

ibm.com/redbooks

Patterns: Model-Driven
Development Using IBM
Rational Software Architect

Peter Swithinbank
Mandy Chessell

Tracy Gardner
Catherine Griffin

Jessica Man
Helen Wylie
Larry Yusuf

Learn how to automate pattern-driven
development

Build a model-driven
development framework

Follow a service-oriented
architecture case study

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Model-Driven Development Using IBM
Rational Software Architect

December 2005

International Technical Support Organization

SG24-7105-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2005)

This edition applies to Version 6.0.0.1 of Rational Software Architect (product number 5724-I70).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
For solution architects . xi
For project planners or project managers . xii
For those working on a project that uses model-driven development xii
How this book is organized . xiii
The team that wrote this redbook. xiv
Become a published author . xv
Comments welcome. xvi

Part 1. Approach . 1

Chapter 1. Overview and concepts of model-driven development. 3
1.1 Current business environment and drivers . 4
1.2 A model-driven approach to software development 5

1.2.1 Models as sketches and blueprints . 6
1.2.2 Precise models enable automation . 6
1.2.3 The role of patterns in model-driven development 7
1.2.4 Not just code . 7

1.3 Benefits of model-driven development . 9
1.4 Model-driven development with IBM Rational Software Architect 11

1.4.1 Unified Modeling Language 2.0 editor . 12
1.4.2 UML profile support . 13
1.4.3 RSA patterns. 13
1.4.4 RSA transformations . 15

1.5 Summary . 16

Chapter 2. Scenario overview . 17
2.1 Enterprise architecture . 18

2.1.1 Suitability for model-driven development . 19
2.1.2 Contra-indications for model-driven development. 19

2.2 Integration architecture . 20
2.2.1 ESB structure . 21

2.3 Pattern definition . 23
2.3.1 Interaction behavior patterns. 24
2.3.2 Individual service patterns. 24
2.3.3 Suitability for model-driven development . 25
© Copyright IBM Corp. 2005. All rights reserved. iii

2.3.4 Contra-indications for model-driven development. 25
2.4 Automation . 26

2.4.1 Technical . 26
2.4.2 Organizational . 27
2.4.3 Managerial . 27

2.5 Summary . 27

Chapter 3. Model-driven development approach . 29
3.1 Abstraction . 30
3.2 Precise modeling. 30
3.3 Automation . 31
3.4 Architectural style . 32
3.5 The role of UML. 33
3.6 Expertise capture . 36

3.6.1 Logical architecture expertise . 36
3.6.2 Technical architecture expertise . 36

3.7 Patterns . 37
3.8 Quality and consistency . 39
3.9 Integration . 39
3.10 Platform independence . 41
3.11 Layered modeling . 42
3.12 Modeling of non-functional characteristics . 43
3.13 Summary . 43

Chapter 4. Model-driven development project planning 45
4.1 The value and cost of model-driven development. 46
4.2 Understanding the tasks for a model-driven development project 47

4.2.1 Descriptions of tasks . 48
4.2.2 The model-driven development tool chain . 50

4.3 Planning a model-driven development project . 51
4.3.1 Using an iterative approach to model-driven development 51
4.3.2 Developing model-driven development skills 52
4.3.3 Thinking about reuse. 53

4.4 Quality control for model-driven development tooling 55
4.5 Tracking a model-driven development project . 56
4.6 At the end of the project . 56
4.7 Summary . 57

Chapter 5. Model-driven development solution life cycle 59
5.1 Introduction to the solution life cycle . 60
5.2 Model-driven development life cycle . 61

5.2.1 Create the framework to generate the solution services. 61
5.2.2 Generate, customize, and test the solution services. 62

5.3 Model-driven development and versioning . 62
iv Patterns: Model-Driven Development Using IBM Rational Software Architect

5.3.1 Versioning and replacement policies . 63
5.4 Model-driven development and artifact management 64

5.4.1 Reuse model artifacts . 64
5.4.2 Integrity management services . 65
5.4.3 Deployment support . 65

5.5 Model-driven development and problem determination 66
5.5.1 Tooling versus instrumentation . 67

5.6 Information mining. 67
5.7 Testing. 68

5.7.1 Modeling for testing. 68
5.7.2 Applying test patterns . 69
5.7.3 Modeling using the UML testing profile . 70

5.8 Summary . 71

Chapter 6. Model-driven development in context 73
6.1 OMG and Model-Driven Architecture . 74
6.2 MDA models . 75

6.2.1 IBM and MDA . 76
6.3 Software Factories and domain-specific languages 78

6.3.1 UML and DSLs . 79
6.4 Asset-based development. 81
6.5 Pattern-driven development and IBM Patterns for e-business 82

6.5.1 IBM Patterns for e-business . 82
6.6 Business-driven development . 84
6.7 Model-driven development and On Demand Business 86
6.8 Model-driven development and middleware . 87
6.9 Visualization . 88
6.10 Executable UML . 89
6.11 Summary . 90

Part 2. Implementation . 91

Chapter 7. Designing patterns for the scenario . 93
7.1 Relationship to the project plan . 94
7.2 Overview of pattern design . 95
7.3 Architecture patterns . 97
7.4 Contracts of behavior . 99

7.4.1 Contract of behavior for synchronous updates 100
7.4.2 General requirements for synchronous update. 101

7.5 Integration patterns . 104
7.6 Applying a pattern to create a high-level model 106

7.6.1 The pattern . 107
7.6.2 The model . 108

7.7 Detailing the initial model with service patterns. 110
 Contents v

7.7.1 Service patterns: Activity diagrams . 112
7.7.2 Integration services . 117

7.8 RSA transformation . 118
7.8.1 Implementing the integration facade . 119
7.8.2 Implementing the integration service . 122
7.8.3 Implementing the provider facade. 122

7.9 Use of the framework . 125
7.9.1 Presentation of model information to users. 126
7.9.2 Service creation . 127

7.10 Summary . 128

Chapter 8. Applying model-driven development with Rational Software
Architect. 129

8.1 An overview of the Model-driven development process in RSA 130
8.1.1 Framework development. 132
8.1.2 Application development . 132

8.2 RSA model-driven development framework for SOI 132
8.3 Application development . 133

8.3.1 Installing the framework . 133
8.3.2 Creating a model and apply the profiles . 134
8.3.3 Applying patterns . 136
8.3.4 Applying transformations. 140
8.3.5 Testing the generated code . 142
8.3.6 Application development summary . 150

8.4 Framework development. 150
8.4.1 Developing the architectural style . 150
8.4.2 Creating a UML profile . 151
8.4.3 Implementing sample components . 160
8.4.4 Developing patterns and transformations . 160

8.5 Summary . 160

Chapter 9. Extending Rational Software Architect. 161
9.1 Introduction to implementing patterns and transformations to RSA 162
9.2 Setup: Enabling Eclipse Developer . 163
9.3 Deploying UML profiles . 163

9.3.1 Defining a path map . 164
9.3.2 Releasing the profile . 166
9.3.3 Adding the profile to a plug-in . 167
9.3.4 Deploying the plug-in . 172

9.4 Implementing patterns. 173
9.4.1 Getting started. 173
9.4.2 Defining a pattern . 179
9.4.3 Pattern implementation . 182
vi Patterns: Model-Driven Development Using IBM Rational Software Architect

9.4.4 Testing the pattern . 190
9.4.5 Publishing patterns . 194

9.5 Implementing a transformation . 194
9.5.1 Creating a new plug-in with a transformation 195
9.5.2 Transformation API . 202
9.5.3 Implementing the root transformation . 206
9.5.4 Implementing the transformation rules . 208
9.5.5 Creating and modifying files in the RSA workspace 211
9.5.6 Testing the transformation . 213

9.6 Launching a Run-time Workbench . 215
9.7 Deploying plug-ins. 217
9.8 Using a RAS repository . 218
9.9 Summary . 218

Chapter 10. Conclusion . 219

Appendix A. Additional material . 221
Locating the Web material . 221
Using the Web material . 221

System requirements for downloading the Web material 222
How to use the Web material . 222

Abbreviations and acronyms . 225

Related publications . 227
IBM Redbooks . 227
Other publications . 227
Online resources . 228
How to get IBM Redbooks . 229
Help from IBM . 229

Index . 231
 Contents vii

viii Patterns: Model-Driven Development Using IBM Rational Software Architect

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
developerWorks®
Eserver®
Eserver®

IBM®
Rational Unified Process®
Rational®
Redbooks (logo) ™

RUP®
SoDA®
WebSphere®

The following terms are trademarks of other companies:

EJB, Java, Javadoc, JVM, J2EE, RSM, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Patterns: Model-Driven Development Using IBM Rational Software Architect

Preface

You may read this IBM Redbook for a number of reasons. Perhaps you are
already familiar with the ideas behind model-driven development (MDD), and you
want to learn about how to put those ideas into practice and how to convince
others in your organization to adopt the approach. Maybe you heard something
about the benefits of MDD but want to learn more about it before you are
convinced that it is suitable for your project. Or you recently joined an MDD
project and need to understand what it is all about.

This IBM Redbook is written for technical practitioners and project managers who
want to learn more about MDD in practice. It will help you understand how to put
the ideas of MDD into practice using Unified Modeling Language (UML). You will
learn how to articulate the advantages of MDD to both project managers and
technical colleagues. You will see how the MDD software life cycle differs from
other approaches and how you can effectively plan and manage an MDD project.
If you are already working on an MDD project, you will learn how to use
Rational® Software Architect to carry out your work.

For solution architects
Solution architects can expect to learn about the benefits of a model-driven
approach to software development and how to determine whether it is a suitable
approach for your project.

You will learn how to put the ideas of MDD into practice using Rational Software
Architect (RSA). You will also learn how to articulate the advantages of MDD to
both project managers and technical colleagues.

“The convergence of patterns, models and tooling sets the scene for major
increases in application development productivity by 2010. Now is a good time
to get on board.”

Jonathan Adams, Distinguished Engineer, IBM® Academy of Technology
© Copyright IBM Corp. 2005. All rights reserved. xi

For project planners or project managers
If you are a project planner or a project manager, you will learn about the benefits
of a model-driven approach to software development and how to determine
whether it is a suitable approach for your project.

You will also learn how the MDD software life cycle differs from other approaches
and how you can effectively plan and manage an MDD project.

For those working on a project that uses model-driven
development

If you are reading this book because you are working on a project that has
adopted MDD, then you will learn about the MDD approach: how an overall MDD
project works and what your role is. You will also learn how to use RSA to carry
out your work.

The following chapters are recommended based on particular roles:

� If you are a solution architect or developer responsible for developing an
application using an existing MDD framework, read all chapters, but in
particular read:

– Chapter 1, “Overview and concepts of model-driven development” on
page 3

– Chapter 2, “Scenario overview” on page 17
– Chapter 3, “Model-driven development approach” on page 29
– Chapter 7, “Designing patterns for the scenario” on page 93
– Chapter 8, “Applying model-driven development with Rational Software

Architect” on page 129

� If you are a solution architect responsible for developing an MDD framework,
read all chapters, but in particular read:

– Chapter 1, “Overview and concepts of model-driven development” on
page 3

– Chapter 2, “Scenario overview” on page 17
– Chapter 3, “Model-driven development approach” on page 29
– Chapter 6, “Model-driven development in context” on page 73
– Chapter 7, “Designing patterns for the scenario” on page 93
– Chapter 9, “Extending Rational Software Architect” on page 161
xii Patterns: Model-Driven Development Using IBM Rational Software Architect

� If you are a project manager, the following chapters may interest you the
most:

– Chapter 1, “Overview and concepts of model-driven development” on
page 3

– Chapter 3, “Model-driven development approach” on page 29
– Chapter 4, “Model-driven development project planning” on page 45
– Chapter 5, “Model-driven development solution life cycle” on page 59
– Chapter 10, “Conclusion” on page 219

� If you are a pattern/transformation developer, the following chapters may
interest you the most:

– Chapter 1, “Overview and concepts of model-driven development” on
page 3

– Chapter 3, “Model-driven development approach” on page 29
– Chapter 8, “Applying model-driven development with Rational Software

Architect” on page 129
– Chapter 9, “Extending Rational Software Architect” on page 161

How this book is organized
In this book, we present MDD as an approach to improving on the mainstream
software development practice. MDD treats UML models as primary software
artifacts from which consistent implementation artifacts can be generated.

In Part 1, “Approach” on page 1, we describe the ideas behind MDD. We also
explain how to apply MDD in practice using Rational Software Architect by
introducing a scenario generalized from a number of real-world projects in which
the authors participated. The scenario involves the development of integration
services within a service-oriented architecture (SOA).

In Part 2, “Implementation” on page 91, we explain how to apply MDD to the
scenario. The information you need to reproduce the examples is included in the
additional materials provided with this redbook.
 Preface xiii

The team that wrote this redbook
A team of specialists from around the world working at the International
Technical Support Organization (ITSO), Hursley Center, produced this redbook.

Peter Swithinbank is a project leader at the ITSO, Hursley Center. He writes
IBM Redbooks and teaches IBM classes worldwide building business integration
solutions. Peter has worked for IBM for 27 years and has been with the ITSO for
one year. He has a diploma in software engineering from Oxford University and
an MA in Geography from the University of Cambridge.

Mandy Chessell is a Senior Technical Staff Member (STSM) in the U.K. She has
18 years of experience in the middleware field. She holds a master degree in
software engineering from the University of Brighton, U.K. Her areas of expertise
include distributed transaction processing, object-oriented design, usability, and
UML modeling.

Dr. Tracy Gardner is a solution architect in the IBM Software Group Services in
the U.K. She has over five years of industrial experience in model-driven
development. She has written and presented extensively on model-driven
development. She holds a Ph.D. in software engineering from the University of
Bath.

Catherine Griffin is a software engineer at IBM Hursley in the U.K. She has 10
years of experience in software development. Her areas of expertise include
Eclipse and the Eclipse Modeling Framework. She holds a degree in
mathematics from Nottingham University, U.K.

Jessica Man is an IT specialist in the U.K. She has five years of experience in
software development. Her areas of expertise include the JVM™ and tooling for
Java™ and J2EE™ application development, deployment, runtime problem
determination, and performance measurement. She holds a master degree in
advanced computer science from the University of Manchester.

Helen Wylie is a certified consultant IT architect in Hursley Architectural
Services in the U.K. She has many years of experience in the IT industry and has
focussed primarily on integration architectures in the last decade. Her areas of
expertise are SOA and integration, and most recently the combination of patterns
and models to support automated generation of services and deployment
artifacts for deployment to an enterprise service bus (ESB). She holds a
mathematics degree from the Open University and a post graduate diploma in
computer science from Cambridge University.
xiv Patterns: Model-Driven Development Using IBM Rational Software Architect

Larry Yusuf is a solution designer with Software Group Strategy and Technology
based at the Hursley Labs in the U.K. He has four years of experience in
Business Integration and modeling, with a particular focus on Business Process
Management, Event and Solution Management, and Integration patterns. He has
written and presented extensively on these topics.

Credits and acknowledgements
Without the sponsorship of Jonathan Adams, this book would not exist. We are
all indebted to Jonathan for championing the adoption of pattern-based
techniques in software architecture. He also was an assiduous reviewer.

We also thank Ian Scott who worked with members of the team in applying these
techniques to a large IT project. As well, we thank Charles Rivet, Lee Ackerman,
Lisa Noon and David Kelsey for reading and commenting on the first draft for us.

We also want to acknowledge the help of our many IBM colleagues, many
formerly of Rational, who are working with us to apply modeling techniques to
SOA and integration.

Become a published author
Join us for a two-to-six week residency program! Help write an IBM redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
Business Partners, or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at the following Web site:

ibm.com/redbooks/residencies.html
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Send us your comments
about this or other redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xvi Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Approach

This part describes model-driven development (MDD) as an approach to
software development. We explain how to organize a software development
project to use the MDD approach. Part 2, “Implementation” on page 91, takes
you through the application of MDD to a hypothetical scenario that draws upon
the experience of the team in real engagements.

� Chapter 1, “Overview and concepts of model-driven development” on page 3,
provides a brief overview of what MDD is and describes some of its benefits.

� Chapter 2, “Scenario overview” on page 17, describes the scenario we
selected to use throughout the book. MDD is not applicable to every scenario.
We discuss the indications that suggest MDD is effective for the scenario we
chose.

� In Chapter 3, “Model-driven development approach” on page 29, we step
lightly into the waters of MDD and explain the key ideas behind model-driven
development that we apply in the second part of the book.

� We wrote Chapter 4, “Model-driven development project planning” on
page 45, with the project planner in mind, and we discuss how to introduce
and manage an MDD project.

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

� Chapter 5, “Model-driven development solution life cycle” on page 59,
continues in the planning vein and looks at the way MDD affects aspects of
the solution life cycle that are not discussed elsewhere in the book.

� MDD is a rapidly advancing field, and in Chapter 6, “Model-driven
development in context” on page 73, we discuss some of the currents in MDD
and how they relate to some other aspects of software development.
2 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 1. Overview and concepts of
model-driven development

In this chapter, we describe the issues associated with enterprise solution
development. Then we present model-driven development (MDD) as an
approach to improving on established mainstream practices. We also introduce
IBM Rational Software Architect (RSA) as a tool for supporting MDD.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Current business environment and drivers
IT development does not take place in isolation. The purpose of IT is to facilitate
the operations of a business. The needs of the business environment drive the
way we develop IT.

Current business drivers include:

� The On Demand Business: As businesses are expected to be more adaptable
and flexible, so too are the IT systems that enable them.

� Business relevance: Now more than ever, there is a strong focus on IT
departments to deliver business value. Software must be business relevant.
Miscommunication between business and IT people can lead to projects that,
successful from an IT-delivery viewpoint, are deemed business failures.

� Cost control: The days of IT being invested in on the strength of its promises
are long gone. IT departments now operate under strong budget constraints
and are expected to demonstrate value for money.

� Increasing complexity: Software systems continue to increase in scale and
complexity to meet business needs. Techniques that work well for small-scale
development do not necessarily scale to enterprise-wide initiatives.

� Skills availability: The sophistication of today’s IT platforms means that
specialists’ knowledge is required to deliver software. Many organizations
struggle to find sufficient skilled professionals to support their development. In
addition, projects often depend on key individuals and suffer significantly if
those individuals leave a project or organization.

� Changing middleware environment: Today’s applications are deployed to a
huge variety of middleware platforms, and the rate of change in platform
technology is showing no sign of slowing up. Businesses want to take
advantage of advances in middleware but do not want to repeatedly rewrite
their applications.
4 Patterns: Model-Driven Development Using IBM Rational Software Architect

1.2 A model-driven approach to software development
Model-driven development is a style of software development where the primary
software artifacts are models from which code and other artifacts are generated.

A model is a description of a system from a particular perspective, omitting
irrelevant detail so that the characteristics of interest are seen more clearly. For
example, a structural engineer creates a model of a building that is suitable for
determining its load-bearing characteristics.

In MDD, we introduce the additional criteria that a model must be
machine-readable. For example, we must be able to access the content of the
model in an automated manner. Machine-readability of models is a prerequisite
for being able to generate artifacts. A diagram on a whiteboard may meet the
other criteria for being a model. However, until we capture it in a
machine-readable manner, we cannot use it within a model-driven development
tool chain.

Software models are typically expressed in the Unified Modeling Language
(UML). UML is a language for specifying, visualizing, and documenting software
systems. UML provides a visual notation and underlying semantics for software
models. UML also has a standard machine-readable serialization format, thereby
enabling automation.

Software models hide technical implementation details so that a system can be
designed using concepts from the application domain. Application design is
typically carried out using a UML modeling tool such as Rational Software
Architect, using concepts relevant to the application domain.

For example, when working in the enterprise integration domain we would start
by modeling the application design using concepts such as message, proxy, and
adapter. Later we can refine the software model and design the details of its
components.

Note: XML Metadata Interchange (XMI) is used to serialize UML models and
other models that are defined using the Meta Object Facility (MOF).

Note: Modeling using a domain-specific language tailored to a particular
subject area is also a possibility. This approach is further discussed in 6.2.1,
“IBM and MDA” on page 76.
 Chapter 1. Overview and concepts of model-driven development 5

1.2.1 Models as sketches and blueprints
The use of models to design software is a well-established practice (though
certainly not ubiquitous). Currently, models are used mostly as sketches that
informally convey some aspect of a system or blueprints that describe a detailed
design that you manually implement.

Using models as documentation and specification is valuable, but it requires
strict discipline to ensure that models are kept up to date as implementation
progresses. More often than not, time pressures mean that the implementation is
updated without first changing the models. Inaccurate models can be more
harmful than no models at all.

In this book, we use the term model-driven development to describe approaches
where automation generates artifacts from models.

1.2.2 Precise models enable automation
In MDD, models are used not just as sketches or blueprints but as primary
artifacts from which efficient implementations are generated by the application of
transformations. In MDD, application domain-oriented models are the primary
focus when developing new software components. Code and other target domain
artifacts are generated using transformations designed with input from both
modeling experts and target domain experts.

MDD has the potential to greatly reduce the cost of solution development and
improve the consistency and quality of solutions. It does this by automating
implementation patterns with transforms, which eliminates repetitive low-level
development work. Rather than repeatedly applying technical expertise manually
when building solution artifacts, the expertise is encoded directly in
transformations. This has the advantages of both consistency and
maintainability. A modified transformation is reapplied rapidly to generate solution
artifacts that reflect a change to the implementation architecture.

MDD shifts the emphasis of application development away from the platform
allowing developers with application expertise to design applications without
being concerned with the platform-level concepts that are province of developers
with platform expertise.

Platform expertise is captured directly in transformations rather than being
documented as project guidelines or worse, being rediscovered many times
during a project. Likewise, decisions about the implementation architecture are
directly encoded in the transformations rather than documented as architectural
decisions.
6 Patterns: Model-Driven Development Using IBM Rational Software Architect

Depending on the situation, suitable off-the-shelf transformations are available
for use directly or as a basis for extension. Alternatively, you may need to build
custom transformations for a project.

1.2.3 The role of patterns in model-driven development
A pattern is a solution to a recurring problem within a given context. Patterns
encapsulate a designer’s time, skill, and knowledge to solve a software problem.
And when used repeatedly in a number of different projects, a pattern becomes
established as best practices.

Software patterns can apply within an abstraction layer (for example, design
patterns and implementation patterns) and across abstraction layers (for
example, patterns for relating design elements and code). You can compose
patterns to produce pattern recipes for solving larger problems and pattern
languages to cover best practices for a domain area.

The complementary nature of patterns and MDD is key to this book. MDD
unlocks the potential of patterns to create well designed solutions, and patterns
provide the content for MDD.

1.2.4 Not just code
The generation of code and other platform artifacts is an important part of MDD,
but MDD-style automation can go much further than this. A software
development project needs to produce many non-code artifacts and many of
these are completely or partially derivable from models. The following list gives
some common examples of artifacts that are generated from models, but you can
probably think of others.

� Documentation: In organizations that follow a formal development approach,
the production of documentation takes a significant amount of development
effort. Keeping documentation in line with the implementation is notoriously
difficult. When using MDD, documents are generated from models ensuring
consistency and making information available within the models that
developers are working with on a daily basis, rather than in documents that
are difficult to navigate. Tools such as IBM Rational SoDA® and IBM Rational
Software Architect Report Generator generate documentation, or
documentation is generated by a transformation.

Note: SoDA stands for IBM Rational Software Documentation Automation.
To learn about SoDA, see:

http://www.ibm.com/software/awdtools/soda/
 Chapter 1. Overview and concepts of model-driven development 7

http://www.ibm.com/software/awdtools/soda/

� Test artifacts: It is possible to generate basic test harnesses (for example,
using JUnit) from the information contained in software models.

If additional test-specific modeling is carried out (for example, using the UML
Profile for Testing) then complete test implementations are generated.
Model-based testing is a discipline that is concerned with generating tests
from models.

� Build and deployment scripts: Using their expertise, build and deployment
architects can create transformations to generate build and deployment
scripts.

� Other models: A system involves many interdependent models at different
levels of abstraction (analysis, design, implementation), representing different
parts of the system (UI, database, business logic, system administration),
different concerns (security, performance, and resilience), or different tasks
(testing, deployment modeling). In many cases, it is possible to partially
generate one model from another, for example moving from an analysis
model to a design model, or from an application model to a test model.

� Pattern application: Patterns capture best practice solutions to recurring
problems. Patterns specify characteristics of model elements and
relationships between those elements. You can automate patterns so that
new elements are created and existing elements are modified to conform to
the pattern when the pattern is applied to a model.

When we talk about MDD in this book, we include all of these techniques in
addition to the generation of code.

Note: Additionally, in RSA, Java code that has been generated from
models can be used to drive the generation of Component Test code.
8 Patterns: Model-Driven Development Using IBM Rational Software Architect

1.3 Benefits of model-driven development
Model-driven development has the potential to greatly improve on current
mainstream software development practices. The advantages of an MDD
approach are as follows:

� Increased productivity: MDD reduces the cost of software development by
generating code and artifacts from models, which increases developer
productivity. Note that you must factor in the cost of developing (or buying)
transformations, but careful planning will ensure that there is an overall cost
reduction.

� Maintainability: Technological progress leads to solution components
becoming stranded legacies of previous platform technologies. MDD helps to
solve this problem by leading to a maintainable architecture where changes
are made rapidly and consistently, enabling more efficient migration of
components onto new technologies.

High-level models are kept free of irrelevant implementation detail. Keeping
the models free of implementation detail makes it easier to handle changes in
the underlying platform technology and its technical architecture.

A change in the technical architecture of the implementation is made by
updating a transformation. The transformation is reapplied to the original
models to produce implementation artifacts following the new approach.

This flexibility also means that it is possible to try out different ideas before
making a final decision. It also means that bad decisions are easily changed.
Software projects are often stuck with decisions that are a mistake in
retrospect but are too costly to fix.

� Reuse of legacy: You can consistently model existing legacy platforms in UML.
If there are many components implemented on the same legacy platform, you
can develop reverse transformations from the components to UML. Then you
have the option of migrating the components to a new platform or generating
wrappers to enable the legacy component to be accessed via integration
technologies such as Web services.

� Adaptability: Adaptability is a key requirement for businesses, and IT systems
need to be able to support it. When using an MDD approach, adding or
modifying a business function is quite straight forward since the investment in
automation was already made. When adding new business function, you only
develop the behavior specific to that capability. The remaining information
needed to generate implementation artifacts was captured in transformations.

� Consistency: Manually applying coding practices and architectural decisions
is an error prone activity. MDD ensures that artifacts are generated
consistently.
 Chapter 1. Overview and concepts of model-driven development 9

� Repeatability: MDD is especially powerful when applied at a program or
organization level. This is because the return on investment from developing
the transformations increases each time they are reused. The use of tried and
tested transformations also increases the predictability of developing new
functions and reduces the risk since the architectural and technical issues
were already resolved.

� Improved stakeholder communication: Models omit implementation detail that
is not relevant to understanding the logical behavior of a system. Models are
therefore much closer to the problem domain, reducing the semantic gap
between the concepts that are understood by stakeholders and the language
in which the solution is expressed. Improved stakeholder communication
facilitates the delivery of solutions that are better aligned to business
objectives.

� Improved design communication: Models facilitate understanding and
reasoning about systems at the design level. This leads to improved
discussion making and communication about a system. The fact that models
are part of the system definition, rather than documentation, means that the
models are never out of date and are reliable.

� Expertise capture: Projects or organizations often depend on key experts who
repeatedly make best practice decisions. With their expertise captured in
patterns and transformations, they do not need to be present for other
members of a project to apply their expertise. An additional benefit, provided
sufficient documentation accompanies the transformations, is that the
knowledge of an organization is maintained in the patterns and
transformations even when experts leave the organization.

� Models as long-term assets: In MDD, models are important assets that
capture what the IT systems of an organization do. High-level models are
resilient to changes at the state-of-the-art platform level. They change only
when business requirements change.

� Ability to delay technology decisions: When using an MDD approach, early
application development is focused on modeling activities. This means that it
is possible to delay the choice of a specific technology platform or product
version until a later point when further information is available. In domains
with extremely long development cycles, such as air traffic control systems,
this is crucial. The target platforms may not even exist when development
begins.

Like any tool or technique, MDD can be used well or used badly. MDD has the
potential to produce the benefits we just mentioned, but the approach must be
applied effectively. This book is based on the collective experience of its authors
in industrial applications of MDD. By following the practices introduced in this
book, you will significantly improve the chances of success for your MDD project.
10 Patterns: Model-Driven Development Using IBM Rational Software Architect

1.4 Model-driven development with IBM Rational
Software Architect

RSA is an integrated design and development tool that leverages MDD with UML
for creating well-architected applications and services. The description of RSA is
taken directly from the product information, which you can find on the Web at:

http://www.ibm.com/software/awdtools/architect/swarchitect

RSA has the following features that are particularly relevant to MDD:

� UML 2.0 editor with refactoring support
� Support for UML 2.0 profiles
� Patterns infrastructure with pattern library
� Transformation infrastructure with sample transformations

Patterns, profiles, and transformations together provide the capabilities required
to customize RSA to support the automation of a development process though
an MDD approach.

RSA also includes development tooling for J2EE, Web, and Web services.
Another product, IBM Rational Software Modeler (RSM™), includes MDD
capabilities, but does not provide development tooling, nor does it include any
prebuilt transformations. RSM is used in an MDD tool chain by architects or
designers who are responsible for modeling only, or in scenarios where the
chosen runtime platform is not supported by RSA.

For MDD scenarios where the target platform includes J2EE and Web services,
RSA is the appropriate tool for architects, designers, and developers.

Throughout the book we refer to RSA, but note that Rational Software Modeler is
an alternative for tasks that do not require development tooling.

The following sections provide an introduction to the MDD capabilities in RSA.
We cover these features in greater detail in the remaining chapters of this book.
 Chapter 1. Overview and concepts of model-driven development 11

http://www.ibm.com/software/awdtools/architect/swarchitect

1.4.1 Unified Modeling Language 2.0 editor
RSA includes an editor that supports the major UML 2.0 diagrams.

Figure 1-1 RSA UML 2.0 editor
12 Patterns: Model-Driven Development Using IBM Rational Software Architect

1.4.2 UML profile support
UML profiles allow you to customize the language for a particular domain or
method. UML profiles introduce a set of stereotypes that extend existing
elements of UML for use in a particular context. This technique is used in MDD to
allow designers to model using application domain concepts.

RSA ships with a set of UML profiles and also supports the creation of new
profiles. One of the sample RSA profiles is the Rational Unified Process®
(RUP®) Analysis profile that provides stereotypes for producing analysis models
using the RUP approach. The RUP Analysis profile introduces stereotypes such
as Boundary, Control, and Entity as shown in Figure 1-2.

Figure 1-2 Example application of the RUP Analysis profile

1.4.3 RSA patterns
Patterns are solutions that solve a recurring problem in a particular context. RSA
provides support for automating the expansion of patterns in UML models. RSA
ships with a set of patterns including the Gang-of-Four patterns. RSA also
provides a patterns infrastructure so that developers can build their own patterns.

One of the sample patterns in RSA is an Interface pattern that captures the
relationship between an interface and a class that realizes the interface.
Figure 1-3 shows the application of the Interface pattern to an ICurrentAccount
interface and an Account interface that realizes it.

The pattern automates the creation of the realization relationship between the
class and the interface, and adds operations to the class corresponding to those
in the interface. The pattern can be reapplied if additional operations are
introduced to the interface.
 Chapter 1. Overview and concepts of model-driven development 13

Patterns are commonly used in conjunction with a UML profile. The application of
a pattern often introduces stereotypes to customize the model elements involved
in the pattern.

Figure 1-3 Application of the sample interface pattern

An ICurrentAccount
interface that the Account

class must realize

An Instance of the
Interface Pattern

Model elements are dragged
onto the pattern template

The pattern introduces new
elements to the model
14 Patterns: Model-Driven Development Using IBM Rational Software Architect

1.4.4 RSA transformations
Transformations support a layered, model-driven approach to development. They
automate the transition between models at different levels of abstraction (for
example, from analysis to design) and ultimately to code. RSA ships with a
sample set of transformations, including a UML to EJB™ transformation. RSA
also provides a transformation infrastructure so that developers can build their
own transformations and extend the provided transformations.

Figure 1-4 demonstrates how the UML to EJB transformation works. A UML
profile is used when developing the application model. This includes the Entity
stereotype that is applied to the Account class in our example. Running the
transformation (by right-clicking the model and selecting the UML to EJB
transformation) generates a corresponding EJB project with a corresponding
Entity Bean, deployment descriptors, and so on. The right side of Figure 1-4
shows a visualization of the resulting Account Entity Bean (RSA supports UML
visualization of EJB artifacts; the transformation creates the actual Java code).

Figure 1-4 UML to EJB transformation

Note: For more details about extending the transformations that come with
RSA, refer to the following articles:

� “UML to C++ Transformation Extensibility in Rational Software Architect”

http://www.ibm.com/developerworks/rational/library/05/412_uml_to/

� “Extending the UML to Java transformation with Rational Software
Architect:

http://www.ibm.com/developerworks/rational/library/05/802_uml/index.html

UMLtoEJB
Transformation
 Chapter 1. Overview and concepts of model-driven development 15

http://www.ibm.com/developerworks/rational/library/05/412_uml_to/
http://www.ibm.com/developerworks/rational/library/05/802_uml/index.html

The UML to EJB transformation runs over a whole model and processes all
Entities found. There are additional stereotypes for modeling sessions and other
enterprise component concepts from which EJB artifacts can be generated.

1.5 Summary
This chapter introduced you to the concepts behind model-driven development,
the relevance and benefits of MDD to business, and a simple example of
applying a pattern and transformation.

In Chapter 2, “Scenario overview” on page 17, we introduce the scenario upon
which the practical examples in Part 2, “Implementation” on page 91, are based.
As we mentioned in this chapter, MDD is not appropriate to all scenarios. The
next chapter goes beyond describing the scenario we are going to use. It
discusses how to decide whether to use an MDD approach, how to apply an
MDD approach, and why the selected scenario is appropriate for MDD.
16 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 2. Scenario overview

In this chapter, we describe the example scenario that we use to illustrate
discussions throughout the book. We also identify the features that make it
appropriate for a model-driven development (MDD) approach.

We chose this scenario to illustrate the application of MDD to an enterprise
service bus (ESB) within an enterprise wide service-oriented architecture (SOA).
This scenario is based on an amalgam of actual experiences but does not reflect
any one specific engagement.

The project reflected most closely by the scenario began, not as a model-driven
development, but simply as an ESB project which concentrated on integration
patterns and reuse. It was not until after much of the formalization of the
architecture and patterns occurred that the advantages of model-driven
development were appreciated and Unified Modeling Language (UML) models
were developed. For this reason, early architectural drawings were not UML
models. This was reflected in the definition of the scenario in this chapter and in
Chapter 7, “Designing patterns for the scenario” on page 93, in the description of
the information on which the design model was based.

In a project that is model driven from the start, you use UML throughout the
design process.

2

© Copyright IBM Corp. 2005. All rights reserved. 17

2.1 Enterprise architecture
The enterprise represented in this scenario provides products to many
customers, who have ongoing service contracts of considerable complexity. The
scenario looks at customer handling functions and how these are supported by
back-end systems. The enterprise is going through a technology refresh in which
a number of divisions, responsible for different product ranges, are introducing
new front office systems. These require information from corporate and divisional
back-end systems. The back-end systems are also to be replaced. However, the
time scales of the two refresh programs cannot be fully aligned, so a “big bang”
approach is considered too risky.

The business scenario on which the examples in this book are based assumes
that an enterprise architecture has been established and that all future divisional
development projects will be aligned with this architecture.

An SOA has been adopted as the enterprise architecture. The enterprise
architecture has mandated several off-the-shelf packages to assist call handlers
in their customer facing roles, to manage account information and services over
their entire history and eventually to move towards self help applications.
Currently the accounts and customer information are managed mainly by legacy
systems. Some of these will be replaced over a period of time to meet
requirements for new functionality.

