages (Java Server Pages
(JSP™) pages and HTML)

Windows 2000 N/A

WebSphere Data
Interchange (Data
Interchange)

Windows 2000 3.2.1

WebSphere MQ Client Linux®, Windows 2000 5.3.x
26 Build a Business Process Solution Using Rational and WebSphere Tools

Tools
The products for tools to create user interfaces part are listed in Table 2-2.

Table 2-2 Products used as the tools for developing user interfaces

2.4.2 Application Servers
Our middleware includes the LGI and Direct Application Server and Data
Interchange Gateway. The middleware performs the following functions:

� The middleware provides a newly consolidated Internet Web site for
DirectCar and LGI policy holders to register an auto insurance claim, based
on the existing DirectCar applications. Uses the HTTP server to host static
HTML pages with the Application Servers hosting JSP pages, servlets, and
EJB™ components. The EJB components have been modified to issue JMS
API calls to pass requests to and from the transformation and routing engine.

� Provides an intranet Web site for the company's claim handlers using HTTP
server and Application Servers to interact with the process manager.

� Network Deployment Edge Server components provide load balancing across
multiple Application Server nodes for a scalable solution with failover
capabilities.

� The Data Interchange gateway puts the EDI 835 data it receives from the
business partner onto a WebSphere MQ queue, where it is consumed by the
transformation and routing engine.

The decisions that lead us to choosing the products for middleware are:

� Application Server allows the merged company to expand into J2EE
technologies, using the skills and technology possessed by the DirectCar
Company.

� In addition to supporting WebSphere MQ as a JMS provider, Application
Server meets the company's quality of service requirements.

� Data Interchange is required for the continued support of the business
partners' channels.

Product Platform Version

WebSphere Studio
Application Developer
(Application Developer)

Linux 5.0.x, 5.1.x

Usage: For application development of Java Swing user interface
 Chapter 2. Current architecture 27

Runtime
The products used for runtime of the middleware part are listed in Table 2-3.

Table 2-3 Products used in middleware runtime

Tools
The products for tools to create middleware part are listed in Table 2-4.

Table 2-4 Products used as the tools for developing middelware

2.4.3 Message Brokers
WebSphere MQ Integrator and Message Broker implement a transformation and
routing engine that transforms the data received from the application servers or
process manager in one XML format to either another XML format required by

Product Platform Version

IBM HTTP Server (IHS) AIX®, Solaris™, Windows
2000

1.3.x, 2.0

WebSphere Application
Server (Application
Server)

AIX, Solaris, Windows
2000

5.0.x, 5.1.x

WebSphere Application
Server Network
Deployment (Network
Deployment)

AIX 5.0.x, 5.1.x

WebSphere Data
Interchange (Data
Interchange) Gateway

Windows 2000 3.2.1

WebSphere MQ AIX, Windows 2000 5.3

Product Platform Version

WebSphere Studio
Application Developer
(Application Developer)

Windows 2000 5.0.x, 5.1.x

Usage: For application development of servlets and Enterprise JavaBeans™ (EJB)
components

WebSphere Studio Site
Developer (Site
Developer)

Windows 2000 5.0.x, 5.1.x

Usage: For application development of HTML and JSP pages
28 Build a Business Process Solution Using Rational and WebSphere Tools

the DirectCar company's existing backend claims application, or to an existing
communication area (COMMAREA) format for the LGI company's systems. A
COMMAREA is a CICS area that passes data between tasks that communicate
with a given terminal. The area can also be used to pass data between programs
within a task.

After the data has been transformed, it is routed to the appropriate backend
system based on the content of the WebSphere MQ message. For requests from
business partners, the EDIFACT data is converted into XML using a DTD
imported as a message set.

The WebSphere Business Integration Message Brokers are configured in a
domain for handling large workloads and providing fail-over support.

We use the Message Brokers because of:

� The continued support of the messaging infrastructure and reuse of the
existing WebSphere Business Integration Message Broker infrastructure,
already in use to expose LGI's backend systems.

� Support for all the data formats required by the applications: XML,
COMMAREAs, EDIFACT data, and the multiple operating systems used by
the merged company.

Runtime
The products used for runtime of the BPM engine part are listed in Table 2-5.

Table 2-5 Products used in the runtime of transformation and routing engine

Tools
The products for tools to create BPM engine part are listed in Table 2-6.

Product Platform Version

WebSphere Business
Integration Message
Broker

AIX, Solaris, Windows
2000, z/OS

2.1.x

WebSphere Business
Integration Message
Broker

Windows 2000 5.x
 Chapter 2. Current architecture 29

Table 2-6 Products used as the tools for developing BPM engine

2.4.4 Process managers
This section describes the process managers in our scenario. Process managers
control processing of claims through the validate, investigate, and judgement
stages calling the backend systems, where appropriate, through a WebSphere
MQ message to the transformation and routing engine. They also allow
conditional staff intervention based on meeting certain criteria.

The decision of choosing the specific products are based:

� Builds on the existing skills and products already in use by the LGI company.

� MQ Workflow provides support for role-based staff activities in long running
interruptible flows.

� The tooling provides the ability to rapidly modify or redevelop new business
process flows.

Runtime
The products used for runtime of the process managers part are listed in
Table 2-7.

Table 2-7 Products used in the runtime of process managers

Tools
The products for tools to create process managers part are listed in Table 2-8 on
page 31.

Product Platform Version

WebSphere Business
Integration Message
Broker Control Center

Windows 2000 2.1.x

Usage: For application development of message flows

WebSphere Business
Integration Message
Broker Workbench

Windows 2000 5.x

Usage: For application development of message flows

Product Platform Version

WebSphere MQ Workflow AIX, Windows 2000 3.4, 3.5
30 Build a Business Process Solution Using Rational and WebSphere Tools

Table 2-8 Products used as the tools for developing business processes

2.4.5 Backend transaction servers and data centers
This section covers the backend transaction servers and data centers for
DirectCar and LGI.

DirectCar application server and data center
The DirectCar application server is configured to use WebSphere MQ as a JMS
provider. Message Driven Beans (MDBs) were developed to consume messages
from a WebSphere MQ queue using a message selector, then invoke the
appropriate existing session beans (EJB components). The session beans call
entity beans to access an Oracle database.

During claim validation, checks are performed against the policy details held in
the database. In this case, the session beans use an RMI-IIOP call to an EJB
interface that uses JCA services to route requests to TXSeries through the CICS
Transaction Gateway (CTG). CICS COBOL applications within TXSeries access
DB2® where the policies are held.

Secure connections using the Secure Sockets Layer (SSL) protocol over
WebSphere MQ links have been established between LGI and DirectCar.

Reuse of existing systems leaving working applications unchanged. TxSeries
and DB2 were part of an off-the-shelf insurance policy management application.
The DirectCar company had chosen J2EE technologies with Application Server
to develop their own claims handling system in conjunction with an Oracle
database. The only new addition here was WebSphere MQ to integrate with the
consolidated system.

LGI data center
The LGI data center is an existing system based on CICS. The WebSphere
MQ-CICS bridge is used as the interface between the wider WebSphere MQ
infrastructure and the CICS system. WebSphere MQ messages are transferred
through theWebSphere MQ-CICS bridge that invokes CICS COBOL

Product Platform Version

WebSphere Business
Integration Modeler

Windows 2000 4.2.x

Usage: For application development of business process flows

WebSphere MQ Workflow
Buildtime

Windows 2000 3.4, 3.5

Usage: For application development of business process flows
 Chapter 2. Current architecture 31

applications. These issue SQL statements to access the DB2 databases
containing the customer's policy and claims information.

Runtime
The products used for runtime of the back-end part are listed in Table 2-9.

Table 2-9 Products for runtime of the back-end transaction servers and data centers

Tools
The products for tools to create back-end part are listed in Table 2-10.

Table 2-10 Products for developing back-end transaction servers and data centers

Product Platform Version

DirectCar data center

DB2 Windows 2000 7.2, 8.1.x

Oracle Windows 2000 9.1

TXSeries Windows 2000 5.0.x

WebSphere Application
Server

Windows 2000 5.0.x, 5.1.x

WebSphere MQ Windows 2000 5.3.x

LGI data center

CICS Transaction Server
for z/OS (CICS)

z/OS 2.2, 3.1

DB2 z/OS 7.2, 8.1.x

WebSphere MQ z/OS 5.3.x

Product Platform Version

DirectCar data center

VisualAge® for COBOL Windows 2000 3.6

WebSphere Studio
Application Developer

Windows 2000 5.0.x, 5.1.x

Usage: For application development of session and entity beans

WebSphere Studio
Application Development
Integration Edition

Windows 2000 5.0.x, 5.1.x
32 Build a Business Process Solution Using Rational and WebSphere Tools

2.5 Extending the architecture
In “1.2, “Business goals” on page 7” and “1.3, “IT goals and constraints” on
page 9” we describe the objectives for the merger between LGI and DirectCar.
The implementation of these objectives is spread over at least three phases.

Phase one: completed
The following steps have been completed before the actions described in this
redbook:

1. We automated steps of the process which improve the speed and
predictability of handling claims.

2. We gave claim handlers a common set of interfaces to deal with both LGI and
DirectCar claims and policy systems. This improved the flexibility with which
staff handled claims on policies belonging to either company.

3. We automated the interaction with some external agencies such as licensing
authorities. This automation was relatively simple and only involved a single
interaction, such as checking a vehicle registration.

For further information, see the series of articles in IBM developerWorks®,
Merging disparate IT systems: Build a single integrated view for users quickly
and with minimal disruption, found here:

http://www-128.ibm.com/developerworks/ibm/library/i-merge.html

Phase two: automating external transactions
Th rest of this redbook focuses on e second-phase implemenations:

Usage: For application development of Java Connection Architecture (JCA) EJB
components

LGI data center

WebSphere Studio
Enterprise Developer

Windows 2000, z/OS 5.0.x, 5.1.x

Usage: For application development of CICS COBOL programs

Note: Product versions that are used in the System House solution are
evolving with time. The versions listed here are correct as we write this book.

Product Platform Version
 Chapter 2. Current architecture 33

http://www-128.ibm.com/developerworks/ibm/library/i-merge.html

� Automate more complex interactions with external agencies, such as
automating the tasks involved in the assessment of a claim:

a. Issuing contracts with loss adjusters
b. Selecting the loss adjuster to take on a particular case
c. Starting the assessment process
d. Monitoring its progress and the performance of the adjuster
e. Receiving the adjustment report
f. Making payment for the assessment report

Automating the external assessment of a claim
LGI, as a matter of corporate IT strategy, has decided to qualify the external
claim assessor automation project as a pilot for moving its technology base
towards greater use of open standards for its business process applications.
They have already used Java 2 Enterprise Edition (J2EE) for the presentation
layer, and have used Web services for simple interactions with external
agencies.

The challenge now is to focus on the skills they need to build business process
applications using BPEL on a J2EE platform, identify any technology gaps in
introducing BPEL technology to the business, and evaluate the benefits of the
new technology. Key among these are new tools for modeling solutions in BPEL
and UML. Will these tools work together and speed up the development and
deployment of the solution?

There are business and technical reasons for choosing the claim process for the
pilot.

� From a business perspective, this decision should prove to be a valuable
investment. It does not involve the whole business at once because it can be
incrementally installed, gradually replacing the existing manual process.

� From a technical perspective, moving towards open standards such as Web
services and BPEL is a high priority for processes involving business
partners. The claim assessor process will also pilot integration of WebSphere
MQ Workflow and WebSphere Business Integration Server Foundation, and
the integration of a BPEL process using Web services with LGI’s existing
messaging infrastructure.

The new process must also use LGI’s WebSphere MQ backbone to make use of
services hosted on LGI and DirectCars systems. The backbone also provides the
gateway to connect to services provided by business partners, and services
provided by LGI to business partners. LGI’s backbone has been evolving from a
message bus connecting application components to becoming a service bus
using SOAP/JMS and SOAP/Http as the main transport protocols.
34 Build a Business Process Solution Using Rational and WebSphere Tools

Phase three: monitoring claims data in the future
The future actions that will have to be performed are:

1. Track the progress of a claim. Tracking a claim will provide information to
clients who have questions about the progress of their claims. Potentially, it
also could provide information for a Web-based, self-service claim
application.

2. Collect information about the performance of the claims process to improve
the performance of claim assessors and to provide information for
improvements in the process itself.

Monitoring the claims process
Phase three requires monitoring the progress of a claim. The information from
the process will be used in two ways:

1. Build a business dashboard to provide a real time business view of the claims
process.

2. Improve the claims process by providing performance data. The data can be
used by:

– Business partners to review their performance,

– The business analyst to investigate process improvements based upon
real performance data input to the claim assessor simulation model.

We want to return to these topics in a future redbook to show how to use the
business event data that the WebSphere family of products collects.

The rest of this and the second part of the book is divided in the following ways:

� The next chapter discusses the method and tools that we use to develop the
new solution which is important to LGI in meeting their IT goals for better
development productivity, better alignment of IT solutions with business
goals, and getting solutions into production faster.

� In Chapter 4, “Business Process” on page 75 we use WebSphere Business
Integration Modeler to develop the new business process.

� In Chapter 5, “System Architecture” on page 153 and Chapter 6, “Solution
Architecture” on page 187 we use the Patterns for e-Business and Rational
Software Architect to develop the new solution and extend the existing IT
architecture.
 Chapter 2. Current architecture 35

2.6 Summary
In this chapter we covered the existing system architecture and application
components. The design of the new external claim assessor automation system
will be based on the existing skills and systems.
36 Build a Business Process Solution Using Rational and WebSphere Tools

Part 2 Modeling

In this section we have four chapters to explain how to build a solution model and
demonstrate how to build the model for the External Claim Assessor solution.

Chapter 3, “Our method” on page 39 describes the method used to build the
solution.

Chapter 4, “Business Process” on page 75 shows how to build the new business
process with WebSphere Business Integration Modeler and validate it using a
simulation.

Chapter 5, “System Architecture” on page 153 uses the Patterns for e-Business
and Rational Software Architect to build the system architecture.

Chapter 6, “Solution Architecture” on page 187 refines the architecture by
defining all the interactions, interaction sequences and interfaces required to
implement the solution.

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 37

38 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 3. Our method

One of our business objectives in 1.3, “IT goals and constraints” on page 9 is to:

� Demonstrate development productivity improvements by using modern tools
and technology. The new system will implement a Service Oriented
Architecture (SOA) based on Web services. It will be developed using Model
Driven Development (MDD) and use open standards based technologies
such as J2EE, BPEL, and UML2. The development project will serve as a
reference for using these technologies in the future, showing how to achieve
development productivity improvements.

In this chapter we describe the method we use to build the External Claim
Assessor solution. Our approach is influenced by a number of current thoughts
about software development. At times it feels that we could carry the project past
our goal of building the solution. So we have choose from the tools that are
available today. In this, we face the same practical difficulties as any other
development project. As a result, we hope the choices we make are instructive.

3

© Copyright IBM Corp. 2006. All rights reserved. 39

3.1 Building the On Demand Business
What is an On Demand Business? IBM defines it as one whose leaders can see
and manage their company as an integrated whole. This means that all sectors
of the business must engage each other in a dynamic transformation of formerly
isolated departmental operations into full business processes integrated across
the company and outside to their customers.

An On Demand Business has four essential characteristics:

� Responsive, intuitively responsive to dynamic, unpredictable changes in
demand, supply, pricing, labor, and competition

� Variable, flexible in adapting to variable cost structures and processes
associated with productivity, capital, and finance

� Focused, concentrated on core competency, differentiated tasks and assets,
with tightly integrated strategic partners

� Resilient, capable of managing changes and threats with consistent
availability and security

For further information about the On Demand Business, see:

http://www-306.ibm.com/e-business/ondemand/us/overview/overview.shtml

LGI is transforming itself into an On Demand Business by:

� Transforming their IT infrastructure into one based on open standards that
make LGI flexible and more responsive to business needs.

� Developing solutions focused on new or more efficient business processes
cutting across customers, departments and suppliers

� Recognizing software development is a strategic business process that can
drive their business success and should be driven by the same type of
horizontal integration that is driving their other business processes

3.1.1 The on demand operating environment
The on demand operating environment has two goals: IIT simplification and
business flexibility. It is a set of integration and infrastructure management
capabilities that customers and partners can utilize, in a modular and incremental
fashion, to enable the transformation to On Demand Business. It has two parts,
an infrastructure management part and an integration part that addresses IT
simplification and business flexibility goals. Look for the IBM Redbook, On
Demand Operating Environment: Creating Business Flexibility, SG24-6633,
which provides a roadmap to creating business flexibility in the on demand
operating environment.
40 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-306.ibm.com/e-business/ondemand/us/overview/overview.shtml

Infrastructure management is about enabling access to and creating a
consolidated, logical view of resources across a network. Integration is about
connecting people, processes and information in a way that allows companies to
become more flexible to the dynamics of the markets, customers, and
competitors around them. Figure 3-1 shows these concepts and lists the
capabilities that are required to implement them.

Figure 3-1 On demand operating environment

In the External Claim Assessor solution, LGI uses Business Modeling, Process
Transformation and Application Integration. In the future, LGI plans to use
Business Process Management to monitor day-to-day operations and analyze
process performance. In the on demand operating environment these
capabilities are realized using a Service Oriented Architecture (SOA). SOA is
both about simplifying the operating environment by making it easier to mix and
match capabilities, and about providing an integrated software development
environment for building solutions1 from services using service-oriented
modeling2.

3.1.2 Service-oriented modeling
Interest in service-oriented modeling is growing from a realization that:

Existing development processes and notations such as Object-Oriented
Analysis and Design (OOAD), Enterprise Architecture (EA) frameworks, and
Business Process Modeling (BPM) only cover part of what is required to
support the architectural patterns currently emerging under the SOA

1 Mike Perrow, “Building the On Demand Business: Four Imperatives for Improved Software
Development”, found at
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/imperatives-04.
pdf
2 Ali Arsanjani, “Service-oriented modeling and architecture”, found at
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
 Chapter 3. Our method 41

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/imperatives-04.pdf
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

umbrella. Thus, there is a need for an enhanced, interdisciplinary service
modeling approach3.

OOAD, EA and BPM are positioned by these authors in Figure 3-2.

Figure 3-2 BPM, EA and OOAD positioning
(Zimmerman et al., Service-Oriented Analysis and Design)

The methods are performed by different people. EA is the province of the
enterprise, solution and infrastructure architects, BPM of the business analyst,
and OOAD of the IT specialist or application programmer. Service-oriented
modeling requires the integration of the work of these practitioners plus
extension of UML based modeling tools to deal with the artifacts of a
service-oriented architecture, specifically:

� Services (WSDL)
� Service choreography (BPEL)
� Service bus (ESB)
� Services patterns

The authors’ point is that OOAD, EA and BPM each provide some elements
required to build a service-oriented architecture. However, they are not sufficient
individually; the methods require integration. In effect, we have in software
development the same departmental stovepipes we find in the use of software
itself. Rotate the diagram 90o and you can see the similarity!

3.1.3, “The IBM Software Development Platform” on page 43 describes the
strategy behind the IBM Software development platform to integrate the different
roles and activities involved in developing a software solution.

3 Olaf Zimmermann, Pal Krogdahl, Clive Gee, Elements of Service-Oriented Analysis and Design,
June 2004 found at the IBM developerWorks Web site:
http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
42 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

3.1.3 The IBM Software Development Platform
IBM regards software development as a strategic business process. Software
development benefits from horizontal integration just as other business
processes do. IBM bases its software development tools on a common software
development platform (SDP) in support of the concept that software is a business
process, in an analogous way that the supply chain or customer relationship
management are business processes (see Figure 3-3.4), the purpose of which is
to support business transformation that occurs by integrating and automating
horizontal business processes.

Figure 3-3 Software development: A strategic business process

The IBM software development platform provides broader tooling for an on
demand operating environment than individual software development
methodologies. The software development platform enables the integration of
different departments, processes, and deliverables involved in software
development as well as provides and integrates the specific tools that are
required.

The goals of the IBM software development platform are to:

� Connect business needs with IT solutions.
� Enable teams of practitioners.
� Provide end-to-end visibility, cost containment and risk management.

4 Alan Brown, Realizing the IBM Software development platform, April 2004:
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SDP_WP
_Final.pdf
 Chapter 3. Our method 43

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SDP_WP_Final.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/SDP_WP_Final.pdf

Connect business needs with IT solutions
Business process modeling, information modeling, and the Rational Unified
Process® are the main tools for connecting business needs with IT solutions.

We are focussed on using business process modeling to connect business
needs to the IT solution in the External Claim Assessor scenario.

Enable teams of practitioners
The Eclipse software platform along with the Eclipse Modeling Framework (EMF)
are the key technologies in the SDP to enable teams of practitioners to work
together on a common solution model based on UML2 (Figure 3-4).

Figure 3-4 Software development platform (Alan Brown, op cit.)

The tools are designed around the needs of the different role players, but
integrated on a common tools platform, able to share artifacts by using a
common meta model, and unified by a common software development process
including requirements, test, change and configuration management.

The tools we use all run on the Eclipse platform and share various
characteristics. In particular, we focus on the following integration tasks:

1. Connecting the business process model created by the business analyst
using WebSphere Business Integration Modeler with the architecture created
by the solution architect using Rational Software Architect.
44 Build a Business Process Solution Using Rational and WebSphere Tools

WebSphere Business Integration Modeler and Rational Software Architect
have recently been integrated using UML2 and a method of accessing a
common business model5.

2. The IT process integration specialist builds the executable business process
with WebSphere Studio Application Development Integration Edition using
the process model from WebSphere Business Integration Modeler and
interface definitions from Rational Software Architect.

3. The IT workflow specialist maintains the FDL process with WebSphere MQ
Workflow Buildtime. The workflow specialist uses the process model from
WebSphere Business Integration Modeler and WebSphere MQ Workflow and
interface definitions from Rational Software Architect.

4. The application developer reengineers the claims applications created using
WebSphere Studio Application Developer to use Web services by using the
WSDL definitions and Web service and UML architecture being defined by
the solution architect.

5. The service bus integration IT specialist builds the mediations that are
deployed on the enterprise service bus by WebSphere Business Integration
Message Broker using WSDL and schema interface definitions maintained in
Rational Software Architect.

End-to-end visibility, cost containment, and risk management
The Rational Unified Process (RUP®) is the main tool for providing end-to-end
visibility, cost containment, and risk management in the software development
process.

In this project we have not used the RUP to define and manage the development
process, Requisite® pro to manage requirements, ClearQuest® and Clearcase
to manage changes, or any of the testing or performance profiling tools that are
available in the software development platform from Rational.

3.2 Building the External Claim Assessor solution
The approach used by the System House scenario team who developed the
solution for this redbook was based on methods used by IBM service teams in
real-life projects. The scenario team modeled the business process in workshops
to collect requirements, document the as-is business process, and define the
to-be business process. They then took the model from the business process
analysis as the starting point of a business driven development approach to
design and implement the solution.

5 See Appendix B, “Integration considerations” on page 505 for details.
 Chapter 3. Our method 45

The method is described in the following sections:

1. Section 3.2.1, “Roles and responsibilities” on page 46 describes all the roles
who participated in building the solution.

2. Section 3.2.2, “Responsibilities and contract-based development” on page 52
describes how the project is organized and what deliverables are produced.

3. Section 3.2.3, “Gather business requirements though modeling workshops”
on page 55 discusses the value of workshops in the process.

4. Section 3.2.4, “Establish a Reference Architecture” on page 56 shows the
model for the staging the refinement of architecture into design which was
followed in the development of the solution.

5. Section 3.2.5, “The Patterns for e-business layered asset model” on page 58
introduces the Patterns for e-Business stages which are used in the first step
of the architectural refinement.

6. Section 3.2.6, “A process for using the Patterns for e-business asset model”
on page 59 provides more detail about the method of applying the Patterns
for e-Business layered asset model to a process integration solution.

7. Section 3.2.7, “Use a Model Driven Development approach” on page 67
discusses the value of the solution development team using a model driven
development (MDD) approach to take the solution from initial business
process model to implementation.

8. Section 3.2.8, “Tool chains” on page 70 describes how to plan the MDD
approach by understanding how the tools used by the different roles involved
in the development are integrated in the software development platform.

3.2.1 Roles and responsibilities
The development of the External Claim Assessor solution is a team effort which
involves business sponsors and business analysts, IT architects and specialists,
and end users. See the business context diagram - Figure 1-1 on page 11.
Understanding which roles are involved is important from at least two
perspectives:

1. It establishes who is responsible for the connection between business and IT
goals. This is important because the development of software for the On
Demand Business is regarded as a business function, not as purely a
technical software engineering procedure.

2. It identifies who the technical specialists are, what their requirements on the
software development platform will be, who will be dependent on input from
whom, and thus what artifacts need to be exchanged using the software
development platform.
46 Build a Business Process Solution Using Rational and WebSphere Tools

The roles who are involved are:

� Business sponsor is the business executive responsible for auto claims. This
person should be at director level.

The business sponsor’s role is to set the overall goals of the claim assessor
project, and to ensure members of the claims department are able to spend
enough time with the project team to be effective in describing their
requirements and reviewing process changes.

The sponsor will have a limited involvement in day-to-day development. They
will use graphics of the business process and reports from the Modeler to
create presentations to justify the business case and to explain the proposed
process changes to executives in the rest of the business

� User representatives

One or more representatives such as a claim assessor, claims supervisor and
a claim handler, will be present from the user community. They will be
particularly valuable in documenting how the existing claims process works,
what possibility for improvement exists, and to assist with the definition of and
phasing in of the improved process.

The user representatives will use graphics from the tool to create
presentations to explain and discuss changes with their colleagues.

� Project manager

The project manager is responsible for the delivery of the claim assessor
solution on time and budget and meeting its requirements.

The project manager will work with the business analyst and use reports from
the Modeler to identify tasks and responsibilities.

� Workshop facilitator

The facilitator’s role is to manage the workshop sessions. The facilitator may
be the project manager, business analyst or process specialist, or someone
with special experience in running workshops. The important point is that
someone has responsibility for driving workshops through and getting the
results documented.

The person selected to document the workshops will use WebSphere
Business Integration Modeler or Microsoft Visio® to capture process models.
Progress on defining the process model can be written up after each
workshop. Alternatively, if it suits the participants, it is often more effective to
work with the tool interactively on a projector or screen sharing in a remote
meeting.
 Chapter 3. Our method 47

� Business analyst and process specialist

The Business analyst is responsible for the LGI insurance company’s
business processes. The analyst is responsible to the business sponsor for
meeting the goals laid out for automating the claim assessor process.

The Business Analyst performs tasks such as:

– Advising on current status and future directions of business transactions in
relation to business goals

– Participating in purchasing decisions

– Working closely with the Solution Architect in designing new solutions

– Advising the development team throughout the solution development
phase, with respect to detailed requirements or business trade-offs for the
solution

– Working closely with the Solution Tester to develop a plan to validate the
solution after delivery and establish test scenarios

– If necessary participating in the certification of solutions as meeting the
expected business goals and being ready for production

– Defining or modifying business rules within an existing application

– Documenting business processes and is responsible for certifying the
processes as compliant with statutory or voluntary requirements

– Providing content for Web sites describing business processes

The business analyst will use the WebSphere Business Integration Modeler.
The business analyst will also use the tool to build and document the process,
define business measures related to the goals of the solution, and simulate
the process to verify the process will meet the goals set for it.

� IT architects

– Solution architect

The IT solution architect is responsible for mapping the new claim
assessor process into an IT solution. The solution architect is responsible
for mapping the business goals of the solution into the IT goals (commonly
known as Service Level Agreements, or SLAs) of the solution. These
include measures of quality of service, response times, costs, time to
develop and increasingly mapping performance of the solution as a whole
to business measures set by the business analyst.

The solution architect performs tasks such as:

• Designing a new solution, application or function based on the
specified functional and non-functional business requirements

• Defining the interface of new business services
48 Build a Business Process Solution Using Rational and WebSphere Tools

• Writing application design specifications, including clear specifications
of functional and nonfunctional requirements for the solution

• Modifying existing services to react to new requirements

• Planning solution upgrades and rollout of new capabilities (applications
and products)

• Defining expected behavior of a service in terms of performance,
service levels and customer satisfaction

• Defining the task flows for enabling the business service

• Using analysis tools to define information and task flow such as BPR
(Business Process Re-engineering) tools like Holosofx® or OOA
(Object Oriented Analysis) tools like Rational Rose®.

• Interacting with business people to understand a particular business
process or business requirement

• Interacting with application developers to interpret business
requirements in technical terms

The principle tool to be used by the solution architect is the Rational
Software Modeler or the Rational Software Architect rather than
WebSphere Business Integration Modeler. The architect will use
WebSphere Business Integration Modeler to understand the business
process model and share artefacts with the Rational tools.

– Enterprise/Infrastructure architect

The principle responsibilities of the enterprise architect are setting IT
infrastructure standards and the business’s strategic IT goals. The
infrastructure architect is responsible for realizing the standards and goals
in the IT infrastructure and ensuring new solutions can be realized
meeting those standards and goals. Beyond the scope of this scenario the
architect’s responsibilities include capacity planning, meeting response
time or service level goals, maintenance of the IT infrastructure, disaster
recovery and system back up and restore.

– Data architect

The data architect is responsible for data modeling in the enterprise and
the definition of database tables and the relationships between them. They
will have deep industry expertise as well as technical knowledge about
relational data models.

We have omitted any consideration of data models from this study
because we focused our resources on how to perform process-based
integration. When we need to chose the tools to model and build the
solution, consideration of the data will be a high priority.
 Chapter 3. Our method 49

– Security architect

We have omitted security, privacy and conformity with data protection and
other legislation from the scenario.

Figure 3-5 The roles involved in building the solution

� IT Specialists

IT specialists can be called into the early stages of the development by the IT
architect to clarify how the existing system works. Having specialists attend
the early process design meetings to represent developers proves its worth
when the specialists are refining the design. The specialists can check the
process model has sufficient detail from which to work.

The specialist’s principal responsibility is to export the business analyst’s
process model (BPEL) from WebSphere Business Integration Modeler and
the IT architect’s model (UML) from Rational Software Architect and then to
implement their components using the products for which they are
responsible.

Application developers perform tasks such as:

– Developing the business services according to the architect’s model

– Deciding on the specific implementation of required task flows (workflows,
message flows, and so forth)
50 Build a Business Process Solution Using Rational and WebSphere Tools

– Writing EJBs to wrap internal and external resources or implement new
services

– Writing message flows and message sets to implement mediations
between services

– Configuring WebSphere MQ Workflow to execute FDL and integrate it with
manual and automatic activities

– Transforming BPEL from a process description to a process execution
definition and integrate the BPEL flow with manual and automatic activities

– Unit testing each application component against specifications and testing
the validity and basic performance of the developed application
components

– Developing user interfaces, EJB, or servlet frameworks to contribute to
shared services for re-use within other solutions

We had four IT specialists. We combined the development and runtime roles
because our focus was on development, and the only runtime task was to
deploy the solution.

a. WebSphere MQ Workflow specialist

The WebSphere MQ Workflow specialist is responsible for taking the new
(to be) claims process defined by the Business Analyst and modifying the
existing (as-is) claims process running on WebSphere MQ Workflow to
call the new claim assessor subprocess.

The specialist’s principle tool is WebSphere MQ Workflow Buildtime.
However, this specialist will also need to refine the to-be process in
WebSphere Business Integration Modeler and export FDL suitable for the
workflow Buildtime.

b. WebSphere Business Integration Message Broker and WebSphere MQ
specialist

This specialist is responsible for the underlying WebSphere MQ
infrastructure and providing message flows to connect service requesters
and providers. This specialist’s principle tools are WebSphere Business
Integration Message Broker workbench, and WebSphere MQ explorer.

c. WebSphere Business Integration Server Foundation and WebSphere
Studio Application Development Integration Edition specialist

This integration specialist is responsible for taking the to-be claim
assessor BPEL process and implementing it using WebSphere Studio
Application Development Integration Edition.

d. WebSphere Application Server and WebSphere Studio Application
Developer specialist
 Chapter 3. Our method 51

The WebSphere Application Server specialist is responsible for building
and deployed the services used in the claims automation. We used
WebSphere Studio Application Development Integration Edition to write
the services.

3.2.2 Responsibilities and contract-based development
The method involves these multiple roles working together at each stage of
development. It is punctuated by producing deliverables such as the business
process model, and the solution architecture document. These documents form
contracts between the people in the team and mark the progress of the project as
a whole. This is not strictly a waterfall process, because work on the business
process model proceeds in parallel with solution architecture and some of the
implementation. But the work is also structured in stages with deliverables and
formal approval to the completion of each stage. To the extent the software
development platform can support iterative development, though mechanisms
such as refactoring, then there is greater scope for working in parallel, and to the
extent that it is difficult to reverse changes back into the process model the
development needs to proceed in stages.

As we discuss in 3.2.8, “Tool chains” on page 70, there are limitations today to
the extent the software development platform supports refactoring across all the
tools. As a result, truly iterative development is costly and the work on the model
does have to proceed in stages.

It is important to recognize there must be some friction in the refinement process
resulting in development proceeding in a series of stages. Staged development
is not simply a consequence of the difficulty of exchanging models between
tools. It reflects the need for changes to be agreed between members of the
development team before each member goes off to refine their part of the
solution. Making changes to design decisions always has a wider impact than
anyone supposes. Therefore, the impact of the changes needs to be assessed
before committing to the project. It is part of the project manager, business
analyst, and IT architects’ jobs to put a brake on proposed changes that emerge
during refinement that will change requirements and architecture, and
consequently affect other parts of the implementation. The benefit of being able
to exchange models between tools without friction is not to eliminate the need for
development stages, but to make the implementation of agreed upon changes
less costly.

The approach we took in working together was for the business analyst to
document the business process using WebSphere Business Integration Modeler
and to regard the model as a programming specification. The architect and IT
specialists were free to use, extend, and modify the model to meet the objectives
52 Build a Business Process Solution Using Rational and WebSphere Tools

of the implementation. But the model is not a hard and fast design of how the
process works.

We treated the business process model produced by the analyst as the definition
of what the business process is, and not a specification of how the process
actually operates. At some stage the Business Analyst should review the IT
model, and agree it is a reasonable implementation of the business model. This
is similar to the approach of traditional program development, and is still some
way from the goal of model-driven development.

Figure 3-6 illustrates three different ways of understanding the relationship
between the business model and the IT model.

� The business analyst develops a process model, and exports it (A in the
figure). The IT architect views the process model as a specification of process
requirements, and may import none, some or the whole of the model to assist
in the development of the IT model.

� The business analyst develops a process model, and exports it (B in the
figure). The IT architect imports it, then develops the model further. The
Business Analyst might be able reimport the IT model, because it is all in the
common BPEL language, and pick up the IT refinements. There is a risk the
refinements might obscure the key elements of the model for the business
analyst.

Figure 3-6 Different approaches to implementing a business model

Business Model

IT Model

A B C
 Chapter 3. Our method 53

� In approach C, we have a shared representation of business components and
processes on which the business analyst and IT architect work jointly. The
goal is to be able to find different abstractions of the same business
processes and components that meet the modeling needs of both the
business analyst and the IT architect.

This is almost a maturity model for the progress in automating business process
modeling technology. (A) represents commonly used graphical techniques, from
backs of envelopes, through Visio, to structured business process modeling tools
such as WebSphere Business Integration Modeler. (B) illustrates the state of
current tools that are based on executable process languages such as BPEL,
and represents the current state of the art. (C) perhaps represents where the
technology is moving to next.

Three contracts
We identified three main phases of architectural development based on the
refinement of the solution model (Figure 3-7). This resulted in having three
contracts. The first phase is covered in Chapter 4, “Business Process” on
page 75 and is the development of the business process model. The business
model is called a Computationally Independent Model, or CIM. It is described in
BPEL, used as a process description language.

Figure 3-7 Contracts between roles involved in process implementation

1. The business model (CIM) forms a contract between the business analyst
and the solution architect who is responsible for developing the solution
architecture.

Here we determined which parts of the business model are candidates for
software automation. This is negotiated between the decision maker,
54 Build a Business Process Solution Using Rational and WebSphere Tools

business analyst, and IT architect. The decisions were based on costs,
time-to-market, and strategic goals (see 1.2, “Business goals” on page 7).

The architecture is developed in Chapter 5, “System Architecture” on
page 153 and Chapter 6, “Solution Architecture” on page 187. It shows how
the solution architect incorporates the business model defined in WebSphere
Business Integration Modeler into the platform independent model (PIM) of
the solution developed in Rational Software Architect.

The PIM model should be reviewed by the business analyst to check that the
refinement has not identified new process issues or misinterpreted the intent
of the business process.

2. The PIM forms a contract between the solution architect and the business
analyst who verifies that the solution architecture will implement the business
model.

The architect, with the assistance of IT specialists and the infrastructure
architect, maps the PIM to a platform specific model (PSM) making use of the
technologies available at LGI. Mapping the solution to the PSM forms the
remainder of Chapter 5 and the whole of Chapter 6. The PSM should be
approved by the IT infrastructure architect and reviewed by the IT specialists.

3. The PSM forms a contract between the solution architect, the infrastructure
architect and the IT specialists who are responsible for developing the
solution implementation.

3.2.3 Gather business requirements though modeling workshops
Using modeling in workshops involving both business and IT roles is an
extremely effective way to elicit requirements. Because there are no right
process or architectural answers (though there are wrong ones!) the discussion
around applying process and pattern models is extremely effective in building a
common understanding of the requirements and of the proposed solution. In this
it draws heavily on the best practices followed by business analysts involved in
business reengineering.

Another advantage of a workshop-based approach is that it plays an important
part in bringing together the whole team who are involved in sponsoring, building,
and eventually using the solution. Building a solution is not just about building
software that works and meets its requirements. It is about building a solution
that works and delivers the benefits required of it. There are some well written
accounts of the pitfalls of letting the concerns of software engineers hold too
much sway in building solutions in The Inmates Are Running the Asylum: Why
High Tech Products Drive Us Crazy and How to Restore the Sanity by Alan
Cooper (6.Early involvement of everyone concerned with a business process
change is key to success.
 Chapter 3. Our method 55

The involvement needs to be structured and understood by the representatives
of all the affected parties for it to be effective. There are a number of books
specifically on reengineering business processes that focus on how to capture a
business’s existing processes and how to undertake the task of improving them.
An accessible place to start is the redbook, "Continuous business process
management", SG24-6590, found here:

http://www.redbooks.ibm.com/abstracts/sg246590.html?Open.

This book describes one method of developing business processes specifically
for the WebSphere Version 4 platform.

Designing a new business process, and automating it, is a only part of the overall
task of business reengineering. The development of a new business process
needs to be part of the larger task of implementing the change. The process
model is an effective means of structuring discussions about the business
process with the sponsors and users of the business process7.

3.2.4 Establish a Reference Architecture
Establishing a high-level architecture begins during the earliest stages of the
solution design and delivery process. As illustrated in the model in Figure 3-8 on
page 57, architectural specifications go through a transition over time from the
initial very high-level conceptual representations to detailed, specified, and
physical-level representations. The stages we followed are numbered 1 to 4.

6 Published by Macmillan, 1999, ISBN 0-672-31649-8.
7 There is a well written case study provided by Chris Booth of Strategic Thought in Charles Brett’s
book Five Axes of Business Application Integration. It is based on his work with Criterion Assurance
and shows the value of using process models in requirements workshops on the overall success of a
project.
56 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.redbooks.ibm.com/abstracts/sg246590.html?Open.

Figure 3-8 Pattern and asset use across the life cycle

1. Our architectural process started with using Patterns for e-business process
to define a reference architecture.

Patterns for e-business are very useful in establishing the high-level
architecture. A well-defined pattern selection process is a key feature of
e-business patterns. The pattern selection process accelerates the design
work and provides traceability from business requirements to architectural
decisions. The pattern selection process begins with analyzing a small
number of architecturally significant requirements and drivers. That
information yields high-level application and runtime topologies that support
the business and integration needs of the solution. The use of the Patterns for
e-Business method is described in the next section and performed in chapter
5.1, “Selecting the architectural patterns” on page 154.

2. Document the reference architecture using UML using Rational Software
Architect. The reference architecture identifies the technologies to be used as
well as the components to be built and deployed. This information is required
by the infrastructure architect to plan the physical deployment and by the IT
specialists to identify which technologies to use to build the components.

3. The third step is to analyze the interactions and interfaces to provide the IT
specialists with a UML model of the solution, WSDL interface definitions and

Design Patterns

Analysis Patterns

Architectural Patterns

Reference Architectures

Small
Features

Very Large
Features

Medium
Features

Large
Features

Life Cycle Timeline of Progressive ElaborationsEarly
(High Level,
Conceptual)

Late
(Detailed,
Physical)

Choose Use
decision made decision applied

Choose Use
decision made decision applied

Choose Use
decision made decision applied

Choose Use
decision made decision applied

Frameworks (Physical)

System
s, Subsystem

s

Classes or objects

Classes,

Components

data structures

Choose Use
decision made decision applied

Business Patterns

Integration Patterns

Application Patterns

Runtime Patterns

Guidelines

Patterns for
e-business

Product Mappings ...1

3

2

4

 Chapter 3. Our method 57

BPEL descriptions of the business process. We do this refinement in
Chapter 6, “Solution Architecture” on page 187.

4. The design steps are carried out by the IT specialists in the subsequent
chapters on the implementation.

3.2.5 The Patterns for e-business layered asset model
A major part of the architectural design was done using the Patterns for
e-business layered asset model.

The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data

� Integration patterns that tie multiple business patterns together when a
solution cannot be provided based on a single business pattern

� Composite patterns that represent commonly occurring combinations of
business patterns and integration patterns

� Application patterns that provide a conceptual layout describing how the
application components and data within a business pattern or integration
pattern interact

� Runtime patterns that define the logical middleware structure supporting an
application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes

� Product mappings that identify proven and tested software implementations
for each runtime pattern

� Best-practice guidelines for design, development, deployment, and
management of e-business applications

These assets and their relationships to each other are shown in Figure 3-9 on
page 59.
58 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 3-9 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns for e-business Web site provides an easy way of navigating
through the layered patterns assets to determine the most appropriate assets for
a particular engagement.

For easy reference, see the Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns/

3.2.6 A process for using the Patterns for e-business asset model
The approach we follow in Chapter 5, “System Architecture” on page 153 for
designing the external claim assessor solutions uses the Patterns for e-business
pattern selection process (Figure 3-10).

A multistage sequence of steps is used, each of which has the objective of
analyzing a specific subset of key requirements and yielding a result that is
based on selecting from a specific subset of the patterns using those
requirements as selection criteria. Each step provides input to the next step, in
effect providing guiding constraints that progressively narrow the selection
process for the next subset of patterns to be considered. Ultimately, this results
in architectural-level topologies and product mappings that form the basis for a
solution architecture.
 Chapter 3. Our method 59

http://www.ibm.com/developerWorks/patterns/

Figure 3-10 Patterns for e-business pattern selection process and layered asset model

Recently a method based on UML2 for applying the pattern selection process for
process integration patterns has been developed.

Principles of the process
Figure 3-11 on page 61 summarizes the Process Integration Design Approach
[PIDA]8. There are several distinctive aspects to this approach:

� It focuses primarily on integration aspects of the solution architecture.

� It is based on UML2 and is particularly focussed on collaboration and
interaction analysis

� It places special emphasis on behavioral aspects of the solution: the things
that happen when components collaborate and interact with each other.

� It puts a lot of emphasis on the use of non-functional requirements in the
component selection process.

Composite Patterns

Combined
Runtime
Toplogy

Business/
Integration

Patterns

Application
Patterns

Runtime
Patterns

Business and IT
Drivers

Business and IT
Drivers

High-Level
Business

Requirements

Product
Mappings

Business and IT
Drivers

Functional
Focus

Non-Functional
(QoS) Focus

Patterns for e-business Pattern Selection Process Patterns Layered Asset Model

Application Patterns

Runtime Patterns

Product Mappings

Business Patterns Integration Patterns

8 PIDA has been filed as a patent with the UK patent office (GB920040072GB1 - METHOD AND
APPARATUS FOR INTEGRATING ELECTRONIC SYSTEMS). See also the presentation by the
author of this patent, Paul Verscheuren, “Business Integration Patterns”, found at,
http://www-106.ibm.com/developerworks/patterns/library/w19.pdf
60 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-106.ibm.com/developerworks/patterns/library/w19.pdf

� Its analysis technique can be applied iteratively and recursively to account for
the fact that integration aspects range from simple to complex, providing a
way to iteratively decompose and recompose an integration related scenario
until it has been understood to a sufficient level of detail. (Note the symbols
representing iteration in Figure 3-11.)

We chose this new method of doing integration design for a number of reasons:

1. The team involved had previously used the Patterns for e-Business approach
for designing integration architecture and found it effective.

2. Conversely we have found UML modeling difficult to apply to model
integration of existing solutions. The literature tends to focus on building new
solutions from designing components and classes from scratch and there is
little practical guidance on using UML to model adding or changing one or two
capabilities in a complex system.

3. By combining Patterns for e-Business with UML, PIDA provides an approach
to using UML to model integrating existing complex systems.

Figure 3-11 Approach to designing process integration solutions

Collaboration and interaction
When we first envision a system, we approach it from the point of view of its
desired behavior. The desired behavior of a system is the result of several
components collaborating to support a well-defined business need. Because we
approach the system from an overall vision of its business function, we do not
know the detail of interactions and have only a generic understanding of the kind
of large-scale collaborations we expect.

Starting with the business story underlying the system, the analysis consists of
identifying the collaborations required in the system and decomposing them,
while gaining better understanding through studying their interactions. At some
point, we reach a view of the collaborations and their interactions that enables us

Outline
Design

Collaboration
Analysis

Interaction
Design

Component
Selection

Create Context Diagram

Decompose into scenarios

Use Collaboration Patterns Use Interaction Patterns Use Product Mappings to
identify candidate
components

Use QoS to filter/rank

Merge individual scenarios
back to complete picture

Resolve conflicts

Finalize component
selection

Individual Scenario Design

Possible Levels of Iteration:
1) Technology (e.g., WebServices)
2) Product
3) Executable
4) Deployment

Compose
 Chapter 3. Our method 61

to identify which IT components we will need and map them to prebuilt
implementations in products available off the shelf.

Eventually, our knowledge of the components and interactions in the
system-to-be has to be precise. However at the beginning of the analysis, when
we do not know all the detail, and later, when we want to select the detail to
communicate, we want to be able to control the level of detail being represented
so we do not become overwhelmed at the expense of understanding the larger
picture. The solution is to regard a system as being composed of parts which can
be simply represented at any level of detail, without being wrongly represented.

This very powerful notion is termed fractal. It enables us to model and describe
systems consistently at whatever level of detail is appropriate for the purpose.
For example, we can show the collaboration between two components of the
system as a simple line representing their relationship, or we can decompose the
line into more and more components and their relationships which are all
represented by that simple line. This principle is illustrated in.Figure 3-12.

Figure 3-12 Fractal decomposition of a collaboration

The important point is that the representation at the top is no less correct than
the representation at the bottom. They both represent the same model in
different ways. Conceivably, a UML editor could be implemented that would
switch between these views.

Accordingly, any concept we use in the behavioral analysis of such systems
must be scale-invariant; must be usable regardless of whether we are
addressing a very large system or any one of its parts. This principle lies behind
describing the architecture of a system in a model which can then be giving , or
handed-off, to IT specialists to implement, while retaining exactly the model
originally produced by the architect.

Important terms
The following concepts are important in understanding Patterns for e-business:

A B

A B

C

Ca Cb
62 Build a Business Process Solution Using Rational and WebSphere Tools

Collaboration A Collaboration represents the execution of any set of
computational operations distributed across a particular
space (computer network) and time.

Interaction An Interaction is a collaboration originating from a single
operation or event.

Context The data (including state data, programs, and executable
rules) associated with a collaboration forms its (data)
context.

Quality of Service A collaboration may be subject to a set of Quality of
Service (or QoS) requirements that constrains its
execution.

Fractal A Collaboration is a fractal if both compositions and
decompositions of collaborations are collaborations.

As-is and to-be issues
It is tempting to think of the development of an IT system as starting from nothing
at all and proceeding in a straightforward manner through phases of analysis,
design, and construction, whether in a single pass or many passes. However,
very few IT projects are green-field, smoothly running linear projects. Almost
always, there are some preexisting elements (or even a whole system) that need
to be modified or simply incorporated. This is almost axiomatically true for
process integration projects, which by definition consist of making existing
systems work together, typically in a new way. It is also true for the External
Claim Assessor solution which must not only use existing components, but must
be integrated with existing processes.

Therefore, a central concern in architecting and designing for process integration
must be to keep track of the evolving distinction between existing, or as-is, and
intended, or to-be, components and configurations.

This distinction is supported by the notation used in the Patterns for e-business
that clearly shows the existing and new components of a solution, and also
provides for external context elements (such as those which do not take part in
the operation of the system but do interface with it, often in well-defined ways).

Quality of service
The distinction between functional and nonfunctional requirements has long
been recognized in IT methodology. However, the term nonfunctional is not very

Note: The execution of the collaboration is governed by software artifacts
(programs, objects, and components), but these artifacts are not the
collaboration.
 Chapter 3. Our method 63

helpful because of its negative characterization. (covering those requirements
that cannot be declared in terms of a particular business function). In fact,
nonfunctional requirements are often the major influences on the choice of
runtime and product mappings, and can influence the topology of the system.
The characteristic feature of such requirements is that they pervade the system:
they are generally attached to aggregates rather than to any particular
interaction, are sometimes measurable with global statistics, and appear as an
overall quality rather than a binary (yes/no) property. Therefore, the term QoS
has emerged to designate those features in a system rather than non-functional
requirements.

A QoS criterion: Governance
Perhaps because of its obviousness, an often underestimated QoS characteristic
is governance. Governance describes how a system is composed of parts under
different jurisdictions, both inter- and intracompany. Governance has a major
influence on the design of a system from many perspectives. Not only will it
influence the componentization (because it is rare for a single component, to be
shared between jurisdictions) but also by determining which parts can be
changed together in a new version of the solution, and which parts must coexist
in different versions, has a major influence on the choice of technologies.

Identifying functional requirements
As to the functional requirements, they are defined by means of Use Cases at
the System design level; the use cases describe the desired behavior of a
system that is expressed at the Business level by Business scenarios and
Business processes. In a process integration context, the functional content is
primarily expressed by interaction relationships, which, in turn, determine the
topology of the system. So instead, we call functional requirements topological
requirements.

There are two kinds of requirements for a system:

Topology: The way in which connectivity and interaction between
various components is supported in the system

QoS: Defined by means of statistical measures or as properties
of aggregates. These properties may be attached to the
system as a whole, to specific components, or to specific
scenarios.

Work products and work method
These principles have been pulled together into a description of a set of work
products that explain a method of working. We used this method while
developing the External Claim Assessor solution.
64 Build a Business Process Solution Using Rational and WebSphere Tools

The work products and work method that are described here are not intended to
be a process that must be followed. The idea behind this approach is that it plugs
in to your particular methodology and informs how to actually do various tasks,
such as selecting the appropriate e-business pattern if you are following the
Patterns for e-business design approach. In our case, we used it in the context of
applying the Patterns for e-business layered asset model.9

The method involves the following activities:

1. Establish the boundaries of the solution in capability, behavioral and technical
terms:

– Define the target context, where we want to be in the future.
– Define the situational context, where we are today.

2. Focus on the collaborations in the context in which they occur. The major
activity of process integration is to rearrange the collaborations in a new
context, rather than create new collaborations.

3. Exploit the fractal nature of the model in the refinement process:

– Study the relationships between components. To look in more detail,
decompose a component into constituents and study the relationships
between constituents. The components themselves are black boxes.

– It is the boundary of the components, called the interfaces to the
components, that is important and is handed over at each stage of
refinement. It is the architect’s responsibility to scope the level of
refinement and decide what is going to be handed over to the IT specialist
or application developer for further refinement.

– The hand over takes the form of a contract following the notion of design
by contract.

4. From this understanding of the nature of the problem, the architect’s work can
be organized according to a simple work pattern known as
Distribute-Recurse-Converge.
a. Start with the pair of as-is and to-be context diagrams.

b. Distribute: Apply various scenarios and use cases to the system to bring
out the required collaborations.

i. List the collaborations for further analysis.
ii. Establish the overall topology of the solution.

9 There are some internal IBM studies available, showing how the approach works with the IBM
Global Services Method, the Rational Unified Process (RUP) and with the Enterprise Architecture
methods such as the Technical e-Business Architecture Method (TeAM). Contact
swithers@uk.ibm.com
 Chapter 3. Our method 65

c. Recurse: Analyze each collaboration for interactions. The first level
collaborations will resolve into more detailed collaborations until we can
identify single-event origins, which yield interactions

d. At any level of analysis attach the QoS to each collaboration.

e. Converge: Bring together the many strands of analysis and verify they are
compatible and the resulting system is well balanced in meeting its various
requirements.

Fractal thinking
Not everything that you need to know at a given level of abstraction you can
know until you deconstruct the system further. On the other hand, you can know
some things early on, and eliminate many alternative designs as unrealistic. The
ideal situation is to find a balance between keeping design options open by not
fixating on a particular solution, nor proceeding too deep into the analysis and
design without taking into account what is actually available. Ignoring service
considerations too long runs the risk of allowing the analysis and design into
positions from which it is impossible to provide the qualities required.

This reality checking must also be present to take into account the existing (black
box) components. Keeping track of available products is another set of boundary
conditions. Do not wait until the end of the analysis and design to make sure that
your work on each collaboration converges into a consistent whole.

In short, fractal thinking encourages us to hold all considerations at all scales
(levels of analysis) at once.

Layer decisions
This process is not intended to be fully iterative, or performed with multiple
passes. The architect must find the right points of handover in order not to revisit
architectural decisions during implementation. It is for this reason that the
physical realization of the architecture into product mappings takes place as
soon as it is feasible, and long before the detailed design has been established.
This is not a traditional approach in OOAD methods. The architect must take
account of what is feasible in the implementation in order to minimize revisiting
architectural decisions.

The aim is to delay specific decisions about the design as long as possible. Make
decisions only when:

� All relevant elements are known.
� An external boundary constraint arises that forces a decision.
66 Build a Business Process Solution Using Rational and WebSphere Tools

Decisions then occur at the first point in the analysis at which they can be fully
justified. This point can be:

� Very early on, for example when the customer has chosen WebSphere
Application Server to build the integration.

� At top collaboration level, for example when the business requires two
different modes of operation, direct consumer access and batch.

� At product selection time, for example when we cannot use product X
because we need compensating transactions.

� Even during final convergence, for example when we must use clusters to
support high availability requirements.

The workshop method and design-by-contract supports this approach.

3.2.7 Use a Model Driven Development approach

The use of modeling and metadata-enabled tools to move through the steps of
architectural refinement and manage the complexity of software development is
an aspect of Model Driven Development (MDD)10. In a recently published
Redbook, Model Driven Development is defined as11:

A style of software development in which the primary software artefacts are
models rather than code.

MDD is an approach in which:

– Application domain oriented models are the primary focus when
developing new software components, not code or other platform artifacts.

Note: The information in this section and the next refers to the IBM Redbook
Patterns: Model-Driven Development Using IBM Rational Software Architect,
SG24-7105:

http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open
&S_TACT=105AGX46&S_CMP=SPLT

10 Compare the method we used for the External Claim Assessor scenario with a similar approach
described in a series of articles “On demand business process life cycle: Build reusable assets to
transform an order processing system”, found at
http://www-128.ibm.com/developerworks/webservices/library/ws-odbpsum.html
11 Taken from Tracy Gardner, “MDD and Patterns Overview” in Patterns: Model Driven Development
using Rational Software Architect, SG24-7105, found at
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_
TACT=105AGX46&S_CMP=SPLT.
The next section on MDD benefits is also taken from this Redbook.
 Chapter 3. Our method 67

http://www-128.ibm.com/developerworks/webservices/library/ws-odbpsum.html
http://www-128.ibm.com/developerworks/webservices/library/ws-odbpsum.html
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_TACT=105AGX46&S_CMP=SPLT.
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_TACT=105AGX46&S_CMP=SPLT.
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_TACT=105AGX46&S_CMP=SPLT
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_TACT=105AGX46&S_CMP=SPLT.
http://www.redbooks.ibm.com/redbooks.nsf/RedbookAbstracts/sg247105.html?Open&S_TACT=105AGX46&S_CMP=SPLT.

– Models are used not just as sketches or blueprints but as primary artifacts
from which efficient implementations can be generated.

MDD proposes an approach that allows business processes to be captured in a
Computation Independent Model (CIM) by a business analyst. The IT architect
builds a Platform Independent Model (PIM) and then, working with the IT
specialist, a Platform Specific Model (PSM). The PSM is mapped to code by the
developers. The different steps are incremental and iterative and shown in
Figure 3-13 on page 69.

Modeling and metadata standards are necessary for the tools to interchange
software artifacts and to deploy the code and other artifacts such as
configuration specifications on to the runtime platforms.

The artifacts produced at each stage have to be decided upon by the
development team using a process model such as the Rational Unified Process
(RUP). While this book focuses on the development path, other perspectives are
equally important, such as testing, usability and systems management, as well
consideration of how the solution will be adopted by the user community. Is the
solution to be sold, provided as part of a service, or is it a custom development
within an enterprise? People working on these aspects of the solution need to be
continually involved with the development process to ensure development,
testing, and usability are being employed on the most important aspects of the
solution.
68 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 3-13 Model Driven Architecture

The key benefits of a thorough MDD approach are:

� Increased productivity

Model-driven development can reduce the cost of software development by
generating code and artifacts from models and thereby increasing developer
productivity.

� Flexibility

A change in the technical architecture of the implementation can be
performed by updating a transformation which can then be reapplied to
models to produce implementation artifacts following the new approach.

� Adaptability

When adding or modifying business function, only the behavior specific to
that capability needs to be developed, the rest of the information needed to
generate implementation artifacts has already been captured in
transformations.

� Consistency

Model-driven development ensures that artifacts are generated consistently.
 Chapter 3. Our method 69

� Repeatability

MDD is especially powerful when applied at a program or organization level.
The use of tried and tested transformations increases the predictability of
developing new function and reduces risk since the architectural and
technical issues have already been resolved.

� Improved stakeholder communication:

Models are much closer to the problem domain and easier to communicate.
Improved stakeholder communication helps in the delivery of solutions that
are better aligned to business objectives.

� Improved design communication

Models facilitate understanding and reasoning about systems at the design
level. The fact that models are part of the system definition, rather than
documentation, means that the models can never be out of date and are
reliable.

� Expertise capture

Models capture expertise. Explicit expertise capture ensures that the
knowledge of an organization is maintained even when experts leave the
organization.

� Models as long-term assets:

In MDD, models are important assets that capture the actions the IT systems
of an organization perform. High-level models are resilient to changes in the
state-of-the-art at the platform level, changing only when business
requirements change.

� Ability to delay technology decisions

When using an MDD approach, early application development is focused on
modeling activities. This means that it is possible to delay the choice of a
specific technology platform or product version until a later point when further
information is available.

In the solution we are building, we only scratch the surface of the benefits MDD
promises. But the experience LGI gains using modelling tools to describe the
solution is the first step in a process of increasing maturity in the approach that
will put them at an advantage in the future.

3.2.8 Tool chains
The Model Driven Development is an approach to software development in
which the focus and primary artifacts of development are models (as opposed to
programs). The models will be transformed from step to step until skeleton of
70 Build a Business Process Solution Using Rational and WebSphere Tools

code can be generated. Figure 3-14 is an example from the Object Management
Group (OMG) of the transformation from a PIM to a PSM.

Figure 3-14 Model Transformation

To transform our business problem into a solution using a Model Driven
Development approach we will be using different tools. We need to understand
what type of tool is required for each role in the development, and then we need
to understand how the model will be moved from tool to tool and what limitations
there are in moving the artifacts from one tool to the next.

� Is information lost?
� Is the model interpreted in a different way?
� Can the model be moved in either direction from tool to tool, or are there

changes made to the model which might prevent it being reimported into
WebSphere Business Integration Modeler, for example.

The ideal is to be able to round-trip the meta-model. A sample process might
look like this:

1. Create the process model in WebSphere Business Integration Modeler.

2. Import the model into WebSphere Studio Application Development
Integration Edition to implement the process model which will involve
changes such as:

– Renaming
 Chapter 3. Our method 71

– Adding new elements
– Rerouting connections
– Changing existing elements

3. Re-import into WebSphere Business Integration Modeler and:

– Compare with the original model
– Re-run simulations
– Modify the new model and repeat the development process.

Today, the complete tool chain only supports a one-way, or waterfall, approach
to MDD. Round-tripping the process model is something for the future. So in
deciding on how to use the tools, it is important to take into account that after the
model has been exported from one tool to the next, it is going to take more time
and expense to make changes in an upstream tool. The changes in an upstream
model also have to be manually refactored back into the downstream tools12.

This is one of the reasons why you need to be clear about what the
responsibilities and work products are of each role in the development process.
We have suggested that the contract model is a good way to manage the
interactions between the business analyst and the IT architect, and between the
IT architect and the IT specialists. See Figure 3-7 on page 54.

Figure 3-15 Tool Chain

Figure 3-15 shows the tool chain on which we based our development. The
business process is captured in a business modeling tool by a business analysts.
This model is used in two ways (see A in Figure 3-15). It is used to generate the
process definitions for workflow orchestration and it is used to model the solution
architecture. The solution architecture model contains patterns, interfaces, the
deployment model, and sequence diagrams. The workflow orchestration builds

12 The technology to solve this problem is model transformation.

A

72 Build a Business Process Solution Using Rational and WebSphere Tools

the process and workflow architecture with the sequence, flows, and pick
messages. The architecture models and the workflow orchestration are both
used in the coding tools. Figure 3-16 shows the tool chain we used in this
redbook.

Figure 3-16 Tool Chain for this Book

The tool chain we used does not have the capability to automatically incorporate
Patterns for e-business into the model. We used the tools on the Patterns for
e-business Web site to select our patterns, and then drew them using Microsoft
Visio. After we agreed on the patterns were agreed, then we drew the resulting
deployment diagram in Rational Software Architect.

Here is a summary of the tools we used:

� The business process was developed with WBI Modeler.

� Existing systems, such as the Assessor Management System and the
Document Handler were developed in WebSphere Studio Application
Developer.

� ESB services, such as the distribution of availability requests to assessors
were developed in WebSphere Business Integration Message Broker
Workbench.

� Workflows in FDL were imported to WebSphere Business Integration Modeler
from WebSphere MQ Workflow Buildtime.

� The Rational Software Architect was used to produce the system and solution
architecture. Rational Software Architect has the following benefits for our
project:

– It has the capability to point to the artifacts which were developed in
WebSphere Business Integration Modeler to produce the systems
architecture.
 Chapter 3. Our method 73

– It can import existing applications from WebSphere Studio Application
Developer as input for developing the new architecture.

Based on the input from the WebSphere Business Integration Modeler and
interfaces from existing implementations, Rational Software Architect enables
the architect to build the interfaces for all the applications, class diagrams of
the various components, the sequence diagram and the deployment diagram.

The main artifacts that are exchanged with the IT specialists tools are BPEL,
FDL and WSDL These interface specifications are the input for programming
tools. We used WebSphere Studio Application Developer, WebSphere Studio
Application Development Integration Edition, WebSphere MQ Workflow build
time and WebSphere Business Integration Message Broker workbench. Which
tool depends on the runtime platform the IT specialist is going to deploy to.

3.3 Summary
This chapter describes the approach we take to develop and integrate the new
External Claim Assessor process with the existing Claims Handling process, and
with the existing IT architecture.

Integration projects have proven even more difficult to complete to everyone’s
satisfaction than greenfield software development projects. A major reason for
this is the difficulty in communication between the people involved representing
many different aspects of the solution, all competing for attention from the very
beginning of the project. The method described in this chapter and which we
follow, aims to improve the communication between the different roles involved
by focussing attention on what needs to be done to meet requirements
represented by the business process, using a common software development
platform to simplify the exchange of artifacts of the solutions, and using common
modeling languages to improve the interchangeability of the artifacts. In
“Chapter 4, “Business Process” on page 75” we start by looking at modeling the
business requirements.
74 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 4. Business Process

In this chapter we demonstrate the steps of creating and analyzing a new
business process using WebSphere Business Integration Modeler by taking on
the role of business analyst.

We describe the following topics:

� Introduction to business process modelling
� Modeling the claim investigation process
� Simulate the process
� Developing the process implementation

4

Attention: Since writing this chapter of the Redbook, WebSphere Business
Integration Modeler has shipped modification level 5.1.1.2 patch 3 and
Modeler Version 6. We strongly recommend you start with at least 5.1.1.2
patch level 1 installed for compatibility with Rational Software Architect
6.0.0.1. There is a model patch shipped to migrate models created with
5.1.1.1 to 5.1.1.2. We haven’t yet tested the tool chain for Modeler Version 6.

Some of the diagrams in this Redbook were captured using 5.1.1.1 and may
look slightly different in 5.1.1.2
© Copyright IBM Corp. 2006. All rights reserved. 75

4.1 Introduction to business process management
In this section we introduce Business Process Management and WebSphere
Business Integration Modeler v5 as a tool for modelling business processes. We
discuss the expected users for it and the two editions.

4.1.1 Business Process Management
Business Process Management (BPM) is the concept of continuously creating,
analyzing, and improving a business process (Figure 4-1).

Figure 4-1 The continuous cycle of process improvement

Donald Light, “Deriving insurance business value from business process
management tools” (see bibliography) suggests a BPM solution typically
includes the following elements:

� Integrated Development Environment (IDE)
� Process Library
� Process Execution Engine
� Monitoring
� Execution Database
� Modeling and Optimization

Integrated Development Environment
The Integrated Development Environment allows business and technical users
to design, simulate, document, test and deploy a claims process integrating it
with existing processes, services, databases, applications and the IT
infrastructure. The capabilities need to be tailored to the tasks and abilities of
different kinds of users, such as business analysts, software architects and IT

Transform

Model

Integrate

Access

Collaborate

Manage

IBM
Business

Integration

Transform

Model

Integrate

Access

Collaborate

Manage

IBM
Business

Integration
76 Build a Business Process Solution Using Rational and WebSphere Tools

specialists. The IDE needs to handle changes which affect the process and be
able to refactor the changes into the business model.

Process library
The Integrated Development Environment needs to manage changes to and
refinement of the process as it is designed and implemented, and as
responsibility for the development of the process passes between the business
analyst, the software architect, and the IT specialist. The records for the process
should contain information about the requirements that have been incorporated
into the process, dependencies and interactions with other processes, and
auditable information such as the authors, reviewers and approvers and change
activity.

Process execution engine
The process execution engine is the core BPM application. It controls and directs
the flow of claims among processes and actors. It provides transactional
capabilities in addition to directing the flow of claims and orchestrating calls to
services, other processes, databases and people. It is able to execute claims
processes and activities in a claims process in parallel as well as sequence
individual steps of a claim.

Monitoring
Monitoring allows claims supervisors to view the status of claims, claim handlers,
and other services used in the process. The claims supervisor should be able to
view the duration of claims against expected targets and the workload on
individual claim handlers. as well as switch work between claim handlers, and
modify the sequence of actions on an individual claim to the extent this has been
designed into the process.

Execution database
The execution database contains a record of all executing and executed
processes. The events that are recorded are defined as part of the development
process. The event records are queriable on the run time system, as well as
being available export into other tools.

Modeling and optimization
Modeling allows the business analyst to use real execution data to calibrate the
business process model and permit construction and testing of alternative
processes and what-if scenarios. Optimization enables the analyst to explore the
effects of removing different constraints. What is the optimal number of claim
handlers for instance?
 Chapter 4. Business Process 77

4.1.2 IBM suite of BPM tools
These elements of a BPM solution are brought together in IBM’s suite of BPM
tools. The redbook, "Continuous business process management", SG24-6590,
shows how to use the WebSphere Business Integration tools released in version
4 of the WebSphere platform to implement the continuous business process
management cycle (see Figure 4-2).

Figure 4-2 Continuous business process management cycle

WebSphere Version 4 BPM Solution

This version includes the following elements.

Create
IBM WebSphere Business Integration Workbench V4.2.4: Business Modeler is
the tool to create business process which are published as Flow Definition
Language (FDL) models.

Collaborate
IBM WebSphere Business Integration Workbench Server V4.2.4: Business
Repository and Web Publisher are the tools to communicate the business
process with other people.

Automate
WebSphere Business Integration Server V4.3 or IBM WebSphere MQ Workflow
V3.5 are the runtimes for executing FDL models.

Manage
IBM WebSphere Business Integration Workbench V4.2.4: Business Monitor is
the tool to monitor business processes

Create

Collaborate

Automate

Manage

Create process and establish business measures

Communicate with different parties
and verify process

Generate BPEL process and/or FDL process for deployment

Monitor deployed process
and feedback business measures
78 Build a Business Process Solution Using Rational and WebSphere Tools

WebSphere Version 5 BPM Solution

Version 5 of the WebSphere platform has moved the BPM solution to open
standards using Eclipse for tooling, Java 2 Enterprise Edition for the runtime and
BPEL for modeling and executing business processes. We have based our
solution on version 5 of the WebSphere platform.

Create
WebSphere Business Integration Modeler Advanced Edition V5.1.1.2 is the tool
we used for modifying the claims process and creating the claim assessor
process, and for optimizing the claims processes based on simulations.

Collaborate
WebSphere Business Integration Modeler has a report function to query
business processes and create reports that can be shared with other people. We
haven’t used this capability in the present exercise.

Like other IBM Eclipse based tools it used the concurrent version system (CVS)
for team collaboration. We used the tool in stand-alone mode, importing and
exporting the artefacts with other tools. It can also be installed as a plug-in to
WebSphere Studio Application Development Integration Edition.

Automate
After we had defined the claims and claim assessor processes in WebSphere
Business Integration Modeler, we modeled the entire solution using Rational
Solution Architect1. Based on this model, we defined the interfaces to the
services we would be using to automate the activities in the BPEL model. We
then used WebSphere Studio Application Development Integration Edition to
refine the BPEL flows to execute in WebSphere Business Integration Server
Foundation and we used WebSphere MQ Workflow Buildtime for developing the
Flow Definition Language (FDL) processes that are deployed to WebSphere MQ
Workflow. We also used WebSphere Business Integration Message Broker to
route and transform the service requests and WebSphere Application Server to
host some of the services.

Manage
We did not plan to design and build a monitoring solution for the claims scenario
in this redbook. The IBM System House Scenario team will build the monitoring
solution next year. The solution will use the Common Event Infrastructure (CEI),
and monitoring tools that support the CEI.

1 This is actually a version 6 product. We chose to use it because it is better integrated with
WebSphere Business Integration Modeler than Rational XDE™ or Rational Rose (see Chapter 5,
“System Architecture” on page 153).
 Chapter 4. Business Process 79

For now2, it is possible to use the CEI monitor packaged with WebSphere
Business Integration Server Foundation to monitor events in the BPEL flow, and
IBM WebSphere Business Integration Workbench V4.2.4: Business Monitor for
monitoring WebSphere MQ Workflow.

4.1.3 Why business process modelling
Mapping an enterprise’s business processes can be a daunting task.
Communicating these processes and all they involve to others can be even more
challenging. A business process model is a visual representation of a process
and supporting information. People find working with visual process models the
easiest way to understand the relationships between activities. We seem to be
naturally adept at understanding the step-by-step relationship between activities.
Noninformation technology personnel are comfortable working with visual
process models as a way of discussing requirements and representing the way
in which tasks are accomplished in an organization.

In the early stages of mapping an enterprise’s business processes, flip charts or
a generic presentation tool are all that are required. But if you want to document
your processes, and later streamline them through automation or other
initiatives, then a custom business process modelling tool offers a number of
advantages compared to creating ad-hoc documentation using presentations
and wordy documents. The tool should offer to:

� Capture existing business processes and guidelines in one place for easy
reference and company-wide consistency.

� Analyze current processes in detail.

– Capture data about existing processes in a structured way.
– Zoom in from a high-level view of a complete solution to details about

individual subprocesses.

� Answer questions about who does what, which organizations participate and
which applications are used in the current process.

� Simulate capabilities to uncover your process weaknesses and highlight
improvements.

� Generate process performance metrics.

� Generate an assessment of your company’s return on investment regarding
planned process changes.

� Provide a clearly documented contract in the form of a process model for IT
professionals to implement.

2 Version 6 of WebSphere Business Integration Modeler has extensive support for modeling business
measures
80 Build a Business Process Solution Using Rational and WebSphere Tools

We use business process models for many purposes, including:

� Documenting existing procedures
� Determining requirements for staff, systems and facilities
� Planning changes to existing processes and systems
� Testing and analyzing existing and proposed processes
� Identifying bottlenecks in your processes

4.1.4 WebSphere Business Integration Modeler
Version 5.1 is a completely new implementation of the WebSphere Business
Integration Modeler. It provides a complete definition of the Enterprise from a
business perspective, such as:

� Business artifacts (data, items, parts, etc.)
� Business processes, sub-processes, global task, artifact repositories
� Organizations
� Resources
� Timelines, locations, currencies

Compared to WebSphere Business Integration Modeler version 4.2.4,
WebSphere Business Integration Modeler has new some useful new features:

� Eclipse-based implementation
� BPEL modelling and support for Web services
� Enhanced reporting and simulation capabilities
� New UML2-derived meta-model
� Team support

4.1.5 Editions of WebSphere Business Integration Modeler
There are two editions for WebSphere Business Integration Modeler. They are
Entry edition and Advanced edition. Table 4-1 on page 82 lists the features for
these two editions.

Attention: You can create the processes in this redbook using WebSphere
Business Integration Modeler with no previous experience. A business analyst
will probably need no more technical detail about the Modeler than provided in
this book, and in the Modeler’s information center. However, if you want to use
the Modeler to create FDL or BPEL flows, or want to understand it in a more
systematic way, then look at the redbook "BPEL4WS Business processes with
WebSphere Business Integration: Understanding, Modeling, Migrating",
SG24-6381, particularly chapter 5.
 Chapter 4. Business Process 81

Table 4-1 WebSphere Business Integration Modeler Entry edition and WebSphere
Business Integration Modeler Advanced edition features at a glance

4.2 Using WebSphere Business Integration Modeler
In this section we discuss how to use WebSphere Business Integration Modeler
both in the context of introducing a new or changed process to the business, and
in the context of developing the process as part of the wider software solution.

Feature WebSphere Business
Integration Modeler
entry edition

WebSphere Business
Integration Modeler
advanced edition

User profiles Basic, intermediate and
advanced

Basic, intermediate and
advanced

Technology modes Operational Operational, BPEL and
FDL

Team support Yes Yes

Simulation NO Yes

Static and dynamic
analysis

NO Yes

Report generation Yes Yes

Query Yes Yes

Basis report templates
(available)

Yes Yes

Printing Yes Yes

Modeler project import and
export

Yes Yes

Delimited file import and
export

Yes Yes

ADF import Yes Yes

XSD import and export No Yes

UML export No Yes

FDL and BPEL export No Yes

FDL import No Yes
82 Build a Business Process Solution Using Rational and WebSphere Tools

4.2.1 Who uses WebSphere Business Integration Modeler?
Figure 4-3 shows typical users of WebSphere Business Integration Modeler v5.x.

Figure 4-3 Users of WebSphere Business Integration Modeler v5.x

� Primary users are business analysts (BA) and process specialists, IT Process
Specialists.

Business analysts and process specialists use WebSphere Business
Integration Modeler to construct business processes, identify process
improvements and evaluate return-on-investment.

IT Process Specialists, corporate developers in the diagram, use WebSphere
Business Integration Modeler to refine a BPEL process before exporting it to
process automation tool.

� Secondary business users are Strategy Consultants and Line-Of-Business
Managers. They need to understand the models produced by WebSphere

strategy consultant line-of-business manager

business analyst process specialist

IT architect

data architect corporate developer

B
us

in
es

s
le

ve
l

Te
ch

ni
ca

l l
ev

el

Secondary
users

Primary
users

Other
users

Non-BLM tools
users
 Chapter 4. Business Process 83

Business Integration Modeler to assess and approve funding for the project.
We refer to these users as the business sponsors.

� Other users of WebSphere Business Integration Modeler are IT architects.
They refer to and share artifacts created in the business model, such as
organizational structures, activities, and the roles of activities in the business
process.

4.3 Modeling the claim investigation process
In this section, we act as the business analyst to work on the claim investigation
process using the advanced edition of the WebSphere Business Integration
Modeler.

In the scenario, the claim investigation process has been modelled and runs as
part of the WebSphere MQ Workflow claims process in LGI. We have exported
the claims process from WebSphere MQ Workflow and have a Flow Definition
Language representation of the claim investigation process from which to start.

4.3.1 Start WebSphere Business Integration Modeler
If you start WebSphere Business Integration Modeler for the first time, the
QuickStart wizard opens. Click Cancel to ignore it. WebSphere Business
Integration Modeler starts with a 2-pane layout and Business Modeling
Perspective as shown in Figure 4-4 on page 85.
84 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-4 2-pane layout in WebSphere Business Integration Modeler

You can switch to 4-pane layout by clicking the Apply 4-pane layout icon. The
following four panes are displayed:

� Process editor
� Outline view
� Project tree
� Attributes view

As business analysts, most of the time we work with the basic user profile and
operational mode to concentrate on business process logic. These are the
defaults. The basic user profile focuses on creating and displaying sequence
flows and does not expose low-level technical details of process and data
modeling. Later, we will use the more technical profiles to prepare the model for
export. The operational mode is the least restrictive editing mode and most
suitable for a defining a business process independent of any implementation
platform.

When you switch from the operational mode to another mode, the following
changes occur:

� Some options become disabled
� Some notational elements become disabled

Apply 4-pane layout
 Chapter 4. Business Process 85

� A previously valid model might now be invalid, because the BPEL and MQ
Workflow FDL technology modes are more restrictive and have additional
validation rules.

Figure 4-5 shows a 4-pane layout.

Figure 4-5 4-pane layout in WebSphere Business Integration Modeler

4.3.2 Import AS-IS process
To import an as-is process, follow these steps:

1. In WebSphere Business Integration Modeler, click File → Import, a window
with title Import appears.

2. Choose WebSphere Business Integration Modeler Import → Next →
WebSphere MQ Workflow → Next, you get WebSphere Business
Integration Modeler Import Page as shown in Figure 4-6 on page 87.

