

ibm.com/redbooks

WebSphere Application
Server - Express V6
Developers Guide and
Development Examples

Bill Moore
Doug Grove

Mara Zandina Hernandez
Ansgar Hugo
Arinze Izuora

Steve Moga

Planning and designing your
applications and databases

Developing and testing using
Rational Web Developer

Building a sample
application

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server - Express V6
Developers Guide and Development Examples

October 2005

International Technical Support Organization

SG24-6500-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2005)

This edition applies to Version 6 of WebSphere Application Server - Express.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xviii
Comments welcome. xix

Part 1. The development process . 1

Chapter 1. Introduction . 3
1.1 Our objectives . 4
1.2 The focus of this redbook . 5
1.3 How to use this book . 7

Chapter 2. Development process. 11
2.1 Development process basics . 12

2.1.1 Definition of a development process . 12
2.1.2 Importance of a development process . 12
2.1.3 Realization of a development process . 13
2.1.4 Development process principles . 14

2.2 Starting a project . 16
2.2.1 Understanding your business today . 16
2.2.2 Where do you want to go? . 17
2.2.3 An initial roadmap . 17

2.3 Understanding and planning a project. 17
2.4 Building a solution . 17
2.5 Project hand-over . 18
2.6 Real estate application architecture . 18

2.6.1 Component-based architecture. 19
2.6.2 Layered design . 19
2.6.3 Package structure . 20
2.6.4 Naming conventions . 20

2.7 Application architecture . 21
2.8 Overview of the architecture . 22

2.8.1 Component-based development . 22
2.8.2 Layered application design . 24
2.8.3 Usage of design patterns . 25

2.9 Component architecture . 26
© Copyright IBM Corp. 2005. All rights reserved. iii

2.9.1 PropertyCatalog . 27
2.9.2 News . 27
2.9.3 E-mail . 27
2.9.4 InterestList. 28
2.9.5 Reporting. 28
2.9.6 User. 28
2.9.7 Dependencies between components . 29

2.10 Layered architecture . 30
2.10.1 Presentation layer . 30
2.10.2 Controller layer . 31
2.10.3 Business facade layer . 31
2.10.4 Domain layer . 31
2.10.5 Data access layer . 31

Chapter 3. Product overview . 33
3.1 The WebSphere product family. 34

3.1.1 The WebSphere Application Server family . 35
3.2 WebSphere Application Server - Express V6 . 35

3.2.1 The WebSphere Application Server highlights 37
3.2.2 The development tool . 38
3.2.3 Rational Developer supported platforms and databases 42
3.2.4 Rational Web Developer V6 product packaging 43
3.2.5 Rational Web Developer tools. 43
3.2.6 WebSphere Application Server licensing and platforms 49
3.2.7 New in WebSphere Application Server - Express V6 51
3.2.8 Physical Packaging . 57

3.3 WebSphere Application Server architecture . 58
3.4 Application server configurations . 58

3.4.1 Standalone server configuration . 59
3.4.2 Distributed server configuration . 60

3.5 Cells, nodes and servers. 61
3.6 Servers . 63

3.6.1 Application server . 63
3.6.2 Clusters . 63
3.6.3 JMS servers (V5) . 64
3.6.4 External servers . 64

3.7 Containers . 65
3.7.1 Web container . 65
3.7.2 EJB container . 66
3.7.3 Client application container . 67

3.8 Application server services . 67
3.8.1 JCA services . 68
3.8.2 Transaction service . 68
iv WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.8.3 Dynamic cache service . 69
3.8.4 Message listener service. 70
3.8.5 Object Request Broker service . 71
3.8.6 Admin service . 71
3.8.7 Name service . 72
3.8.8 PMI service . 74
3.8.9 Security service. 75

3.9 Data Replication Service (DRS) . 75
3.10 Virtual hosts. 76
3.11 Session management . 76

3.11.1 HTTP Session persistence . 77
3.11.2 Stateful session EJB persistence . 78

3.12 Web services. 79
3.12.1 Enterprise services (JCA Web services) . 81
3.12.2 Web service client . 82
3.12.3 Web service provider . 82
3.12.4 Enterprise Web Services. 82
3.12.5 IBM WebSphere UDDI Registry . 83
3.12.6 Web Services Gateway. 83

3.13 Service integration bus . 85
3.13.1 Application support . 87
3.13.2 Service integration bus and messaging . 87
3.13.3 Web services and the integration bus . 89

3.14 Security . 90
3.14.1 User registry . 92
3.14.2 Authentication . 92
3.14.3 Authorization . 94
3.14.4 Security components. 94
3.14.5 Security flows . 96

3.15 Resource providers . 97
3.15.1 JDBC resources . 98
3.15.2 Mail providers . 99
3.15.3 JCA resource adapters . 100
3.15.4 URL providers . 101
3.15.5 JMS providers . 101
3.15.6 Resource environment providers . 102

3.16 Workload management . 103
3.17 High availability . 105
3.18 Administration . 106

3.18.1 Administration tools. 106
3.18.2 Configuration repository . 107
3.18.3 Centralized administration. 108

3.19 Application flow . 110
 Contents v

3.20 Developing and deploying applications . 111
3.20.1 Application design . 112
3.20.2 Application development . 112
3.20.3 Application packaging . 113
3.20.4 Application deployment . 113
3.20.5 WebSphere Rapid Deployment. 114

3.21 Technology support summary . 115

Chapter 4. Getting started . 119
4.1 Product packaging. 120
4.2 Rational Web Developer . 120
4.3 Installing WebSphere Application Server - Express 121

4.3.1 Hardware requirements. 121
4.3.2 Installing using the launchpad. 122
4.3.3 Install WebSphere Application Server - Express 124
4.3.4 Using the first steps console . 136

4.4 Administration basics . 142
4.4.1 Starting and stopping the server . 142
4.4.2 Starting the WebSphere Administrative Console 143

4.5 Installing Rational Web Developer . 149
4.5.1 Express Application Server and Rational Web Developer 158

4.6 Installing DB2 . 161
4.7 Deploying the sample application . 174

4.7.1 Running the sample database script . 174
4.7.2 Creating the JDBC resources . 176
4.7.3 Configuring JMS . 187
4.7.4 Configuring LOG4J . 187
4.7.5 Installing the Sal404 application EAR . 190

4.8 Testing the Sal404 sample application . 196
4.9 Installing Sal404 code in Rational Web Developer 202

4.9.1 Importing project interchange files . 202
4.9.2 Test Sal404 with Rational Software Development Platform 204

Chapter 5. Requirements . 209
5.1 Application overview . 210
5.2 Requirements . 212

5.2.1 Bidding system . 212
5.2.2 Catalog search and news feed Web services 213
5.2.3 User maintenance with Java Message Service 213
5.2.4 Use JavaServer Faces for the news component 213
5.2.5 Reference data component. 213

5.3 Specification . 214
5.3.1 Bidding system . 214
vi WebSphere Application Server - Express V6 Developers Guide and Development Examples

5.3.2 Reference data component. 216
5.3.3 Session management . 217
5.3.4 Session data . 219

Part 2. Development examples . 221

Chapter 6. Web site development . 223
6.1 Introduction to Web applications . 224

6.1.1 Concepts and technologies. 224
6.1.2 Web development tooling . 229
6.1.3 Web perspective and views . 230
6.1.4 Web projects . 230
6.1.5 Web Site Designer . 231
6.1.6 Page Designer . 232
6.1.7 Page templates . 233
6.1.8 CSS Designer . 233
6.1.9 Javascript Editor . 233
6.1.10 WebArt Designer. 233
6.1.11 Animated GIF Designer. 234
6.1.12 File creation wizards . 234
6.1.13 Our sample Web site project . 235

Chapter 7. JavaServer Faces . 239
7.1 Introduction to JSF . 240

7.1.1 Model-view-controller architecture . 240
7.1.2 JSF Web application structure . 242
7.1.3 JSF support in Rational Web Developer . 243

7.2 Comparing JSF and Struts . 244
7.2.1 Validation . 246
7.2.2 XML configuration management . 246
7.2.3 Templating . 247

7.3 Introduction to Service Data Objects. 247
7.3.1 Rational Web Developer support for SDO 249

7.4 Design of the JSF SDO sample . 250
7.4.1 JSF template . 252

7.5 Implementing the JSF application . 253
7.5.1 Creating the JSP fragments . 253
7.5.2 Creating the template . 255
7.5.3 Creating the home page . 257
7.5.4 Creating the About Us page . 258
7.5.5 Creating the news list page. 258
7.5.6 Preparing the news list page for selection and updates 262
7.5.7 Creating the news item details page . 265
7.5.8 Creating the news item add page . 267
 Contents vii

7.5.9 Implementing news item selection . 271
7.5.10 Implementing news item delete. 272
7.5.11 Implementing news item update using SDO 274
7.5.12 Implementing news item update using DAO 276
7.5.13 Applying the template to the news application 279
7.5.14 Running the JSF application . 281
7.5.15 Securing news update for administrators 281

7.6 JSF and SDO control files . 282
7.6.1 JSF control files. 282
7.6.2 SDO control files . 284

7.7 SDO API . 286
7.7.1 SDO calls generated into the page code class 286
7.7.2 SDO API of the data object . 288

Chapter 8. Service Data Objects . 291
8.1 SDO technology . 292
8.2 SDO architecture. 293

8.2.1 Data mediator services . 293
8.2.2 Data object . 293
8.2.3 Data graph . 294
8.2.4 Change summary . 294
8.2.5 Properties, types and sequences . 294

8.3 SDO requirements. 294
8.4 SDO versus other technologies. 296

8.4.1 SDO and WebSphere Data Objects . 296
8.4.2 SDO and JDO . 296
8.4.3 SDO and EMF. 296
8.4.4 SDO and JAXB . 297

8.5 SDO example . 297
8.5.1 Examining the generated SDO code. 297
8.5.2 Implementing SDO-based data access. 298

Chapter 9. Enterprise JavaBeans . 311
9.1 Why use Enterprise JavaBeans? . 312
9.2 The EJB architecture. 312

9.2.1 EJB server. 313
9.2.2 EJB container . 314
9.2.3 EJB components . 314
9.2.4 Using stateless session EJBs . 316
9.2.5 Create a database connection . 329
9.2.6 Entity beans . 335

Chapter 10. Java Message Service . 359
10.1 Messaging concepts . 360
viii WebSphere Application Server - Express V6 Developers Guide and Development Examples

10.1.1 Loose coupling . 360
10.1.2 Messaging types . 361
10.1.3 Destinations . 361
10.1.4 Messaging models . 362
10.1.5 Messaging patterns. 363

10.2 Java Message Service API . 366
10.2.1 JMS API history. 366
10.2.2 JMS providers . 367
10.2.3 JMS domains . 367
10.2.4 JMS administered objects . 367
10.2.5 JMS and JNDI . 368
10.2.6 JMS connections. 370
10.2.7 JMS sessions . 371
10.2.8 JMS messages . 372
10.2.9 JMS message producers . 374
10.2.10 JMS message consumers. 374
10.2.11 JMS exception handling . 378
10.2.12 Application Server facilities . 380
10.2.13 JMS and J2EE . 380

10.3 Messaging in the J2EE Connector Architecture 381
10.3.1 Message endpoints . 383
10.3.2 MessageEndpointFactory . 384
10.3.3 Resource adapters . 384
10.3.4 JMS ActivationSpec JavaBean . 386
10.3.5 Message endpoint deployment . 389
10.3.6 Message endpoint activation. 389
10.3.7 Message delivery . 390
10.3.8 Administered objects. 391

10.4 Message Driven Beans . 392
10.4.1 Message Driven Bean types . 392
10.4.2 Client view of a Message Driven Bean . 393
10.4.3 Message Driven Bean implementation . 393
10.4.4 Message Driven Bean life cycle . 395
10.4.5 Message Driven Beans and transactions 397
10.4.6 Message Driven Bean activation configuration properties 401
10.4.7 Associating a Message Driven Bean with a destination 403
10.4.8 Message Driven Bean best practices . 405

10.5 Service integration bus . 407
10.6 Setup JMS the environment . 408

10.6.1 Set up the SIB . 409
10.6.2 Setup the default messaging. 414
10.6.3 Data stores . 421
10.6.4 Databases, user names and schema names 423
 Contents ix

10.6.5 Security . 425
10.7 JMS in the Sal404 application . 426

10.7.1 Sending a message . 426
10.7.2 Receiving a message . 428

10.8 Implementation details . 431
10.8.1 Sending a message . 431
10.8.2 Receiving a message . 437

10.9 References and resources . 444

Chapter 11. Struts . 447
11.1 Struts overview . 448
11.2 MVC design pattern. 448
11.3 Model-view-controller (MVC) pattern with Struts. 450
11.4 Rational Application Developer support for Struts. 453
11.5 Why we use Struts . 454
11.6 Struts validator framework. 455
11.7 Struts validation sample . 455

11.7.1 Using the Validator in forms and JSPs . 464
11.8 Templating and Struts . 466

11.8.1 Using templates . 468
11.9 Struts modules . 472

Chapter 12. Web services . 475
12.1 Web services overview . 476

12.1.1 Service-oriented architecture (SOA) . 476
12.1.2 Web services as an SOA implementation. 477
12.1.3 Properties of Web services . 479
12.1.4 Related Web services standards . 481

12.2 Web services tools . 483
12.2.1 Creating a Web Service from existing resources 484
12.2.2 Creating a skeleton Web service . 485
12.2.3 Client development . 485
12.2.4 Testing tools for Web services . 485

12.3 Extend the sample application using Web services 486
12.3.1 Implementing the property search Web service 486
12.3.2 Implementing News Web services . 504

Chapter 13. Database design . 527
13.1 Database features . 528
13.2 The Sal301 data model . 530
13.3 The new data model . 532

Chapter 14. Code standards and quality. 535
14.1 Coding guidelines . 536
x WebSphere Application Server - Express V6 Developers Guide and Development Examples

14.2 Common rules . 536
14.2.1 Setup basic code templates for Java . 537
14.2.2 CVS keyword substitution settings . 540

14.3 Structure . 541
14.3.1 How to organize your projects. 541
14.3.2 JAR file placement . 542
14.3.3 Naming conventions . 545
14.3.4 Using CVS. 546

Chapter 15. Bidding component . 549
15.1 Bidding component specification. 550
15.2 Building the bidding component . 550

15.2.1 Preparing the workspace . 550
15.2.2 Changing the PropertyCatalog component 555
15.2.3 Presentation layer . 556
15.2.4 Controller layer . 588
15.2.5 Business facade layer . 592
15.2.6 Domain layer . 593
15.2.7 Data access layer . 595
15.2.8 Putting everything together . 607
15.2.9 Testing the bidding component . 610

Appendix A. Additional material . 617
Locating the Web material . 617
Using the Web material . 617

System requirements for downloading the Web material 618
How to use the Web material . 618

Abbreviations and acronyms . 621

Related publications . 625
IBM Redbooks . 625
Other publications . 625
Online resources . 626
How to get IBM Redbooks . 629
Help from IBM . 629

Index . 631
 Contents xi

xii WebSphere Application Server - Express V6 Developers Guide and Development Examples

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

®
AIX®
Balance®
CICS®
ClearCase®
Cloudscape™
DB2 Universal Database™
DB2®
Domino®
Eserver®
Eserver®
ibm.com®
IBM®
IMS™

Informix®
iSeries™
Lotus®
Net.Data®
OS/390®
Perform™
pSeries®
Rational Rose®
Rational Unified Process®
Rational®
Redbooks (logo)™
Redbooks (logo) ™
Redbooks™
RUP®

S/390®
SAA®
server®
Tivoli®
TME®
WebSphere®
Workplace Collaborative
Learning™
Workplace™
XDE™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, Javadoc, JavaBeans, JavaMail,
JavaScript, JavaServer, JavaServer Pages, JDBC, JDK, JMX, JSP, JVM, J2EE, J2SE, Solaris, Sun, Sun
Java, Sun Microsystems, Sun ONE, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xiv WebSphere Application Server - Express V6 Developers Guide and Development Examples

Preface

This IBM Redbook is a practical guide for developing Web applications using the
Rational Software Development Platform. We use the Rational Web Developer
development environment that is provided as part of WebSphere Application
Server - Express V6 to develop a sample Web application targeted to the
WebSphere Application Server - Express runtime platform. We discuss a sample
scenario based on realistic requirements for small and medium-sized customers,
and provide a guide for the development of this scenario.

Our focus is on describing a simple process that allows nontechnical readers to
understand and participate in the development of Web applications using
Rational Web Developer. Our target runtime environment is the Express
Application Server so we use the Rational Web Developer development
environment that is part of the WebSphere Application Server - Express
installation. WebSphere Application Server - Express, V6 offers a robust,
easy-to-use Eclipse technology-based development environment that allows
developers to create, build, and maintain dynamic Web sites, applications, and
Web services. The development tools offer the same development capabilities
as Rational Web Developer with the exception that they are restricted to
deployment only to WebSphere Application Server - Express.
© Copyright IBM Corp. 2005. All rights reserved. xv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO, Raleigh
Center.

Bill Moore is a WebSphere specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches classes on
WebSphere and related topics. Before joining the ITSO, Bill was a Senior AIM
Consultant at the IBM Transarc laboratory in Sydney, Australia. He has 19 years
of application development experience on a wide range of computing platforms
and using many different coding languages. He holds a Master of Arts degree in
English from the University of Waikato, in Hamilton, New Zealand. His current
areas of expertise include application development tools, object-oriented
programming and design, and e-business application development.

Doug Grove is a Lead Developer and Principal Architect at warpFactor Inc., a
Raleigh NC based company that specializes in Java™ and Web service
development. Doug has designed and implemented several WebSphere

Note: Our redbook is based on the existing Redbook WebSphere Application
Server - Express: A Development Example for New Developers, SG24-6301
which was written for WebSphere Application Server - Express V5. Our
example application was initially developed for this redbook. We do not
redevelop the example from scratch in our new Redbook. Instead, we
concentrate on examining new features of the WebSphere Application Server
- Express V6 runtime and of the Rational Web Developer development
environment.

During the development of this redbook, we mainly used the Rational Web
Developer development environment provided with WebSphere Application
Server - Express, but you can easily migrate to more advanced configurations
of WebSphere Application Server and Rational Software Development
Platform when you require more sophisticated capabilities. As with all
applications developed with WebSphere Application Server - Express V6, our
redbook examples can run without alteration in more advanced configurations
of WebSphere Application Server, and can be developed in other
configurations of the Rational Software Development Platform such as
Rational Web Developer and Rational Application Developer.

This means that your investment in the skills acquired with WebSphere
Application Server - Express is protected when migrating to these other
products.
xvi WebSphere Application Server - Express V6 Developers Guide and Development Examples

e-commerce projects. He specializes in the design and implementation of LDAP
directory services. In his twenty years of professional experience, he has worked
primarily for the financial and telecoms sectors. He is also typically involved with
the specification, building, and deployment of hardware environments

Mara Zandina Hernandez is an IT-Specialist for IBM Global Services in Mexico.
She provides technical support, problem resolution, migration services, and
performance tuning for IBM customer sites.

Ansgar Hugo is an IT-Architect for IBM Global Services in Germany. He has six
years of experience in application design and development focusing Java and
J2EE™ applications. He holds a degree in electrical engineering from the
University of Darmstadt in Germany. His areas of expertise include design and
implementation of Web based solutions and Web content management systems
as well as development with WebSphere and WebSphere Portal.

Arinze Izuora is a Software Engineer at the IBM Dublin Software Lab. Ireland.
He has been working for IBM since 2003 and works as part of the Lotus
Workplace Collaborative Learning team. Arinze has extensive experience
working with relational database management systems and holds a Masters
degree in Embedded Systems from the University of Manchester Institute of
Science and Technology, England, UK.

Steve Moga is the Senior Technical programmer analyst at the Puget Sound
Blood Center in Seattle, WA With over 16 years of development on the iSeries
platform, his current areas of expertise include iSeries ILE, APIs and Web
application development. He is a speaker at user groups on Net.Data and CGI
programming on the iSeries platform.
 Preface xvii

The authors: Mara Zandina Hernandez, Ansgar Hugo, Steve Moga, Bill Moore, Doug Grove, Arinze Izuora

Thanks to the following people or their contributions to this project:

John Ganci
Carla Sadtler
International Technical Support Organization (ITSO), Raleigh Center, USA

Kevin Haverlock
IBM Raleigh, USA

Neil Weightman
IBM Farnborough, UK

Ueli Wahli
ITSO, San Jose Center, USA

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
xviii WebSphere Application Server - Express V6 Developers Guide and Development Examples

with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx WebSphere Application Server - Express V6 Developers Guide and Development Examples

Part 1 The
development
process

This part of the book contains an overview of the features provided by
WebSphere Application Server - Express, and describes a development process
which can be used to develop dynamic Web applications using the Rational
Software Development Platform.

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 1. Introduction

This chapter describes our objectives, our focus, and who benefits from the
contents of this redbook. We introduce the material covered by the book as well
as a description of the WebSphere Application Server - Express users who
benefit from its contents.

This chapter covers the following topics:

� 1.1, “Our objectives” on page 4
� 1.2, “The focus of this redbook” on page 5
� 1.3, “How to use this book” on page 7

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Our objectives
This book is designed to provide an overview the WebSphere Application Server
- Express platform and the Rational Software Development Platform. As an
overview of the material, this book will explain concepts in terms that attempt to
avoid technical complexity.

The book provides a systematic approach to the Web application development
process, as well as a step-by-step sample for you to see the creation or addition
of commonly used areas of functionality for Web applications.

Because WebSphere Application Server - Express and the development tooling
have evolved and changed from WebSphere Application Server - Express V5.0
and WebSphere Studio to WebSphere Application Server - Express V6.0 and
Rational Software Development Platform, it is often difficult to keep up with the
expanding features in the products. We developed the examples in this redbook
to provide practical development examples of the key new technologies available
in WebSphere Application Server - Express.

We have not built a new application, but rather we have expanded the
development example previously built in the IBM Redbook WebSphere
Application Server - Express: A Development Example for New Developers,
SG24-6301. Reading SG24-6301 is not mandatory to understand the information
contained in our redbook because our example code for this book will run on its
own. However, if you want to gain a greater understanding of the development
process used to originally create our example code, refer to WebSphere
Application Server - Express: A Development Example for New Developers,
SG24-6301.

Application names: In order to distinguish between the sample application
implemented for the redbook WebSphere Application Server - Express: A
Development Example for New Developers, SG24-6301 and the updated
sample application developed in our current redbook, we use standard names
to refer to the sample applications throughout this redbook. When we refer to
the sample application implemented for the redbook WebSphere Application
Server - Express: A Development Example for New Developers, SG24-6301,
we use the name Sal301 application. When we refer to the updated sample
application developed in our current redbook, we use the name Sal404
application.
4 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1.2 The focus of this redbook
This book is intended for technical users familiar with Web application
development who are looking for information how the technical features of
WebSphere Application Server - Express have changed and for new means to
solve business problems. We have endeavored to give enough background
information to understand the technologies involved without overwhelming the
reader with too much technical reference material.

This redbook is an update of the existing redbook WebSphere Application Server
- Express: A Development Example for New Developers, SG24-6301 which
covered WebSphere Application Server - Express Version 5. This redbook
focuses on the development of a Web application using a simple generic set of
requirements to illustrate the principles of good Web application development,
rather than examine problems particular to a business domain. In WebSphere
Application Server - Express: A Development Example for New Developers,
SG24-6301 we used a component-based development approach, and detailed
the steps to develop each component of our application, using the same
techniques for each component. This enabled our readers to use the same
techniques and approach as a template for developing components in their own
applications. We recommend that you be familiar with the contents of
WebSphere Application Server - Express: A Development Example for New
Developers, SG24-6301 and that you are familiar with the sample application
from the original redbook. This is because we use the sample development
approach in our new redbook and all the new samples are built on top of the
existing sample application from WebSphere Application Server - Express: A
Development Example for New Developers, SG24-6301.

A key difference between the WebSphere Application Server - Express: A
Development Example for New Developers, SG24-6301 redbook and our current
book is that we focus the new redbook on a specific subset of the technology
provided by WebSphere Application Server - Express Version 6. The features
and functions we discuss are chosen because they are new to version 6 of
Express Application Server and we do not attempt to develop a new end to end
sample application.

WebSphere Application Server - Express: A Development Example for New
Developers, SG24-6301 categorized Web application developers using
WebSphere Application Server - Express and WebSphere Studio into three
general groups. Table 1-1 on page 6 gives an overview of these user groups.
 Chapter 1. Introduction 5

Table 1-1 User groups

� Group one users

These are business users that have a primary role in a business that is
nontechnical. While the users’ primary role is nontechnical, they can be
tasked with design, development and deployment tasks either to build a new
application, update an existing set of static pages using dynamic functionality,
or redesign an existing dynamic Web application to add functionality or
optimize performance. A group one user generally has a working knowledge
of HTML, page layout, and Web authoring tools. Users in group one are
referred to as nontechnical users.

� Group two users

These users usually have Web application development as part of their
primary business role. They can be tasked with creation of a Web application
or maintenance and the addition of functionality to an existing Web
application. Group two users are likely to be primarily focused on client-side
programming. The applications they develop will be focused on end-user
requirements. A group two user can also be responsible for monitoring the
availability of a Web application and its general maintenance. A group two
user is an HTML expert and uses DHTML to add functionality to Web pages.
This user has the capability to update or make changes to server-side code
(such as JavaServer Pages(JSP™) and Enterprise JavaBeans(EJB™), and
Java Servlets), but they normally do not author server-side code.

� Group three users

These users have Web application development and sever-side development
and maintenance as their primary business role. These users are involved
with Web application development at all phases of the development process,
but they are focused on server-side development, and develop code (such as
JavaServer Pages Java Servlets and Enterprise JavaBeans), which is used
by other developers. Users in groups two and three are referred to as
technical users.

User group User description

Group one A business user who has a primary
business role that is nontechnical

Group two A user who has client-side and HTML
Web application development as part of
their primary business role

Group three A user who has Web application
development and sever-side development
and maintenance as their primary
business role
6 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The focus of the WebSphere Application Server - Express V5.0.2 Developer
Handbook, SG24-6555 was the user described in group one. It did not assume
experience and technical background in the principles of Web application
development, and associated protocols and technologies.

Group two and three users are still addressed because the book introduces the
WebSphere Application Server - Express platform and WebSphere Studio and
describes development in the form of development best practices for Web
applications.

Our current redbook is still be useful to nontechnical users, but its target
audience is intended to be technical users wanting to understand the new
features of WebSphere Application Server - Express Version 6 and of the
Rational Software Development Platform. Our redbook is an overview and guide
rather than a detailed technical reference. This is because in version 6
WebSphere Application Server - Express is functionally equivalent to
WebSphere Application Server, so detailed reference material can be found in
the redbooks:

� WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

� Rational Application Developer V6 Programming Guide, SG24-6449

1.3 How to use this book
This redbook is organized in two parts.

Part 1, “The development process” on page 1 is a summary of the Web
application development process that was used to create the original sample
application in WebSphere Application Server - Express V5.0.2 Developer
Handbook, SG24-6555. It also provides an overview of WebSphere Application
Server - Express Version 6 and of Rational Software Development Platform. It
contains the following chapters:

� Chapter 1, “Introduction” on page 3

This is an introduction to the material covered in our redbook.

� Chapter 2, “Development process” on page 11

This chapter provides a summary of the Web application development
process originally described in WebSphere Application Server - Express
V5.0.2 Developer Handbook, SG24-6555. We discuss how to plan and build
 Chapter 1. Introduction 7

reliable and scalable Web applications and provide an overview of the
architecture used by our sample application.

� Chapter 3, “Product overview” on page 33

This chapter provides an overview of WebSphere Application Server -
Express and of the WebSphere platform. We also discuss the Rational
Software Development Platform.

� Chapter 4, “Getting started” on page 119

This chapter describes the installation and configuration of WebSphere
Application Server - Express and of the Rational Software Development
Platform. We provide an overview of common tasks performed with the
Rational Software Development Platform

� Chapter 5, “Requirements” on page 209

This chapter provides details of the requirements we used when creating the
samples in our redbook.

Part 2, “Development examples” on page 221 describes development examples
using our redbook sample solution, as a way to demonstrate new features and
functions of WebSphere Application Server - Express. This part includes the
following chapters:

� Chapter 6, “Web site development” on page 223

This chapter describes the Web development tools provided with the Rational
Software Development Platform and we focus on the Web site navigation and
Web templates

� Chapter 7, “JavaServer Faces” on page 239

This chapter describes JavaServer Faces(JSF) and we provide examples of
how to use JSF in our redbook solution.

� Chapter 8, “Service Data Objects” on page 291

In this chapter we describe Service Data Objects(SDO) and examine how
SDO technology could provide the data access layer for our existing redbook
sample solution.

� Chapter 9, “Enterprise JavaBeans” on page 311

This chapter introduces Enterprise JavaBeans(EJB) and we discuss when
EJBS could be used in our sample application.

� Chapter 10, “Java Message Service” on page 359

In this chapter we discuss the Java Message Service(JMS) and its usage in
WebSphere Application Server - Express. After talking about the basic
concepts of messaging and JMS we explain how we used JMS based
messaging in our sample application
8 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Chapter 11, “Struts” on page 447

The redbook sample application developed for WebSphere Application
Server - Express: A Development Example for New Developers, SG24-6301
made extensive use of the Struts Web application framework. In Chapter 11,
“Struts” on page 447 we provide an overview of the Struts framework so that
you will better understand it’s use in our sample application. We also examine
the support provided in Rational Software Development Platform for building
Struts applications.

� Chapter 12, “Web services” on page 475

In this chapter we introduce Web services technology and provide examples
of developing Web services using the Rational Software Development
Platform.

� Chapter 13, “Database design” on page 527

In this chapter we discuss the existing data model, database design, and SQL
queries inherited from the sample application developed for the redbook
WebSphere Application Server - Express: A Development Example for New
Developers, SG24-6301. We discuss and document an improved database
design.

� Chapter 14, “Code standards and quality” on page 535

This chapter examines the need for coding standards and quality controls
when implementing Web applications. We provide some example standards
and discuss how you might make use of these within your development
projects.

� Chapter 15, “Bidding component” on page 549

In this chapter, we show you how to implement a bidding component for the
SAL404Realty sample application.
 Chapter 1. Introduction 9

10 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 2. Development process

This chapter includes development process and application architecture material
from the original redbook WebSphere Application Server - Express: A
Development Example for New Developers, SG24-6301. We have included this
material in our new book so that you can understand the development of the
original sample application. It is important that you understand not only the
sample process and architecture, but also because it remains important to
choose a good process and architecture for any new Web applications.

We discuss a development process for building small-scale Web applications
using Rational Software Development Platform and WebSphere Application
Server - Express. Although we borrow ideas and principles from other more
formal processes, ours is only offered here only as an aid. If you find this
information useful and want to follow a more formal process, see:

� The Rational Unified Process(RUP)

http://ibm.com/software/awdtools/rup/index.html

� Extreme programming resources

http://www.xprogramming.com/

� Extreme programming introduction

http://www.extremeprogramming.org/

� The Agile alliance

http://www.agilealliance.org

2

© Copyright IBM Corp. 2005. All rights reserved. 11

http://www.xprogramming.com/
http://www.extremeprogramming.org/
http://ibm.com/software/awdtools/rup/index.html
http://www.agilealliance.org

2.1 Development process basics
In this section we explain the basics of a development process, provide a
definition of the development process, identify the reasons that make it important
from both the technical and the business perspective, describe the elements
necessary to realize it, and finally define the concepts behind it.

2.1.1 Definition of a development process
A development process is the set of activities needed to move from a business
concept to a tangible working software system. More specifically:

� It serves as a guide for all the participants: customers, users, developers, and
managers.

� It helps identifying the current state of a business in terms of infrastructure,
people, and skills.

� It provides a roadmap for building the system.

� It defines who is doing what, when, and how to build a new software system
or enhance an existing software system.

� It provides guidance to the order of a team’s activities.

� It directs the task of individual developers and the team as a whole.

� It specifies what artifacts should be developed.

� It offers criteria for monitoring and measuring a project’s products and
activities.

2.1.2 Importance of a development process
It is a well known fact that a high percentage of software development projects
fail. W. Wayt Gibbs (“Software’s Chronic Crisis,” Sept. 1994, Scientific American)
estimated that:

� On average, large projects take 50% longer than originally estimated.
� 75% of large projects are operational failures.
� 25% of large projects are cancelled.

Most of the time, the success of a project is relative to the development process
being used during its life cycle. A software development process should be lean
enough to be easily adopted by the people involved in a project, and complex
enough to be able to describe, define, and monitor a project from both the
technical and the business perspective. When such a development process is in
place, it offers the following benefits.
12 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Business perspective benefits
Using a development process provides the following business benefits:

� The project is broken down into manageable phases, each with a clear entry
and exit point.

� The current state of the business in terms of existing hardware and software,
the people and their skills, is understood and documented honestly. This
documentation plays the role of a tangible starting point for the project life
cycle.

� The business and technical objectives for the project are documented clearly
complimenting the existing state of business documentation, and hence,
creating a set of documents detailing both the current business state and the
desired business state.

� An initial roadmap is created outlining all the activities and roles involved for
the realization of the project. This initial roadmap is used as a draft for the
project plan.

� Each person involved in the project is assigned one or more roles, and is
responsible for carrying out specific activities within the project life cycle.

� The initial roadmap can be extended to create a project plan that helps track
the progress of a project, its tasks, the activities involved to perform a task,
the resources available as well as the budget.

� A business process helps manage requirements, client expectations, and
associated risks.

� A business process enables the control of changes to the software

Technical perspective benefits
Technical benefits of using a development process are:

� Facilitates the use of component-based architectures.
� Allows the development of the software to be carried out iteratively.

2.1.3 Realization of a development process
A development process is realized with the use of:

� Technologies

Technologies include computer systems, network connectivity, operating
systems, development environments, and programming languages

� Organization structures

The process must fit in the company’s overall organization patterns.
 Chapter 2. Development process 13

� Tools

To support the process must be in place.

� People

The expected skill set of target developers must be present.

2.1.4 Development process principles
For a graphical representation of the development process, see Table 2-1 on
page 16.

Phases
From a management perspective, the life cycle of a software development
process is decomposed over time into sequential phases, each concluded by a
major milestone. Each phase is essentially a span of time between two major
milestones. At each phase end, an assessment should be performed to
determine whether the objectives of that particular phase have been met. A
satisfactory assessment allows the project to move to the next phase.

Our development process is divided into the following four phases:

1. Starting a project
2. Understanding and planning a project
3. Building a solution
4. Handing over the solution

Views
Different people working on a project will view its objectives in different ways, and
therefore they will have different requirements for a development process. In
general the different views of a project process can be split between:

� A technical view
� A business view

Activities
An activity of a specific worker is a unit of work that an individual in that role can
be asked to perform. The activity has a clear purpose, usually expressed in
terms of creating or updating some artifacts, such as a model, a class, and a
plan. Every activity is assigned to a specific worker. The granularity of an activity
is generally a few hours to a few days, it usually involves one worker, and affects
one or only a small number of artifacts. An activity should be usable as an
element of planning and progress. If it is too small, it will be neglected. If it is too
large, progress would have to be expressed in terms of an activity’s parts.
14 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Technical activities
The technical activities include the following:

� Domain modelling
� Requirements analysis
� Logical design
� Physical design
� Implementation
� Deployment
� Testing
� Maintenance

Business activities
Business activities include the following:

� Configuration management
� Quality management
� Project management
� Facilities management

Roles
The most central concept in a process is that of a role. A role defines the
behavior and responsibilities of an individual, or a set of individuals working
together as a team, within the context of a software engineering organization.
Note that roles are not individuals; instead, roles describe the appropriate
behavior and responsibilities of an individual. Individual members of the software
development organization will wear different hats, or perform different roles. The
mapping from individual to role, performed by the project manager when
planning and staffing the project, allows different individuals to perform several
different roles, and for a particular role to be played by several individuals.
 Chapter 2. Development process 15

Table 2-1 Development process phases, views and activities

2.2 Starting a project
The purpose of this phase of the development process is to kick-start the project.
The following sections provide a brief description of some of the things you
should consider in this phase.

2.2.1 Understanding your business today
You need a thorough understanding of the following topics:

� Your existing hardware and software infrastructure
� Your people
� The skills of your people

Starting
a project

Understanding
and planning a
project

Building a
solution

Hand-over

Technical view

Domain
modelling

Requirements
analysis

Logical design

Physical design

Implementation

Deployment

Testing

Maintenance

B
usiness view

Configuration
management

Quality
management

Project
management

Facilities
management
16 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2.2.2 Where do you want to go?
You need a thorough understanding of what results you want from the process.
Consider the following questions:

� What are the business requirements of your project?
� What are the key features of your project?
� What constraints does your project have?
� What are your success criteria?
� What is your financial forecast?
� What potential risks could you face during your project?

2.2.3 An initial roadmap
An initial roadmap consists of the following steps:

1. Break down your project into phases.
2. Identify the activities involved.
3. Assign roles to the people involved in the project.

2.3 Understanding and planning a project
The steps to planning a project are as follows:

1. Understand what needs to be built.
2. Describe the functional requirements.
3. Describe the nonfunctional requirements.
4. Prepare a high-level logical design of the application.

2.4 Building a solution
Here are the steps to build a solution:

1. Think of user interface considerations and create an initial navigation map.

2. Design the Web design elements that are going to be used in the application.

3. Prepare a first, nonfunctional prototype.

4. With the help of end-users, validate that:

– The requirements were captured correctly.
– The look and feel of the application is acceptable.

5. Prepare a low-level physical design of the application.

6. Divide the application into components and identify the dependencies
between them.
 Chapter 2. Development process 17

7. Prepare a document that describes the functionality of each component, how
it relates to the other components, and where it fits in the overall architecture
of your application.

8. Give ownership of each component to a developer.

9. Update the document to reflect any changes and assigned projects.

10.Implement some functionality or extend your initial, nonfunctional prototype.

11.Enter an iterative cycle of building a component, testing, and deploying it on
WebSphere Application Server - Express until all components are
implemented.

2.5 Project hand-over
After the development of a project solution is complete, a good development
process will help you to complete the important activities involved in the project
hand-over. These activities are often overlooked or underestimated. Hand-over
activities that your process should address include:

� Project deployment
� Migration from previous systems
� Data conversion and migration
� Project maintenance
� User training
� System documentation
� System administration

2.6 Real estate application architecture
In the redbook WebSphere Application Server - Express: A Development
Example for New Developers, SG24-6301, we built a sample application using
the development process outlined. We refer to this application as the Sal301
application. The sample was not meant to solve a detailed business problem,
or to suggest this was the most common business problem solved using
WebSphere Studio or the Rational Software Development Platform. We chose
this business problem because it is simple to describe, and does not require
specialist business knowledge. In addition, the general concepts of the problem
and the functions we implement in our sample solution are generic and can
easily be applied to other business domains.

The sample application implements all the functionality necessary to:

� Identify a user as a visitor, registered user, agent or administrator
� Browse, view and search the catalog
18 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Send E-mails
� Order
� Produce and view reports
� Create, update, and delete user account information
� Create, update, and delete property information
� Create, update, and delete any other content in the system

2.6.1 Component-based architecture
The sample application is divided into components.

A component is a cohesive unit of software that provides a related set of
functions and services. Components can be developed and delivered
independently of other components, that is, they are inherently modular in
nature.

There are two component types in the Sal301 application:

Business components
Business components include:

� Property catalog component
� News component
� E-mail component
� Interest list component
� Reporting component
� User component

Administrative components
Administrative components include:

� Property catalog administration
� User component

2.6.2 Layered design
In a layered design, each component is broken down into layers. Layers create
separation within the software by abstracting specific types of functionality into
functional layers, and providing conceptual boundaries between sets of services,
for example, in the property catalog component:

Property catalog component layers consist of the following:

� Presentation layer

– HTML, JSP
 Chapter 2. Development process 19

� Controller layer

– Struts Action and Form classes

� Business logic layer

– Manager classes

� Domain layer

– JavaBeans™ used as data transfer objects(DTO)

� Data access layer

– JavaBeans with embedded SQL (data access command beans)

2.6.3 Package structure
The package structure for the Catalog component of Sal301 was similar to this:

� Java source:

com.ibm.itso.sal301r.propertycatalogcomponent.action
com.ibm.itso.sal301r.propertycatalogcomponent.form
com.ibm.itso.sal301r.propertycatalogcomponent.manager
com.ibm.itso.sal301r.propertycatalogcomponent.dto
com.ibm.itso.sal301r.propertycatalogcomponent.dao

� Web content:

/catalog/

In our current redbook we have refactored the sample application which we now
refer to as the Sal404 application and renamed the packages used. For example
the package structure for the Catalog component is now:

� Java source:

com.ibm.itso.sal404.propertycatalog
com.ibm.itso.sal404.propertycatalog.action
com.ibm.itso.sal404.propertycatalog.form
com.ibm.itso.sal404.propertycatalog.manager
com.ibm.itso.sal404.propertycatalog.dto
com.ibm.itso.sal404.propertycatalog.dao

� Web content:

/catalog/

2.6.4 Naming conventions
We used the following naming conventions:

� HTML pages and JSPs
20 WebSphere Application Server - Express V6 Developers Guide and Development Examples

DescriptionOfTheAction.jsp, for example, ViewAllProperties.jsp

� Struts Action classes

DescriptionOfTheActionAction.class, for example, AddUserAction.class

� Struts Form classes

NameOfTheFormForm.class, for example, AddPropertyForm.class

� Manager classes (one per component)

ComponentScopeManager, for example, UserManager.class

� Domain classes

ClassScope.class, for example, User.class

� Data Access classes:

DescriptionOfTheQuerySQL.class, for example, GetPropertyByIdSQL.class

2.7 Application architecture
Designing the architecture of an application is perhaps the most important task
when developing an e-business solution using Java 2 Platform, Enterprise
Edition(J2EE) and the Rational Software Development Platform. The following
requirements should be considered:

� Scalability

How easy is it to scale the application to handle a higher workload?

� Extensibility

How easy is it to extend the functionality of the application? Can we easily
add new functions that meet changing business requirements?

� Reliability

How reliable is the application? Does it work consistently and is it free from
error?

� Efficiency

How efficient is the application? Does it perform well and use a minimum of
resources to get the job done?

� Maintainability

How easy is it to maintain the application? Are changes easy and quick to
make without requiring major disruption to working code?

� Portability

How portable is the application across different environments, operating
systems, and so on?
 Chapter 2. Development process 21

2.8 Overview of the architecture
In this part of the chapter we outline the architecture choices that we made when
developing the sample Sal301 application for the original redbook WebSphere
Application Server - Express: A Development Example for New Developers,
SG24-6301. We considered the principles of a well-architected solution as well
as the strategies and the best practices that have been proven in real production
environments. One advantage of the architecture is that the sample application
can be quite easily modified and new function and technology can be added as
you require. One example of this in our current redbook is that we reuse the
original sample application for all our new examples.

2.8.1 Component-based development
Our first decision was to follow a divide and conquer approach when developing
the application. We decided to conquer it by dividing the application into
components.

A component is a cohesive independent unit of software that provides a related
set of functions and services. A component adheres to the fundamental
principles that underpin an object in the context of object-oriented software
development.

More specifically, a component (like an object) caters to:

Tip: Object-oriented software development is a a key concept of and
commonly used way of developing software. A key part of this development is
the use of objects. Java is a programming language that supports
object-oriented software development and allows programmers to develop
objects. We assume that you already have some knowledge of this way of
developing software, but a brief discussion is given below. If you need more
details on object-oriented software development, see the suggested reading:

� Object Technology: A Manager's Guide (2nd Edition), David A. Taylor,
Addison-Wesley Publishing Company, 2nd edition September 11 1997,
ISBN0201309947

� Object technology made simple, Mory Bahar, Simple Software Publishing,
First edition May 1996, ISBN0965245705

� Making Sense of Java, Bruce Simpson, et al, Mannings Publications,
1996, ISBN 0132632942

� Design Patterns: Elements of Reusable Object-Oriented Software. Erich
Gamma, et al. Addison-Wesley Publishing Company, January 1995,
ISBN0201633612
22 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Unification of data and function

A software object consists of state (the values of its member variables) and
functions (the methods the object provides to allow manipulation of its
member variables).

� Encapsulation

The internal implementation of the methods of an object are hidden away
from the object client (anyone who uses the object). This means that a
dependency between a client and an object exists only in terms of the object
specification and not its implementation.

� Identity

Once created, an object can be identified uniquely regardless of its current
state.

A component extends these principles by introducing the notion of a component
specification which consists of one or more component interfaces.

A component specification is the definition of what a component does, as
opposed to how it performs a task. This definition is exposed to the clients of the
component in the form of one or more component interfaces. Each component
interface outlines a list of available operations that the component can perform.

A component specification is used as part of a realization contract, a contract
between the component designers and the developers that implement the
component. In other words, the final implementation of the component has to
meet the requirements set in the specification.

A component interface is used as part of a usage contract, a contract between
the component interface or interfaces and the component clients. In other words,
the operations exposed in the interface of a component are guaranteed to
behave in the same manner under any circumstances.

The clear separation between a component specification and a component
implementation is the most important characteristic of component-based
development (CBD).

A component is realized with the use of objects and so it would normally contain
one or more classes. Therefore, a component is normally larger grained that an
object.

When the application is divided into components, we can identify a vertical
separation of the functionality, as shown in Figure 2-1 on page 24.
 Chapter 2. Development process 23

Figure 2-1 Vertical separation of the application functionality

2.8.2 Layered application design
Any application based on Java 2 Platform, Enterprise Edition is inherently a
distributed application and thus it can be classified into a set of layers. During the
implementation stage, we can group together related code under one layer. For
example, all the code related to user interface (UI) elements for data input and
for displaying information can be grouped together under the presentation layer.

A typical separation of layers in J2EE applications is:

� Presentation layer
� Controller layer
� Business facade layer
� Domain layer
� Data access layer

When the application is divided into layers, we can identify a horizontal
separation of the functionality, as shown in Figure 2-2 on page 25.

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

Co
m

po
ne

nt
 3

Co
mp

on
en

t N
24 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 2-2 Horizontal separation of the application functionality

2.8.3 Usage of design patterns
According to Design Patterns: Elements of Reusable Object-Oriented Software,
E. Gamma, R. Helm, R. Johnson, J. Vlissides, Addison-Wesley, 1994, ISBN:
0-201-63361-2:

“A design pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a reusable
object-oriented design. The design pattern identifies the participating classes
and instances, their roles and collaborations, and the distribution of
responsibilities. Each design pattern focuses on a particular object-oriented
design problem or issue. It describes when it applies, whether it can be
applied in view of other design constraints, and the consequences and
trade-offs of its use.”

During the design and implementation of the redbook sample application, we
identified some design patterns that are useful.

Business facade design pattern
This design pattern is related to the session facade and message facade design
patterns as described in EJB Design Patterns, Floyd Marinescu, John Wiley &

Presentation layer

Data access layer

Domain layer

Business facade layer

Controller layer
 Chapter 2. Development process 25

Sons, Inc., 2002, ISBN: 0-471-20831-0. We used this design pattern in order to
minimize the dependencies between the front-end and the back-end layers of the
application. Furthermore, with the use of this design pattern we can implement
each use case as one business method that is executed with only one network
call.

Data transfer object (DTO) design pattern
This design pattern is described in EJB Design Patterns, Floyd Marinescu, John
Wiley & Sons, Inc., 2002, ISBN: 0-471-20831-0, and is related to the Value
Object design pattern mentioned in other books about J2EE development. We
used this design pattern to minimize the number of network calls between the
layers of the application. Thus, when we wanted to send a collection of data as
parameters to a business method we encapsulated it in a DTO and sent this
object instead. Also, every time we returned results from a business method, we
encapsulated the data in a DTO and returned this object instead. A DTO is, in
effect, a way of transferring bulk data between layers of an application.

Data access object (DAO) design pattern
This design pattern is related to the data access command bean design pattern
as described in EJB Design Patterns, Floyd Marinescu, John Wiley & Sons, Inc.,
2002, ISBN: 0-471-20831-0. We used this design pattern in order to minimize the
dependency on the underlying database and also to hide away all the database
operations. Instead of obtaining a connection to a DataSource, preparing and
executing a statement and getting the results directly from our manager classes,
we have chosen to add another layer, the data access layer where each
database operation is the responsibility of a single data access object. Therefore,
if we choose to change the physical database model in the future or even the
database provider, we only need to change the implementation of the data
access objects, and not the implementation of our business methods.

2.9 Component architecture
Earlier in this chapter we mentioned that we decided to follow a
component-based development approach while working on the sample
application. This means that we had to identify areas of functionality that could
be grouped together logically into a single unit of software, a component.

In this section we outline the components of the realty sample application and
provide a short overview for each of them.
26 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2.9.1 PropertyCatalog
The PropertyCatalog component provides all the methods necessary to manage
the catalog of properties in the realty application.

The PropertyCatalog component implements the functionality described in the
following use cases:

� PCC.SearchByCriteria
� PCC.ViewPropertyDetails
� PCC.ViewAgentPropertyList
� PCC.AddPropertyDetails
� PCC.ModifyPropertyDetails

The PropertyCatalog component has a dependency on the following
components:

� User component
� Reporting component
� InterestList component

2.9.2 News
The news component provides all the methods necessary to manage news in the
realty application.

The news component implements the functionality described in the following use
cases:

� NC.ViewNewsItems
� NC.AddNewsItem
� NC.ModifyNewsItem

The news component has a dependency on the following components:

� User component

2.9.3 E-mail
The E-mail component provides all the methods necessary to generate and send
e-mails within the realty application.

The e-mail component implements the functionality described in the following
use cases:

� EC.SendRegistrationConfirmationMessage
� EC.RequestPasswordMessage
 Chapter 2. Development process 27

The e-mail component has a dependency on the following:

� JavaMail™ API

2.9.4 InterestList
The InterestList component provides all the methods necessary for a customer to
express his interest in properties within the realty application.

The InterestList component implements the functionality described in the
following use cases:

� ILC.AddProperty
� ILC.RemoveProperty
� ILC.ViewInterestList
� ILC.RequestViewing
� ILC.RequestBrochure
� ILC.ClearInterestList
� ILC.ReturnToPropertyCatalog
� ILC.CheckoutInterestList

The InterestList component has a dependency on the following components:

� User component
� PropertyCatalog component

2.9.5 Reporting
The Reporting component provides the methods necessary to generate two
different types of reports within the realty sample application.

The Reporting component implements the functionality described in the following
use cases:

� RC.ViewInterestForAgentReport
� RC.ViewInterestForPropertyReport

The Reporting component has a dependency on the following components:

� User component
� PropertyCatalog component
� InterestList component

2.9.6 User
The user component provides the methods necessary to manage, authorize and
authenticate different types of users of the realty sample application.
28 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The user component implements the functionality described in the following use
cases:

� UC.Login
� UC.Logout
� UC.RegisterCustomer
� UC.ModifyCustomerDetails
� UC.DeleteCustomerDetails
� UC.RegisterAgent
� UC.ModifyAgentDetails
� UC.DeleteAgentDetails
� UC.ListUsers
� UC.ViewUserDetails
� UC.RequestPassword

The User component has a dependency on the following components

� E-mail component

2.9.7 Dependencies between components
The dependencies between the components of the Sal301 application are shown
in Figure 2-3 on page 30.
 Chapter 2. Development process 29

Figure 2-3 Component dependencies in the realty sample application

2.10 Layered architecture
This section describes the major layers used in our sample application.

2.10.1 Presentation layer
The presentation layer is the user interface of a component. This layer includes
any Web pages that use forms and other UI elements to allow the user to enter
data, as well as any Web pages that use tables and other UI elements to display
information. It is normally implemented using a combination of:

� HTML pages
� JavaServer Pages(JSP)
� JavaScript
� Images and other multimedia files

PropertyCatalog

News

User

Email

InternetList

Reporting
30 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2.10.2 Controller layer
The controller layer connects the presentation layer with the component
business logic, which is implemented in the business facade layer. In effect, the
controller layer accepts a request from the presentation layer, calls the
appropriate method of the business facade layer, stores any results in the
request object, and returns back to the presentation layer for displaying the
results. It is normally implemented using a combination of:

� Java Servlets
� JavaBeans
� Struts actions
� Struts forms

2.10.3 Business facade layer
The business facade layer plays the role of a bridge between the front-end and
the back-end of the application. It is implemented using a manager class which
exposes the business methods required from the implementation of the
component. In effect, a method of the manager is called from one of the servlets
or Struts actions of the controller layer with some parameters passed in the form
of a data transfer object (DTO). The manager creates an instance of the
appropriate data access object (DAO), executes it, and returns the results
obtained from the database to the caller either as a single DTO or a collection of
DTOs.

2.10.4 Domain layer
The domain layer consists of custom-designed JavaBeans that are used to
encapsulate data transferred between layers of the application. These
JavaBeans are called data transfer objects (DTO), see “Data transfer object
(DTO) design pattern” on page 26. To implement these DTOs we used the
functionality that WebSphere Studio and the Rational Software Development
Platform provide to help us generate getter and setter methods.

2.10.5 Data access layer
The data access layer consists of custom designed JavaBeans that perform
database operations using JDBC™. These JavaBeans are called data access
objects (DAO), see “Data access object (DAO) design pattern” on page 26. To
implement these DAOs we used the various data wizards provided by
WebSphere Studio and the Rational Software Development Platform.
 Chapter 2. Development process 31

32 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 3. Product overview

IBM WebSphere Application Server - Express V6 combines application server
and development tools in one single integrated package. This package is geared
towards development and operation of Web-based solutions for small and
medium businesses.