To support the front-office packages with customer and account information from
the back-end systems, and to manage updates to the back-end systems, the
enterprise architecture mandates a service-oriented, enterprise-wide integration
bus, or rather the enterprise service bus.

All divisional systems have to use the ESB for any integration between the
customer facing systems and the back-end applications. It is the intention that all
divisional systems will receive and maintain a consistent view from these
systems.

A number of business processes will be developed under the control of divisional
projects. The enterprise architecture defines business process management as
being a layer outside the ESB, although processes may be initiated through the
ESB and the business process may invoke services through the ESB. In the
enterprise architecture, any long running process must be handled the Business
Process Management layer rather than directly by the ESB. The enterprise
architecture requires an enterprise System Management Framework, which
monitors all enterprise applications including the ESB.
18 Patterns: Model-Driven Development Using IBM Rational Software Architect

Initial product selections for the ESB include:

� WebSphere® Business Integration Server Foundation
� WebSphere Business Integration Message Broker

Figure 2-1 Enterprise architecture vision

2.1.1 Suitability for model-driven development
Even at this early, high-level definition of the architecture, there a number of
pointers indicating that this program of development is a candidate for
model-driven development.

There are development projects that require development of integration services
to run on the ESB across all divisions. Any investment required to develop the
necessary framework and tooling for a model-driven development approach to
generating the integration services likely to be repaid manyfold.

Although the divisions of the enterprise have considerable autonomy with respect
to procuring or developing their IT support, the definition of a well defined
enterprise architecture, and the establishment of governance to ensure that
divisions follow the enterprise architecture, are likely to increase repeatable
patterns of behavior. This will increase the potential productivity and success of a
model-driven development approach.

2.1.2 Contra-indications for model-driven development
Although there are factors that are expected to contribute to the potential
success of a model-driven development approach, this enterprise does not
currently have any significant investment in UML or related modeling skills. There
might also be some misgivings from divisional IT managers about how to ensure
that contracted IT suppliers are following a similar approach.

Enterprise Service Bus
Integration Services

Business Process
Management Layer

Front
Office

Application

Front
Office

Application

Front
Office

Application

Back End
System

Back End
System

Back End
System
 Chapter 2. Scenario overview 19

Further considerations as to suitability of the model-driven development
approach are given after the following description of the integration architecture.
Then the case for return on investment when the framework is used across the
enterprise will be become more apparent.

2.2 Integration architecture
The enterprise architecture states that a service-oriented approach should be
taken to all new developments. This includes the ESB, which adopted
service-oriented integration (SOI) as the underlying principle.

Service-oriented integration supports a SOA in which applications do not call the
services of other applications directly but call the services hosted by integration
middleware. These integration services provide mediations such as validation
and transformation. They may also provide integration orchestration before
calling one or more services offered by other applications.

The integration services do not, in this case, support long-running, stateful
business services because these are explicitly assigned to a separate business
process management layer in the enterprise architecture.

A high-level architecture for the ESB defines the service-oriented principles to
which services deployed onto the ESB must conform. In this scenario, it is
particularly important that service requesters and providers are loosely coupled.
It is also important that, although requesters must be aware of a service contract,
they are unaware of service implementation. This allows provider
implementations to be changed independently of any of the front-end requesters
connecting to the ESB. Migration of the legacy to new OTS packages is a lengthy
process and should happen without disruption to service requesters.

A further principle of the ESB architecture, and of the enterprise architecture
itself, is that integration services deployed onto ESB should be reusable, and
reused, by multiple applications both within and across divisions. The principle of
loose coupling assists this goal. It is further enforced by the use of a searchable
service portfolio to identify existing services and the mandatory use of a
canonical data format for integration services. There already exists an embryonic
data model and associated canonical data format. This is being developed under
central governance to avoid the development of point to point services.

Neither off-the-shelf applications nor legacy providers conform to the Enterprise
Canonical Data Format (ECDF). ESB integration services are therefore provided
with facades for incoming requests and facades through which they call the
services of providers outside the ESB. The facades apply transformations to and
from the ECDF.
20 Patterns: Model-Driven Development Using IBM Rational Software Architect

2.2.1 ESB structure
The ESB is structured into two layers. Services in the inner layer operate only
with ECDF and provide all the orchestration of the integration. Services in the
outer layer are facades that are responsible for transformation between external
formats and ECDF and other boundary activities such as validation, audit,
authorization and management of communications with external requesters and
providers. The ESB also provides utility services, which support common
functions, and are called from both facade services or integration services.

Figure 2-2 shows a simple end-to-end service (either synchronous or one-way)
with a single integration service (IS) in the inner layer. This service is called from
a front-office application via an integration service facade (ISF) and calls a
back-end service provider via a provider facade. Both the facade service and the
integration service can call utility services which reside in the inner layer.

Figure 2-2 ESB structure

The utility services (U) are also part of the ESB architecture. They differ from the
list of services indicated earlier in that they are implemented only once and are
part of the ESB infrastructure itself.

Figure 2-3 shows an additional end-to-end service on the ESB. In this case, it is
an asynchronous service (ISF, IS, and PF shown in smaller, light blue circles)
and introduces three additional service types, the callback services. These
services allow an asynchronous response to be returned to a front-office
application which has made a request. The provider facade call back (PFCB)
offers a service interface which a back-end service provider can call to return a
response. This in turn calls the integration service call back (ISCB) and the
requester callback facade (RCBF) ending up with a call to the callback service of

ISF

PF

IS

Front Office
Application

Back end
Service
Provider

U
U

Inner Layer

Facade Layer
 Chapter 2. Scenario overview 21

the original requester. These are effectively two one-way services which carry a
transaction ID that allows a response to be matched to request at callback
service of the requesting front office application.

In summary, six types of service make up the end-to-end integrations:

� Integration service facade
� Integration service
� Provider facade
� Provider facade call back
� Integration service call back
� Requester callback facade

Figure 2-3 Additional Service Types

The two simple examples show basic use of service types. However these are
the building blocks which can be composed to build more complex end-to-end
services.

The ESB architecture requires any integration service facades that are deployed
onto the ESB to present to external requesters a Web Services Description
Language (WSDL) defined interface. This interface specifies a SOAP message
over HTTP, JMS, or MQ.

ESB services in the inner layer are also required to have well defined WSDL
interfaces. In this case, nonstandard lightweight binding may be used for
efficiency. ESB services are implemented either in Web Sphere Application
Server or in WebSphere Business Integration Message Broker.

In any real ESB architecture, consideration would be given to the non-functional
aspects such as security, availability and failover. These aspects are be part of

ISF
PF

IS

Front Office
Application

Back end
Service
Provider

UU

Inner Layer

Facade Layer

ISF PF
IS

Front Office
Application

Back end
Service
Provider

RC
BF

PF
CB

IS
CB
22 Patterns: Model-Driven Development Using IBM Rational Software Architect

the design of the overall infrastructure and are not included in our current
scenario which this focuses primarily on the model-driven development of the
services to be deployed on the ESB. This is not to say that such aspects are not
relevant to model-driven development. They are considered again briefly in
Chapter 5, “Model-driven development solution life cycle” on page 59.

2.3 Pattern definition
Our first pattern is the high-level ESB architecture, which wraps the integration
service in facades. It defines the service types which can be deployed. It also
imposes the first level of constraint on how these services can call each other
and can interact with requesters and providers outside the ESB.

Figure 2-4 Service connection pattern in ESB

� An integration service facade provides an end-to-end service to an external
requester. It provides a facade for a single integration service.

� An integration service may be called through one or more integration service
facades. Each facade may present the service with a different request format.
The facades must work as closely as possible in the format of the requesting
application.

� Integration services may call one or more external service providers through a
provider facade.

� Integration services may call other integration services.

Given this architecture, we now look in greater detail at the patterns for the
integration services to be supported on the ESB.

Utility
Service

Integration
Service

Provider
Service

Integration
Service
Facade

Integration
Service

Backend
Service
Provider

Front Office
Application 1:1 1:1 1:n 1:1

1:n
1:n

1:n
1:n
 Chapter 2. Scenario overview 23

2.3.1 Interaction behavior patterns
The first step is to look at some fundamental contracts of behavior between
service requesters and service providers. In the context of this redbook, a
contract of behavior is defined as a pattern of behavior that covers a number of
aspects of the interactions.

A contract of behavior defines an agreed set of behaviors which can be applied
to an interaction. The behaviors define the requirements that are placed on
applications making service requests and on the middleware or application
providers of services. These are technical, rather than business requirements,
but are technology and protocol independent, for example:

� Synchronous, asynchronous, or one way
� Update or read only
� Responsibility for error handling
� Responsibility for error reporting
� Correlation between requests and responses
� Audit

Each contract of behavior carries with it a set of requirements on both the
requester and the provider in any interaction. Any service deployed onto the ESB
supports all the requirements of one of a specific contract of behavior when it
acts as a provider and for each time it make a request to a provider.

The contracts of behavior used in our scenario are defined in Chapter 5,
“Model-driven development solution life cycle” on page 59.

2.3.2 Individual service patterns
The next level of abstraction is to look at the patterns which apply to the
individual service types. These are obtained by combining the ESB architectural
principles applied to specific service types with a contract of behavior.

Facade patterns
The facades and their callback services include a sequence of standard
boundary functions which process a request, or response, to ensure that it
conforms to the architecture of the ESB and to execute the necessary
transformations. The facade patterns also handle the service interactions and
error handling in conformance with the selected contract of behavior.

Integration services
The internal integration services are more complex as they provide the
orchestration of integrations. An example of the type of orchestration, which is
supported by the integration service patterns, is a request for update to a single
24 Patterns: Model-Driven Development Using IBM Rational Software Architect

target, optionally routed to alternate service providers based on message
content. The integration service patterns is covered in greater detail in Chapter 5,
“Model-driven development solution life cycle” on page 59.

It is less easy to provide a comprehensive set of patterns for the behavior of
integration services. However considering 80/20 coverage, it is possible to define
a set of patterns which can be added to as new requirements are refined. The
patterns for integration services are closely aligned with the basic Patterns for
e-business.

2.3.3 Suitability for model-driven development
As we add detail to the enterprise architecture to define the integration
architecture, and the patterns that can be abstracted from that architecture, it
becomes clear that the development of services on the ESB is a clear candidate
for model-driven development.

We have shown in outline how the integration architecture can be defined as a
hierarchical set of patterns. Given this set of patterns, it is possible to configure
the patterns for specific instances. This means that two of the benefits defined in
1.3 can be realized by applying model-driven development to the ESB
architecture, namely the expertise captured in the patterns and transformations
and their repeated use.

The degree of abstraction achieved by the patterns means that a high degree of
reuse can be obtained with the opportunities for cost savings being greatly
increased.

2.3.4 Contra-indications for model-driven development
There are no obvious technical factors which would preclude the use of a
model-driven development approach. The architectural framework if adhered to
universally appears to be an eminently suitable.

There may be many organizational factors which could hamper adoption of the
approach. Although there is an understanding of model-driven development
among the enterprise architects who have responsibility for the enterprise
architecture and the ESB architecture within it, there is little appreciation of this
approach among the divisional IT leaders.

Divisional IT has been used with considerable autonomy in determining their IT
strategy, The use of an enterprise-wide integration program (the ESB) is in itself
a potential point of dispute. The additional requirement for the use of standard
patterns and a new development method to support them will require
organizational issues to be resolved.
 Chapter 2. Scenario overview 25

2.4 Automation
We have described the ESB architecture in terms of the patterns which constrain
the service implementations. These patterns can be used as input to a
conventional detailed design phase for every service to be implemented on the
ESB. As services are created under the control of different divisional IT
management, with contracts let to multiple IT suppliers, this can result in the use
of various development environments. Also each division and each supplier
require the skills to implement service-oriented integration and to fully
understand the ESB architectural constraints and ESB technologies in which it is
implemented.

However, at enterprise level, the use of patterns also opens the door to
automated generation of services and their associated artifacts.

The modeling of ESB service patterns, and the generation of service instances
from these models, is included as a feature of the enterprise architecture.
Rational Software Architect is included in the required product list of the
enterprise architecture to model the ESB structure and ESB services and to
create transformations of these models. These transformations generate both
the code which implements the services and the associated artifacts. It ensures
that a complete package is delivered which enables rapid deployment and testing
of the services.

The organizational difficulties are recognized and addressed at three levels:
technical, organizational and managerial.

2.4.1 Technical
The ESB implementation is an enterprise rather than divisional project and is
managed as an enterprise level asset. A framework for model-driven
development is in place. The initial set of patterns are included as models with
transformations to generate complete, deployable services, and tooling to guide
and assist service developers has been built. Also processes link the ESB to the
enterprise system management.

The technical approach to compensating for lack of model-driven development
skills in the divisions is to establish the basic framework. The approach also
ensures that this framework eliminates much of the need for modeling skills
outside the centrally run ESB project.

New patterns are created by the central ESB group against divisional
requirements. Use of patterns is supported by more than one interface. For some
users, a tailored user interface has been established to ensure that creation of
26 Patterns: Model-Driven Development Using IBM Rational Software Architect

ESB services by divisional projects requires general integration skills, rather than
a deep understanding of the modeling techniques.

2.4.2 Organizational
The necessary governance is in place. An enterprise-level organization owns
processes, systems and controls, which allow divisional integration projects to
generate their own services and to pass these to a central organization for
certification and deployment. The central processes also ensure the distribution
of information about existing and planned assets to encourage reuse of services
and to prevent deployment of new services which duplicate existing functionality.
The MDD approach assists this central organization. By imposing the
architecture through patterns, the governance problems are reduced, and there
are considerable benefits in quality and consistency.

2.4.3 Managerial
There is a program to disseminate information about the ESB and the
model-driven development to all divisions. This is backed up by financial
incentives to ensure that the cost benefits on which the ESB is predicated are
achieved.

2.5 Summary
In this chapter, we described the scenario that we use throughout the book to
demonstrate the use of MDD. Patterns were identified in the scenario, which
indicated that use of an MDD approach would generate a positive economic
return for the project. We also identified some non-functional requirements for
the successful implementation of an MDD approach.
 Chapter 2. Scenario overview 27

28 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 3. Model-driven development
approach

This chapter describes the ideas behind model-driven development (MDD). The
topics covered in this chapter include:

� The key concepts behind MDD
� The role of UML in MDD
� The role of patterns in MDD
� The MDD process

3

© Copyright IBM Corp. 2005. All rights reserved. 29

3.1 Abstraction
Abstraction is the process of ignoring irrelevant details in order to focus on
relevant ones. In MDD, we use abstraction to enable us to work with a logical
view of our application, focusing on the functionality of the system without being
concerned with implementation details.

Abstraction can be used to model applications at different levels of abstraction
(including analysis, design, and implementation) or from different perspectives
(including security, management, user interface). Abstraction allows us to focus
on the different aspects of a system without getting lost in detail that, while
crucial to the system as a whole, is irrelevant to the current viewpoint.

When writing code we describe our applications using implementation concepts.
Even when using full-featured middleware platforms we need to write a lot of
code (and deployment descriptors, configuration files, and so on) to express
application concepts. Much of the code that we write is similar, particularly when
following the conventions adopted by a particular project or organization. In many
cases, a large amount of code follows directly from a small number of design
decisions and from the architectural principles of the project. MDD enables us to
work at a level where we can directly capture those design decisions in models,
and generate the appropriate code through transformations.

Modeling concepts are much richer than implementation artifacts. We can say
more with less effort. It is quicker to create the models than to write the code
manually. Additionally, we can focus on the logical design of our application,
which frees us from distracting implementation details.

3.2 Precise modeling
Abstraction is not the same as imprecision. When we use abstraction we omit
specific details while being precise about those details on which we do focus.
When using an MDD approach we can be very precise about the architecture
and high-level design of a system while saying nothing about implementation
details.

The Unified Modeling Language (UML) is typically used to create models for
MDD. UML is a software modeling language with a graphical notation and
underlying semantics. It is often assumed that diagrams must be informal. While
we can use UML in an informal way, it has semantics and precise models that we
can create by using it in a consistent manner.

In MDD, we use UML models as part of the definition of a system, not just as
sketches. These models have well-defined semantics and can be transformed
30 Patterns: Model-Driven Development Using IBM Rational Software Architect

into implementation artifacts (in the same way that we compile Java code into
byte code).

3.3 Automation
Modeling is a valuable technique in itself, but manually synchronizing models and
code is error prone and time consuming. Automation is the main characteristic
that distinguishes MDD from other approaches that use modeling.

MDD is concerned with automating the development process so that any artifact,
which can be derived from information in a model, is generated. This includes
code as well as deployment descriptors, test cases, build scripts, other models,
documentation, and any other kind of artifact that a software project needs to
produce.

You can achieve automation by using two main techniques:

� Transformations: Transformations automate the generation of artifacts from
models. This includes the generation of code and also the generation of more
detailed models, for example generating a design model from an analysis
model. Transformations are typically applied in batch mode to entire models
as illustrated in Figure 1-4 on page 15.

� Patterns: Patterns automate the creation and the modification of model
elements within a model to apply a given software pattern. Patterns can occur
at all levels of abstraction so we can have, for example, architecture patterns,
design patterns, and implementation patterns. Patterns are typically applied
interactively with a designer selecting a pattern and providing parameters.
See Figure 1-3 on page 14.

The transformations specify how higher-level concepts are mapped to lower-level
concepts according to best practices. Lower-level patterns are often applied by a
transformation rather than manually applied, for example, a transformation from a
design model to code generates code according to implementation patterns.

Note: The term model-driven development is sometimes used to describe
non-automated but model-centric approaches. In this book, we reserve the
term “model driven” for those approaches in which automation is practiced.
 Chapter 3. Model-driven development approach 31

3.4 Architectural style
MDD improves productivity and consistency by automating the generation of
common aspects of software artifacts, which allows the application developer to
focus on what is special for each piece of business function to be implemented.
Software platforms, including programming languages and middleware, are
intended to be broadly applicable and must cater to many different development
styles. The more we can specialize and constrain how our software development
domain makes use of its platforms, the more automation we can achieve.

MDD is not a one-size-fits-all approach. There is no single off-the-shelf tool that
is suitable for automating the development of all kinds of software. There is not
enough commonality to achieve the full benefit of MDD. MDD is most effective in
automating the development process where there is a requirement to produce
many components, services, applications, or solutions that are built according to
a common set of conventions.

Richard Hubert, in his book Convergent Architecture: Building Model-driven
J2EE Systems with UML (see “Related publications” on page 227 for the
complete citation), introduces the term architectural style to refer to this common
set of conventions: “An architectural style is a family of architectures related by
common principles and attributes.” He also states, “An architectural style conveys
the principles and the means to most effectively achieve a design vision.”

An architectural style can be influenced by the following items:

� Category of software under development (for example, enterprise integration,
real-time embedded, end-user interface)

� Category of software platform that is to be used (for example, messaging
middleware, rule-based system)

� Software development paradigms that are favored (for example,
service-oriented, aspect-oriented)

� Subject matter of the software (for example, telecoms, finance, retail)

� Architectural principles for the system or systems under development

� Scope of the architectural style (from industry wide through to project specific)

� House style of the software development organization (for example, modeling
conventions)

� Other factors influencing the concepts that are appropriate for software
modeling in a particular context
32 Patterns: Model-Driven Development Using IBM Rational Software Architect

We use the term MDD framework to refer to the method and tools that automate
development for a particular architectural style. An MDD framework, as defined in
this book, includes:

� UML profiles that tailor UML to the application domain

� Automated patterns that apply best practice solutions to repeated problems

� Transformations that generate implementation artifacts and other work
products

� Guidance on how to build applications using the framework

� Sample models demonstrating how the framework is used

The following list provides the scope of an MDD framework that automates an
architectural style:

� Commercial Off-The-Shelf MDD Framework

Commercial vendors can provide MDD Frameworks for use across a common
domain.

� Enterprise or program-wide MDD Framework

A common MDD framework is developed by an enterprise or program that is
responsible for delivering multiple projects that share common characteristics.

� Project-specific MDD Framework

An MDD framework is developed specifically for use on a particular project.

Enterprise-wide MDD frameworks are particularly important for capturing and
enforcing a common architectural style across all the IT systems in an enterprise.
The architectural style of an enterprise may consist of a set of interrelated
architectural styles that address different kinds of software development carried
out within the enterprise.

3.5 The role of UML
As we already learned, UML is typically used for defining models when using an
MDD approach (see “UML and DSLs” on page 79). UML is an open standard
and the de-facto standard for software modeling. UML is a general purpose
software modeling language that we can apply in various ways. The modeling
techniques appropriate for designing a real-time, embedded telephony
application and those for developing a self-service retail application are quite
different. We can use UML in both cases.
 Chapter 3. Model-driven development approach 33

UML profiles
A UML profile is a set of extensions that customize UML for use in a particular
domain or context. Examples of UML profiles include:

� The UML testing profile

http://www.omg.org/cgi-bin/doc?ptc/2004-04-02

� The UML profile for software services

http://www.ibm.com/developerworks/rational/library/05/419_soa/

� The UML profile for schedulability, performance, and time

http://www.omg.org/technology/documents/formal/schedulability.htm

UML profiles are orthogonal extensions to UML so multiple profiles can be
applied simultaneously. For example, we might apply both the UML profile for
software services and a UML profile for security if we are modeling security
considerations within an application that follows a service-oriented architecture.

A UML profile introduces a set of “stereotypes” that extend UML concepts. For
example, the UML profile for software services introduces a Message stereotype
that you can apply to a UML class to indicate that the class represents a
message to be passed to a service. The use of a stereotype conveys additional
semantic information both to human modeler and to automation tools. We are
able to distinguish between UML classes that represent messages and UML
classes that represent tables in a database. In this case, described using the
Web Services Definition Language (WSDL), the Message stereotype enables a
transformation to determine which UML classes are used to model messages
and should therefore lead to the generation of message artifacts.

Figure 3-1 shows a simple example of MDD in which a Message concept in a
model is transformed to a WSDL message definition in the context of a
UML-to-WSDL transformation.

Note: For a proposed security modeling profile, see “Modeling Security
Concerns in Service-Oriented Architectures” on the Web at:

http://www.ibm.com/developerworks/rational/library/4994.html
34 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.omg.org/cgi-bin/doc?ptc/2004-04-02
http://www.omg.org/technology/documents/formal/schedulability.htm
http://www.ibm.com/developerworks/rational/library/4994.html
http://www.ibm.com/developerworks/rational/library/05/419_soa/

Figure 3-1 Simple MDD example

The modeler does not need to have any knowledge of the syntax of WSDL. In
fact they do not even need to know that WSDL will be used in the implementation
of the model. That decision might not have been made at modeling time. Later it
may be necessary to support other standards in addition to WSDL. The model is
independent of the details of any particular platform and it may be possible to
develop transformations that generate artifacts for various platforms based on
implementation requirements.

The value of a common modeling language
Using UML for MDD modeling has the following benefits:

� Using profiles of UML for MDD modeling allows us to leverage the
considerable experience gone into the development of this language. This
means we can provide a customized modeling environment (to the extent
supported by the UML standard and UML tools) without the considerable cost
of designing and implementing it from scratch.

� UML is an open standard and the de facto industry standard for software
modeling. UML has proven to be durable. Its first version came out in 1995,
making investment in UML skills worthwhile. The success of UML means that
many excellent books and training courses are available. Many computer
science and software engineering students are introduced to UML at
university. Many UML tools are also available ensuring that UML expertise is
a transferable skill.

� Most organizations need to develop multiple kinds of software. If we can use a
common modeling approach, customized as appropriate, for describing each
of these different software domains then it becomes much easier to deal with
enterprise-wide development and integration.

Application
Model

Implementation
Artifacts

transformations

<message>
…

</message>

UML to WSDL
 Chapter 3. Model-driven development approach 35

3.6 Expertise capture
Many IT projects suffer from a lack of skilled experts. This often leads to over
dependence on key individuals without whom the project would have severe
difficulties.

A key aspect of MDD is expertise capture. Instead of needing experts to be on
hand every time a best practice decision needs to be made, we capture their
expertise in automated patterns and transformations so that we can reapply it.
This approach enables developers without specialist knowledge to build
sophisticated systems.

There are two main kinds of expertise to capture in order to build an MDD
framework: logical architecture expertise and technical architecture expertise.
Both logical and technical architecture expertise are part of the overall
architectural style.

3.6.1 Logical architecture expertise
The logical architecture of a solution is concerned with the functionality that it
must exhibit rather than the way in which that functionality is implemented using
particular technologies. When using an MDD approach the goal is to model at
the logical level and generate implementation artifacts.

In MDD, we define the logical architectural style and develop UML profiles,
patterns, and modeling conventions in support of this style. This means that
much of the expertise involved in defining a logical architecture is captured in the
MDD framework and applied each time we develop a new application. The
designer of a new application is able to focus more of the problem domain and
less on the aspects of the software architecture that are common across
applications.

3.6.2 Technical architecture expertise
Modern middleware platforms offer a rich array of features to support the wide
variety of applications that will be built on top of them. Individual projects however
often only use a subset of that functionality, and they use that subset in a
specialized way.

The way in which a particular project (or program) makes use of its chosen
middleware platforms defines the technical architecture. This technical
architecture may be captured in best practices documents, or it may be passed
from developer to developer. In practice, it is difficult to ensure that the technical
architecture is applied consistently when this is a manual process.
36 Patterns: Model-Driven Development Using IBM Rational Software Architect

MDD gives us the opportunity to implement the technical architecture directly.
Rather than stating in a document that, for example, “entry and exit from all
public methods will be recorded using log4j”, we can implement a transformation
that generates logging code according to this rule.

One side effect of the MDD approach is that it forces us to consider the technical
architecture earlier in a project and more thoroughly. Provided this is understood
at the outset and sufficient time is allocated to define the technical architecture,
this is beneficial and saves a lot of time later in the project.

3.7 Patterns
We already introduced the notion of modeling using domain specific concepts,
such as message, proxy, and adapter. Often the vocabulary of an application
domain also includes patterns. For example, in the enterprise integration domain,
we might have guaranteed delivery and publish-subscribe patterns. These are
not individual elements but introduce relationships between elements and
constraints on their behavior.

The (building) architect Christopher Alexander introduced the concept of a
pattern language in his classic The Timeless Way of Building (see “Related
publications” on page 227 for the complete citation). His notion of patterns as
best practice approaches to common design problems is widely adopted by the
software community. He introduces the concept of a pattern language that he
defines as a related set of patterns that together provide a vocabulary for
designing within a certain context or problem domain.

In a follow-up volume, A Pattern Language (see “Related publications” on
page 227 for the complete citation), Alexander introduces a specific pattern
language that has sub languages for designing towns (aimed at planners) and
buildings (aimed at architects) and a sub-language for construction (aimed at
builders).

Following are examples of Alexander’s patterns:

� Town patterns: Ring roads, night life, and row houses
� Building patterns: Roof garden, indoor sunlight, and alcoves
� Construction patterns: Good materials, column connection, and half-inch trim

Each pattern includes information about the circumstances in which it is
applicable and its relationship with other patterns. Alexander explains that when
using a pattern language “we always use it as a sequence, going through the
patterns, moving always from the larger patterns to the smaller, always from the
ones that create structure, to the ones which then embellish those structures,
and then to those that embellish the embellishments.”
 Chapter 3. Model-driven development approach 37

The idea of a pattern language is just as applicable to software development as it
is to building architecture, and we adopt the term in this book. The nature of
software development means that additional automation of the process of
designing with a pattern language is possible.

Just as in building architecture, human expertise is required to select larger scale
(Enterprise and Application) patterns within the context of a design. However, the
application of a pattern can be automated so that when a pattern is selected the
design is expanded with all the consequences associated with that pattern. A
simple example of a software pattern is the Getter/Setter pattern in which
attributes are always accessed through consistently named operations. We can
automate this pattern so that applying the pattern to attribute name of class
Customer adds operations named getName and setName (with appropriate
parameters) to the Customer class.

In general it is, not possible to automate the physical construction of buildings.
However, software systems are constructed from information artifacts that we
can generate automatically according to implementation patterns. Where the
builder must apply the construction patterns manually, we can describe software
implementation patterns in such sufficient detail that they can be generated when
given application-specific context. For example, if we have a model that uses the
Getter/Setter pattern, we can generate implementation code for those methods
for a specific platform (such as Java) according to implementation patterns for
that platform. In some cases we may have an implementation pattern that
implements an Application pattern directly. In other cases we might apply
multiple lower-level implementation patterns to implement an Application pattern.

Model-driven development relies on well-defined models that we can use as
input to automated transformations. A pattern language provides a structured
way of designing such models.
38 Patterns: Model-Driven Development Using IBM Rational Software Architect

3.8 Quality and consistency
Model-driven development is not just about producing software faster, although it
can certainly do that. MDD is more so about producing better software.

Automation ensures that software components are consistently implemented,
this leads to the following benefits:

� Reduced service and maintenance costs: The similarity across components
generated using an MDD framework means less diversity needs to be coped
with when dealing with service and maintenance of solutions. For example,
we do not end up in the situation where different developers used different
packages for logging for local optimization reasons (such as skills availability
and performance) at the cost of overall consistency.

� Improved user experience: Consistency can have a positive impact on the
user experience for the software being developed. Rather than each user
trying to follow house style when designing user interaction components, the
house style is applied automatically. This goes beyond common look and feel
to the consistent treatment of the conceptual model presented to the user.
This leads to a level of consistency for users that is very difficult to achieve
manually.

� Improved quality: Because expertise is captured and encoded once and
reused many times it is possible to invest more effort in quality. Any
improvements made to patterns and transformations will benefit all software
components that are generated using them.

3.9 Integration
It is a common misconception that MDD is most suited to new application
development. In fact, some of the advantages of MDD are most pronounced
when building integration solutions.

MDD allows us to ignore the implementation differences between existing
components and applications and focus on the logical functionality offered by
those applications and components. We can model integration logic or new
composite application functionality independent of the technologies used to
provide the components. Figure 3-2 shows the UML modeling of an integration
solution built from heterogeneous components. This example uses the new
composite structures modeling techniques from UML 2.0
(components-ports-connectors), which are well suited for modeling
loosely-coupled integration solutions.
 Chapter 3. Model-driven development approach 39

Figure 3-2 Consistent modeling of heterogeneous components

We model existing components and new components in a consistent manner. If
we have a number of existing components built using the same technology (for
example, CICS®), then it may be worthwhile to develop a reverse transformation
that extracts a logical model of an existing component. Obviously this is only
possible if the existing component has an appropriate interface. In other cases,
we would need to build an adapter component with an appropriate interface. If we
need to build several similar adapters, then this may be a candidate for MDD
automation.

We can use transformations to generate platform-specific integration code, for
example wrapping applications so that they can communicate using Web
services.

MDD provides the basis for a consistent and well structured approach to
enterprise integration. Using UML for modeling all components in a integration
solution gives us a consistent view across the whole solution. We benefit from
using a single-modeling language by working with logical representations of all of
the components in a single tool.
40 Patterns: Model-Driven Development Using IBM Rational Software Architect

3.10 Platform independence
The ability to develop platform-independent models is often quoted as a key
advantage of MDD, particularly for the Object Modeling Group’s (OMG’s)
formalization of MDD, the Model-Driven Architecture. The idea is that platform
independent models capture the functionality of a system but do not depend on a
specific implementation platform, so it is easier to switch between platforms in
the same category (for example, enterprise application platforms such as J2EE
and .NET). While this may be useful in some situations, the ability to switch
platforms after a solution is deployed is not a common reason for choosing an
MDD approach.

In practice, the role of platform independence in MDD can take several forms:

� Platform-dependent MDD: In cases where the platform is known and fixed in
advance, the cost of being truly platform independent may be too high.
Raising the level of abstraction does not necessarily mean becoming platform
independent. We can provide abstractions over a runtime platform that take
advantage of the way the platform is used in a particular architectural style. It
is often more efficient to take advantage of platform knowledge when it is
available.

� Deferred choice of platform: It is possible to set up an MDD framework so
that a large amount of modeling work occurs before a choice is made on the
platform. This can be useful if more time is needed to make a decision on the
platform. In some cases, transformation to multiple platforms may be
developed to compare non-functional characteristics before making a
decision. Clearly the cost of developing the transformations must be taken
into account when using this approach.

� Multiple target platforms: Many applications must be deployable into multiple
target environments, for example on different operating systems for clients
using multiple programming languages. In such cases, the common
functionality is modeling and transformations are used to generate
implementations for the different platforms, reducing the cost of supporting
multiple platforms and ensuring consistency across them.

� Moving between versions: Most middleware platforms regularly release new
versions with additional capabilities. To use the new features, it is often
necessary to re-implement parts of an application. MDD allows us to update
the transformations to take advantage of new features and regenerate the
application.

Note: Platform independence does not mean that we can ignore the platform
completely when modeling. We need to be able to model in a way that we can
transform our models into effective implementations using our target platform.
 Chapter 3. Model-driven development approach 41

When modeling we must understand the capabilities that are offered by the
platform, or class of platforms, that we want to target. For example, a real-time
platform would offer a timer service, and a rules execution platform would provide
a rule triggering service. These capabilities can be assumed at modeling time
and the transformations will generate the appropriate code to make use of the
platform services.

Rather than being entirely platform independent, it is more accurate to say that
MDD modeling is dependent on a class of platforms or a platform type.

3.11 Layered modeling
We already made a distinction between logical models and implementations of
those models. These are different layers representing our solution with different
amounts of detail. In some cases, it is appropriate to split our development into
more layers, adding further detail at each layer as we make decisions regarding
the architectural style of a solution.

Figure 3-3 shows three layered models.

� The analysis model focuses on capturing the use cases for the application
and does not make any decisions regarding the architecture of the solution.

� In the enterprise IT design model, we make decisions about the IT
architecture, for example, adopting a service-oriented architecture. However,
we remain independent of specific technology platforms.

� In the implementation model, we adopt a specific runtime platform such as
WebSphere.

Figure 3-3 Layered models

The three layers shown in Figure 3-3 (analysis, design, and implementation) are
commonly used, but this is by no means the only way of layering models. We can
42 Patterns: Model-Driven Development Using IBM Rational Software Architect

also have business models, requirements models, high-level design, and detailed
design models and so on. The key is that each successive layer adds further
detail to the solution, answering questions that were left open in the layer above
and constraining the implementation of the application.

In a layered modeling approach, we can apply patterns within any level (for
example design patterns and implementation patterns) and transformations
between any adjacent pair of models (for example, design to implementation).

3.12 Modeling of non-functional characteristics
When designing a solution, we must consider non-functional characteristics such
as security and performance. In an MDD approach, it is often possible to capture
many decisions related to non-functional characteristics in transformations.
However, it is not always possible or desirable to completely automate these
aspects of a solution.

Solution-specific design may be necessary. In such cases, we introduce
modeling techniques relevant to specifying non-functional characteristics. For
example, we might introduce stereotypes that indicate the kind of traffic that is
expected over a connection (frequent/infrequent, high volume/low volume). The
transformations then use this information to generate implementation artifacts
that are optimized for these performance characteristics.

Modeling of security concerns is an example of a solution-specific design. You
can learn about this in the article by Simon Johnston “Modeling Security
Concerns in Service-Oriented Architectures”, which is available on the IBM
developerWorks® Web site at:

http://www.ibm.com/developerworks/rational/library/4994.html

3.13 Summary
In this chapter, we introduced the key ideas behind model-driven development
and provided an outline of the activities that are performed in an MDD project.
Chapter 4, “Model-driven development project planning” on page 45, builds on
the understanding of the MDD development process and discusses what the
MDD project planner needs to think about before embarking on an MDD project.
 Chapter 3. Model-driven development approach 43

http://www.ibm.com/developerworks/rational/library/4994.html

44 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 4. Model-driven development
project planning

In this chapter, we describe how to plan and manage a model-driven
development (MDD) project. We describe the new tasks involved in MDD:

� Who is responsible for the new tasks involved in MDD
� How much these new tasks cost
� How long these new tasks will take
� How to organize your development team
� How to modify the development process to get the best out of MDD

4

© Copyright IBM Corp. 2005. All rights reserved. 45

4.1 The value and cost of model-driven development
Model-driven development has a profound effect on the way we build business
application software. It captures the expertise and decisions of your top technical
people, making them available to the rest of the team through tooling customized
for your project's needs. The cost of development and to test the business
software is significantly reduced since much of the low-level coding work is
automated. The number of errors are reduced and there is an increase in the
consistency with which work is accomplished.