Process editor

Attributes view

Project tree

Outline view
86 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-6 WebSphere Business Integration Modeler Import Page

3. Click Browse to choose the directory where the to-be imported FDL file is
located. There is an example stored in
.\SG24-6636\Modeler\Other\ClaimInvestigation_ASIS.fdl which you can e
find in the additional materials folder for this redbook.

4. Because the ClaimInvestigation as-is process is fairly simple and contains
only four activities as shown in figure Figure 2-4 on page 19, we deselect
Abstract logic in subprocess to avoid WebSphere Business Integration
Modeler generating subprocesses for it. However for FDL processes that
have more activities and subprocesses, we recommend selecting this option
to allow WebSphere Business Integration Modeler to generate the same
number of nodes as the original process.

5. Click New to create a new project for ClaimInvestigation process to import
into. Specify the project name ITSOLGI and deselect other options as shown
in Figure 4-7 on page 88.
 Chapter 4. Business Process 87

Figure 4-7 Create a new business modeling project window

After importing is finished, an information window similar to Figure 4-8 is shown.
If there are any errors or warnings, click Details to display them.

Figure 4-8 Successful import of the ClaimInvestigation FDL process

4.3.3 Analyzing the as-is process
In this section, we examine how WebSphere Business Integration Modeler
represents the as-is claims investigation process imported from WebSphere MQ
Workflow.
88 Build a Business Process Solution Using Rational and WebSphere Tools

Elements mappings
By exploring the ITSOLGI project in Project Tree, we see the element mappings
from WebSphere MQ Workflow to WebSphere Business Integration Modeler as
shown in Figure 4-9:

� Elements in Data structures are imported as Business items with the same
names.

� Process catalog and process are imported with the same name.
� Persons and Roles are imported with the same name but belong to

Resources.
� Organizations are imported with the same name.
� Programs are not imported.
� Elements in Network tab are not imported.

Figure 4-9 WebSphere MQ Workflow to WebSphere Business Integration Modeler
 Chapter 4. Business Process 89

Process mappings
Examine the process mappings between WebSphere MQ Workflow and
WebSphere Business Integration Modeler.

Figure 4-10 WebSphere MQ Workflow claims investigation process mapping (1)

� The source node 1 (Figure 4-10) is mapped to the input 1 (Figure 4-11) of the
whole process.

� The SelectReports 2 task is mapped to the local task SelectReports 2.

Figure 4-11 WebSphere Business Integration Modeler claims investigation process mapping (1)

� The data mappings for the two data connectors from SelectReports to
RequestExternalReports and SetClaimStat are implemented with the Map
elements 3 and 4 respectively by WebSphere Business Integration Modeler.
Figure 4-12 on page 91 illustrates the implementation details for Map element
4. Note that WebSphere Business Integration Modeler ignores the Default
value field of a data element.

1

2

3

4

5

6

1

2

3

4

5
6

90 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-12 Details of data mapping

� The RequestExternalReports task 5 is mapped to the local task
RequestExternalReports 5 in WebSphere Business Integration Modeler.

� The Decision element 6 is used explicitly by WebSphere Business Integration
Modeler for the two Control Connectors from SelectReports in WebSphere
MQ Workflow. The conditions on the two output branches correspond to the
transition conditions of the two Control Connectors.

One of the transition condition mappings is shown in Example 4-1 and
Example 4-2 on page 91.

Example 4-1 Mapping of transition conditions 1

(Investigate_DataInput.Claim_DataInput.Status="V") AND (Report_Claim.AssReqDate
<> "null")

Example 4-1 is mapped to Example 4-2:

Example 4-2 Mapping of transition conditions 2

'RootProcessModel.Claim.ClaimInvestigation_ASIS.ClaimInvestigation_ASIS.
Decision.InputObjectPin.Investigate_DataInput.Claim_DataInput.Status'
 Chapter 4. Business Process 91

is equal to "V" AND
'RootProcessModel.Claim.ClaimInvestigation_ASIS.ClaimInvestigation_ASIS.
Decision.InputObjectPin.Report_Claim.AssReqDate' is not equal to "null"

In Figure 4-13 and Figure 4-14:

Figure 4-13 WebSphere MQ Workflow claims investigation process mapping (2)

� A Fork element is used to split the input prior to UpdateExternalReports in
WebSphere Business Integration Modeler.

� The connection 7 corresponds to the Data Default Connector 7 in WebSphere
MQ Workflow.

� There is no business item associated with the output of
UpdateExternalReports 8 in WebSphere Business Integration Modeler. This
is because UpdateExternalReports 8 is an asynchronous User-Defined
Program Execution Server (UPES) implementation.

� A Merge element is generated in WebSphere Business Integration Modeler
for combining the inputs 7, 9, 10 to the next.

Figure 4-14 WebSphere Business Integration Modeler claims investigation process mapping (2)

7

8

9

10

7

8

9

10

Fork Merge
92 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-15 and Figure 4-16 show the last part of the process mapping:

Figure 4-15 WebSphere MQ Workflow claims investigation process mapping (3)

� The connection 11 in WebSphere Business Integration Modeler is equivalent
to the Data Default Connector 11 for SetClaimStat in WebSphere MQ
Workflow.

� SetClaimStat 12 is mapped to local task SetClaimStat 12. There is no
business item associated with the output of SetClaimStat 12 in WebSphere
Business Integration Modeler because of the asynchronous UPES
implementation in WebSphere MQ Workflow.

� Sink Node 13 in WebSphere MQ Workflow is mapped to the output labeled
13 in WebSphere Business Integration Modeler.

� A Stop element 14 is added automatically by WebSphere Business
Integration Modeler. A stop node is required in order for any simulations to
work correctly.

Figure 4-16 WebSphere Business Integration Modeler claims investigation process mapping (3)

11

12
13

11

12 1314
 Chapter 4. Business Process 93

� As illustrated in Figure 2-6 on page 21 the RequestExternalReports task is a
manual task. To confirm this, open ClaimInvestigation in Process Editor and
select RequestExternalReports. In the Attributes View, click the Resources
tab.

Figure 4-17 shows the resources mapping from WebSphere MQ Workflow
(the two diagrams in the upper part) to WebSphere Business Integration
Modeler (the one diagram in the lower part). We can see that
RequestExternalReports requires staff resources who have the role of Claim
handler and are in the Claim Department organization. Values in other fields
are generated automatically by the importing process of WebSphere
Business Integration Modeler. We can ignore the value in the Time Required
field for now.

Figure 4-17 Resource requirements: RequestExternalReports in as-is ClaimInvestigation
94 Build a Business Process Solution Using Rational and WebSphere Tools

4.3.4 Create the to-be process
The outline of the to-be process was designed in a workshop using Microsoft
Visio. It comprises a small modification to the ClaimInvestigation process and a
new subprocess called RequestExternalReports that replaces the manual task of
RequestExternalReports in the ClaimInvestigation process.

In this section, we go step-by-step through the procedure of creating the new
RequestExternalReports subprocess and modifying the existing as-is claim
investigation process by working with the workspace we have just created by
importing the claim investigation process from WebSphere MQ Workflow. But
first, we look at the complete RequestExternalReports subprocess as we
produced it in Visio before going through the step-by-step procedure to refine it in
WebSphere Business Integration Modeler.
 Chapter 4. Business Process 95

To-be process logic

Figure 4-18 RequestExternalReports process

� The RequestExternalReports process is initiated from ClaimInvestigation and
starts by forking into two parallel paths.

� On one path, the list of assessors who are eligible to assess the claim by
reason of their geography and familiarity with the vehicle make is constructed.

� On the other path the customer’s insurance policy is retrieved and depending
on what has been agreed in the policy the expected time for the assessment
is recorded.

Response
Time

Policy

Identify
Assessors

Request
Availability

Any
Assessor

Select
Assessors

Manual
Select

Assessor

Request
Assessment

Confirmed?
Assessor

Send
Report

Store
Report

Yes

No

No

Yes

9

7

65

4

3

2

1110

8

1

96 Build a Business Process Solution Using Rational and WebSphere Tools

� When these two activities are complete, all the eligible assessors are sent the
claim details and the date by when an assessment is required. They are
asked to respond within a fixed time whether they want to do the assessment.

� The process then waits for responses, discarding any responses that fall
outside the fixed response time.

� From the list of assessors who want to perform the assessment, a single
assessor is selected according to a number of criteria including cost, quality
of assessments, reliability and so on.

� In the event there are no assessors able to take on the assessment, control
passes to a manual task. The claim handler needs to manually select an
assessor, perhaps by widening the area, or increasing the time before an
assessment is due.

� The single request to perform an assessment is sent.

� An acknowledgement awaited confirming the assessor will perform the
assessment.

� The assessor submits the assessment report and

� The report is filed in the document management system before control is
returned to the ClaimInvestigation process for the claims handler to judge the
claim.

Version control
WebSphere Business Integration Modeler uses Concurrent versions system
(CVS) for version control. For more information about CVS support, refer to the
Team Support part of WebSphere Business Integration Modeler information
center:

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp).

We do not demonstrate CVS implementation for WebSphere Business
Integration Modeler in this book. Instead we separate different versions of the
process with different names. ClaimInvestigation_ASIS and
ClaimInvestigation_TOBE and catalogs of ASIS and TOBE. The Project Tree
structure is shown in Figure 4-19 on page 98. The steps are:

1. Expand the Project Tree. Right-click ClaimInvestigation process →
Rename → specify the name with ClaimInvestigation_ASIS.

2. Right-click Claim process catalog → New → Process Catalog → specify the
name with ASIS. This creates a catalog of ASIS.

3. Right-click ClaimInvestigation_ASIS → Copy → right-click ASIS process
catalog → Paste. This copies ClaimInvestigation_ASIS to the catalog of
ASIS.

4. Repeat step 2 to create another catalog of TOBE for business analyst.
 Chapter 4. Business Process 97

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

5. Repeat step 3 to copy ClaimInvestigation_ASIS to TOBE and rename it to
ClaimInvestigation_TOBE.

Figure 4-19 Renamed ClaimInvestigation processes

4.3.5 Build a new process
Because there are several tasks required to imitate the functionality of the
manual task of RequestExternalReports, we create a new process called
RequestExternalReports. There are two reasons for it:

� Keep the ClaimInvestigation process diagram as simple as before.
� The new process is reusable in other processes.

We have two ways of building the RequestExternalReports, either from scratch
or by importing the Visio presentation created in the workshop. We have
provided you with the Visio presentation in the additional materials supplied with
this redbook. See Appendix A, “Additional material” on page 501 for further
information about obtaining this material.

First, we start with how to create the basic process from scratch, if you want to
import the one you made in Visio, see “Option 2 Import the process from Visio”
on page 104.

Option one: Create the process from scratch
To create the process from the beginning, follow these steps.

1. In the Project Tree, right-click TOBE process catalog → New → Process →
specify the name as RequestExternalReports and any description for it →
Finish.

RequestExternalReports is opened automatically in Process Editor. Ensure
that you are in Basic profile. Delete Start Node because the process is
started from the parent process.

The first part of the process
The first steps in the process are executed in parallel. On one side, the
customer’s policy is retrieved and, depending on the type of policy, the expected
98 Build a Business Process Solution Using Rational and WebSphere Tools

response time is noted. On the other side, the list of assessors is sifted to extract
those who are potentially able to handle this claim based upon the location and
type of the vehicle.

1. Choose appropriate elements from the palette illustrated in Figure 4-20 and
follow the instructions to assist in wiring them together.

Figure 4-20 RequestExternalReports process part 1of 3

2. We use a Fork element to connect the input of the process to two tasks of
ResponsetimeBasedOnPolicy and IdentifyAssessors.

3. Information about each task can be added to the Description field shown in
Figure 4-21. We also find it useful to put descriptive information into
Annotation and link it to the task.

Figure 4-21 Description field for a task

Tip: Click the small arrowhead in the top left corner of the join/fork/merge
icon in the process editor palette to toggle the element.

Fork
Join

Annotation
 Chapter 4. Business Process 99

4. We use a Join element to combine the two outputs from
ResponsetimeBasedOnPolicy and IdentifyAssessors. Features of Join
include:

– A Join recombines and synchronizes parallel processing paths.

– A Join waits until all the required inputs have received by each of its
incoming branches and then sends them out as output at the same time.

– If you want the data items consolidated into one input, you must add a
specific task to do that.

5. After you have populated the canvas with the six elements, select
Connections → the outer frame of the process. Click the input data
connection of the fork to identify the fork as first element of the process. You
are prompted with a pop-up box as in Figure 4-22. Select Input as the
Fork:Target dataconnection → OK.

Figure 4-22 Setting the process input

6. Connecting the frame to the input connection of the fork now shows the String
icon next to the connection as in Figure 4-23.

Figure 4-23 Connecting the RequestExternalReports process to its first element

1

100 Build a Business Process Solution Using Rational and WebSphere Tools

7. Now start connecting the elements. Start with connection 1 in Figure 4-23.

You are presented with a pop-up box as in Figure 4-24. Select
Output:String → OK

Figure 4-24 Selecting the data connection for output from Fork:Source

8. Continue to connect the elements. You might be prompted again for a choice
of targets. Always select the existing target data connection rather than
creating a new one.

Figure 4-25 Checking your process for errors

Tip: Periodically save your process. An asterisk next to its name in its tab
handle indicates it is not saved. Saving your process will check for some
errors. You can also run a static analysis of the process to check for other
errors. See Figure 4-25.
 Chapter 4. Business Process 101

The second part of the process
In the second part of the process, you decide to either.

� Manually select the assessor who will handle the assessment
� Have the process automatically select an assessor

In our case, the decision to manually select an assessor is only made if no
assessors have been identified. Following the choice, control passes to an
automated process to request the assessment.

The second part of the process is shown in Figure 4-26 on page 102, with
WebSphere Business Integration Modeler switching to Intermediate mode to
allow more details such as specifying the decision modes.

Figure 4-26 RequestExternalReports process part II of III

1. We use a simple Decision with the name of Any assessor? to direct the flow
to either SelectAssessor or ManualSelectAssesor after the previous task of
AssessorReceiveAndResponse. If there is at least one assessor in the list,
process flows to SelectAssessor, otherwise to ManualSelectAssessor.

2. We also add the Decision with the name Confirmed to return the flow to the
ManualSelectAssessor activity if the selected assessor fails to acknowledge
receiving the assessment request.

Tip: We recommend you build the initial connections in basic mode and then
switch to intermediate node to complete specifying the input criteria. In basic
mode, the data connection terminals are created automatically, while in
intermediate mode you need to add input and output terminals using the
attribute panel.

OR

OR
102 Build a Business Process Solution Using Rational and WebSphere Tools

3. We specify OR logic for the two inputs of RequestAssessment and
ManualSelectAssessor respectively because both of tasks can continue as
long as one of the inputs is received.

a. To set Input logic, choose Modeling → User Profile → Intermediate
from the action bar. Select ManualSelectAssessor → Attributes
View → Input logic → Input criteria → Add → Input (from available
inputs) and move it to selected inputs → OK

b. Repeat to the procedure to add Input:2. The Input logic tab of the
attributes panel should now look similar to Figure 4-27.

Figure 4-27 Input logic panel for ManualSelectAssessor

c. Remove the first criteria and tidy up the panel until it looks similar to
Figure 4-28.

Figure 4-28 Input criteria for ManualSelectAssessor task

The last part of the process is shown in Figure 4-29 in basic mode. We also
connect StoreReport to the process output and Stop node.

Tip: A Merge element can implement the same function.
 Chapter 4. Business Process 103

Figure 4-29 RequestExternalReports process part III of III

Option 2 Import the process from Visio
To import a Visio diagram, you need to have saved the diagram from Visio in
XML, a .vdx file.

1. Click File → Import → WebSphere Business Integration Modeler
Import → Next and select Microsoft Visio (vdx) from the Types → Next and
select .\SG24-6636\Modeler\Other\RequestExternalReports.vdx from the
additional material supplied with this redbook.

2. Click Next and select Page-1. Click Add.

Your import wizard should look similar to Figure 4-31 on page 105. When
creating the Visio chart, we selected chart items from the Visio Business
Process diagrams. Most of these are already mapped to WebSphere
Business Integration Modeler shapes. You can use the import wizard to
associate any unmapped shapes.

3. Click → Next → Finish to complete the import. Ignore the warning message
and look for the imported process in the Processes folder. The result is
illustrated in Figure 4-30 on page 105.

Tip: At this point, we can run a simple simulation to validate the process logic.
Some common errors can be picked up if the simulation stops prematurely,
such as, Merge might be missed, that can cause the process to stop. To
simulate, right-click the RequestExternalReports process in project tree and
select Simulate.
104 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-30 RequestExternalReports process imported from Visio

Note that the decision points are multiple choices rather than binary decisions.

Figure 4-31 Mapping Visio shapes to WebSphere Business Integration Modeler

4. Move the flow into the TOBE process catalogue.

The flow will need some modification before it is refined. This is left as an
exercise for you. There turn out to be very few modifications to make:

1. Delete the two start nodes, and the two connections into request availability

2. Drop a fork and join onto the canvas

3. Wire up the RequestExternalReports process to the input data connector of
the fork, and the activity StoreReport.

4. Wire up the fork and the join.
 Chapter 4. Business Process 105

5. You may want to switch the multiple choice decisions for binary decisions to
make the flow clearer

Check the input logic of ManualSelectAssessor and RequestAssessment. They
should both be set to OR the inputs.

Modify ClaimInvestigation to call RequestExternalAssessor
To perform this operation, follow these steps:

1. Open ClaimInvestigation_TOBE in the project navigator, and delete the
RequestExternalReports local task.

2. Drag the RequestExternalAssessor process from the project navigator onto
to ClaimInvestigation_TOBE process

3. Add a new map to the ClaimInvestigation_TOBE process.

a. Right-click the process → New → Map.

b. Open the Attributes view of the map and select the Inputs tab.
Double-click Associated data → Complex type → InvestigateClaim →
OK.

c. Select the Outputs tab. Double-click Associated data → Basic type →
String → OK.

d. Wire up the elements as in Figure 4-32.

Figure 4-32 Adding RequestExternalReports subprocess

Tip: Backup your work at this time. The undo function is limited, so you should
checkpoint your work regularly. There are many ways to do this. For example,
you can save your work as a WebSphere Business Integration Modeler
project. If you need to recover, you can start with a fresh workspace and
reload the project.
106 Build a Business Process Solution Using Rational and WebSphere Tools

Define roles and organization units
To accomplish the newly defined tasks, additional roles and organization units
are defined. These are the ones embraced with blue squares shown in
Figure 4-33 on page 108. Note that roles include automated services as well as
people. This will become important when we share the business process with the
Rational Software Architect or Rational Software Modeler.

From where do these roles and organizations come? How do we know what
automated services are needed at this stage in the process definition?

The business analyst has been working with the solution architect in the
workshops. As discussed in 3.2.2, “Responsibilities and contract-based
development” on page 52, the solution architecture is being developed in parallel
with the business process so that decisions can be made about which activities
to automate. At present, the tooling is not sufficiently integrated to enable very
interactive development of the business process and the solution architecture
together. In the workshops, we used traditional presentation tools to construct
the initial business process and solution architecture proposal. This was
sufficient to know what processes could be automated in the claim assessor
solution and what roles needed to be added to the process model. See the
diagram in “Figure 3-16 on page 73.”

We explain the new roles briefly below. Add these roles to your WebSphere
Business Integration Modeler workspace.

� Claim handler handles day to day claims for LGI. Modify the standard hourly
rate to $15 per hour in the Claim handler role.

� Assessor is the role who does the claim assessment and sends a report back.
The cost is $20 per hour.

� Assessor Management, Business Rules Engine, and Document Handler roles
represent systems which automatically handle work. We fix the cost as
$10000 per year.

� Claim handler Desktop role is the system that Claim handler uses to do work.
The cost is $10 000 per year.

Create this new organization unit:

� External Assessors represents the organization unit for claim assessors.

Tip: A role enhances a resource, adding a set of functions that the
resource must meet or perform. One resource can play more than one
role.
 Chapter 4. Business Process 107

Figure 4-33 Newly defined roles and organization unit

Define resources for roles
To define resources for each role, follow these steps.

1. Start by adding two new resource catalogues:

a. Select Resources in the Project Tree → New → Resource Catalog.
Name it Machines and click Finish.

b. Repeat the procedure to create Timetables.

2. Create a new resource definition for the claim assessors called External
Resources.

– Select Resources in the Project Tree → New → Resource Definition.
Name it ExternalResources. Make it an individual rather than a bulk
resource and click Finish.

3. Now create two computers:

a. Select Machines → New → Resource. Select Machine as the
associated resource definition and call the resource Computer 001. See
Figure 4-34 on page 109.

Tip: It is better to assign costs to roles than to the resources that are allocated
to roles, unless you want to cost a resource specifically. There are different
cost capabilities to consider too: We can define a cost per unit of time to a bulk
resource like a computer when it is playing a role, but not to the resource
definition by itself.
108 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-34 Creating a new computer resource - step 1

b. Add the roles this computer is going to play by clicking the Qualifications
tab and adding the roles in Figure 4-35.

Figure 4-35 Roles of Computer 001

4. The quickest way to create Computer 002 is to copy and paste Computer 001
and then modify the roles as shown in Figure 4-36.

Figure 4-36 Role of Computer 002
 Chapter 4. Business Process 109

5. Add the Claim handlers. Here, we show how to create the first Claim handler.

a. Select Project Tree → Persons → New → Resource → individual →
Staff and name the resource Claim handler 001 → Finish (Figure 4-37).

Figure 4-37 Create a new Claim handler

b. Select the Qualifications tab → Add → \Resources\Roles\Claim
handler → OK. (Figure 4-38).

Figure 4-38 Set the Claim handler’s role to Claim handler

6. Use the copy and paste on the pop-up menu to create 19 more handlers. You
need to reselect copy before pasting each time if you are using an earlier
version. This is unnecessary and is fixed in WebSphere Business Integration
Modeler 5.1.1.

7. We assume that there are plenty of Assessors and they belong to external
resources.
110 Build a Business Process Solution Using Rational and WebSphere Tools

a. Select Project Tree → Persons → New → Resource → individual →
External Resources and name the resource Assessor → Finish
(Figure 4-37 on page 110).

b. We do not allocate a cost, but set the Role to
\Resources\Roles\Assessor.

Define timetables
The timetable we want is constructed by combining individual timetables
specifying the hours of work, lunch breaks and weekends. First we construct the
three component timetables:

1. Define a timetable named NormalWorkTime as shown in Figure 4-39.

a. Project Tree → Timetables → New → Timetable and name the table
NormalWorkTime → Finish (Figure 4-39)

b. Open the timetable and select Time interval → Remove → Add and type
Working hours → OK. Set 9:00 AM as the start time and the duration to 8
hours. The default today’s date is fine.

Figure 4-39 NormalWorkTime time table, Recurring time intervals tab contents

2. Similarly, define another two timetables named LunchTime as shown in
Figure 4-40 on page 112 and Weekend shown in Figure 4-41 on page 112.

Important: If a role does not have any associated individual or bulk resource
and the role is assigned to a task, simulation will fail.
 Chapter 4. Business Process 111

Figure 4-40 LunchTime time table, Recurring time intervals tab contents

Figure 4-41 Weekend time table, Recurring time intervals tab contents

3. Make sure all the timetables are saved and return to NormalWorkTime.
Select the Exemption periods tab and add the Lunchtime and Weekend
timetables as exemption periods.

Therefore, the normal work time is Monday to Friday, 9:00am to 5:00pm with a
half-hour lunch time. The final look of the NormalWorkTime is shown in
Figure 4-42 on page 113, with working durations in blue color and nonworking
durations in red color.
112 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-42 Attributes view of NormalWorkTime time table

We assign NormalWorkTime to the Claim handler and Assessor role. The
timetable will not be displayed for the individual Claim handlers or assessors.

Assign resources to tasks
After the roles are defined, we assign them to tasks in the
RequestExternalReports process.

1. Select the ResponseTimeBasedOnPolicy task in Process Editor by clicking
it in the Attributes view, click the Resources tab → expand Role
requirements if it is not expanded yet → Add button → specify its values
from the data in Table 4-2. An example is shown in Figure 4-43 on page 114.

2. Modify the Name of the role requirement to something more meaningful. The
name will be useful if the solution architect uses activity diagrams in Rational
Software Architect. Activities are grouped into columns using the names of
their role requirements. As a starting point, use the same name for the role
requirement entry as the name of the role.

Tip: Hover the mouse pointer in the Attributes view window and press the
mouse buttons to zoom in or out on the timetable. Point at periods on the time
table to inspect the name of the interval and its start and end times. Notice that
by changing the name of the time interval from the default Time interval to
Working hours, Lunch, and Weekend we can see more clearly how the overall
timetable is constructed in this view.

Tip: You can drag resources from the project tree and drop them onto a
task. You will need to open each task and check that each role requirement
is complete.
 Chapter 4. Business Process 113

Figure 4-43 Specifying the role resource for the ResponseTimeBasedonPolicy task

3. Also define the organization unit for the tasks using the data in Table 4-2 on
page 115. An example is show in Figure 4-44.

Figure 4-44 An example of a task’s Resources and Organizations

Tip: The field of Time required for Resources is used to calculate the cost of
certain resource in simulation. It is different from Time required to finish
task, which you can define for a task while doing simulation.
114 Build a Business Process Solution Using Rational and WebSphere Tools

Table 4-2 Settings for tasks’ resources and organization units

You can also assign individual and bulk resources to tasks. All the resources that
are assigned will be allocated when the task is run. For example, we assign the
role of Claim handler to a task and the quantity is 2. We also assign the individual
resource of Claim handler 001 to the same task, then there will be three
individual Claim handlers to do this task. Two of them come from the role
requirements and are allocated dynamically, the other one come from the
individual resource requirements and is fixed to Claim handler 001.

By defining the criteria for individual resource requirements, you have the
resource allocated to a task dynamically. In this case, the field for Individual
resource column has to be set to Person or Staff as shown in previous
Figure 4-17 on page 94.

View the whole process in Swimlane
By clicking Launch Swimlane Viewer button in the palette as shown in
Figure 4-45 on page 116, we get the options of viewing the process diagram in
swimlane format sorted by Role, Resource, Organization unit and Location.

Task Roles Time
required

Quanti
fy

Resource
Definition

Organization

ResponseTimeBasedOnPo
licy

BusinessRules
Engine

1 second 1 Machine Claim
Department

IdentifyAssesors AssessorManag
ement

1 second 1 Machine Claim
Department

RequestAvailability Assessor 2 minutes 1 External
Resource

External
Assessors

SelectAssessor Business Rules
Engine

1 second 1 Machine Claim
Department

ManualSelectAssessor Claim handler
Claim handler
Desktop

2 minutes
2 minutes

1
1

Staff
Machine

Claim
Department

RequestAssessment Assessor 1 second 1 External
Resource

External
Assessors

AssessorSendReport Assessor 1 hour 1 External
Resource

External
Assessors

StoreReport Document
Handler

1 second 1 Machine Claim
Department
 Chapter 4. Business Process 115

Figure 4-45 WebSphere Business Integration Modeler palette

Figure 4-46 on page 117 shows the swimlane view of the process sorted by role.

Lunch Swimlane Viewer
116 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-46 Swimlane view of the process sorted by role

4.3.6 Features attractive to business analyst
Analyzing a process model is one of the major steps in the cycle of developing a
process model. WebSphere Business Integration Modeler provides a variety of
analysis functions that allow you to extract specific types of important business
information from your models.

There are two kinds of analysis, Static and Reports:

� Static analysis is performed based on modeling information.

For example we use Qualified Resources for Roles to view how many
resources for certain roles. We can access this by right-clicking anywhere in
Project Tree → Static Analysis → Resource Analysis → Qualified
Resources for Role. In the window, click Select all if you want to see all the
resources, then click Finish. The result is shown in Figure 4-47 on page 118.
 Chapter 4. Business Process 117

Figure 4-47 Some Qualified Resources for Roles analysis results

– We perform dynamic analysis based on the results of process simulation
to get the most from it. There are four types of such analyses. They are:

– Aggregated Analysis: determines information about activities and
resources used in all process instances generated during a simulation.

– Process Analysis: performs a process instances summary analysis to list
the

• Process cases
• Process instances

generated in a process simulation run, and to show the probability of
occurrence for each process case.

– Process comparison Analysis: compares the weighted average
analysis results for two simulated processes that use the same input
parameters.

– Another feature is Queries provided. Queries return information about
model elements of one specified type.

– You can use queries to confirm the content of your models, and as the
basis for creating reports.

– There are 25 predefined queries in the Queries category in the Project
Tree. You may also define new queries.

� Reports is a formatted presentation of information relating to a model or to
the results of analyzing a process simulation.

– WebSphere Business Integration Modeler provides in total 95 types of
report template in the categories of Basic profile, Intermediate Profile,
Advanced profile and Collateral reports.

– You can generate reports after a query, a static, or dynamic analysis.
118 Build a Business Process Solution Using Rational and WebSphere Tools

– You can view a report online in WebSphere Business Integration Modeler,
print it, or export it to a variety of file formats.

4.4 Simulate the process
After creating the business process model, we can simulate it in WebSphere
Business Integration Modeler to view the performance and make adjustments
accordingly.

If you want to start with a complete model at this point, create a new project or a
fresh workspace and import .\SG24-6636\Modeler\Projects\PreBPEL.zip. The
results of simulation are in .\SG24-6636\Modeler\Projects\Simulation Results.zip.
See Appendix A, “Additional material” on page 501.

4.4.1 Create a simulation snapshot
We can now run a simulation for the process RequestExternalReports.

1. Right-click the process model in Project Tree, choose Simulate. A simulation
snapshot of the process is created as shown in Figure 4-48 on page 119.

Figure 4-48 Simulating a process

The snapshot contains a:

– Copy of the business process
– Copy of all model elements for the project at that particular point in time

Tip: If you change anything in the process model you need to create a new
simulation to pick up changes to the process or any new resources you have
defined, for example.
 Chapter 4. Business Process 119

– Set of local preferences for simulation attributes as shown in Figure 4-49
on page 120

Figure 4-49 Simulation local preferences for process snapshot

Figure 4-50 Process snapshot in Simulation Editor

2. By clicking the blank area of the process snapshot in Simulation Editor as
shown in Figure 4-50, the simulation preference for the whole process is
opened, which is shown in Figure 4-51 on page 121.

Note: Many values in the local simulation preferences inherit from the Global
simulation preferences. The simulation preferences for a certain process and
task also inherit from local simulation preferences. But the values defined for a
certain process or task are the ones taken for simulation.
120 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-51 Simulation preference for the whole process

3. In addition, we can specify a task’s simulation attributes by selecting it.
Figure 4-52 displays the IdentifyAssessors simulation attributes. They are
complimentary to the ones defined in process simulation preferences.

Figure 4-52 Simulation preference for a task

4. Check the values in the other tabs of the process simulation preferences. In
particular, modify the Resources tab so that it only includes the resources we
are going to use in the simulation, see Figure 4-53 on page 122.

We set
probabilities for
decisions in the
process
 Chapter 4. Business Process 121

Figure 4-53 Select resources for simulation

4.4.2 Define values for simulation
There are certain fields that we can set for simulation. Here we discuss just a few
of them.

Set the number of simulations to run
We can set the number of simulations to run by the creation of tokens. A token
represents a unit of work that is received by a process and transferred between
different activities in the process flow. By specifying token creation settings, you
define the quantity and rate of inputs that the process handles in a simulation
run. You can also create tokens for each task. You would not normally do this as
the work flows from the input to the business process, but you might want to
analyse part of the flow.

1. Click Inputs tab in the Attributes view of the process simulation preference
shown in Figure 4-51 on page 121 Select the row showing the input data.
Your screen should look similar to Figure 4-54 on page 123.

Tip: Click the mouse in the input box of a simulation parameter field and press
F1. You get a short explanation of the field.
122 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-54 Token creation settings

– We can choose Time trigger if the tokens arrive in a certain interval
regularly or choose Random time trigger if the tokens arrive randomly.

– If Random time trigger, we can choose a certain distribution.

– If we select Time trigger, we can specify the start time for token to be
created and Recurring time interval for bundle creation.

– By specifying a suitable Recurring time interval for bundle creation, the
time period that we simulate is determined. For example, we define:

• Number of tokens per bundle is 2
• Total number of tokens is 20
• Recurring time interval for bundle creation is 3 minutes
• Then the simulated period is: (20/2)*3=30 minutes

2. To predict the claims volume, we use industry figures which show an average
of 1.5 claims per 100 motor policies per year. For the merged company, this
gives us an expected claim volume of:

– 6,000,000 * 1.5 /100 = 90,000 claims per year

– Assume 250 working days, 90,000/250 = 360 claims per day

– Assume 70% of claims require assessment, 360*70% = 252 assessments
per day

– We can then obtain the recurring time interval for bundle creation:
8*60/252 = 1 minute and 54 seconds, where the number of tokens per
bundle is 1

Tip: It is always a good practice to run a simulation for the whole process by
setting the total number of tokens to 1 before you change any other settings. In
this way, you get a chance to check the correctness of the process logic flow
while waiting for the shortest time for the simulation to finish.

Use these settings to debug
the process
 Chapter 4. Business Process 123

3. Set one hour’s worth the claims based on the figures in Step 2 to keep the
simulation of a manageable size. This date took about five minutes to
simulate on a 2Ghz Intel® Pentium® IBM Mseries Thinkpad. See Figure 4-55.

Figure 4-55 Token creation settings for 1 hours simulation

Set durations for each task
For each task in the process to simulate there are two fields to complete in the
simulation snapshot3, see Figure 4-56 on page 125,

� Resource wait time

This is the maximum time to wait for a resource - set this to a long period of
time (say a year) unless you DO want to terminate a simulation if a resource
is unavailable.

� Processing time

This is the time required for the resource to do this task. The sum of
processing time and resource wait time is sometimes known as elapsed time
in project scheduling.

– Processing time is different to the time set on the role requirement. The
processing time might exceed the time the role is required for the task. For

3 Since WebSphere Business Integration Modeler 5.1.1.2 these values can be set in the model as
well as the simulation snapshot. This is convenient for doing multiple simulation snapshots.
124 Build a Business Process Solution Using Rational and WebSphere Tools

instance, the role might initiate the task, but not be required for the total
processing time.

For example, suppose that the a Claim handler can handle multiple claims
at the same time by claiming more than one claim at a time from their
workitem list and working on them all at the same time. Also suppose that
the business analyst has decided that an insurance claim must by
examined by a Claim handler within a day of it arriving on their workitem
queue.

• The resource wait time would be modelled as one day.

• The Claim handler role requirement time might be modelled as ten
minutes - the amount of time the Claim handler actually spends dealing
with a specific claim

• The processing time might be set at one hour, the amount of time
between the Claim handler claiming the workitem, and finally deciding
upon the outcome and completing the manual activity.

Figure 4-56 Resource Requirements

In some cases, the processing time and role requirement time are set to the
same value. This is when the role spends all the time doing the task.

However in some cases, these two fields are set to different values. For example,
in the RequestAvailability task, our system sends out the request to each of the
possible assessors and expects them to reply indicating if they are available or
 Chapter 4. Business Process 125

not. No one may pick the request for hours. However after the request is picked
up, the assessor only needs minutes to check their schedule and return their
availability. In this case we set Time required to finish task to 4 hours, and
Time required to 2 minutes.

Table 4-3 lists the time durations set for tasks. Enter these figures into the
simulation snapshot as in Figure 4-56 on page 125.

Table 4-3 Task durations set for simulation

Set output for Decision
For the Decision elements, we set the probability for each output as shown in
Table 4-4.

Table 4-4 Probabilities to Decision outputs

Task Processing
time

Time role
required

Resource

ResponseTimeBased
OnPolicy

1 second 1 second Business Rules Engine

IdentifyAssesors 1 second 1 second AssessorManagement

RequestAvailability 4 hours 0a

a. By setting this to 0, we do not consider assessor’s time and cost for Request-
Availability in the simulation.

Assessor

SelectAssessor 1 second 1 second Business Rules Engine

ManualSelect
Assessor

2 minutes
2 minutes

2 minutes
2 minutes

Claim handler
Claim handler Desktop

RequestAssessment 1 hour 0b

b. By setting this to 0, we do not consider assessor’s time and cost for Re-
questAssessment in the simulation.

Assessor

AssessorSendReport 2 days 0c

c. By setting this to 0, we do not consider assessor’s time and cost for Asses-
sorSendReport in the simulation.

Assessor

StoreReport 1 second 1 second Document Handler

Decision Probability to Yes Probability to No

Any assessor? 90% 10%

Confirmed? 95% 5%
126 Build a Business Process Solution Using Rational and WebSphere Tools

The settings in Table 4-4 on page 126 imply the following scenario:

� There is a 90% chance we get at least one assessor available. There is a
10% chance there is no assessor available, therefore the Claim handler
needs to assign one.

� There is a 95% chance the assessor who was available before can still do the
assessment. While there is a 5% chance the assessor cannot do the
assessment anymore, because of exceptional circumstances, such as the
assessor has an emergency.

We then specify Method of selecting an output path to Based on
probabilities to single path as shown in Figure 4-57.

Figure 4-57 Screen shot for the Output logic setting of a Decision element

4.4.3 Run a simulation
To start a simulation, switch to Control Panel and press Start, as shown in
Figure 4-58 on page 127.

We can always choose to pause, stop, or step-by-step a simulation by clicking
appropriate button in the Control panel.

Figure 4-58 Simulation control panel

Tip: If you cannot find the control panel, click Window → Show View →
Control Panel in the main action bar.

Start
 Chapter 4. Business Process 127

During the simulation run, we can see animations and the number of tokens
transiting from one element to the next. Figure 4-59 shows a screen shot of such
animation, where 13 tokens are being processed by RequestAvailability task. To
complete the simulation quickly, disable the animation.

Figure 4-59 Simulation animation

After the simulation finishes, the result is stored in the Project Tree as shown in
Figure 4-60. We can distinguish different simulation results from the time when it
finishes.

Figure 4-60 Simulation results stored in Project Tree

simulation
finish time
128 Build a Business Process Solution Using Rational and WebSphere Tools

4.4.4 Simulate the whole claim investigation process
We require simulations of both the ASIS and TOBE processes to compare them.

� Simulate ClaimInvestigation_ASIS

– Set the time to manually process RequestExternalReports to 30 minutes
in the resources tab of the InvestigateClaim local activity before creating a
simulation snapshot

� Simulate ClaimInvestigation_TOBE

– This time there are 360 claims per day and 70% require evaluation.

There are two ways to perform a simulation of the whole
ClaimInvestigation_TOBE process which contains subprocesses.

1. Provide values for all the subprocesses based on previous simulations and
only simulate the new process.

Tip: If a simulation stops and you receive a message saying that there were
not enough resources available to complete the simulation, the message
refers to simulation resources, not to a system problem. You need more
resources available for the process. You probably have configured something
wrongly. Check the following:

1. Maximum wait times are too small and not allowing the simulation to
complete.

2. The Assessor resource is a member of external resources.

3. The Activities performed by assessors have the organization set to
External Resources, not person or staff.

Note: You cannot evaluate a particular subprocess. However, you can choose
an option that allows you to specify whether to evaluate all subprocesses,
including subprocesses that have incomplete content. You can select No for
Evaluate all subprocesses in the simulation attributes for a process, and you
can set a default value for this attribute either as a local or as a global
preference. This setting means the simulation will skip the subprocesses.

Note: The project .\SG24-6636\Modeler\Projects\Claim preBPEL.zip or
.\SG24-6636\Modeler\projects\Parms Set are good starting points for the
TOBE simulation. The latter has the RequestExternalReports process
simulation parameters set so we now only have to set the
ClaimInvestigation_TOBE snapshot parameters.
 Chapter 4. Business Process 129

Open the snapshot in Simulation editor, and set Evaluate all subprocess to
No in the General tab of Attributes view.

a. Click the RequestExternalReports subprocess in Simulation editor, set
Time required to finish this task in General tab to the weighted
average Process cycle time of RequestExternalReports process, which
we can obtain from dynamic analysis of previous simulation results. For
example, two days, five hours, and seven minutes.

b. Click the RequestExternalReports subprocess in Simulation editor, set
Cost per execution of the task in Cost and revenue tab to the weighted
average total cost of RequestExternalReports process, ($0.105, for
example).

2. Simulate the processes and all its subprocesses.

Leave the Evaluate all subprocess button as Yes in the General tab of
Attributes view.

a. Right-click the canvas area of the ClaimInvestigation process → Expand
All. See Figure 4-61.

b. Select the activities in the RequestExternalReports process and set their
simulation parameters as before.

Figure 4-61 Expanding subprocesses in the simulation editor

4.4.5 Analyze the results
After a simulation is finished, a list of simulated process instances are listed in
the Process tab of the control panel as shown in Figure 4-62 on page 131. For
each instance, we can get the information of the process start time and end time,
total cost, total revenue, and total profit.
130 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-62 Immediate results for process instances after simulation

In the Tasks tab, we obtain the cost for each task in each process instance.
Figure 4-63 shows the tasks’ cost for ClaimInvestigation_ASIS process
instance.

Figure 4-63 Immediate results for tasks after simulation

The Connections tab shows the tokens transferred by each connection.

Dynamic analysis on simulation results
Based on the stored simulation results, we are able to perform dynamic analysis.
Various types of dynamic analysis can be accessed by right-clicking the
simulation results in Project Tree → Dynamic Analysis. Below we list several
analyses performed.

� Activity Resource Allocation shows a summary of the resources allocated
for each activity. As shown in Figure 4-64 on page 132, the resource
allocation for the activities in RequestExternalReports are listed.
 Chapter 4. Business Process 131

Figure 4-64 Analysis: Activity Resource Allocation for RequestExternalReports

� Resource Utilization Analysis lists all the resources that are allocated
during the simulation. Table 4-5 shows one of the resources, Claim handler
001, as an example.

Table 4-5 An example shown in Resource utilization analysis

� Process cost analysis is performed against RequestExternalReports
process.

As the results in Figure 4-6 on page 133 show, there are four possible cases
to proceed the RequestExternalReports process. The reason for this is the
process has two decision points. Each case has the probability to happen.
The weighted average cost for the whole process is $0.080866.4

Claim handler 001

Allocated from December 6, 2004 3:14:00 PM GMT

Allocated to December 6, 2004 3:16:00 PM GMT

Allocating process
instance

RequestExternalReports 39

Allocating activity ManualSelectAssessor

Allocating activity start
time

December 6, 2004 3:14:00 PM GMT

Quantity allocated 1

Allocation duration 2 minutes

Shortage duration 0 seconds

Allocation cost $0.50
132 Build a Business Process Solution Using Rational and WebSphere Tools

Table 4-6 Process cost analysis for RequestExternalReports process

� Activity cost analysis is performed for ClaimInvestigation_ASIS process.
We are interested specifically in the task of RequestExternalReports. The
results are shown in Table 4-7.

Comparing the total average cost of this task with the equivalent figure of total
weighted average cost for RequestExternalReports process, we get the
conclusion that doing it manually costs LGI claims department 93 times more
than outsourcing and automating it and involving a staff only when it is
necessary. These figures could then be used to assist in negotiating a price
with potential outsourcing suppliers.

Table 4-7 Activity cost analysis for RequestExternalReports in InvestigateClaims_ASIS

� Process cost comparison analysis is performed for two simulation results
of ClaimInvestigation_ASIS and ClaimInvestigation_TOBE.

– After the simulation is run, right-click the stored simulation result in Project
tree → Dynamic analysis → Process comparison analysis → in the
appeared Simulation results window as shown in Figure 4-65 on
page 134 → choose one to compare → OK.

4 There could be more than four cases if any instance loops through the Confirmed? test more than
once.

Case
Name

Probab
ility

Revenue Execut
ion

Idle Allocated
resources
cost

Total

Case 1 85.50% $0.00 $0.00 $0.00 $0.0013 $0.001

Case 2 9.50% $0.00 $0.00 $0.00 $0.54 $0.539

Case 3 0.48% $0.00 $0.00 $0.00 $1.078 $1.077

Case 4 4.28% $0.00 $0.00 $0.00 $0.54 $0.539

Weighted
average

$0.00 $0.00 $0.00 $0.081 $0.081

Average
revenue

Average
Execution
cost

Average
idle
cost

Average
allocated
resources
cost

Average
total
cost

Average
profit

$0.00 $0.00 $0.00 $7.50 $7.50 ($7.50)
 Chapter 4. Business Process 133

Figure 4-65 Simulation result selection window for Process comparison analysis

The results are shown in Table 4-8.

Table 4-8 Process cost analysis results

4.5 Developing the process implementation
At this point in the process of developing the External Claim Assessor solution,
the business analyst has completed defining the new process. The analyst gets
approval of the process from their executive sponsor and software architect, then
freezes a copy of the project, perhaps using CVS.

Process Revenue Execution
Cost

Idle Cost Allocated
Resources
cost

Total Cost Profit

ClaimInvesti
gation_TOB
E

$0.00 $0.00 $0.00 $0.250634 $0.250634 ($0.250634)

ClaimInvesti
gation_ASIS

$0.00 $0.00 $0.00 $7.750634 $7.750634 ($7.750634)

Difference $0.00 $0.00 $0.00 ($7.50) ($3.740487) ($7.50)

Change 0% 0% 0% -2,992.409
%

-2,992.409
%

-2,992.409
%

134 Build a Business Process Solution Using Rational and WebSphere Tools

4.5.1 Export processes
Because the whole claims process is already running in a WebSphere MQ
Workflow environment, we decided to minimize changes to the running claims
process by only making a small modification to it. Rather than call
RequestExternalReports as a manual local activity, we now call
RequestExternalReports as a subprocess. The claims process continues to run
in WebSphere MQ Workflow and the new RequestExternalReports subprocess
will run in WebSphere Business Integration Server Foundation.

WebSphere Business Integration Modeler has the capability to export a process
both as FDL to run in WebSphere MQ Workflow and as Business Process
Execution Language that runs in a number of process engines, including
WebSphere Business Integration Server Foundation.

Because the changes to the claims process were so minimal, the WebSphere
MQ workflow specialist decided not to export the modified claims process from
WebSphere MQ Workflow as FDL, but make the necessary changes directly
using the WebSphere MQ Workflow buildtime. See 11.3, “Create the
ClaimInvestigation_TOBE Workflow” on page 458. See Figure 4-66 on page 136.

The specialist did need to define the ClaimInvestigation data structure in FDL in
order to pass ClaimInvestigation from WebSphere MQ Workflow to WebSphere
Business Integration Modeler. It would have been convenient to export the new
data structures from the UML in Rational Software Architect as FDL, but Rational
Software Architect doesn’t support FDL. WebSphere Business Integration
Modeler does, and so the WebSphere MQ Workflow specialist decided to use
the Modeler to construct the FDL version of the data structure. This is explained
in Chapter 11, “Modify the Claim Investigation process” on page 453.

Important: The business analyst has finished specifying the claim assessor
process. The main project responsibility now passes to the software architect
to design the solution. We return to the WebSphere Business Integration
Modeler when the IT specialists are ready to begin their implementation of the
solution.
 Chapter 4. Business Process 135

Figure 4-66 When to use the .fdl WebSphere Business Integration Modeler

4.5.2 Export as FDL process
Because we are not exporting the claim investigation process from WebSphere
Business Integration Modeler as part of the scenario, we have included the next
section just to show how to do it.

Validate process model
Before we can export the ClaimInvestigation_TOBE business process to FDL,
we need to modify it for the target runtime environment, if that is necessary.

1. Copy ClaimInvestigation_TOBE to Claims category.

2. Rename ClaimInvestigation_TOBE as ClaimInvestigation.

3. Because RequestExternalReports is a subprocess run in an environment
other than WebSphere MQ Workflow, we need to treat this step as an
automated task in ClaimInvestigation. Open ClaimInvestigation in Process

Why import the original WebSphere MQ Workflow process into WebSphere
Business Integration Modeler, modify it, then not use the result in WebSphere
MQ Workflow?

Why import it?
1. The business analyst’s objective in importing the process is primarily to

document the as-is process, understand new process requirements, and
specify the to-be process. The split between process engines is an
implementation issue. The analyst needs to work with the complete
process.

2. To be able to simulate both the as-is and to-be flows.

Why not export to WebSphere MQ Workflow?
1. The new FDL is substantially different from the original.

Importing and exporting of FDL is not reversible. Using the new FDL will
incur more development effort and, more importantly, more testing and
potential instability in the production environment.

2. Deployment information is not imported or exported with the FDL.

3. The modifications to the process, changing the RequestExternalAssessor
from a local task to a subprocess, have to be reversed before exporting the
FDL. FDL does not support the concept of invoking a subprocess in a
different process engine.
136 Build a Business Process Solution Using Rational and WebSphere Tools

editor → Delete the RequestExternalReports subprocess → Add a local task
called RequestExternalReports. Reconnect the elements as in Figure 4-67.

Figure 4-67 Rewire ClaimInvestigation

4. To check if the process model is valid in FDL notation, switch to FDL
technology mode and click the blank area of the process in Process editor.

Certain constraints that are specific for FDL take effect in this mode. For details
of the constrains to FDL technology mode, refer to WebSphere Business
Integration Modeler information center.

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp?topic=/com.ibm.b
tools.help.modeler.doc/doc/reference/techmodes/fdl.html.

5. If there are any FDL-specific validation errors or warnings for the process, in
the Project tree, we can see the process name with error or warning symbols
attached. Figure 4-68 shows the same processes with different symbols in
different technology mode.

Figure 4-68 Appearance of the same project tree in different technology modes

Attention: You must click in the process editor of the open process to see the
errors specific to that process. Clicking a process in the project tree will not
alter the error view to a different process unless you open the process.

FDL technology mode

BPEL technology mode

error

warning

warning

warning

Operational technology mode
 Chapter 4. Business Process 137

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp?topic=/com.ibm.btools.help.modeler.doc/doc/reference/techmodes/fdl.html.

We can see the details for every error and warming in Error view. Figure 4-69
shows a screen shot for the warnings shown in Error view of
ClaimInvestigation process. For each error or warning, certain information is
listed:

– Description: a brief description of the error or warning.

– Element name: the element to which the error or warning belongs.

– Element type: the type of the element.

– Parent name: to which parent the element belongs.

– Patent location: where the parent is located.

– Error code: the error code is in WebSphere Business Integration Modeler
Information Center, where a detailed explanation of the error is provided.

– Profile: in which profile you can fix the problem.

We can sort the list by clicking the column title.

Figure 4-69 Error view for FDL export

6. By using a filter on the Error view, you can choose to view only errors that
relate to a specific set of model elements or that have a specific severity level.
To set a filter, click Filter options dialog, as shown in Figure 4-69.

7. Figure 4-70 on page 139 shows the window opened for you to set the filter
options for Error view. See what happens when you change the project
messages filter to Selected element and children and click the process in
the project tree.

8. Now change it back to Selected project.

filter options dialog
138 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-70 Set filter for Error View

9. We must correct any errors in the process before we are able to export it .
There are none. We can ignore the warnings and go ahead to export the
process.

Export process
To export the process, follow these steps:

1. Right-click the process name in Project Tree → Export → WebSphere MQ
Workflow (.fdl) option as shown in Figure 4-71 on page 140 → Next. Pick the
target directory that the process is exported to and make sure that
ClaimInvestigation process is selected. Click Finish.

If there is no error, the export is successful. You can find the exported file with
the name of the project and an *.fdl file extension. In our case, the exported file
name is ITSOLGI.fdl.

If there is any error for the export, follow the error message for appropriate
actions to fix it.
 Chapter 4. Business Process 139

Figure 4-71 WebSphere Business Integration Modeler export wizard

You can now import the file into WebSphere MQ Workflow Buildtime.

Elements mappings
In this section we show how to map the elements from WebSphere Business
Integration Modeler to WebSphere MQ Workflow.

Figure 4-72 shows the first part of the process mappings for WebSphere
Business Integration Modeler and shows the process mappings for WebSphere
MQ Workflow. The digits with red color indicate the one-to-one mappings.

Figure 4-72 Mappings for ClaimInvestigation: part 1(a) of 3 of the WBI Modeler

� Input of the process (1) is mapped to the Data source node (1).

� SelectReports (2) local task is mapped to the SelectReports (2) program
activity. A program with a randomly generated name is assigned to it. The
role requirement is mapped to Member of roles in the Staff2 tab of the
SelectReports’ properties.

� Decision (3) is mapped to the Decision (3) program activity, to which the
FMCINTERNALNOOP program is assigned.

1 2 3
4

5

6
7

140 Build a Business Process Solution Using Rational and WebSphere Tools

� The Output conditions (4) are mapped to the Transition conditions (4) from
the Decision to Map and Map2 activities respectively.

� Map:2 (5) is mapped to the Map (5) program activity. A program with a
randomly generated name is assigned to it. The Contents in the Description
of Map:2 is mapped to the Description field in the General tab of Map’s
properties.

� Map (6) is mapped to the Map (6) program activity. A program with a
randomly generated name is assigned to it.

� RequestExternalReports (7) local task is mapped to the
RequestExternalReports (7) program activity. Again a program with a
randomly generated name is assigned to it.

Figure 4-73 Mappings for ClaimInvestigation: part 1b of 3 of the WMQ Workflow

Figure 4-74 shows the second part of the process mappings in WebSphere
Business Integration Modeler and Figure 4-75 for WebSphere MQ Workflow. The
digits with red color indicate the one-to-one mappings.

Figure 4-74 Mappings for ClaimInvestigation: part 2(a) of 3 of the WBI Modeler

� Fork (8) is mapped to the Fork (8) program activity, to which the
FMCINTERNALNOOP program is assigned.

1

2 3

4

5

6

7

8
9

10
11
 Chapter 4. Business Process 141

� UpdateExternalReports (9) local task is mapped to UpdateExternalReports
(9) program activity. A program with a randomly generated name is assigned
to it. Note that there is no data connector to the next element.

� Merge (10) is mapped to the Merge2 (10) program activity, to which the
FMCINTERNALNOOP program is assigned. Merge2 takes two data inputs
and three control connectors. The condition to start it is when all incoming
connectors are true.

� Fork (11) is mapped to the Fork2 (11) program activity, to which the
FMCINTERNALNOOP program is assigned.

Figure 4-75 Mappings for ClaimInvestigation: part 2b of 3 of the WMQ Workflow

Figure 4-76 shows the last part of the process mappings for WebSphere
Business Integration Modeler and Figure 4-77 for WebSphere MQ Workflow. The
digits with red color indicate the one-to-one mappings.

Figure 4-76 Mappings for ClaimInvestigation: part 3a of 3 of the WBI Modeler

� SetClaimStat (12) is mapped to the SetClaimStat (12) program activity. A
program with a randomly generated name is assigned to it.

� The Merge (13) local task is mapped to the Merge (13) program activity, to
which the FMCINTERNALNOOP program is assigned. Merge takes one data

8 9

10 11

12

13

14

15
142 Build a Business Process Solution Using Rational and WebSphere Tools

input and two control connectors. The condition to start it is All incoming
connectors true.

� The Process output (14) activity is mapped to the Data sink node(11).

� The Stop node (15) is not imported as it is not supported by WebSphere MQ
Workflow.

Figure 4-77 Mappings for ClaimInvestigation: part 3b of 3 of the MQ Workflow

No deployment-related information has been generated by the export from
WebSphere Business Integration Modeler.

4.5.3 Export RequestExternalReports as a BPEL4WS process
The new RequestExternalReports business process will be executed in
WebSphere Business Integration Server Foundation. The IT specialist is
responsible for exporting the process as BPEL4WS. This task is not one
performed by the business analyst.

The IT specialist responsible for exporting the RequestExternalReports process
as BPEL should read chapter 5 of "BPEL4WS Business processes with
WebSphere Business Integration: Understanding, Modeling, Migrating",
SG24-6381. This chapter explains the mappings between WebSphere Business
Integration Modeler and BPEL4WS elements. Chapter 6 of the same book helps
you to understand the exported artifacts from WebSphere Business Integration
Modeler to BPEL4WS.

Validate process model
We check if the RequestExternalReports process is valid in BPEL notation
before the export. There turn out to be numerous warnings again which can be
ignored, and eight errors that need to be fixed.

12

13

14
 Chapter 4. Business Process 143

In WebSphere Business Integration Modeler, switch to BPEL technology mode
and open RequestExternalReports in the process editor. In this technology
mode, we see the BPEL-specific errors and warnings. When the process model
lacks some information that is mandatory for BPEL4WS, or the elements include
some objects or settings which are not supported in BPEL4WS, WebSphere
Business Integration Modeler lists all the problems with the BPEL. Similar to the
FDL technology mode, we must correct the errors before exporting the model,
but we can ignore the warnings.

There are certain best practices for BPEL mode validated with WebSphere
Business Integration Modeler Advanced Edition v5.1.1. Some of them are also
applied to FDL mode.

1. Ensure that each input criterion is associated with one and at most one output
criterion5. In other words, given an input criterion, there is one specific output
criterion that can be triggered. This corresponds to a WSDL operation, which
can have at most one output message defined. If you must associate an input
criterion with multiple output criteria, try to introduce a decision node to model
the exclusive branching logic.

There are four errors in RequestExternalReports process that are associated
with this.

These errors are due to the Input criteria of local tasks ManualSelectAssessor
and RequestAssessment not being associated with any output criteria. To
correct them, switch to Advanced user profile → select Advanced Output
Logic in Attributes view → click the Output criteria to associate with → click
the boxes next to the Input criteria. Both boxes should be selected
Figure 4-78 on page 145 shows the correct settings.

2. Repeat this for both ManualSelectAssessor and RequestAssessment and
save the process. By refiltering the error messages, we should be down to
five errors.

5 This also applies to FDL mode.

Tip: Make sure that RequestExternalReports is open with all changes
saved. Click an error message and the relevant element in the process
model is highlighted to show where the error lies.
144 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-78 Advanced output logic settings

3. Ensure that each process has only a single input criterion and a single output
criterion. You can check this by going to the specification tab of the Process
Editor. For example, to check if you have a single input criterion → Input
specification → Input Logic. Make sure you have only one input criterion
listed in the Input settings table list as shown in Figure 4-79.

Figure 4-79 Input criteria setting for process

4. For tasks and services, if you want WebSphere Business Integration Modeler
to generate a port type with multiple operations, define multiple input criteria
for the task or service. Each input criterion must be associated with one and
at most one output criterion.
 Chapter 4. Business Process 145

5. Ensure that the process model does not contain any downstream tasks
connected back to upstream tasks, which is permitted in WebSphere
Business Integration Modeler but not in BPEL. This also applies to FDL
mode. Use a while loop instead.

There is one error that belongs to this type in RequestExternalReports, which
is due to the output No of decision node Confirmed? is connected to the
input of ManualSelectAssessors as shown in Figure 4-80.

Figure 4-80 Downstream task connecting back to upstream task

To resolve this, we add a local repository to the diagram, and connect the
output No of decision node Confirmed? to the input of this local repository as
shown in Figure 4-81. A dummy data type of String is added.

Figure 4-81 Modified part of RequestExternalReports process

We change the Input:2 of ManualSelectAssessors to take data from
Repository. (Save the process before changing ManualSelectAssessors) The
complete settings for it is shown in Figure 4-82.
146 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-82 Input settings for ManualSelectAssessor local task

6. Ensure that the minimum and maximum number of items needed have the
same values for the connected object input and output between two nodes.
This also applies to FDL mode. For example if:

– An object output of Task1 is connected to an object input of Task2.

– The object output of Task1 has the minimum number of items needed set
to 3 and the maximum number of items needed set to 5.

– The minimum number of items needed on the object input of Task2 should
be set to 3 and the maximum number of items needed should be set to 5.
Otherwise, incorrect BPEL will be generated.

7. For a decision node, you should define a condition for each of the decision
output branches. This also applies to FDL mode.

There are four errors related to this type, which are due to the two decision
nodes’s transition conditions not being set. To correct this, we add a dummy
data item of type String to the decisions and define the conditions using
Expression Builder. The steps are:

a. Make sure you are in advanced mode and the RequestExternalReports
process has been saved.
 Chapter 4. Business Process 147

b. Select Any Assessor? → Attributes View → Outputs → Select an
output → Associated data → String.

c. Select Output Branches → Yes → Details → Contents → Output:2 (or
whatever the name is) → Edit Expression (see Figure 4-83).

Figure 4-83 Setting the conditions to output branches of decision nodes

d. In the Expression Editor window that opens, select First term →
Modeling artifact → Navigate to and select the Any Assessor Input →
Operator → Is equal to → Second term → Text → Second term
details → Yes → OK. SeeFigure 4-84 on page 149.
148 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 4-84 Using Expression Builder to build condition

8. You might have some other errors to correct. Perhaps some of the input and
output connectors have no associated data? Look for ungreyed input or
output chevrons in the input and output criteria. Convert them to string and
reconnect the local elements. See Figure 4-85.

Figure 4-85 Further errors needing correction before exporting BPEL

9. When you have associated String with all the connections you might now see
the error DBL110014E - mismatched minimum and maximum number of items.
Modify the input to RequestAvailability to have a minimum and maximum
number of items needed to 2.

10.When you have saved all the changes, perform a static analysis again to
make sure all the connections are sensible.

Some WebSphere Business Integration Modeler model elements cannot be
transformed to BPEL, either because there is no equivalent construct in BPEL or
because the semantics of similar constructs in BPEL are different. They are
Notification broadcaster, Notification receiver, Observer, Timer, For loop,
Do-while loop and Global repository. We cannot select these elements in BPEL
mode.
 Chapter 4. Business Process 149

Export process
After correcting all the errors, save the process. If there is no error, we can export
the process into BPEL even if there are some warnings remained.

1. Right-click RequestExternalReports process in the project tree, and select
Export.

2. In the export wizard, select WebSphere Business Integration Server
Foundation V5.1 (BPEL, WSDL, XSD) as shown in Figure 4-86 and click
Next.

Figure 4-86 WebSphere Business Integration Modeler export wizard 1

3. In the next window, specify the target directory by clicking Browse. Select
Export Specific objects and expand the project tree. Select
RequestExternalReports process → OK.

Figure 4-87 WebSphere Business Integration Modeler export wizard 2
150 Build a Business Process Solution Using Rational and WebSphere Tools

4. Click Next to specify the process execution mode. Select Long-running
(receive/reply) → Finish.

5. If there is any error for the export, follow the error message for appropriate
actions to fix it.

You can now import the files into WebSphere Studio Application Development
Integration Edition for development. See Chapter 10, “Build the Request External
Reports process” on page 377.

4.6 Summary
In this chapter we showed you how to use WebSphere Business Integration
Modeler to model a business process, simulate it, and export FDL and BPEL to
start the implementation. The next step is to hand over the project to IT architect
to design the system and decide the solution architecture using Rational tools.

Note: A copy of the exported BPEL is in the .\SG24-6636\Modeler\BPEL
Export directory. There is also a zipped project containing the process after
the BPEL fixes for you to import and examine in
.\SG24-6636\Modeler\Projects\PostBPEL.zip
 Chapter 4. Business Process 151

152 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 5. System Architecture

This chapter describes the system architecture that provides the platform for the
External Claim Assessor solution.

The architecture and design of a solution can be thought of as being developed
through a series of progressive elaborations, rather than in discrete steps. For
your readability, we split the architectural work into two chapters. This chapter
describes the overall system architecture. It forms the platform for the solution
architecture described in Chapter 6.

We demonstrate how to use the Patterns for e-business to guide us through the
steps to select a reference architecture. In the first step, Collating Requirements,
the technique shows how the process model developed by the Business Analyst
can be incorporated into the UML model being developed by the IT architect as
part of the process of understanding business requirements.

Chapter 6, “Solution Architecture” on page 187 looks at the solution design and
how to develop the solution architecture.

5

© Copyright IBM Corp. 2006. All rights reserved. 153

5.1 Selecting the architectural patterns
We are following the steps in Figure 3-10 on page 60 to select the appropriate
architectural pattern for the external claim assessor solution. This is quite a
lengthy process. To help you navigate the process, here is a summary of the
steps:

� Step 0: Collate requirements.

In the these preliminary steps, the solution architect collates the requirements
that have been captured in the workshops sessions with the business analyst.
Using the integration of WebSphere Business Integration Modeler with
Rational Software Architect as much as possible, the solution architect starts
to create the elements of the solution, such as use cases, roles and
components, that will be used in the architectural model.

� Step 1: Select a Business Integration Pattern.

In the first step we select the kind of business integration patterns we will use.
This has a major affect on the solution architecture. Are we going to want a
data or process focused integration? Is collaboration between users a
requirement? Do we need to include partner applications in the solution?

� Step 2: Select the application pattern.

In the next step we consider the business integration patterns we have
selected (we end up selecting two) and for each select an application pattern.
To do this we construct a collaboration diagram to describe the as-is system,
and using the new components and use cases, construct the to-be
collaboration diagram with the components split between the two integration
patterns we chose. As there is overlap between the integration patterns there
is flexibility about which components to include in each application pattern.

� Step 3: Select and merge the runtime patterns.

The e-business patterns provides both service-oriented and generic styles of
the runtime patterns for each of the application patterns. We now map our
application components onto the pattern components. Again there are
choices to be made, steered by factors such as the IT strategy and
constraints. In the end, we end up with a hybrid solution.

� Step 4: Apply the product mappings.

Finally, we apply the product mappings to the runtime pattern. This becomes
our reference architecture which we capture by creating a deployment
diagram in Rational Software Architect. The reference architecture has some
major uses:

– It is a starting point for creating the physical environments on which we are
going to build, test, and run the solution.
154 Build a Business Process Solution Using Rational and WebSphere Tools

– It is a contract between the solution architect and the Infrastructure
architect which defines how the solution will be deployed.

– It details how the solution collaboration is distributed across different
devices and therefore which IT specialists and tools are required to build
the solution. In deployment diagrams, the term device refers to a type of
node that represents a physical computation resource in a system, such
as an application server.

– It forms the skeleton for the solution architect to start the next phase of the
solution refinement: to define the interactions between the components
and their precise interfaces so that the IT specialists can start
implementing their components.

Now we can return to doing the work. The preliminary step, say call it Step 0, is
to collect together requirements and examine the pieces that need to be
integrated together to build the external claim assessor solution.

5.2 Step 0: Collating requirements
The solution architect worked with the business analyst in the workshops to
gather requirements and define the as-is and to-be claims investigation
processes. (see Section 3.2.2, “Responsibilities and contract-based
development” on page 52). The outputs from the workshop provide the
requirements for the system architect.

Although we did not use Rational Requisite Pro to capture the requirements and
integrate them with the architectural model in Rational Software Architect, it is
something to consider doing. It is especially useful if tracking requirements is one
of the goals of the IT director. The sort of answers that Requisite Pro can
provide, if it is used with other change management tools such as ClearQuest
are:

� Which requirements are being implemented in which solution?

We can identify who raised a requirement and perhaps involve them, or give
them a report on what we are doing about their requirement.

� What is the impact of dropping a capability from a solution?

a. On other solutions that may depend on it
b. On the design and implementation of a solution
c. What parts of the implementation we can now drop?

� If the IT Infrastructure manager decides to modify the upgrade plan, what is
the impact on the solutions that are under development?
 Chapter 5. System Architecture 155

a. What were the assumptions behind the upgrade plan upon which we
decided?

b. Are these assumptions still pertinent?

c. How will they affect the new plan?

We collected the requirements together as a presentation which was reviewed
with the executive sponsors and other team members. The following sections
summarize the requirements and show how the solution architect can use the
integration of WebSphere Business Integration Modeler and Rational Software
Architect to build the information that is needed to develop a reference
architecture for the design of the solution.

5.2.1 Business goals
See Section 1.2, “Business goals” for a full description of LGI’s business goals.
Here is a brief summary:

� Reduce administration costs by minimizing manual activities involved in
managing claims assessment.

– Automate management of claims assessment.

� Increase customer satisfaction by reducing administrative delays on claims
queries.

– Allow monitoring and management of the entire claims process including
activities performed by external claim assessors.

� Maximize return on development investment.
– Minimize impact on existing systems
– Ease of development matching existing skills
– Fast identification and resolution of business processing delays

5.2.2 Business use cases
There were a number of business use cases identified in the requirements
analysis of the claims process. We can use Rational Software Architect to
automatically generate a visualization of the uses case derived from the
business process model created by the analyst using WebSphere Business
Integration Modeler.

This is illustrated in Figure 5-1 on page 157.
156 Build a Business Process Solution Using Rational and WebSphere Tools

.

Figure 5-1 External claim assessor use cases

Before looking at how to use Rational Software Architect to construct this
diagram, we look at how Rational Software Architect constructs use cases from
the business process model.

Mapping the business process model to use cases
The business process model is mapped to a variety of UML2 artifacts. At an
abstract level, each activity is represented as a collaboration. There are two
activities in the External Claim Assessor solution, which we can show as two
collaborations using Rational Software Architect in Figure 5-2 and Figure 5-3 on
page 158:

Figure 5-2 ClaimInvestigation_TOBE collaboration

The Claim handler was the only role resource the Business Analyst used in the
high level ClaimInvestigation_TOBE process. There were no automatic activities.
 Chapter 5. System Architecture 157

Figure 5-3 RequestExternalReports collaboration

On the other hand, the business analyst identified a number roles played by
automatic activities in the RequestExternalReports process in addition to the
manual role played by the Claim handler. The analyst regarded the Assessor as
an automatic activity.

From these collaborations, there are therefore only two use cases involving a
manual player: the Claim handler performing the ClaimInvestigation_TOBE
process, and the Claim handler working as part of the RequestExternalReports
activity.

Visualizing the use cases in Rational Software Architect
There are several ways to visualize the Claim handler in Rational Software
Architect and produce diagrams such as Figure 5-1 on page 157. We look at two
ways only here.

To reference to WebSphere Business Integration Modeler model from Rational
Software Architect, follow these steps1:

1. Import the WebSphere Business Integration Modeler project in to Rational
Software Architect. Use either the process you have developed or one of the

1 There is more information about the integration of WebSphere Business Integration Modeler with
Rational Software Architect in Appendix B, “Integration considerations” on page 505.
158 Build a Business Process Solution Using Rational and WebSphere Tools

processes supplied in the additional materials for this redbook. Because
Rational Software Architect references the Modeler workspace, you first need
to have a Modeler workspace available with the project you want to import
into Rational Software Architect. Then, import the ITSOLGI project from the
Modeler workspace. Suppose you have a workspace called
ExternalAssessors, and within it a project called ITSOLGI:

File → Import → Existing WBI Modeler 5.1 project into Workspace →
Next → Browse to WebSphere Business Integration Modeler workspace →
Select .\SG24-6636\Modeler\Workspaces\Pre Bpel\ITSOLGI → OK →
Finish.

2. Double-click resources.xmi to see the WebSphere Business Integration
Modeler model.

– As the first option to produce a use case diagram, simply browse:

i. In the Model Explorer (see Figure 5-5 on page 161) Open
resources.xmi → ITSOLGI → RootProcessModel → Claim →
Claim_TOBE.

ii. Right-click the Claim handler → Visualize → Explore in Browse
diagram.

– Secondly, create a use case diagram as part of the architect’s model. :

i. Create a new project to store the architect’s solution architecture in
File → New Project → UML project → ITSOLGI Architecture.

ii. Select the Blank Model template and deselect Create a default
diagram in the new model → Finish.

iii. Right-click Blank Model → Refactor → Rename and type Claim
Investigation.

Important: Never modify and save the resources.xmi model. It is a
read only file. If you save a version of it as a new UML2 model (.emx
file) with extensions or modifications, you lose the ability to update
dynamically from WebSphere Business Integration Modeler. These
instructions enable you to build model extensions and diagrams based
on your WebSphere Business Integration Modeler model.

Check that you are not accidently adding elements to the resources.xmi
file in the WebSphere Business Integration Modeler model. If the UML
model editor tab resources.xmi is starred, you have inadvertently made
a change to the model which you will not be able to save. To clean up,
close the WebSphere Business Integration Modeler project in Rational
Software Architect by right clicking → Close. Then reopen it and fix
any problems.
 Chapter 5. System Architecture 159

iv. Right-click Claim Investigation → Add Diagram → Use Case
Diagram and name it Claim Investigation.

At this point your Model Explorer should look like Figure 5-5 on page 161.

3. Populate the use case diagram to show the relationships you want to
document.

a. Drag the Claim handler from the Claim_TOBE package onto the Claim
Investigation package editor.

b. Right-click the Claim handler and select Filters → Show related
elements → Show All Relationships [Default] → OK (see Figure 5-4).

Figure 5-4 Showing the Claim handler’s relationships

c. Tidy up the diagram. A good practice is to have the Claim handler in the
top left corner because it is natural to read use cases top to bottom, left to
right starting with the role player.
160 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 5-5 ITSOLGI Model Explorer

The use cases themselves are not stored in Rational Software Architect. You can
use Rational Requisite Pro to manage the use case documents.

Use Case 1: ClaimInvestigation_TOBE
Role: Claim handler

1. Select policy and check policy coverage.
2. Enter initial customer estimate of damage cost and generate claim reserve.
3. Check previous claim history → Alert → Claims exceeding $30000.
4. Send externally for detailed Assessment of damage (see Use Case 2).
5. Check third-party and Assessor report.
6. Negotiate Payment with Customer.
7. Initiate Payment or Repair.
 Chapter 5. System Architecture 161

Use Case 2: RequestExternalReports
Role: Claim handler

1. Claim handler logs onto Business Process Manager.
2. Selects claim awaiting assessment.
3. Initiates automated assessment process.
4. Identifies suitable assessor by post code and vehicle type.
5. Send Requests for availability.
6. Await confirmation requests.
7. Select assessor.
8. Request Assessment.
9. Wait to Receive assessment report.
10.Return assessment report back to Claim handler.

5.2.3 Roles
See 1.4, “Roles” on page 10 for a full description of all the roles. Here is a brief
summary:

� LGI roles

– Claim handler: Manages claims
– Claims Supervisor: Has discretion to deal with exceptional claims
– Claims Analyst: Monitors overall claims process for cost performance

� External roles

– Assessor: Assessing Claim

You can visualize how these roles are involved in the claims process model by
using the Model Explorer. To draw a diagram showing the roles in more detail in
Rational Software Architect, create a freeform diagram in the ITSOLGI
Architecture project. Call it Manual Roles and drag the selected roles from the
WebSphere Business Integration Modeler model (in Model Explorer →
ITSOLGI → RootResourceModel → Resources → Roles). Use Ctrl-click to
select multiple roles and left-click to drag the roles onto the diagram as in
Figure 5-6 on page 163. This diagram not only shows some of the roles we
defined, but because the Business Analyst identified what operations the roles
performed in, we also have a list of operations in which each role is involved. The
roles are conceptualized as BusinessWorkers by the WebSphere Business
Integration Modeler integration. If you look at the properties of one these roles
you can see it is a stereotype of an interface.
162 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 5-6 Roles and the operations in ClaimInvestigation_TOBE

Some of the roles in the original requirements statement were not modeled (such
as Claim Analyst) and are missing. There are other roles that we used to model
automatic activities which we have omitted here.

5.2.4 Components
The process model created by the business analyst defines the activities, roles
and resources, including both manual and automatic activities. The solution
architect is responsible for defining the services and interfaces to be used to
automate the process. The architect can use the interfaces derived from the
roles responsible for the automated activities in the process model to define the
components that are required in the solution.

To create the new components in the model, follow these steps:

1. Open the ITSO Architecture project and create a new Claim Investigation
Component Diagram.

2. Drag the Assessor, Assessor Management, Business Rules Engine and
Document Handler onto the component diagram.

3. Now create six new components called AssessorManagement,
BusinessRulesEngine, AssessorSystem, ClaimsSystem,
AssessorAutomation and ClaimsWorkflow. You can do this on the diagram
directly by right-click → Add UML → Component.

4. Wire up each interface to its corresponding component by creating an
implementation relationship. Hover over a component and click the small
arrow pointing at a square box. Drag it to its corresponding interface and
release. Select the Create New Implementation. Wire up the
AssessorAutomation and ClaimsWorkflow components as shown in
Figure 5-7 on page 164. We can color the components to match the Pattern
for e-business scheme and show the Assessor System is part of a different
organization.
 Chapter 5. System Architecture 163

Figure 5-7 Claims Investigation component diagram

When we did the Patter for e-business selection, described later in this chapter,
we discovered we needed to add another component to this diagram.

The AssessorSystem is not part of LGI and needs a proxy component we called
the proxyAssessorSystem to connect to the AssessorSystem which will mediate
between LGI and the assessors. We give this new component a different
interface from that exposed by the Assessor System. The interfaces cannot be
the same, so it is not a proxy in the sense often understood, It cannot be
generated automatically from the real AssessorSystem interface. For example,
the Request Availability activity asks for the availability of all the eligible
assessors, while each assessor receives an individual request for their
availability. Of course, the requests to the assessors go to different destinations
over different transport protocols.

We add the proxyAssessorSystem and other details from the completed
architecture to the diagrams. Although the component architecture was not
constructed until we did the runtime mappings step of the e-business patterns
method described in 5.5, “Step 3: Select and merge the runtime patterns” on
page 176.

It is unlikely the architect would arrive at the final component model that gets
implemented at this early requirements gathering stage. Nonetheless,
understanding what components the solution is going to need is a useful way of
testing whether we really have sufficiently understood the scope of the problem,
and whether we need to probe for more requirements.
164 Build a Business Process Solution Using Rational and WebSphere Tools

One of the virtues of Rational Software Architect is that it makes it easy to create
and modify models that can be analyzed and criticized, until one arrives at a
picture that all members of the team will agree upon.

To complete the component model we followed these steps:

1. The manual tasks that are the responsibility of the Claim handler have been
added and divided between the claims workflow and automated assessor
process engines.

2. Both the provided and required interfaces have been added to the
components.

The completed component model diagram is illustrated in Figure 5-8.

Figure 5-8 Completed component diagram for ClaimInvestigation_TOBE

The interactions and interfaces of the components will be refined when we look
at interactions in Chapter 6, “Solution Architecture” on page 187. At this stage of
the architectural refinement, the systems architect needs to briefly describe what
 Chapter 5. System Architecture 165

each component does in order to make the best decisions about what
architectural patterns to employ.