Based on the latest Java technology and Web services standards, WebSphere
Application Server - Express gives you an affordable, ready-to-go solution,
including streamlined server functionality, quick-start application templates and
robust development tools.

This chapter shows how WebSphere Application Server - Express fits in the
WebSphere Application Server product family and gives an overview of the
underlying WebSphere Application Server architecture and key technologies.

3

© Copyright IBM Corp. 2005. All rights reserved. 33

3.1 The WebSphere product family
WebSphere is the IBM brand of software products that are designed to work
together to help deliver dynamic e-business quickly. WebSphere provides
solutions for positively touching a client’s business. It also provides solutions for
connecting people, systems, and applications with internal and external
resources. WebSphere is based on infrastructure software (middleware)
designed for dynamic e-business. It delivers a proven, secure, and reliable
software portfolio that can provide an excellent return on investment. Figure 3-1
shows a high-level overview of the WebSphere platform.

.

Figure 3-1 WebSphere product family

Key Products Supporting Integration Capabilities

Model Model business functions and processesbusiness functions and processes

Transform Transform applications, processes and dataapplications, processes and data

Integrate Integrate islands of applications, processesislands of applications, processes
and informationand information

Interact Interact with resources anytime, anywherewith resources anytime, anywhere
with any devicewith any device

Manage Manage performance against businessperformance against business

Accelerate Accelerate the implementation ofthe implementation of
intelligent processesintelligent processes

Service Oriented InfrastructureService Oriented Infrastructure
leveraging a common runtime environmentleveraging a common runtime environment

WebSphere Business Integration Server
DB2 Information Integrator

WebSphere Business Integration Modeler

WebSphere Studio
WebSphere Enterprise Modernization
WebSphere Business Integration Tools

WebSphere Portal
WebSphere Voice

WebSphere Business Integration Monitor
Tivoli Business Services Management
DB2 UDB and Content Manager

Pre-Built Portlets
Process Templates

Adapters
WebSphere Commerce

WebSphere Application Server
WebSphere MQ
WebSphere Studio

WebSphere Everyplace
Lotus Workplace

ModelModel

ManageManage TransformTransform

InteractInteract IntegrateIntegrate

AccelerateAccelerate

IBMIBM
Business

Integration

ProvenProven
ExperienceExperience

SimpleSimple
IntegratedIntegrated

DevelopmentDevelopment

StandardsStandards
LeadershipLeadership

Secure &Secure &
ScaleableScaleable

IBMIBM
Business

Integration
34 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The foundation of the WebSphere brand is the application server. The application
server provides the runtime environment and management tools for J2EE and
Web services-based applications. Clients access these applications through
standard interfaces and APIs. The applications, in turn, have access to a wide
variety of external sources such as existing systems, databases, and Web
services, that can be used to process the client requests.

WebSphere Application Servers are available in multiple packages to meet
specific business needs. These application servers also serve as the base for
other WebSphere products, such as WebSphere Commerce and WebSphere
Portal, by providing the application server required for running these specialized
applications.

WebSphere Application Servers are available on a wide range of platforms,
including UNIX®-based platforms, Microsoft® operating systems, IBM z/OS, and
iSeries. Although branded for iSeries, the WebSphere Application Server
products for iSeries are functionally equivalent to those for the UNIX and
Microsoft platforms.

3.1.1 The WebSphere Application Server family
WebSphere Application Server is IBM's implementation of the J2EE (Java 2
Enterprise Edition) platform, conforming to V1.4 of the specification. WebSphere
Application Server is available in three unique packages that are designed to
meet a wide range of client requirements. At the heart of each package is a
WebSphere Application Server that provides the runtime environment for
enterprise applications. This chapter will center around the runtime server
component of the following packaging options of WebSphere Application Server:

� IBM WebSphere Application Server - Express V6. We will refer to this as the
Express configuration.

� IBM WebSphere Application Server V6. We will refer to this as the Base
configuration.

� IBM WebSphere Application Server Network Deployment V6. We will refer to
this as the Network Deployment configuration.

3.2 WebSphere Application Server - Express V6
WebSphere Application Server - Express is geared toward those who need to
get started quickly with e-business. It is specifically targeted at medium-sized
businesses or departments of a large corporation, and is focused on providing
ease of use and application development. Although WebSphere Application
Server - Express is the entry level configuration of WebSphere Application
 Chapter 3. Product overview 35

Server and is limited to a single server environment, it provides full support for
the J2EE 1.4 programming model.

While in V5 there were restrictions in the base functionality, V6 Express has now
the equivalent functionality as the base server. For example it has now an EJB
container and a messaging engine for default messaging included. In that way,
WebSphere Application Server - Express is easy upgradable to large scale
environments with a base license or network deployment without having to
change your applications.

The WebSphere Application Server - Express offering is unique from the other
packages in that it is bundled with an application development tool. Although
there are WebSphere Studio and Rational Developer products designed to
support each WebSphere Application Server package, they are normally ordered
independent of the server.

WebSphere Application Server - Express includes the Rational Web Developer
application development tool. It provides a development environment geared
toward Web developers and includes support for most J2EE 1.4 features with the
exception of EJB and JCA development environments. However, keep in mind
that WebSphere Application Server - Express does contain full support for EJB
and JCA, so you can deploy applications that contain those technologies with the
tools packaged with WebSphere Application Server - Express. Figure 3-2 on
page 37 shows a high-level overview of WebSphere Application Server -
Express.
36 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 3-2 WebSphere Application Server - Express overview

Because Rational Web Developer is a subset of Rational Application Developer,
you can choose to switch to Rational Application Developer at any time in your
project. Alternatively, you can choose to equip only special members in your
team with Rational Application Developer if you want support for the
development enterprise features like EJBs.

3.2.1 The WebSphere Application Server highlights
WebSphere Application Server provides the environment to run your
Web-enabled e-business applications. You can think of an application server as
Web middleware or the central component in a three-tier J2EE e-business
environment. The first tier is the HTTP server that handles requests from the
browser client. The third tier might be the business database (for example, DB2
UDB for iSeries) or existing systems (for example, traditional business
applications such as order processing). The middle tier is IBM WebSphere
Application Server, which provides a framework for consistent, architected
linkage between the HTTP requests and the business data and logic.

Web
server

WebSphere
Application Server

(single Node)

Application
Server Application

Server

Clients

Web browser

Java

Msg
Queue

Msg
Queue

Existing
systems

CICS
IMS
DB2
SAP
etc.

Messaging

Web
services
provider

Rational Web
Developer

Web
application
developer

Web services Web
Services
Gateway

Web Container
Embedded HTTP
EJB Container
JCA Services
Naming, Security
Messaging
Web Services, UDDI
Admin Service

J2EE Applications

DB2

WebSphere Application Server Express
 Chapter 3. Product overview 37

IBM WebSphere Application Server is intended for organizations that want to
take advantage of the productivity, performance advantages, and portability that
Java provides for dynamic Web sites. It includes:

� J2EE 1.4 support

� High-performance connectors to many common back-end systems to reduce
the coding effort required to link dynamic Web pages to real line-of-business
data

� Application services for session and state management

� Web services that enable businesses to connect applications to other
business applications, to deliver business functions to a broader set of
customers and partners, to interact with marketplaces more efficiently, and to
create new business models dynamically

� The WebSphere Platform Messaging infrastructure to complement and
extend WebSphere MQ and application server

It is suitable for those that are currently using the WebSphere Application
Server V5 embedded messaging and for those that need to provide
messaging capability between WebSphere Application Server and an existing
WebSphere MQ backbone.

The architecture details and technical key concepts are discussed starting from
section 3.3, “WebSphere Application Server architecture” on page 58 onwards.

3.2.2 The development tool
The IBM Rational Web Developer V6 extends the capabilities of Eclipse 3.0 with
with visual tools for Web, Java, and rich client applications, and full support for
XML, Web services, and Enterprise Generation Language (EGL). In previous
releases, this product was known as WebSphere Studio Site Developer.

For detailed information about Rational Web Developer, Rational Application
Developer and the Rational Software Development Platform see the redbook
Rational Application Developer V6 Programming Guide, SG24-6449.

Version 6 terminology
Table 3-1 on page 39 provides a basic terminology comparison between Version
6 and Version 5 for reference purposes.
38 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Table 3-1 Terminology

As noted in Table 3-1, in previous releases the Rational Application Developer
product was known as WebSphere Studio Application Developer, and Rational
Web Developer was known as WebSphere Studio Site Developer.

Version 6 Version 5

Rational Developer
or
Rational Software Development Platform
Note: used to describe family of products
built on common Eclipse base.

WebSphere Studio

Rational Application Developer
(referred to as Application Developer)

WebSphere Studio Application Developer

Rational Web Developer
(referred to as Web Developer)

WebSphere Studio Site Developer

IBM Eclipse SDK 3.0
Note: IBM branded and value-added
version of Eclipse SDK 3.0

WebSphere Studio Workbench
(IBM supported Eclipse 2.x)

Workbench
or
Rational Software Development Platform

Workbench
 Chapter 3. Product overview 39

Rational Software Development Platform
Figure 3-3 displays a summary of features found in the Rational Developer V6.0
products.

Figure 3-3 IBM Rational Software Development Platform tools and features summary

The Rational Software Development Platform is based on the Eclipse platform
and grows and expands with every release with the Eclipse project.

Eclipse project
The Eclispe project is an open source software development project devoted to
creating a development platform and integrated tooling.

Figure 3-4 on page 41 depicts the high level Eclipse project architecture and
shows the relationship of the following sub projects:

� Eclipse Platform
� Eclipse Java Development Tools (JDT)
� Eclipse Plug-in Development Environment (PDE).

IBM Eclipse SDK 3.0
• IBM commercially supported Eclipse 3.0
• IBM Rational Software Development Platform tooling

Application Server Tool (AST)

IBM Rational Web Developer

IBM Rational Application Developer

• Tool for assembly, deployment (EJB, Web Services)
and debug J2EE applications
• No development support
• WebSphere Rapid Deployment
• Support for Enahanced EAR
• Server Tools – support for remote server

• Full development support
• Support for J2EE 1.2, 1.3, 1.4 Web based
applications (JSF, Struts, SDO tools)
• No EJB, J2C development support

• Server Test Environments (WebSphere
Application Server V5.0, 5.1, 6.0, Tomcat
5.0 and WebLogic 6.1, 7.1, 8.1 available
separately)
• Visual Java GUI builder
• Web Diagram Editor
• Site Designer
• Page Templates
• XML tools
• Web Services tools
• Database tools
• Portal and portlet development
• Enterprise Generation Language (EGL)
tools
• Debugger

• Full J2EE 1.4 support
• Portal Test Environment 5.0.2.2
• UML Visual editors
• Static and runtime analysis
• Extended debugging and
profiling
• Component test automation
• ClearCase LT for team
integration
• Rational Unified Process (RUP)
integration
40 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 3-4 Eclipse Project overview

With a common public license that provides royalty free source code and
world-wide redistribution rights, the Eclipse Platform provides tool developers
with great flexibility and control over their software technology.

Industry leaders such as IBM, Borland, Merant, QNX Software Systems, RedHat,
SuSE, TogetherSoft, and WebGain formed the initial eclipse.org board of
directors of the Eclipse open source project.

More detailed information about Eclipse can be found at:

http://www.eclipse.org

Eclipse Platform
The Platform provides a framework and services which serve as a foundation for
tools developers to integrate and extend the functionality of the Platform. The
Platform includes a workbench, concept of projects, user interface libraries
(JFace, SWT), built-in help engine, and support for team development and
debug. The Platform can be leveraged by a variety of software development
purposes including, modeling and architecture, integrated development
environment (C/C++, Java, Cobol, etc.), testing, and so forth.

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their
Tool

Your
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug
 Chapter 3. Product overview 41

http://www.eclipse.org

Eclipse Java Development Tools (JDT)
The JDT provides the plug-ins for the Platform specifically for a Java-based
integrated development environment, as well as the development of plug-ins for
Eclipse. The JDT add the concepts of Java projects, perspectives, views, editors,
wizards, refactoring tools, to extend the Platform.

Eclipse Plug-in Development Environment (PDE)
The PDE provides the tools to facilitate the development of Eclipse plug-ins.

3.2.3 Rational Developer supported platforms and databases
This section describes the platforms and databases supported by the Rational
Developer products.

Supported operating system platforms
IBM Rational Application Developer V6.0 supports the following operating
systems:

� Microsoft Windows®:

– Windows XP with Service Packs 1 and 2
– Windows 2000 Professional with Service Packs 3 and 4
– Windows 2000 Server with Service Packs 3 and 4
– Windows 2000 Advanced Server with Service Packs 3 and 4
– Windows Server 2003 Standard Edition
– Windows Server 2003 Enterprise Edition

� Linux® on Intel®:

– Red Hat Enterprise Linux Workstation V3 (all service packs)
– SuSE Linux Enterprise Server (SLES) V9 (all service packs)

The IBM Agent Controller included with IBM Rational Application Developer V6.0
is supported on many platforms running WebSphere Application Server. For
details, refer to the Installation Guide, IBM Rational Application Developer V6.0
product guide (install.html) found on the IBM Rational Application Developer V6
Setup CD 1.

Supported databases
IBM Rational Application Developer V6.0 supports the following database
products:

� IBM Cloudscape V5.0
� IBM Cloudscape V5.1

(bundled with the WebSphere Application Server V6.0 Test Environment)
� IBM DB2 Universal Database V8.1
42 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� IBM DB2 Universal Database V8.2
� IBM DB2 Universal Database Express V8.1
� IBM DB2 Universal Database Express V8.2
� IBM DB2 Universal Database for iSeries V4R5
� IBM DB2 Universal Database for iSeries V5R1
� IBM DB2 Universal Database for iSeries V5R2
� IBM DB2 Universal Database for iSeries V5R3
� IBM DB2 Universal Database for z/OS and OS/390 V7
� IBM DB2 Universal Database for z/OS V8
� Informix Dynamic Server V7.3
� Informix Dynamic Server V9.2
� Informix Dynamic Server V9.3
� Informix Dynamic Server V9.4
� Microsoft SQL Server V7.0
� Microsoft SQL Server 2000
� Oracle8i V8.1.7
� Oracle9i
� Oracle10g
� Sybase Adaptive Server Enterprise V12
� Sybase Adaptive Server Enterprise V12.5

3.2.4 Rational Web Developer V6 product packaging
Table 3-2 lists the software CDs included with IBM Rational Web Developer V6.0.

Table 3-2 IBM Rational Web Developer V6.0 product packaging

3.2.5 Rational Web Developer tools
This section provides a brief description for the following tooling including with
the Rational Application Developer:

� Web development tools
� Relational database tools

CD title Windows Linux

IBM Rational Application Developer V6.0 core installation files X X

IBM WebSphere Application Server V6.0 Integrated Test Environment X X

IBM WebSphere Application Server V5.0 Integrated Test Environment X X

Language Pack X X

IBM Rational Agent Controller
Note: Support for many additional platforms

X X
 Chapter 3. Product overview 43

� XML tools
� Java development tools (JDT)
� Web services development tools
� Enterprise Generation Language (EGL) tools
� Team collaboration
� Debugging tools
� Performance profiling tools
� Server tools for testing and deployment
� Plug-in development tools

Web development tools
The professional Web development environment provides the necessary tools to
develop sophisticated Web applications consisting of static HTML pages, JSPs,
servlets, XML deployment descriptors, and other resources.

Wizards are available to generate ready to run Web applications based on SQL
queries and JavaBeans. Links between Web pages can be automatically
updated when content is moved or renamed.

The Web development environment brings all aspects of Web application
development into one common interface. Everyone on your Web development
team, including content authors, graphic artists, programmers, and Web masters,
can work on the same projects and access the files they need.

Such an integrated Web development environment makes it easy to
collaboratively create, assemble, publish, deploy, and maintain dynamic,
interactive Web applications.

The Web development tools provide the following features:

� Support for latest Web technology with an intuitive user interface

� Advanced scripting support to create client-side dynamic applications with
VBScript or JavaScript™

� Web Art Designer to create graphic titles, logos, buttons, and photo frames
with professional-looking touches

� Animated GIF Designer to create life-like animation from still pictures,
graphics, and animated banners

� Over 2,000 images and sounds in the built-in library

� Integrated, easy-to-use visual layout tool for JSP and HTML file creation and
editing

� Web project creation, using the J2EE-defined hierarchy

� Creation and visual editing of the Web application deployment descriptor file
(web.xml)
44 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Automatic update of links as resources are moved or renamed

� A wizard for creating servlets

� Generation of Web applications from database queries and JavaBeans

� J2EE WAR/EAR deployment support

� Integration with the WebSphere unit test environment

Relational database tools
The database tools provided with the WebSphere family products allow you to
create and manipulate the data design for your project in terms of relational
database schemas.

You can explore, import, design, and query databases working with a local copy
of an already existing design. You can also create an entirely new data design
from scratch to meet your requirements.

The database tools provide a metadata model used by all other tools that need
relational database information, including database connection information. In
that way, tools, although unaware of each other, are able to share connections.

The SQL Statement Wizard and SQL Query Builder provide a GUI-based
interface for creating and executing SQL statements. When you are satisfied with
your statement, you can use the SQL to XML Wizard to create an XML
document, as well as XSL, DTD, XSD, HTML, and other, related artifacts.

The relational database tools support connecting to, and importing from, several
database types, including DB2, Oracle, SQL Server, Sybase, and Informix.

XML tools
The comprehensive XML toolset provided by the WebSphere Studio family of
products includes components for building DTDs, XML Schema Definition(XSD)
and XML files. With the XML tools you can perform all of the following tasks:

� Create, view, and validate DTDs, XML schemas, and XML files.

� Create XML documents from a DTD, from an XML schema, or from scratch.

� Generate JavaBeans from a DTD or XML schema.

� Define mappings between XML documents and generate XSLT scripts that
transform documents.

� Create an HTML or XML document by applying an XSL style sheet to an XML
document.

� Map XML files to create an XSL transformation script and to visually step
through the XSL file.
 Chapter 3. Product overview 45

� Define mappings between relational tables and DTD files, or between SQL
statements and DTD files, to generate a document access definition (DAD)
script, used by IBM DB2 XML Extender. This can be used either to compose
XML documents from existing DB2 data or to decompose XML documents
into DB2 data.

� Generate DADX, XML, and related artifacts from SQL statements and use
these files to implement your query in other applications.

Java development tools (JDT)
All WebSphere Studio family of products provide a professional-grade Java
development environment with the following capabilities:

� Application Developer Version 6 ships with the IBM JRE V1.4.2
� Incremental compilation
� Ability to run code with errors in methods
� Crash protection and auto-recovery
� Error reporting and correction
� Java text editor with full syntax highlighting and complete content assist
� Refactoring tools for reorganizing Java applications
� Intelligent search, compare, and merge tools for Java source files
� Scrapbook for evaluating code snippets
� Pluggable run-time support for JRE switching and targeting of multiple

run-time environments from IBM and other vendors

Web services development tools
Web services represent the next level of function and efficiency in e-business.
Web services are modular, standards-based e-business applications that
businesses can mix and match dynamically in order to perform complex
transactions with minimal programming.

The WebSphere Studio family of products that include the Web services feature
help you to build and deploy Web services-enabled applications across the
broadest range of software and hardware platforms used by today's businesses.
These tools are based on open, cross-platform standards such as SOAP, Web
Services Definition Language (WSDL), and Universal Description, Discovery and
Integration (UDDI).

Enterprise Generation Language (EGL) tools
IBM Enterprise Generation Language (EGL) is a business application-centric
procedural programming language and environment used to develop batch, text
user interface (TUI), and Web applications. When developing an EGL Web
application, the developer creates the EGL source files using wizards and the
source editor. Java/J2EE source is generated from the EGL source files so that
the application can then be deployed to WebSphere Application Server.
46 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Team collaboration
Team developers do all of their work in their individual Workbenches, and then
periodically release changes to the team code. This model allows individual
developers to work on a team project, share their work with others as changes
are made, and access the work of other developers as the project evolves. At
any time, developers can update their Workbenches by retrieving the changes
that have been made to the team code.

All products of the WebSphere Studio family support the Concurrent Versions
System (CVS) and the Rational ClearCase LT products.

Other software configuration management (SCM) repositories can be integrated
through the Eclipse Workbench SCM adapters. SCM adapters for commercial
products are provided by the vendors of those products.

Debugging tools
The Rational Software Development Platform tools include a debugger that
enables you to detect and diagnose errors in your programs running either locally
or remotely. The debugger allows you to control the execution of your program by
setting breakpoints, suspending launches, stepping through your code, and
examining the contents of variables.

You can debug live server-side code as well as programs running locally on your
workstation.

The debugger includes a debug view that shows threads and stack frames, a
process view that shows all currently running and recently terminated processes,
and a console view that allows developers to interact with running processes.
There are also views that display breakpoints and allow you to inspect variables.

Performance profiling tools
The Rational Software Development Platform products provide tools that enable
you to test the performance of your application. This allows you to make
architectural and implementation changes early in your development cycle, and
significantly reduces the risk of finding serious problems in the final performance
tests.

The profiling tools collect data related to a Java program's run-time behavior, and
present this data in graphical and non-graphical views. This assists you in
visualizing program execution and exploring different patterns within the
program.

These tools are useful for performance analysis and for gaining a deeper
understanding of your Java programs. You can view object creation and garbage
collection, execution sequences, thread interaction, and object references. The
 Chapter 3. Product overview 47

tools also show you which operations take the most time, and help you find and
plug memory leaks. You can easily identify repetitive execution behavior and
eliminate redundancy, while focusing on the highlights of the execution.

Server tools for testing and deployment
The server tools provide a unit test environment where you can test JSPs,
servlets and HTML files, (EJB testing is supported in Application Developer). You
also have the capability to configure other local or remote servers for integrated
testing and debugging of J2EE applications.

The following features are included:

� A copy of the complete WebSphere Application Server run-time environment
� Standalone unit testing
� Ability to debug live server-side code using the integrated debugger
� Support for configuring multiple servers

Plug-in development tools
The Rational Software Development Platform includes the Plug-in Development
Environment (PDE) that is designed to help you develop platform plug-ins while
working inside the platform Workbench and it provides a set of platform
extension contributions (views, editors, perspectives, and so on) that collectively
streamline the process of developing plug-ins inside the Workbench. The PDE is
not a separate tool, but it is a perspective.

The following project types are supported:

� Plug-in project

Application Developer is based on the concept of plug-ins that have a clearly
defined structure and specification. This project supports the ability to create,
test, and deploy a plug-in in the PDE.

� Fragment project

A plug-in fragment is used to provide additional plug-in functionality to an
existing plug-in after it has been installed. Fragments are ideal for shipping
features such as language or maintenance packs that typically trail the initial
products by a few months.

� Plug-in component

PDE attaches a special component nature to plug-in and fragment projects to
differentiate them from other project types. The project must have a specific
folder structure and a component manifest. The project must be set up with
references to all of the plug-in and fragment projects that will be packaged
into the component.
48 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.2.6 WebSphere Application Server licensing and platforms
Table 3-3 shows the features included with each WebSphere Application Server
packaging option. The WebSphere Application Server - Express package is
highlighted in grey.

Table 3-3 WebSphere Application Server packaging and license terms

Express V6 Base V6 ND V6

Licensing terms Limited to a max of 2
CPUS

Unlimited CPUs Unlimited CPUs

WebSphere Application
Server

Yes Yes Yes

Network Deployment No No Yes

IBM HTTP Server V6
Web server plug-ins

Yes Yes Yes

IBM HTTP Server Yes Yes Yes

Application Client (not
on zLinux)

Yes Yes Yes

Application Server
Toolkit

Yes Yes Yes

DataDirect
Technologies JDBC
Drivers for WebSphere
Application Server

Yes Yes Yes

Development tools Rational Web
Developer (single use
license)

Rational Application
Developer Trial

Rational Application
Developer Trial

Database IBM DB2 Universal
Database Express V8.2
(limited production use

onlya)

IBM DB2 Universal
Database Express V8.2
(development use only)

IBM DB2 UDB
Enterprise Server
Edition V8.2 for

WebSphere Application
Server Network

Deployment

Production ready
applications

IBM Business Solutions No No

Note Not all features are available on all platforms. See the System Requirements Web page for each
WebSphere Application Server package for more information.
 Chapter 3. Product overview 49

WebSphere Application Server - Express is supported on the following operating
system platforms:

� AIX
� H-UX
� Linux (Intel)
� Linux on iSeries
� Linux on pSeries
� Solaris™
� Windows

WebSphere Application Server - Express supports the following LDAP servers:
IBM Directory Server

� z/OS Security Server
� Lotus Domino Enterprise Server
� Sun™ ONE™ Directory Server
� Windows Active Directory 2000 and 2003
� NDS eDirectory

WebSphere Application Server - Express supports the following database
servers:

� IBM DB2
� Cloudscape
� Oracle
� Sybase
� Microsoft SQL Server

Tivoli Directory Server
for WebSphere
Application Server
(LDAP server)

No No Yes

Tivoli Access Manager
Servers for WebSphere
Application Server

No No Yes

Edge Components No No Yes

a. The DB2 license only allows the database to be used for storing technical data such as session
persistence, UDDI Registry data, messaging engine data and data for the Scheduler and EJB Timer
components. Note: It is explicitly not permitted to use it to build a custom data repository, meaning
productive business data.

Express V6 Base V6 ND V6

Note Not all features are available on all platforms. See the System Requirements Web page for each
WebSphere Application Server package for more information.
50 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Informix

WebSphere Application Server - Express supports the following Web servers:

� IBM HTTP Server
� Apache Server
� Microsoft Internet Information Services
� Lotus Domino Enterprise Server
� Sun ONE Web Server, Enterprise Edition
� Sun Java™ System Web Server
� Covalent Enterprise Ready Server

For the exact operating system levels and requirements, see the following Web
site:

http://ibm.com/software/webservers/appserv/express/requirements

Supported operating system platforms
IBM Rational Application Developer V6.0 supports the following operating
systems:

� Microsoft Windows:

– Windows XP with Service Packs 1 and 2
– Windows 2000 Professional with Service Packs 3 and 4
– Windows 2000 Server with Service Packs 3 and 4
– Windows 2000 Advanced Server with Service Packs 3 and 4
– Windows Server 2003 Standard Edition
– Windows Server 2003 Enterprise Edition

� Linux on Intel:

– Red Hat Enterprise Linux Workstation V3 (all service packs)
– SuSE Linux Enterprise Server (SLES) V9 (all service packs)

3.2.7 New in WebSphere Application Server - Express V6
WebSphere Application Server - Express V6 continues with the tradition of
providing support for the current J2EE specifications. In addition, it focuses on
features that provide ease-of-use, simplification of application development and
deployment, high availability, and flexibility. The following sections give you the
highlights of the new features and functionality provided with WebSphere
Application Server - Express V6.

Programming support
The following are highlights of the new application programming features for
WebSphere Application Server - Express V6:
 Chapter 3. Product overview 51

http://www.ibm.com/software/webservers/appserv/express/requirements/
http://www.ibm.com/software/webservers/appserv/express/requirements

J2EE 1.4 support
WebSphere Application Server - Express V6 provides full support for J2EE 1.4.
The J2EE specification requires a certain set of specifications to be supported.
Among these are EJB 2.1, JMS 1.1, JCA 1.5, Java Servlets 2.4, and JSP 2.0.

WebSphere Application Server - Express V6 also provides support for J2EE 1.2
and 1.3 to ease migration.

WebSphere Application Server - Express V6 is shipped with JDK™ 1.4.2, which
includes the new Java Web Start feature. Java Web Start is an
application-deployment technology that includes the portability of applets, the
maintainability of servlets and JavaServer™ Pages™ (JSP) file technology, and
the simplicity of mark-up languages such as XML and HTML. It is a Java
application that allows full-featured Java 2 client applications to be launched,
deployed and updated from a standard Web server.

Web services
Web services support has been updated to include the latest in technology
options, including:

� Java API for XML-based RPC (JAX-RPC) 1.1: This specification enables you
to develop SOAP-based interoperable and portable Web services and Web
service clients. The JAX-RPC programming model is defined by the Web
services standard JSR 101.

� Web services for Java 2 Platform, Enterprise Edition: This specification
defines the programming model and run-time architecture for implementing
Web services based on the Java language.JSR 109 - WSEE

� SOAP with Attachments API for Java (SAAJ) 1.2: This specification is used
for SOAP messaging that works behind the scenes in the JAX-RPC
implementation.

� Web Services Security (WS-Security): This specification proposes a standard
set of SOAP extensions that you can use to build secure Web services.

� Web Services-Interoperability (WS-I) Basic Profile 1.1: This is a set of
non-proprietary Web services specifications that promote interoperability. The
Web Services-Interoperability (WS-I) Attachments Profile compliments the
WS-I Basic Profile 1.1 to add support for interoperable SOAP messages with
attachments-based Web services.

� Java API for XML Registries (JAXR) 1.0: This specification defines a Java
client API for accessing both UDDI (Version 2 only) and ebXML registries.

� Universal Description, Discovery and Integration (UDDI) V3: The UDDI
specification defines a way to publish and discover information about Web
services.
52 WebSphere Application Server - Express V6 Developers Guide and Development Examples

In addition, WebSphere Application Server - Express V6 adds the following
value-add to the standards:

� Custom bindings to supplement JAX-RPC features, allowing you to create
your own custom bindings needed to map Java to XML and XML to Java
conversions

� Support for generic SOAP elements

� Multi-protocol support for using a stateless session EJB as the Web service
provider providing enhanced performance without changes to JAX-RPC
clients

The private UDDI Registry previously shipped with the V5 Network Deployment
package, is now available in all packages and implements V3.0 of the UDDI
specification.

Service Data Objects (SDO)
SDO, formerly WebSphere Data Objects, provides unified data access and
representation across heterogeneous data stores. With SDO, data mediators
perform the actual work of accessing the data stores. Clients query a data
mediator service and get a data graph in response. The data graph consists of
structured data objects representing the data store. Clients update the data
graph and send it back to the mediator service to have the updates applied.

SDO is not intended to replace other data access technologies, but rather to
provide an alternate choice. It has the advantage of simplifying the application
programming tasks required to access data stores.

SDO support is included in WebSphere Studio Application Developer 5.1.1 and
in Rational Application Developer 6.0. This support includes:

� Wizards and views for working with data objects
� Relational data lists
� Relational data objects

WebSphere Application Server 6.0 support for SDO includes:

� Support for SDO naming and packaging
� Externalization of the following APIs

– SDO Core APIs
– JDBC Data Mediator for relational databases supported by WebSphere

Application Server
– EJB Mediator for entity EJBs

SDO is defined by JSR 235. For more information, see:
 Chapter 3. Product overview 53

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt
/Commonj-SDO-Specification-v1.0.doc

JavaServer Faces (JSF) v1.0
JavaServer Faces (JSF) is a user interface framework or API that eases the
development of Java-based Web applications. JSF makes J2EE more
approachable to non-Java application developers with HTML, scripting, and
page layout skills.

WebSphere Application Server - Express V6 supports JavaServer Faces 1.0 at a
runtime level.

Programming Model Extensions (PME)
Programming Model Extensions (PME) formerly found in more advanced
WebSphere Application Server packaging options are now available in the
Express, Base, and Network Deployment packages.

In Base and Express the following PMEs are available:

� Last Participant Support
� Internationalization Service
� WorkArea Service
� ActivitySession Service
� Extended JTA Support
� Startup Beans
� Asynchronous Beans (now called WorkManager)
� Scheduler Service (now called Timer Service)
� Object Pools
� Dynamic Query
� Web Services Gateway Filter Programming Model (with
� migration support)
� Distributed Map
� Application Profiling

In Network Deployment the following PMEs are available :

� Back-up Cluster Support
� Dynamic WLM

System management
WebSphere Application Server - Express V6 has enhanced the usability of the
WebSphere administration tools. There is also a focus on enhanced application
deployment features.

The following are highlights of the new system management features for
WebSphere Application Server - Express V6:
54 WebSphere Application Server - Express V6 Developers Guide and Development Examples

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc

Improved system management model
Several improvements have been made to the basic system management
features of WebSphere Application Server V6. These improvements are:

� Configuration archiving allows you to create a complete or partial archive of
an existing WebSphere Application Server configuration. This archive is
portable and can be used to create new configurations based on the archive.

� A WebSphere Application Server instance is now defined by a profile. After
installing the product, you create the runtime environment by building profiles.
Using profiles allows you to easily configure multiple runtimes with one set of
install libraries.

� You can now define a generic server as an application server instance in the
administration tools and associate it with a non-WebSphere server or process
that is needed to support the application server environment.

� You can also define external Web servers. As a managed server, you can
start and stop the Web server and automatically push the plug-in
configuration to it. This requires a node agent to be installed on the machine
and is typically used when the Web server is behind a firewall.

You can also define a Web server as an unmanaged server for placement
outside the firewall. This allows you to create custom plug-ins for the Web
server but you must manually move the plug-in configuration to the Web
server machine.

As a special case, you can define the IBM HTTP Server as an unmanaged
server, but treat it as a managed server. This does not require a node agent
since the commands are sent directly to the IBM HTTP Server administration
process.

Administrative console updates
The WebSphere Administrative Console has been updated with ease of use in
mind. New panels have been added to facilitate the new V6 features such as
service integration, the integrated UDDI Registry, and the new Web server
options. The navigation has been reworked to reduce the number of clicks
required to reach most configuration settings.

Application management
Improvements in application management techniques have been added to
facilitate rapid application deployment and efficient update procedures.

� Enhanced EAR files can now be built using Rational Application Developer or
the Application Server Toolkit. The enhanced EAR contains bindings and
server configuration settings previously done at deployment time. This allows
 Chapter 3. Product overview 55

developers to predefine known run-time settings and can speed up
deployment.

� Fine grain application update capabilities allow you to make small delta
changes to applications without doing a full application update and restart.

� WebSphere Rapid Deployment provides the ability for developers to use
annotation based programming. This is a step forward in the automation of
application development and deployment.

Service integration
The service integration functionality within WebSphere Application Server
supports both message-oriented and service-oriented applications. The primary
component of this functionality is the service integration bus, which provides the
support for messaging and Web services applications. One or more application
servers or clusters join a bus to become bus members. The service integration
bus becomes a component of the Enterprise Service Bus (ESB).

The service integration functionality provides:

� A fully compliant J2EE 1.4 JMS messaging provider, integrated within the
application server

This messaging provider is the default messaging provider for the application
server. It can support multi-server configurations and can be linked to
WebSphere MQ, appearing as a queue manager. This new JMS provider
replaces the embedded JMS provider available in WebSphere Application
Server V5.

� An integrated Web services infrastructure and support for the Web Services
Gateway provide you with a single point of control, access and validation of
Web service requests. With these features, you can control which Web
services are available to different groups of Web service users.

Note: Rational Application Developer V6 is not included in the WebSphere
Application Server - Express V6 package. Instead, the Rational Web
Developer is included. With this tool you can deploy EAR files. It provides
support for editing deployment descriptors for Web applications. What is
missing is the support for creating and editing of EJB projects. If you need
that support in the development tool be reminded that you can separately
purchase the Rational Application Developer, that seamlessly integrates
with WebSphere Application Server - Express. Rational Application
Developer is a super-set of Rational Web Developer. You can see the
relationship in Figure 3-3 on page 40.
56 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The service integration bus is fully integrated with the administration tools,
WebSphere security, installation processes, and provides support for clustering
enablement.

Security enhancements
Updates to security features in WebSphere Application Server V6 include:

� Java Authorization Contract for Containers (JACC) 1.0 support details the
contract requirements for J2EE containers and authorization providers. With
this detail, authorization providers can perform the access decisions for
resources in J2EE 1.4 application servers such as WebSphere Application
Server. This support facilitates the plug-in of third-party authorization servers.

� WebSphere Application Server Version 6.0 provides an embedded IBM Tivoli
Access Manager client that is JACC compliant and can be used to access a
Tivoli Access Manager server for authentication and authorization.

3.2.8 Physical Packaging
WebSphere Application Server - Express contains 18 CDs including seven
Primary CDs and 11 Supplemental CDs. The primary CDs include the base
application server with a separate CD for each supported platform for a total of
seven CDs.

Each CD contains:

� Standalone Node

This is an application server instance, configured by default to operate as a
standalone server

� IBM HTTP Server

Although, this is no longer installed automatically with the WebSphere
Application Server Install, IBM HTTP Server can be installed separately with
its own installation program.

� Web server plug-ins for all of the Web servers supported by WebSphere
Application Server

Although these are no longer integrated with the WebSphere Application
Server installation; they can be installed separately with their own installation
program.

� Application Client supporting the J2EE client container and JNLP (Java
Network Launch Protocol)

Note: Tivoli Access Manager server is bundled in the Network Deployment
package and not included in WebSphere Application Server - Express.
 Chapter 3. Product overview 57

� Data Direct JDBC Driver1 supporting SQL Server

The supplemental CDs include:

� Six CDs containing the Rational Web Developer (previously called
WebSphere Studio Site Developer) product for single developer use

� CDs containing DB2 Express

� Two CDs containing a set of production-ready applications, such as the IBM
Telephone Directory, for use on Windows or Linux on Intel, referred to as IBM
Business Solutions

In addition, the Application Server Toolkit is available for download from
WebSphere Developer Domain.

3.3 WebSphere Application Server architecture
Even though this book is dealing with the WebSphere Application Server -
Express product package and neither the Base configuration nor the Network
Deployment configuration are included in this package, we discuss all three
configurations in the following sections.

One reason to discuss the three packages here is to complete the overview of
the WebSphere Application Server family and to give you some idea of
possibilities of upgrade paths when you want to think about extending your
environment. Another reason is that it is important to understand the basic
concepts of the WebSphere Application Server architecture, because they are
the underlying fundamentals of all three packaging options.

The following sections discuss the architecture of WebSphere Application Server
and will mention what is included and the differences between the different
packaging options.

3.4 Application server configurations
At the heart of each member of the WebSphere Application Server family you will
find an application server with essentially the same architectural structure.

While the application server structure is identical for Base and Express, there are
differences in licensing terms, the development tool provided, and platform
support. With Base and Express, you are limited to standalone application
servers. Each standalone application server provides a fully functional J2EE 1.4
environment.
58 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Network Deployment adds additional elements that allow for more advanced
topologies, providing workload management, scalability, high availability, and
central management of multiple application servers.

3.4.1 Standalone server configuration
Express, Base, and Network Deployment all support a single standalone server
environment, though with Express and Base standalone is your only option. In
this configuration, each application server acts as a unique entity. An application
server runs one or more J2EE applications and provides the services required to
run those applications.

Multiple standalone application servers can exist on a machine, either through
independent installations of the WebSphere Application Server code, or through
the creation of multiple configuration profiles within one installation. However,
there is no common management or administration provided for multiple
application servers. Standalone application servers do not provide workload
management or failover capabilities.

Figure 3-5 on page 60 shows an architectural overview of a standalone
application server.
 Chapter 3. Product overview 59

Figure 3-5 Standalone server

3.4.2 Distributed server configuration
With Network Deployment, you can build a distributed server configuration,
enabling central administration, workload management, and failover. One or
more application servers are federated (integrated) into a cell and managed by a
deployment manager. The application servers can reside on the same machine
as the deployment manager or on multiple separate machines. Administration
and management is done centrally from the administration interfaces using the
deployment manager.

With this configuration, multiple application servers can be created to run unique
sets of applications and managed from a central location. But more importantly,
application servers can be clustered for workload management and failover
capabilities. Applications installed to the cluster are replicated across the
application servers. When one server fails, another server in the cluster can

Web container

Application Server

Messaging engines

Node

A
dm

in
ap

pl
ic

at
io

n

Application
Database

Embedded
HTTP server

EJB container

JCA services

Config
repository
(XML files)

Name Server (JNDI)

Security server

ap
pl

ic
at

io
n

(E
A

R
)

Msg
Queue

Msg
Queue

manages

managed by external
provider

(WebSphere MQ)
Web Services engine

A
dm

in
 s

er
vi

ce

JMS, MQ

Web Service
Provider or
Gateway

SOAP/HTTP

Web
browser

client

Java client

Client container

HTTP server

WebSphere
plug-in

HTTP(s)

Scripting
client

Admin
UI

RMI/IIOP

SOAP or
RMI/IIOP

HTTP(s)

U
D

D
I r

eg
is

try
60 WebSphere Application Server - Express V6 Developers Guide and Development Examples

continue processing. Workload is distributed among Web containers and EJB
containers in a cluster using a weighted round-robin scheme.

Figure 3-6 illustrates the basic components of an application server in a
distributed server environment.

Figure 3-6 Distributed server environment

3.5 Cells, nodes and servers
Regardless of the configuration, the WebSphere Application Server is organized
based on the concepts of cells, nodes and servers. While all these elements are
present in each configuration, cells and nodes do not play an important role until
you start taking advantage of the features provided with Network Deployment.

EJB container

Web container

Application Server

Node Agent

Node

Application
Database

U
D

D
I r

eg
is

try

A
dm

in
 s

er
vi

ce

Config
repository

(file)

ap
pl

ic
at

io
n

(E
AR

)

Embedded
HTTP server

JCA services

SOAP
(W eb

Services)
engine

Name server (JNDI)

Security server

Cell

Master
repository

(file)

Deployment Manager
Admin

application
Name Server (NDI)

Admin Service

Admin Service

W
eb

 S
er

vi
ce

s
G

at
ew

ay

Session
Database

Msg
Queue

managed by external
provider

(W ebSphere MQ)

W eb
browser

client HTTP server

W ebSphere
plug-in

HTTP(s)

Scripting
client

Admin
UI

Java client

Client container RMI/IIOP

SOAP or
RMI/IIOP

HTTP(s)

Msg
Queue

manages

JMS, MQ

 Messaging engine
 Chapter 3. Product overview 61

Application servers
The application server is the primary run-time component in all configurations.
This is where the application actually executes. All WebSphere Application
Server configurations can have one or more application servers. In the Express
and Base configurations, each application server functions as a separate entity.
There is no workload distribution or common administration among application
servers. With Network Deployment you can build a distributed server
environment consisting of multiple application servers maintained from a central
administration point. In a distributed server environment, application servers can
be clustered for workload distribution.

Nodes, node groups, and node agents
A node is a logical grouping of WebSphere-managed server processes that
share common configuration and operational control. A node is associated with
one physical installation of WebSphere Application Server. In a standalone
application server configuration, there is only one node.

With Network Deployment, you can configure multiple nodes to be managed
from one common administration server. In these centralized management
configurations, each node has a node agent that works with a deployment
manager to manage administration processes.

Node group is a new concept with V6. A node group is a grouping of nodes within
a cell that have similar capabilities. Its purpose is to validate that the node is
capable of performing certain functions before allowing them. For example, a
cluster cannot contain both z/OS and nonz/OS nodes. In this case, multiple node
groups would be defined, one for the z/OS nodes and one for nonz/OS. A
DefaultNodeGroup is automatically created based on the deployment manager
platform. This node group contains the deployment manager and any new nodes
with the same platform type.

Cells
A cell is a grouping of nodes into a single administrative domain. In the Base and
Express configurations, a cell contains one node. That can may have multiple
servers, but the configuration files for each server are stored and maintained
individually.

In a distributed server configuration, a cell can consist of multiple nodes, all
administered from a single point. The configuration and application files for all
nodes in the cell are centralized into a cell master configuration repository. This
centralized repository is managed by the deployment manager process and
synchronized out to local copies held on each of the nodes.
62 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.6 Servers
WebSphere Application Server supplies application servers to provide the
functions required to host applications. It also provides the ability of defining
external servers to the administration process. Table 3-4 shows the types of
servers that can be defined to the WebSphere Application Server administration
tools.

Table 3-4 WebSphere Application Server server support

3.6.1 Application server
Application servers provide the run-time environment for application code. They
provide containers and services that specialize in enabling the execution of
specific Java application components. Each application server runs in its own
Java virtual machine (JVM™).

3.6.2 Clusters
Network Deployment offers the option of using application server clustering to
provide enhanced workload distribution. A cluster is a logical collection of
application server processes, with the purpose of providing workload balancing
and high availability.

Application servers that belong to a cluster are members of that cluster and must
all have identical application components deployed on them. Other than the
applications configured to run on them, cluster members do not have to share
any other configuration data.

For example, one cluster member might be running on a large multi-processor
server while another member of that same cluster might be running on a small
mobile computer. The server configuration settings for each of these two cluster
members are very different, except in the area of application components
assigned to them. In that area of configuration, they are identical.

WebSphere Application Server types Express &
Base

ND

Application server Yes Yes

Application server clustering No Yes

External Web server Yes Yes

External generic server No Yes

WebSphere V5 JMS servers No Yes
 Chapter 3. Product overview 63

The members of a cluster can be located on a single node (vertical cluster),
across multiple nodes (horizontal cluster) or on a combination of the two.

When you install, update, or delete an application, the updates are automatically
distributed to all members in the cluster. In V5, updating an application on a
cluster required stopping the application on every server in the cluster, installing
the update, then restarting the server. In V6, you have a rollout update option
that will update and restart the application servers on each node, one node at a
time. This provides continuous availability of the application.

3.6.3 JMS servers (V5)
In V5, JMS servers provided the default messaging support for WebSphere
Application Server. For migration purposes, Network Deployment in V6
supports cells that contain both V5 and V6 nodes (the deployment manager
must be at V6) and by extension, supports existing JMS servers in V5
application servers in the cell.

3.6.4 External servers
You have the ability to define servers other than WebSphere application servers
to the administrative process.

� Generic servers

A generic server is a server that is managed in the WebSphere administrative
domain, although it is not a server supplied by the WebSphere Application
Server product.The generic server can be any server or process that is
necessary to support the application server environment, including a Java
server, a C or C++ server or process, a CORBA server, or a Remote Method
Invocation (RMI) server.

� Web servers

Web servers can be defined to the administration process as a Web server
node. This allows applications to be associated with one or more defined Web
servers. Web server nodes can be managed or unmanaged.

Managed nodes have a node agent on the Web server machine, allowing the
deployment manager to administer the Web server. The Web server can be
started or stopped from the deployment manager. The Web server plug-in for
the node can be generated and automatically pushed to the Web server. You
would normally have managed Web server nodes behind the firewall with the
WebSphere Application Server installations.

Unmanaged Web server nodes are not managed by WebSphere. You
normally find these outside the firewall or in the DMZ. Web server plug-in files
64 WebSphere Application Server - Express V6 Developers Guide and Development Examples

must be manually copied or FTPed to the Web server. However, defining the
Web server as a node allows you to generate custom plug-in files for it.

As a special case, if the unmanaged Web server is an IBM HTTP Server, you
can administer the Web server from the WebSphere administrative console
and automatically push the plug-in configuration file to the Web server. This is
done by the deployment manager using HTTP commands to the IBM HTTP
Server administration process and does not require a node agent.

3.7 Containers
The J2EE 1.4 specification defines the concept of containers to provide runtime
support for applications. There are two containers in the application server
implementation:

� Web container - processes HTTP requests, servlets and JSPs
� EJB container - processes enterprise beans (EJB)

In addition, there is an application client container that can run on the client
machine.

Table 3-5 WebSphere Application Server container support

3.7.1 Web container
The Web container processes servlets, JSP files and other types of server-side
includes. Each application server run time has one logical Web container, which
can be modified, but not created or removed. Each Web container provides the
following:

� Servlet processing

When handling servlets, the Web container creates a request object and a
response object, then invokes the servlet service method. The Web container
invokes the servlet’s destroy method when appropriate and unloads the
servlet, after which the JVM performs garbage collection.

Container type Express &
Base

ND

Web container Yes Yes

EJB container Yes Yes

Application client container Yes Yes
 Chapter 3. Product overview 65

� Embedded HTTP server

The Web container runs an embedded HTTP server for handling HTTP(S)
requests from external Web server plug-ins or Web browsers. The embedded
Web server is based on the IBM HTTP Server product.

Directing client requests to the embedded Web server is useful for testing or
development purposes. In the simplest of configurations, this may even be
appropriate for production use. However, in most cases, the use of an
external Web server and Web server plug-in as a front-end to the Web
container is more appropriate for a production environment.

� Session management

Support is provided for the javax.servlet.http.HttpSession interface described
in the Servlet API specification.

� Web services engine

Web services are provided as a set of APIs in cooperation with the J2EE
applications. Web services engines are provided to support SOAP.

Web server plug-ins
Although the Web container has an embedded HTTP server, a more likely
scenario is that an external Web server will be used to receive client requests.
The Web server can serve requests that do not require any dynamic content, for
example, HTML pages. However, when a request requires dynamic content
(JSP/servlet processing), it must be forwarded to WebSphere Application Server
for handling.

The mechanism to accomplish this is provided in the form of a Web server
plug-in. The plug-in is included with the WebSphere Application Server packages
for installation on a Web server. An XML configuration file, configured on the
WebSphere Application Server, is copied to the Web server plug-in directory.
The plug-in uses the configuration file to determine whether a request should be
handled by the Web server or an application server. When a request for an
application server is received, it is forwarded to the appropriate Web container in
the application server. The plug-in can use HTTP or HTTPs to transmit the
request.

3.7.2 EJB container
The EJB container provides all the runtime services needed to deploy and
manage enterprise beans. It is a server process that handles requests for both
session and entity beans.
66 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The enterprise beans (packaged in EJB modules) installed in an application
server do not communicate directly with the server. Instead, the EJB container
provides an interface between the EJBs and the server. Together, the container
and the server provide the bean run-time environment.

The container provides many low-level services, including threading and
transaction support. From an administrative viewpoint, the container manages
data storage and retrieval for the contained beans. A single container can host
more than one EJB JAR file.

3.7.3 Client application container
The client application container is a separately installed component on the
client's machine. It allows the client to run applications in an EJB-compatible
J2EE environment.

There is a command-line executable (launchClient) that is used to launch the
client application along with its client container runtime.

3.8 Application server services
The application server provides other services besides the containers. For a list
of these see Table 3-6.

Table 3-6 WebSphere Application Server services

Service Express &
Base

ND

JCA services Yes Yes

Transaction service Yes Yes

Dynamic cache service Yes Yes

Message listener service Yes Yes

ORB service Yes Yes

Administration service (JMX™) Yes Yes

Diagnostic trace service Yes Yes

Debugging service Yes Yes

Name service (JNDI) Yes Yes

a These services are Programing Model Extensions.
 Chapter 3. Product overview 67

3.8.1 JCA services
Connection management for access to Enterprise Information Systems (EIS) in
WebSphere Application Server is based on the J2EE Connector Architecture
(JCA) specification, also sometimes referred to as J2C. The connection between
the enterprise application and the EIS is done through the use of EIS-provided
resource adapters, which are plugged into the application server. The
architecture specifies the connection management, transaction management,
and security contracts that exist between the application server and EIS.

The Connection Manager in the application server pools and manages
connections. It is capable of managing connections obtained through both
resource adapters defined by the JCA specification and data sources defined by
the JDBC 2.0 Extensions Specification.

3.8.2 Transaction service
WebSphere applications can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made
permanent. Transactions are started and ended by applications or the container
in which the applications are deployed.

Performance Monitoring Infrastructure (PMI) service Yes Yes

Security service (JAAS and Java 2 security) Yes Yes

Service integration bus (SIB) service Yes Yes

Application profiling service a Yes Yes

Compensation service a Yes Yes

Internationalization service a Yes Yes

Object pool service a Yes Yes

Startup beans service a Yes Yes

Activity session service a Yes Yes

Work area partition service a Yes Yes

Work area service a Yes Yes

Service Express &
Base

ND

a These services are Programing Model Extensions.
68 WebSphere Application Server - Express V6 Developers Guide and Development Examples

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with transaction managers that
support the CORBA Object Transaction Service (OTS) protocol (for example,
application servers) or Web Service Atomic Transaction (WS-AtomicTransaction)
protocol.

WebSphere Application Server also participates in transactions imported through
J2EE Connector 1.5 resource adapters. WebSphere applications can also be
configured interact with (or to direct the WebSphere transaction service to
interact with) databases, JMS queues, and JCA connectors through their local
transaction support when distributed transaction coordination is not required.

The way that applications use transactions depends on the type of application
component, as follows:

� A session bean can either use container-managed transactions (where the
bean delegates management of transactions to the container) or
bean-managed transactions (where the bean manages transactions itself).

� Entity beans use container-managed transactions.

� Web components (servlets) use bean-managed transactions.

In WebSphere Application Server, transactions are handled by three main
components:

� A transaction manager that supports the enlistment of recoverable
XAResources and ensures that each such resource is driven to a consistent
outcome either at the end of a transaction or after a failure and restart of the
application server.

� A container in which the J2EE application runs. The container manages the
enlistment of XAResources on behalf of the application when the application
performs updates to transactional resource managers (for example,
databases). Optionally, the container can control the demarcation of
transactions for enterprise beans configured for container-managed
transactions.

� An application programming interface (UserTransaction) that is available to
bean-managed enterprise beans and servlets. This allows such application
components to control the demarcation of their own transactions.

3.8.3 Dynamic cache service
The dynamic cache service improves performance by caching the output of
servlets, commands, Web services, and JSP files. The dynamic cache works
within an application server, intercepting calls to cacheable objects, for example,
 Chapter 3. Product overview 69

through a servlet's service() method or a command's execute() method, and
either stores the object's output to or serves the object's content from the
dynamic cache.

Because J2EE applications have high read-write ratios and can tolerate small
degrees of latency in the currency of their data, the dynamic cache can create an
opportunity for significant gains in server response time, throughput, and
scalability.

The following caching features are available in WebSphere Application Server.

� Cache replication

Cache replication among cluster members takes place using the WebSphere
data replication service. Data is generated one time and copied or replicated
to other servers in the cluster, thus saving execution time and resources.

� Cache disk offload

By default, when the number of cache entries reaches the configured limit for
a given WebSphere server, eviction of cache entries occurs, allowing new
entries to enter the cache service. The dynamic cache includes an alternative
feature named disk offload, which copies the evicted cache entries to disk for
potential future access.