This sounds ideal, but what is the catch? Basically, as a project manager, you
now control one project inside another. The inner project is developing MDD tools
that the development team, building the business application in the outer project,
can use.

Figure 4-1 Managing the MDD tooling project inside the business application project

With two projects, you must organize and plan carefully, especially at the start of
the project. This is because on top of the usual issues associated with
development projects, you are now managing an additional set of internal
dependencies. You must identify, develop, and work the right MDD tooling needs
before the application developers need it. This means that the task flows for the
two projects are inter-locked to ensure that the deliveries from the MDD tooling
project are timely.

Existing applications,
software packages,
runtimes and tools

New Modeling Capability
and Generators

New Application Logic
for Business Users
46 Patterns: Model-Driven Development Using IBM Rational Software Architect

The upside is that since you control both projects, you can make the trade-off on
how the effort is distributed between them. For example, you could temporarily
move someone from the application project onto the MDD tooling project, so they
can enhance the tooling when a new requirement is identified.

The following sections walk you through the additional steps necessary to plan
and manage a MDD project.

4.2 Understanding the tasks for a model-driven
development project

Figure 4-2 shows the flow of tasks in an MDD project. You would perform the
shaded tasks in a traditional project. The tasks shown in white are the additional
tasks that build the MDD tooling for your project.

Figure 4-2 Steps used to develop the MDD tooling for the business application development team

Create Solution
Architecture

Identify Common
Patterns and

Standards

Define runtime
environments

Identify a runtime
independent model

for components

Extract Templates from
Sample Artifacts

Produce Sample Artifacts
for Key Scenario(s)

Define design artifacts
using runtime independent

component model

Define artifacts for
each runtime environment

Define tool-chain

Design/code/test
transformations

Validate tool-chain using
key scenario(s)

Produce documentation and
education for developers

Develop business
application

Train developers in the
use of the MDD tools

Identify existing
MDD assets that
can be reused

Define Design Model

Define
<<stereotypes>>

Define common
Patterns
 Chapter 4. Model-driven development project planning 47

You may choose to develop all of the tooling in advance of the business
application development or take a more iterative “just-in-time” approach. In either
case, be sure to allow additional time during the business application project to
develop enhancements identified as the tooling is used for the first time.

4.2.1 Descriptions of tasks
The initial tasks for developing the MDD tooling occur in any traditional
development approach. Your solution architect performs them and defines the
high-level structure of the business application.

� Create solution architecture: During this task, the solution architect defines
the conceptual structure of the business application. This is expressed as a
number of architectural styles that the developers will adopt when building the
business application.

� Define runtime environments: In this task, the solution architect defines the
runtime environments in which the business application should run. This
covers all test environments, including unit test and final production
environment.

Once these first two stages are complete, the solution architect has a good
understanding of what needs to be developed for the business application. At this
point, the MDD-specific tasks can start.

1. Identify common patterns and standards: The solution architect identifies the
repeating patterns within the business application. These patterns often occur
either because of the consistent use of an architectural style, or due to the
requirements of the runtime platforms. The common patterns can be
described using the standard way for the organization’s development process.

2. Identify existing MDD assets that you can reuse: In this task, the solution
architect compares the common patterns they identified with existing MDD
assets, making any necessary small adjustment to their architecture to exploit
what is already available. Existing MDD assets could come from previous
MDD projects or from standard tools and packages.

3. Define design model: During this task the solution architect chooses the type
of UML model that is appropriate for the application developers to use when
defining the specific details about a component that they are building. The
solution architect also creates an initial list of stereotypes for the project’s
UML profile. To perform this task, the solution architect needs to understand
the different types of UML diagrams (such as class diagrams, collaboration
diagrams, activity diagrams) and when it is appropriate to use each one.
48 Patterns: Model-Driven Development Using IBM Rational Software Architect

4. Identify a runtime-independent model for components: This task creates the
definition of a UML model that specifies the components for the business
application in a runtime-independent manner. It can be carried out either by
the solution architect or by an experienced application developer who
understands all of the runtime environments.

5. Produce sample artifacts: During this task, an application programmer
hand-codes the resulting business application artifacts for a typical scenario.
These sample artifacts act as the blueprint for the MDD templates and
transformations. As a result, this task should be performed by your best
application programmer.

6. Define tool chain: This task identifies the MDD tools that need to be
developed for the project. It is performed by someone skilled in the
development of MDD tooling. Once complete, you can create a detailed plan
of the effort required to build the MDD tooling. There is more explanation of
the importance of the tool chain in the next section.

The next four tasks build the MDD tooling:

1. Extract templates from sample artifacts: In this task, an MDD tooling
developer reviews the sample artifacts and uses them as a basis for
developing a template for each artifact you want generated. The template
contains the code that is the same for every instance of the generated artifact.
As such the MDD tooling developer needs skills in the language/format of the
generated artifact. It also contains markers that the transformation uses to
insert the specific parts of the artifact based on the content of a model.

2. Design, code, and test transformations and patterns: This task requires Java
programming skills. For each transformation or pattern, the MDD tooling
developer needs to write the Java code that reads a UML 2 model and either
update the model or fill in the appropriate gaps in a template to generate a
new artifact.

3. Package MDD tooling: The MDD tooling must be packaged into a form that
can be installed into the workbench of each or your application developers.
There are several options: simply put all of the files into a zip file with writing
instructions on how to unpack it, use standard Eclipse plug-in management,
use a RAS repository, or prove a full download Web site. The choice depends
on the number of people that are likely to install the MDD tooling. A
reasonable approach is to focus on supporting your initial set of application
developers and upgrade the packaging mechanism as necessary when it a
wider audience starts to use it.

4. Produce documentation and education for application developers: A solution
architect or technical writer can perform this task. The result is a description
of how an application developer builds a model and then selects the right
transformation to generate the correct artifacts.
 Chapter 4. Model-driven development project planning 49

5. Validate tool chain using key scenarios: This final MDD tooling development
task is a testing role. The MDD tooling models and generates all of the
artifacts required for each runtime platform to support a few key scenarios.

Now the MDD tooling is ready for the application developers to start using it:

1. Train application developers in the use of MDD tools: Before using the MDD
tools, educate the application developers on how the new development
process works. They need to understand when and how to use the MDD
tools, and also how they fit with their traditional tools such as configuration
management.

2. Develop business applications: At this point, the application developers use
the MDD tools to build the business application.

4.2.2 The model-driven development tool chain
The flow in Figure 4-3 shows how a developer can use the MDD tools to develop
part of a business application. In this example, the developer reviews the
business problem and selects a design pattern. This partially populates a design
model and the developer fills in details of the specific business function they are
building. After that the development process is fully automated. The developer
selects an option to generate the artifacts. These are packaged up and placed in
the build area. Then the developer can select further options to generate the
additional artifacts for a particular runtime platform.
50 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 4-3 Template for an MDD tool chain

4.3 Planning a model-driven development project
When you understand the order of the tasks in an MDD project, the planning
process is similar to planning for any software project. Define the tasks, size
them, and allocate resources to them. The sections that follow provide some
additional advice on the overall planning effort.

4.3.1 Using an iterative approach to model-driven development
In many organizations, a new approach is greeted with some skepticism until it is
proven to work. If this is your first project that uses the MDD approach, it is
advisable to split the development of the MDD tooling into a number of iterations.

Business
Problem

Artifact
Pattern

Design
Model

Common
Patterns

Runtime-
Independent
Components

Artifact
Template

Transform

Select pattern and
customize with

application-
specific data

Transform

Typically
selected from

<<stereotype>>

Runtime-
Dependent

Components

Runtime-
Dependent

Components

Runtime-
Dependent

Components

Artifact
Pattern

Artifact
Template

Selected for
runtime
 Chapter 4. Model-driven development project planning 51

The first iteration develops one example of each type of tooling (such as UML
profile, pattern, template, and transformation), which gives you a complete tool
chain for a narrow subset of the entire project. This approach has a number of
benefits:

� You and your team can gain valuable experience and understanding of how
much time and effort to allow to build the rest of the MDD tooling.

� It may also allow the application developers to start using the tooling earlier.

� It provides a valuable proof-point to show to skeptics in your organization.

Subsequent iterations build on the experience you gained to support a broader
and broader set of scenarios for the business application.

4.3.2 Developing model-driven development skills
The following sections describe the skills you need in your MDD tooling team.

Skills for the solution architect
All solution architects have a good understanding of the business domain and the
solution platform. When using MDD, the solution architect should also have a
good working knowledge of UML 2 modeling. In particular, the solution architect
needs to understand these items:

� The following basic diagram types and when to use them:

– Class diagrams
– Activity diagrams
– Use case diagrams
– Collaboration diagrams
– Component diagrams

� How to extend UML 2 elements using stereotypes defined in a UML profile

There are numerous textbooks available on UML 2 that cover the diagrams and
extending UML 2. In addition, there are specialized UML 2 courses. UML 2 may
also be covered in an object-oriented design course.

Skills for the model-driven development tooling developer
Writing the MDD tooling is principally a Java coding exercise. The MDD Tooling
Developer creates:

� RSA pattern implementations: These are RSA plug-ins that ensure your
application developer’s models follow the architectural style set out by the
solution architect. This may pre-populate a UML model or run additional
validation checks once the application developer completes their model.
52 Patterns: Model-Driven Development Using IBM Rational Software Architect

� RSA transformations: These are RSA plug-ins that typically read a UML 2
model and generate new artifacts from it.

� RSA profiles and constraints: This is where new stereotypes and the rules
that control their use are defined.

� Model validation rules (constraints): These constraints define the valid
relationships between elements in a UML model.

� RSA extensibility: This is the framework for adding new functionality to RSA.

Each of the plug-ins are installed into the application developer’s copy of RSA so
that the plug-ins can be run from the RSA menu bars.

The MDD tooling developer therefore needs the following skills:

� Java design and programming skills
� Knowledge of the UML 2 programming interface from Eclipse
� Knowledge of how to build and deploy plug-ins into RSA
� Optionally, knowledge of RSA UML diagramming programming interface

Skills for the business application developer
The business application developer needs to understand how to use the MDD
tools in RSA as part of their development process. The exact details of this work
are dependent on the specific MDD tools that you developed. This is why one of
the tasks in the MDD project plan is to provide education on your MDD tools to
these developers.

4.3.3 Thinking about reuse
The MDD tooling built for your project will have been used many times by the
application developers as they are generating artifacts for the business
application. It is also possible that this tooling could be reused on subsequent
projects.

Reuse is something we find difficult as an industry. Typically, software engineers
prefer to design and write their own code, and most project managers prefer to
avoid the cross-project dependencies that shared assets bring. However, reuse
remains on the agenda because of its potential to save time and cost in software
development.

Reuse is successful in organizations with the following characteristics:

� The software development process includes mandatory tasks that actively
seek for assets to reuse.

� Teams are not given all of the resources they need to develop all of the code
for the project.
 Chapter 4. Model-driven development project planning 53

� Proper care was taken to publish assets in a searchable way (using
something like the Reusable Asset Specification).

� Shared assets have clear lines of ownership and funding for maintenance.

� All teams sharing assets need to develop to a common platform and
standards.

Using MDD does not guarantee that your team builds tooling assets that can be
reused in future projects. However, it has some interesting effects.

First, it splits the development effort into conceptual modeling and then
generation of physical artifacts. This separation of concerns can provide
follow-on projects with more places to customize for reuse, as seen in the
following examples:

� When the follow-on project defines their conceptual model, it is easier for
them to spot the overlaps between what they need to build and what was built
before since both conceptual models are at a higher level of abstraction than
the code, removing much of the detail that obscures common patterns.

� A small change to the UML profile and consuming transformation or
transformations to provide one or two more stereotypes in the conceptual
model could enable a follow-on project to reuse the entire downstream
development environment.

� Where transformations make good use of configuration data files and
templates, a follow-on project can make changes to the configuration data
files, the templates to generate different artifacts, or do both.

Second, good MDD tooling increases the percentage of the time that software
engineers are involved in the creative design of systems compared to the more
mundane process of coding and debugging software. As a result, once they see
the benefits of the MDD approach, they are motivated to exploit and extend the
MDD tooling on subsequent project.

As such, it may be worthwhile to investigate whether the MDD tooling that your
project produced has potential for reuse. This assessment could occur both
during the planning stage at the start of the project, or during the review of the
project towards the end.
54 Patterns: Model-Driven Development Using IBM Rational Software Architect

4.4 Quality control for model-driven development
tooling

You need to ask specific questions during the development of the MDD tooling to
ensure that you are getting the maximum value from it. In broad terms, you are
looking to the MDD tooling to support the following items:

� The enforcement of key design patterns and standards

These are specified by the solution architect as part of the business
application architecture. In our integration example, the MDD tooling enforces
the approved contract of behavior for every Web service developed. As a
result, audit logging and performance data are gathered in a consistent and
complete manner.

� Automating the development of any code, data files, test scripts, and
documents is time consuming, mechanical, repetitive, error-prone, or likely to
change frequently

For example, in this book we are automating the generation of the EJBs used
in the Web services facades since this is difficult code for most application
programmers to get right, and the implementation of each EJB follows some
well understood patterns.

� The support of multiple target runtimes such as test and production
environments

In our integration example, we have a unit test environment, system test
environment, and a production environment. We are creating all of the
business artifacts in a runtime environment independent method and then
generating the deployment artifacts for each runtime environment

The solution architect should be able to explain to you which of these points is
addressed in the MDD tooling.

The MDD tool chain is the flow of tasks and tools that the application developer
performs to generate and manage a piece of the business application. This tool
chain defines how much effort it will take to develop the business application
once the MDD tooling is in place and is a key input into your estimating for the
project plan of the business application.

Project managers should validate the tools-chain for the following characteristics:

� A business application developer should never modify a file that was
generated. This can cause either a restriction to using the tooling only once
and making all subsequent changes by hand, or it increases tooling expenses
greatly because it would need to support round-tripping.

� The tooling should be fully integrated with your configuration management
system. Configuration management covers the tools and processes you use
 Chapter 4. Model-driven development project planning 55

in your project to support the backup, versioning, and sharing of files
generated by the project team. This should include specifications and design
documents, data files, configuration, models, java code that implements the
MDD tooling and, eventually the business application.

� The tooling should not require the same piece of information to be entered
more than once as this slows your business application developers down.
This would introduce inconsistencies and errors.

� It should be possible to regenerate all of the business application artifacts
from a batch file so that if a transformation needs to be enhanced partway
through the build of the business application, everything can be regenerated
automatically.

You can use MDD to generate much more than just code. In fact, significant value
can be realized when the artifacts that are generated include test programs,
documentation, configuration, and status reports. When you are validating the
tool chain check that all opportunities for automation are being considered.

4.5 Tracking a model-driven development project
Once you build a project plan that documents the effort, skills, and dependencies
between the tasks, tracking an MDD project is no different than any other
software development project. It takes standard project management skills to
spot places where schedule slippage occurs, and make appropriate adjustments
to the resource allocations whenever appropriate.

The one key advantage that MDD brings to the table, when it comes to tracking
the use of the MDD tooling during application development, is that it generates
status reports at the same time that it generates the code. In addition, generated
test cases can be written so that they automatically record the test results each
time they run. As a result you have progress data that accurately reflects the
actual progress of the project (rather than programmer’s estimates). This can
give you advanced warning of potential slippage, giving you greater opportunity
to make corrections.

4.6 At the end of the project
For your first MDD project, the end of the project is the time to assess the real
value you derived from the approach since this influences the level of investment
in MDD in the future.
56 Patterns: Model-Driven Development Using IBM Rational Software Architect

It is useful to generate the following types of metrics.

� The cost of developing the MDD tooling

� The productivity of the application developers using the tooling

For fair comparison with traditional projects, express this in terms of how
much of their time is needed to develop all of the hand-written code and the
code generated from the transforms that operated off of their models.

� The level of quality achieved by the MDD project team

� The effort required to reuse the MDD tooling on subsequent projects and the
expected benefit

� The opinions of the development team in terms of whether they enjoyed
working with a MDD approach, the skills they developed, and any suggestions
they may have to improve the approach

With this information, you can engage in an assessment of how MDD should be
exploited in future projects.

4.7 Summary
In this chapter, we covered the following additional steps required to exploit MDD
within a project.

� Identify common patterns and standards.
� Look for opportunities to reuse existing assets.
� Define the design model.
� Identify a runtime-independent model for components.
� Produce sample artifacts.
� Define tool chain.
� Extract templates from sample artifacts.
� Design, code, and test transformations.
� Package tooling for application developers.
� Produce documentation and education for application developers.
� Validate tool chain using key scenarios.
� Train application developers in the use of MDD tools.
� Develop business applications.

We also presented guidance on how to plan and run your first MDD project.

� Plan early and make explicit investment in the MDD tooling.

� Use your top people to develop the MDD tooling since your aim is to capture
and automate their best practice.

� Ensure the development process does not allow generated artifacts to be
modified.
 Chapter 4. Model-driven development project planning 57

� Consider generating documents, configuration, status reports, and test cases
as well as code.

� Ensure that your development process supports test environments as well as
the production environment.

� Remember to define the configuration management strategy into your MDD
tool chain.

� Allocate time to train the development team on the use of the MDD tooling.

� Take time to consider whether your MDD tooling is reusable on subsequent
projects. If reuse is possible, ensure tasks to mine reusable assets are
included in follow-on projects.

Chapter 5, “Model-driven development solution life cycle” on page 59, goes into
more depth about the changes occasioned to the solution life cycle by applying
MDD to a project.
58 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 5. Model-driven development
solution life cycle

Model-driven development (MDD) requires the project planner to think about the
solution life cycle afresh. In this chapter, we discuss the improvements to the
performance of lifecycle activities, such as testing, deployment, and
maintenance, that MDD can bring.

We discussed the solution life cycle in Chapter 4, “Model-driven development
project planning” on page 45, in the context of planning an MDD project. In this
chapter, we focus on the opportunities MDD creates for improving the solution
life cycle. We also cover the aspects of the MDD solution life cycle that are not
addressed in the other chapters.

MDD can change the solution life cycle in the following ways:

� Creates new artifacts at earlier stages of the life cycle, such as models. MDD
artifacts need to be managed as primary artifacts, like code, rather than as
project documentation.

� Stimulates changes in the way the project teams perform tasks. MDD
changes what is developed and the way development is done. It also impacts
later stages in the solution life cycle by potentially changing how test and
production environments are configured.

� Creates opportunities for shifting responsibility for activities, such as writing,
configuring, deploying, and monitoring scripts, from being performed

5

© Copyright IBM Corp. 2005. All rights reserved. 59

manually to being done automatically. Transformations can be written that will
generate the scripts automatically using information captured into a model.

5.1 Introduction to the solution life cycle
The software life cycle refers to the phases a software product goes through from
its conception to when it is no longer supported. The solution life cycle refers to
the stages and environments a software solution goes through from a
proof-of-concept to being a live production system and then going through
maintenance until it is finally withdrawn from production. All software, including
solution software, has a software life cycle that concerns the development and
maintenance of software components. Solutions, additionally, have the stages
they go through from being developed from components to being brought into
production.

The stages of the solution life cycle differ from project to project and typically
include the following items:

� Design: A development and unit test environment used for prototyping, and
evaluation of technologies. This stage also involves requirement gathering
and elaboration, and analysis.

� Capability: A system test environment used for multi-threaded testing across
the components that make up the functions of the application/solution.

� Operation: A multi-platform integration environment that mirrors the
requirements of the production environment. The operational environment is
used for quality-of-service testing and proving that the solution meets the
required service-level agreements.

� Production: This is the live environment. Before going live the solution and
environment must be certified to meet the quality-of-service, fail-over, and
high-availability requirements.

� Life cycle: This stage refers to the management of the production
environment and solution artifacts with respect to the migration, versioning,
and replacement of hardware, middleware, and application components

When we refer to life cycle in this chapter, we refer to the complete solution life
cycle of a model-driven development project, including the development of
software components and their configuration and deployment in a solution.

In what way does the introduction of a model-driven approach modify the
activities that must be performed and managed throughout the life cycle?
Consideration of lifecycle activities overlaps with the discussion about planning
an MDD project in Chapter 4, “Model-driven development project planning” on
page 45. The difference is that in Chapter 4, “Model-driven development project
60 Patterns: Model-Driven Development Using IBM Rational Software Architect

planning” on page 45, we discussed how a project planner should think about
modifying the development cycle to accommodate the changes wrought by an
MDD approach. In this chapter, we focus on the following items:

� The changes to the solution life cycle that are necessary to benefit from the
use MDD effectively

� The tools that are available to support the lifecycle stages of an MDD project

� The solutions to some of the project challenges around the consideration and
implementation of MDD lifecycle activities

5.2 Model-driven development life cycle
Since the models are the primary artifacts during model-driven development, it
becomes crucial that the lifecycle elements are considered a lot earlier in the
project cycle and that we explore what aspects can be captured in the models. To
be true to the promise of MDD, we must apply the same thinking of encoding and
automating the expertise of software professionals so that it can be applied
consistently and repeatedly to the lifecycle aspects. This means capturing and
encoding the expertise for testing, deployment, packaging, security, and so on.

MDD adds another dimension to the life cycle. Traditionally, we develop the
solution, test, and deploy into an environment. With an MDD project, the
development is split into the following two phases:

� Creating the framework to generate the solution services
� Generating the solution services

5.2.1 Create the framework to generate the solution services
The framework covers the creation, testing, and deployment of the models, the
patterns, and the transformations that generate the solution services. Ensure that
the framework is properly tested to ensure that the generated solutions are
accurate and consistent. A commonly used practice is to have the platform
experts manually, or using the normal platform tools, create an example solution.
This way, at every iteration of the framework, a generated test solution can be
compared with that developed by the platform experts.

The transformations must be rolled out before commencing the generation and
roll out of the solution. This ensures the integrity of the framework and
significantly reduces situations where the transformations are being updated and
corrected while the solution is being generated.
 Chapter 5. Model-driven development solution life cycle 61

5.2.2 Generate, customize, and test the solution services
The generated services are executed in the Capability environment. Test and
deployment artifacts are targeted for this environment, and in some cases are not
automated, with deployment performed interactively using a GUI. This allows for
the capture of the steps and information needed to deploy the application, which
aids the creation of the deployment scripts for the more complex environments.

The generated services are validated against the sample services provided
before the focus of the project moves to the next phase, where the generation of
the real solution and the related artifacts (test, deployment, and so on) are
prepared for the deployment environment.

Stated another way, the creation of the framework is synonymous with creating
the model-driven solution factory, and the second phase is the use of the factory
to create our products.

As with all software projects, there are lifecycle decisions to make towards the
management and maintenance of the solution, assets, and tools. With MDD
projects, there are certain lifecycle considerations that, need to be determined a
lot earlier in the project, and have strong influences on the success of the project.
For instance, how is versioning and problem determination managed in an MDD
project where the models are the primary artifacts? We discuss these lifecycle
considerations next.

5.3 Model-driven development and versioning
Versioning affects the generated solutions as well as the patterns, profiles,
transformations, and other model artifacts that generate these solutions.

In our service integration scenario, for instance, imagine that the production
environment is a server farm with clusters of middleware running at different
versions, having different capabilities. Support for different versions of J2EE, or
middleware products, may be a case in point. In such situations, we would
version our transformations to tie in with each runtime, as well as versioning
changes to the transformations that are specific to the generated applications
and services on each runtime. For our framework, we must determine which
version of the transformation to execute.

For the same scenario and analyzing the generated services, what rules can be
applied for versioning an integration service? Let us assume a minor change to
the updateCustomer integration service by supporting a previously unsupported
optional field of secondHomeAddress, but without changing the interface for
previously deployed applications? There is still the need for the integration
62 Patterns: Model-Driven Development Using IBM Rational Software Architect

service to support all existing requesters and integration facades, and for all
related schemas, xml transformation, and message validations not to fail or
become invalid. In this case, there needs to be support built into the solution for
determining and selecting the required versions into the services.

5.3.1 Versioning and replacement policies
Moving to the production environment, it is crucial to have a release plan that
specifies the versioning and replacement policies. The policies provide rules and
guidelines on when to version, roll in a new version, or replace a whole service.
For instance, in our example with the new secondHomeAddress field, we would
determine the best approach from our policy, which may include:

� If optional fields or structures are added to an existing data structure, the
minor version number of the structure and any new services using this
structure are augmented by one. Thereby moving the version number from
M1m0 to M1n1. Existing implementations are supported by the modified
service.

� If the new field or structure is compulsory, the major version number is
increased and only new implementations are supported. Existing applications
would continue to use the previous version until they are enhanced to support
the new version.

� Minor version changes replace older versions since the support for older
implementations is maintained.

� There is normally a release strategy that requires the enhancement to take
place within a period of time so that old versions can be gracefully retired and
no longer supported. Major version changes must co-exist with older (major)
versions for the agreed support period during which migration needs to occur.

The versioning and replacement policies have an impact on the deployment.
There has to be a mechanism for replacing or deploying new versions that must
co-exist, and ensure they are accessible by the right service clients.

We must also determine the level of versioning (per file, per class, per service,
per deployment unit, and so on) to apply. For our example, we version
transformations, patterns, profiles, and all reusable artifacts. It is also important
to understand any composite levels of versioning, for example, the combination
of a specific transformation version with that of a specific profile version.
 Chapter 5. Model-driven development solution life cycle 63

5.4 Model-driven development and artifact management
Models, transforms, and code are some of the artifacts that we generate and use
in an MDD project. These assets may be as simple as text files containing
configuration properties and documentation, or as complex as project archives
containing executable code and deployment descriptors.

According to Rational Unified Process (RUP), an artifact is “a work product of the
process: roles use artifacts to perform activities, and produce artifacts in the
course of performing activities”. The artifacts that we are considering are all
examples of artifacts in the RUP sense. For this chapter, we limit ourselves to
software assets that contribute to the solution as part of the model or the
executable services.

5.4.1 Reuse model artifacts
The success of an MDD project depends on the successful reuse of model
artifacts. With this in mind, it is worth analyzing the value and contribution of an
artifact to determine whether it should be generated.

For instance, patterns and transformations provide value through reuse, while a
configuration script may only be used once but contributes greatly. As such, while
reuse is a major factor in determining whether it is worth going through the
expense of generating an artifact, there are other considerations based on
context and value. Reuse in MDD covers the reuse of patterns, models,
transformations and to a lesser extent the code. The management of these
artifacts, their related descriptions (probably captured in templates), and the
maintenance of the repositories become increasingly important.

The management of artifacts includes, but is not limited to, the following issues:

� Successfully identifying and retrieving an artifact for reuse

� Ensuring that the appropriate artifact is retrieved for the version of the target
runtime

� Checking the integrity of an artifact and verifying whether it is this the latest or
appropriate version of the artifact

� Checking the certification of an artifact, and whether it is certified to run in this
environment

Perhaps it is only for test environments or restricted through license
conditions, only to run in particular environments.

When determining the methods and tools to use for artifact management, there
are a set of factors that must be considered, including integrity management
services and deployment support.
64 Patterns: Model-Driven Development Using IBM Rational Software Architect

5.4.2 Integrity management services
There is a need to determine the reliability of the model and solution artifacts in
order to maintain the integrity of the system. As such, we recommend that a
mechanism to certify that the service meets standards (set by governance), is
adopted. This Certification of Service practice should be applied to all artifacts in
a graded way. For instance, the artifact may be certified as ready for deployment
to the test environment only, or to the production environment, or it may be
certified as deprecated and not to be used by new applications.

You must analyze the certification practices early because it may influence the
choice of repositories to use (for example, a repository may provide features that
support some of the requirements).

The early consideration of artifact management helps determine how much, if
any, information needs to be added to the generated artifacts to enable their
certification, and the subsequent query/retrieval of the required artifacts for a
particular context. For instance, in our service-oriented integration (SOI)
scenario, the stored artifacts are tagged with enough information to be searched
for reuse by the following items:

� Service type (IB, PF): See 2.2.1, “ESB structure” on page 21
� Stage (beta, deployment ready, deprecated)
� Protocol (SOAP/HTTP, SOAP/JMS, JMS)

Some of this information is captured in the RAS templates that describe the
artifacts, and others are derived from the content of the artifact.

5.4.3 Deployment support
We are interested in the ease with which the assets are retrieved and deployed.
The structure of the repository must take into consideration the versioning
policies and the certification policies, to enable the effective maintenance of the
service repository and assets.

The definition of the asset types is also important for supporting deployment
(might be easier to deploy a pre-packaged EAR file than an EJB), a set of Java
classes, and some data schemas. In most cases, the asset types to be stored
are determined by the solution type and the deployment policy. Compare these
two cases:

� A rapid deploy scenario where deployment may be automated with the newly
created and certified services are hot-deployed

In this case, the packaging of artifacts is normally part of the generation step
to maximize the effectiveness of the rapid deploy.
 Chapter 5. Model-driven development solution life cycle 65

� A scenario where there could be established packaging scripts and release to
production practices.

For this scenario, the repository may hold a simpler type of asset. A
packaging application is applied to these artifacts, and the results are
subsequently deployed.

The adoption of technologies and methods for artifact and configuration
management, to a large extent, depend on the type and size of project and the
type and size of artifacts. The certification policy, deployment policy, and so on,
not only influence the technology and product to be adopted for artifact
management but also inform the decision to divide the features provided by the
tool and those to be built into the artifacts. The handover of artifacts through the
stages are to a large extent dependent on these policies and must be analyzed
as part of the lifecycle discussions early on.

5.5 Model-driven development and problem
determination

The need to determine the problems in an MDD project also span both the
framework and the generated solution. Mechanisms for debugging during the
different stages, from design to production, are vital to the success of the project.
With the models being the primary artifacts of the MDD approach, ensure that
the mechanisms for debugging models are developed alongside the models
themselves. In some cases, there might be a need to debug the generated code
and other solution artifacts.

Here are two reasons why you should not debug the generated code:

� It is extremely hard to work back from the generated code to the underlying
problem in the model.

� It is crucial that all changes are made in the models or transforms and not in
the generated artifacts.

This ensures the consistency of the models and solution and protects the
integrity of the factory and generated solution. In essence, debug moves up
the stack with the models and the transformations become the point of
problem determination.
66 Patterns: Model-Driven Development Using IBM Rational Software Architect

5.5.1 Tooling versus instrumentation
In practice, problem determination is achieved with a combination of tooling and
instrumentation. Tooling covers the debugging features provided by the modeling
and development tools to enable problem determination in artifacts ranging from
the models to the generated artifacts. Instrumentation refers to the mechanisms
that we build into our models and transforms to enable the detection of problems.
Instrumentation ranges from building in trace messages to building in events and
access to an event infrastructure for problem determination and solution
management.

Remember that, after the software product or solution is shipped and is in
production, the models still need to be treated as source and primary artifact.
Any defects found must be corrected in the models and not in the generated
code as this creates inconsistencies and invalidates the model for future
releases, thus negating the benefits of MDD.

5.6 Information mining
The success of a project depends upon the quality of the information that is used
and produced. As such, the models and transforms in a model-driven
development, project using UML, must be populated with accurate and valid
information. In practice, these sources for the information may be numerous and
in different formats. RSA provides customizable features to enable the input of
information from different sources and in different formats, as well as the
generation of documents in different formats.

For example, in our SOI example using RSA, all models, packages, and model
elements are described in the documentation tab. We use a predefined structure
to enable the generation of reports and user documentation in the form of HTML
for the Web and Microsoft® Word documents using SoDA for generation.

For those roles that may not work directly with the models, we provide a Web
application that collects their information and populates the models. Depending
on the level of abstraction, the input data for a model may be from an application
in the form of data stored in a predefined structure to a file system. The
information in the models may also generate input to other applications in the
form of configuration and property files.

While information may be stored in different locations, you must understand your
data inventory and to have a governance policy for that data. This understanding
helps to limit the need to manage the same data in multiple locations and to
ensure the integrity of your data. As much as possible, make the models your
 Chapter 5. Model-driven development solution life cycle 67

main source of information and inventory with other tools simply providing views
to the information in a customized format.

5.7 Testing
There are numerous on-going projects in the field of model-based and model
driven testing.

� Model-based testing is an approach to testing that uses a model of a system
to predict its behavior and uses the predictions to automate test cases.

� Model-driven testing focuses on providing a toolset and a test execution
environment to automate the running of tests, and leaves the model
developer free to focus on devising a good set of tests specific to the
application.

We do not cover model-based testing or the automated generation of test cases
here. However, we discuss the model-driven testing approach.

Model-driven testing can be described in two phases:

� Testing the model framework

Verify the framework to ensure that it generates the correct artifacts in the
right format.

� Testing the generated solution artifacts

Validate solution artifacts against the solution requirement and the business
logic of the services.

5.7.1 Modeling for testing
To model for testing we use the same approach of applying transforms to the
models to generate the execution artifacts, but in this case, the focus is on
generating the test artifacts.

A useful approach to modeling for test is to reuse the models that describe the
solution, but mark these models with testing elements. Marking the models with
test elements enable us to understand the boundaries, the system under test,
and the test data. The generated test artifacts may be as simple as stub objects
and methods, through to test services that simulate a live system, and may be
test scripts to run a test harness. Another approach is to use the model to seed
the code, and then use the stubbed out code to generate test cases.
68 Patterns: Model-Driven Development Using IBM Rational Software Architect

Our focus here is to illustrate the methods for modeling for test and to discuss
practices for testing in an MDD project. To this end, we use our service
integration example to evaluate possible ways of modeling for test.

5.7.2 Applying test patterns
Our pattern language may also contain test patterns. In our SOI example, we
captured the Application pattern for the updateCustomerDetails example in the
format shown in Figure 5-1.

Figure 5-1 The ESB Application pattern

Our test patterns capture the expertise needed to test the solution in the different
environments. For instance, during the end-to-end testing of the
updateCustomerDetails service in the capability environment, there is a need to
connect the provider facade to the required external provider. Since the external
provider may be a live system that we cannot run tests against, there is a need to
generate a test provider. The test provider is a simulator that provides all the
public interfaces of the external provider and supports all required data and
message types.

ESB

<<External
Requester>>

<<Provider
Facade>>

<<Internal
Service>>

<<Requester
Facade>>

<<External
Provider>>
 Chapter 5. Model-driven development solution life cycle 69

We provide an external entities test pattern in RSA that generates a test provider
or requester based on the definitions of the external requester or provider. This
test provider or requester is connected to the required facade service (as
illustrated in Figure 5-2) to ensure the necessary operation calls are generated.

Figure 5-2 ESB Application pattern with a testing pattern applied

Using the patterns in this example enable us to capture and apply domain
knowledge based on the environments and testing practices used in the project.
The application of the patterns could have occurred with the manual
augmentation of the models with test clients, test services, and stub classes
ensuring that they reflect the required definitions. In either case, the generated
artifacts, in the form of methods, classes, projects and so on, may be packaged
separately or may be inline with the real solution artifact, depending on
complexity, and the packaging and deployment policies.

5.7.3 Modeling using the UML testing profile
The UML testing profile provides a formal extension to UML that defines tests for
our system captured using UML models. The Object Modeling Group (OMG)
UML Testing Profile specification describes the UML testing profile as a language
for designing, visualizing, specifying, analyzing, constructing, and documenting
test artifacts. It is a language you can apply to testing systems in a wide variety of
application domains, whatever object or component technologies were used to
build the applications. The UML testing profile can simply describe test systems,
or it can be used with UML to handle system and test artifacts together.

The UML testing profile has the following characteristics:

� It is based upon the UML meta-model and extends UML with test specific
concepts.

� It enables the specification of tests for static and dynamic aspects of UML
models.