Existing Components
The existing components are to be modified as little as possible in producing he
new solution.

LGI Assessor Management System
This system provides details of each assessor and how they communicate with
LGI.

It has the following operations:

� Identify Assessor

Given a vehicle type and post code of the location of the vehicle to be
assessed, Identify assessor returns a list of potential assessors and how to
get in contact with them

� Load/Register Assessor2

� Ranking Assessor2

� Record Selected Assessor2

Stores the selected assessor and returns the Claim id and Assessor details.

Claims Workflow
This the existing manual process. The sub-task we are interested in is the claim
investigation. A Claim handler selects a claim to work on, gets the external
reports and finishes by setting the claim status preparatory to judging the claim.
The claim investigation has the following activities:

� Select Report2

The Claim handler selects a claim to work on from their worklist.

� RequestExternalReports

This is now the automated process which calls the automated assessor
subprocess to perform a claim investigation and return the assessors report

� Update External Reports2

The Claim handler may gather some other external reports

� SetClaimStatus2

Finally sets the claim status as ready for the claim to be judged.

2 These operations have not been included in this scenario.
166 Build a Business Process Solution Using Rational and WebSphere Tools

Document Management System
The document management system holds all the reports that are generated in
the claims and policy process. The only operation we are interested in is:

� Store the assessment report

New and changed components
The Enterprise service bus is built from existing WebSphere MQSeries and Web
Services Gateway components to provide a service based transport to the
components in the solution.

The Business Rules Engine (BRE) is a new component. We have not focused on
the uses and appropriate technology for the BRE. The goal for this component is
to improve customer satisfaction with the claims process by better managing the
relationship with the external claim assessor.

Enterprise Service Bus
The Enterprise Service Bus provides a means to communicate safely and
securely with assessors in a variety of ways to suit their connectivity capabilities.
Communications are loosely coupled and can be initiated at either end.

� ProxyRequestAvailability

Given a list of assessors and claim details send a request to each assessor
available to do the assessment asking for their availability. The request has to
be sent using the communication method agreed with the assessor (e-mail,
EDI, Web service, Browser page, and so on).

� ProxyRequest Assessment

Given the chosen assessor and the claim details request, an assessment
report store an acknowledgement to the request.

� ProxyAssessorSendReport

Receive the assessors report and store it.

Business Rules Engine
This is a new component to allow customization of the assessment process
depending on business goals. Its operations are:

� Choose a response time for an assessment, based on the type of policy a
client holds.

� Apply business rules to select an assessor from a list of assessors
 Chapter 5. System Architecture 167

5.2.5 Organization and architectural constraints
See 1.3, “IT goals and constraints” on page 9 for a full description of IT goals and
constraints. We briefly, summarize them here:

� IT Policies

– Use open standards.
– Maintain existing channels.
– Build common infrastructure for LGI and DirectCar.
– Reuse existing applications.
– House the new infrastructure with LGI.

� Corporate Infrastructure constraints

– New applications must use the corporate LDAP directory for staffing roles
and definitions

� Be able to perform manual assessments to deal with special cases.

� Support different assessors’ systems, including browser access, e-mail, EDI
and Web services over http: and JMS.

5.2.6 Limitations
There are a number solution considerations we omitted because of time
limitations.

� Data Modeling

We have simplified the use of data in the solution. In practice data modeling,
using an industry standard data model such as ACCORD from the insurance
industry, is a very significant part of the business analyst’s effort and creates
new challenges for the whole development team.

� Security

We omitted security considerations throughout the solution.

� Directory

We did not implement a solution wide staffing directory.

� User Interface

We did not focus on the user interface. However there was an integration
issue: the integration of worklists from different process engines.

WebSphere Business Integration Server Foundation do not share a worklists,
and without further work, the Claim handler would need to use two windows
to handle both worklists. Also, the Claim handler would need to work out the
correspondence between the lists.
168 Build a Business Process Solution Using Rational and WebSphere Tools

Both process engines have a worklist API, and one style of integration would
be to write a worklist integration component to present a merged worklist to
the user interface.

An alternative style which is more economical, but not as satisfactory as a full
integration, is to use the built-in portal interfaces to both the Workflow and
Choreographer clients, to display both worklists in the same window.

� We did not implement any business event monitoring to track the progress of
insurance claims.

� We did not implement any system management for deployment or monitoring.

We have limited the style of connection to the external assessor to SOAP/Http:.
In practice, the products used for the ESB gateway would need to cater for at
least EDI, e-mail and Browser access.

5.3 Step 1: Select a Business Integration Pattern
Now that the architect has organized the requirements and understood the
nature and scope of the solution, The first step in building the Patterns for
e-business approach is to select a Business Integration pattern. The choice
comes down to two patterns to consider:

1. Extended Enterprise

The criteria for the Extended Enterprise pattern are,

– The business process needs to be integrated with existing business
systems and information.

– The business processes need to integrate with processes and information
that exist at partner organizations.

For further information, see:

http://www-106.ibm.com/developerworks/patterns/b2bi/info.html

2. Application Integration

The criteria for the Application integration pattern are

– The business process needs to be integrated with existing business
systems and information.

– The business processes need to integrate with processes and information
that exist at partner organizations.

– The business activity has a need to aggregate, organize, and present
information from various sources within and outside of the organization

For further information, see:
 Chapter 5. System Architecture 169

http://www-106.ibm.com/developerworks/patterns/b2bi/info.html

http://www-106.ibm.com/developerworks/patterns/application/info.html

You can see there is overlap between the two patterns in the italicized bullets in
Figure 5-9 and Figure 5-10 on page 171. Both patterns are appropriate. Should
we continue with just one, the other, or both? There is some more guidance on
the Patterns for e-business web site. Again using italics to highlight the overlaps.

Figure 5-9 Selection of Extended Entity pattern elements

� Business Entities, which typically:
– Are programs, applications or databases that exist within an organization
– Access and connect to other Business entities across the network

� A Network which:

– Is based on TCP/IP and other Internet technologies
– Can be a dedicated Wide Area Network (WAN) connection

� Business Rules that:

– Manage the integration between the Business entities
– Describe Trading Partner® Agreements
– Use Workflow rules to determine the sequence of steps and the data flow that

needs to be used to facilitate the integration. *
These rules:
• Describe the sequence of steps that a message needs to go through before

being transferred to the other business entity and
• Specify how and where the message should be delivered

– Use Transformation Rules to specify format and protocol transformations that
need to be applied to messages that flow between the business entities

� A set of interactions that include the execution of a jointly-agreed business process
170 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-106.ibm.com/developerworks/patterns/application/info.html

Figure 5-10 Selection of Application Integration pattern elements

Rather than pick one of these patterns at this stage, we continue with both and
resolve any overlaps when we do the runtime mapping in 5.5, “Step 3: Select and
merge the runtime patterns” on page 176.

5.4 Step 2: Select the application pattern
We have two business integration patterns to refine, the Extended Enterprise
and Application Integration patterns. The Extended Enterprise pattern will be
most useful in designing the architecture for interacting with the assessors. The
Application Integration pattern will be useful integrating the new external claim
assessor solution with the existing claims workflow, assessor management, and
claim systems.

5.4.1 Collaborations
At some point, it is useful to draw the collaborations between the solution
components we have identified. This helps in the analysis of what application
integration patterns to choose, and then how to map the solution components to
the components in the runtime mapping. Choosing the application pattern,

� Business applications and data that need to communicate, interact and integrate
with other business applications and data that exists within the organization or in
business partner organizations

� A network, which

– Is based on TCP/IP and other Internet technologies
– Can be a dedicated LAN connection or WAN connection

� Other business applications and data which can be:

– Custom developed systems (old and new)
– Enterprise Resource Planning systems and other Packaged applications such

as SAP, BAAN and PeopleSoft
– Databases

� Application Integration services that include:

– Protocol adapters
– Message handlers
– Data transformation
– Decomposition/Re-composition
– Routing/Navigation
– State management
– Security
– Local business logic
– (Business) unit-of-work management
 Chapter 5. System Architecture 171

deciding where different business integration patterns overlap, and mapping the
solution components to the runtime components, calls for discussion and
judgement. To promote discussion, the work is best done in a workshop with
some of the participants we identified in Section 3.2.1, “Roles and
responsibilities” on page 46. The understanding achieved between the
participants is as important as the answer that emerges.

We use Patterns for e-business style for drawing the collaborations of the
existing and new claim system use the to-be diagram.

Referring back to Figure 2-6 on page 21, the as-is assessment process is shown
in Figure 5-11.

Figure 5-11 Manually requesting assessments reports from external assessors

In the [P4EB] style, leaving out the applications upstream of the claim system,
the as-is system becomes Figure 5-12

:

Figure 5-12 [P4EB] ClaimInvestigation_ASIS collaboration
172 Build a Business Process Solution Using Rational and WebSphere Tools

The vertical dashed lines denote domains or governance areas. Applications are
shown as square boxes, and those which cannot be altered are given heavy
borders.

Figure 5-13 shows the Extended Enterprise and Application Integration patterns
superimposed on the to-be system.

Figure 5-13 [P4EB] ClaimInvestigation_TOBE collaboration

We now need to choose two application patterns, one for the Extended
Enterprise business integration pattern and the other for the Application
Integration business integration pattern.

5.4.2 Application Patterns for the Extended Enterprise
The focus of the Extended Enterprise part of the solution is to communicate with
the external assessors. Figure 5-14 on page 174 shows the business drivers
from which we have chosen the Exposed Broker application pattern. Notice the
outlines around that column.
 Chapter 5. System Architecture 173

Figure 5-14 Selecting the exposed broker application pattern3.

The Exposed broker application pattern is illustrated in Figure 5-15.

Figure 5-15 Exposed Broker application pattern

The key drivers behind the choice of this pattern are:

1. Process management will be performed in the application integration pattern
2. Dynamic distribution of messages to send messages to multiple assessors

3 This chart is taken from
http://www-106.ibm.com/developerworks/patterns/b2bi/select-application-topology.html.
There is also a set of IT drivers which reinforces the decision to go for an exposed broker pattern.
174 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-106.ibm.com/developerworks/patterns/b2bi/select-application-topology.html

3. Need to recompose replies solicited from multiple assessors back into a list of
possible assessors to perform the accident assessment

4. One-way and two-way message flows

Quoting from the Patterns for e-business Web site, this pattern fits our needs
very well:

The primary business driver for selecting this application pattern allows one
application to interact with one or more of multiple partner applications
across organization boundaries. Using a hub-and-spoke architecture instead
of a point-to-point architecture allows for the seamless integration of
applications while minimizing the complexity. A request for information can
be routed to one of many targets or simultaneously to multiple targets. The
resulting request message can be decomposed into multiple request
messages, and the reply messages then recomposed into a single reply
message using appropriate recomposition rules.

This externalization of routing, decomposition, and recomposition rules from
individual source and target applications increases the maintainability and
flexibility and reduces the enterprise wide integration complexity.

The primary IT driver for selecting this application pattern allows loose
coupling of clients and services with minimum modification to each. The
solution should allow for multiple transmission protocols to be used and for
transformation of protocols between client and service.

5.4.3 Application patterns for Application Integration
Looking at the business drivers for the application integration patterns in
Figure 5-17 it is clear that to support human interaction we need to choose the
Parallel Workflow variation on the Parallel process pattern.

Figure 5-16 Parallel Workflow variation application integration pattern
 Chapter 5. System Architecture 175

Figure 5-17 Selecting the Parallel workflow variation application pattern

The pattern is illustrated in Figure 5-16 on page 175.

The key criteria for choosing this pattern are:

1. Support human interaction.
2. Run parallel executions of portions of the process flow to speed execution.
3. Support long running processes with transactional recoverability.

5.5 Step 3: Select and merge the runtime patterns
In this section we describe the runtime patterns for the two application patterns
we have chosen, merge them, and map the application components onto the
runtime components.

The IT strategy directs us to go down an open standards approach, and we have
decided to adopt a Service Oriented Architect (SOA) runtime. Each of the

Note: Many of the other criteria overlap with the exposed broker pattern we
have chosen to use to connect LGI to the assessors, so we can expect that
there will be cases where we can implement some function in either one or the
other of the components introduced by these design patterns.
176 Build a Business Process Solution Using Rational and WebSphere Tools

Exposed Broker and Parallel Workflow application patterns has an SOA runtime
variation as illustrated in Figure 5-18 and Figure 5-19.

Figure 5-18 [SOA] Application Integration::Parallel Workflow variation::Runtime pattern

Figure 5-19 [SOA]Extended Enterprise::Exposed Broker::Runtime pattern

5.5.1 Proposal 1: Broker focussed integration pattern
Our first architectural proposal combines these two runtime patterns using the
broker to connect all the components together. This is shown in Figure 5-20 on
page 178 below. To avoid clutter, we are drawing only one assessor and Claim
 Chapter 5. System Architecture 177

handler in these diagrams. Clearly, there are many assessors and Claim
handlers.

We have deployed the new assessor automation system on a new process
engine, and minimized changes to the existing Claims Workflow engine. The
services we require are all running in an application server environment. The
services that manage the assessors (the Assessor Proxy component) are hosted
in the ESB gateway and all the components are connected by a common service
bus that connects the two integration patterns together.

Figure 5-20 Broker focussed combination of application integration patterns

This architecture has a number of advantages when you consider the skills and
infrastructure LGI already has:

� LGI are very familiar with the implementation of a message bus and have the
skills to evolve their message bus into to a service bus.

� Having all the services connected through the ESB is appealing from the
perspective of manageability, governance and reusability. The ESB is a cross
enterprise resource. Connecting services directly to the applications that first
require them may lead to duplication and lack of control.

� The technology used to implement the hub of the ESB (WebSphere Business
Integration Message Broker) has proven very effective at overcoming
integration problems revealed when connecting different components
together. Issues like incompatible protocols, different levels of application
data structure, and so on, can be overcome by writing message flows, or
mediations, in the broker.
178 Build a Business Process Solution Using Rational and WebSphere Tools

� The loosely coupled style of connection implemented by the ESB has proven
valuable both in decoupling development teams.

This solution met some criticism from the team concerning the amount of
additional effort required to implement routing the connections from the Assessor
Automation process engine through the ESB to its services and then back to the
Assessor Automation process engine. With LGI’s ESB running primarily on
WebSphere Business Integration Message Broker there is no common tool to
make these connections. Whereas if a direct connection model is used between
the Assessor Automation process engine and those of its services that are
running as EJBs, then the WebSphere Studio Application Development
Integration Edition tool will generate the service connections as well as
implement the process engine.

5.5.2 Proposal 2: Process focused integration pattern
We changed the runtime pattern to that illustrated in Figure 5-21, which has
direct point to point connections with the process engine

.

Figure 5-21 Parallel Process application pattern::Runtime pattern

Applying this pattern led to the second proposal shown in Figure 5-22 on
page 180. It uses direct point-to-point connections between the Assessor
Automation system and the services it requires. It can use Web services for
these connections, but the services are addressed directly rather than through a
bus.
 Chapter 5. System Architecture 179

Figure 5-22 Process focussed combination of application integration patterns

There are pros and cons of both approaches. Which one we choose will be
strongly influenced by practical considerations such as the current skills, current
IT infrastructure architecture, and the amount of change involved for either
approach. As discussed in our case, a major influence on the choice was the
tooling to build the solution that lead us to choose the process focused solution.
A further factor was there is a supportpac to connect the WebSphere MQ
Workflow server that is running the claims workflow with the WebSphere
Business Integration Server Foundation server that will be running the Assessor
Automation system which should make that integration relatively easy.

5.6 Step 4: Apply product mappings
After reviewing Runtime patterns, we now map the logical nodes defined in the
runtime pattern to specific products which implement the runtime solution design
on a selected platform. The product mapping identifies the platform, software
product name, and version numbers as well. Consider the following issues when
deciding on a platform to host your e-business application:
180 Build a Business Process Solution Using Rational and WebSphere Tools

5.6.1 Existing systems and platform investments
Figure 2-12 on page 25 shows the complete existing IT infrastructure and tools
used to build the current claim system. The significant highlights are:

� The merged claims workflow runs on WebSphere MQ Workflow and
DirectCar has a WebSphere Application Server Enterprise process engine.

� The ESB runs on WebSphere MQSeries and WebSphere Business
Integration Message Broker with Web Services Gateway to support two
existing Web services connections to external suppliers.

� The Web front end and some existing claims applications run as EJBs on
WebSphere Application Server.

5.6.2 Available customer and developer skills
LGI have considerable WebSphere MQSeries and WebSphere Application
Server skills. They have built point to point Web service applications and EJB
applications. They have built business processes using WebSphere Business
Integration Modeler 4.3.4 (the existing Holosofx product acquired by IBM) and
run process on WebSphere MQ Workflow.

5.6.3 Customer choice
LGI wants to develop more applications around open standards such as Java 2
Enterprise Edition (J2EE), Web services and BPEL. In particular, they want to
use this project to assess the tools and run time for a model-driven development
approach using UML and BPEL. See 1.3, “IT goals and constraints” on page 9.

� The platform chosen should fit into the customer's environment and ensure
quality of service, such as scalability and reliability, so that the solution can
grow along with the e-business.

– The claims handling application does not demand such high performance
as the policy application, which is responsible for winning new business.
The business analyst has performed some simulations that can be used to
estimate the size and numbers of servers that are required after some
performance measurements have been done.

– LGI has established a reliable messaging backbone for their ESB, and
want to use it for asynchronous flows to improve reliability. They want to
use asynchronous interactions where responses are delayed and where
connections are made outside their IT infrastructure to improve availability
and to reduce the coupling of LGI processes on the availability of
assessors applications.
 Chapter 5. System Architecture 181

5.6.4 Product Mappings
Figure 5-23 summarizes the product mapping we chose.

Figure 5-23 External Claim Assessor::Product Mapping

Assessor Systems
We will implement one Assessor system as an EJB running on WebSphere
Application Server. The assessors responsibilities are:

� Responding to a request for availability
� Responding to a request to perform an a claims assessment
� Sending a completed claims assessment

Business Rules Engine
The Business Rules Engine is an EJB running on WebSphere Application Server
and is responsible for:

� Providing the response time required for a claim
� Selecting the assessor to process a claim from a list of available assessors

Assessor Management
The Assessor Management system is an EJB running on WebSphere
Application Server. Its responsibility is to:

� Provide a list of assessors that could potentially perform an assessment
based on vehicle type and location.
182 Build a Business Process Solution Using Rational and WebSphere Tools

Claim System
The claim systems is an EJB running on WebSphere Application Server. It is
responsible for:

� Storing a claim assessment

Assessor Automation
The Assessor Automation system is a BPEL engine running on WebSphere
Business Integration Server Foundation. It is responsible for:

� Receiving a claims assessment report request from the claims workflow
engine

� Managing the process of creating the report

� Returning the report to the claims workflow engine.

Claims Workflow
The Claims Workflow system is a FDL engine running on WebSphere MQ
Workflow. It is responsible for:

� Presenting the Claim handler with:

– A list of claims to be investigated

– A list of claims of claims that have now received an assessment

� Sending a claim to the Automated Assessment process and waiting for the
assessment to be completed

ESB
The ESB is a service bus supporting MQ, SOAP/JMS and SOAP/Http: It is
responsible for:

� Isolating service requests from the transport protocol and physical addresses
of endpoints

ESB Gateway
The ESB gateway are services used by the service bus. It is responsible for

� Implementing the appropriate communication style for each assessor
(SOAP/Http Web services, EDI, Browser, and so forth)

� Distributing requests to multiple assessors

� Aggregating responses from multiple brokers

� Setting timeouts on response times

� Handling late replies
 Chapter 5. System Architecture 183

Web services Gateway
The Web Services Gateway is in the DMZ. It is responsible for:

� Proxying Web service addresses between the intranet and internet

� Responding to automated requests for supplying WSDL interfaces to Web
service clients

� Securing communications across the internet

5.7 Reference architecture
Figure 5-24 shows the physical reference architecture we will use in the scenario.
The deployment is modelled in Rational Software Architect using component
model we have already defined.

1. In the Model Explorer select ITSO Architecture → Claim Investigation →
Right click → Add Diagram → New Deployment Diagram.

2. Drag the components onto the diagram (omit the assessors and the Web
Services Gateway for brevity) select them all and click Name Compartment
Style to show only the component names and not all their attributes. See
Figure 5-24.

Figure 5-24 Claim Investigation deployment diagram

� Add Artifacts for all the Broker Archive Repository (BAR), Enterprise Archive
Repository (EAR) and FDL flows that will be deployed. We will also add an
artifact to represent the Supportpac W0AD that will be used to connect
184 Build a Business Process Solution Using Rational and WebSphere Tools

WebSphere MQ Workflow to WebSphere Business Integration Server
Foundation.

� Add Devices or Execution Environments to represent the middleware
servers that will host these artifacts.

5.7.1 Omissions from the reference architecture
There are things we chose not to model at this stage. We did not go into any
more details about the deployment, such as the physical machines or the
network addresses, nor have we modelled the transport layer or the tools we use
to create the artifacts. All these things could be added at this stage. Whether to
do so or not depends on uses to which the model is going to be put and whether
there are any architectural decisions to make. For example, we have chosen not
to model the robust messaging transport or to model the SOAP/Http: layer. There
is nothing nonstandard about these parts to consider, and we are not planning to
built an exact deployment model to drive the configuration of deployment
artifacts. In other situations, these might be important parts of the solution to
model.

For our purposes, we need to focus on what artifacts are to be created for which
runtimes. So we have refined the model sufficiently to identify which runtimes we
will be using, which tools are required, and what are the collaborations we will be
using for interactions and interfaces between components.

5.8 Summary
This chapter has looked at three steps in producing the system architecture:

1. Pull together the requirements for the IT architecture into Rational Software
Architect. The requirements came from the Business Analysts process
model, the original business and IT goals, and from the workshop which was
used to create the business process model.

2. Analyze the requirements to build the reference architecture using the
Patterns for e-business Integration Design Approach.

3. Returning to Rational Software Architect to capture the reference architecture
as a deployment diagram.

The next step is to study the details of the process and build the solution
architecture based on the reference architecture, the interactions, and the
interfaces to the components.
 Chapter 5. System Architecture 185

186 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 6. Solution Architecture

In the previous chapter we followed the Patterns for e-business methodology to
create a system or reference architecture for the software infrastructure based on
the requirements of the business process. In this chapter, we analyze the
business process’s behavior to create a solution architecture.

The combination of the reference and solution architecture is necessary for the
IT specialists to begin to implement the solution.

From the reference architecture we know:

� What components to implement
� What platform to use to implement them

The solution architecture will define

� The interfaces that need to be implemented
� The interactions and the technologies to implement them
� The qualities of service required from the components and interactions

Producing the final architectural specification is an iterative process. It might turn
out be true that in analyzing the interactions we find the platforms chosen for the
reference architecture do not support the qualities of service such as
performance or robustness that we require. In such a case, the design team will
need to look for alternative solutions which can even involve changes to the
business process.

6

© Copyright IBM Corp. 2006. All rights reserved. 187

6.1 Interaction Model
The bases for the interaction model are twofold:

� The collaboration pattern we have selected in the reference architecture
� The business process

From these we can draw out the rough solution flow in Figure 6-1. It shows the
interactions derived from the Claims Investigation business processes mapped
onto the collaboration pattern from Figure 5-22 on page 180. The collaboration
patterns has been simplified and turned to read from left to right . The picture is
beginning to look like a UML sequence diagram.

Figure 6-1 Solution flow

6.1.1 Interaction descriptions
The next stage in the refinement is to describe the interactions in more detail,
specifying their qualities of service, particularly if they are synchronous or
asynchronous and one-way or two-way interaction. These are listed in Table 6-1
on page 189. Also we want a verbal description of the message that is passed.
Later, we will need to define the interfaces to the components so that we can
specify the message contents for the flows precisely.
188 Build a Business Process Solution Using Rational and WebSphere Tools

Table 6-1 Interaction Descriptions

Flow Description

1 The new process gets started from the existing Claim Workflow by requesting
an external assessor report. The interface for this request is:
requestAssessor, an XML document that is delivered with WebSphere MQ
queue. This is a synchronous call/return (see flow (1a) and expected to have
a two-day response time. The underlying parallel processing engines can
implement such long duration synchronous requests efficiently and reliably.
The assessor automation process, which is implemented with Business
Process Choreography gets this message and starts a new instance of the
process

2 The first task of the assessor automation process is to invoke the Assessor
Management system to get the list of available assessors. The interface is
assessorManagment. This is a synchronous call/return and expected to have
a sub-second response time.

2a The second task is to get the response time based on the service level
agreement with the customer from the Assessor Management System in
parallel. The interface is requestResponseTimePT.

3 With this information the assessor automation process invokes the assessor
proxy in step 3. The interface is assessorAvailability. The process waits for a
response from the AssessorProxySystem to confirm it has successfully
received the request.

4 The AssessorProxySystem takes the list of assessors from flow 3 and in a
distributor service builds the request messages tailored to the format required
for each assessor. The requests are routed through the gateway as one-way
flows.

4a The AssessorProxySystem waits for the time given by the
RequestResponseTimePT from flow 2a and when the timeout occurs
aggregates the responses it has received in the 4a flows.

3a The assessor automation process waits until the AssessorProxySystem
returns the list of available Assessors in step 3a. Flows 3a is expected a few
hours after flow3.

5 The assessor automation process then gives the list of available assessors to
the Business Rules Engine to return one assessor who should produce the
report. The process uses the preferredAssessor interface of the Business
Rules. This is a synchronous call/return with an expected subsecond
response time.
 Chapter 6. Solution Architecture 189

From this information we can start to build a sequence in Rational Software
Architect.

6.1.2 Sequence diagram
A sequence diagram shows the behavior of a collaboration. We focus on two
things: the detailed behavior of the RequestExternalReports collaboration and
the interface where it interacts with the ClaimInvestigation_TOBE collaboration.

The solution architect needs to create a new collaboration to show this behavior
for a number of reasons:

1. The architect has added new component (proxyAssessorSystem) to the
collaboration.

2. The collaboration in the WebSphere Business Integration Modeler cannot be
altered by the Rational Software Architect.

6 The process then requests the assessment report by invoking the assessor
proxy with the interface allocateAssessmentRequest in step 6 with an
asynchronous call which might take several hours. It can only be implemented
as a synchronous call/return if it can be implemented both by the long running
business process and the underlying enterprise service bus efficiently and
reliably. In version 5 of the WebSphere platform this is hard to achieve, so we
implement the interaction as one-way requests initiated at each end using
SOAP/http.

7 The AssessorProxySystem passes the allocateAssessmentReport to the
chosen assessor and waits for an acknowledgement

7a The AssessorProxySystem receives the acknowledgement (accept or not)
from the assessor via the interface deliverAssessmentReponse.

6a The AssessorProxySystem delivers the acknowledgment (accept or not) of
the Assessor to the assessor automation system in step 6a.

8 The assessor sends a one way flow to the assessor proxy via the interface
deliverAssessment.

9 The assessor proxy transfers the report back to the automated assessor
process in a one-way flow using the interface assessorReport

10 The automated assessor process invokes the claim system’s document
handler using the storeAssessorReport interface. The flow is a synchronous
call/return with an expected sub-second response time.

1a The assessor automation system finally returns to the claims workflow by
using the requestAssessorResponse interface

Flow Description
190 Build a Business Process Solution Using Rational and WebSphere Tools

3. We do not intend to alter the business process description agreed between
the business analyst and the solution architect to incorporate changes that
only affect the technical view of the solution. As long as the behavior of the
business process remains the same, then the solution architect does not
need to renegotiate the contract with the business analyst. When the architect
completes the PIM, the analyst and architect will review it to ensure the
changes and extensions the architect has made do not alter the behavior of
the business process model.

Create the new collaboration, then drop the interfaces onto the interaction
diagram.

1. In the Model Explorer select the ITSO Architect → Claim Investigation
right-click → Add UML → Collaboration and call it External Claim
Assessor.

2. Right-click External Claim Assessor → Add Diagram → Sequence
Diagram and name the diagram Sequence Diagram.

– Refactor the name of the interaction from Interaction1 to something more
descriptive, such as Assessor Automation Interactions.

3. Populate the sequence diagram with the following lifelines:

a. ClaimsInvestigation_TOBE collaboration in the WebSphere Business
Integration Modeler model

b. AssessorAutomation and proxyAssessorSystem interfaces defined as part
of the architect’s component model in Figure 5-8 on page 165

c. Drag the Assessor Management, Business Rules Engine, Document
Handler and Assessor from the WebSphere Business Integration Modeler
model RootResourceModel → Roles package.

4. After you have populated the sequence diagram, you can show the
collaboration visualization by right-clicking the External Claim Assessor
collaboration → Visualize → Show in Browse Diagram.

Tip: Drop the components onto the diagram in the order you want to
show them on the diagram. The order should follow a (generally) left to
right flow of iterations in the model.

After you have dropped a lifeline on the sequence diagram, it is difficult
to move it. So it pays to get the order your want first time!
 Chapter 6. Solution Architecture 191

Figure 6-2 External Claim Assessor collaboration

The next step is to add the interactions to the sequence diagram by adding
synchronous or asynchronous messages to the lifelines. If we have the roles and
interfaces defined correctly then all the operations that are required to label the
interactions are pickable. However, drawing a sequence diagram often shows
some problems with the design and our design is no exception. Interactions had
to be added to the following interfaces to cater for flowing asynchronous
responses.

� Assessor Automation

– ReturnAvailability
– ReturnAssessmentConfirmation
– ReceiveAssessmentReport

� proxyAssessorSystem

– ProxyReturnAvailability
– ProxyAssesmentConfirm

There were two reasons for this:

� In the case of flow 6 and 7, we wanted to have an acknowledgement from the
assessor that they would perform the assessment, in addition to sending the
assessment report (flow 8 and 9).

� There is only one combination of flows (flows 6, 7, 8 and 9) that cannot be
modeled as a call/return pair (two replies, an acknowledgement and a data
reply, are both requested). Strictly speaking, we do not really need all of the
new interfaces if we could completely reply upon having asynchronous
middleware and long running transactions such those as provided by
WebSphere MQ, WebSphere MQ Workflow and WebSphere Business
Integration Server Foundation. For example, the request for assessor
availability is planned to take two hours. At the business level, this is a
straightforward request/reply interaction and could be implemented efficiently
192 Build a Business Process Solution Using Rational and WebSphere Tools

as such on the WebSphere middleware. But some transport layers, for
example http:/SOAP, would not be suitable implementations of this call return
pattern because they would need to block for the whole duration. It seems
unreasonable to force the assessor system to implement its response within a
single unit of work.

So the new interfaces were added to give the implementers more flexibility,
and the infrastructure architect more choices of transport protocols.

When you finish, your sequence diagram will look similar to Figure 6-3 and
Figure 6-4 on page 194. The annotations tie up with the solution flow diagram
(Figure 6-1 on page 188). Note the use of synchronous and asynchronous flows.

Figure 6-3 External Claim Assessor Sequence diagram: left side
 Chapter 6. Solution Architecture 193

Figure 6-4 External Claim Assessor Sequence diagram: right side

6.2 Interfaces
We have now described the business process, the components, and the
interactions in the solution. We have sketched out all the interfaces at the level of
naming the operations that are required. The next step is to specify the interfaces
in sufficient detail for the IT specialists to implement them.

Assumptions
We limited the scope of this redbook to looking at process integration and limited
the amount of data used to only that which was essential to make the process
work. If we had used a data model of the size and complexity of those in the
insurance industry, it would result in some changes to the development process
to accommodate the needs of the Data Architect, and the use of data modeling
194 Build a Business Process Solution Using Rational and WebSphere Tools

tools. We would need to consider the interaction between the process and data
modeling tools, and address issues concerning data transformation between the
data model and the interfaces provided by the existing components.

We have also assumed that all the automated services (Assessor Management,
Business Rules Engine, Claim System) and the Assessor process are already
available as EJBs. We are focussed on building the business process and
integrating the services together rather than creating the programs.

6.2.1 Choice of interface description language
We plan to use Web services to connect the components, therefore we will use
Web Services Description Language (WSDL) to describe the interfaces in the
architecture model. WSDL is the natural way to describe Web services.

Using WSDL as an interface definition language
As an interface description language WSDL has a number of strengths:

1. It is independent of the programming technology used to implement the
interfaces.

2. A number of programming technologies support using WSDL to generate and
run Web services, whether as Java Beans, Enterprise Java Beans, .NET
services or as message flows in WebSphere Business Integration Message
Broker.

3. It is supported by excellent tooling.

However because it is a new technology there are gaps in the tooling and there
are questions to be answered before it is implemented fully in mode- driven
development.

1. It has both a logical aspect, represented by PortTypes and Messages, and a
physical aspect, represented by Services and Bindings, which cuts across the
notion of an interface being an early step in the refinement of a model into an
implementation.

The simple solution is to be selective about which parts of the WSDL
definition to complete at any stage in the design.

2. It has not been fully integrated into UML tools to the extent, say, that EJBs are
integrated into Rational Software Architect. There is no simple way to input or
output WSDL definitions to and from a UML model.

We came up with four recipes to interchange WSDL and UML, depending on
where the solution architect was obtaining the interface definitions. See
Figure 6-5 on page 197.
 Chapter 6. Solution Architecture 195

3. Because various tools are missing WSDL importers, there are some
difficulties in constructing a tool chain based on WSDL as the interface
definition language. But there is no other stronger contender with better
coverage of tools, except perhaps XML schema. We think WSDL is
preferable to XML schema as an interface definition language because XML
schema is principally a way to provide language- independent data typing.
WSDL describes component interfaces made up of operations and typed
messages.

A combination of using both WSDL and embedded .xsd (XML schemas) has
some attractions because of wider tooling support for the combination of
WSDL and schemas. We have tended to place type definitions in line in the
WSDL files because the EJB tools we use generated data types directly in
WSDL files. Had we been more data-focused, we might have used .xsd more,
and used import statements in WSDL files. The choice between all WSDL, or
a combination of WSDL and .xsd, is largely one of what works best for the
tool chain. We discuss this again in Section 13.1.4, “Meta data” on page 492,
and come to the opposite conclusion that using a mixture of .xsd and .WSDL
would have worked better for us. This is a really hard decision to get right!

From a project management perspective, the notion that all the interfaces used in
the project can be extensively documented in a single format is very valuable, so
we decided that all the interfaces in the solution would be defined in WSDL, and
collected together by the Solution Architect who is responsible for the interface
definitions. Rational Software Architect provides an excellent WSDL editor.
WebSphere Studio Application Development Integration Edition also provides an
.xsd editor.

6.2.2 Creating WSDL interfaces
There are basically three ways to create a WSDL interface.

1. Top down using a WSDL editor

2. Bottom up, by generating WSDL from some other implementation or interface
definition

Rational Software Architect generates WSDL files from EJBs for example.

3. Meet in the middle, building some of the interface with the WSDL editor, and
importing the rest from some other format, such as importing types from .xsd
files

Figure 6-5 on page 197 shows a number of different transformations between
WSDL and other interface definition languages that can be used to create an
architectural description in UML from implementation artifacts or alternative to
generate implementation artifacts from UML.
196 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 6-5 Integrating WSDL interfaces with the UML model

� A: This path was taken where we already had WSDLs defined. The details
are explained in “A: WSDL to UML” on page 200.

� B: Path taken to create a new Interface. Use the EJB transformer in Rational
Software Architect to generate an EJB and then generate a Web service.
Creating an EJB from a UML model is explained. The details are explained in
“B: UML to WSDL” on page 203.

� C: Path taken for interfaces defined for WebSphere Business Integration
Message Broker. The interface types were created as schemas in
WebSphere Studio Application Development Integration Edition and imported
into the Broker to create message sets. This is explained in Chapter 9.4,
“Implementation of the message sets” on page 289.

The schemas were also imbedded into WSDL files in WebSphere Studio
Application Development Integration Edition and an EJB was generated. The
EJB was imported into Rational Software Architect and a UML interface
description extracted. The detail for this is the same as “A” once the .xsd file
has been imported.

The EJB could also be used for unit testing clients of the Web service without
needing to wait for the WebSphere Business Integration Message Broker
implementation.

� D: Existing EJB interfaces (such as the Assessor Management System) were
imported into Rational Software Architect and both UML and WSDL interfaces
generated from the EJBs. This method is explained in “B: UML to WSDL” on
page 203.

WSDL EJB UML

WSDLEJBUML

XSD WSDL EJB UML

EJB

WSDL

UML

A

D

C

B

 Chapter 6. Solution Architecture 197

6.2.3 Sources of Interface Information for the scenario
The WSDL files and an .xsd file defining the interfaces have been created either
from the EJBs that are going to be used to implement some of the services, or as
part of task of defining the interfaces to the AutomatedAssessor process and the
AssessorProxyService. The general rule is that the service owner of the Web
service will cooperate with the solution architect in defining the service interface.

Table 6-2 lists the WSDL files so that you can find them in the additional
materials directory (.\SG24-6636\) that comes with this redbook. The names
include the flow number for easy cross referencing. All the WSDL files are in the
.\SG24-6636\RSA\Project Interchange\wsdl subdirectory.

Table 6-2 WSDL and .ear file details

Flow Component
(Interface
owner)

Interface details
- WSDL file name
- source generated from

1 Assessor
Automation

ExternalClaimAssessorsInterface.wsdl. Which is derived
from a folder in proxy(1).wsdl.
Proxy(1).wsdl was built using the fdl2wsdl tool and it is
described in Chapter 11, “Modify the Claim Investigation
process” on page 453.

2 Assessor
Management

AssessorManagement(2).wsdl
.\SG24-6636\WAS\Flow2\Flow2_AssessorManagementSe
rvice_SOURCE.ear

2a Business Rules
Engine

RequestResponseTimePT(2a).wsdl
.\SG24-6636\WAS\Flow2A\Flow2A_ResponseTimeRules_
SOURCE.ear

3 Proxy Assessor
System

AssessorAvailability(3).wsdl
.\SG24-6636\WBIMB\schemas\AssessorAvailability_3.xsd

4 Assessor Availability(4).wsdl
.\SG24-6636\WAS\Flow4and7\AssessorAvailabilityApplicat
ions_withSource.ear

4a Proxy Assessor
System

AssessorAvailabilityPT(4a).wsdl
.\SG24-6636\WBIMB\schemas\AssessorAvailabilityPT.xsd

3a Assessor
Automation

AssessorAvailablityList(3a).wsdl

5 Business Rules
Engine

PreferredAssessor(5).wsdl
.\SG24-6636\WAS\Flow5\Flow5_AssessorRules_SOURC
E.ear
198 Build a Business Process Solution Using Rational and WebSphere Tools

6.2.4 Creating the interface definitions
Rather than go through every detail of creating interfaces and describing the
fields, all the interfaces are provided in the additional materials together with the
source we used to create the WSDL interface where it was not typed in from
scratch. To create the interfaces, we used one of the procedures, A through D, in
the previous section.

All the WSDL interface descriptions and the .ear files can be imported into
Rational Software Architect and browsed using the Web service editor. The files
can be stored the ITSOLGI Architecture project.

Many of the WSDL files were generated from the EJB implementations referred
to in Table 6-2 on page 198 following a bottoms up approach. A bottoms up
approach is common in Enterprise Integration projects, whereby Web services
are used to wrapper existing interfaces, the EJB implementations in our case.
Here, we demonstrate both a top down and a bottom up approach to
incorporating the interfaces in the WSDL definitions in the UML model.

6 Proxy Assessor
System

AllocateAssessmentReport(6).wsdl
.\SG24-6636\WBIMB\schemas\AllocateAssessmentReque
st_6.xsd

7 Assessor DeliverAssessment(7).wsdl
.\SG24-6636\WAS\Flow4and7\AssessorApps.ear

7a Proxy Assessor
System

DeliverAssessmentResponse(7a).wsdl
.\SG24-6636\WBIMB\schemas\DeliverAssessmentRespon
se_7a.xsd

6a Assessor
Automation

AllocateAssessorResponse(6a).wsdl

8 Proxy Assessor
System

AssessorReport(8).wsdl
.\SG24-6636\WBIMB\AssessorReport_8.xsd

9 Assessor
Automation

AssessorReport(9).wsdl

10 Claim System StoreAssessmentReport(10).wsdl
.\SG24-6636\WAS\Flow10\Flow10_DocumentHandler_SO
URCE.ear

Flow Component
(Interface
owner)

Interface details
- WSDL file name
- source generated from
 Chapter 6. Solution Architecture 199

A: WSDL to UML

Figure 6-6 WSDL to UML

Approach A, starts with WSDL files . These can be created either in Rational
Software Architect, or the tool of your choice and imported into Rational Software
Architect.

Create new WSDL file in Rational Software Architect
To create a new WSDL file in Rational Software ARchitect, follow these steps:

1. File → New → Other → WSDL → Next → Select a project and name the file,
say Assessor.wsdl, → Next → Select a target namespace for labelling the
WSDL definitions uniquely. We use http://itso.lgi.assessormgmt as the
root name and add /Assessor in this case to it. We then give it a prefix, say
ama. Leave the Create WSDL skeleton checked, with SOAP and document
literal selected → Finish. See Figure 6-7.

Figure 6-7 Creating a WSDL file - Options

2. You can now edit the WSDL file using either the graphics editor or the XML
source page edit or a simple text editor by right clicking the Assessor.wsdl file
and choosing one of the Open with... options.

Important: In either the workspace or project preferences, add WS-I SSBP
Require compliance.

WSDL EJB UMLA
200 Build a Business Process Solution Using Rational and WebSphere Tools

An alternative approach, is to import the WSDL file.

Import a WSDL file directly and display it
To import a WSDL file, follow these steps:

1. We need to switch to the resources perspective because WSDL has not been
integrated into UML and so there is no way to look at WSDL from a UML
modeling perspective. Change to the Resource perspective. In the top right
of the workspace, click the Perspectives icon, or Window → Open
Perspective → Other → Resource.

2. Click Model Explorer → ITSOLGI Architecture → Right click → New →
Folder → WSDL → Finish.

3. Drag and drop the WSDL files from the locations in Table 6-2 on page 198
into the WSDL folder you have just created.

4. Double-click one of the WSDL files such as PreferredAssessor(5).wsdl, to
display the WSDL in graphical form or switch to the WSDL source file. See
Figure 6-8 and Figure 6-9 on page 202.

Figure 6-8 PreferredAssessor WSDL definition (1)
 Chapter 6. Solution Architecture 201

Figure 6-9 Preferred Assessor WSDL definition (2)

Generate an EJB skeleton for the Web service
Next, we generate an EJB from the Web service definition. We create a new
Enterprise Application Project for the .ear files, rather than use the existing
ITSOLGI Architecture project.

1. Create a new Enterprise Application Project:

a. Select File → New → Project → J2EE → Enterprise Application
Project → ITSOLGI Web services → J2EE Version 1.3 → Target
Server → WebSphere Application Server 5.1 → Next → Finish →
Respond Yes to Switch to the J2EE perspective.

b. There might be an error associated with the applications.xml configuration
file. Do not worry about this for now.

2. Create a new Web service for the PreferredAssessor:

a. Select the ITSOLGI Implementation project → Right click → New →
Other → Web services → Web service → Skeleton EJB Web
service → Deselect Start Web service in a Web Project → Select

Tip: You might not have all the J2EE and Web service perspectives available.
In that case, check the Web services and J2EE developer in the workspace
capabilities preferences.

Note: We have implemented here on the WebSphere 5.1 platform. You
will need to have installed the WebSphere 5.1 Test environment into
Rational Software Architect to have this option in Rational Software
Architect 6.0. We are selecting the J2EE version 1.3 as we are using
the 5.1 test environment. J2EE 1.4 is first available when using the
WebSphere Application Server 6.0 test environment.
202 Build a Business Process Solution Using Rational and WebSphere Tools

Overwrite files without warning and Create folders when
necessary → Next Browse to the WSDL file you imported →
PreferredAssessor(5).wsdl → Next.

b. Edit the service deployment configuration to use J2EE 1.3 on WebSphere
Application Server test environment 5.1 → Next.

c. Leave the default settings and click Finish.

Incorporate the interface in the UML model
Visualize the service (we are looking for the PreferredAssessor Interface which
correspond with the PreferredAssessor PortType in the WSDL)

1. Return to the Modeling perspective

2. Open the itso.lgi.assessormgmt package in the WebServiceProjectClient
java project.

3. Right-click PreferredAssessor.java → Visualize → Explore in Browse
diagram.

You should see something similar to Figure 6-10.

Figure 6-10 Preferred Assessor remote EJB interface

B: UML to WSDL

Figure 6-11 UML to WSDL

Approach B starts with a UML interface and then creates a WSDL file from it
(Figure 6-11). To demonstrate how the approach works, we use a simple
example of a service that multiplies two numbers together.

Create the UML interface
To create the interface, follow these steps:

1. Create the UML project.

In Rational Software Architect, select File → New → Other → UML
Project → Give it a name of Sums → Next. Accept the default selections
(Blank Model) but change the default diagram to Class Diagram → Next →
Don’t select any projects and click Finish.

WSDLJava
BeanUMLB
 Chapter 6. Solution Architecture 203

2. Create the UML Interface.

a. From the right-hand palette, click Interface → drop it on the canvas and
click the name Interface1 rename it to Sums.

b. Right-click Sums → Add UML → Operation, and rename it to Multiply.

c. Expand the Interface Sums in the Model Explorer and right-click
Multiply() → Add UML → Parameter. Call it m1.

d. Repeat this to Add Parameter m2, and Return result, result.

e. Type each of the parameters and the result:

i. Select the parameter in the Model Explorer, open the Advanced tab in
the properties editor, and find the Type property which will be blank.

ii. Click in the second column of the Type property and set its type to
Integer.

iii. Repeat this procedure for m2 and result.

Figure 6-12 Sums Interface

Create the Java Interface
Create the UML to Java transformation (Figure 6-13), by following these steps:

1. From the main action bar, select Modelling → Transform → Configure
Transformations → Select UML to Java → New → and call it
SumsTransform.

2. Next to the Source: field click ... → select the Sums Interface → In the Target
area of the dialog click Create New Target Container.

3. In the Create a Java Project dialog box enter a Project name: SumsJava →
Next → Click SumsJava on the Order and Export tab → Finish.

4. On the Configure and Run Transformations panel make sure SumsJava is
selected in the Target UML element panel → Apply.

See Figure 6-13 on page 205.
204 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 6-13 Configuration of the Sums UML to EJB Transformation

f. The transformation can be run directly from the configuration editor, or
selected from the main action bar (Figure 6-14).

Figure 6-14 Running the SumsTransform from the action bar

This creates Sums.java in the default package of the SumsJava project. Open
the default diagram in the Sums project and drag the Sums.java file into it. You
can see a new Sums interfaced stereotyped to <<Java Interface>> (Figure 6-15).

Figure 6-15 Sums Java Interface

Create the WSDL mapping
To create the mapping, follow these steps:

1. Create a Web Project.

a. Select File → New → Project → Dynamic Web Project → call it
SumsWebProject → Next → deselect any options → Next → Finish.
 Chapter 6. Solution Architecture 205

b. Right-click JavaSource in the SumsWebProject → New → Package and
call it mathematics.

c. CTRL-Click Sums.java in the SumsJava folder and drag it to the
JavaSource folder → OK to refactoring the elements.

2. Create a Java Web service.

a. Select the Sums.java file in the mathematics package → New →
Other → Web service → Next → Java Bean Web service (accept the
other defaults) → Next

b. mathematics.Sums should be in the Bean field (Figure 6-16) → Next.
Otherwise, Browse files... → select Sums.java in the SumsWebProject
folder → Next.

Figure 6-16 Selected the Mathematics.Sums Interface to turn into a Web service

c. On the next panel, the service project is SumsWebProject, and the EA
project is SumsWebProjectEAR → Next. Leave the service endpoint
interface and the Web service options unchanged. See Figure 6-17 on
page 207) Click Next → Finish.
206 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 6-17 Web service options

3. Browse the resulting WSDL file, which you can find in the Project Explorer in
the Web Perspective, and select Dynamic Web Projects →
SumsWebProject → WebContent → wsdl → mathematics → sums.wsdl.
See Figure 6-18 on page 208.
 Chapter 6. Solution Architecture 207

Figure 6-18 Sums Web service

Now that we have WSDL for this operation, we can also generate an EJB
following the procedure for A.

D: EJB to UML and WSDL

To demonstrate this, we import one of the .ear files from Table 6-2 on page 198
and generate the WSDL interface definition.

1. Import the .\SG24-6636\WAS\Flow2\Flow2_AssessorManagementService
_SOURCE.ear file into the new EAR project.

a. Select the ITSOLGI Web services folder, right-click Import and select
EAR file → Next.

b. Select Flow2_AssessorManagementService_SOURCE.ear → the existing
ITSOLGI Web services project (Created in example A in “Generate an
EJB skeleton for the Web service” on page 202) → deselect Import
Project. Select Overwrite existing resources without warning →
Next → Next → Select Allow nested projects overwrites.

c. Make sure the AssessorManagementServiceEJB.jar and
AssessorManagementServiceEJBRouter.jar are both selected →
Finish.

2. Inspect the WSDL file for the AssessorManagement Service.

a. Select Model Explorer → Web services → Services →
AssessorManagementService.

b. Open the WSDL:AssessorManagementServiceEJB/ejbModule/
META-INF/wsdl/AssessorManagement.wsdl file. See Figure 6-19 and
Figure 6-20 on page 209.

EJB

WSDL

UMLD
208 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 6-19 AssessorManagement.wsdl: part 1

Figure 6-20 AssessorManagement.wsdl: part 2

3. To use the EJB interfaces in UML, drag the EJB remote interface into any
UML diagram on which you are working. The next section illustrates
incorporating the interfaces we have created from the WSDL definitions for
the ExternalClaimsAsessor into a UML component diagram and a UML
sequence diagram.

6.2.5 Incorporating the interfaces into the UML model
Whichever approach to defining the interfaces that we take now, we have a
WSDL file and EJBs for each interface. We can use the EJBs to incorporate the
 Chapter 6. Solution Architecture 209

actual interfaces derived from the WSDL definitions into the UML model. We can
demonstrate this for the AssessorManagement service.

1. Create a Component Diagram called Assessor Management Component
Diagram for the Assessor Management Component in the ITSO Architect
project. Populate it with the AssessorAutomation Component, the
Assessor Management Component, and the AssessorManagement Role
(BusinessWorker) from the WebSphere Business Integration Modeler
model.

2. In the Model Explorer → AssessorManagementServiceEJB →
ejbModule → itso.lgi.assessormgmt → AssessorManagement.java drag
and drop the AssessorManagement Java Interface onto the Assessor
Management Component Diagram.

3. Create a Realizes relationship from the AssessorManagement Component
and the AssessorManagement Java Interface and a refines relationship
between the AssessorManagement Java Interface and the Assessor
Management Business Worker.

4. Make sure the AssessorAutomation Required Interfaces include
AssessorAutomation by dragging the Assessor Management Role from the
AssessorManagement Component onto the Required Interfaces part of the
AssessorAutomation Component.

5. If the relationships do not already exist, create a use relationship between the
AssessorAutomation Component and the AssessorManagement Component.

The component diagram should look similar to Figure 6-21.

Figure 6-21 Refinement of the AssessorManagement system
210 Build a Business Process Solution Using Rational and WebSphere Tools

6. We can now modify the sequence diagram (Figure 6-3 on page 193) by
changing the lifeline from using the AssessorManagement Role to using the
AssessorManagement Java Interface. We can now use the operation from
the AssessorManagement Java Interface to specify the interaction between
the AssessorAutomation system and the AssessorManagement system. The
fragment around the AssessorManagement lifeline is illustrated in
Figure 6-22.

Figure 6-22 Fragment of the refined sequence diagram

6.2.6 Summary of the interfaces
All the details of the interfaces can be found in the additional material for this
redbook, either by going to the source files listed in Table 6-2 on page 198, or by
importing the ITSO Architecture project in the architect’s workspace, found in the
.\SG24-6636\RSA\Project Interchange\ITSO Architecture directory in the
additional materials.

Table 6-3 highlights some important decisions the architect made about the
interfaces.

Table 6-3 Interaction characteristics

Flow Component
(Interface
owner)

Interaction characteristics

1 Assessor
Automation

This uses JMS rather than a SOAP service. It flows XML
messages over JMS. The choice of transport is a result of
choosing to use a request/reply interaction between long
running processes - Process choreographer only supports
JMS/XML for this style of interaction.
 Chapter 6. Solution Architecture 211

2 Assessor
Management

This is a straightforward call/return interface. It will map to a
partner link in BPEL and the transport options are SOAP/Http
or SOAP/JMS. We have chosen SOAP/Http.
SOAP/JMS would be the transport of choice here, by a small
margin. The connection does not go outside LGI so there are
no interoperability issues. SOAP/JMS offers better scalability
and management over SOAP/Http at the cost of higher initial
set up costs to define its queues, connection factories,
destinations and the WebSphere MQ infrastructure. The
interactions are short lived, so the differences in quality of
service offered by SOAP/JMS and SOAP/Http are not a major
issue here.
However at the time we did the integration there were
published restrictions on the use of SOAP/JMS and business
Process Choreographer so we decided to standardize on the
use of SOAP/Http for all our SOAP transport

2a Business
Rules Engine

As above

3 Proxy
Assessor
System

This is a more interesting interaction as the request results in
a process fanning out requests to multiple assessors and
waiting for their responses. It aggregates the responses it
receives into a single reply (flow 3a), throwing out late
responses. From the perspective of flow 3, however, this is
simply a call/return interaction with a long duration between
the call and the return.
Because of the decision to allow SOAP/Http to be used for all
the interactions, the interaction was split into two, with the
actual data response (3a) in a separate interaction from the
request. The request could be implemented as either a
one-way or two-way SOAP message - we chose a two-way
implementation so that AssessorAutomation can know that
the request has been received by the proxyAssessorSystem.

4 Assessor The requirements were for a number of different protocols to
be supported for flow 4. We have only implemented
SOAP/Http. As for flow 3, the data response is a separate flow
because of the long duration between the request and the
reply - and because a reply is optional (the assessor may
choose not to do the work). We used a SOAP/Http
request/reply interaction for flow 4.

Flow Component
(Interface
owner)

Interaction characteristics
212 Build a Business Process Solution Using Rational and WebSphere Tools

6.3 The architect’s contracts
The architect has two deliverables, the PIM and the PSM. See Figure 3-7 on
page 54.

4a Proxy
Assessor
System

As above.

3a Assessor
Automation

This is implemented as a one-way SOAP/Http datagram

5 Business
Rules Engine

See flow 2a

6 Proxy
Assessor
System

See flow 3

7 Assessor See flow 4

7a Proxy
Assessor
System

See flow 4a. In response to flow 7, the chosen assessor
responds with two flows, 7a and 8, both of which occur some
time after flow 7.

6a Assessor
Automation

See flow 3a

8 Proxy
Assessor
System

See flow 7a

9 Assessor
Automation

See flow 6a

10 Claim
System

This is a simple synchronous request/reply flow like flow 5.

Flow Component
(Interface
owner)

Interaction characteristics
 Chapter 6. Solution Architecture 213

PIM
In the PIM, the solutions architect should review the following materials with the
business analyst to verify that the implementation will deliver the function
required by the business process model.

� The summary of the requirements for the solution, possibly using a RUP
template such as the vision document. See 5.2, “Step 0: Collating
requirements” on page 155.

� The component architecture (Figure 5-8 on page 165)

� The runtime mapping (Figure 5-22 on page 180)

� The behavior of the solution shown by the flow diagram or the sequence
diagram (Figure 6-1 on page 188 or Figure 6-3 on page 193 and Figure 6-4
on page 194.)

� The data model as captured in the flows exchanged between the components
as described in the messages section of the WSDL (Figure 6-9 on page 202,
for example)

PSM
In the PSM, the solution architect lays out the requirements on the system
infrastructure for the solution to work, and maps the solution to various
technologies for implementation by IT specialists. The solution architect needs to
deliver the following materials to the infrastructure architect and IT specialists in
the PSM in addition to the PIM.

� The product mapping (either Figure 5-23 on page 182 or Figure 5-24 on
page 184)

� WSDL bindings, as well as port Types and messages as in Figure 6-8 on
page 201. Completion of the service definition would be up to the
infrastructure architect.

� The runtime mapping (Figure 5-22 on page 180)

� The behavior of the solution shown by the flow diagram or the sequence
diagram (Figure 6-1 on page 188 or Figure 6-3 on page 193 and Figure 6-4
on page 194.)

Building the Java Beans, as we did in the “Generate an EJB skeleton for the Web
service” on page 202 goes beyond what is absolutely necessary in the architect’s
PSM. It is useful to do to connect the WSDL interface definitions and the UML
model, but that can be achieved by commentary on the interfaces.

The development team needs to decide whether the additional effort required by
the architect to build the skeleton EJBs is justified. It probably will be for the
services that will be built as EJBs, Java Beans or C++ objects, but not for
services that are wrappering existing components, or are built using different
214 Build a Business Process Solution Using Rational and WebSphere Tools

technologies, such as WebSphere Business Integration Message Broker. The
skills to build the Beans correctly more likely belong to the IT specialist who will
implement the beans, rather than to the architect.

6.4 Making materials available
After the architect has completed the WSDL interface definitions, they should be
made available to the IT specialists to build the implementations.

1. Open the resources perspective in Rational Software Architect → ITSOLGI
Architecture → WSDL → Select all the WSDL files → right-click →
Export... → Zip file → Next. Select options Compress and Create directory
structure for files and check all the required files are checked → choose a
destination file name such as ClaimInvestigation WSDL files → Finish. See
Figure 6-23.

Figure 6-23 Exported WSDL files

6.5 Conclusion
In this chapter the solution architect has refined the system architecture in
Chapter 5, “System Architecture” on page 153 by developing the behavior of the
solution. The solution architecture is described by sequence diagrams, WSDL
interface diagrams and component diagrams.

Sequence diagrams show which interfaces are used in which collaborations, and
taken in conjunction with the business process model, the order of the
interactions between the components.
 Chapter 6. Solution Architecture 215

WSDL diagrams show a great deal of detail from the physical transport and
address of the deployed components to the definition of the interaction behavior
and the message schemas used in the interactions. Of course, not all the detail
needs to be provided at this stage.

The component diagrams have a two-fold use. They relate the original interface
definitions to the refined interface specifications used in the implementation, and,
for components that are implemented by java beans or C++ classes, they can be
used to build and then generate the objects implementing the model.

The architect has collected together all the interface material and exported it as
WSDL documents. In this chapter, we have shown how it is possible to
mechanically transform to and from WSDL interfaces into other formats, making
the set of WSDL files a convenient way for the architect to describe and control
all the interfaces in the project.
216 Build a Business Process Solution Using Rational and WebSphere Tools

Part 3 Implementation

In this part we describe how to build the solution as defined by the business
analyst and solution architect. Different IT specialists are involved in building
different parts of the solution with the solution architect dealing with issues
arising with the interfaces and the overall behavior of the solution.

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 217

218 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 7. Install and configure
runtimes

In this chapter we build the target infrastructure on which the solution is to be
deployed.

7

© Copyright IBM Corp. 2006. All rights reserved. 219

7.1 System Infrastructure
Figure 5-24 on page 184 shows the deployment architecture provided by the
solution architect. The Infrastructure architect is responsible for mapping the
deployment architecture onto physical servers to meet cost, maintenance,
security and performance requirements. The solution architect provides the lists
of deployable artifacts and the execution environments to which they deploy in
the PSM (product specific mapping). The infrastructure architect provides the
deployment specifications to map the execution environments onto physical
servers.

We are not focusing on deploying the solution to a production environment, the
tasks performed by the infrastructure architect, or deployment tools to assist the
architect. Our limited goal is to build a runtime environment to show the
mechanisms to get the solution exported from the tools test environment onto the
target runtimes.

In the architecture, there is flexibility to use one or more servers for each
component, or to combine components onto a fewer number of servers. The
server mapping we will build is shown in Figure 7-1 on page 222.

The configuration in Figure 7-1 on page 222 we are going to build will work on a
single workstation, but can easily be reconfigured to work on multiple
workstations. The single mobile computer configuration uses VMware to run
WebSphere Business Integration Server Foundation on a different virtual host
from all the other components. This separation means that most of the
interactions flow across virtual network connections and are not local to the
virtual hosts. It is therefore more like a production deployment. The solution has
also been built on four IBM Netfinity® xSeries® processors.

7.1.1 Mobile computer configuration
The solution runs on an IBM T42p Thinkpad with 2GB of virtual memory, 60GB of
disk space and a 1.99Ghz Pentium M processor. We used VMware Workstation
Version 4.5.2 build-8848. The two VMware hosts were configured with 640MB of
memory each, splitting the memory equally between the physical host and the
two virtual machines. The virtual machines were run from an IBM Portable 40GB
USB Hard Drive P/N 09N4257 or from a second hard drive mounted in the IBM
Thinkpad Ultrabay. There was no discernible performance difference between
these two options. Note that USB 1.1 does not have the bandwidth to run the
solution.

For usability reasons, all the Eclipse tooling was run on the physical machine
with deployments of .ear files, message flows and message sets across network
220 Build a Business Process Solution Using Rational and WebSphere Tools

connections to the virtual machines. The WebSphere MQ Workflow buildtime
was run in the virtual machine.

To reduce the middleware overhead on the configuration, We made a number of
simplifications to the logical architecture to fit into the physical hardware.

1. A single assessor has been implemented as an EJB and deployed onto
SAH414A along with the other application EJBs. This saves having another
Virtual Machine for the assessor, or running a second application server on
one of the existing virtual machines

2. We have not implemented a DMZ or the Web services Gateway, so flows go
directly from the Broker to and from the assessors

3. We only configured two WebSphere MQ queue managers, one for each
virtual machine. The two queue managers form a cluster. We could have
used four queue managers (one each for the workflow, application server,
broker and server foundation nodes) with three queue managers running on
SAH414A. This would make it easier to redeploy the solution onto multiple
servers beca4se the queue managers would be associated with the
middleware nodes. The overhead on SAH414A would have been rather
larger so we opted to have one queue manager per virtual machine. However
by defining all the queues as cluster queues, it is relatively easy to rehost the
solution by defining any new queue managers as members of the same
cluster. The queue names known by the applications will not change.
 Chapter 7. Install and configure runtimes 221

Figure 7-1 Deployment of RequestExternalReport onto a mobile computer configuration using VMware

7.1.2 Communication implementation
The system architecture requires all communication between services to use
Web services. There is only one exception, and that is the connection between
WebSphere MQ Workflow and WebSphere Business Integration Server
Foundation which uses the XML over JMS solution provided in the WA0D
supportpac.

The architecture also required a robust Web services implementation converting
the existing WebSphere MQ messaging backbone at LGI to a service bus.
However, because the SOAP/JMS implementation in across the WebSphere
platform was not readily configurable to support this architecture, the solution
architect redesigned the solution to work using SOAP/Http by replacing any long
duration interactions with multiple one-way SOAP messages to increase the
solution’s robustness.

WebSphere Business Integration Message Broker supports both SOAP/Http and
SOAP/JMS, so the essential LGI infrastructure has not had to change. It will be
222 Build a Business Process Solution Using Rational and WebSphere Tools

relatively easy to redeploy the solution onto SOAP/JMS by changing some SOAP
bindings and changing some input nodes and message flows on the broker. This
could happen when the infrastructure is migrated to version 6 of the WebSphere
products and WebSphere Platform Messaging is used to connect the
WebSphere family nodes. See 13.2, “Tooling and middleware changes” on
page 495.

7.2 Install SAH414A
The environments to install on SAH414A are shown in Figure 7-2.

Figure 7-2 Environments to install and configure on SAH414A

All the software products are installed on the VMware D drive, which is
configured as a dynamic spanned SCSI. If the D drive exceeds the 10GB
allocated for it, then it can be grown.

It is recommended to install the product software in the order described here.
There are some prerequisite dependencies of which to be aware.

7.2.1 WebSphere MQ
The basic WebSphere MQ configuration is shown in Figure 7-3 on page 224.
The queue manager, cluster and listener ports will be configured automatically by

Important: Ensure that your Windows user ID is eight or less characters in
length, specifically, not an Administrator ID. Long user IDs can lead to
difficulties with message broker and DB/2.)

A

 Chapter 7. Install and configure runtimes 223

WebSphere MQ Workflow configuration. We add the queues needed to integrate
with WebSphere Business Integration Server Foundation in Chapter 12,
“Integrate and test the business processes” on page 469. The queues needed for
the message broker are configured in 7.2.5, “Install and configure the Message
Broker” on page 230.

Figure 7-3 WebSphere MQ configuration

The installation of WebSphere MQ is straightforward, as is installing Fixpack 9.
Visit this Web site to get Fixpack 9:

http://www-1.ibm.com/support/docview.wss?rs=172&context=SW900&q1=%22WebSphe
re+MQ+v5.3%22+CSD+Fix+Pack+Maintenance&uid=swg24008835&loc=en_US&cs=utf-8&l
ang=en+en

Install all the WebSphere MQ components, but do not install the default
configuration. If you are installing the same VMware configuration as in this
redbook, install all software products on the D Drive.

7.2.2 DB/2
The installation of DB/2 Extended Enterprise Edition Version 8.1 and Fixpack 6 is
straightforward.

Figure 7-4 DB/2 Configuration

Remember the DB/2 administrator and password you set. Create the sample
database to check the installation.

Tip: Use the DB/2 configuration assistant to set DB2_MON_HEAP to around
900 from the default 66 to avoid problems.
224 Build a Business Process Solution Using Rational and WebSphere Tools

http://www-1.ibm.com/support/docview.wss?rs=172&context=SW900&q1=%22WebSphere+MQ+v5.3%22+CSD+Fix+Pack+Maintenance&uid=swg24008835&loc=en_US&cs=utf-8&lang=en+en

7.2.3 WebSphere Application Server
The server configuration is shown in Figure 7-5.

Figure 7-5 WebSphere Application Server configuration

To install this level of WebSphere Application Server and its fixes, we need to
install them in this order.

1. WebSphere Application Server 5.1, available on your product installation CD.

We installed into D:\WebSphere

2. WebSphere Application Server Fixpack 1 for 5.1. This converts 5.1 into 5.1.1.

We unzipped the fixpack to D:\WebSphere\WAS511FP1.

We should logically have called this directory WAS51FP1.

Get the Fixpack here:

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D420&q1=f
ixpack&uid=swg24007195&loc=en_US&cs=utf-8&lang=en

3. WebSphere Application Server Cumulative Fix 7. This converts 5.1.1 into
5.1.1.7

We unzipped the cumulative fix into D:\WebSphere\WAS511CF7

Get WebSphere Application Server Cumulative Fix 7 here:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24008771

This convention helps in keeping track of and installing fixes.

Installation of WebSphere Application Server is straightforward. But do not
install embedded messaging. We are using WebSphere MQ. You will need to
install the Http server. The installation is quicker if you decline to install the
sample applications.

To install a Fixpack, run the WebSphere Application Server update wizard. To
keep our paths simple, we installed the products near the root directory of the D
drive. To run the update wizard, first you set the Windows environment variables
by running setupcmdline.bat as in Figure 7-6 on page 226.

7

 Chapter 7. Install and configure runtimes 225

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24008771
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D420&q1=fixpack&uid=swg24007195&loc=en_US&cs=utf-8&lang=en

Figure 7-6 Running setupcmdline.bat

You can then run the update wizard by typing something similar to:

was511fp1\updatewizard

The exact command depends on what you called your unzipped Fixpack
directory. The update wizard does take some time to start and run (Figure 7-7).

Figure 7-7 Run the update wizard

When you have finished, verify the installation:

1. Start First Steps → Start the Server and wait for the message ADMU3000I
Server server1 open for e-business; processid is xxx

2. Verify Installation → wait for Installation verification is complete.

3. Close all the windows.
226 Build a Business Process Solution Using Rational and WebSphere Tools

4. Now you are happy with the configuration, change the start up property of the
WebSphere Application Server server1 service to automatic and we will not
explicitly start the service again.

5. Because we are running the Application Server in a VMware image, it might
be easier to administer it using a browser running on the native machine than
using a browser in VMware. To confirm that WebSphere Application Server is
running on SAH414A and to save a shortcut to the Administration Console,
open a browser window and type:

http://sah414a:9090/admin

Save this as a shortcut.

7.2.4 Install and configure WebSphere MQ Workflow
We need to start by installing WebSphere MQ Workflow 3.5 with Fixpack 4,
which is straightforward. Install all the optional components. Visit this Web site to
get WebSphere MQ Workflow 3.5 Fixpack 4:

http://www-1.ibm.com/support/docview.wss?rs=795&context=SSVLA5&dc=D420&uid=
swg24007450&loc=en_US&cs=utf-8&lang=en

The configuration will look like Figure 7-8.

Figure 7-8 WebSphere MQ Workflow configuration

Tip: You should bring the embedded WebSphere Application Server test
servers in Rational Software Architect and WebSphere Studio Application
Development Integration Edition up to the same level as the runtime servers.
To do this locate the runtimes directories where you have installed the tools
and apply the same fix process. For example, to upgrade the WebSphere
Application Server 5.1 runtime in WebSphere Studio Application Development
Integration Edition, you might find the runtimes in the default directory location
which is C:\Program Files\IBM\WebSphere Studio\Application Developer
IE\v5.1.1\runtimes\base_v51 for integration edition.
 Chapter 7. Install and configure runtimes 227

http://www-1.ibm.com/support/docview.wss?rs=795&context=SSVLA5&dc=D420&uid=swg24007450&loc=en_US&cs=utf-8&lang=en

The configuration process builds a workflow buildtime, a Web client and an
administration utility. We use the buildtime to create and modify workflows. This
is described in Chapter 11, “Modify the Claim Investigation process” on
page 453. First of all we have to configure the workflow buildtime.

1. Check all the prerequisite installations we have just installed. While these are
not strictly prerequisite, this is the installation configuration we can confirm as
successful:

a. WebSphere Application Server 5.1 with Fixpack 1 and Cumulative Fix 3.
b. WebSphere MQ 5.3 with Fixpack 9
c. WebSphere MQ Workflow 3.5 with Fixpack 4
d. DB/2 8.1 Enterprise with Fixpack 6.

2. The only prerequisite configuration is the default server1 application server
that should have been verified using First Steps.

3. Run the WebSphere MQ Workflow configuration utility from the
WebSphere MQ Workflow program group using the default settings except
where specified otherwise:

a. General Tab
i. Select New... → FMC → OK.
ii. Select all the options to configure as in Figure 7-9.

Figure 7-9 General Tab options

b. Runtime Database Tab
i. DB2 should already be present as the DB2 Instance, so select it.
ii. Provide your DB2 user ID and password as the DB/2 connect

parameters → New... Accept the defaults → OK → Next. See
Figure 7-10 on page 229.
228 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 7-10 Runtime database properties

c. Queue Manager Tab

i. Accept all the defaults → Next

d. Cluster Tab

i. Accept the defaults → Next

e. Client Connections Tab

i. Accept the defaults → Next

f. Buildtime Tab

i. Accept the defaults → Next

g. Buildtime Database Tab

i. DB2 should already be present as the DB2 Instance → select it.

ii. Provide your DB2 user ID and password as the DB/2 connect
parameters → New... Accept the defaults → OK → Next. See
Figure 7-11 on page 230.
 Chapter 7. Install and configure runtimes 229

Figure 7-11 Buildtime database properties

h. Runtime Client Tab
i. Accept the defaults → Next

i. Web Client Tab
i. Accept the defaults → Next

j. WebSphere Tab
i. Accept the defaults → Next

k. JDK/JRE Tab
i. Accept the defaults → Done

Browse with the WebSphere MQ explorer to see all the WebSphere MQ
definitions have been made for the cluster FMCQM.

7.2.5 Install and configure the Message Broker
We start by installing Version 5.0 of WebSphere Business Integration Message
Broker. See Figure 7-12 on page 231.

Tip: To find the WebSphere MQ configuration explorer without cluttering the
desktop, add the WebSphere MQ Explorer Snap-in to the WebSphere MQ
Services Monitor in the Windows System Tray:

1. Open the WebSphere MQ Services Monitor in the System Tray

2. Select Console → Add/Remove Snap-in → Add... → WebSphere
MQ → Finish → Close → OK.

3. Select Console → Save → Respond YES to update to 1.2 format MMC.

The next time you open the WebSphere MQ Services monitor, the
WebSphere MQ Explorer will be ready to use as well.
230 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 7-12 WebSphere Business Integration Message Broker configuration

The broker checks for prerequisites. You can find any missing installations on the
Message Broker supplementary CD. Fixpack 4 needs to be installed after
completing the broker installation. Fixpack 4 pre-reqs version 5.0.2 of the IBM
Remote Agent Controller [RAC] which is also available on the same web page as
the broker fixpack 4. Use the RAC from the Message Broker Web page rather
than any other copy of RAC 5.0.2, to avoid an installation warning message later
in the installation. However, as long as you are running RAC 5.0.2 the warning
can be ignored.

To get Fixpack 4 and RAC 5.0.2, visit this Web site:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=wbimb&
S_PKG=dlwinww&cp=ISO-8859-1

You will need to sign on to http://www.ibm.com.

Broker configuration
Before starting, check that the user ID to be used by the broker has the right
authorities. Check the groups that the user ID has rights to using the Windows
user manager, or run the broker security wizard installed with WebSphere
Business Integration Message Broker.

To configure the broker, we use the default configuration wizard in the
WebSphere Business Integration Message Broker toolkit getting started page.
See Figure 7-13 on page 232.
 Chapter 7. Install and configure runtimes 231

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=wbimb&S_PKG=dlwinww&cp=ISO-8859-1

Figure 7-13 Finding the getting started wizard

Step-by-step instructions to create a configuration are provided in the information
centre. It is worth reading them through before launching the getting started
wizard so you understand it.

1. In our installation, we have used Admin as the main user ID and db2admin as
the user ID to access the database. To copy this, deselect Also use this
account for accessing the DB2 databases in the first panel (Figure 7-14).

Figure 7-14 WebSphere Business Integration Message Broker getting started wizard

2. The wizard assumes that it is creating a new queue manager. If you are
creating the same installation as we are, or if there is already a queue
manager installed on the node you are configuring for the broker, this is not a
big problem. When the wizard prompts for a queue manager name, give it the
232 Build a Business Process Solution Using Rational and WebSphere Tools

name of the existing queue manager (FMCQM) and the listener port configured
for it (5010).

When the wizard completes, there is a warning mark in the WebSphere MQ
Alert Monitor (Figure 7-15).

Figure 7-15 Warning in WebSphere MQ Alert Monitor

This is because the getting started wizard has added a listener to FMCQM on
the same port as the existing listener. You need to delete the extra listener.

3. From Alert Monitor → MQ Services → WebSphere MQ Services (local) →
FMCQM → in the right panel, highlight the second listener and right-click →
Delete (Figure 7-16).

Figure 7-16 Deleting the extra service
 Chapter 7. Install and configure runtimes 233

4. Complete the initial broker configuration by changing the properties of the
Broker WBRK_BROKER and the Configuration Manager services to start
automatically in the Windows Services Manager. (My Computer →
right-click → Manage → Services and find the two services to change).

The default configuration sets the DB2 locking variable DB2_RR_TO_RS to
YES which is recommended when using the Aggregation function in
WebSphere Business Integration Message Broker. If you do not use the
wizard you will need to set this variable in a DB2 command window:

DB2SET DB2_RR_TO_RS=YES

5. The default configuration also sets the DBHEAP to 900. Check this in a DB2
command window by issuing DB2 get db CONFIGURATION for WBRKBKDB
and verifying the DBHEAP size. If it is less than 900 set it using the command:

db2 update database configuration for WBRKBKDB using dbheap 9001

Toolkit configuration
The toolkit is automatically configured by the getting started wizard. To use the
broker toolkit running on a different machine. For example, using the native
machine to host the toolkit, and connecting to the broker running in the VMWare
image SAH414A, we need to install just the toolkit on the native machine, and
configure it to attach to the broker running in SAH414A.

1. Define the user ID you are going to connect to in SAH414A and run the broker
security wizard to give it authority to the broker groups.

2. In the WebSphere Business Integration Message Broker toolkit File →
New → Other → Broker Administration → Domain → Next. Type FMCQM for
the Queue Manager Name, SAH414A (or your name) for the Host and 5010 (or
your port number) for the Port → Next. Change the Server Project to
LocalProject and the Connection name to LocalProject. Click Finish →
YES. These are the names for the folder that will hold the message flows
and sets locally and the file that holds the connection information to the
broker.

We have now completed installing and configuring the message broker and the
toolkit ready to start developing the message flows in Chapter 9, “Build the
Enterprise Service Bus” on page 261.

7.3 Install and Configure SAH414B
The environments to install on SAH414B are shown in Figure 7-17 on page 235.

1 Note: DBHEAP not DHEAP (there is a typo in the information centre)
234 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 7-17 Software environments to install on SAH414B

Much of the installation is similar to SAH414A. We only note the differences.

7.3.1 WebSphere MQ
Install WebSphere MQ exactly the same way as on SAH414A.

Figure 7-18 Deployment of WebSphere MQ on SAH414B

The next tasks are to define a queue manager and join the FMCGRP cluster on
SAH414A. The wizards and first steps will not accomplish this because their
assumptions and naming conventions do not match the solution. So we have to
perform the task manually using the WebSphere MQ Explorer.

Create a Queue Manager
1. Right-click the Queue Managers folder in the WebSphere MQ Explorer →

New → Queue Manager.

2. Step 1: Enter the Queue Manager name SAH414B, and Dead Letter Queue
name SYSTEM.DEAD.LETTER.QUEUE as in Figure 7-19 on page 236. The Default
 Chapter 7. Install and configure runtimes 235

Transmission Queue is not essential as we are going to be using clustering to
locate queues on other servers. Click Next.

Figure 7-19 WebSphere MQ configuration on SAH414B: Step 1

3. Step 2 → Next → Step 3 → Check the Create Server Connection
Channel option → Next → Step 4 → specify 1414 as the Listener port →
Finish.