� Edge Side Include caching

The Web server plug-in contains a built-in ESI processor. The ESI processor
has the ability to cache whole pages, as well as fragments, providing a higher
cache hit ratio. The cache implemented by the ESI processor is an in-memory
cache, not a disk cache, therefore, the cache entries are not saved when the
Web server is restarted.

� External caching

The dynamic cache has the ability to control caches outside of the application
server, such as that provided by the Edge components, a nonz/OS IBM HTTP
Server's FRCA cache, and a nonz/OS WebSphere HTTP Server plug-in ESI
Fragment Processor. When external cache groups are defined, the dynamic
cache matches externally cacheable cache entries with those groups, and
pushes cache entries and invalidations out to those groups. This allows
WebSphere to manage dynamic content beyond the application server. The
content can then be served from the external cache, instead of the application
server, improving savings in performance.

3.8.4 Message listener service
With EJB 2.1, an ActivitionSpec is used to connect message-driven beans to
destinations. However, existing EJB 2.0 message-driven beans can be deployed
70 WebSphere Application Server - Express V6 Developers Guide and Development Examples

against a listener port as in WebSphere V5. For those MDBs, the message
listener service provides a listener manager that controls and monitors one or
more JMS listeners. Each listener monitors a JMS destination on behalf of a
deployed message-driven bean.

3.8.5 Object Request Broker service
An Object Request Broker (ORB) manages the interaction between clients and
servers, using IIOP. It enables clients to make requests and receive responses
from servers in a network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and
call operations on those objects as though the remote objects were located in the
same running process as the client, providing location transparency. The client
calls an operation on a local object, known as a stub. Then the stub forwards the
request to the desired remote object, where the operation is run and the results
are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the
operation and any required parameters, and for sending the request in the
network. The server-side ORB receives the IIOP request, locates the target
object, invokes the requested operation, and returns the results to the client. The
client-side ORB demarshals the returned results and passes the result to the
stub, which, in turn, returns to the client application, as though the operation had
been run locally.

WebSphere Application Server uses an ORB to manage communication
between client applications and server applications as well as communication
among product components.

3.8.6 Admin service
The admin service runs within each server JVM. In Base and Express, the admin
service runs in the application server. In the Network Deployment configuration,
each of the following hosts an admin service:

� Deployment manager
� Node agent
� Application server

The admin service provides the necessary functions to manipulate configuration
data for the server and its components. The configuration is stored in a
repository in the server's file system.
 Chapter 3. Product overview 71

The admin service has a security control and filtering functionality, providing
different levels of administration to certain users or groups using the following
admin roles:

� Administrator
� Monitor
� Configurator
� Operator

3.8.7 Name service
Each application server hosts a name service that provides a Java Naming and
Directory Interface™ (JNDI) name space. The service is used to register
resources hosted by the application server. The JNDI implementation in
WebSphere Application Server is built on top of a Common Object Request
Broker Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming
model used by application developers. CosNaming provides the server-side
implementation and is where the name space is actually stored. JNDI essentially
provides a client-side wrapper of the name space stored in CosNaming, and
interacts with the CosNaming server on behalf of the client.

The naming architecture is used by clients of WebSphere applications to obtain
references to objects related to those applications. These objects are bound into
a mostly hierarchical structure, referred to as a name space. The name space
structure consists of a set of name bindings, each consisting of a name relative
to a specific context and the object bound with that name. The name space can
be accessed and manipulated through a name server.

The following are features of a WebSphere Application Server name space:

� Distributed name space

For additional scalability, the name space for a cell is distributed among the
various servers. The deployment manager, node agent and application server
processes all host a name server.

The default initial context for a server is its server root. System artifacts, such
as EJB homes and resources, are bound to the server root of the server with
which they are associated.

� Transient and persistent partitions

The name space is partitioned into transient areas and persistent areas.
Server roots are transient. System-bound artifacts such as EJB homes and
resources are bound under server roots. There is a cell persistent root, which
72 WebSphere Application Server - Express V6 Developers Guide and Development Examples

can be used for cell-scoped persistent bindings, and a node persistent root,
which can be used to bind objects with a node scope.

� Federated name space structure

A name space is a collection of all names bound to a particular name server.
A name space can contain naming context bindings to contexts located in
other servers. If this is the case, the name space is said to be a federated
name space, because it is a collection of name spaces from multiple servers.
The name spaces link together to cooperatively form a single logical name
space.

In a federated name space, the real location of each context is transparent to
client applications. Clients have no knowledge that multiple name servers are
handling resolution requests for a particular requested object.

In the Network Deployment distributed server configuration, the name space
for the cell is federated among the deployment manager, node agents, and
application servers of the cell. Each such server hosts a name server. All
name servers provide the same logical view of the cell name space, with the
various server roots and persistent partitions of the name space being
interconnected by means of the single logical name space.

� Configured bindings

The configuration graphical interface and script interfaces can be used to
configure bindings in various root contexts within the name space. These
bindings are read-only and are bound by the system at server startup.

� Support for CORBA Interoperable Naming Service (INS) object URLs

WebSphere Application Server contains support for CORBA object URLs
(corbaloc and corbaname) as JNDI provider URLs and lookup names.

Figure 3-7 on page 74 summarizes the naming architecture and its components.
 Chapter 3. Product overview 73

Figure 3-7 Naming topology

3.8.8 PMI service
WebSphere Application Server collects data on runtime and applications through
the Performance Monitoring Infrastructure (PMI). This infrastructure is
compatible with and extends the JSR-077 specification.

PMI uses a client-server architecture. The server collects performance data from
various WebSphere Application Server components and stores it in memory.
This data consists of counters such as servlet response time and data
connection pool usage. The data can then be retrieved using a Web client, Java
client or JMX client. WebSphere Application Server contains Tivoli Performance
Viewer, now integrated in the WebSphere administrative console, which displays
and monitors performance data.

WebSphere Application Server also collects data by timing requests as they
travel through the product components. PMI request metrics log time spent in
major components, such as Web containers, EJB containers, and databases.
These data points are recorded in logs and can be written to Application
Response Measurement (ARM) agents used by Tivoli monitoring tools.

Machine A

lookupJNDI
Client

Deployment Manager

9809
namespace

Machine C

Node Agent 2

2809

Application Server 3

9810

Machine B

Node Agent 1

2809

Application Server 1

9810

Application Server 2

9811

lookuplookup

JNDI lookup

namespace

namespacenamespace

namespace

namespace

Link between name spaces
74 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.8.9 Security service
Each application server JVM hosts a security service that uses the security
settings held in the configuration repository to provide authentication and
authorization functionality.

3.9 Data Replication Service (DRS)
The Data Replication Service (DRS) is responsible for replicating in-memory
data among WebSphere processes.

DRS can be used for:

� HTTP session persistence and failover.
� Stateful session EJB persistence and failover (new in V6.0)
� Dynamic cache replication

Replication is done through the use of replication domains consisting of server or
cluster members that have a need to share internal data. Multiple domains can
be used, each for a specific task among a set of servers or clusters. While HTTP
session replication and EJB state replication can (and should) share a domain, a
separate domain is needed for dynamic cache replication.

A domain can be defined so that each domain member has a single replicator
that sends data to another member of the domain, or each member has multiple
replicators that send data to multiple members of the domain.

Two topology options are offered:

� Peer-to-peer

Each application server stores sessions in its own memory. It also stores
sessions to and retrieves sessions from other application servers. In other
words, each application server acts as a client by retrieving sessions from
other application servers, and each application server acts as a server by
providing sessions to other application servers. This mode, working in
conjuction with the workload manager, provides hot failover capabilities.

� Client/server

Application servers act as either a replication client or a server. Those that act
as replication servers store sessions in their own memory and provide
session information to clients. They are dedicated replication servers that just
store sessions but do not respond to the users’ requests. Client application
servers send session information to the replication servers and retrieve
sessions from the servers. They respond to user requests and store only the
sessions of the users with whom they interact.
 Chapter 3. Product overview 75

3.10 Virtual hosts
A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It allows a single physical machine to support several
independently configured and administered applications. It is not associated
with a particular node. It is a configuration, rather than a live object, which is
why it can be created, but not started or stopped.

Each virtual host has a logical name and a list of one or more DNS aliases by
which it is known. A DNS alias is the TCP/IP host name and port number used to
request the servlet, for example yourHostName:80. When a servlet request is
made, the server name and port number entered into the browser are compared
to a list of all known aliases in an effort to locate the correct virtual host and serve
the servlet. If no match is found, an HTTP 404 error is returned to the browser.

IBM WebSphere Application Server provides two default virtual hosts:

� default_host

This virtual hose is used for accessing most applications. The default settings
for default_host map to all requests for any alias on ports 80, 9443, and 9080.

For example:

http://localhost:80/servlet/snoop
http://localhost:9080/servlet/snoop

� admin_host

The admin>_host is specifically configured for accessing the WebSphere
Application Server administrative console. Other applications are not
accessible through this virtual host. The default settings for admin_host map
to requests on ports 9060 and 9043.

For example:

http://localhost:9060/admin

3.11 Session management
In many Web applications, users dynamically collect data as they move through
the site based on a series of selections on pages they visit. Where the user goes
next, and what the application displays as the user's next page (or next choice)
can depend on what the user has chosen previously from the site. In order to
maintain this data, the application stores it in a session.

WebSphere supports three approaches to track sessions:
76 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� SSL session identifiers

SSL session information is used to track the HTTP session ID.

� Cookies

The application server session support generates a unique session ID for
each user, and returns this ID to the user’s browser using a cookie. The
default name for the session management cookie is JSESSIONID. Using
cookies is the most common method of session management.

� URL rewriting

Session data can be kept in local memory cache, stored externally on a
database, or kept in memory and replicated among application servers.

Table 3-7 shows the session support for each WebSphere Application Server
configuration.

Table 3-7 WebSphere Application Server session management support

The Servlet 2.4 specification defines session scope at the Web application level,
meaning that session information can only be accessed by a single Web
application. However, there can be times when there is a logical reason for
multiple Web applications to share information, for example a user name.
WebSphere Application Server provides an IBM extension to the specification
allowing session information to be shared among Web applications within an
enterprise application. This option is offered as an extension to the application
deployment descriptor. No code change is necessary to enable this option. This
option is specified during application assembling.

3.11.1 HTTP Session persistence
Many Web applications use the simplest form of session management, the
in-memory local session cache. The local session cache keeps session

Session type Express
and Base

ND

Cookies Yes Yes

URL rewriting Yes Yes

SSL session identifiers Yes Yes

In memory cache Yes Yes

Session persistence using a database Yes Yes

Memory-to-memory session persistence No Yes
 Chapter 3. Product overview 77

information in memory and local to the machine and WebSphere Application
Server where the session information was first created. Local session
management does not share user session information with other clustered
machines. Users only obtain their session information if they return to the
machine and WebSphere Application Server holds their session about
subsequent accesses to the Web site.

Most importantly, local session management lacks a persistent store for the
sessions it manages. A server failure takes down not only the WebSphere
instances running on the server, but also destroys any sessions managed by
those instances.

By default, WebSphere Application Server places session objects in memory.
However, the administrator has the option of enabling persistent session
management. This instructs WebSphere to place session objects in a persistent
store. Using a persistent store allows the user session data to be recovered by
an application server on restart or another cluster member after a cluster
member in a cluster fails or is shut down. Two options for HTTP session
persistence are available:

� Database

Session information can be stored in a central session database for session
persistence.

In a single-server environment, the session can be persisted when the user's
session data must be maintained across a server restart or when the user's
session data is too valuable to lose through an unexpected server failure.

In a multi-server environment, the multiple application servers hosting a
particular application need to share this database information in order to
maintain session states for the stateful components.

� Memory-to-memory using data replication services

In a Network Deployment distributed server environment, WebSphere internal
replication enables sessions to be shared among application servers without
using a database. Using this method, sessions are stored in the memory of
an application server, providing the same functionality as a database for
session persistence.

3.11.2 Stateful session EJB persistence
With V6 you now have failover capability of stateful session EJBs. This function
uses data replication services and interacts with the workload manager
component during a failover situation.
78 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.12 Web services
Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. WebSphere Application Server
can act as both a Web service provider and as a requester. As a provider, it
hosts Web services that are published for use by clients. As a requester, it hosts
applications that invoke Web services from other locations.

WebSphere Application Server supports SOAP-based Web service hosting and
invocation.

Table 3-8 WebSphere Application Server server support

Web services support includes the following:

� Web Services Definition Language (WSDL), an XML-based description
language that provides a way to catalog and describe services. It describes
the interface of Web services (parameters and result), the binding (SOAP,
EJB), and the implementation location.

� Universal Description, Discovery and Integration (UDDI), a global,
platform-independent, open framework to enable businesses to discover
each other, define their interaction, and share information in a global registry.

UDDI support in WebSphere Application Server V6 includes UDDI V3 APIs,
some UDDI V1 and V2 APIs, UDDI V3 client for Java, and UDDI4J for
compatiblity with UDDI V2 registries. It also provides a UDDI V3 Registry, that
is integrated in WebSphere Application Server.

� SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment.

� eXtensible Markup Language (XML) provides a common language for
exchanging information.

� JAX-RPC (JSR 101) provides the core programming model and bindings for
developing and deploying Web services on the Java platform. It is a Java API
for XML-based RPC and supports JavaBeans and enterprise beans as Web
service providers.

Support type Express &
Base

ND

Web services support Yes Yes

Private UDDI v3 Registry Yes Yes

Web Services Gateway No Yes

Enterprise Web services Yes Yes
 Chapter 3. Product overview 79

� Enterprise Web services (JSR 109): this adds EJBs and XML deployment
descriptors to JSR 101.

� WS-Security is a specification that covers a standard set of SOAP extensions
to use when building secure Web services to provide integrity and
confidentiality. It is designed to be open to other security models including
PKI, Kerberos, and SSL. WS-Security provides support for multiple security
tokens, multiple signature formats, multiple trust domains, and multiple
encryption technologies. It includes security token propagation, message
integrity, and message confidentiality. The specification is proposed by IBM,
Microsoft, and VeriSign for review and evaluation. In the future, it will replace
existing Web services security specifications from IBM and Microsoft
including SOAP Security Extensions (SOAP-SEC), Microsoft's WS-Security
and WS-License, as well as IBM's security token and encryption documents.

� JAXR is an API that standardizes access to Web services registries from
within Java. The current JAXR version, 1.0, defines access to ebXML and
UDDI V2 registries. WebSphere Application Server provides JAXR level 0
support, meaning it supports UDDI registries.

JAXR does not map precisely to UDDI. For a precise API mapping to UDDI
V2, IBM provides UDDI4J and IBM Java Client for UDDI v3.

� SAAJ stands for SOAP with Attachments API for Java and defines a standard
for sending XML documents over the Internet from the Java platform.
80 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.12.1 Enterprise services (JCA Web services)
Enterprise services offer access over the Internet to applications in a
platform-neutral and language-neutral fashion. They offer access to Enterprise
Information Systems (EIS) and message queues and can be used in a
client/server configuration without the Internet. Enterprise services can access
applications and data on a variety of platforms and in a variety of formats.

An enterprise service wraps a software component in a common services
interface. The software component is typically a Java class, EJB, or JCA
resource adapter for an EIS. In services terminology, this software component is
known as the implementation. Enterprise services primarily use WSDL and WSIF
to expose an implementation as a service.

Using the Integrated Edition of WebSphere Studio, you can turn CICS and IMS
transactions using J2EE Connector Architecture (JCA) into Web services.

IBM value add: In addition to the requirements of the specifications, IBM
includes the following value add features to its Web services support:

� Custom bindings

JAX-RPC does not support all XML schema types. This feature allows
developers to create their own custom bindings needed to map Java to
XML and XML to Java conversions.

� Support for generic SOAP elements

In cases, where you do not want mapping to XML schema or custom
binding, but want to keep it generic, this will allow you to eliminate binding
and instead use the generic SOAPElement type.

� Multi-protocol support for a stateless session EJB as the Web service
provider providing enhanced performance without any changes to
JAX-RPC client.

� Client caching

 In WebSphere Application Server V5, there was support for server-side
Web service caching for Web services providers running within the
application server. In addition to this server side caching, V6 introduces
caching for Web services clients running within a V6 application server,
including the Web Services Gateway.
 Chapter 3. Product overview 81

3.12.2 Web service client
Applications that invoke Web services are known as Web service clients or Web
service requestors. An application that acts as a Web service client is deployed
to WebSphere Application Server like any other enterprise application. No
additional configuration or software is needed for the Web services client to
function. Web services clients can also be stand-alone applications.

A Web service client will bind to a Web service server to invoke the Web service.
The binding is done using a service proxy (or stub), which is generated based on
the WSDL document for the Web service. This service proxy contains all the
needed information to invoke the Web service and is used locally by the clients to
access the business service. The binding can also be done dynamically using
Web Services Invocation Framework (WSIF).

3.12.3 Web service provider
An application that acts as a Web service is deployed to WebSphere Application
Server in the same way as any other enterprise application. The Web services
are contained in Web modules or EJB modules.

Publishing the Web service to a UDDI registry makes it available to anyone
searching for it. Web services can be published to a UDDI registry using the Web
Services Explorer provided with Rational Application Developer.

When using Rational Application Developer to package the application for
deployment, no additional configuration or software is needed for the Web
services client to function. The SOAP servlets are automatically added and a
SOAP admin tool is included in a Web module.

If not, you can use the endptEnabler command-line tool found in the WebSphere
bin directory to enable the SOAP services within the EAR file and add the SOAP
admin tool.

3.12.4 Enterprise Web Services
The Enterprise Web Services, based on the JSR 109 specification request,
provides the use of JAX-RPC in a J2EE environment defining the runtime
architecture, as well as the implementation and deployment of Web services in a
generic J2EE server. The specification defines the programming model and
architecture for implementing Web services in Java based on JSRs 67, 93, 101,
and future JSRs related to Web services standards. You can find the list of JSRs
at this Web site:

http://www.jcp.org/en/jsr/all
82 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.jcp.org/en/jsr/all

3.12.5 IBM WebSphere UDDI Registry
WebSphere Application Server V6.0 provides a private UDDI registry that
implements V3.0 of the UDDI specification. This enables the enterprise to run its
own Web services broker within the company or provide brokering services to
the outside world. The UDDI registry installation and management is now
integrated in with WebSphere Application Server.

There are three interfaces to the registry for inquiry and publish:

� Through the UDDI SOAP API.

� Through the UDDI EJB client interface.

� Through the UDDI user console. This Web-based GUI interface can be used
to publish and to inquire about UDDI entities but only provides a subset of the
UDDI API functions.

Security for the UDDI registry is handled using WebSphere security. To support
the use of secure access with the IBM WebSphere UDDI Registry, you need to
configure WebSphere to use HTTPS and SSL.

A relational database is used to store registry data.

3.12.6 Web Services Gateway
The Web Services Gateway bridges the gap between Internet and intranet
environments during Web service invocations. The gateway builds upon the Web
services Definition Language (WSDL) and the WSIF for deployment and
invocation.

With V6, the Web Services Gateway is fully integrated into the integration service
technologies which provides the runtime. The administration is done directly from
the WebSphere administrative console.

The primary function of the Web Services Gateway is to map an existing
WSDL-defined Web service (target service) to a new service (gateway service)
that is offered by the gateway to others. The gateway thus acts as a proxy. Each
target service, whether internal or external is available at a service integration
bus destination.

The role formerly played by filters in the V5 Web Services Gateway is now
provided by JAX-RPC handlers. The use of JAX-RPC handlers provides a
standard approach for intercepting and filtering service messages. JAX-RPC
handlers interact with messages as they pass into and out from the service
integration bus. Handlers monitor messages at ports, and take appropriate action
depending upon the sender and content of each message.
 Chapter 3. Product overview 83

Exposing internal Web services to the outside world
Web services hosted internally and made available through the service
integration bus are called inbound services. Inbound services are associated with
a service destination. Service requests and responses are passed to the service
through an endpoint listener and associated inbound port.

From the gateway’s point of view, the inbound service is the target service. To
expose the target service for outside consumption, the gateway takes the WSDL
file for the inbound service and generates a new WSDL file that can be shared
with outside requestors. The interface described in the WSDL is exactly the
same, but the service endpoint is changed to the gateway, which is now the
official endpoint for the service client.

Figure 3-8 Exposing Web services through the Gateway

Externally hosted Web services
A Web service that is hosted externally and made available through the service
integration bus is called an outbound service. To configure an externally-hosted
service for a bus, you first associate it with a service destination, then you
configure one or more port destinations (one for each type of binding, for
example SOAP over HTTP or SOAP over JMS) through which service requests
and responses are passed to the external service.

From the gateway’s point of view, the outbound service is the target service.
Mapping a gateway service to the target service will allow internal service
requestors invoke the service as though it were running on the gateway. Again, a

Gateway
Service

http://theGateWay.com/... http://myInternalServer/...

Mediation

Service integration bus

Web
Service

Implementation

Port destination

Outbound port

service
destination

service
destination

Target
serviceGateway

service

Client

Inbound port

Endpoint
Listener
84 WebSphere Application Server - Express V6 Developers Guide and Development Examples

new WSDL is generated by the gateway showing the same interface but naming
the gateway as service provider rather than the real internal server. All requests
to the gateway service are rerouted to the actual implementation specified in the
original WSDL.

Of course, every client could access external Web services by traditional means,
but if you add the gateway as an additional layer in between, clients do not have
to change anything if the service implementor changes. This scenario is very
similar to the illustration in Figure 3-8 on page 84, with the difference that the
Web service implementation is located at a site on the Internet.

UDDI publication and lookup
The gateway facilitates working with UDDI registries. As you map a service for
external consumption using the gateway, you can publish the exported WSDL in
the UDDI registry. When the services in the gateway are modified, the UDDI
registry is updated with the latest changes.

3.13 Service integration bus
The service integration bus provides the communication infrastructure for
messaging and service-oriented applications, thus unifying this support into a
common component. The service integration bus provides a JMS 1.1 compliant
JMS provider for reliable message transport and has the capability of
intermediary logic to intelligently adapt message flow in the network. It also
supports the attachment of Web services requestors and providers.

The service integration bus capabilities have been fully integrated within
WebSphere Application Server, enabling it to take advantage of WebSphere
security, administration, performance monitoring, trace capabilities, and problem
determination tools.

The service integration bus is often referred to as just a bus. When used to host
JMS applications, it is also often referred to as a messaging bus.

Figure 3-9 on page 86 illustrates the service integration bus and how it fits into
the larger picture of an Enterprise Service Bus (ESB).
 Chapter 3. Product overview 85

Figure 3-9 The Enterprise Service Bus

A service integration bus consists of the following:

� Bus members are application servers or clusters that have been added to the
bus.

� A Messaging engine is the application server or cluster component that
manages bus resources. When a bus member is defined, a messaging
engine is automatically created on the application server or cluster. The
messaging engine provides a connection point for clients to produce or
consume messages from.

An application server will have one messaging engine per bus it is a member
of. A cluster will have at least one messaging engine per bus and can have
more. In this case the cluster owns the messaging engine(s) and determines
on which application server(s) they will run.

� Destinations are the places within the bus that applications attach to
exchange messages. Destinations can represent Web service endpoints,
messaging point-to-point queues, or messaging pub/sub topics. Destinations
are created on a bus and hosted on a messaging engine.

� The message store is represented by each messaging engine using a set of
tables in a data store (JDBC database) to hold information such as
messages, subscription information, and transaction states. Messaging

Message
Broker

WebSphere MQ Backbone

Enterprise Service Bus

Mediation

Web
Service
Provider

JCA
Adapter Web

Service
Requester

JMS
Application

Service Integration Bus

Web
Service
Provider

JCA
Adapter Web

Service
Requester

JMS
Application

Mediation

Service Integration Bus

Web
Services

MQe
SCADA

Event
Broker

MQI
Application

JMS
Application

WBI
Adapter
86 WebSphere Application Server - Express V6 Developers Guide and Development Examples

engines can share a database, each using its own set of tables. The message
store can be backed by any JDBC database supported by WebSphere
Application Server.

3.13.1 Application support
The service integration bus supports the following application attachments:

� Web services

– Requestors using the JAX-RPC API

– Providers running in WebSphere Application Server as stateless session
beans and servlets (JSR-109)

– Requestors or providers attaching with SOAP/HTTP or SOAP/JMS

� Messaging applications

– Inbound messaging using JFAP-TCP/IP (or wrapped in SSL for secure
messaging)

JFAP is a proprietary format and protocol used for service integration bus
messaging providers.

– MQ application in an MQ network using MQ channel protocol

– JMS applications in WebSphere Application Server V5 using MQ client
protocol

– JMS applications in WebSphere Application Server V6

3.13.2 Service integration bus and messaging

Figure 3-10 Service Integration Bus

SIBus1
Destination Destination

Messaging
Engine

Application
Server

bus member

Message
data store

Messaging
Engine

Application
Server

bus member
 Chapter 3. Product overview 87

With Express or Base configuration, you typically have one stand-alone server
with one messaging engine on one service integration bus. With Network
Deployment you have more flexibility in your options.

The following are valid topologies:

� One bus and one messaging engine (application server or cluster)

� One bus with multiple messaging engines

� Multiple buses within a cell, which might or might not be connected to each
other

� Buses connected between cells

� One application server that is a member of multiple buses and having one
messaging engine per bus.

� A connection between a bus and a WebSphere MQ queue manager

When using this type of topology, consider the following:

– WebSphere MQ can coexist on the same machine as the WebSphere
default messaging provider. In V5, the embedded JMS server and
WebSphere MQ could not coexist on the same machine.

– A messaging engine cannot participate in a WebSphere MQ cluster.

– The messaging engine can be configured to look like another queue
manager to WebSphere MQ.

– WebSphere applications can send messages to WebSphere MQ queues
direct, or though the service integration bus.

– You can have multiple connections to WebSphere MQ, but each must be
to a different queue manager.

– WebSphere Application Server V5 JMS client can connect to V6
destinations. Also, a V6 JMS application can connect to an embedded
JMS provider in a V5 server if so configured. However, you cannot
connect a V5 embedded JMS server to a V6 bus.

Mediation
Mediation is the ability to manipulate a message as it traverses the messaging
bus (destination). For example:

� Transform the message.
� Reroute the message.
� Copy and route to additional destinations.
� Interact with non-messaging resource managers (databases, for example).
88 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Mediation is controlled using a mediation handler list. The list is a collection of
mediation handlers (Java programs that perform the function of a mediation) that
are invoked in sequence.

Clustering
In a distributed server environment, you can use clustering for high availability
and scalability. As you have seen, a cluster can be added as a bus member.

� High availability

One messaging engine is active in the cluster. In the event the messaging
engine or server fails, the messaging engine on a standby server is activated.

� Scalability

A single messaging destination can be partitioned across multiple active
messaging engines in the cluster (messaging order is not preserved).

QOS
Quality of service (QOS) can be defined on a destination basis to determine how
messages are (or aren’t) persisted. QOS can also be specified within the
application.

Message Driven Beans
With EJB 2.1, Message Driven Bean (MDB) in the application server that listen to
queues and topics are linked to the appropriate destinations on the service
integration bus using JCA connectors (ActivationSpec objects). Support is also
included for EJB 2.0 MDBs to be deployed against a listener port.

3.13.3 Web services and the integration bus
Through the service integration bus Web services (SIBWS) enablement, you can
achieve the following goals:

� You can take an internal service that is available at a service destination, and
make it available as a Web service.

� You can take an external Web service, and make it available at a service
destination.

� You can use the Web services gateway to map an existing service, either an
internal service or an external Web service, to a new Web service that
appears to be provided by the gateway.
 Chapter 3. Product overview 89

3.14 Security
Table 3-9 shows the security features supported by the WebSphere Application
Server configurations.

Table 3-9 WebSphere Application Server security support

Figure 3-11 presents a general view of the logical layered security architecture
model of WebSphere Application Server. The flexibility of that architecture model
lies in pluggable modules that can be configured according to the requirements
and existing IT resources.

Figure 3-11 WebSphere Application Server security architecture

Security feature Express & Base ND

Java 2 security Yes Yes

J2EE security (role mapping) Yes Yes

JAAS Yes Yes

CSIv2 Yes Yes

JACC Yes Yes

Security authentication LTPA, SWAM LTPA

User registry Local OS, LDAP,
Custom Registry

Local OS, LDAP,
Custom Registry

IBM

CSIv2

WebSphere Application Server

Pluggable User
Registry

Pluggable
Authentication

Pluggable
Authorization

NT/Unix
user

registry

LDAP
user

registry

Custom
user

registry
SWAM LTPA JAAS

Tivoli
Access

Manager

CSIv2

IBM

other
vendor's

ORB
z/OS
90 WebSphere Application Server - Express V6 Developers Guide and Development Examples

IBM WebSphere Application Server security sits on top of the operating system
security and the security features provided by other components, including the
Java language.

� Operating system security protects sensitive WebSphere configuration files
and authenticates users when the operating system user registry is used for
authentication.

� Standard Java security is provided through the Java Virtual Machine (JVM)
used by WebSphere and the Java security classes.

� The Java 2 Security API provides a way to enforce access control, based on
the location of the code and who signed it. Java 2 security guards access to
system resources such as file I/O, sockets, and properties. WebSphere global
security settings allow you to enable or disable Java 2 security and provide a
default set of policies. Java 2 security can be activated or inactivated
independently from WebSphere global security.

The current principal of the thread of execution is not considered in the Java 2
security authorization. There are instances where it is useful for the
authorization to be based on the principal, rather the code base and the
signer.

� The Java Authentication and Authorization Services (JAAS) is a standard
Java API that allows the Java 2 security authorization to be extended to the
code base on the principal as well as the code base and signers. The JAAS
programming model allows the developer to design application authentication
in a pluggable fashion, which makes the application independent from the
underlying authentication technology. JAAS does not require Java 2 security
to be enabled.

� The Common Secure Interoperability protocol adds additional security
features that enable interoperable authentication, delegation and privileges in
a CORBA environment. It supports interoperability with the EJB 2.1
specification and can be used with SSL.

� J2EE security uses the security collaborator to enforce J2EE-based security
policies and support J2EE security APIs. APIs are accessed from WebSphere
applications in order to access security mechanisms and implement security
policies. J2EE security guards access to Web resources such as
servlets/JSPs and EJB methods based on roles defined by the application
developer. Users and groups are assigned to these roles during application
deployment.

� Java Authorization Contract for Containers (JACC) support allows the use of
third party authorization providers to be used for access decisions. The
default JACC provider for WebSphere Application Server is the Tivoli Access
Manager (bundled with Network Deployment). The Tivoli Access Manager
client functions are integrated in WebSphere Application Server.
 Chapter 3. Product overview 91

� IBM Java Secure Socket Extension (JSEE) is the Secure Sockets Layer
(SSL) implementation used by WebSphere Application Server. It is a set of
Java packages that enable secure Internet communications. It implements a
Java version of SSLand Transport Layer Security (TLS) protocols and
includes functionality for data encryption, server authentication, message
integrity, and client authentication.

WebSphere Application Server security relies on and enhances all the above
mentioned layers. It implements security policy in a unified manner for both Web
and EJB resources. WebSphere global security options are defined at the cell
level, although individual servers can override a subset of the security
configuration. When using mixed z/OS and distributed nodes, the security
domain features will be merged.

3.14.1 User registry
The pluggable user registry allows you to configure different databases to store
user IDs and passwords that are used for authentication and authorization.
There are three options:

� Local operating system user registry

When configured, WebSphere uses the operating system’s users and groups
for authentication.

� LDAP user registry

In many solutions, LDAP user registry is recommended as the best solution
for large scale Web implementations. Most of the LDAP servers available on
the market are well equipped with security mechanisms that can be used to
securely communicate with WebSphere Application Server. The flexibility of
search parameters that an administrator can set up to adapt WebSphere to
different LDAP schemas is considerable.

� Custom user registry

This leaves an open door for any custom implementation of a user registry
database. WebSphere API provides the UserRegistry Java interface that you
should use to write the custom registry. This interface can be used to access
virtually any relational database, flat files and so on.

Only one single registry can be active at a time.

3.14.2 Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either an end user, a machine, or an
application. The pluggable authentication module allows you to choose whether
92 WebSphere Application Server - Express V6 Developers Guide and Development Examples

WebSphere will authenticate the user or will accept the credentials from external
authentication mechanisms.

An authentication mechanism in WebSphere typically collaborates closely with a
user registry when performing authentication. The authentication mechanism is
responsible for creating a credential which is a WebSphere internal
representation of a successfully authenticated client user. Not all credentials are
created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although WebSphere provides several authentication mechanisms, only a single
active authentication mechanism can be configured at once. The active
authentication mechanism is selected when configuring WebSphere global
security.

WebSphere provides two authentication mechanisms: Simple WebSphere
Authentication Mechanism (SWAM) and Lightweight Third Party Authentication
(LTPA). These two authentication mechanisms differ primarily in the distributed
security features each supports.

� Simple WebSphere Authentication Mechanism(SWAM)

The SWAM authentication mechanism is intended for simple, nondistributed,
single application server type run-time environments. The single application
server restriction is due to the fact that SWAM does not support forwardable
credentials. This means that if a servlet or EJB in application server process 1
invokes a remote method on an EJB living in another application server
process 2, the identity of the caller identity in process 1 is not transmitted to
server process 2. What is transmitted is an unauthenticated credential, which,
depending on the security permissions configured on the EJB methods, may
cause authorization failures.

Since SWAM is intended for a single application server process, single signon
(SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments,
software development environments, or other environments that do not
require a distributed security solution.

SWAM relies on the session ID. It is not as secure as LTPA, therefore using
SSL with SWAM is strongly recommended.

� Light Weight Third Party Authentication (LTPA)

Lightweight Third Party Authentication (LTPA) is intended for distributed,
multiple-application servers and machine environments. It supports
forwardable credentials and SSO. LTPA is able to support security in a
distributed environment through the use of cryptography. This allows LTPA to
 Chapter 3. Product overview 93

encrypt, digitally sign and securely transmit authentication related data and
later decrypt and verify the signature.

LTPA requires that the configured user registry be a central shared repository
such as LDAP or a Windows domain type registry.

3.14.3 Authorization
WebSphere Application Server as the following standard authorization features:

� Java 2 security architecture uses a security policy to specify who is allowed to
execute code in the application. Code characteristics such as a code
signature, signer ID, or source server, determine whether or not the code will
be granted access to be executed.

� JAAS, which extends this approach with role-based access control.
Permission to execute a code is granted not only based on the code
characteristics but also on the user running it. JAAS programming models
allow the developer to design application authentication in a pluggable
fashion, which makes the application independent from the underlying
authentication technology.

For each authenticated user, a Subject class is created and a set of Principals is
included in the subject in order to identify that user. Security policies are granted
based on possessed principals.

WebSphere Application Server uses an internal authorization mechanism by
default. As an alternative, you can define external JACC providers to handle
authorization decisions. During application installation, security policy
information is stored in the JACC provider server using standard, JACC-defined
interfaces. Subsequent authorization decisions are made using this policy
information. As an exception to this, all administrative security authorization
decisions are made by the WebSphere Application Server default authorization
engine.

3.14.4 Security components
Figure 3-12 on page 95 shows an overview of the security components that
come into play in WebSphere Application Security.
94 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 3-12 WebSphere Application Security components

Security server
The security server is a component of WebSphere Application Server that runs in
each application server process. If multiple application server instances are
executed on a single node, then multiple security servers exist on that node.

The security server component is responsible for managing authentication and
for collaborating with the authorization engine and the user registry.

Security collaborators
Security collaborators are application server processes responsible for enforcing
security constraints specified in deployment descriptors. They communicate with
the security server every time that authentication and authorization actions are
required. The following security collaborators are identified.

� Web security collaborator

The Web security collaborator resides in the Web container and provides the
following services to the application:

– Checks authentication.

– Performs authorization according to the constraint specified in the
deployment descriptor.

– Logs security tracing information.

JAAS Subject

AppServer1
authenticate()

mapCredential()
Requests

Protection Domain

Permissions

Java 2 Platform

Security Token or
Density Assertion

User
Registry

AppServer2

EJB Container

validate()

CSlv2

User ID
Password/

Client
Certificate

WebServer
Security
Plug-in

JAAS
Client

HTTP(S)

Security Server

SecurityManager
AccessController

CSlv2
Security Server

EJB Container

Node Agent

Security Server

Web Container

Policy

Security Collaborator

Security Collaborator

Security Collaborator
 Chapter 3. Product overview 95

� EJB security collaborator

The EJB security collaborator resides in the EJB container. It uses CSIv2 and
SAS to authenticate Java client requests to enterprise beans. It works with
the security server to perform the following functions:

– Check authorizations according to the specified security constraint.

– Support communication with local user registry.

– Log security tracing information.

– Communicate external ORB using CSIv2 when a request for a remote
bean is issued.

3.14.5 Security flows
The following sections outline the general security flow.

Web browser communication
The following steps describe the interaction of the components from a security
point of view when a Web browser sends a request to a WebSphere application.

1. The Web user requests a Web resource protected by WebSphere Application
Server.

2. The Web server receives the request, recognizes that the requested resource
is on the application server, and, using the Web server plug-in, redirects the
request.

3. The Web server plug-in passes the user credentials to the Web security
collaborator, which performs user authentication.

4. After successful authentication, the Web request reaches the Web container.
The Web security collaborator passes the user’s credentials and the security
information contained in the deployment descriptor to the security server for
authorization.

5. Upon subsequent requests, authorization checks are performed either by the
Web collaborator or the EJB collaborator, depending on what the user is
requesting. User credentials are extracted from the established security
context.

Administrative tasks
Administrative tasks are issued using either the Web-based administrative
console or the wsadmin scripting tool. The following steps illustrate how the
administration tasks are executed.

1. The administration client generates a request that reaches the server side
ORB and JMX MBeans. The JMX MBeans represent managed resources.
96 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2. The JMX MBeans contact the security server for authentication purposes.
JMX beans have dedicated roles assigned and do not use user registry for
authentication and authorization.

Java client communication
These steps describe how a Java client interacts with a WebSphere application.

1. A Java client generates a request that reaches the server side ORB.

2. The CSIv2 or IBM SAS interceptor performs authentication on the server side
on behalf of the ORB, and sets the security context.

3. The server side ORB passes the request to the EJB container.

4. After submitting a request to the access protected EJB method, the EJB
container passes the request to the EJB collaborator.

5. The EJB collaborator reads the deployment descriptor from the .ear file and
user credential from the security context.

6. Credentials and security information is passed to the security server which
validates user access rights and passes this information back to the
collaborator.

7. After receiving a response from the security server, the EJB collaborator
authorizes or denies access to the user to the requested resource.

3.15 Resource providers
Resource providers define resources needed by running J2EE applications.
Table 3-10 shows the resource provider support of the WebSphere Application
Server configuration.

Table 3-10 WebSphere Application Server resource provider support

Resource provider Express &
Base

ND

JDBC provider Yes Yes

Mail providers (JavaMail) Yes Yes

JMS providers Yes Yes

Resource environment providers Yes Yes

URL providers Yes Yes

Resource adapters Yes Yes
 Chapter 3. Product overview 97

3.15.1 JDBC resources
A data source represents a real-world data source, such as a relational
database. When a data source object has been registered with a JNDI naming
service, an application can retrieve it from the naming service and use it to make
a connection to the data source it represents.

Information about the data source and how to locate it, such as its name, the
server on which it resides, its port number, and so on, is stored in the form of
properties on the DataSource object. This makes an application more portable
because it does not need to hard code a driver name, which often includes the
name of a particular vendor. It also makes maintaining the code easier because
if, the data source is moved to a different server for example, all that needs to be
done is to update the relevant property in the data source. None of the code
using that data source needs to be touched.

Once a data source has been registered with an application server’s JNDI name
space, application programmers can use it to make a connection to the data
source it represents.

The connection will usually be a pooled connection. That is, once the application
closes the connection, the connection is returned to a connection pool, rather
than being destroyed.

Data source classes and JDBC drivers are implemented by the data source
vendor. By configuring a JDBC provider, we are providing information about the
set of classes used to implement the data source and the database driver, that is,
it provides the environment settings for the DataSource object.

Data sources
In WebSphere Application Server, connection pooling is provided by two parts, a
JCA Connection Manager and a relational resource adapter.
98 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 3-13 Resource adapter in J2EE connector architecture

The JCA Connection Manager provides the connection pooling, local
transaction, and security supports. The relational resource adapter provides both
JDBC wrappers and JCA CCI implementation that allows BMP, JDBC
applications and CMP beans to access the database.

3.15.2 Mail providers
The JavaMail APIs provide a platform and protocol-independent framework for
building Java-based mail client applications. The JavaMail APIs require service
providers, known in WebSphere as protocol providers, to interact with mail
servers that run the pertaining protocols.

A Mail provider encapsulates a collection of protocol providers. WebSphere
Application Server has a Built-in Mail Provider that encompasses three protocol
providers: SMTP, IMAP and POP3. These protocol providers are installed as the
default and should be sufficient for most applications.

Version 4 data sources: WebSphere Version 4.0 provided its own JDBC
connection manager to handle connection pooling and JDBC access. This
support is included with WebSphere Application Server V5 and V6 to provide
support for J2EE 1.2 applications. If an application chooses to use a Version 4
data source, the application will have the same connection behavior as in
WebSphere Version 4.

Application Server

JD
BC

 D
riv

er

C
on

ne
ct

io
ns

Resource
Adapter

Ap
pl

ic
at

io
n DB Server

Datasource

Connection
Factory

Delegate

JCA
Connection

Manager

DB Connection
Pool
 Chapter 3. Product overview 99

� Simple Mail Transfer Protocol (SMTP) is a popular transport protocol for
sending mail. JavaMail applications can connect to an SMTP server and send
mail through it by using this SMTP protocol provider.

� Post Office Protocol (POP) is the standard protocol for receiving mail.

� Internet Message Access Protocol (IMAP) is an alternative protocol to POP3
for receiving mail.

To use other protocols, you must install the appropriate service provider for those
protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation
Framework (JAF) as the underlying framework to deal with complex data types
that are not plain text, like Multipurpose Internet Mail Extensions (MIME),
Uniform Resource Locator (URL) pages, and file attachments.

The JavaMail APIs, the JAF, the service providers and the protocols are shipped
as part of WebSphere Application Server using the following Sun licensed
packages:

� mail.jar: contains the JavaMail APIs, and the SMTP, IMAP, and POP3 service
providers.

� activation.jar: contains the JavaBeans Activation Framework.

3.15.3 JCA resource adapters
The J2EE Connector Architecture (JCA) defines a standard architecture for
connecting the J2EE platform to heterogeneous Enterprise Information Systems
(EIS), for example ERP, mainframe transaction processing, database systems,
and existing applications not written in the Java programming language.

The JCA resource adapter is a system-level software driver supplied by EIS
vendors or other third-party vendors. It provides the connectivity between J2EE
components (an application server or an application client) and an EIS.

To use a resource adapter, you need to install the resource adapter code and
create connection factories that use the adapter.

One resource adapter, the WebSphere Relational Resource Adapter, is
predefined for handling data access to relational databases. This resource
adapter provides data access through JDBC calls to access databases
dynamically. It provides connection pooling, local transaction, and security
support. The WebSphere persistence manager uses this adapter to access data
for container-managed persistence (CMP) beans.
100 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.15.4 URL providers
URL providers implement the functionality for a particular URL protocol, such as
HTTP, by extending the java.net.URLStreamHandler and
java.net.URLConnection classes. It enables communication between the
application and a URL resource that is served by that particular protocol.

A URL provider named Default URL Provider is included in the initial WebSphere
configuration. This provider utilizes the URL support provided by the IBM JDK.
Any URL resource with protocols based on the Java 2 Standard Edition 1.3.1,
such as HTTP, FTP or File, can use the default URL provider.

Customers can also plug in their own URL providers that implement other
protocols not supported by the JDK.

3.15.5 JMS providers
The JMS functionality provided by WebSphere includes support for three types
of JMS provider:

� Default messaging provider (service integration bus)
� WebSphere MQ provider
� Generic JMS providers
� V5 default messaging provider (for migration)

There can be more than one JMS provider per node. That is, a node can be
configured to concurrently make use of any combination (or all) of the default
messaging providers, WebSphere MQ JMS providers and a generic JMS
providers. In addition, WebSphere MQ and the default messaging provider can
coexist on the same machine.

The support provided by WebSphere administration tools for configuration of
JMS providers differs depending upon the provider. Table 3-11 provides a
summary of the support.

Table 3-11 WebSphere administration support for JMS provider configuration

Configurable objects Default
messaging
provider

WebSphere
MQ JMS
provider

Generic
JMS
provider

V5 default
messaging
-
WebSphere
JMS
provider

Messaging system objects (queues/topics) Y N N Y

JMS administered objects (JMS
connection factory and JMS destination)

Y Y N Y
 Chapter 3. Product overview 101

Default messaging provider
The default messaging provider for WebSphere Application Server is the service
integration bus, providing both point-to-point and publish/subscribe functions.
Within this provider, you define JMS connection factories and JMS destinations
corresponding to service integration bus destinations.

WebSphere MQ JMS provider
WebSphere Application Server supports the use of full WebSphere MQ as the
JMS provider. The product is tightly integrated with the WebSphere installation,
with WebSphere providing the JMS client classes and administration interface,
while WebSphere MQ provides the queue-based messaging system.

Generic JMS providers
WebSphere Application Server supports the use of generic JMS providers, as
long as they implement the ASF component of the JMS 1.0.2 specification. JMS
resources for generic JMS providers are not configurable using WebSphere
administration.

V5 default JMS provider
For backwards compatibility with earlier releases, WebSphere Application Server
also includes support for the V5 default messaging provider which enables you to
configure resources for use with V5 embedded messaging. The V5 default
messaging provider can also be used with a service integration bus.

3.15.6 Resource environment providers
The java:comp/env environment provides a single mechanism by which both
JNDI name space objects and local application environment objects can be
looked up. WebSphere Application Server provides a number of local
environment entries by default.

The J2EE specification also provides a mechanism for defining custom
(nondefault) environment entries using <resource-env-ref> entries defined in an
application's standard deployment descriptors. The J2EE specification separates
the definition of the resource environment entry from the application by:

1. Requiring the application server to provide a mechanism for defining separate
administrative objects that encapsulate a resource environment entry. The
administrative objects are to be accessible with JNDI in the application
server’s local name space (java:comp/env).

2. Specifying the administrative object's JNDI lookup name and the expected
returned object type in <resource-env-ref>.
102 WebSphere Application Server - Express V6 Developers Guide and Development Examples

WebSphere Application Server supports the <resource-env-ref> mechanism by
providing administration objects for the following:

� Resource environment provider

This provider defines an administrative object that groups together the
referenceable, resource environment entry administrative objects and any
required custom properties.

� Referenceable

The Referenceable provider defines the class name of the factory class that
returns object instances implementing a Java interface.

� Resource environment entry

This entry defines the binding target (JNDI name), factory class and return
object type (with the link to the referenceable) of the resource environment
entry.

3.16 Workload management
Clustering application servers that host Web containers automatically enables
plug-in workload management for the application servers and the servlets they
host. Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS.

Figure 3-14 Plug-in (Web container) workload management

This routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster assuming no strong affinity configurations. If the weights
are scaled in the range from zero to twenty, the plug-in routes requests to those
cluster members with the higher weight value more often. A rule of thumb
formula for determining routing preference would be:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

App Server

Web
Container

App Server

Web
Container

Servlet
Requests

HTTP
Server

Plug-in
 Chapter 3. Product overview 103

There are n cluster members in the cluster.

The Web server plug-in temporarily routes around unavailable cluster members.

Workload management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers with the EJB containers can be clustered, enabling the
distribution of EJB requests between the EJB containers.

Figure 3-15 EJB workload management

In this configuration, EJB client requests are routed to available EJB containers
in a round robin fashion based on assigned server weights. The EJB clients can
be servlets operating within a Web container, stand-alone Java programs using
RMI/IIOP, or other EJBs.

The server-weighted, round-robin routing policy ensures a distribution based on
the set of server weights that have been assigned to the members of a cluster.
For example, if all servers in the cluster have the same weight, the expected
distribution for the cluster would be that all servers receive the same number of
requests. If the weights for the servers are not equal, the distribution mechanism
sends more requests to the higher weight value servers than the lower weight
value servers. The policy ensures the desired distribution, based on the weights
assigned to the cluster members. In V6, the balancing mechanism for weighted
round-robin had been enhanced to ensure more balanced routing distribution
among servers.

You can also choose to have requests sent to the node on which the client
resides as the preferred routing. In this case, only cluster members on that node
will be chosen (using the round-robin weight method). Cluster members on
remote nodes will only be chosen if a local server is not available.

EJB
Requests

App Server

EJB
Container

App Server

EJB
Container

App Server

Web
Container

EJB
Requests

Java
Client
104 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3.17 High availability
With WebSphere Network Deployment V6, the high availability features have
been significantly improved. The following is a quick overview of the failover
capabilities:

� HTTP server failover

Combining multiple HTTP servers, along with a load balancing product such
as provided with the Edge components can be used to provide HTTP Server
failover.

� Web container failover

The HTTP server plug-in in the Web server is aware of the configuration of all
Web containers and can route around a failed Web container in a cluster.
Sessions can be persisted to a database or in-memory using data replication
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the
cluster.

� Deployment manager and node agent

The need for failover in these two components has been reduced, thus no
built-in failover capability has been provided. The loss of the deployment
manager only affects configuration. It is recommended that you use a process
nanny to restart the Node Agent if it fails.

� Critical services failover

Hot standby and peer failover for critical services (WLM routing, PMI
aggregation, JMS messaging, transaction manager, and so on) is provided
through the use of HA domains.

An HA domain defines a set of WebSphere processes (a core group) that
participate in providing high availability function to each other. Processes in
the Core Group can be the deployment manager, Node Agents, application
servers or cluster members.

One or more members of the core group can act as an HA coordinator,
managing the HA activities within the core group processes. If an HA
coordinator server fails, another server in the core group takes over the HA
coordinator duties. HA policies define how the failover occurs.

Workload management information is shared between core members and
failover of critical services is done among them in peer-to-peer fashion. Little
configuration is necessary and, in many cases, this function works with the
defaults that are created automatically as you create the processes.
 Chapter 3. Product overview 105

� Transaction log hot standby

With WebSphere Application Server Network Deployment V6, transaction
logs can be maintained on NAS (Network Attached Storage). When a cluster
member fails, another cluster member recovers the transaction log, thus
enabling the failover 2PC transactions. The time required for the failover is
dramatically reduced from what it took in V5.

� JMS messaging failover

The messaging engine keeps messages in a remote database. When a
server in a cluster fails, WebSphere selects an online server to run the
Messaging Engine and the workload manager routes JMS connections to that
server.

3.18 Administration
WebSphere Application Server’s administration model is based on the JMX
framework. JMX allows you to wrap hardware and software resources in Java
and expose them in a distributed environment. JMX also provides a mapping
framework for integrating existing management protocols, such as SNMP, into
JMX’s own management structures.

Each application server has an administration service that provides the
necessary functions to manipulate configuration data for the server and its
components. The configuration is stored in a repository. The repository is
actually a set of XML files stored in the server's file system.

3.18.1 Administration tools
Table 3-12 shows the administration tool support for WebSphere Application
Server by configuration.

Table 3-12 WebSphere Application Server administration tool support

Administrative console
The WebSphere Administrative Console is a Web-browser based interface that
provides configuration and operation capability. The administrator connects to

Tool Express &
Base

ND

Administrative console Yes Yes

Commands Yes Yes

wsadmin Yes Yes
106 WebSphere Application Server - Express V6 Developers Guide and Development Examples

the application using a Web browser client. Users assigned to different
administration roles can manage the application server and certain components
and services using this interface.

The administrative console is a system application, crucial to the operation of
WebSphere and as such, is not exposed as an enterprise application on the
console. In standalone application servers, the administrative console runs in the
application server. In the Network Deployment distributed server environment,
the administrative console application runs on the deployment manager. When a
node is added to a cell, the administrative console application is deleted from the
node and the configuration files are integrated into the master cell repository to
be maintained by the deployment manager.

Commands
WebSphere Application Server provides a set of commands in the
<server_install>/bin directory with which you can perform a subset of
administrative functions.

For example, the startServer command is provided to start an application
server.

wsadmin scripting client
The wsadmin scripting client provides extra flexibility over the Web-based
administration application, allowing administration using the command-line
interface. Using the scripting client not only makes administration quicker, but
helps automate the administration of multiple application servers and nodes
using scripts.

The scripting client uses the Bean Scripting Framework (BSF), which allows a
variety of scripting languages to be used for configuration and control. Only two
languages have been tested and are supported in V6: jacl and jython (or
jpython).

The wsadmin scripting interface is included in all WebSphere Application Server
configurations but is targeted toward advanced users. The use of wsadmin
requires indepth familiarity with application server architecture and a scripting
language.

3.18.2 Configuration repository
The configuration repository holds copies of the individual component
configuration documents stored in XML files. The application server's admin
service takes care of the configuration and makes sure it is consistent during the
runtime.
 Chapter 3. Product overview 107

The configuration of unfederated nodes can be archived for export and import,
making them portable among different WebSphere Application Server instances.

3.18.3 Centralized administration
The Network Deployment package allows multiple servers and nodes to be
administered from a central location. This is facilitated through the use of a
central deployment manager that handles the administration process and
distributes the updated configuration to the node agent for each node. The node
agent, in turn, is responsible for maintaining the configuration for the servers in
the node.

Table 3-13 WebSphere Application Server distributed administration support

Managed processes
All operating system processes that are components of the WebSphere product
are called managed servers or managed processes. JMX support is embedded
in all managed processes and these processes are available to receive
administration commands and to output administration information about the
state of the managed resources within the processes.