ESB

<<External
Requester>>

<<Provider
Facade>>

<<Internal
Service>>

<<Requester
Facade>>

<<External
Provider>>

<<Test
Provider>>
70 Patterns: Model-Driven Development Using IBM Rational Software Architect

� It integrates with UML and existing testing technologies and standards (for
example, JUNIT and TTCN3).

The UML testing profile is organized in four logical groups (descriptions come
from the OMG UML testing profile specification) of test concepts:

� Architecture defining concepts related to test structure and test configuration
� Data defining concepts for test data used in test procedures
� Behavior defining concepts related to the dynamic aspects of test procedures
� Time defining concepts for a time quantified definition of test procedures

The UML testing profile addresses black-box conformance testing and as such
the system under test (SUT) is not specified as part of the test model. It is only
accessible via its publicly available interfaces and operations. No information
about the internal structure of the SUT is available for use, because it is a
black-box. The test architecture package imports the model of the SUT in order
to get the necessary access rights.

In our example, we would treat the ESB and contained elements as the SUT, and
use the UML testing profile to define the test cases, test elements, test behavior,
test data, verdicts, and so on, that enable the generation of our testing artifacts
and the subsequent test exercise in JUNIT. The creation of a transformation to
handle the profile and models that had the UML testing profile applied is not
covered here. We left that as an exercise for you.

For more information about model-driven testing, see:

� http://www.agedis.de/
� http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
� http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf

5.8 Summary
In this chapter, we introduced key ideas behind lifecycle management in a
model-driven development project. We also provided an outline of certain
lifecycle activities that model-driven development can improve, such as testing
and deployment.

Chapter 6, “Model-driven development in context” on page 73, considers some
complementary approaches to the MDD methodology we described so far. It also
discusses how MDD relates to the concept of Model-Driven Architecture as
defined by the OMG.
 Chapter 5. Model-driven development solution life cycle 71

http://www.agedis.de/
http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf
http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf
http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf

72 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 6. Model-driven development
in context

Model-driven development (MDD) is not an approach that exists in isolation. We
already saw the strong connection between MDD and pattern-based
development.

This chapter sets model-driven development in the context of other initiatives that
are taking place in the industry. We cover the role of the Object Modeling Group
(OMG) industry standards body in MDD. We also review how other approaches
to software development compare with MDD, to include the following items:

� OMG Model-Driven Architecture
� Asset-based development
� Business-driven development
� Software Factories and domain-specific languages (DSL)

It is not necessary to read this chapter before moving on to Part 2,
“Implementation” on page 91. You can skip this chapter on your first reading of
this book.

6

© Copyright IBM Corp. 2005. All rights reserved. 73

6.1 OMG and Model-Driven Architecture
The Object Management Group is an open consortium that produces standards
for interoperability in the enterprise application space. The OMG is responsible
for the Unified Modeling Language (UML) that is central to MDD. The OMG is
also driving the Model-Driven Architecture (MDA) initiative. MDA is a
formalization of an MDD approach such as the one that IBM Rational promoted
for years. As defined by the OMG, MDA is a way to organize and manage
enterprise architectures supported by automated tools and services for both
defining the models and facilitating transformations between different model
types.

You will find that the terms MDA and MDD are often used interchangeably. In this
book, we use the MDD to refer to the activity that is carried out by software
developers. The term MDA is reserved for its formal OMG definition that is more
focused on creating a formal framework in which MDD can operate.

The Object Management Group’s MDA guide describes MDA as having the
following three primary objectives:

� Portability
� Interoperability
� Reusability

It aims to achieve these objectives by separating the specification of the
operation of a system from the details of the way the system is realized on a
particular platform.

MDA enables tools to be provided to help meet these objectives by doing the
following tasks:

� Specifying a system independently of a platform
� Specifying platforms
� Choosing a platform for the system
� Transforming the system specification into a specification for a particular

platform

The notion of platform is central to OMG MDA. A platform is a realization of
interfaces and usage patterns by a set of subsystems and technologies that an
application can use without concern for the details of how the platform is
implemented.
74 Patterns: Model-Driven Development Using IBM Rational Software Architect

6.2 MDA models
MDA defines three kinds of models.

� Computation independent model (CIM): A CIM describes the requirements
for a system and the business context in which the system will be used. The
model customarily describes what a system will be used for, and not how it is
implemented. The model is often expressed in business or domain-specific
language and makes only limited reference to the use of IT systems when
they are part of the business context.

� Platform independent model (PIM): A PIM describes how the system will be
constructed, but without reference to the technologies used to implement the
model. The model does not describe the mechanisms used to build the
solution for a specific platform. The PIM may be more suited to be
implemented by one platform rather than another, or it may be suitable for
implementation on many platforms.

� Platform-specific model (PSM): A PSM is a model of a solution from a
particular platform perspective. It includes both the details from the PSM that
describe how the CIM can be implemented, and the details describing how
the implementation is realized on a specific platform.

At the heart of MDA is the concept of transformation from a PIM to a PSM. The
process of transforming one model to another in the same system is called model
transformation. Figure 6-1 illustrates the transformation of a PIM, possibly with
additional information, into a PSM.

Figure 6-1 Transformation of a PIM to a PSM

MDA does not treat these models as fixed layers but explains that PIMs and
PSMs can be layered with each model being a PSM with respect to a more
abstract model and a PIM with respect to a more concrete model. For example,
we could have a high-level design model, a detailed design model, and an
implementation model with two occurrences of the MDA pattern. At each level,

PIM PSMModel Transformation

Ad
dit

ion
al

In
fo

rm
at

ion
 Chapter 6. Model-driven development in context 75

we introduce further assumptions regarding the implementation platform. The
detailed design model is a PSM with respect to the high-level design model and a
PIM with respect to the implementation model.

There has been much discussion in the MDA community about whether a PIM
should first be transformed into a non-code PSM and then to code, or whether it
is permissible to generate code directly from a PIM (meaning that your PSM is
the code). When working with the J2EE and Java platform, Rational Software
Architect (RSA) offers visualization of code artifacts as UML diagrams. This
provides the advantages of being able to visualize platform artifacts while
avoiding the need for an extra level of transformation.

In OMG terminology, the main focus of this book is modeling applications as
PIMs and then transforming those models into PSMs, captured directly as
implementation artifacts.

Much of what is presented in this book is also appropriate for transitions between
other modeling layers. For example, when following the Rational Unified Process
(RUP), we can begin with an Analysis model that is then transformed into an
outline of a Design model. We could also transform a WebSphere Business
Integration (WBI) Modeler model into a PIM that acts as a specification for
software development. RSA includes such a transformation and can import WBI
Modeler models.

6.2.1 IBM and MDA
The white paper An MDA Manifesto articulates the IBM vision for MDA. You can
find this manifesto on the Web at:

http://www.ibm.com/software/rational/mda/papers.html

This introduces the three basic tenets of MDA as shown in Figure 6-2 and
Figure 6-3.
76 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.ibm.com/software/rational/mda/papers.html

Figure 6-2 Three basic tenets of MDA

Figure 6-3 Basic tenets of the MDA manifesto (IBM)

Basic tenets of the MDA manifesto

In essence, the foundation of MDA consists of three complementary ideas:

1. Direct representation. Shift the focus of software development away from the
technology domain toward the ideas and concepts of the problem domain.
Reducing the semantic distance between problem domain and representation
allows a more direct coupling of solutions to problems, leading to more accurate
designs and increased productivity.

2. Automation. Use computer-based tools to mechanize those facets of software
development that do not depend on human ingenuity. One of the primary purposes
of automation in MDA is to bridge the semantic gap between domain concepts and
implementation technology by explicitly modeling both domain and technology
choices in frameworks and then exploiting the knowledge built into a particular
application framework.

3. Open standards. Standards have been one of the most effective boosters of
progress throughout the history of technology. Industry standards not only help
eliminate gratuitous diversity but they also encourage an ecosystem of vendors
producing tools for general purposes as well as all kinds of specialized niches,
greatly increasing the attractiveness of the whole endeavor to users. Open source
development ensures that standards are implemented consistently and encourages
the adoption of standards by vendors.
 Chapter 6. Model-driven development in context 77

These concepts of direct representation, automation, and open standards are at
the core of the model-driven approach.

6.3 Software Factories and domain-specific languages
You may have come across the ideas of domain-specific languages (DSL) and
Software Factories recently, in particular in the book Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools (see
“Related publications” on page 227 for the full citation), put forward these ideas.
For those of you who come across, or are interested in, both approaches it is
useful to compare them.

The Software Factories Web site defines the term Software Factory in the
following way:

“A Software Factory is a software product line that configures extensible
development tools like Visual Studio Team System with packaged content like
DSLs, patterns, frameworks and guidance, based on recipes for building
specific kinds of applications. For example, we might set up a Software
Factory for thin client Customer Relationship Management (CRM)
applications using the .NET framework, C#, the Microsoft Business
Framework, Microsoft SQL Server, and the Microsoft Host Integration Server.
Equipped with this factory, we could rapidly punch out an endless variety of
CRM applications, each containing unique features based on the unique
requirements of specific customers. Better yet, we could use this factory to
create an ecosystem, by making it available to third parties, who could extend
it to rapidly build CRM applications incorporating their value added
extensions.”

There is an overwhelming similarity between MDD and the Software Factories
approach. Both approaches advocate working with application domain concepts
and introducing automation into the software life cycle. Both approaches
emphasize the importance of visual modeling and capturing expertise through
patterns.

The main difference between the approaches is the emphasis that is put on open
standards, in particular UML.

To learn more about Software Factories, see:

http://www.softwarefactories.com
78 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.softwarefactories.com

6.3.1 UML and DSLs
The issue of the role of UML is often stated in overly simplistic terms: MDD
advocates the use of UML for all domain modeling while the Software Factories
approach advocates that UML never used. This is an incorrect statement of the
positions of both camps.

While the MDD approach treats UML, with customization, as the modeling
language of choice for most application modeling, it also acknowledges the value
of custom languages in certain specialized circumstances. This is the purpose of
the OMG Meta-Object Facility (MOF) standard that plays an important role in
MDD (see page 80 for more details about MOF). UML itself is defined using MOF
and there are MOF definitions of many other languages. The MDD approach
acknowledges the value of non-UML DSLs as a technique to be applied
judiciously.

Further, the Software Factories approach does not reject UML entirely. It
suggests that you use UML for developing sketches and documentation, where
DSLs should be used for developing models from which code is generated. To
learn more, go to:

http://msdn.microsoft.com/vstudio/default.aspx?pull=/library/en-us/dnvs05/html/
vstsmodel.asp#vstsmodel_uml

Advantages of using UML profiles as DSLs
� UML is an open standard modeling language for which there are many

available books and training courses. UML is a recognized and transferable
skill for software developers.

� UML profiles provide a lightweight approach that is easily implemented using
readily available UML tooling. In the future, it may be possible to generate
tooling for DSLs, but some customization is still likely to be necessary.

� Models with UML profiles applied can be read by all UML tools even if they do
not have any knowledge of the profile. In some cases, the extensions
introduced by the profile will be ignored.

� Basing all DSLs on UML creates a set of related languages that share
common concepts. This makes new profiles more readily understandable and
enables models expressed using different DSLs to be integrated easily.
Having a set of models expressed using different DSLs replicates the
middleware integration problem at the modeling level, which is clearly not
desirable.

� UML can be used for high-level architectural models as well as detailed
models from which code can be generated. This gives consistency
throughout the software life cycle, enabling users to move seamlessly from
 Chapter 6. Model-driven development in context 79

http://msdn.microsoft.com/vstudio/default.aspx?pull=/library/en-us/dnvs05/html/vstsmodel.asp#vstsmodel_uml

modeling-in-the-large to modeling-in-the-small. The approach of using UML
only for sketches and documentation misses this opportunity for consistency.

Disadvantages of UML profiles as DSLs
� UML profiles only permit a limited amount of customization. It is not possible

to introduce new modeling concepts that cannot be expressed by extending
existing UML elements. For example, UML is not a suitable basis for a DSL for
designing electrical circuit diagrams.

� The use of UML does require familiarity with modeling concepts. In some
cases domain experts may have knowledge that can be utilized for the
purposes of code generation, but they may not have the expertise to express
these concepts using UML.

Alternatives to UML profiles for DSLs in MDD
While UML is the appropriate basis for many DSLs, there are cases where we
advocate an alternative approach for some parts of the MDD process.

The following techniques can be used instead of UML:

� MOF-based language: In cases where a custom language is appropriate,
use MOF to define a new language. The Eclipse Modeling Framework, an
open source component that is included with RSA, generates a Java
implementation for working with a MOF-defined language and basic Eclipse
tooling to create instance of models in the language. In the future it is likely
that the generation of full graphical editors will be possible.

This is the technique used to implement many of the languages that RSA
supports including UML and XSD. Take care when using this approach to
ensure that the language is integrated with UML and other non-UML DSLs
that are used in the same solution context.

� Custom user interface: For some users, a visual modeling approach may
not be appropriate for capturing their expertise. It may be that a custom tool
with step-by-step guides and custom graphical elements is more suitable.
Clearly this approach has further cost associated with it, but it is a useful
technique to apply in the right circumstances.

� Transformation from an existing format: Information that is needed to drive
an MDD tool chain may already be captured in an existing tool. This might be
another software modeling tool, a business modeling tool, or a desktop tool
such as Microsoft Excel. Any information that can be accessed can be
transformed into UML models. Particularly for pre-existing assets, use this
approach to generate models rather than manually modeling the same
information.
80 Patterns: Model-Driven Development Using IBM Rational Software Architect

6.4 Asset-based development
Asset-based development (ABD) promotes the reuse of assets at all points in the
software development life cycle. Unlike previous reuse initiatives, ABD does not
focus only on code-based components that can be directly invoked. In particular,
ABD complements MDD through supporting the reuse of models, patterns and
transformations. For more information about the IBM approach to asset-based
development, see:

http://www.ibm.com/developerworks/rational/products/patternsolutions/

RUP for asset-based development is a RUP plug-in that describes the tasks,
roles, and deliverables associated with asset-based development. You can learn
more about RUP on the Web at:

http://www.ibm.com/developerworks/rational/library/4145.html

The OMG Reusable Asset Specification (RAS) standard is an important enabler
of ABD. RAS provides a standard way to package, document, discover, and
retrieve software assets. For more information about the RAS standard, see:

http://www.omg.org/cgi-bin/doc?ptc/2004-06-06

Rational Software Architect provides a reusable assets perspective that includes
RAS client capabilities to search for and import RAS assets from repositories.

RSA supports remote RAS repositories such as the RAS repository for
workgroups, and also local lightweight file-store based repositories. The RAS
repository for workgroups is a WebSphere Application Server-based repository
that is available from IBM alphaWorks:

http://www.alphaworks.ibm.com/tech/rasr4w

RSA also supports the packaging of artifacts into RAS assets and the publishing
of those assets to local or remote repositories. RSA models, patterns,
transformations, and other extensions can be packaged as RAS assets.
 Chapter 6. Model-driven development in context 81

http://www.ibm.com/developerworks/rational/products/patternsolutions/
http://www.ibm.com/developerworks/rational/library/4145.html
http://www.omg.org/cgi-bin/doc?ptc/2004-06-06
http://www.alphaworks.ibm.com/tech/rasr4w
http://www.alphaworks.ibm.com/tech/rasr4w

6.5 Pattern-driven development and IBM Patterns for
e-business

Pattern-driven development is concerned with developing software by applying
best practice solutions to problems.

There are two key ways in which patterns and MDD are related:

� MDD can automate the application of patterns

Traditionally, patterns were written down as documents, often with the aid of
UML models to explain the pattern. Patterns were then applied manually.
MDD can automate the application of patterns.

� Patterns provide content for MDD

MDD allows us to move from well-designed models to well-designed
implementations. Patterns capture the best practices at both the modeling
and implementation levels. MDD is not possible without knowledge of the
patterns of the application domain and the patterns of the implementation
domain.

6.5.1 IBM Patterns for e-business
IBM Patterns for e-business help facilitate the reuse of assets that capture the
experience of IT architects in such a way that future engagements are simpler
and faster. The reuse of these assets saves time, money, and effort, and helps to
ensure the delivery of a solid, properly architected solution. The purpose of IBM
Patterns for e-business is to capture and publish e-business artifacts that were
used, tested, and proven to be successful. The captured information is assumed
to fit the majority, or 80/20, situation. IBM Patterns for e-business are further
augmented with guidelines and related links for their better use.

The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that any existing development methodology can
exploit. These layered assets are structured in a way that each level of detail
builds on the last. These assets include the following items:

� Business patterns that identify the interaction between users, businesses,
and data

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern
82 Patterns: Model-Driven Development Using IBM Rational Software Architect

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact

� Runtime patterns that define the logical middleware structure that supports an
Application pattern

Runtime patterns depict the major middleware nodes, their roles, and the
interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern

� Best-practice guidelines for design, development, deployment, and
management of e-business applications

Figure 6-4 The Patterns for e-business layered asset model

Patterns and MDD are key to closing the business and IT gap, and ensuring the
delivery of business value. The adoption of Patterns and MDD reduces
time-to-react, enables on demand design and development, and reduces
complexity. Patterns and MDD are coming of age and are delivering tangible
results.

Thomas Murphy of META Group (now part of Gartner Group) is widely quoted as
saying that “Organizations using model-driven, pattern-based development
frameworks and tools can attain dramatic productivity and quality improvements
across the development team.”

Application patterns

Product mappings

Runtime patterns

Composite patterns

Integration patternsBusiness patterns
Business patterns

Customer Requirements
 Chapter 6. Model-driven development in context 83

MDD promotes improvements in business agility, which is a real key to success
in an on demand world. The successes of pattern-driven development, IBM
Patterns for e-business, and MDD are a result of the complementary nature of
these techniques.

MDD works by automating the creation of common aspects of software artifacts
and a key aspect of MDD is expertise capture. Instead of needing experts to be
on hand every time a best practice decision needs to be made, we capture their
expertise in automated patterns and transformations so that it can be reapplied.

IBM Patterns for e-business are layered, reusable, integrated and proven
patterns, providing quality input to the MDD method. MDD augments the
reusability of the Patterns for e-business by automating them so that they can be
reapplied easily. Patterns for e-business provide key content when creating
enterprise-wide MDD frameworks that are particularly important for capturing
and enforcing a common architectural style across all the IT systems in an
enterprise.

In our scenario and example, we use the Patterns for e-business with focus on
the Application and Runtime patterns. The Patterns for e-business Application
and Runtime patterns were extended for SOA and the ESB patterns are derived
from these extensions. Patterns for e-business greatly influence and mold the
architectural style adopted.

6.6 Business-driven development
Business-driven development (BDD) is concerned with bridging the business-IT
gap to enable business to drive IT more directly. Figure 6-5 shows the
business-driven development life cycle, which includes the business,
development, and operations parts of the business.

When using BDD, a key part of the life cycle is concerned with business
modeling. This is carried out using a tool that is appropriate for business users
such as WebSphere Business Integration Modeler (WBI Modeler). WBI Modeler
allows business users to capture and simulate their business processes at a
business level.

True business modeling of business processes is not concerned with how those
processes are implemented in software. The models produced by business
modeling activities are business models rather than software models. However,
they contain information that provides a valuable specification for those parts of
the business that are implemented with or supported by software. An automated
transformation can be used to generate a partial software model from a business
process model.
84 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 6-5 The business-driven development life cycle

Rational Software Architect can import WBI Modeler business process models to
provide a specification of the software to be implemented. The UML models that
RSA creates from WBI Modeler models contain use cases and collaborations
that specify the behavior of the system. The models do not make implementation
decisions about how the business processes are realized, for example, whether a
centralized choreography approach or a distributed object-oriented approach are
taken.

In some cases, it is possible to go a step further than generating specifications
because the architectural style for application development is known. In such
cases, we can implement transformations that generate partial application
models from business process models. In this book, we focus on using
automated transformations to move from application models to implementations.
However, the same techniques can be used to move from business models to
application models.

In some cases, if the target implementation platform is known early then it may
even be possible to move from business process models directly to skeleton
implementation artifacts. For example, WBI Modeler can export processes using
the Business Process Execution Language for Web Services, an executable
language supported by WebSphere Process Choreographer.
 Chapter 6. Model-driven development in context 85

Figure 6-6 Business-driven development with MDD

In summary, business-driven development relies on the techniques of
model-driven development to connect business models to software models. MDD
can be used within a full BDD life cycle or it can be applied to just the software
part of the life cycle. Adopting an MDD approach to software development puts
an organization on the right track for a full BDD life cycle in the future.

6.7 Model-driven development and On Demand
Business

IBM put a name to a new breed of business: on demand. IBM CEO Sam
Palmisano defines On Demand Business as, “An enterprise whose business
processes, integrated end-to-end across the company and with key partners,
suppliers, and clients, can respond with flexibility and speed to any client
demand, market opportunity or threat.”

An On Demand Business understands what it does today and is able to rapidly
turn business decisions into operational reality.

Model-driven development, especially when taken to the level of business-driven
development is a strong facilitator of On Demand Business.
86 Patterns: Model-Driven Development Using IBM Rational Software Architect

� When using an MDD approach, the time taken to add new business function
is reduced since much of the implementation work is automated through
existing transformations.

� Design-level models are always available for MDD systems so current system
behavior is understood. Understanding what a system currently does is
crucial to being able to make rapid changes. This is often a problem for
non-MDD systems where the current function of a system is often poorly
understood or dependent on the knowledge of key individuals.

� An MDD project can readily take advantage of new technology innovations.
Transformations are updated and reapplied with much less effort than that
required to reimplement a system on a new platform. An MDD project can
rapidly take advantage of new technology platforms.

� When linking business models to software models with BDD, the impact of
changes at a business level are rapidly understood. In some cases a change
to a business model can lead to an automated change to a software model.

In summary, MDD enables an On Demand Business by increasing the availability
of knowledge about the business, by integrating that knowledge, by connecting
business and software models, and by reducing the cost of change through
automation.

6.8 Model-driven development and middleware
Many of the goals of model-driven development and middleware coincide. They
both aim to do the following things:

� Raise the level of abstraction
� Reduce the amount of low-level coding required by application development
� Improve consistency across applications

However, middleware, by its nature, is broadly applicable. It is not possible for a
general-purpose middleware platform to offer specialized constructs to all of its
user communities. MDD provides a less costly alternative to heavily specialized
middleware.
 Chapter 6. Model-driven development in context 87

6.9 Visualization
Visualization is the technique of viewing implementation artifacts as UML
models. Such models are platform-specific, but they hide some of the
implementation detail that can detract from the overall architecture of an
application.

RSA support visualization of Java and J2EE artifacts. This mode of working is a
way of getting some of the benefits of modeling while using a code-centric
approach. When using visualization, code is the primary artifact and models are
generated from code. Models are not persisted (although their layout information
is), they are simply visualizations of the code. Figure 6-7 shows a simple J2EE
project and its corresponding UML visualization.

Figure 6-7 Visualization of an Entity Bean

The model is generated from the code, not the other way around. Visualization
made easier when a model (often in-memory) of the visualized artifacts is

UML Diagram

Visualization of Entity Bean on UML Diagram
88 Patterns: Model-Driven Development Using IBM Rational Software Architect

available so that there is no need to parse a textual representation of the
artifacts. This is an example of using non-UML models within an MDD tool chain.

Visualization provides some of the benefits of a model-driven approach:

� Some implementation detail can be hidden to allow a design-level view of a
system.

� UML models and code are kept synchronized avoiding mismatches between
documentation and implementation.

Although visualization can be valuable, it can only raise the level of abstraction in
a very limited way. When using visualization, we are restricted to hiding details of
the concepts supported by the platform.

There are two main ways in which visualization is used in model-driven
development.

First, visualization is a step towards model-driven development. In addition to
having direct benefits of its own, visualization improves the familiarity of
developers with UML modeling. This familiarity can ease the transition to an
MDD approach.

Second, visualization is a useful technique for working with platform-specific
UML models. Instead of maintaining an intermediate implementation model
between the application models and the implementation artifacts, we can
generate code directly but still have the benefit of visualizing the implementation
model.

6.10 Executable UML
The term Executable UML does not refer to the idea of UML having execution
semantics. UML has execution semantics, although they could certainly be
strengthened and formalized in some areas, and UML 2.0 improved these
semantics significantly.

Instead, Executable UML is normally associated with treating UML as a complete
programming language, not just for the expression of high-level semantics, but
for expressing complete executable models. Such models are executed either on
a UML virtual machine or through compilation to a lower-level programming
language.

The alternative to Executable UML, and the current common practice in MDD, is
to switch to a lower-level programming language to fill in the details.
 Chapter 6. Model-driven development in context 89

UML does provide support for expressing detailed semantics through its Actions
and Activities. However, the only notation provided for these constructs is a visual
notation. It is generally agreed that a textual language is more efficient for
capturing detailed semantics, such as mathematical algorithms and text
processing.

A number of Executable UML languages, including textual notations for actions,
were defined and there is currently an Executable UML standard under
development at the OMG. See the book Executable UML: A Foundation for
Model-Driven Architecture by Stephen J. Mellor and Marc J. Balcer. Also see the
book Model-Driven Architecture with Executable UML by Chris Raistrick, Paul
Francis, John Wright, Colin Carter, and Ian Wilkie. You can find the complete
citations in “Related publications” on page 227.

6.11 Summary
The Object Management Group’s Model-Driven Architecture initiative is working
to formalize the ideas of model-driven development, and to provide standards in
support of the approach. We use the term MDD to refer to a development
approach that is broadly in line with the formal MDA that is under development at
the OMG.

MDD also has much in common with other initiatives such as Microsoft’s
Software Factories and domain-specific languages. Although there are
significant differences between these approaches, such as the importance of
standards to MDD, there is also much in common between the approaches.

MDD is not an end in itself. It is only of value if it can help an organization to meet
its business objectives. In particular, you can apply the techniques of MDD to
business-driven development to support the goals of an on demand enterprise.

Finally, MDD does not exist in isolation it has much common ground and
complementarity with other software development paradigms that are gaining
acceptance, including pattern driven development and asset-based
development.

This concludes Part 1, “Approach” of the book. In Part 2, “Implementation” on
page 91, we apply the ideas of MDD to a hypothetical scenario that draws upon
the experiences of the team.
90 Patterns: Model-Driven Development Using IBM Rational Software Architect

Part 2 Implementation

In this part, we apply the model-driven development approach to the scenario
described in Chapter 2, “Scenario overview” on page 17.

� The next chapter, “Designing patterns for the scenario”, shows the steps
taken to analyze the scenario and design the patterns and transformations to
implement with Rational Software Architect.

� Chapter 8, “Applying model-driven development with Rational Software
Architect” on page 129, describes how to apply patterns and transformations
using Rational Software Architect, and then how to create new stereotypes
using profiles.

� Chapter 9, “Extending Rational Software Architect” on page 161, shows how
to add new patterns and transformations by extending Rational Software
Architect with plug-ins.

� Chapter 10, “Conclusion” on page 219, includes a list of factors that the
authors believe are critical to the success of introducing model-driven
development into an enterprise.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 91

92 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 7. Designing patterns for the
scenario

This chapter is based on the scenario described in Chapter 2, “Scenario
overview” on page 17. It presents an overview of the process used to model
enterprise service bus (ESB) services and generate artifacts from these
services. The process considers the following items:

� ESB architecture
� Contracts of behavior
� Integration patterns

Following the overview, we describe the steps we take to create the pattern we
use to derive a model of the solution, and then flesh out the detail of the model to
the point that services are generated.

We review some practical aspects of the implementation and the final section
examines some options for presenting the model information to users.

7

© Copyright IBM Corp. 2005. All rights reserved. 93

7.1 Relationship to the project plan
If we relate this chapter to the project structure defined in Figure 4-1 on page 46
then it is mainly addressing the model-driven development (MDD) Tooling Project
rather than the underlying middleware or the surrounding business application
project. In 7.9, “Use of the framework” on page 125, we cover some aspects of
the use of the framework, but we do not cover the business application project in
any depth.

Sections 7.2, “Overview of pattern design” on page 95, through 7.7, “Detailing
the initial model with service patterns” on page 110, are concerned with the first
three steps in the MDD tool chain shown in 4.3, “Planning a model-driven
development project” on page 51. For this example, they show how the business
problems are analyzed, the solution architecture is defined, and the patterns are
selected to define the design model.

Section 7.8, “RSA transformation” on page 118, addresses transformations. In
this section, the example takes a simpler approach than the one shown in
Figure 4-3 on page 51. The tool chain shown in Figure 4-3 on page 51 assumes
that there are two transforms: one from the design model to run-time
independent components and one from the run-time independent components to
run-time dependent components. This is a more general case to consider, but
the example used in this redbook assumes that a single run-time environment is
defined and moves straight from the design model to run-time components.
94 Patterns: Model-Driven Development Using IBM Rational Software Architect

7.2 Overview of pattern design
This chapter looks first at the patterns and models which form the framework for
the ESB program, which we are using as an example. Figure 7-1 shows the
process we use to model the ESB services and generate artifacts.

Figure 7-1 Pattern hierarchy

RSA Pattern
RSA Pattern

ESB architecture Integration pattern

ISF IS PF
Contract of behavior

Activity
Diagram

RSA ESB
Service Pattern

Collaboration
Model of Services

Service

RSA
Transformation

Generated
Artifacts

Configured
Model

Configuration
data

RSA
Existing Service

Component

1 2 3

4

Service
Component

RSA
ESB Collaboration

Pattern
 Chapter 7. Designing patterns for the scenario 95

At the highest level in the process, we could create categories of patterns in RSA
that define:

� The architecture of the ESB describing its structure: The architecture is
described in 7.3, “Architecture patterns” on page 97.

� The contracts of behavior describing how the services interact (for
example a query or an update): These are described in 7.4, “Contracts of
behavior” on page 99.

� The integration patterns describing how the interactions are performed for
each contract of behavior : See 7.5, “Integration patterns” on page 104.

In this example, we create Rational Software Architect (RSA) ESB collaboration
patterns, which when applied to a collaboration generate an ESB collaboration
model , see 7.6, “Applying a pattern to create a high-level model” on
page 106.

The RSA ESB collaboration patterns are composed of one pattern from each
category , , and in Figure 7-1. Not all combinations of these patterns
are valid; therefore, our approach is to implement a pattern in RSA for each valid
combination of patterns drawn from the three categories.

Reuse
When an ESB collaboration is modelled, the individual services in the
collaboration, which are the facades and the integration services, must be
selected or generated. It is a goal of the ESB project that reuse at the service
level be pursued as well as reuse at the pattern level. Any supporting tooling
should therefore allow a collaboration pattern to be partially (or fully) met by
existing services defined in a repository of reusable assets, a RAS repository.

In the case of service reuse, a package containing service components, service
interface specifications, or data definitions may be marked with a stereotype to
indicate that the implementation artifacts already exist and do not need to be
generated by the transformation. A typical example of service reuse is a provider
facade created to access a particular external provider function, where this
provider facade is then reused in a number of collaborations.

In the case where a new service is to be generated, an ESB service pattern is
applied to the service component. The ESB service patterns are selected from a
set that reflects the service type and the contract of behavior to be supported.
These ESB service patterns attach an activity diagram to the service component
that models the behavior of the service at a greater level of detail.
96 Patterns: Model-Driven Development Using IBM Rational Software Architect

7.3 Architecture patterns
One of the abstract high-level patterns is defined by the architecture of the ESB.
This ESB implementation provides all integration functionality as services. We
use the term service-oriented integration (SOI) to refer to this architectural style.

Figure 7-2 Pattern hierarchy: ESB architecture

At a high level, the architecture for this ESB defines the following items:

� Types of service
� Interface restrictions
� Permitted calling patterns
� Architectural constraints

These are imposed by having a set of utilities and rules for when these must
be called. These constraints include the following items:

– Validation requirements
– Authorization requirements
– Transformation requirements
– Error reporting
– Gathering of metrics

Service types
The service types permitted in the ESB are:

� Integration service facade
� Requester callback facade
� Integration service
� Integration service call back
� Provider facade
� Provider facade call back
� Internal utility service

ESB architecture Integration pattern

ISF IS PF

Contract of behavior
1

 Chapter 7. Designing patterns for the scenario 97

Interface restrictions
� Integration service facades support a single operation.
� Document Web Services interfaces have a literal style.
� All external interactions must be fully Web Services Description Language

(WSDL) defined.

Permitted calling patterns
This pattern enforces the architectural constraints that all requests and
responses between the ESB and external applications are allowed only through
the facade services and their call backs. No direct access is allowed to the
integration services or the utility services. This ensures that the architectural
principles are enforced at the boundary and also that internal integration and
utility services can trust their input and do not need to validate. The facades also
ensure that all input data are transformed into the Enterprise Canonical Data
Format (ECDF) before internal services are called.

Additional constraints of permitted calling patterns are:

� Any ESB service may call a utility service.

� Integration service facades are requesters of only one integration service.

� Asynchronous pattern responses are returned to a callback service rather
than to the requester.

� Integration services may call provider facades directly or call other integration
services, which in turn may call one or more provider facades.

� Provider facades may call only one external provider. Multiple calls are made
when it is necessary to orchestrate a dialog to retrieve data, but only one
function should be addressed with a provider facade.
98 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 7-3 ESB architecture pattern

The Architecture pattern illustrates the permitted connectivity and how services
can be reused. However, it does not illustrate any specific integration pattern as
this is determined by the details of each of the integration patterns.

7.4 Contracts of behavior
We briefly discus the contracts of behavior in Chapter 2, “Scenario overview” on
page 17. In this chapter, we look at the contracts of behavior defined for the ESB
scenario.

Figure 7-4 Pattern hierarchy: Contract of behavior

ISF U

ISF

PF

ISISF IS PF

IS PF

RC
BF

IS
CB

PF
CB

U

Front Office
Application 3

Front Office
Application 1

Front Office
Application 2

Facade Layer

Inner Layer
Canonical Data Format Back end

Service
Provider 1

Back end
Service

Provider 2

Back end
Service

Provider 3

ESB architecture Integration pattern

ISF IS PF

Contract of behavior

2

 Chapter 7. Designing patterns for the scenario 99

Contractual Behavior patterns define interaction styles and qualities of service.
We adopted five basic patterns for the ESB in our example.

� Synchronous request for information with requester time out
� Synchronous update with confirmation/error notification and time out
� Asynchronous request for information
� Updates with asynchronous response/error notification
� Asynchronous one way update with managed failure

These patterns are abstract. They define the way the interactions behave in
terms of synchronous/asynchronous interfaces, level of assurance of delivery,
handling of time outs and late responses, and error handling. They do not define
the format of an interface concretely.

These contracts of behavior are not implemented directly as RSA patterns but
are combined with the overall pattern derived from the ESB architecture,
modified for particular integration functions, to create the first level of patterns
implemented in RSA.

The example used in this redbook is based on a synchronous request for update
and this contract of behavior is therefore described in detail in 7.4.1, “Contract of
behavior for synchronous updates” on page 100.

7.4.1 Contract of behavior for synchronous updates
With a synchronous request for update contract of behavior agreed between a
requester and provider, the requester expects to receive a response when the
update completes. The requester times out if the response is not received within
a given time.

This pattern is included because the most common transport for Web services is
synchronous HTTP. Although the unreliable nature of this protocol makes it less
than ideal for updates, possibly resulting in indeterminate states, it is widely
used. The responsibility for recovery from an indeterminate state is assigned in
the stated requirements and is assisted by relevant logging.

Usage
This pattern is suitable for any updates where failure is detected and remedied by
the requesting application. The pattern assumes that the requesting client takes
control in the case of all types of business related failure by invoking the
necessary business processes to ensure that business data is maintained in a
consistent state. In this context, business related failure means any failure that
has a business impact. The fact that an update fails has a business impact even
if the failure is due to a technical error. The business processes may not be totally
automated and may involve business and IT support calls.
100 Patterns: Model-Driven Development Using IBM Rational Software Architect

The requesting process only waits for a specified interval for its response, and on
timing out the request must generate a call (possibly asynchronous) to a process
that determines the result and takes appropriate action. This support process is
assisted by the logging of events as the request is processed.

7.4.2 General requirements for synchronous update
This synchronous update pattern is particularly appropriate for requests from
applications that are supporting interactive users.