Join the FMCGRP cluster
1. Start the SAH414A VMware image and check the IP connection to SAH414A

by pinging it, and vice versa

2. Check that you can connect to the FMCGRP cluster.

In the WebSphere MQ Explorer → right-click the Cluster folder → Show
Cluster ... → Type FMCGRP as the Cluster name → check the Repository
Queue manager is remote button → Type FMCQM as the Queue Manager
and SAH414A(5010) as the Connection Name (Figure 7-20)

Figure 7-20 Show the FMCGRP cluster
236 Build a Business Process Solution Using Rational and WebSphere Tools

3. Now have SAH414B join the cluster.

a. Start the Add Queue Manager to Cluster Wizard. Right -lick the Queue
Managers in Cluster folder under FMCGRP → All Tasks... → Add
Queue Manager → Next and the wizard connects to the FMCGRP
cluster.

b. Step 1 → Select the queue manager is Local button → Next.

c. Step 2 → Next → Accept the defaults in Step 2a for the name of the
cluster receiver channel → Next → Accept the defaults in Step 2b for the
repository’s cluster receiver channel → Next.

d. Step 3 → Add the queue manager to the cluster. Check the
configuration → Finish.

e. Refresh the Queue Managers in Cluster folder and SAH414B is shown in
the cluster.

4. Clusters should always have at least two repositories. Making SAH414B a
repository queue manager will sometimes improve its performance because it
will become aware of configuration changes in the cluster before using them.

a. Right-click SAH414B in the queue managers folder in the WebSphere MQ
Explorer → Properties and select the Repository tab.

b. Check the Repository for a cluster button and select FMCGRP in the
cluster spin box.

We have now completed the basic configuration of WebSphere MQ. The queues
and JMS configuration needed for the solution will be added in Chapter 12,
“Integrate and test the business processes” on page 469.

7.3.2 DB/2
The installation of DB/2 is identical to SAH414A and is shown in Figure 7-21.

Figure 7-21 DB/2 installation on SAH414B

7.3.3 WebSphere Business Integration Server Foundation
To install WebSphere Business Integration Server Foundation successfully the
first time you need to follow the sequence of steps carefully. Figure 7-22 on
 Chapter 7. Install and configure runtimes 237

page 238 shows the configuration we aim to complete preparatory to deploying
the integration solution.

Figure 7-22 WebSphere Business Integration Server Foundation configuration

Server Installation
Follow these steps:

1. Install WebSphere Application Server 5.1 with no fixes. Do not install
embedded messaging or the samples.

2. Install WebSphere Business Integration Server Foundation 5.1. Do not install
embedded messaging or the samples.

Install the Process Choreographer, but do not select the wizard to configure
the business process container.

3. Install Fixpack 1 for WebSphere Application Server 5.1 (see 7.2.3,
“WebSphere Application Server” on page 225.)

This takes WebSphere Application Server to 5.1.1
4. Install Fixpack 1 for WebSphere Business Integration Server Foundation

following the same procedure as for WebSphere Application Server Fixpack
1.

This takes WebSphere Business Integration Server Foundation to 5.1.1

3 7
238 Build a Business Process Solution Using Rational and WebSphere Tools

5. Install Cumulative fix 72 for WebSphere Application Server. This takes
WebSphere Application Server To Version 5.1.1.7.

6. Install Cumulative Fix 3 for WebSphere Business Integration Server
Foundation. This takes WebSphere Business Integration Server Foundation
to 5.1.1.3,

7. Use First Steps as before, to start the server and verify the installation. Close
all the windows leaving server1 running.

Configure the Business Process Container
We use a jacl script to configure the Business Process Container. Open a
command prompt window and type:

D:\WebSphere\AppServer>bin\wsadmin.bat -f processchoreographer\sample\bpeconfig.jacl

This script prompts for all necessary information.

Table 7-1 lists the responses to the script for configuration of the process
container.

Table 7-1 Configuration of the business process container

2 WebSphere Business Integration Server Foundation 5.1.1.3 pre-reqs WebSphere Application
Server 5.1.1.7. WebSphere Business Integration Server Foundation 5.1.1 FP2 supports monitoring
business events, while the earlier version of WebSphere Business Integration Server Foundation had
a problem in this area.

Prompt Input Comments

Install bpecontainer.ear Yes

Interactive Install: No We want to take all the defaults for
more complex options during this
install

Users to add to role
BPESystemAdministrator:

Admin This is the user id that will be used
as the System Administrator.

Groups to add to role
BPESystemAdministrator:

Enter Just hit enter (don't type any text).
That will take the default - we will
not be adding any roles.

Run-as UserId for role
JMSAPIUser[Admin]:

Enter Take the default (note that Admin
has been supplied as the default).

Administrator’s password: ******* Admin’s password

Use a ... database: DB2 We will be using DB2 as our
runtime database. Note the
number of other supported
databases.
 Chapter 7. Install and configure runtimes 239

Install processportal.ear Yes This will install the BPC Web Client
component.

Interactive install: No Again we'll take the defaults.

Virtual Host for Web Client
[default_host]:

Enter

Node of Process
choreographer to connect to
[SAH414B]:

Enter

Server of Process
Choreographer to connect
to [server1]:

Enter

Create the Data Source for
the Process Choreographer
database:

Yes

Database name [BPEDB]: Enter

Use the CLI or the Universal
JDBC™ provider:

CLI Using local bindings to the
databases

DB2 user ID[db2admin]: Enter Or whichever Userid you have
configured to access DB/2

db2admin’s password: ******* The password for DB2ADMIN

D:\Program Files ...
\db2java.zip does not exist

D:\SQLLIB Enter the install root for DB/2 - not
the path to db2java.zip

Create the Process
choreographer database?

yes

DB2 table space directory: Enter

Use embedded messaging
or MQSeries®?

MQSeries

Create the Process
Choreographer queue
manager and queues?

No We have already created them

Create the listener ports Yes This will configure WebSphere to
use the queue manager we have
already created

D:\Program Files\ ... java\lib
does not exist

D:\WebSphere
MQ

Enter the install root where WMQ is
installed

Prompt Input Comments
240 Build a Business Process Solution Using Rational and WebSphere Tools

While the server is stopping, define the four additional queues that Process
Choreographer requires. There is a .bat file to create the queues. In a command
window, type:

D:\WebSphere\AppServer\ProcessChoreographer>createqueues SAH414B

When the server has stopped, start the WebSphere Application Server service
again to verify the installation. Click the startup command in the WebSphere
Application Server program group. It will notify you when the server is ready for
e-business.

Queue Manager name: SAH414B Don’t take the default!

Will the Queue Manager join
a WebSphere MQ cluster:

No Although SAH414B is a member of
a cluster, this refers to a special
cluster configuration defined for
Process Choreographer to do load
balancing. So we say No.

Create the Scheduler for
Process Choreographer:

Yes

Enable global security using
the Local OS user registry:

Yes We need global security turned on
for the staff component - although
our current process doesn't use
any staff nodes we will be adding
some staff steps later and therefore
need to configure for global
security. Unfortunately the script
not only enables global security but
also Java 2 Security - which would
prevent the CICS Resource
Adapter from working. We will need
to fix this later.

Server user ID[Admin] Enter

Enforce Java 2 Security No Not for testing

Set
’com.ibm.SOAP.loginUserid’
in soap.client.props:

Yes

Delete the temporary
directory C:\tmp:

Yes

Stop server server1 now: Yes Since we enabled global security
we will need to restart the
application server.

Prompt Input Comments
 Chapter 7. Install and configure runtimes 241

Open the enterprise application page in the console. Check if applications
named BPEContainer_SAH414B_server1 and
BPEWebClient_SAH414B_server1 are started. They are business process
container and business process Web client which we have installed.

Figure 7-23 Process container and web client are enterprise applications

You have installed and configured business process container and process Web
client successfully. And this ends all the infrastructure installation you need to do.
242 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 8. Test and deploy the
application components

In this chapter we describe the implementation, deployment and test of the
application components. The application components are not a main focus of the
scenario, and this chapter just provides a brief description of the components
and instructions on how to deploy the applications provided in the additional
materials to support development and testing of the integration components.

8

© Copyright IBM Corp. 2006. All rights reserved. 243

8.1 The Assessor Automation System
As presented in Chapter 6, “Solution Architecture” on page 187, the Assessor
Automation System comprises the parallel process engine that interacts with
other existing and new components.

The following sections present:

� Interfaces that define the contract for these components
� Related implementation and functionality,
� Tips on configuring the packaged solution artefacts

8.1.1 Assessor Management System
The existing Assessor Management system is responsible for providing
assessor-related information and analysis. The Assessor Management System
is exposed as a Web service containing different operations, that range from
identifying a list of potential assessors for a claim to administering assessor
profiles. The administration of assessors involves both manual and automated
steps depending on whether a delete assessor operation, which can only be
done by an administrator is required, or if the assessment history and assessor
score needs to be updated based on a current or recently completed claim.

While important, the administration of assessors is out of the scope of the
Assessor automation system and in the section, we are focused on identifying a
list of assessors for a claim, which is the only assessor management function
used by the assessor automation system.

Identify Assessor List
The Assessor Management Service exposes an operation requestListAssessors
that takes as input a requestListAssessorRequest message containing:

� claimID: The claim ID for the particular claim
� location: The zipcode or postcode indicating the location of the vehicle
� makeOfCar: A description of the make and model of the vehicle

Based on this, queries the assessor data store for a list of assessors within a
60-mile radius of the location of the vehicle, who specialize or have expertise
with the particular make and model of the vehicle. The result of the query is
prepared and returned as a requestListAssessorsResponse message that
contains:

� claimID

� assessorList
244 Build a Business Process Solution Using Rational and WebSphere Tools

This list is an array of potential assessors. Each assessor is an object
containing the elements assessorID and assessorURL, where assessorID is
a unique identifier for an assessor, and assessor URL, is the URI for that
particular assessor’s service.

The Assessor Management Service, and by extension the requestListAssessors
operation, is a packaged J2EE application implemented with EJBs and runs
WebSphere Application Server 5.1. The service interface is described and
exchanged as WSDL that describes the Web service endpoint illustrated in
Figure 8-1.

Figure 8-1 Visualization of the implementation of the Assessor Management Service

Verify Assessor Management in a test environment
To verify Assessor Management, follow these steps:

1. Create a new workspace folder for Rational Software Architect called
Applications and open Rational Software Architect. In the Window →

Web service end point
 Chapter 8. Test and deploy the application components 245

Preferences → Workbench → Capabilities check Advanced J2EE and
Web services. In the Preferences → Web services → WS-I compliance
category you want to select WS-I compliance level to Required.

2. Open the J2EE perspective.

3. Import the Flow2_AssessorManagementService_SOURCE.ear from
.\SG24-6636\WAS\Flow2 into Rational Software Architect and call it
AssessorManagementService. See Figure 8-2.

Figure 8-2 Importing the Assessor Management Service .ear file

4. Delete the default WebSphere Application Server 6.0 test environment in the
Servers tab on the bottom right and then right- click → New and select the 5.1
test server environment.

5. Although the import of the .ear file has generated a WSDL file for you (Under
Web services → Services → AssessorManagementService → WSDL)
our experience is the Web service often needs to be regenerated to avoid a
deployment problem with missing Web service classes:

a. Open EJB Projects → AssessorManagementServiceEJB →
DeploymentDescription → Session Beans → and right-click Assessor
Management → Web services → Create Web service.

b. In the dialog boxes that follow, you need to generate an EJB Web service
and you do not need to test it. We have a different test method. Everything
else in the dialog boxes is defaulted, but check that
requestListAssessors method is selected when configuring the Java
Bean as a Web service and use the Document/Literal style of Web
service.

c. In the Servers view, right-click the 5.1 test environment and select Add
and Remove projects. Ensure the AssessorManagementService is
configured in the right hand box.

6. Again in the Servers view, publish and start the server, then check the
console output. There should be no E level messages. If there are, they
probably are to do with either missing Web service interfaces or there is
something wrong with the deployment. Either redo the Web service wizard, or
246 Build a Business Process Solution Using Rational and WebSphere Tools

remove the project from the 5.1 server and deploy it again. It comes right in
the end!

7. Finally, test the Web service by launching the Web services explorer
(Figure 8-3).

Figure 8-3 Testing the AssessorManagementService with the Web services explorer

a. Right-click the AssessorManagement WSDL file → Test with Web
services explorer.

b. Click requestListAssessors in the Explorer navigator and type in
correctly types data into the input fields (e.g. 10, Hursley, Ford).

c. The results are either an assessor number, 9999, or 5555 back in a list.
 Chapter 8. Test and deploy the application components 247

8.1.2 Business Rules Engine
WebSphere Process Server Version 6.0 provides a customizable Business Rules
Engine. The Business Rules Engine component holds all business rule functions
needed for the claims processing. The Business Rules engine is not a business
rules product, but rather a collection of applications that apply rules in different
situations and are implemented in a mix of EJBs, Business Rule Beans, and
COBOL applications. For the Assessor Automation system, our focus is on two
functions the Business Rules Engine provides, policyRules and assessorRules.

Policy Rules
Policy Rules refers to the function that provides policy-based metrics for
processing a claim. For instance, in Assessor Automation it is important to
provide how much time an assessor can take to do the work, and how much time
the assessor has to bid for the work based on the policy profile. For example, a
client with a premium insurance policy will expect a fast processing of the claim.
A client with a third-party only policy is not hampered if the processing of the
claim can take slightly longer. The interactions with the assessors need to reflect
this.

The RequestResponseTimePTService provides the function to determine the
duration to wait for assessors to bid for the work by tendering their availability and
predicted cost. The RequestResponseTimePTService takes as input a
RequestResponseTimeRequest message containing:

� claimID:
� policyID: A unique identifier of the clients insurance policy

This information is used to query the policy type based on policyID, calculate
duration and response time based on predefined rules around policy type, and
return a RequestResponseTimeResponse message that contains:

� claimID
� responseTime: duration in hours for when an availability response must be

set. The duration is added to the time the requests are sent out to give the
responseTime.

The visualization of the session bean is shown in Figure 8-4 on page 249. The
procedure for testing it is the same as for the assessor management services.
248 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 8-4 Visualization of the ResponseTimeRules implementation

Assessor Rules
When a list of potential assessors to do the assessment have been identified, the
best assessor for the job has to be selected. This function is handled by the
PreferredAssessorService where the assessors are prioritized, based on the
predicted completion date tendered by the assessor, the performance of the
assessor retrieved from historical data in the assessors profile, cost, the distance
of the assessor to the vehicle, and assessor specialization in different types of
vehicle.

The PreferredAssessorService takes as input a SelectAssessorRequest
message which contains:

� claimID

� AssessorAvailabilityList: An array of available assessors. Each available
assessor is an AssessorAvailability object with fields, assessorID,
 Chapter 8. Test and deploy the application components 249

assessorURL, predCost, predDate, where predCost is the predicted cost of
the assessment and predDate is the predicted date of assessment
completion

The serves returns a SelectAssessorResponse message containing these
elements:

� claimID
� assessorID.

The visualization of the PreferredAssessor service is shown in Figure 8-5below:

Figure 8-5 Visualization of the PreferredAssessor implementation

8.1.3 Document Management System
IBM provides a ready built Document Management System for DB/2 that
integrates into many popular document clients, such as Microsoft Word, and
provides extensive team and project capabilities that can be customized with no
programming. See the following Web site for further information:

http://www.ibm.com/software/data/cm/docmgr/
250 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.ibm.com/software/data/cm/docmgr/

The centralized processing and storage of claims related documents including
Medical Reports, Police Reports, Assessment Reports, is handled by the
Document Handler System.

StoreAssessorReport
For the Assessor Automation System, we are particularly concerned with the
StoreAssessorReportService that receives an assessment Report from an
assessor, stores the report in a dedicated file system, and sends the url of the
report back to the requester of the service, in this case, the <<automated
external claim assessor business process>>. The StoreAssessorReportService
takes as input a StoreAssessorReportRequest message that contains four
elements:

� claimID
� assessorID
� xmlReport: An xml document representing the report from the assessor
� completionDate: the date the assessor completed the assessment and report.

The service returns a StoreAssessorReportResponse message that contains:

� claimID
� assessorID
� reportLocation: The url for the location of the stored document.

The StoreAssessorReportService is implemented as a SOAP/Http service
running in WebSphere Application Server version 5.1. See Figure 8-6.

Figure 8-6 Visualization of the Store Assessment Report implementation
 Chapter 8. Test and deploy the application components 251

8.2 External Assessor System
The implementation of the External Assessor System is decided by the
Assessors themselves. LGI provide the WSDL interface to the services to be
hosted by the assessors, and the WSDLs for the services for which the
Assessors need to provide clients. These WSDLs are listed in Table 8-1.

Table 8-1 Services comprising the LGI/Assessor boundary

In the additional materials, an Assessor implementation is provided for
WebSphere Application Server and for WebSphere Business Integration
Message Broker. The rather unlikely choice of creating a message broker
implementation is that it is very easy to build and test with the broker flows that
are used to implement the proxyAssessorSystem.

One distinct advantage in the broker implementation is that it is easy to control
the delay between sending flow 7a and flow 8 back to the broker using the MQ
Explorer to enable and disable message queues.

Assessor Availability
In Figure 8-7 on page 253 you can see the interface to
requestAssessorAvailability requires the carDetails and a number of other
parameters to do with the claim.

WSDL Hosted by Description

Availability(4).wsdl Assessor Request Availability

AssessorAvailabilityPT(4a).wsdl LGI Response

DeliverAssessment(7).wsd Assessor Request Assessment

DeliverAssessmentResponse(7a).wsdl LGI Acknowledge

AssessorReport(8).wsdl LGI Send report
252 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 8-7 Visualization of AssessorAvailabiliy implementation

Unlike the earlier Web services, the SOAP response is simply an
acknowledgement. The actual availability is passed as a return call.

Deliver Assessment
The Deliver assessment application receives the request for the selected
assessor to perform the vehicle assessment. It returns a simple
acknowledgement to the request like the Assessor Availability application.

See Figure 8-8 on page 254.
 Chapter 8. Test and deploy the application components 253

Figure 8-8 Visualization of the Deliver Assessment application

The interaction which returns the decision to either commit to doing the
assessment or not is sent in the next interaction by the
DeliverAssessorResponse client application. The Assessment report client then
follows this by sending the assessment report as shown in Figure 8-9 on
page 255.
254 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 8-9 Visualization of Assessors activities

Assessor Client Applications
The client applications provide the assessors responses back to LGI. The
services are hosted by the proxyAssessorSystem. Figure 8-10 shows the client
interfaces of the three applications.

Figure 8-10 Visualization of Assessor Client Application interfaces
 Chapter 8. Test and deploy the application components 255

8.3 Deploy and test application components
Figure 8-11, constructed from Table 6-2 on page 198 shows the .ear files to be
deployed. All the EJBs have been deployed to a single WebSphere Application
Server to simplify the configuration.

Figure 8-11 Application deployment

8.3.1 Deploying to WebSphere Application Server
To deploy the EAR files to WebSphere Application Server on SAH414A, open
the administration console of the Application Server. It is easiest to open the
console on the machine which has the EAR files and the console browser will
upload them to the application server.

Start with Figure 8-12 on page 257.
256 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 8-12 Logging into WAS Administration console remotely

1. On the left navigation panel, choose Install New Applications, and on the
right enter the path to the .ear file to install (AssessorApps.ear in this
example). Click Next (Figure 8-13).

Figure 8-13 Select AssessorApps to install

2. On the next panel (Figure 8-14 on page 258) check default bindings as we
are not going to change any of the default settings → Next.

2

1

 Chapter 8. Test and deploy the application components 257

Figure 8-14 Accept default bindings

3. On the next panel (Figure 8-15) jump straight to Step 6 Summary.

Figure 8-15 Jump over configuration steps

4. On the summary panel, click Finish and Save the changes to the master
configuration (Figure 8-16).

Figure 8-16 Save to master configuration

5. Remember to confirm on the following panel in Figure 8-17 on page 259.
258 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 8-17 Save confirmation

6. To start the newly installed application, on the left navigator panel click
Enterprise Applications. On the right-hand panel, check AssessorApps →
Start (Figure 8-18).

Figure 8-18 Start AssessorApps

7. Repeat this process for the remaining five applications.

8.3.2 Testing the deployed applications
To test the deployed applications, rerun the Web services explorer and change
the address of the Web service to the SAH414A server.

In Figure 8-20 on page 260 be sure to check the box next to the new service and
click Go to add the endpoint to the list of service endpoints. Select the endpoint
to invoke the Web service as in Figure 8-19.

Figure 8-19 Invoking Assessor Availability on SAH414A
 Chapter 8. Test and deploy the application components 259

Figure 8-20 Adding SOAP endpoint address in the Web services explorer.

8.4 Summary
In this chapter, we have described the applications used by the
RequestExternalReports process, and demonstrated how to test and deploy the
applications from the additional materials supplied with this redbook.
260 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 9. Build the Enterprise Service
Bus

This chapter describes how to build the broker components of the enterprise
service bus.

The position of the ESB in the solution architecture and the capability required of
the broker are described first. The next section 9.2, “WebSphere Business
Integration Message Broker” on page 266 briefly describes the concept of a
message broker and its key components. The design of the solution components
is described in 9.3, “Component Design” on page 274. The next four sections
describe the implementation in detail:

� 9.4, “Implementation of the message sets” on page 289
� 9.5, “Implementation of the database tables” on page 314
� 9.6, “Create the message flows” on page 319
� 9.7, “Create the ESQL code for the message flows” on page 351
� 9.8, “Deploy message set and flows” on page 365 describes how to create an

Broker archive file and deploy it to the broker runtime.

Finally, we describe how to test and debug the message flow.

9

© Copyright IBM Corp. 2006. All rights reserved. 261

9.1 Architecture
Here, we take a moment to recap where the ESB fits into the system and solution
architecture.

System Architecture
Figure 9-1 shows the system architecture for the External Claim Assessor
solution. Recalling the discussion in Chapter 5, “System Architecture” on
page 153, for Version 5 of the WebSphere platform we decided to limit the ESB
to the Extended Enterprise pattern, using process integration for the Application
Integration pattern. The Extended Enterprise pattern is responsible for the flows
to and from the external claim assessors. In version 6 of the WebSphere
platform, we intend to extend the ESB to include all the components in the
solution using robust connections between all the services.

Figure 9-1 External Claim Assessor::Product Mapping

The task for this chapter is to implement the router and aggregation services and
to connect the LGI zone of the solution with the Assessors. Again, purely for
resource reasons, we will not focus on the implementing the Web services
gateway, security, or other types of connection to the assessors such as
implementing a browser, EDI, file transfer, email, fax, or interoperability of Web
services.

A

B

262 Build a Business Process Solution Using Rational and WebSphere Tools

Examining Figure 9-1 on page 262 more closely, we use the message broker to
perform two functions corresponding to the boxes labelled A and B.

1. It provides specific routing, distribution, and aggregation services for the ESB.

a. It is responsible for creating an address to route requests to individual
assessors based on the protocol, quality of service and destination of the
assessor, and placing the request on the appropriate transport
connection. Where the native connection technology being used cannot
provide the quality of service required then the broker is responsible for
making a best effort.

The connection technology used by the broker will almost certainly
retranslate the destination address. This could be the Web services
gateway proxying the address, for maintainability and security reasons, or
DNS converting a host name into an IP address. The broker is not solely
responsible for routing; it needs to cooperate with the services provided by
the connection technology. What it does do is provide a stable services
interface for components whether they are implemented as services
themselves, or by being wrappered as services by the ESB.

b. One of the sets of capabilities offered by an ESB is mediation. Mediation
provides flexibility in the logical to physical mapping for service interfaces.
Mediation can be as simple as rearranging the order of parameters offered
by a service, or as complex as providing data augmentation, data
conversion, and type conversion. The more sophisticated forms mediation
we require are one-to-many and many-to-one mapping, or distribution and
aggregation.

Figure 9-2 Schematic view of distribution, aggregation, and routing in the broker

Broker

Router

Distributor/
Aggregator

Assessor1 Assessor3Assessor2

Assessor 1

Assessor 3

Assessor 2

Assessor1

Assessor3

Assessor2

Assessor1

Assessor3

Assessor2

Assessor1

Assessor3

Assessor2

Assessor1 Assessor3

Aggregation
data

A

B

C

D

E

 Chapter 9. Build the Enterprise Service Bus 263

The request for assessment is received (A) from the
RequestExternalAssessment process as a single service request
containing a list of potential assessors. The list is broken up into separate
requests which are sent out to a individual assessors (B). Over a period of
time the responses are returned (C). When the contractually agreed time
to response elapses, the broker aggregates the responses it has received
and invokes a response service provided by the
RequestExternalAssessment process passing a single list of responses
from the :assessors (D). Late arriving responses are discarded (E).

2. The second capability is to provide a bus for different kinds of transport.
WebSphere Business Integration Message Broker provides a number of
communication protocols - we are going to offer web services on SOAP/Http
and SOAP/JMS over WebSphere MQ. The design of the flows in the broker
will enable services to connect using either protocol.

Solution Architecture
The sequence diagram shown in Figure 9-3 on page 265 shows interactions with
the ESB proxyAssessorSystem component. The interactions in red represent
services the proxyAssessorComponent is providing.
264 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-3 proxyAssessorAutomation sequence diagram

The interactions are described in detail in Table 6-1 on page 189. Table 9-1
(adapted from Table 6-2 on page 198) summarizes the interactions with the
proxyAssessorAutomation system and identifies the WSDL files that define the
services. The proxyAssessorSystem is noted where it is responsible for providing
the service. Service flows need to be developed for the proxyAssessorSystem
interactions and client flows for the others.

Table 9-1 WSDL file details

Flow Component Interface details - WSDL file name

3 Proxy Assessor System AssessorAvailability(3).wsdl

4 Assessor Availability(4).wsdl

4a Proxy Assessor System AssessorAvailabilityPT(4a).wsdl

3a Assessor Automation AssessorAvailablityList(3a).wsdl

6 Proxy Assessor System AllocateAssessmentReport(6).wsdl
 Chapter 9. Build the Enterprise Service Bus 265

9.2 WebSphere Business Integration Message Broker
WebSphere Business Integration Message Broker is the message brokering
product within the WebSphere Business Integration family of products. This
family consists of a number of server products that perform integration roles at
different levels.

The broker product belongs to the level of Application Connectivity Services
within the WebSphere Business Integration architecture as shown in Figure 9-4
on page 267. This layer performs functions such as routing, mediation,
transformation and publish/subscribe. These functions are typically performed on
top of a messaging infrastructure, such as WebSphere MQ.

7 Assessor DeliverAssessment(7).wsdl

7a Proxy Assessor System DeliverAssessmentResponse(7a).wsdl

6a Assessor Automation AllocateAssessorResponse(6a).wsdl

8 Proxy Assessor System AssessorReport(8).wsdl

9 Assessor Automation AssessorReport(9).wsdl

Flow Component Interface details - WSDL file name
266 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-4 WebSphere Business Integration reference architecture

With the change towards service-oriented rather than message-oriented
architectures, the broker has a new role. It bridges between the traditional
methods of integrating applications using adapters and message-oriented
middleware and the emerging world of services integration using enterprise
service buses. Starting with Version 5, the broker has offered run time integration
with SOAP/Http transport.

The flexibility of the messaging model and the broker’s tooling means that SOAP
services can provided and consumed by broker message flows. It is this
capability we shall use to provide SOAP services over http which can easily be
adapted to JMS.

9.2.1 Components of message broker
WebSphere Business Integration Message Broker V5 consists of the following
components:

� Message Brokers Toolkit for WebSphere Studio, which is a new feature
replaces the Control Center of WebSphere MQ Integrator V2.1, as well as
adding extended functionality in many new areas.

Business Activity Monitoring

WebSphere Business Integration

Process Integration Services

Pr
oc

es
s

C
ho

re
og

ra
ph

y

C
ro

ss
-

R
ef

er
en

ce

Tr
an

sa
ct

io
n

/
C

om
pe

ns
at

io
n

St
at

e
M

an
ag

em
en

t

A
ud

it

St
af

f

Business
Protocol

Business
Partner

Business
Protocol

Personalization

Presentation

Process Automation

Application Connectivity Services

Common
Business

Entity
Model

WebSphere
Business Integration

- Connect
WebSphere

Portal

Partner ServicesUser Interaction
Services

Business Partner
Application

Exchange
Hubs

Browser

WAP

Process Automation Human Activity

Events

HR Legac
y

Finance ERP CRM . . .

WebSphere Business
Integration Adapters

Routing Pub/Sub Transformation Mediation

Business Activity Monitoring

WebSphere Business Integration

Process Integration Services

Pr
oc

es
s

C
ho

re
og

ra
ph

y

C
ro

ss
-

R
ef

er
en

ce

Tr
an

sa
ct

io
n

/
C

om
pe

ns
at

io
n

St
at

e
M

an
ag

em
en

t

A
ud

it

St
af

f

Business
Protocol

Business
Partner

Business
Protocol

Personalization

Presentation

Process Automation

Application Connectivity Services

Common
Business

Entity
Model

WebSphere
Business Integration

- Connect
WebSphere

Portal

Partner ServicesUser Interaction
Services

Business Partner
Application

Exchange
Hubs

Browser

WAP

Process Automation Human Activity

Events

HR Legac
y

Finance ERP CRM . . .

WebSphere Business
Integration Adapters

Routing Pub/Sub Transformation Mediation

WebSphere
Business

Integration
Brokers
 Chapter 9. Build the Enterprise Service Bus 267

� Configuration Manager contains a repository for configurations and
messages.

� Message brokers, the runtime component consisting of execution groups
which contain deployed message flows.

� Publish/Subscribe functionality.

� WebSphere WebSphere MQ queue managers, which provide the underlying
transport infrastructure for the WebSphere Business Integration Message
Broker.

� User application programs, which generate messages and request them to be
transformed and routed to other destinations in a messaging infrastructure,
according to specific business rules.

Figure 9-5 shows how these components work together.

Figure 9-5 Components and structure of a broker domain

Broker Workbench
The IT integration specialist uses the Eclipse based broker toolkit to create and
save solution components in a local workspace or in a version control system.

Configuration
Manager DB

WebSphere BI
Message
Broker

Workbench

Broker 1 DB

Broker 2 DB

Broker n DB

Configuration
Manager

Broker 1

Broker 2

Broker n

Workbench
Repository

JDBC

ODBC

ODBC

ODBC

Broker Domain
268 Build a Business Process Solution Using Rational and WebSphere Tools

The broker toolkit consists of a number of plug-ins for WebSphere Studio. These
plug-ins can be loaded in a separate WebSphere Studio installation, or you can
use the WebSphere Studio runtime that is shipped with the WebSphere
Business Integration Message Broker product CD.

Configuration manager
To deploy solutions, the IT specialist stores completed message sets and
message flows in the configuration manager’s repository, which is a DB2
database. They can then be deployed to one or more brokers. Brokers, which
are the runtime component, are available on a number of platforms, including:

� Windows
� Several versions of UNIX®, including Linux
� z/OS

A collection of brokers assigned or connected to a given configuration manager
is called a broker domain. From within the workbench, you can configure
connections to one or more broker domains, for example to test, development
and production domains.

Figure 9-6 Toolkit connected to a broker domain

In Figure 9-6 there is only one broker domain listed under Domain Connections.
The Domain Connection Editor shows the information to connect to the
WBRK_BROKER we configured in 7.2.5, “Install and configure the Message
 Chapter 9. Build the Enterprise Service Bus 269

Broker” on page 230. The broker domain connection consists of an WebSphere
MQ client connection to the queue manager that sits underneath the
configuration manager. The broker domain for our solution consists of the
configuration manager and only one broker, along with their corresponding
databases.

When the broker administrator uses the workbench to deploy a solution to a
broker in a particular domain, the workbench interacts with the configuration
manager using the connection for that domain. The configuration manager is
responsible for synchronizing configurations with brokers. The configuration
manager will send the new solution artifacts with a deployment command to the
to the broker using WebSphere MQ.

Broker
A broker itself consists of a number of components, as shown in Figure 9-7. A
broker process controls and monitors a number of processes, each called a
DataFlowEngine. A DataFlowEngine corresponds with an administrative
Execution group. An execution group can process multiple deployed message
flows at the same time, corresponding to a multi-threaded execution model.
Multiple execution groups can run in a single broker, and can be managed
separately such as deployed, started, stopped, removed and so forth.

Figure 9-7 Structure of the broker

Message Flows
Message flows themselves are directed graphs. Each node in the graph
represents some functionality that the broker will perform. The broker supports

BrokerDatabase

User
DatabaseUser

Database

ODBC

Broker

Queue Manager

Execution group 1

ODBC

Message flow
270 Build a Business Process Solution Using Rational and WebSphere Tools

many built-in nodes, such as Compute nodes, Database nodes, visual
programming nodes (Check, Filter, Label, RouteToLabel nodes) and user-written
nodes. A message flow usually starts with some type of an input node and ends
with some kind of output node. For people who like to think pictorially, it is
sometimes useful to think of message flows.

Flows often begin with an MQInput node, which means that the message flow
starts by reading a message from a queue. This message is then passed along
the directed graph to execute the logic that is modeled in the flow. Another
commonly used type of input node is the HTTPInput node. This node is used to
receive HTTP data streams. We use both MQInput nodes and HTTPInput nodes
in our implementation.

Message flows in a broker can use databases as well perform look-ups and store
data from flows. A number of database products are supported, depending on
the actual platform. DB2 and Oracle are common database products that are
used with a broker. On Windows, SQL Server is supported as well. We use DB2
for our database.

Message Model
Figure 9-8 on page 272 shows an overview of the different components of the
message model. Each of these is described in more detail in the following text.
 Chapter 9. Build the Enterprise Service Bus 271

Figure 9-8 Overview of message model components

All the message resources are stored in files within the workspace repository -
this is part of the integration with the Eclipse family.

Message sets
A message set project is a container for all the resources associated with exactly
one message set. A message set is a logical grouping of messages and the
objects that comprise them (elements, types, groups). The contents of a
message set are:

� Exactly one message set (messageSet.mset) file
� One or more message definition (.mxsd) files

M
es

sa
ge

 B
ro

ke
rs

 T
oo

lk
it

Repository

WMQ1 2.1
Message Set

Message Set
Editor

Message Definition
Editor

Message Category
Editor

XML
DTD

XML
Schema C Header COBOL

Copybook

Migration
Utility Importers

Model
Validator

messageSet.mset
File

Message Set

.mxsd
Files.mxsd

Files

.category
Files

.category
Files

HTML
Docs

XML
Schema WSDL Message

Dictionary

Generators

XML
Application

Web Services
Client

WBIMB
Broker
272 Build a Business Process Solution Using Rational and WebSphere Tools

� Zero or more message category (.category) files

The single message set file (.mset) provides information that is common across
all the messages in the message set. This information is edited using the
message set editor.

Each message definition (.mxsd) file contains definitions of messages, elements,
types, and groups. Every message set requires at least one message definition
file to describe its messages, although it is possible to distribute messages
across multiple message definition files for better manageability. Message
definition files internally use the XML Schema language to describe the logical
format of messages. The physical format of the messages is stored using XML
Schema annotations. The message definition editor can be used to create and
edit the logical structure and physical formats of the messages.

Messages can be grouped into message categories, both for convenience and to
aid in the generation of WSDL. The groupings are defined in .category files.

Message importers
The message definition files can be created and populated using one of the
supplied importers. Importers are available for XML DTD, XML Schema, C
structures, and COBOL structures. Importers can be used either from the
mqsicreatemsgdefs command or from the Message Brokers Toolkit.

A command line migration utility mqsimigratemsgsets is also supplied to migrate
WebSphere MQ Integrator V2.1 message sets into WebSphere Business
Integration Message Broker V5 message sets.

Message editors
The message set files, message definition files, and message category files have
their own editors that are used to create and maintain their resources. Although
internally these files are XML, the supplied editor should always be used to edit
these resources.

Message exporters
Generators are supplied to export message sets to standard external formats.
The formats generated include:

� Message dictionary for deployment to a broker
� XML Schema to validate XML messages for a wire format layer
� Web services Description Language (WSDL) for Web services clients
� Documentation (as HTML)

The message model is validated each time a message set file, message
definition file, or message category file is saved. The validation ensures model
integrity of the logical structure and the physical formats.
 Chapter 9. Build the Enterprise Service Bus 273

9.3 Component Design
The component design for the proxyAssessorSystem should to take into account
a number of constituents of the final implementation:

1. Message sets corresponding to solution interfaces
2. Message flows and transport independence
3. Distribution and Aggregation
4. Database Tables

This section describes the high-level design and associated design issues for
implementing these four areas.

� 9.4, “Implementation of the message sets” on page 289
� 9.5, “Implementation of the database tables” on page 314
� 9.6, “Create the message flows” on page 319
� 9.7, “Create the ESQL code for the message flows” on page 351

9.3.1 Message Sets
Each of the ten interfaces listed in Figure 9-1 on page 265 has a request and
possibly a response SOAP message. We need to be able to read and send
messages with message formats and content corresponding to the ten
interfaces.

Choice of parser
In WebSphere Business Integration Message Broker SOAP access to message
content from the message flow is provided either by the XML parser or by the
MRM parser. The XML parser is efficient, but does not have the capability to
validate a message, and does not require a message definition to be provided.
This can be regarded either as an advantage or disadvantage. It interprets the
SOAP message at run time using the XML tags in the runtime message. The
MRM parser, in contrast, is capable of validating messages against a message
definition, requires a message definition, and during the creation of the message
flow is able to provide content-assistance in the completion of the SQL
statements querying and writing messages.

Best practice, if the message formats are known beforehand, is to use the MRM
to develop and test the message flows. In production, there may be performance
advantages in switching to the XML parser.

Creating message definitions for the SOAP interfaces
WebSphere Business Integration Message Broker will import schema files, but
does not have a WSDL importer. In order to create message definitions for the
WSDL files we need to extract schema definitions from the top-level message
274 Build a Business Process Solution Using Rational and WebSphere Tools

elements in the WSDL file provided by the solution architect and import the
definitions into a WebSphere Business Integration Message Broker message
set. Each interface (request or request/reply are each counted as one interface)
corresponds to a different definition within the same message set. Then, by
importing the schema for the SOAP 1.1 WSDL definition and merging the SOAP
schema with each interface schema, we create the message definitions for each
interface.

All the necessary schema files have already been created from the
corresponding WSDL files, and saved in the additional materials directory
.\SG24-6636\Broker\Schemas. The procedure to convert a WSDL to a schema is
described in the following sections.

The main problem we faced, which all projects hit at some time, is having
multiple copies of the same definitions with the potential for definitions getting out
of step. It is essential to have some procedure, either operational or technical, to
keep the definitions in step. One approach is to define everything in schema files
and use import statements in WSDL files. We took the approach of treating
WSDL as the primary source and asking the System Architect to be responsible
for all interface definitions.

The implementation of all the message definitions is described in 9.4,
“Implementation of the message sets” on page 289.

9.3.2 Message flows and transport independence
The sequence diagram (Figure 9-3 on page 265) shows all the interactions with
the proxyAssessorSystem. As an example, 3, 3a, 4 and 4a in Figure 9-9 show a
magnified detail from the whole diagram.

Figure 9-9 Flows 3,3a,4 and 4a
 Chapter 9. Build the Enterprise Service Bus 275

How should the interfaces shown in Figure 9-9 be mapped to message flows in
the broker?

� There will be a minimum of one flow for each service offered by the broker as
shown by the five bold entries in Table 9-1 on page 265. We call these
Service Flows because they are implementations of Web services. Two of
them are shown in Figure 9-9.

� There are five flows that call the output interfaces. These are called Client
Flows because they are clients of Web services provided by other servers.

� To support interactions within LGI being migrated from SOAP/Http to
SOAP/JMS the input and output nodes for LGI are split out and packaged in a
special transport specific message flow project.

� There are Fault and Reply flows common across all the Service Flows in the
solution which are implemented as transport specific flows. They return
replies or faults to the clients of the services implemented by the broker.

� The Client flows need to catch any errors that occur in the flows or are
returned by the service they call.

These errors are not returned to the Service Flow which called the Client Flow
because the opportunity to use the Service Flow fault handler has gone. The
Service Flow has already been returned an acknowledgement reply to its
client, and the client is no longer waiting for a reply.

Fault handling by the Client flows is implemented by a TryCatch node
attached to the sub flow input node. Errors are passed to a separate error
handler we have called the ClientError flow.

� For this project, all the interactions with the assessors are limited to
SOAP/Http and handled as part of the main flow.

One way to design the output flows to the assessors to support additional
transport types is to use the “RouteToLabel” node to invoke a different output
flow for each transport based on a label chosen in the flow. For input, from the
assessors, we would reuse the concept of splitting the input flow from the
input interface flow, and have a separate input flow for each transport type.

� In addition to these flow types, incoming acknowledgements to requests sent
over an MQ or JMS messaging implementation have separate Ack flows
because there is no combined Request/Reply node. The reply has to be
fielded by a separate flow. We do not need these additional flows for
SOAP/Http, because SOAP/Http has a synchronous HttpRequest node.
Consequently, there are no Ack flows for the SOAP/Http and we have not
written any Ack flows for this solution.

The various types of flow and their relationships are shown in Figure 9-10 on
page 277.
276 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-10 Separation of common and transport specific flows

The advantage of packaging the LGI transport specific (blue top rows) flows
separately from the Common and Assessor (orange bottom) flows is that
changing the LGI bus from SOAP/Http to SOAP/JMS should only necessitate
changing the blue flows.

Using a little artistic license with the architect’s original UML sequence diagrams,
in Figure 9-11 we have shown the AssessorAvailability flows mapped to part of
the sequence diagram from Rational Software Architect to try and show
pictorially the correlation between the flows we have designed for the broker and
the interactions specified in the solution architecture.

Figure 9-11 AssessorAvailability flows

Figure 9-12 on page 278 shows the equivalent Assessor Report flows.

Common and Assessor flows

LGI Transport specific flows

Input ReplyFault Output

Service Flow Client Flow

Client
Error

Catch
Catch

Input3 Flow3 Flow4

Flow4aFlow3aOutput3a

Output3a
Ack

Reply

Fault

Client
Error
 Chapter 9. Build the Enterprise Service Bus 277

Figure 9-12 Assessor Report flows

Brief flow descriptions
Table 9-2 lists the common flows, Table 9-3 the transport independent flows
some of which also interface to the assessors, and Table 9-4 the flows to
interface to LGI.

Details of the flows are described in the implementation section 9.6, “Create the
message flows” on page 319.

Table 9-2 Common flows

Table 9-3 Transport independent flows and flows to and from assessors

Flow Invokes Description

ClientError Catches errors from Client flows

Fault Prevents a poison message loop, creates and outputs
a SOAP fault and outputs an error message

Reply Sends a reply message in the correct format

Flow Invokes Description

Assessor Availability Flows

Flow3 Flow4 Receives request for list of available assessors

Flow3a Output3a Aggregates and sends list of available assessors back

Flow4 EAa Distributes availability request to assessors

Input6 Flow6 Flow7

Flow7aFlow6aOutput6a

Output6a
Ack

Flow8Flow9Output9

Output9
Ack

Reply

Fault

Client
Error
278 Build a Business Process Solution Using Rational and WebSphere Tools

Table 9-4 Transport specific flows to and from LGI

9.3.3 Database tables
The proxyAssessorAutomation system requires three database tables to
manage the correlation of data flowing between services.

Flow4a Flow3a Receives availability responses from assessors

Assessor Report Flows

Flow6 Flow7 Receive request for assessment report

Flow6a Output6a Return acceptance from assessor

Flow7 EA Request assessment from assessor

Flow7a Flow6a Receive acceptance from assessor

Flow8 Flow9 Receive assessment report from assessor

Flow9 Output9 Send assessment report from assessor

a. EA - External Assessor

Flow Invokes Description

Assessor Availability Flows

Input3 Flow3 Receives request for list of available assessors

Output3a AASa

a. AAS - Assessor Automation System

Aggregates and sends list of available assessors back

Flow3aAck Handles acknowledgement to returned assessor list

Assessor Report Flows

Input6 Flow6 Receive request for assessment report

Output6a AAS Return acceptance from assessor

Flow6aAck Handles acknowledgement to returned acceptance

Output9 EA Send assessment report from assessor

Flow9Ack Handles acknowledgement to returned report

Flow Invokes Description
 Chapter 9. Build the Enterprise Service Bus 279

CLAIMASSESSOR
CLAIMASSESSOR is used to store details of availability requests sent to
assessors (flow4), and is updated with details of the assessor's responses to
these.

Table 9-5 CLAIMASSESSOR table

ACTIONASSESSOR
ACTIONASSSESSOR is used to store details of confirmation requests sent to
assessors (flow7), and is updated with details of the assessor's responses to
these

Table 9-6 ACTIONASSESSOR table

Column name & key Type Column Updated by

claimID (index ca1) Integer flow4

assessorID (index ca1) Integer flow4

assessorURL Long Varchar flow4

location Char(100) flow4

reqdate Date flow4

makeOfCar Char(15) flow4

registration Char(7) flow4

predDate Date flow3a

predCost Integer flow3a

replytoq Char(48) flow4

replytoqmgr Char(48) flow4

correlid Blob(24) flow4

requestcompletetime Timestamp flow3a

Column name & key Type Column Updated by

claimID (index aa1) Integer flow7

assessorID (index aa1) Integer flow7

assessorURL , Long Varchar flow7

location Char(100) flow7

reqDate Date flow7
280 Build a Business Process Solution Using Rational and WebSphere Tools

RESOLVEASSESSOR
RESOLVEASSESSOR is used when there are a number of assessor types,
each requiring messages in a different format, we need a way of identifying to
which type of assessor a particular message is to be sent. This table gives the
type of assessor for each assessor ID, as well as technical details such as HTTP
address. In this implementation, all the assessors are accessed using SOAP/Http
and we do not use this table.

Table 9-7 RESOLVEASSESSOR table

9.3.4 Distribution and aggregation
An important capability provided by the broker is to distribute and aggregate
messages. The proxyAssessorSystem uses this capability to send requests to
tender for doing a claim assessment to eligible external claim assessors and
then to aggregate the responses. The ExternalClaimAssessor process sends a
list of all the eligible assessors to the proxyAssessorSystem. The
proxyAssessorSystem splits up the list into individual requests, which in a full

makeOfCar Char(15), flow7

registration Char(7) flow7

ackfromassessor, Char(10) flow7ack

confirmedDate Date flow6a

accepted Char(5) flow6a

replytoq Char(48) flow7

replytoqmgr Char(48) flow7

requestcompletetime Timestamp flow6a

rejected Char(20) flow8

rejectedDate Date flow8

Column name and key Type

assessorID (index ra1) Integer

assessorType Char(10)

assessorhttpaddress Long Varchar

lgibrokerhttpaddress Long Varchar

Column name & key Type Column Updated by
 Chapter 9. Build the Enterprise Service Bus 281

implementation will be sent over a variety of transports, and sends them to the
assessors using SOAP/Http, receiving an acknowledgement from each assessor
that it has received the request. At some later time, which is set contractually
between LGI and the Assessors, and which can vary depending on the class of
insurance the customer is carrying, each assessor can send in a tender. The
tenders are collected together by the proxyAssessorSystem and sent to the
ExternalClaimAssessor process as a single list.

Aggregation nodes
The broker provides three nodes to implement aggregation:

1. Aggregate Control node
2. Aggregate Request node
3. Aggregate Reply node

The Aggregate Control and Request nodes are used in the distribution flow, and
the Aggregate Reply node in the aggregation flow to assemble the replies. The
aggregation nodes provide the framework for implementing distribution and
aggregation. The broker IT specialist must provide the message flow to connect
the nodes, and handle the construction of the fan-out messages and the final
composed message. Before considering the design for the
proxyAssessorSystem, it is worth considering a number of design issues.

One flow or two?
The distribution and aggregation flows can be one and the same physical flow.
The lifetime of the whole distribution/aggregation process is the lifetime of the
flow. Alternatively, it can be implemented as two flows, with a control message
passed from the distribution flow to the aggregation flow to coordinate the two
halves of the process. A single flow is less complex to implement, but two flows
provide more flexibility to implement transactional behavior, and provides more
manageability options at runtime, such as running in different execution groups.

Transport Protocols
Out of the box aggregation supports any transport protocol for receiving and
returning the list of assessors to the ExternalClaimAssessors process. The
intermediate flows to and from the assessors have to run over one of the built-in
transports that support a request/reply message protocol:

� WebSphere MQ Enterprise Transport (MQInput and MQOutput nodes)
� WebSphere MQ Mobile Transport (MQeInput and MQeOutput nodes)

The broker does not support the built-in protocols that do not have a
request/reply message model, or user defined transport protocols:

� WebSphere MQ Web services Transport (HTTPInput, HTTPReply, and
HTTPRequest nodes)
282 Build a Business Process Solution Using Rational and WebSphere Tools

� WebSphere MQ Real-time Transport (Real-timeInput and
Real-timeOptimizedFlow nodes)

� WebSphere MQ Telemetry Transport (SCADAInput and SCADAOutput
nodes)

We need our aggregation service to support any transport type because we allow
assessors to connect to LGI using a variety of protocols. The solution is to
convert the availability flows to use WebSphere MQ within the broker and
converting the requests to and from the assessors between WebSphere MQ and
HTTP/SOAP. The Version 5 infocenter documents the aggregation node
interfaces to enable non-WebSphere MQ aggregation flows to be built. The
implementation of the interface is now available in WebSphere Business
Integration Message Broker Version 6.0, including supporting aggregation over
SOAP/Http transport, removing the need to use intermediate WebSphere MQ
flows.

Robustness and timeouts
An important part of designing aggregation is the consideration of time. By its
nature, we are dealing with a drawn out process and need to consider how long
to wait for replies, what to do with late replies, and because we might be talking
in terms of hours or days to assemble replies, the consequence of an interrupted
aggregation process.

Timeouts
Timeouts should be considered as part of the requirements for the process, and
set by the Business Analyst and Architect. In our case, the timeout values are
incorporated into the contracts with customers and assessors. There are two
timeouts to be set. The green bubbles in Figure 9-13 on page 285 show the
nodes on which the timeouts are set.

The first timeout to set is on the Aggregate Control node. It controls the overall
duration of the aggregation process; how long the process will wait for replies
from the assessors. The value contracted by LGI with the assessors needs to
satisfy the response time expectation of the customer to whom the insurance
policy has been sold. Once the timeout is exceeded the aggregation reply node
routes replies to a different output terminal for processing as late replies.

In the case of the claims process, there are two classes of customer with
different projected response times and therefore there needs to be two different
timeout settings. Because the timeout value is hard coded as an Aggregate
Control node property then for two different contracts with assessors, two
Aggregation Control nodes advertising two different timeout values are required.
In the implementation, for simplicity, only one response time policy is supported.
 Chapter 9. Build the Enterprise Service Bus 283

A second timeout value, this one set on the Aggregate reply node, is difficult to
choose, but not too critical. It specifies how long the Aggregation reply node will
wait upon receiving a message before it decides it cannot associate it with an
control message sent from the aggregation control node. After the timeout
expires, the aggregate reply node discards the message on its Unknown
terminal. This is a global property of the aggregate reply node.

As an illustration, think about this situation: you plan to catch a train to London
from an unmanned train station. You know the trains to London are very reliable
and plan to catch the 10:00 AM train. If you actually arrive a little late at 10:01AM,
and the train is not at the station, have you missed it, or is the train running late?
How much longer should you hang around the station before deciding you have
missed the train? In this example, the train arriving is the control message, the
time it spends at the platform the overall duration of the aggregation, and the
passengers arriving to catch the train, the replies to be aggregated. The second
timeout value is the length of time you are prepared to wait before deciding you
have missed the train, or the train is not coming.

Your choice of value for the second timeout will determine when reply messages
start appearing on the Unknown terminal and would signify that something has
gone wrong. In our scenario, setting the second timeout value to the same value
as the overall duration is a reasonable choice.

Interruptions
The Aggregation Reply node holds its state in a the broker’s database, so short
lived interruptions will not cause undue problems. When the flow is resumed, the
Aggregation reply node will continue until the timeout expires. For more
long-lived interruptions, if the flow restarts after the timeout would have expired,
then messages arriving after the flow stopped executing will be treated as late
replies.

Design of Distribution and Aggregation flows
There is good documentation of the technical details of aggregation and how to
construct a solution in the broker infocenter. Figure 9-13 on page 285 pulls all
these pieces together into a single diagram which we will use to tie together the
individual pieces of the implementation that are distributed over multiple flows,
esql files, and message nodes. To describe the design, we step through the
flows, node by node using Figure 9-13 on page 285.
284 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-13 Complete view of message distribution and aggregation

Timeout: How long
to wait for the fan-in

replies

Aggregate Name
(unique within broker)

Folder Name
(Unique to request)

InputRoot

??? ComIbmAgg
regateReply

<Folder
NameA[1]>

Headers MRM

Message
Body

Properties

<Folder
NameA[2]>

<Folder
NameB

Properties

LocalEnvironment

? ?? Written
Destination

Protocol MQ

Other data Reply
Identifier

WebSphere MQ
HTTP/SOAP

LocalEnvironment
Folder

Timeout: How long
to hold replies before
they are “unknown”

Incomplete
compound
message

Not understood
messages

Aggregate Name
(Unique within Broker)

ReplyIdentifier
into MsgID WebSphere MQ

Flow 4

Flow 3a
 Chapter 9. Build the Enterprise Service Bus 285

Flow 4
The availability request from the ExternalClaimAssessor process has been
received and validated. Flow 4 is invoked from Flow 3.

Preparation
1. The HTTP/SOAP message is received from the input server flow after

validation.

2. The TryCatch node sets up the error context for the rest of the processing,
acting as a SOAP client for requesting the assessor availability from each of
the assessors.

3. The database delete node, Delete Claim Status, is used to clean out any
previous claim status before the new request is processed.

4. The Prepare MQ node removes all vestiges of the HTTP request from the
broker folders1, and sets up the MQ folder to create a new MQ message.

Aggregate Control
5. The Aggregate Control [AC] node starts the distribution/aggregation process.

a. As described earlier, the timeout for the replies is specified on the AC
node.

b. A name is also given to the aggregation to distinguish it from other
aggregations that may be happening. For example, if we had implemented
different aggregations for different response times.

c. The AC node puts information into the LocalEnvironment folder which
must be flowed to the Aggregate request node and to the MQ Output node
which will sent the aggregation control message to the Aggregate reply
node.

d. The PrepareMQControl node creates the control message which is sent
over MQ to Flow4.(MQMD). Example 9-1 shows how to construct the new
MQMD.

Example 9-1 Creating empty MQMD

CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN 'MQMD';
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION

Fan Out
6. The Fan Out node propagates individual request messages, in series, along

the rest of the flow by stepping through the list of eligible assessors in the

1 We found that some broker functions could get confused if there were both MQ and HTTP folders in
the broker. So it is important when switching transports to clear out old, unnecessary folders.
286 Build a Business Process Solution Using Rational and WebSphere Tools

request message. Each request message is to a different assessor at a
different destination. Example 9-2 shows how to set the assessorURL.

Example 9-2 Setting SOAP/Http destination

OutputLocalEnvironment.Destination.HTTP.RequestURL =
InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:assessorL
ist.fl3:assessors[assessorCount].fl3:assessorURL;

The Fan-Out compute node must have its compute node properties set to
propagate the LocalEnvironment as well as the normal setting to propagate
the message tree. There must also be a line of code (see Example 9-3) to
copy the LocalEnvironment which has been received from the Aggregate
Control node.

Example 9-3 Copying local environment

-- Following statement is needed for the aggregate node
SET OutputLocalEnvironment = InputLocalEnvironment;

MQOut Assessor
7. The MQOut Assessor node actually sends an WebSphere MQ Message to

the Assessor queue. The message is never sent anywhere, but it creates a
Written Destination folder in the LocalEnvironment which is used by the
Aggregate Request node to set up correlation information for the aggregation.

We extracted the generated MsgID from the Written Destination folder to
make sure it is exactly the one saved by the Aggregation Request node. We
had some problems storing our own MsgID in the MQMD and setting the
MQOut node property flag not to generate a new MsgID. It didn’t seem to
match the one in the Aggregation Request node table. To be sure that the
hidden MsgId stored by the Aggregation Request node is the same as the
one we store in the CLAIMSASSESSOR table, we saved the MsgID from the
Written Destination. That way we can be quite sure we are saving the same
MsgID as the Aggregation Request node. We never convinced ourselves why
we were having these failures to match on the MsgID, but designing the flow
to use the Written Destination eliminated the possibility of a problem.

AggregateRequest
8. For the Aggregate Request node, all we provide is the name of the folder

which will be created to contain the composite reply message (Example 9-4)

Example 9-4 Composite reply folder

InputRoot.comIbmAggregateReply.<folder name>
 Chapter 9. Build the Enterprise Service Bus 287

All our request messages will use the same folder name, so individual reply
messages are indexed off this folder name in the aggregate response
message.

Save AssessorRequest
9. The Save AssessorRequest node saves the MsgId (= ReplyIdentifier) in the

WrittenDestination folder to the ClaimsAssessor database as the CorrelId
field, keying it off the ClaimID and AssessorID. The value is restored into the
MQMD.CorrelId field for each reply as it is received back in flow 3a. See
Example 9-5.

Example 9-5 Storing correlation information into CLAIMASSESSOR

INSERT INTO Database.EMERGE.CLAIMASSESSOR (
claimID, assessorID, assessorURL,location, reqdate, makeofcar,
registration,replytoq, replytoqmgr, correlid) VALUES (
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:claimID,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:assessorID,
InputLocalEnvironment.Destination.HTTP.RequestURL,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:location,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:reqDate,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.

fl7:makeOfCar,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.
fl7:registration,

'NoReplytoQ',
'NoReplytoQmgr',
InputLocalEnvironment.WrittenDestination.MQ.DestinationData.msgId);

SOAP/HTTP Assessor
10.Finally each request message is sent off to an assessor. If we were

supporting multiple connection types, we would use a RouteToLabel node to
select the output node.

Flow 3a
Flow 3a receives control from Flow4a which implements the return availability
service for the assessors.

Preparation
1. The TryCatch node sets up the exception handling context for the rest of the

process which is a client to the ExternalClaimsAssessor process.

2. Update CLAIMASSESSOR updates the database with the information
received from each assessor, for no other reason than auditing. The saved
information is not used in the rest of the scenario.
288 Build a Business Process Solution Using Rational and WebSphere Tools

3. The Prepare Reply node clears out any HTTP/SOAP information from the
broker folders, and effectively creates a Request message, with all the
response information from an assessor before passing it onto the MQReply
node. This is to make it seem as though an MQ Request message had been
processed all along, rather than the request being sent over HTTP.

4. MQReply AggIn puts the response onto the AggIn reply queue, following the
MQMD option to copy the MsgID (which is now the original ReplyIdentifier) in
to the CorrelId.

It would probably work to omit creating real a WebSphere MQ reply message,
and simply pass the correctly constructed folders to AggregateReply. We
were having some problems with getting aggregation to work properly, so we
did not attempt this optimization.

MQInput AggIn
5. MQInput AggIn receives the reply message on the AggIn queue and passes it

to the AggregateReply node.

MQInput Control
6. MQInput Control receives the Control message on the FLOW3A.CONTROLQ

and passes it to the AggregateReply node.

Aggregate Reply
7. The Aggregate Reply node builds the composite response message in the

folder specified by the Aggregate Request node. As previously discussed,
there are two timers running. The unknown timer directs late replies to the
unknown terminal. The timeout timer sends an incomplete composite
message to the Timeout terminal. In the diagram, both are shown as going to
trace nodes. In practice we shall build the request message to the
ExternalClaimAssessors process from either the Out terminal or the Timeout
terminal.

Generate Output3a
8. Generate Output3a constructs the request message using the aggregated

response folder constructed by AggregateReply.

9.4 Implementation of the message sets
The six steps we need to take to create the message sets containing the
message definitions for all the interfaces listed in Table 9-1 on page 265 are:

1. Convert the WSDL message definitions into schemas.
2. Create the message set project.
 Chapter 9. Build the Enterprise Service Bus 289

3. Create the message set.
4. Import the interface schema.
5. Convert schemas into message definitions
6. Customize the message definitions to create SOAP envelopes

9.4.1 Convert the messages in wsdl files into schemas
WebSphere Studio Application Development Integration Edition or Rational
Software Architect are the best tools to use to convert WSDLs into schemas
because both have a specialized WSDL editor and schema editor. WebSphere
Business Integration Message Broker only has a schema editor.

1. In WebSphere Studio Application Development Integration Edition create new
schema files for each of the WSDL files that are to be converted.

Create the schema files with the same file names but with the extension .xsd.
There is a wizard to help you do this. Click File → New → XML → XML
Schema name the schema → Finish. See Figure 9-14.

Figure 9-14 Creating a new schema file in Integration Edition

Save the files in the wsdl directory. Figure 9-15 on page 291 shows the
project tree in WebSphere Studio Application Development Integration Edition
with some of the WSDL and .xsd files.
290 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-15 Some of the schema and WSDL files in the project

2. There are two types of WSDL files. Some have the full message definitions
embedded in them, and a few refer to the Businessitems.xsd schema.
Starting with the files with the full message definitions is easiest. When those
are converted, it will be clear how to edit the remaining files.

a. Taking AssessorAvailability(3).wsdl as an example, copy everything
between <wsdl:types> and <\wsdl:types>. Open the
AssessorAvailability(3).xsd file and select from <schema ... to <\schema>
(Example 9-6) and replace with the copied definitions.

Example 9-6 Selected schema statement

<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.
ibm.com" xmlns:test="http://www.ibm.com">

</schema>

b. The file should save without errors. As an optional task, tidy up the
schema statement and the rest of the file: The first part of the schema file
is shown in Example 9-7.

Example 9-7 Tidied schema file

<?xml version="1.0" encoding="UTF-8"?>
<schema elementFormDefault="qualified"
targetNamespace="http://broker.lgi.itso.assessavail"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:intf="http://broker.lgi.itso.assessavail" >

<element name="requestAssessorAvailability">
<complexType>
 Chapter 9. Build the Enterprise Service Bus 291

<sequence>
<element name="claimID" nillable="true" type="int" />
<element name="location" nillable="true" type="string" />
<element name="responseTime" nillable="true" type="string" />
<element name="requiredDate" nillable="true" type="string" />
<element name="makeOfCar" nillable="true" type="string" />
<element name="assessorList" nillable="true"

type="intf:AssessorList" />
</sequence>

</complexType>
</element>

... continued ...

i. Duplicate namespaces have been removed.
ii. Because http://www.w3.org/2001/XMLSchema is the default namespace all

the xsd: prefixes can be removed.
iii. Make sure the target namespace is unique across the message set,

and it matches the namespace associated with the prefix used for any
embedded complex types.

3. Export the schema files as a .zip file or as a file system ready to import into
the broker.

Attention: We suggest that each schema file that you create has its own
target namespace prefix when the schema is imported into the broker MRM.
The prefix naming scheme we have adopted is flxx where xx is the flow
number. Changing the prefix has no impact on the semantics of the schema,
but does assist with readability and avoiding confusion.

The best way to avoid naming problems is to manage namespaces and type
definitions across the whole integration space, but this is just not possible in
many cases for organizational and historical reasons. In this project we have
some clashes, reflecting the real world as we find it, and we tackle the issue of
how to resolve naming clashes.

From a software engineering perspective. an important goal is to have only
one named type for each type of data, in other words to avoid duplicate
definitions that are a source of error if the definitions are different. If this goal
cannot be achieved readily, then a weaker but more easily managed goal is
for every duplicate type to be in a different namespace. Ensure different
developers or development teams have a root namespace stem in which to
define unique namespace names and manage their types.
292 Build a Business Process Solution Using Rational and WebSphere Tools

9.4.2 Create the Message Set Project
Each message set project can contain but one message set. Each message set
holds multiple message definitions. Each message definition corresponds to a
single schema file. The same schema can be used in different message
definitions - and lots of elements can be collected into a single schema file.

Figure 9-16 Organizing Broker message sets

How many message set projects do we want to create to hold each of the
message definitions we need? We could put all the definitions into a single set or
put each definition into its own message set.

Generally it is best to have all the message definitions in the same message set.
It is easier to manage and with lots of definitions, much quicker to create. From a
software engineering perspective, it enables complex types to be reused and so
reduces the chances of error. However along with this benefit comes the need for
discipline in the creation of types and messages. Duplication of types and
messages in the same message set will cause errors, regardless of the types
and messages being in different namespaces.

From a project management perspective this discipline can be difficult to
accomplish, especially with application integration projects where you might not
have control over the naming of parts. So the broker provides us with multiple
message sets and projects and no sharing of parts between the different sets.

Message Set
Project

Message Set

Message
Definition

Message
Definition

Message
Definition

Schema
Schema

Other Files
Other Files

Other Files

Message Set
Project

Message Set

Message
Definition

Message
Definition

Message
Definition

Schema
Schema

Other Files
Other Files

Other Files

Possible to
use files from
other projects
– with care!
 Chapter 9. Build the Enterprise Service Bus 293

Parts from different messages sets can all be used within a single flow, but the
responsibility is left with the message flow implementers to ensure that the
message correct parts are used together correctly.

In the case of the ExternalClaimAssessors project, the pieces have not been
designed as a whole, and there are duplicate complex types and message
names. Also, the practice we have adopted of making each WSDL file
self-contained means we have duplicates of the same types to import into the
broker. So we cannot simply create all the message definitions in a single
message set. We have to decide what to do. We could go back and change the
definitions, rationalizing names and generalizing types, or we could create a
number of different message sets.

In general it is not easy to go back and change message definitions in WSDL
files. There are numerous dependencies to track down, including having to
completely recreate partner links, fix-up transformer WSDL definitions and if
programs such as EJBs are involved, regenerate the EJB from the new WSDL
and copy user code from the old EJB into the new EJB. Then there is the
likelihood of introducing errors when doing these tasks to consider.

The best practice for enterprise application integration is usually to minimize
rework of existing code, and to use the capabilities of integration servers, such
as WebSphere Business Integration Message Broker, to glue the pieces
together.

We initially set out by defining multiple message sets which avoided type name
and message name clashes when we imported the schemas into the broker.
Table 9-8 shows how we split the message definitions up.

Table 9-8 Message sets and definitions

.xsd Message set project Message set

AssessorAvailability(3)
AssessorAvailability(3a)

AssessorAvailability 3 and
3a

3 and 3a

AssessorAvailability(4)
AssessorAvailability(4a)

AssessorAvailability 4 and
4a

4 and 4a

AllocateAssessment(6)
AllocateAssessment(6a)

AllocateAssessment 6 and
6a

6 and 6a

AssessorReport(7)
AssessorReport(7a)

AssessorReport 7 and 7a 7 and 7a

AssessorReport(8)
AssessorReport(9)

AssessorReport 8 and 9 8 and 9
294 Build a Business Process Solution Using Rational and WebSphere Tools

This worked fine until we started writing ESQL and we discovered that although
the ESQL compiler was happy with using multiple message sets, autocomplete
had a particular problem, largely due to all our types eventually being referenced
from a single SOAP envelope message. Autocomplete would only suggest
specialized Body elements from one of the message sets. As a matter of taste,
we could have continued without autocomplete working effectively, and used
multiple message sets to resolve message name and type clashes. Our
judgement was that it was necessary to take the hit, resolve the name clashes
and use a single message set. We expect version 6 of WebSphere Business
Integration Message Broker to contain enhancements to improve its capabilities
in this area making the multiple message set approach preferable.

Our goal now is to resolve the name clashes that result from using a single
message set in WebSphere Business Integration Message Broker without
altering the WSDL defining the Web services.

Create a single message set project called Assessor Messageset.

1. Open the broker toolkit and select the Broker Application Development
Perspective.

2. Select File → New → Message Set Project. Type Assessor Messageset →
Next → Finish.

3. You can create the message set at the same time. We will use another
wizard. See Figure 9-17 on page 296.

Tip: By default, the broker saves its workspace in the install path. To work with
multiple workspaces and store them in your My Documents folder so they get
archived by backup schedules that have excluded ...\Program Files\... , modify
the shortcut to the workbench by adding a -data parameter:

"C:\Program Files\IBM\WebSphere Business Integration Message
Brokers\eclipse\mqsistudio.exe" -data "C:\Documents and
Settings\Administrator\My Documents\ITSO\SA-H414\In work\Code\Final
tested files\wbimb\workspace"

Beware: this creates a long file path. You will see later, this causes the
workbench to start failing in hard to predict ways. Later in this book, there are
two more tips which show how you can continue to store workspaces in your
My Documents folder, but not have the problem of the long path name.
 Chapter 9. Build the Enterprise Service Bus 295

Figure 9-17 Create a new message set project

9.4.3 Create the Message Set
After creating the message set project, create the message set which will contain
all the message definitions

1. Right-click each message project → New → Message Set and enter the
message set name proxyAssessorMessages.
a. Check the box entitled Use namespaces → Next. See Figure 9-18.

Figure 9-18 Check the use namespaces box

b. Check the box beside XML Wire Format Name → Finish. See
Figure 9-19.

Figure 9-19 Check the XML wire format box

You can change the name of the XML wire format at this point, but we
leave it as XML1. The name is associated with the wire format of the XML
data stream that is used in common across all the message definitions in
the message set. The wire format name must be used consistently
296 Build a Business Process Solution Using Rational and WebSphere Tools

throughout and match any (if specified) name in the input message. It is
easy to overlook that there is an unmatched message format name that is
the cause a message flow not to work. The XML wire format can be
customized as we shall see next. The customized format must be the
same across all the message definitions in the message set.

Figure 9-20 Message set properties

The new message set is created and the messageSet.mset file is displayed.

2. Set the default wire format to XML1 (the default is taken if the wire format is
not named either in the input message, or in the input node of the message
flow).

3. Under the Properties Hierarchy of messageSet.mset expand Physical
properties → XML1.

4. Under Details of messageSet.mset
a. Check Suppress doctype.

DTD declarations are not needed; the system is schema rather than
DTD-based.

Figure 9-21 Customize the XML generation
 Chapter 9. Build the Enterprise Service Bus 297

b. Clear the Root Tag Name.

We use SOAP messages, where the root tag name must be 'Envelope'.
Also the system has the potential to use embedded messages. It is not
sensible to have a hard-coded root tag name when embedded messages
are used.

9.4.4 Import the schemas into the broker
Next, import the schema files into the Broker Toolkit workspace. You can
organize the schema import by placing the schema files relevant to each
message set project in its respective project, or you can import all the schemas
into a common folder.

1. In Broker Application Development Perspective, change to the Resource
Navigator window → right-click proxyAssessorSystem → File → Import →
File system → Next.

a. Browse to the directory where the schema files are located and check the
files that you want to import.

b. The destination for the imported resources should already be listed as the
proxyAssessorSystem → Check Create selected folders only →
Finish.

2. Verify the schemas by opening and studying the graphical display and
comparing with the original WSDL files. See Figure 9-22 on page 299.
298 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-22 RequestAssessorAvailablity schema

3. Use the outline view and select the top level schema, or select the top level
on the graphical tab. Then, open the design tab in the property editor and
check that the target namespace is what you want.

4. The last thing to import is a schema file that describes SOAP messages. With
your browser, visit the World Wide Web Consortium (W3C) Web site:

http://schemas.xmlsoap.org/soap/envelope/

Save the schema for SOAP 1.1.

9.4.5 Using schemas to create MDFs
Now that all of our schema files are in the Broker Toolkit workspace, we can use
them to populate the message definition files [MDFs].

1. In Broker Application Development Perspective, in the Resource Navigator
window, right-click the schema file that you want to use as a message
definition source. Select New → Message Definition File.
 Chapter 9. Build the Enterprise Service Bus 299

http://schemas.xmlsoap.org/soap/envelope/

2. The XML schema file radio button should be selected. Click Next. Choose the
schema file to use and click Next. Select the Assessor Messageset that you
created and click Next. Check the boxes to select global elements → Finish.

You have created a new Message Definition File (.mxsd). Repeat the steps for
each schema file. You should end up with ten error messages due to naming
clashes (Figure 9-23).

Figure 9-23 Errors from importing message definitions into the same message set

Resolving name and type duplications
The easiest errors to resolve are the six marked A. These are caused by flow 3
and flow 4 using the same message names. The high level message elements
are not required as the message we shall actually use is the SOAP envelope.

The remaining four errors are caused by duplicate definitions of the types
CarDetails and AssessorAckMessage within the same namespace. In this case
we are lucky. These are pure duplicates and we can delete one of the duplicates,
replacing it with a reference. If the types had the same names and namespaces,
but been different types, then we would have had only two options. Get one of
the teams to change their definitions at source and make changes wherever this
impacted, or use multiple message sets to hold the conflicting types.

Resolve duplicate message names
This error is caused, despite the messages being in different namespaces,
because Version 5 of WebSphere Business Integration Message Broker does
not use the namespaces in this instance to distinguish the messages. This might
be resolved in version 6.

To resolve duplicate message names, follow these steps:

1. Open the AssessorAvailablity(3) message definition file, and select the
messages folder. In Figure 9-24 on page 301, we are using the outline view to
do this.

2. Delete the requestAssessorAvailablity and
requestAssessorAvailabilityReponse messages and save the definition file.

A

A

A

300 Build a Business Process Solution Using Rational and WebSphere Tools

The number of errors should reduce to four.

Figure 9-24 Deleting duplicate messages

Resolve duplicate types
The procedure to do this is a little trickier. Figure 9-25 shows the problem.

Figure 9-25 Type clashes

AssessorAckMessage is duplicated within the namespace itso.lgi.broker, circled
on the left. CarDetails is duplicated in itso.assessor, circled on the right. Note we
have a duplicate of AssessorAckMessage in itso.assessor, but this is no problem
 Chapter 9. Build the Enterprise Service Bus 301

because it is in a different namespace from the other definitions of
AssessorAckMessage.

We shall delete the AssessorAckMessage type from AssessorReport(8) and
replace it with a reference to the definition in DeliverAssessment(7).

1. Open the Outline view for AssessorReport(8), and observe where the type
definition for AssessorAckMessage is defined and where it is referenced. See
Figure 9-26.

Figure 9-26 AssessorAckMessage type in AssessReport(8) message

2. Delete the type, responding OK to the pop-up message confirming the
receiveAssessorReportReturn will also have to be deleted.

3. With the receiveAssessorReportResponse message selected, right
click, → Add Local Element. Type receiveAssessorReportReturn to
reinstate the acknowledgement element.

Important: Just because the namespace difference allows us the duplicate
definition of AssessorAckMessage, does not mean we necessarily have clean
code. The definitions or meanings could be different. But this is business as
usual when doing enterprise application integration. Assume nothing. These
structures and their definitions could have come from different organizations,
or reflect different versions. Naming and namespaces cannot necessarily be
relied upon.
302 Build a Business Process Solution Using Rational and WebSphere Tools

4. In the message definition editor window the new element will be displayed.
Click string in the Type column, and from the spin box select More...

5. Select the AssessorAckMessage type, and the qualifier
http://assessor.itso. Figure 9-27 shows the reconstructed response
message.

Figure 9-27 Reconstructed response message receiveAssessorReportResponse

6. Saving the message definition file should reduce the outstanding errors to
two.

Follow a similar procedure to remove one of the CarDetails definitions.

Figure 9-28 Definition and reference to CarDetails in the Availability(4) message

1. Delete the CarDetails type, responding OK to the warning pop-up message.

2. Open the requestAssessorAvailability element in the message definition
editor window → right-click **Anonymous** → Add Local Element and type
cardet.
 Chapter 9. Build the Enterprise Service Bus 303

3. Select its Type, string, and select (More...) from the spin box → Select
CarDetails as the type, and http://assessor.itso as the qualifier → OK.

4. Drag the element cardet to its correct position between assessorID and
location. The resulting element is shown in Figure 9-29.

Figure 9-29 Reconstructed requestAssessorAvailability element

5. Save the message definition file. All the errors should now be fixed.

9.4.6 Customizing the SOAP MDF (soap11.mxsd)
We have a number of choices how to define the SOAP envelope around the
schemas for each of the messages.

1. Add the sufficient SOAP tags to parse the incoming messages and create
outgoing messages using knowledge of the SOAP specification without
recreating the rules and constraints for correctly formed SOAP messages.

2. Use the SOAP schema we imported to define our SOAP messages. We can
use this schema to check the validity of incoming SOAP messages and make
sure our own SOAP messages are well-formed.

The message definition file created with the schema will have warning
messages because the MRM message model is not an exact match for XML
schemas. We can deal with this in a number of ways.

a. Ignore the warnings. There is a filter setting in the tasks view to remove
warnings from the tasks, or each warning can be deleted.

b. Zap the original SOAP schema file, removing the causes of the warnings.

c. Edit the message definition file using the broker’s editor, and improve the
validation checks using the MRM message model based on the wording of
the SOAP specification which augments the rules specified in the schema
definition.

We take option c, editing the message definition file to improve the validation of
the SOAP messages. There are two steps:

1. Create the SOAP message definition file from the SOAP schema.
304 Build a Business Process Solution Using Rational and WebSphere Tools

2. Modify the SOAP message definition to remove warnings and “improve” the
validation checks.

Create the SOAP message definition file2

The SOAP 1.1 schema will cause an error when it is converted into a message
definition file, so we need to modify it before proceeding. The broker does not
support list attributes. Open the imported SOAP 1.1 schema in the broker
schema editor, switch to the source view and make the change shown in
Example 9-8. The line (<xs:list ... >) is commented out and the lines beginning
with (<xs:restr ... >) are added.

Example 9-8 Changing the SOAP message definition file

<xs:simpleType name="encodingStyle">
<xs:annotation>

<xs:documentation>'encodingStyle' indicates any canonicalization
conventions followed in the contents of the containing element. For example,
the value 'http://schemas.xmlsoap.org/soap/encoding/' indicates the pattern
described in SOAP specification</xs:documentation>

</xs:annotation>
<!-- <xs:list itemType="xs:anyURI" /> -->
<xs:restriction base='xs:string'>

<xs:pattern value='http://schemas.xmlsoap.org/soap/encoding%' />
</xs:restriction>

</xs:simpleType>

Create a new message definition file in the Assessor Messageset project by
converting the modified SOAP 1.1 schema. Call the message definition SOAP11.
There will be 13 warnings.