WebSphere provides the following managed servers/processes:

� Deployment manager

The deployment manager provides a single point to access all configuration
information and control for a cell. The deployment manager aggregates and
communicates with all of the node agent processes on each node in the
system.

� Node agent

The node agent aggregates and controls all of the WebSphere managed
processes on its node. There is one node agent for each node.

Administration tool Express &
Base

ND

Deployment manager No Yes

Node agent No Yes

Application servers Standalone Standalone
or
distributed
server,
clustering
108 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Application server

This is the managed server that hosts J2EE applications.

Deployment manager
The deployment manager process provides a single, central point of
administrative control for all elements in the cell. It hosts the Web-based
administrative console application. Administrative tools that need to access any
managed resource in a cell usually connect to the deployment manager as the
central point of control.

The deployment manager is responsible for the content of the repositories
(configuration and application binaries) on each of the nodes. It manages this
through communication with the node agent process resident on each node of
the cell.

Using the deployment manager, horizontal scaling, vertical scaling and
distributed applications are all easy to administer and manage, because
application servers are node-managed, and one or more nodes is cell-managed.

Node agent
The node agent is an administrative process and is not involved in application
serving functions. It hosts important administrative functions such as:

� File transfer services
� Configuration synchronization
� Performance monitoring

The node agent aggregates and controls all the managed processes on its node
by communicating with:

� The deployment manager to coordinate configuration synchronization and to
perform management operations on behalf of the deployment manager

� Application servers and managed Web servers to manage (start and stop)
each server and to update its configuration and application binaries as
required

Only one node agent is defined and run on each node. In a standalone server
environment, there is no node agent.

Master configuration repository
In a distributed server environment, a master configuration repository that
contains all of the cell’s configuration data is maintained by the deployment
manager. The configuration repository at each node is a synchronized subset of
the master repository. The node repositories are read-only for application server
 Chapter 3. Product overview 109

access because only the deployment manager can initiate their update, pushing
configuration changes out from the cell master configuration repository.

3.19 Application flow
Figure 3-16 shows the typical application flow for Web browser clients using
either JDBC (from a servlet) or EJB to access application databases.

Figure 3-16 Application flow

1. A Web client requests a URL in the browser (input page).

2. The request is routed to the Web server over the Internet.

3. The Web server immediately passes the request to the Web server plug-in.
All requests go to the WebSphere plug-in first.

4. The Web server plug-in examines the URL, verifies the list of hostname
aliases from which it will accept traffic based on the virtual host information,
and chooses a server to handle the request.

5. A stream is created. A stream is a connection to the Web container. It is
possible to maintain a connection (stream) over a number of requests. The
Web container receives the request and, based on the URL, dispatches it to
the proper servlet.

6. If the servlet class is not loaded, the dynamic class loader loads the servlet
(servlet init(), then doGet() or doPost()).

WebSphere Application Server

Application Server

Embedded
HTTP Server

Web Container

Enterprise
BeanEnterprise

Bean

EJB

Enterprise
BeanEnterprise

Bean

EJBEJB

Data
Sources

Application
Database

DB2

Browser
Client

Input
Page

HTML

Input
Page

HTML

EJB Container

Connection
Pool

14

10a

10b

1

2

3
7

12

11

8b

8a

9Web Server

JSPJSPJSP

ServletServletServlet5
6

13

Plug-in 4

Enterprise
Bean

JNDI
110 WebSphere Application Server - Express V6 Developers Guide and Development Examples

7. JNDI is now used for lookup of either datasources or EJBs required by the
servlet.

8. Depending upon whether a datasource is specified or an EJB is requested,
the JNDI will direct the servlet:

a. To the corresponding database, and get a connection from its connection
pool in the case of a data source

b. To the corresponding EJB container, which then instantiates the EJB
when an EJB is requested

9. If the EJB requested involves an SQL transaction, it goes back to the JNDI to
look up the datasource.

10.The SQL statement is executed and the data retrieved is sent back:

a. To the servlet
b. To the EJB

11.Data beans are created and handed off to JSPs in the case of EJBs.

12.The servlet sends data to JSPs.

13.The JSP generates the HTML that is sent back through the WebSphere
plug-in to the Web server.

14.The Web server sends the output page (output HTML) to the browser.

3.20 Developing and deploying applications
Figure 3-17 on page 112 shows a high level view of the stages of application
development and deployment.
 Chapter 3. Product overview 111

Figure 3-17 Develop and deploy

3.20.1 Application design
Design tools like Rational Rose or Rational XDE can be used to model the
application using the Unified Modeling Language (UML). The output of the
modeling will generally consist of use case scenarios, class diagrams, and
starter code generated based on the model.

3.20.2 Application development
Application development is done using Rational Application Developer (or a
comparable IDE) to create the enterprise application.

You can start by importing pregenerated code such as from Rational Rose, a
sample application, an existing production application, or you can start from
scratch.

Rational Application Developer provides many tools and aids to get you started
quickly. It also supports team development using CVS or Rational ClearCase,
allowing multiple developers to share a single master source copy of the code.

During the development phase, component testing can be done using the built-in
WebSphere Application Server test environment. Rational Application Developer
provides server tools capable of creating and managing servers both in the test
environment and on remote server installations. The application is automatically

Rational Application Developer

Integrated Development Environment
(IDE)

Application

workspace

WebSphere Application
Server

Runtime Environment

Application

Application Server

Rational Tools

Application

Business/IT
needs

WebSphere Server Test
Environment

Application

Applicationdeploy

test &
debug

remote
debug

develop

configure

design

Concept

planning
112 WebSphere Application Server - Express V6 Developers Guide and Development Examples

packaged into an EAR file for deployment when you run the application on a
server using Rational Application Developer.

3.20.3 Application packaging
J2EE applications are packaged into Enterprise Application Archive (EAR) files
to be deployed to one or more application servers. A J2EE application contains
any or all of the modules shown in Table 3-14.

Table 3-14 J2EE 1.3 application modules

This packaging is done automatically in Rational Application Developer when
you export an application for deployment. If you are using another IDE,
WebSphere Application Server (with the exception of the Express configuration)
provides the Application Server Toolkit for packaging applications.

Enhanced EAR files
The enhanced EAR, introduced in WebSphere Application Server V6.0, is a
regular J2EE EAR file with additional configuration information for resources
usually required by J2EE applications. While adding this extra configuration
information at packaging time is not mandatory, it can simplify deployment of
J2EE applications to WebSphere.

When an enhanced EAR is deployed to a WebSphere Application Server V6.0
server, WebSphere can automatically configure the resources specified in the
enhanced EAR. This reduces the number of configuration steps required to set
up the WebSphere environment to host the application.

3.20.4 Application deployment
Applications are installed on application servers using the WebSphere
Administrative Console or the wsadmin scripting interface. An application can be
deployed to a single server or a cluster. In the case of a cluster, it is installed on
each application server in the cluster.

Module Filename Contents

Web module <module>.war Servlets, JSP files, and related code artifacts.

EJB module <module>.jar Enterprise beans and related code artifacts.

Application client
module

<module>.jar Application client code.

Resource adapter
module

<module>.rar Library implementation code that your
application uses to connect to Enterprise
Information Systems (EIS).
 Chapter 3. Product overview 113

Installing an application involves the following:

� Defining JNDI names for EJB home objects
� Specifying data source entries for entity beans
� Binding EJB references to the actual EJB JNDI names
� Mapping Web modules to virtual hosts
� Specifying listener ports for message-driven beans
� Mapping application modules to application servers
� Mapping security roles to users or groups
� Binding resource references (created during packaging) to actual resources

For example, a data source would need to be bound to a real database.

The use of an enhanced EAR file simplifies this installation process.

After a new application is deployed, the Web server plug-in configuration file
needs to be regenerated and copied to the Web server.

Application update
In previous releases, deploying an update to an application required a complete
EAR file to be deployed and the application to be restarted. WebSphere
Application Server V6 now allows partial updates to applications and makes it
possible to restart only parts of an application.

Updates to an application can consist of individual application files, application
modules, zip files containing application artifacts, or the complete application. All
module types can be started (though only Web modules can be stopped).

In V6, you have a rollout start option for installing applications on a cluster that
will stop, update, and start each cluster member in turn, ensuring availability.

3.20.5 WebSphere Rapid Deployment
WebSphere Rapid Deployment is designed to simplify the development and
deployment of WebSphere applications. It is a collection of Eclipse plug-ins that
can be integrated within development tools or run in a headless mode from a
user file system. WebSphere Rapid Deployment is currently integrated in
Rational Web Developer, Rational Application Developer, and the Application
Server Toolkit. Initially, there are features that are only supported in headless
mode.

During development, annotation-based programming is used. The developer
adds metadata tags into the application source code that are used to generate
artifacts needed by the code, thus reducing the number of artifacts the developer
needs to create.
114 WebSphere Application Server - Express V6 Developers Guide and Development Examples

These applications are packaged into an enhanced EAR file containing the J2EE
EAR file along with deployment information, application resources, and
properties (environment variables, JAAS authentication entries, shared libraries,
classloader settings, and JDBC resources). During installation, this information is
used to create the necessary resources. Moving an application from one server
to another also moves the resources.

WebSphere Rapid Deployment automates installation of applications and
modules onto a running application server by monitoring the workspace for
changes and then driving the deployment process.

3.21 Technology support summary
The following tables break down the highlights of support provided by each
WebSphere Application Server packaging option.

Table 3-15 WebSphere Application Server features and technology support

Support type Base and
Express V6

ND V6

Client and server support for the Software
Development Kit for Java Technology Edition 1.4
(SDK 1.4.2)

Yes Yes

J2EE 1.2, 1.3 programming support Yes Yes

J2EE 14. programming support1

� EJB 2.1
� Servlet 2.4
� JSP 2.0
� JMS 1.1
� JTA 1.0
� JavaMail 1.3
� JAF 1.0
� JAXP 1.2
� Connector 1.5
� Web Services 1.1
� JAX-RPC 1.1
� SAAJ 1.2
� JAXR 1.0
� J2EE Management 1.0
� JMX 1.2
� JACC 1.0
� JDBC 3.0

Yes Yes

WebSphere Rapid Deployment Yes Yes
 Chapter 3. Product overview 115

Service Data Objects (SDO) Yes Yes

Messaging support
� Integrated JMS 1.1 messaging provider
� Support for WebSphere MQ and generic JMS

providers
� Message driven beans

Yes Yes

Web services runtime support Yes Yes

Security support
� Java 2
� J2EE
� JACC 1.0
� JAAS 1.0
� CSIv2 and SAS authentication protocols
� LDAP or local operating system user registry3

� Simple WebSphere Authentication Mechanism
(SWAM)

� LTPA authentication mechanism
� Kerberos (Technology Preview

Yes Yes

Multi-node management and Edge components

Workload management and failover No Yes

Deployment manager No Yes

Central administration of multiple nodes No Yes

Load Balancer Yes

Caching Proxy X

Dynamic caching Yes Yes

Performance and analysis tools

Performance Monitoring Infrastructure (PMI) Yes Yes

Log Analyzer Yes Yes

Tivoli Performance Viewer (integrated in the
administration console)

Yes Yes

Administration and tools

Support type Base and
Express V6

ND V6
116 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Administration and tools
� Web-based administration console
� Integrated IBM HTTP Server and Application

Server Administration Console
� Administrative scripting
� Java Management Extension (JMX) 1.2
� J2EE Management (JSR-077)
� J2EE Deployment (JSR-088)
� Application Server Toolkit

Yes Yes

Web services
� JAX-RPC v1.0 for J2EE 1.3, v1.1 for J2EE 1.4
� JSR 109 (Web services for J2EE)
� WS-I Basic Profile 1.1.2 support
� WS-I Simple SOAP Binding Profile 1.0.3
� WS-I Attachments Profile 1.0
� SAAJ 1.2
� UDDI V2 and V3
� JAXR
� WS-TX (transactions)
� SOAP 1.1
� WSDL 1.1 for Web services
� WSIL 1.0 for Web services
� OASIS Web Services Security: SOAP Message

Security 1.0 (WS-Security 2004)
� OASIS Web Services Security: UsernameToken

Profile 1.0
� OASIS Web Services Security X.509 Certificate

Token Profile

Yes Yes

Web Services Gateway No Yes

Private UDDI v3 Registry Yes Yes

Programming Model Extensions2

Support type Base and
Express V6

ND V6
 Chapter 3. Product overview 117

� Last Participant Support
� Internationalization Service
� WorkArea Service
� ActivitySession Service
� Extended JTA Support
� Startup Beans
� Asynchronous Beans (now called WorkManager)
� Scheduler Service (now called Timer Service)
� Object Pools
� Dynamic Query
� Web Services Gateway Filter Programming Model

(with
� migration support)
� Distributed Map
� Application Profiling

Yes Yes

� Back-up Cluster Support
� Dynamic WLM

No Yes

1. The APIs required for J2EE 1.4 can be seen in the Application Programming
Interface section of the J2EE 1.4 specifications at

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

2. Business process choreography and business rule beans remain in WebSphere
Business Integration Server Foundation.

Support type Base and
Express V6

ND V6
118 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

Chapter 4. Getting started

This chapter provides an overview of the installation, configuration and
administration of WebSphere Application Server - Express. We discuss the setup
used in our redbook environment. Remember that we are not attempting to
describe the steps necessary to setup and configure production sites.

For details about planning and administering production sites, see:

� WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

4

© Copyright IBM Corp. 2005. All rights reserved. 119

4.1 Product packaging
WebSphere Application Server - Express is a member of the WebSphere
Application Server family of products. Express is aimed at small to medium-sized
businesses or departments of large organization that are interested in developing
and deploying dynamic Web sites. It provides these organizations with
development and administration tools that enable them build and manage
dynamic Web sites with ease.

WebSphere Application Server - Express is bundled with an application
development tool (Rational Web Developer) that enable users to quickly and
easily build Web applications that include support for J2EE 1.4 features although
users can choose other development tools as they wish. This is an outline of
what is included with WebSphere Application Server - Express V6:

� WebSphere Application Server
� IBM HTTP Server V6 Web server plug-ins
� IBM HTTP Server
� Application Client
� Application Server Toolkit
� JDBC Driver for WebSphere Application Server
� Development Tool - Rational Web Developer
� IBM DB2 Universal Database Express V8.2

The following items are the supported platforms:

� Unix family - AIX, H-UX, Linux(intel, iSeries, pSeries, zSeries), Solaris
� Windows

4.2 Rational Web Developer
Rational Web Developer is the new development tool for creating Web
applications that will run on the WebSphere Application Server family of
products. It supports applications developed for version 4, 5 and 6. It is intended
for Web developers who develop and manage complex Web sites. Designed
according to the J2SE™ and J2EE specifications, Rational Web Developer
supports JSPs, Java Servlets, HTML, Javascript, and DHTML. Rational Web
Developer further includes tools for developing images and animated GIFs.

The following items are included in the Rational Web Developer package:

Note: Not all features are available on all platforms.
120 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Page Designer

This is an advanced HTML and JSP editor and helps developers build
complex Web pages. It also has dynamic element support, which enables the
addition of other technologies.

� Web Site Designer

This is used to manage the overall appearance and configuration of a Web
site. It has a new attribute view support where page properties can be easily
and quickly modified.

� Page templates

Similar to style sheets which define attributes for HTML tags, templates can
be used to provide a common look and feel. A template can be created from
any JSP or HTML page. When a template is modified or changed, pages that
make use of it are not automatically changed, but must be rebuilt for the
template changes to apply.

� Struts v1.1

Struts v1.1 is supported and wizards for developing the following are included:

– Action wizards create a new action wizard, can also have action mapping.
– Action form wizard creates a new form bean.
– Exception wizard creates a new struts exception.
– Module wizard creates a new struts module.
– Web diagram creates a new web diagram.

4.3 Installing WebSphere Application Server - Express
In this section, we look at installing WebSphere Application Server - Express.

4.3.1 Hardware requirements
Before we start the installation process, we describe the system hardware
requirements for installation on Windows. Because requirements can change
from time to time, please be sure to check the overview of product requirements
at this Web site:

http://ibm.com/software/webservers/appserv/express/requirements/

The same URL also lists the system requirements for all the platforms supported
by WebSphere Application Server - Express. The detailed list of all hardware and
software requirements for all platform supported by WebSphere Application
Server - Express is at this Web site:

http://ibm.com/software/webservers/appserv/doc/latest/prereq.html
 Chapter 4. Getting started 121

http://ibm.com/software/webservers/appserv/express/requirements/
http://ibm.com/software/webservers/appserv/doc/latest/prereq.html

When we wrote this redbook, the supported platforms were:

� AIX
� Linux for x86
� Linux for pSeries
� Linux for iSeries
� HP-UX
� Solaris
� Windows 2000
� Windows 2003
� Windows XP Professional

The following hardware pieces are the minimum system requirements for
installation on Windows:

� Intel Pentium® processor (or equivalent) at 500 MHz or faster, Intel EM64T,
or AMD 64-bit, Opteron (32-bit Operating System support only)

� Minimum 990 MB free disk space for installation

� Minimum 512 MB physical memory, 1 GB recommended

� CD-ROM drive

4.3.2 Installing using the launchpad
If you are installing from a download, create an installation folder and unzip the
downloaded files to that folder.

If you are installing from a CD, you are not required to unzip any files. You need
to have administrator rights on the machine on which you are installing the
software. If you do not have administrator rights, the correct components will not
install properly.

The easiest way to install WebSphere Application Server - Express and its
companion software is to use the launchpad. The steps are:

1. Either open the installation folder where you unzipped the download files or
insert the product CD.

2. Run the launchpad.bat file, to start the installation launchpad. You can browse
the launchpad to explore the features of WebSphere Application Server -
Express and learn more about the components you can install.

Figure 4-1 on page 123 shows the welcome page of the installation
launchpad.
122 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-1 Installation launchpad

3. Click the Solution Installation Diagrams link to review the solution install
diagrams and associated descriptions. We are setting up a simple
development environment so we will do a single machine installation of
Rational Web Developer and a single machine installation of WebSphere
Application Server - Express. If you plan a production site, we recommend
that you consider some of the alternative solution installations. You might also
want to read the redbook WebSphere Application Server V6 Planning and
Design WebSphere Handbook Series, SG24-6446.
 Chapter 4. Getting started 123

See Figure 4-2 for an example of the solution installation diagrams page of
the launchpad.

Figure 4-2 Solution installation diagrams

4.3.3 Install WebSphere Application Server - Express
The steps to install WebSphere Application Server - Express are:

1. Click the WebSphere Application Server - Express Installation link on the
launchpad welcome page.
124 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2. Click the Launch installation wizard for the WebSphere Application
Server - Express link on the WebSphere Application Server - Express
installation page as shown in Figure 4-3.

Figure 4-3 WebSphere Application Server - Express installation page

3. When the installation wizard appears, click Next. See Figure 4-4 on
page 126.
 Chapter 4. Getting started 125

Figure 4-4 Installation wizard

4. Read and accept the terms and conditions. Click Next to continue. See
Figure 4-5 on page 127.
126 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-5 Terms and conditions for WebSphere Application Server - Express

5. The wizard checks your system to see if it meets the installation prerequisites.
If the check is passed as shown in Figure 4-6 on page 128 then click Next.
 Chapter 4. Getting started 127

Figure 4-6 Prerequisite check

6. Choose an installation directory and click Next. Figure 4-7 on page 129
shows the default install location on Windows. We changed this to
<drive>\was.
128 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-7 Installation directory

7. Choose Custom installation and click Next. See Figure 4-8 on page 130.
 Chapter 4. Getting started 129

Figure 4-8 Select installation type

8. Select features to install and click Next. Figure 4-9 on page 131 shows the
available features. We selected to install all available features.
130 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-9 Features to install

9. The next page, as shown in Figure 4-10 on page 132 allows you to change
the ports used by the application server. We used the default port values.
Click Next.
 Chapter 4. Getting started 131

Figure 4-10 Ports used

10.Node and host names are chosen based on the hostname of the machine you
are installing on. Figure 4-11 on page 133 shows an example of the names
generated when we installed. Accept the default names and click Next.
132 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-11 Node and host names

11.The next page allows you to choose how to start WebSphere Application
Server. It can be run as a Windows service or by using a Windows user
account. See Figure 4-12 on page 134 for an example. Click Next.
 Chapter 4. Getting started 133

Figure 4-12 Startup options

12.The wizard shows you a summary of what is being installed. See Figure 4-13
on page 135 for an example. Click Next.
134 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-13 Installation summary

13.Figure 4-14 on page 136 shows the installation finish page after a successful
installation of WebSphere Application Server - Express.
 Chapter 4. Getting started 135

Figure 4-14 Installation complete

14.Click Finish to exit the installation wizard.

4.3.4 Using the first steps console
After installation of WebSphere Application Server - Express you can use the first
steps console to verify that the server is correctly installed.

1. First steps can be launched from the last page of the installation wizard by
selecting Launch the First steps console and clicking Finish as shown in
Figure 4-14.

You can also launch first steps by choosing Start → Programs → IBM
WebSphere → Application Server - Express v6 → Profiles → default →
First steps. See Figure 4-15 on page 137 for an example of the first steps
console.
136 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-15 First steps console

2. Select Installation verification to start the server, and verify that the
WebSphere Application Server - Express installation was successful.
Figure 4-16 on page 138 shows the output from a successful installation
verification.
 Chapter 4. Getting started 137

Figure 4-16 Installation verification

3. You can use the first steps console to start the WebSphere Administrative
Console. Click Administrative Console as shown in Figure 4-17 on
page 139.
138 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-17 Using First steps to start the WebSphere Administrative Console

4. Figure 4-18 on page 140 shows the logon page of the WebSphere
Administrative Console. As well as using first steps to start the WebSphere
Administrative Console you can also use the following URLs in a Web
browser:

– http://localhost:9060/admin

– http://localhost:9060/ibm/console
 Chapter 4. Getting started 139

Figure 4-18 Logon page for the WebSphere Administrative Console

5. Security is not enabled by the WebSphere Application Server - Express
installation so you can enter any ID for the WebSphere Administrative
Console logon. Figure 4-19 on page 141 shows the main page of the
WebSphere Administrative Console that is displayed after you logon.
140 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-19 Main page of the WebSphere Administrative Console

6. After completing these verification steps, you can stop the Express
Application Server by choosing Stop the Server from the first steps console.
See Figure 4-20 on page 142 for an example of the first steps output from
stopping the server.
 Chapter 4. Getting started 141

Figure 4-20 Using first steps to stop the server

7. Close the first steps output page and click Exit on the first steps console to
close first steps.

4.4 Administration basics
In this section we look at some of the basic administration tasks for a WebSphere
Application Server - Express installation on the Windows platform. Detailed
administration guidance is not provided by our redbook. We suggest that you
read the WebSphere Application Server V6 System Management &
Configuration Handbook, SG24-6451 for detailed about administering
WebSphere Application Server.

4.4.1 Starting and stopping the server
To start and stop the server, perform these tasks:

1. To start the server choose Start → Programs → IBM WebSphere →
Application Server - Express v6 → Profiles → default → Start the server.
A command prompt will appear with to show messages about the server start.

You can also start the server using the command line. Open a command
prompt, change to the bin directory where you installed WebSphere
Application Server - Express and enter:

startServer server1
142 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2. To stop the server, choose Start → Programs → IBM WebSphere →
Application Server - Express v6 → Profiles → default → Stop the server.
A command prompt will appear with to show messages about the server stop.

You can also stop the server using the command line. Open a command
prompt, change to the bin directory where you installed WebSphere
Application Server - Express and enter:

stopServer server1

4.4.2 Starting the WebSphere Administrative Console
The WebSphere Administrative Console provides an integrated browser-based
user interface where all aspects of the Express Application Server can be
managed. The console is actually a Web application that runs on the Express
Application Server , so the server must be running in order to access the
WebSphere Administrative Console.

1. To start the WebSphere Administrative Console choose Start →
Programs → IBM WebSphere → Application Server - Express v6 →
Profiles → default → Administrative console. When the server is initially
set up security is not enabled by default, but the WebSphere Administrative
Console requires a user ID to track configuration changes.

2. Enter a user name and click OK.

If you enter a user ID that is already in use, that is in the active session, you
will receive a message indicating that another user is currently logged in with
the same user ID and you will be prompted to take one of the following
actions:

– Force the existing user ID out of the session.
– Wait for the existing user to log out or time out of the session.
– Specify a different user.

WebSphere Administrative Console basics
All aspects of the server can be managed from the menu on the left hand side of
the WebSphere Administrative Console. In this section we look at some of the
common administration tasks.

� Manage the server

The servers link allows you to manage your application server. Because we
are running WebSphere Application Server - Express edition, we only have
access to one server. The server option also allows you to manage any Web
server that you have running in conjunction with your application server.

a. To display the servers to manage, choose Servers → Application
servers. See Figure 4-21 on page 144 for an example.
 Chapter 4. Getting started 143

Figure 4-21 Administering servers

b. Choose server1 to see a properties page for the server which allows you
to modify the server properties. See Figure 4-22 on page 145 for an
example.
144 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-22 Server properties

Tip: Help is available in the WebSphere Administrative Console either for a
specific field or for the page.Context sensitive hover help is also available.
Figure 4-23 on page 146 shows these help alternatives.
 Chapter 4. Getting started 145

Figure 4-23 Getting help in the WebSphere Administrative Console

� Applications

This choice allows you to start and stop installed applications, You can also
install new applications. To use these options choose Applications →
Enterprise Applications to manage applications. This shows all the installed
applications and their status, running or stopped.

With Applications → Install New Application, you can install new
applications.
146 WebSphere Application Server - Express V6 Developers Guide and Development Examples

We see how to install a new application when we install the Sal404
application as described in 4.7, “Deploying the sample application” on
page 174.

Figure 4-24 shows an example list of installed applications.

Figure 4-24 Installed applications

Click any of the applications to see the application properties. See
Figure 4-25 on page 148.
 Chapter 4. Getting started 147

Figure 4-25 Application properties

� Resources

The Resources options as shown in Figure 4-26 on page 149 allow you
create and manage resources for your applications. Such resources include
JDBC providers, Mail providers, Schedulers., and so on. We show how to
create a JDBC resource for the sample application in 4.7.2, “Creating the
JDBC resources” on page 176. For JMS resource creation and management,
see 10.6, “Setup JMS the environment” on page 408.
148 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-26 Managing resources

4.5 Installing Rational Web Developer
Rational Web Developer comes with WebSphere Application Server - Express
and can be installed from the WebSphere Application Server - Express
installation launch pad. If you followed the steps for installing WebSphere
Application Server - Express the launch pad should still be active, otherwise run
launchpad.bat from the installation folder.
 Chapter 4. Getting started 149

The mains steps for installing Rational Web Developer are:

1. Select Rational Web Developer Installation.

2. We suggest that you review the product readme file and the installation
guide(both are accessible from the Rational Web Developer installation page)
before installing. In particular, check that you meet the documented system
requirements for your installation platform. For Windows systems the
requirements include:

– Intel Pentium III 800MHZ processor minimum or higher
– 1024 x 768 display minimum
– Minimum 768 MB available RAM, 1 GB recommended
– 3.0 GB minimum hard drive space for installing Rational Web Developer

The official product requirements are available on the Web at:

http://ibm.com/software/awdtools/developer/web/sysreq/index.html

3. Click Launch the installation wizard for Rational Web Developer as
shown in Figure 4-27 on page 151.
150 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://ibm.com/software/awdtools/developer/web/sysreq/index.html

Figure 4-27 Launch Rational Web Developer install

4. You are prompted to enter the location of the first installation disk for Rational
Web Developer. Because we were installing from downloaded software, we
entered the location of the disk1 folder in our install directory. See Figure 4-28
for an example. Click OK.

Figure 4-28 Enter location for Rational Web Developer install disk

5. When the installation wizard appears, click Next. See Figure 4-29.
 Chapter 4. Getting started 151

Figure 4-29 Welcome page for Rational Web Developer installation

6. Read and accept the license terms and conditions, check the I accept the
terms in the license agreement, and click Next. See Figure 4-30 on
page 153.
152 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-30 Rational Web Developer terms and conditions

7. Enter a directory name for the installation of Rational Web Developer. The
default is <drive>\Program Files\IBM\Rational\SDP\6.0. We changed this
to <drive>\rsdp as shown in Figure 4-31 on page 154. Click Next.
 Chapter 4. Getting started 153

Figure 4-31 Installation directory for Rational Web Developer

8. The next page of the installation wizard allows you to chose what features to
install. We did not need any of the additional features, so chose not to select
them. Figure 4-32 on page 155 shows that we did choose to install the IBM
WebSphere Application Server V6.0 Integrated Test Environment. This option
is selected by default and assumes that you have not already installed
Express Application Server on the same machine. Click Next to continue.

Note: The WebSphere Application Server - Express installation
documentation says that IBM does not recommend installing the Express
server on the same machine with Rational Web Developer. Rational Web
Developer installs its own copy of the Express server for a totally functional
test environment. We found that if the Express Application Server was
already installed before Rational Web Developer, then any attempt to
install the IBM WebSphere Application Server V6.0 Integrated Test
Environment failed.
154 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-32 Selecting product features to install

9. Read the installation summary and click Next. See Figure 4-33 on page 156.
 Chapter 4. Getting started 155

Figure 4-33 Rational Web Developer installation summary

10.Figure 4-34 on page 157 shows the results of a successful installation Click
Next.
156 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-34 Successful installation of Rational Web Developer

11.The last page of the installation wizard is shown in Figure 4-35 on page 158.
This provides information about how to update Rational Web Developer and
about how to start the IDE. Click Finish.
 Chapter 4. Getting started 157

Figure 4-35 Installation complete for Rational Web Developer

4.5.1 Express Application Server and Rational Web Developer
As stated in the note about step 8 on page 154, the IBM product documentation
suggests that WebSphere Application Server - Express and Rational Web
Developer are not installed on the same machine, but this can be done if you
need to have this capability. We found that if Rational Web Developer was
installed before the Express Application Server , we were able to have both
products working on one machine. The steps to do this are:

1. Install Rational Web Developer and the WebSphere Application Server V6.0
Integrated Test Environment as described in 4.5, “Installing Rational Web
Developer” on page 149.

2. Launch the WebSphere Application Server - Express installation as described
in 4.3, “Installing WebSphere Application Server - Express” on page 121.

3. The installation wizard detects the installed WebSphere Application Server
V6.0 Integrated Test Environment as though it is another installation of
WebSphere Application Server. The dialog box shown in Figure 4-36 on
page 159 is displayed and you can choose to install another copy of the
Express Application Server or to add features to the current install.
158 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-36 Duplicate installation detected

4. Select Install a new copy of the V6 Application Server product and click
Next.

5. Read the information about the existing installation as shown in Figure 4-37
on page 160 and then click Next.
 Chapter 4. Getting started 159

Figure 4-37 Existing Express Application Server detected

6. The next page of the installation wizard shows you the ports that will be used
by the Express Application Server . See Figure 4-38 on page 161. The wizard
will default all the port values to use different numbers than those used by the
already installed Integrated Test Environment.
160 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-38 Port assignments for the Express Application Server

7. We do not need to run the Integrated Test Environment at the same time as
the Express Application Server , so we changed the suggested port
assignments back to their default values.

8. The rest of the installation steps are unchanged from those described in 4.3,
“Installing WebSphere Application Server - Express” on page 121.

4.6 Installing DB2
Our redbook sample application requires a working DB2 database. WebSphere
Application Server - Express V6 ships with IBM DB2 Universal Database
Express Edition V8.2, so we installed this database on our redbook machines.
We show the steps we used for our installation. Remember that we are not
setting up a production DB2 system, so we do not describe the planning and
installation necessary for a robust production environment.

The steps to follow for our simple development and test setup are:

1. DB2 setup is not started from the WebSphere Application Server - Express
launchpad, but by running the separate DB2 launchpad. Figure 4-39 on
page 162 shows the DB2 launchpad.
 Chapter 4. Getting started 161

Figure 4-39 DB2 setup launchpad

2. Check that you meet the installation prerequisites. You can do this by
selecting Installation Prerequisites on the DB2 launchpad as shown in
Figure 4-40 on page 163.
162 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-40 DB2 install prerequisite checks

3. Select Install Product from the DB2 launchpad and chose to install DB2
UDB Express as shown in Figure 4-41 on page 164. Click Next.
 Chapter 4. Getting started 163

Figure 4-41 Install UDB

4. On the welcome page of the setup wizard click Next.

5. Accept the licence agreement and click Next.

6. Select the installation type. We chose Custom as shown in Figure 4-42 on
page 165. Click Next.
164 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-42 Select DB2 installation type

7. The next page shown in Figure 4-43 on page 166 allows you to select
features to be installed and to change the installation drive and directory.

We changed the default installation directory from the default of C:\Program
Files\IBM\SQLLIB to C\SQLLIB. It is not necessary to change any of the
features installed, but we chose to remove features that supported protocols
other than TCP/IP and also removed some features we did not use such as
support and samples for warehouses and business intelligence. Click Next.
 Chapter 4. Getting started 165

Figure 4-43 Chose DB2 features

8. We did not need to install any extra language support so we click Next. See
Figure 4-44 on page 167.
166 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-44 DB2 languages supported

9. We chose not to install the DB2 Information Center on our machine, so you
can select to access the DB2 Information Center On the IBM Web site and
click Next. See Figure 4-44 on page 167.
 Chapter 4. Getting started 167

Figure 4-45 Location for the DB2 Information Center

10.Chose the same user ID for all DB2 services and click Next. We used
db2admin for our user ID as shown in Figure 4-46 on page 169.
168 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-46 DB2 user IDs

11.Chose a local contact list and no notification as shown in Figure 4-47 on
page 170. Click Next.
 Chapter 4. Getting started 169

Figure 4-47 DB2administration contact lists and notification

12.A warning dialog box is displayed advising a notification SMTP server has not
been specified. Click OK to continue. See Figure 4-48 on page 171.
170 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-48 Notification SMTP warning

13.Allow the installation to configure a default DB2 instance and click Next. See
Figure 4-49 on page 172.
 Chapter 4. Getting started 171

Figure 4-49 Configure DB2 instance

14.Select Do not prepare the DB2 tools catalog on this computer and click
Next.

15.When asked whether to set up an administration contact select Defer the
task until after installation is complete and click Next.

16.It is not necessary to enable operating system security fro DB2 objects. Click
Next as shown in Figure 4-50 on page 173.
172 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-50 Security for DB2 objects

17.Review the installation settings and click Install to begin copying files. See
Figure 4-51 on page 174.
 Chapter 4. Getting started 173

Figure 4-51 DB2 setup summary

18.When setup is complete click Finish.

4.7 Deploying the sample application
This section describes the steps needed to install the sample application. We
assume here that you have obtained our redbook additional material, including
includes the sample EAR files and support files.

For details about obtaining the redbook sample material see Appendix A,
“Additional material” on page 617.

4.7.1 Running the sample database script
The database script creates the sample application database. This script is
specifically for DB2 on Windows although with some modification it would work
on other database platforms. The steps to create the sample database on the
Windows platform are:
174 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1. Open a DB2 command prompt. Select Start → Programs → IBM DB2 →
Command Line Tools → Command Window.

2. Change the current directory to where you unzipped the database creation
script.

3. Enter the command db2 -tvf DBSCRIPT.SQL

This command runs the database script and you are prompted to enter the
password for your database administrator password.

If you want to use a database creation log, change the command you enter to
db2 -tvf DBSCRIPT.SQL > log.txt. This runs the database script as well as
creating a log file that you can look through to see if any SQL statement
failed. You will first have to modify the database script by adding your
database administrators password to the command file. To do this, open the
script and locate the line that reads:

CONNECT TO SAL404R USER DB2ADMIN;

Add the your password the end of the line. For example enter:

CONNECT TO SAL404R USER DB2ADMIN USING <password>;

Where <password> is the password for the user db2admin.

4. In order to verify that the SAL404R database has been successfully created,
enter the following command in the DB2 command window:

db2 list db directory

This lists all DB2 databases that have been created and reside on your
machine. The result should be similar to the output shown in Example 4-1.

Example 4-1 Verifying the SAL404R database creation

S:\material\database>db2 list db directory

 System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = SAL404R
 Database name = SAL404R
 Database drive = C:\DB2
 Database release level = a.00
 Comment = SAL404R Information System
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =
 Chapter 4. Getting started 175

4.7.2 Creating the JDBC resources
The JDBC resources represent the application database for our Sal404
application, including the relevant login details. In this section we create the
required database resources needed for our sample application.

Create an authentication alias
When we connect to our sample database from Express Application Server , we
want to provide appropriate user logon credentials. To do this we need to create
an authentication alias as follows:

1. Using the WebSphere Administrative Console choose Security → Global
security.

2. Scroll to the right of the security page and under the Authentication heading
choose JAAS Configuration and then J2C Authentication data. See
Figure 4-52 on page 177.
176 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-52 J2C Authentication data

3. Click New and enter the following values as shown in Figure 4-53 on
page 178.

– Alias: db2adminAlias
– User ID: db2admin
– Password: your db2admin password
– Description: Any optional value you choose
 Chapter 4. Getting started 177

Figure 4-53 Create alias for db2admin

4. Click OK to create the new alias.

5. Save the administration changes to the master configuration.

Create a JDBC provider
To connect to our database manager we need to define a JDBC provider to
Express Application Server . The steps are:
178 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1. Using the WebSphere Administrative Console, choose Resources → JDBC
Providers.

2. We want the resource to be defined at a server level and not using node or
cell scope. Select Server : server1 and click Apply as shown in Figure 4-54.

Figure 4-54 Setting server scope for resource definition

3. Click New to create a new JDBC provider

4. Choose the following values for the General Properties of the provider and
click Next. See Figure 4-55 on page 180.
 Chapter 4. Getting started 179

– Step 1: DB2
– Step 2: DB2 Legacy CLI-based Type 2 JDBC Driver
– Step 3: Connection pool data source

Figure 4-55 General properties for the new JDBC provider

5. Click OK and save the changes.

Create a JDBC DataSource
Using our new JDBC provider, we now need to create a JDBC DataSource that
allows us to connect to the SAL404R database. The steps are:
180 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1. Using the WebSphere Administrative Console choose Resources → JDBC
Providers and select the new JDBC provider D.B2 Legacy CLI-based Type
2 JDBC Driver.

2. Scroll to the right of the page and under the Additional Properties heading
choose Data sources as shown in Figure 4-56.

Figure 4-56 Create a DataSource

3. Click New and provide the following values for our new DataSource:

– Name: sal404
 Chapter 4. Getting started 181

– JNDI name: jdbc\sal404

See Figure 4-57.

Figure 4-57 DataSource properties: Part 1

– Component-managed authentication alias: db2adminAlias
– Database name: sal404r

See Figure 4-58 on page 183.
182 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-58 DataSource properties: Part 2

4. Click OK and save the configuration.

Set up WebSphere variables
When our JDBC provider was created, it located the required Java driver classes
by using a classpath setting of ${DB2_JDBC_DRIVER_PATH}/db2java.zip where
${DB2_JDBC_DRIVER_PATH} is a reference to a WebSphere variable that must be
set to the correct location where our DB2 install places db2java.zip.
 Chapter 4. Getting started 183

To set the variable, use the following steps:

1. Using the WebSphere Administrative Console choose Environment →
WebSphere Variables and select DB2_JDBC_DRIVER_PATH. See
Figure 4-59.

Figure 4-59 WebSphere variables

2. Enter c:\sqllib\java as the value for the DB2_JDBC_DRIVER_PATH variable as
shown in Figure 4-60 on page 185.
184 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-60 Set value for DB2_JDBC_DRIVER_PATH variable

3. Click OK and save the configuration.

Test the DataSource connection
To confirm that the JDBC resources are correctly configured you can test the
connection to the SAL404R database using the DataSource you created. The
steps are:
 Chapter 4. Getting started 185

1. Using the WebSphere Administrative Console choose Resources → JDBC
Providers and select the new JDBC provider D.B2 Legacy CLI-based Type
2 JDBC Driver.

2. Scroll to the right of the page and under the Additional Properties heading
choose Data sources.

3. Check the sal404 DataSource and click Test connection. See Figure 4-61
for an example of a successful test of the DataSource connection.

Figure 4-61 Testing the DataSource connection
186 WebSphere Application Server - Express V6 Developers Guide and Development Examples

4.7.3 Configuring JMS
Our Sal404 sample application uses JMS resources as described in Chapter 10,
“Java Message Service” on page 359. The application will not run until the
required JMS resources are created and configures. The steps we need to take
are:

1. Create a new service integration bus.

See “Create a new service integration bus” on page 409 for details.

2. Specify the server running our application to be a member of that bus.

See “Add the current server as a bus member” on page 411 for details.

3. Setup a message queue in the bus.

See “Create a queue as a destination” on page 412, “Create a queue for
outgoing messages” on page 413, and “Verify your queues” on page 413 for
details.

4. Restart the server.

5. Setup a queue connection factory.

See “Set up a queue connection factory” on page 415 for details.

6. Setup a queue for incoming messages.

See Figure 10-25 on page 416 for details.

7. Setup an activation specification.

See “Set up an activation specification” on page 418 for details.

8. Setup a queue for outgoing messages

See “Set up a queue for outgoing messages” on page 419 for details.

4.7.4 Configuring LOG4J
The sample application makes use of LOG4J for logging. The LOG4J JAR file
can be downloaded from:

http://logging.apache.org/

In this section we look at setting up LOG4J for the sample application as part of
the application installation.

1. Using the WebSphere Administrative Console choose Environment →
Shared Libraries → New. See Figure 4-62 on page 188.
 Chapter 4. Getting started 187

http://logging.apache.org/

Figure 4-62 New shared library

2. Enter LOG4J in the name field. In the classpath field, enter the full path of
where the LOG4J JAR file is located. It is good practice to create a dedicated
folder for the JAR file. We decided to place the JAR in the c:\sal404
directory, which is the folder we created for the LOG4J log files. See
Figure 4-63 on page 189.
188 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-63 LOG4J shared library

3. Click OK and save the configuration.

4. You also need to make sure that the LOG4J properties are set correctly
before testing our sample application. A default log4j.properties file is
packaged with our sample application EAR. The key property to set is the
path to the log file in use. In our sample we specify
log4j.appender.ROOT.File=c:/SAL404/sal404.log.
 Chapter 4. Getting started 189

4.7.5 Installing the Sal404 application EAR
In this section we look at installing the Sal404 sample application EAR file. The
EAR file is provided as part of our redbook additional material. See “How to use
the Web material” on page 618 for details of where the EAR file can be found in
our additional material. To install the EAR file, the steps are:

1. Using the WebSphere Administrative Console choose Applications →
Install New Application.

2. Click Browse to locate the sample application EAR file as shown in
Figure 4-64 on page 191.

Note: You must create the folders and file specified for use by LOG4J before
starting our sample application. If you need to change the default settings we
provide, you will have to extract the properties files from the EAR, make the
required changes, and then repackage the EAR.
190 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-64 Locate EAR file for installation

3. Click Next.

4. On the next page, Preparing for the application installation, we can accept all
the default settings and click Next. See Figure 4-65 on page 192.
 Chapter 4. Getting started 191

Figure 4-65 Preparing for the installation

5. On the Select installation options page as shown in Figure 4-66 on page 193,
we can also accept the default settings and click Next. In fact we can take
default settings for each of the steps in the EAR installation process. Instead
of clicking Next on the Select installation options page we could select the link
for the summary step and proceed directly to the installation summary page
where we could click Finish to complete our install.

However for this exercise, we advise you to review each of the installation
steps to get a better idea of the components of the application and how it is
192 WebSphere Application Server - Express V6 Developers Guide and Development Examples

deployed. You can continue to click Next to proceed through all the steps in
the installation or select a link for a particular step to go directly to that page.

Figure 4-66 Installation options

6. As you can see from Figure 4-66, there are 12 steps we can view as part of
the EAR installation. These are:

– Step 1: Select installation options

– Step 2: Map modules to servers

– Step 3:Select current backend ID
 Chapter 4. Getting started 193

– Step 4: Provide listener bindings For message-driven beans

– Step 5: Provide JNDI Names for Beans

– Step 6: Provide default data source mapping for modules containing 2.x
entity beans

– Step 7: Map data sources for all 2.x CMP beans

– Step 8: Map EJB references to beans

– Step 9: Map resource references to resources

– Step 10: Map virtual hosts for Web modules

– Step 11: Ensure all unprotected 2.x methods have the correct level of
protection

– Step 12: Summary

7. Figure 4-67 on page 195 shows the summary page for the installation of our
sample EAR. Click Finish to complete the installation.

Note: The number of steps required to install an EAR file is dynamic
and changes depending of the components packaged in the EAR.
194 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-67 Installation summary

8. Figure 4-68 on page 196 shows the messages from a successful installation
of the Sal404 sample application EAR file.
 Chapter 4. Getting started 195

Figure 4-68 EAR file installation successful

9. Save the configuration changes.

4.8 Testing the Sal404 sample application
The purpose of testing the sample application is to verify the application is
successfully running and extracting data from the data source. Complete the
following steps to test the sample application:
196 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1. In the WebSphere Administrative Console, expand Applications →
Enterprise Applications from the menu.

2. In the Enterprise Applications window, check the box to the left of
SAL404Realty application and click Start. This starts the application and is
shown in Figure 4-69.

Figure 4-69 Start the application

3. The status image turns green after the application has started as shown in
Figure 4-70 on page 198.
 Chapter 4. Getting started 197

Figure 4-70 Application started

4. Open a Web browser and enter the address:

http://localhost:9080/SAL404Realty/

The SAL404 Realty Home Page will appear in the Web browser as shown in
Figure 4-71 on page 199.
198 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-71 Sal404 home page

5. Follow these steps to verify that the user information is properly configured.

a. Click Log in.

b. At the User Login page enter bill in the User ID field and password in the
Password field. See Figure 4-72 on page 200.
 Chapter 4. Getting started 199

Figure 4-72 Login to Sal404 application

c. You should be logged in as user bill and the page shown in Figure 4-73 on
page 201 is displayed.
200 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-73 Logged into the Sal404 application

If you want to test the JMS features of the Sal404 application as described in
“Test the Message Driven Bean” on page 443 you will first have to use the

Note: The tests described in this section are sufficient to show that the Sal404
application is installed successfully. However we recommend that you explore
the application further both to become more familiar with its features and also
to double check that all areas are correctly configured and working properly.
 Chapter 4. Getting started 201

WebSphere Administrative Console to install the test application EAR
SAL404JmsClientEAR.ear from our redbook additional material. Similarly, if you
want to test the Web services features as described in Chapter 12, “Web
services” on page 475 you will first have to use the WebSphere Administrative
Console to install the test application EAR SAL404TestServices.ear from our
redbook additional material.

4.9 Installing Sal404 code in Rational Web Developer
We provide the source of our sample code so that you can import it to a Rational
Software Development Platform workspace. In this section we show how to add
our sample code to the Rational Web Developer environment that is shipped with
WebSphere Application Server - Express.

If you want to develop or test code that uses Enterprise JavaBeans, then you will
need to install and configure our sample code in Rational Application Developer.
We do not provide separate instructions for installing the code in Rational
Application Developer because the same method as we document for Rational
Web Developer also works with Rational Application Developer.

4.9.1 Importing project interchange files
Our redbook additional material includes a project interchange file called
Sal404Interchange.zip that contains our Sal404 sample code in a format that can
be easily imported into Rational Web Developer. To import the code:

1. Start Rational Web Developer and choose File → Import.

2. Select Project Interchange as the import format and click Next as shown in
Figure 4-74 on page 203.
202 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 4-74 Import from project interchange

3. Click Browse to locate the downloaded Sal404Interchange.zip file.

4. Click Select All to import all of the Sal404 sample code and then click Finish.
See Figure 4-75 for an example.
 Chapter 4. Getting started 203

Figure 4-75 Import Sal404 applications

4.9.2 Test Sal404 with Rational Software Development Platform
The Sal404 sample application can be run and tested using the WebSphere
Application Server test server that is provided as part of Rational Web Developer
or Rational Application Developer. To deploy the Sal404 sample application
using the default test server that is created when Rational Web Developer is
installed, the steps are:

1. Start Rational Web Developer and switch to the servers view.

2. Start the default test server by right clicking the WebSphere Application
Server v6.0 server and choosing Start.

3. Once the server starts, you can use the WebSphere Administrative Console
to administer the server. Start the WebSphere Administrative Console by
right-clicking the WebSphere Application Server v6.0 server and choosing
204 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Run administrative console. This will start the WebSphere Administrative
Console in a Web browser embedded within Rational Web Developer.

4. To deploy the Sal404 sample application, right-click the WebSphere
Application Server v6.0 server and choose Add and remove projects.

5. Select SAL404Realty from the list of available projects and click Add > to
move it to the list of configured projects, then click Finish. See Figure 4-76.

Figure 4-76 Deploy Sal404 to test server

Tip: You can still start the WebSphere Administrative Console externally to
Rational Web Developer by entering the following URLs in a Web browser:

– http://localhost:9060/admin

– http://localhost:9060/ibm/console
 Chapter 4. Getting started 205

6. When the SAL404Realty project is first added to the test server, publishing
will fail with an error dialog box similar to that shown in Figure 4-77. This is
because you have not yet configured the resources necessary for the Sal404
application to run in the test server.

Figure 4-77 Publish errors

7. To complete the configuration of the Sal404 application so that it will run in the
test server, perform these tasks:

– Create the required JDBC resources using the same steps described in
4.7.2, “Creating the JDBC resources” on page 176.

– Create the required JMS resources using the same steps described in
4.7.3, “Configuring JMS” on page 187.

8. To test the JSF features of the Sal404 application in the test server you might
need to alter the password of the authentication alias used to connect to the
SAL404R database. The JSF implementation of the News component does
not use the Sal404 DataSource created in, “Create a JDBC DataSource” on

Note: If you want to test the JMS features of the Sal404 application as
described in “Test the Message Driven Bean” on page 391 you will first
have to add the SAL404JmsClientEAR project to the Rational Web
Developer test server. Similarly if you want to test the Web services
features as described in Chapter 12, “Web services” on page 423 you will
first have to add the SAL404TestServices project to the test server.
206 WebSphere Application Server - Express V6 Developers Guide and Development Examples

page 180 because it uses a connection that is defined as a deployment
setting in the application EAR file. To alter this setting, use these steps:

a. Navigate to the SAL404Realty project, right-click Deployment
Descriptor: SAL404Realty, and click Open.

b. Choose the Deployment tab and scroll down to the Authentication
section. Choose wdo_SAL404_Con1 from the JAAS authentication list,
and click Edit. See Figure 4-78 on page 207.

Figure 4-78 Edit deployment settings for the SDO database connection
 Chapter 4. Getting started 207

c. Enter the correct password for the db2admin database user as shown in
Figure 4-79 and click OK to save the changed authentication entry.

Figure 4-79 Change the authentication entry

d. Save and close the application deployment descriptor.

e. Restart the Sal404 sample application by right-clicking the WebSphere
Application Server v6.0 server and choosing Restart Project →
SAL404Realty.
208 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 5. Requirements

This chapter provides an overview of the new requirements for the sample
application developed for our redbook. The Sal404 example application is based
on the SAL301RRealty sample application developed for the redbook
WebSphere Application Server - Express: A Development Example for New
Developers, SG24-6301. We describe requirements, design, and specification of
our sample application. When describing the requirements, we outline both the
new functionality of our sample and also describe the enhancements made to the
existing application.

5

© Copyright IBM Corp. 2005. All rights reserved. 209

5.1 Application overview
Our sample application is a standard layered application and it is still mainly
implemented as a Struts application, so it is also very model-view-controller
(MVC) oriented. Many texts and articles are available for detailed discussions on
n-tier applications and MVC. Your basic understanding of these concepts is
assumed. The goal of this chapter is to present a practical overview what we
developed and why it was required, rather than to discuss the theoretical aspects
of our design choices.

The sample application presented is fairly straightforward. The application
manages:

– Users
– Properties
– News items
– Interest in properties
– Reference data

The application also provides for e-mail alerts.

The term manages simply means that the application provides for
Create/Read/Update/Delete (CRUD) functionality for a given component.

The application also has some miscellaneous functionality. This includes HTTP
session management, logging, and so on. The HTTP session management is of
particular importance. As in most Web applications, session management is
used both for security aspects of the application and also as a place to store the
application state as well as any user and session-specific information.

The model-view-controller (MVC) design pattern separates the parts of an
application. MVC is not unique to Web applications or to the Struts
implementation; it was around well before Web applications.

Web applications that use model-view-controller are divided into three functional
areas:

Model The model contains the core of the application function, and
captures the state of the application. It does not include
knowledge of the view or controller. The model is the business
logic, which in most cases involves access of data stores like
relational databases. The development team that handles the
model may be expert at writing DB2 COBOL programs, or EJB
entity beans, or some other technology appropriate for storing
and manipulating enterprise data.
210 WebSphere Application Server - Express V6 Developers Guide and Development Examples

View The view is the look of the application. The view presents,
gathers, and submits information, but it does not include
knowledge of the model or controller. The view is the code that
presents images and data on Web pages. The code comprises
JavaServer Pages and the JavaBeans that store data for use
by the JavaServer Pages.

Controller The controller manages the execution flow of the application,
passing appropriate state information between the model and
the view.

This model-view-controller division (sometimes called Model 2 - see 11.3,
“Model-view-controller (MVC) pattern with Struts” on page 450 for more details)
includes parts that are independent of each other, so that changing how one part
is implemented does not require changes to the other parts. For example, the
view of a Web application can change many times due to usability testing.
However, the business logic (the model) acting on the input does not need to
change (assuming the inputs to the business logic stay the same).