If we look at the end-to-end pattern, we can see that it consists of the following
three pieces:

� Initial requester: This is the requesting application.
� Intermediaries: These are the ESB services.
� Final provider: This is the providing application or applications.

The requirements placed on each of these are defined in the following sections.

Requirements on requester
If you are a requester in this end-to-end pattern, then the following requirements
apply:

� Submit a request.

� Receive a response, or failure response, if returned within a given time.

– Retrieve by correlation ID if request uses a messaging transport.

� Abort the retrieval of response (that is, time out) if no response is received in
a predetermined interval.

– Invoke business recovery process if response indicates errors.
– Invoke business recovery process if time out occurs before response

received.
 Chapter 7. Designing patterns for the scenario 101

Figure 7-5 Requester behavior for synchronous requests for update

The only true requesters in the scenario are the front office applications. The
contract of behavior makes these applications, rather than the ESB, responsible
for recovery after failed or timed-out updates.

Requirements on intermediary
� Return immediate error if request is not validated or authorized.
� Return an error for any error detected in processing the request.
� Log errors to ESB utility service in accordance with configuration.
� Submit Request to next Intermediary/Provider.
� Receive response, or failure response, if returned within a given time.

– Retrieve by correlation ID if request uses a messaging transport.
– Log result ESB utility service in accordance with configuration.

� Return response, success or failure to requester (if possible).
� Abort retrieval of response (for example, time out) if no response is received

in a predetermined interval.

– Log result ESB utility service in accordance with configuration.

Provider /
Intermediary

Requester
Request for Update

Response
/ Failure

Wait

Send Svc Request

Drop Late
Responses

Timeout
Action

Failure
Action

Success
Action

Initiate
Recovery
Process

Inititate
Recovery
process

Continue
102 Patterns: Model-Driven Development Using IBM Rational Software Architect

� Drop any late responses. Messages must not accumulate because requester
times out.

– Maintain correlation information if request uses messaging transport.

Figure 7-6 Synchronous update behavior of intermediary

All ESB services act as intermediaries. They are neither an initial requester nor a
final provider.

Requirements on provider
� Return immediate error if request is not validated or authorized.
� Process request.
� Return result.
� Optionally log result according to configuration.

IntermediaryRequest for Update

Success
Action

Send Svc Request

Process Request

Process Result

Drop Late
Responses

Wait

Return
Response

Timeout
Action

Requester /
Intermediary

Response / Failure /
Intermediary Time out

Request

Response

Write Log

Error
Action

Return
Failure

Return
Time Out

Fault
 Chapter 7. Designing patterns for the scenario 103

Figure 7-7 shows the behavior between an ESB provider facade service and the
back-end provider service.

Figure 7-7 Synchronous update: Behavior of provider

7.5 Integration patterns
The basic ESB pattern is modified by the type of orchestration carried out by the
integration service. We refer to these as the integration patterns.

Figure 7-8 Pattern hierarchy: Integration patterns

Requester /
Intermediary Request for Update

Response
/ Failure

Return Result to Requester /

 Provider

Receive Svc Request

Process Update

Intermediary

ESB architecture Integration pattern

ISF IS PF

Contract of behavior

3

104 Patterns: Model-Driven Development Using IBM Rational Software Architect

It is not necessarily possible to provide, initially, a comprehensive set of patterns
that cover all the behavior of integration services. But following the familiar 80/20
practice, it is desirable to define a set of patterns to which additions can be made
as new requirements emerge and not spend too great an effort aiming for
completeness at a particular point in time.

The patterns at this level are aligned with the application integration Patterns for
e-business. The first set of integration patterns for the ESB in this scenario is:

� Request for information from a single target

Optionally routed to alternate service providers

� Update to a single target

Optionally routed to alternate service providers or to specified files

� Requests for information from multiple targets

Aggregate responses to give a single result

� Distribution of updates to multiple targets

Based on message content

� Sequence of calls to multiple integration services or providers (via provider
facade)

– Each step determined by the result of the previous call
– The final response accumulated from any responses

� Publication and management of subscriptions

� Processing of files

– Processing of each record
– Dispatch of validated and transformed records to targets based on content

based routing

� Merging and splitting of records from various sources
 Chapter 7. Designing patterns for the scenario 105

7.6 Applying a pattern to create a high-level model
The fourth step in the process of applying patterns, shown in Figure 7-1, is to
combine the collaboration patterns to produce RSA collaboration models of the
services required. See Figure 7-9.

Figure 7-9 Applying a pattern to create a high-level model

The integration scenario is of an external requester updating a customer record
hosted by an external provider. The external requester is a front office package
supporting call handlers. The front office package makes its request to the
external provider indirectly, by requesting an ESB service. The ESB service is
responsible for passing the request to update a customer record to the external
provider. The external provider is responsible for updating the current address on
the master record for a specified customer.

Master records for customers are distributed over multiple back-end systems,
and the integration service must route the request to the correct system
depending on the content of the message. In a real situation, the distribution of
master records might be the result of regional systems or mergers and takeovers
and require complex mediation to resolve. To simplify the example, we assume
that the split between master systems is alphabetical, based on the customer’s
surname.

Collaboration
Model of Services

Service

RSA
ESB Collaboration

Pattern
106 Patterns: Model-Driven Development Using IBM Rational Software Architect

7.6.1 The pattern
In selecting the RSA ESB high-level patterns, we can make the following
assumptions:

� ESB architecture pattern is a given
� Contract of behavior is a synchronous update

The front office call handlers require a response before they can continue
their business process.

� The integration pattern is that of request for information from a single target,
optionally routed to alternate service providers

The RSA ESB pattern selected for our example reflects the pattern shown in
Figure 7-10 (CB3 = contract of behavior, 3). This pattern shows a combination of
a basic pattern of services used within the ESB and the contract of behavior,
Synchronous Update.

Figure 7-10 Pattern combining the ESB architecture, integration behavior, and contract of behavior

ESB

CB3
Enterprise
Canonical Data
Format (ECDF)

CB3 CB3
ECDF CB3

External
Requester

External
Provider

Provider
Facade

Integration
Service

Integration
Service
Facade

Provider
Facade

External
Provider

1:1 1:n

0:n

1:1

1:1
 Chapter 7. Designing patterns for the scenario 107

7.6.2 The model
When a selected RSA ESB pattern is applied to a collaboration, it creates a
collaboration model of services. The model created uses class diagrams and
stereotypes from the UML 2.0 profile for software services. For details, see:

http://www.ibm.com/developerworks/rational/library/05/419_soa/

The pattern selected determines the shape of the model and the way in which it
is configured, as shown in Figure 7-11. In this case, the pattern creates
components for one integration service facade, one integration service, and a
number of alternate provider facades. It captures the items presented in the
following sections.

Figure 7-11 Model after application of the ESB pattern

Integration service facade
� Service
� Service consumer (makes request of one integration service)
� Service provider (processes requests from external requester)
� One to one (1:1) link to integration service
� Constrained to support CB3 as a consumer
� Constrained to support CB3 as a provider
� Constrained to connect only to requesters or providers supporting CB3

IFS :
Collaboration1IFS

IS :
Collaboration1IS

PFS1 :
CollaborationPF1

PFS1 :
CollaborationPF1

in

in

in

inout

out

out

out

out

ESB Service Collaboration
108 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.ibm.com/developerworks/rational/library/05/419_soa/

Integration service
� Service
� Service consumer
� Service provider
� Multiple alternative links to provider facades (with same definition of input

message schema)

In the general case, the alternatives might include an integration service.

� Constrained to support CB3 as a consumer
� Constrained to support CB3 as a provider
� Constrained to connect only to requesters or providers supporting CB3

Provider facade
� Service
� Service consumer (makes request of one integration Service)
� Service provider (processes requests from external requester)
� One to one link to external provider
� Constrained to support Contract of behavior 3 as a consumer
� Constrained to support Contract of behavior 3 as a provider
� Constrained to connect only to requesters or providers supporting CB3

External requester
The external requester is included in the model to generate test stubs:

� Service consumer
� One to one link to integration service facade
� No constraints

External provider
The external provider is included in the model to generate test stubs and to
define the interface of the external provider:

� Service provider
� One to one link with provider facade
� No constraints

Options for creating the model
The model shown in Figure 7-11 is the starting point for further configuration.
The model is part of the tooling, and it could be created in one of two ways:

� Select from a set of models created to match the selected high-level patterns,
and copy the selected model.

� Implement an RSA pattern that can be applied to a collaboration to create a
model that links the service components in the collaboration.
 Chapter 7. Designing patterns for the scenario 109

Creation of a set of models, from which an instance is selected and copied,
requires less effort where the number of high-level patterns is small and the
pattern parameters and their inter-dependencies are low. It is certainly a starting
point to establish model requirements before investing in implementation of a
pattern.

Creation of RSA patterns to generate models matching the high-level
collaboration patterns has benefits where there is significant commonality
between a set of patterns and where the application and re-application of the
pattern can be used to ensure that the resulting model conforms to quite a
complex set of conditions.

As defined, the ESB example does not show fully the benefits of using an RSA
pattern. However it is a simplified example with a limited set of high-level
collaborations to be modeled. In reality, you could use a richer set of options for
the ESB, which makes the creation of RSA collaboration patterns more
appropriate. For this reason, and to illustrate how this approach works, the
example uses an RSA pattern that generates a model of the synchronous update
collaboration used in our example.

The pattern, when first applied, creates the components within the model.
Subsequent re-application does not recreate components that already exist, but
does add new components.

In this example, the patterns ensure that only one high-level pattern is applied, or
reapplied to the model.

7.7 Detailing the initial model with service patterns
When a high-level collaboration model is created for an integration, the next step
is to look at each of the ESB services in that model and provide the necessary
detail to generate or select all the components to complete the end-to-end
integration path through the ESB.

Figure 7-12 Pattern hierarchy: Service patterns

RSA ESB
Service Pattern

Collaboration
Model of Services

Service
RSA

Existing Service
ComponentService

Component
110 Patterns: Model-Driven Development Using IBM Rational Software Architect

At this point, the model must hold information that is specific to the selected
architectural style, that is SOI, and to the detailed architecture of the ESB. The
standard UML 2.0 profile for software services does not contain the required
stereotypes and a new profile (the SOI Example Profile) is therefore defined.

The SOI Example Profile contains stereotypes to:

� Identify all the possible actions within the activity diagrams for ESB services.
Each activity type has its own stereotype.

� Hold attributes defining the behavior of the service, for example, the transform
activity has an attribute transformationID that defines the transformation to
be applied by the transformation service.

� Identify parameters guiding the generation of a service, for example, the
<<Optional>> stereotype has a boolean “generate” attribute that determines
whether this activity is included when a service is generated. The stereotype
<<Generate>> has a boolean attribute that defines whether this is a service to
be generated or whether the service is a reference to an existing service.

� Identify parameters identifying and guiding behavior of the service as a whole,
for example, the <<Integration Service Facade>> stereotype defines the
service version and what level of logging is to be recorded.

Given an ESB collaboration model, any service in the high-level model can be
embellished in one of two ways.

If the service component already exists then an <<external>> stereotype can be
applied to it. This indicates that the service implementation is not to be generated
from this set of models. The name of the service component and other
information from the model is used if necessary to determine how other services
connect to the existing service.

If a service is to be generated from the model then a different approach is taken.
The model is further detailed by attaching to the service component an activity
diagram. In the example, the pattern to attach activity diagrams is not created,
but can be copied from a sample model supplied.

As in the case of the high-level models, the addition of activity diagrams to
services in the model can either be carried out by applying a pattern or by
manually selecting an activity diagram from a predefined set and attaching a
copy to the current model. In this example, we use a simple pattern to select and
apply an activity diagram from a predefined set.

Note: The most important information about the service, the definition of its
interfaces, is held in the UML 2.0 profile for software services.
 Chapter 7. Designing patterns for the scenario 111

7.7.1 Service patterns: Activity diagrams
This section looks at the activity diagrams that model the behavior of the
individual services in the collaboration model.

Figure 7-13 Pattern hierarchy: Activity diagram for services

The functions of the facade services (and their call backs where used in the
asynchronous patterns) are to:

� Ensure that the architectural constraints are enforced at the boundaries of the
ESB

� Handle the communications between the ESB and external applications and
between ESB services

There is one basic pattern for each valid combination of service type and
contract of behavior to give an overall pattern. These patterns can then have
small variations to cope with differences between bindings and outgoing
protocols. These patterns incorporate the constraints that limit some
combinations of contracts of behavior and service bindings.

There should be a high degree of commonality across all pattern variations within
each service type. Take this into account as the patterns and models are
developed.

The integration services are each unique and each need independent modeling.
Although there may be some commonality, it is the functionality required of the
pattern rather than commonality that drives the design.

In many cases, the integration pattern takes a variable number of connections
between services and a variable number of steps and creates an RSA pattern
that is applied, or reapplied, to create or update the activity diagram. It is a viable
alternative to the creation of a predefined set of activity diagrams. Integration
services within our example were listed in 7.5, “Integration patterns” on
page 104. This chapter looks in detail at only one of these, the synchronous
update to a single target, which we use as our example.

Activity
Diagram

RSA
Transformation
112 Patterns: Model-Driven Development Using IBM Rational Software Architect

Integration service facade
An integration service facade sits between an external requester and an
integration service. There are two basic patterns for these facades, the
synchronous that handles both request and response and the asynchronous that
passes on a request and leaves the processing of responses to a callback
service if required.

Our selected example supports a synchronous update and the pattern for the
integration service facade is shown in Figure 7-14. The associated activity
diagram for this facade is shown in Figure 7-15.

Figure 7-14 Integration service facade pattern

External Requester

Request

Receive Response

Integration Service
method call

https

method call

Catch Error

E

Get Configuration

Receive Request

E

E
Respond

Validate E

Transform E

Transform E

Transform (Fault)

Create Fault Message

Time Out

Log

OK

Soap Fault

Authorization

E

 Chapter 7. Designing patterns for the scenario 113

Figure 7-15 Activity diagram model of integration service facade

Provider facade
The provider facade sits between an ESB integration service and an external
provider. If the provider service is generated from the model, as is the case for
our scenario, then an activity diagram must be attached to the service
component in the initial model. The pattern for the provider facade used in our
example is shown in Figure 7-16 along with the corresponding activity diagram
shown in Figure 7-17.
114 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 7-16 Provider facade pattern

CIB Internal Service

Request

Respond

Receive
Response

External Providerhttps

method call

https

method call

E

Catch Error

Validate

Transform (Fault)

Create Fault Message

Time Out

Log

OK

Soap Fault

 Receive

Transform

Log

Log

Address Lookup

Transform

E

E

Log result

E

E

 Chapter 7. Designing patterns for the scenario 115

Figure 7-17 Model of provider facade

Extension points
As described so far the patterns and models take account of the contracts of
behavior, the ESB architecture, and the integration function to be executed.
However, there is one other very significant factor that has to be taken into
account for an ESB, and that is the handling of any special requirements in the
interfaces of particular external applications.

Some characteristics, for example standard security functions such as encryption
or application of digital signature, may be sufficiently general that they are
included as optional activities in the standard patterns.
116 Patterns: Model-Driven Development Using IBM Rational Software Architect

Other features may be specific to a single service, and it is not a good practice to
overload the “patterns” with optional one-off items, particularly where this would
mean a new release of the tooling to do so.

The solution is to allow for the inclusion of activities without a recognized
stereotype, and to provide documentation for the activity to determine the code to
be included. This is not included in the example, but it demonstrates how you can
use the extension points.

Classes generated through these extensions are constrained to conform to the
overall architecture and contract of behavior but can still provide great flexibility to
add to the patterns.

Extension points are included in recognition of the fact that, while there is great
benefit to be obtained where reusable patterns are abstracted, there remains the
need for one-off functions for which conventional bespoke development
approaches are far more cost-effective.

7.7.2 Integration services
The integration service used for this example supports an update to a single
target, which is determined by a call to a routing service based on the initial letter
of the customer’s surname.

Figure 7-18 Pattern hierarchy: Integration service pattern

Activity
Diagram

RSA ESB
Service Pattern

Model of Services

Service

Configuration
data

Existing Service
ComponentService

Component
 Chapter 7. Designing patterns for the scenario 117

Figure 7-19 Integration service model

7.8 RSA transformation
The final step in creating the MDD framework for this ESB example is to create
the transforms that use the information in the service models to generate the
code and other artifacts.

Figure 7-20 Pattern hierarchy: RSA transformation

Activity
Diagram

RSA
Transformation
118 Patterns: Model-Driven Development Using IBM Rational Software Architect

Before implementing a transform, have a detailed design for the resulting
services created from the model. At this stage, before any design is committed to
the model, you consult best practices to ensure that the code, which was created
from the model, meets the following requirements:

� Well structured
� Standards conform where necessary
� Well instrumented
� Performs well
� Makes best use of the middleware supporting the Web services framework (in

this example)

In addition to the detailed design, develop and test a sample implementation to
remove problems before a transform is created.

The earlier steps capture and encapsulate domain expertise. In this case,
knowledge of suitable integration patterns for an ESB is required.

Creation of the transforms captures and encapsulates the expert knowledge
about service implementation. In this integration project, this includes expertise
on the middleware capabilities, performance implications, metadata structure,
and general skill in Java/J2EE development. Capture this expertise in the design
and implementation of the sample, which you test and optimize before the RSA
patterns, models, and transformations are created.

In the limited example, which can be developed for this redbook, it is not possible
to illustrate all of these aspects. However, the following notes illustrate some
points of interest, and in the case of the Provider facade show the design in
sufficient detail for the transformation to be developed.

7.8.1 Implementing the integration facade
The integration service facade is itself a Web service. It has a WSDL defined
interface and supports a single operation using document style literal and HTTP
binding. All clients are expected to send requests conforming to this interface.

Implementation class
The implementation class is the service name, which reflects both the function of
the service and the type of service (in this case ISF for integration service
facade).

Note: The example is limited to an HTTP binding, where additional bindings
are supported in practice.
 Chapter 7. Designing patterns for the scenario 119

The method invoked through the standard WebSphere Web services
infrastructure is the operation name. No handlers are used in this example but in
practice the handlers are used to provide authentication and authorization before
the required method on the implementation class.

The method takes a single argument, which is the body of the request, as an
encoded string (an alternative would be an XMLDocument type argument). It is a
significant performance hit to deserialize the body of the incoming SOAP request
into Java objects unless this is needed for the implementation class. However the
functions of the facade are those of an intermediary. They only require the body
as an XML message to validate and transform before making the request to the
next service.

This approach requires a specific external WSDL for the facade that defines the
interface fully and is used by clients to generate requirements. It also requires a
standard, implicit, internal WSDL with a string (XMLDocument) body for
generating the facade. It is in fact the only schema from this WSDL that is
required.

However this is a SOI architectural style, and the ESB services use a set of utility
services that can be called by all services. These utility services are deployed on
all nodes supporting the ESB, thus ensuring that local interfaces can be used
and network traffic reduced.

Any calls to EJBs or utility classes where the message body is required are
passed as strings (again XMLDocument would be an option).

Validation
Validation is achieved by a call to a utility service with EJB binding. A simple
service is implemented for the example. The interface takes the body as an
XMLdocument and a relative URL defining the schema against which to validate.
The utility service calls Xerces.

Note: In a more general context, governance is necessary to ensure that
service names are unique.

Note: The implementation class is not dependent on any classes shared with
other services. Each service must exist as an independent entity and be
changed without impacting any other services.
120 Patterns: Model-Driven Development Using IBM Rational Software Architect

In practice, a facade must cope with varying styles of WSDL and schema and
has to validate the message regardless of WSDL style. The starting point is
always the WSDL defining the service interface. However, this may need
processing to extract message definitions and to follow nested schema to provide
all information to the parser.

Transformation
Transformation is achieved by a call to a transformation service that uses the
XALAN transformation engine with an EJB binding. The interface takes two
parameters: the body as an XMLDocument and the transform to be applied as a
relative URL. The deploy time configuration of the service needs the run time
location of all transforms.

For this example, we assume that the transformations are simple and do not
require any additional Java code or lookup functions.

Address lookup
The integration service is generated against a WSDL that contains the service
address. However, as these services move through their life cycle, they need to
be deployed to different environments, for example development for unit test,
system test environments, performance test environments. A look up service is
therefore used to obtain the address for the current environment. In practice, this
is a lookup utility service capable of handling multiple address types. In this
example, it is handled as JNDI lookup.

Integration service invocation
All integration services on the ESB are implemented with EJB bindings and take
a single parameter, XMLDocument.

Event logging
For some contracts of behavior, it is crucial that particular events in the
processing of a request are logged, so that in the event of client time out, before
receiving a response, the events can be viewed by application support.

It is also necessary to catch some technical errors and to log these so that they
can be monitored by enterprise system management. For example, failure to
contact a provider system should be logged so that corrective action is taken.

Note: We assume for this example that the requests are validated against a
single schema and that the schema contains all the information necessary to
validate the message.
 Chapter 7. Designing patterns for the scenario 121

Logging normally records both business events and technical events. In practice,
there are a number of log files active. Technical errors are certainly separated
from business errors, and business events are logged according to the service
invoked and requester.

In the example, logging is simplified and outputs to a console.

7.8.2 Implementing the integration service
The architectural constraints are enforced by the facades. The implementation of
the integration service is constrained only by the calling patterns of the
integration facade and the bindings of the provider facades.

7.8.3 Implementing the provider facade
The provider service for our example is developed in full in accordance with the
high-level design shown in Figure 7-21.
122 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 7-21 High-level design

Web services interface
The Integration Service is either a Web service call over JMS (for asynchronous
or one-way requests) or an EJB call. It has a WSDL defined interface and
supports a single operation.

Implementation class
The implementation class is the service name, which reflects both the function of
the service and the type of service (in this case ISF for integration service
facade).
 Chapter 7. Designing patterns for the scenario 123

The method takes a single argument, which is the body of the request, as an
encoded string (an alternative would be an XMLDocument). It is a significant
performance hit to deserialize the body of the incoming SOAP request into Java
objects unless this is needed for the implementation class. However, the
functions of the facade services are those of an intermediary and only require the
body as an XML message to validate and transform before making the request to
the next service.

This is a SOI architectural style and the ESB services are dependent on a set of
utility services that can be called by all services. These utility services are
deployed on all nodes supporting the ESB, thus ensuring that local interfaces are
used and network traffic reduced.

Any calls to EJBs or utility classes where the message body is required are
passed as strings (again XMLDocument would be an option).

Transformation
Transformation of responses from external providers’ formats into ECDF is
achieved by a call to a transformation service with an EJB binding. The interface
takes two parameters: the body as an XMLDocument and the transform to be
applied as a relative URL. As with the integration service facades, these
transformations may include Java classes called from XSLT.

Address lookup
The integration service generates against a WSDL that contains the service
address. However as these services move through their life cycle they need to be
deployed to different environments, for example development for unit test, system
test environments, performance test environments. A look up service is therefore
used to obtain the address for the current environment. In practice, this is a
lookup utility service capable of handling multiple address types. In this example,
it is handled as JNDI lookup.

Note: In a more general context, governance is necessary to ensure that
service names are unique.

Note: The implementation class is not dependent on any classes shared with
other services. Each service must exist as an independent entity and be
changed without impacting any other services.
124 Patterns: Model-Driven Development Using IBM Rational Software Architect

External provider invocation
All external providers are accessed as Web services with a fully defined WSDL
interface. XML documents and strings are not accepted when calling outside the
CIB.

Event logging
Logging for a provider facade is the same as for the integration service facade. In
the example, logging is simplified and writes to a console.

7.9 Use of the framework
This chapter has so far concentrated on the issues facing the developers of the
MDD framework for ESB services. These tasks are carried out at the start of a
project and require the following significant skills:

� Platform and middleware skills
� Software design
� Domain knowledge
� UML modeling and Rational skills
� Modeling standards

Now we move on in the project life cycle to the point where the framework is in
place and service developers are ready to use the framework to support the
integration tasks of a project which uses the ESB.

Figure 7-22 Pattern hierarchy: Use of the framework

These service developers understand the following concepts:

� Requirements for application integration
� Functionality of the ESB integration they are trying to create
� Overall system context
� Where data is retrieved from or updated

Activity
Diagram

Configuration
data
 Chapter 7. Designing patterns for the scenario 125

Then they need to define the following items:

� Service interfaces
� Transformations between external data formats and ECDF

In short, they need to understand what actions to take across the enterprise
space when a business event occurs in the application or applications they are
integrating and then define the interfaces to the services that perform the actions.

However it is not necessary for all these users to have the skills required in
setting up the framework. There are a number of ways in which the framework
can encapsulate models so that service developers need to be aware only of the
functional requirements of the service.

7.9.1 Presentation of model information to users
If we return to the scenario defined in Chapter 2, “Scenario overview” on
page 17, we have a central group making a decision to adopt a model-driven
development approach that raises an immediate question of skills in the
divisional IT group. This is a potentially large problem. The issue is not the skills
required for the ESB development, as this is seen as a necessary part of the
initial investment that is repaid by cost savings over a number of projects.

The real issue is if there is an ongoing requirement, in the divisional projects
using the model-driven development framework, for skills in modeling and ESB
architecture. These skills are difficult to resource over many simultaneous
projects.

The following options are considered:

� Introduce modeling skills to all divisional IT groups and make them mandatory
for all IT suppliers carrying out integration projects. Interaction is then directly
with the modeling tools; although, this is limited to the application of patterns
and transformations in strict accordance with ESB guidelines.

� Limit the requirement for modeling skills to an understanding of models by
allowing users to see the structure of the ESB and representations of the ESB
patterns. Interaction in this case is through a controlled user interface, but the
models are visible to the users generating services.

� Remove all requirements for users generating services to understand the
underlying modeling techniques, and control the interactions through a
tailored user interface that allows users generating services to operate mainly
in the domain of understanding data content of service requests and
responses and the business operations to be achieved.

� Define the parameters required to generate particular services types and
allow the generation of services to be driven without direct user interaction.
126 Patterns: Model-Driven Development Using IBM Rational Software Architect

This sounds like a retrograde step, editing files to define configuration data,
but would in fact only be done in conjunction with other options. You can
combine this option with the previous options, which would capture all the
configuration data and generate the file to drive the non-interactive generation
for repeatable attempts with variations. This step could also be used with
existing sources of data to which a transformation is applied to generate the
required input.

The current recommendation for the example scenario, included in the
model-driven development framework and tooling, is that the developers of
integration services are protected from the need to understand the modeling
techniques and the ESB implementation but that there is value in allowing them
to view the models used. This introduces a degree of understanding of the ESB
architecture.

The customized model-driven development tooling for the ESB also provides for
a non-interactive method of operation, effectively an API that can be invoked by
scripts or by other automated processes that allow for easy repetition of service
generation, avoiding the need for “multiple clicks” when a user has no need for
the implied guidance of an interactive interface. This leaves divisional projects to
apply additional automation, for example automated extraction of service
interfaces and required transformations from application data models.

7.9.2 Service creation
If we assume that one of the predefined patterns fits with a particular service to
be developed, the steps are as follows:

1. Understand the event triggering a service call:

– Define the use case

2. Define the data involved in the service:

– Message schema of requester and providers
– WSDL definition of service
– Transformations

3. Select the integration pattern and create the collaboration model by selecting
the appropriate RSA pattern.

4. Configure the individual services through the user interface.

5. Generate and test each service.

The model-driven development approach is about automation and it is not only
the automation of the service code that you can automate. The model holds all
the data necessary to generate a package of artifacts required for service
deployment. This includes any deployment descriptors and configuration files
 Chapter 7. Designing patterns for the scenario 127

required. Ideally parameterized deployment scripts are created allowing deploy
time adjustments of environment specific data. This package must also include
any further information needed to deploy the service without manual intervention.

There are times when the predefined patterns and models do not meet the
requirements. Business developers then have to work with the framework
developers to add or enhance patterns, models, and transformations. A well
structured framework facilitates this process.

7.10 Summary
In this chapter, we stepped through how our methodology applies to the
synchronous update behavior associated with updating a single target integration
pattern within the overall ESB architecture. Our focus is on analyzing the
scenario and understanding how the methodology is applied. It was a pencil and
paper simulation of what we now want to discuss, which is how to build the
automation extensions into Rational Software Architect to implement the patterns
that we identified.

But there is a penultimate step that you must take on this journey before finally
building the RSA extensions, and that is to understand how to apply
model-driven development with RSA.
128 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 8. Applying model-driven
development with Rational
Software Architect

This chapter explains how to carry out model-driven development (MDD)
application development and framework development using Rational Software
Architect (RSA). We cover the activities that the architects and designers carry
out. The coding activities that the programmers perform are covered in
Chapter 9, “Extending Rational Software Architect” on page 161.

We cover the following topics:

� The MDD process applied with RSA
� Applying Unified Modeling Language (UML) profiles, patterns, and

transformations
� Creating UML profiles
� Designing patterns and transformations

The previous chapter sets out an architectural style for service-oriented
integration (SOI). It describes the architectural principles, the patterns the UML
profiles, and the technical architecture.

In this chapter, we look at how this architectural style is supported with an
RSA-based MDD framework. The MDD framework developed in this book is a

8

© Copyright IBM Corp. 2005. All rights reserved. 129

sample rather than a complete framework. It does include samples of all the key
components that make up an MDD framework and is extendable to provide a
complete MDD framework.

8.1 An overview of the Model-driven development
process in RSA

There the two distinct types of activity in the MDD process:

� Expertise Capture and Automation: This is where we build the MDD
framework that partially automates the development of software that follows a
particular architectural style.

� Application Development: This is where we apply our chosen MDD
framework to build software components, applications, and solutions.

These activities are typically performed by different groups of people and require
different skills. RSA supports both sets of activities. We use RSA to build UML
profiles, patterns, and transformations that are then used to customize RSA to
provide an MDD framework.

The activities in the framework development partition of Figure 8-1 are
concerned with building the framework while the activities in the application
development partition are concerned with applying the framework to build an
application.
130 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 8-1 The MDD process

There is no magic to MDD. Someone must come up with a set of modeling
conventions that are suitable for the software under development. Someone must
also develop transformations that can automate the generation of code from
models that follow these conventions.

The key dependencies between the two streams of activity are as follows:

� UML profiles and patterns must be available when application modeling
begins. In some cases, this dependency is managed in an iterative manner
with profiles and patterns that address some aspects of design being made
available before others.

� Transformations must be available in order to generate implementation
artifacts. In some projects the target platform and the transformations are
selected at the start of the project. In others, this decision is deferred.

Create sample components Develop modelling
conventions

Implement patterns

Implement transforms

Capture expertise

Architectural Principles and Patterns

Artifact Template UML Profile(s) Patterns

Transformations

Application Model

Implementation Artifacts

Start Framework Development

Start Application
Development

Model Application

Apply
Transformations

MDD Process
Framework Development Application Development
 Chapter 8. Applying model-driven development with Rational Software Architect 131

8.1.1 Framework development
MDD framework development is concerned with designing and automating an
architectural style. Framework development is an architecture-led activity that
requires input from domain experts, which includes the following actions:

� Capturing expertise in the form of architectural principles and patterns

� Implementing sample components and defining the technical architecture

Chapter 7, “Designing patterns for the scenario” on page 93, develops an SOI
architectural style for our sample scenario. This chapter also shows how to
use RSA to apply the MDD approach to the sample scenario.

� Designing and implementing UML profiles

� Designing and implementing RSA patterns and transformations

Chapter 9, “Extending Rational Software Architect” on page 161, shows how to
implement new RSA patterns and transformations.

8.1.2 Application development
MDD application development is concerned with using an MDD framework to
rapidly build well architected applications and components.

This includes the following actions:

� Modeling the application using the UML profiles and patterns provided by the
framework

� Applying transformations to generate implementation artifacts and other work
products

8.2 RSA model-driven development framework for SOI
In this book, we build a sample RSA MDD Framework for SOI. This framework
automates key aspects of the approach that we set out in Chapter 7, “Designing
patterns for the scenario” on page 93.

The RSA MDD framework for SOI includes the following RSA extensions:

� (Sample) SOI Example Profile
� (Sample) Pattern Library for SOI
� (Sample) SOI Transformation

The MDD framework has the prerequisite of IBM Rational UML profile for
software services.
132 Patterns: Model-Driven Development Using IBM Rational Software Architect

In the following sections, we first explain how to carry out application
development using the framework. We then cover the architecture and design
activities associated with building the framework.

8.3 Application development
In this section we describe how to implement the update customer details
example, which was introduced in Chapter 7, “Designing patterns for the
scenario” on page 93, using the RSA MDD framework for SOI.

The description of the example is repeated here for convenience:

The integration is that of an external requester, a front office package
supporting call handlers, requesting an ESB service which is responsible for
passing a request to update a customer record to an external provider. The
external provider is responsible for updating the current address on the
master record for a specified customer. Master records for customers are
distributed over multiple back-end systems, and the integration service must
route the request to the correct system depending on the content of the
message. In a real situation, the such distribution of master records might be
the result of regional systems or mergers and take overs. To simplify the
example, we assume that the split between master systems is alphabetical,
based on the customers surname.

The example is implemented using the MDD framework and following the
architectural style that we set out in Chapter 7, “Designing patterns for the
scenario” on page 93, using the RSA MDD framework for SOI.

8.3.1 Installing the framework
Before we can begin developing our application, we need to install the MDD
framework that we are using.

Installing the UML profile for software services
1. Visit the following Web site to get the UML profile for software services,

which is available as an RSA update:

http://www.ibm.com/developerworks/rational/library/05/510_svc/

2. Download the plug-in to your machine and install it using RSA Help →
Software Updates → Find and Install.

You are now able to use the software services profile.
 Chapter 8. Applying model-driven development with Rational Software Architect 133

http://www.ibm.com/developerworks/rational/library/05/510_svc/

Installing the MDD framework for SOI and example
Follow the instructions in Appendix A, “Additional material” on page 221, to install
the MDD redbook samples (transformation and pattern library),
updateCustomer.zip, and sampleSource.zip. You are now able to use the SOI
example profile, the SOI pattern library and the SOI transformation.

8.3.2 Creating a model and apply the profiles
We are now ready to start developing the update customer details example.

Create a new UML Project named Update Customer Details using File →
New → Project → Modeling → UML Project. The default options in the wizard
are fine, although you can choose a new name for the model if you want.

Next we apply the UML profile for software services
and the SOI example profile to the model.

1. Identify the model in the Model Explorer , and
select it. This updates the Properties view to show the properties of the
model.

2. In the Properties view, choose the Profile tab.

3. Click Add Profile.

4. The Select Profile dialog box appears (Figure 8-2). Select UML Profile for
Software Services.

Figure 8-2 Applying the UML Profile for Software Services

Note: The spaces are important, to avoid a conflict with a project with the
same name in the sample materials.
134 Patterns: Model-Driven Development Using IBM Rational Software Architect

The software services profile now appears in the list of profiles applied to this
model.

As an alternative to sharing deployed profiles, such as the software services
profile, we can also refer to profiles as .epx files.

To add the SOI example profile to your model, find it in the workspace of the
UpdateCustomerDetails project you loaded from the sample materials.

1. Return to the Select Profile window (Figure 8-3), and select File rather than
Deployed Profile.

Figure 8-3 Applying the SOI example profile

Tip: When sharing profiles within a team we recommend that you set up a
pathmap in RSA. Refer to the article “Comparing and merging UML models in
IBM Rational Software Architect, Part 6: Parallel model development with
custom profiles” for further information:

http://www.ibm.com/developerworks/rational/library/05/0823_Letkeman/
 Chapter 8. Applying model-driven development with Rational Software Architect 135

http://www.ibm.com/developerworks/rational/library/05/0823_Letkeman/

2. Navigate to the SOI example profile, and select it as in Figure 8-4, to add it to
the applied profiles.

Figure 8-4 Locating the SOI Example Profile

8.3.3 Applying patterns
Now we can model the application using the stereotypes defined in the profiles
we applied and the patterns in the SOI pattern library.