2 This technique was invented by Pete Edwards and Mick Lickman, see “ Merging disparate IT
systems, Part 12: Model Web services with WebSphere Business Integration Message Broker“,
found at http://www-128.ibm.com/developerworks/ibm/library/i-merge12/

Note: For the SOAP.xsd file, only include the Envelope global element from
which to create a message. This is done so that message flows can nominate
this message as the one to be processed. Leave the Header, Body, and Fault
boxes unchecked, as shown in Figure 9-30 on page 306.
 Chapter 9. Build the Enterprise Service Bus 305

http://www-128.ibm.com/developerworks/ibm/library/i-merge12/

Figure 9-30 Select just the envelope in the SOAP schema

Create the SOAP wrapper for the messages
Use the message definition file editor perform the following edits which will
remove the warning messages and tighten up the validity checking of SOAP
messages.

1. Remove Wildcard elements from elements Envelope, Header, Body and
Detail (child of element Fault). See Figure 9-8.

2. Remove the Wildcard attribute from the Body element.

Figure 9-31 Identified items to edit in SOAP 1.1 schema

Delete

Remove Namespace

Set Content validation to
Open Defined

Set Content validation to
Open

.mxsd
306 Build a Business Process Solution Using Rational and WebSphere Tools

3. Remove namespaces from the three remaining wildcard attributes shown in
Figure 9-31. To do this, select each attribute in term and open the properties
tab rather than the overview tab in the message definition editor. See
Figure 9-32.

Figure 9-32 Removing namespace from wildcard attributes

4. Set the Content Validation of Envelope complex type to OpenDefined, from
its original setting of Closed. See Figure 9-33. This means that only elements
and attributes defined in the message set are allowed as children of
Envelope. The explicit children are Header and Body.

Figure 9-33 Envelope complex type Content validation set to Open Defined

Tip: The quickest way to do this is using the outliner to select each attribute in
turn, then you only need to switch to the properties tab once.

Remove namespace

.mxsd
 Chapter 9. Build the Enterprise Service Bus 307

5. Set the Content Validation of Header and Detail Complex types to Open,
from their original setting of Closed. This means that any elements and
attributes are allowed. SOAP headers are optional so Min Occurs for the
header could be set to zero - but this is not supported by the MRM so we shall
leave the value as 1.

6. Change the Body element’s Complex type to Composition choice and
Content validation OpenDefined. This allows any one of the imported
schema's elements to be used as children of Body, but disallows elements
not defined in any schema.

7. Delete the Pattern facet of the mustUnderstand global attribute, as it is not
required and its deletion removes a warning generated by the Broker Toolkit.
See Figure 9-34.

Figure 9-34 Remove pattern facet from mustUnderstand

8. Add the Fault element of the SOAP schema as a child of Body. To do this,
select the Body element → right-click and select Add element reference.
See Figure 9-35 on page 309.

Note: A pattern facet is a definition of what values a variable can assume.
Rather like an enumerated type. A boolean has a pattern facet of 0|1

.mxsd
308 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-35 Adding element reference to Body

9. Scroll to soap11:Fault element (Figure 9-36).

Figure 9-36 Selecting fault element reference

10.Set the Min Occurs of Fault to 0 on the same screen and save the changes.
Observe that all the warnings have been fixed.

With these steps we created the SOAP wrapper for our messages. Now, we
need to add each of the messages to the wrapper.

9.4.7 Create the SOAP messages
We have the SOAP wrapper there are a couple of steps to complete creating the
SOAP messages in the broker:

1. Save the SOAP wrapper for use another time to save redoing most of this
editing procedure again.

2. Combine the Assessor messages into the Body of the SOAP wrapper.
 Chapter 9. Build the Enterprise Service Bus 309

Save the SOAP wrapper
We export the SOAP wrapper as an XML schema file and it can be used with
other message set projects in the future.

1. Select the SOAP11.mxsd message definition file in the Resource
navigator → New → XML Schema. Select the XML1 wire format and ensure
the SOAP11.mxsd file is selected. Check Strict Generation → Next →
Create a new folder to hold the XML schema (e.g. Generated) → Finish.

.

Convert the Assessor messages into SOAP messages
The final task in creating the message set is to combine the SOAP definition with
each of the ten Assessor messages. We do this by importing the Assessor
message definition files into the SOAP message definition files and then make
the assessor messages child elements of the SOAP body.

Start with the AllocateAssessment(6) message definition.

1. Import the MDFs representing the Assessor services into the SOAP MDF.

a. Select SOAP11.mxsd in the Resource navigator → select the properties
tab in the Message Definition editor, as in Figure 9-37.

Figure 9-37 Import Assessor messages into SOAP message

b. Right-click Imports → Add ... → Select AllocateAssessment(6)
message definition file → Finish. See Figure 9-38 on page 311.

Attention: The Header Complex type, created when the patched SOAP11.xsd
file is imported, has Content Validation defined as closed. Define it as open.
Also, fix the content validation of the other three types. The warning clears
when you save the file.
310 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-38 Importing Assessor message definition into the SOAP message definition

c. Repeat this for all the message definition files in Figure 9-39.

Figure 9-39 Imported all the message definition files

2. Now we have addressability from the SOAP MDF to the other Assessor
messages in this project, add the global elements of the Assessor messages
as children of the SOAP Body.

a. With the SOAP11.mxsd Message Definition file still selected open the
Overview tab and expand the Messages → Envelope structure as in
Figure 9-40 on page 312.

b. Right-click the Body → Add Element Reference → and go through all
the elements.

c. Set the minOccurs of each to 0 because each of the structures is optional.
 Chapter 9. Build the Enterprise Service Bus 311

Figure 9-40 Adding Assessor elements as children of Body and setting Min Occurs

3. Repeat this procedure with the other 16 top level elements as in Figure 9-41
and Figure 9-42 on page 313.

Figure 9-41 Wrapped up all seventeen assessor messages
312 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-42 Checking the source of the element reference

Tip: Getting all these element references into the SOAP wrapper is hard to do
right and needs careful checking.

It is difficult to tie up the names in the element references with the names of
the elements:

� The prefixes we added to distinguish the messages have been shortened;
the prefixes of duplicate namespaces are lost.

� There are no namespace qualifiers to assist you choosing the right
element. The best technique is to right click the element reference once it
has been inserted → Go To Declaration and check that the reference is to
the right element declaration. See Figure 9-42.

� Be systematic. We added the references in the order of the flows, keeping
sight of the flows Figure 9-11 and Figure 9-12 on page 278.

� Count the number of references at the end. There are 17. This should
match the number of element definitions. Three of the flows are one-way
SOAP messages, which is why we are short by three from twice times the
number of interfaces.

� Check there are no duplicate element references.

� Check all the element references are children of Body, and none have
adopted another parent.

� Check all the minoccurs are 0. These are all optional elements.
 Chapter 9. Build the Enterprise Service Bus 313

9.5 Implementation of the database tables
The database for these tables is to be located on SAH414A, local to the
message broker. First create the database and schema on SAH414A, then
create the tables, and finally import the schema and tables into WebSphere
Business Integration Message Broker Workbench to use in message flows.

9.5.1 Create the ASSESSOR Database
To create the ASSESSOR database, follow these steps:

1. Start the DB/2 Control Center on SAH414A. Start the Create Database
wizard as shown in Figure 9-43.

Figure 9-43 Create Database wizard

2. Name the database ASSESSOR. See Figure 9-44.

Figure 9-44 Creating the ASSESSOR database

Because the real memory is limited on SAH414A, we customize the memory
used by ASSESSOR as in Figure 9-45 on page 315.
314 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-45 Reducing the database target memory

9.5.2 Create the schema and tables
Follow these steps to create the schema and associated tables.

1. Using the DB/2 control center, create a new schema and call it EMERGE. See
Figure 9-46.

Figure 9-46 Create EMERGE schema

2. Right-click the Tables folder → Create ... → Select the EMERGE schema
and call the new table CLAIMASSESSOR See Figure 9-47.

Figure 9-47 Create the CLAIMASSESSOR table
 Chapter 9. Build the Enterprise Service Bus 315

3. Using the data in Table 9-5 on page 280, create all the columns. Apart from
the two key columns all the fields are nullable, and none of the character fields
are bit. See Figure 9-48.

Figure 9-48 Created columns in CLAIMASSESSOR

4. Define the two key fields, naming the constraint CA1. See Figure 9-49.

Figure 9-49 Defining keys on CLAIMASSESSOR

5. Repeat this process using the data in Table 9-6 on page 280 and Table 9-7 on
page 281 to create the ACTIONASSESSOR table in Figure 9-50.

Figure 9-50 ACTIONASSESSOR table
316 Build a Business Process Solution Using Rational and WebSphere Tools

The RESOLVEASSESSOR table shown in Figure 9-51.

Figure 9-51 RESOLVEASSESSOR table

9.5.3 Connect to the database from the broker workbench
To connect the database, follow these steps:

1. Open the data perspective in the workbench and right-click in the DB Servers
view → New connection (Figure 9-52).

Figure 9-52 New database connection in the workbench

2. Complete the form as shown in Figure 9-53 on page 318.
 Chapter 9. Build the Enterprise Service Bus 317

Figure 9-53 Defining a database connection

Import the database into the message broker projects
Having created a connection from the workbench to the ASSESSOR database,
we want to create schemas and tables directly from the workbench. To do this,
we need to import the database connection into a workbench project, which we
will use to develop the tables.

1. Create a Message Flow project called ASSESSOR database. We found that
placing a database definition in a simple project led to warning messages
about unresolved messages. Placing the definition in a message flow project
circumvented this behavior. When you create the message flow projects,
associate each one with this new folder in the Broker Application
Development perspective.

2. Click ASSESSOR in the DB Servers view (reconnecting if necessary) →
Import to folder → Select the ASSESSOR database folder → Finish
(Figure 9-54).

Figure 9-54 Importing a new database connection into the workbench

Select the DB2 NET driver

Copy the db2java.zip driver from the DB/2 install\java directory
to the same machine as the workbench
318 Build a Business Process Solution Using Rational and WebSphere Tools

3. Right-click the ASSESSOR_ASSESSOR.dbmxmi file in the ASSESSOR
database folder → New → Other → Schema Definition → Next → and call
the schema EMERGE → Finish.

Figure 9-55 Assessor database project

The ASSESSOR database has been imported into the workbench. Database
references in ESQL statements will autocomplete.

9.6 Create the message flows
This section breaks down the large task of creating all the message flows into
four smaller steps.

1. Create the message flow projects and dependences.

2. Create the message flow files.

3. Wire up the message flows (Sections 9.6.2 to 9.6.5) and supply the properties
for the nodes.

4. Write the esql code for any compute nodes.

9.6.1 Create the Message Flow projects and dependencies
Review the design for the organization of the message flows in 9.3.2, “Message
flows and transport independence” on page 275.

Good organization of message flow projects makes it easier to understand and
manage the solution. There are two sets of transport independent flows: the
availability flows, 3, 3a, 4 and 4a and the assessment report flows, 6, 6a, 7, 7a, 8
and 9. We use two message flow projects for the transport independent flows so
it is clear whether we are working with the Availability interactions or the Report
interactions.

Corresponding to the two sets of transport independent flows will be two sets of
transport dependent flows for the SOAP/Http transport. Finally there will be a
message flow project for the common SOAP/Http flows.
 Chapter 9. Build the Enterprise Service Bus 319

Table 9-9 on page 322 lists all the message flow projects and flows we will be
creating and their dependencies. The relationships between the flows and
between the flows and the message set needs to be defined so that references
to flows and sets can be correctly resolved. We also define packages of
message flows so that potentially duplicate flow names are resolved correctly.
The packages are called broker schemas.

All the flows share a common broker schema so that symbolic references are
resolved within the same schema, and not confused with same-named resources
in other projects.

The dependencies between message flow projects and message set projects are
defined to the workbench, either when creating a new project, or at a later time,
using the workbench GUI.

1. Create the first message flow project (Figure 9-56). Click File → New →
Message Flow Project → Type AvailabilityFlows → Next.

Figure 9-56 Creating a new message flow project

2. Create the other message flow projects listed in Table 9-9.
3. Add the dependencies from Table 9-9 by selecting each flow project, the

message set, and opening its properties. See Figure 9-57 on page 321.
320 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-57 Dependencies in the properties view
 Chapter 9. Build the Enterprise Service Bus 321

Table 9-9 Message Flow Projects and Message Flows

4. Create the broker schema in each of the message flow projects.

a. File → New → Broker Schema → Select one of the message flow
projects and name the schema proxyAssessorSystem → Finish.

Message Flow Project Message Flow Message Set and Database

Group B
CommonSOAPHttpFlows
Dependencies: A

Common.esqla

a. This is a common .esql module rather than a flow. We use it later.

Group A:
Assessor Message Set
ASSESSOR Database

Fault

Reply

ClientError

Group C
AssessorReportFlows
Dependencies: Group A, B, D

Flow6

Flow6a

Flow7

Flow7a

Flow8

Flow9

Group D
AssessorReportSOAPHttpFlows
Dependencies: Group A, B, C

Flow6aAck

Flow9Ack

Input6

Output6a

Output7

Output9

Group E
AvailabilityFlows
Dependencies: Group A, B, F

Flow3

Flow3a

Flow4

Flow4a

Group F
AvailabilitySOAPHttpFlows
Dependencies: Group A, B, E

Flow3aAck

Input3

Output3a
322 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-58 Broker schema

b. Copy and past the schema into the other message flow projects.

5. Create all the Message flow files from Table 9-9 placing the flows in the
Broker schema package - see Figure 9-59.

Figure 9-59 Message Flows

6. Set up the project dependencies for the message set and message flow
projects as indicated by the table.

9.6.2 Create message flows
In sections 9.6.3 “Create the CommonSOAPHttpFlows” on page 323 to 9.6.5
“Create AssessorReport flows” on page 340 we wire and configure all the
message flows, starting with the common flows, and then the Availability and
Report interactions. All the parameters for the flows are configured, as well as
the flow topology, leaving a collection of ESQL files to program.

9.6.3 Create the CommonSOAPHttpFlows
The common flows to develop are the Fault and the Reply subflows. We also
need to create a skeleton Validate SQL routine in the common.esql file so that it
can be referenced in all the flows.
 Chapter 9. Build the Enterprise Service Bus 323

Fault
The fault flow returns a correctly formatted SOAP fault message containing a
useful description of the cause of the fault and the correct SOAP fault code.

This subflow is used for basic error processing in all of the message flows. It is
invoked from the input node of any message flow when an exception has been
encountered. We use the same fault routine in all of our message flows. This
fault routine is wired from the Failure and Catch terminals of the Input nodes. All
other failure terminals in the message flows remain unconnected, so any
exceptions are routed through the input node to the fault routine. See
WebSphere Business Integration Message Broker online help documentation:
Handling errors in message flows for more information.

Figure 9-60 Fault flow

1. Like all subflows, begin the flow with an input node.

2. Create a TryCatch node. We do not want any uncaught errors recursively
causing the Fault flow to be reinvoked, so we add a TryCatch node and direct
any faults it catches to a trace node.

3. Create a compute node called Identify fault to create the fault message.
The implementation of Identify fault, in common with all the compute nodes
inserted into the flows at this stage, are described in the section on
developing ESQL.

For now, right-click the Identify Fault node → select Open ESQL , rename
the ESQL module Fault_Identify_Fault and save the created ESQL file.
Make sure the ESQL module is identified in the ESQL Module parameter
shown in Figure 9-61 on page 325.
324 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-61 Setting ESQL Module path

4. Create an HttpReply node to return the fault.

5. Create three trace nodes to help debug the flow in the future. There are many
conventions to follow to help debugging. The one we adopted is to use the
reserved message numbers 3051 to 3099 in the WebSphere Business
Integration Message Broker message catalog for error messages and output
into the Windows event log. Each trace node is named with its error number
to help identify the source of the error quickly in the flow. See Figure 9-62.

Figure 9-62 Configuring the trace node

6. Wire up the nodes and save. Pick the connection tool from the palette.

Tip: Give your ESQL modules distinctive names. A good practice to follow
is to start with the Flow name and suffix with the Compute node name.
That way the esql code is easy to find and you are less likely to make
changes to the wrong ESQL module when opening the ESQL files directly
from the resource navigator
 Chapter 9. Build the Enterprise Service Bus 325

Figure 9-63 Use the connection tool to connect nodes

Reply
The reply subflow is simply an HttpReply node.

Figure 9-64 Reply subflow

The reason for making the reply a subflow is two-fold:

1. For packaging, by using a different transport specific flow project in place of
the HttpSOAP project, the subflow linkage would remain the same, but a
different reply node used.

2. The subflow may be more complex with other transport types, and the
complexity is encapsulated by the Reply flow.

ClientError
The ClientError flow simply traps any errors returned to the broker by Web
services, or detected in the Client flows and sends them to the event log
(Figure 9-65).

Figure 9-65 ClientError flow

By making the call to the trace the error indirectly to a subflow, more
sophisticated error handling can be added later without impacting the main flow
design. The 3062 trace node outputs the exception tree and other useful data.
Figure 9-66 on page 327 shows how to output all the broker trees.
326 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-66 Setting the pattern values for the ClientError trace node

9.6.4 Create the AvailabilityFlows
Figure 9-67 shows the Availability flows that need to be defined.

Figure 9-67 AssessorAvailability flows

Input3
The Input3 receives the RequestAvailability message from the
ExternalClaimAssessors process, and passes it to Flow3 for validation and
processing. Exceptions are caught and passed to the Fault routine to return a
SOAP fault Figure 9-68).

Figure 9-68 Input3 Flow

Input3 Flow3 Flow4

Flow4aFlow3aOutput3a

Output3a
Ack

Reply

Fault

Client
Error
 Chapter 9. Build the Enterprise Service Bus 327

1. Configure the Http Input node as follows:

a. On the Basic Tab, set the URL Selector to the value supplied by the
solution architect in the AssessorAvailablity(3).wsdl file:
http://SAH41403:7080/RequestAssessorAvailability and the timeout
value to 60 seconds.

b. On the Default Tab, set the Message set properties as in Figure 9-69.

Figure 9-69 Message set properties for Http Input node.

c. On the Validation Tab, set Validate to Content and Value.

Flow3
This message flow receives a message from the Input3 flow, validates it, sends
an acknowledgement reply back, and invokes flow4 to fan the message out to
the assessors (Figure 9-70).

Figure 9-70 Flow 3 skeleton

1. Create the following nodes:

a. A compute node, Validate, to check the input message

We write the ESQL later in 9.7.4, “ESQL Error handling code” on
page 361.

i. For now, open ESQL on the right mouse button menu and save the
default code. See Figure 9-71 on page 329.

Attention: The TCP/IP port, 7080, is the default Http listener port for the
message broker. It is set using the mqsicreatebroker command (-P
portnumber) and changed using mqsichangebroker
328 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-71 Select Open ESQL to create default ESQL code

This removes a compile error.

ii. On the basic tab of the compute properties page (Figure 9-72), set the
Data Source to EMERGE and leave the Compute Mode to Message. This
is the default option that enables any modifications of the message
folders in the compute mode to be propagated to subsequent nodes.
We set the compute mode to Message and LocalEnvironment on the
nodes that need to modify and propagate aggregation information
which is held in the LocalEnvironment tree as well as the message
tree.

Figure 9-72 Setting basic properties of a compute node

iii. On the Validation tab, set Validate to Content and Value as in
Figure 9-73 on page 330. Again this can be turned off when testing is
complete to improve runtime performance.

EMERGE
 Chapter 9. Build the Enterprise Service Bus 329

Figure 9-73 Setting validation checking

b. Create a mapping node, Create Reply, to map the response into the reply
message.

c. Create a Flow4 subflow. Create a dummy flow4, for now, by adding an
Input node to Flow4 and saving it. Flow4 can then be added to Flow3 as a
subflow before the details of Flow 4 are defined. Drop Flow4 into Flow3.

d. A Reply subflow. Drop the Reply flow into Flow3.

2. Now configure the mapping node.

Configure Create Reply mapping node
Follow these steps:

1. Right-click the Create Reply mapping node → Open Mappings.

2. Right-click in the source box → Add Message mapping input.

a. Select the SOAP envelope → Next → Finish and do exactly the same in
the Target box - see Figure 9-74 on page 331.

Note: From now on, we assumeThe setting of the Compute Mode and
the Validation action on all nodes that propagate folders will be
assumed from now on.
330 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-74 Selecting the SOAP envelope in the message mapper

b. Expand the message schemas and map the claimID from source to target.

c. Right click TimeStamp → Create one-sided mapping.

Figure 9-75 Mapping Flow3_Create_Reply

d. Click the three dots to the right of undefined. Delete undefined from the
target field box. Select Date/Time functions and click the double arrow to
the right/ Select CURRENT_TIMESTAMP and drag it into the target field
box. See Figure 9-76 on page 332.
 Chapter 9. Build the Enterprise Service Bus 331

Figure 9-76 Setting the CURRENT_TIMESTAMP

e. Save the mapping file.

Flow4
This message flow (Figure 9-77) receives a validated message from flow3 and
generates one or more messages to be fanned out to assessors.

Figure 9-77 Flow 4

It also updates the database table CLAIMASSESSOR to save data to insert into
the reply messages returned to the ExternalClaimAssessors process.

a. The incoming message contains the assessor's URL. The reply to the
ExternalClaimAssessors process in flow3a also needs the assessor's
URL, so we store it and retrieve it later, based on the claimID and
assessorID.

Drag
332 Build a Business Process Solution Using Rational and WebSphere Tools

b. We need to store the msgids for all the Flow4 messages so we can
correlate them against the replies from the assessors. We cannot assume
the replies will contain an WebSphere MQ correlationId because we need
to implement the solution across SOAP/Http and other transports.

Flow4 generates a unique msgid for the message sent to the assessor by
creating a real WebSphere MQ message and sending it both to the
aggregation node and storing its MsgId in the CLAIMSASSSESSOR
database to regenerate the correlation id for the subsequent aggregation
fan-in.

The details of the flow configuration are:

1. We start with a TryCatch node to prevent any errors returning to the broker
client. The Broker client is not expecting any fault message as it has already
received an acknowledgement. Any errors from here in a handled by the
broker by passing control to a common ClientError routine.

2. Use a DataDelete node to remove an old instance of a claim from the
database. Note if a SQL delete is performed and no match is found on the
claimID, a warning is returned (corresponds to a positive SQL error number).
The node is configured by default to ignore warnings. (Treat Warnings as
Errors must be unchecked in the node properties). Skip to “Configure Delete
claim status DataDelete node” on page 336 for instructions how to configure
the DataDelete node.

3. The Prepare MQ node removes the HTTP information from the message
folders and prepares an MQ folder prior to passing the folders to the
Aggregate Control node.

This is a defensive programming step. We are not sure whether the
aggregation function is sensitive to seeing different types of folders on
different nodes. Because we will be using WebSphere MQ as the interface to
the aggregation nodes, we make the message flow look similar to
WebSphere MQ to all the aggregation nodes.

4. The aggregate control node names the aggregation (proxyAssessorSystem)
and supplies a time out for the aggregate reply node. For testing purposes we
have set 115 seconds (Figure 9-78).

Figure 9-78 Properties of the Aggregate control node

5. The compute node, Fan out, propagates a new request message for each
assessor in the input assessor array. It also stores the destination HTTP URL
 Chapter 9. Build the Enterprise Service Bus 333

to route the message to in the Local Environment. At this stage simply
generate default ESQL for the compute node called Flow4_Fan_Out: we shall
return later to implement the node.

The URL has to be stored somewhere to be used when the Http request
message to the assessor is constructed, as the contents of the message
folder do not include the URL. We are also going to save the URL in the
CLAIMASSESSOR database to be returned to the ExternalClaimAssessor
process, as required in its interface. The URL could be saved in the database
in this step, and read back to set up the URL destination later in the flow. We
would have to do it that way had we chosen to read the request message
back from the Assessor queue, rather than wiring the rest of the flow onto the
output terminal of the MQOut Assessor node. Passing the URL in the local
environment is slightly more efficient, so we adopted that approach.

6. The compute node, PrepareMQControl, propagates the input message to
send to the control terminal of the AggregateReply node in Flow3a. Again,
generate default ESQL called Flow4_Control_Message for now.

7. The MQOutput node, MQOut Flow3a, sends the control message to Flow3a.
Set the Queue Name property on the Basic Tab to FLOW3A.CONTROL. Leave
Queue Manager blank to use the default queue manager. All the other tabs
are left to default.

– You need to set Set All as the Message context on the Advanced tab.

8. The MQOutput node, MQOut Assessor, sends the request message to the
Assessor queue. The message is never read in, and the queue will build up.
To manage this in a production system, the messages could be put with an
expiry date, or, rather then wire the output terminal of the node to
AggregateRequest, create another MQInput node to read the message back.
You could specify the generated MsgId as a correlator to ensure you really
read the right message back.

– You need to set Set All as the Message context on the Advanced tab
and check New Message ID.
334 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-79 Settings on MQOutput Advanced tab

9. In the AggregateRequest node set the Folder Name to Flow4. This name is
used as a folder in the AggregateReply node's compound message to store
the reply to this request.

10.To save the request in the CLAIMSASSESSOR table we need to use a
Compute Node, Save AssessorRequest, rather than a Database Update
node, as one of the fields is mapped from the LocalEnvironment folder rather
than from the input message.

a. Set the data source to EMERGE and generate default ESQL called
Flow4_Save_AssessorRequest for now. We will add the ESQL later.

11.The HttpRequest node “SOAP/Http Assessors” sends an availability request
to each assessor. The property defaults are accepted except where
configured as follows:

a. On the Basic Tab:

i. Set the Web service URL to http://SAH414A:7080/UNKNOWN. The
assessor URL is set in the compute node - if this URL is used it is an
error. We can either implement the URL in the broker, or simply leave it
with this distinctive value and find it in the event log as a SOAP fault
message.

ii. Set the Request Timeout to 60 seconds for testing.

iii. Select Follow Http redirection as the behavior for http redirection
requests.

b. On the Advanced tab, Check Replace input message with web-service
response.

c. On the Default tab, set the message properties as shown in Figure 9-69 on
page 328.

d. On the Validation tab, set Validate to Content and Value.
 Chapter 9. Build the Enterprise Service Bus 335

12.The acknowledgement response from the assessors can be wired to a trace
node for testing. In production this reply might be monitored to measure how
available the assessors’ systems are.

Configure Delete claim status DataDelete node
1. Right-click the Delete claim status node and in its properties, set the data

source to EMERGE.

2. Open the Mappings editor from the properties panel and:

a. Select the SOAP envelope in the Source box as in the previous section.

b. Right-click in the Target box and select Add RDB Table Mapping Output
...

c. Assuming you have completed 9.5.3, “Connect to the database from the
broker workbench” on page 317, accept Add database table schemas
from workspace → Next → and select the
ASSESSOR_ASSESSOR_EMERGE_CLAIMASSESSOR table →
Finish.

d. Right-click in the Target box → Set RDB Schema name → Check the
radio button Use schema name in table definition.

e. Map the ClaimID from the source box to the target box to specify the
claimID must match to delete the table row.

f. Save the mapping file. See Figure 9-80.

Figure 9-80 Setting the delete condition for the CLAIMASSESSOR table

Flow4a
This message flow receives a Flow4a message from an assessor, validates it,
sends an acknowledgment, and invokes flow3a to perform the aggregation. See
Figure 9-81 on page 337.
336 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-81 Flow4a

1. Create the following nodes:
a. An HttpInput node to wait for the availability message.
b. A compute node, Validate, to check the input message.
c. A mapping node, Create Reply, to map the response into the reply

message.

2. Drop the Reply, Fault and Flow3a sub-flow into the flow.

3. Configure the HttpInput node,

a. On the Basic tab:

i. The URL selector is provided by the solution architect - set it to
http://SAH414A:7080/AvailabilityReceive.

ii. The Maximum Client Wait time is set to 60 seconds for testing.

b. On the Default tab, set the Message parameters identically to Figure 9-69
on page 328.

c. On the Validation tab , set Validate to Content and Value.

4. Rename the generated ESQL for Compute node, Validate, to
Flow4a_Validate.

5. Configure the mapping transformation to return the acknowledgement to the
assessor in the same way as “Flow3” on page 328.

Flow3a
This message flow (Figure 9-82 on page 338) receives all valid messages from
Flow4a and generates a Flow3a message to be passed to the
ExternalClaimAssessors process. This is the fan-in part of the aggregation.

It also uses database table 'CLAIMASSESSOR' for the following reasons:

Tip: Remember we are mapping the AvailabilityResponse to the
AvailabilityReponse return elements referenced from the soap11:envelope
message, so it is the soap11:envelope message that needs to be mapped.
 Chapter 9. Build the Enterprise Service Bus 337

1. The incoming message does not contain the assessor's URL, but the Flow3a
message needs the assessor's URL, so we retrieve it based on the
ClaimID/AssessorID key.

2. The flow4a message from the assessor is not necessarily from WebSphere
MQ, so cannot be assumed to contain in the correlID the original request's
msgID. Aggregation assumes that the correlID does contain this value, so this
flow retrieves the original msgID from the table and propagates it to the
AggregateReply node as the CorrelId.

3. An audit trail of messages is kept in the CLAIMASSESSOR database.

Figure 9-82 Flow 3a

1. The MQInput Control node receives the aggregation control message from
Flow3.

a. On the Basic tab, set the Queue Name as FLOW3A.CONTROL.

b. On the Default tab. set the Message Domain to XML. No other properties
are required on this tab.

c. On the Advanced tab, set the Transaction mode to No. There are no
other MQ messages to coordinate with.

d. On the Validation tab, set Validate to Content and Value.

2. Create a TryCatch node to prevent any errors returning to the previous
service flow.

3. Wire up the ClientError subflow to the Catch and Failure terminals of the
MQInput nodes and to the catch terminal of the TryCatch node.

4. Create a Database update node, Update CLAIMASSESSOR. This node
updates the CLAIMASSESSOR database with each assessors reply.
338 Build a Business Process Solution Using Rational and WebSphere Tools

5. Create a Compute node, Prepare Reply, and generate a default ESQL
module called Flow3a_Prepare_Reply. This is to be used to set up the
WebSphere MQ message correctly for the AggregateReply node.

6. Create an MQ Reply node, MQReply AggIn, with AggIn as the queue name.

7. Create an MQ Input node, MQInput AggIn, with Aggin as the queue name.
Set up the default properties to refer to the message set as before.

8. On the AggregateReply node set the Aggregate Name to the same as on the
AggregateControl node: proxyAssessorSystem, Set the same timeout, 115
seconds. This is the timeout before unknown replies are discarded in case the
replies arrive before the control message. Uncheck Transaction Mode as we
are not limited to WebSphere MQ messages.

9. Create a compute node, Generate Output3a, and generate a default ESQL
module called Flow3a_Generate_Output3a to create the Flow3a message to
be sent.

10.Create a dummy Output3a flow, and wire it up.

11.Connect the Unknown and Timeout terminals of the AggregateReply node to
Trace nodes configured like the trace nodes in the Fault flow, but with special
error numbers to assist with debugging. In a real production flow some more
manageable way of catching these conditions might be used.

12.Wire up the out terminal of the Timeout node to the Output3a flow because
we do want to forward incomplete sets of replies.

Output3a
The Output3a flow (Figure 9-83) interfaces the proxyAssessorSystem to the LGI
enterprise service bus using SOAP/Http to return the assessor availability list to
the ExternalClaimAsessors process.

Figure 9-83 Output3a flow

1. Configure the properties of the HttpRequest node as follows:

a. On the Basic tab:

i. Set the Web service URL to the partner link for the
ReceiveAssessorAvailabilityList in the ExternalClaimAssessor process:
http://SAH414B:9082/AssessorAvailabilityList.

ii. Set the Request Timeout to 60 seconds for testing.
 Chapter 9. Build the Enterprise Service Bus 339

iii. Select Follow Http redirection as the behavior for http redirection
requests.

b. Leave the Advanced Tab and the Error Tab unchanged.
c. The Default Tab is identical to Figure 9-69 on page 328.
d. Set Validation to Content and Value on the Validation Tab.

2. For testing purposes. trace the reply to the event log as in Flow 4.

Output3aAck
No Output3aAck flow is needed for the SOAP/Http implementation of the LGI
Enterprise service bus as the acknowledge flows back to the HttpRequest node
in Output3a.

9.6.5 Create AssessorReport flows
Figure 9-84 shows the flows that have to be created for the AssessorReport
interactions.

Figure 9-84 Assessor Report flows

Input6
The Input6 flow (Figure 9-85 on page 341) receives a request for an assessment
report from the ExternalClaimAssessor process, passes control to Flow 6 for
validation and processing, and deals with any errors that are thrown by returning
a SOAP fault. It follows the same pattern as Input3.

Input6 Flow6 Flow7

Flow7aFlow6aOutput6a

Output6a
Ack

Flow8Flow9Output9

Output9
Ack

Reply

Fault

Client
Error
340 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-85 Input6 flow

1. Configure the Http Input node as follows,

a. On the Basic tab, set the URL Selector to the value supplied by the
solution architect in the AllocateAssessmentRequest(6).wsdl file -
http://SAH414A:9080/AllocateAssessmentRequest and the timeout value
to 60 seconds.

b. On the Default tab, set the Message set properties as in Figure 9-69 on
page 328.

c. On the Validation tab, set Validate to Content and Value.

Flow6
Flow6 (Figure 9-86) validates the request received from flow Input6 before
sending the request for a claims assessment report being sent to an assessor.
Flow6 follows the same pattern as Flow3.

Figure 9-86 Flow6

Flow7
Flow7 (Figure 9-87 on page 342) sends the request for an assessment report to
an individual assessor. The ACTIONASSESSOR table keeps an audit record of
the requests which is updated in flow8 with the responses. The URL of the
assessor is set in the compute node, set SOAP address. The ESQL is described
in a later section.
 Chapter 9. Build the Enterprise Service Bus 341

Figure 9-87 Flow7

1. Create the following nodes:

a. A TryCatch node to trap any errors from returning to the calling flow, in this
case flow6, and the associated ClientError flow to handle the errors

b. A Database delete node to clear out any junk entries in the
ACTIONASSESSOR table keyed by the combination of
claimID/assessorID

c. A Mapping node called Map flow6 to flow7

d. A Database insert node called Insert Audit trail into ACTIONASSESSOR

e. A compute node called set SOAP address

f. A HTTP Request node called SOAP/Http Request

g. A Trace node, Trace Reply 3058, to catch the reply

2. This time the Database Delete node tidies up any preceding instance of a
particular claim being sent to a particular assessor.

This instance of a Database delete node differs from the on in Flow4
“Configure Delete claim status DataDelete node” on page 336, in that there
are two fields comprising the key and they need to be combined to select the
correct set of rows.

The procedure to do this is:

a. Set up the mapping between the ActionAssessor(6) message and the
ACTIONASSESSOR table as shown in Figure 9-88.

Figure 9-88 Mappings for deleting a claim for a particular assessor in flow6
342 Build a Business Process Solution Using Rational and WebSphere Tools

b. Click on ASSESSORID and CLAIMID in the Outline view holding down
the shift key to select both columns and right click the mouse button. See
Figure 9-89.

Figure 9-89 Selecting both fields for to construct a mapping expression

c. Select Combine to same row → Remove selected mappings and
review the mapping condition (Figure 9-90) → OK.

Figure 9-90 Review the mapping expression

d. You can review the Data Delete expression by selecting the combined
mapping, or one of the fields and right-clicking Edit Mapping → OK.

See Figure 9-91 on page 344.
 Chapter 9. Build the Enterprise Service Bus 343

Figure 9-91 Editing a data delete expression

3. Generate default ESQL for the Compute node, “Set SOAP address”, called
Flow7_Set_SOAP_address.

4. Configure the properties of the HttpRequest node as follows,

a. Basic Tab
i. Set the Web service URL to http://SAH414A:7080/UNKNOWN as we did

in Flow4.
ii. Set the Request Timeout to 60 seconds for testing.
iii. Select Follow Http redirection as the behavior for http redirection

requests.
b. Leave the Advanced tab and the Error tab unchanged.
c. The Default tab is shown in Figure 9-69 on page 328.
d. Set Validation to Content and Value on the Validation tab.

5. The mappings from flow6 to flow7 are shown in Figure 9-92.

Figure 9-92 Mapping from flow6 to flow7

6. the database insert is illustrated in Figure 9-93 on page 345.
344 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-93 inserting Assessment report request in ACTIONASSESSOR table

7. For testing purposes, trace the reply to the event log as in Flow4.

Flow7a
This message flow (Figure 9-94) receives a Flow7a message from the assessor
chosen to produce the assessment report, validates it, sends an
acknowledgment, and invokes flow6a to return the assessors acceptance or
rejection to the ExternalClaimAssessors process. It’s pattern is similar to Flow4a.

Figure 9-94 Flow7a

1. Create the following nodes:
a. An HttpInput node to wait for the acceptance message.
b. A compute node, Validate, to check the input message.
c. A mapping node, Generate Reply, to map the response into the reply

message.

2. Drop the Reply, Fault and Flow6a sub-flows into the flow.

3. Configure the HttpInput node:

a. On the Basic tab:

Important: Remember to combine all the mappings into a single row, or else
each mapping will be entered as a separate row in the table.

Select all the mappings by using the mouse and shift key as before, and
selecting Combine into a single row → Remove selected mappings.
 Chapter 9. Build the Enterprise Service Bus 345

i. The URL selector is provided by the solution architect - set it to
http://SAH414A:7080/DeliverAssessmentResponse.

ii. The Maximum Client Wait time is set to 60 seconds for testing.

b. On the Default tab, set the Message parameters identically to Figure 9-69
on page 328.

c. On the Validation tab, set Validate to Content and Value.

4. Rename the generated ESQL for Compute node, “Validate” to
Flow7a_Validate.

5. Configure the mapping for the acknowledgement as in Figure 9-95.

Figure 9-95 Mapping the acknowledgement message for flow7a

Flow6a
Flow6a (Figure 9-96) formats the assessor’s acceptance response to be output
by Output6a and stores an audit trail of the response in the
ACTIONASSESSORS table.

Figure 9-96 Flow 6a

1. Create the following nodes in Flow6a:

a. A TryCatch node and the ClientError subflow to isolate any faults from
hereon in.

b. A Database update node to keep an audit trail.

c. A Mapping node to format the message for flow Output6a.
346 Build a Business Process Solution Using Rational and WebSphere Tools

d. The Output6a subflow to return the results to the ExternalClaimAssessor
process.

2. Create the update mappings as shown in Figure 9-97,

a. Select the message source and target ACTIONASSESSOR database
table as before. D not forget to set the database schema to be used to
EMERGE which is defined in the table source. See example in Figure 9-80
on page 336.

b. Map the two fields and set the one way CURRENT_TIMESTAMP mapping
as shown in Figure 9-97 on page 347.

c. Combine the updates into a single row using the shift+mouse click
protocol → Remove selected rows. You are then be presented with the
Combine Data Update Mappings panel. You need to manually type in the
Update when conditions (The SQL WHERE clause of course).

Figure 9-97 Database Update configuration in Flow6a

3. Create the mappings for Invoke Output6a as shown in Figure 9-98 on
page 347.

Figure 9-98 Mappings for flow6a

Tip: One way of manufacturing this clause, and then pasting it in, is to
create a Data Delete node and copying the delete conditions
 Chapter 9. Build the Enterprise Service Bus 347

Output6a
The Output6a flow (Figure 9-99) interfaces the proxyAssessorSystem to the LGI
enterprise service bus using SOAP/Http and passes the assessor availability list
back to the ExternalClaimAssessor process.

Figure 9-99 Output3a flow

1. Configure the properties of the HttpRequest node as follows:

a. On the Basic tab:

i. Set the Web service URL to the partner link for the
ReceiveAssessorAvailabilityList in the ExternalClaimAssessor process:
http://SAH414B:9082/AssessorAvailabilityList.

ii. Set the Request Timeout to 60 seconds for testing.

iii. Select Follow Http redirection as the behavior for http redirection
requests.

b. Leave the Advanced Tab and the Error Tab unchanged.
c. The Default Tab is identical to Figure 9-69 on page 328.
d. Set Validation to Content and Value on the Validation Tab.

2. For testing purposes trace the reply to the event log as in Flow 4.

Output6aAck
No Output6aAck flow is required because we are using SOAP/Http and the reply
flows back to the Http Request node in the Output6a flow.

Flow8
Flow8 (Figure 9-100 on page 349) receives the assessor report from the chosen
assessor and forwards it to Flow9 (Figure 9-102 on page 350). Its pattern is
similar to Flow7a.
348 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-100 Flow8

1. Create the following nodes:
a. An HttpInput node to wait for the acceptance message.
b. A compute node, Validate, to check the input message.
c. A mapping node, Generate Reply, to map the response into the reply

message.

2. Drop the Reply, Fault and Flow9 sub-flows into the flow.

3. Configure the HttpInput node:

a. Basic Tab:

i. The URL selector is provided by the solution architect - set it to
http://SAH414A:7080/AssessorReport.

ii. The Maximum Client Wait time is set to 60 seconds for testing.

b. On the Default tab, set the Message parameters as shown in Figure 9-69
on page 328.

c. On the Validation tab, set Validate to Content and Value.

4. Configure the mapping node, “Generate Reply” as shown in Figure 9-101.

Figure 9-101 Configuring mapping for Flow8 acknowledgement

Flow9
Flow9 prepares the assessor report message to send to the receiving partner link
in the ExternalClaimAssessor process. It passes the message to Output9 to put
on the LGI service bus after updating its audit log
 Chapter 9. Build the Enterprise Service Bus 349

Figure 9-102 Flow9

1. Create the following nodes in Flow6a,

a. A TryCatch node and the ClientError subflow to isolate any faults from
hereon in.

b. A Database update node, Update ActionAssessor table to keep an audit
trail.

c. A Mapping node to format the message for flow Output9.

d. The Output9 subflow to return the results to the ExternalClaimAssessor
process.

2. Create the database update mappings as shown in Figure 9-103 using a
similar procedure to “Flow6a” on page 346.

Figure 9-103 Database update expression for flow9

3. Create the message mapping shown in Figure 9-104 on page 351.
350 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 9-104 Message mappings for Flow9

Output9
The Output9 flow (Figure 9-105) interfaces the proxyAssessorSystem to the LGI
enterprise service bus using SOAP/Http and passes the assessor report back to
the ExternalClaimAssessor process.

Figure 9-105 Output9 flow

1. Configure the properties of the HttpRequest node:

a. On the Basic Tab:

i. Set the Web service URL to the partner link for the
ReceiveAssessorAvailabilityList in the ExternalClaimAssessor process:
http://SAH414B:9082/assessorReport.

ii. Set the Request Timeout to 60 seconds for testing.

iii. Select Follow Http redirection as the behavior for http redirection
requests.

b. Leave the Advanced tab and the Error tab unchanged.
c. The Default tab is identical to Figure 9-69 on page 328.
d. Set Validation to Content and Value on the Validation tab.

2. For testing purposes trace the reply to the event log as in Flow 4.

Output9aAck
No Output9Ack flow is required because we are using SOAP/Http and the reply
flows back to the Http Request node in the Output9 flow.

9.7 Create the ESQL code for the message flows
The final step in configuring the message flows in the broker is to write the ESQL
code for the compute nodes. To browse all the ESQL modules we have created
 Chapter 9. Build the Enterprise Service Bus 351

to support the flows, open the properties of any compute node and click Browse.
See Figure 9-106).

Figure 9-106 Browsing ESQL modules

Figure 9-107 shows the list of ESQL modules needed for the
proxyAssessorSystem, plus, there is a declaration module, common.esql.

Figure 9-107 ESQL modules to be written

There are fourteen ESQL modules to be written. This can seem like quite a lot of
code to create and maintain. But the code falls into only four categories:

1. Implementing the aggregation for SOAP/Http, something the broker does not
support out of the box in version 5 (6 modules).

2. Fault Handling, the ESQL is an attempt to introduce a little more diagnostic
information into the standard error output. (6 modules).

3. Constructing the SOAP address to send assessment request to the chosen
assessor.

4. Improving the readability of the code by defining namespace prefixes in the
common.esql module.
352 Build a Business Process Solution Using Rational and WebSphere Tools

In contrast Figure 9-108 on page 353 lists the fifteen mapping nodes that handle
most of the data mediation and database manipulation and do not require esql
coding.

Figure 9-108 Mapping modules

9.7.1 ESQL functions to support Aggregation
Table 9-10 lists the seven ESQL modules needed for specific message flows.

Table 9-10 Message flow specific ESQL modules

Flow4_PrepareMQ
Example 9-9 on page 354 copies the input message into the output folder,
removing the HTTP headers and replacing them by a new MQMD.

ESQL Module Description

Flow4_PrepareMQ Convert the HTTP input message to WebSphere MQ

Flow4_Fan_Out Construct the individual assessor availability request
messages, create and save the Reply Identifier and set
each assessors SOAP/Http address

Flow4_PrepareMQControl Create the WebSphere MQ control message to send to
the Aggregate Reply node

Flow4_Save_Assessor_Req
uest

Save the request message to the assessor in the
CLAIMSASSESSOR database.

Flow3a_Prepare_Reply Correlate the assessors’ availability with the Reply
Identifier and insert into the LocalEnvironment folder

Flow3a_Generate_Output3a Create aggregated availability response message to
send to the ExternalClaimAssessors process

Flow7_Set_SOAP_Address Set the assessors SOAP/Http address to send the
assessment report request to.
 Chapter 9. Build the Enterprise Service Bus 353

Example 9-9 Flow4_PrepareMQ

CREATE COMPUTE MODULE Flow4_PrepareMQ
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

SET OutputRoot = InputRoot;
SET OutputRoot.HTTPInputHeader = null;
SET OutputRoot.HTTPResponseHeader = null;
CREATE NEXTSIBLING OF OutputRoot.Properties domain 'MQMD';
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID; -- create MQMD
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.Format = ' ';
SET OutputRoot.MQMD.MsgType = MQMT_DATAGRAM;
RETURN TRUE;

END;

Flow4_Fan_Out
Example 9-10 on page 355 is the ESQL for the Flow4_Fan_out module. There
are eight parts to the code.

Nearly all the code (with the exception of the data in the SQL Insert statement
and the LocalEnvironment references) is generated using Autocomplete - so the
code is less difficult to write than it appears at first sight.

1. Declarations of local variables.

2. While loop to step through each assessor in the list of assessors.

3. Copying the InputLocalEnvironment to the OutputLocalEnvironment.

4. Setting the SOAP/Http destination in the LocalEnvironment for the
HTTPRequest node to use dynamically.

5. Copying the data portion of the assessor request message from the input
message to the output message.

6. Propagating each assessor message and its LocalEnvironment down the
message flow.
354 Build a Business Process Solution Using Rational and WebSphere Tools

Example 9-10 COMPUTE MODULE Flow4_Fan_Out

CREATE COMPUTE MODULE Flow4_Fan_Out
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE numberOfAssessors INTEGER CARDINALITY (InputRoot.MRM.soap11:Body.
fl3:requestAssessorAvailability.fl3:assessorList.fl3:assessors[]);

DECLARE assessorCount INTEGER 0;
WHILE assessorCount < numberOfAssessors DO

-- These statements must be in the loop because propagate clears OutputRoot
CALL CopyMessageHeaders();
SET OutputLocalEnvironment = InputLocalEnvironment;
SET OutputRoot.MQMD.MsgType = MQMT_REQUEST;
SET OutputRoot.MQMD.ReplyToQ = 'AggIn';
SET OutputRoot.MQMD.Report = MQRO_COPY_MSG_ID_TO_CORREL_ID;
SET assessorCount = assessorCount + 1;

-- Set the SOAP/Http address for the RequestHttp node to use as a destinations
SET OutputLocalEnvironment.Destination.HTTP.RequestURL = InputRoot.MRM.soap11:Body.

fl3:requestAssessorAvailability.fl3:assessorList.fl3:assessors[assessorCount].fl3:assessorURL;
-- Copy data portion of message from list (f17 is a synonym for f14 - same namespace)
-- Output fields must be in order as the element is a sequence

SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:claimID =
InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:claimID;
SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:assessorID =

InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:assessorList.
fl3:assessors[assessorCount].fl3:assessorID;

SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.
fl7:makeOfCar =

InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:makeOfCar;
SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.

fl7:registration = 'JB 007'; -- Fixup as the registration wasn’t provided
SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:location =
InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:location;
SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:reqDate =
InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:requiredDate;
SET OutputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:responseTime =
InputRoot.MRM.soap11:Body.fl3:requestAssessorAvailability.fl3:responseTime;
PROPAGATE;

END WHILE;
-- All messages are explicitly propagated, so don’t propagate a null message

RETURN FALSE;
END;

Flow4_Control_Message
The Flow4_Control_Message compute node propagates the message output on
the Control terminal of the Aggregate control node to the MQOutput node that
puts it on the queue destined for the AggregateReply node.
 Chapter 9. Build the Enterprise Service Bus 355

All we need to do for this module is create an WebSphere MQ message and
pass it the message propagated from the Aggregate Control node as an
unstructured XML message.

Example 9-11 COMPUTE MODULE Flow4_PrepareMQControl

CREATE COMPUTE MODULE Flow4_PrepareMQControl
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.XML = InputRoot.XML;
RETURN TRUE;

END;
END MODULE;

Flow4_Save_AssessorRequest
We save the assessor request into the CLAIMASSESSOR database after
generating the request message so that we have the actual written value of the
MsgID stored by the AggregateRequest node. Note we saved the Assessor URL
in the Local Environment.

Example 9-12 Flow4_Save_AssessorRequest

CREATE COMPUTE MODULE Flow4_Save_AssessorRequest
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyEntireMessage();
SET OutputLocalEnvironment = InputLocalEnvironment;

-- Save message in the CLAIMASSESSOR table
INSERT INTO Database.EMERGE.CLAIMASSESSOR (claimID, assessorID, assessorURL,location,

reqdate, makeofcar, registration, replytoq, replytoqmgr, correlid) VALUES (
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:claimID,

 InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:assessorID,
 InputLocalEnvironment.Destination.HTTP.RequestURL,

InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:location,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:reqDate,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.fl7:makeOfCar,
InputRoot.MRM.soap11:Body.fl7:requestAssessorAvailability.fl7:cardet.fl7:registration,
'NoReplytoQ',
'NoReplytoQmgr',

-- Storing the correlation token from the generated message id
InputLocalEnvironment.WrittenDestination.MQ.DestinationData.msgId);
RETURN TRUE;

END;
356 Build a Business Process Solution Using Rational and WebSphere Tools

Flow3a_Prepare_Reply
The Flow3a_Prepare_Reply node receives availability responses from the
assessors. Its function is to extract the Reply Identifier for the Aggregate Reply
node and create an WebSphere MQ request message which will be sent to the
MQ Reply node to return a real WebSphere MQ reply message with the correct
correlation information for the AggregateReply node. Example 9-13 is the SQL to
do that.

The ESQL clears out any HTTP information, creates an MQMD, and configures it
as a request message with the original MsgId.

Example 9-13 COMPUTE MODULE Flow3a_Prepare_Reply

CREATE COMPUTE MODULE Flow3a_Prepare_Reply
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

SET OutputRoot = InputRoot;
SET OutputRoot.HTTPInputHeader = null;
SET OutputRoot.HTTPResponseHeader = null;

-- Create MQ request message - it will be converted to a reply message by MQReply
CREATE NEXTSIBLING OF OutputRoot.Properties domain 'MQMD';
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID; -- create MQMD
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.Format = ' ';
SET OutputRoot.MQMD.Report = MQRO_COPY_MSG_ID_TO_CORREL_ID;
SET OutputRoot.MQMD.MsgType = MQMT_REPLY;

-- Same msgid as request message id which was stored in the ClaimAssessor table. MQReply will
copy this to the correlid

SET OutputRoot.MQMD.MsgId =
THE (SELECT ITEM A.correlid FROM Database.EMERGE.CLAIMASSESSOR AS A
WHERE A.assessorID = InputRoot.MRM.soap11:Body.fl8:assessorAvailability.fl8:assessorID
AND A.claimID = InputRoot.MRM.soap11:Body.fl8:assessorAvailability.fl8:claimID);
SET OutputRoot.MQMD.ReplyToQ = 'AggIn';
RETURN TRUE;

Flow3a_Generate_Output3a
The Flow3a_Generate_Output3a module builds the Flow3A result message
including the list of assessors to return to the ExternalClaimAssessor process.

The composite message is stored in the ComIbmAggregateReplyBody.Flow4
array. For some reason, the MessageSet must be reset in the Properties. The
value is the same as we have been setting in all the input folders.
 Chapter 9. Build the Enterprise Service Bus 357

Example 9-14 COMPUTE MODULE Flow3a_Generate_Output3a

CREATE COMPUTE MODULE Flow3a_Generate_Output3a
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- How many replies have we got? The Flow4 folder is defined in the Aggregate Request node?
DECLARE noofreplies INTEGER CARDINALITY(InputRoot.ComIbmAggregateReplyBody.Flow4[]);
DECLARE replyno INTEGER 1;
DECLARE assessorID INTEGER;
SET OutputRoot.Properties = InputRoot.ComIbmAggregateReplyBody.Flow4.Properties;
SET OutputRoot.Properties.MessageSet = 'PIJ0MIK002001';
IF noofreplies > 0 THEN

SET OutputRoot.MRM.soap11:Body.fl3a:AvailableAssessorsList.claimID =

InputRoot.ComIbmAggregateReplyBody.Flow4[replyno].MRM.soap11:Body.fl8:assessorAvailability.fl8:claimID;
WHILE noofreplies >= replyno DO

SET assessorID = InputRoot.ComIbmAggregateReplyBody.Flow4[replyno].
MRM.soap11:Body.fl8:assessorAvailability.fl8:assessorID;

SET
OutputRoot.MRM.soap11:Body.fl3a:AvailableAssessorsList.resultAssessorCollection[replyno].

assessorEstimations.assessorID = assessorID;
-- The assessorURL is not in the reply message, so we have to get it from the database

SET
OutputRoot.MRM.soap11:Body.fl3a:AvailableAssessorsList.resultAssessorCollection[replyno].

assessorEstimations.assessorURL = THE (SELECT ITEM A.assessorURL FROM
Database.EMERGE.CLAIMASSESSOR AS A WHERE A.assessorID = assessorID);

SET
OutputRoot.MRM.soap11:Body.fl3a:AvailableAssessorsList.resultAssessorCollection[replyno].

assessorEstimations.preCost = InputRoot.ComIbmAggregateReplyBody.Flow4[replyno].
MRM.soap11:Body.fl8:assessorAvailability.fl8:predCost;

SET
OutputRoot.MRM.soap11:Body.fl3a:AvailableAssessorsList.resultAssessorCollection[replyno].

assessorEstimations.preDate = InputRoot.ComIbmAggregateReplyBody.Flow4[replyno].
MRM.soap11:Body.fl8:assessorAvailability.fl8:predDate;

SET replyno = replyno + 1;
END WHILE;
RETURN TRUE;

ELSE
-- Don't propagate a message if there are no replies

RETURN FALSE;
END IF;

END;

9.7.2 Setting the SOAP/Http destination dynamically
Example 9-15 on page 359, Flow7_Set_SOAP_address, sets the SOAP/Http
destination to be used by the HTTPRequest node to send the request for an
assessment to the chosen assessor. The assessorURL is in the Flow6 input
message, but it is not copied over to the Flow7 message sent to the assessor, so
the ESQL gets it from the Flow6 input message.
358 Build a Business Process Solution Using Rational and WebSphere Tools

Example 9-15 COMPUTE MODULE Flow7_Set_SOAP_address

CREATE COMPUTE MODULE Flow7_Set_SOAP_address
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyEntireMessage();
-- We need to set the URL of the AllocateAssessmentRequest. Only the
URL of the AssessorAvailabilityRequest is defined
-- The quick fixup is to have a naming convention...
SET OutputLocalEnvironment.Destination.HTTP.RequestURL =

REPLACE(InputRoot.MRM.soap11:Body.fl6:actionAssessor.fl6:assessor.
 fl6:assessorURL,'Availability','DeliverAssessment');

RETURN TRUE;
END;

9.7.3 Common namespace prefix declarations

Table 9-11lists the namespace module.

Table 9-11 Common namespace module

It is good practice to provide shortened namespace prefixes for the namespaces
used in the ESQL code. It shortens statements and makes the code more
readable. The namespaces will be found in the Assessor Messageset we
created earlier. If there are missing or duplicate prefixes they can be added or
changed now. The same prefixes should be given to the same namespaces. We
were careful to edit the schema files to all contain different prefixes before they
were converted into message sets. The results can be seen in Figure 9-109 on
page 360.

In the Resource Navigator → Assessor Messageset → Assessor → Click
messageSet.mset and click the XML1 tab in the message set editor.

ESQL Module Description

common Namespace and prefix declarations
 Chapter 9. Build the Enterprise Service Bus 359

Figure 9-109 Adding prefix to namespace declaration

Add the namespaces and prefixes from each of the message sets to the
common.eqsl module as shown in Example 9-16. Note where we have duplicate
namespaces we can’t declare duplicate prefixes.

Example 9-16 Declaring namespaces in common.esql

BROKER SCHEMA proxyAssessorSystem
DECLARE soap11 NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE fl3 NAMESPACE 'http://broker.lgi.itso.assessavail';
DECLARE fl3a NAMESPACE 'http://AssessorAvailabilityList.itso';
DECLARE fl7 NAMESPACE 'http://assessor.itso';
DECLARE fl8 NAMESPACE 'http://assbroker.lgi.itso';
DECLARE fl6 NAMESPACE 'http://broker.lgi.itso.allocreq';
DECLARE fl6a NAMESPACE 'http://AllocateAssessorResponse.lgi.itso';
-- DECLARE fl4a NAMESPACE 'http://assbroker.lgi.itso';
-- DECLARE fl7a NAMESPACE 'http://assbroker.lgi.itso';
-- DECLARE f4 NAMESPACE 'http://assbroker.itso';
-DECLARE fl9 NAMESPACE 'http://broker.lgi.itso.assessrept';

Note: Where there were schemas with the same target namespace the
duplicate namespaces and prefixes have been discarded by the message
broker.

Tip: When changing namespace prefixes, or editing the common.esql file,
warning messages might appear inexplicably in the task list about unresolved
message field references. If rebuilding all the workspace does not clear the
warnings, closing the workspace, reopening it and rebuilding it entirely again
will clear incorrect warnings.
360 Build a Business Process Solution Using Rational and WebSphere Tools

9.7.4 ESQL Error handling code
Table 9-12 lists the ESQL validate modules to be written and the common fault
handler. The validation modules differ only very slightly from one another.

Table 9-12 Validation ESQL modules

Flow3_Validate shows a particular example of one of the routines.

Flow3_Validate
The validation routines all follow the same general pattern,

1. Set up the parameters to call the ValidateMessage routine in the Broker’s
global data folder “Environment”:

– SOAP message named expected in Environment.Message.

– Flag to indicate that the fault exception message is set in this module
rather than by the generic SOAP fault handler.

– References to the folders passed to ValidateMessage.

2. Call ValidateMessage and check the return flag.

– Propagate the Inputroot to Outputroot if validation succeeds.

– Throw an exception with specific fault data that will be caught by the input
node at the start of the flow and passed to the generic fault handler if the
validation fails.

We use a generic SOAP fault message to store the exception as not all the
WSDLs we are working with have a Fault Interface. The fault should only
get returned if the Web service has a fault interface.

Example 9-17 on page 362 shows the code for validating flow3.

ESQL Module Description

Flow3_Validate

 “flow specific” validation of input message

Flow4a_Validate

Flow6_Validate

Flow7a_Validate

Flow8_Validate

fault_identify_fault Common SOAP fault handler
 Chapter 9. Build the Enterprise Service Bus 361

Example 9-17 Flow3_Validate ESQL

CREATE COMPUTE MODULE Flow3_Validate
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE xInputRoot REFERENCE TO InputRoot;
SET Environment.Message = 'requestAssessorAvailability';

-- The following statement registers the fact that this web service generates its
-- own exception message rather than the default SOAP Fault

SET Environment.SOAP.Fault.FaultOption = 'CustomizedFault';
DECLARE xEnvironment REFERENCE TO Environment;

-- Validate the message
CALL ValidateMessage(xInputRoot, xEnvironment);
IF Environment.SOAP.Fault.FaultCode = ' ' THEN

SET OutputRoot = InputRoot;
ELSE

-- This web service generates its own fault message.... here it is and the exception path is
followed

SET Environment.soap11:Body.Fault.faultstring =
'Flow3 input message validation failed... claimID ' ||
CAST(InputBody.soap11:Body.fl3:requestAssessorAvailability.fl3:claimID AS CHARACTER);
THROW USER EXCEPTION VALUES ('Flow3 Input validation failed');

END IF;
RETURN TRUE;

END;

Remainder of the validation modules
Copy the code from Flow3_Validate, and make the changes shown in Table 9-13
to each of the copies.

The parts of the code marked in bold red need to be changed for each Validate
compute node ESQL implementation.

Table 9-13 Variable inserts into Validate routines

Flow Message ClaimID field

Flow3 requestAssessorAvailability fl3:requestAssessorAvailability.fl3:claimID

Flow4a assessorAvailability fl4a:assessorAvailability.fl4a:claimID

Flow6 actionAssessor fl6:actionAssessor.fl6:claimID

Flow7a assessorResponse fl7a:assessorResponse.fl7a.claimID

Flow8 receiveAssessorReport fl8:receiveAssessorReport.fl8:claimID
362 Build a Business Process Solution Using Rational and WebSphere Tools

Fault_Identify_Fault
The purpose of the Fault_Identify_Fault module (Example 9-18) is to format a
compliant SOAP fault packet containing useful diagnostic data. The Main module
is simply an escape if the fault packet has already been created. The output is
sent to the HttpReply node for returning to the SOAP client, otherwise FaultProc
is called to create the fault packet.

Example 9-18 COMPUTE MODULE Fault_Identify_Fault - Main Module

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

IF Environment.SOAP.Fault.FaultCode = 'FaultReceived' THEN
-- We have received a fault from another web service.... copy details to output
SET OutputRoot = InputRoot;

ELSE
CALL FaultProc();

END IF;
RETURN TRUE;

END;

The faultproc routine in Example 9-19 on page 364 has eight sections and tailors
the detail of the fault message depending on what information is available about
the fault.
 Chapter 9. Build the Enterprise Service Bus 363

Example 9-19 COMPUTE MODULE Fault_Identify_Fault - Faultproc

CREATE PROCEDURE FaultProc()
BEGIN
-- 1. The web service requires a generic SOAP fault message

CALL CopyMessageHeaders();
SET OutputRoot.HTTPInputHeader = null;
SET OutputRoot.HTTPResponseHeader = null;

-- 2. supply suitable values for unknown fault in Service Configuration Data
IF Environment.SOAP.Fault.FaultCode IS NULL OR

Environment.SOAP.Fault.FaultCode = ' '
THEN
SET Environment.SOAP.Fault.FaultActor ='proxyAssessorSystem';
SET Environment.SOAP.Fault.FaultCode = 'Server';
SET Environment.SOAP.Fault.FaultString = 'Server error in SOAP Web service';

END IF;
-- 3. Build an output SOAP fault message (MRM)

SET OutputRoot.Properties.MessageSet = 'Assessor';
SET OutputRoot.Properties.MessageType = 'Envelope';
SET OutputRoot.Properties.MessageFormat = 'XML1';

-- 4. Output will be MRM Message, Add standard SOAP Envelope
-- Explicitly add the namespace to fault code value
-- Put the original message body in the fault (if we can....)
-- 5. The web service requires a customized fault message

IF Environment.SOAP.Fault.FaultOption = 'CustomizedFault' THEN
SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultcode = 'soap11'||':'||

Environment.SOAP.Fault.FaultCode;
SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultstring = Environment.SOAP.Fault.FaultString;
SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultactor = Environment.SOAP.Fault.FaultActor;
SET OutputRoot.MRM.soap11:Body.soap11:Fault.detail = Environment.soap11:Body;

ELSE
-- 6. The web service requires a default SOAP fault message

SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultcode = 'soap11'||':'||
 Environment.SOAP.Fault.FaultCode;

SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultstring = Environment.SOAP.Fault.FaultString;
SET OutputRoot.MRM.soap11:Body.soap11:Fault.faultactor = Environment.SOAP.Fault.FaultActor;
IF InputExceptionList.ParserException.ParserException.ParserException.Number = 5117 THEN

SET OutputRoot.MRM.soap11:Body.soap11:Fault.detail.OriginalBody =
'Input message is not valid XML';

ELSE
SET OutputRoot.MRM.soap11:Body.soap11:Fault.detail.OriginalBody = InputRoot.*[<];

END IF;
-- 7. Check if the exception list is the result of an ESQL THROW...

IF InputExceptionList.RecoverableException.RecoverableException.UserException.Number = 2951 THEN
-- 8. and if not, output the exception list in the SOAP fault message

ELSE
SET OutputRoot.MRM.soap11:Body.soap11:Fault.detail.ExceptionList = InputExceptionList;

END IF;
END IF;

END;
364 Build a Business Process Solution Using Rational and WebSphere Tools

9.8 Deploy message set and flows
Our next task would be to deploy the message sets and flows ready to test them,
but first we need to implement the URL: http://SAH414A:7080/UNKNOWN which
was defined in flows 4 and 7 as the default assessor URL should the flow fail to
set an assessor URL dynamically. This is one of these Should never happen
situations, and so we will define a trivial broker flow to handle it.

9.8.1 Create the UNKNOWN flow
Within the CommonSOAPHttpFlows message flow project, create a new
message flow called UnknownAssessor. See Figure 9-110.

Figure 9-110 Unknown flow

Drop an HttpInput node and the fault subflow into the flow, and define the
HttpInput node properties as follows,

1. Basic Tab:
a. Set the URL Selector to http://SAH414A:7080/UNKNOWN.
b. Set the client wait time to 30 seconds.

2. Default Tab:
a. Message domain: MRM.
b. Message Set: Assessor.
c. Message Type: Envelope.
d. Message Format: XML1.

3. Validation Tab:
a. Validate: Content and Value.
b. Failure Action: Exception.

9.8.2 Create a Broker Archive
To deploy the flows and message set we need to define a Broker Archive (.bar
file) and specify which flows and message sets comprise it. For simplicity we
define a single .bar file containing everything we need and deploy it to a single
execution group on a single broker. If, for example, we wanted to deploy the
Assessor Availability flows separately from the Assess Report flows we would
define two broker archives.

1. Switch to the Broker Administration perspective.
2. Right-click Broker Archives → New → Message Broker Archive and give

the new file the name Assessor → Finish.
 Chapter 9. Build the Enterprise Service Bus 365

3. In the .bar editor (the Content panel) Click the green Add icon and select the
flows and message set as shown in Figure 9-111. → Finish.

4. Check the “Details” in the dialog for errors. → OK.

Figure 9-111 Creating the Assessor.bar file

The resulting archive looks like Figure 9-112. Note only flows with Input
nodes are listed.

Figure 9-112 Assessor.bar file

5. Save the Assessor.bar file.

Tip: You can open the .bar file with a .zip tool and inspect the contents. One of
the useful tricks that a message broker expert will tell you about is if you are
having problems with SQL generated by the Database nodes in the message
flows, then inspect the final SQL in the .bar file rather than the .xmi format in
the development perspective of the workbench. You can see what is actually
being deployed. You might also find the SQL easier to understand because
some symbolic values have been resolved. See Example 9-20 on page 367.
366 Build a Business Process Solution Using Rational and WebSphere Tools

Example 9-20 Sample SQL from .bar file

CREATE PROCEDURE Flow3a_DataUpdate (IN s_Envelope REFERENCE
{'http://schemas.xmlsoap.org/soap/envelope/'}:Envelope)
BEGIN
--$IBM_WBIMB_XMIID=UpdateStatement_1
UPDATE Database.EMERGE.CLAIMASSESSOR AS "T#"
--$IBM_WBIMB_XMIID=UpdateStatement_1#assignments
SET PREDCOST = s_Envelope.soap11:Body.fl8:assessorAvailability.fl8:predCost,
PREDDATE = s_Envelope.soap11:Body.fl8:assessorAvailability.fl8:predDate
WHERE "T#".CLAIMID =
s_Envelope.soap11:Body.fl8:assessorAvailability.fl8:claimID AND
"T#".ASSESSORID =
s_Envelope.soap11:Body.fl8:assessorAvailability.fl8:assessorID ;
END;

9.8.3 Deploying Assessor.bar to the broker
If you have not already done so, you need to start the server running the
message broker. See 7.2.5 “Install and configure the Message Broker” on
page 230, and reconnect to the message broker from the toolkit. See especially
“Toolkit configuration” on page 234.

1. In the Broker Administration perspective open the Domain view and right
click WBRK_BROKER → New → Execution Group and call it Assessor →
Finish. See Figure 9-113.

Figure 9-113 Creating the Assessor execution group
 Chapter 9. Build the Enterprise Service Bus 367

2. Drag and drop the Assessor.bar file onto the new execution group. Check the
details in the Pop-up box → OK.

3. Double-click the Event log in the Domains view. Check the FMCQM event log
that opens (Figure 9-114). Clicking the messages shows their contents. There
should be no errors if you have followed the instructions accurately.

Figure 9-114 Checking event log

4. Refresh the execution group in the Domains view. The result is shown in
Figure 9-115.

Figure 9-115 Assessor execution group after deployment

9.9 Unit testing the deployed flows
Testing the deployed flows requires:

1. A Test tool to submit and receive sample SOAP messages

2. A scaffolded assessor and claim system, or use of the sample assessor
application running on WebSphere Application Server

3. Knowledge of how to trace and debug WebSphere Business Integration
Message Broker flows
368 Build a Business Process Solution Using Rational and WebSphere Tools

9.9.1 Test tools
There are a number of SOAP client test tools you could use. The most accessible
and versatile we have found is the Web services Explorer packaged with
WebSphere Studio Application Development Integration Edition and Rational
Software Architect. This tool lets you load a WSDL file, and modify portions of it,
such as a Web service address. It has both a Form view and a Trace view to see
the contents of request and reply messages. Both these workbenches also have
a TCP monitor tool if you want to see what is actually being transmitted.

See Figure 9-116 on page 370.
 Chapter 9. Build the Enterprise Service Bus 369

Figure 9-116 Using Web services explorer to test WebSphere Business Integration Message Broker

9.9.2 Scaffolded Assessor and Claim system
It is very easy to scaffold an Assessor and a Claim system to test the
proxyAssessor system. One of the difficulties with the Assessor system is it
behaves asynchronously, returning two messages in response to the selected
assessor request. It is difficult to program definite or indefinite delays into EJBs.
370 Build a Business Process Solution Using Rational and WebSphere Tools

An alternative is to create an Assessor message flow in the message broker, and
simulate the delay by putting WebSphere MQ messages onto queues which are
Get Inhibited, and releasing the messages only when required.

Figure 9-117 shows the basic assessor availability scaffolding. The flow sends an
HTTP response back, and then sends the assessment availability request back.
Mapping nodes make it easy to assemble the right contents for the messages.
Trace nodes help to debug and verify the solution.

Figure 9-117 Main Assessor Availability scaffolded flow

Figure 9-118 shows the main Assessor Report scaffolding. The structure is pretty
much the same, but this time the response is followed by two flows to send the
acknowledgement and then the report itself. The requests are put onto
WebSphere MQ queues. Two other flows take the requests off the queues as
soon as the Get Inhibit flag is reset using the MQ Explorer tool, and then
generate HTTP requests back to the proxyAssessorSystem.
 Chapter 9. Build the Enterprise Service Bus 371

Figure 9-118 Main Assessor report scaffolded flow

9.9.3 Tracing and debugging flows
There are three main techniques of debugging WebSphere Business Integration
Message Broker flows: using trace, using trace nodes and using the workbench
debugger.

One of the best features of WebSphere Business Integration Message Broker is
its debugging capability. The tools give visibility to all the data that is flowing,
node to node, and depending on your preferences, you can use the trace facility
to get a complete printout of the behavior of the flows, use trace nodes to
snapshot only part of the activity, or use the debugger to step though sections of
the flow or ESQL and interactively modify its execution.

Tracing
Tracing is controlled from the command line and works at the granularity of an
execution group. You can change the granularity of tracing to individual flows by
setting options in the workbench domains view.

These five scripts are handy to make new trace runs quickly.

ClearAtrace (Example 9-21 on page 373) and GetAtrace (Example 9-22 on
page 373) handle the interfaces to the broker. They leave the level of tracing as
set, for example using the interface in the workbench. ClearTraces and
GetTraces (Example 9-23 and Example 9-24) contain the lists of execution
groups being studied, and Trace (Example 9-25 on page 373) pulls it altogether
in one command which you run each time you want to start tracing.
372 Build a Business Process Solution Using Rational and WebSphere Tools

Example 9-21 ClearAtrace: Clears the trace log for an execution group

@rem clears the trace log
@SETLOCAL
@rem first argument is the broker name and the second, execution group name
@mqsichangetrace %1 -u -e %2 -r
@echo Tracing options for execution group %2 running on broker %1
@mqsireporttrace %1 -u -e %2
@ENDLOCAL

Example 9-22 GetAtrace: Retrieves the formatted trace for an execution group

@rem Retrieves the trace log
@SETLOCAL
@rem first argument is the broker name and the second, execution group name
@mqsireadlog %1 -u -e %2 -o %2.xml
@mqsiformatlog -i %2.xml -o %2.txt
@start notepad %2.txt
@ENDLOCAL

Example 9-23 ClearTraces: Clear all the execution groups you are interested in

@SETLOCAL
@Call ClearAtrace WBRK_BROKER LGIAvailability
@Call ClearAtrace WBRK_BROKER LGIReport
@Call ClearAtrace WBRK_BROKER Assessor
@ENDLOCAL

Example 9-24 GetTraces Retrieve all the traces

@SETLOCAL
@Call GetAtrace WBRK_BROKER LGIAvailability
@Call GetAtrace WBRK_BROKER LGIReport
@Call GetAtrace WBRK_BROKER Assessor
@Call ClearTraces
@ENDLOCAL

Example 9-25 Trace: Retrieve all the traces and clear them

@SETLOCAL
@Call GetTraces
@Call ClearTraces
@ENDLOCAL
 Chapter 9. Build the Enterprise Service Bus 373

Trace Nodes
Trace nodes can be inserted anywhere in a flow, or wired in parallel with
another output connector.

Figure 9-119 Typical trace node

Figure 9-119 is a typical trace node. It is configured to output an event to the
Windows event log, which will appear as an Error 3096 and will contain the
contents of the message tree, the local environment, the exception list and the
Environment. It doesn’t matter if any of these are null at run time. Use SQL
expressions to tailor the output, but for debugging, dumping the lot is good
enough.

The Message number is picked from the predefined catalog from the reserved
range, 3051-3099 which have a predefined message. Additional catalogues and
messages may be defined, but for debugging the predefined message catalog is
good enough.

The usual procedure is to bring up the Windows Management Console to view
the Application event log. Clear the log before a tracing run, and then if by
selecting have chosen message numbers carefully the progress of the run is
easily tracked as trace events appear in the log.

Debugging
The last technique to describe is traditional step by step debugging.
374 Build a Business Process Solution Using Rational and WebSphere Tools

Open the flow debug perspective, which appears as a red bug . The dialog
box takes you through attaching to a broker, then to one or more execution
groups, and setting break points. Note that the button to press to step through
ESQL is different from the button to press to step through a message flow, and
easily missed. See Figure 9-120.

Figure 9-120 Breakpoint in message flow with option to trace into ESQL

The variables windows displays the value of variables when you are stepping
through ESQL in a compute node. If there is no ESQL in your flow, then the
debugger is not going to be so useful. The variables windows has a special folder
called Debug Message that shows all the data available in the flow. See
Figure 9-121.

Figure 9-121 Debug message
 Chapter 9. Build the Enterprise Service Bus 375

376 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 10. Build the Request External
Reports process

In this chapter, we describe how to develop and deploy a business process
which is exported from WebSphere Business Integration Modeler in the format of
Business Process Execution Language for Web service (BPEL4WS). We build
our business process using the output of WebSphere Business Integration
Modeler so that we can take over from the business analyst. Because the
business process exported from Modeler still lacks implementable services and
settings information, needed in running the business process in a real system,
we have to modify BPEL so that the business process engine can execute the
business process.

This chapter includes following sections:

� Section 10.2, “Import WSDL and BPEL into the IDE” on page 379
� Section 10.4, “Integrate the process with its services” on page 387
� Section 10.3, “Integrate the process with its services” on page 385
� Section 10.5, “Controlling the path through the process” on page 418
� Section 10.6, “Implementing the Claim handler staff activity” on page 429
� Section 10.7, “Build” on page 436.
� Section 10.8, “Test and debug the process” on page 439
� Section 10.9, “Deploy the process to the server” on page 450

10
© Copyright IBM Corp. 2006. All rights reserved. 377

10.1 Overview
The IT process specialist uses WebSphere Studio Application Developer
Integration Edition V5.1.1 to deploy the business process defined by the
business analyst in WebSphere Business Integration Modeler on WebSphere
Business Integration Server Foundation V5.1. Figure 10-1 shows the central role
the IT process specialist plays in implementing the solution.

BPEL is exported from WebSphere Business Integration Modeler by the IT
process specialist rather than by the business analyst. Technical errors in the
BPEL have to be fixed before the process can be exported and the IT specialist
has the right skills to fix the errors. It is also an opportunity for the IT specialist to
get an overview the process in the Modeler. The export of BPEL is described in
4.5.3, “Export RequestExternalReports as a BPEL4WS process” on page 143.

The BPEL process uses partner links to interact with most of the external
services. All the partner links required by the IT process specialist have been
defined in .WSDL files by the solution architect using Rational Software Architect.
These have been packaged in a single .zip file to be easily managed. The .zip file
needs to be imported into a package in WebSphere Studio Application
Development Integration Edition.

Any additional WSDL interfaces that are required can be defined in WebSphere
Studio Application Development Integration Edition or your favorite WSDL editor.

Figure 10-1 Building the business process flow

WebSphere
Business

Integration
Modeler

Rational Software
Architect

WebSphere MQ
Workflow

WebSphere
Business

Integration Server
Foundation

WebSphere
Application Server

WebsSphere
Business

Integration
Message Broker

BPEL

Web services /
Partner Links

JMS/XML
Service

WebSphere
Studio Application

Developer
Integration Edition

WSDL

.ear
files
378 Build a Business Process Solution Using Rational and WebSphere Tools

There are three kinds of services the IT process specialist integrates:

1. There are the straightforward Web services invoked by the business process.
They happen all to be implemented as EJBs and reside on a separate
WebSphere Application Server.