Figure 5-1 shows the traditional 3 layer application architecture followed by our
sample application. As illustrated in Figure 5-1, the Web server at runtime
contains both the view and controller components of a Model 2 Web application,
while a third tier (which is usually outside of the Web server) contains the model.
The diagram also references Struts-specific components.

Figure 5-1 Three tiered application and MVC roles

Web
Server

Entrerprise
Server

WebSphere Application Server

Web
Browser

Form Bean
JavaServer

Page

Action Servlet

action

View and controller Model

Business logic

Data
Store
 Chapter 5. Requirements 211

5.2 Requirements
Several new requirements have been introduced for this version of the
application. These include:

� A bidding system
� Search the property catalog with a Web services
� Notification of the addition or modification of a news item with a Web service
� User maintenance with a Message Driven Bean (MDB)
� Implementation of the news system using JavaServer Faces(JSF)
� New functionality will be created to manage reference data

The bidding system is the only new component. The other new requirements
expose existing functionality using different technologies.

5.2.1 Bidding system
The bidding system will allow users to bid on properties. The bidding system will
work this way:

� To keep our requirement simple, we will allow only one outstanding, or open,
bid on a property. A property may have more than one bid, but all bids except
one will be in the rejected state. The last remaining bid will be in either the
open state or the accepted state. Potentially, all bids can be in the rejected
state. A user cannot place a bid on a property if that property has an open bid
or an accepted bid. A result of this simplification is that only the latest
chronological bid can be open or accepted.

� Sellers will be allowed to see the bids on the property and accept or reject the
open bid. All of the bids that have been placed on a property are referred to
as the bid history. The agent selling the property and administrators will be
allowed to see the bid history but will not be allowed to accept or reject a bid.
When a bid is displayed to any user, both the bid amount and the bid state are
displayed.

� A bidder will be allowed to only view their bids. The bidder can have placed
multiple bids on a property that have been rejected. Thus, a bidder is shown
his or her own filtered view of the bid history.

� Nonlogged-in users cannot place bids or see any bidding history.

� Only properties that are in the active status can be bid upon. When a bid is
accepted, the property status is updated to sold.

� The system will restrict the seller, or the agent selling the property, from
bidding on the property.

� Nonrequirements are as follows:
212 WebSphere Application Server - Express V6 Developers Guide and Development Examples

– It is not a requirement that an accepted bid be of a greater amount than
any rejected bid.

– Notifications to any bidder, seller, or agent when a bid is placed, accepted
or rejected are also not required.

5.2.2 Catalog search and news feed Web services
A Web service interface will be provided to allow users to obtain a list of
properties that match a input search criteria.

A Web service interface will be provided to allow users to add and list news
items.

5.2.3 User maintenance with Java Message Service
A Java Message Service(JMS) interface will be provided to the User
management component. This will allow users to be created or modified upon
receipt of a JMS message.

Whenever a user is added or modified by the Web application, an output JMS
message will be created.

5.2.4 Use JavaServer Faces for the news component
This requirement allows us to replace the Struts view and controller functions in
the News component with a JavaServer Faces implementation. The purpose is
to investigate JSF technology and become familiar with the JSF tools provided
by Rational Web Developer.

We also compare a JSF and SDO implementation of the news component with a
JSF implementation that reuses our existing data access layer.

5.2.5 Reference data component
Nearly all applications have the concept of reference data. Reference data can
be lists of user titles (Mr., Mrs., Miss) or country codes. Statuses are also
typically reference data as are items such as user roles (Administrator,
Customer, Agent, and so on).

The reference data component will be implemented just as any other component.
Even though it is stateless, the manager will still be wrapped by a session data
class. This follows the application architecture and design principles.
 Chapter 5. Requirements 213

The motivation for the reference data component is to centralize the placement
of reference data. Also, as will be seen in the design section for the reference
data component, the implementation will minimize resource usage for the
application.

The reference session data class will always be available in the HTTP session.
There is no need to check for its existence.

The reference session data class will expose the lists for property types and
statuses and the country code list.

5.3 Specification
More detailed specifications for the requirements are presented in this section.
Where the requirement is for significant new function, we have provided a
detailed specification, but for requirements where we are enhancing existing
functions we do not attempt to do a detailed specification in this chapter. This is
because many of our enhancement are designed to explore the use of new
technology provided by WebSphere Application Server - Express V6 rather than
to meet new application requirements. Refer to the specific chapters in Part 2,
“Development examples” on page 221 for more details about these technical
investigations.

5.3.1 Bidding system
The bidding system will be implemented in accordance with the application
design principles. It will be a Struts-based component using JSPs for the
presentation layer. Struts actions will be used to control application flow.

The business logic and persistence layers will be implemented via the delegate
and manager patterns. A new database table will be needed to store the billing
history. In short, all application layers will need to be implemented.

Presentation layer
The viewProperties.jsp displays the results of a property search. An additional
column will need to be added to the search results table. This column, called
Bids, will take the user to the bid history page for the property. This page will
show the filtered bid history.

To follow the requirements, we will implement the following:

� If the user is not logged in, no Bids column is shown.
214 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� If the user is the seller, an administrator, or the agent selling the property, the
bids link is shown. This is regardless of the state of the property. This allows
those in these roles to see bid history for sold properties.

� If the user is a buyer and has bid on a property, then the bids link is shown.

A new JSP will be required that displays the bid history. This page is inherently
linked to a property and some property details will be displayed.

The customer will place a bid on a new Add Bid page. If a customer places a bid
on a property, he or she will be sent back to the property search page. The page
will have been updated by repeating the previous search.

The presentation of bid fields on the bid page should be determined from the
currently selected property DTO.

The property search page will be enhanced to show two new buttons. These will
allow a seller to search for all of their listed properties (in any state), and will
allow a bidder to search for all of the properties on which they have bid.

A Struts action that manages bidding will need to be created. It is desirable to
place the new Struts forms and actions in their own Struts module.

Business logic layer
A session data class for the property component does not exist and will need to
be created.

The PropertyCatalogManager will need to be enhanced so that on a search, the
biddable flag is returned correctly. This will also require the addition of the
biddable (the getter will be isBiddable) to the property DTO. The manager will
also need to be enhanced to include the bidding history. The bidding history
should also have an attribute on it indicating the user role with respect to the
bidding history.

The major addition to the business logic layer will be the methods and logic that
forms the biddable flag and the filtered bid list.

The bid manager should not cache any bid history. If a user refreshes a page or
performs another search, the bid statuses and history should be updated
accordingly. This will prevent the user from having to log out and log back in to
see updated bidding information.

The property search criteria will need to include the capability to search for
properties for sale by a user. This can be done by consulting only the property
tables. The search criteria will also need to support finding a list of properties that
 Chapter 5. Requirements 215

the user has bid upon. This will be done with a query to the bidding system to
return a list of property IDs that the user has bid upon.

A new manager will need to be created to manage bids. This will use a session
data class facade even though the bidding system is stateless.

Create bid
When creating a bid, an error can be returned indicating that the property is not
available for bidding. This can occur when several customers attempt to bid on
the same property simultaneously.

This method will need to be passed to the property ID, the customer ID, and the
bid amount.

Change bid status
This method will allow the bid status to be modified. It will require the bid ID and
the new status. The only status transition allowed by the requirements is from the
open state to either the rejected or accepted state.

Persistence layer
A new table will need to be created for the bidding history. This table will contain,
at a minimum, the bid amount and bid status and the user ID that placed the bid
and property ID that has been bid upon.

5.3.2 Reference data component
Reference data is used extensively in an application. The data can also be quite
large. The largest reference data element in the current application is the country
code list. The Sal301 application, being a Web application only, stored this
reference data in the HTTP session. For small, not too busy, Web sites this
approach works well. If, however, the reference data is very large or there are
many concurrent sessions, storing this information in the HTTP session results in
an excessive resource consumption in the Web container.

In order to address the resource consumption issue, the reference data
component is implemented with stateless session beans. The J2EE container
will maintain a pool of reference data beans and allocate one to the Web
container when the Web container needs to build a JSP that contains reference
data. The initial reference data component has been implemented by removing
the property type and status lists and the country code lists methods from the
property catalog manager. These have been refactored into a new class, the
ReferenceDataHelper.
216 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The ReferenceDataHelper has been exposed as an EJB. exposed by a
manager, and then placed into the HTTP session using the
ReferenceSessionData class.

5.3.3 Session management
The session management provided by our application is relatively simple. There
are two main components. These two components initialize the session when a
new session is created and prevent the user from viewing certain pages when
they have not logged in.

Session initialization is performed by a session listener. The session listener is
registered in the web.xml file as shown in Figure 5-2.

Figure 5-2 Session listener registration

The code for the session listener is shown in Example 5-1:

Example 5-1 Sal404SessionListener

package com.ibm.itso.sal404.listeners;

import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionListener;
 Chapter 5. Requirements 217

import org.apache.log4j.Logger;

import com.ibm.itso.sal404.referencedatacomponent.session.ReferenceSessionData;

public class Sal404SessionListener implements HttpSessionListener {
// Configure Log4J Logger
private static Logger logger =

Logger.getLogger(Sal404SessionListener.class);

 /* (non-Java-doc)
 * @see java.lang.Object#Object()
 */
public Sal404SessionListener() {

super();
}

/* (non-Java-doc)
 * @see sessionCreated(HttpSessionEvent arg0)
 */
public void sessionCreated(HttpSessionEvent arg0) {
 logger.info("ENTRY: sessionCreated");
 arg0.getSession().setAttribute("rdd", new ReferenceSessionData());
 logger.info("EXIT: sessionCreated");
}

/* (non-Java-doc)
 * @see sessionDestroyed(HttpSessionEvent arg0)
 */
public void sessionDestroyed(HttpSessionEvent arg0) {
}

}

The implementation shown in Example 5-1 on page 217 places the
ReferenceSessionData class into the session whenever a session is created. As
a result, the session will always exist, and the ReferenceSessionData object will
always be available.

In the earlier version of our sample written for WebSphere Application Server -
Express: A Development Example for New Developers, SG24-6301, objects
were placed into the session in the Struts actions. One of the goals of our new
redbook application is to centralize session management so that it is consistently
done and can be maintained in one place.
218 WebSphere Application Server - Express V6 Developers Guide and Development Examples

5.3.4 Session data
The redbook WebSphere Application Server - Express: A Development Example
for New Developers, SG24-6301 used the concept of managers to provide
services for the Sal301 application. These managers are very functional and
provide no object-oriented behavior. They expose CRUD functionality and little
more.

The Sal301 application is a simple example for entry level developers. The
application is quite simple and the development model presented is also quite
simple. The JSPs in the Sal301 application read Java classes from the HTTP
session and populate their various fields with data from these classes. The Struts
Action classes process the input forms, call the appropriate managers and data
returned from the managers is then placed in session scope. This is sufficient for
a simple application, but the session does tend to get cluttered up with various
beans. In this redbook we create session data objects to begin addressing these
issues.

When we look at the at the managers (UserManager, PropertyCatalogManager,
Newsmanager, and InterestListManager) in the Sal301 application, we see that
they all do share some common functions and behaviors. They all manage lists
of objects, there is the concept of the currently selected object, and so forth.
Similarly you can see that our Sal301 views also need to be aware of concepts
such as the currently selected object and also to handle list of objects. In the
Sal301 application such data was commonly stored in the HTTP session in the
form of DTOs and vectors of DTOs.

As a result we decided to implement session data classes in the Sal404 to more
effectively manage the data stored in our session. The session data classes are
created by the session listener as shown in Example 5-1 on page 217. This
means that we can be sure they always exist in our session and that they are
consistently named. By centralizing the session data creation we can also be
sure that multiple copies of the same data are not being stored.

We created a session data class for many of the major components of our
application. The classes we created are in the SAL404RealtyControl project are:

� UserSessionData
� ReferenceSessionData
� NewsSessionData
� BidSessionData

The session data classes typically share common attributes and behavior. They
usually have:

� An attribute to hold an instance of the manager for their component
 Chapter 5. Requirements 219

For example the BidSessionData class has a bidManager attribute while the
NewsSessionData class has a newsManager attribute.

� An attribute called current to hold a DTO for the current selected data

� A list attribute to hold a vector of DTOs

For example the BiddSessionData class has a bidList attribute that holds a
vector of BidDTO objects, while the NewsSessionData class has a newsList
attribute that holds a vector of NewsDTO objects.

� Methods to create, update, and delete data for their component

These methods are wrappers around a call to the appropriate methods on the
manager for the component.
220 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Part 2 Development
examples

In this part we describe our redbook sample solution, and detail the steps to
design and develop examples that illustrate new features and function in
WebSphere Application Server - Express Version 6 and in the Rational Software
Development Platform.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 221

222 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 6. Web site development

In this chapter we provide a brief overview of the Web development tools
provided with Rational Web Developer. Because our sample application was
already developed, we were not required to build many new Web pages
during this redbook project. As a consequence this chapter does not provide
a detailed guide to all the Web development features of Rational Web
Developer. Our main focus is to provide a guide to some of the more
important tools and to direct you to where you can find more information.

We do provide some details on how to use templates with our sample
application because this was a major enhancement we made.

Note that our overview of Rational Web Developer tools for Web development
is a summary of material that can be found in greater detail in the redbook
Rational Application Developer V6 Programming Guide, SG24-6449.

6

© Copyright IBM Corp. 2005. All rights reserved. 223

6.1 Introduction to Web applications
There are many Web development technologies as well as tools included in
Rational Web Developer. In this chapter we do not discuss all the technologies
available to us. Our redbook concentrates only on the tools and technologies we
need in our sample application. For an overview of our use of Struts see
Chapter 11, “Struts” on page 447. For an examination of how to use JSF with our
existing sample see Chapter 7, “JavaServer Faces” on page 239. Our focus in
this chapter is on an overview of the tools for developing dynamic Web
applications using JavaServer Pages (JSP) and Java Servlets technology, and
for static Web sites using HTML.

6.1.1 Concepts and technologies
This section provides an overview of the concepts and technology used by J2EE
Web applications.

WebSphere Application Server - Express is based on a number of key
technologies that are discussed in this section. We also assume that you have a
basic understanding of Internet technologies and Web applications. It is useful to
have a working knowledge of:

� Web (HTTP) servers

Some details to get you started on this topic can be found here:

– http://www.serverwatch.com
– http://httpd.apache.org/

� HTML

To get started see: http://www.w3.org/MarkUp/

� HTTP

To get started see http://www.w3.org/Protocols/

� Java Servlets

To get started see:

– http://java.sun.com/products/servlet/
– http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

� JavaServer Pages

To get started see:

– http://java.sun.com/products/jsp/product.html
– http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html
224 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://java.sun.com/products/servlet/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://www.serverwatch.com
http://www.serverwatch.com
http://httpd.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/
http://www.w3.org/MarkUp/
http://www.ietf.org/rfc/rfc2616.txt?number=2616
http://java.sun.com/products/jsp/product.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html

� JavaBeans

To get started see:

– http://java.sun.com/products/javabeans/
– http://java.sun.com/docs/books/tutorial/javabeans/index.html

Java 2 Platform, Enterprise Edition
WebSphere Application Server - Express fully supports the Java 2 Platform,
Enterprise Edition (J2EE) specification. For more details on Java 2 Platform,
Enterprise Edition see:

� http://java.sun.com/j2ee/
� http://java.sun.com/j2ee/tutorial/

Java Servlets and JavaServer Pages
JavaServer Pages have quickly become the presentation mechanism’s most
popular technology because it enables developers of varied skills to create
dynamic and rich content very easily. The flexibility of the JSP to combine both a
markup language and an enterprise programming language makes it easier for
developers with different skill sets to collaborate on projects.

Java Database Connectivity
Accessing the database has always been an extremely important part of
enterprise application services. The Java Database Connectivity (JDBC)
interface makes it very easy to access disparate databases from multiple
vendors. In addition, JDBC enabling wizards inside of Rational Software
Development Platform alleviate the need for developers to think about the
infrastructure-level code of accessing the database.

XML
Internally, XML is the glue that unites the WebSphere architecture and enables
the technology to work together. Indeed, its simple design and extensible nature
for describing just about anything make it an extremely powerful language. It is
an essential ingredient to dynamic e-business applications. Unfortunately, the
language can sometimes be difficult to manage. Rational Software Development
Platform shields developers from the sometimes difficult nature of the language
with a beautiful and friendly facade, allowing them to leverage every bit of its
power.

Static and dynamic Web application technologies
Web technologies can be described as either static or dynamic, depending on
whether the page displayed to an individual user is constant or generated at the
time it is served.
 Chapter 6. Web site development 225

http://java.sun.com/j2ee/tutorial/
http://java.sun.com/products/javabeans/
http://java.sun.com/docs/books/tutorial/javabeans/index.html
http://java.sun.com/j2ee/

Static Web applications
A static Web site is one in which the user’s Web browser accesses content
determined only by the contents of the file system on the Web server machine.
Because the user’s experience is determined only by the content of these files
and not by any action of the user or any business logic running on the server
machine, the site is described as static.

In most cases, the communication protocol used for interacting with static Web
sites is the Hypertext Transfer Protocol (HTTP).

HTTP follows a request/response model. A client sends an HTTP request to the
server providing information about the request method being used, the requested
Uniform Resource Identifier (URI), the protocol version being used, various other
header information and often other details, such as details from a form
completed on the Web browser. The server responds by returning an HTTP
response consisting of a status line, including a success or error code, and other
header information followed by a the HyperText Markup Language (HTML) code.

Dynamic Web applications
Dynamic Web applications are applications that are accessed using HTTP
(Hypertext Transfer Protocol), usually with a Web browser as the client-side user
interface to the application. The flow of control logic, business logic, and
generation of the Web pages for the Web browser are all handled by software
running on a server machine. Many different technologies exist for developing
this type of application, but our redbook sample uses the Java technologies
provided by our Java 2 Platform Enterprise Edition application server which is
WebSphere Application Server - Express.

Enterprise application
An enterprise application project contains the hierarchy of resources that are
required to deploy a Java 2 Platform, Enterprise Edition (J2EE) application. It can
contain a combination of Web modules, EJB modules, JAR files, and application
client modules. It includes a deployment descriptor and an IBM extension
document, as well as files that are common to all J2EE modules that are defined
in the deployment descriptor. It can contain a complete application that might be
a combination of multiple modules. Enterprise applications make it easier to
deploy and maintain code at the level of a complete application instead of as
individual pieces.

There are a couple methods of creating an Enterprise Application using Rational
Web Developer:
226 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Create New Enterprise Application wizard

This wizard can by started by selecting File → New → Project. Select
J2EE → Enterprise Application.

� Create the enterprise application as part of creating a new Web Project.

� Create enterprise application using Import wizard.

If you are importing a Web project, you can create an enterprise application
with the import wizard.

Enterprise Application projects are exported as enterprise archive (EAR) files
that include all files defined in the enterprise application project as well as the
appropriate module archive file for each J2EE module project defined in the
deployment descriptor, such as Web archive (WAR) files and EJB JAR files.

An enterprise application can contain JAR files to be used by the contained
modules. This allows sharing of code at the application level by multiple Web or
EJB modules.

The enterprise application deployment descriptor contains information about the
components that make up the enterprise application. This deployment descriptor
is called application.xml and is located under the META-INF directory.

Web application
The Java Servlets specification 2.4 and the J2EE specification contain the
concept of a Web application. A Web application contains JavaServer Pages,
Java Servlets, applets, Java classes, HTML files, graphics, and descriptive meta
information that connects all these elements. The format is standardized and
compatible between multiple vendors.

The specification also defines a hierarchical structure for the contents of a Web
application that can be used for deployment and packaging purposes. Many
servlet containers, including the one provided by Express Application Server,
support this structure.

Any Web resource can be included in a Web application, including the following:

� Servlets and JavaServer Pages

� Utility classes

Standard Java classes may be packaged in a Java archive (JAR) file. JAR is
a standard platform-independent file format for aggregating files (mainly Java
classes files).
 Chapter 6. Web site development 227

� Static documents

HTML files, images, sounds, videos, and so forth come under this category.
This term includes all the documents a Web server is able to handle and to
provide to client requests.

� Client side applets, beans, and classes

� Descriptive meta information tying all of the above elements together

� Custom tag libraries

� Struts

� XML files

� Web services

The directory structure for a Web application requires the existence of a
WEB-INF directory. This directory contains Java and support classes that
contain application logic. Access to these resources is controlled through the
servlet container, within the application server.

Figure 6-1 shows an example of a typical directory structure under the WEB-INF
directory.

Figure 6-1 The WEB-INF directory: A sample structure

The required elements are:

� web.xml: This file is required and is the deployment descriptor for the Web
application.

lib

WEB-INF

classes

Servlet1.class

web.xml

myjar.jar mypackage

Servlet3.classServlet2.class
228 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� lib: This directory is required and is used to store all the Java classes used in
the application. This directory will typically contain JAR files, including tag
libraries.

� classes: This directory is also required. Typically, servlet classes and utility
classes for the servlets compose this directory. It is possible to keep a
package structure in this directory and to put class files under several
subdirectories of the classes directory (as it is done for the Servlet2.class file
in the subdirectory mypackage in Figure 6-1 on page 228).

Although there are no other requirements for the directory structure of a Web
application, we recommend that you organize the resources in separate logical
directories for easy management, an images folder to contain all graphics, for
example.

As with the enterprise application, a deployment descriptor exists for the Web
application. The Web deployment descriptor, web.xml, contains elements that
describe how to deploy the Web application and its contents to the servlet
container within the Web server. Note that JSPs execute as servlets and are
treated as such in the Web deployment descriptor.

The deployment descriptor file enables the application configuration to be
specified independently from the server. It clearly simplifies the deployment
process because the same application can be deployed into different servers
without having to review its content.

6.1.2 Web development tooling
Rational Application Developer includes many Web development tools for
building static and dynamic Web applications. In this section, we highlight the
following tools and features:

� Web perspective and views
� Web projects
� Web Site Designer
� Page Designer
� Page templates
� CSS Designer
� Javascript Editor
� WebArt Designer
� Animated GIF Designer
� File creation wizards

These tools as well as other tools are further illustrated in the examples found
throughout the chapter.
 Chapter 6. Web site development 229

6.1.3 Web perspective and views
Web developers can use the Web perspective and supporting views within
Rational Application Developer to build and edit Web resources, such as
servlets, JSPs, HTML pages, style sheets and images, as well as the
deployment descriptor files.

The Web perspective can be opened by selecting Window → Open
Perspective → Web from the Workbench. Figure 6-2 displays the default layout
of the Web perspective with a simple home.html open.

Figure 6-2 Web perspective

6.1.4 Web projects
In Rational Web Developer, you create and maintain Web resources in Web
projects. They provide an environment that enables you to perform activities
such as link-checking, building, testing, and publishing. Within a Web project,
Web resources can be treated as a portable, cohesive unit.
230 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Web projects can be static or dynamic. Static Web projects are comprised solely
of static resources, which can be served by a traditional HTTP server (HTML
files, images, and so on), and are useful for when you do not have to program
any business logic. J2EE Web projects, on the other hand, can deliver dynamic
content as well, which gives them the ability to define Web applications.

A Web application contains components that work together to realize some
business requirements. It might be self-contained, or access external data and
functions, as is usually the case. It is comprised of one or more related servlets,
JavaServer Pages and regular static content, and is managed as a unit.

6.1.5 Web Site Designer
The Web Site Designer is provided to simplify and speed up the creation of the
Web site navigation and creation of HTML and JSP pages. You can view the
Web site in a Navigation view to add new pages, delete pages and move pages
in the site. The Web Site Designer is especially suited for building pages that use
a page template.

The Web Site Designer is used to create the structure for your application in
much the same way you would create a book outline to serve as the basis for
writing a book. You use the Web Site Designer to visually lay out the flow of the
application, rearranging the elements (JSPs, HTML pages) until it fits your
needs. You continue by creating pages based on this design.

As you build your Web site design, the information is stored in the
website-config.xml file so that navigation links and site maps can be generated
automatically. This means that when the structure of a site changes, for example
when a new page is added, the navigation links are automatically regenerated to
reflect the new Web site structure.

The Web Site Designer can be used with existing or new projects. To create a
Web site configuration for a Web project that does not currently have one, there
is an option on the context menu of the Web project, Convert to Web Site in the
Web perspective.

To launch the Web Site Designer, double-click Web Site Navigation found in the
root of your Web project folder. Figure 6-3 on page 232 displays a sample Web
site navigation and pages in Web Site Designer.
 Chapter 6. Web site development 231

Figure 6-3 Web Site Designer

6.1.6 Page Designer
Page Designer is primary editor for developing HTML, XHTML, JSPs, and Faces
JSP source code. It has three representations of the page, including Design,
Source, and Preview. The Design tab provides a WYSIWYG environment to
visual design the contents of the page. As its name implies, the Source tab
provides access to the page source code. The Preview tab shows what the page
would like if displayed in a Web browser.
232 WebSphere Application Server - Express V6 Developers Guide and Development Examples

6.1.7 Page templates
A page template contains common areas that you want to appear on all pages,
and content areas that will be unique on the page. They are used to provide a
common look and feel for a Web project.

Use the Page Template File creation wizard to create the file. Once you create it,
you can modify the file in the Page Designer. The page templates are stored as
*.htpl for HTML pages and *.jtpl files JSP pages. Changes to the page template
will be reflected in pages that use that template. Templates can be applied to
individual pages, groups of pages, or applied to an entire Web project. You can
mark areas as read-only, thus Page Designer will not allow the user to modify
those areas.

6.1.8 CSS Designer
Style sheets can be created when you create the Web project, or they can be
added later. It is a good idea to decide on the overall theme (color, fonts, and so
forth) for your Web application in the beginning and create the style sheet at the
start of the development effort. Then as you create the HTML and JSP files, you
can select that style sheet to ensure that the look of the Web pages will be
consistent. Style sheets are commonly kept in the WebContent/theme folder.

The CSS Designer is used to modify cascading style sheet *.css files. The
changes are immediately applied to the Design page in Page Designer, if the
HTML file is linked to the CSS file.

6.1.9 Javascript Editor
The Javascript Editor provides a Source page and Preview page to enable you to
work with source files and view them as though in a Web browser. The Snippets
palette includes Javascript code that you can drag and drop into your Web
pages.

6.1.10 WebArt Designer
Use the WebArt Designer program to create and edit image files. Using WebArt
Designer, you can create shape objects, draw a simple map, as well as create
logos and buttons often seen on Web pages. The Page Designer also enables
you to edit GIF and JPEG images, but WebArt Designer offers a much richer set
of functionality for editing images.
 Chapter 6. Web site development 233

6.1.11 Animated GIF Designer
An animated GIF is a series of image files in GIF format, displayed sequentially
to give the appearance of an animation. You can insert an animated GIF into a
page in the same way as a regular GIF image file. Animated GIFs can be viewed
on a regular Web browser without any special plug-ins.

The AnimatedGif Designer is a program for creating animated GIF files, and
comes with a gallery of predefined animation files. With the AnimatedGif
Designer, you can:

� Combine several images to create an animation.
� Apply an animation effect on a single image to create an animation.
� Apply an animation effect on text to create an animated banner.

Launch the AnimatedGif Designer by clicking Tools → AnimatedGif Designer
from the menu bar.

6.1.12 File creation wizards
Rational Application Developer provides many Web development file creation
wizards by selecting File → New and then selecting the wizards as seen in
Figure 6-4.

Figure 6-4 File creation wizard selection
234 WebSphere Application Server - Express V6 Developers Guide and Development Examples

HTML file wizard
The HTML File wizard creates an HTML file in a specified folder, with the option
to create from a page template. In addition, the markup language included can
be defined as type, HTML, HTML Frameset, Compact HTML, XHTML, XHTML
Frameset, and WML 1.3.

JSP file wizard
The JSP File wizard creates a JSP file in a specified folder, with the option to
create from a page template or create as a JSP Fragment, and define the
markup language (HTML, HTML Frameset, Compact HTML, XHTML, XHTML
Frameset, and WML 1.3). In addition, you optionally have the ability to selecting
a model (none, JSP, Struts Portlet JSP, Struts JSP).

Faces JSP file wizard
This wizard is similar to the JSP file wizard in capability. It has a different set of
models. This wizard is covered in more detail in Chapter 7, “JavaServer Faces”
on page 239.

Page Template file wizard
The Page Template file wizard creates new page template files in a specified
folder, with the option to create from a page template or create as a JSP
Fragment, and define the markup language (HTML, HTML Frameset, Compact
HTML, XHTML, XHTML Frameset, and WML 1.3). Optionally, you can create a
new page template from an existing page template. In addition, you can select
from one of the following models; Template contains Faces Components,
Template containing only HTML, Template containing JSP.

Javascript file wizard
The Javascript file wizard creates a new Javascript file in a specified folder.

CSS file wizard
The CSS file wizard creates a new cascading style sheet (CSS) in a specified
folder.

Image file wizard
The Image file wizard creates new image files (bmp, mif, gif, png, jpg) in a
specified folder.

6.1.13 Our sample Web site project
With Rational Web Developer we can create different project types, including:
 Chapter 6. Web site development 235

� Enterprise Application project
� J2EE Application Client project
� Dynamic Web project
� Static Web project
� EJB project
� Connector project
� Java project
� Simple project
� Server project
� Component Test project
� EMF Project
� Checkout Projects from CVS
� Feature patch
� Feature project
� Fragment project
� Plug-in project
� Update Site project

Our redbook sample application incudes a Dynamic Web project called
SAL404RealtyWeb. The main enhancement we have made to our Web
application for this redbook is to use Web page templates. This technology was
not available to us when the previous redbook WebSphere Application Server -
Express: A Development Example for New Developers, SG24-6301 was written.

Why we use templates
The advantages of using templates in our Web project include:

� You have the ability to update a group of Web pages simultaneously and
automatically, simply by updating a page template and saving it.

� You get decreased time for development and maintenance (speed).

� You can change the corporate image for a entire site with minimal
modifications.

� You can provide a new presentation for the site without affecting site
functionality.

� You can provide standardized presentation for the final user.

� You manage common contents of multiple Web pages (such as header,
footer, and menu sections) using a separate file called a page template file.

� You can manage layouts of multiple Web pages.

Note: For additional information about project types see the redbook Rational
Application Developer V6 Programming Guide, SG24-6449.
236 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Templates help designers keep in mind both aesthetic and technical points of
view. Templates are functional and easy-to-edit, but at the same time, they
support originality and artistic characteristics consistent with the designer's
style.

� Templates provide a shell around which you can quickly build a professional
Web site.

� They help ensure that your site's pages are consistent in appearance,
navigation, and overall design.

� They are available with custom graphics and logos already in place.

� They help novice Web masters create an attractive, functional site that
visitors will enjoy using.

Templates in Rational Web Developer
With Rational Web Developer you can create a new HTML, XHTML, JSP, or
Faces JSP page using Page Designer. When creating these pages you can
using a template. Sample templates are supplied with Rational Web Developer
and you can create your own custom templates.

For our redbook sample applications, we created page templates to use with our
Struts application. These templates replaced the JSP include approach used in
the SAL301R application developed for the WebSphere Application Server -
Express: A Development Example for New Developers, SG24-6301 redbook.

Details of how we created and used templates in our Struts example application
can be found in Chapter 11, “Struts” on page 447.

We also used templates to provided a common look and feel to our JSF
examples. For more details see Chapter 7, “JavaServer Faces” on page 239.
 Chapter 6. Web site development 237

238 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 7. JavaServer Faces

This chapter describes and presents the use of JavaServer Faces (JSF) and
Service Data Objects (SDO) technologies for a subset of the realty application.

We briefly describe JSF and compare it with Struts, then we implement a home
page, the about us page, and the news application using JSF and SDO.

JSF is part of J2EE 1.4. Therefore, the runtime for JSF is included in the
WebSphere Application Server - Express V6.0.

7

© Copyright IBM Corp. 2005. All rights reserved. 239

7.1 Introduction to JSF
JavaServer Faces (JSF) is a framework for developing Java Web applications.
The JSF framework aims to unify techniques for solving a number of common
problems in Web application design and development, such as:

� User interface development

JSF has the capability of directly binding user interface (UI) components to
model data. JFS abstracts request processing into an event-driven model.
Developers can use extensive libraries of prebuilt UI components that provide
both basic and advanced Web functionality. UI components are Java objects
residing on the server.

� Navigation

JSF introduces a layer of separation between business logic and the resulting
UI pages; stand-alone flexible rules drive the flow of pages.

� Session and object management

JSF manages designated model data objects by handling their initialization,
persistence over the request cycle, and cleanup.

� Validation and error feedback

JSF has the capability of direct binding of reusable validators to UI
components. The framework also provides a queue mechanism to simplify
error and message feedback to the application user. These messages can be
associated with specific UI components.

� Internationalization

JSF provides tools for internationalizing Web applications, supporting
number, currency, time, and date formatting, and externalizing of UI strings.

JSF is easily extended in a variety of ways to suit the requirements of your
particular application. You can develop custom components, renderers,
validators, and other JSF objects and register them with the JSF runtime.

7.1.1 Model-view-controller architecture
Applications built with JavaServer Faces are intended to follow the
model-view-controller (MVC) architectural pattern (Figure 7-1 on page 241).
According to the MVC pattern, a software component should separate its
business logic along the following lines:

Model Encapsulates the state and behavior of the application.
View Renders the model.
Controller Processes user events and drives model and view updates.
240 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 7-1 MVC Web application architecture

We can group the important components of JSF as belonging to these
categories, as in Figure 7-2:

� Model

Managed beans make up the model of a JSF application. These Java beans
typically interface with reusable business logic components or external
systems, such as a mainframe or database.

� View

JSPs make up the view of a JSF Web application. These JSPs are created by
combining model data with predefined and custom-made UI components.

� Controller

The FacesServlet, which drives navigation and object management, makes
up most of a JSF application’s controller. Event listeners also contribute to the
controller logic.

Figure 7-2 JSF’s MVC breakdown

Controller

Model

View

redirect

instantiate and
control

access

request

response

Browser

Client Server

Controller

Model

View

request

response

Browser

Client Server

FacesServlet

Managed beans

JSPs,
UI components
 Chapter 7. JavaServer Faces 241

7.1.2 JSF Web application structure
The structure of a JSF Web application is shown in Figure 7-3.

Figure 7-3 JSF Web application structure

A JSF Web application consists of:

� Faces servlet, a servlet provided by JSF

� An XML configuration file (faces-config.xml) holding information about
supported languages, managed beans, navigation rules, validators, and
converters

� JSPs built from JSF components

Each JSP is a tree of components and each components is a server-side
Java object.

� JSF tag libraries, which support the JSP components

� Validators used to validate user input data

� Managed JavaBeans holding hold the application data

Properties of managed beans are bound to user interface components (for
example, input and output fields). JSF moves and converts the data between
UI components and managed beans.

WebSphere Application Server

J2EE Enterprise Application
JSF Web Application

Other Modules (EJB)

Managed JavaBeans

JSF Libraries/Tags

Business
Logic

Faces Servlet XML Configuration File
Browser

JSPs with JSF UI

Component
Tree

Validators

Events

binding
242 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Events invoking logic in managed beans

Typical events are command buttons and hyperlinks. In addition changes to
values in UI components can trigger value-changed events.

� Business logic invoked by event processing

Action methods, invoked, for example, by command buttons typically passes
managed beans as data transfer objects to business logic classes.

7.1.3 JSF support in Rational Web Developer
JSF is supported by extensive tooling in Rational Web Developer. Here is a short
description of the JSF support:

� A Web project is automatically configured for JSF by including the Faces
servlet, the tag libraries, and a style sheet to tailor JSF components.

� Page Designer has been extended to support JSF pages (JSPs with JSF
components) through a Palette view, the Properties view, the Page Data
view, and the Quick Edit view.

� The Palette view is used to drag JSF components into a JSF page to layout
the page. IBM provides a number of custom JSF components in addition to
the standard JSF components.

� The Properties view is used to provide the details for each component
dropped into a JSF page. This includes, for example, output text, field length,
data types, and standard validation.

� The Page Data view is used to define managed beans. Properties of
managed beans can be dragged into a JSF page and a layout of input or
output fields is created using JSF components. Using drag and drop, the
binding of UI components to managed bean properties is accomplished.
Managed beans are registered in the XML configuration file.

� Navigation rules specify the sequence of JSF pages. These rules are defined
for command buttons and hyperlinks and they use symbolic names for JSF
pages. Navigation rules are stored in the XML configuration file.

� The Quick Edit view is used to enter the action logic associated with
command buttons and hyperlinks. Action logic must return a string result that
is the symbolic name of the next JSF page. An empty string or null result
redisplays the current JSF page.

� A server-side Java class, called page code, is created for each JSF page.
This Java class is registered as a managed bean for action logic. Code
entered in the Quick Edit view becomes a method in the page code class. The
page code class provides a number of utility methods and access to all UI
components and managed beans through simple get methods.
 Chapter 7. JavaServer Faces 243

� A Web diagram shows the structure of a JSF Web application with nodes for
JSF pages and lines for actions between pages.

Figure 7-4 shows the Web application with supporting tooling in Rational Web
Developer.

Figure 7-4 JSF Web application support by Rational Web Developer

7.2 Comparing JSF and Struts
Struts and JSF contain many of the same features, and both have a very similar
overall structure. However, depending on the requirements of the application, it is
useful to examine the various discrepancies between the two frameworks
(Table 7-1).

Table 7-1 JJavaServer Faces and Struts feature comparison

WebSphere Application Server

J2EE Enterprise Application
JSF Web Application

Other Modules (EJB)

Managed JavaBeans

JSF Libraries/Tags

Business
Logic

Faces Servlet XML Configuration File
Browser

JSPs with JSF UI

Component
Tree

Validators

Events

One Class per page

Palette

Custom
Components

Generated

Properties

Page
Navigation

V6: Web Diagram

Page
Data

Quick
Edit

binding

JavaServer Faces Struts

Components � Rich data bound UI
components with
events provided

� Custom components

� HTML components and a few
Struts components

� Struts-specific tag library
244 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Apart from the features of the frameworks, it is important to consider the strength
of their relative tools, maturity, and future directions (Table 7-2).

Table 7-2 JavaServer Faces and Struts considerations

Data beans � Managed JavaBeans
with properties bound
to UI components

� Managed beans are
independent of JSPs

� Form beans associated with
input fields of JSPs

Device
independence

� Reader kits that
provide device
independence

� None

Error-handling and
validation

� Validation framework

� Predefined validators

� Validation in form beans or
driven by an XML descriptor
(validation.xml)

Scripting (logic) � Scripts can be
attached to events

� All components
accessible from scripts

� Scripts written in Java action
classes

� Form data, but not
components, accessible

Page flow � Simple navigation file
(faces-config.xml)

� XML-based

� Sophisticated, flexible
framework

� XML-based

Session and object
management

� Automatic � Manual

JavaServer Faces Struts

Tooling IBM tooling is relatively new, many tools soon
to follow

Extensive, mature
IDE support

Maturity Relatively young, though at least one version
of the specification has been ratified

Quite mature,
stable, not subject to
significant changes

Future plans Lots of development vitality, future
implementations planned, more extensive
component libraries to be developed, and new
contexts to be supported

Relatively static

J2EE support part of J2EE 1.4 Open Source

JavaServer Faces Struts
 Chapter 7. JavaServer Faces 245

7.2.1 Validation
The tooling is not aware of Struts validation. It is supported by the product and
the user registration process in the Struts sample provides an example for using
the validation framework. Even though there is no tooling support for the
validation framework, using it does provide for the benefits of externalizing the
validation rules and reducing the amount of code in form beans in the validate()
method. Having an external definition for an account number, for example, allows
the developer to state that a field must be a valid account number. The definition
is in just one place and can be referenced from many forms.

JSF validation is fully supported by the Rational Web Developer tooling.
Validation rules can be applied in the Properties view.

Both the Struts Validation framework and the JSF validation support optional
JavaScript validation in the browser.

7.2.2 XML configuration management
Struts is configured by default through the struts-config.xml, while JSF is
configured through the faces-config.xml file. Managing concurrent access to
these files by a development team can be very challenging.

The Struts tooling supports multiple Struts modules. Using multiple Struts
modules allows for the various functional groups (user, news, property) to have
separate modules. This eases the problem of concurrent access and lessons the
need to merge changes.

Similarly, Struts validation also supports multiple configuration files. The default
configuration file, validation.xml, can also be supplanted with additional
configurations files. It would be possible to have a separate validation file that
corresponded to each Struts module. Once again, this would ease concurrent
access to this resource.

With Struts, a developer should be aware when a given action will modify the
configuration file. Creating a new Struts action, new Struts form bean, or adding
a new forward will change the Struts configuration files. The tooling in Rational
Web Developer also provides for explicit modification of the Struts configuration

Important: When the tooling is said to be unaware of the validation
framework, this means that not only is there no tooling support for the
validation framework, but changes to the validation configuration files are not
picked up automatically. The project must be republished for validation rules
changes to take effect.
246 WebSphere Application Server - Express V6 Developers Guide and Development Examples

file. By expanding the Struts node under the Web project and selecting new, a
developer can create a Struts artifact in the specified Struts module.

Because the tooling is unaware of the validation framework, these XML
configuration files must be edited explicitly. The developer must be aware that
she is modifying the file.

Even though there is multiple module support, best practice still is to make sure
that the current version has been fetched from the repository. This should be
modified and checked back in as soon as possible, decreasing the need for
merging.

JSF manages all of its configurations through the one configuration file. These
include managed beans, navigation rules, and validators. Unlike the Struts
tooling, there is no way to know explicitly that the configuration file will be
modified. A developer in a team environment must be aware that actions as
simple as changing a validation rule or changing a navigation rule will change the
faces-config.xml. Managing concurrent access to the faces-config.xml file
can be quite difficult and the need to merge conflicts can be common.

Note also that there are several graphical representations for the Struts
components. The Struts configuration XML editor provides an easy to use
interface for browsing or editing the Struts configuration files. There is no
equivalent support for JSF.

7.2.3 Templating
Templating in Struts is typically provided by Tiles. JSF does not have any explicit
templating mechanism. Rational Web Developer has its own templating system
that supports both Struts and JSF. Both a Struts and a JSF template are
provided with the sample application.

The template tooling has many of the features of Tiles and is quite easy to use.
One of the benefits of the template tooling is that it allows both the design and
the preview views to work correctly. As can be seen in the Struts sample code
that uses JSP includes, the tooling does not follow JSP includes. This produces
render errors in both the design and preview views.

7.3 Introduction to Service Data Objects
Service Data Objects (SDO) is a data programming architecture and API for the
Java platform that unifies data programming across data source types, provides
robust support for common application patterns, and enables applications, tools,
and frameworks to more easily query, view, bind, update, and introspect data.
 Chapter 7. JavaServer Faces 247

The Java specification request is JSR-235 and can be found here:

http://www.jcp.org/en/jsr/detail?id=235

SDO are designed to simplify and unify the way in which applications handle
data. Using SDO, application programmers can uniformly access and manipulate
data from heterogeneous data sources, including relational databases, XML data
sources, Web services, and Enterprise Information Systems. The SDO
architecture consists of three major components: the data object, the data graph,
and the data mediator (Figure 7-5).

Figure 7-5 SDO architecture

Data object
The data object is designed to be an easy way for a Java programmer to access,
traverse, and update structured data. Data objects have a rich variety of strongly
and loosely-typed interfaces for querying and updating properties. This enables a
simple programming model without sacrificing the dynamic model required by
tools and frameworks. A data object can also be a composite of other data
objects.

Data graph
SDO is based on the concept of disconnected data graphs. A data graph is a
collection of tree-structured or graph-structured data objects. Under the
disconnected data graphs architecture, a client retrieves a data graph from a
data source, mutates the data graph, and then applies the data graph changes to
the data source. The data graph also contains some metadata about the data

Data SourceData Mediator

Data Graph

Data Object

Data Graph

Data Object

Client

Read

Update
248 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.jcp.org/en/jsr/detail?id=235

object, including change summary and metadata information. The metadata API
enables applications, tools, and frameworks to introspect the data model for a
data graph. Applications then handle data from heterogeneous sources
uniformly.

Data mediator
The task of connecting applications to data sources is performed by a data
mediator. Client applications query a data mediator and get a data graph in
response. Client applications send an updated data graph to a data mediator to
have the updates applied to the original data source. This architecture allows
applications to deal principally with data graphs and data objects, providing a
layer of abstraction between the business data and the data source.

7.3.1 Rational Web Developer support for SDO
Rational Web Developer does not support the complete specification of SDO.
The implementation is based on WebSphere Data Objects and only supplies a
data mediator for JDBC database access and for EJB access through EJB query
language.

WebSphere Data Objects represents a precursor to the more broadly accepted
SDO architecture. These architectures, however, are largely the same so we use
the term SDO in this book.

In this chapter we only deal with the implementation for relational database
access using JDBC. Rational Web Developer provides two data graphs for
relational database access:

� Relational record, starting with one row of a table
� Relational record list, starting with multiple rows of a table

Both relational record and relational record list can extend the data of the first
table through relationships (joins) to other tables.

Relational record
Rational Web Developer provides a special structure, called a relational record,
to access the content of a single record in a relational database. This structure
allows you to display, create, and update single records from JSF pages. A
relational record can be a join record for multiple tables.

When you create a relational record, Rational Web Developer guides you
through creating a database query. The tools then automatically generate a
JDBC mediator that performs that query. The structure of the data graph
supplied to that mediator is also stored so that you can treat the data object as a
 Chapter 7. JavaServer Faces 249

strongly-typed, managed bean. You can bind UI components in JSF pages to the
properties of this bean, thereby using the data object in a Web application.

Relational record list
In Rational Web Developer, you can define a structure to access the content of
several records of a relational database. This structure is called a relational
record list. A relational record list can be a join for multiple tables.

When you create a relational list, you define a query that returns multiple
database records. The tools then act in much the same way as defining a
relational record. The query and record structure are stored so that you can treat
the results as a managed bean. You can bind the properties of this bean to the UI
components of the JSF pages in a Web application.

Note that you can easily convert a relational record list into a relational record by
using a query that only returns one record of the table.

7.4 Design of the JSF SDO sample
In this section we implement a subset of the realty application using JSF and
SDO. Figure 7-6 on page 251 shows the structure of the JSF application using a
Web diagram.
250 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 7-6 JSF application structure

The JSF application consists of these JSF pages:

� indexjsf.jsp Home page of the JSF application
� index.jsp Original home page (non-JSF) can be accessed as well
� generalJSF/aboutusjsf.jsp About Us page
� newsJSF/ListNews.jsp List of all news items using SDO
� newsJSF/viewNewsItem.jsp Details of one news item using SDO
� newsJSF/addNewsItem.jsp Form to enter a new news item using SDO
� newsJSF/modifyNewsItem.jsp Form to update a news item using SDO
� newsJSF/modifyNewsItemDAO Form to update a news item using the existing

data access objects

Note that the diagram only shows the main links between the JSF pages.
Through the use of a template, the home pages, the About Us page, and the
ListNews page can be accessed from each page.

We use SDO to access the NEWS_ITM table. To illustrate the invocation of
business logic from JSF action logic, we also implement the update page using
the existing data access object (DAO).

JSF pages
 Chapter 7. JavaServer Faces 251

7.4.1 JSF template
We use the template facility of Rational Web Developer to create a standard
layout with links for the JSF application (Figure 7-7).

Figure 7-7 Design of the JSF template

The previous redbook, WebSphere Application Server-Express: A Development
Example for New Developers, SG24-6301, used JSP includes to provide the
template for the site layout. This has several disadvantages. Changes to the
template might require updates to all existing pages that were created from a
previous template version, for example. A serious drawback to this method is
that the tooling does not follow JSP includes. This means that the design and
preview views for a JSP will not render correctly, making these view nearly
unusable.

Struts Tiles would have been a good an alternative method for page templating,
but the tooling support for Tiles is limited. It also has the page preview problem.
A Struts based template has been generated and can be found in the theme
folder (sal404.jtpl).

The template for JSF uses the tooling provided in Rational Web Developer and
uses JSP fragments for page links and a JSF page for the body. We can develop
the fragments independently, assemble them into a template, and then apply the
template to the JSF pages. The JSF page developer is not burdened with
template code and can concentrate on the JSF page design.

Layout template can be created using templates supplied with the product. The
template used in this application will be generated from scratch.

About Us News

Home (non-JSF)

Home (JSF)

SAL404 Realty User-Info

Content Area

Head fragment

Side fragment Bottom fragment

JSF pages
252 WebSphere Application Server - Express V6 Developers Guide and Development Examples

7.5 Implementing the JSF application
We implement the JSF application using these steps:

1. Develop the three JSP fragments
2. Develop the template using the fragments
3. Develop the home page (indexjsf.jsp) and apply the template
4. Develop the About Us page (aboutusjsf.jsp) and apply the template
5. Develop the news application (four pages) using JSF and SDO
6. Develop the news application page using JSF and DAO
7. Apply the template to the news application pages
8. Finishing the application so that only administrators can update news items

7.5.1 Creating the JSP fragments
In this section, we implement the JSP fragments similar to the Struts fragments.
We use a new folder, generalJSF, for the fragments.

Head fragment
The head fragment contains the links to the About Us page and the news
application (ListNews page). To create the fragment follow these steps:

1. Select the generalJSF folder and New → JSP File.

2. Enter nav_head1 as name, select Create as JSP Fragment, and select None
for the model. Click Finish.

3. Replace the generated code with the lines containing the links to the two JSF
pages, as in Example 7-1:

Example 7-1 Creating the head fragment

<TABLE border="0" cellpadding="6">
<TBODY>

<TR>
<td align="center" width="75">

About Us</td>

<td align="center" width="75">

News</td>
</TR>

</TBODY>
</TABLE>

4. Save and close the nav_head1.jspf file.
 Chapter 7. JavaServer Faces 253

Side fragment
In the same way, create the nav_side1.jspf fragment containing the links to the
two home pages, as in Example 7-2:

Example 7-2 Creating the nav_side1.jspf fragment

<TABLE width=120 cellpadding="6">
<TBODY>

<TR>
<td align="center">

Home (non-JSF)</td>
</TR>
<TR>

<td align="center">
Home (JSF)</td>

</TR>
</TBODY>

</TABLE>

Bottom fragment
In the same way create the nav_foot1.jspf fragment containing the code to list
the login information of the user, as in Example 7-3:

Example 7-3 Creating the nav_foot1.jspf

<TABLE class="" cellspacing="0" cellpadding="4">
<TBODY>

<tr>
<TD width="120">SAL404 Realty</TD>
<td><c:out

value="${sessionScope.userSessionData.logInUser.userName}" />
</td>
<td><c:out

value="${sessionScope.userSessionData.logInUser.role}" />
</td>

</tr>
<tr>

<td><c:out value="${confirmationMessage}" /></td>
</tr>

</TBODY>
</TABLE>

Note that this code uses the JSTL standard library to display information stored in
the session data object userSessionData and in the confirmationMessage object
creates by the news application.
254 WebSphere Application Server - Express V6 Developers Guide and Development Examples

7.5.2 Creating the template
We create the template in the theme folder and use the fragments for the layout.
To create the JSF template follow these steps:

1. Select the theme folder and New → Page Template File.

2. Enter sal404jsf as name, select Template containing JSP, and select
Configure advanced options (Figure 7-8).

Figure 7-8 Creating the JSF template: name and mode

3. On the next page we add the required JSP tag library for JSTL. Click Add,
locate the tag library and add it to the page (Figure 7-9).

Figure 7-9 Creating the JSF template: tag library
 Chapter 7. JavaServer Faces 255

4. Click Finish. A message box alerts you that you require at least one content
area.

5. Delete the default text.

6. Expand the HTML Tags section in the Palette. Select Table and drop it into
the template. Enter 3 for rows, 2 for columns, and remove the 0 from border.

7. Expand Web Content/static/images and drag the realestateblue.gif into
the first table cell (Figure 7-10).

Figure 7-10 Creating the template: table and image

8. Select the table by clicking the border. and in the Properties view select Aqua
for the color (click the button on the right).

9. Expand the Page Template section in the Palette, Select Page Fragment
and drop it into the top-right cell. When prompted select the nav_head1.jspf
fragment under Web Content/generalJSF.

10.Repeat this process and drop the nav_side1.jspf fragment into the
middle-left cell and the nav_foot1.jspf fragment into the bottom-right cell.

11.Select Content Area in the Palette and drop it into the middle-right cell. When
prompted, accept bodyarea as the name.

12.Select the cell of the body area and in the Properties view select White for the
color. The finished design is shown in Figure 7-11.

Figure 7-11 Creating the template: fragments and body

13.Switch to the Source tab in Page Designer. Move the JSTL tag library in front
of the <HEAD> tag:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
256 WebSphere Application Server - Express V6 Developers Guide and Development Examples

<HEAD>

Without this change, we got errors in the footer section when applying the
template to JSF pages.

14.Save and close the template.

7.5.3 Creating the home page
With the simple home page, we illustrate how to create a JSF page and apply the
template to the page. Follow these steps to create the home page:

1. Select the Web Content folder and New → Faces JSP File.

2. Enter indexjsf as the name. Deselect Create from page template (it is
easier to apply the template later) and deselect Create as JSP Fragment.
Select Basic for model and click Finish.

3. Replace the default text with a heading 1, Welcome to SAL404 Realty:

<H1>Welcome to SAL404 Realty</H1>

4. Expand the Page Template section in the Palette. Select Apply/Replace
Template. and click into the JSF page. This only works in the Design tab.
When prompted, select the sal404jsf/jtpl template, click Next and Finish.

Testing the home page
Make sure the SAL404Realty enterprise application is added to the server.
Select the indexjsf.jsp and Run → Run on Server. The home page is
displayed.

You can test the Home (non-JSF) link. In the old home page, click Login. Login
as an administrator, then redisplay the JSF home page (Figure 7-12).