Recall, from Chapter 3, “Model-driven development approach” on page 29,
Christopher Alexander’s description of how a pattern language is used:

Alexander describes how a pattern language is always used as a sequence
going through the patterns, moving always from the larger patterns to the
smaller. He describes how a pattern language always moves from the
patterns which create structure, to the ones which then embellish those
structures, and then to those which embellish the embellishments.

This is the approach we take here, working from larger scale patterns to smaller
scale patterns as we make design decisions.

The MDD framework for SOI, which we installed earlier, includes a sample SOI
pattern library.
136 Patterns: Model-Driven Development Using IBM Rational Software Architect

1. To view the SOI Pattern Library choose Window → Show View → Pattern
Explorer. The pattern explorer includes the SOI Pattern Library as well as
any other pattern libraries you installed (including those included with RSA).

2. Expand the SOI Pattern Library to see the available list of patterns as shown
in Figure 8-5.

Figure 8-5 SOI pattern library

In our sample pattern library, we only have one high-level pattern: the service
connection pattern, which is the appropriate pattern for the
UpdateCustomerDetails example. In a more complete pattern library, we would
have a selection of patterns suitable for other scenarios.

The service connection pattern takes a UML collaboration as a parameter and
creates the elements required to realize that collaboration to provide an
end-to-end integration service such as update customer details.

1. To use the pattern, create a UML collaboration.

2. Create a freeform UML diagram using Add Diagram → Freeform Diagram.

3. Add a UML collaboration to the diagram from the Composite Structure
Diagram drawer in the RSA palette.

4. Name the collaboration UpdateCustomerDetails (see Figure 8-6).

Figure 8-6 Diagram showing the UpdateCustomerDetails collaboration

Pattern library

Pattern

Pattern parameter
 Chapter 8. Applying model-driven development with Rational Software Architect 137

5. To create an instance of the Service Connection pattern, drag from the
pattern explorer to the diagram containing the collaboration (see Figure 8-7).

Figure 8-7 Instance of the service connection pattern

We now have an instance of the Synchronous Update pattern. This pattern
takes a collaboration as a parameter and adds detail to the collaboration.

6. Drag the collaboration (from the Model Explorer or the class diagram) on to
the collaboration parameter of the pattern instance. The pattern is applied
and adds details to the collaboration as shown in Figure 8-8. You must
manually arrange the diagram to achieve the ideal layout.

Figure 8-8 Collaboration after applying the service connection pattern

Notice that the structure inside the collaboration follows the pattern introduced in
2.2.1, “ESB structure” on page 21. The pattern created reusable service
components that could also be used in other collaborations (see Figure 8-9). The
names of the components are based on the name that we gave the collaboration.
For the purposes of the sample, the pattern always creates new service
138 Patterns: Model-Driven Development Using IBM Rational Software Architect

components. A more sophisticated pattern would reuse existing service
components where available.

Figure 8-9 Service provider components created by the service connection pattern

The pattern also applied appropriate stereotypes from the UML profile for
software services. In particular, the service components have the stereotype
<<serviceProvider>>.

The resulting model could have been created manually, without using the pattern,
but this would be considerably more time consuming and error prone.

Now that we have the high-level structure of our service the next step is to apply
lower-level patterns to the individual components. We did not implement these
patterns in our sample framework, so we need to do this step manually.

This work was done in the sample modeling project that we imported earlier.
Locate the UpdateCustomerDetails project in your workspace. This project
contains an UpdateCustomerDetails model that contains a completed version of
the example we are working on.

The following steps were carried out to complete the model:

1. The external components that are being integrated were modeled in the
CustomerRecords package. This package has the stereotype <<external>>
applied to it. This is used to indicate that the modeled components exist
already and do not need the transformation to generate new artifacts. We
modeled an external client component in the same way.

2. The service specifications were modeled in the Service Specifications
package, and the messages that are exchanged were modeled in the Data
package.
 Chapter 8. Applying model-driven development with Rational Software Architect 139

3. The provided and required service specifications were defined for the
components in the Service Components package. This additional information
is also visible in the composite structure of the UpdateCustomerDetails
collaboration within the End-to-End Service Collaborations package.

4. The behavior of each component was modeled using an activity diagram that
follows the appropriate behavioral pattern. The stereotype properties of the
actions within the activity diagrams were configured appropriately.

8.3.4 Applying transformations
We are ready to apply the SOI transformation to generate the EJBs that
implement our services. Our sample transformation generates the complete
implementation of the provider service facade components and a partial
implementation of the IS and ISF components.

To understand the design of the transformations, refer to 7.8, “RSA
transformation” on page 118.

In this case, the transformation can generate complete executable code based
on the activity diagrams that define the behavior of each component and the
defined technical architecture. In other scenarios, only structural code is
generated and detailed code must be added to complete the implementation. In
such cases, use care to define a development approach that ensures that
models and code remain synchronized. In our example, complete code is
generated and does not need to be modified manually. While this approach
avoids the problems of synchronization, it is not always possible to achieve this
level of code generation.

As this is an integration scenario, we already have implementations of the
external service providers available to us. These were included in the sample
that we imported earlier.

To apply the SOI transformation, right-click the model, and choose Transform →
Services Transformation → Run. The transformation generates a set of EJB
projects that implement the service components in the application.
140 Patterns: Model-Driven Development Using IBM Rational Software Architect

If the source model is missing some information that is required for code
generation, the transformation generates some of the output but terminates with
an error. When the transformation is applied to the UpdateCustomerDetails
sample model, the workspace ends up as shown in Figure 8-10.

Figure 8-10 Workspace with generated projects

The generated code follows the technical architecture introduced in Chapter 2,
“Scenario overview” on page 17.
 Chapter 8. Applying model-driven development with Rational Software Architect 141

8.3.5 Testing the generated code
Use the following steps to deploy and test the generated provider service facade
EJBs using the IBM WebSphere Application Server V6.0 Integrated Test
Environment (on Microsoft Windows®).

1. Switch to the J2EE perspective.

2. Create an application client project for the EJB you want to test.

3. In the Project Explorer, select UpdateCustomerDetailsA_MPFSEJBEAR.

4. Right-click, and in the pop-up menu, select New → Application Client
Project.

5. Type a name for the new project in the wizard, and then click Next.

6. On the Module Dependencies page, ensure that you select the modules
shown in Figure 8-11.

Figure 8-11 Application client module dependencies
142 Patterns: Model-Driven Development Using IBM Rational Software Architect

7. Edit the generated client application (Main.java)

8. Open the Main.java file in the new application client project, and create a new
method called test.

9. Call it from the main method, as shown in Example 8-1.

Example 8-1 Main.java

public class Main {
public static void main(String[] args){

new Main().test();
}
public Main(){

super();
}
public void test(){
}

}

10.Use the Snippets view, shown in Figure 8-12, to insert the Call a Session
Bean service method snippet in the test method.

Figure 8-12 Snippets view

The EJB to be referenced is UpdateCustomerDetailsA_MPFSEJB, and the
method to call is updateCustomerDetails.
 Chapter 8. Applying model-driven development with Rational Software Architect 143

Setting up the string to be passed to the EJB method
Once the snippet is inserted, the next step is to set up the string to be passed to
the EJB method.

The argument we want to pass to the EJB updateCustomerDetails method is the
SOAP message that is sent to the provider service. This is quite long so we will
read it from a file rather than hard-coding it in the client application.

A suitable SOAP message is shown in Example 8-2.

Example 8-2 Test message data (test.xml file)

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="http://customer.soi.example.itso"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<tns:updateCustomerRecords>
<tns:customerInformation>

<tns:FName>John</tns:FName>
<tns:SName>Smith</tns:SName>

</tns:customerInformation>
</tns:updateCustomerRecords>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: The architecture allows for the provider facade EJB to perform an XSLT
transform to create the message it passes to the provider service. However,
the sample model does not specify any such transform. Also the EJB base
class supplied with the sample (in the ESBUtilities project) does not support
performing message transformations.
144 Patterns: Model-Driven Development Using IBM Rational Software Architect

1. Put the test.xml file in the root of the application client project.
One more line of code is needed, to print out the return message from the
EJB so we can see if it was successful. The test method should now look like
Example 8-3.

Example 8-3 Application client test method

// read in test message
StringBuffer buffer = new StringBuffer();
BufferedReader file = null;
try {

file = new BufferedReader(new FileReader("test.xml"));
String line = file.readLine();
while(line != null){

buffer.append(line);
line = file.readLine();

}
} catch (FileNotFoundException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} finally {
try {

file.close();
} catch (IOException e1) {

// TODO Auto-generated catch block
e1.printStackTrace();

}
}
String in = buffer.toString();

UpdateCustomerDetailsA_MPFSEJBRemote anUpdateCustomerDetailsA_MPFSEJBRemote
= createUpdateCustomerDetailsA_MPFSEJBRemote();

try {
String aString = anUpdateCustomerDetailsA_MPFSEJBRemote

.updateCustomerDetails(in);

System.out.println(aString);

} catch (RemoteException ex) {
// TODO Auto-generated catch block
ex.printStackTrace();

}

Tip: If you have compile errors in the client application that cannot be
resolved, perform a clean build of the EJB.
 Chapter 8. Applying model-driven development with Rational Software Architect 145

2. Deploy the Web service and EJB projects.

3. In the Servers view, right-click the server you want to use, and in the menu
select Add and remove projects... Add the CustomerRecordsA_MEAR and
UpdateCustomerDetailsA_MPFSEJBEAR projects. You can test the N_Z
projects too, but they aren’t any different.

4. Check the port number for the provider Web service.

5. In the CustomerRecordsA_M project open the
WebContent\WEB-INF\wsdl\CustomerRecords.wsdl file. At the end of the file,
the service is defined with a service location URL, as shown in Example 8-4.

Example 8-4 CustomerRecords Web service definition

<wsdl:service name="CustomerRecordsServiceA-M">
<wsdl:port binding="intf:CustomerRecordsSoapBinding" name="CustomerRecords">
<wsdlsoap:address
location="http://localhost:9080/CustomerRecordsA_M/services/CustomerRecords"/>
</wsdl:port>
</wsdl:service>

The default port number is 9080, but depending on how you set up your
WebSphere server you may need to use a different port number.

6. If you do not know what it should be, use the following steps to run the
administrative console for your server.

a. Navigate to the Servers → Application servers page.
b. Click your server name.
c. Click Ports (under Communications). At the end of the table of ports, you

need the port WC_defaulthost, unless you are not using the default host.

7. Change the service location URL in the wsdl file if necessary so that the host
and port number are correct.

Next, you test the provider service.

Testing the provider Web service
Before trying to test the provider facade EJB, it is a good idea to test the provider
Web service (CustomerRecordsA_M) to make sure that it is correctly set up.

Tip: If you cannot successfully deploy the EJB because the server says
that a URI is too long, then follow the instructions in the RSA help to create
a new server profile (with a shorter path). Create a new server based on
the new profile and use it for testing.
146 Patterns: Model-Driven Development Using IBM Rational Software Architect

1. Right-click the CustomerRecords.wsdl file, and select from the menu Web
Services → Test with Web Services Explorer.

2. In the Web services explorer, select the updateCustomerRecords operation.

3. Click Go to invoke the service. You should see the OK response (see
Figure 8-13).

Figure 8-13 Testing the provider service

4. Run the connection script.

The provider service facade EJB looks up in JNDI the URL of the provider
service it should call. The transformation generates a script that you can run
to set up the JNDI namespace bindings required by the generated EJBs. The
script is in the project called ChangeCustomerDetailsServiceConnect.
 Chapter 8. Applying model-driven development with Rational Software Architect 147

5. Open the script (UpdateCustomerDetails.jacl), and check that the URL,
which is bound as the location of the provider service, matches the service
location URL that you set.

6. In the Servers view, right-click your server and select from the menu Run
external admin script...

7. Select the UpdateCustomerDetails.jacl script file, and run it.

The script takes a few moments to run. Make sure it has terminated and then
use the administrative console to check that the namespace bindings have
been created.

8. Run the client application.

a. Right-click the Main.java file in the application client project, and select
from the menu Run → Run...

b. In the Launch Configuration dialog, create a new WebSphere 6.0
Application Client configuration.

c. Ensure that the Enable application client to connect to server option is
selected, as shown in Figure 8-14.

Figure 8-14 Application client launch configuration
148 Patterns: Model-Driven Development Using IBM Rational Software Architect

Setting the working directory
You also need to set the working directory so that the client application can find
the test.xml file.

1. Switch to the arguments tab, and change the working directory to point to the
application client project, as shown in Figure 8-15.

Figure 8-15 Application client working directory

2. Click Apply to save your changes.

3. Click Run to execute the application. If it runs successfully, you see the
response message from the EJB written to the console, similar to
Figure 8-16.

Figure 8-16 Application client console
 Chapter 8. Applying model-driven development with Rational Software Architect 149

8.3.6 Application development summary
In this section, with relatively little effort, we developed service implementations
that conform to the architectural style introduced in Chapter 2, “Scenario
overview” on page 17. The service implementations follow best practices in
terms of high-level architecture and detailed technical architecture.

8.4 Framework development
In the previous section, we used the MDD framework for SOI to build a new
application. In this section, we look at how to develop the MDD framework for
SOI as a customisation of RSA.

8.4.1 Developing the architectural style
When developing a new MDD framework we must first develop the architectural
style that is to be automated.

This includes the following tasks:

� Develop high-level architectural principles and patterns
� Design UML profile or profiles
� Develop the technical architecture and sample components

The SOI architectural style is documented in Chapter 2, “Scenario overview” on
page 17. Sample components that demonstrate the technical architecture were
also developed.

Building an MDD framework is about expertise capture. It is crucial that
appropriate experts are available to define the architectural style.

Tip: The activity of developing sample components that demonstrate and
validate your technical architecture must be allocated sufficient time and
expertise. Failing to adequately define the technical architecture leads to
costly time delays in implementing the transformations.
150 Patterns: Model-Driven Development Using IBM Rational Software Architect

8.4.2 Creating a UML profile
A UML profile must be carefully designed to provide an appropriate set of
concepts for modeling in a given context. The design of the SOI Example profile
is presented in 7.7, “Detailing the initial model with service patterns” on
page 110. The design results in the need to support stereotypes in order to
identify the following items:

� All the possible actions within the activity diagrams for ESB services: Each
activity type has its own stereotype.

� Attributes defining the behavior of the service: For example, the transform
activity has an attribute “transformationID” that defines the transformation to
be applied by the transformation service.

� Parameters guiding the generation of a service: For example, the
<<optional>> stereotype has a boolean “generate” attribute that determines
whether this activity gets included when a service is generated. Also, the
stereotype <<generate>> has a boolean attribute that defines whether this is
a service to be generated or whether the service is a reference to an existing
service.

� Parameters identifying and guiding behavior of the service as a whole: For
example, the integration service facade stereotype defines the service
version, what level of logging is to be recorded.

The steps in the following sections demonstrate how to create a subset of the
stereotypes that are included in the SOI Example Profile.

Creating a profile project
Create a new UML Profile project called SOI Example Profile using the following
steps:

1. Click File → New → Project → Modeling → UML Extensibility → UML
Profile Project.

2. Call the profile Test. The default options in the wizard are fine.

Adding stereotypes
A profile includes a set of stereotypes that are applied to model elements. As an
example, we create the <<external>> stereotype that is used in the SOI Example
Profile to identify elements that are being reused and therefore do not need to be
generated by the transformation.

Use the following steps to add the <<external>> stereotype:

1. Right-click the Profile model → Add UML → stereotype.

2. Name the stereotype external.
 Chapter 8. Applying model-driven development with Rational Software Architect 151

3. We now need to specify which UML elements the stereotype can be applied
to. Select the <<external>> stereotype in the Model Explorer → Properties
view → Extensions → Add Extension → Class.

Figure 8-17 Adding component extension to a stereotype

4. Repeat these steps for Component, Package and Interface.

We now have an <<external>> stereotype that can be applied to UML Classes,
Components, Packages, and Interfaces.

Validating and testing the profile
Although our profile does not have much in it yet, we can still test it at this stage,
and it is useful to do so.

1. Save the profile project.

2. Select Run Validation from the right-click menu. Any validation errors or
warning for your profile appear in the Problems view.

3. Fix any problems before continuing.

4. Create a new UML modeling project and select the model.

5. Go to Properties → Profiles → Add Profile. We have not deployed the
profile yet, so select File in the profiles pop-up and navigate to the profile on
your file system (it appears as an .epx file). Figure 8-18 shows the result.

Tip: The usual naming convention for stereotypes is to use initial lower case.
152 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 8-18 Result of adding the test profile

6. Create one of the UML elements to which you can apply the
<<external>> stereotype (Class, Component, Package or
Interface). We chose to stereotype the Test class.

7. Select the element, and view the stereotypes tab in the Properties view. Click
Add.

The <<external>> stereotype appears in the pull-down list, as in Figure 8-19.

Figure 8-19 Applying a new stereotype
 Chapter 8. Applying model-driven development with Rational Software Architect 153

When you make a change to the profile you need to synchronize any models that
have it applied:

1. Return to the Profile project, Test.

2. Add a new stereotype called externalService. This marks external service
components that are invoked from provider service facades.

3. Save the profile.

4. Add the extension component to the new stereotype, and save the Test.epx
profile.

5. Return to your example model, and look at the Profiles tab. The SOI Example
Profile is marked as (OUT OF SYNC) as shown in Figure 8-20.

6. Select Test profile → Migrate Profile to load the new version of the profile.
You can now use the stereotype that you added.

Figure 8-20 Model with out of sync profile

Using the Inheritance Explorer
It is often useful to create hierarchies of stereotypes to capture commonalities. A
common pattern is to have an Abstract stereotype at a root of the hierarchy that
specifies the UML element (metaclass) to be extended and a set of concrete
sub-stereotypes.

The actions that the SOI Example Profile provides for applying to actions in
activity diagrams follow this pattern.

Tip: During profile development you can make incompatible changes to the
profile that may cause problems with your test model. Make sure your profile is
stable before developing models that depend on it.
154 Patterns: Model-Driven Development Using IBM Rational Software Architect

1. Create a <<ServiceAction>> stereotype, and add an extension for the Action
metaclass.

2. Under Properties → General, mark the stereotype Abstract. This means
that users cannot apply this stereotype directly in their model. The SOI
Example Profile uses the convention that abstract stereotypes begin with an
initial uppercase letter, where concrete stereotypes begin with an initial
lowercase letter.

3. Drag the ServiceAction stereotype to the Inheritance Explorer.

Figure 8-21 Dragging the ServiceAction stereotype to the Inheritance Explorer

4. Right-click the stereotype, and select Create New Subtype to introduce
sub-stereotypes.

5. Add sub-stereotypes named pushCallbackAddress, popCallbackAddress,
and createAcknowledgement.

6. Save the profile, and test it using your example model.
 Chapter 8. Applying model-driven development with Rational Software Architect 155

7. Create an Activity diagram, and then add actions to it. Apply the three
concrete sub-stereotypes to the actions.

Figure 8-22 Applying the subtypes to the testAction

Adding attributes to stereotypes
We can also add attributes to stereotypes. When a developer applies the
stereotype they can provide values for the attributes.

1. Create the TechnicalServiceAction and recordPerformance stereotypes in the
hierarchy.

Figure 8-23 TechnicalServiceAction and recordPerformance stereotypes in hierarchy

Tip: Do not forget to migrate any models that you have open when you make a
change to a profile. When you open a model after a change to a profile, RSA
asks if you want to migrate to the latest version of the profile.
156 Patterns: Model-Driven Development Using IBM Rational Software Architect

2. In the Model Explorer (not the Inheritance Explorer), right-click
recordPerformance and select Add UML → Attribute.

3. Name the attribute subidentifier.

4. Under Properties → General for the subidentifier attribute, set the type of the
attribute to String. The UML primitive types are available for use as types for
attributes. You can set a default value for the attribute in cases where this
makes sense.

Setting enumeration types
It is often useful to have attributes with an Enumeration type. The
recordPerformance stereotype has two such attributes: class and level.

1. Right-click the Test model and select Add UML → Enumeration to add
enumerations called PerformanceEventClass and PerformanceEventLevel.

Figure 8-24 Literals added to the enumerations

2. Right-click each literal and select Add UML → Enumeration Literal with the
enumeration literals shown in Figure 8-24.

3. Apply these enumerations as the types for the class and event attributes on
the recordPerformance stereotype as in Figure 8-25.

Figure 8-25 Adding types as enumerations to recordPerformance

4. Save the profile, and test it again at this point.
 Chapter 8. Applying model-driven development with Rational Software Architect 157

5. Apply the recordPerformance stereotype to an action, and access
Properties → Stereotypes to see the attributes and set values for them. See
Figure 8-26.

Figure 8-26 Stereotype attributes/properties

Adding icons
Stereotypes can also introduce icons that will appear in RSA. Icons are added in
the Properties General tab for a stereotype. See Figure 8-27.

Figure 8-27 Icon and Shape Image can be set for stereotypes
158 Patterns: Model-Driven Development Using IBM Rational Software Architect

Icons are used in the Model Explorer and as decorations on diagrams. Icons can
be GIF or BMP files, and the recommended size is 16 x 16.

Shape Images are used on diagrams when stereotype display for an element is
set to Shape Images. Shape Images are SVG files, and the recommended size is
50 x 50.

The SOI Example Profile does not introduce any new icons, but it does make use
of those introduced in the UML profile for software services. For example, the
icon associated with the <<service provider>> stereotype is .

Releasing the profile
Once a profile reaches stability, you can chose to release the profile. After a
profile is released, you can only make changes that are compatible with the
released profile. This ensures that models that use a released profile can always
migrate successfully to new versions of the profile.

You can add to a released profile but you cannot delete or rename elements
(stereotypes, stereotype attributes, etc.).

To release a profile, right-click the profile in the Model Explorer and choose
Release Enter a release label in the dialog box that appears.

Packaging the profile for deployment
When you are ready to share a UML profile with others, one convenient way to
deploy it is as a plug-in. When a profile is deployed it appears in the pull-down list
of deployed plug-ins that can be applied to a model. Deploying a profile as a
plug-in is described in 9.3, “Deploying UML profiles” on page 163.

Tip: Stereotype icons are very useful. They not only make your profile look
more professional, they can also help to make models more understandable,
especially if you choose good icons. They also save space in the Model
Explorer and on diagrams as the icon takes up less space than the stereotype
name.

Tip: Carefully consider the right time to release a profile. Once it is released,
you cannot make any incompatible changes, such as renaming a stereotype.
 Chapter 8. Applying model-driven development with Rational Software Architect 159

8.4.3 Implementing sample components
Before transformation development begins, you must create sample components
that follow the technical architecture. The creation of these sample components
has two main purposes:

� To validate the technical architecture
� To provide sample artifacts as input to transformation development

8.4.4 Developing patterns and transformations
The patterns and transformations needed for an MDD framework are identified
as part of the development of the architectural style. The patterns and
transformations needed for the MDD framework for SOI are introduced in
Chapter 2, “Scenario overview” on page 17.

RSA patterns and transformations are implemented as RSA plug-ins written in
Java. Chapter 9, “Extending Rational Software Architect” on page 161, describes
how to implement RSA patterns and transformations.

8.5 Summary
In this chapter, we looked at how RSA supports the MDD process. We covered
the activities that are carried out by architects and designers in both the
application development and the framework development phases of the MDD
process.

In the following chapter, we cover the implementation of RSA patterns and
transformations in RSA.
160 Patterns: Model-Driven Development Using IBM Rational Software Architect

Chapter 9. Extending Rational Software
Architect

Chapter 8, “Applying model-driven development with Rational Software
Architect” on page 129, explained how to apply Rational Software Architect
(RSA) to application and framework development. This chapter describes how
you can extend RSA with your own transformations and patterns.

In this chapter, we provide step-by-step instructions for deploying profiles, and
implementing patterns and transformations. The examples we use here are
based on the ESB scenario described in Chapter 2, “Scenario overview” on
page 17, and in Chapter 7, “Designing patterns for the scenario” on page 93.

9

© Copyright IBM Corp. 2005. All rights reserved. 161

9.1 Introduction to implementing patterns and
transformations to RSA

Chapter 3, “Model-driven development approach” on page 29, introduced the
concepts of UML profiles, patterns and transformations. In this chapter, you learn
how to implement patterns and transformations as extensions to RSA.

Profiles, patterns, and transformations are all packaged for deployment as
Eclipse plug-ins. A plug-in is a package of extensions to RSA. One plug-in can
contain many extensions which might contribute to different aspects of RSA. A
plug-in can contribute menu items, toolbar buttons, views and perspectives as
well as patterns, transformations and UML profiles.

Any RSA plug-in can declare extension points that other plug-ins can contribute
to. This is the basic extension mechanism for the Eclipse platform which RSA is
based on. The extension points declared by the RSA UML model editor plug-ins
include those that allow you to contribute UML profiles, patterns, and
transformations.

RSA includes all the tools you need to create new plug-ins for RSA. For general
information about plug-ins and the Plug-in Development Environment, see the
RSA help topic “Extending Rational Software Architect functionality”, starting with
the section “Extending the workbench - Platform Plug-in Developer Guide”.

This chapter contains instructions for performing specific tasks. Read 9.2,
“Setup: Enabling Eclipse Developer” on page 163, first. You can read the
subsequent sections in any order.

To learn how to package a UML profile for deployment as an RSA plug-in, read
9.3, “Deploying UML profiles” on page 163.

To learn how to extend the RSA UML model editor by implementing patterns,
read 9.4, “Implementing patterns” on page 173.

To learn how to implement a transformation that generates code from a UML
model, read 9.5, “Implementing a transformation” on page 194.
162 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.2 Setup: Enabling Eclipse Developer
Before trying any of the examples from this chapter, enable the Eclipse
Developer capability in order to use the Plug-in Development Environment.

1. From the main menu, select Window → Preferences:

2. Select the Eclipse Developer capability, as shown in Figure 9-1.

Figure 9-1 Preferences dialog

9.3 Deploying UML profiles
Defining a UML profile is one way to extend the RSA UML model editor. You
create a new profile as an .epx file in your RSA workspace. The profile in this
form can be applied to models, and you can continue to modify it.
 Chapter 9. Extending Rational Software Architect 163

If you want to share your models with other people, you need to also give them
the profile. Once a profile is finalized, it is convenient to provide it in the form of
an RSA plug-in, which anyone who needs to use the profile can install. Models
can then be exchanged freely without having to also copy the profile or set up
path maps.

To deploy a profile, you need to complete the following steps:

1. Define a path map to the profile’s location.
2. Release the profile.
3. Add the profile to a plug-in.
4. Deploy the plug-in.

Complete the first step, define a path map, when you create a new profile.
Complete the subsequent steps after you develop the profile.

9.3.1 Defining a path map
If the model file and profile were originally in the same project, then the model file
has references to the profile using a relative file path. Therefore, you must keep
the model and profile files in the same folders relative to each other. This allows
those references to be resolved.

You can make it easier to share models by having everyone in your team define a
path map to where they put the profile in their workspace. The path map
associates a symbolic name with a file path. Whenever a model has a reference
to a file that is on that path, the symbolic name is used instead of the actual file
path. If everyone in your team has path maps defined with the same symbolic
names, you can exchange models without having to worry about where the
profile is kept.

It is a good idea to set up a path map whenever you create a new profile. If when
you set up the path map you already have models that reference the profile, you
need to make sure the profile and models are in separate projects; otherwise, the
models will not use the path map.

In the test example from the last chapter, the model and profile were in the same
project, and did not use a path map. The first step is to put the profile into a
separate project and then use a path map to refer to it.

1. Access File → New → Project → UML Profile Project, and call the project
TestProfile.

2. Drag and drop the Test.epx profile into the new project, and delete the default
profile.epx from the new project.

The models automatically refactor to point to the new location of the profile.
164 Patterns: Model-Driven Development Using IBM Rational Software Architect

If they do not refactor correctly, clean up the test model by removing the test
profile and adding it again from the new location. Then reapply the
stereotypes.

3. Create the path map pointing to the new TestProfile project. Path maps are
defined in the workbench Preferences.

a. From the menu, select Window → Preferences under the category
Modeling.

b. Using the test profile from the previous chapter as an example, set up a
path map to the folder containing the test profile.

Figure 9-2 Setting up a path map variable

Make a note of the path map name that you use because you will need this
information later.

Tip: It is worth shutting down the RSA workspace and starting it up again at
this point to check that there are no path not found errors.
 Chapter 9. Extending Rational Software Architect 165

9.3.2 Releasing the profile
If you have not already done so, create a released version of the profile before
you deploy it.

1. Open the profile, and in the Model Explorer select the profile package.
Right-click, and select Release. Enter a label for the release.

2. After you create a new version of the profile, either by releasing it by changing
something, you need to open any models to which that profile was applied so
that they can be migrated to the new version.

Figure 9-3 Released Test profile migrated into the test model
166 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.3.3 Adding the profile to a plug-in
You can add the profile to an existing plug-in project, or create a new plug-in
project.

Creating a new plug-in project
1. From the main menu, select File → New → Project... → Plug-in

Development → Plug-in project.

2. A plug-in must have a unique identifier, and the name of a plug-in project is
usually the same as the plug-in’s identifier. Because it must be unique, the
identifier usually takes the form of a Java package name. This may be a Java
package name if the plug-in happens to include Java source code, but it does
not matter. The identifier must be unique.

A plug-in usually includes Java code, so a plug-in project is often also a Java
project. In this case we are creating a plug-in to contain a UML profile and no
Java classes is needed, so it does not need to be a Java project.

Figure 9-4 New Plug-in project wizard
 Chapter 9. Extending Rational Software Architect 167

3. On the next page of the wizard, the plug-in ID is filled in for you on the
assumption that the project name is the same as the plug-in ID. The Plug-in
Name is a human-readable name for the plug-in. The Plug-in Provider is a
human-readable name identifying your company or organization.

Click Finish to create the new project.

Figure 9-5 New Plug-in properties
168 Patterns: Model-Driven Development Using IBM Rational Software Architect

4. The plugin.xml file is the plug-in manifest, which identifies the plug-in and
declares what extensions it contributes to RSA. This file is open for editing, as
shown in Figure 9-6.

Click the plugin.xml tab to see full contents of the file as XML.

Figure 9-6 Plug-in manifest editor

Example 9-1 shows the contents of the plug-in manifest file.

Example 9-1 Plug-in manifest file

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin
 id="itso.mdd.soi.profile"
 name="ITSO SOI Profile Plug-in"
 version="1.0.0"
 provider-name="IBM">
</plugin>
 Chapter 9. Extending Rational Software Architect 169

Adding the profile to a plug-in project
1. Edit the plug-in manifest by adding (before </plugin>) the text shown in

Example 9-2.

Example 9-2 Pathmap and UML profile extensions

<extension
 point="com.ibm.xtools.emf.msl.Pathmaps">
 <pathmap
 name="SOI_PROFILE_PATH"
 plugin="itso.mdd.soi.profile"
 path="profiles">
 </pathmap>
</extension>
<extension
 point="com.ibm.xtools.uml2.msl.UMLProfiles">
<UMLProfile
id="itso.mdd.soi.profile"
name="SOI Example Profile"
path="pathmap://SOI_PROFILE_PATH/SOIExampleProfile.epx"
required="false"
visible="true">
</UMLProfile>
</extension>

This declares two extensions:

– The first is a path map. Use the same path map name that you previously
used (see Step 1) to locate the profile. The path map name is resolved to
the ‘profiles’ folder within this plug-in—create this simple folder now. After
you build the deployed profile you can remove the path map from the
workspace preferences.

– The second extension declares that the profile SOIExampleProfile.epx
resides at the location identified by the path map, and associates it with
human-readable name.

2. Drag the Test.epx profile from the TestProfile project into the Profiles folder in
itso.mdd.soi.test.

3. In the plug-in manifest editor, click the Build tab.
170 Patterns: Model-Driven Development Using IBM Rational Software Architect

4. In the Binary Build box, select the files and folders that you want to deploy in
the plug-in. You must always include the plugin.xml file. Here, we also want to
include the profiles folder.

Figure 9-7 Plug-in manifest build page

5. Save and close the plug-in manifest.
 Chapter 9. Extending Rational Software Architect 171

9.3.4 Deploying the plug-in
1. From the main menu, select File → Export - Deployable plug-ins and

fragments.

2. To deploy the plug-in into your own workbench, use the options shown in
Figure 9-8, checking that the directory is correct for your RSA install.

The effect is to create a directory called plugin-id_1.0.0 (the plug-in ID
combined with its version) in the plug-ins folder in the location specified,
containing the files you selected to be included in the plug-in. You can do this
manually or in an ANT build script instead of using the wizard.

Figure 9-8 Export deployable plug-ins wizard
172 Patterns: Model-Driven Development Using IBM Rational Software Architect

3. Restart RSA. The profile is available for use as a “deployed profile”, identified
by the name you gave it in the plug-in manifest.

To package the plug-in in a zip file to give it to someone else, then you can
export it as a zip file. To install this, unzip the file into the appropriate directory
and restart RSA.

9.4 Implementing patterns
There are tutorial materials in the Rational Software Architect Help that are
relevant to what is described in this chapter. Look for the topic Creating
modeling artifacts for reuse → Authoring patterns. There are also sample
pattern plug-in projects that you can import into the RSA workspace. See the
Samples Gallery under Help, Technology samples → Patterns.

9.4.1 Getting started
Patterns are packaged as plug-in projects. Therefore, the first thing we need to
do for pattern authoring is to create a new plug-in project.
 Chapter 9. Extending Rational Software Architect 173

Creating a new plug-in project
1. Click File → New → Project... and select Plug-in Development → Plug-in

Project.

2. Specify a project name on the next page of the wizard. As mentioned in the
previous section, this project name identifies the plug-in and must be unique.
For our example, we call it ESB Service Pattern. You can leave the remaining
settings on this page as the defaults.

Figure 9-9 Creating a pattern plug-in project: Specifying the project name
174 Patterns: Model-Driven Development Using IBM Rational Software Architect

3. As illustrated in Figure 9-10, the Plug-in ID is the unique identifier for the
plug-in, it is filled in based on the assumption that the ID is the same as the
project name. The Plug-in Name is a human-readable name for the plug-in.
The Plug-in Provider is a human-readable name identifying your company or
organization.

Accept the defaults and click Next.

Figure 9-10 Creating a pattern plug-in project: Plug-in properties
 Chapter 9. Extending Rational Software Architect 175

4. On the Templates page, select the Create a plug-in using one of the
templates box, and select Plug-in with Patterns. The plug-in template
creates a new project with a plug-in manifest and a skeleton pattern library
implementation class.

Click Finish.

Figure 9-11 Creating a pattern plug-in project: Choosing the template

5. In the Confirm Perspective Switch and Confirm Enablement dialog boxes,
select Yes.
176 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 9-12 illustrates how the pattern plug-in project looks after the project has
successfully created.

Figure 9-12 Creating a pattern plug-in project

In this new plug-in project, a Java-based pattern framework is formed. The
framework provides functions for the pattern author to use in defining the
pattern’s behavior.

The basic code created in this framework, known as the implementation model,
includes:

� Pattern library that contains pattern bodies and their parameters
� Pattern bodies, each represented by a Java class
� Java class with nested classes for each parameter
� Parameter classes, each with an empty expansion and update methods to

address the addition, removal, or changes of an argument
 Chapter 9. Extending Rational Software Architect 177

These expansion and update methods are known as hot spots. The
implementation of the pattern’s behavior goes into these hot spots. The
implementation does not get generated automatically; therefore, authors must
code the behavior manually.

In RSA, a pattern authoring view is provided as a GUI-based tool for pattern
library design. By default after the plug-in project is formed, the view is shown at
the bottom of the workbench as illustrated in Figure 9-13. Right-click the listed
ESB Service Pattern.

Figure 9-13 Pattern authoring view

The following menu appears.

Figure 9-14 Pattern authoring view menu

There are five items on this menu:

� New Pattern...

Brings up a wizard to create a new pattern under this library

� Export...