These are described in Chapter 8, “Test and deploy the application
components” on page 243.

2. There are services connected to the ESB, implemented by WebSphere
Business Integration Message Broker. The requests and replies are
implemented as separate services, with the Process Choreographer acting as
a service to receive the responses from the ESB.

These are described in Chapter 9, “Build the Enterprise Service Bus” on
page 261.

3. The other connection that has to be built is between WebSphere MQ
Workflow and WebSphere Business Integration Server Foundation. The
Workflow engine has a special integration mechanism that makes use of a
proxy EJB running on the same process engine as the business process.
Invoking the RequestExternalReports process is then a simple partner link in
which our process is invoked by this EJB on behalf of the Workflow process.
This connection is the job of the Workflow IT specialist.

This is described in Chapter 11, “Modify the Claim Investigation process” on
page 453.

When the IT process specialist has completed the definition of the BPEL
process, it can be tested, either by importing the application components into the
WebSphere Studio Application Development Integration Edition test environment
or by linking the test versions of the services running on their native platforms.
After the process is debugged and tested, then it is deployed to WebSphere
Business Integration Server Foundation.

10.2 Import WSDL and BPEL into the IDE
The WSDL used in the External Claim Assessor solution has been defined by the
solution architect and is part of the PSM (Product Specific Model) contract
between the solution architect and the IT specialists. The BPEL has been
defined by the business analyst and is part of the CIM (Computer Independent
Model) between the business analyst and the IT roles. This section describes
how the IT specialist transfers the BPEL and WSDL files into WebSphere Studio
Application Development Integration Edition.
 Chapter 10. Build the Request External Reports process 379

10.2.1 Import WSDL from Rational Software Architect
The WSDL definitions will be used to create the partner links, operations and
variables in the BPEL model. The solution architect exported the final WSDL
definitions in a .zip file (see “Making materials available” on page 215.) We will
now import the .zip file into WebSphere Studio Application Development
Integration Edition and create the partner links we need.

1. Launch WebSphere Studio Application Development Integration Edition and
open Business Integration perspective. Select File → New → Service
Project. The New Project wizard opens. See Figure 10-2.

Figure 10-2 Create a new service project

2. Type the unique name for the new project (ITSOLGI) and click Finish. A new
service project will be created under Service Projects folder in Services view.

3. Before copying the WSDL file into the Service Project which includes our
BPEL process, create a new Java package to organize the imported WSDL
files.

Right-click the Service Project ITSOLGI and select New → Package to add
new package. Type services as the name of the package → OK. You can find
the new package added under the Service project. See Figure 10-3 on
page 381.

Tip: If you choose to load or reference WSDLs in a different project, then
you need to alter the properties of the LGIITSO service project to reference
it.

ITSOLGI
380 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-3 Create new Java package

4. Import the relevant WSDL files.

In Package explorer, right-click Import → Zip file → browse to find the
WSDL files packaged by the solution architect (or use
.\SG24-6636\RSA\ClaimsInvestigation WSDL files.wsdl → Select the WSDLs
which are used by the Assessor Automation service. See Table 10-1 on
page 391 → Finish.

Important tip: The WSDL files should be imported directly into the
Package folder, and not into a subfolder. By default, the folder tree is
copied from Rational Software Architect and the WSDLs are in a
subdirectory. This does not cause any problems building the BPEL
process as long as the folder names are valid package names. However
when you deploy the process, the WSDLs are not copied from a
subdirectory into the deployment .ear file. It is a good practice to move the
WSDLs directly into the package folder from the start.

If you put your WSDLs in the wrong subdirectory, how do you move them?

� If you discover the mistake before you have started developing and
building the process, simply move the WSDLs using the navigator.

� If you have started building the process, or even have got to the
deployment step before discovering the problem, then moving the
WSDLs will refactor many of the references to the WSDLs, but it is not
100% complete. After refactoring, use the search button and search for
the subpath where the WSDLs were previously located and fix up the
references. It is easiest to open the affected files using a simple text
editor. One of the files that will not be refactored is
<processname>.bpelex. There will be one reference to change for each
partner link in this file. When typing in the new path to the WSDL files,
ensure your path starts with a forward slash (/). Not using the slash
causes the build process to abend.
 Chapter 10. Build the Request External Reports process 381

10.2.2 Import BPEL from WebSphere Business Integration Modeler
The first question the IT specialist must consider, before we describe the
mechanics of importing BPEL from WebSphere Business Integration Modeler
into WebSphere Studio Application Development Integration Edition, is whether
to

� Continue to refine the CIM BPEL process in the Modeler and then transfer it
to WebSphere Studio Application Development Integration Edition.

� Take the model as-is from the analyst when it is ready for export.

The IT specialist can choose to edit the Request External Reports business
process using either tool.

Choosing when to import BPEL into the IDE
Modeler shows the business process using Business Process Modeling Notation
(BPMN)1. In contrast, WebSphere Studio Application Development Integration
Edition has three alternative ways of editing the business process suited to
different styles of process modeling. The Modeler style is chosen to suit the
business analyst and to be consistent across different modeling tools. Because
the style is not tied to a particular process technology,it is easier to compare
business processes modeled with different tools. It is also easier to see the logic
of the overall flow. For complex flows, it might be worthwhile continuing to refine
the logic of the flow in Modeler before transferring to WebSphere Studio
Application Development Integration Edition.

The editing styles in WebSphere Studio Application Development Integration
Edition are designed to make mapping the flow to the target technology as easy
as possible. In particular two of the styles, flow-based BPEL process and
sequence-based BPEL process, are optimized to edit BPEL processes. Which to
choose is a matter of your personal taste. At some point it, will be necessary to
edit the BPEL flow using WebSphere Studio Application Development
Integration Edition to fine tune the how the flow is executed.

The question are:

� At what point should the IT specialist switch from using the Modeler to using
WebSphere Studio Application Development Integration Edition?

� Taking into account the strengths of the tools, when should we export BPEL
from Modeler?

� How far we should edit BPEL in Modeler?

1 See Stephen White, “Introduction to BPMN”, found at
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf
382 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

In the case of the External Claim Assessor scenario, the choice is
straightforward. That choice is based on the decision we made that the solution
architect is responsible for interfaces and data modeling. The business analyst
only defines the business process activity model and not its interfaces. The
solution architect uses Rational Software Architect to model the interfaces. The
architect has chosen to use Rational Software Architect rather than WebSphere
Business Integration Modeler because of the requirement to incorporate
interfaces directly into the UML architecture model. The process specialist needs
to work in WebSphere Studio Application Development Integration Edition from
the start because that person needs to integrate the BPEL process with its
WSDL interfaces. Modeler does not have the capability to import WSDL interface
definitions.

In other model-driven development projects, the choices are different. The data
modeling might be done in WebSphere Business Integration Modeler, or in some
specific data-modeling tool. As discussed in 3.2.8, “Tool chains” on page 70,
before commencing a project in earnest it is really important to work out who is
responsible for what tasks, which tools they use, and how they integrate the
artifacts from the different tools.

In our case we were circumscribed in our choices because WebSphere Business
Integration Modeler 5.1.1 does not have the capability to import WSDLs. But in a
project where the WSDLs are created in the Modeler along with the BPEL there
is more scope for the IT specialist to continue with a technical refinement of the
process model in WebSphere Business Integration Modeler before exporting it to
WebSphere Studio Application Development Integration Edition.

The the External Claim Assessor scenario our the best option was to export the
simple BPEL process definition from WebSphere Business Integration Modeler
and to ask the IT specialists to use the WSDL definitions from Rational Software
Architect to complete the process definition and implementation as described in
the rest of this chapter.

Export BPEL from Modeler
The business analyst’s business process model should be saved as part of the
CIM contract between the business and IT roles in the project.

The IT specialist is then responsible for taking the model through the rest of its
refinement.

Inspection of the BPEL validity in WBI Modeler
When WebSphere Business Integration Modeler is switched to BPEL mode any
warnings or errors in the BPEL are displayed. All the errors have to be fixed
before the BPEL can be exported; the warnings are not a problem. “Validate
 Chapter 10. Build the Request External Reports process 383

process model” on page 143 explains how to correct the BPEL errors in the
RequestExternalReport process.

When the process model is error free, it can be exported and its definitions
imported into WebSphere Studio Application Development Integration Edition.
There is a choice of catalogs to import:

� Data catalog,
� Process catalog,
� Resource catalog,
� Organization catalog or its contents, or
� A single process, single business item, a resource or an organization unit.

If a complete process is exported, then all of the business items which the
process and its subprocesses use, and all of the individual resources and
organization units which are responsible for execution of the process will be
exported together. Business items, resource definitions, organization definitions
and location definitions are exported in XML schema (XSD) file format.

 “Export process” on page 150, explains how to export the
RequestClaimsAssessor process from WebSphere Business Integration Modeler
and what options to select.

Import BPEL into the IDE
To import the BPEL into the IDE, follow these steps:

1. Right-click the ITSOLGI service project → Import to open the import
wizard → File system → Next.

2. Specify the source folder where you exported the BPEL to, from Modeler. To
work from the materials supplied with the red book import the files from the
.\SG24-6636\Modeler directory shown in Figure 10-4. Make sure that the
services project you created in 10.2.1, “Import WSDL from Rational Software
Architect” on page 380 is selected in Into folder section. The business
process and business items are imported into a workspace. Make sure you
select the root information model as well as the BPEL and WSDL files for
import.

See Figure 10-4 on page 385.
384 Build a Business Process Solution Using Rational and WebSphere Tools

10.3 Integrate the process with its services

Figure 10-4 Imported process files

3. Open the business process editor by double-clicking Service Projects →
(ITSOLGI) → Claim.TOBE.RequestExternalReports →
RequestExternalReports.bpel in the Services view.

There might be errors. Do not worry about them for now. We fix these errors in
the following pages.

In the center of the editor, you can see the business process. This process
inherits the process definition from Modeler. The process in Modeler flows from
right to left, but the process in WebSphere Studio Application Development
Integration Edition flows from the top down. On the right part of the process
(Figure 10-5 on page 386) editor, you can see the partner links that are the
interface of Web services invoked from the process activities. Those services are
now abstract. Modeler generates the WSDL files, but those service definitions
have no implementation. In our case, we are going to replace the definitions
entirely, because they are defined by the solution architect in Rational Software
Architect.
 Chapter 10. Build the Request External Reports process 385

Figure 10-5 BPEL editor

In the left part of the editor there is palette to edit the process. Add new activities
to the process by selecting an icon from palette and dropping it onto the editor.
Specific information about each element in the process is displayed in the detail
area in the bottom of the editor. The contents of this area change, depending on
which process element you select.

The Modeler process editor and the WebSphere Studio Application Development
Integration Edition process editor are displayed side-by-side in Figure 10-6.
Modeler is on the left and WebSphere Studio Application Development
Integration Edition on the right.

Figure 10-6 Imported process
386 Build a Business Process Solution Using Rational and WebSphere Tools

Each element of Modeler and the definition of BPEL and WSDL correspond as
follows:

� Local tasks in Modeler become Invoke activities.
� If a staff resource is assigned to local task, it will be staff activity in

WebSphere Studio Application Development Integration Edition.

– The manual task named ManualChooseAssesor becomes a staff activity.

� Forks and merges become Assign activities or Empty activities.
� Assign activities are inserted between each activity. Assign activities map the

output data structure of the preceding activity to the input data of the following
activity.

10.4 Integrate the process with its services
In this section we take the BPEL flow imported from the WebSphere Business
Integration Modeler and transform it into an executable BPEL flow. There are
some pieces of Java to be written, but mainly the procedure is driven by
configuration wizards or performed with the graphical process editor. There are
nine steps required to transform the BPEL process into executable form.

1. Section 10.4.1, “Correct the list of partner links in the model” on page 388
replaces the abstract partner links in the business process model provided by
the business analyst with the partner links that call the real services specified
by the solution architect.

2. Section 10.4.2, “Integrate the partner links with the process” on page 390
connects the new partner links with the corresponding activities in the flow,
and, adds additional activities to the flow to extend the BPEL model to match
the solution architecture.

3. Section 10.4.3, “Configure the partner links” on page 394 checks that each
partner link is correctly configured according to its role in the activity (called or
calling) and that the correct Port type (or interface) is used in the link.

4. Section 10.4.4, “Configure the activities” on page 396 checks that global input
and output variables are assigned to each activity and that the operations
required by each activity are correctly selected.

5. Section 10.4.5, “Configure the types of input and output variables” on
page 398 checks that for each input and output variable it is correctly typed by
the its corresponding input or output message used in each activity.

6. Section 10.4.6, “Map data between input and output variables” on page 400
maps the data to and from each partner link making any necessary
adjustments to the data to match the requirements of the partner link
services.
 Chapter 10. Build the Request External Reports process 387

7. Section 10.4.7, “Configuring the flow to wait for responses from the
assessors” on page 416 adds a correlation set to the flow to enable it to wait
for asynchronous messages from the assessors and configures the three
activities that wait for an assessor response to use the correlation set.

8. Section 10.5.1, “Checking the results from RequestAvailability” on page 418
tests the results of requesting the availability of the assessors using a Java
Snippet and configures two conditional links to invoke either a manual or
automatic activity to select the assessor to be asked to perform the
assessment.

9. Section 10.5.2, “Create a While activity to test for a committed assessment”
on page 423 adds a while activity to check that the selected assessor does
agree to perform the assessment.

10.4.1 Correct the list of partner links in the model
If you count the partner links on the right-hand side of the editor generated from
the RequestExternalReports model imported from WebSphere Business
Integration Modeler and compare the result with the number of WSDL interfaces
required by the RequestExternalReports collaboration imported from Rational
Software Architect, you can see there is a mismatch. This mismatch is due to the
business process model not detailing the additional interactions that are required
to implement the asynchronous flows.

Table 10-1 on page 391 shows the WSDL files for the interfaces where the
RequestExternalReports process plays either a client or server role, and the
corresponding partner links. Entries in blue are present in the BPEL model
imported from WebSphere Business Integration Modeler and entries in red are
the missing ones, which will need to be added, along with some means to route
the requests from the partner links back into the process flow. The black rows are
interactions that do not involve the Automated Assessor process component.

The following procedure corrects the list of partner links.

1. Remove the partner links imported with the BPEL process from the
Automated Assessors model:

With the requestExternalReports.bpel file open in the editor window go to the
outline view and select all the partner links and delete them (Figure 10-7 on
page 389).
388 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-7 Deleting all the partner links in one go

2. Create new partner links from the architect’s WSDL files:

Select each of the WSDL files in turn and drag and drop onto the
RequestExternalReports.bpel editor canvas. WebSphere Studio Application
Development Integration Edition prompts you to confirm the selection of a
service’s port and port type as in Figure 10-8.

Figure 10-8 Confirm Port and Port Type

Add the partner links in the same order as the flows and your editor canvas
should look similar to Figure 10-9 on page 390.
 Chapter 10. Build the Request External Reports process 389

Figure 10-9 Partner links based on interfaces from Rational Software Architect

10.4.2 Integrate the partner links with the process
We now have imported the RequestExternalReports process from WebSphere
Business Integration Modeler as a BPEL process and the interface definitions
from Rational Software Architect as partner links. The next task is to associate
the partner links with the process adding new activities in the flow to correspond
with the new partner links we have added.

Connect activities in the flow with partner links
1. The first task is to connect each partner link with its corresponding activity:

Pick an activity in the flow and select the partner link action from the palette
that hovers above the mouse pointer as in Figure 10-10. Alternatively,
Right-click the activity and select Set Partner Link from the menu.

Figure 10-10 Creating the connection between an activity and a partner link
390 Build a Business Process Solution Using Rational and WebSphere Tools

Drag the rubber-band line to the appropriate partner link. Use Table 10-1 on
page 391 to guide you in the matching of connections.

An alternative way to make the connection is to select an activity and then
open the implementation tab in the property editor below the graphical editor
canvas. Then select the desired partner link, as in Figure 10-11. This is a
method that you will need if the partner link and activity icons are too far apart
to connect on the same screen.

Figure 10-11 Setting partner link type using the properties editor

2. Rename each partner link to match the names in Table 10-1 (this is only for
clarity, it does not alter the behavior of the process).

This leaves two partner links unattached to any activity
(AssessorAvailabilityListPartner and AllocateAssessorResponsePartner).
The third new partner link, AssessorReportPartner, is connected to the
AssessorSendReport activity that is defined in the flow - but is the wrong type
of activity. We fix these problems next.

Table 10-1 Assessor Automation process partner links and roles

Flow
Component
(Interface
owner)

Assessor
Automation
Activity & Role

Partner link name WSDL file name

1
Assessor
Automation

RequestExternal-
Reports Receive
Server

RequestExternal-
ReportsProcess

ExternalClaimsAssessorInterfac
e.wsdl

2
Assessor
Management

IdentifyAssessors
Client

AssessorManageme
nt

AssessorManagement(2).wsdl

2a
Business
Rules
Engine

ResponseTime-
BasedOnPolicy
Client

RequestResponseTi
mePT

RequestResponseTimePT(2a).
wsdl

3
Proxy
Assessor
System

RequestAvailability
Client AssessorAvailability AssessorAvailability(3).wsdl
 Chapter 10. Build the Request External Reports process 391

Create new activities to receive messages from the assessors
First fix the AssessorSendReport activity. It is currently an Invoke activity. We
want to change it to a Receive activity to receive the claims assessment report.

1. Right-click the AssessorSendReport activity → Change Type → Receive.

4 Assessor None None Availability(4).wsdl

4a
Proxy
Assessor
System

None None AssessorAvailabilityPT(4a).wsdl

3aa Assessor
Automation

AssessorAvailability
Receive
Server

AssessorAvailability
List

AssessorAvailablityList(3a).wsdl

5
Business
Rules
Engine

SelectAssessor
Client SelectAssessors PreferredAssessor(5).wsdl

6
Proxy
Assessor
System

Request-
Assessment
Client

Allocate
AssessmentRequest

AllocateAssessmentReport(6).w
sdl

7 Assessor None None DeliverAssessment(7).wsdl

7a
Proxy
Assessor
System

None None
DeliverAssessmentResponse(7
a).wsdl

6a
Assessor
Automation

AllocateAssessor-
Response
Server

AllocateAssessor-
Response

AllocateAssessorReponse(6a).
wsdl

8
Proxy
Assessor
System

None None AssessorReport(8).wsdl

9
Assessor
Automation

AssessorSend-
Report
Server

AssessorReport AssesorReport(9)

10
Claim
System

StoreReport
Client StoreReportPartner

StoreAssessmentReport(10).ws
dl

a. Red rows need to be added to the assessor automation process

Flow
Component
(Interface
owner)

Assessor
Automation
Activity & Role

Partner link name WSDL file name
392 Build a Business Process Solution Using Rational and WebSphere Tools

Next, add two new receive activities named as shown in column 3 in the red in
Table 10-1, AssessorAvailabilityReceive and AllocateAssessorResponse.

2. Select receive activity from the palette (Figure 10-12)and drop it into the
process. Type in AssessorAvailabilityReceive as the activity name.

Figure 10-12 Select receive activity from palette

3. Select the connector between RequestAvailability invoke activity and Any
assessor? empty activity and delete it.See Figure 10-13,

Figure 10-13 Select connector

4. Connect RequestAvailability and AssessorAvailabilityReceive activities;
Right-click RequestAvailability and select Set Link between Flow
activities menu.

5. Connect AvailabilityReceive and Any assessor? activities. To adjust the
arrangement of flow contents, right click the flow area and select Align Flow
Contents Automatically on the menu.

6. Connect the activity with the AssessAvailabilityListPartner partner link.
The result should look like Figure 10-14 on page 394. Note the arrow
between the partner link and the activity is now black and pointing to the
activity, indicating the direction of the message.
 Chapter 10. Build the Request External Reports process 393

Figure 10-14 Inserted the new AssessorAvailabilityReceive activity into the flow

7. Repeat this process to insert the AllocateAssessorResponse activity in the
flow and connect it to its partner link. The result is illustrated in Figure 10-15.

Figure 10-15 inserting the AllocateAssessorReponse activity into the flow

8. At this point it is worth saving the workspace to a zip file.

Select the ITSOLGI service project in the services navigator and right
click → Export → Project Interchange → Check ITSOLGI and type a file
name to export to → Finish.

10.4.3 Configure the partner links
The next task is to assign the process and the partner the correct roles for the
partner link and ensure the correct port types and operations have been selected
and input and output variables have been allocated to pass the input and output
messages to and from the service. Figure 10-16 on page 395 shows the
relationships between the BPEL process, the Web service interface, and an EJB
implementation.
394 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-16 WSDL describes EJB interface invoked from BPEL process

Roles
In assigning the correct number of roles and partner links to the process, think of
the relationship between the process and the partner as a conversation. If there
is one conversation then there is one role to allocate. This is the case for a
request/reply relationship which maps to a request/reply SOAP message. If on
the other hand, there are two conversations, such as when one exchanges
question and answer with voicemail, then there are two roles corresponding to
two one-way SOAP messages that are exchanged asynchronously. It is also
possible to have a one-way conversation, which is similar to leaving a message
on voicemail without expecting a response.

In the case of the External Claim Assessor solution, we have some request/reply
conversations and some one-way conversations. We have no conversations with
two roles. This might seem surprising because we have three asynchronous
messages. But in each case, they start a new conversation following a previous
request/reply. To continue the telephone analogy, it is similar to calling someone
for information and them agreeing to leave you a message later when they have
researched the information for you.

Having decided that each partner link type has one role to allocate, the next
question to decide is whether the role belongs to the process or the partner. The
simple way of looking at whose role it is, is to ask who is performing the service?
 Chapter 10. Build the Request External Reports process 395

If the service is performed by the process, then it is the process that owns the
role. If the service is performed by the partner, then the partner owns the role.

The role played by the process is listed in Table 10-1 on page 391. Where the
Assessor Automation process is the server then it owns the role. Where it is the
client, the partner owns the role.

Configuring the links
It is easiest to do this using the Outline view. Click down through the partner
links at the top of the Outline.

1. For each of the partner links that correspond to the process being the server
make sure the partners role name is -- None -- by clicking the double arrow in
the implementation tab of the properties editor. See Figure 10-17. There are
four partner links to assign a process role name.

Figure 10-17 configuring the RequestExternalReports

2. Check the partner link type, role name and port type for the other partner links
as you scroll through the outline view.

10.4.4 Configure the activities
Expand the Flow category in the outline, and click each activity in turn.

For each activity, on the implementation tab, check for the correct port type,
operation, selected input and output variables, and create any missing variables.

1. For the RequestExternalReports Receive activity, the check box Create a
new Process instance if one does not already exist should be checked.
This is the first activity in the process and it creates a new process instance
each time a new claim is processed.

2. In the AllocateAssessorResponse Receive activity we have just created, we
need to create a new request variable, AssessorConfirmationResponse.

In this case the Create a new Process ... check box is left unchecked because
the Automated Assessor process has been blocked waiting for the response.
It is resumed when the response is received (see Figure 10-18 on page 397).
396 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-18 Creating the Request variable in AllocateAssessorResponse

3. Repeat this for the AssessorAvailabilityReceive activity.

4. Add an output variable OutputCriteraVariable for the
RequestExternalReports Reply activity.

5. The activity configurations should match those listed in Table 10-2. There are
a number of variables missing, so go through the table carefully.

Table 10-2 Setting the partner links, port types, operations and variable names

Flow

Assessor Automation
Activity name

Port Type name Request variable

Partner Link name Operation names Response Variables

1a

RequestExternalReports
Receive

RequestExternalReport
Process

InputCriteriaVariable

RequestExternalReports
Process

RequestExternalReport OutputCriteriaVariable

2

IdentifyAssessors AssessorManagement
IdentifyAssessorsInputCriteria
Variable

AssessorManagement requestListAssessors
IdentifyAssessorsOutput
CriteriaVariable

2a

ResponseTimePolicy
RequestResponseTime
PT

ResponseTimeBasedOnPolicy
InputCriterionVariable

RequestResponseTime
PT

requestResponseTime
ResponseTimeBasedOnPolicy
OutputCriterionVariable

3

RequestAvailability AssessorAvailability
RequestAvailabilityInputCriteria
Variable

AssessorAvailablity
requestAssessor
Availability

RequestAvailabilityOutputCriteria
Variable
 Chapter 10. Build the Request External Reports process 397

10.4.5 Configure the types of input and output variables
The next step is to associate message definitions with the request and response
variables for the activities. Table 10-3 on page 399 lists the messages to be
associated with the variables. To associate the messages with the variables,
select the variables in the Outline view and go to the message tab in the
properties editor. Browse to the correct WSDL file and select the proper
message as shown in Figure 10-19 on page 399.

3a
AssessorAvailabilityReceive AssessorAvailabilityList

ListOfAvailableAssessors
AssessorAvailabilityList availableAssessorsList

5

SelectAssessors PreferredAssessor
SelectAssessorInputCriteria
Variable

PreferredAssessor selectAssessor
SelectAssessorOutputCriteria
Variable

6

RequestAssessment
AllocateAssessment
Request

RequestAssessmentInputCriteria
Variable

AllocateAssessment
Request

actionAssessor
RequestAssessmentOutputCriteria
Variable

6a

AllocateAssessorResponse
AllocateAssessor
Response

AssessorConfirmationResponse

AllocateAssessorResponse
assessorConfirmation
Request

9

AssessorSendReport AssessorReport
AssessorSendReportOutput
CriteriaVariableAssessorReport

receiveAssessorReport
Request

10
StoreReport StoreAssessorReport StoreReportInputCriteriaVariable

StoreAssessorReport storeAssessorReportURL StoreReportOutputCriteriaVariable

a. This partner link is split into separate send and receive activities at the flow beginning and end.

Flow

Assessor Automation
Activity name

Port Type name Request variable

Partner Link name Operation names Response Variables
398 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-19 Associating messages with variables

Table 10-3 Variables and associated messages

Flow WSDL file
Request and Response
Variables

Message

1
ExternalClaimAsse
ssors.wsdl

InputCriteriaVariable RequestExternalReportsRequest

OutputCriteriaVariable requestAssessorResponseMessage

2
AssessorManagem
ent(2).wsdl

IdentifyAssessorsInputCriteria
Variable

requestListAssessorsRequest

IdentifyAssessorsOutput
CriteriaVariable

requestListAssessorsResponse

2a
RequestResponse
TimePT(2a).wsdl

ResponseTimeBasedOnPolicy
InputCriterionVariable

requestResponseTimeRequest

ResponseTimeBasedOnPolicy
OutputCriterionVariable

requestResponseTimeResponse

3
AssessorAvailabilit
y(3).wsdl

RequestAvailabilityInputCriteria
Variable

requestAssessorAvailabilityRequest

RequestAvailabilityOutput
CriteriaVariable

requestAssessorAvailabilityResponse

3a
AssessorAvailablit
yList(3a).wsdl

ListOfAvailableAssessors AvailableAssessorsList
 Chapter 10. Build the Request External Reports process 399

10.4.6 Map data between input and output variables
All the input and output variables are now typed to match the data in input and
output messages. The next step is to map data variables received into one
activity to the input variables required for the associated partner link, and then
map the output results from the partner link to the input variable of the next
activity. This is illustrated in Figure 10-20 on page 401 which shows control and
data flows and the metadata used to assign fields in one message to fields in the
next.

The mapping activity can be one of a

� Java snippet
� Transformer activity
� Assign activity

They each have pros and cons. The assign activity is the simplest way to perform
straight mappings from fields in one message to equivalent fields in another
structure, when the only thing that is transformed is the path to the fields. The
transformer activity does not require any coding, and can handle more complex
transformations. This activity includes parsing strings, which can be trickier to
code. A java snippet can be a simple piece of code doing no more than an assign
activity, or it can perform complex transformations.

5
PreferredAssessor
(5).wsdl

SelectAssessorInputCriteria
Variable

selectAssessorRequest

SelectAssessorOutputCriteria
Variable

selectAssessorResponse

6
AllocateAssessme
ntReport(6).wsdl

RequestAssessmentInput
CriteriaVariable

actionAssessorRequest

RequestAssessmentOutput
CriteriaVariable

actionAssessorResponse

6a
AllocateAssessorR
eponse(6a).wsdl

AssessorConfirmationResponse AssessorConfirmationRequest

9 AssesorReport(9)
AssessorSendReportOutput
CriteriaVariable

receiveAssessorReportRequest

10
StoreAssessmentR
eport(10).wsdl

StoreReportInputCriteriaVariable storeAssessorReportURLRequest

StoreReportOutputCriteriaVariab
le

storeAssessorReportURLResponse

Flow WSDL file
Request and Response
Variables

Message
400 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-20 Mapping data between messages using a mapping activity

The BPEL flow exported from the Modeler generated some skeleton assignment
activities. We are going to replace these and add some other data mappings to
complete the data transformation part of the flow. We are limited to the extent
that we can use assignment activities, because in a number of messages the
WSDL requires more complex parsing, and we need to use either a Java Snippet
or a transformer activity. The assign activity is much more versatile in version 6
of the Process Choreographer, and is the activity of choice for many of the
mappings performed using transformers in version 5 because of its simplicity and
performance.

The are several mappings, and we cover a variety of mapping techniques in the
following sections:

� “Mapping IdentifyAssessors and ResponseTime” on page 402 uses two
separate Transform activities.

� “Mapping RequestAvailability” on page 404 shows how to do aggregation
using a Transform.

� “Mapping SelectAssessors” on page 407 uses another simple Transform
activity.

RequestExternalReports
Receive

IdentifyAssessors

Mapping Activity

InputCriteriaVariable

IdentifyAssessors
InputCriteriaVariable

IdentifyAssessors
OutputCriteriaVariable

RequestExternalReports
Partner

IdentifyAssessors
Partner

RequestExternalReports
_requestAssessor

MessageType

RequestListAssessors
Request:

RequestListAssessors

RequestListAssessors
Response:

RequestListAssessors

Activities Variables Partner links
Messages &

Message Types
 Chapter 10. Build the Request External Reports process 401

� “Mapping RequestAvailability” on page 407 introduces Java Snippets as well
as use a Transform activity to aggregate data from three input sources.

� “Mapping StoreReport” on page 414 is another simple Transform activity.

� “RequestExternalReport Reply” on page 415 is another simple Transform
Activity.

Mapping IdentifyAssessors and ResponseTime
The first two transformations required are from the requestAssessorMessage to
the RequestListAssessorsMessage and to the requestResponseTimeRequest
message. We shall use two transformer activities.

1. Remove the Fork and two assign activities between the
RequestExternalReports Receive activity and IdentifyAssessors and
ResponseTimeBasedOnPolicy.

2. Create a new Transformer service. Click the icon on the action bar, or File →
New → Transformer service (Figure 10-21).

Figure 10-21 Creating a new Transformer service

3. Click Next → type IdentifyAssessorsTransformer → Next → type
toIdentifyAssessors as the Operation Name → Add → Browse to
ExternalClaimsAssessor.wsdl to locate the
RequestExternalReports_RequestAssessors Message as the input
message, → Browse to RequestListAssessors
Request:requestListAssessors as the output message.

4. Expand the messages in the transformer editor window and drag and drop
the three input fields onto the corresponding output fields. The result is
illustrated in Figure 10-22 on page 403.
402 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-22 Mapping fields into the input message for IdentifyAssessors

5. Repeat this for the ResponseTimeBasedOnPolicy activity. Call the service
ResponseTimeBasedOnPolicyTransformer.

6. Drag the two transformer .WSDL files onto the RequestExternalReports.bpel
process and rename the transformer activities ToIdentifyAssessors and
ToResponseTimeBasedOnPolicy (matching the operation names, just for
documentation). The BPEL process now looks like Figure 10-23.

Figure 10-23 Inserted transformer services into the RequestExternalReports flow

You can explore the new partner links and activities just like any other. Open the
Implementation tab of the ToIdentifyAssessors activity and click Edit to review
and modify the field mappings. You can also select new operations and new
transformer services for this activity. In the Services Explorer find the
 Chapter 10. Build the Request External Reports process 403

IdentifyAssessorsTransformer.wsdl file, and open it using the standard .wsdl
editor.

Mapping RequestAvailability
This mapping aggregates the results from the IdentifyAssessors and
ResponseTimeBasedOnPolicy activities, and some of the original input data from
the RequestExternalReports message into a new message. It sends the new
message to the RequestAvailability partner link which will be routed by the
Enterprise Service Bus to all the external claim assessors who might be able to
handle this claim.

The obvious way to accomplish this task is to use another transformer activity to
perform this aggregation mapping. You could repeat the procedure from the
previous section to create a new Transformer service called
TransformerRequestAvailability. This time you would add three input
messages to the service as shown in Figure 10-26 on page 406.

1. Ensure the IdentifyAssessors, ResponseTimePolicy and RequestAvailability
activities are fully connected as on the left side of Figure 10-24.

2. Drop a new transformer activity into the flow, call it ToRequestAvailability,
and wire it up immediately before the RequestAvailability activity as on the
right side of Figure 10-24.

Figure 10-24 Adding ToRequestAvailability transformer activity

3. Open the ToRequestAvailability activity and set its Response variable to
RequestAvailabilityInputCriterionVariable.

Restriction: However, starting with the Transformer Wizard and then following
the same procedure as for simple transformations does not work.

The solution to this difficulty is to generate the transformations using a slightly
different procedure which requires more manual input and, hence, requires
more care. But when it is performed correctly, it is reliable. This is the
procedure that is documented next, and the one you should use for any
transformation that involves multiple input messages.
404 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-25 Variables defined for the ToRequestAvailability transformer activity

4. Click the aggregate button and select the input variables to be aggregated:

– InputCriteriaVariable
– IdentifyAssessorsOutputCriteriaVariable
– ResponseTimePolicyOutputCriterionVariable

5. On the next panel type the filename AggregateRequestAvailability.

6. Arrange the flow contents and you can see a new Java Snippet has been
inserted. Rename the snippet AggregateRequestAvailability.

7. Returning to the new transformer activity, click the New... button to create a
new Transform file. In the Create a new transform dialog, rename:

– partner link and file name to TransformRequestAvailability.
– Target namespace to http://Claim.TOBE.RequestExternalReports (the

same package as the process).
– The port type to TransformRequestAvailabilityPT.
– The Operation name to ToTransformRequestAvailability.

8. Press OK.

9. Now wire up the transformation as in Figure 10-26 on page 406.
 Chapter 10. Build the Request External Reports process 405

Figure 10-26 Aggregating the data for calling RequestAvailability

10.The mapping activity must wait until all the input data is available. On the
Join Behavior tab of the properties editor for the newly created
ToRequestAvailability activity, set the condition value to All. See
Figure 10-27 on page 407.

Tip: Naming is so important! If you reformat a flow, it is so much easier to
reassociate an activity that has become disassociated from its position in the
flow if you named that activity with a well thought-out naming convention.

We have chosen to name the Transformer and Aggregation WSDL files so
that they are sorted into Aggregation and Transformer categories in the
Services Navigator. An alternative approach, is to store all the WSDLs in the
services package, and suffix them with Transformer or Aggregation, so that
they are sorted by affinity to the original service. The important point is to think
through a naming scheme to begin with and then apply it consistently. Naming
consistency reduces hard-to-fix bugs caused by confusion about names.
406 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-27 Joining results of IdentifyAssessors and ResponseTimePolicy

Mapping SelectAssessors
We use another transformer service for this mapping. Call it
SelectAssessorTransformer. Give it an operation name of toSelectAssessor.
listAvailableAssessors is the input message and selectAssessorRequest is
the output message in the transformer mapping creation dialog box. The
resulting mappings are show in Figure 10-28.

Figure 10-28 mapping the SelectAssessor request

� Drag the service onto the RequestExternalAssessors process editor, call it
ToSelectAssessor, and wire it up between the Any Assessors? and
SelectAssessors activities.

Mapping RequestAvailability
The transformer service for this mapping is called
RequestAvailabilityTransformer.

1. Give it an operation name of toRequestAvailability. It needs to aggregate
two input messages: the output of SelectAssessors, and the original input
message to the process, RequestExternalReports_RequestAssessors
(See Figure 10-27 on page 407). The output message is
actionAssessorRequest.

At this point we hit a problem. The actionAssessor message requires two
fields that are not in the selected input messages:

– carDetails.registration
– assessor.assessorURL
 Chapter 10. Build the Request External Reports process 407

2. The car’s registration was accidently omitted from the input container passed
to the RequestExternalReports process by the ClaimInvestigation_TOBE
workflow. That can be fixed later, For now, we copy the make of car into the
registration field.

3. The lack of the AssessorURL is more significant. The Business Rules
Engine’s interface only returns the selected Assessors ID along with the
claimID. We need to reassociate the assessorID with their URL so that the
ESB can route the assessment request to the right assessor.

Where should data be correlated?
We have not focused on design patterns for data modeling in this red book to
help us to decide how to pass data around the process and the associated
services. There are a couple of architectural questions to decide before working
out the details of matching the AssessorID with its URL.

� Who owns the routing data for the assessors?

The answer to the this question is straightforward The AssessorManagement
system owns the routing data for the assessors.

� Who is responsible for assembling the information needed by the ESB to
communicate with the assessors?

This second answer is greyer. Either the process engine or the ESB could be
responsible for the association between the assessorID and the
assessorURL. There are pros and cons to both approaches.

One data flow pattern is to keep the coupling of data between components as
lean as possible, and require each component to request the data it requires
from other services as and the data is needed. This would argue for passing only
the assessorID, the claimID, and the function that the process engine wants the
ESB to perform to the ESB. The ESB would then need to look up the
assessorURL in the assessor management system to route the assessment, and
gather the required claim information from the claim system to issue the
RequestAssessment service request to the chosen assessor.

An alternative data flow pattern commonly used in process integration designs is
to make the process engine responsible for collecting all the information required
by the services it uses into one or more large containers (often corresponding to
industry standard data models), and to pass the services it uses the data
required by them.
408 Build a Business Process Solution Using Rational and WebSphere Tools

Correlating the AssessorID and AssessorURL in the process engine
We are using the standard process integration data pattern, so we need to
reassociate the assessorURL of the selected assessor using the assessorID
returned from the Business Rules Engine. To do this:

1. Add a Java Snippet called AssessorURL.
2. Insert AssessorURL into the RequestExternalReports flow as shown in

Figure 10-29.

Figure 10-29 Inserting AssessorURL Java Snippet into the flow

3. A global variable, called SelectedAssessor.
4. Create a WSDL message called SelectedAssessor with two parts:

a. AssessorID
b. AssessorURL

Follow these instructions to add AssessorID and AssessorURL to the
RequestExternalReportsInterface.wsdl file (or creating a new wsdl is just as
good).

i. Open RequestExternalReportsInterface.wsdl in the graphical wsdl
editor.

ii. In the messages area right-click → Add Child → Message and call it
SelectedAssessor.

iii. Right-click SelectedAssessor → Add Child → Part and call it
AssessorID and make it an xsd:int.

iv. Similarly, add AssessorURL and make it an xsd:String.

The following tasks are described in more detail in the next sections:

5. Import the SelectedAssessor message into the
TransformerRequestAssessment service and map from
SelectedAssessor.assessorURL to
actionAssessmentRequest.assessor.assessorURL.

6. Code for the AssessorURL Java Snippet.

Add SelectedAssessor to TransformerRequestAssessment
Now that we have the assessorURL for the selected assessor, we need to map it
to the assessorURL field in the request message being sent to
 Chapter 10. Build the Request External Reports process 409

RequestAssessment. We need to create an aggregating transformer just like
ToRequestAvailability.

1. Call this transformer ToRequestAssessment.

2. The response variable will be RequestAssessmentInputCriterionVariable.

3. The Aggregation filename will be AggregateRequestAssessment.

4. The Input variables to be aggregated are:

– InputCriterionVariable
– SelectAssessorOutputCriterionVariable
– SelectedAssessor

You will need to create this input variable and type it with the
SelectedAssessor message you defined in the last step.

5. The Transformer filename is TransformRequestAssessment. Follow the
pattern from before for naming the partner link, operation, and so forth.

6. Reflow the flow diagram when you have completed the tasks so that it looks
similar to Figure 10-30.

Figure 10-30 Select and request assessment flow diagram part

That should complete the mappings. Now, you need to set the value of
AssessorURL in the Java Snippet.
410 Build a Business Process Solution Using Rational and WebSphere Tools

Creating the AssessorURL Java snippet
In this Java snippet, we need to retrieve the list of all the eligible assessors that
were examined by the Business Rules Engine and identify the assessor the rules
engine chooses. The assessors in this list have a data structure that includes
assessorURL. Having found the chosen assessor, we create the SelectAssessor
global variable to pass the assessorURL on to the ToRequestAssessor
transformer service which will assign assessorURL into the actionAssessment
Request message. The completed Java Snippet is shown in Example 10-4 on
page 413. We we go through the steps of how to create this Java snippet using
the autocompletion assistance in WebSphere Studio Application Development
Integration Edition.

1. Select the newly created AssessorURL Java Snippet and open the
implementation tab in the properties editor.

2. Insert the statement to declare we will update the assessorURL part of the
SelectedAssessor global variable.

Right-click to open the menu → Update Variable → Part... → and select
assessorURL from the SelectedAssessor message. See Example 10-1.

Example 10-1 AssessorURL Java Snippet, lines from Update Variable wizard:

SelectedAssessorMessage SelectedAssessor = getSelectedAssessor(true);
java.lang.String assessorURL = SelectedAssessor.getAssessorURL();
<focus>
SelectedAssessor.setAssessorURL(assessorURL);

3. At the focus, declare the local variable Assessor assessorList [] which will
contain the list of assessors from the response message from
IdentifyAssessors.

a. Complete the declaration by getting the list of possible assessors from the
IdentifyAssessorsOutputCriteriaVariable.

i. Right-click to open the menu → Get variable → Part... → and select
IdentifyAssessorsOutputCriteriaVariable.

ii. Autocomplete the line by using . → CTRL_SPACE → getParameters
and so forth.

The completed line of code is in Example 10-2.

Example 10-2 AssessorURL Java Snippet, lines from Get Variable wizard

Assessor assessorList [] =
getIdentifyAssessorsOutputCriteriaVariable().getParameters().
getRequestListAssessorsReturn().getAssessors();
 Chapter 10. Build the Request External Reports process 411

4. Add the line of code to get the selected assessor ID from the Business Rules
Engine output variable, selectedAssessorOutputCriteriaVariable. We need to
create a new local variable to hold the value:

Integer selectedAssessorID

And then initialize it using autocomplete with:

= getSelectAssessorOutputCriteriaVariable().getParameters()
.getSelectAssessorReturn().getAssessorID();

5. Construct a loop to match the selected assessor and set the assessorURL in
the global variable. We use the code template wizard to generate the loop.

a. Type for and press CTRL_SPACE without typing a space.
b. Select for - iterate over an array with temporary variable. The following

code in Example 10-3 is generated:

Example 10-3 Generate for loop with temporary variable

for (int i = 0; i < assessorList.length; i++) {
 Assessor assessor = assessorList[i];
<focus>
}

Tip: When you start typing Assess... and use autocomplete to finish entering
the Assessor class, does it work? If not, then there is no import statement for
itso.lgi.assessormgmt in the Java source file containing the Java Snippet.

Itso.lgi.assessormgmt is the target namespace for the AssessorManagement
WSDL messages. WebSphere Studio Application Development Integration
Edition creates a Java package with the name of this namespace to contain all
the Java classes that implement the setters and getters for the message parts.

Look in the Services navigator for the package and its classes. If you find it is
there, and it is inside the ITSOLGI project, then you need to coerce
WebSphere Studio Application Development Integration Edition to include an
import statement for the package. If the first method does not work, try the
second:

� On the right-click menu click Source → Add Import → and select
itso.lgi.assessormgmt. If that does not work, then try

� Type n the declaration the old fashioned way → Save → right-click →
Source → Organize Imports → Save.

This should create the import statement, make autocomplete work, and clear
any errors that have been marked in the code you have just written.
412 Build a Business Process Solution Using Rational and WebSphere Tools

6. At the focus, we insert an if statement to test the assessorID for a match.

a. Type if and use autocomplete to create a simple if template:

if (condition) { }
b. Use autocomplete to replace condition with:

assessor.getAssessorID() == selectedAssessorID

7. In the if statement, block set the assessorURL in the global variable.

a. Use autocomplete to create the local assignment statement:

assessorURL = assessor.getAssessorURL();

b. Use the right-click menu → Set Variable → Part... → select the
AssessorURL part of the SelectedAssessor message to generate the
code:

getSelectedAssessor(true).setAssessorURL(<focus>);

c. Replace the focus by the assessorURL local variable.

The completed java snippet should save without errors. The full source is shown
in Example 10-4.

Example 10-4 Complete AssessorURL Java Snippet

// we are going to update the SelectedAssessor assessorURL global variable
SelectedAssessorMessage SelectedAssessor = getSelectedAssessor(true);
java.lang.String assessorURL = SelectedAssessor.getAssessorURL();
// Get all the assessors that bid for the claim assessment work
Assessor assessorList[] =
 getIdentifyAssessorsOutputCriteriaVariable()
 .getParameters()
 .getRequestListAssessorsReturn()
 .getAssessors();
// Get the assessorID or the assessor who was selected
Integer selectedAssessorID =
 getSelectAssessorOutputCriteriaVariable()
 .getParameters()
 .getSelectAssessorReturn()
 .getAssessorID();
// Iterate thru the list of assessors who bid till we match one
for (int i = 0; i < assessorList.length; i++) {
SelectedAssessor.setAssessorURL(assessorList[i].getAssessorURL());
SelectedAssessor.setAssessorID((assessorList[i].getAssessorID()).intValue());
 if (assessorList[i].getAssessorID() == selectedAssessorID) {
 break; // break loop with correct assessor, else last in list
}
// Update the SelectedAssessor message in the global container
setSelectedAssessor(SelectedAssessor);
 Chapter 10. Build the Request External Reports process 413

Add SelectedAssessor to RequestAssessmentTransformer
Now that we have the assessorURL for the selected assessor, we need to map it
to the assessorURL field in the request message being sent to Request
Assessment.

1. Open the RequestAssessmentTransformer.wsdl file with the Transformer
Editor. There are any number of ways to do this. Here is one of them:

a. In the Services Explorer, Right click ITSOLGI → Claim.TOBE.
RequestExternalReports → RequestAvailabilityTransformer.wsdl.

b. Open With → Transformer Editor.

2. Add the new SelectAssessors message to the input messages.

a. With the RequestAssessmentTransformer.wsdl open in the Transformer
Editor, select Transformer Editor in the main action bar → Add Input
Message → Select ProcessMessages.wsdl in the ITSOLGI\Services\
ITSOLGI Architecture directory.

b. Choose the Selected Assessor message.

3. Map the assessorURL part from the SelectedAssessor message to the
assessorURL in the actionAssessorRequest message.

To complete the mappings for now, map the makeOfCar to both the makeOfCar
and the registration fields so we have all the fields mapped to something.

Mapping StoreReport
For this mapping we cannot use a simple assignment because the input and
output message formats do not match exactly. Again, the easier mapping
mechanism is a Transformer service.

1. Add a new Transformer Service called StoreReportTransform.

a. Set the operation name to toStoreReport,

b. Set the Input message to receiveAssessorReportRequest in the
AssessorReport(9).wsdl file.

c. Set the Output message to StoreAssessorReportURLRequest in the
StoreAssessorReport(10).wsdl file.

d. Map the fields across and save the StoreReportTransform service.
414 Build a Business Process Solution Using Rational and WebSphere Tools

2. Drag and drop the StoreReportTransform service, wire it into the flow, and
name it as show, in Figure 10-31.

Figure 10-31 Wiring in the ToStoreReport Transform activity

RequestExternalReport Reply
Follow these steps.

1. We use another Transformer service to aggregate the response fields from
the following messages:

a. PolicyID from RequestExternalReportsRequest.
b. assCompDate from StoreAssessorReportURLRequest
c. The claimID and the reportLocation from StoreAssessorReportURL

Response

The output message is requestAssessorResponseMessage.

2. Call the new Aggregation AggregateRequestExternalReportsReply and the
Transform service TransformRequestExternalReportsReply with an operation
code of ToRequestExternalReportReply.

3. Create the aggregating transformer service as before (Figure 10-32).

Figure 10-32 Wiring the ToRequestExternalReports Reply Transform Activity

Summary
That was a long task, but we have completed the basic mapping of data between
services and activities. There is still some more fine tuning to the control
structures and manual activities, but at this point we return to integrating other
aspects of the services with the flow before dealing with the control structures.
 Chapter 10. Build the Request External Reports process 415

10.4.7 Configuring the flow to wait for responses from the assessors
Three of the activities wait to receive responses from the assessors with the
proxyAssessorSystem. We need to set up the process to wait for these
messages2 and ensure that the messages sent to the Automated Assessor are
received by the right instance of the process.

Business Process Choreographer has a mechanism to store process
identification information which is called a correlation set. Correlation sets hold
aliases to map fields from different messages onto the variables used for
correlation. This is a more flexible mechanism than requiring all messages to
have the same key field, clearly impractical when you consider that the format of
the messages can be decided by a business partner in a different organization,
or there are messages with formats determined by many different standards.

When a long running process instance is suspended, Process Choreographer
stores the status of the instance in nonvolatile storage. When a reply message
comes back from WebSphere BI Message Broker, Process Choreographer
checks the correlation sets and starts the correct process instance again.

Complete the following steps to add correlation sets.

1. Click the + icon on correlation sets bar (Figure 10-33) to add a new correlation
set. Call the new correlations set Claims.

Figure 10-33 Add a new correlation set

2. Click Claims and select the properties tab in the detail area. Click the New...
button. The Create message property window opens.

3. Type in claimID as a property name and select xsd:int from the building-type
drop-down list.

4. Click the New... button on the top of the aliases list. Click the Browse...
button in the Create property alias window and select ITSOLGI →
services → ITSOLGI Architecture → WSDL → Proxy(1).wsdl → Select
RequestExternalReports_requestAssessorMessage in the spin box →

2 In the overall interaction design, there are a number of communicating sequential processes that
we assume interact in the way specified by the business process analyst. The assumption is critical
for this design to work. If the messages for a claim instance could arrive in a different order, then we
would need to deal with out of sequence messages. The BPEL Pick activity might be more
appropriate in the implementation than the Receive activity.
416 Build a Business Process Solution Using Rational and WebSphere Tools

OK → Expand Part: Container : → MessageContainer :
requestAssessor → claimID : Int → OK.

5. Repeat step 4 to add the aliases in Table 10-4.

Table 10-4 Aliases for correlation set

Next we associate the correlation set with each of the receive activities.

6. Click RequestExternalReports Receive activity in BPEL editor and select
correlation tab in the detail area.

7. Click Add and change the initiation value to Yes (Figure 10-34).

Figure 10-34 Assign correlation set to receive activity

8. Repeat steps 1 through 7 to assign correlation sets to the receive activities in
Table 10-5.

Table 10-5 Correlation set prop

Activity name WSDL file name Message Part

RequestExternal
Reports Receive

Proxy(1) RequestExternal
Reports_request
AssessorMessage

MessageContainer :
requestAssessor:
claimID

Assessor
Availability
Receive

Assessor
AvailabilityLis(3a)t
.wsdl

listAvailable
Assessors

parameters ->
claimID:int

AllocateAssessor
Repsonse

AllocateAssessor
Response(6a).wsdl

Assessor
Confirmation
Request

claimID:int

AssessorSend
Report

AssessorReport(9)
.wsdl

receiveAssessor
ReportRequest

claimID:int

Activity name Direction Initiation Correlation set

RequestExternalReports Receive Receive Yes Claims

AssessorAvailabilityReceive Receive No Claims

AllocateAssessorRepsonse Receive No Claims

AssessorSendReport Receive No Claims
 Chapter 10. Build the Request External Reports process 417

10.5 Controlling the path through the process
In the next steps of the configuration, we provide the logic to control the path
through the process. There are two parts to this task.

1. In “10.5.1, “Checking the results from RequestAvailability”, if the Assessor
Management system does not find any assessors to perform the assessment,
then control is passed to the Claim handler rather than to the Business Rules
Engine to select an assessor.

2. In 10.5.2, “Create a While activity to test for a committed assessment” on
page 423 dealing with the case where the selected assessor decides not to
perform the assessment after all.

10.5.1 Checking the results from RequestAvailability
The RequestAvailability partner link responds with a synchronous response from
the Enterprise Service Bus. The response is a simple acknowledgement that the
request to ask the assessors for their availability has been received by the bus.
Because it is not part of the business logic here, we ignore the response in this
flow. The response is is outside the immediate scope of our scenario. Remember
1.1.2, “Scope of the scenario” on page 5.

Monitoring the scenario is itself a large topic and beyond our scope in this book.
Monitoring goals (Service Level Agreements) have to be set and analyzed to
produce business measures, and the measures then need to mapped to event
data that is collected from the business process and the IT platform. The events
and measures have to be presented in a form suitable for the different roles
responsible for monitoring and maintaining the process, from the CEO to the
claims supervisor and the IT shift operators.

However, we are interested in receiving the bids from the assessors for
performing the assessment. The first step in analyzing these responses is to
check if any have been received. The ESB waits for the agreed period of time for
the assessors to respond and then collects their bids into a single list. The ESB
sends the list back using the automated assessor process. The automated
assessor process is waiting on the AssessorAvailability Receive activity to pass
the list on to select an assessor automatically using the Business Rules Engine.

We must check if any bids were received. If no bids were received, we hand the
problem to the Claim handler as a manual activity. If bids have been received,
then we pass control to the SelectAssessor automated activity, which calls the
Business Rules service to choose the best assessor for the job from the list.
418 Build a Business Process Solution Using Rational and WebSphere Tools

How can we tell if any bids were received? The only way to is test the
AssessorEstimationArray for having any elements (Figure 10-35).

Figure 10-35 assessorEstimationArray

The results of the test are used to set the Boolean value of the links A and B in
Figure 10-38 on page 421. For each link we can open up the properties tab for
the link and set the condition that must be met for the link to be traversed. We
plan to use either the expression or the visual expression editor to construct the
condition. However, it turns out that neither the expression editor nor the visual
expression editor can handle an expression complex enough to test for the
existence of the AssessorEstimationArray. Instead we shall write some Java
code in a Java Snippet to set a global variable. Each link can then test the
variable in a simple expression to set the link’s truth value.

The overall implementation plan is as follows:

1. Create a global variable to hold the length of the AssessorAutomationArray.
2. Create a Java Snippet which sets the value of the global variable.
3. Create a visual expression for each of the links A and B to test the value of

the global variable and set the truth condition for each link.

Create EstimationArrayLength global variable
To create the EstimationArrayLength global variable, follow these steps:

1. In the RequestExternalReports process editor click Variable + to create a
new global variable called EstimationArrayLength.

2. The variable needs to be typed to xsd:int to hold a length value. To do this, we
need to define a WSDL message we call EstimationArrayLength containing
a xsd:int part called lengthValue. The message will be stored in the same
WSDL file as the AssessorID and URL variables.

a. Create the EstimationArrayLength message and lengthValue part.
 Chapter 10. Build the Request External Reports process 419

i. Open RequestExternalReportsInterface .wsdl with the graphical
WSDL editor.

ii. Click Messages → Add Child → EstimationArrayLength → Add
Child and call the part lengthValue → Set Type → xsd:int. See
Figure 10-36.

Figure 10-36 Creating the EstimationArrayLength message

b. Type the EstimationArrayLength global variable using the new message.

i. Select the EstimationArrayLength global variable in the Request
ExternalReport process and open the Message tab in its properties
editor.

i. Browse... to pick the RequestExternalReportsInterface.wsdl file and
Select the EstimationArrayLength message in the messages spin
box (Figure 10-37).

Figure 10-37 Typing the EstimationArrayLength variable

Create the Any Assessors? Java Snippet to set lengthValue
To creat eh AnyAssessors? Java Snippet, follow these steps:

1. Change the Any Assessors? null activity to a Java Snippet as illustrated in
Figure 10-38 on page 421. In this Java Snippet we shall set lengthValue in the
EstimationArrayLength global variable so it can be tested in simple
expressions associated with links A and B.
420 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-38 Checking the results from RequestAvailability

2. In the Java Snippet we have to complete the following tasks:

a. Establish update access to the EstimationArrayLength global variable.

i. Select the Add Assessors? Java Snippet and open the
Implementation tab in its property editor.

ii. Right-click to open up the menu → Update Variable → Part ...
Select EstimationArrayLength: lengthValue : int (Figure 10-39).
This creates three statements.

Figure 10-39 Results of Update Variable wizard

The first statement instantiates a new EstimationArrayLengthMessage
in the JVM™, and (by setting the parameter of
getEstimationArrayLength to true) indicates that the Java Snippet
requires update access to the EstimationArrayLength global variable.

The second statement instantiates a new int, lengthValue. (It also
initializes the value of the int from the value in the global variable, but
that is not of interest here.)

The third statement uses the new int, lengthValue, to set the new value
of the global variable. This also has the side effect of unlocking the
variable as it is no longer required for update.

The Update wizard leaves the editor focus ready to set the value of the
new int variable, lengthValue. See Figure 10-40 on page 422.

A B
 Chapter 10. Build the Request External Reports process 421

Figure 10-40 Selecting part of a variable to update in a Java Snippet

b. Get the length of the array holding the assessors responses. This time we
use in-line autocompletion to get the length of the
AssessorEstimationArray. Unfortunately the menu-driven approach is not
able to navigate to the part of the message we want. Using Ctrl+Space to
autocomplete each element, we end up with the following statement:

lengthValue = getListOfAvailableAssessrs()3.getParameters().
getResultAssessorCollection().getAssessorEstimations().length;

The full snippet is shown in Example 10-5.

Example 10-5 Any Assessors? Java Snippet

EstimationArrayLengthMessage EstimationArrayLength =
 getEstimationArrayLength(true);
int lengthValue =
 getListOfAvailableAssessors()
 .getParameters()
 .getResultAssessorCollection()
 .getAssessorEstimations()
 .length;
EstimationArrayLength.setLengthValue(lengthValue);

3 This is a typo in our code. Check that your spelling is consistent!
422 Build a Business Process Solution Using Rational and WebSphere Tools

Test the value of lengthValue in the links A and B
The final step in the process is to add visual expressions to the two links leading
from the Java Snippet, Add Assessors?, so that either the
ManualSelectAssessor or the Automatic SelectAssessor activity is executed, but
not both.

1. Click the link leading to ManualSelectAssessor and open up the Condition
tab in its property editor. Select the visual expression editor to construct the
following statement:

EstimationArrayLength.lengthValue == 0

a. Using the menu at the right-hand side of the editor, pick
EstimationArrayLength.lengthValue from the global variable list.

b. Click the equivalence operator (==).

c. Click the Number function and type 0.

2. Click the link leading to SelectAssessor and repeat the procedure to
produce the statement:

EstimationArrayLength.lengthValue ¬= 0

10.5.2 Create a While activity to test for a committed assessment
The RequestAssessment service sends a request to the selected assessor to
perform the claim assessment for LGI. Eventually, the request results in three
message flows back the to the RequestExternalReports process.

1. A synchronous reply from the ESB that the request is being processed

2. An asynchronous acknowledgement from the assessor that they will (or will
not) be performing the assessment

3. An asynchronous reply containing the assessment report

As in the case of requesting assessors availability, we ignore the reply from the
ESB. It is there purely for monitoring purposes and outside the scope of this
scenario. The ultimate reply containing the report is handled by the
AssessorSendReport activity. In this section, we examine handling the
acknowledgement from the assessor that is received in the
AllocateAssessorResponse Activity.

Choosing a design
If the assessor declines the request, then because this is an unusual or
uncommon occurrence, rather than automatically select a second-best assessor,
the Claim handler is passed the job of finding another assessor.
 Chapter 10. Build the Request External Reports process 423

From the business perspective, it is important that when anything unusual
happens in the process, responsibility passes to the Claim handler. Although
there is technical scope for using some of the automation provided in the happy
path to assist the Claim handler select a new assessor in this unusual case, the
business specification, as captured in the BPEL from WebSphere Business
Integration Modeler, is for control of the selection to pass to the Claim handler.
After the selection is made, control is returned to the automated process to pass
the assessment request to the chosen assessor. This specification should be
honored in the executable BPEL being generated by the IT specialist, but there
are multiple ways of achieving this business goal. Should the process use one or
more manual activities? How should requests to second and possibly
subsequent assessors be coded? These questions are not addressed by the
business process specification and are being left to the IT process specialist to
decide.

Use the existing manual activity or add a new manual activity?
There is already one place in the flow where the Claim handler is involved in a
manual activity, if there are no eligible assessors to assess a claim. One design
approach is to use this same manual activity for two situations:

� If there are no eligible assessors
� If the chosen assessor declines to perform the assessment

An alternative way to design the process is to add a new manual activity to deal
with the negative acknowledgement from the assessor. The results of the new
manual activity need to be fed back into the RequestAssessment activity for the
process to continue.

If we were focusing on the specification of the user interface to the Claims
process, then the question whether to use one or two manual activities would
almost certainly resolve itself into using two activities: the Claim handler needs
different information in each case. But for the purposes of this scenario, we stick
with having only one manual activity which will ask the Claim handler for a new
Assessor ID, whether this is the first attempt at assigning an assessor or not.

Designing a control loop in BPEL
We need to create a loop in the BPEL process to pass control back to the manual
activity if the assessor declines to produce the assessment report. Simply
returning control to an earlier point in the flow by wiring the flow with a loop is not
valid BPEL. There are two alternatives to use:

� a Compensation
� a While activity
424 Build a Business Process Solution Using Rational and WebSphere Tools

Compensation is a way of recovering from a failed activity. In its simplest form,
each activity has two services:

� A forward service, the one that is performed in the happy path
� A compensation service, the alternative service performed when things have

gone wrong to undo any commitments made in the forward service

For more information about compensation services, see:

� An article by Susan Hermann on developerWorks, Modeling compensation in
WebSphere Business Integration Server Foundation Process Choreographer,
for a good account of using Compensation Services in WebSphere Studio
Application Development Integration Edition:

http://www-128.ibm.com/developerworks/websphere/techjournal/0412_herrmann/0
412_herrmann.html

� A tutorial about using compensation in the Claims Handling scenario
implemented with an earlier version of WebSphere Studio Application
Development Integration Edition: Larry Yusuf, Create Compensation in a
Business Process:

https://www6.software.ibm.com/developerworks/education/i-merge7/index.html

In our case, a compensation possibility might be to invoke Manual
SelectAssessor instead of Automatic SelectAssessor as the compensation for
the failure of the selected assessor to commit to performing the assessment. But
closer examination should convince us that what we need to do does not quite fit
the compensation model:

� We do not actually have any resource changes to back out of, nothing has
changed as a result of the assessor declining to perform the assessment.

� Compensation works at the level of the process as a whole, and we only want
to adjust the results of a few activities. We would have to separate the
activities to be compensated into a separate process.

� Performing the Manual SelectAssessor is not a compensation service to the
Automatic SelectAssessor. It is doing the same activity a different way.

The While activity provides the capability we require. Figure 10-41 on page 426
shows which activities are moved inside the While activity, and where the activity
fits into the process as a whole.

� The while condition is the lack of positive acknowledgement from the
AllocateAssessment Response Activity.

� The Automatic SelectAssessors activity is inside the loop, although it is only
ever performed on the first iteration. This is because there might be no
selected assessors on the first iteration and we use the manual Select
 Chapter 10. Build the Request External Reports process 425

http://www-128.ibm.com/developerworks/websphere/techjournal/0412_herrmann/0412_herrmann.html
https://www6.software.ibm.com/developerworks/education/i-merge7/index.html

Assessor activity for finding an Assessor the first time around, if the automatic
activity has failed to find one.

� We have not focussed on the data movement in and out of
ManualSelectAssessor, so the manual leg of the loop might need further
refinement.

� A noop activity was added at the start of the While activity purely to tidy up the
graphic (Figure 10-41).

Figure 10-41 While no committed assessment
426 Build a Business Process Solution Using Rational and WebSphere Tools

Creating the While activity

1. Wire up the While Activity:

a. Drop the While activity from the palette onto the process and name it
while no committed assessment.

b. Select all the activities between Any Assessor? and
AssessorSendReport and drag them inside the While activity.

c. Drop, name and wire up the Noop activity calling it Manual or
Automatic? Be careful to preserve the same links (A and B) to
ToSelectAssessors and ManualSelectAssessor which have conditions
coded for them.

2. You will get a lot of error messages (Example 10-6).

Example 10-6 Error messages for wiring the While activity

Error BPED0211E: Link 'Linknn' does not link immediate children of flow
'RequestExternalReport' of process model 'RequestExternalReports'.
RequestExternalReports.bpelITSOWorkshop/Claim/TOBE/RequestExternalReports

To fix them, follow these steps:

a. Right-click RequestExternalReports.bpel flow → Open with ... Text
editor.

b. Cut all the offending link definitions from the <link> ...</link> section of
the main flow and paste them into notepad.

c. Create a new <link> ... <.link> section in the while flow and paste in all
the links from notepad as illustrated in Example 10-7 on page 427.

Example 10-7 New While links section

<while condition="DefinedByJavaCode" name="Whilenocommittedassessment"
wpc:displayName="While no committed assessment" wpc:id="37">

Attention! Be sure to follow these instructions when working in this section:

� The best way to create the While activity is to add the Manual or Automatic
Noop activity to the flow first, then you will find it easier to select the
relevant activities and links and preserve the conditions your have just
written.

� It is absolutely essential you do a project interchange export before doing
this edit. Nine times out of ten, the first attempts at this edit fail badly and
cannot be undone.

� Make sure auto arrange is not enabled during these editing steps. It will
make your task almost impossible.
 Chapter 10. Build the Request External Reports process 427

 <wpc:condition>
<wpc:javaCode><![CDATA[//@generated
//
//AssessorAcknowledgement.Ack.equals(“YES”)

return getAssessorAcknowledgement().getAck().equals
“YES”;]]></wpc:javaCode>
 </wpc:condition>
 <target linkName="Link27"/>
 <source linkName="Link5"/>
 <flow name="Flow" wpc:displayName="Flow" wpc:id="38">
 <links>

<link name="Link14"/>
 <link name="Link15"/>
 <link name="Link4"/>
 <link name="Link16"/>
 <link
name="ManualSelectAssessorOutput_to_RequestAssessmentInput2"/>
 <link name="Link19"/>
 <link name="Link18"/>
 <link name="Link17"/>
 <link name="Link3"/>
 <link name="Link25"/>
 </links>

3. Create a variable to store the while condition:

a. Add the Message AssessorAcknowledgement to ProcessMessages.wsdl to
join the other internal messages defined for the process. Create a Part
called Ack with type xsd:string.

b. Add a variable AssessorAcknowledgement to the process.
c. Type AssessorAcknowledgement using the newly defined message.

4. Set and Test the While condition:

a. Add an Assign activity before the While loop to initialize
AssessorAcknowledgement.Ack to No Assessors selected yet.

a. Open the condition tab of the While activity in its properties editor and
select the Visual Expression editor.

b. Complete the condition with the following expression:

AssessorAcknowledgement.Ack.equals("YES")!=true

Java has its quirks. You must test the value of the object not that it is the
same object.
428 Build a Business Process Solution Using Rational and WebSphere Tools

10.6 Implementing the Claim handler staff activity
The final step in developing the flow is to implement the Staff Activity.

The staff activity is used to represent the point in the process at which the Claim
handler involvement is required to proceed. The staff activity is treated as a
special form of the invoke activity, however its signature does not refer to a
partner link. The staff activity is defined by an operation that has associated input
and output messages. This operation and these messages are defined in a
WSDL file, typically on the interface to the process. The process is then defined
to have two variables with message types that match the input and output for the
operation associated with the staff activity.

Exploring ManualSelectAssessor’s staff properties
We shall modify the staff activity generated by the Modeler. For now, we just
explore some of the special characteristics of a staff activity.

Implementation
Click the ManualSelectAssessor activity and open the implementation tab in
the property explorer. You can see it is associated with the
ManualSelectAssessorPT PortType in the
RequestExternalReportsInterface.wsdl file generated by the Modeler. We shall
be changing the operations and messages used by the ManualSelectAssessor
staff activity illustrated in Figure 10-42.

Figure 10-42 ManualSelectAssessor Port types and Messages generated by Modeler

The messages and operations will drive the information that is exchanged with
the Web or portal client to be used by the Claim handler.
 Chapter 10. Build the Request External Reports process 429

Web Clients
When the work item is claimed by the Claim handler, the request variable and its
contents are passed to the Claim handler using a Web or portal client. The Claim
handler decides which assessor will be asked to process the claim, and the Web
client returns the assessor ID in the response variable.

The most likely method of interaction between a Claim handler and his or her
work items will be through a Process Web Client. A supplied application enables
an authorized Claim handler to log in and then interact with the
RequestExternalReports claims process. The Claim handler can take one of the
instances of the RequestExternalReports processes. The instance is then
unavailable to any other Claim handlers. The Claim handler has responsibility to
complete the staff activity by providing the assessorID to pass back to the
process instance to allow execution to continue.

There is a choice of Web clients that can be written or configured to suit business
needs. A fuller explanation is provided in section 9.2 of the Redbook,
"WebSphere Business Integration Server Foundation 5.1 Handbook",
SG24-6318.

Open the Client tab of the ManualSelectAssessor properties page
(Figure 10-43). These definitions for the default Web and Portal clients are
extracted from the ClientSet.xml file that is in the ...\install_root\IBM\
WebSphere Studio\Application Developer IE\v5.1.1\runtimes\ee_v51\
ProcessChoreographer\client directory.

Figure 10-43 Web client definition tab
430 Build a Business Process Solution Using Rational and WebSphere Tools

We can modify the ClientSet.xml file to define a different client interface, or we
can modify the value for each of the JSPs to provide an alternative
implementation for the default interfaces. Details how to do this are provided in
the referenced Redbook. We shall use the default web client using customized
input and output messages.

Staff roles
During development, the persons who are allowed to perform the staff activities
are defined abstractly with roles. At this point, although the developer indicates
what kind of person can perform the activity, they do not know about the
technology that will be used to identify the person who will perform the role, or
how to handle the authentication of the person.

Open the Staff tab of the ManualSelectAssessor activity and you will see that the
Claim handler is already defined in the BPEL imported from Modeler. See
Figure 10-44.

To bypass dealing with security configuration during test, change the Staff verb
to Everybody.

Figure 10-44 Staff role assignment for ManualSelectAssessor

At runtime, when the staff activity is reached, the WebSphere Process
Choreographer engine creates a work item that can be processed by any Claim
handlers. The WebSphere Process Choreographer container maps the Claim
handler role to a real query against the identity manager implementation, such as
the Windows User Registry, or an LDAP directory service. This mechanism
allows the runtime to determine who is a potential owner and then enforce its
authentication policy.
 Chapter 10. Build the Request External Reports process 431

Because the mapping of the Claim handler role is performed at run time, the
mapping definition can be left to the description of how to deploy the process to
WebSphere Business Integration Server Foundation.

Expiration
The staff activity is very like an Invoke activity, and, like an invoke activity, it has
expiration settings if the Claim handler fails to respond. There are various ways
to set the expiration time. When the expiration occurs, the staff activity state is
set to STATE_EXPIRED. This state value can then be checked in the Control
Links from the output terminal of the Staff activity. For one Control link, you can
check for this state and return a value of true if the staff activity's state is
STATE_EXPIRED. This will cause execution to proceed down that Control Link.

Commonly, specification of what to do if a Claim handler takes ownership of a
claim, and then fails to perform the activity, are not made clear in the business
process model provided by a business analyst. The IT specialist should consult
the business analyst and the IT architect rather than make an ad hoc decision.

In real life, if the case is not thought to pose a business issue, then choosing an
appropriate expiration time, such as a day, and then iterating the while loop
would be a reasonable solution. We won’t code any expiration in this scenario.

Configuring ManualSelectAssessor
The configuration of ManualSelectAssessor will require us to:

1. Modify the Port type generated by the Modeler to configure input and output
messages for ManualSelectAssessor.

2. Reconfigure the ManualSelectAssessor activity to use the new Port type.

3. Rewire the detailed logic of the while no committed assessment while activity.

Modify the Port type and operations for ManualSelectAssessor
The interface to the ManualSelectAssessor activity we will use is:

� Input: The While activity condition

This contains a string with either the information no assessor has been
selected, or that the selected assessor has declined to perform the
assessment.

� Output: The assessor ID of the assessor chosen by the Claim handler to
perform the assessment

This needs to be a new message, a xsd:int. The default Web client will
construct a form from the parts of the output message and perform
conversions for types defined in the JAX-RPC specification.
432 Build a Business Process Solution Using Rational and WebSphere Tools

1. Open the RequestExternalReportsInterface.wsdl file as illustrated in
Figure 10-42 on page 429. See Figure 10-45.

a. Delete the two existing operations for ManualSelectAssessorPT.

b. Add Child → Operation → call it requestAssessorID → Add Child →
Input → Add Child → Output.

c. Select Input → Create a new message → and call it
ManuallyChosenAssessorInput.

d. Select Output → Specify Message → Create a new message → and
call it ManuallyChosenAssessorOutput.

e. Select the new message ManuallyChosenAssessorInput → Add
child → Part and name the new part AssessorSelectionState and leave
it with the default type xsd:string.

f. Select the new message ManuallyChosenAssessorInput again → Add
child → Part and name the new part claimID and give it the type
xsd:int.

g. Select the new message ManuallyChosenAssessorOutput → Add
child → Part and name the new part AssessorID and give it the type
xsd:int.

Figure 10-45 Input and Output messages for the ManualSelectAssessor activity

Reconfigure the ManualSelectAssessor activity
To reconfigure the ManualSelectAssessor activity, follow these steps:

1. On the implementation tab of the ManualSelectAssessor activity properties,
ensure the Request and Response variables are set to ManualInputCriteria
Variable and ManualOutputCriteriaVariable, which should already exist. If
they do not, create them.

2. Type the Request and Response messages by selecting each variable, and
opening the Message tab of its property editor.

a. For the manualInputCriteriaVariable, scroll down through the Message
spin box to select ManuallyChosenAssessorInput. You might need to
Browse... to the RequestExternalReportsInput.wsdl file if the messages
do not appear. The .WSDL file is cached.

b. For the ManualOutputCriteriaVariable, scroll down through the Message
spin box to select ManuallyChosenAssessorOutput.
 Chapter 10. Build the Request External Reports process 433

3. Back in the ManualSelectAssessor properties box, select the newly created
operation, requestAssessorID, for the Operation property on the
Implementation tab.

Transformations to and from the manual activity
The next steps manage the data in and out of ManualSelectAssessor. The flow
ends up looking like Figure 10-46.

Figure 10-46 ManualSelectAssessorFlow

Create an Aggregation and Transform into ManualSelectAssessor
Follow these steps:

1. Create a new Transform activity and call it ToManualSelectAssessor.

2. The Response variable will be ManualInputCriteriaVariable.

3. Create an aggregation called AggregateManualSelectAssessor that will
combine the InputCriterionVariable, and the AssessorAcknowledgement
variable.

4. Create a new Transformer service called
TransformerManualSelect|Assessor:

a. Add the AssessorAcknowledgement message from the
RequestExternalReportsInterface.wsdl file and the
RequestExternalReportsRequest Message from the
ExternalClaimsAssessorsInterface.wsdl file to the Transform input
messages.
434 Build a Business Process Solution Using Rational and WebSphere Tools

b. Select the ManuallyChosenAssessorInput message from the
RequestExternalReportsInterface.wsdl file as the output message.

c. Wire up the claimID and the Ack parts as in Figure 10-47.

Figure 10-47 Input transformation for ManuallyChosenAssessorInput

Create an Aggregation and Transform out of ManualSelectAssessor
Follow these steps:

1. Build another aggregating transformer starting with creating a new
transformer activity called ToAssessorURL, an aggregation called
AggregateAssessorURl and a transformer service called
TransformerAssessorURL.

a. Combine the AssessorID from the ManuallyChosenAssessorOutput
message in RequestExternalReportsInterface.wsdl file with the ClaimID
from the RequestExternalReportsRequest message in the
ExternalClaimsAssessorsInterface.wsdl file as the input messages. See
Figure 10-48.

b. Select the SelectAssessorResponse message from the
PreferredAssessor(5).wsdl file as the output message.

Figure 10-48 Output transformations for ManuallyChosenAsssessorOutput

Rewire the While activity

Drop the two transform services into the While activity and rewire as shown in
Figure 10-46 on page 434.

Important: Be careful to preserve the link with the condition filter set that goes
to ManualSelectAssessor.
 Chapter 10. Build the Request External Reports process 435

10.7 Build
At this point and with process saved, we should have only one remaining warning
message, The deployment code for this process needs to be generated.

BPEL process needs deployment code to be executed on the server. We can
generate deploy code for the process in WebSphere Studio Application
Developer Integration Edition after all errors in the process have been fixed.
WebSphere Studio Application Development Integration Edition generates an
EAR module which includes EJB module created from definitions of the business
process. We can execute our business process by deploying this EAR module to
the server.

There is one additional build step required after completing testing on the test
server to ready the process for deployment to use DB/2 on the production server.
(see 10.7.2, “Building for a production server” on page 438). We use
Cloudscape™ for persisting objects on the test server, and DB/2 as the database
on the production server.

10.7.1 Building the business process
To build the business process, follow these steps:

1. Ensure the business process has no errors by saving all the workspace.

2. We do not want the process-instance to be deleted automatically when it
finishes, to give ourselves a chance to see the results. The default option is to
delete the instance when a process instance completes. To change this, go to
the RequestExternalReports activity bubble at the top of the flow, and change
its server properties as in Figure 10-49.

Figure 10-49 Retain process instance after completion

3. To generate deploy code, right-click RequestExternalReports process and
select Enterprise Services → Generate Deploy Code. The window for
setting code generation opens (Figure 10-50).
436 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-50 Generate BPEL deploy code

4. Select transport bindings between the process and its partners for when the
process is acting as the server.

a. Leave the protocol to invoke the process as JMS.

b. For the other three interfaces, define the bindings as SOAP/Http using the
IBM Web service as shown in Figure 10-50.

c. For each of the three interfaces, define the SOAP style as show in
Figure 10-51 on page 437. The WSDLs were created to be WS-I
compliant and to use the Document Literal interface. For more information
about SOAP and WS-I compliance refer to the redbook "WebSphere and
.Net interoperability using Web services", SG24-6395.