Figure 7-12 JSF home page without and with user login
 Chapter 7. JavaServer Faces 257

7.5.4 Creating the About Us page
The About Us page is as simple as the home page. Create a new Faces JSP file
named aboutusjsf in the generalJSF folder.

1. Replace the default text with:

Example 7-4 Creating aboutusjsf

<H1>All about SAL404 Realty</H1>
<HR>
<H2>For all your real estate needs</H2>
<P>Founded in 2003 by a dynamic group of redbook residents
sal404 Realty is a privately held company specializing in selling
hot housing property.
</P>

2. Apply the template to finish the About Us page.

7.5.5 Creating the news list page
We develop the complete news application using JSF and SDO and apply the
template later. We start with the ListNews page, then add view, insert, and
update actions.

To create the ListNews page, follow these steps:

1. Create a folder named newsJSF for the news application.
2. Select the newsJSF folder and New → Faces JSP File.
3. Enter ListNews as name, deselect the other options, and click Finish.
4. Replace the default text with a heading 1, List News as in step 3 on page 257.

Creating the relational record list for news items
To display the news items, we create a relational record list (SDO data graph).

1. In the Page Data view select New → Relational Record List.

2. Enter listNews as name. Select Fill record with existing data from the
database and click Next.

3. For the connection click New. This is required at least once for a Web
application. Enter the following information:

– Enter SAL404_Con1 as name and click Create New DB Connection.
– Select Choose a DB2 alias.
– Select the IBM DB2 Application JDBC driver.
– Enter SAL404R for connection alias.
– Verify the JDBC driver class location.
– Enter db2admin as User ID and the correct password.
258 WebSphere Application Server - Express V6 Developers Guide and Development Examples

– Click Test Connection to make sure it works.
– Click Finish (Figure 7-13).

Figure 7-13 Creating a database connection

4. The tables of the SAL404R database are retrieved. Select the NEWS_ITM
table and click Next, Figure 7-14 on page 260.
 Chapter 7. JavaServer Faces 259

Figure 7-14 Creating a relational record list: table selection

5. Deselect the NEWS_ITM_BODY column. It is not displayed in the news list.

6. Click Order results. Select the NEWS_ITM_DATE column and click >. Select
Descending, then click Close (Figure 7-15).

7. Click Finish.

Figure 7-15 Creating the relational record list: columns and sorting
260 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The relational record list appears in the Page Data view, together with two action
methods (Figure 7-16).

Figure 7-16 Creating the relational record list: page data

Displaying news items
To display the news items, we drop the relational record list into the JSF page:

1. Select the listNews bean in the Page Data view then drag and drop it into the
JSF page.

2. In the Insert Record List dialog box (Figure 7-17) deselect the NEWS_ITM_ID
(we do not list the ID), and change the labels to Title, Date, and Author.

Figure 7-17 Displaying the relational record list

3. Click Finish and a JSF data table is created in the page.
 Chapter 7. JavaServer Faces 261

Tailoring the news list
The data table can be tailored in many ways. Here we use a few of the options:

1. Select the data table and in the Properties view set the border to 1. To select
the data table, select any column, and in the Properties view select the line
h:dataTable.

2. Select Display options (under h:dataTable) and click Add a deluxe pager.
Enter 8 for rows per page.

3. Save the page (Figure 7-18).

Figure 7-18 ListNews page: initial design

Testing the news list
At this point we can test the page.

1. Select the ListNews.jsp and Run → Run on Server. The list of news items
is displayed (Figure 7-19).

Figure 7-19 ListNews page: initial run

7.5.6 Preparing the news list page for selection and updates
We want to be able to perform a number of options after displaying the news
items:

� Select an item to display the details
� Select an item to update the details
� Select multiple items for delete
� Add a new item
262 WebSphere Application Server - Express V6 Developers Guide and Development Examples

For this purpose, we use a number of JSF options:

� A hyperlink to select an item to display the details
� A column with check boxes for selection (update and delete)
� Command buttons to invoke Add, Modify, and Delete functions

Here are the instructions to enhance the ListNews page:

1. Select the data table and in the Properties view select Row actions and then
click Add selection column to the table. This action adds a column with
check boxes in the front of the table.

2. In the Palette, select the Command - Hyperlink component and drop it onto
the {NEWS_ITM_TITLE} field in the data table. This action adds a link icon

 in front of the field name.

3. We want to pass the news item ID to the next JSF page to display the details.
Select the link icon, and in the Properties view select Parameter. Click Add
Parameter, and a line is added to the list. Overtype the name with
NEWS_ITM_ID. Select the value field and click the icon on the right. When
prompted, expand the listNews bean and select the NEWS_ITM_ID column.
The value is displayed as #{varlistNews.NEWS_ITM_ID}.

4. Select the Command - Button component in the Palette. Drop a button
under the data table. Repeat this three times.

5. Select each button and in the Properties view set the Id field to addButton,
modifyButtonSDO, modifyButtonDAO, and deleteButton. Select Display
options in the Properties view and set the button labels to New, Modify
SDO. Modify DAO, and Delete.

6. Select the Display Errors component in the Palette and drop it under the
table.

7. Open the stylesheet.css file. In the theme folder for the .message and
.messages component set the color to red, as in Example 7-5:

Example 7-5 Setting the theme color

.message {
color: red

}

.messages {
color: red

}

8. Add a separator (<hx:outputSeparator></hx:outputSeparator>) under the
heading. This component is hidden in the Palette, but can be inserted using
JSP → Insert Custom and selecting the outputSeparator from the hx tag
library.
 Chapter 7. JavaServer Faces 263

Figure 7-20 shows the final design of the page.

Figure 7-20 List news page design

9. Select the New button and in the properties view click Add Rule. Enter
newsJSF/addNewsItem.jsp as the target page. Select The outcome named
and enter addNewsItem. Select Any action and This page only. Click OK.

Repeat this procedure in Figure 7-21 for three more rules.

Figure 7-21 Navigation rules

The outcome values are the values that must be returned by the action logic.

10.Select the New button and in the Quick Edit view select Command in the left
frame and click inside the right frame. In the sample code that appears,
change the return statement to return "addNewsItem"; so that the
addNewsItem page will be displayed.
264 WebSphere Application Server - Express V6 Developers Guide and Development Examples

11.Select the hyperlink NEWS_ITM_TITLE and in the Quick Edit view enter this
code:

log("View news item: "+ getRequestParam().get("NEWS_ITM_ID"));
getRequestScope().put("newsId", getRequestParam().get("NEWS_ITM_ID"));
return "viewNewsItem";

We retrieve the parameter that was setup in the hyperlink and store it in the
request block for the next JSF page (viewNewsItem).

The logic for update and delete is more complex and can wait for later.

Create skeleton pages for news action testing
To test the ListNews page, we create the four skeleton pages for view, add, and
modify:

1. In the newsJSF folder, create four JSF pages named viewNewsItem,
addNewsItem, modifyNewsItem, and modifyNewsItemDAO.

2. Change the default text to a text identifying the new page.

3. Run the ListNews page and test the hyperlink and New actions. The target
pages should be displayed.

7.5.7 Creating the news item details page
The viewNewsItem.jsp displays the selected news item when you click the
hyperlink. The NEWS_ITM_ID is passed as parameter and stored in the request
block as newsId. We use a relational record to retrieve the details of the selected
item.

Here are the short instructions to create the page:

1. Open the viewNewsItem.jsp.

2. Change the initial text to <H1>News Item Details</H1>.

3. In the Page Data view select New → Scripting Variable → Request Scope
Variable. Enter newsId as name and java.lang.String as type.

4. In the Page Data view select New → Relational Record. Enter newsItem as
name and select Fill record with existing data from the database.

5. Select the NEWS_ITM table.

6. Leave all columns selected.

7. Click Filter results. A default condition is generated.

8. Select the condition and click the Edit icon . For the value click the
button and locate the request scope variable newsId. Close the filter dialog
and click Finish.
 Chapter 7. JavaServer Faces 265

9. Drop the newsItem bean into the JSF page. In the dialog select Displaying
an existing record. Deselect the NEWS_ITM_ID. Change the labels to
shorter names. Click Finish as in Figure 7-22.

Figure 7-22 Displaying a news item

10.Add a Cancel button (with ID cancelButton) under the table.

11.Add a separator (<hx:outputSeparator>) under the heading (Figure 7-23).

Figure 7-23 Design of the news item details page

12.Select the Cancel button and add a navigation rule in the Properties view:
266 WebSphere Application Server - Express V6 Developers Guide and Development Examples

– Target page: newsJSF/listNews.jsp
– Outcome: listNews
– Select All pages (global rule)

13.In the Quick Edit view, enter the code return "listNews";

Testing the news item details
Rerun the ListNews.jsp, then select news items by clicking the title. The details
are displayed in Figure 7-24.

Figure 7-24 Displaying the news details

Note the format of the date. This can be tailored by selecting the date output field
and in the Properties view and changing the format type and style.

7.5.8 Creating the news item add page
The addNewsItem.jsp is used to enter a new news item. We use a relational
record to enter the details of a new item.

To create the page, follow these short instructions:

1. Open the addNewsItem.jsp.

2. Change the initial text to <H1>Add News</H1>.

3. In the Page Data view select New → Relational Record. Enter addNewsItem
as name and select Create an empty record in order to create a new row
in the database.
 Chapter 7. JavaServer Faces 267

4. Select the NEWS_ITM table.

5. Leave all columns selected.

6. Click Finish.

7. Drop the addNewsItem bean into the JSF page. In the dialog box, deselect
the NEWS_ITM_ID; we have to generate a key using Java code. Change the
labels to shorter names. For the NEWS_ITM_BODY, select Input Text Area
as type.

8. Click Options. Select Submit button and set the label to Add.

9. Click Finish. The table for data entry is inserted.

10.Select the Add button and change the ID to addButton.

11.Add a Command - Button next to the Add button. In the Properties view select
Reset as type and set the Id to resetButton.

12.Add the separator <hx:outputSeparator> under the heading (Figure 7-25).

Figure 7-25 Design of the add news item page (initial)

Adding validation of input fields
To validate the input fields we use the predefined validators and display errors
next to each field:

1. Change the IDs of the input fields to more convenient names (newsTitle
instead of text1).

2. Select the NEWS_ITM_TITLE input field. In the Properties view select
Validation (Figure 7-26 on page 269). Select Value is required, enter 6 for
minimum length and 100 for maximum length (database limit). Select Display
validation error messages in an error message control. This creates a
message field next to the input field.

3. For the NEWS_ITM_DATE field, select Value is required and create the
error message field.
268 WebSphere Application Server - Express V6 Developers Guide and Development Examples

4. For the NEWS_ITM_AUTHOR field select Value is required, enter 4 and 100
as length limits, and create the error message field.

5. For the NEWS_ITM_BODY field, select Value is required, enter 10 as
minimum length, and create the error message field. In the Properties view for
size enter 40 for width and 4 for height to make the text area bigger.

Figure 7-26 Input data validation

6. The design of the add news item page is shown in Figure 7-27.

Figure 7-27 Final design of the add news item page

Adding the logic to add a news item
For a new news item, we have to generate a proper key for the database. We
also need a confirmation message from the resource properties file:

1. The resource properties file is named ApplicationResources.properties in
the sal404realtyweb.resources package.

2. The news section should have these entries in Example 7-6:

Example 7-6 Logic entries for news items

News
error.news.search=Database error finding news items
error.news.invalidDate=The date input is invalid
error.title.required=Title is required
error.date.required=A date is required
 Chapter 7. JavaServer Faces 269

news.error.addNewsItem=Failure adding news item
news.error.fetchNewsItem=An error occured while fetching a new item
news.error.no.delete.selection=Please select at least one news item to
delete
news.error.no.modify.selection=Please select a news item to modify
news.modify.ok=News modified successfully
news.add.ok=News added successfully
news.delete.ok=News items deleted successfully
news.error.delete=Failure deleting news items
news.error.modify=Failure modifying news item

3. The logic for the Add button (Quick Edit view) is shown in Example 7-7. The
lines in bold must be added to the logic that is already generated for the Add
button.

Example 7-7 Logic to add a news item

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

try {
KeyGenerator generator = new KeyGenerator();
String newsId = generator.getKeyString();
getAddNewsItem().setString("NEWS_ITM_ID",newsId);
getAddNewsItemMediator().applyChanges(

getRootDataObject(getAddNewsItem()));
getRequestScope().put("confirmationMessage", r.getString("news.add.ok"));

} catch (Throwable e) {
logException(e);
getRequestScope().put("confirmationMessage",

r.getString("news.error.addNewsItem"));
} finally {

SDOConnectionWrapper = null;
}
return "listNews"; // return to the news list

4. The logic for the Cancel button is one line: return "listNews";

Testing news item add
Rerun the ListNews.jsp, then click New for a new item. Enter the details and
click Add. The new item is displayed in the list, sorted by date. Note that you
have to enter the date in the format Mmm dd, yyyy. See Figure 7-28 on page 271.
270 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 7-28 Adding a news item to the list

7.5.9 Implementing news item selection
For both modification and deletion of news items we select news items using the
check box column. We have to prepare a managed bean to receive the selected
items. The best way to work with check boxes is to bind an integer array
(Integer[]) to the check box field. This array contains the indexes of the selected
rows.

We provide the com.ibm.itso.sal404.news.selection.NewsSelection class for this
purpose. This class contains a property with getter and setter methods:

private Integer[] selectedNews = new Integer[0];

Open the ListNews.jsp and follow these steps:

1. In the Page Data view select New → JavaBean. Enter newsSelection as
name, browse to the NewsSelection class, select Make this JavaBean
reusable and select request as scope. Click Finish, as in Figure 7-29 on
page 272.
 Chapter 7. JavaServer Faces 271

Figure 7-29 Defining a managed bean

2. The newsSelection bean appears in the Page Data view. A getNewsSelection
method is generated into the page code class.

3. Expand the newsSelection bean, then drag and drop the selectedNews
property onto the check box field. This property will contain the indexes of the
selected rows.

4. Select a Display Errors component in the Palette and drop it under the table.
We use this to display error messages for incorrect selection.

7.5.10 Implementing news item delete
To delete news items, we remove the selected rows from the data graph and
commit the changes.

1. In the ListNews.jsp, select the Delete button

2. In the Quick Edit view enter the code in Example 7-8.

Example 7-8 Logic to delete news items

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

Integer[] selected = getNewsSelection().getSelectedNews();
if (selected.length == 0) {

getFacesContext().addMessage("",
new FacesMessage(FacesMessage.SEVERITY_ERROR,
272 WebSphere Application Server - Express V6 Developers Guide and Development Examples

r.getString("news.error.no.delete.selection"),
r.getString("news.error.no.delete.selection")));

return "";
}
for (int i=0; i<selected.length; i++) {

int row = selected[i].intValue();
DataObject newsItem = (DataObject)getListNews().get(row);
String newsId = newsItem.getString("NEWS_ITM_ID");
log("Delete news item: " + row + " id: " + newsId);
newsItem.delete();

}
try {

getListNewsMediator().applyChanges(getRootDataObject(getListNews()));
getRequestScope().put("confirmationMessage",

r.getString("news.delete.ok"));
} catch(Exception e) {

getFacesContext().addMessage("",
new FacesMessage(FacesMessage.SEVERITY_ERROR,

r.getString("news.error.delete"),r.getString("news.error.delete")));
} finally {

SDOConnectionWrapper = null;
}
getNewsSelection().setSelectedNews(new Integer[0]);
return "";

The processing is as follows:

3. Retrieve the resource bundle for error messages.

4. Retrieve the selected rows array.

5. Verify that at least one item is selected. Return with an error message if no
rows were selected.

6. Scan the array for selected items.

7. For each item, retrieve the data object of the news item and delete it.

8. Call the mediator to commit the changes.

9. Set the confirmation message for successful delete.

10.In case of errors, return with an error message.

11.Clear the selection array so that no rows are selected after returning.

Testing news item delete
To test deleting a news item, perform the following tasks:

1. Rerun the ListNews.jsp,
2. Select the news items added and click Delete.
 Chapter 7. JavaServer Faces 273

7.5.11 Implementing news item update using SDO
To update a news item, we retrieve the item and display the data in input fields
for updating. First we have to pass the selected news item id to the update page.
In the ListNews.jsp, select the Modify SDO button and in the Quick Edit view
enter the code in Example 7-9.

Example 7-9 Logic to pass a news item ID to the update page

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

Integer[] selected = getNewsSelection().getSelectedNews();
if (selected.length != 1) {

getFacesContext().addMessage("",
new FacesMessage(FacesMessage.SEVERITY_ERROR,

r.getString("news.error.no.modify.selection"),
r.getString("news.error.no.modify.selection")));

return "";
}
int row = selected[0].intValue();
String newsId = ((DataObject)getListNews().get(row)).getString("NEWS_ITM_ID");
log("Modify new item: " + row + " id: " + newsId);
getRequestScope().put("newsId", newsId);
return "modifyNewsItem";

The processing is as follows:

1. Retrieve the resource bundle for error messages.
2. Verify that exactly one item is selected.
3. Retrieve the ID of the selected item from the data object.
4. Pass the ID in request scope to the update page.

Implementing the news item update page (SDO)
To implement update using SDO, open the modifyNewsItem.jsp and proceed
as follows:

1. In the Page Data view select New → Scripting Variable → Request Scope
Variable. Enter newsId as name and java.lang.String as type. Click OK.

2. In the Page Data view select New → Relational Record.

3. Enter newsItem as the name. Select Reuse metadata definition from an
existing record or record list and select the newsItem.xml file. Select Fill
record with existing data from the database. Click Next then Finish.

4. Drag and drop the newsItem bean into the JSF page. Select Updating an
existing record. Deselect the NEWS_ITM_ID. Change the labels to short
names, For the NEWS_ITM_BODY, select Input Text Area as type.
274 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Click Options and select Submit button with the label Modify. Deselect
Delete button. Click OK, then click Finish.

5. Add a Command - Button with the label Cancel.

6. Add a separator (<hx:outputSeparator>) under the heading.

7. Implement the same validation as for the add news item page (see “Adding
validation of input fields” on page 268). The design of the modify news item
page is shown in Figure 7-30.

Figure 7-30 Design of the news item update page (SDO)

8. Enter the Cancel button logic in the Quick Edit view: return "listNews";

9. The logic for the Modify button is generated into the page code class. Update
the logic as shown in Example 7-10. The only additions are to display
confirmation or error messages.

Example 7-10 Logic to update a news item (SDO)

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

try {
getNewsItemMediator()

.applyChanges(getRootDataObject(getNewsItem()));
getRequestScope().put("confirmationMessage",

r.getString("news.modify.ok"));
} catch (Throwable e) {

logException(e);
getRequestScope().put("confirmationMessage",

r.getString("news.error.modify"));
} finally {

SDOConnectionWrapper = null;
}
return "listNews";
 Chapter 7. JavaServer Faces 275

Testing news item update (SDO)
To test the new itme update, follow these steps:

1. Rerun the ListNews.jsp, then select the news item to be updated.

2. Click Modify SDO. Change the data and click Modify. The updated values
are displayed in the news list.

7.5.12 Implementing news item update using DAO
To update a news item, we retrieve the news item (NewsItemDTO) using DAO
and pass it in session scope to the update page.

1. In the ListNews.jsp, select the Modify DAO button and in the Quick Edit view
enter the code in Example 7-11.

Example 7-11 Logic to retrieve the news item using DAO

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

Integer[] selected = getNewsSelection().getSelectedNews();
if (selected.length != 1) {

getFacesContext().addMessage("",
new FacesMessage(FacesMessage.SEVERITY_ERROR,

r.getString("news.error.no.modify.selection"),
r.getString("news.error.no.modify.selection")));

return "";
}
int row = selected[0].intValue();
String newsId = ((DataObject)getListNews().get(row)).getString("NEWS_ITM_ID");
log("Modify new item: " + row + " id: " + newsId);
NewsManager newsManager = new NewsManager();
try {

NewsItemDTO newsItem = newsManager.viewNewsItemDetails(newsId);
getSessionScope().put("newsItem", newsItem);
return "modifyNewsDAO";

} catch (ApplicationException e) {
getFacesContext().addMessage("",

new FacesMessage(FacesMessage.SEVERITY_ERROR,
r.getString("news.error.fetchNewsItem"),
r.getString("news.error.fetchNewsItem")));

return "";
}

The processing is similar to SDO, but the news item is retrieved using the
existing NewsManager and placed into session scope for the next page.
276 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Implementing the news item update page (DAO)
To implement update using DAO, open the modifyNewsItemDAO.jsp and
proceed as follows:

1. In the Page Data view select New → JavaBean. Enter newsItem as name and
locate the NewsItemDTO class. Select Make this JavaBean reusable and
select session scope. Click Finish. The DTO bean is shown in the Page
Data view (Figure 7-31).

Figure 7-31 Session scope variable in the Page Data view

2. Drag and drop the newsItem bean into the JSF page. Select Inputting data.
Deselect the id and delete fields. Rearrange the fields in the sequence title,
date, author, and body. For the body select Input Text Area as type.

3. Click Options and select Submit button with the label Update. Click OK,
then click Finish.

4. Add a Command - Button with the label Cancel.

5. Add a separator (<hx:outputSeparator>) under the heading.

6. Implement the same validation as for the add news item page (see “Adding
validation of input fields” on page 268).

7. The design of the page is the same as Figure 7-30 on page 275, except that
we used an Update button.

8. Enter the logic for the Cancel button in the Quick Edit view:

getSessionScope().remove("newsItem");
return "listNews";

9. Enter the logic for the Update button as shown in Example 7-12. The news
item is updated by passing the DTO to the NewsManager for update.

Example 7-12 Logic to update a news item (DAO)

ResourceBundle r = ResourceBundle
.getBundle("sal404realtyweb.resources.ApplicationResources");

NewsItemDTO newsItem = getNewsItem();
 Chapter 7. JavaServer Faces 277

String newsId = newsItem.getId();
log("Updating News item: " + newsId + " " + newsItem.getTitle());
NewsManager newsManager = new NewsManager();
try {

newsManager.modifyNewsItem(newsItem);
getRequestScope().put("confirmationMessage",

r.getString("news.modify.ok"));
} catch (ApplicationException e) {

getRequestScope().put("confirmationMessage",
r.getString("news.error.modify"));

}
getSessionScope().remove("newsItem");
return "listNews";

Testing news item update (DAO)
To test the update, follow these steps:

1. Rerun the ListNews.jsp, then select the news item to be updated.

2. Click Modify DAO. Change the data and click Update. The updated values
are displayed in the news list (Figure 7-32).

Figure 7-32 Updating a news item
278 WebSphere Application Server - Express V6 Developers Guide and Development Examples

7.5.13 Applying the template to the news application
We have now tested the functionality of the news application. Now we can apply
the template to the pages.

There are two ways to add the template:

� We can create a site diagram and apply the template to multiple pages.

� We can open each page and then apply the template from the Palette as we
did for the home page.

Creating a site diagram
To create a site diagram of the JSF application, open the Web Site Diagram
under the Web application SAL40RealtyWeb. Then follow these steps:

1. Drag the indexjsf.jsp into the empty diagram.

2. Select the home page and Add existing pages.

3. Click Add Other Pages and locate the index.jsp, aboutusjsf.jsp, and the
ListNews.jsp. Click OK.

4. Select the ListNews.jsp and click Add Other Pages. Select all other the
pages in the newsjsf folder.

The structure is displayed in Figure 7-33.

Figure 7-33 Building the site diagram

5. Click Finish and the diagram is displayed in Figure 7-34 on page 280.

– Note the color of the pages with the template.

– You can invoke the Page Designer for a page from the diagram by
double-click or Open.
 Chapter 7. JavaServer Faces 279

Figure 7-34 Site diagram of JSF application

Applying the template
To apply the template to multiple pages, follow these steps:

1. Select all the news pages and Page Template → Apply Template.

2. Select User-defined page template and then select the sal404jsf.jtpl
template.

3. Progress through the dialog box and click Finish.

4. Select Appearance → Show Page Template from the context menu and the
name of the template is also displayed in each box, as in Figure 7-35.

Figure 7-35 Site diagram after applying the template
280 WebSphere Application Server - Express V6 Developers Guide and Development Examples

7.5.14 Running the JSF application
Run the JSF application again and now the news pages are displayed in the
template. Also notice that the confirmation messages of updates and deletes are
displayed in the footer area of Figure 7-36.

Figure 7-36 JSF application run

7.5.15 Securing news update for administrators
The tasks of adding, deleting, and updating news items must be reserved for
administrators. We can use the JSTL standard library to hide the selection check
boxes and the command buttons in the news list page by placing them into a
conditional block:

<c:if test='${userSessionData.logInUser.role==\"Administrators\"}'>
.....

</c:if>

Open the ListNews.jsp and in the Source tab, add the code shown in
Example 7-13.

Example 7-13 Securing the news update facility

<h:form styleClass="form" id="form1">
......
<h:dataTable id="table1">

<h:column id="column4">
<c:if test='${userSessionData.logInUser.role==\"Administrators\"}'>
<hx:inputRowSelect styleClass="inputRowSelect" id="rowSelect1"
 Chapter 7. JavaServer Faces 281

value="#{pc_ListNews.newsSelection.selectedNews}">
<f:convertNumber /></hx:inputRowSelect>

<f:facet name="header"></f:facet>
</c:if>

</h:column>
<h:column id="column1">
......
......

</h:dataTable>
<h:messages styleClass="messages" id="messages1"></h:messages>

<c:if test='${userSessionData.logInUser.role==\"Administrators\"}'>
<hx:commandExButton type="submit" value="New"></hx:commandExButton>
<hx:commandExButton type="submit" value="Modify SDO"></hx:command..>
<hx:commandExButton type="submit" value="Modify DAO"></hx:command..>
<hx:commandExButton type="submit" value="Delete"></hx:command..>
</c:if>

</h:form>

Rerun the application. The update facility is only visible after login as an
administrator. Note that you have to use the non-JSF home page to access login.

7.6 JSF and SDO control files
JSF and SDO maintain information in control files in the Web project structure.
These files are maintained by the system and should not be touched.

Some of the file names start with a period and are not visible by default in the
Project Explorer view. To view .xxxxx files, select the arrow pull-down in
Project Explorer and select Filters. Deselect .* at the bottom of the list and click
OK.

7.6.1 JSF control files
The main control file of JSF is the XML configuration file (faces-config.xml) in the
WEB-INF folder. This file is used by the Faces servlet to manage the JSF
environment.

The faces-config.xml file contains this information:

� Managed beans are application data beans defined in the Page Data view.
For example, the newsItem bean for news item update using DAO is defined
in the configuration file. See Example 7-14 on page 283.
282 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Example 7-14 Managed bean configuration

<managed-bean>
<managed-bean-name>newsItem</managed-bean-name>
<managed-bean-class>com.ibm.itso.sal404.news.dto.NewsItemDTO</..>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

� Page code classes are the Java classes created for each JSF page are also
defined as managed beans, for example:

Example 7-15 Page code classes

<managed-bean>
<managed-bean-name>pc_ListNews</managed-bean-name>
<managed-bean-class>pagecode.newsJSF.ListNews</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

� Navigation rules are defined for each JSF page. Example 7-16 shows the
rules for the ListNews page:

Example 7-16 Navigation rules for ListNews.jsf

<navigation-rule>
<from-view-id>/newsJSF/ListNews.jsp</from-view-id>
<navigation-case>

<from-outcome>modifyNewsItem</from-outcome>
<to-view-id>/newsJSF/modifyNewsItem.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>addNewsItem</from-outcome>
<to-view-id>/newsJSF/addNewsItem.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>viewNewsItem</from-outcome>
<to-view-id>/newsJSF/viewNewsItem.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>modifyNewsDAO</from-outcome>
<to-view-id>/newsJSF/modifyNewsItemDAO.jsp</to-view-id>

</navigation-case>
</navigation-rule>

� Additional tags are used for life cycle phase listeners and application property
resolvers.
 Chapter 7. JavaServer Faces 283

A control file, .jspPersistence, in the Web project holds information about the
scripting variables (request and session scope) that were defined in the Page
Data view for JSF pages.

7.6.2 SDO control files
SDO keeps information about the connection and the relational records in its
control files.

Connection information
SDO keeps the connection information in the .wdo_connections file in the
project. This file keeps the specification of the development connection (used
during design of the relational records) and the runtime connection (used for
testing). In our case the abbreviated information is in Example 7-17.

Example 7-17 SDO connection information

<?xml version="1.0" encoding="UTF-8"?>
<com.ibm.websphere.wdo.connections:connections>
 <connection id="SAL404_Con1">
 <development xsi:type="..." id="SAL404_Con1_dev" name="SAL404_Con1"/>
 <runtime xsi:type="..." auto-deploy="true"

class-location="C:\SQLLIB\java\db2java.zip" id="SAL404_Con1_runtime"
classname="COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource"
database-name="SAL404R" jndi-name="jdbc/SAL404_Con1"
password="{xor}NissMGsmMCo=" resource-reference-name="SAL404_Con1"
server-name="localhost" sql-vendor-type="30" userid="db2admin"/>

 </connection>
</com.ibm.websphere.wdo.connections:connections>

Resource reference
The runtime connection through a data source must be configured in the server.
For this purpose a resource reference (SAL404_Con1) is created in the Web
deployment descriptor, visible on the References page. The reference points to
the data source with a JNDI name of jdbc/SAL404_Con1.

Extended deployment descriptor
Rational Web Developer deploys this data source to the server automatically by
using the extended deployment descriptor of the enterprise application.

Open the deployment descriptor of the SAL404Realty enterprise application.
Select the Deployment page (Figure 7-37 on page 285) and you find a JDBC
provider (WDO DB2 JDBC Provider1). Select the JDBC provider and you find the
SAL404_Con1 data source with the jdbc/SAL404_Con1 JNDI name.
284 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 7-37 Enterprise application deployment descriptor with data source

This data source is automatically deployed to the test server when the enterprise
application is deployed. For deployment to a production environment, the data
source should be defined by an administrator, although automatic deployment to
a WebSphere server works as well.

Relational records and relational record lists
The definition of the relational records is kept in XML files in the WEB-INF/wdo
folder. For our application we defined one record list (listNews) and two records
(newsItem and addNewsItem):

� The listNews.xml file is shown in Example 7-18.

Example 7-18 ListNews.xml relational definition

<?xml version="1.0" encoding="UTF-8"?>
<com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.websphere.sdo.mediator.jdbc.metadata="..."
rootTable="//@tables.0">

 <tables schemaName="DB2ADMIN" name="NEWS_ITM">
 <primaryKey columns="//@tables.0/@columns.0"/>
 <columns name="NEWS_ITM_ID" type="4"/>
 <columns name="NEWS_ITM_TITLE" type="4" nullable="true"/>
 <columns name="NEWS_ITM_DATE" type="10" nullable="true"/>
 <columns name="NEWS_ITM_AUTHOR" type="4" nullable="true"/>
 Chapter 7. JavaServer Faces 285

 </tables>
 <orderBys column="//@tables.0/@columns.2"/>

</com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata>

� The newsItem.xml file is almost the same, but includes a filter condition to
retrieve one record only, and no sorting (orderBys):

<filter predicate="(NEWS_ITM_ID = ?)">
 <filterArguments name="requestScopenewsId" type="4"/>
 </filter>

� The addNewsItem.xml file includes the NEWS_ITM_BODY column.

The SDO mediator uses these XML files to generate the JDBC SQL calls to
retrieve and update the data in the database.

7.7 SDO API
In this section we take a brief look at the API of SDO.

7.7.1 SDO calls generated into the page code class
When using relational records in a JSF page, the SDO API calls are generated
into the page code class.

We can see most of the API calls in the ModifyNewsItem class that was
generated for the modifyNewsItem.jsp:

� Example 7-19 shows the declaration of SDO objects:

Example 7-19 Declaration of SDO objects

protected DataObject newsItemParameters;
protected JDBCMediator newsItemMediator;
private static final String SDOConnection_name = "SAL404_Con1";
private ConnectionWrapper SDOConnectionWrapper;
private static final String newsItem_metadataFileName =

"/WEB-INF/wdo/newsItem.xml";
protected DataObject newsItem;
286 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Example 7-20 shows the method to create the connection wrapper
(getSDOConnectionWrapper):

Example 7-20 Method for getSDOConnectionWrapper

Connection con = ConnectionManager
.createJDBCConnection(SDOConnection_name);

SDOConnectionWrapper = ConnectionWrapperFactoryImpl.soleInstance
.createConnectionWrapper(con);

� Example 7-21 shows the method to create the mediator using the XML file
and the connection (getNewsItemMediator):

Example 7-21 Method for getNewItemMediator

newsItemMediator = JDBCMediatorFactoryImpl.soleInstance
.createMediator(

getResourceInputStream(newsItem_metadataFileName),
getSDOConnectionWrapper());

� The method to setup the parameters for retrieve (getNewsItemParameters) is:

newsItemParameters = getNewsItemMediator().getParameterDataObject();

� Example 7-22 shows the method to retrieve the news item
(doNewsItemFetchAction):

Example 7-22 Retrieve doNewItemFetchAction method

resolveParams(getNewsItemParameters(), newsItemArgNames,
newsItemArgValues, "newsItem_params_cache");

DataObject graph = getNewsItemMediator().getGraph(
getNewsItemParameters());

newsItem = (DataObject) graph.getList(0).get(0);

� Example 7-23 shows the method to access the news item (getNewsItem):

Example 7-23 Access getNewsItem method

if (newsItem == null) {
doNewsItemFetchAction();

}
return newsItem;

� Method to update the news item (doNewsItemUpdateAction):

getNewsItemMediator().applyChanges(getRootDataObject(getNewsItem()));

getRootDataObject is a helper method in the parent class, PageCodeBase.
 Chapter 7. JavaServer Faces 287

� Example 7-24 shows the method to delete the news item
(doNewsItemDeleteAction):

Example 7-24 Delete news item (doNewItemDeleteAction)

DataObject root = getNewsItem().getDataGraph().getRootObject();
getNewsItem().delete();
getNewsItemMediator().applyChanges(root)

These methods are invoked automatically when an SDO object (relational
record) is used in a JSF page:

� The binding of a JSF component to a record item invokes the get method
(getNewsItem). This triggers a call to the fetch method, requiring in
succeeding order: the parameters, the mediator, and the connection.

� The logic of the Update button invokes the update method
(doNewsItemUpdateAction) that uses the mediator to commit the changes to
the database.

7.7.2 SDO API of the data object
The SDO API of the data object enables you to write programs using SDO
without a GUI front-end, or to perform more complex logic than updating fields
from a panel.

Once a data object has been retrieved, the properties can be accessed using the
API. For example, to retrieve and manipulate a news item (DataObject newsItem)
we can use the coding in the following examples.

� Retrieve a property in Example 7-25:

Example 7-25 Retrieve a property

(String)newsItem.get("NEWS_ITM_AUTHOR"); // get retrieves an Object
newsItem.getString("NEWS_ITM_AUTHOR");
newsItem.getDate("NEWS_ITM_DATE");

� Update a property in Example 7-26:

Example 7-26 Update a property

newsItem.setString("NEWS_ITM_AUTHOR", "john");
newsItem.setDate("NEWS_ITM_DATE", new Date());
newsItem.set("NEWS_ITM_TITLE", "Excellent News");
288 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Retrieve data objects from a relational record list in Example 7-27:

Example 7-27 Retrieve objects from a relational record list

for (int i=0; i < getListNews().size(); i++) {
DataObject newsItem = (DataObject)getListNews().get(index);
// process item: newsItem.get, newsItem.set
// delete item: newsItem.delete();

}

� Update the database with changes (relational record):

getNewsItemMediator().applyChanges(getRootDataObject(getNewsItem()));

� Update the database with changes (relational record list):

getListNewsMediator().applyChanges(getRootDataObject(getListNews()));

� Complex data graphs that consist of data from multiple tables (relationships)
require XPath expressions to access nested tables. For example, to access
employees in a department would require code such as in Example 7-28:

Example 7-28 Retrieveing employee entries by department

DataObject dept = getDepartment();
nrEmployees = ((List)dept.get("DEPARTMENT_EMPLOYEE")).size();
for (int i=0; i < nrEmployees; i++) {

String firstname = dept.getSring("DEPARTMENT_EMPLOYEE"+i+"/FIRSTNAME");
DataObject employee = dept.getDataObject("DEPARTMENT_EMPLOYEE"+i);
String lastname = employee.getString("LASTNAME");

}

The firstname example shows how to access data within a contained object
using an XPath expression without retrieving the contained object.
 Chapter 7. JavaServer Faces 289

290 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 8. Service Data Objects

In this chapter we discuss Service Data Objects(SDO), as well as provide an
overview of the technology and what it offers. We describe the SDO architecture
and the support provided by Rational Web Developer for building SDO
applications. We provide an example of incorporating SDO functionality into our
redbook sample application.

8

© Copyright IBM Corp. 2005. All rights reserved. 291

8.1 SDO technology
A common model for developing e-business solutions employs an n-tier
distributed environment or architecture, where the different tiers communicate
with each other to provide the overall system functionality. Accessing data in the
n-tier architecture is very dependent on the type of data source because a
specific technology or API is used. Consider a JDBC data source, an application
developer will have to learn, the JDBC APIs necessary to seemlessly retrieve,
manipulate and update database records. If we consider an XML data source, a
different set of APIs will have to be used. This means that developers spend a lot
of time learning specific technologies for accessing and using different data
sources.

Service Data Objects (SDO) aims at providing a data programming architecture
and APIs for the Java platform that unifies data programming across data source
types. It also provides a robust support for common application patterns and
enables applications, tools and frameworks to more easily query, view, bind,
update and introspect data. Using SDO implies that developer only need to learn
one API irrespective of the type of data source been used or accessed. Some of
the data sources supported by SDO include the following:

� Relational databases
� Entry EJB components
� XML pages
� Web services
� Java Connector Architecture

The SDO framework incorporates a good number of J2EE patterns and best
practices, making it easy to incorporate proven architecture and designs into
applications. For example, most Web applications that access databases cannot
be connected to these databases all of the time, SDO supports the disconnected
programming model where applications are only connect when needed.
Applications developed today are often inherently complex, consisting of
numerous layers, and this presents numerous problems that have to be solved,
including:

� How will data be stored?
� How will data be passed from component to component?
� How will the data be presented to the end user in a GUI?

The SDO programming model uses patterns which allow a clear and clean
separation of each of the these concerns.
292 WebSphere Application Server - Express V6 Developers Guide and Development Examples

8.2 SDO architecture
The SDO architecture consists of three major components, the data object, the
data graph and the data mediator. Figure 7.1 outlines the SDO data architecture.

Figure 8-1 SDO architecture

In this section, we take a closer look at the different components in the SDO
architecture.

8.2.1 Data mediator services
The data mediator performs the task of connecting applications to data sources.
Clients query the data mediator and get a data graph as a response. The data
mediator is also responsible for applying changes made to a data graph on
behalf of the application. With this architecture in place, applications can deal
primarily with data graphs and data objects, providing a layered abstraction
between business data and the underlying data source. The data mediator you
choose will be dependent of the type that is for a JDBC data source. A JDBC
data mediator service will have to be developed.

8.2.2 Data object
Data objects provide an easy way for accessing, traversing and updating
structured data.They are SDO representations of structured data. Data objects
have a variety of strongly and loosely typed interfaces for querying and updating
properties. A data object can also contain other data objects. Data objects are
generic and provide a common view of structured data built by the data mediator
service(DMS). If we consider a JDBC DMS, it usually needs to know the
underlying persistence technology, the relational database and how to access
and configure it. The SDO clients need not know anything about it.
 Chapter 8. Service Data Objects 293

8.2.3 Data graph
Data graphs provide a container for a tree of data objects. It is a collection of
tree-structured or graph-structured data objects. SDO is based on the concept of
disconnected data graphs. A client retrieves a data graph from a data source,
mutates the graph, and applies the data graph changes made to the data source.
A data graph can also include objects representing data from different data
sources.

Data graphs are serialized as XML when in transit between application
components. The data graph also contains some metadata about the data
object, including change summary. The metadata API provide applications, and
tools. The data graph also frameworks the ability to introspect the data model for
the data graph, enabling applications to handle data from heterogeneous data
sources in a uniform way.

8.2.4 Change summary
Change summary is used to represent changes made to a data graph returned
by a data mediator service. They are initially empty when returned to a client and
are populated as the data graph is modified. Change summaries are used when
changes are applied to the backend data store; they allow the data mediator
service to update data stores efficiently and incrementally by providing lists of
changed properties along with their old values and the created and deleted data
objects in the data graph.

8.2.5 Properties, types and sequences
Data objects hold their contents in a series of properties. Each property has an
attribute type: a primitive type (int for example); a commonly used data type such
as DATE; or if a reference, the type of another object. Each data object provides
read and write methods also called getter and setters for its properties. Several
overloaded versions of these methods are provided, allowing the properties to be
accessed by passing the property name as a string, number as an int or property
object itself.

8.3 SDO requirements
The SDO specification includes the following requirements for common
elements:
294 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Dynamic data API

Data objects commonly have typed Java interfaces. It is not always desirable
to create interfaces for data objects, for example when transferring data
obtained from an SQL output. In this situation, it is necessary to use a
dynamic store and associated API. SDO has the ability to represent data
objects through a standard dynamic data API.

� Support for static data API

In cases where metatdata is known in advance, such as when the SQL
relational schema is known, SDO supports code-generating interfaces for
data objects. When the static API is used, the dynamic API is still available for
use by the developer. The sample application makes better use of the static
API as the data schema is known.

� Complex data objects

Complex or compound data objects are data objects that contain other data
objects. For example, in the sample application the property table can be
considered as a compound data object because it contains a user object and
an address object. When dealing with compound objects, change history is
harder to implement because inserts, deletes, and reordering have to be
tracked as well as simple changes. SDO supports arbitrary graphs of data
objects with full change summaries.

� Change history

A client receives a data object from another tier, makes updates to the data
object, then passes the data object to the same or another tier. It is necessary
for the receiving tier to know what changes were made, so SDO supports full
change history.

� Navigation through data graphs

SDO provides navigation capabilities on the dynamic data API.

� Metadata

Many applications are built with the knowledge of the shape of data being
returned. This is to say, applications know what data to expect. For
frameworks there is a need to introspect on data object metadata to acquire
information about a particular data object. SDO provides APIs for metadata
because Java reflection does not return sufficient information.

� Relationship integrity

Constraints enable the ability to define relationships between data objects
and ways to enforce integrity of those constraints including cardinality,
ownership semantics, and so forth. In the sample application, a bid has a
relationship with the user table, and, inversely, the bid table contains a list of
users. If the user details change in the user table this should be reflected in
 Chapter 8. Service Data Objects 295

the bid table. Data object relationships use regular Java objects as opposed
to primary and foreign key relationships.

8.4 SDO versus other technologies
SDO is not the only technology that proposes to solve the problem of data
integration in distributed applications. In this section we look at other
technologies and frameworks that aim to serve the same purpose. We briefly
look at how they fair with SDO. Some of the frameworks mentioned include JDO,
JAXB, EMF.

8.4.1 SDO and WebSphere Data Objects
WebSphere Data Objects is the name of an early release of SDO shipped with
WebSphere Application Server 5.1. The phrase WebSphere Data Objects does
not exist anymore because the technology is now referred to as SDO.

8.4.2 SDO and JDO
Java Data Object (JDO) has been standardized through the Java community
process with release 1.0 and a maintenance release 1.0.1 in May 2004, although
a Java specification request for JDO2.0 was filed on 04/20/2004. The
specification request has been approved by the Java community process and is
now forming an expert group. JDO looks at data programming in the Java
environment and provides a common API for accessing different data stores
such as databases, file systems, or transaction processing systems. JDO
preserves relationships between Java objects and, at the same time, permits
concurrent access to the data. JDO is very similar to SDO in that it simplifies and
unifies data programming for the Java environment, freeing developers to focus
on business logic instead of the underlying technology. The main difference
however is that JDO looks at the persistence issue only (J2EE data tier or
enterprise information system), while SDO is more general and represents data
that can flow between any J2EE tier, for example between the presentation and
business tier. For more about JDO, consult:

http://access1.sun.com/jdo/

8.4.3 SDO and EMF
Eclipse modelling framework (EMF) is based on a data model defined using Java
interfaces, XML schema, or UML class diagrams. EMF generates a unifying
metamodel called Ecore which, in conjunction with the framework, can be used
to create high quality implementations of the model. It provides persistence, an
296 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://access1.sun.com/jdo/

efficient reflective generic object manipulation API, and a change notification
framework. It also includes generic reusable classes for building EMF model
editor. EMF and SDO both deal with data presentation For more information,
consult the reference material included in this book.

8.4.4 SDO and JAXB
JAXB, which stands for Java API for XML Data Binding, was released by the JCP
in January 2003. JAXB seeks to represent XML data as Java objects in memory.
As an XML binding framework for the Java language, it saves developers the
need to parse or create XML documents. It performs:

� The marshalling and serializing of Java to XML
� The unmarshalling and deserializing of XML to Java

SDO defines a Java binding framework of its own while JAXB is only focused on
a Java to XML binding. As outlined earlier in this chapter, SDO offers both static
and dynamic binding APIs. However, JAXB only offers static binding APIs.

8.5 SDO example
In this section we describe how to use SDO with our Sal404 sample application.
In Chapter 7, “JavaServer Faces” on page 239 we created an implementation of
the Sal404 news component that used JSF and we used wizards provided by
Rational Web Developer to generate SDO access to our database. We reuse
some of this generated SDO code and examine how to replace the existing
database access of our Sal404 application with SDO-based database access.

8.5.1 Examining the generated SDO code
Before we write SDO code for use in our sample application, it is important that
we understand the SDO API. To do this we can refer to the code generated by
the JSF SDO wizards. See 7.7, “SDO API” on page 286 for details of the
generated SDO API code.

The main SDO classes are:

� DataObject

– Holds the data graph
– Uses getList(0) to get a record list
– Holds parameters
– Provides get/set methods to access the data by type (getString,

getBigDecimal)
 Chapter 8. Service Data Objects 297

� List: simple user class (interface) for record list

– ECoreEList is an internal EMF class that holds the list
– Use getEObject to access the data graph (DataObject)

� JDBCMediator

– Created with connection and XML file
– Key methods include:

• getGraph(parameterObject) to retrieve data
• getEmptyGraph -to prepare for an insert
• getParameterDataObject to get parameter object to insert real values
• get/setConnectionWrapper to get the associated JDBC connection

� SDOConnectionWrapper

– Wraps a JDBC connection

� DataGraph

– Access to root DataObject and change summary

The following is a typical sequence of code as generated by the SDO wizards:

1. Create SDOConnectionWrapper using the connection name.
2. Create mediator using SDOConnectionWrapper and XML file.
3. Prepare parameters for retrieve.
4. Retrieve data.
5. Retrieve and update values in the data.
6. Commit changes.

8.5.2 Implementing SDO-based data access
In this section we alter the news manager class in our Sal404 sample application
to use SDO based data access objects.

Listing news using SDO
We start by using SDO to provide a list of news items. The steps to take are:

1. Copy the XML database definition files.

a. Expand the SAL404RealtyWeb project to folder
WebContent\WEB-INF\wdo

b. Select listNews.xml, right-click and choose Copy.

c. Select the SAL404RealtyJava project, right-click and choose Paste.

2. Change the listNews.xml file so that NEWS_ITM_BODY column is also
retrieved. Example 8-1 on page 299 shows the modified XML file.
298 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Example 8-1 listNews.xml

<?xml version="1.0" encoding="UTF-8"?>
<com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.websphere.sdo.mediator.jdbc.metadata="http:///com/ibm/websphere/s
do/mediator/jdbc/metadata.ecore" rootTable="//@tables.0">
 <tables schemaName="DB2ADMIN" name="NEWS_ITM">
 <primaryKey columns="//@tables.0/@columns.0"/>
 <columns name="NEWS_ITM_ID" type="4"/>
 <columns name="NEWS_ITM_TITLE" type="4" nullable="true"/>
 <columns name="NEWS_ITM_DATE" type="10" nullable="true"/>
 <columns name="NEWS_ITM_AUTHOR" type="4" nullable="true"/>
 <columns name="NEWS_ITM_BODY" type="4" nullable="true"/>
 </tables>
 <orderBys column="//@tables.0/@columns.2"/>
</com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata>

3. Modify the app.properties file in the SAL404RealtyJava project to set a flag to
determine whether the News database access will use the existing JDBC
data access objects, or our new SDO-based data access objects. See
Example 8-2 for the definition of the newsItemBackend flag.

Example 8-2 Modify app.properties to provide a newsItemBackend flag

Flag to determine whether to use JDBC or SDO database access for news items
Valid values are JDBC and SDO
newsItemBackend=JDBC
newsItemBackend=SDO

4. Create a new Java class called SDOListNewsDAO in the
com.ibm.itso.sal404.news.dao package of the SAL404RealtyJava package.
See Figure 8-2 on page 300.
 Chapter 8. Service Data Objects 299

Figure 8-2 Create class SDOListNewsDAO

5. Set up variables for SDO objects as shown in Example 8-3. These can be
copied from ListNews.java to SDOListNewsDAO.java.

Example 8-3 SDO variables

protected DataObject listNewsParameters;
protected List listNews;
protected JDBCMediator listNewsMediator;
private ConnectionWrapper SDOConnectionWrapper;

Tip: When we implement our new SDO-based DAO to list news, we can copy
much of the code from the generated ListNews.java from the
pagecode.newsJSF package in the SAL404RealtyWeb project.
300 WebSphere Application Server - Express V6 Developers Guide and Development Examples

6. Set up a variable for the XML file as shown in Example 8-4. This can be
copied from ListNews.java to SDOListNewsDAO.java and the file path
changed to /listNews.xml.

Example 8-4 XML file variable

private static final String listNews_metadataFileName = "/listNews.xml";

7. Write a method called getSDOConnectionWrapper() which will return a
SDOConnectionWrapper. We decided not to copy this code from the method
in ListNews.java, because the generated code uses a utility class called
com.ibm.websphere.sdo.access.connections.ConnectionManager which is
not in the classpath for SDOListNewsDAO.java. The original method also
uses a hard-coded connection name where we prefer to use connection
details from our app.properties file. Our Sal404 example application already
implements a utility class called DatabaseConnectionFactory that can make a
database connection using parameters from app.properties. Example 8-5
shows our completed getSDOConnectionWrapper() method.

Example 8-5 getSDOConnectionWrapper() method

protected ConnectionWrapper getSDOConnectionWrapper()
 throws MediatorException, ApplicationException
 {
 logger.info("Entry: getSDOConnectionWrapper");
 if (SDOConnectionWrapper == null)
 {
 logger.info("getSDOConnectionWrapper getting new connection");
 DatabaseConnectionFactory factory = new

DatabaseConnectionFactory();
 Connection con;
 con = factory.getConnection();
 logger.info("getSDOConnectionWrapper new connection obtained");
 SDOConnectionWrapper = ConnectionWrapperFactoryImpl.soleInstance
 .createConnectionWrapper(con);
 logger.info("getSDOConnectionWrapper Wrapper obtained");
 }
 return SDOConnectionWrapper;
 }

8. Create a mediator of type JDBCMediator by implementing a
getListNewsMediator(). The code we used is very similar to that generated for
ListNews.java, except that we access the listNews.xml file using
getResourceInputStream. See Example 8-6 on page 302 for the complete
getListNewsMediator() method.
 Chapter 8. Service Data Objects 301

Example 8-6 getListNewsMediator() method

public JDBCMediator getListNewsMediator() throws InvalidMetadataException,
 FileNotFoundException, IOException, MediatorException,
 ApplicationException
 {
 logger.info("Entry: getListNewsMediator");
 if (listNewsMediator == null)
 {

 logger.info("Creating new ListNewsMediator");
 listNewsMediator = JDBCMediatorFactoryImpl.soleInstance
 .createMediator(
 getResourceInputStream(listNews_metadataFileName),
 getSDOConnectionWrapper());
 logger.info("Created new ListNewsMediator");

 }
 return listNewsMediator;
 }

9. Next we need to retrieve the data graph from the mediator:

graph = getListNewsMediator().getGraph();

Next, get the list from the graph:

listNews = graph.getList(0);

10.The list contains DataObjects, but our sample application expects to use
NewsItemDTOs so we next write code to iterate through the list and create a
NewsItemDTO from each DataObject. We combined the code required for
steps 9 and 10 into a single method called buildNewsList(). Example 8-7
shows the completed buildNewsList() method.

Example 8-7 buildNewsList() method

private Vector buildNewsList() throws InvalidMetadataException,
 FileNotFoundException, MediatorException, IOException,
 ApplicationException
 {
 logger.info("Entry: buildNewsList");
 Vector theList = new Vector();
 DataObject graph;

 graph = getListNewsMediator().getGraph();
 listNews = graph.getList(0);
 for (Iterator iter = listNews.iterator(); iter.hasNext();)
302 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 {
 DataObject element = (DataObject) iter.next();
 NewsItemDTO item = new NewsItemDTO();
 item.setAuthor(element.getString("NEWS_ITM_AUTHOR"));
 item.setBody(element.getString("NEWS_ITM_BODY"));
 item.setDate(element.getDate("NEWS_ITM_DATE"));
 item.setTitle(element.getString("NEWS_ITM_TITLE"));
 item.setId(element.getString("NEWS_ITM_ID"));
 theList.addElement(item);
 }

 return theList;

 }

11.The buildNewsList() is called from the public method listNewsItems() in
our SDOListNewsDAO. See Example 8-8 for the code in the listNewsItems()
method.