Brings up a wizard for exporting the pattern library as a reusable asset

� Generate Help Files

This generates a standard RSA help documentation for the pattern. When
selected, the following items are created:

– HTML file using information in the pattern library Reusable Asset
Specification (RAS) descriptor

– Table of contents for the pattern library
– HTML files for each pattern in the library using information in the pattern

RAS descriptor
178 Patterns: Model-Driven Development Using IBM Rational Software Architect

– Table of contents file for each pattern
– References to the table of contents files to the plugin.xml for the library

� Regenerate Source Code

Regenerates the basic code for the pattern library; useful when the code gets
out of sync with the static data in the library or manifest files

� Show Properties View

Switches to the Properties View showing the property settings in the pattern
library

Next, we create a pattern in the ESB Service pattern library, and then implement
the expansion method for the created pattern.

9.4.2 Defining a pattern
A pattern has the following variables:

� Name

� Implementation class: This does not need to exist; a skeleton file will be
created if it is not there.

� One or more parameters: The pattern parameters define what the pattern is
applied to.

Use the following steps to create a pattern, and add it to the newly created
pattern library (that is ESB service pattern in our example).

1. Go to the pattern authoring view, and right-click the new pattern library.

2. Select New Pattern...

3. The New Pattern page opens.

a. Change the field for the Pattern Name to the name of the pattern to be
created. In our example it is Service Connection Pattern. Notice that the
Class Name and Package are updated automatically to reflect the new
name.

b. Three Pattern Types are available to be associated with the new pattern:
Collaboration, Package, and Class, which define the UML element type of
an instance of this pattern. These types match the UML2 superstructure
specification for templates:

• Collaboration, as its name suggests, is a collaboration between various
elements. It does not only apply to collaboration, but can have
parameters for almost any type of UML element. This is the most
commonly used type and it is what we are going to use in the example.
 Chapter 9. Extending Rational Software Architect 179

• Package is typically used to represent architectural structures in a
software system, such as layering or a common packaging structure.

• Class is the equivalent of a parameterized class and is seldom used.

c. For all the parameters specified, skeleton code is generated in the pattern
implementation class, which can then be extended to include operations
on the values supplied for the parameters. Parameters can be added and
removed either through this wizard or from the pattern authoring view.

We use the latter option, leaving the parameters text field blank for now. In
the next section, we describe how parameters are added and
implemented.

By default, new patterns are under the Miscellaneous Patterns group,
which means, when the pattern plug-in is published, it will be shown as a
member of the Miscellaneous group in the pattern explorer view. For our
example, we put the pattern in a new group called “Service Patterns”.

Next to the Groups text box, click the Add button.

Enter Service Patterns as the group name, and then click OK.

d. The version field can be left unfilled for this example, but note that this field
does become important when the pattern is packaged as a RAS asset,
where it becomes the version of the asset. Similarly for the Details tab, the
information provided on this page populates the RAS manifest for the
pattern as well as for its documentation, but it can be left empty for this
example.

Figure 9-15 illustrates how the page now looks.

The Detail tab allows you to add a description of the new pattern.

Click OK. Now we have a pattern which we will implement shortly.
180 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 9-15 Defining a new pattern

The pattern project contains the following directories and files:

� Java code classes

Stored under the src directory. Classes are created automatically for the
plug-in project and pattern library. In our example they are under the
ESB_Service_Pattern and ESB_Service_Pattern.lib packages respectively.
Individual classes are also generated for each pattern added in the library.
They will appear under the following: ESB_Service_Pattern.patterns.<Pattern
name> package

� PatternFiles directory

This default directory contains the following: a RAS manifest documentation
(.rmd) file for the library and each pattern, a pattern model file that contains
the pattern definition, and if generated, Pattern HTML help files with
supporting XML file.

� Icons directory

By default it includes one sample icon, the sample.gif
 Chapter 9. Extending Rational Software Architect 181

� Plug-in files

A build file (build.properties) and plug-in XML file (plugin.xml) are used when
the pattern is exported to create the pattern plug-in on RSA. By default, the
pattern source code is not included when the plug-in is created by using the
RAS export.

� Overview diagram graphic

A pattern author can include an optional GIF file that shows a high-level
representation of pattern components for the pattern applier.

9.4.3 Pattern implementation
For details about the pattern we are implementing and the full example, refer to
Chapter 5, “Model-driven development solution life cycle” on page 59. To quickly
see the relationships, here is the diagram we used in Chapter 5 to describe the
pattern.

Figure 9-16 Pattern Combining the ESB architecture, integration behavior and contract of behavior

We implement what is inside the box labelled as “ESB”. The ESB is a
collaboration in the UML model. When the pattern is applied to the collaboration,
it creates these four components:

� Integration service facade (ISF)
� Integration service (IS)
� Two provider facades (PF1 and PF2)

There are connectors between these components inside the collaboration, which
use the ports defined in each component.

ESB

CB3
Enterprise
Canonical Data
Format (ECDF)

CB3 CB3
ECDF CB3

External
Requester

External
Provider

Provider
Facade

Integration
Service

Integration
Service
Facade

Provider
Facade

External
Provider

1:1 1:n

0:n

1:1

1:1
182 Patterns: Model-Driven Development Using IBM Rational Software Architect

Implementing the expansion methods
The basic function of a pattern is to expand the model elements that are bound to
its parameters. This means to add additional information, model elements, and
relationships between elements. To implement the expansion methods, we need
to define a parameter and add it to the pattern first.

Our service connection pattern has only one parameter, which is of type
collaboration (that is, the ESB). Use the following instructions to define a
parameter.

1. From the pattern authoring view, select Windows → Show view →
Other... → Modeling → Pattern Authoring.

2. Select the pattern of interest. In this example, we select Service Connection
Pattern. Right-click, and select New Parameter....

3. In the Parameter panel (Figure 9-17), name the parameter ESB
Collaboration. Select Collaboration as the type. The multiplicity is 1.

Figure 9-17 Defining a pattern parameter
 Chapter 9. Extending Rational Software Architect 183

Let’s look at the changes made in the pattern implementation class
(ESB_Service_Pattern.patterns.serviceconnectionpattern.ServiceConnectionPat
tern.java). You can find the class under ESB Service Pattern → src in the
Package Explorer view.

Figure 9-18 Exploring a newly created pattern

An inner class is generated for the specified parameter, ESBCollaboration, which
contains the expand methods required for the implementation. Example 9-3
shows their signatures.

Example 9-3 Expansion methods signatures

public boolean expand(PatternParameterValue value);
public boolean expand(PatternParameterValue.Removed value);

The first of these methods must be implemented. The object passed as an
argument to this method is a wrapper for the actual parameter value, which is a
Collaboration in our example.

The second method is called when the association between the created model
and pattern is removed. It is optional to implement it. However, in our example,
we are not going to because it makes more sense to let the generated
components remain in the model for reusability.

There might be warnings on some imported packages not being used, but you
can safely ignore them.

To implement the pattern, you need a good understanding of the UML2 API.
Information about UML2 can be found at the following Web site:

http://www.eclipse.org/uml2
184 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.eclipse.org/uml2

Also refer to the Patterns framework API reference in the RSA help for details of
how to use these classes. Look under Help → Help Contents → Extending
Rational Software Architect functionality → Extensibility reference → API
Reference.

In the following descriptions of the sample code, we assume that you already
have some knowledge of UML2 API.

Sample code for ESB service pattern
First, we look at how to create the four components within the ESB collaboration
model. A component is a type of attribute (property in UML terms). Therefore we
need to create four property objects first and then set their types to Component.

Creating the property objects
Inside the generated expand() method, replace the entire contents of
Example 9-4 with the contents in Example 9-5.

Example 9-4 Generated basic expand() body

/**
* This is the default general expand method that is typically implemented
* by concrete pattern parameters for handling the added and maintained
* expand variants which are usually similar.
*
* The default behavior is to return true.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public boolean expand(PatternParameterValue value) {

//TODO : implement the parameter's expand method
return true;

}

Example 9-5 Creating properties and components in expand()

/**
* This is the default general expand method that is typically implemented
* by concrete pattern parameters for handling the added and maintained
* expand variants which are usually similar.
*
* The default behavior is to return true.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
*
*/
 Chapter 9. Extending Rational Software Architect 185

public boolean expand(PatternParameterValue value) {
Collaboration collValue = (Collaboration) value.getValue();

// Creating the Integration Facade Service (IFS) component
Property collIFSProperty = createProperty(collValue, "IFS");
Component ifsComp = createComponent(collValue, collIFSProperty,

collValue.getName() + "IFS");

// Creating the Integration Service (IS) component
Property collISProperty = createProperty(collValue, "IS");
Component isComp = createComponent(collValue, collISProperty,

collValue.getName() + "IS");

// Creating the first Provider Facade Service (PFS1) component
Property collPFS1Property = createProperty(collValue, "PFS1");
Component pfs1Comp = createComponent(collValue, collPFS1Property,

collValue.getName() + "1PFS");

// Creating the second Provider Facade Service (PFS2) component
Property collPFS2Property = createProperty(collValue, "PFS2");
Component pfs2Comp = createComponent(collValue, collPFS2Property,

collValue.getName() + "2PFS");
return true;

}

Notice that the Javadoc™ @generated tag was removed because the
implementation model is regenerated each time the pattern library is modified. If
the tag is not removed, the modifications are overwritten when the code is
regenerated.

Tip: Many of the types, such as Property, are unresolved because the
necessary uml packages are not imported. To fix the problems, point at the red
cross in the left margin of the source editor, and select the uml package to
import for each type.
186 Patterns: Model-Driven Development Using IBM Rational Software Architect

Implementing the utility methods
Next we implement the utility methods used in the expand(), namely
createProperty() and createComponent(). Place these immediately before the
public boolean expand(PatternParameterValue value) method.

Example 9-6 createProperty() utility method

private Property createProperty(Collaboration coll, String propertyName) {
Property collProperty =

coll.createOwnedAttribute(UML2Package.eINSTANCE.getProperty());
collProperty.setName(propertyName);
return collProperty;

}

Example 9-7 createComponent() utility method

private Component createComponent
(Collaboration coll,Property collProperty, String compName) {

Component aComp = UML2Factory.eINSTANCE.createComponent();
aComp.setName(compName);

collProperty.setType(aComp);

//Adding the created components as separate entities to the model package
coll.getPackage().getOwnedMembers().add(aComp);

return aComp;
}

Now we are ready to create the connectors for the following component pairs:

� IFS → IS
� IS → PFS1
� IS → PFS2

Associating the components to the in and out ports
To connect the components, they need to have the in and out ports. A port object
represents the UML model object port, it is the interaction point between a
classifier and its environment. An out port represents the side where the request
is originated and the in port represents the receiving end.
 Chapter 9. Extending Rational Software Architect 187

Add the code in Example 9-8 to the createComponent() utility method, before the
call to collProperty.setType(aComp).

Example 9-8 Create Ports for each components

Port inPort = aComp.createOwnedPort(UML2Package.eINSTANCE.getPort());
Port outPort = aComp.createOwnedPort(UML2Package.eINSTANCE.getPort());
inPort.setName("in");
outPort.setName("out");

Each component that is created now has an in and out port associated. Next we
create the connectors to connect the out ports to the in ports.

Utility method for creating connectors
Add the code in Example 9-9 at the end of the expand() method, before the
return true call.

Example 9-9 Create Connectors for the component pairs

//Connector for IFS -> IS
Connector ifsOutPortToIsInPort = createConnector(collValue,

collIFSProperty, ifsComp, collISProperty, isComp);
//Connector for IS -> PFS1
Connector isOutPortToPfs1InPort = createConnector(collValue,

collISProperty, isComp, collPFS1Property, pfs1Comp);
//Connector for IS -> PFS2
Connector isOutPortToPfs2InPort = createConnector(collValue,

collISProperty, isComp, collPFS2Property, pfs2Comp);

Implement the utility method createConnector().

Example 9-10 createConnector() utility method

private Connector createConnector
(Collaboration coll, Property outPortProperty,
 Component outComp, Property inPortProperty, Component inComp) {

Connector aConnector =
coll.createOwnedConnector(UML2Package.eINSTANCE.getConnector());

ConnectorEnd outPort =
aConnector.createEnd(UML2Package.eINSTANCE.getConnectorEnd());

ConnectorEnd inPort =
aConnector.createEnd(UML2Package.eINSTANCE.getConnectorEnd());

outPort.setPartWithPort(outPortProperty);
outPort.setRole(outComp.getOwnedPort("out"));
inPort.setPartWithPort(inPortProperty);
inPort.setRole(inComp.getOwnedPort("in"));
return aConnector;

}

188 Patterns: Model-Driven Development Using IBM Rational Software Architect

Applying the service provider stereotype
Finally we need to apply the service provider stereotype to the four components.
The service provider stereotype is defined in UML 2.0 Profile for Software
Services, which you must install as a plug-in at the runtime environment. For
information about this profile, go to:

http://www.ibm.com/developerworks/rational/library/05/419_soa/

We also have to make sure that this profile was applied to the model before we
can apply the stereotype. In our expand() method, we perform a check whether
the Software Services profile was applied. If it is not, we apply it.

Near the beginning of the expand() method, locate the following line:

Collaboration collValue = (Collaboration) value.getValue();

After this line, add the code in Example 9-11.

Example 9-11 Apply software services profile

//Applying the UML 2.0 Profile for Software Services
//Get the installed profile

Resource resource = collValue.eResource().getResourceSet().getResource(
URI.createURI("pathmap://SOFTWARE_SERVICES/profiles/SoftwareServices.epx"),
true);
Profile softSrvProfile = (Profile) EcoreUtil.getObjectByType(

resource.getContents(), UML2Package.eINSTANCE.getProfile());
//Check if the profile has been applied, if not, apply it
if (false == collValue.getModel().isApplied(softSrvProfile)) {

collValue.getModel().apply(softSrvProfile);
}

The full qualified URL name used in createURI() was obtained from the
plugin.xml of the installed profile.

1. To open the plugin.xml file, go to Windows → Show View → Other....

2. From the Show View list, select PDE → Plug-ins.

3. After the Plug-in view is opened, go to the package where the profile is
installed, for the Software Services profile the package name is
com.ibm.rational.softsvc. The plugin.xml is listed under the package name.

4. Open the plugin.xml and look at the source, the URL name is defined in:

<extension><UMLProfile path="......"></UMLProfile></extension>

Here “......” is the qualified URL name. In our case, it is defined as
“pathmap://SOFTWARE_SERVICES/profiles/SoftwareServicesSecurity.epx”.

Next comes the final part of the implementation for our service connection
pattern, applying the service provider stereotype.
 Chapter 9. Extending Rational Software Architect 189

http://www.ibm.com/developerworks/rational/library/05/419_soa/

Add the code shown in Example 9-12 to the end of expand() method, just before
the return true; line.

Example 9-12 Applying the service provider stereotype

//Get the service provider stereotype and apply it to the four components
Stereotype sTypeObj = ifsComp.getApplicableStereotype(

"Software Services Profile::ServiceProvider");
if (null != sTypeObj) {

ifsComp.apply(sTypeObj);
isComp.apply(sTypeObj);
pfs1Comp.apply(sTypeObj);
pfs2Comp.apply(sTypeObj);

} else {
System.out.println("The Stereotype ServiceProvider cannot be found from the

Software Services Profile");
}

Example 9-13 contains the list of imported classes required.

Example 9-13 Imported classes list

import org.eclipse.emf.ecore.resource.Resource;
import org.eclipse.emf.ecore.util.EcoreUtil;
import org.eclipse.emf.common.util.URI;
import org.eclipse.uml2.Collaboration;
import org.eclipse.uml2.Component;
import org.eclipse.uml2.Connector;
import org.eclipse.uml2.ConnectorEnd;
import org.eclipse.uml2.Port;
import org.eclipse.uml2.Profile;
import org.eclipse.uml2.Property;
import org.eclipse.uml2.Stereotype;
import org.eclipse.uml2.UML2Factory;
import org.eclipse.uml2.UML2Package;

9.4.4 Testing the pattern
Use the following steps to test the pattern.

1. Launch a runtime workbench. See 9.6, “Launching a Run-time Workbench”
on page 215, if you do not know how to do this.

2. Once the runtime workbench starts, switch to the Modeling perspective.

3. You need a UML model to apply the pattern to. Create a new model project by
going to New → Project → Modeling.

4. Select UML Project and click Next.
190 Patterns: Model-Driven Development Using IBM Rational Software Architect

5. Fill in the project name ESB Service Pattern Test and click Next.

6. Change Blank Model to My Simple Model, as shown in Figure 9-19, and click
Finish.

Figure 9-19 Create a new UML model project

7. From the Model Explorer, expand ESB Service Pattern Test → My Simple
Model.emx → My Simple Model.

8. Select My Simple Model and double-click the
freeform diagram Main.

9. After the My Simple Model Main freeform diagram
opens, open the Pattern Explorer view again, and
 Chapter 9. Extending Rational Software Architect 191

drag the Service Connection Pattern onto the diagram, as shown in
Figure 9-20.

Figure 9-20 Service Connection Pattern added to the model

Applying the pattern
Use the following steps to apply the pattern.

1. Open the Composite Structure Diagram → Collaboration.

2. Click in the white space on the freeform diagram. A collaboration shape is
now shown on the diagram. Notice the newly created collaboration is listed
under My Simple Model on the Model Explorer. It is also on the properties
view.

Figure 9-21 Model with a collaboration added

3. On the Properties view, rename Collaboration1 to ESB Service
Collaboration.
192 Patterns: Model-Driven Development Using IBM Rational Software Architect

4. To apply the pattern, drag the ESB Service Collaboration diagram to the
box labeled as ESB Collaboration[1] to the Service Connection Pattern
instance.

Figure 9-22 Service connection pattern applied

The created components are now listed in Model Explorer.

Figure 9-23 Model structure after the service connection pattern is applied

After the pattern is applied, ensure that the profile was applied to the model:

5. Double-click My Simple Model.emx, which opens up the model on a UML
Model Editor.

6. On the editor, look at the Applied Profiles section, and you see that Software
Services Profile is listed there.
 Chapter 9. Extending Rational Software Architect 193

7. Also, check to see if the stereotypes from the profile were applied to the
model elements. You can do it by looking into the Properties of each created
component.

a. Right-click the component, and select Show Properties View.

b. On the Properties view, click Stereotypes on the left side panel, and look
under Applied Stereotypes. The ServiceProvider stereotype from the
Software Services Profile is listed there.

9.4.5 Publishing patterns
You can publish a pattern by exporting it as a deployable plug-in. See 9.7,
“Deploying plug-ins” on page 217, for instructions on doing this.

9.5 Implementing a transformation
As discussed in Chapter 8, “Applying model-driven development with Rational
Software Architect” on page 129, you can apply a transformation to a model
using the Modeling perspective Modeling → Transform menu item. To add your
own transformation to this menu you need to create an Eclipse plug-in that
contributes to the transformation provider extension point. A plug-in project
template is available to set up the manifest and basic classes for you.

This section outlines how we implemented the sample transformation for the
scenario discussed in previous chapters. It includes an introduction to the RSA
transformations API together with some general techniques for code generation.
Detailed instructions for implementing the sample transformation are not given
here. However, you might refer to the source code for the sample transformation,
included in the additional materials.
194 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.5.1 Creating a new plug-in with a transformation
1. From the main menu, select File → New → Project... → Plug-in

Development → Plug-in Project.

2. The Plug-in Project panel opens. A plug-in must have a unique identifier; the
name of a plug-in project defaults to the plug-in identifier. Because it must be
unique, the identifier usually takes the form of a Java package name. This
may be a Java package name if the plug-in happens to include Java source
code, but it does not matter. The identifier must be unique.

The transformation plug-in includes Java code, so select the Create a Java
project option and click Next.

Figure 9-24 New plug-in project wizard
 Chapter 9. Extending Rational Software Architect 195

3. The Plug-in Content panel (Figure 9-25) opens. On the plug-in properties, the
plug-in ID defaults to the project name. The Plug-in Name is a
human-readable name for the plug-in, and the Plug-in Provider is a
human-readable name identifying your company or organization.

Accept the defaults and click Next.

Figure 9-25 New plug-in properties
196 Patterns: Model-Driven Development Using IBM Rational Software Architect

4. In the Templates panel (Figure 9-26), select a template that generates some
of the basic classes you need for the plug-in. Select the Plug-in with
Transformation template and click Next.

Figure 9-26 New plug-in templates
 Chapter 9. Extending Rational Software Architect 197

5. In the New Transformation Provider window (Figure 9-27), you can choose
the Java package and class name to be used for one of the main generated
classes, the transformation provider. This is essentially the entry point for your
transformation. The transformation provider class is declared in the plug-in
manifest, so if you decide to rename it later, remember to also change it there.

Click Next.

Figure 9-27 Transformation provider properties

6. The New Transformation panel (Figure 9-28) provides information you can
use to generate a skeleton transformation class. A transformation provider
can provide one or more transformations, each implemented by a Java class.

7. Each transformation declared in the plug-in manifest appears in the Configure
Transformations wizard, which you find under Modelling → Transform →
Configure Transformations.... The name, group path and description
options determine how the transformation appears in the wizard.
198 Patterns: Model-Driven Development Using IBM Rational Software Architect

The source and target model type options influence how the user selects the
source and target for the transformation. The type Resource means anything
other than a UML model.

Notice that at the bottom of this page, the Use default UML2 Transformation
framework option is selected. This setting determines what style of skeleton
transformation code is generated. For the sample transformation, we are
going to use this default style.

Click Next.

Figure 9-28 Transformation properties
 Chapter 9. Extending Rational Software Architect 199

8. Because the default UML2 transformation framework is being used, the New
Rule Definitions panel (Figure 9-29) allows you to define specific rule classes
to be associated with particular UML element types. This information is used
to generate skeleton code for the transformation. We define the rules later.

Click Finish to generate the plug-in project.

Figure 9-29 Transformation rules
200 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 9-30 shows the files that are generated in the new project. The classes
that are generated are the plug-in class ExamplePlugin.java, the transformation
provider ServicesTransformProvider.java and the root transformation
ServicesTransformation.java.

Any plug-in can have a plug-in class. This is a singleton that is instantiated when
the plug-in is activated. Commonly it is used as a convenient place to put utility
methods as well as status or configuration properties that apply to the plug-in as
a whole.

Figure 9-30 New transformation plug-in project contents

Transformation provider
The plug-in manifest, plugin.xml, declares the transformation provider class. It
extends the abstract base class, AbstractTransformationProvider, and lists the
transformations that it can perform. The transformations listed here appear in the
Configure Transformations wizard, which you find under Modelling →
Transform → Configure Transformations...Modeling → Transform, when the
plug-in is deployed. When a user selects one of those transformations, it is the
transformation provider that is responsible for validating the transformation
context (the source and target objects and any properties) and constructing a
root transformation that performs the transformation.

The generated transformation provider is set up to handle a single transformation
and does no special validation of the transformation context.
 Chapter 9. Extending Rational Software Architect 201

Root transform
The transformation provider createTransform method is required to return an
instance of the class AbstractTransform. This is an abstract class, so in practice
you must return an instance of one of the sub-classes of AbstractTransform.

The transformation plug-in template creates a class that extends RootTransform.
It is an instance of this that is constructed by the generated transformation
provider.

To understand what the RootTransform class does, we must quickly review the
main classes from the RSA transformation API.

9.5.2 Transformation API
JavaDoc for the transformation API can be found in the RSA help. The
transformation API consists of four packages, but only two of these are of
immediate interest: com.ibm.xtools.transform.core and
com.ibm.xtools.transform.uml2.

Package: com.ibm.xtools.transform.core
The important classes and interfaces in this package are shown in Figure 9-31.
202 Patterns: Model-Driven Development Using IBM Rational Software Architect

Figure 9-31 Principal classes in com.ibm.xtools.transform.core
 Chapter 9. Extending Rational Software Architect 203

AbstractTransform
AbstractTransform is the abstract base class for all transformation
implementations. It has one abstract method:

public void execute(ITransfomContext context);

It is not usually necessary to directly extend AbstractTransform. The concrete
sub-classes Transform and RootTransform, together with UMLTransform and
UMLKindTransform from the package com.ibm.xtools.transform.uml2, are
sufficient for most purposes.

ITransformContext
ITransformContext is the interface to the transform context. The transform context
allows access to the transformation source object and its target container (where
the target object or objects are to be created) and target, if these values are set.
It can also contain other properties as name-value pairs passed into the
transformation. You can use this facility to pass information between different
parts of the transformation code.

You do not need to implement this interface or write code that constructs
transform contexts. Transform contexts are created by the framework as
required. A root transform context is passed into your root transform when the
transformation is run. The framework classes create additional transform
contexts, forming a stack. Each context has a parent context ultimately linking
back to the root transform context.

Transform
Instances of the class Transform implement the execute method by iterating over
a collection of transforms, rules, and extractors and calling their execute
methods.

A transform is an instance of a sub-class of AbstractTransform. Any collection of
transforms, rules and extractors are executed by a Transform. Different Transform
instances can execute the same rules, and a Transform is allowed to execute
itself.

AbstractRule
A rule is an instance of a sub-class of AbstractRule. Rules know how to create or
modify a target object given a source object (or can do any other required
processing). Rules perform most of the real work of the transformation. It is in
rules that you write the code that generates the transformation target artifacts.
204 Patterns: Model-Driven Development Using IBM Rational Software Architect

AbstractContextExtractor
An extractor is an instance of a sub-class of AbstractContextExtractor. An
extractor knows how to extract a set of source model elements for further
processing. It references an associated transform that is applied to the extracted
source elements.

RootTransform
RootTransform is a sub-class of Transform. It allows you to define three phases
of execution—an initial, main, and final phase. One transform is executed in the
main phase, and you can specify any set of rules, extractors, and transforms for
the initial and final phases.

Package: com.ibm.xtools.transform.uml2
This package contains some classes intended specifically for working with UML2
models. The most interesting class here is UMLKindTransform. Figure 9-32
shows how UMLKindTransform extends Transform via UMLTransform.

Figure 9-32 UMLKindTransform
 Chapter 9. Extending Rational Software Architect 205

UMLKindTransform
UMLKindTransform is also a sub-class of Transform (indirectly) but executes
quite differently. It has a set of rules, extractors, and transforms each of which is
associated with a type of UML model element (Class, Property, Activity, etc.). It
walks over a source UML model, or part of a model, and for each source element
it executes all the rules, extractors, and transforms registered for that type of
model element.

Using a UMLKindTransform makes it simple to implement UML transformations,
as you just need to implement rules for each kind of model element to be
processed, but will not give the best performance. Bear in mind that the order in
which rules are executed is partly determined by the order of elements in the
source model (it is also influenced by the order in which the rules were added to
the UMLKindTransform).

When you use UMLKindTransform, you can’t use the transformation extensibility
mechanism to allow other plug-ins to extend your transform with new rules.

UMLTransform
UMLTransform is a base class for transforms that read or modify UML models. It
behaves exactly like Transform. If you do not want to use UMLKindTransform but
want a transform that read or updated a UML model, you use this class directly.

9.5.3 Implementing the root transformation
The default generated root transformation class is a sub-class of RootTransform,
which sets up a UMLKindTransform to be executed in its main phase.

Example 9-14 Generated root transformation constructor

/**
 * Constructor.
 * @param descriptor A transformation descriptor.
 */
public ServiceTransformation(ITransformationDescriptor descriptor) {

super(descriptor);

// Initialize root transform with main UML transform.
// The false argument indicates the main transform will only
// accept individual source objects (and not the list of
// selected objects).
UMLKindTransform umlkindTransform = new UMLKindTransform(descriptor);
initialize(umlkindTransform, false);

// Define the rules to be executed before and after the main
// UML transform.
setupInitialize();
206 Patterns: Model-Driven Development Using IBM Rational Software Architect

setupFinalize();

// Add the rules to the main UML transform.
addUMLRules(umlkindTransform);

}

The generated methods setupInitialize, setupFinalize, and addUMLRules are
empty placeholders to add your own code. setupInitialize and setupFinalize are,
as the names suggest, where any processing to be performed before or after the
main transformation is defined. No initial or final phase processing is needed for
the example.

In addUMLRules, define the rules to be used in the main transformation and
associate them with types of UML element. The rules are called each time a UML
element of the specified kind is found in the model.

In the example, we want to generate the artifacts listed in Table 9-1.

Table 9-1 Artifacts required for example transformation

To create the artifacts we set up rules associated with UML Components,
Interfaces, and Collaborations. To process the UML Classes which represent
data, we associate the rule with UML Packages rather than Classes. That is
because we generate one XML Schema file for all the Classes in one Package,
not one XML Schema file for each Class.

Table 9-2 shows the rule classes associated with each UML element. Each of the
rule classes extend AbstractRule.

Table 9-2 Rule classes associated with UML elements

UML element Generate...

Component (Service Provider) EJB (EAR and EJB project, EJB bean class)

Interface (Service Specification) Java interface for EJB

Class (Data classes) XML Schema

Collaboration Script to set up JNDI namespace bindings

Class UML element

ServiceProviderRule Component

ServiceSpecificationRule Interface

DataRule Package

CollaborationRule Collaboration
 Chapter 9. Extending Rational Software Architect 207

Example 9-15 shows the implementation of the addUMLRules method in the root
transformation.

Example 9-15 addUMLRules implementation

/**
 * Add rules to the main UML transform where each rule is
 * associated with a UML language element kind.
 *
 * @param transform The main UML transform.
 */
private void addUMLRules(UMLKindTransform transform)
{

DataRule dataRule =
new DataRule("data", "Data Rule");

transform.addByKind(UML2Package.eINSTANCE.getPackage(), dataRule);

ServiceSpecificationRule specRule =
new ServiceSpecificationRule("spec", "Service Specification Rule");

transform.addByKind(UML2Package.eINSTANCE.getInterface(),specRule);

ServiceProviderRule componentRule =
new ServiceProviderRule("comp", "Service Provider Rule");

transform.addByKind(UML2Package.eINSTANCE.getComponent(),
componentRule);

CollaborationRule collaborationRule =
new CollaborationRule("collab", "Collaboration Rule");

transform.addByKind(UML2Package.eINSTANCE.getCollaboration(),
collaborationRule);

}

9.5.4 Implementing the transformation rules
The UMLKindTransform in the sample transformation, when executed, walks
over the content of the UML model, or part of the model, and invokes the
appropriate rule whenever it encounters a UML Component, Interface, Package,
or Collaboration.

By specifying a condition for the rule, the elements that a rule is invoked for are
restricted further. For example, the class ServiceProviderCondition in
Example 9-16 restricts the ServiceProviderRule to execute only for components
that have the stereotype ServiceProvider. The condition is also coded to ignore
elements that are in a package with the stereotype “external”.
208 Patterns: Model-Driven Development Using IBM Rational Software Architect

Example 9-16 Condition implementation

private static class ServiceProviderCondition extends Condition {
public boolean isSatisfied(Object arg0) {

if (arg0 instanceof Component) {
if (!Utilities.isExternal((Component) arg0)) {

if (UML2Helper.hasStereotype((Component) arg0,
"ServiceProvider")) {

return true;
}

}
}
return false;

}
}

The “external” stereotype marks parts of the model for which no code is
generated.

The inner class ServiceProviderCondition is added to the class
ServiceProviderRule. In the example Utilities and UML2Helper are helper
classes that we created.

To associate the condition with the rule, the constructor in Example 9-17 is
changed to invoke the ServiceProviderCondition constructor.

Example 9-17 Rule constructor

public ServiceProviderRule(String id, String name) {
super(id, name);
setAcceptCondition(new ServiceProviderCondition());

}

Now when the UMLKindTransform finds a Component, it checks the condition
before invoking the rule. Only if the condition accepts the Component does the
rule’s createTarget method get called. The input to this method is a
transformation context that has the Component set as the source object.

The createTarget method is coded to extract the source element from the
transformation context and then creates, or updates, whatever target files are
required. This is where the real work of the transformation is done. Example 9-18
shows an outline of the createTarget method implementation for the
ServiceProviderRule.
 Chapter 9. Extending Rational Software Architect 209

Example 9-18 ServiceProviderRule createTarget method

public Object createTarget(ITransformContext ruleContext) {
// get the source model element from the context
// we know this will be a Component
org.eclipse.uml2.Component src =

(org.eclipse.uml2.Component) ruleContext.getSource();
// get the progress monitor from the context so we can report
// progress
IProgressMonitor monitor = (IProgressMonitor) ruleContext

.getPropertyValue(ITransformContext.PROGRESS_MONITOR);
monitor.beginTask("Generating EJB...", 20);

try {
// create the target projects, folders, and files
// based on the source model element
....

} catch (Exception e) {
throw new RuntimeException("Error transforming component "

+ src.getName(), e);
}
monitor.done();

// it is not necessary to return anything from createTarget
return null;

}

In Example 9-18, the source model element is retrieved from the transform
context passed to the rule. We know that this element is a UML Component
because we set up the UMLKindTransform to associate this rule with
Components and the type of the source element is also checked in the rule
condition.

The transform context passed to the rule also allows a progress monitor to be
accessed by the rule. While the transformation is running, a progress monitor
dialog is shown. Rules can use the progress monitor from the transform context
to provide some indication of their progress, which is reported to the user via the
progress monitor dialog.

The createTarget method does not throw any checked exceptions. If the rule
throws a runtime exception the transformation terminates with an error message
to the user.

In the next section, we look at how to implement the code indicated by four dotes
(....) in Example 9-18. You see how to create projects, folders, and files in the
RSA workspace.
210 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.5.5 Creating and modifying files in the RSA workspace
In this section, we look at various techniques for creating and modifying files in
the RSA workspace.

Eclipse Resource API
Eclipse provides APIs for navigating and modifying the workspace in the
org.eclipse.core.resources package. JavaDoc and additional documentation with
code samples is in the RSA help.

Example 9-19 shows how to create a file in the workspace using the Eclipse
workspace resources API.

Example 9-19 Creating a MANIFEST.MF file in an EJB project

IProject requiredProject = ...;
// set dependent JAR list in manifest
StringBuffer manifest = new StringBuffer(

"Manifest-Version: 1.0\nClass-Path: ");
manifest.append(requiredProject.getName());
manifest.append(".jar\n");
ByteArrayInputStream ain =

new ByteArrayInputStream(manifest.toString().getBytes());

IFile file = project.getFile("ejbModule/META-INF/MANIFEST.MF");
file.create(ain, true, null);

When you are writing code to create files and folders remember to check whether
they already exist and take some appropriate action if they do. This approach is
suitable for generating simple, small text files, but as the output becomes more
complex, this style of code becomes difficult to maintain.

The natural progression is to encapsulate the string building in a class. The static
text can be separated from the code to make it easier to maintain.

Templates
Another approach for string building is to use a template processing tool such as
Java Emitter Templates (JET). JET works on template files that contain all the
static text needed in the output together with snippets of Java code that control
how dynamic content is generated. JET compiles template files into Java classes
that are used in transformation rules to generate file content as in Example 9-20.
 Chapter 9. Extending Rational Software Architect 211

Example 9-20 - JET template for service EJB interface

<%@ jet package="com.ibm.itso.mdd.example.templates" imports="java.util.*
org.eclipse.uml2.*"
class="EJBRemoteIntfTemplate"%>
<%Interface intf= (Interface)argument;%>
package ejbs.remote;

public interface <%=intf.getName()%>
{
<%for(int i=0; i<intf.getOwnedOperations().size(); i++){
Operation op=(Operation)intf.getOwnedOperations().get(i);
%>

 String <%=op.getName()%> (String in)
throws java.rmi.RemoteException;

<%}%>
}

This is compiled to a class that generates Java interfaces of this form given a
UML Interface model element as input, for example.

Example 9-21 Using a JET template to create a file

org.eclipse.uml2.Interface intf = ...;
String content = new EJBRemoteIntfTemplate.generate(intf);
ByteArrayInputStream ain = new ByteArrayInputStream(content.getBytes());
IFile file = folder.getFile(intf.getName()+”.java”);
file.create(ain, true, null);

The best way to get started with JET is to follow the JET tutorials in the RSA help.
Search for JET in the Help.

The template file can become difficult to maintain if it includes a lot of Java code.
A better practice is to separate the code into helper classes, or perform some
pre-processing and pass in more information with the argument object instead.