Figure 10-51 SOAP Binding style
 Chapter 10. Build the Request External Reports process 437

5. Check the referenced partners. You should not need to change anything.
Press OK to start the generation. It will take several minutes. When the
generation completes, there are 15 warning messages about compensation
objects that are unresolvable that should be ignored.

6. Find a new EAR module with the name ITSOLGIEAR (service project name +
EAR) in the J2EE Hierarchy view. This EAR module includes the Web module
(ITSOLGIWeb) and EJB module (ITSOLGIEJB).

10.7.2 Building for a production server
To build for a production server, we can simplify the configuration on the
production server by removing the reference to the Cloudscape database used in
the test environment. That way, when then process .ear file is deployed to the
production server, the .ear file will be configured to use the database defined on
the production server automatically.

1. Select the J2EE hierarchy view and delete the map and schema from the
Cloudscape resource. See Figure 10-52 on page 438.

Figure 10-52 Deleting Cloudscape mappings

2. Export the ITSOLGI .ear file.

Tip: When saving a project interchange file, do not save the deployable
services, but regenerate them after restoring the service project.

ITSOLGIEJB
438 Build a Business Process Solution Using Rational and WebSphere Tools

10.8 Test and debug the process
WebSphere Studio Application Development Integration Edition provides a test
server environment which has the same server component as WebSphere
Business Integration Server Foundation. This means you can test business
processes without installation and configuration of a test server outside of your
developer environment. It also provides functions for debugging such as setting
break points, executing business processes step by step and monitoring values
of data during execution.

With these functions, you can find bugs which are not expected in developing
phase and can fix them before deploy the business process to actual runtime
environment.

10.8.1 Prepare to test
Follow these steps to set up for testing.

1. Create new test server. Open the server configuration view. Look for it in the
bottom of the service perspective or open it from Window → Show view →
Server Configuration in menu bar. Right-click and select New → Server
and Server Configuration. See Figure 10-53 on page 439.

Figure 10-53 Create server and server configuration
 Chapter 10. Build the Request External Reports process 439

2. Type in TestServer as a new test server name and make sure that
Integration Test Environment is selected in server type list. Click OK to
create a new server.

3. The new TestServer is added under servers folder in server configuration
view. Right-click TestServer and select Add and remove projects.

4. Click the Add button (Figure 10-54) the ITSOLGIEAR EAR module we have
just created. Click Finish to close the window.

Figure 10-54 Adding ITSOLGIEAR to TestServer

5. Right-click TestServer again and select Create tables and data sources.
We need a database to execute RequestExternalReports process because it
is a long-running process and needs to store status of the process instances
in database.

Figure 10-55 Confirmation window of creating database table

Check the messages in the confirmation window to see that database table
and data source creation are successfully completed.

10.8.2 Publishing the business process to the test server
To publish to the test server, follow these steps:

1. Right-click TestServer → Publish.

a. Quite possibly on publishing the service, it will fail with one of the following
staffing errors in Example 10-8 or Example 10-9.
440 Build a Business Process Solution Using Rational and WebSphere Tools

Example 10-8 TestServer publish error 1

Project ITSOLGIEJB deployment failed.
BPEA0010E: Unexpected exception during execution.

java.lang.reflect.InvocationTargetException:
com.ibm.bpe.api.UnexpectedFailureException: BPEA0010E: Unexpected exception
during execution.
com.ibm.bpe.util.ProcessAssertionError: Assertion violation !(paramValue !=
null && paramValue.length() != 0) in method >>at
com.ibm.bpe.staff.StaffPluginUtil.deployStaffVerb(StaffP

i. This first error is cause by not implementing the role Claim handler .
For this workshop, the workaround is to define the staff verb in the
ManualSelectAssessor activity as Everybody.

Example 10-9 Test Server publish error 2

Project ITSOWorkshopEJB deployment failed.
BPED0203I: Validated process model 'RequestExternalReports' with

findings (0 information, 0 warnings, 1 errors):
BPED0267E: Syntactical error found in BPEL file
'Claim/TOBE/RequestExternalReports/RequestExternalReports.bpel' (row: 223,
column: 73). Detail message: cvc-complex-type.2.4.b: The content of element
'wpc:webClientSettings' is not complete. One of
'("http://www.ibm.com/xmlns/prod/websphere/business-process/v5.1/":customSe
tting,
"http://www.ibm.com/xmlns/prod/websphere/business-process/v5.1/":jsp)' is
expected.
java.lang.reflect.InvocationTargetException:
com.ibm.bpe.plugins.DeploymentBPELProcessValidationException: BPED0203I:
Validated process model 'RequestExternalReports' with findings (0
information, 0 warnings, 1 errors):
BPED0267E: Syntactical error found in BPEL file
'Claim/TOBE/RequestExternalReports/RequestExternalReports.bpel' (row: 223,
column: 73). Detail message: cvc-complex-type.2.4.b: The content of element
'wpc:webClientSettings' is not complete. One of

ii. If you get this second error, remove the line <wpc:webClientSettings
clientType="Web Client"/> from the RequestExternalReports.bpel
file.

10.8.3 Creating the test environment
For the unit test, we will use all the components downstream of the process
server, in other words, all the components except workflow.

There is a choice of two assessor systems to use:

� One runs in WebSphere Application Server.
 Chapter 10. Build the Request External Reports process 441

� The other is scaffolded in the broker.

Which one to use depends on which version of the assessor management
system is installed on WebSphere Application Server. The table of assessors
and their URLs is hard coded into the assessor management system. One
version points at the WebSphere Application Server and the other at WebSphere
Business Integration Message Broker.

Selecting an assessor system
To select a system, follow these steps:

1. Check which system is currently installed:

a. Open a browser and open the WebSphere Application Server
administrative console on SAH414A by connecting to
http://sah414a:9090/admin/.

b. Open the installed applications → place a check against
AssessorManagementService → Export (see Figure 10-56 on
page 442).

Figure 10-56 WebSphere Application Server admin console

c. Download the AssessorManagementService.ear file.

d. You can either browse the .ear file using an unzip utility like WinZip, or you
can import it into WebSphere Studio Application Development Integration
Edition as a new .ear project, which we describe here.

i. Click File → Import → EAR file → Next → browse to the
downloaded AssessorManagementService.ear file → Finish.
442 Build a Business Process Solution Using Rational and WebSphere Tools

ii. Open the J2EE perspective and the J2EE Hierarchy view → EJB
Modules → AssessorManagementServiceEJB → Session Beans
→ AssessorManagement → double-click
AssessorManagementBean to open it → Open the Outline view in
the window underneath → double-click the remote interface
requestListAssessors and examine the code in Example 10-10 on
page 443.

Example 10-10 AssessorManagementSystem: requestListAssessors Web service

//Create Array of hard coded assessors and create new AssessorList to return
Assessor stubAssessor = new Assessor();
stubAssessor.setAssessorID(new Integer(9999));
stubAssessor.setAssessorURL("http://SAH414A:7080/Availability");
Assessor anotherStubAssessor = new Assessor();
// We've only got one assessor, just have two entries with the same destination
anotherStubAssessor.setAssessorID(new Integer(5555));
anotherStubAssessor.setAssessorURL("http://SAH414A:7080/Availability");
Assessor [] assArray = new Assessor[2];
assArray[0] = stubAssessor;
assArray[1] = anotherStubAssessor;
AssessorList stubAssList = new AssessorList();
stubAssList.setAssessors(assArray);
stubAssList.setClaimId(claimID);

You can see the deployed .ear file will use the assessor implemented
in the broker.

e. To use the alternative assessor (Example 10-114), browse to
.\SG24-6636\WAS\Flow2 and deploy the
Flow2_AssessorManagementService_SOURCE.ear file to WebSphere
Application Server. The broker version is in the Broker Assessor
subdirectory.

Example 10-11 AssessorManagementSystem: snippet of alternative assessor code

stubAssessor.setAssessorURL(
"http://SAH414A:9080/AssessorAvailaibilityApplicationsEJBRouter/services/Availa
bility");
Assessor anotherStubAssessor = new Assessor();
// We've only got one assessor, just have two entries with the same destination
anotherStubAssessor.setAssessorID(new Integer(5555));
anotherStubAssessor.setAssessorURL("http://SAH414A:9080/AssessorAvailaibilityAp
plicationsEJBRouter/services/Availability");

4 Apologies for the typo in the URL - the misspelling is “correct”.
 Chapter 10. Build the Request External Reports process 443

Calling choreographer services
As you recall, the proxyAssessorSystem calls three one-way SOAP services
hosted by the RequestExternalReports flow. How do we know what URL to code
into the proxyAssessorSystem HTTPRequest nodes in the broker for these
services?

In the choreographer’s generate deployment code step in “Building the business
process” on page 436, you provided the router address of each of the three
services “http://localhost:9080/”. Is this the correct path to code into the ESB
for the Http Request nodes that respond to the Process Choreographer? It turns
out it is not.

The Web service URL you need to configure in the broker to call the availability
response server in the choreographer needs to be coded as

http://SAH414:9080/ITSOLGIWeb/services/RequestExternalReportsAssessorAvailabili
tyListHTTPServicePort

Where does this path come from?

1. In WebSphere Studio Application Development Integration Edition open the
ITSOLGIWeb project in the Deployable services folder.

2. Find the web.xml (web deployment descriptor) file and open it.

3. You can see three servlets and JSPs defined in the project. These are the
services the broker calls.

Figure 10-57 Web services deployed in RequestExternalReports.bpel

Restriction: Currently the asynchronous responses from the assessor
system have not been implemented for the WebSphere Application Server
assessor. The acknowledgement and report responses need to be sent
manually. For this reason we preferred to use the broker implementation of the
assessor. WebSphere MQ is used to connect the steps in the assessors
response, and by disabling and enabling get on the assessor queues Flow7A
and FLOW8, as described in 9.9.2, “Scaffolded Assessor and Claim system”
on page 370, the acknowledgement and report responses can be delayed.
444 Build a Business Process Solution Using Rational and WebSphere Tools

Click Details and examine the URL mappings. The path we require for the
AssessorAvailabilitylist service would appear to be:

services/RequestExternalReportsAssessorAvailabilityListHTTPServicePort

So, add this path to the router address portion of the URL to make a complete
path to the Web service, and the equivalent for the other two services.

ITSOLGIWeb/services/RequestExternalReportsAssessorAvailabilityListHTTPServi
cePort

4. We need to change the URLs in the broker because they do not match the
addresses of the Web services in the new process you have created in the
workshop. You can do this without editing the flow in message broker directly.
This is a one-shot modification. When you redeploy again, the parameter
value in the flow will be restored. So, you are better advised to change the
parameter in the flow.

a. Open the administrative perspective in broker → find the Deployables
folder in the Broker Archives directory and open LGIAvailability.

b. Click the HTTP Request node in Output3a and replace the Web service
URL with the
RequestExternalReportsAssessorAvailabilityListHTTPService URL from
ITSOWorkshopWeb.

http://SAH414:9080/services/RequestExternalReportsAssessorAvailabilityLi
stHTTPServicePort

c. Repeat the procedure for the other two Web services.

d. Redeploy LGIReport ad LGIAvailability.

e. Turn Normal tracing on again for both execution groups.

10.8.4 Check that downstream components are operational
Before starting to test the Process Choreographer, invoke all the required
services running on WebSphere Application Server and WebSphere Business
Integration Message Broker are operational using the Web services explorer tool
in WebSphere Studio Application Development Integration Edition.

10.8.5 Testing and debugging the business process
To test the business process, follow these steps:

1. Right-click TestServer → Start. The server will be started. Check that
message server1 is opened for e-business is displayed in console view.

a. Here are a couple of common problems for this stage and their fixes:
 Chapter 10. Build the Request External Reports process 445

• The most common cause of a server starting with errors is path lengths
being longer than the Windows maximum. A quick solution is to remap
the directory containing your workspace using the Windows SUBST
command.

• Another common cause of problems, for example syntax problems in
Application.xml being reported, is a wrongly applied service.

Check that you can build, deploy, publish, start and browse the
simpleProcess documented in the infocenter.

2. Open Servers view and select Launch Business Process Web client form
menu. A browser window opens.

3. Select my template from the menu list on the left side of the window. You can
see RequestExternalReports process is ready. see Figure 10-58.

Figure 10-58 Launched Process Choreographer client with My Templates selected

4. Click the check box adjacent to RequestExternalReports → Start instance.
A panel showing the input message is displayed (Figure 10-59).
446 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 10-59 Input message to process

5. Fill in the details. The only requirement is the input data matches the types.
Use a date of the format mm-dd-yyyy in the date string field.

6. Press Start instance to start process.

7. On the Created by Me panel, select the process just started and check it →
Monitor.

8. If all is well, the process shows a whole list of finished tasks and waits for
input. See Figure 10-60 for an example where the process is waiting for the
acknowledgement from the selected assessor.
 Chapter 10. Build the Request External Reports process 447

Figure 10-60 Waiting for a response from the proxyAssessorSystem.

9. Because we are using the broker to simulate assessors, the WebSphere MQ
explorer will have a message each on the FLOW7A and FLOW8 queues
which are get inhibited to simulate a time delay. Releasing the messages in
the right order allows the process to continue to completion.

Debugging the process
If the process does not work as expected, there are a number of debugging
options:

� Checking the execution of process instance step by step
� Adding break points
� Observing the values of data in each of the steps

To test a process in debug mode, follow these steps.

1. Add a break point to check the execution steps. Right-click an activity in the
BPEL editor and select Add Entry/Exit break point.
448 Build a Business Process Solution Using Rational and WebSphere Tools

2. Start the TestServer in debug mode. Right-click TestServer (Figure 10-61)
and select Debug. The debug perspective opens.

3. Execute the process step by step by clicking the step over or step in button
in debug view. Variables are shown in the variable view on the right side of
the perspective.

Figure 10-61 Debug perspective

As an example, Figure 10-62 on page 449 shows the process suspended at the
entry to the java snippet to aggregate the results of querying which assessors
are potential candidates for sending for assessment, and what the customer’s
ResponseTimePolicy is.

Figure 10-62 Process suspended at the start of the java snippet

The debugging process to verify the data going into the next transformation
mapping would take the following steps.

Make sure the debug view is showing in the top left window and the current
instance selected. There will be a list of variables in the top right window.
 Chapter 10. Build the Request External Reports process 449

1. Open the IdentifyAssessorsOutputCriteriaVariable and verify that the
AssessorManagement service has returned a list of assessors.

2. Step into the Java Snippet, the snippet implementation tab opens.

3. Step over each statement.

4. On exit from the snippet, check the AggregateRequestAvailability variable
has its parts set up correctly, especially the list of assessors.

5. Step over the ToRequestAvailability transformer service. There is no way to
debug the stylesheet implementation.

6. Now check the RequestAvailabilityInputCriteriaVariable, is the assessorList
set?

Perhaps in this case the assessor list was not set, so the cause of the error
has been identified as being in the proxyAssessorSystem :ESB.

10.9 Deploy the process to the server
Business processes which have been developed in WebSphere Studio
Application Development Integration Edition are deployed to WebSphere
Business Integration Server Foundation in the format of .ear file and executed in
the business process container provided by WebSphere Business Integration
Server Foundation.

WebSphere Business Integration Server Foundation provides Java 2 Enterprise
Edition based process engine which supports following features:

� Multi-style Process Support

Non-interruptible (1-transactional) and interruptible (multi-transactional)
Processes are supported.

� Compensation Support

Runtime components that support compensation (undo of committed work)
for processes.

� Human Interaction Support

Runtime components that allow people to interact with processes, such as
with a Web Browser based user interface to present work items and
processes.

WebSphere Business Integration Server Foundation has several components in
its process engine.

� Process navigation manages process instances and their status.
450 Build a Business Process Solution Using Rational and WebSphere Tools

� Invocation of web services and request for execution of processes is done via
both an external and internal interface.

� Staff activities are managed by the people interaction component.

� All the components of the business process engine are running on
WebSphere Application Server and use database and message queuing
services.

Figure 10-63 Components of WebSphere Business Integration Server Foundation

10.9.1 Installation of business process application
1. Start the Admin console browser (at http://SAH414B:9080/Admin) and go to

Applications → Enterprise Applications and click Install.

2. Browse to the ITSOLGIEAR.ear file → Next → Next.

3. On Step 1 of Install New Application specify a short directory name on the
root of your chosen drive (D: in our case) to install the application (create the
directory before proceeding). Check the Deploy EJBs check box.

4. Jump to step 11 and tick the Enable box under Create tables.

If there is a choice of databases on the server you will be prompted to choose
one, otherwise, as in this case, it will select the installed database and
continue.

5. Finish the configuration, confirm the application is installed successfully, and
save it to the master configuration database.

6. Switch to the Enterprise Applications panel and start the application. It is now
ready to run.
 Chapter 10. Build the Request External Reports process 451

10.9.2 Verify the application
1. Start the business process container web client by providing a browser with

the URL http://sah414b:9080/bpe/webclient.

2. Reconfigure the broker to call the receive activities in the production server,
hosted on SAH414B. Do this without modifying the message flows from the
Administrative perspective in the broker toolkit. For example the Output6a
flow in Figure 10-64:

Figure 10-64 Changing the hostname to SAH414B in the Output6a flow

3. Run the validation test. If you want to test the staff activity, modify the
response from the assessor acknowledgement to NO.

10.10 Summary
This chapter has described how the IT process specialist modifies the business
process provided by the business analyst to implement the interfaces provided
by the IT architect and then tests and deploys the process to WebSphere
Business Integration Server Foundation.

The final step in the solution is to integrate the claims workflow running on the
WebSphere MQ Workflow server with the business process using the WA0D
integration supportpac.
452 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 11. Modify the Claim
Investigation process

In this chapter we configure the claim investigation process to call the new
automated RequestExternalReports activity instead of the current manual
activity.

11
© Copyright IBM Corp. 2006. All rights reserved. 453

11.1 WebSphere MQ Workflow: long-running processes
WebSphere MQ Workflow contains the necessary software to define, build, and
manage business processes. The WebSphere MQ Workflow engine enabled LGI
to deploy its policy and claims handling business processes spanning multiple
computer systems and also integrating the DCI and LGI IT systems.

Users interact with WebSphere MQ Workflow using Web applications,
WebSphere Portal Server portlets, or Microsoft Windows standalone clients.
With these user interfaces, Claim handlers can pick up work items as required by
the business process, deal with them, and then tell the workflow engine that the
work item is finished. The process engine keeps track of all the work items in the
system so that ongoing claims can be monitored and the status of claims can be
checked. Claims can be rescheduled and reassigned.

To integrate internal and external business systems with WebSphere MQ
Workflow, processes can access applications and Web services using
WebSphere MQ Workflow execution agents which are configured as part of the
workflow. Workitems are either handed by the Claim handlers or by the
automated execution agents calling on applications or Web services to process a
workitem.

Development tools
A graphical representation of a WebSphere MQ Workflow process can be
generated by using WebSphere MQ Workflow Build Time. Alternatively,
processes that were designed in WebSphere Business Integration Modeler can
be imported into WebSphere MQ Workflow as a Flow Definition Language file
[FDL].

Runtime environment
The WebSphere MQ Workflow Runtime is the container in which the deployed
processes run. WebSphere MQ Workflow Runtime uses a database
management system to keep track of the processes' internal state. WebSphere
MQ Workflow uses WebSphere MQ queues to communicate with external
actors. WebSphere Application Server is used for providing a graphical user
interface to end users who participate in the workflow.

Monitoring and management
The WebSphere MQ Workflow administrator uses the Administration Utility to:

� Start and stop servers.
� Monitor and analyze error logs.
454 Build a Business Process Solution Using Rational and WebSphere Tools

Additionally, WebSphere Business Integration Monitor V 4.3.5 can be used to
analyze trace data as well as generate reports and graphical representations of
the business data that is generated by the processes. This statistical data that is
obtained by WebSphere Business Integration Monitor can be used by Modeler to
reengineer business processes.

11.2 Process Integration: WebSphere MQ Workflow
Looking at the new RequestExternalReports process from the WebSphere MQ
Workflow point of view, we find that the WebSphere MQ Workflow only needs to
understand the interface to this new process to be able to invoke it using a
services interface. This interface can be defined in three points:

� Process name and location

The WebSphere MQ Workflow needs this information to be able to invoke the
process, for the RequestExternalReports process the process is a BPEL
based business process that is deployed to WebSphere Business Integration
Server Foundation.

� Process input structure

This structure is used by WebSphere MQ Workflow to format the message
sent to the process, for the RequestExternalReports process its the input of
the process as modeled in WebSphere Business Integration Modeler.

� Process output structure

This structure is used by WebSphere MQ Workflow to understand the
message returned from the process, for the RequestExternalReports process
it’s the output of the process as modeled in WebSphere Business Integration
Modeler.

Accordingly, WebSphere MQ Workflow deals with the RequestExternalReports
process as an implementation of the corresponding activity in the existing
ClaimInvestigation process.

11.2.1 Implementing custom invocations in WebSphere MQ Workflow
Activity implementations are usually started by MQ Workflow by sending an
internal invocation request message to a program execution agent (PEA) or
program execution server (PES) those are built-in components in MQ Workflow
system1. They, in turn, invoke the program that was modeled to implement the
activity. Using the message-based interface, it is also possible that MQ Workflow

1 For more details about PEA and PES refer to WebSphere MQ Workflow documentation, Concepts
and Architecture.
 Chapter 11. Modify the Claim Investigation process 455

sends that invocation request message in XML format to a user-defined
MQSeries queue.

From the point of view of MQ Workflow, the MQSeries application listening on
that queue has to invoke the program that is modeled as the implementation of
the activity. For doing so, all the necessary information is passed to the
MQSeries application by means of an XML message. The MQSeries application
must return with an appropriate XML response, if requested by MQ Workflow.

Therefore, such an application is called a user-defined program execution
server). A user-defined program execution server can be any application the user
writes or a program such as MQSeries Integrator, provided it can deal with the
MQ Workflow XML message format. A UPES and a program activity to be
performed by that UPES are both modeled in the MQ Workflow BuildTime.

A UPES is defined and configured for an MQ Workflow system by modeling it in
MQ Workflow BuildTime. Essential attributes are the name, the version2, and the
queue it represents.

The application that is listening to the UPES queue is not managed by MQ
Workflow. A system administrator is responsible for administering the
application. From an MQ Workflow point of view, the invocation of an activity
implementation was successful when the invocation message is successfully put
into the UPES queue. The following figure and the illustrates the idea and shows
the components of the UPES.

2 The UPES version denotes the MQ Workflow API version that is supported by the UPES ad
accordingly what messages to be sent to the corresponding queue and the message formats.
456 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 11-1 Customized activity invocation using UPES

The numbers in the figure illustrate how UPES is architecture:

1. A UPES must have been defined using WebSphere MQ Workflow BuildTime
and references an existing WebSphere MQ queue as its input queue. Also, a
program needs to be existing that listens to that queue.

2. When an activity implementation is to be started, MQ Workflow sends a
program invocation message to the UPES queue in XML format.

3. The application listening to the UPES queue reads the XML message and
performs the appropriate action. This action could be invoking the activity
implementation, for example, call a program on a platform that is not yet
supported by MQ WorkFlow.

4. When the application has finished its action, the application creates a
response MQ Workflow XML message, if required, and puts it into the reply
queue. Note that the reply queue information is part of the MQMD of the
incoming XML invocation message and the default is EXEXMLINPUTQ.

5. MQ Workflow reads the response message, processes it, and changes the
state of the activity accordingly.
 Chapter 11. Modify the Claim Investigation process 457

UPES Invocation modes
While modeling a UPES, two invocation modes for the activity implementation
can also be modeled:

� Synchronous invocation (the standard case), where MQ Workflow waits for a
completion message containing result data from the UPES before the activity
instance is considered to be complete.

� Asynchronous invocation, where no completion message is required and the
activity instance is considered to be complete right after the invocation
message has been sent. No result data is expected by MQ Workflow and
process navigation continues.

From this information. we conclude that UPES is one of the main approaches to
implement a custom invocation of applications or processes outside the
WebSphere MQ Workflow system.

11.3 Create the ClaimInvestigation_TOBE Workflow
In section, 7.2.4, “Install and configure WebSphere MQ Workflow” on page 227
we built a working WebSphere MQ Workflow system. We now need to modify the
existing claim investigation process to automate the RequestExternalReports
task running on the workflow system.

The tasks involved are:

1. Recreate the ClaimInvestigation_ASIS process in the WebSphere MQ
Workflow buildtime.

2. Create the data structures exchanged with the new RequestExternalReports
activity.

3. Define Interface to the RequestExternalReports activity which will call the
proxy RequestExternalReports process in WebSphere Business Integration
Server Foundation using the JMS compliant XML Enterprise Service
interface.

11.3.1 Import the ASIS workflow
To import the ASIS workflow, follow these steps:

1. Open the WebSphere MQ Workflow buildtime - FMC

2. Select Buildtime → Import → find
.\SG24-6636\Workflow\ClaimInvestigation_ASIS.fdl → OK. See Figure 11-2
on page 459.
458 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 11-2 ClaimInvestigation_ASIS process

3. To open the ClaimInvestigation process, double-click the top level
ClaimInvestigation process.

11.3.2 Create the data structures for RequestExternalReports
There are several ways to do this, but unfortunately no way to import WSDL
directly from Rational Software Architect.

1. Model the new data structures directly in WebSphere MQ Workflow.

2. Model the data structures in WebSphere Business Integration Modeler and
import as FDL.

3. Create a new XML schema in WebSphere Studio Application Development
Integration Edition by massaging the WSDL file and import it as an XML
schema into WebSphere Business Integration Modeler and export as an FDL
to import into WebSphere MQ Workflow.

In building the scenario, we took the first approach. It was simpler to make no
changes to the existing data structures in WebSphere MQ Workflow, and export
them as FDL then transform them to WSDL using the FDL2WSDL tool. Later in
this section, we create a proxy process as part of the WebSphere MQ Workflow /
WebSphere Business Integration Server Foundation integration. In that proxy
process, we transform between the data structure used by WebSphere MQ
Workflow and the service interface used by the new RequestExternalReports
process running in WebSphere Business Integration Server Foundation.
 Chapter 11. Modify the Claim Investigation process 459

The alternative approach, to start with a WSDL defined by the target service and
then modify the FDL used by WebSphere MQ Workflow to conform to the service
interface, is more in keeping with the architectural direction we were trying to
follow. So for the completeness of the tool-chain we are trying to follow, here is
how you would modify WebSphere MQ Workflow to act as a client to an existing
service interface.

1. Navigate to the WSDL file which contains the data structures we want to
import into WebSphere MQ Workflow. We use the Proxy(1).wsdl file as an
example.

2. In the graphical WSDL editor expand the RequestExternalReports_UPES
Port type and its messages → Select the requestAssessor structure.

Figure 11-3 Data structures to be converted into schemas

3. Change to the source tab, and the selected structure will be at the focus.
Copy the requestAssessor complex type.

4. Paste the type into to the new schema file between the schema tags.

5. Repeat the process for the requestAssessorReponse type.

6. Perform a global replace on xsd: → <blank>; the schema namespace is the
default.

7. Save the changes; there will be no errors.

8. Set the schema namespace to http://workflow.lgi.itso as in Figure 11-4 on
page 461.
460 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 11-4 RequestExtenalReports schema

9. Export the schema file by selecting the file; right-click → Export → File
system and choosing a target directory.

Convert the schema into FDL
To convert the schema, follow these steps:

1. Open the ITSOLGI project in WebSphere Business Integration Modeler.

2. Click File → Import → WebSphere Business Integration Modeler
Import → XML Schema → Next. Select the RequestExternalReports.xsd
file and ITSOLGI as the target project → Next → Business Item should be
selected → Finish → OK.

3. Select the workflow.lgi.itso folder → Export → WebSphere MQ Workflow
FDL. Select a target directory, the itso.lgi.workfow folder → Export specific
items → Finish → OK.

Import into WebSphere MQ Workflow
To import the schema, follow these steps:

1. Select the Implementations tab in WebSphere MQ Workflow buildtime.

2. Click Buildtime → Import ... → select the ITSOLGI.fdl file that has been
exported from Modeler.

3. Remove the w_ from the data structure names by opening the properties of
the two data structures and changing the Name
 Chapter 11. Modify the Claim Investigation process 461

11.3.3 Define the interface to RequestExternalReports
We now need to define the interface in the claim investigation workflow we will
use to call the RequestExternalReports process in WebSphere Business
Integration Server Foundation.

From the perspective of WebSphere MQ Workflow, RequestExternalReports is a
simple automated activity that invokes the RequestExternalReports process by
sending a JMS/XML message using WebSphere MQ to initiate the process.
Another message is eventually returned to the RequestExternalReports activity
when the RequestExternalReports process completes.

The only additional step that is required on the WebSphere MQ Workflow system
to invoke a BPEL process on WebSphere Business Integration Server
Foundation is to export a WSDL file from the workflow system which contains the
full definition of the messages structures passed to and from the workflow
system. This file can be used to define the claim investigation process as a
partner link in the RequestExternalReports process.

Create the UPES for the RequestExternalReports Activity
A UPES (User-defined program execution server) defines how an automated
activity talks to an external program to perform an automated activity on behalf of
the workflow. There are two forms of UPES, synchronous and asynchronous. An
asynchronous UPES does not return control to WebSphere MQ Workflow. A
synchronous UPES forces the activity to wait until completion. It can be long
running. We will use a synchronous UPES.

A UPES is actually implemented as a WebSphere MQ queue. Workflow places a
message on the UPES input queue when there is work to do, and the program
activity listens to the queue, removing the message to perform the activity. On
completion, the program activity sends a reply message to Workflow. Although
each UPES input queue is created specifically for the program activity to listen
to, Workflow typically only has one reply queue by default, EXECXMLINPUTQ, to
listen for reply messages.

Create the UPES
To create the UPES, follow these steps:

1. Select BuildTime → Network tab → DOMAIN → FMCGRP.

2. Right-click FMCSYS and select New User-Defined Program Execution
Server.

3. In the General tab → set Name to UPESSVR → select version 3.4.0 from the
version drop down list.
462 Build a Business Process Solution Using Rational and WebSphere Tools

4. In the Message Queuing tab, set the Queue Name to WPCUPESQ and leave
Queue Manager Name blank.

5. Select JMS-compliant XML for the Message Format and click OK.

Create the Program for RequestExternalReports
This is the program to be used by the RequestExternalReports activity, it must
have the same name as the name of the program that we are going to create in
WebSphere Studio Application Development Integration Edition to start the
RequestExternalReports process.

1. On the BuildTime Tab → Implementations tab → right-click Programs and
select New Program.

2. On the General Tab:

a. In the Name field, type RequestExternalReportsProxy.

3. On the Data Tab:

a. Check Program requires these data structures → Input → browse for
requestAssessor → OK.

b. In the Output field → browse for requestAssessorResponse → OK.

c. Check Program can run unattended .

See Figure 11-5 on page 464.

Important: We use WebSphere MQ clustering, and this queue will be a
cluster queue defined on the WebSphere Business Integration Server
Foundation machine.

If you are not using clustering, the queue name should be a remote queue
definition or its alias. It is bad practice to explicitly define a queue manager
name because it reduces locational transparency.
 Chapter 11. Modify the Claim Investigation process 463

Figure 11-5 Defining the Data properties of RequestExternalReportsProxy

4. On the Windows NT® Tab:

a. In the Path and file name field, type RequestExternalReportsProxy.exe.

We could have typed any value in this field, because this executable name
will never be called and does not need to be existing in the file system. It is
only required because WebSphere MQ Workflow runtime requires that at
least one platform definition of the program exists, otherwise the definition
is considered to be invalid.

5. Click OK.

Configure the RequestExternalReports activity
Now we need to adjust the activity and the data mappings in which the activity is
involved:

1. In BuildTime, select the Process Models → Claim → Processes tab →
ClaimInvestigation → RequestExternalReports.

2. On the General Tab:

a. Change Name to RequestExternalReportsProxy.
464 Build a Business Process Solution Using Rational and WebSphere Tools

3. On the Execution Tab:

a. Deselect User program execution agent.
b. Check Server → Browse for UPESSVR → OK.

4. On the Start Tab:

a. Check Automatic as the start option.

5. On the Exit Tab
a. Ensure that Automatic is also checked

6. On the Data Tab:

a. In the Input field, browse for requestAssessor → OK.

b. In the Output field, browse for requestAssessorResponse → OK

7. Click OK.

Configure the data flow mappings
The data structures of the input and output of the RequestExternalReports
activity have changed. The data to and from the activity needs to be mapped to
and from the data container to the new data structures.

1. Double-click the green data connector (Figure 11-6) between SelectReports
and RequestExternalReports → click OK to the two pop-ups warning that
the data structures are invalid. We are about to fix them.

Figure 11-6 Select the data flow connector to RequestExternalReports

2. Apply the following mappings by dragging the field in the Member column of
the Origin Data Structure to the field in the Member column of the Target
Data Structure then click OK. See Figure 11-7 on page 466.

a. Investigate_DataInput.Claim_DataInput.ClaimID → claimID
b. Investigate_DataInput.PolicyID → policyID
c. Report_Claim.AssReqDate → requiredDate
 Chapter 11. Modify the Claim Investigation process 465

d. Investigate_DataInput.LocVehicle → location
e. Investigate_DataInput.MakeOfCar → makeOfCar

Figure 11-7 Mapping RequestExternalReports input data structures

3. Repeat the procedure for the data connector between
RequestExternalReports and UpdateExternalReports. Ignore the po-up
warning again. Map the following fields and then click OK. See Figure 11-8.

a. claimID → Investigate_DataInput.Claim_DataInput.ClaimID
b. policyID → Investigate_DataInput.PolicyID
c. assCompDate → Report_Claim.AssActDate
d. reportLocal → Investigate_DataInput.AppEstRep

Figure 11-8 Output mappings from RequestExternalReports
466 Build a Business Process Solution Using Rational and WebSphere Tools

Export the FDL
The next step is to export the FDL so we can define the message structure for
the RequestExternalReports process running in WebSphere Business
Integration Server Foundation.

1. Select ClaimInvestigation in the Process Tab → Right click → Save.

2. Click the BuildTime menu → Export → Export single objects.

3. In the Show objects frame, check all the boxes → Refresh to be able to see
all the model elements.

4. Select the ClaimInvestigation process (by holding down the shift key and
clicking it, the icon will turn to a check). Check the Export deep option so that
the referenced data structures and programs are also exported.

5. Select (shift+left mouse button) the UPES server UPESSVR by browsing
Network → OK.

6. Chose a target folder and save as Proxy(1).fdl → OK.

11.4 Deploying the workflow process
The modified claim investigation process is now ready to be deployed to the
WebSphere MQ Workflow server. All the integration work that impacts the
workflow has been completed. As required by the original business requirements
the impact is minimal.

To deploy the flow onto the runtime the FDL has to be imported into the runtime.
The import process can either be done directly on the runtime server or by using
a client machine that has the administrative components of WebSphere MQ
Workflow installed.

To import the process model into the runtime, we use the fmcibie utility with the
following options:

� The -i option to point to the file that we want to import.

� The -y parameter points to the name of the configuration.

� The -u and -p parameters are used to provide the user ID and password of
the workflow administrator.

� The -to parameter tells the utility to overwrite any existing objects if required
and to translate the process model into a process template, which can be
executed in the runtime environment.

Working in the interop 5.1.1\bin directory where the Proxy(1).fdl was saved the
results of running fmcibie are shown in Figure 11-9 on page 468.
 Chapter 11. Modify the Claim Investigation process 467

.

Figure 11-9 Running fmcibie to deploy the workflow

11.5 Summary
In this chapter we have briefly reviewed WebSphere MQ Workflow and then
seen how with a minimum of changes the existing claim investigation process
can be modified to call RequestExternalReports as an automatic activity using a
UPES server as the execution agent for the activity. The UPES server is actually
just a WebSphere MQ queue. The task of making the integration with
WebSphere Business Integration Server Foundation work is addressed in
Chapter 12, “Integrate and test the business processes” on page 469, after all
the other parts of the scenario are completed. The integration does not require
any other changes to the workflow process, and is accomplished by installing a
supportpac which provides the integration tools and run time processes that
execute on WebSphere Business Integration Server Foundation.

Tip: You might not be this lucky. Because the runtime is not in synchronization
with the build time, the command to deploy the process might use the wrong
verbs, such as UPDATE instead of REPLACE. You will need to edit any prob-
lematic UPDATE commands in Proxy(1).fdl that have resulted in an error.
Simply delete the keyword UPDATE and the deployment will try CREATE
instead, which should work.
468 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 12. Integrate and test the
business processes

In Chapter 11, “Modify the Claim Investigation process” on page 453, we
describe how to modify the claim investigation process to enable it to use the
automated RequestExternalReports process. However, we did not explain how
the request message from the claim investigation process is going to invoke the
RequestExternalReports process and get a reply back, perhaps after several
weeks of waiting. In this chapter we explain how to integrate the claim
investigation process to use the new automated RequestExternalReports
activity.

The solution requires a new supportpac, WA0D, and fixes to both WebSphere
Application Server taking it to version 5.1.1.7 and WebSphere Business
Integration Server Foundation to version 5.1.1.3.

12
© Copyright IBM Corp. 2006. All rights reserved. 469

12.1 Integrating WebSphere MQ Workflow and
WebSphere BI Server Foundation

There are many approaches to invoke automatically business processes
deployed to WebSphere Business Integration Server Foundation from
WebSphere MQ Workflow process, For example we can write our own program
that internally invokes the process using its WSDL file and interacts with the
WebSphere MQ Workflow using the WebSphere MQ Workflow APIs to handle
the required data transformations. There are also some WebSphere MQ
Workflow SupportPacs offered by IBM, these SupportPacs are very useful for our
situation, they can eliminate the need to write any code at all.

These SupportPacs can be easily downloaded from IBM Web site through the
following URL

http://www.ibm.com/software/integration/support/supportpacs/product.html#wm
qwf

12.1.1 Candidate SupportPacs
There are two SupportPacs that fit our requirement to invoke a business
processes deployed to WebSphere Business Integration Server Foundation from
WebSphere MQ Workflow:

1. WA07: WebSphere MQ Workflow Web services Process Management Toolkit

Using this toolkit, WebSphere MQ Workflow process designers can define
activities that are implemented by Web services and combine them with other
activities, human-facing for example, into a business process.

In addition, the toolkit can be used to deploy any WebSphere MQ Workflow
business process as a Flow Service, a Web service that exposes the life
cycle protocol of the business process.

2. WA0D: WebSphere MQ Workflow and WAS Enterprise Process
Choreographer Inter-Operability

This SupportPac enables interoperability between WebSphere MQ Workflow
and WebSphere Business Integration Server Foundation. Being able to have
processes that span across both products, combines the strengths of each
product and allows a smooth and partial migration of existing processes from
an existing WebSphere MQ Workflow base to the Process Choreographer.

Using this SupportPac, the user can invoke a Process Choreographer
process from an WebSphere MQ Workflow process and vice versa.
470 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.ibm.com/software/integration/support/supportpacs/product.html#wmqwf

Both SupportPacs use the UPES feature of WebSphere MQ Workflow. We use
WA0D because it is easier and faster to implement the solution using it and also
because it is specific for our requirement. In contrast, WA07 requires more
customization of the existing WebSphere MQ Workflow ClaimInvestigation
process.

12.2 SupportPac WA0D overview
This SupportPac provides the capability of invoking a choreographer process
from WebSphere MQ Workflow and vise versa. This requires us to understand
the interfaces to WebSphere MQ Workflow and Process Choreographer.

12.2.1 WebSphere MQ Workflow interfaces
WebSphere MQ Workflow consists of several server components that
communicate using WebSphere MQ queues. The most important server
component for interoperability is the execution server. It is responsible for
starting and navigating WebSphere MQ Workflow processes.

Information about WebSphere MQ Workflow processes, the infrastructure, and
participating people (staff) are made known to the execution server by populating
the runtime database with the corresponding information. This is done by
importing a flow-definition-language (FDL) file that is generated using
WebSphere MQ Workflow buildtime or any other tool similar to WebSphere
Business Integration Modeler.

The execution server uses two message formats for message exchange through
WebSphere MQ queues:

� SDDS is an internal WebSphere MQ Workflow format.
� XML is a subset of the SDDS messages in XML format, and it can also

include JMS headers for JMS support.

12.2.2 Process Choreographer interfaces
Choreographer components can be configured to use WebSphere MQ as a JMS
provider, so that it can send or receive messages through WebSphere MQ
queues.

Process choreographer provides two main interfaces to the outside world:

� API and facade message driven beans

The base functionality of choreographer is externalized as an API to work with
process templates, process instances, activity instances, and work items. In
 Chapter 12. Integrate and test the business processes 471

addition, for every process a process-specific EJB, an optional
process-specific MDB façade is generated.

The façade MDB represents the process according to the façade design
pattern. For more information about design patterns go to:

http://www.research.ibm.com/designpatterns/

A façade MDB allows sending JMS messages in a custom format into a
dedicated queue, reception of such message by the MDB causes an implicit
call of the associated process. On completion of the process, the response is
sent back to the reply-to queue as specified in the request.

� Choreographer plug-ins

Process choreographer implements a general-purpose process engine that
can be plugged into a variety of environments. It also delegates functionality
to other plug-ins to extend its base functionality with additional features.
Plug-ins are the Process choreographer engine’s way to delegate tasks to the
external world, in areas where more than one implementation is potentially
possible, and where different implementations should not affect the behavior
of the process engine itself. The following functions are delegated to plug-ins:

– Handling process data (messages), including evaluating conditions and
executing mapping activities.

– Invocation of elemental operations (activities)

– Dealing with people (authentication, authorization and staff resolution).

– Reacting to state changes of processes or activities, for example, logging
changes to an audit trail or to publish events.

12.2.3 The SupportPac Architecture
The SupportPac is composed of two main components:

� Tools installed on the MQ WorkFlow server

These tools provide the ability to export a WSDL file for an existing BuildTime
process from the BuildTime user interface and it is used when we want to
invoke a WebSphere MQ Workflow process from WPC. Also there is another
utility that runs from the command prompt to generate a WSDL file from and
FDL file and it is used when we want to invoke a WPC process from
WebSphere MQ Workflow and is explained in details in the following sections.

� Message-driven bean (MDB) installed on WebSphere BI Server Foundation

In addition to the tools, a MDB is also included in the SupportPac as an EAR
(Enterprise Archive) file. Deploy it to WebSphere BI Server Foundation,
where this MDB listens for the invocation messages coming over an MQ
472 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.research.ibm.com/designpatterns/

queue (the UPES queue), interprets this message, and invoke the proper
WPC process accordingly.

Details of how these components contribute to the SupportPac functionality is
described in the next section.

12.2.4 How the SupportPac works
This SupportPac has two scenarios to describe how this interoperability works:

� How a WebSphere MQ Workflow process invokes a choreographer process.
� How a choreographer process invokes an WebSphere MQ Workflow process.

We focus only on the first scenario that we implement for our solution.

How WebSphere MQ Workflow invokes Choreographer
Assume that we already have:

� The interface of the Choreographer process with its name
� Input and output
� A WebSphere MQ Workflow process where one of its activities is responsible

for invoking the Choreographer process.

This activity is defined as an automated unattended activity with a UPES
definition, which points to a WebSphere MQ queue. In addition, we must define a
program that has the same name, input and output data structures of the process
to be invoked in choreographer. We use this program as the program for this
activity.

After we complete these modeling steps, we export a FDL that contains these
modifications, and we use the command line tool (runfdl2wsdl.bat) included in
the SupportPac to generate a WSDL file representing the interface to the WPC
process. It defines the input and output message structures of the Process
choreographer business process. The generated WSDL file contains the
interface definitions of every process and every UPES activity in the input FDL
file.

The WSDL file must be imported in WebSphere Studio Application Development
Integration Edition to generate the corresponding objects that represent the
messages. After this, we create the process in WebSphere Studio Application
Development Integration Edition and use the WSDL file as partner link for its
receive and reply activities and model the internals of the process in WebSphere
Studio Application Development Integration Edition. Figure 12-1 on page 474
illustrates these steps.
 Chapter 12. Integrate and test the business processes 473

Figure 12-1 Steps to invoke a choreographer process from WebSphere MQ Workflow

We always need a unique choreographer process for each integration. To allow
WebSphere MQ Workflow processes to communicate with an existing
choreographer process, we can create a new process activity that initiates the
existing choreographer process. This is a proxy design pattern, because the new
choreographer process is a placeholder or proxy for the existing choreographer
process. It controls access to the existing process in a way that conforms to the
interoperability interface.

Execution
When the MQ Workflow process is executed and the UPES activity is started, the
execution server sends a WebSphere MQ Workflow XML message of type
ActivityImplInvoke message to the specified UPES queue. The MDB of the
SupportPac reads the message, gets the program name from it, searches in
choreographer for the process that has the same name as the program, and
invokes it giving it the input data included in the message. When the process
completes, the MDB converts the response of the process to a WebSphere MQ
Workflow XML message of type ActivityImplInvokeResponse and puts it on the
input queue for the WebSphere MQ Workflow. The default WebSphere MQ
Workflow input queue for XML messages of the execution server is
EXEXMLINPUTQ.

Figure 12-2 on page 475 shows the execution steps when an WebSphere MQ
Workflow process invokes a choreographer process.

WebSphere MQ
Workflow Buildtime

WebSphere Studio
Application Developer

Integration Edition

FDL WSDLRunFdl2Wsdl

Export Im
po

rtProcess
UPES Activity
Data Structures
UPES Definition

Partner
Links
474 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 12-2 Process integration

12.3 Installing and configuring the WA0D SupportPac
Installing and configuring the WA0D SupportPac includes the following steps
illustrated in Figure 12-3 on page 476. These steps are described in the
corresponding numbered sections below.

1. Upgrade the WebSphere Application Server and WebSphere Business
Integration Server Foundation installations to cumulative fix pack 3 and 7
respectively if they are not already at that level.

2. WPCUPESQ is the (clustered) queue which receives requests from the
workflow system to be sent to Process Choreographer.

3. WA0D is installed on the workflow system, which must also have WebSphere
Application Server installed.

WebSphere MQ Workflow

Activity Activity UPES Activity Activity

WebSphere Business Integration Server Foundation

UPES Queue
WPCUPESQ

Input Queue
XMLEXEINPUTQ

Input Queue
BPEASSESSORINPUT

Output Queue
BPEASSESSOROUTPUT

WebSphere MQ Channels

Interoperability Message Driven Bean

Proxy Process

RequestExternalReports process

We need only define one
 pair of queues if they are

defined as part of a
WebSphere MQ Cluster
 Chapter 12. Integrate and test the business processes 475

Figure 12-3 Installation and configuration of WA0D

4. The workflow process uses a program activity and the UPES server is
configured to place its WPC requests on the WPCUPESQ. We do this in
11.3.3, “Define the interface to RequestExternalReports” on page 462.

5. The FDL for the process and the UPES definition are exported as FDL. See ,
“Export the FDL” on page 467.

6. The runfdl2wsdl command shipped in WA0D converts the FDL to WSDL to
be consumed by WebSphere Studio Application Development Integration
Edition to define the proxyRequestExternalReports process.

7. Install the eclipse plug-in com.ibm.workflow.wmqwf_1.0.0 into WebSphere
Studio Application Development Integration Edition.

Extract com.ibm.workflow.wmqwf_1.0.0.zip from the directory to which you
installed WA0D, into your WebSphere Studio Application Development

MQSeries Cluster - FMCGRP

Workflow

UPES
UPESSVR

Process Choreographer

JMS/XML messages

WebSphere
MQSeries

QM - FMCQM

WebSphere
MQSeries

QM – SAH414BFMC.FMCGRP.EXE.XML

EXEXMLINPUTQ

WPCUPESQ

WPCUPESQ

Clustered
Queue Alias

Clustered
Queue

Reply-to
Queue

Program Activity
RequestExternalReportsProxy

Process
ClaimInvestigation

Generic Façade MDB
MDB Interop

Business Process
RequestExternalReportsProxy

WebSphere MQ JMS Provider
QCF = jms/BPECF

Destination = jms/WPCUPESQ

Program name = Process name

Business Process
RequestExternalReportsWorkflow

Buildtime

Proxy.fdl Proxy.wsdl

FDL2WSDL

Export deep
single objects

(ClaimInvestigation +
UPESSVR)

WebSphere Studio ..
Integration Edition

Business Process
RequestExternalReports

Business Process
RequestExternalReportsProxy

 Install eclipse plug-in
com.ibm.workflow.wmqwf_1.0.0

Replace:
bpeInterop.jar

Add to projects
WMQWF_Formatter.jar

Install
bpeInterop.ear

Install
WA0D

2

3
4

5

6
7

8

9

13

11

12

1

10
476 Build a Business Process Solution Using Rational and WebSphere Tools

Integration Edition installation directory\eclipse\plugins and restart
WebSphere Studio Application Development Integration Edition.

8. Create a new proxy process RequestExternalReportsProxy in WebSphere
Studio Application Development Integration Edition to receive the service
requests from the Workflow ClaimInvestigation RequestExternalReports
Proxy program activity. It is the equivalence of these names that is
responsible for routing the request to the correct Process Choreographer
process.

9. Add WMQ_Formatter.jar to the new process, and add it to the java build path.
The .jar file parses the incoming JMS/XML message.

10.(Replace bpeInterop.jar in the WebSphere Business Integration Server
Foundation library with the one shipped in the SupportPac.) This step is not
necessary if you are working with WebSphere Business Integration Server
Foundation cumulative Fix Pack 3 and WebSphere Application Server
cumulative Fix Pack 7.

11.Install and start the supplied bpeInterop.ear file in WebSphere Business
Integration Server Foundation. This is the generic façade MDB that routes
and starts the RequestExternalReportsProxy process.

12.Using the WebSphere Application Server Administration console connected
to WebSphere Business Integration Server Foundation configure the
WebSphere MQ messaging provider. This is described in 12.3.1, “Upgrade
WebSphere Business Integration Server Foundation” on page 477 that
follows.

13.Install and start the RequestExternalReportsProxy .ear files on WebSphere
Business Integration Server Foundation.

12.3.1 Upgrade WebSphere Business Integration Server Foundation
The WA0D support pack requires fixes to WebSphere Business Integration
Server Foundation which in turn pre-reqs an upgrade to WebSphere Application
Server. There is guidance in section 7.3.3, “WebSphere Business Integration
Server Foundation” on page 237 how to apply the updates.

12.3.2 Define WPCUPESQ
In the example we define a new local queue, WPCUPESQ, on SAH414B using
WebSphere MQ Explorer, and make it a member of the cluster FMCGRP.
 Chapter 12. Integrate and test the business processes 477

12.3.3 Install WA0D
The interoperability SupportPac needs to be installed. it is best to do this on the
WebSphere MQ Workflow server, which in our example is SAH414A.

Figure 12-4 Confirming Interop supportpac is installed on SAH414A

1. Create a subdirectory under the Workflow installation directory, such as
WA0D, copy the interop.exe installation file and run it.

2. Respond to the prompt asking for the location of WebSphere Application
Server.

3. Respond to the prompt asking you for the location of the Java runtime with the
location of the WebSphere Application Server java runtime.

12.3.4 Configure the claim investigation process
Verify the RequestExternalReports activity has been modified to call a UPES
correctly as described in Section 11.3.3, “Define the interface to
RequestExternalReports” on page 462.

1. The program activity is named RequestExternalReportsProxy.

2. The UPES is called UPESSVR, which points at the queue manager FMCQM
and the queue WPCUPESQ.

3. The program implementation is called RequestExternalReportsProxy.

4. The input and output data containers have been mapped.
478 Build a Business Process Solution Using Rational and WebSphere Tools

12.3.5 Generate FDL
We described how to export the modified FDL from the claim investigation
process in the section, “Export the FDL” on page 467.

12.3.6 Generate WSDL for the proxy process
To general the WSDL, follow these steps:

1. Open a command prompt and change the current folder to the bin folder
under your InterOp installation folder, for example type in the below
command:

cd D:\mqworkflow\SMP\InterOp5.1.1\bin

2. Execute setenv.bat by typing in the below command:

setenv.bat

3. Generate the WSDL file by typing in this command to get the file generated
and saved as Proxy.wsdl:

runfdl2wsdl Proxy.fdl Proxy.wsdl

Examine the WSDL with your preferred editor. You can find the definitions for the
RequestExternalReports interface embedded within larger workflow structures.

12.3.7 Install the Supportpac Eclipse plug-in
Extract com.ibm.workflow.wmqwf_1.0.0.zip from the directory you installed
WA0D to, into your WebSphere Studio Application Development Integration
Edition installation directory\eclipse\plugins and restart WebSphere
Studio Application Development Integration Edition.

12.3.8 Create the RequestExternalReportsProxy process
Follow these steps:

1. Make sure you have saved a project interchange file for the
RequestExternalReports projects.

2. Open a new workspace and import the ITSOLGI service project from the
RequestExternalReports project interchange zip file.

3. Perform step 12.3.9, “Add WMQ_Formatter.jar to the process” on page 481
now, and then return to the next step.

4. Create a new business process. See Figure 12-5 on page 480. Use the
create business process wizard in the pop-up menu.
 Chapter 12. Integrate and test the business processes 479

5. Set the long running attribute on the business process on the Server tab of
the RequestExternalReportProxy process

Figure 12-5 Adding the long running proxy process

6. Add a flow to the process, and move the request and reply activities inside the
flow.

7. Import the proxy.wsdl into the new package and drop the WSDL file on the
canvas to create a new partner link.

8. Create a new OutputVariable, and wire up the receive and reply activities.
Remember to set the process role.

9. Temporarily connect the request and reply activities, save the flow, and check
that there are no compilation errors.

10.Drag and drop the RequestExternalReports process into the flow and wire it
up to an Invoke activity, creating two new input and output variables called
RequestExternalReportsInputVariable and
RequestExternalReportsOutputVariable. Map the input and output
messages from the ExternalClaimsAssessorInterface.wsdl file. Set the
Operation for the Invoke activity.

11.Wire up the flow again, save it and check for no compilation errors.

12.Now you need to add two transformers: a simple transformer for the input of
the RequestExternalReports process, and an aggregation transformer for the
output. You have to pass some of the input back to workflow. Make sure you
are pointing at the Claim.TOBE.Proxy package.

a. Use the simple transformation wizard to create
TransformRequestExternalReports and drop the transform on the canvas
and wire it up.

b. For the aggregation transform
TransformReplyRequestExternalReportProxy, call the aggregation wsdl
AggregateReplyRequestExternalReportProxy.

13.Save the flow, shown in Figure 12-6 on page 481.
480 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 12-6 Long running proxy calling RequestExternalReports

14.Generate the deploy code for the RequestExternalReports process.

15.Create the Test Server in WebSphere Studio Application Development
Integration Edition, add the ITSOLGI project, create the database tables, and
unit test the flow.

12.3.9 Add WMQ_Formatter.jar to the process
To add the WMQ_Formatter.jar to the process, follow these steps:

1. Select the service project → Import → File system → and browse to
WMQWF_Formatter.jar in the SupportPac → Finish.

2. Right-click the ShortRunningProcess folder → Properties → Java Build
Path → select the Libraries tab → Add JARs → WMQWF_Formatter.jar
→ OK → OK.

12.3.10 Replace bpeInterop.jar in the server library
This step is no longer required if you are installing WA0D on top of WebSphere
Business Integration Server Foundation 5.1.1.3.

12.3.11 Install bpeInterop.ear
To install itne bpelInterop.ear, follow these steps:
 Chapter 12. Integrate and test the business processes 481

1. Use the address to open the Admin console for WebSphere Business
Integration Server Foundation in a browser:

http://SAH414B:9090/Admin

2. Under Applications → Install → bpeInterop.ear.

3. Check default bindings, set a short directory name such as D:\Apps as the
install directory, and check Deploy EJBs.

4. In step 2, Figure 12-7, provide InteropMDBListenerPort as the listener port.

Figure 12-7 Configuring the interoperability MDB listener port

5. Save the configuration and start the application.

Configure the messaging resources
To configure the messaging resources, follow these steps:

1. Verify the queue connection factory jms/BPECF points to the queue manager
on the WebSphere Business Integration Server Foundation server.

2. Add two new destinations, jms/WPCUPESQ inbound requests and
FMC.FMCGRP.EXE.XML for outbound replies and requests.

See Figure 12-8 on page 483.
482 Build a Business Process Solution Using Rational and WebSphere Tools

Figure 12-8 Configuring jms/WPCUPESQ

The Queue manager field is left blank. SAH414B is the default queue
manager in our example. See Figure 12-9.

Figure 12-9 Configuring FMC.FMCGRP.EXE.XML destination
 Chapter 12. Integrate and test the business processes 483

3. Define a message listener port on the server for the bpeInterop MDB called
InterOpMDBListenerPort.See Figure 12-10.

Figure 12-10 Configuring the bpeInterop listener port

a. The supportPac comes with a jacl script that can be modified to configure
the interoperability settings, InterOp_Sample1_config.jacl.An example of
setting the parameters in the script for the workshop is illustrated in
Example 12-1:

Example 12-1 Workshop script parameters

###
SETUP MQ Queue Connector Factory, MQ queue name and listener port
for IBM MQ Websphere Workflow Inter operability support pack
###
set MQINSTALLROOT "D:\\WebSphere MQ"1

set InterOp_HOME "D:\\Interop5.1.1"
set serverName "server1"
set FMCQM_QCF_Name "FMCQM"
set EXEXMLINPUTQ_QName "FMC.FMCGRP.EXE.XML"
set MYUPESQ_QName "WPCUPESQ"
set ListenerPort_Name "InterOpMDBListenerPort"
set JMSProviderName "WebSphere MQ JMS Provider"
set nodeName $env(local.node)
D:\Websphere\AppServer\bin\wsadmin -f InterOp_Sample_config.jacl

b. You will also need to modify the line that installs the sample business
process. Change the lines below to point to the
RequestExternalReportsProxy.ear

puts "Install sample 1 ear file: WMQWF2WPC.ear"
$AdminApp install $InterOp_HOME\\samples\\WMQWF2WPC\\WMQWF2WPC.ear

1 On windows, use double backslashes instead of single ones, for example C:\\InterOp5.1.1
484 Build a Business Process Solution Using Rational and WebSphere Tools

c. Run the script using the wsadmin command

D:\Websphere\AppServer\bin\wsadmin -f InterOp_Sample_config.jacl

12.3.12 Install the RequestExternalReportsProxy process
To install the RequestExternalReportsProxy process, follow these steps:

1. Follow the same installation procedure as before, but there is no listener port
to identify this time.

2. Name the application RequestExternalReportsProxy.

3. If you need to reinstall the .ear, stop the application and the business
process.

Everything is now configured to test the integration of Workflow and Business
Process Choreographer.

12.4 Test the integration
We recommend testing the integration in three steps:

1. Unit-test the entire RequestExternalReportsProxy process using the
Business process test client.

2. Unit-test the claim investigation process again.

3. Finally, test the integrated process by submitting a claim assessment using
the Workflow test client.

Tip: If you need to reinstall the application, you need to stop it before
uninstalling. Stop appears to work (the running icon changes to red and the
stop is successful. You need to stop all long tasks, including long-running
tasks before you can stop the process application. But when you attempt to
uninstall, it still may fail to uninstall.

This can be solved by manually stopping the business process container.
Click Enterprise Applications → RequestExternalReports → EJB
Modules (under the related items list) → Business processes → stop the
process manually. This might solve the problem and allow the application to
be uninstalled.
 Chapter 12. Integrate and test the business processes 485

12.5 Summary
In this chapter we have described how to install configure and use the WA0D
support pack to integrate the existing claim investigation process with the new
automated RequestExternalReports process.
486 Build a Business Process Solution Using Rational and WebSphere Tools

Chapter 13. Points to consider

The first part of this concluding chapter is a post mortem. What lessons did we
learn from building the solution? Do these lessons have a bearing on integration
projects in which you are involved?

In the second part of the chapter, we list some of the changes that have been
made to the next version of the WebSphere platform. IBM System House, who,
you might recall from the preface sponsored this Redbook, were responsible for
working with developers to improve the integration capabilities of middleware
from IBM. So it should come as no surprise to you, that there are many new
features and detailed improvements in version 6 of the WebSphere platform that
make building the External Claims Assessor scenario less time-consuming.

The most dramatic improvements can be found in the integration of the
messaging and application servers’ technologies around SOA. But there are also
many changes in the underlying structure, such as:

� Improving the BPEL interface from WebSphere Business Integration Modeler,

� Improving the XSLT processing in the Assign activity in WebSphere
Integration Developer to make it a real alternative to using transformation
services

� Support for aggregation over non-MQ transports in WebSphere Business
Integration Message Broker.

� Publication of a UML profile for software services written by Simon Johnson,
at this Web site:

13
© Copyright IBM Corp. 2006. All rights reserved. 487

http://www.ibm.com/developerworks/rational/library/05/419_soa/

Details about applying this profile, and extending Rational Software Architect
to support SOA can be found in Patterns: Model Driven Development using
Rational Software Architect, SG24-7105.

These and other improvements should persuade you to base new integration
projects on Version 6 rather than Version 5 of the WebSphere platform.
488 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.ibm.com/developerworks/rational/library/05/419_soa/

13.1 Lessons learned
The main lessons we learned largely concerned the way in which members of
the team should work together. Primarily, these lessons revolved around the role
of the architect, and the relationship of the architectect with the business analyst
and IT specialist, and the policies and guidelines that are established for the
project by the business analyst and IT architect. The way these roles plan to
work together and how the tools support them, more than anything, will
determine the outcome of your integration project.

13.1.1 Business Modeling and IT Architecture
We found WebSphere Business Integration Modeler to be a useful requirements
and analysis tool:

� It helps to organize and document information about activities, roles,
resources, costs and processes that can be exported to the IT architect in a
formal model. This is a practical way to help the IT Architect and the Business
Analyst to use common terms to describe the scenario, sharing common
parts of their models of the solution.

� In the hands of an experienced business analyst, the model is an effective tool
for making rapid return on investment and resource usage predictions.

We place the emphasis on experienced because, with the goal of making
early predictions, detailed knowledge about process implementation will be
lacking. An experienced business analyst will be able to select the significant
cost elements and key activities without getting bogged down in trying to
model the process implementation details.

Who defines the executable business process?
We found the business analyst’s initial objectives of collecting requirements,
exploring process improvements, estimating resource requirements, and return
on investment is not congruent with the pressure from the rest of the team to
define an executable process ready for implementation as soon as possible.
There are a number of reasons for this, and these need to be understood by the
project manager in building a development plan:

� A matter of timing

Process definition needs to proceed in parallel with detailed business analysis
to get the project underway as a whole.
 Chapter 13. Points to consider 489

� A matter of the business analyst’s perspective, skills and experience.

– Analyzing a process from the perspective of looking for opportunities for
improvement is different from designing a process that will function
robustly in its use of a combination of manual and automated activities.

The process model developed by the analyst needs to be elaborated to
account for IT requirements and constraints that were not pertinent to
value of the business process.

– Analyzing and describing the process down to executable detail requires
more IT architectural skill than a business analyst normally possesses.

Be aware that the process model defined by the business analyst will most
likely not be a wholly adequate process definition for the rest of the project.

– IT experience is needed to recognize the impact and significance of
process changes on the underlying IT infrastructure.

In our project the analyst focused on the process improvements required
by LGI, but not on the business and IT relationships that needed to be
created between LGI and its assessors to make the automated process
work. Because of lack of skill and experience in Business to Business
(B2B) IT, the significance of replacing manual communication between
LGI and its assessors with automatic communication was not sufficiently
appreciated.

Here is a small example where additional analysis and use of best practice
patterns for B2B interactions would have avoided a problem that arose later in
our implementation.

In Section 10.4.7, “Configuring the flow to wait for responses from the assessors”
on page 416, the asynchronous responses from the chosen assessor are
implemented by being received directly into the RequestExternalReports
process.

The receive activity was imported directly from the process definition in the
business model. What was not fully appreciated until the IT specialist started
testing the process, is this model has an implicit requirement that the responses
from assessors are received in the right order, an acknowledgement followed by
the report. Otherwise, the process throws a fault.

Relying upon these two conditons makes for a fragile implementation:

� Assessor producing both responses and in the right order
� Infrastructure not jumbling up the responses

A better architecture would have been to introduce a public/private process
pattern common in B2B designs, and to model the partner interactions
separately from LGI’s RequestExternalReports process.
490 Build a Business Process Solution Using Rational and WebSphere Tools

It is also widely thought that a better IT model for protocol-based interactions is a
state machine-based model rather than a process model. WebSphere Process
Server Version 6 provides a mechanism for implementing state machine models
for business interactions.

Our conclusion is that the CIM must be the result of a collaborative engineering
process conducted by both the Business Analyst and IT Architect. The IT
architect, in building the IT model for the business process, discovers overlaps
and gaps which lead to the aggregation or creation of new components. These
modifications must be discussed with the analyst to understand the business
requirements for these components and the choice of an appropriate IT model.

For example, in the case of the External Claim Assessor scenario, the business
analyst would be invited to define the business requirements and business
processes behind the relationship between LGI and the external assessors. This,
in turn, would lead the IT architect to definite a state machine to implement the
relationship between LGI and the Assessors that could be robustly implemented.

From a process perspective, we recommend:

� The CIM is owned by the business analyst and one of the approvers should
be the IT Architect.

� The PIM is owned by the IT architect one of the approvers should be the
business analyst.

13.1.2 Export BPEL from WebSphere Business Integration Modeler?
We decided to import the BPEL from Modeler and refine it in WebSphere Studio
Application Development Integration Edition.

This approach had its genesis in our team following the development waterfall
paradigm supported by the tool chain. The BPEL was exported by the business
analyst to the process specialist.

There was a lot of interaction between the analyst and the architect in the
development of the BPEL model in the spirit of collaborative development. The
resulting BPEL was imported into WebSphere Studio Application Development
Integration Edition by the process specialist. However, the process specialist
found working with generated BPEL introduced difficulties because our
development standards, created by the architect using Rational Software
Architect, were not incorporated into the analyst’s model. Consequently, the IT
process specialist took the practical option of deleting a number of artifacts
generated in the BPEL in WebSphere Studio Application Development
Integration Edition.
 Chapter 13. Points to consider 491

Our recommendation, which is more practical with Version 6 of Modeler, is for the
process specialist, as a precursor to exporting the BPEL from modeler, to refine
the business process to make sure it meets all in-house standards, such as
naming standards and package structures. The process specialist can also
choose to model the data flows in the process model to generate BPEL more
closely resembling the final executable process.

13.1.3 Naming
Extensive renaming and refactoring is difficult to do in all the tools without
producing unwanted side-effects that are time consuming to fix. The issue is only
made more difficult with using multiple tools loosely coupled by import/export
mechanisms, and needing to work name and interface changes back into
multiple artifacts. We introduced more bugs and lost more time through
self-inflicted naming problems and interface changes than any other source of
problem.

� Limited refactoring capabilities beyond changing file names makes changing
the names of WSDL components particularly troublesome.

� Limited control over sharing artifacts between tools makes it all the more
important for the solution team to have a systematic approach to naming
objects and artifacts, a well-defined point of control such as a library system
and ownership of artifacts, and to review interfaces thoroughly before
proceeding to implementation.

� A particular problem with naming in this scenario is that there are a lot of
related objects, all of which end up getting very similar names. Because
interactions flow from one component to another, nothing really changes
except the endpoints. The result was that attempting to give things
meaningful names rapidly led to duplication and confusion. This was probably
our second biggest source of problems. The choice of names must be
analyzed in great depth by the solution architect.

Our suggestion is to give artifact names a short descriptive part and a simple
unique name tag, such as a short number. Naming can be federated by
prefixing the number with a letter for each department, AssessAvail_A1.wsdl,
for example. Avoid special characters, such as (,[,{ and so on at all costs! And
keep names and paths really short to avoid path length problems using
Eclipse products on Windows. Establishing a naming convention based on
components might help. We were continually asking: Is that the availability
request into the proxy or into the real assessor? Is that the availability
response back to the choreographer, or the response to the proxy?”. However,
we found the simple numbering of flows worked better than anything else.
492 Build a Business Process Solution Using Rational and WebSphere Tools

13.1.4 Metadata
We had a choice of three forms of metadata to use to describe our solution
interfaces:

� UML
� WSDL
� Mixture of WSDL and XSD

We chose to use WSDL. This led to some problems exchanging interface data
between WebSphere Business Integration Message Broker and WebSphere
Studio Application Development Integration Edition. These problems might have
been easier to manage had we used imported rather than in-line schemas in our
WSDL. There were a few occasions where interfaces diverged because the
in-line schemas in the WSDL definitions diverged unnecessarily, simply because
the schemas were developed in line at different times.

Now that WebSphere Business Integration Message Broker in version 6
supports WSDL import, our choice of using WSDL might prove less error-prone.
But we ended up thinking the problems resulting from out of sync in-line
schemas were so costly that using WSDL with imported schemas is the
preferable method. Using a common repository of schemas imported in different
WSDL files should encourage more reuse and less chance of spawning slightly
different message formats. This solution requires a little extra work to extract the
in-line schemas generated automatically from EJBs.

13.1.5 Service Bus
The implementation of the message flows in the broker took longer than
expected. This was partly a result of the version 5 broker not implementing the
SOAP 1.1 schema and not being able to import WSDL, and partly that by
adopting SOAP/HTTP as a transport, because of integration difficulties with
SOAP/JMS, we also introduced additional costs implementing distribution and
aggregation.

We also never tackled the problems of dealing with transport level
error-handling. Transport errors are better handled by the middleware when
using SOAP/JMS than they are with SOAP/HTTP. If two-way SOAP interactions
are used, then a good SOA architecture should address the issue of handling
SOAP fault messages on behalf of SOAP clients.

Some of these problems are immediately resolved by moving to version 6 of
WebSphere Business Integration Message Broker and using WebSphere
Platform Messaging as well as WebSphere MQ where appropriate. Some other
problems are resolved by studying patterns for SOA, such as in Patterns:
Model-Driven Development Using IBM Rational Software Architect, SG24-7105.
 Chapter 13. Points to consider 493

The lessons we drew from our experience with version 5 were:

1. Separate the architecture and implementation of the Service Bus from the
design and implementation of the proxyAssessorSystem components
implemented on the service bus.

The IT specialist, in implementing our broker components, was required to
create the basic message transport as well as implementing the specific
features required for the assessors. The components were not isolated from
one another sufficiently. The design is not readily extensible.

2. The architectural involvement in designing the bus and its components was
too light. The architect lacked the tools to describe the service bus down to
the level of interaction design. The implementer found that the version 5 level
of middleware left a lot of work to be done to create a service bus on which to
build the proxyAssessorSystem.

The root cause of these problems is we needed to revisit business
requirements with the help of the business analyst when the IT architect
identified the need for the proxyAssessorSystem. The result would have been
a better separation of concerns between the ESB and the process layer.

Better tooling for the ESB in WebSphere Version 6, better patterns and models
for SOA, and the implementation of state machines to implement business
protocols in WebSphere Process Server Version 6 would improve the design and
implementation of the service bus.

13.1.6 Conclusion
The business-driven development approach we adopted, creating a solution to a
specific business problem, focused the solution team on how to model the
solution and then how to refine the model into implementation using multiple
tools and middleware components.

Compared to established IT driven development, there was less emphasis on the
development of an IT infrastructure and more on driving the business
requirements as directly as possible into a solution.

We needed to give more attention to understanding and defining IT issues:
architectural issues were left to the IT specialists to solve in their implementation.
The project would have proceeded more smoothly had these issues been
resolved earlier. This was perhaps a manifestation of working in a laboratory, and
not working with a real IT infrastructure. Had this been a real project, then the IT
infrastructure would already have existed and more attention would have had to
be given to any changes to it.
494 Build a Business Process Solution Using Rational and WebSphere Tools

Nonetheless, there is a parallel to be drawn with real-world projects that follow a
Business Driven Development approach. It is important to identify early on what
changes and resources need to be allocated to the infrastructure team to build a
service bus that will support the capabilities required by new SOA solutions that
are deployed to it. This is part of a successful strategy for an On-Demand
operating environment.

13.2 Tooling and middleware changes
Since building the scenario, much of the underlying software has moved from
WebSphere Version 5 to Version 6. In some cases, this makes very little
difference to the architecture and implementation, but in others there are
significant improvements, both in opportunities to improve development
productivity and in making the solution more robust.

13.2.1 WebSphere MQ
WebSphere MQ has moved from Version 5 to Version 6. The only changes that
affect the project are:

� WebSphere MQ Version 6 uses an Eclipse rather than Microsoft
Management Console based explorer for management.

� WebSphere MQ Workflow support level should be upgraded for the queue
configuration to work smoothly with WebSphere MQ version 6.

13.2.2 WebSphere MQ Workflow
The support level for WebSphere MQ Workflow has increased from 3.1.4 to 3.1.7

13.2.3 WebSphere Application Server
WebSphere Application Server V6.0 includes WebSphere platform messaging
built on top of JMS. WebSphere platform messaging differs significantly from the
embedded messaging and optional plug-in WebSphere MQ messaging in
version 5. From an architectural perspective, WebSphere Application Server
messaging integrates with a WebSphere MQ server running on another server
and at the same time is a an integral part of WebSphere Application Server. This
should make it easier to build a messaging bus integrating the application server
and WebSphere MQ parts of the solution, and should make it possible, for
performance and reliability reasons, to build the one-way interactions between
Process Choreographer and the application components as SOAP/JMS
messages.
 Chapter 13. Points to consider 495

13.2.4 WebSphere Business Integration Message Broker
WebSphere Business Integration Message Broker includes a JMS node that
makes integration with WebSphere Application Server using a SOAP/JMS bus
much simpler.

WebSphere Business Integration Message Broker also has support for the
SOAP schema, for importing WSDLs, and for aggregating SOAP/Http requests,
which will greatly improve the productivity of the IT specialist responsible for
building the broker component of the scenario.

WebSphere Enterprise Service Bus provides an alternative runtime mapping for
the service bus component in the solution architecture. There will need to be
further investigation of the solution to decide on the version 6 product mappings
for the service bus. One area of improvement the IT architect will be looking for in
the new WebSphere Enterprise Service Bus product is better integration with the
tooling used to create services. The costs of deploying a service on a service bus
need to be no greater than deploying a service in a point-to-point connection.
The difference in deployment costs was one of the reasons why in version 5 the
IT architect opted for a process-centric rather than a bus-centric product
mapping.

13.2.5 WebSphere Business Integration Server Foundation
WebSphere Business Integration Server Foundation has been superseded by
WebSphere Process Server version 6. This has some effect on the architecture
of the scenario. WebSphere Process Server uses WebSphere Platform
messaging, rather than having WebSphere MQ running as a messaging service.
One implication is the point-to-point connection between WebSphere MQ
Workflow and WebSphere Business Integration Server Foundation cannot be
migrated automatically to WebSphere Process Server.

If you recall, in Section 5.5, “Step 3: Select and merge the runtime patterns” on
page 176 we chose a process focused runtime pattern and this point-to-point
connection between WebSphere MQ Workflow and WebSphere Business
Integration Server Foundation was one of a number of point-to-point connections
that should now be migrated. It makes sense to revisit the choice of runtime
pattern, and decide to opt for the broker focussed (or ESB) pattern for version 6,
rather than the process-focused pattern we used in version 5.
496 Build a Business Process Solution Using Rational and WebSphere Tools

13.2.6 WebSphere Studio Application Development
Integration Edition

WebSphere Integration Developer has replaced WebSphere Studio Application
Development Integration Edition in version 6.

There are a lot of detailed improvements in the tooling which will make the
organization of the development project easier, and development more
productive. Three changes in particular are of note because they affect the way
we built the scenario.

1. The Assign activity is now able to handle references to complex messages.
This will eliminate the need to create transformations for the simple
one-to-one message mappings in the process. The Assign activities in the
BPEL exported from Modeler are more likely to be retained in the execution
flow.

2. There is a new kind of project concept, rather like the idea of the Message set
in the Broker, which enables WSDL files easily to be stored in a separate
project and referenced from multiple flows. This encourages more modular
flow development, and should reduce the opportunity for making deployment
errors by mistakenly storing WSDLs in a folder that was not visible to the
deployment wizard.

3. The integration of the test server, in WebSphere Integration Developer, uses
the approach adopted in the Rational tooling products. There is close
integration between the tooling and runtime server. This makes it simpler to
test on the server runtime rather than creating a special embedded test
server.

One immediate benefit is that it is a easier to apply maintenance to the run
time server than the embedded test server, and there are potentially fewer
server environments to manage. A second benefit is for the developer a
smoother transition from unit test into a full scale test environment.

A final area to look for improvement is in the wizards that create transforms and
java snippets that aggregate multiple input messages to produce one output
message.

13.2.7 WebSphere Business Integration Modeler
Modeler version 6 is an evolutionary change from version 5. The major area of
enhancement, modeling business measures, comes outside the scope of this
scenario.
 Chapter 13. Points to consider 497

There have been some minor changes that improve the integration of the
Modeler with the rest of the solution, principally:

1. The BPEL that is generated to import into WebSphere Integration Developer
is simpler to use.

2. The content of what is imported has been broken down into smaller pieces, so
rather than import the whole model, it is possible, for example, to import the
process and not the data model.

This would immediately eliminate the first step that we took in the refinement
of the Modeler BPEL in WebSphere Studio Application Development
Integration Edition. We had to delete all the partner links and associated
message structures as the interfaces were being imported from Rational
Software Architect.

13.2.8 Rational Software Architect
We were already using Rational Software Architect version 6 in the scenario, and
during the course of this Redbook, we upgraded to Fixpack 1, which improved
the stability of the integration with the WebSphere Business Integration Modeler
feature.

The functionality we were most in need of developing in Rational Software
Architect was a transformation between UML and WSDL. It would have been
possible for us to create our own transformation plug-in using the extensibility of
Rational Software Architect that is described in Patterns: Model Driven
Development using Rational Software Architect, SG24-7105.