Example 8-8 istNewsItems() method

public Vector listNewsItems() throws ApplicationException
 {
 Vector allNews = new Vector();
 try
 {
 allNews = this.buildNewsList();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 logger.error(getClass().getName() + " listNewsItems: " +
e.getMessage());

 ApplicationException ae = new ApplicationException();
 ae.setStrutsMessage("news.error.listFailed");
 throw ae;
 }

 return allNews;
 }

12.After competing the SDOListNewsDAO class, we altered the NewsManager
class to call the SDO list news DAO when the newsItemBackend=SDO
property is set in our application.properties file. To do this, we altered the
 Chapter 8. Service Data Objects 303

viewNewsItem() method in NewsManager to test whether to use JDBC or
SDO for the data access. See Example 8-9.

Example 8-9 viewNewsItem() method

public Vector viewNewsItem() throws ApplicationException
 {
 logger.info("ENTRY: viewNewsItem");
 Vector vectorOfNewsItem = new Vector();
 if (useJDBC)
 vectorOfNewsItem = listNewsItemsJDBC();

 if (useSDO)
 vectorOfNewsItem = listNewsItemsSDO();

 return vectorOfNewsItem;
 }

13.We then defined a listNewsItemsSDO() method in NewsManager that calls
the method listNewsItems() in SDOListNewsDAO. See Example 8-10.

Example 8-10 listNewsItemsSDO() method

private Vector listNewsItemsSDO() throws ApplicationException
 {
 logger.info("Entry: listNewsItemsSDO");
 // Vector for all news items
 Vector vectorOfNewsItem = new Vector();

 //Create the DAO object
 SDOListNewsDAO newsItemDAO = new SDOListNewsDAO();
 vectorOfNewsItem = newsItemDAO.listNewsItems();
 logger.info("Exit: listNewsItemsSDO");
 return vectorOfNewsItem;

 }

Note: We have put this test as a method in the NewsManager class
because it allows us to progressively move from JDBC to SDO and to mix
both types of access. We do not suggest that you follow this approach in
production systems where it is likely that you will do all your news data
access one way or the other.
304 WebSphere Application Server - Express V6 Developers Guide and Development Examples

14.This completes the code needed to list news items using SDO. You can test
this by making sure that the newsItemBackend=SDO property is set in your
application.properties file and then using the news functions of the Sal404
sample application.

Modifying news using SDO
In this section, we use SDO to modify a news item. The code we used is very
similar to that used for listing news items and we can also copy code from the
generated ModifyNewsItem.java from the pagecode.newsJSF package in the
SAL404RealtyWeb project. The steps to take are:

1. Copy the XML database definition files newsItem.xml from the
SAL404RealtyWeb project folder WebContent\WEB-INF\wdo to the
SAL404RealtyJava project.

2. Change the newsItem.xml file so that the filter argument does not use a
parameter from the request scope.

Change:

<filter predicate="(NEWS_ITM_ID = ?)">
 <filterArguments name="requestScopenewsId" type="4"/>
</filter>

To:

<filter predicate="(NEWS_ITM_ID = ?)">
 <filterArguments name="newsId" type="4"/>
 </filter>

3. . Example 8-11 shows the modified XML file.

Example 8-11 newsItem.xml

<?xml version="1.0" encoding="UTF-8"?>
<com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.websphere.sdo.mediator.jdbc.metadata="http:///com/ibm/websphere/s
do/mediator/jdbc/metadata.ecore" rootTable="//@tables.0">
 <tables schemaName="DB2ADMIN" name="NEWS_ITM">
 <primaryKey columns="//@tables.0/@columns.0"/>
 <columns name="NEWS_ITM_ID" type="4"/>
 <columns name="NEWS_ITM_TITLE" type="4" nullable="true"/>
 <columns name="NEWS_ITM_DATE" type="10" nullable="true"/>
 <columns name="NEWS_ITM_AUTHOR" type="4" nullable="true"/>
 <columns name="NEWS_ITM_BODY" type="4" nullable="true"/>
 Chapter 8. Service Data Objects 305

 <filter predicate="(NEWS_ITM_ID = ?)">
 <filterArguments name="newsId" type="4"/>
 </filter>
 </tables>
</com.ibm.websphere.sdo.mediator.jdbc.metadata:Metadata>

4. Create a new Java class called SDOModifyNewsDAO in the
com.ibm.itso.sal404.news.dao package of the SAL404RealtyJava package.

5. Set up variables for SDO objects as shown in Example 8-12.

Example 8-12 SDO variables for SDOModifyNewsDAO

final String parameter = "newsId";

 private DataObject newsItem;

 protected DataObject newsParameters;

 protected JDBCMediator newsMediator;

 private ConnectionWrapper SDOConnectionWrapper;

 private static final String modifyNews_metadataFileName = "/newsItem.xml";

6. Write a method called getSDOConnectionWrapper() which will return a
SDOConnectionWrapper. This can be copied from SDOListNewsDAO.

7. Create a mediator of type JDBCMediator by implementing a
getNewsMediator(). The code we used is very similar to that we wrote for
SDOListNewsDAO.

8. Create a method called FetchNewsItem(String newsId) which does the
following:

a. Creates a parameter data object that is used to select the correct news
item we want to modify.

newsParameters = getNewsMediator().getParameterDataObject();
newsParameters.set(parameter, newsId);

Tip: When we implement our new SDO based DAO to modify news we can
copy much of the code from the generated ModifyNewsItem.java from the
pagecode.newsJSF package in the SAL404RealtyWeb project. Many of
the changes we need to make are also very similar to this we did when
creating the SDOListNewsDAO.
306 WebSphere Application Server - Express V6 Developers Guide and Development Examples

b. Uses the data mediator and the parameter object to build a data graph of
news items.

graph = getNewsMediator().getGraph(newsParameters);

c. Extracts the first data object from the data graph because this will be the
news item we want to modify.

setNewsItem((DataObject) graph.getList(0).get(0));

9. Write a method called modifyNewsItem() that will apply any changes to our
data object. Example 8-13 shows the completed method.

Example 8-13 modifyNewsItem() method

private void modifyNewsItem() throws InvalidMetadataException,
FileNotFoundException, MediatorException, IOException, ApplicationException,
SQLException
 {
 getNewsMediator().applyChanges(
 getNewsItem().getDataGraph().getRootObject());
}

10.Write a method that takes data from the input NewsItemDTO and populates
the news item data object. See Example 8-14.

Example 8-14 modifyNews(NewsItemDTO tempNewsItemDTO) method

/**
 * @param tempNewsItemDTO
 */
 public void modifyNews(NewsItemDTO tempNewsItemDTO)
 {
 try
 {
 fetchNewsItem(tempNewsItemDTO.getId());
 DataObject news = getNewsItem();
 news.setString("NEWS_ITM_TITLE",tempNewsItemDTO.getTitle());
 news.setString("NEWS_ITM_AUTHOR",tempNewsItemDTO.getAuthor());
 news.setString("NEWS_ITM_BODY",tempNewsItemDTO.getBody());
 news.setDate("NEWS_ITM_DATE",tempNewsItemDTO.getDate());
 setNewsItem(news);
 modifyNewsItem();

 } catch (InvalidMetadataException e)
 {
 // TODO Auto-generated catch block
 Chapter 8. Service Data Objects 307

 e.printStackTrace();
 } catch (FileNotFoundException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (MediatorException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ApplicationException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (SQLException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

11.After competing the SDOModifyNewsDAO class, alter the NewsManager
class to call the SDO modify news DAO when the newsItemBackend=SDO
property is set in our application.properties file.

To do this we altered the modifyNewsItem(NewsItemDTO
tempNewsItemDTO) method in NewsManager to test whether to use JDBC or
SDO for the data access. See Example 8-15.

Example 8-15 modifyNewsItem(NewsItemDTO tempNewsItemDTO) method

public void modifyNewsItem(NewsItemDTO tempNewsItemDTO)
 throws ApplicationException
 {
 logger.info("ENTRY: modifyNewsItem");
 if (useJDBC)
 modifyNewsItemJDBC(tempNewsItemDTO);

 if (useSDO)
 modifyNewsItemSDO(tempNewsItemDTO);
 return;
 }
308 WebSphere Application Server - Express V6 Developers Guide and Development Examples

12.We then define a modifyNewsItemSDO(NewsItemDTO tempNewsItemDTO)
method in NewsManager that calls the method
modifyNews(tempNewsItemDTO) in SDOModifyNewsDAO. See
Example 8-16.

Example 8-16 modifyNewsItemsSDO(NewsItemDTO tempNewsItemDTO) method

private void modifyNewsItemSDO(NewsItemDTO tempNewsItemDTO)
 {
 logger.info("ENTRY: modifyNewsItemSDO");
 SDOModifyNews dao = new SDOModifyNews();
 dao.modifyNews(tempNewsItemDTO);

 }

13.This completes the code needed to modify news items using SDO. You can
test this modification by making sure that the newsItemBackend=SDO
property is set in your application.properties file and then using the news
functions of the Sal404 sample application.
 Chapter 8. Service Data Objects 309

310 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 9. Enterprise JavaBeans

This chapter describes the reasons to consider using Enterprise JavaBeans
(EJB) and then works through the process of creating and referencing an EJB.

The use of EJBs in applications has been described and debated extensively in
print and on the Internet. While references to this documentation are provided in
this chapter, the goal is to provide a clear, presentation and understandable
motive for using EJBs.

9

© Copyright IBM Corp. 2005. All rights reserved. 311

9.1 Why use Enterprise JavaBeans?
The Sal301 sample application presented in WebSphere Application Server -
Express: A Development Example for New Developers, SG24-6301 is quite
simple and demonstrates quite well what can be accomplished with a Web
container. A Web container processes JavaServer Pages(JSP), manages users
HTTP sessions, and provides a variety of mechanisms for interacting with
back-end systems. Basically, a Web container in and of itself provides all of the
infrastructure required for a three-tier architecture: presentation, business logic
and persistence layers.

What more do you need?

The limitations of the Web container become apparent in large and complex
systems. The HTTP session tends to grow very large, becoming a resource
consumption problem when a large number of users access the system. There
also tends to be substantial duplication of data in the HTTP sessions.

The benefits of using EJBs include better scalability and layering of applications.
The Web container becomes associated with only the presentation layer, and the
J2EE container contains the business logic and persistence layers.

9.2 The EJB architecture
This section provides a brief overview of the key features of the Enterprise
JavaBean (EJB) architecture. You can read a more detailed summary in the
redbook Rational Application Developer V6 Programming Guide, SG24-6449.

EJB is an architecture for server-centric, component-based, distributed
object-oriented business applications written in the Java programming language.

The EJB architecture depicted in Figure 9-1 on page 313 reduces the complexity
of developing business components by providing automatic, or nonprogrammatic,
support for system level services, thus freeing developers to concentrate on the
development of business logic.

Important: When generating EJBs, it is important to first create a new source
folder in the EJB project. If you do not create the new source folder first, then
your only option available for creating the source folder in the wizards is
ejbModule. This is the default EJB deployment source folder. This folder is not
shared with source code repositories and is meant to contain only deployment
artifacts.
312 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-1 EJB architecture overview

In the following sections we briefly explain each of the EJB architecture elements
depicted in:

� EJB server
� EJB container
� EJB components

9.2.1 EJB server
An EJB server is the part of an application server that hosts EJB containers. It is
sometimes referred to as an Enterprise Java Server (EJS).

The EJB server provides the implementation for the common services available
to all EJBs. The EJB server’s responsibility is to hide the complexities of these
services from the component requiring them. The EJB specification outlines eight
services that must be provided by an EJB server:

� Naming
� Transaction
� Security
� Persistence
� Concurrency

Java Virtual Machine

EJB Server

Container

Local
client

Remote
client

EJB
Home

EJB
Local
Home

EJB
Local
Object

EISs

EJB Component

Remote View

Local View

Web
Service
client

EJB
Object

Service

Endpoint

Web Service View

Available for Stateless
Session Beans only
 Chapter 9. Enterprise JavaBeans 313

� Life cycle
� Messaging
� Timer

9.2.2 EJB container
The EJB container functions as a runtime environment for enterprise beans by
managing and applying the primary services that are needed for bean
management at runtime. In addition to being an intermediary to the services
provided by the EJB server, the EJB container also provides for EJB instance life
cycle management and EJB instance identification. EJB containers create bean
instances, manage pools of instances, and destroy them.

Containers are transparent to the client in that there is no client API to manipulate
the container, and there is no way for a client to tell in which container an
enterprise bean is deployed.

One of the container’s primary responsibilities is to provide the means for remote
clients to access components inside them. Remote accessibility enables remote
invocation of a native component by converting it into a network component. EJB
containers use the Java RMI interfaces to specify remote accessibility to clients
of the EJBs.

The responsibilities that an EJB container must satisfy can be defined in terms of
the primary services. Specific EJB container responsibilities are as follows:

� Naming
� Transaction
� Security
� Persistence
� Concurrency
� Life cycle
� Messaging
� Timer

9.2.3 EJB components
EJB components run inside an EJB container, their runtime environment. The
container offers life-cycle services to these components, and provides them with
an interface to the EJB server. It also manages the connections to the Enterprise
Information Systems (EIS), including databases and existing systems.
314 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Client views
For client objects to send messages to an EJB component, the component must
provide a view. A view is a client interface to the bean, and can be local or
remote:

� A local view can be used only by local clients to access the EJB. Clients in
this case means that they reside in the same JVM as the server component.

� With a remote view, any client, possibly distributed, can access the
component.

The motivation for local interfaces is that remote calls are more expensive than
local calls. Which one to use is influenced by how the bean itself is to be used by
its clients because local and remote depict the clients’ view of the bean. An EJB
client might be a remote client, such as a servlet running on another process, or
might be a local client, such as another EJB in the same container.

EJB types
There are three main types of EJBs: entity beans, session beans, and
message-driven beans (see Figure 9-2).

Figure 9-2 EJB types

� Entity beans are modeled to represent business or domain-specific concepts,
and are typically the nouns of your system, such as customer and account.
Entity beans are persistent. They maintain their internal state (attribute
values) between invocations and across server restarts. Because of their
persistent nature, entity beans usually represent data stored in a database.

Stateless StatefulBMPCMP

Synchronous Asynchronous

SessionEntity

EJB

Message-Driven
 Chapter 9. Enterprise JavaBeans 315

� Session beans are modeled to represent a task or workflow of a system, and
to provide coordination of those activities. A session bean is commonly used
to implement the facade of EJB modules. Although some session beans
might maintain state data, this data is not persistent; it is just conversational.

Session beans can either be stateless or stateful. Stateless session beans are
beans which maintain no conversational state, and are pooled by the
container to be reused. Stateful session beans are beans that keep track of
the conversational state with a specific client. Thus, they cannot be shared
among clients.

� Like session beans, message-driven beans (MDB) can also be modeled to
represent tasks. However, they are invoked by the receipt of asynchronous
messages, instead of synchronous ones. The bean either listens for or
subscribes to messages that it is to receive.

Entity and session beans are accessed synchronously through a remote or local
EJB interface method invocation. This is referred to as synchronous invocation.
When a client makes an invocation request, it will be blocked, waiting for the
return. Clients of EJBs invoke methods on session and entity beans. An EJB
client can be remote (servlet), or local (another EJB within the same JVM).

Message-driven beans are not accessible through remote or a local interfaces.
The only way for an EJB client to communicate with a message-driven bean is by
sending a JMS message. This is an example of asynchronous communication.
The client does not invoke the method on the bean directly, but rather uses JMS
constructs to send a message. The container delegates the message to a
suitable message-driven bean instance to handle the invocation. EJBs of any
type can also be accessed asynchronously by means of a timer event, started by
the EJB Timer Service.

9.2.4 Using stateless session EJBs
Our Sal404 sample application relies heavily on reference data. This includes:

� Property types
� Property statuses
� Country codes
� User roles

WebSphere Application Server - Express V5 did not provide an EJB container.
Therefore, all reference data for the Sal301 sample application was stored in the
HTTP session. This leads to large session sizes when a large amount of
reference data is used. A common solution to this problem is to use a singleton
to manage reference data. A singleton is a class that can be instantiated only
once and cannot be an interface. The use of singletons however, generally
results in a new set of problems to be solved. These include access concurrency
316 WebSphere Application Server - Express V6 Developers Guide and Development Examples

control and management. It would certainly be undesirable to have to restart the
Web container in order to refresh reference data.

An EJB container provides for pooling, caching, access control and life cycle
management for EJBs. With the pooling and caching provided by the container, a
small pool of stateless session EJBs can service a large number of clients.

The Rational Application Developer tooling make the creation of EJBs very
simple. In order to create the reference data EJBs, we simply extend an existing
class and expose the reference data functionality with an EJB.

The ReferenceDataHelper is a plain old Java object (POJO) that uses our
application DAOs application to query the database.

Creating the stateless session EJB
To create an EJB that will handle our application reference data, follow these
steps:

1. Choose File → New → Other, and select EJB → Enterprise Bean as shown
in Figure 9-3. Click Next.

Figure 9-3 Getting started
 Chapter 9. Enterprise JavaBeans 317

2. On the next page of the wizard make sure that Session bean is selected (the
default), that the EJB project name is correct, and enter a name for the new
EJB. See Figure 9-4 for an example.

Figure 9-4 Enter bean type

3. Choose the client view for your new EJB. See Figure 9-5 on page 319. Select
Bean as the transaction type. The default transaction type allows the J2EE
container to manage transactions, but the DAOs in our application explicitly
set auto commit on the JDBC database connection. This means that the EJB
container cannot manage the transaction. The bean must do it. Here, this is of
little concern because the bean only performs database reads.

The default behavior for the wizard is to create only the remote client view.
We want to also create the local client view. Both client views will be created,
although the application will only use the local client view. Using the local
client view, the application can use pass-by-reference for data transfer. A
remote client view would need to serialize and deserialize the reference data
lists.

Because the application is not intended to be deployed to cluster
environments, use of the local client view is preferred. Even in the case of
clustered environments, each node in the cluster would have a reference data
system. There is no reason to transport reference data over a network linking
the nodes in the cluster.
318 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-5 Chose client views

4. Select the bean superclass as shown in Figure 9-6 on page 320. We are
extending the ReferenceDataHelper class.
 Chapter 9. Enterprise JavaBeans 319

Figure 9-6 Select bean superclass

5. Place the visualization diagram in the default.dnx and click Finish. See
Figure 9-7 on page 321.
320 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-7 Place the visualization in the default.dnx

6. Navigate to the newly created ReferenceDataBean in the SAL404RealtyEJB
project and open the ReferenceDataBean.java file. See Figure 9-8 on
page 322. Right-click in the Java editor and choose Source →
Override/Implement Methods. The newly generated code will be inserted at
the cursor, so place the cursor at the end of the class.
 Chapter 9. Enterprise JavaBeans 321

Figure 9-8 ReferenceDataBean

7. Select all three methods to implement and click OK, as in Figure 9-9 on
page 323.
322 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-9 Override methods

8. Promote the new methods to the local and remote interfaces as shown in
Figure 9-10 on page 324.
 Chapter 9. Enterprise JavaBeans 323

Figure 9-10 Promote the new methods to the local and remote interfaces

This completes the creation of the reference data EJB.

As methods are added to the ReferenceDataHelper (for new reference data
types), repeat the process of overriding the methods in the ReferenceDataBean
and promoting them to the EJB local and remote interfaces. If there are errors
from the process, these can be cleared by right-clicking the EJB deployment
descriptor and selecting Deploy.

As well as being relatively simple, this process has several advantages. In this
case, the ReferenceDataHelper is a plain old Java object (POJO). It can be
tested as a simple Java class. Any new methods can simply be added to the EJB
interface. Note also that everything in the EJB project is generated code. The
Java class that has the functionality is in a Java project. This makes project
organization simpler and saves developers from having to look at all of the
generated code if they are not interested in it.

One other consequence is that the deployment code will have warnings about
unused imports. It is preferable to have no warnings in the code.
324 WebSphere Application Server - Express V6 Developers Guide and Development Examples

9. To hide the warnings in the EJB project, launch the project properties dialog
box and set the Unused imports property to Ignore. See Figure 9-11.

Figure 9-11 Hide warnings in the EJB project

The Java compiler settings are on a project-by-project basis. Because the POJO
is in a Java project, the warnings for unused imports can be left on in that project.

Exposing the EJB to the sample application
In order to expose the reference data EJB functionality to the Sal404 application,
we will use our standard layered design to create a new manager. The steps are:

1. Create a new ReferenceDataManager class in the
com.ibm.itso.sal404.referencedata package of the SAL404RealtyControl
Java project.

2. Open the new class in the Java editor and from the snippets view, select the
EJB folder and then choose call a Session bean service method. See
Figure 9-12 on page 326.
 Chapter 9. Enterprise JavaBeans 325

Figure 9-12 Select the EJB snippets

3. Select the ReferenceData EJB as shown in Figure 9-13 and click Next.

Figure 9-13 Select the EJB

4. Select the EJB reference ejb/ReferenceData as shown in Figure 9-14 on
page 327 and click Next.
326 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-14 Select the EJB reference

5. Select the getPropertyTypes() method and click Finish, as shown in
Figure 9-15.

Figure 9-15 Select the method

6. The snippet that is placed in the code needs to be placed into a method.
Repeat the snippet wizard for the remaining methods in the reference data
EJB. The completed code is shown in Example 9-1.

Example 9-1 EJB references in the ReferenceDataManager

public ArrayList getPropertyStatus() {
 ReferenceDataLocal aReferenceDataLocal = createReferenceDataLocal();
 ArrayList anArrayList = null;
 try {
 anArrayList = aReferenceDataLocal.getPropertyStatus();
 } catch (ApplicationException ex) {
 ex.printStackTrace();
 }
 Chapter 9. Enterprise JavaBeans 327

 return anArrayList;
 }

 public ArrayList getPropertyTypes() {
 ReferenceDataLocal aReferenceDataLocal = createReferenceDataLocal();
 ArrayList anArrayList = null;
 try {
 anArrayList = aReferenceDataLocal.getPropertyTypes();
 } catch (ApplicationException ex) {
 ex.printStackTrace();
 }
 return anArrayList;
 }

 public ArrayList getCountryCode() {
 ReferenceDataLocal aReferenceDataLocal = createReferenceDataLocal();
 ArrayList anArrayList = null;
 try {
 anArrayList = aReferenceDataLocal.getCountryCode();
 } catch (ApplicationException ex) {
 ex.printStackTrace();
 }
 return anArrayList;
 }

 public ArrayList getUserRoles() {
 ReferenceDataLocal aReferenceDataLocal = createReferenceDataLocal();
 ArrayList anArrayList = null;
 try {
 anArrayList = aReferenceDataLocal.getUserRoles();
 } catch (ApplicationException ex) {
 ex.printStackTrace();
 }
 return anArrayList;
 }

7. The serviceLocatorMgr.jar needed for the createReferenceDataLocal()
method is automatically added to the EAR as a utility jar. The manifest
classpath for the EJB project is also automatically updated.

8. The final step is to tell the Web project that the EJB exists and what its JNDI
name is by adding a reference in the Web projects deployment descriptor.
See Figure 9-16 on page 329.
328 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-16 An EJB reference in the Web project deployment descriptor

9. The property management JSPs and the user management JSPs were then
updated to use the new reference data system. A code snippet for using
Struts tags for combo boxes is show in Example 9-2. This snippet is from the
searchPropertiesByCriteria.jsp.

Example 9-2 Struts tags for combo boxes using reference data

<html:select property="propertyTypeId">
<html:option value="0">- select -</html:option>
<html:optionsCollection value="id" label="description"

name="referenceSessionData"
property="propertyTypes" />
</html:select>

9.2.5 Create a database connection
As a prerequisite to creating an entity EJB that accesses our database, we need
to create a database connection in Rational Application Developer. An example
of how to do this is as follows:
 Chapter 9. Enterprise JavaBeans 329

1. Switch to the Data perspective and right-click anywhere in the Database
Explorer view. Choose New Connection as shown in Figure 9-17.

Figure 9-17 Create new database connection

2. Enter a connection name and check Choose a DB2 alias. Click Next. See
Figure 9-18 on page 331 for an example.
330 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-18 Provide connection details

3. Select the SAL4004R alias and enter user information. We want to enter
db2admin as our user ID and provide the correct password. See Figure 9-19
on page 332.
 Chapter 9. Enterprise JavaBeans 331

Figure 9-19 Choose alias and provide user details

4. Click Test Connection. A dialog box similar to that shown in Figure 9-20
should be displayed.

Figure 9-20 test the database connection

5. Click OK to close the test connection dialog box.
332 WebSphere Application Server - Express V6 Developers Guide and Development Examples

6. Click Finish to complete the database connection. You should be prompted
on whether you want to copy database metadata to a project folder. See
Figure 9-21 for an example.

Figure 9-21 Copy database metadata to a project folder

7. Click Yes to copy the database metadata.

8. Click Browse and then select to copy the metadata to the SAL404RealtyEJB
folder as shown in Figure 9-22.

Figure 9-22 Select folder for metadata

9. Select Use default schema folder for EJB projects and click Finish as
shown in Figure 9-23 on page 334.
 Chapter 9. Enterprise JavaBeans 333

Figure 9-23 Finish connection creation

10.Click Yes if you are asked to confirm the creation of a new folder. See
Figure 9-24.

Figure 9-24 Confirm folder creation

11.Figure 9-25 on page 335 shows the new connection and the metadata that
have been imported to our EJB project.
334 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-25 New database connection

9.2.6 Entity beans
Entity beans relate to a record in the underlying datastore. This is usually a
database. The reference data implementation could have been done using entity
beans. While this is true, asking the EJB container to create, for example, an
entity bean for every row of the country codes would lead to performance issues
and unnecessary resource consumption.
 Chapter 9. Enterprise JavaBeans 335

Instead, we will examine using an entity EJB to manage news items. Entity
beans are located with finder methods. Our example will use finders that return a
single entry.

The process we demonstrate is this section is known as bottom up mapping.
This maps an existing database table into an entity EJB. The other two methods
to create EJBs are known as top down, where a database is created for an
existing EJB and meet in the middle.

1. To create the EJB from an existing table, a connection to the database must
exist (and the meta data for the database will need to have been imported).
Figure 9-26 shows that we have created a database connection for the
SAL404R database using the method we described in 9.2.5, “Create a
database connection” on page 329. For further details on how to create and
manage database connections, see the Rational Application Developer V6
Programming Guide, SG24-6449. Right-click the NEWS_ITM table and
choose Create EJBs from Tables.

Figure 9-26 Select a table

2. Select the SAL404RealtyEJB project as shown in Figure 9-27 on page 337.
Click Next.
336 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-27 Select EJB project

3. Enter a package name for the generated EJB code and a prefix. We used
com.ibm.itso.sal404. See Figure 9-28 on page 338. Then click Finish.
 Chapter 9. Enterprise JavaBeans 337

Figure 9-28 Provide meaningful package names

This action creates and entity bean for the news item table. The home interface
created is quite simple. It has only two methods, create() and
findByPrimaryKey().

Creating a news item requires that the EJB is provided with the primary key for
the new item entry. Many business types have a natural and obvious primary
key. An automobile has a unique vehicle registration number, for example.
However it is also quite common for business types to have no obvious unique
identifier. This is the case with the news items.

Several strategies exist for generating the primary key in this circumstance. A
popular, quick solution is to have a database table that has an autoincrement
column that can return a unique ID. This method has a couple of weaknesses. It
has problems with portability because it works differently depending on the
underlying database. It has scalability problems because every create will lock
the table.

Another approach is to have a globally unique ID (GUID) generation system that
can vend the IDs. Several GUID generation strategies are commonly discussed
338 WebSphere Application Server - Express V6 Developers Guide and Development Examples

on the Internet, and GUID generation will be formalized in upcoming J2EE
specifications. Currently however, it is the responsibility of the developer to
implement GUI generation.

The GUID generator used in our sample application is for demonstration
purposes only and is not intended to be used in production systems. We
recommend that you use a proven and reliable GUID generator for your
production systems. Some Web references to visit when deciding on what GUID
generator to use include:

� Spring globally unique identifier generator

http://static.springframework.org/spring-webflow/docs/pr3/api/org/springfra
mework/util/RandomGuid.html

� ActiveScript - J-GUID

http://www.activescript.co.uk/jguid.html

Our sample implementation provides the KeyGenerator class. This class can be
used as a simple Java class, or can be wrapped as a stateless session EJB. We
created a stateless session bean for this class by following the same steps listed
in 9.2.4, “Using stateless session EJBs” on page 316 and also use it as a simple
Java class.

To test our news item entity EJB, we can use the Universal Test Client in the
Rational Software Development Platform. The steps are:

1. From the Project Explorer of the J2EE Perspective, right-click EJB
Projects → SAL404RealtyEJB → Deployment Descriptor → Entity
Beans → News_itm and select Run → Run on Server.

2. When the Server Selection dialog box appears, select WebSphere
Application Server v6.0 and click Finish.

The server will be started and the EJB project will be deployed, if necessary. .

3. The Universal Test Client Welcome page appears, as shown in Figure 9-29
on page 340.

Tip: The default URL of the test client is http://localhost:9080/UTC/, so
you can also access it through an external browser. If you want to access it
from another machine, just substitute localhost with the hostname or IP
address of the developer machine.
 Chapter 9. Enterprise JavaBeans 339

http://static.springframework.org/spring-webflow/docs/pr3/api/org/springframework/util/RandomGuid.html
http://www.activescript.co.uk/jguid.html

Figure 9-29 Testing an EJB with the Universal Test Client

4. Expand EJB Beans → SAL404News_itmLocal →
SAL404News_itmLocalHome → SAL404News_itmLocal create(String).
See Figure 9-30 on page 341 for an example.
340 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-30 Test EJB create method

5. The create(String) method creates a new instance of the News_itm EJB with
a unique key set to the entered String. Enter AKeyString and click Invoke.
See Figure 9-31 on page 342 for an example.
 Chapter 9. Enterprise JavaBeans 341

Figure 9-31 Invoke the create method

6. A new EJB instance is created so that you can work with the object as shown
in Figure 9-32 on page 343.
342 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-32 EJB created

7. Click Work with Object and the EJB instance is loaded under the EJB Beans
heading. The Universal Test Client displays a list of available methods for the
EJB, as shown in Figure 9-33 on page 344.
 Chapter 9. Enterprise JavaBeans 343

Figure 9-33 EJB method testing in the Universal Test Client

8. You can select a method, provide input parameters, and click Invoke to
execute that method. Figure 9-34 on page 345 shows an example where we
selected the setNews_itm_date(Date) method. In this case the Date
parameter defaults to the current date so we do not need to change this.
344 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-34 Test the setNews_itm_date(Date) method

9. Figure 9-35 on page 346 shows the results of a successful test of the
setNews_itm_date(Date) method.
 Chapter 9. Enterprise JavaBeans 345

Figure 9-35 Results of testing the setNews_itm_date(Date) method

10.Figure 9-36 on page 347 shows the results of a successful test of the
setNews_itm_author(String) method.
346 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-36 Results of testing the setNews_itm_author(String) method

11.Figure 9-37 on page 348 shows the results of a successful test of the
setNews_itm_body(String) method.
 Chapter 9. Enterprise JavaBeans 347

Figure 9-37 Results of testing the setNews_itm_body(String) method

12.Figure 9-38 on page 349 shows the results of a successful test of the
setNews_itm_title(String) method.
348 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-38 Results of testing the setNews_itm_title(String) method

Using the news item entity bean with Sal404
Now that we have successfully tested the News_itm entity EJB we can modify
our Sal404 application so that data access to the news items is done using the
EJB. We take a similar approach to that described in 8.5.2, “Implementing
SDO-based data access” on page 298 in that we alter the manager to check if
we should use EJB for our data access. This allows us to mix data access using
EJB, SDO, and JDBC based on settings in our app.properties file.

Adding news with an entity EJB
To use the News_itm entity bean to add news items, follow these steps we used:
 Chapter 9. Enterprise JavaBeans 349

1. Modify the app.properties file in the SAL404RealtyJava project, setting a flag
to determine whether the News database access will use JDBC, SDO or EJB.
See Example 9-3 for the definition of the newsItemBackend flag.

Example 9-3 Modify app.properties to provide a newsItemBackend flag

Flag to determine whether to use JDBC EJB or SDO database access for news
items
Valid values are JDBC EJB and SDO
newsItemBackend=JDBC
newsItemBackend=SDO
newsItemBackend=EJB

2. Copy the existing NewsManager method addNewsItem(NewsItemDTO
tempNewsItemDTO) and rename it addNewsItemJDBC(NewsItemDTO
tempNewsItemDTO) in order to retain our JDBC access code.

3. Add a useEJB flag to the NewsManager and make sure that this is set
correctly in the NewsManager constructor by looking up the app.properties
file.

4. Altered the NewsManager method addNewsItem(NewsItemDTO
tempNewsItemDTO) to check whether we should use EJB code to add a
news item. Example 9-4 shows the code for this check.

Example 9-4 Check whether to use EJB to add news

if (useEJB)
 addNewsItemEJB(tempNewsItemDTO);
 else
 addNewsItemJDBC(tempNewsItemDTO);

5. Create a new method called addNewsItemEJB(tempNewsItemDTO).

6. Use code snippets to build EJB call code in the
addNewsItemEJB(tempNewsItemDTO) method.

7. Open the addNewsItemEJB(tempNewsItemDTO) method in the Java editor.

8. Switch to the snippets view and expand the EJB snippets heading as shown
in Figure 9-39 on page 351.

Note: In this code shown in Example 9-4 we do not check for SDO
because we have not implemented an SDO-based add of news.
350 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-39 Code snippet for EJB create

9. Double-click Call an EJB “create” method.

10.Select the News_itm EJB as shown in Figure 9-40 on page 352 and click
Next.
 Chapter 9. Enterprise JavaBeans 351

Figure 9-40 Choose a valid EJB for create

11.Select the ejb/News_itm reference as shown in Figure 9-41 on page 353 and
click Next.
352 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 9-41 Select an EJB reference

12.Accept the parameter values shown in Figure 9-42 on page 354 and click
Finish.
 Chapter 9. Enterprise JavaBeans 353

Figure 9-42 Parameter values for EJB create

13.Example 9-5 shows the generated EJB create code in the addNewsItemEJB
method

Example 9-5 EJB create code

SAL404News_itmLocal aSAL404News_itmLocal =
createSAL404News_itmLocal(news_itm_id);

14.The snippet also creates the method called SAL404News_itmLocal
createSAL404News_itmLocal(String news_itm_id).

15.Example 9-6 shows our completed addNewsItemEJB method where we pass
values from the input DTO to the created EJB.

Example 9-6 addNewsItemEJB method

public void addNewsItemEJB(NewsItemDTO tempNewsItemDTO)
 throws ApplicationException
 {
 logger.info("ENTRY: addEJBNewsItem");
 KeyGenerator keyGenerator = new KeyGenerator();
354 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 SAL404News_itmLocal ejbNewsItem =
createSAL404News_itmLocal(keyGenerator
 .getKeyString());
 ejbNewsItem.setNews_itm_author(tempNewsItemDTO.getAuthor());
 ejbNewsItem.setNews_itm_body(tempNewsItemDTO.getBody());
 java.sql.Date sqlDate = new java.sql.Date(tempNewsItemDTO.getDate()
 .getTime());
 ejbNewsItem.setNews_itm_date(sqlDate);
 ejbNewsItem.setNews_itm_title(tempNewsItemDTO.getTitle());
 logger.info("EXIT: addEJBNewsItem");

 return;
 }

Modifying news with an entity EJB
To use the News_itm entity bean to modify news items, follow these steps we
took:

1. Copy the existing NewsManager method modifyNewsItem(NewsItemDTO
tempNewsItemDTO) and rename it modifyNewsItemJDBC(NewsItemDTO
tempNewsItemDTO) in order to retain our JDBC access code.

2. Alter the NewsManager method modifyNewsItem(NewsItemDTO
tempNewsItemDTO) to check whether we should use EJB code to modify a
news item. Example 9-7 shows the code for this check.

Example 9-7 Check whether to use EJB to modify news

if (useSDO)
modifyNewsItemSDO(tempNewsItemDTO);

else if (useEJB)
modifyNewsItemEJB(tempNewsItemDTO);

else
modifyNewsItemJDBC(tempNewsItemDTO);

3. Create a new method called modifyNewsItemEJB(tempNewsItemDTO)

4. Use code snippets to build EJB find code in the
modifyNewsItemEJB(tempNewsItemDTO) method.

5. Open the modifyNewsItemEJB(tempNewsItemDTO) method in the Java
editor.

Note: In this code shown in Example 9-7, we check for both SDO and EJB
otherwise we use JDBC.
 Chapter 9. Enterprise JavaBeans 355

6. Switch to the snippets view and expand the EJB snippets heading.

7. Double-click Call an EJB “find” method.

8. Select the News_itm EJB and click Next.

9. Select the ejb/News_itm reference and click Next.

10.Accept the parameter values shown in Figure 9-43 and click Finish.

Figure 9-43 Parameter values for EJB find

11.Example 9-8 shows the generated EJB create code in the addNewsItemEJB
method.

Example 9-8 EJB find code

SAL404News_itmLocal aSAL404News_itmLocal =
find_SAL404News_itmLocalHome_findByPrimaryKey(primaryKey);

12.The snippet also creates the method called SAL404News_itmLocal
find_SAL404News_itmLocalHome_findByPrimaryKey(SAL404News_itmKey
primaryKey).

13.Example 9-9 on page 357 shows our completed modifyNewsItemEJB
method, where we pass values from the input DTO to the retrieved EJB.
356 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Example 9-9 modifyNewsItemEJB method

private void modifyNewsItemEJB(NewsItemDTO tempNewsItemDTO)
 {
 logger.info("ENTRY: modifyNewsItemEJB");
 SAL404News_itmKey primaryKey = new SAL404News_itmKey(tempNewsItemDTO
 .getId());
 SAL404News_itmLocal aSAL404News_itmLocal =
find_SAL404News_itmLocalHome_findByPrimaryKey(primaryKey);
 aSAL404News_itmLocal.setNews_itm_author(tempNewsItemDTO.getAuthor());
 aSAL404News_itmLocal.setNews_itm_body(tempNewsItemDTO.getBody());
 java.sql.Date sqlDate = new java.sql.Date(tempNewsItemDTO.getDate()
 .getTime());
 aSAL404News_itmLocal.setNews_itm_date(sqlDate);
 aSAL404News_itmLocal.setNews_itm_title(tempNewsItemDTO.getTitle());
 logger.info("EXIT: modifyNewsItemEJB");
 }

Deleting news with an entity EJB
To use the News_itm entity bean to delete news items, follow the steps we took:

1. Copy the existing NewsManager method deleteNewsItem(String newsItemId)
and rename it deleteNewsItemJDBC(String newsItemId) in order to retain our
JDBC access code.

2. Alter the NewsManager method deleteNewsItem(String newsItemId) to check
whether we should use EJB code to delete a news item.

3. Create a new method called deleteNewsItemEJB(String newsItemId).
Example 9-10 shows the code for our new method. This method reuses code
and concepts from the EJB-based news modify.

Example 9-10 deleteNewsItemEJB(String newsItemId)

private void deleteNewsItemEJB(String newsItemId)
 throws ApplicationException
 {
 logger.info("ENTRY: deleteNewsItemEJB");
 SAL404News_itmKey primaryKey = new SAL404News_itmKey(newsItemId);
 SAL404News_itmLocal aSAL404News_itmLocal =
find_SAL404News_itmLocalHome_findByPrimaryKey(primaryKey);
 try
 {
 aSAL404News_itmLocal.remove();
 }
 catch (Exception e)
 {
 logger.info("removeError: " + e.getMessage());
 Chapter 9. Enterprise JavaBeans 357

 ApplicationException ae = new ApplicationException();
 ae.setStrutsMessage("error.news.delete");
 throw ae;
 }
 finally
 {
 logger.info("EXIT: deleteNewsItemEJB");
 }

 }
358 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 10. Java Message Service

In this chapter we discuss the Java Message Service and its use in WebSphere
Application Server - Express. After explaining the basic concepts of messaging
and JMS, we explain how we used JMS-based messaging in our sample
application.

We show how to configure the default messaging provider in WebSphere
Application Server - Express V6 using a simple example for sending and
receiving messages.

For a detailed discussion about messaging, the service integration bus, and the
other configuration options, WebSphere Application Server provides, refer to the
redbook WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446.

10
© Copyright IBM Corp. 2005. All rights reserved. 359

10.1 Messaging concepts
The term messaging in the generic sense describes the exchange of information
between two interested parties. In the context of computer science, messaging
loosely describes a broad range of mechanisms used to communicate data. For
instance, e-mail and Instant Messaging are two communication mechanisms that
could be described as messaging. In both cases, information is exchanged
between two parties, but the technology used to achieve the actual exchange is
different.

10.1.1 Loose coupling
These two technologies can also be used to describe one of the main benefits of
messaging, that is, loose coupling. We discuss two aspects of coupling in the
context of messaging applications: process coupling and application coupling.

Process coupling
In the case of instant messaging, both parties involved in the exchange of
messages need to be available at the same time the message is sent. Therefore,
from a process point of view, the sending and receiving applications can be said
to be tightly coupled.

In contrast, a user can send an e-mail to a recipient regardless of whether the
recipient is currently online. In this case, the sender connects to an intermediary
that is able to store the message until the recipient requests it. The sender and
receiver processes in this situation can be described as loosely coupled. The
intermediary in this situation is usually a mail server, but it can be generically
referred to as a messaging provider.

Application coupling
As well as enabling loose coupling at the process level, messaging can also
enable loose coupling at the application level. In this context, loose coupling
means that the sending application is not dependent on any interface exposed by
the receiving application. Both applications need only to be able to use the
messaging provider’s interface to enable them to connect and exchange data.
With most messaging providers today, these interfaces are reasonably stable
and, in some cases, based on open standards. These stable,
open-standards-based interfaces mean that messaging applications can focus
on the format of the data that is being exchanged, rather than the interface used
to exchange the data. For this reason, messaging applications can be described
as datacentric.
360 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Contrast this with applications that make use of Enterprise JavaBeans(EJB). EJB
client applications need to know about the interface exposed by the EJB. If this
interface changes, then the EJB client application needs to be recompiled to
prevent runtime errors. For this reason, EJBs and their clients can be described
as tightly coupled. Also, due to the dependence on the interface exposed by the
EJB, they can also be described as interface-centric applications.

10.1.2 Messaging types
The terms tight and loose coupling are not commonly used when describing
messaging applications. It is more common to refer to the type of messaging that
a given application uses. The messaging type describes the style of interaction
between the sender and receiver.

The two messaging types are:

� Synchronous messaging

Synchronous messaging involves tightly coupled processes, where the
sending and receiving applications communicate directly and both must be
available at the same time for the message exchange to occur.

� Asynchronous messaging

Asynchronous messaging involves loosely coupled processes, where the
sending and receiving applications communicate through a messaging
provider. The sending application is able to pass the data to the messaging
provider and then continue with its processing. The receiving application is
able to connect to the messaging provider, possibly at some later point in
time, to retrieve the data.

10.1.3 Destinations
With synchronous messaging, because there is no intermediary involved in the
exchange of messages, the sending application must know how to connect to the
receiving application. Once connected, there is no ambiguity with respect to the
intended destination of a message because messages can only be exchanged
between the connected parties. This is shown in Figure 10-1.

Figure 10-1 Direct communication using synchronous messaging

Sender Receiver
Message

Sender Receiver
Message
 Chapter 10. Java Message Service 361

With asynchronous messaging, however, we need to introduce the concept of a
destination. The need for a destination becomes apparent when we consider that
a single messaging provider can act as an intermediary for many applications. In
this situation, the sending and receiving applications must agree on a single
destination that will be used to exchange messages. This destination must be
specified when sending a message to or receiving a message from the
messaging provider. This is shown in Figure 10-2.

Figure 10-2 Indirect communication via a destination using asynchronous messaging

A sending application might need to exchange different messages with several
receiving applications. In this situation, it would be normal for the sending
application to use a different destination for each receiving application with which
it wants to communicate. This is shown in Figure 10-3.

Figure 10-3 Communicating with multiple receivers using asynchronous messaging

10.1.4 Messaging models
As messaging technologies have evolved, two types of asynchronous messaging
models have emerged, Point-to-Point and Publish/Subscribe. These models
describe the cardinalities for the sender-receiver relationship, how the messaging
provider distributes messages to the target destination. It is possible for an
application to make use of both messaging models. The Point-to-Point and
Publish/Subscribe messaging models are described in the following sections.

Sender Receiver
Message

Messaging Provider

Message
Destination

Sender Receiver
Message

Messaging Provider

Message
Destination

Sender

Receiver

Message 1
Messaging Provider Message 1

Destination 1

Destination 2
Message 2

Receiver

Message 2

Sender

Receiver

Message 1
Messaging Provider Message 1

Destination 1

Destination 2
Message 2

Receiver

Message 2
362 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Point-to-Point
In the Point-to-Point messaging model, the sending application must specify the
target destination for the message. To receive the message, the receiving
application must specify the same destination when it communicates with the
messaging provider. This means that there is a one-to-one mapping between the
sender and receiver. This is the same situation as depicted in Figure 10-2 on
page 362. In the Point-to-Point messaging model, the destination is usually
referred to as a queue.

Publish/Subscribe
In the Publish/Subscribe messaging model, the sending application publishes
messages to a destination. Multiple receiving applications subscribe to this
destination in order to receive a copy of any messages that are published.

When a message arrives at a destination, the messaging provider distributes a
copy of the message to all of the receiving applications who have subscribed to
the destination. This means that there is potentially a one-to-many relationship
between the sender and receiver. However, there might also be no receiving
applications subscribed to a destination when a message arrives.

Note the difference from the situation depicted in Figure 10-3 on page 362.
Figure 10-3 shows a sending application communicating with several receiving
applications using the Point-to-Point messaging model. Figure 10-4 shows the
Publish/Subscribe messaging model.

Figure 10-4 Publish/Subscribe messaging model

10.1.5 Messaging patterns
Several patterns describe the way in which messaging applications connect to,
and use, messaging providers. These patterns describe whether a messaging

Publisher

Message
Topic

Subscriber

Subscriber

Message

Message

Publisher

Message
Topic

Subscriber

Subscriber

Message

Message
 Chapter 10. Java Message Service 363

application interacts with the messaging provider as a message producer,
message consumer or both. When a messaging application acts as both message
producer and message consumer, the messaging pattern is referred to as
request-reply. These messaging patterns are discussed in more detail in the
following sections.

Message producers
In the message producer pattern, the sending application simply connects to the
messaging provider, sends a message and then disconnects from the messaging
provider. Because the sending application is not interested in what happens to
the message once the messaging provider has accepted it, this pattern is
sometimes referred to as fire and forget, although it is also commonly referred to
as a datagram. The message producer pattern is shown in Figure 10-5.

Figure 10-5 Message producer pattern

Message consumers
Message consumers operate in one of two modes:

� Pull mode

In pull mode, the receiving application connects to the messaging provider
and explicitly receives a message from the target destination. Obviously, there
is no guarantee that a message will be available on the destination at a given
point in time. The receiving application might need to retry at some later stage
to retrieve a message. For this reason, the receiving application is said to poll
the destination.

� Push mode

In push mode, the messaging provider initiates the communication with the
receiving application when a message arrives at a destination. The receiving
application must register an interest in messages that arrive at the target
destination with the messaging provider.

The message consumer pattern is shown in Figure 10-6 on page 365.

Message
Producer Message

Messaging Provider

Destination

Message
Producer Message

Messaging Provider

Destination
364 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-6 Message consumer pattern

Request-Reply
The request-reply pattern means the sending and receiving applications act as
both message producers and message consumers. The sending application
initiates the process by sending a message to a destination within the messaging
provider and then waiting for a reply. The receiving application receives the
message from the messaging provider, performs any required processing, and
then sends the reply to the messaging provider. The sending application then
receives this response from the messaging provider.

In this situation, the sending and receiving applications are tightly coupled
processes, even though they are communicating using asynchronous
messaging. For this reason, this pattern is often referred to as
pseudo-synchronous messaging.

The request-reply pattern is shown in Figure 10-7.

Figure 10-7 Request-reply pattern

Message
Consumer

Messaging Provider

Message
Destination

Message
Consumer

Messaging Provider

Message
Destination

Message
Producer

Message
Consumer

Message Messaging Provider Message
Destination

Destination

Message Message

Message
Producer

Message
Consumer

Message Messaging Provider Message
Destination

Destination

Message Message
 Chapter 10. Java Message Service 365

10.2 Java Message Service API
The Java Message Service (JMS) API is the standard Java API for accessing
enterprise messaging systems from Java programs. JMS is a standard API that
sending and receiving applications written in Java can use to access the
messaging provider create, send, receive, and read messages. We discuss
some of the important features of the JMS specification in this section, such as:

� JMS API history
� JMS providers
� JMS domains
� JMS administered objects
� JMS and JNDI
� JMS connections
� JMS sessions
� JMS messages
� JMS message producers
� JMS consumers
� JMS exception handling
� Application Server Facilities
� JMS and J2EE

For a complete discussion of JMS, refer to the Java Message Service
specification, Version 1.1. Visit this Web site to download a copy of the
specification:

http://java.sun.com/products/jms/docs.html

For further JMS information, see 10.9, “References and resources” on page 444.

10.2.1 JMS API history
IBM participated with Sun Microsystems™ and other organizations in the
specification process that led to the original JMS API published in 1999. Several
versions of the API have subsequently been released. The latest is version 1.1,
which includes many changes that resulted from a review of the API by the Java
community.

Note: The JMS API defines a vendor-independent programming interface. It
does not define how the messaging provider should be implemented, or which
communication protocol clients should use to communicate with the
messaging provider.
366 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://java.sun.com/products/jms/docs.html

Different vendors produce different JMS implementations. While they should all
be able to run the same JMS applications, implementations from different
vendors will not necessarily be able to communicate directly with each other.

10.2.2 JMS providers
JMS providers are simply messaging providers that provide a JMS API
implementation. However, this does not mean that the underlying messaging
provider is written using the Java programming language. It simply means that
the JMS provider written by a specific vendor is able to communicate with the
corresponding messaging provider. As an example, the IBM WebSphere MQ
JMS provider knows how to communicate with IBM WebSphere MQ.

10.2.3 JMS domains
The JMS API introduces the concept of JMS domains. These domains are
exactly the same concepts as the messaging models described in 10.1.4,
“Messaging models” on page 362, so no further discussion of them is necessary.

The JMS API also defines a set of domain-specific interfaces that enable client
applications to send and receive messages in a given domain. However, version
1.1 of the JMS specification introduces a set of domain-independent interfaces,
referred to as the common interfaces, in support of a unified messaging model.
The domain-specific interfaces have been retained in version 1.1 of the JMS
specification for backwards compatibility.

Today, the common interfaces are the preferred approach for implementing JMS
client applications. For this reason, the JMS code examples in this chapter all
make use of the common interfaces.

10.2.4 JMS administered objects
Administered objects encapsulate JMS provider-specific configuration
information. They are created by an administrator and are later used at runtime
by JMS clients.

The JMS specification states that the benefits of administered objects are:

� They hide provider-specific configuration details from JMS clients.

� They abstract JMS administrative information into Java objects that are easily
organized and administered from a common management console.

The JMS specification defines two types of administered objects, JMS
connection factories and JMS destinations. These are discussed in the following
sections.
 Chapter 10. Java Message Service 367

JMS connection factories
A connection factory encapsulates the configuration information that is required
to connect to a specific JMS provider. A JMS client uses a connection factory to
create a connection to that JMS provider. ConnectionFactory objects support
concurrent use, meaning they can be accessed at the same time by multiple
threads within a JMS client application.

The connection factory interfaces defined in the JMS specification are shown in
Table 10-1.

Table 10-1 JMS Connection Factory Interfaces

JMS destinations
A destination encapsulates address information for a specific JMS provider. A
JMS client uses a destination object to address a message to a specific
destination on the underlying JMS provider. Destination objects support
concurrent use, meaning they can be accessed at the same time by multiple
threads within a JMS client application.

The destination interfaces defined within the JMS specification are shown in
Table 10-2.

Table 10-2 JMS Destination Interfaces

10.2.5 JMS and JNDI
At runtime, JMS clients need a mechanism by which to obtain references to the
configured JMS administered objects. The JMS specification establishes the
convention that these references are obtained by looking them up in a name
space using the Java Naming and Directory Interface (JNDI) API.

The JMS specification does not define a naming policy that indicates where
messaging resources should be placed in a name space. If the JMS client is a
J2EE application, however, then the J2EE specification does recommend that
messaging-related resources should be placed in a JMS subcontext.

Common Interface Domain-specific Interfaces

Point-to-Point Publish/Subscribe

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Common Interface Domain-specific Interfaces

Point-to-Point Publish/Subscribe

Destination Queue Topic
368 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Administrators require additional tools to create and bind the JMS administered
objects into the JNDI name space. The JMS specification places the onus of
providing these tools on the JMS provider. The tools that are provided for this
purpose by WebSphere Application Server - Express form the WebSphere
Administrative Console. Section 10.6, “Setup JMS the environment” on page 408
gives an example of using the WebSphere Administrative Console for the
configuration of the administered object needed for the Sal404 application.

J2EE resource references and JMS
An additional consideration in this discussion is that the JMS client application
needs to know where the JMS administered object was placed within the JNDI
name space in order to locate it at run time. This requirement creates a
dependency between the JMS client code and the actual runtime topology. If the
JMS administered object is moved within the JNDI name space, the JMS client
application would need to be modified. This is obviously unacceptable.

The J2EE specification provides a mechanism to add a level of indirection
between the JMS client application and the JMS administered objects within the
JNDI name space.

The specification defines a local JNDI name space for each J2EE component.
This local JNDI name space can be accessed by performing lookups with names
that begin with java:comp/env. When a J2EE module is assembled, the
resources referenced through the local JNDI name space must be defined in the
deployment descriptor for that module.

The administrator maps these references to the real JMS administered objects in
the global JNDI name space when the application is deployed to the target
operational environment.