Parsing and updating files
The approaches described in the previous section are fine for generating a
complete file but not so useful when loading an existing file and making changes
to it.

The Java Development Tooling includes APIs to access and modify Java project
information (like class paths), create Java packages and classes, and parse and
update Java source code. There are examples and JavaDoc in the RSA help.
The JDT API also has methods to build complete Java source files from scratch.

XML files can be parsed and updated using the org.w3c.dom API.
212 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.5.6 Testing the transformation
1. Launch a run-time workbench. See 9.6, “Launching a Run-time Workbench”

on page 215, if you do not know how to do this.

2. In the launched workbench workspace, add the example Web service
projects and UML model.

3. Switch to the Modeling perspective, and open the example model. In the
Model Explorer, expand the example model file, and select the model
element.

Figure 9-33 Selecting the model element in the Model Explorer

4. Right-click the model, and from the menu, select Transform → Run
Transformation → Services Transformation.

Figure 9-34 Selecting the transformation to run
 Chapter 9. Extending Rational Software Architect 213

5. To run the transformation, in the Run Transformation window (Figure 9-35),
click Run.

Figure 9-35 Run transformation dialog
214 Patterns: Model-Driven Development Using IBM Rational Software Architect

9.6 Launching a Run-time Workbench
To test a plug-in, you can launch a new RSA workbench from RSA. This allows
you to debug your plug-in code using the Java debugger. The first time you do
this, you must create a new launch configuration.

1. In the RSA menu bar, select Run → Run... (see Figure 9-36).

Figure 9-36 Starting the Run-time Workbench

2. The Run window opens where you create, manage, and run configurations
(see Figure 9-37). Under Configurations, select Run-time Workbench →
New_configuration to create a new workbench. In the right pane, for Name,
type the name of your configuration. The key here is that you create a new
workbench to test the transformation; you can't test it in the workbench it is
developed in.

Depending on the hardware resources and the processes that are running at
the time, the start up time could be slow, especially the first time it is run.
 Chapter 9. Extending Rational Software Architect 215

Figure 9-37 Naming the new Workbench configuration

The next time you want to test your plug-in, you can select the name of this
launch configuration from the Run shortcut menu. To debug your plug-in code,
you need to start the runtime workbench from the Debug (instead of Run) menu.

Tip: Refer to the IBM developerWorks article “Configuring IBM Rational
Software Architect or IBM Rational Software Modeler for Transformation
Development”, which explains how to change the launch configuration so that
the runtime workbench can start quickly:

http://www.ibm.com/developerworks/rational/library/05/426_funk/
216 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.ibm.com/developerworks/rational/library/05/426_funk/

9.7 Deploying plug-ins
1. From the main menu, select File → Export → Deployable plug-ins and

fragments.

2. The Export Plug-ins and Fragments window opens. To deploy the plug-in into
your own workbench, use the options shown in Figure 9-38, checking that the
directory is suitable for your RSA install.

The effect is to create a directory called plugin-id_1.0.0 (the plug-in ID
combined with its version) in the plug-ins folder in the location specified,
containing the files you selected to be included in the plug-in. You can do this
manually or in an ANT build script instead of using the wizard.

Figure 9-38 Export deployable plug-ins wizard

3. Restart RSA and you should be able to use the plug-in without launching a
runtime workbench.
 Chapter 9. Extending Rational Software Architect 217

If you want to package the plug-in in a zip file to give to someone else, then
you can instead export it as a zip file. To install this, unzip it into the
appropriate directory and RSA must be restarted.

4. If you make changes to the plug-in code after it is deployed, repeat this
process and restart RSA with the command-line option -clean. This is
because RSA caches plug-in JAR files to improve performance. If you do not
use the -clean option when RSA is started, it may not be running with the
new version of your code.

9.8 Using a RAS repository
Another way to distribute your plug-in is to use a RAS repository. Plug-in projects
can be packaged as RAS assets and exported to a repository. Users can then
import the assets from the repository, and any plug-ins are automatically installed
into their workbench. For more information, see the RSA help.

An IBM developerWorks RAS repository contains more sample patterns and
transformations which you can connect to. For details, go to:

http://www.ibm.com/support/docview.wss?uid=swg24009749

9.9 Summary
In this chapter, we explained:

� How to deploy new UML profiles
� How to create plug-ins implementing new patterns and transformations

We also described methods to create or modify files from within a plug-in that
could be used in a transformation to store new implementation artifacts.
218 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www.ibm.com/support/docview.wss?uid=swg24009749

Chapter 10. Conclusion

The objective of this book is to draw upon our experiences with model-driven
development, and inform technical practitioners and project managers about
what it is and how to apply it to real projects. Perhaps you are one of those
people and you wanted to know more about the practicalities of model-driven
development. We hope you found this book valuable.

For the solution architect, we identified the benefits of model-driven development,
and discussed where the method may be applied. Our experience is with large
enterprises and organizations that see:

� The value in using MDD to apply architectural strategies consistently and
reliably

� The benefits of automating the generation of much of the boilerplate
infrastructure code that accompanies large IT projects

You may encounter situations where the obstacles to applying MDD outweigh the
benefits. It is important to establish MDD as appropriate for your organization
and then identify where in your organization you can apply it.

For the project planner or project manager, we discussed the changes that
adopting MDD will make to existing solution development practices, and given
guidance from our experience about how to plan an MDD project. Particular
attention must given not only to the increased initial investment to develop
software models, but also to realizing the potential gains in testing, deployment,

10
© Copyright IBM Corp. 2005. All rights reserved. 219

and maintenance that are easily lost if MDD is not applied throughout the whole
MDD life cycle.

For the technical practitioner, we described how to identify, analyze, and apply
patterns and transformations using our example of synchronous update, where
we used one service provider within an ESB architecture. We also explained how
to customize Rational Software Architect by developing and deploying new UML
profiles and extending Rational Software Architect with Eclipse plug-ins to add
new patterns and transformations.

These roles need to team up within their organization to evaluate the potential of
MDD and to build a road map for MDD within their business. We think the critical
success factors for the team are as follows:

� Get executive sponsorship for the MDD strategy and engage an experienced
project manager who is going to be responsible for delivering the benefits of
MDD to the business.

� Get a core team with modeling skills, domain knowledge and platform
expertise. Seed the team with people who used the approach before.

� Build a wider team representing the whole solution life cycle. Train the wider
team in MDD to deliver on its promise. They will champion MDD to their
colleagues.

� Find a scenario where the application of MDD yields significant benefits and
where a business case can be constructed and measured.

� Gather the domain experts in the scenario together and have them identify
the parts of the scenario that can be automated. Have them develop patterns
and leverage existing patterns that capture their expertise.

� Work out a plan that identifies the scope of the solution that will be tackled by
MDD and what implementation artifacts to generate.

G o M o d e lin g !
220 Patterns: Model-Driven Development Using IBM Rational Software Architect

Appendix A. Additional material

This redbook refers to additional material that you can download from the
Internet.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247105

Alternatively, you can go to the IBM redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-7105.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sampleCode.zip Zipped Code Samples

A

© Copyright IBM Corp. 2005. All rights reserved. 221

ftp://www.redbooks.ibm.com/redbooks/SG247105
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
To use the code samples, you must have IBM Rational Software Architect
Version 6.0.0.1 with the IBM WebSphere Application Server v6.0 Integrated Test
Environment.

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. The sampleCode.zip file contains the
following files:

File name Description
sampleSrc.zip Source code for the sample pattern and transformation

described in the redbook
updateCustomer.zip Sample UML model and Web services

It also contains a folder named MDD_RedbookSamples, which contains a
version of the sample pattern and transformation that you can install into IBM
Rational Software Architect.

To install the sample plug-ins into IBM Rational Software Architect, follow these
steps:

1. Start RSA.

2. Select Help → Software Updates → Find and Install...

3. In the Install/Update wizard, select Search for new features to install →
Next. → New Local Site, and select the MDD_RedbookSamples folder.
This folder is added to the Sites to include in the search tree view. Ensure that
this site is checked and any other sites are not selected.

Click Next.

4. Select the MDD Redbook Samples feature, and continue with the
installation.

The sampleSrc.zip and updateCustomer.zip files are Project Interchange
files; these contain IBM Rational Software Architect projects.

Attention: If you need to re-import plug-ins with the same name and
version, you may need to clean out the Rational Software Architect cache
to find the new version of the plug-in. Start RSA using the following
command in the C:\Program Files\IBM\Rational\SDP\6.0 installation
directory:

rationalsdp -clean
222 Patterns: Model-Driven Development Using IBM Rational Software Architect

5. To import into your workspace, select File → Import... → Project
Interchange.

6. From the zip file, select the projects to import. sampleSrc.zip contains the
source code for the sample pattern and transformation described in the
redbook. The updateCustomer.zip file contains a sample UML model, the
UML Profile for the service-oriented integration scenario, and sample Web
services. Import these projects in order to try running the sample
transformation.
 Appendix A. Additional material 223

224 Patterns: Model-Driven Development Using IBM Rational Software Architect

acronyms
ABD Asset-Based Development

ANT Another Neat Tool

BDD business-driven development

C# C-Sharp

CIM Computer Independent Model

CRM Customer Relationship
Management

DSL domain-specific language

ECDF Enterprise Canonical Data
Format

EJB Enterprise JavaBean

EMF Eclipse Modeling Framework

ESB enterprise service bus

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IFS Integration Facade Service

IS integration service

ISCB integration service call back

IT information technology

ITSO International Technical
Support Organization

J2EE Java 2 Platform, Enterprise
Edition

JET Java Emitter Templates

JMS Java Messaging Service

JNDI Java Native Directory
Interface

JUNIT Java Unit Test

MDA Model-Driven Architecture

MDD model-driven development

MOF Meta-Object Facility

OAG Open Applications Group

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
OMG Object Management Group

PFCB provider facade call back

PFS Provider Facade Service

PIM Platform Independent Model

PSM Platform Specific Model

RAS Reusable Asset Specification

RCBF request callback facade

RSA Rational Software Architect

RSM Rational Software Modeler

RUP Rational Unified Process

SOA service-oriented architecture

SOAP Simple Object Access
Protocol

SOI service-oriented integration

SQL Structured Query Language

STSM Senior Technical Staff
Member

UML Unified Modeling Language

WBI WebSphere Business
Integration

WSDL Web Services Description
Language

XALAN Extensible Stylesheet
Language Transformation
(XSLT) processor said to be
named after a rare musical
instrument, but the only one
that comes close is the xalam,
a precursor of the banjo. See
http://en.wikipedia.org/
wiki/Xalam
 225

http://en.wikipedia.org/wiki/Xalam

226 Patterns: Model-Driven Development Using IBM Rational Software Architect

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 229. Note that some of the documents referenced here may be available
in softcopy only.

� Patterns: Implementing an SOA using an Enterprise Service Bus, SG24-6346

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

Other publications
These publications are also relevant as further information sources:

� Alexander, Christopher. The Timeless Way of Building. Oxford University
Press, August 1979. ISBN 0-195-02402-8.

� Alexander, Christopher. A Pattern Language Towns, Buildings, Construction.
Oxford University Press, August 1977. ISBN 0-195-01919-9.

� Greenfield, Jack; Short, Keith; Cook, Steve; Kent, Stuart; Crupi, John.
Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. John Wiley & Sons, August 2004. ISBN
0-471-20284-3.

� Hubert, Richard. Convergent Architecture: Building Model-driven J2EE
Systems with UML. John Wiley & Sons, Inc., November 2001. ISBN
0-471-10560-0.

� Mellor, Stephen J. and Balcer, Marc J. Executable UML: A Foundation for
Model-Driven Architecture. Addison Wesley, May 2002. ISBN 0-201-74804-5.

� Mellor, Stephen J.; Scott, Kendall; Uhl, Axel; Weise, Dirk. MDA Distilled:
Principles of Model-Driven Architecture. Addison Wesley Professional, March
2004. ISBN 0-201-78891-8.
© Copyright IBM Corp. 2005. All rights reserved. 227

� Raistrick, Chris; Francis, Paul; Wright, John; Carter, Colin; Wilkie, Ian.
Model-Driven Architecture with Executable UML. Cambridge University
Press, March 2004. ISBN 0-521-53771-1.

Online resources
These Web sites are also relevant as further information sources:

� MDD Manifesto

http://www.ibm.com/software/rational/mda/papers.html

� New Roles in MDD

http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Aagedal.pdf

� Pragmatics of MDD - Selic

http://www.computer.org/software/homepage/2003/s5sel_print.htm

� MDA Guide by OMG (especially see Section 3.10.4)

http://www.omg.org/docs/omg/03-06-01.pdf

� The UML profile for testing

http://www.omg.org/cgi-bin/doc?ptc/2004-04-02

� The UML profile for software services

http://www.ibm.com/developerworks/rational/library/05/419_soa/

� The UML profile for real-time and schedulability

http://www.omg.org/technology/documents/formal/schedulability.htm

� MSDN Software Factories home page

http://lab.msdn.microsoft.com/teamsystem/workshop/sf/default.aspx

� Automated Generation and Execution of Test Suites for DIstributed
Component-based Software

http://www.agedis.de/

� Model-driven testing: IBM Haifa home page

http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html

� Model-driven testing: IBM Haifa presentation

http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf
228 Patterns: Model-Driven Development Using IBM Rational Software Architect

http://www-306.ibm.com/software/rational/mda/papers.html
http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Aagedal.pdf
http://www.computer.org/software/homepage/2003/s5sel_print.htm
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/2004-04-02
http://www-128.ibm.com/developerworks/rational/library/05/419_soa/
http://www.omg.org/technology/documents/formal/schedulability.htm
http://lab.msdn.microsoft.com/teamsystem/workshop/sf/default.aspx
http://www.agedis.de/
http://www.agedis.de/
http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
http://www.haifa.il.ibm.com/projects/verification/mdt/tools.html
http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf
http://heim.ifi.uio.no/~janoa/wmdd2004/presentations/alan.pdf

� Other perspectives on Model-Driven Architecture and UML

– Martin Fowler

http://www.martinfowler.com/bliki/ModelDrivenArchitecture.html

– Steve Cook

http://www.bptrends.com/publicationfiles/01-04%20COL%20Dom%20Spec%20Mode
ling%20Frankel-Cook.pdf

– Dave Thomas

http://www.jot.fm/issues/issue_2003_01/column1

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications, and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at the following Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 229

http://www.martinfowler.com/bliki/ModelDrivenArchitecture.html
http://www.martinfowler.com/bliki/ModelDrivenArchitecture.html
http://www.bptrends.com/publicationfiles/01-04%20COL%20Dom%20Spec%20Modeling%20Frankel-Cook.pdf
http://www.jot.fm/issues/issue_2003_01/column1
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

230 Patterns: Model-Driven Development Using IBM Rational Software Architect

Index

Symbols
.NET 41

Numerics
80/20 coverage 25, 105

A
abstraction 8, 24–25, 30, 41, 54, 67, 87, 89
activity diagram 48, 52, 96, 111–114, 156

predefined set 112
adaptability 9
adapter 5, 37, 40
address lookup 121, 124
Another Neat Tool (ANT) 172
application

design 5
developer 32, 46, 48–50, 52–53, 55–57, 68
development 6, 10, 39, 46–47, 56, 85, 87, 127,
129–130, 132–133, 150, 160

additional validation checks 52
architectural style 85
MDD tooling 56

model 5, 8, 13, 15, 38, 49, 67, 85, 89, 108, 110,
140

intermediate implementation model 89
self-help 18

Application pattern 83
architectural

principles 24, 30, 32, 98, 129, 132, 150
style 32–33, 36, 41–42, 48, 52, 84–85, 97, 111,
120, 124, 129–130, 132, 150, 160

consistent use 48
asset-based development (ABD) 73, 81, 90
asynchronous request for information 100
automated patterns 33, 36, 84
automation 6–7, 9, 26, 31–32, 34, 38–40, 55–56,
61, 77–78, 84, 87, 127–128, 130, 132

B
back-end systems 18, 106
best practices 7, 31, 36, 82–83, 150
blueprints 6
© Copyright IBM Corp. 2005. All rights reserved.
build and deployment scripts 8
build scripts 31
business

application 24, 46, 48, 50, 52–53, 55, 83, 100,
220

conceptual structure 48
high-level structure 48
project plan 53, 55
repeating patterns 48

drivers 4
process 18, 48, 50, 53, 76, 84, 86, 100–101,
107, 128
relevance 4
scenario 18
value 4, 83

Business pattern 82
business-driven development (BDD) 73, 84

life cycle 86

C
Certification of Service 65
Christopher Alexander 37
CIB 125
CIM (Computation Independent Model) 75
class diagram 48, 52, 108, 138
collaboration diagrams 48, 52
common patterns and standards 48, 57
component diagrams 52
Composite pattern 83
Computation Independent Model (CIM) 75
conceptual model 39, 54

consistent treatment 39
configuration management 50, 55, 58, 66
consistency 6–7, 9, 27, 39, 41, 46, 66, 79–80, 87
consistent view 18, 40
consumer, service 109
Contract of Behavior 107
contract of behavior 24, 55, 96, 99–100, 107, 109,
112, 116–117, 121, 182
cost control 4

D
deployment descriptors 15, 30–31, 64, 127
 231

designers
knowledge 7
skill 7

development process 31–32, 43, 45, 48, 50, 53,
57–58
direct representation 77–78
documentation 6–7, 10, 31, 49, 56–57, 67, 79–80,
89, 117, 178, 181, 211
domain knowledge 125
domain-specific language (DSL) 78–80

appropriate basis 80

E
Eclipse 162, 220

Resource API 211
effective maintenance 65
EJB

artifacts 15–16
call 123

enterprise architecture 17–20, 25–26, 38, 74, 116
required product list 26
separate business process management layer
20

Enterprise Canonical Data Format (ECDF) 20, 98,
124, 126
enterprise service bus (ESB) 18–23, 25, 27, 69–71,
96, 98–99, 104, 107–108, 110–112, 114, 116, 118,
120–121, 124–128, 161, 174, 178–179, 182,
184–185, 191–192

architecture 20–22, 25–26, 97, 99–100, 107,
126–127, 220

further principle 20
service provider 220

collaboration model 111, 185
program 95–96
services 22, 26, 95–96, 98, 106, 110, 151

collaboration diagram 193
pattern 96, 179, 191

structure 26
technology 26

enterprise-wide MDD frameworks 33, 84
event logging 121, 125
Executable UML 89–90
expertise 6, 8, 10, 35–36, 38–39, 46, 61, 69, 78, 80,
84, 119, 130, 132, 150

capture 10, 36
platform 6

extension points 117, 162

F
facade patterns 24
follow-on project 54
freeform diagram 191–192
front office packages 18

G
Gang-of-Four patterns 13
Getter/Setter pattern 38
governance 19–20, 27, 65, 67, 120, 124
guaranteed delivery 37

H
house style 32, 39
HTML file 178
human-readable name 168, 170, 175, 196

I
IFS (Integration Facade Service) 186
implementation

artifacts 9, 30–31, 33, 36, 43, 76, 85, 88–89, 96,
131–132, 218, 220
class 119–120, 123–124, 176, 179–180, 184
detail 5, 10, 30, 88–89

implementation class required method 120
improved design communication 10
improved stakeholder communication 10
increased productivity 9, 77
increasing complexity 4
information mining 67
integration

pattern 82–83, 96, 98–99, 104, 107, 112, 119,
127–128, 182
pattern, first set of 105
services

invocation 121
model 118

Integration Facade Service (IFS) 186
integration service (IS) 20–25, 62, 96–98, 104–106,
108–109, 111–114, 117, 119, 121–124, 127, 151,
182, 186
integration service call back (ISCB) 21–22, 97
integration service facade (ISF) 21–23, 125
Interface pattern 13–14
internal utility service 97
IT

development 4
232 Patterns: Model-Driven Development Using IBM Rational Software Architect

platform 4
suppliers 19, 26, 126

Itso.mdd.soi.profile 169

J
J2EE 11, 41, 62, 76, 88, 119

project 88
Java

class 15, 120, 124, 167, 177, 184, 211
template files 211

code 15, 31, 38, 49, 56, 76, 121, 167, 181, 195,
211–212, 215

Java Emitter Template (JET) 211
JET (Java Emitter Template) 211
JMS 22, 65, 123
JNDI 124, 207

K
key individuals 4, 36, 87

L
layered asset model 82
layered modelling 42–43
legacy systems 18

M
maintainability 6, 9
MDA (Model-Driven Architecture) 41
message 5, 22, 25, 34, 37, 63, 69, 105–106, 109,
120, 124, 127
Meta-Object Facility (MOF) 79–80
middleware

environment 4
platform 4, 30, 36, 41, 87

middleware platform, variety 4
miscommunication 4
model

application domain oriented 6
as long-term assets 10
element 31, 67, 151, 183, 205–206, 212–213
information presentation 126
message 34

Model Explorer 134, 138, 152, 157, 159, 166,
191–193, 213

model element 213
model transformation 75
model-based testing 8, 68

Model-Driven Architecture (MDA) 41, 71, 73–74, 90
initiative 74
manifesto 76–77

model-driven development (MDD) 6, 8, 10, 13, 16,
59, 61–62, 64, 66, 73–74, 78, 80, 82–84, 86–87,
89–90

approach 1, 5, 9, 15, 17, 19, 25, 27, 30, 36, 51,
54, 60–61, 66, 78–79, 86–87, 89, 91, 127

primary artifacts 66
side effect 37

benefits 9
capability 11
contra-indications 19, 25
critical factor 25
development 1, 3, 5–7, 9, 11, 16, 19–20, 23,
25–27, 29, 38–39, 43, 46, 59–61, 67, 71, 73, 86,
89–90, 126–128, 219
framework 33, 36, 39, 41, 118, 125–127,
129–130, 132, 150, 160
key ideas 43
primary artifacts 61
process 29, 80, 130–131, 160

framework development phases 160
project 1, 10, 43, 46–47, 51, 53, 56–57, 59–62,
64, 66, 69, 71, 87, 219

lifecycle stages 61
plan 56
planner 43
planning 51
team 57

suitability 19, 25
tooling

business application 55
explicit investment 57
quality control 55

N
non-interactive method 127

O
Object Management Group (OMG) 70–71, 73–74,
79, 81, 90
Object Modeling Group (OMG)

Model-Driven Architecture 41
off-the-shelf 7, 18, 20, 33
on demand 4, 83–84, 86–87, 90
one-off function 117
one-size-fits-all approach, modelling isn’t 32
 Index 233

open standard 33, 35, 77–79
own transformation, building 15, 161, 194

P
path map 164–165, 170
pattern

Application 83
application 8
authoring view 178
Business 82
Composite 83
facade 24
Gang-of-Four 13
Getter/Setter 38
hierarchy 97, 99, 104, 112, 118, 125, 154
implementation 182
Interface 13–14
language 37–38, 69, 136
library 11, 132, 134, 136–137, 176–178, 181,
186

basic code 179
property settings 179

Runtime 83–84
Patterns for e-business 25, 82–84, 105

layered assest model 82
Platform Independent Model (PIM) 75
Platform Specific Model (PSM) 75
plug-in 52–53, 160, 162, 164, 172, 189, 217–218,
220

ID 168, 172, 175, 196, 217
manifest 171, 176
project 167, 173, 177, 195

default 195
template 194

plugin.xml 169, 171, 179, 182, 189, 201
precise model 6, 30
primary artifact 6, 61–62, 66–67, 88
product mappings 83
program, ESB 95
project planner 43, 59, 61, 219
proof-of-concept 60
provider facade (PF) 21–23, 69, 96–98, 105,
108–109, 114, 116, 119, 122, 125, 182

back-end service provider 21
call 21
service component 140

provider facade call back (PFCB) 21–22
proxy 5, 37

publish-subscribe patterns 37

R
Rational

RSA Report Generator 7
SoDA 7

Rational Software Architect (RSA) 5, 26, 76, 84, 91,
129, 162–163, 165, 169, 173, 178, 182, 185, 202,
211–212, 215, 217, 220, 222

automation extensions 128
help 162, 178, 202, 211
MDD 11
ship 13, 15

Rational Software Modeler (RSM) 11
Rational Unified Process (RUP) 13, 76
RecordPerformance stereotype 156
Redbooks Web site 229
repeatability 10
requester call back facade (RCBF) 21–22, 97
re-use 25, 53–54, 57–58, 64–65, 68, 81–82, 96,
173
runtime

platform 11, 41–42, 48, 50
workbench 213, 215

Runtime pattern 83–84
runtime platform additional artifacts 50

S
self-help applications 18
Service Connection Pattern model structure 193
service consumer 109
service provider 109, 159, 189–190, 207, 220

rule 208
stereotype 189–190

service type pattern variations 112
ServiceAction stereotype 155
service-oriented architecture (SOA) 17–18, 20, 42
service-oriented integration (SOI) 20, 26, 65, 97,
111, 120, 124, 129

architectural style 129
services

component 96, 109, 138
connection pattern 23, 138, 179, 183, 189,
192–193
creation 127
external

provider 69, 96, 98, 106, 109, 114, 125
public interfaces 69
234 Patterns: Model-Driven Development Using IBM Rational Software Architect

requester 21–22, 70, 106, 108–109, 113
process requests 108–109

implementation 20, 26, 55, 85, 97, 111, 119,
150
integration service (IS) 20–25, 62, 96–98,
104–106, 108–109, 111–114, 117, 119,
121–124, 127, 151, 182, 186
provider facade (PF) 21–23, 69, 96–98, 105,
108–109, 114, 116, 119, 122, 125, 182

back-end service provider 21
call 21
call back (PFCB) 21
services component 140

provider facade call back (PFCB) 22
requester call back facade (RCBF) 21–22, 97
service provider 109, 159, 189–190, 207, 220
type 21, 24, 65, 96, 111–112, 151

services implementation expert knowledge 119
services re-use, typical example 96
sketches 6, 30, 79–80
skilled professionals 4
skills availability 4, 39
SOAP 65, 124
SOAP/JMS 65
SoDA 7
software

development 1, 3, 5, 7, 9, 32–33, 38, 46, 53, 56,
60–61, 73, 76, 86, 162

different kinds 33
other aspects 2

life cycle 60, 78–79
model 5, 84, 86–87, 219
services 11, 26, 32, 34, 64, 108, 111, 132,
134–135, 139, 159, 189–190

UML profile 34, 108, 111, 133–134
Software Factory 78
SOI

example 67, 69, 133
example profile 111, 132, 134–135, 151,
154–155, 159, 170

solution
architect 3, 48–49, 52, 55, 76, 219
architecture 48
factory 62
life cycle 59–60, 220

stereotypes 13, 16, 34, 43, 48, 52, 54, 108, 111,
136, 139, 151, 153–156, 158, 165, 189–190, 208
synchronous request for information 100
synchronous update 100–101, 103, 107, 110,

112–113, 128, 138, 220
general requirements 101

System Management Framework 18
system under test (SUT) 71

T
technical architecture 9, 36–37, 129, 132, 141, 150,
160
test artifacts 8, 68
test cases 31, 58, 68, 71
tool chain 11, 49–51, 55, 57, 80

check 56
transform.addByKind 208
transformation

API 202
provider 198
rule 211

U
UMLKindTransform 204–206, 208–209
Unified Modelling Language (UML) 30, 33, 74, 134,
151–152

API 184–185
good understanding 184

class 34, 152, 206–207
course 52
diagram 52
editor 11–12, 162–163, 186
element 152–153, 179, 200, 207
graphical notation 30
model 13, 19, 30, 39, 48, 52–53, 70, 80, 82, 85,
88, 134, 151, 162–163, 182, 185, 190

element 206
object 187
project 191
static and dynamic aspects 70

modelling 5, 19, 30, 52, 70, 74, 125, 134,
151–152, 190
package 186
profile 8, 11, 13, 15, 33–34, 36, 48, 52, 54, 70,
79, 111, 129, 131–132, 134, 139, 150–152, 159,
162–163, 167, 170, 189, 220, 223

appropriate stereotypes 139
profile for software services 111
programming interface 53
visualization 15, 88

use case diagrams 52
utility services 21, 98, 120, 124
 Index 235

V
versioning 56, 60, 62–63, 65

W
Web services 11, 40, 55, 85, 98, 100, 119–120,
123, 125, 222

Business Process Execution Language 85
common transport 100

Web Services Definition Language (WSDL)
119–121, 123–124, 127
WebSphere Application Server 22
WebSphere Business Integration (WBI) 76, 84

Message Broker 19, 22
modeller 76, 84–85
Server Foundation 19

X
XALAN 121
XML

message 120, 124
schema 34, 207

XMLdocument 120–121, 124
236 Patterns: Model-Driven Development Using IBM Rational Software Architect

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Patterns: M
odel-Driven Developm

ent Using IBM
 Rational Softw

are Architect

®

SG24-7105-00 ISBN 0738492884

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Model-Driven
Development Using IBM
Rational Software Architect

Learn how to
automate
pattern-driven
development

Build a model-driven
development
framework

Follow a
service-oriented
architecture case
study

“The convergence of patterns, models and tooling sets the
scene for major increases in application development
productivity by 2010. Now is a good time to get on board.”
Jonathan Adams, Distinguished Engineer,
IBM Academy of Technology

You may read this IBM Redbook for a number of reasons.
Perhaps you are already familiar with the ideas behind
model-driven development (MDD), and you want to learn
about how to put those ideas into practice and how to
convince others in your organization to adopt the approach.
Maybe you heard something about the benefits of MDD but
want to learn more about it before you are convinced that it is
suitable for your project. Or you recently joined an MDD
project and need to understand what it is all about.

This IBM Redbook is written for technical practitioners and
project managers who want to learn more about MDD in
practice. It will help you understand how to put the ideas of
MDD into practice using Unified Modeling Language (UML).
You will learn how to articulate the advantages of MDD to both
project managers and technical colleagues. You will see how
the MDD software life cycle differs from other approaches and
how you can effectively plan and manage an MDD project. If
you are already working on an MDD project, you will learn

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	For solution architects
	For project planners or project managers
	For those working on a project that uses model-driven development
	How this book is organized
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Approach
	Chapter 1. Overview and concepts of model-driven development
	1.1 Current business environment and drivers
	1.2 A model-driven approach to software development
	1.2.1 Models as sketches and blueprints
	1.2.2 Precise models enable automation
	1.2.3 The role of patterns in model-driven development
	1.2.4 Not just code

	1.3 Benefits of model-driven development
	1.4 Model-driven development with IBM Rational Software Architect
	1.4.1 Unified Modeling Language 2.0 editor
	1.4.2 UML profile support
	1.4.3 RSA patterns
	1.4.4 RSA transformations

	1.5 Summary

	Chapter 2. Scenario overview
	2.1 Enterprise architecture
	2.1.1 Suitability for model-driven development
	2.1.2 Contra-indications for model-driven development

	2.2 Integration architecture
	2.2.1 ESB structure

	2.3 Pattern definition
	2.3.1 Interaction behavior patterns
	2.3.2 Individual service patterns
	2.3.3 Suitability for model-driven development
	2.3.4 Contra-indications for model-driven development

	2.4 Automation
	2.4.1 Technical
	2.4.2 Organizational
	2.4.3 Managerial

	2.5 Summary

	Chapter 3. Model-driven development approach
	3.1 Abstraction
	3.2 Precise modeling
	3.3 Automation
	3.4 Architectural style
	3.5 The role of UML
	3.6 Expertise capture
	3.6.1 Logical architecture expertise
	3.6.2 Technical architecture expertise

	3.7 Patterns
	3.8 Quality and consistency
	3.9 Integration
	3.10 Platform independence
	3.11 Layered modeling
	3.12 Modeling of non-functional characteristics
	3.13 Summary

	Chapter 4. Model-driven development project planning
	4.1 The value and cost of model-driven development
	4.2 Understanding the tasks for a model-driven development project
	4.2.1 Descriptions of tasks
	4.2.2 The model-driven development tool chain

	4.3 Planning a model-driven development project
	4.3.1 Using an iterative approach to model-driven development
	4.3.2 Developing model-driven development skills
	4.3.3 Thinking about reuse

	4.4 Quality control for model-driven development tooling
	4.5 Tracking a model-driven development project
	4.6 At the end of the project
	4.7 Summary

	Chapter 5. Model-driven development solution life cycle
	5.1 Introduction to the solution life cycle
	5.2 Model-driven development life cycle
	5.2.1 Create the framework to generate the solution services
	5.2.2 Generate, customize, and test the solution services

	5.3 Model-driven development and versioning
	5.3.1 Versioning and replacement policies

	5.4 Model-driven development and artifact management
	5.4.1 Reuse model artifacts
	5.4.2 Integrity management services
	5.4.3 Deployment support

	5.5 Model-driven development and problem determination
	5.5.1 Tooling versus instrumentation

	5.6 Information mining
	5.7 Testing
	5.7.1 Modeling for testing
	5.7.2 Applying test patterns
	5.7.3 Modeling using the UML testing profile

	5.8 Summary

	Chapter 6. Model-driven development in context
	6.1 OMG and Model-Driven Architecture
	6.2 MDA models
	6.2.1 IBM and MDA

	6.3 Software Factories and domain-specific languages
	6.3.1 UML and DSLs

	6.4 Asset-based development
	6.5 Pattern-driven development and IBM Patterns for e-business
	6.5.1 IBM Patterns for e-business

	6.6 Business-driven development
	6.7 Model-driven development and On Demand Business
	6.8 Model-driven development and middleware
	6.9 Visualization
	6.10 Executable UML
	6.11 Summary

	Part 2 Implementation
	Chapter 7. Designing patterns for the scenario
	7.1 Relationship to the project plan
	7.2 Overview of pattern design
	7.3 Architecture patterns
	7.4 Contracts of behavior
	7.4.1 Contract of behavior for synchronous updates
	7.4.2 General requirements for synchronous update

	7.5 Integration patterns
	7.6 Applying a pattern to create a high-level model
	7.6.1 The pattern
	7.6.2 The model

	7.7 Detailing the initial model with service patterns
	7.7.1 Service patterns: Activity diagrams
	7.7.2 Integration services

	7.8 RSA transformation
	7.8.1 Implementing the integration facade
	7.8.2 Implementing the integration service
	7.8.3 Implementing the provider facade

	7.9 Use of the framework
	7.9.1 Presentation of model information to users
	7.9.2 Service creation

	7.10 Summary

	Chapter 8. Applying model-driven development with Rational Software Architect
	8.1 An overview of the Model-driven development process in RSA
	8.1.1 Framework development
	8.1.2 Application development

	8.2 RSA model-driven development framework for SOI
	8.3 Application development
	8.3.1 Installing the framework
	8.3.2 Creating a model and apply the profiles
	8.3.3 Applying patterns
	8.3.4 Applying transformations
	8.3.5 Testing the generated code
	8.3.6 Application development summary

	8.4 Framework development
	8.4.1 Developing the architectural style
	8.4.2 Creating a UML profile
	8.4.3 Implementing sample components
	8.4.4 Developing patterns and transformations

	8.5 Summary

	Chapter 9. Extending Rational Software Architect
	9.1 Introduction to implementing patterns and transformations to RSA
	9.2 Setup: Enabling Eclipse Developer
	9.3 Deploying UML profiles
	9.3.1 Defining a path map
	9.3.2 Releasing the profile
	9.3.3 Adding the profile to a plug-in
	9.3.4 Deploying the plug-in

	9.4 Implementing patterns
	9.4.1 Getting started
	9.4.2 Defining a pattern
	9.4.3 Pattern implementation
	9.4.4 Testing the pattern
	9.4.5 Publishing patterns

	9.5 Implementing a transformation
	9.5.1 Creating a new plug-in with a transformation
	9.5.2 Transformation API
	9.5.3 Implementing the root transformation
	9.5.4 Implementing the transformation rules
	9.5.5 Creating and modifying files in the RSA workspace
	9.5.6 Testing the transformation

	9.6 Launching a Run-time Workbench
	9.7 Deploying plug-ins
	9.8 Using a RAS repository
	9.9 Summary

	Chapter 10. Conclusion
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