Check whether IBM, or another vendor, has developed the plug-in. There are
papers that discuss the issues of transforming between UML and WSDL. See for
example, IMS General Web services UML to WSDL Binding Auto-generation
Guidelines, found here:

http://www.imsglobal.org/gws/gwsv1p0pd/imsgws_transfv1p0pd.html
498 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.imsglobal.org/gws/gwsv1p0pd/imsgws_transfv1p0pd.html

Part 4 Appendixes

There are two appendixes. Appendix A, “Additional material” on page 501
describes the resources provided for you to work through the examples.
Appendix B, “Integration considerations” on page 505, is provided by Jim
Amsden, the author of the WebSphere Business Integration Modeler integration
with Rational Software Architect. It explains the reasons behind how Jim
designed the integration.

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 499

500 Build a Business Process Solution Using Rational and WebSphere Tools

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246636

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246366.

Using the Web material
The additional Web material that accompanies this redbook includes the
following file:

File name Description
SG24-6636.zip Zipped materials

A

© Copyright IBM Corp. 2006. All rights reserved. 501

ftp://www.redbooks.ibm.com/redbooks/SG246636
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

The instructions on using the Web material are in the body of the Redbook.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 60GB
Operating System: Windows 2000 or later.
Processor: Intel Pentium M 2GHz or equivalent
Memory: 2GB minimum

The materials are organized around running the tooling in a native Windows
machine and splitting the runtimes into two VMware images which can run either
on the same machine or on an ethernet connected LAN. It is possible to run the
configuration on a Thinkpad T42p with the resources described about, but it is
tight as with one tool and two VMs running the memory demand is just over 2GB.

How to use the Web material
Unzipping SG24-6636 will create six top level folders containing materials for
each tool.

� Broker
� Modeler
� RSA
� WAS
� Workflow
� WSADIE

The Workspace subfolders in all the tools are empty because they would add
hundreds of megabytes to the .zip file. All the workspaces have been
compressed in a tool specific manner and the .zip files stored in project or zipped
workspace directories.

Important: Because of long path and filenames it is possible if you use the
Windows built in Extract... wizard for compressed folders you will not reliably
recreate the uncompressed contents. It will probably work.

The compressed folders have been uncompressed and then tested using the
WINZIP utility successfully. It is important that you unzip the folders into a
short path, preferably a drive root directory, before moving the folders
somewhere more convenient.

If you are not familiar with the Windows SUBST command to create an
abbreviated path, try searching for help on SUBST using the Windows help
wizard to help you plan where and how to decompress the materials.
502 Build a Business Process Solution Using Rational and WebSphere Tools

With the exception of the Broker the utility to unzip a compressed workspace is
part of the tool, though the terminology and procedure to reload the workspace
varies. In Rational Software Architect and WebSphere Studio Application
Development Integration Edition for example, the workspace is stored as a
Project Interchange file.

In the case of the broker there is no utility in the workbench to export and import
workspaces. However, if you use the WINZIP utility and uncompress the zipped
workspaces to a root drive you will be able to reload the compressed workspaces
successfully. The Tip: on page 295 describes how to invoke a broker workspace
from a nondefault location in the file system.
 Appendix A. Additional material 503

504 Build a Business Process Solution Using Rational and WebSphere Tools

Appendix B. Integration considerations

WebSphere Business Integration Modeler currently supports model export for
import into XDE models that have the Business Modeler profile applied. This
appendix describes the philosophy, requirements, design, and implementation of
integration between WebSphere Business Integration Modeler / BOM (Business
Object Models) , and Rational Software Architect / UML2 models.

B

© Copyright IBM Corp. 2006. All rights reserved. 505

Integrating WebSphere Business Integration Modeler
andRational Software Architect

The integration of WebSphere Business Integration Modeler and Rational
Software Architect / Rational Software Modeler is based on the translation of
BOM models to UML2. This translation treats the BOM models as a contract
specifying what implementations in Rational Software Architect need to do. The
WebSphere Business Integration Modeler models are not treated as something
that is elaborated or transformed into implementation, but rather something that
specifies the contract for what an implementation must do, not how it does it.

The contract is made up of two parts. The static part, or usage contract, specifies
what clients must know in order to use services implemented in UML2 using
Rational Software Architect. These are the tasks that are invoked in the BPEL
process generated from WebSphere Business Integration Modeler. The usage
contract consists of the provided and required interfaces. From WebSphere
Business Integration Modeler these are extracted from the requiredRoles
assigned to tasks in the business processes. For each task in a process
assigned to a role, we create an interface for that role and add an operation
corresponding to the invoked task. Note that not all the business process will be
realized, nor do all operations in all roles need to have direct implementation.
However, if a process is automated (and therefore has a corresponding BPEL
process that orchestrates the responsibilities of the required roles), all of the
tasks in that process have to be invoked somehow. That is, they must have some
realization in Rational Software Architect, even if that implementation is only
sending an Email, SMS message, task item in an agenda, a temporary alarm
pop-up, or an entry in a workflow inbasket. So the interfaces corresponding to
the BOM roles form a nice way to capture the usage contract in Rational
Software Architect.

The realization contract is the business process itself. The best way to model this
in UML2 is to create a Collaboration containing an Activity that is the UML2
version of the business process. The roles in the collaboration correspond to the
requiredRoles in the BOM model. These are the roles that are assigned to each
task in the business process. In UML2, the roles correspond to an InputPin that is
the target of a CallOperationAction. The name of the input pin is the name of the
BOM resource requirement while its type is the Interface corresponding to the
role containing the invoked operation. The CallOperationAction::operation is also
set to the operation in the role interface.

Usecases corresponding to business processes from the BOM model are also
created in order to provide a higher level view of the business requirements and a
place to specify non-functional characteristics. These use cases are realized by
the collaboration generated for the BOM business processes. There is no need
506 Build a Business Process Solution Using Rational and WebSphere Tools

for additional, nonstandard dependencies, nor is there any missing traceability
between the BOM and UML2 models.

The Collaboration can then have any number of Classifiers that contain
CollaborationOccurrences which bind parts to the roles in the collaboration
thereby providing an implementation that fulfills the specified contract. There are
no constraints on how these classifiers are organized. They will generally have to
address other system use case, architectural, and nonfunctional concerns over
and above the functional requirements specified by the Collaboration contract.
As a result, there is a large degree of freedom about how the implementation is
modeled and transformed into an implementation. But, in the final
implementation, the required interfaces specified in the contract, and generated
from the required roles in the BOM model will be realized somehow. As a result,
the BPEL generated from the BOM model will be able to easily invoke the
required tasks.

This approach is more complicated than what was done for the import/export
between WebSphere Business Integration Modeler and XDE. However, it
provides a formal way of defining the integration between the products that
leverages the capabilities of both while minimizing the overlap and duplication
(and resulting reconciliation problems). The Rational Software Architect model
will be able to directly refer to Collaboration, Interfaces, and Operations in the
BOM model without copying. The BOM model can be read-only from the Rational
Software Architect model since there is no need to change the specification
contracts in order to build an implementation. Any changes in the BOM model by
WebSphere Business Integration Modeler will be immediately visible in the
Rational Software Architect model eliminating any transformation or
reconciliation errors or latency. This might require refreshing the shortcut, or
exiting Rational Software Architect and restarting. We're looking at how to
include the WebSphere Business Integration Modeler models in the Rational
Software Architect editor so that it is automatically notified of changes. But this is
not likely.

Note also that this integration strategy is consistent with the Enterprise
Application Architecture profile used for modeling complete business
applications, including architectural concerns. As a result, WebSphere Business
Integration Modeler can be used to create business models that define the
contracts for business applications, while EAA can be used to capture those
contracts in standard UML2 allowing the reuse of emerging transformations to
WebSphere platforms.

The specific requirements are:

1. Configure Rational Software Architect to be able to load the WebSphere
Business Integration Modeler 5.1.12 resources.XMI file and transform it into
 Appendix B. Integration considerations 507

UML2 with the UML BM profile applied. This eliminates the need for export
and import operations and makes the tools better integrated.

2. Automatically apply the BM to imported models.

3. The loader will read WebSphere Business Integration Modeler files using a
custom EMF resource, and convert them into UML2 so the WebSphere
Business Integration Modeler / BOM models can be views from the Rational
Software Architect model explorer and integrated with other UML2 models.

4. The translated BOM model may be saves as a standard Rational Software
Architect .emx (XMI2.1) file extended with the Rational Software Architect
implementation of the UML BM (Business Modeler) profile in plug-in
com.ibm.xtools.buzmodeler.

5. Developers do not have to have WebSphere Business Integration Modeler
installed. There must not be any additional coupling between Rational
Software Architect and WebSphere Business Integration Modeler. Rational
Software Architect cannot require the WebSphere Business Integration
Modeler meta model to be installed.

6. Loads only the WebSphere Business Integration Modeler BOM model
elements, not any diagrams.

7. SupportWebSphere Business Integration Modeler Advanced Version 5.1 and
5.1.1.

Business Process and Application Development Use Case
This use case is not intended to address all aspects of business process
modeling, integration with object modeling, or application generation and
deployment. It is intended to give a broad overview of those subjects in the
context of WebSphere Business Integration Modeler and Rational Software
Architect integration, and represent a simple, but typical end-to-end development
process.

Use case Steps:

1. UseWebSphere Business Integration Modeler to discover and capture key
business processes.

– Capture business data items that are exchanged between processes and
tasks.

– Assign tasks to roles

– Determine required resources

– Organization

2. Simulate the business processes for validation and to determine optimal
resource allocation.
508 Build a Business Process Solution Using Rational and WebSphere Tools

3. Determine opportunities for software automation.

4. Use Rational Software Architect to create an implementation model.

5. Open the WebSphere Business Integration Modeler model in Rational
Software Architect to view the business contract.

6. Realize the contract using facilities of Rational Software Architect.

7. Generate and deploy the Rational Software Architect implementation.

8. Generate the process choreography using WebSphere Business Integration
Modeler.

9. Bind theWebSphere Business Integration Modeler tasks with their
implementations produced by Rational Software Architect.
 Appendix B. Integration considerations 509

510 Build a Business Process Solution Using Rational and WebSphere Tools

acronyms
.Net “dot Net” Web service
platform on Windows
(Microsoft)

ABD Asset Based Development

ANT Another Neat Tool

B2B Business to Business

B2C Business to Consumer

BDD Business Driven Development

BM Business Model

BOM Business Object Model

BPEL Business Process Execution
Language

BPEL4WS Business Process Execution
Language for Web service

BPM Business Process
Management

CICS Customer Information and
Control System

CIM Computer Independent Model

CTG CICS Transaction Gateway

DB/2 Database (IBM)

DMZ Demilitarized Zone

EAI Enterprise Application
Integrations

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise Java Bean

ESB Enterprise Service Bus

ESB Enterprise Service Bus

FDL Flow description language

Http Hypertext Transfer Protocol

Https Secure Http

Abbreviations and
© Copyright IBM Corp. 2006. All rights reserved.
IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IDL Interface Definition Language

IT Information Technology

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Architecture

JMS Java Messaging Service

JNDI Java Native Directory
Interface

LAN Local Area Network

MDA Model Driven Architecture

MDD Model Driven Development

OAG Open Applications Group

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

RMI-IIOP Remote Method
Invocation-Internet
Interoperability Protocol

RSA Rational Software Architect

RUP Rational Unified Process

SOA Service Oriented Architecture

SOAP Simple Object Access
Protocol

SOI Service Oriented Integration

SQL Structured Query Language

SSL Secure Sockets Layer

UML Unified Modeling Language

WBI WebSphere Business
Integration
 511

WSDL Web services Description
Language
512 Build a Business Process Solution Using Rational and WebSphere Tools

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 514. Note that some of the documents referenced here may be available
in softcopy only.

� "WebSphere and .Net interoperability using Web services", SG24-6395

� "Continuous business process management", SG24-6590

� Using a Single Business Pattern with the Rational Unified Process (RUP)",
REDP-3877-00

� Patterns: Model Driven Development using Rational Software Architect,
SG24-7105

� "On demand Operating Environment: Creating Business Flexibility",
SG24-6633

� "Continuous business process management", SG24-6590

� "BPEL4WS Business processes with WebSphere Business Integration:
Understanding, Modeling, Migrating", SG24-6381

� "WebSphere Business Integration Server Foundation 5.1 Handbook",
SG24-6318

Other publications
These publications are also relevant as further information sources:

� “The inmates are running the Asylum”, Alan Cooper, 1999. ISBN
0-672-31649-8, SAMS - Macmillan publishing.

� “The Unified Modeling language User Guide”, Grady Booch, James
Rumbaugh and Ivar Jacobson. Addison-Wesley, 1999 ISBN 0-201-57168-4
© Copyright IBM Corp. 2006. All rights reserved. 513

Online resources
These Web sites and URLs are also relevant as further information sources:

� Sue Bayliss and Larry Yusuf , “Merging disparate IT systems, Part 1: Use
business process management to create integrated solutions”, IBM
developerWorks, found at,

http://www-106.ibm.com/developerworks/ibm/library/i-merge1/

� Sue Bayliss and Larry Yusuf , “Merging disparate IT systems, Part 2:
Understand the claim system”, IBM developerWorks, found at,

http://www-128.ibm.com/developerworks/library/i-merge2/

� Donald Light, “Deriving insurance business value from business process
management tools”, Building an Edge, Vol. 5, No. 11, November 9, 2004,

http://www-1.ibm.com/industries/financialservices/doc/content/bin/bae_nov_2
004.pdf

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
514 Build a Business Process Solution Using Rational and WebSphere Tools

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-106.ibm.com/developerworks/ibm/library/i-merge1/
http://www-128.ibm.com/developerworks/library/i-merge2/
http://www-1.ibm.com/industries/financialservices/doc/content/bin/bae_nov_2004.pdf

Index

Symbols
.NET services 195

Numerics
2-pane layout 84
4-pane layout 85

A
ACTIONASSESSOR 316, 341–342, 345, 350
ACTIONASSESSOR table

inserting request for assessment report 345
storing assessor confirmations 280

Administration Console 227, 256–257, 477
application

developer
Roles 65

event log 374
integration 169
Patterns

broker variation 175
choosing 171
exposed broker 173–174
how components interact 58
mapping to runtime 154

patterns 58
parallel process 179
primary IT driver 174
selecting 154
workflow variation 176

server 27
backend transaction server 32
changing the Windows services properties
227
choice of 27

for DirectCar 31
cluster 14
configured to use WebSphere MQ as JMS
provider 31
connected to Message broker 28
consolidated web site 67
deploying 256

.ear files 256
© Copyright IBM Corp. 2006. All rights reserved.
DirectCar 31
fixes required for workflow 228
hosting

application management system 245
Document Management System 251
JSPs 27

installing WA0D supportpac 478
J2EE technologies 27, 31
mapping to queue managers 221
multiple nodes 27
Network deployment 27
providing GUI for workflow 454
running web services 178
starting as Windows service 241
startup command 241
supporting WebSphere MQ 27
test environment 202
Web services gateway 221
WebSphere 28

platform messaging 495
wrapping back-end applications 14, 22

application integration
application patterns for 175
broker focussed combination of patterns 178
business integration pattern 173
controlling projects 293
enterprise 294, 302
Five axes of Business Application Integration
56
On demand operating environment 41
Patterns 169, 171, 262

business drivers for 175
combining with extended enterprise pattern
171
elements 171
exposed broker 174
parallel workflow 175
select 171
SOA 177
to-be system 173

process focussed combination of patterns 180
services 171
software 4

architects, using patterns 58
 515

as-is and to-be issues 63
as-is system

(P4eb) 172
creating collaboration diagram 154

assessment report
assessor

declines to produce report 424
submitting 97

automating getting reports from assessors 5
claim handler

requests 20
requests an assessment report 20

handled by StoreAssessmentReport service
251
implementation of assessor system 254
inserting request into ACTIONASSESSOR table
345
managed by document handler system 251
Message broker

design to request report 190
flow 192, 279, 319, 340–341, 345

paying for 34
receiving

report in process choreographer 392
request for from claims workflow 183

reply containing 423
requesting report using ESB 167
setting the SOAP address to send assessment
report request to 353
storing in Document Management System 167
tracking status of assessor processing 9
use case

step 10 162
step 9 162

Assessor 198
Assessor Automation

AAS - Assessor Automation System 279
applying product mappings 180
asynchronous flows 192
capabilities 244
configuring choreographer interfaces 397
definition of 183
deployment on a new process server 178
description of 244

capabilities 183
interfaces 189

importing WSDL interfaces 381
including in collaboration diagram 191
interaction

in sequence diagram 190
with business rules engine 189

interface
assessor management system 244
business rules engine 248
descriptions 189
document management system 251
workflow 211

invoking assessor proxy 189
point to point interactions 179
roles of partner link 396
routeinteractions through ESB 179
sources of interface information 198–199
steps in sequence diagram 189
summary of interfaces 213
system components 244
use of direct connection model 179
WSDL interfaces 198–199, 265–266

Assessor Management
automation of 6
automation proof of concept 10
brief summary 182
business goals 7
Business Worker 210
creating

UML component diagram 210
Web service 246

defining interface in UML component diagram
210
definition of capabilities 244
deploying onto WebSphere Application Server
442
description of interface to assessor automation
component 189
existing system 73
exposed operations 244
generating WSDL from 197
identifying assessor 8
keeping costs down 9
operations on 244
owning routing information for assessors 408
packaging as an EJB 245
populating UML component diagram 163
Role 210
summary description of capabilites 166
visualization of EJB 245

AssessorManagement Service
incorporating interface into UML model 210
inspecting WSDL interface 208
516 Build a Business Process Solution Using Rational and WebSphere Tools

tracing interface flow 450
AssessorProxySystem, interface description
189–190
assessors

activities in overall business process 97
activities in to-be process flow 96
administration of assessor management system
244
any assessors available? 420, 423
asking for availability 418
assigning

correct resource for simulation 129
work time to role in Modeler 113

asynchronous messages from 388
available 249, 278–279
business process relationship with LGI 490
client application to deliver assessor responses
255
common service for both LGI and DirectCar 19
confirmation stored in ACTIONASSESSOR ta-
ble 280
connection to LGI 283
contacting 12
contracting,services from 6
correlating

assessors replies in the Message broker
333
responses 417

costly delays in contacting 6
creating activities to receive messages in pro-
cess choreographer 392
criteria for selecting possible assessors 8
database 20
declaring variable to contain a list of assessors
411
defined as external resource in Modeler 108
destinations 424
different systems 168
distributing requests 184

using ESB 73
dynamic distribution to multiple assessors 174
ESQL function to set URL 353
external interfaces to proxyAssessorSystem
252
Extracting AssessorURL in java snippet 411
fanning out requests 212
faxing 12, 23
flows 279
forwarding responses through the broker 345

getting list from Assessor Management Service
450
handling no available assessor 424
how long to wait for response 248
ignoring HTTP reply 422
implementation of External Assessor System
252
information returned from Business Rules En-
gine 408
interactions 189
interactions summary 278
interfaces 189
iterating through list of assessors to find Url 413
list of potential assessors 166
manipulating responses from in process flow
422
manual selection of assessor in automated pro-
cess 424
manually

select 102
selecting an assessor 425

manually requesting
assessment 21
reports from 172

measure performance of 9
mediation

between LGI 164
by proxyAssessorSystem 164

Message broker interfaces 279
modeling

as a bulk resource in WebSphere Business
Integration Modeler 110
interactions with 99
resources 115

monitoring activities 156
none to perform assessment 418
organization unit in Modeler 107
owning routing data to 408
part of merged solution context 15
pattern to interact with 175
performance of 35
profile 249
proxyAssessorComponent 178
receiving acknowledgement from 418
reducing

costs 5
coupling to 182

response time contract with LGI 282
return availability 288
 Index 517

routing requests through broker 264
scaffolding list in Assessor Management System
EJB 443
selecting

an assessor 182
best assessor 182
the application pattern for 171

showing only one assessor in collaboration dia-
gram 178
simulation as EJB 221
specialist companies providing estimates 17
storing

array in process choreographer 421
details of requests in CLAIMASSESSOR ta-
ble 280

supporting different insurance policies 248
table of 442
timeouts waiting for 283
transport independence 276

flows 278
two response time contracts 283
types of connection 262
UML activity diagram 255
using

business rules engine to select 167, 418
Message broker to simulate 448
RESOLVEASSESSOR table to select the in-
teraction protocol for an assessor 281
Route To Label 276

variety of protocols to contact 283
waiting for responses 416
workflow activity to request assessment report
20
writing java snippet to retrieve list of assessors
411

assessorURL
autogenerating accessor code

 413
in java snippet 413

copying from input to output message 358
correlating with AssessorID in the process en-
gine 409
creating java snippet 411
defined

in WSDL message 409
defined in

ACTIONASSESSOR table 280
CLAIMASSESSOR table 280
WSDL message 409

field in assessorList 245
generating loop to match in java snippet 412
mapping from SelectedAssessor to action-
AssessorRequest message 414
missing from input message 407
parameter in PreferredAssessor service 250
saving in local environment 356
setting

in java snippet 413
SOAP address 359

updating in global variable 411
used in ESQL 287–288, 355
using in transformer mapping 414

Assign Activity
implementation of mapping activity 400
tooling improvements in WebSphere Integration
Developer 497

autocomplete
AssessorURL 413
doesn’t work

need to organize imports 412
ESQL generated in the Message broker 354
get variable wizard 411
problems in Message broker when using multi-
ple message sets 295
set variable wizard 413
using CTRL-SPACE 422

Automated Assessor
Management system 7–8, 12

business goals understood by solution archi-
tect 10
capabilities 6
improving customer satisfaction 8
IT goals 9
IT requirements 9
not bet the business 7
proof of concept 11
reducing administrative delays 9
reuse 7–8

automated solution, goals 8

B
back-end

application
hiding complexity of 15
off-the-shelf 22
perform other processing 14
replies from 14
518 Build a Business Process Solution Using Rational and WebSphere Tools

routing to 20
systems

called by workflow activities 30
off-the-shelf claims application 22
transformations and routing to 14
very different 4

best practices, followed by business analysts 55
Best-practice guidelines, provided by patterns 58
black boxes, in the fractal study of component rela-
tionships 65
BOM model

business processes 506
Conversion into UML2 506, 508
required roles 507

boundaries of the solution, established when using
the PIDA process 65
bpeconfig.jacl, configuring the business process
container 239
bpeInterop.jar

configuring the WA0D supportpac 477
replace in the server library 481

BPEL 34, 377, 431, 437
and partner link 212
Assessor Automation designed as BPEL flow
183
Assign Activity compared to transformer or java
snippet 400
Assign Activity to initialize while loop 428
avoiding incorrect BPEL in Modeler 147
best practices for BPEL mode in Modeler 144
better integration between Modeler and Web-
Sphere Integration Developer in version 6 497
choice of representation in WebSphere Studio
Application Developer Integration Edition 382
choice of tooling 79
CIM 54
compensation

forward service 425
correcting link errors in BPEL process 427
creating a loop 424
decision node 144, 146–147

output branches 148
editor for process choreographer 389
editor visualization in WebSphere Studio Appli-
cation Developer Integration Edition 386
errors in deployment 441
examples in additional materials 151
export from Modeler 383, 491
features in different versions of Modeler 82

finding the path to a process service 444
ignore warnings from Modeler 383
imported into WebSphere Studio Application De-
veloper Integration Edition 390
importing into WebSphere Studio Application
Developer Integration Edition 385
in model driven development 181
interoperating with FDL processes 10
invoking a BPEL process from MQ Workflow
462
LGI cautious when adopting new technology 34
listing problems with BPEL in Modeler 143
main artifacts exchanged in development 74
making executable 144
mapping between Modeler and WebSphere Stu-
dio Application Developer Integration Edition
387
mapping to UML2 506
Modeler 86
Modeler constructs not represented in BPEL
149
monitoring events in BPEL 80
more selective import in version 6 498
more technical information about 81, 143
open standard 39
open standards 10, 181
options selected for BPEL export from Modeler
384
pick activity 416
precise specification of the process flow 424
process integration 455
process specialist tasks 51
refined in Modeler before exporting 83
refining the assign activities exported from Mod-
eler 401
refining the flow in WebSphere Studio Applica-
tion Developer Integration Edition 403
relationship

between business and IT model 53
to web service and EJB 394
to WSDL in Modeler 384
to WSDL interfaces 395

responsibility for correct BPEL 378
restrictions in BPEL mode in Modeler 149
selected in Modeler export wizard 150
service

detecting failure to respond 432
setting breakpoint in WebSphere Studio Applica-
tion Developer Integration Edition 448
 Index 519

simpler to work with BPEL generated with ver-
sion 6 Modeler 498
staff activity

expiration 432
subset of Modeler model elements 149
transforming into executable flow 387
using partnerlinks 378
validity checked in Modeler 383
when to export from Modeler 382

BPEL4WS process, See BPEL
BPM

concept of 76
core process engine 77
IBM’s suite of tools 78
maturity model 54
moving to open standards 79
only part of SOA 41
province of business analyst 42

BuildTime user interface, existing BuildTime pro-
cess 472
Business

Driven Development 4, 45, 494
Integration, Pattern 60, 154, 169, 171–173
Modeler (BM) UML profile 508
Monitor 7, 78, 80
Process, very interactive development 107
Rules Engine 9, 167, 182, 248, 392, 409, 418
Sponsor, line of business executive 47

business
change 3–4, 8, 12
components 11, 54
context diagram 46
dashboard 35
event monitoring 169
flexibility 40
goals 3–4, 7, 9, 11, 33, 35, 48, 156, 167, 424
model 45, 53–55, 77, 84, 490, 507
needs 9, 40, 43–44, 430
partner 4–5, 26–27, 29, 34, 171, 416
requirement 48–49, 55, 57, 70, 74, 153, 494,
506
rules 7–9, 48, 107, 115, 163, 167, 170, 182,
189, 191, 195, 198, 212–213, 248, 268, 391,
408, 411–412, 418
rules engine 7, 9, 107, 115, 163, 167, 182, 189,
191, 195, 198, 212–213, 248, 391–392,
408–409, 411–412, 418
scenarios 3, 64
service 50

Sponsor 47
Story 61
transformation 43

business analyst
business modeling tool 72
clarifies process

model 432
clarifying process

model 432
collaborating with solution architect in work-
shops 107
collaboration with IT architect 491
completed process definition 135
contracts with 54–55
defined timeouts for message nodes 283
defines CIM 379
defines process activities 163
definition of role 10, 48
develops process

model 53
documenting business process 52
features attractive to analyst in Modeler 117
gathering requirements 155
identified operations and roles 162
investigate process improvements 35
job responsibilities 48
lessons learnt 489
Modeler suited to 382
modeling claim investigation 84
modeling needs 54
negotiation with sponsor and IT architect 55
part of development team 44
passes process to IT process specialist 77
passing responsibility for project 134
primary user of Modeler 83
provided specification for process specialist
377
putting brakes on specification changes 52
relationship with architects 489
review

IT model 53
Rational

Software Architect

 55, 214
sharing BPEL model with architect 53
sharing process definition 77
simulations used to size IT requirements 181
specialist in the business domain 10
user of IDE 76
520 Build a Business Process Solution Using Rational and WebSphere Tools

using
contract model of development 72
Modeler to analyze requirements 489

when to renegotiate contract with analyst 191
business goals, administrative delay 7–8, 156
business partner

continued support 27
EDIFACT interface 26

business process
departmental operations 40
life cycle protocol 470
long running attribute 480
UML2 version 506

C
capacity planning 49
Choreographer plug-ins 472
choreographer process

building a proxy to 474
invoked by MQ Workflow 473–474
invokes MQ workflow 473
routing to correct process 477

CICS 10, 29, 31–33, 241
COMMAREA 29
Transaction Gateway (CTG) 31

claim
ClaimID 244, 248–251, 280, 288, 292,
331–333, 336, 338, 342–343, 355–358, 362,
367, 408, 415–417, 433, 435, 443, 465–466
handler 6, 8–10, 12, 14, 19–23, 27, 33, 47, 77,
94, 97, 107, 110, 113, 115, 125–127, 132,
157–162, 165–166, 168, 177–178, 183, 418,
423–424, 429–432, 441, 454

optimal number 77
requests assessment report 20
switch work 77

investigation process 453, 458, 462, 467–468
payment 12
process 5–7, 9–12, 15, 18–20, 22, 35, 47, 51,
76–77, 79, 84, 135, 156, 162, 167, 283, 424, 430

External Assessor portion 6
real time business view 35

system 1, 5–7, 13–14, 18, 20–25, 171–172,
181, 183, 190, 199, 213, 368, 370, 392, 408
validation 31

Claim_DataInput 91, 465
CLAIMASSESSOR

table 315, 335–336, 356–357

table, Flow4a 279, 288, 322, 336–338, 345, 362
ClaimInvestigation process 87, 94–95, 97–98, 130,
138–139, 455, 459, 467

Error view 138
new project 87

ClaimInvestigation_TOBE 97–98, 106, 129, 133,
136, 157–158, 161, 163, 165, 173, 190, 408, 458
Clearcase 45
ClearQuest 45, 155
COBOL 31–33, 248, 273
collaboration diagram 154, 172

as-is system 172
collaboration, definition 63
collaboration, identifying 61
Collating requirements 153–155
COMMAREA, CICS 29
Common Event Infrastructure (CEI) 79
Company History 4
Compensation

definition 424
runtime support for 450
warning messages 438

compensation service 425
complex system 61
component selection, use of non-functional require-
ment 60
Computation Independent Model (CIM) 68, 379,
382–383
conditional links 388
Context, associated with UML collaboration 63
Converge

fractal thinking 66
correlation set 388, 416–417
coupling of data, solution data model 408
customer partnership program 13

D
Data

architect 49, 194
Modeling 49, 85, 168, 194–195, 383, 408
structure 89, 135, 178, 387, 411, 458–459, 461,
463, 465–467

FDL version 135
database table 49, 274, 279, 314, 332, 336–337,
347, 440, 481
Database.EMERGE.CLAIMASSESSOR 288,
356–358, 367
DB/2 8.1 Enterprise 228
 Index 521

DB2 31–32, 228–229, 232, 234, 239–240, 269, 271
decision node 144, 146–147

output branches 148
departmental stovepipes 42
deployment

architecture 220
planning 57

design decision, impact of 52
desired behavior, envisaging a solution 61
DirectCar 4–6, 14–15, 18–19, 22–27, 29, 31–34,
168, 181
Directory 87, 139, 150–151, 168, 198, 215,
225–227, 240–241, 275, 290, 298, 384, 414,
430–431, 445–446, 451, 461, 467, 476–479, 482
Distribute-Recurse-Converge

fractal thinking 65
DMZ 184, 221
DNS 263
Document

Handler 73, 107, 115, 126, 163, 190–191, 251
Management System 97, 167, 250
Management System, storing assessment re-
port 167

DTD 29, 273, 297

E
EA, Enterprise Architecture 42
ear file

application skeletons 198
bpeInterop.ear 477
business process 450
configuring WA0D jacl script to point to different
.ear file 484
creating new project 202
creating web service from 246
generating WSDL from 208
importing 208, 246, 442

into Rational Software Architect 199
WebSphere Studio Application Developer In-
tegration Edition 442

installing 257, 451
modifying 443
problems copying WSDLs into .ear file from busi-
ness process 381
removing test database from 438

e-business
applications 58
Patterns 58–59

solutions 58
e-Business, Patterns methodology 187
Eclipse Modeling Framework (EMF) 44
EDIFACT 26
EDIFACT, Converting into XML using Message bro-
ker 29
EJB

Assessor 182, 221
Assessor management system 182
building 436
Business rules engine 183
Claims system 28
component 27, 31, 33
copy user code 294
Deploying 482
difficult to program delays into 370
DirectCar applications 31
entity bean 31
Example of UML visualization 245
existing 181
extracting UML description 197
generate

from Web service 196, 202
from WSDL 202

IT specialist
tasks 51
writing 51

lists of files containing application EJBs 198
mediating between Workflow and Process Cho-
reographer 379
modifying 443

reflect WSDL changes 294
projects in Rational Software Architect 246
relationship to BPEL process 394
running on application server 27
stopping business processes 485
Transforming from UML 205, 209
UML deployment diagram 256
used in process choreographer architecture
472
used in the project 199
visualizing in UML 209
wrappering existing applications 199

Electronic Data Interchange (EDI) 16
e-mail

contact assessors 167–168
support needed in ESB gateway 169

email
contact assessors 12, 262
522 Build a Business Process Solution Using Rational and WebSphere Tools

embedded messaging
Do not install 225, 238, 240
WebSphere Version 6 changes 495

end-to-end visibility
goal of Software Development Platform 43
in software development 45

Enterprise
Archive (EAR), See ear
Archive Repository, See ear
Java Beans, See ejb

Enterprise Architecture (EA)
relationship to SOA 41
use with IBM Global Services Method 65

enterprise service bus (ESB) 34, 42, 45, 167, 178,
183, 222, 261, 349, 493–494, 496

building 261
constituent components 167
correcting URLs 444
correlation of assessorID and assessorURL
408
gateway 169, 178, 183
ignoring reply on 423
interfacing the proxyAssessorSystem to the ESB
339, 348
interfacing to message broker 351
IT specialist tasks 45
limited use in solution 262
part of SOA 42
responsibilities for data 408
routing requests 404
services implemented by the message broker
379
services provided by message broker 263, 379
SOAP/HTTP implementation using message
broker 340
sophisticated mediations 263
supports long duration request/reply? 190
synchronous response 418
UML sequence diagram 264
waiting 418

enterprise service bus (ESB), product mappings
496
ESB

late replies 183
See enterprise service bus (ESB)

event points, See monitoring
Expiration

checking state 432
choosing suitable value 432

staff activity 432
who decides on 432

export BPEL
how to export from Modeler 383
when to export from Modeler 382

external
assessor 8
assessorinterfaces with 279

external assessment
automation of process 34
complete view of process 9
monitor and analyze 8
process 9

external assessment process
complete view 9
fragmented view 9
monitor and analyze 7

external assessor
assessment reports 8, 20–21

reduce cost of 7
automate portion of claims process 12
automation of getting reports 5
awaiting response from 9
basic information 8
complete view 7
definition of 12
delays in selecting 6
expensive 6
external provider 12
fragmented view 6
gathering assessments from 19
implementation of external assessments 252
interfaces with 189
loss adjustments 5
manual contact 21
matching claims to 12
organization 115
process 6
requesting assessment from 115
reusing existing systems 9
role 10
selecting 8
style of communication 12, 169
System 252

external claim assessor
description of solution 153
development of solution 46
 Index 523

F
fdl2wsdl tool

source of proxy(1).wsdl 198
transform from FDL 459

Flow Definition Language (FDL)
created by WebSphere Business Integration
Workbench 78
created in MQ Workflow buildtime 79
creating from WSDL 461
deploying to MQ Workflow runtime 467
export from MQ Workflow 467
export from MQ workflow 473
generating 479
import into Modeler 454, 459
modification in Modeler 136
open as-is flow 458
used in integration 471–472, 476
used in Modeler 84

fractal
definition of 63
powerful concept 62
thinking 66

converge 66
Distribute 65
Distribute-Recurse-Converge 65

fragmented view of claims process 9
friction, valuable in development process 52
functional requirements 63

G
gateway, fax 262
Global Service Method 65
Governance 64
green-field projects 63

H
high-level architecture

describing 23
establishing 56
using Patterns for e-Business 57

horizontal integration 43

I
IBM

HTTP Server (IHS) 28
Remote Agent Controller 231

increase customer satisfaction 7–8, 156

infrastructure architect
choice of transport protocols 193
completion of service definitions 214
contract with solution architect 155
deployment architecture 220
enterprise architecture 42
mapping PIM to Rational

Software Architect
 55

materials from solution architect 214
provides deployment specifications 220
Rational

Software Architect
 55

reference architecture 57
reviewing Rational

Software Architect
 55

tasks performed by 220
Infrastructure architect, responsibilities 49
input queue, UPES 457, 462, 474
Integrated Development Environment (IDE), part of
BPM solution 76, 384
integration

scenario 12
scenario, insurance industry 3

integration issues
facing merged company 3
summary 12

Integration specialist, responsibilities 51
Interaction, definition 63
interactions, view of 61
IT

director
goals 155

goals / constraints 33
infrastructure

choosing pattern for 180
claims system 14, 22
complete claims system 181
current architecture 13
improve 12
improved availability 181
integrated with development environment
76
LGI and DirectCar 14
maintenance 49
manager 155
more attention to 494
524 Build a Business Process Solution Using Rational and WebSphere Tools

setting goals 49
setting standards 49
transform to open standards 40

skills
utilize 5

specialist 10, 50, 282, 489
building ESB mediations 45
building multiple components in Message
broker 494
choice of tools 74, 382
consulting analyst and architect about ambi-
guities 432
creating platform specific model (PSM) 68
deploying solutions using Message broker
269
description of 11
discovering flaws in BPEL model during test-
ing 490
exporting BPEL 143
fixing errors in BPEL 378
getting overview of BPEL process 378
handover from architect 65
honoring spirit rather than letter of BPEL def-
inition 424
implement EJBs 215
importing BPEL and WSDL 379
improve productivity of 496
refine BPEL in Modeler 383
responsibility for BPEL execution 383
responsibility for BPEL process 77
understanding BPEL thoroughly 143
uses OOAD 42
when to switch from Modeler to WebSphere
Studio? 382
Workflow 379

system
extending existing 63

IT simplification 40
iterative development, limited support for 52

J
J2EE

Assessor management application 245
building new applications 11
integrating with legacy applications 10
open standard 5, 10, 39
strategic platform 27
workbench

capability 202, 246
hierarchy view 438
perspective 202, 443

Java
Connection Architecture

(JCA) 33
application development 33

runtime engine (JRE) 26
Snippet 388, 400–401, 405, 409–413,
419–423, 449–450, 497

JMS provider 27, 31, 471, 484

K
key requirements, analyzed using patterns 59

L
late replies, ESB 183
layered asset model, Patterns for e-Business 59,
65
line of business executive 47
Linux

development platform 27
running Message broker configuration manager
269
running MQ Client 26

loss adjuster
contracts with

see also claims adjustor 34
selection of 34

M
manual activity

choosing single or multiple 424
convert to automatic activity 453
existing 424
feeding back results 424
looping around 424
minimizing 156
new 424
no bids received 418
processing time 125
reusing 424
transformations to and from 434

manual process
choosing external assessors 8
claims workflow 166
criteria used 6
 Index 525

staging change to automatic process 7, 34
manual task

becomes staff activity 387
replacing in to-be model 95
reverting to 97
SelectAssessor 425
UML model 165

mediation
definition 263
implemented by application developers 51
many-to-one 263
mapping nodes in Message broker 353
offered by ESB 263
part of Application Connectivity Services 266
separation of presentation layer from backend
applications 25

message
queues (MQ)

scaffolding assessors 252
structure, export from FDL 467

Message broker
Ack flows 276
acting as web service client to assessors 286
Administration perspective 365, 367
aggregation

late replies 283–284, 289
architecture 267
Archive Repository (BAR) in UML 184
Assessor message flow 371
Assessor.bar file

creating 366
deploying 368
saving 366

assessors
configuring HTTP request node 335
eligible for sending request 286
ESQL to distribute 354
fanning out messages 332
interfaces 279
list of flows 278
preparing reply message 353, 357
return availability 288
setting SOAP/HTTP address 287
simulation of 448
updating CLAIMASSESSOR database 338

broker schemas 320
built-in node 271
business partners 14
changing URLs at deployment time 445

channel for LGI business partners 14
Client flows 265, 276
ClientError flow 276, 326, 342
component 267–268
Compute nodes 271, 319, 324, 351
configuration manager 234, 268–270
configuring queues 224
Content Validation 307–308, 310
create

broker archive 365
creating archive 365
data augmentation 263
database implementation 314
Database nodes 271, 366
DataFlowEngine 270
default ESQL 329, 334–335, 339, 344
Deploying Assessor.bar 367
Design

aggregation service 283
discards prefixes 360
Distribution and Aggregation 263, 274,
281–282, 284–285, 493
domain

administering 270
connection to 270
definition 269
illustration of 268
multiple 269

duplicate
message names 300
namespaces 292, 313, 360
types 301

EDIFACT
Converting into XML 29

ESB services 379
ESQL

aggregation 284, 352
autocomplete database references 319
autocomplete doesn’t work with multiple
message sets 295
browsing all modules 351
common.esql 322
debugging 372, 375
declaring namespaces 360
default 328–329, 334–335, 339, 344
defining namespace prefixes 359
distinctive names 325
Fault_Identify_Fault 364
Flow3_Validate 362
526 Build a Business Process Solution Using Rational and WebSphere Tools

Flow3a_Generate_Output3a 358
Flow3a_Prepare_Reply 357
Flow4_Prepare_MQ 354
Flow7_Set_SOAP_address 359
list of all modules 351
list of error handling EQSL modules 361
locating ESQL modules 325
making faults more descriptive 353
naming convention 325
opening from the resource navigator 325
OutputRoot.HTTP

InputHeader 354, 357, 364
ResponseHeader 354, 357, 364

OutputRoot.MQMD.MsgType 354–355,
357
OutputRoot.MQMD.StrucId 286, 354,
356–357
OutputRoot.MQMD.Version 286, 354,
356–357
OutputRoot.MRM.soap11

Body 355, 358, 364
rename 324, 337, 346
saving file 324
setting ESQL module name for node 324
warning messages due to long paths 360
write the ESQL code 319, 351

Execution group 367–368
capabilities 270
component 268
controlling tracing 445
deploying .bar file 365
drag and drop .bar file 368
formatted trace 373
granularity of tracing 372
new 367
refreshing 368
setting break points 375
topology 270
trace files 372
trace log 373
tracing 373
using multiple 282

FLOW3A.CONTROL queue 334, 338
focussed integration pattern 177
HTTP redirection 335, 340, 344, 348, 351
HTTP request

removing from folder 286
updating URL before deployment 445

import database 318

input message 297, 328, 334–335, 337, 345,
349, 353–354, 358, 361–362, 364
InputRoot.MRM.soap 11

Body 287–288, 355–357, 359
Install and configure 234
Installand configure 230
LGI 28
LGI and DirectCar 18
message

dictionary 273
editors 273
importers 273

message definition
contents 273
create 304–305
editing 304
editor 273, 303–305, 310
file 273, 310–311
has warning messages 304
importing 310
importing into 273, 311
improve validation checks 304
message sets 272–273
modifying 305
multiple 273
new 300
new element 303
new file 299
optional 274
overview tab 307
populate 299
properties 310
remove warnings 306
required by MRM 274
resolve duplicate messages 300
saving 303–304
schema 293
soap 1.1 error 305
SOAP11 305
source 299
validation 273–274
view SOAP envelope 311

message flow
access to message content 274
application development 30, 318
as directed graphs 270
assessment report 192, 279, 319, 340–341,
345
Assessor flow 371
 Index 527

broker schema 322–323
common fault routine 324
configuration repository 269
content assistance 274
create 318–320, 323

ESQL code 351
new file 319
new project 320

debugging 375
default wire format 297
dependencies 320
designing for transport independence 274,
276, 319
execution groups 268, 270
Fault 324
Flow 4 286
Flow3 328
Flow3a 337
Flow4 332
Flow7a 345
import database schema and tables 314
in broker schema package 323
IT specialist 50–51, 282
lessons learnt 493
list of 353
make use of databases 271
mapping to UML interactions 276
mediation 178
message content 274
multiple message sets 294
new 320
organization of projects 319
other failure terminals 324
pattern 175
pattern for 271
problems with generated ESQL 366
Project for Assessor database 318
projects 319–320, 322
propagation 354
providing Web services 195, 267
reconfigure URLs 452
reference to SOAP envelope 305
starting 271
subflows 324
tasks 319
testing 274
tooling 30
Unknown Assessor flow 365
wire 319

writing ESQL for 351
message set 29, 51, 197, 289, 292–296, 323,
360, 365–366

architecture 293
Assessor Messageset 295
broker archive (.bar) 365
categories 273
concept used to organize WSDLs in Web-
Sphere Integration Developer 497
configuration manager 269
create 290, 295–296
default tab 328, 339, 341
definition 272–273

import 275
dependencies 320
deploy 365
design 274
duplication errors 294, 300
editor 273
Element name 138
element reference 308–309, 311, 313
how many to create 293–294
message definition file 273
migration 273
mqsimigratemsgsets 273
MRM.soap 11

Body 288, 355–358, 364
multiple 294, 300
mustUnderstand 308
namespace prefixes 352, 359–360
new 296–297
Pattern facet 308
project 293, 322

how many 293
projects 322
properties 297
SOAP

combine with elements 310
content validation 307
definition 275
export as schema 310
import schema 298
MDF 304, 310–311
message 212, 274, 286, 298–299,
304–306, 309–311, 313, 361, 368, 395
preparing prefixes 359
schema 275, 304, 306, 308, 496
SOAP 1.1

schema 305–306, 493
528 Build a Business Process Solution Using Rational and WebSphere Tools

WSDL definition 275
soap 11

Body 288, 355–356, 358, 362

Fault 309, 362, 364
wrapper 306, 309, 313

solution interfaces 274
validation 273
Version 6 enhancement 295
wire format 296

customized 297
XML1 359

MRM parser 274
Nodes

Advanced tab 204, 334–335, 338, 340, 344,
348, 351
Aggregate

Control (AC) 282–283, 286–287, 333,
355–356
Reply node 282, 284, 286, 289, 333,
353, 357
Request node 282, 286–287, 289, 358

Aggregate Reply node
global property 284

AggregateReply node
control terminal 334
Unknown and Timeout terminals 339

BasicTab 328–329, 334–335, 337–339,
341, 344–345, 348–349, 351, 365
Default Tab 328, 335, 337–338, 340–341,
344, 346, 348–349, 351, 365
HTTP request 348, 351
HTTPInput 271, 337, 345, 349, 365
MQInput 271, 334, 338

Failure terminals 338
MQOutput node 282, 334, 355
Route to Label 276
TryCatch

node 276, 286, 288, 324, 333, 338, 342,
346, 350

patterns 263
problems with multiple message sets

autocomplete 295
reconnect to workbench 367
resolving ESQL problems 366
simulate assessor 371
start the server 367
TCP/IP port 328
toolkit

configuring 234
definition of 269
doesn’t support pattern facet 308
eclipse workbench 268
importing schemas 298–299
saving workspace in custom path 295

toolkit using to modify flow parameters before
deployment 452
uncaught error 324
Unit testing 368
URL

Selector 365
username length restriction recommendation
223
using autocomplete 354
Version 6.0 274

Message Driven Bean (MDB)
configuring 482
define a listener port 484
facade 472
function of interoperability Message Driven Bean
(MDB) 474
in the bpeInterop.jar file 477
installed by WA0D 472
listens for MQ messages 472
process specific 472
used in DirectCar to integrate with LGI 31
uses facade design pattern 472
WA0D specification 472, 474

messages onto queues (MQ) 276, 282–283, 286,
288–289, 333, 338–339, 356–357, 371
messaging infrastructure 29, 34, 266, 268
methodology, IT 63
Microsoft Visio 47, 73, 104
middleware 10, 27–28, 58, 185, 192–193, 221,
267, 493–495
Minimize IT costs 9
Model Driven Development (MDD) 10, 39, 46, 53,
67, 70–71, 181, 195, 383

benefits 69
best practices 10
business objectives 39
CIM 68
managing complexity of software development
67
Model Driven Development 10
models as long term assets 70
Patterns

 Model Driven Development using Rational
 Index 529

Software Architect, SG24-7105 67
repeatability 70
tool chain 46
waterfall approach 72

model, handed-off 62
Modeler

FDL mode
best practices 144
restrictions

input criteria 144
FDL process

export 136
generate abstract logic 87
import 88
maintain 45

FMCINTERNALNOOP program 140–142
local task

input settings 147
mapping 90–91, 93, 140–142, 387
reverse mapping 136

time table 111–113
Modeler, input criterion 102–103, 144–145
Monitoring, event points 7
MQMD 286, 288–289, 353–357, 457

N
namespaces 292–293, 296, 300, 302, 307, 313,
359–360
non-functional requirements 60
nonfunctional requirements 63

O
Object Management Group (OMG) 71
Object-Oriented Analysis and Design (OOAD)
41–42, 66
on demand

business 40
operating environment 41

one-to-many mapping 263
OOAD 42
open

standards 10, 34, 39–40, 79, 168, 176, 181
standards, BPEL 10

Oracle 31–32, 271
Oracle, databases 5
organize imports, making autocomplete work 412

P
P4eb, Patterns for e-business 58–59
Parallel Workflow 175–177
partner link

adding corresponding activities 390
adding new 389
adding new activities for new partner links 390
adjusting data flowing to and from 387
AllocateAssessorResponse 394
AssessAvailabilityListPartner 393
Assessor management 212
AssessorReportPartner 391
calling from Message broker 339, 348–349, 351
checking 396
checking in outline view 396
configure 394
connecting activities 390
connections displayed in process

editor 393
correct list of links 388
create from WSDL 380, 389
deleting links from Modeler 389
displayed in process

editor 385
fixing up references after refactoring 381
identifying missing links 388
illustration of making activity connection 390
import WSDL 380
imported from Rational Software Architect 390
Integrate with process 390
list of links and roles 391
map variables 400
missing 388, 391
naming in transformer 405
naming pattern 410
not defined for a staff activity 429
overview 378
pop up menu in process

editor 390
process role 396
properties 403
refactoring problems 294
rename 391
replace links generated in Modeler 387
RequestAvailability 404, 418
roles 388, 394–396

partner or process 395
setting partner link type 391
split between send and receive activities 398
530 Build a Business Process Solution Using Rational and WebSphere Tools

table of links, types, operations and names 397
tasks 387
to proxy RequestExternalReports flow 473, 480
Version 6 improvement 498
wiring up to activities using GUI 391
wiring up using properties editor 391
workflow 379, 462

partner link, output results 400
pattern 169
Patterns 42

(P4eb) 172
analyzing subset of key requirements 59
application

broker variation 175
component 176
exposed broker 173–174
how components interact 58
mapping to runtime 58, 154
parallel process 179
primary IT driver 174
selecting 154
workflow variation 176

application integration 169, 171, 262
elements 171

Apply product mappings 180
applying product mappings

Assessor Automation 180
architects using 58
architectural Patterns

deciding which to employ 166
selecting 154
SOA 41

Best-practice guidelines 58
Business 58
business integration pattern 173
choosing application 171
choosing pattern to interact with assessors 175
Composite 58
dynamic distribution to multiple assessors 174
Exposed broker 173–174, 176–177
exposed broker application integration 174
Extended Enterprise 169, 171, 173, 177, 224,
262
for e-Business 35, 46, 57–59, 61, 63, 65, 153,
169, 172, 175, 185
Integration 58
parallel workflow application integration 175
Product mappings 58
Runtime patterns 58

selection process 57
SOA

application integration 177
platform independent model (PIM) 55, 68, 191,
213–214
platform specific model (PSM) 55, 68, 71, 213–214,
220, 379
policy administration 12, 16–18
port type 145, 214, 387, 389, 396–397, 405, 432,
460
privacy 50
Probability 133
process

description 51
editor 85, 94, 98–99, 113, 136–137, 144–145,
385–387, 407, 419

open ClaimInvestigation 94, 136
open RequestExternalReports 144
ResponseTimeBasedOnPolicy task 113
specification tab 145

engine 19, 25, 135–136, 165, 168–169,
178–179, 181, 244, 377, 379, 408–409,
450–451, 454, 472
execution definition 51
focussed integration pattern 179
implementation 54, 134, 489
implementation, detailed knowledge 489
instance 118, 130–132, 396, 416, 430, 436,
448, 471
integration 19, 45–46, 60–61, 63–65, 194, 262,
408–409
Integration Design Approach (PIDA) 60
integration, major activity 65
management 4, 25, 41, 76, 78, 174, 470
manager 17, 27, 30, 162
model

ambiguities 432
analyzing 117
as development process 68
BPEL problems 144
building executable 45
calibration 77
changes affect simulation 119
CIM 383
contract for IT professionals 80
defines activities ... 163
defining in Visio 47
deliverable 52
developed in parallel 52
 Index 531

developing 117
elaborated for IT 490
errors in deployment 441
export from Modeler 50
import into MQ Workflow runtime 467
insufficient detail 490
loops 146
mapped to UML2 153, 157
mapping to use cases 156–157
mismatch with IT environment 388
Rational

Software Architect
 214

relevant element 144
reversing changes 52
review for changes 191
roles 107
roles and interfaces 163
round-tripping requirements 71–72
sequence diagrams 215
sharing between business and IT 53
sharing using tools 44
simulation 119
start of MDD approach 46
technical refinement 383
three contracts 54
transform into process template 467
use by Workflow specialist 45
use in communication 56
valid in FDL 137
validate 136, 143
visual representation 80
visualize roles 162

modeling, different styles 382
Specialist 48

Process choreographer
acting as a Web service 379
business process client 446
configuring business process container 240
correlation 416
correlation sets 416
end to end test 485
external interfaces 471
finding HTTP service ports 444
general purpose process engine 472
Installing 238
interface to MQ Workflow 473
interfaces 471
metadata interchange with Message broker

493
non-volatile storage 416
one-way interactions 495
Plug-ins 472
queues required 241
security role mappings 431
staff security mappings 431
test plan 445
transport restriction to JMS/XML 211
URL

Web service URL 445
using clustered queues 475
Version 5 transport restrictions 212
WA0D interface 470–471

Process Integration Design Approach (PIDA) 60
Producing the final architectural specification is an
iterative process 187
product mapping 180, 182, 214, 262, 496
program

activity 140–142, 456, 462, 476–478
execution agent (PEA) 455, 465
execution server (PES) 455–456, 462

programming specification 52
Project

manager 47
tree

process model 119
RequestExternalReports process 104

properties
editor 204, 391, 396, 398, 406, 411, 420, 428
editor, Behavior tab 406

proxy process 459, 479–480
proxyAssessorSystem

Aggregate name 333, 339
assessor interface 371
broker schema 322, 360
calling process choreographer 444
component design 274
design issues 282
distribution and aggregation 281
ESB interface 339, 348, 351
ESQL modules needed 352
FaultActor 364
forwarding assessor responses 416
hosting web services 255
interactions 190, 213
interface files 198
lessons learnt 494
monitoring responses 448
532 Build a Business Process Solution Using Rational and WebSphere Tools

partner link 391–392
requirement for 164
sequence diagram 191

adding interactions 192
UML sequence diagram 264, 275
WSDL interfaces 265

publish/subscribe 266, 268

Q
quality of service, 48
Quality of Service, (QOS) 63–64, 66
queue managers 221, 235, 237

R
Rational

Requisite Pro 45, 155, 161
Software Architect 35, 44–45, 49–50, 55, 57,
73, 75, 135, 154–158, 161–162, 165, 184–185,
190, 195–197, 199–200, 203, 215, 227, 277,
290, 369, 378, 381, 383, 385, 388, 390, 459,
498, 506–509

activity diagrams 113
additional coupling 508
business process 107
Claim Handler 158
deployment diagram 154, 185
Flow2 246
Import WSDL 380, 383
interface definitions 45
new workspace folder 245
usage contract 506
use cases 156

Software Modeler 49
Unified Process (RUP) 44–45, 65, 68
Unified Process (RUP), end-to-end visibility 45

reality checking 66
Recurse 66
Redbooks Web site 514
redesign 9
reduce costs 8
re-engineering business processes 56
refactoring 52
reference

architecture 56–57, 153–154, 156, 184–185,
187–188, 267
architecture, Omissions 185

reply
sub-flow 326

Repository 16, 78, 146, 149, 184, 268–269, 272,
493
request/reply interaction 192, 211–212
RequestExternalReports

application
component 26, 34, 51, 58, 243, 256, 379,
495

Patterns
application component 154

process 96, 100, 104–105, 113, 129, 132, 143,
146–147, 150, 158, 260, 379, 388, 390, 408,
423, 436, 440, 446, 455, 458–459, 462–463,
467, 469, 480–481, 486, 490

RESOLVEASSESSOR
supporting multiple interaction protocols 281
table 317

Resource Navigator, window 298–299
resources.xmi 159, 507
response

time 48–49, 97, 99, 167, 182, 189–190, 248,
283, 286
time, different aggregations 286

Reuse 8–9, 23, 25, 29, 31, 168, 276, 493, 507
rework 9, 294
RMI-IIOP 31
Roles

Unit testing 51
roles

add 107
Assessor 111
assign to tasks 113
automatic 158, 163
brief summary 162
CIM 379
Claim handler 110
collaboration 507
communication between 74
component of process model 163
computer 109
configure in bpe container 239
context 11
contracts 54, 383
define 107
define resources 108
different developers 46
external 162
included in scenario 10, 46
interfaces derived from 163
interfaces mapped from roles 192
 Index 533

involved in workshops 55
list of roles in Modeler 108
mapping from MQ Workflow 89
multiple 52
new 107
of products in business integration development
platform 266
omitted from scenario 163
partner links 391, 394–395
requirement mapping 140
requirements 154
role analysis results 118
runtime 51
shared artefact 84
software development 42
staff 168, 431
summary 162
tools integration 46
UML2 mapping from BOM 506
use case step 508
viewing resources for 117
visualize 50, 162
working together 489

Roles, application developer 65
root information model 384
runfdl2wsdl 473, 476, 479
Runtime pattern 58, 154, 176–177, 496
runtime pattern, generic styles 154
Runtime pattern, proven and tested software imple-
mentations 58

S
scale-invariant 62
SDDS 471
Secure Sockets Layer (SSL) 31
Security

architect 50
broker wizard 231, 234
connections 263
J2EE 241
limitations 50, 168, 262
On Demand resiliency 40
QoS 171
requirements 220
staff roles 431
WebSphere global 241

sequence diagram 72, 74, 188, 190–194, 209, 211,
214, 264–265, 275, 277

service interface 459
Service Level Agreement (SLA) 48
Service Oriented Architecture (SOA) 10–11, 39,
41–42, 176–177
Service Oriented architecture (SOA) 42
service requesters 51
services integration 267
session bean 31, 248
setupcmdline.bat 225–226
simulation model 35
Situational Context 65
SOA, architectural pattern 41
SOAP

schema 304
SOAP/JMS 34, 183, 212, 222–223, 264, 276–277,
493, 495
software

development 39–46, 52, 67, 69–70, 74
Development Platform, end-to-end visibility 43
development tools 43
engineer 55

Software Development Platform 42, 45
Solution

tester 48
solution

architect 10–11, 44–45, 48–49, 54–55, 79, 107,
113, 154–156, 163, 190–191, 195–196, 198,
214–215, 220, 222, 275, 328, 337, 341, 346,
349, 378–381, 383, 385, 387
architecture 1, 12, 25, 52, 54–55, 59–60,
72–73, 107, 151, 153–154, 159, 185, 187, 215,
261–262, 277, 387, 496
architecture, major affect 154
component 171, 268

SQL
Aggregate reply code 357
CICS applications 32
content assistance 274
delete 333
error 333
insert 354
Message broker tracing 374
problems 366
resolved 366
sample 367
Server 271
validate 323
WHERE clause 347

staff
534 Build a Business Process Solution Using Rational and WebSphere Tools

activity 387, 429–432
activity, special characteristics 429
roles 431

Staged development 52
STATE_EXPIRED 432
stereotype 162
sub-flow 324, 326, 337
subprocess 87, 95, 106, 130, 135–136
supportpacs 180, 184, 222, 452, 468–475,
477–479, 481, 484
supportpacs, MQ Workflow web site 470
synchronous call/return 189–190
System

Architecture 25, 36, 153, 185, 215, 222, 262
design level 64

T
Target Context 65
target namespace 200, 292, 299, 360, 405, 412
task flows 50
technical specialists 46
test server 246, 439–440, 481, 497
Test tool 368–369
testing, Explorer navigator 247
timeout values 283
to-be 51
Tool chain 72–73, 196, 491
Topology 64
trace node 289, 324–327, 336, 339, 342, 371–372,
374
Transformer

Activity 400–401, 404–405, 435
category 406
service 402, 404, 407, 411, 414–415, 434–435,
450

transport protocol 164, 183, 193, 282
different destinations 164
service requests 183

TXSeries 5, 31–32

U
UML

architecture model 50, 383
Business Modeler profile 508
collaboration diagram

describing as-is system 154
combining with process model 153
component diagram 209

difficult to apply to integration 61
EJB transformation 205
export as FDL 135
export from Modeler 82
from EJB 208
from WSDL 200
interoperating with Modeler UML model 159
Java transformation 204
metadata 493
Model Driven Development (MDD) 181
new tools 34
profile 508
recipes to transform to/from WSDL 195
reference architecture 57
relationship with WSDL 195
sequence diagram 188, 209, 277
support for SOA 42
to WSDL 203
use case

step 10 - return assessment report back to
claim handler 162
step 9 - wait to receive assessment report
162

using UML for complex integration 61
visualize EJB 209
visualize interface 203
visualizing fractal collaborations 62
WSDL transformation 498

UML2
foundation of PIDA 60
integration of Modeler and Rational Software Ar-
chitect 44, 505
mapping from BOM 157
open standard 10, 39
Supported by Modeler 81
traceability to BOM 507

UNIX 269
update wizard 225–226, 421
upgrade plan 155–156
Use case

describe desired behavior 64
use case

1 ClaimInvestigation 161
2 RequestExternalReports 162
browse diagram 159
Business use cases 156
collating requirements 154
constructed automatically from BOM 157
describe desired behavior 64
 Index 535

diagram 159
diagram, use in documentation 160
DirectCar 22
External Claim Assessor 157
involving manual activity 158
layout 160
LGI 21
PIDA 65
Requirements for Modeler and Architect integra-
tion 506–508
Requisite Pro 161
stored outside Rational Software Architect 161
use of in patterns 154
visualize 158

User interface 26–27, 51, 168–169, 424, 450, 454,
472
User representative 47
user-defined program execution server (UPES)
456, 462, 471, 473–474, 476, 478

activity 473
definition 473, 476
definition, automated unattended activity 473
input queue 457, 462, 474
queue 456–457, 474

V
view of the claims process 6
Virtual Machine 221

W
WA07 470–471
WA0D 222, 452, 469–471, 475–479, 481, 486

WMQ_Formatter.jar 477, 481
waterfall process 52
Web service 10–11, 39, 167, 179, 181, 183,
197–198, 202, 206, 208, 244–246, 259, 262–264,
273, 276, 282, 295, 305, 326, 335, 339, 344, 348,
351, 361–364, 369–370, 377, 437, 443–445, 454,
470

EJB skeleton 202
Gateway 184, 221
service owner 198
unit testing clients 197

Web Services Description Language (WSDL) 42,
290, 378–381, 383–385, 387–389, 391–392,
398–403, 406, 409, 412, 414, 416–417, 419–420,
428–429, 433–435, 459, 462, 470, 472–473, 476,
479–480, 493, 497–498

editor 196, 290, 378, 404, 409, 420, 460
file 196–201, 203, 207–209, 215–216,
246–247, 265, 274–275, 290–291, 294, 298,
328, 341, 369, 404, 409, 414, 419, 429,
434–435, 460, 472–473, 479–480
interface 57, 196–197, 199, 208, 214–216, 252,
383

Web services explorer 247
Web site 22, 24, 27, 59, 170, 470
WebSphere

Application Server 5, 10, 28, 32, 51, 79,
181–182, 227–228, 238, 241, 246, 252, 256,
368, 379, 443–445, 469, 475, 477–478, 495

integral part 495
specialist 52
version points 441

BI Message broker, See Message broker
Business Integration Message broker 29–30,
45, 231, 264, 266, 268, 274, 290, 294, 314,
324–325, 368, 370, 372
Business Integration Message broker work-
bench 51
Business Integration Modeler 31, 35, 44–45,
47–52, 54–55, 71, 73, 75–76, 79–81, 83, 85–86,
88–92, 95, 97, 102, 104–107, 117–119, 124,
135–138, 140–143, 145, 149, 151, 154, 156,
158, 162, 181, 190–191, 210, 377–378,
382–383, 387–388, 390, 424, 454–455, 459,
461, 471, 489, 491, 506–509
Business Integration Modeler, BPEL validity
383
Business Integration Modeler, Elements map-
pings 89, 140
Business Integration Server Foundation 34, 51,
79–80, 135, 143, 150, 168, 180, 183, 185, 192,
220, 222, 224, 238, 378–379, 432, 450–452,
455, 458–459, 462, 467–470, 475, 477,
481–482, 496
Enterprise Service Bus 496
Integration Developer 497
MQ 25–28, 30–32, 34, 51, 135, 189, 192, 212,
221–223, 225, 228, 230, 233, 235–237,
240–241, 264, 266, 268, 270, 282–283, 287,
333, 338–339, 353, 356–357, 371, 444, 448,
454, 457, 468, 471, 473, 477, 484, 493, 495–496

client 26
control message 339, 353
Explorer 235
explorer 51
536 Build a Business Process Solution Using Rational and WebSphere Tools

infrastructure 31, 51
Integrator V2.1 267, 273
JMS/XML message 462
message 223, 333
part 31, 495
queue 454, 462, 471
specialist 51
version 6 495

MQ Workflow 19, 30, 34, 45, 51, 73, 78–80, 84,
86, 88–91, 94–95, 135–136, 139–141, 143,
180–181, 183, 185, 192, 221–222, 224, 227,
379, 452, 454–462, 464, 467–468, 470–474,
478, 495–496

administrator 454
API version 456
BuildTime 456
point 456
process 454
Runtime 454
specialist 51
SupportPacs 470
system 456
XML message format 456

MQ-CICS bridge 31
Process Server 496
Studio Application Developer 27–28, 32, 45
Studio Application Developer, specialist 51, 74
Studio Application Development Integration Edi-
tion 32, 45, 51, 71, 74, 79, 151, 179, 197, 227,
290, 369, 378–379, 382–383, 385–387, 389,
411–412, 436, 442, 444–445, 450, 459, 463,
473, 476–477, 479, 481, 498
Studio Application Development Integration Edi-
tion specialist 51
Studio Enterprise Developer 33
Studio Site Developer 28

Websphere
Business Integration 5
Business Integration Modeler 377, 383
Business Integration Server Foundation 439

While
activity 388, 423–428, 432, 435
activity, condition tab 428

Wide Area Network (WAN) 170–171
Windows

2000 26, 28–33
Management Console 374

workflow system 14, 20, 183, 455–456, 458, 462,
475

workflows 50
working in parallel 52
worklist 166, 169
Workshop facilitator 47
WSDL

Element name 291–292
WSDL file

change message definitions 294
import statements 196
use import statements 275

X
XML

format 28, 471
invocation request message 456
process manager 28
SDDS messages 471
UPES queue 457

message 273, 456–457, 474
Schema

annotation 273
Element name 291–292

schema, file 290, 459

Z
z/OS 29, 32–33, 269
zip file 215, 292, 378, 380–381, 394, 479
 Index 537

538 Build a Business Process Solution Using Rational and WebSphere Tools

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Build a Business Process Solution
Using Rational and W

ebSphere Tools

®

SG24-6636-00 ISBN 0738496308

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Build a Business Process
Solution Using Rational
and WebSphere Tools
Explore IBM On
Demand Business
and business-driven
development

Learn to use
modeling, UML, and
BPEL

Study
implementation and
integration

This IBM Redbook is based on the experiences of a team in
the IBM Hursley laboratory. They built an auto-claim
insurance solution to put the WebSphere software platform
through its paces. The team worked with WebSphere
developers to use the experience of building the solution to
improve the design of WebSphere version 6 platform
products.

They thought it would be valuable to share their experiences
with a wider audience. The result is a tour de force, showing
how the team went about using IBMís software development
platform to understand business requirements and then
architect, design and build the solution.

Their experiences will help you plan, design and build a
business driven development solution using products from
IBMís WebSphere Business Integration portfolio.

This redbook is written from the perspective of three types of
developer: the business analyst, the software architect, and
the IT specialist. Individual chapters in the book show how
each member of the team developed their part of the solution,
and how the team integrated the solution together.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The companies in this redbook
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Background
	Chapter 1. Business context
	1.1 Setting the scene
	1.1.1 Company history
	1.1.2 Scope of the scenario
	1.1.3 Claim system

	1.2 Business goals
	1.2.1 Reduce cost
	1.2.2 Increase customer satisfaction
	1.2.3 Incorporate existing resources into the new solution
	1.2.4 Provide a complete view of the external assessment process

	1.3 IT goals and constraints
	1.4 Roles
	1.5 Summary

	Chapter 2. Current architecture
	2.1 Before the merger
	2.2 The merged solution context
	2.3 Integration solutions
	2.3.1 Quote and policy administration
	2.3.2 Claims Integration

	2.4 IT infrastructure
	2.4.1 User interfaces
	2.4.2 Application Servers
	2.4.3 Message Brokers
	2.4.4 Process managers
	2.4.5 Backend transaction servers and data centers

	2.5 Extending the architecture
	2.6 Summary

	Part 2 Modeling
	Chapter 3. Our method
	3.1 Building the On Demand Business
	3.1.1 The on demand operating environment
	3.1.2 Service-oriented modeling
	3.1.3 The IBM Software Development Platform

	3.2 Building the External Claim Assessor solution
	3.2.1 Roles and responsibilities
	3.2.2 Responsibilities and contract-based development
	3.2.3 Gather business requirements though modeling workshops
	3.2.4 Establish a Reference Architecture
	3.2.5 The Patterns for e-business layered asset model
	3.2.6 A process for using the Patterns for e-business asset model
	3.2.7 Use a Model Driven Development approach
	3.2.8 Tool chains

	3.3 Summary

	Chapter 4. Business Process
	4.1 Introduction to business process management
	4.1.1 Business Process Management
	4.1.2 IBM suite of BPM tools
	4.1.3 Why business process modelling
	4.1.4 WebSphere Business Integration Modeler
	4.1.5 Editions of WebSphere Business Integration Modeler

	4.2 Using WebSphere Business Integration Modeler
	4.2.1 Who uses WebSphere Business Integration Modeler?

	4.3 Modeling the claim investigation process
	4.3.1 Start WebSphere Business Integration Modeler
	4.3.2 Import AS-IS process
	4.3.3 Analyzing the as-is process
	4.3.4 Create the to-be process
	4.3.5 Build a new process
	4.3.6 Features attractive to business analyst

	4.4 Simulate the process
	4.4.1 Create a simulation snapshot
	4.4.2 Define values for simulation
	4.4.3 Run a simulation
	4.4.4 Simulate the whole claim investigation process
	4.4.5 Analyze the results

	4.5 Developing the process implementation
	4.5.1 Export processes
	4.5.2 Export as FDL process
	4.5.3 Export RequestExternalReports as a BPEL4WS process

	4.6 Summary

	Chapter 5. System Architecture
	5.1 Selecting the architectural patterns
	5.2 Step 0: Collating requirements
	5.2.1 Business goals
	5.2.2 Business use cases
	5.2.3 Roles
	5.2.4 Components
	5.2.5 Organization and architectural constraints
	5.2.6 Limitations

	5.3 Step 1: Select a Business Integration Pattern
	5.4 Step 2: Select the application pattern
	5.4.1 Collaborations
	5.4.2 Application Patterns for the Extended Enterprise
	5.4.3 Application patterns for Application Integration

	5.5 Step 3: Select and merge the runtime patterns
	5.5.1 Proposal 1: Broker focussed integration pattern
	5.5.2 Proposal 2: Process focused integration pattern

	5.6 Step 4: Apply product mappings
	5.6.1 Existing systems and platform investments
	5.6.2 Available customer and developer skills
	5.6.3 Customer choice
	5.6.4 Product Mappings

	5.7 Reference architecture
	5.7.1 Omissions from the reference architecture

	5.8 Summary

	Chapter 6. Solution Architecture
	6.1 Interaction Model
	6.1.1 Interaction descriptions
	6.1.2 Sequence diagram

	6.2 Interfaces
	6.2.1 Choice of interface description language
	6.2.2 Creating WSDL interfaces
	6.2.3 Sources of Interface Information for the scenario
	6.2.4 Creating the interface definitions
	6.2.5 Incorporating the interfaces into the UML model
	6.2.6 Summary of the interfaces

	6.3 The architect’s contracts
	6.4 Making materials available
	6.5 Conclusion

	Part 3 Implementation
	Chapter 7. Install and configure runtimes
	7.1 System Infrastructure
	7.1.1 Mobile computer configuration
	7.1.2 Communication implementation

	7.2 Install SAH414A
	7.2.1 WebSphere MQ
	7.2.2 DB/2
	7.2.3 WebSphere Application Server
	7.2.4 Install and configure WebSphere MQ Workflow
	7.2.5 Install and configure the Message Broker

	7.3 Install and Configure SAH414B
	7.3.1 WebSphere MQ
	7.3.2 DB/2
	7.3.3 WebSphere Business Integration Server Foundation

	Chapter 8. Test and deploy the application components
	8.1 The Assessor Automation System
	8.1.1 Assessor Management System
	8.1.2 Business Rules Engine
	8.1.3 Document Management System

	8.2 External Assessor System
	8.3 Deploy and test application components
	8.3.1 Deploying to WebSphere Application Server
	8.3.2 Testing the deployed applications

	8.4 Summary

	Chapter 9. Build the Enterprise Service Bus
	9.1 Architecture
	9.2 WebSphere Business Integration Message Broker
	9.2.1 Components of message broker

	9.3 Component Design
	9.3.1 Message Sets
	9.3.2 Message flows and transport independence
	9.3.3 Database tables
	9.3.4 Distribution and aggregation

	9.4 Implementation of the message sets
	9.4.1 Convert the messages in wsdl files into schemas
	9.4.2 Create the Message Set Project
	9.4.3 Create the Message Set
	9.4.4 Import the schemas into the broker
	9.4.5 Using schemas to create MDFs
	9.4.6 Customizing the SOAP MDF (soap11.mxsd)
	9.4.7 Create the SOAP messages

	9.5 Implementation of the database tables
	9.5.1 Create the ASSESSOR Database
	9.5.2 Create the schema and tables
	9.5.3 Connect to the database from the broker workbench

	9.6 Create the message flows
	9.6.1 Create the Message Flow projects and dependencies
	9.6.2 Create message flows
	9.6.3 Create the CommonSOAPHttpFlows
	9.6.4 Create the AvailabilityFlows
	9.6.5 Create AssessorReport flows

	9.7 Create the ESQL code for the message flows
	9.7.1 ESQL functions to support Aggregation
	9.7.2 Setting the SOAP/Http destination dynamically
	9.7.3 Common namespace prefix declarations
	9.7.4 ESQL Error handling code

	9.8 Deploy message set and flows
	9.8.1 Create the UNKNOWN flow
	9.8.2 Create a Broker Archive
	9.8.3 Deploying Assessor.bar to the broker

	9.9 Unit testing the deployed flows
	9.9.1 Test tools
	9.9.2 Scaffolded Assessor and Claim system
	9.9.3 Tracing and debugging flows

	Chapter 10. Build the Request External Reports process
	10.1 Overview
	10.2 Import WSDL and BPEL into the IDE
	10.2.1 Import WSDL from Rational Software Architect
	10.2.2 Import BPEL from WebSphere Business Integration Modeler

	10.3 Integrate the process with its services
	10.4 Integrate the process with its services
	10.4.1 Correct the list of partner links in the model
	10.4.2 Integrate the partner links with the process
	10.4.3 Configure the partner links
	10.4.4 Configure the activities
	10.4.5 Configure the types of input and output variables
	10.4.6 Map data between input and output variables
	10.4.7 Configuring the flow to wait for responses from the assessors

	10.5 Controlling the path through the process
	10.5.1 Checking the results from RequestAvailability
	10.5.2 Create a While activity to test for a committed assessment

	10.6 Implementing the Claim handler staff activity
	10.7 Build
	10.7.1 Building the business process
	10.7.2 Building for a production server

	10.8 Test and debug the process
	10.8.1 Prepare to test
	10.8.2 Publishing the business process to the test server
	10.8.3 Creating the test environment
	10.8.4 Check that downstream components are operational
	10.8.5 Testing and debugging the business process

	10.9 Deploy the process to the server
	10.9.1 Installation of business process application
	10.9.2 Verify the application

	10.10 Summary

	Chapter 11. Modify the Claim Investigation process
	11.1 WebSphere MQ Workflow: long-running processes
	11.2 Process Integration: WebSphere MQ Workflow
	11.2.1 Implementing custom invocations in WebSphere MQ Workflow

	11.3 Create the ClaimInvestigation_TOBE Workflow
	11.3.1 Import the ASIS workflow
	11.3.2 Create the data structures for RequestExternalReports
	11.3.3 Define the interface to RequestExternalReports

	11.4 Deploying the workflow process
	11.5 Summary

	Chapter 12. Integrate and test the business processes
	12.1 Integrating WebSphere MQ Workflow and WebSphere BI Server Foundation
	12.1.1 Candidate SupportPacs

	12.2 SupportPac WA0D overview
	12.2.1 WebSphere MQ Workflow interfaces
	12.2.2 Process Choreographer interfaces
	12.2.3 The SupportPac Architecture
	12.2.4 How the SupportPac works

	12.3 Installing and configuring the WA0D SupportPac
	12.3.1 Upgrade WebSphere Business Integration Server Foundation
	12.3.2 Define WPCUPESQ
	12.3.3 Install WA0D
	12.3.4 Configure the claim investigation process
	12.3.5 Generate FDL
	12.3.6 Generate WSDL for the proxy process
	12.3.7 Install the Supportpac Eclipse plug-in
	12.3.8 Create the RequestExternalReportsProxy process
	12.3.9 Add WMQ_Formatter.jar to the process
	12.3.10 Replace bpeInterop.jar in the server library
	12.3.11 Install bpeInterop.ear
	12.3.12 Install the RequestExternalReportsProxy process

	12.4 Test the integration
	12.5 Summary

	Chapter 13. Points to consider
	13.1 Lessons learned
	13.1.1 Business Modeling and IT Architecture
	13.1.2 Export BPEL from WebSphere Business Integration Modeler?
	13.1.3 Naming
	13.1.4 Metadata
	13.1.5 Service Bus
	13.1.6 Conclusion

	13.2 Tooling and middleware changes
	13.2.1 WebSphere MQ
	13.2.2 WebSphere MQ Workflow
	13.2.3 WebSphere Application Server
	13.2.4 WebSphere Business Integration Message Broker
	13.2.5 WebSphere Business Integration Server Foundation
	13.2.6 WebSphere Studio Application Development Integration Edition
	13.2.7 WebSphere Business Integration Modeler
	13.2.8 Rational Software Architect

	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Appendix B. Integration considerations
	Integrating WebSphere Business Integration Modeler andRational Software Architect
	Business Process and Application Development Use Case

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