At run time, when the JMS client performs a lookup in its local JNDI name space,
it is redirected to the actual JMS administered object in the global name space.

Retrieving administered objects from JNDI
The code required to obtain references to a ConnectionFactory and Destination
object is shown in Example 10-1.

Example 10-1 Using JNDI to retrieve JMS administered objects

import javax.jms.*;
import javax.naming.*

// Create the JNDI initial context
InitialContext initCtx = new InitialContext();

// Get the connection factory
 Chapter 10. Java Message Service 369

ConnectionFactory connFactory
= (ConnectionFactory)initCtx.lookup(“java:comp/env/jms/myCF”);

// Get the destination used to send a message
Destination destination = (Destination)lookup(“java:comp/env/jms/myQueue”);

10.2.6 JMS connections
A JMS Connection object represents the real connection that a JMS client has to
its JMS provider. The JMS specification states that a Connection encapsulates
an open connection with a JMS provider and that it typically represents an open
TCP/IP socket between a client and a JMS provider. However, this is dependent
on the JMS provider’s implementation.

Creation of a Connection object normally results in resources being allocated
within the JMS provider, but outside of the process running the JMS client. For
this reason, care must be taken to close a Connection when it is no longer
required within the JMS client application. Invoking the close method on a
Connection object results in the close method being called on all of the objects
created from it.

The creation of the Connection object is also the point at which the JMS client
authenticates itself with the JMS provider. If no credentials are specified, then the
identity of the user under which the JMS client is running is used.

Connection objects support concurrent use.

ConnectionFactory objects are used to create instances of Connection objects.
The connection interfaces defined within the JMS specification are shown in
Table 10-3.

Table 10-3 JMS Connection Interfaces

The code required to create a Connection object is shown in Example 10-2.

Example 10-2 Creating JMS Connections

// User credentials
String userID = “jmsClient“;
String password = “password“;

// Create the connection, specifying no credentials

Common Interface Domain Specific Interfaces

Point-to-Point Publish/Subscribe

Connection QueueConnection TopicConnection
370 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Connection conn1 = connFactory.createConnection();

// Create connection, specifying credentials
Connection conn2 = connFactory.createConnection(userID, password);

10.2.7 JMS sessions
A JMS Session is used to:

� Create message producers and message consumers for a single JMS
provider. It is created from a Connection object.

� Define the scope of transactions. It can group multiple send and receive
interactions with the JMS provider into a single unit of work. However, the unit
of work will only span the interactions performed by message producers or
consumers created from this Session object. A transacted session can
complete a transaction using the commit or rollback methods of the Session
object. Once the current transaction has been completed, a new transaction
is automatically started.

Session objects do not support concurrent use. They cannot be accessed at the
same time by multiple threads within a JMS client application. If a JMS client
requires one thread to produce messages while another thread consumes them,
the JMS specification recommends that the JMS client uses separate Sessions
for each thread.

The session interfaces defined within the JMS specification are shown in
Table 10-4.

Table 10-4 JMS Session Interfaces

The code required to create a Session object is shown in Example 10-3.

Example 10-3 Creating JMS Sessions

// Create a non-transacted session
Session session = conn1.createSession(false, Session.AUTO_ACKNOWLEDGE);

Common Interface Domain-specific Interfaces

Point-to-Point Publish/Subscribe

Session QueueSession TopicSession
 Chapter 10. Java Message Service 371

10.2.8 JMS messages
The JMS Session acts as a factory for JMS Messages. The JMS specification
defines a logical format for the messages that can be sent to and received from
JMS providers. Recall that the JMS specification only defines interfaces and not
any implementation specifics, so the actual physical representation of a JMS
message is provider specific.

The elements that make up a JMS message are:

� Headers

All messages support the same set of header fields. Header fields contain
values that are used by both clients and providers to identify and route
messages.

� Properties

Each message contains a built-in facility to support application-defined
property values. Properties provide an efficient mechanism to filter
application-defined messages.

� Body

The JMS specification defines several types of message body.

The logical format of a JMS message is shown in Figure 10-8.

Figure 10-8 Logical format of a JMS Message

The JMS specification defines five Message interface children. These child
interfaces allow for various types of data to be placed into the body of the
message. The JMS message interfaces are described in Table 10-5 on
page 373.

JMS Message

Headers

Body

Properties

JMS Message

Headers

Body

Properties

JMS Message

Headers

Body

Properties
372 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Table 10-5 JMS Message interface types

Types of message selectors
A JMS message selector allows a JMS client to filter the messages on a
destination so that it only receives the messages in which it is interested. It must
be a String whose syntax is based on a subset of the SQL92 conditional
expression syntax. However, the message selector expression can only
reference JMS message headers and properties, not values that might be
contained in the message. An example of a message selector is shown in
Example 10-4.

Example 10-4 Sample message selector

JMSType='car' AND color='blue' AND weight>2500

If a message consumer specifies a message selector when receiving a message
from a destination, then only messages with headers and properties that match
the selector are delivered. If the destination is a JMS queue, then the message
remains on the queue. If the destination is a topic, then the message is never
delivered to the subscriber. The reason is, from the subscribers perspective, the
message does not exist.

For a full description of message selectors and their syntax, refer to the JMS
specification, Version 1.1. Visit this Web site to download a copy of the
specification:

http://java.sun.com/products/jms/docs.html

For broader JMS information, see 10.9, “References and resources” on
page 444.

Message Type Message Body

BytesMessage A stream of uninterpreted bytes. This message type is for literally
encoding a body to match an existing message format.

MapMessage A set of name-value pairs, where names are strings and values are
Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

ObjectMessage A message that contains a serializable Java object

StreamMessage A stream of Java primitive values. It is filled and read sequentially.

TextMessage A message containing a java.lang.String.
 Chapter 10. Java Message Service 373

http://java.sun.com/products/jms/docs.html

10.2.9 JMS message producers
The JMS Session also acts as a factory for JMS message producers. A JMS
message producer is used to send messages to a specific destination on the
JMS provider. A JMS message producer does not support concurrent use.

The target destination is specified when creating the message producer.
However, it is possible to pass a value of null when creating the message
producer. When using a message producer created in this manner, the target
destination must be specified on every invocation of the send method.

The message producer can also be used to specify certain properties of
messages that it sends such as, delivery mode, priority and time-to-live.

The message producer interfaces defined within the JMS specification are shown
in Table 10-6.

Table 10-6 JMS MessageProducer Interfaces

The code required to create and send a message is shown in Example 10-5.

Example 10-5 Creating and sending a JMS message

// Create the message producer
MessageProducer msgProducer = session.createProducer(destination);

// Create the message
TextMessage txtMsg = session.createTextMessage(“Hello World”);

// Send the message
msgProducer.send(txtMsg);

10.2.10 JMS message consumers
The JMS session also acts as factory for JMS message consumers. A JMS
client uses a message consumer to receive messages from a JMS provider
destination. A JMS message consumer does not support concurrent use.

The message consumer interfaces defined within the JMS specification are
shown in Table 10-7.

Common Interface Domain-specific Interfaces

Point-to-Point Publish/Subscribe

MessageProducer QueueSender TopicPublisher
374 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Table 10-7 JMS MessageConsumer Interfaces

Recall from the discussion in “Message consumers” on page 364, that message
consumers can operate in pull mode or push mode. The JMS specification
defines message consumers for both of these modes. The message consumers
for these are modes are discussed in the following sections.

Pull mode
A JMS client operates in pull mode simply by invoking one of the receive
methods on the MessageConsumer object. The MessageConsumer interface
exposes a variety of receive methods that enable a client to poll the destination
or wait for the next message to arrive.

The code required to receive a message using pull mode is shown in
Example 10-6.

Example 10-6 Receiving a JMS message using pull mode

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Start the connection
conn1.start();

// Attempt to receive a message
Message msg = msgConsumer.receiveNoWait();

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

// Print the contents of the message
System.out.println(txtMsg.getText());

}

Common Interface Domain-specific Interfaces

Point-to-Point Publish/Subscribe

MessageConsumer QueueReceiver TopicSubscriber
 Chapter 10. Java Message Service 375

Push mode
To implement a solution that uses push mode, the JMS client must register an
object that implements the javax.jms.MessageListener interface with the
MessageConsumer. With a message listener instance registered, the JMS
provider delivers messages as they arrive by invoking the listener’s onMessage
method.

The javax.jms.MessageListener interface is shown in Example 10-7 on
page 376.

Example 10-7 The javax.jms.MessageListener interface

package javax.jms;

public interface MessageListener
{

public void onMessage(Message message);
}

A simple class the implements the javax.jms.MessageListener interface is shown
in Example 10-8.

Example 10-8 Simple MessageListener implementation

package com.ibm.itso.jms;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;

Note: The start method must be invoked on the Connection object prior to
attempting to receive a message. A connection does not need to be started in
order to send messages, only to receive them. This enables the application to
complete all of the required configuration steps before attempting to receive a
message.

Important: A custom MessageListener can only be used in the client
container. The J2EE specification forbids the use of the JMS MessageListener
mechanism for the asynchronous receipt of messages in the EJB and Web
containers.

For the receiving of asynchronous messages, you have the concept of a
Message Driven Bean (MDB) in the J2EE specification. The MDB enables the
receiving application to listen to incoming messages asynchronously (see
10.4, “Message Driven Beans” on page 392).
376 WebSphere Application Server - Express V6 Developers Guide and Development Examples

import javax.jms.TextMessage;

public class SimpleListener implements MessageListener
{

public void onMessage(Message msg)
{

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

try
{

// Print the contents of the message
System.out.println(txtMsg.getText());

}
catch (JMSException e)
{

e.printStackTrace();
}

}
}

}

An instance of the message listener can now be registered with the JMS
message consumer by the JMS client application. Once the listener is registered,
the connection needs to be started in order for messages to be delivered to the
message listener. The code required to register a message listener with a JMS
message consumer is shown in Example 10-9.

Example 10-9 Receiving a JMS message using push mode

import com.ibm.itso.jms.SimpleListener;

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Create an instance of the message listener
SimpleListener listener = new SimpleListener();

// Register the message listener with the consumer
msgConsumer.setMessageListener(listener);

// Start the connection
conn1.start();
 Chapter 10. Java Message Service 377

10.2.11 JMS exception handling
Any runtime errors in a JMS application will result in a javax.jms.JMSException
being thrown. The JMSException class is the root class of all JMS API
exceptions.

A JMSException contains the following information:

� A provider-specific string describing the error

� A provider-specific string error code

� A reference to another exception

The JMSException is usually caused by another exception thrown in the
underlying JMS provider. The JMSException class allows JMS client
applications to access the initial exception using the getLinkedException
method. The linked exception can then be used to determine the root cause
of the problem in the JMS provider.

The implementation of JMSException does not include the embedded exception
in the output of its toString method. Therefore, it is necessary to check explicitly
for an embedded exception and print it out, as shown in Example 10-10.

Example 10-10 Handling a javax.jms.JMSException

try
{

// Code which may throw a JMSException
}
catch (JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}

Note: In the JMS Point-to-Point domain, messages remain on a destination
until they are either received by a message consumer or they expire. In the
JMS Publish/Subscribe domain, messages remain on a destination until they
have been delivered to all of the registered subscribers for the destination or
they expire. In order for a message to be retained when a subscribing
application is not available, the subscribing application must create a durable
subscription.
378 WebSphere Application Server - Express V6 Developers Guide and Development Examples

However, when using a message listener to receive messages asynchronously,
the application code cannot catch exceptions raised by failures to receive
messages. This is because the application code does not make explicit calls to
the receive methods on the message consumer.

The JMS API provides the javax.jms.ExceptionListener interface to solve this
problem. An exception listener allows a client to be notified of a problem
asynchronously. The JMS client must register an object that implements this
interface with the connection using the setExceptionListener method. With an
exception listener instance registered, the JMS provider invokes its onException
method to notify it that a problem has occurred.

The javax.jms.ExceptionListener interface is shown in Example 10-11.

Example 10-11 The javax.jms.ExceptionListener interface

package javax.jms;

public interface ExceptionListener
{

public void onException(JMSException exception);
}

A simple class implementing the javax.jms.ExceptionListener interface is shown
in Example 10-12.

Example 10-12 Simple ExceptionListener implementation

package com.ibm.itso.jms;

import javax.jms.ExceptionListener;
import javax.jms.JMSException;

public class SimpleExceptionListener implements ExceptionListener
{

public void onException(JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}
}

 Chapter 10. Java Message Service 379

10.2.12 Application Server facilities
The JMS specification defines a number of optional facilities that are intended to
be implemented by JMS providers and Application Server vendors. These
facilities extend the functionality of JMS when the JMS client executes within the
context of a J2EE container. The Application Server Facilities are concerned with
two main areas of functionality, concurrent message processing and distributed
transactions. These functions are briefly described in the following sections.

Concurrent message consumers
Recall that Session and MessageConsumer objects do not support concurrent
access from multiple threads. Such a restriction would be a huge obstacle to
implementing JMS applications within an application server environment, where
performance and resource usage are key concerns. The Application Server
Facilities define a mechanism that enable an application server to create
MessageConsumers that can process concurrently multiple incoming messages.

Distributed transactions
The JMS specification requires that a JMS provider support distributed
transactions. However, it also states that if a provider supplies this support, it
should be done with the JTA XAResource API. The Application Server Facilities
define the interfaces that an application server should implement to correctly
provide support for distributed transactions.

10.2.13 JMS and J2EE
The JMS API was included first in version 1.2 of the J2EE specification. This
specification required that the JMS API definitions be included in a J2EE product,
but that the platform was not required to include an implementation of the JMS
ConnectionFactory and Destination objects.

Subsequent versions of the J2EE specification have placed further requirements
on application server vendors. WebSphere Application Server V6.0 is fully
compliant with version 1.4 of the J2EE specification, which states the following
with regard to the JMS API:

Subsequent versions of the J2EE specification have placed further requirements
on application server vendors. WebSphere Application Server V6.0 is fully
compliant with version 1.4 of the J2EE specification, which requires that a Java
Message Service provider must be included in a J2EE product. The JMS
provider must support both JMS point-to-point and publish/ subscribe
messaging, which means that it should implement the ConnectionFactory and
Destination APIs. The JMS specification also list several optional interfaces that
380 WebSphere Application Server - Express V6 Developers Guide and Development Examples

are intended to help integration with an application server, but a J2EE product
need not implement these interfaces:

� javax.jms.ServerSession
� javax.jms.ServerSessionPool
� javax.jms.ConnectionConsumer
� all javax.jms XA interfaces

For further information about the full J2EE v1.4 specification, follow this link:

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

WebSphere Application Server V6.0 also provides full support for the Application
Server Facilities described in 10.2.12, “Application Server facilities” on page 380.

10.3 Messaging in the J2EE Connector Architecture
Prior to J2EE version 1.3, there was no architecture that specified the interface
between an application server and the resource adapter for an Enterprise
Information Systems (EIS). Consequently, application server and EIS vendors
used vendor-specific architectures to provide EIS integration. This meant that, for
each application server that an EIS vendor supported, it needed to provide a
specific resource adapter. For every resource adapter that an application server
vendor supported, it needed to extend the application server.

J2EE version 1.3 required application servers to support version 1.0 of the J2EE
Connector Architecture (JCA). The J2EE Connector Architecture defines a
standard for connecting a compliant application server to an EIS. It defines a
standard set of system-level contracts between the J2EE application server and
a resource adapter.

As a result, application servers only need to be extended once to add support for
all J2EE Connector Architecture compliant resource adapters. Conversely, EIS
vendors only need to implement one J2EE Connector Architecture compliant
resource adapter, which can then be installed on any compliant application
server.

The system contracts defined by the J2EE Connector Architecture version 1.0
are described by the specification as follows:

� Connection management

Enables an application server to pool connections to the underlying EIS and
enables application components to connect to an EIS. This leads to a
scalable application environment that can support a large number of clients
requiring access to an EIS.
 Chapter 10. Java Message Service 381

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� Transaction management

Enables an application server to use a transaction manager to manage
transactions across multiple resource managers. This contract also supports
transactions that are managed internal to an EIS resource manager without
the necessity of involving an external transaction manager.

� Security management

Provides support for a secure application environment that reduces security
threats to the EIS and protects valuable information resources managed by
the EIS.

While version 1.0 of the J2EE Connector Architecture addressed the main
requirements of both application server and EIS vendors, it left some issues
unresolved. As a result, version 1.5 of the specification was produced. It is this
version that application servers are now required to support by version 1.4 of the
J2EE specification.

The additional system contracts defined by version 1.5 of the J2EE Connector
Architecture are described by the specification as follows:

� Life cycle management

Enables an application server to manage the life cycle of a resource adapter.
This contract provides a mechanism for the application server to bootstrap a
resource adapter instance during its deployment or application server startup,
and to notify the resource adapter instance during its undeployment or during
an orderly shutdown of the application server.

� Work management

Enables a resource adapter to do work (monitor network endpoints, call
application components, etc.) by submitting Work instances to an application
server for execution. The application server dispatches threads to execute
submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, and allows an application server to efficiently pool
threads and have more control over its runtime environment. The resource
adapter can control the security context and transaction context with which
Work instances are executed.

� Transaction inflow management

Enables a resource adapter to propagate an imported transaction to an
application server. This contract also allows a resource adapter to transmit

Note: For a full description of the system contracts listed above, refer to the
J2EE Connector Architecture Version 1.0 specification. A link for this
specification is included in 10.9, “References and resources” on page 444.
382 WebSphere Application Server - Express V6 Developers Guide and Development Examples

transaction completion and crash recovery calls initiated by an EIS, and
ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

� Message inflow management

Enables a resource adapter to asynchronously deliver messages to message
endpoints residing in the application server independent of the specific
messaging style, messaging semantics, and messaging infrastructure used to
deliver messages. This contract also serves as the standard message
provider pluggability contract that allows a wide range of message providers
(Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.) to
be plugged into any J2EE compatible application server via a resource
adapter.

In the context of asynchronous messaging, we are interested in the message
inflow system contract. The sections that follow discuss the following aspects of
the message inflow system contract:

� Message endpoints
� Resource adapters
� JMS ActivationSpec JavaBean
� Administered objects

10.3.1 Message endpoints
The message inflow system contract uses the Message Driven Bean (MDB)
programming model to deliver messages asynchronously from an EIS into a
running application server. A message endpoint is simply a Message Driven
Bean application that is running inside a J2EE application server. It
asynchronously consumes messages from a message provider.

A J2EE version 1.4 compliant application server is required to support version
2.1 of the Enterprise JavaBeans™ specification. This version of the EJB
specification defines additional elements for the Message Driven Bean
deployment descriptor to support the message inflow system contract of the
J2EE Connector Architecture. These deployment descriptor elements are
discussed in more detail in 10.4.6, “Message Driven Bean activation
configuration properties” on page 401.

Note: For a full description of the system contracts listed above, please refer
to the J2EE Connector Architecture Version 1.5 specification. A link for this
specification is included in 10.9, “References and resources” on page 444.
 Chapter 10. Java Message Service 383

10.3.2 MessageEndpointFactory
The J2EE Connector Architecture requires that application server vendors
provide a MessageEndpointFactory implementation. A MessageEndpointFactory
is used by the resource adapter to obtain references to new, or unused, message
endpoint instances in order to process messages. In other words, the resource
adapter uses the MessageEndpointFactory to obtain references to Message
Driven Beans. Multiple message endpoint instances can be created for a single
message endpoint, enabling messages to be processed concurrently.

10.3.3 Resource adapters
A resource adapter is the component that maps the proprietary API exposed by
the EIS to the API defined by the J2EE Connector Architecture. Resource
adapters are also commonly referred to as connectors.

The resource adapter itself runs in the same process as the application server
and is responsible for delivering messages to the message endpoints hosted by
the application server.

Resource adapter packaging
A resource adapter is provided typically by the messaging provider or a third
party and comes packaged in a Resource Adapter Archive (RAR) file. This RAR
must be packaged using the Java archive (JAR) file format and can contain:

� Any utility classes
� Native libraries required for any platform dependencies
� Documentation
� A deployment descriptor
� Java classes that implement the J2EE Connector Architecture contracts and

any other functionality of the adapter

The only element of the RAR file that is required is the deployment descriptor.
The deployment descriptor must called ra.xml and must be placed in the
META-INF subdirectory of the RAR file.

The resource adapter is installed normally on the application server so that it is
available to several J2EE applications at runtime. However, it is possible to
package the resource adapter within the message endpoint application.

WebSphere Application Server V6.0 provides a preconfigured resource adapter
for the default messaging JMS provider. The RAR file for this resource adapter is
called sib.api.jmsra.rar and is located in the lib subdirectory of the WebSphere
installation directory.
384 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Resource adapter deployment descriptor
The resource adapter deployment descriptor contains several pieces of
information that are used by the application server and the resource adapter at
run time, such as:

� Supported message listener types

The resource adapter lists the types of message listener that it supports. The
J2EE Connector Architecture version 1.5 and the EJB version 2.1
specifications do not restrict message listeners to using the JMS API.

� ActivationSpec JavaBean

For each message listener type supported for the resource adapter, the
deployment descriptor must also specify the Java class name of the
ActivationSpec JavaBean. An ActivationSpec JavaBean instance
encapsulates the configuration information needed to setup asynchronous
message delivery to a message endpoint. Section 10.3.4, “JMS
ActivationSpec JavaBean” on page 386 discusses the ActivationSpec
JavaBean for JMS providers in more detail.

� Required configuration properties

Each ActivationSpec can also specify a list of required properties. These
required properties can be used to validate the configuration of an
ActivationSpec JavaBean instance. Example 10-13 shows the
messagelistener entry in the deployment descriptor for the default messaging
JMS provider. Notice that it supports the JMS message listener
(javax.jms.MessageListener) and that the ActivationSpec JavaBean has three
required properties; destination, destinationType and busName.

Example 10-13 J2EE Connector Architecture message listener definition

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>

javax.jms.MessageListener
</messagelistener-type>
<activationspec>

<activationspec-class>
com.ibm.ws.sib.api.jmsra.impl.JmsJcaActivationSpecImpl

</activationspec-class>
<required-config-property>

<config-property-name>destination</config-property-name>
</required-config-property>
<required-config-property>

<config-property-name>destinationType</config-property-name>
</required-config-property>
<required-config-property>
 Chapter 10. Java Message Service 385

<config-property-name>busName</config-property-name>
</required-config-property>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

� Administered Objects

The resource adapter deployment descriptor can also stipulate a set of
administered objects. For each administered object listed, the deployment
descriptor must provide the Java class name of the administered object and
the interface that it implements.

These administered objects are similar to the JMS administered objects
discussed in 10.2.4, “JMS administered objects” on page 367. In fact, for the
default messaging JMS provider in WebSphere Application Server V6.0, the
J2EE Connector Architecture administers objects that it defined to implement
the relevant JMS administered object interfaces. This is shown in
Example 10-14.

Example 10-14 J2EE Connector Architecture administered object definition

<adminobject>
<adminobject-interface>

javax.jms.Queue
</adminobject-interface>
<adminobject-class>

com.ibm.ws.sib.api.jms.impl.JmsQueueImpl
</adminobject-class>
<config-property>

<config-property-name>QueueName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>

... additional properties removed ...

<config-property>
<config-property-name>BusName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
</adminobject>

10.3.4 JMS ActivationSpec JavaBean
An ActivationSpec JavaBean instance encapsulates the configuration
information needed to setup asynchronous message delivery to a message
endpoint. The J2EE Connector Architecture recommends that JMS providers
386 WebSphere Application Server - Express V6 Developers Guide and Development Examples

include the following properties in their implementation of an ActivationSpec
JavaBean:

� destination

Recall that a JMS destination encapsulates addressing information for the
JMS provider. A JMS client explicitly specifies a destination when sending a
message to, or receiving a message from, the JMS provider. A message
endpoint needs to specify which destination the resource adapter should
monitor for incoming messages. The resource adapter is then responsible for
notifying the message endpoint when a message arrives at that destination.

The J2EE Connector Architecture does not define the format for the
destination property, but it does acknowledge that it is not always practical for
a value to be set in the deployment descriptor for a message endpoint
application. However, a value for the destination property is required when
deploying the message endpoint application. For this reason, the J2EE
Connector Architecture recommends that a JMS resource adapter defines the
destination property as a required property on the ActivationSpec JavaBean.
The resource adapter for the default messaging JMS provider within
WebSphere Application Server V6.0 does just this, as shown in
Example 10-13 on page 385.

The J2EE Connector Architecture also recommends that, if the destination
object implements the javax.jms.Destination interface, the JMS resource
adapter should provide an administered object that implements this same
interface. Once again, the resource adapter for the default messaging JMS
provider within WebSphere Application Server V6.0 does just this, as shown
in Example 10-14 on page 386.

� destinationType

The destinationType property simply indicates whether the destination is a
JMS queue or JMS topic. The valid values for this property are, therefore,
javax.jms.Queue or javax.jms.Topic. The J2EE Connector Architecture
recommends that a JMS resource adapter defines the destinationType
property as a required property on the ActivationSpec JavaBean. The
resource adapter for the default messaging JMS provider within WebSphere
Application Server V6.0 does just this, as shown in Example 10-13 on
page 385.

The following optional properties can also be provided for further customization
of the messaging behavior.

� messageSelector

The JMS ActivationSpec JavaBean can define a messageSelector property.
JMS message selectors are discussed in “Types of message selectors” on
page 373.
 Chapter 10. Java Message Service 387

� acknowledgeMode

The JMS ActivationSpec JavaBean can define an acknowledgeMode
property. This property indicates to the EJB container, how a message
received by a message endpoint should be acknowledged. Valid values for
this property are Auto-acknowledge or Dups-ok-acknowledge. If no value is
specified, Auto-acknowledge is assumed.

For a full description of message acknowledgement, see both the JMS
version 1.1 and the EJB version 2.1 specifications. Links for these
specifications are in 10.9, “References and resources” on page 444.

� subscriptionDurability

The JMS ActivationSpec JavaBean defines a subscriptionDurability property.
This property is only relevant if the message endpoint is receiving messages
from a JMS topic (the destinationType property specifies a value of
javax.jms.Topic).

As discussed in 10.2.10, “JMS message consumers” on page 374, in the JMS
Publish/Subscribe domain, in order for a message to be retained on a
destination when a subscribing application is not available, the subscribing
application must create a durable subscription. With MDB’s, it is the EJB
container that is responsible for creating subscriptions when the specified
destination is a JMS topic. This property indicates to the EJB container
whether it must create a durable subscription to the JMS topic.

The valid values for the subscriptionDurability property are either Durable or
NonDurable. If no value is specified, NonDurable is assumed.

� clientId

The JMS ActivationSpec JavaBean can stipulate a clientId property. This
property is only relevant if the message endpoint defines a durable
subscription to a JMS topic (the destinationType property specifies a value of
javax.jms.Topic and the subscriptionDurability property specifies a value of
Durable).

The JMS provider uses the clientId for durable subscriptions to uniquely
identify a message consumer. If a message endpoint defines a durable
subscription, then a value for the clientId property must be specified. A
suitable value for the clientId property would normally be specified when
deploying the message endpoint application.

� subscriptionName

The JMS ActivationSpec JavaBean can describe a subscriptionName
property. This property is only relevant if the message endpoint defines a
durable subscription to a JMS topic (the destinationType property specifies a
value of javax.jms.Topic and the subscriptionDurability property specifies a
value of Durable).
388 WebSphere Application Server - Express V6 Developers Guide and Development Examples

The JMS provider uses the subscriptionName in combination with the clientId
to uniquely identify a message consumer. If a message endpoint defines a
durable subscription, then a value for the subscriptionName property must be
specified. A suitable value for the subscriptionName property would normally
be specified when deploying the message endpoint application.

10.3.5 Message endpoint deployment
Before any messages can be delivered to a message endpoint, the message
endpoint must be associated with a destination. This task is performed during
application installation. Therefore, the responsibility of associating a Message
Driven Bean with a destination lies with the application deployer.

The application deployer creates an instance of the ActivationSpec JavaBean for
the relevant resource adapter and associates it with the message endpoint
during installation. In this way an ActivationSpec JavaBean, through its
destination property, associates a message endpoint with a destination on the
message provider. This relationship is shown in Figure 10-9 on page 389.

Figure 10-9 ActivationSpec JavaBean associating an MDB with a destination

10.3.6 Message endpoint activation
A message endpoint is activated by the application server when the message
endpoint application is started. During message endpoint activation, the

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean
 Chapter 10. Java Message Service 389

application server passes the ActivationSpec JavaBean, and a reference to the
MessageEndpointFactory, to the resource adapter by invoking its
endpointActivation method.

The resource adapter uses the information in the ActivationSpec JavaBean to
interact with messaging provider and setup message delivery to the message
endpoint. For a JMS Message Driven Bean, this can involve configuring a
message selector or a durable subscription against the destination. Once the
endpointActivation method returns, the message endpoint is ready to receive
messages. This process is shown in Figure 10-10 on page 390.

Figure 10-10 Activating a message endpoint

10.3.7 Message delivery
The following steps describe the sequence of events that occur when a message
arrives at a destination:

1. The resource adapter detects the arrival of a message at the destination.

2. The resource adapter invokes the createEndpoint method on the
MessageEndpointFactory.

3. The MessageEndpointFactory obtains a reference to a message endpoint.
This can be an unused message endpoint obtained from a pool or, if no
message endpoints are available, it can create a new message endpoint.

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

MessageEndpointFactory

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

MessageEndpointFactory
390 WebSphere Application Server - Express V6 Developers Guide and Development Examples

4. The MessageEndpointFactory returns a proxy to this message endpoint
instance to the resource adapter.

5. The resource adapter uses the message endpoint proxy to deliver the
message to the message endpoint.

This process is shown in Figure 10-11 on page 391.

Figure 10-11 Delivering a message to a message endpoint

10.3.8 Administered objects
The resource adapter deployment descriptor defines the list of administered
objects implemented by the resource adapter. However, it does not define any
administered object instances. This must still be performed as an administrative
task within the WebSphere Administrative Console. Because the default
messaging JMS provider is specific to the JMS programming model, the
WebSphere Administrative Console provides a set of JMS specific administration
panels for this resource adapter. In the example provided in section 10.6, “Setup
JMS the environment” on page 408 the steps required to configure administered
objects for the default messaging JMS provider for the Sal404 application are
shown in detail.

Application Server

Resource Adapter

EJB Container

Message-driven
Bean

Messaging Provider
Destination Message

1

2

MessageEndpointFactory
3

4 5

Application Server

Resource Adapter

EJB Container

Message-driven
Bean

Messaging Provider
Destination Message

1

2

MessageEndpointFactory
3

4 5
 Chapter 10. Java Message Service 391

10.4 Message Driven Beans
The Enterprise JavaBeans specification (EJB), version 2.0 introduced a new type
of EJB called the Message Driven Bean (MDB). Message Driven Beans are
asynchronous message consumers that run within the context of an application
server’s EJB container. This enables the EJB container to provide additional
services to the Message Driven Bean during the processing of a message, such
as transactions, security, concurrency and message acknowledgement.

The EJB container is also responsible for managing the lifetime of the Message
Driven Beans and for invoking Message Driven Beans when a message arrives
for which a given Message Driven Bean is the consumer.

Message Driven Bean instances should not maintain any conversational state on
behalf of a client. This enables the EJB container to maintain a pool of Message
Driven Bean instances and to select any instance from this pool to process an
incoming message. However, this does not prevent a Message Driven Bean from
maintaining state that is not specific to a client, for instance, DataSource
references or references to another EJB.

WebSphere Application Server V6.0 is fully compliant with version 1.4 of the
J2EE specification, which requires application servers to support version 2.1 of
the EJB specification.

10.4.1 Message Driven Bean types
Version 2.0 of the EJB specification defined a single type of Message Driven
Bean that enabled the asynchronous delivery of messages through the Java
Message Service (JMS).

However, the integration of multiple JMS providers into application servers has
proven difficult. For various reasons, many application server vendors have only
provided support for one JMS provider within their product. Also, the fact that
Message Driven Beans within the EJB 2.0 specification only support the JMS
programming model was considered too restrictive. Several other messaging
providers exist that require similar functionality to Message Driven Beans within
the EJB container, such as the Java API for XML Messaging (JAXM).

Because of this, version 2.1 of the EJB specification expanded the definition of
Message Driven Beans to provide support for messaging providers other than
JMS providers. It does this by allowing a Message Driven Bean to implement an
interface other than the javax.jms.MessageListener interface. This message
listener interface is specific to the messaging provider in question. The type of
message listener interface that a Message Driven Bean implements determines
392 WebSphere Application Server - Express V6 Developers Guide and Development Examples

its type. Therefore, a Message Driven Bean that implements the
javax.jms.MessageListener interface is a JMS Message Driven Bean.

10.4.2 Client view of a Message Driven Bean
Unlike session and entity beans, Message Driven Beans do not expose home or
component interfaces. A client is not able to locate instances of a Message
Driven Bean and invoke methods on it directly.

The only manner in which a client can interact with a Message Driven Bean is to
send a message to the destination or endpoint for which the Message Driven
Bean is the listener. The EJB container is responsible for invoking an instance of
the Message Driven Bean as a result of the arrival of a message. From the
clients perspective, the existence of the Message Driven Bean is completely
transparent. This is shown in Figure 10-12, where the client is only able to see
the messaging provider and the target destination.

Figure 10-12 Client view of a Message Driven Bean

10.4.3 Message Driven Bean implementation
A bean provider developing a Message Driven Bean must provide a Message
Driven Bean implementation class. This class must implement, directly or
indirectly, the javax.ejb.MessageDrivenBean interface and a message listener
interface. It must also provide an ejbCreate method implementation. These
aspects of message-driven implementation are discussed in the following
sections.

Message Driven Bean interface
The javax.ejb.MessageDrivenBean interface defines a number of callback
methods that allow the EJB container to manage the life cycle of each Message

Message

Messaging Provider

Destination/Endpoint

Client

Message

Application Server

EJB Container

MDB
MDBMDB

MDBMDB

Message

Messaging Provider

Destination/Endpoint

Client

Message

Application Server

EJB Container

Application Server

EJB Container

MDB
MDBMDB

MDBMDB

MDB
MDBMDB

MDBMDB
 Chapter 10. Java Message Service 393

Driven Bean instance. Since Message Driven Beans expose no home or
component interfaces, the javax.ejb.MessageDrivenBean interface defines fewer
callback methods than the corresponding javax.ejb.SessionBean and
java.ejb.EntityBean interfaces. The definition of the
javax.ejb.MessageDrivenBean interface is shown in Example 10-15.

Example 10-15 The javax.ejb.MessageDrivenBean interface

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean
{

public void setMessageDrivenContext(MessageDrivenContext ctx);
public void ejbRemove();

}

The purpose of each of the callback methods is described below:

� setMessageDrivenContext

The EJB container invokes this method to associate a context with an
instance of a Message Driven Bean. The Message Driven Bean instance
normally stores a reference to the context as part of its state.

� ejbRemove

The EJB container invokes this method to notify the Message Driven Bean
instance that it is in the process of being removed. This gives the Message
Driven Bean the opportunity to release any resources that it may be holding.

Message listener interface
As discussed in section 10.4.1, “Message Driven Bean types” on page 392,
version 2.1 of the EJB specification no longer requires a Message Driven Bean to
implement the javax.jms.MessageListener interface. The specification simply
states that a Message Driven Bean is required to implement the appropriate
message listener interface for the messaging type that the Message Driven Bean
supports.

The specification also allows the message listener interface to define more than
one message listener method and for these methods to specify return types. If a
messaging provider has defined an interface that contains more than one
message listener method, it is the responsibility of the resource adapter to
determine which of these methods to invoke upon the receipt of a message.

The message listener interface for JMS Message Driven Beans is the
javax.jms.MessageListener interface, as shown in Example 10-7 on page 376.

As an example of other types of message listener interfaces that might be used
by messaging providers, again consider a theoretical JAXM messaging provider.
A JAXM messaging provider might decide to use the
394 WebSphere Application Server - Express V6 Developers Guide and Development Examples

javax.xml.messaging.ReqRespListener interface as its message listener
interface. This interface is shown in Example 10-16.

Example 10-16 The javax.xml.messaging.ReqRespListener interface

package javax.xml.messaging;

import javax.xml.soap.SOAPMessage;

public interface ReqRespListener
{

public SOAPMessage onMessage(SOAPMessage message);
}

Notice that this interface is similar to the javax.jms.MessageListener interface in
that it defines an onMessage method. However, you can use any method name d
when defining methods within the message listener interface.

Also, notice that the onMessage method specifies a return type of
SOAPMessage. The SOAPMessage can be considered to be a reply message.
However, since it is the EJB container that invokes the onMessage method, the
SOAPMessage will be returned to the EJB container. The EJB specification
states that, if the message listener interface supports the request-reply pattern in
this manner, it is the responsibility of the EJB container to deliver the reply
message.

The ejbCreate method
One other requirement on the implementation class for a Message Driven Bean
is that it implements the ejbCreate method. Once again, this implementation can
be defined within the Message Driven Bean class itself, or within any of its
superclasses. The EJB container invokes the ejbCreate as the last step in
creating a new instance of a Message Driven Bean. This gives the Message
Driven Bean the opportunity to allocate any resources that it requires.

10.4.4 Message Driven Bean life cycle
The EJB container is responsible for hosting and managing Message Driven
Bean instances. It controls the life cycle of the Message Driven Bean and uses
the callback methods within the bean implementation class to notify the instance
when important state transitions are about to occur.

The life cycle of a Message Driven Bean is shown in Figure 10-13 on page 396.
 Chapter 10. Java Message Service 395

Figure 10-13 Message Driven Bean life cycle

The relevant state transitions for a Message Driven Bean are described below:

� Message Driven Bean creation

Message Driven Bean instances are created in three steps by the EJB
container:

a. The EJB container invokes the Class.newInstance() method on the bean
implementation class.

b. The EJB container provides the new instance with its
MessageDrivenContext reference by invoking the
setMessageDrivenContext method.

c. The EJB container gives the new Message Driven Bean instance the
opportunity to perform one-time initialization by invoking the ejbCreate
method. The Message Driven Bean is able to allocate any resources that it
requires here.

� Message listener method invocation

Once in the method-ready pool, a Message Driven Bean instance is available
to process any message that is sent to its associated destination or endpoint.
When a message arrives at this destination, the EJB container receives the
message and allocates a Message Driven Bean instance from the
method-ready pool to process the message. When processing is complete,
the Message Driven Bean instance is returned to the method-ready pool.

Method-ready pool

Does not exist

ejbRemove()
1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

Message listener
method ejbTimeout(arg)Method-ready pool

Does not exist

ejbRemove()
1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

Message listener
method ejbTimeout(arg)
396 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Message Driven Bean removal

The EJB container can decide at any time that it needs to release resources.
To do this, it can reduce the number of Message Driven Bean instances in the
method-ready pool. As part of the removal process, it will invoke the
ejbRemove method on the instance being removed to give the Message
Driven Bean the opportunity to release any resources that it might be holding.

10.4.5 Message Driven Beans and transactions
A bean provider can specify whether a message-driven will demarcate its own
transactions programmatically or whether it will rely on the EJB container to
demarcate transactions on its behalf. The bean provider does this by specifying
either Bean or Container as the value for the transaction-type field for the
Message Driven Bean, in the EJB module deployment descriptor.

Regardless of whether transaction demarcation is bean-managed or
container-managed, a Message Driven Bean can only access the transactional
context within which it is running by using the relevant methods of the
MessageDrivenContext interface.

MessageDrivenContext interface
The javax.ejb.MessageDrivenContext interface extends the javax.ejb.EJBContext
interface. However, unlike the SessionContext and EntityContext interfaces, the
MessageDrivenContext interface does not define any additional methods. The
parent EJBContext interface is shown in Example 10-17.

Example 10-17 The javax.ejb.EJBContext interface

package javax.ejb;

import java.security.Identity;
import java.security.Principal;
import java.util.Properties;
import javax.transaction.UserTransaction;

public interface EJBContext
{

// EJB Home methods
public abstract EJBHome getEJBHome();

Note: The EJB container performs a number of other operations during the
processing of a message, such as ensuring that the processing takes
place within the specified transactional context and performing any
required security checks. These steps have been omitted for clarity.
 Chapter 10. Java Message Service 397

public abstract EJBLocalHome getEJBLocalHome();

// Security methods
public abstract Principal getCallerPrincipal();
public abstract boolean isCallerInRole(String s);

// Transaction methods
public abstract UserTransaction getUserTransaction()

throws IllegalStateException;
public abstract void setRollbackOnly() throws IllegalStateException;
public abstract boolean getRollbackOnly() throws IllegalStateException;

// Timer service methods
public abstract TimerService getTimerService()

throws IllegalStateException;

// Deprecated Methods
public abstract Properties getEnvironment();
public abstract Identity getCallerIdentity();
public abstract boolean isCallerInRole(Identity identity);

}

Container-managed transactions
A Message Driven Bean with a transaction-type of Container is said to make use
of container-managed transactions. When a Message Driven Bean is using
container managed transactions, the EJB container uses the transaction attribute
of the message listener method to determine the actions that it needs to take
when a message arrives at the relevant destination.

The transaction attributes that can be specified for message listener method are
as follows:

Note: A Message Driven Bean instance should only invoke the transaction
and timer service methods exposed by the MessageDrivenContext interface.

Attempting to invoke the EJB home methods results in a
java.lang.IllegalStateException being thrown because Message Driven Beans
do not define EJBHome or EJBLocalHome objects.

Attempting to invoke the getCallerPrincipal method is allowed by version 2.1.
of the EJB specification. However, with a Message Driven Bean, the caller is
the EJB container, which does not have a client security context. In this
situation, the getCallerPrincipal method returns a representation of the
unauthenticated identity. Invoking the isCallerInRole method is still not allowed
by the EJB specification and will result in a java.lang.IllegalStateException
being thrown.
398 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� NotSupported

The EJB container does not create a transaction prior to receiving the
message from the destination and invoking the message listener method on
the Message Driven Bean. Consequently, for a JMS Message Driven Bean,
the message will not be placed back on the destination for redelivery if an
error occurs during the processing of the message.

� Required

The EJB container creates a transaction prior to receiving the message from
the destination and invoking the message listener method on the Message
Driven Bean.

If the Message Driven Bean accesses a resource manager within the
message listener method, then this access takes place within the context of
this transaction. Similarly, if the Message Driven Bean invokes other EJBs
within the message listener method, the EJB container passes the transaction
context with the invocation.

When the message listener method completes, the EJB container attempts to
commit the transaction. For a JMS Message Driven Bean, a rollback of the
transaction should have the effect of placing the message back on the
destination for redelivery.

When a message listener method specifies a transaction attribute of Required, it
may only use the getRollbackOnly and setRollbackOnly methods of the
MessageDrivenContext object. The code required to mark a transaction for
rollback within a message listener method is shown in Example 10-18.

Example 10-18 Using the setRollbackOnly method

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

try
{

// Process the message

// Try to access a relational database
}
catch (SQLException e)
{

// An error occured, rollback the transaction
msgDrivenCtx.setRollbackOnly();
 Chapter 10. Java Message Service 399

}
}

}

Bean-managed transactions
A Message Driven Bean with a transaction-type of Bean is said to make use of
bean-managed transactions. When a Message Driven Bean is using
bean-managed transactions, the EJB container does not create a transaction
prior to receiving the message from the destination and invoking the message
listener method on the Message Driven Bean. Consequently, for a JMS Message
Driven Bean, the message will not be placed back on the destination for
redelivery if an error occurs during the processing of the message. The message
listener method is responsible for creating any transactions that it requires when
processing a message.

A Message Driven Bean using bean managed transactions may only use the
getUserTransaction method of the MessageDrivenContext object. It is then able
to use the javax.transaction.UserTransaction interface to begin, commit and
rollback transactions. The code required to use the UserTransaction interface
within a message listener method is shown in Example 10-18.

Example 10-19 Using the javax.transaction.UserTransaction interface

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

// Get the UserTransaction object reference
UserTransaction userTx = msgDrivenCtx.getUserTransaction();

try
{

// Begin the transaction
userTx.begin();

// Process the message

// Try to access a relational database

// Attempt to commit the transaction
userTx.commit();

}
catch (Exception e)
400 WebSphere Application Server - Express V6 Developers Guide and Development Examples

{
try
{

// An error occured, rollback the transaction
userTx.rollback();

}
catch (SystemException e2)
{

e2.printStackTrace();
}

}
}

}

10.4.6 Message Driven Bean activation configuration properties
The way in which Message Driven Beans specify deployment options within the
EJB deployment descriptor has changed significantly for EJB version 2.1. This
reflects the changes made to the J2EE Connector Architecture specification to
enable a resource adapter to deliver messages asynchronously to a Message
Driven Bean, independent of the specific messaging style, messaging semantics
and messaging infrastructure. Consequently, version 2.1 of the EJB specification
introduced a more generic mechanism to specify the messaging semantics of a
Message Driven Bean, known as activation configuration properties.

The EJB specification defines the following activation configuration properties for
a JMS Message Driven Bean:

� destinationType
� messageSelector
� acknowledgeMode
� subscriptionDurability

Notice that the names of these activation configuration properties match the
names of the equivalent JMS ActivationSpec JavaBean properties described in
10.3.4, “JMS ActivationSpec JavaBean” on page 386. The description of each of
the properties is also the same.

This is intentional on the part of the J2EE Connector Architecture and the EJB
specifications. The intention is that this allows the automatic merging of the
activation configuration element values with the corresponding entries in the JMS
ActivationSpec JavaBean, while configuring the JMS ActivationSpec JavaBean

Note: Because of the complex nature of distributed transactions, it is
recommended that bean providers make use of container-managed
transactions.
 Chapter 10. Java Message Service 401

during endpoint deployment. This is exactly what happens when WebSphere
starts an application that contains a Message Driven Bean.

Example 10-20 on page 402, shows the relevant entry for the BankListener
Message Driven Bean that is packaged as part of the WebSphereBank sample in
WebSphere Application Server V6.0. The elements of the deployment descriptor
that are specific to messaging are shown in bold. Table 10-8 shows activation
configuration properties are defined within the deployment descriptor:

Table 10-8 Configuration for the BankListener Message Driven Bean

Example 10-20 BankListener Message Driven Bean deployment descriptor

<message-driven id="MessageDriven_1037986117955">
<ejb-name>BankListener</ejb-name>
<ejb-class>com.ibm.websphere.samples.bank.ejb.BankListenerBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<transaction-type>Container</transaction-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>BankJSQueue</message-destination-link>
<activation-config>

<activation-config-property>
<activation-config-property-name>

destinationType
</activation-config-property-name>
<activation-config-property-value>

javax.jms.Queue
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
acknowledgeMode

</activation-config-property-name>
<activation-config-property-value>

Auto-acknowledge

Note: If a Message Driven Bean and the JMS activation specification with
which it is associated both specify a value for a given property, it is the value
contained in the EJB deployment descriptor for the Message Driven Bean that
will be used.

Property name Property value

destinationType javax.jms.Queue

acknowledgeMode Auto-acknowledge

messageSelector JMSType = ‘transfer’
402 WebSphere Application Server - Express V6 Developers Guide and Development Examples

</activation-config-property-value>
</activation-config-property>
<activation-config-property>

<activation-config-property-name>
messageSelector

</activation-config-property-name>
<activation-config-property-value>

JMSType = 'transfer'
</activation-config-property-value>

</activation-config-property>
</activation-config>
<ejb-local-ref id="EJBLocalRef_1037986243867">

<description></description>
<ejb-ref-name>ejb/Transfer</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>

com.ibm.websphere.samples.bank.ejb.TransferLocalHome
</local-home>
<local>com.ibm.websphere.samples.bank.ejb.TransferLocal</local>
<ejb-link>Transfer</ejb-link>

</ejb-local-ref>
</message-driven>

10.4.7 Associating a Message Driven Bean with a destination
Before any messages can be delivered to a Message Driven Bean, the Message
Driven Bean must be associated with a destination. As discussed in 10.3.5,
“Message endpoint deployment” on page 389, the responsibility of associating a
Message Driven Bean with a destination lies with the application deployer.

Within WebSphere Application Server V6.0, there are two mechanisms that can
be used to associate these objects, JMS activation specifications and listener
ports. The reason is that the service integration bus within WebSphere
Application Server V6.0 is accessed using a J2EE Connector Architecture
resource adapter, while WebSphere MQ is accessed with a standard JMS API.

If the Message Driven Bean being deployed needs to be associated with a
destination defined on a Service Integration Bus, a JMS activation specification
should be used. If the Message Driven Bean being deployed needs to be
associated with a destination defined on WebSphere MQ, a listener port should
be used. The following sections discuss JMS activation specifications and listner
ports.

JMS activation specification
An ActivationSpec JavaBean, through its destination property, associates a
message endpoint with a destination. Within WebSphere Application Server
 Chapter 10. Java Message Service 403

V6.0, an instance of the ActivationSpec JavaBean for the default messaging JMS
provider is configured by creating a JMS activation specification using the
WebSphere Administrative Console. These JMS activation specifications are
normally created prior to installing the Message Driven Bean application and are
stored in the JNDI name space by WebSphere Application Server.

At installation time, the deployer specifies which JMS activation specification to
associate with a particular Message Driven Bean, using its JNDI name. The
destination property within the JMS activation specification, specifies the JNDI
name of the target JMS destination. This relationship is shown Figure 10-14.

Figure 10-14 Associating an MDB with a destination using a JMS Activation Specification

The steps required to create a JMS activation specification for the default
messaging JMS provider for the Sal404 application are described in “Set up an
activation specification” on page 418.

Listener ports
Prior to version 1.5 of the J2EE Connector Architecture, there was no standard
way to associate a Message Driven Bean with a destination. To solve this
problem, WebSphere Application Server V5 introduced the concept of a listener
port. Because this has been replaced in V6 with the activation specification, we
do not discuss listener ports here.

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Activation
Specification

Service Integration Bus

Default Messaging
Resource Adapter

JMS Destination

Destination

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Activation
Specification

Service Integration Bus

Default Messaging
Resource Adapter

JMS Destination

Destination
404 WebSphere Application Server - Express V6 Developers Guide and Development Examples

If you are looking for details about how to configure listener ports in WebSphere
Application Server V6.0, refer to the appropriate sections in the redbook
WebSphere Application Server V6 Planning and Design WebSphere Handbook
Series, SG24-6446.

10.4.8 Message Driven Bean best practices
As with all programming models, certain best practices have emerged for using
the Message Driven Bean programming model. These best practices are
discussed in this section:

� Delegate business logic to another handler.

Traditionally, the role of a stateless session bean is to provide a facade for
business logic. Message Driven Beans should delegate the business logic of
processing the contents of a message to a stateless session bean. Message
Driven Beans can focus then, on what they were designed to do, which is
processing messages. This is shown in Figure 10-15.

Figure 10-15 Delegating business logic to a stateless session bean

An additional benefit of this approach is that the business logic within the
stateless session bean can be reused by other EJB clients. This is shown in
Figure 10-16 on page 406.

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DB

JMS Provider

Destination

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DB
 Chapter 10. Java Message Service 405

Figure 10-16 Business logic reuse

� Do not maintain client-specific state within an MDB.

As discussed earlier, Message Driven Bean instances should not maintain
any conversational state on behalf of a client. This enables the EJB container
to maintain a pool of Message Driven Bean instances and to select any
instance from this pool to process an incoming message. However, this does
not prevent a Message Driven Bean from maintaining state that is not specific
to a client, for instance, DataSource references or references to another EJB.

� Avoid large message bodies.

A JMS message will probably need to travel over the network at some point in
its life. It will definitely need to be handled by the JMS provider. All of these
components contribute to the overall performance and reliability of the
system. The amount of data contained in the body of a JMS message should
be kept as small as possible to avoid impacting the performance of the
network or the JMS provider.

� Minimize message processing time.

Recall from the discussion in 10.4.4, “Message Driven Bean life cycle” on
page 395, that instances of a Message Driven Bean are allocated from the
method-ready pool to process incoming messages. These instances are not
returned to the method-ready pool until message processing is complete.
Therefore, the longer it takes for a Message Driven Bean to process a
message, the longer it will be unavailable for reallocation.

If an application is required to process a high volume of messages, the
number of Message Driven Bean instances in the method-ready pool could
be rapidly depleted if each message requires a significant processing. The
EJB container would then need to spend valuable CPU time creating
additional Message Driven Bean instances for the method-ready pool, further
impacting the performance of the application.

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DBEJB Client

JMS Provider

Destination

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DBEJB Client
406 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Additional care must be taken if other resources are enlisted into a global
transaction during the processing of a message. The EJB container does not
attempt to commit the global transaction until the MDB’s onMessage method
returns. Until the global transaction commits, these resources cannot be
released on the resource managers in question.

For these reasons, the amount of time required to process each message
should be kept to a minimum.

� Avoid dependencies on message ordering.

An application should try to avoid making any assumptions about the order in
which JMS messages are processed. This is due to the fact that application
servers enable the concurrent processing of JMS messages by MDBs and
that some messages can take longer to process than others. Consequently, a
message delivered later in a sequence of messages may finish message
processing before a message delivered earlier in the sequence. It can be
possible to configure the application server in such a way that messaging
ordering is maintained within the application, but this is usually done at the
expense of performance or architectural flexibility (inability to deploy an
application to a cluster).

� Be aware of poison messages.

Sometimes, a badly-formatted JMS message arrives at a destination. Such a
message might cause an exception to be thrown within the MDB during
message processing. An MDB that is making use of container-managed
transactions would then mark the transaction for rollback, as discussed in
10.4.5, “Message Driven Beans and transactions” on page 397. The EJB
container would then rollback the transaction, causing the message to be
placed back on the queue for redelivery. However, the same problem occurs
within the MDB the next time the message is delivered. In this situation, such
a message might be received, and then returned to the queue, repeatedly.
These messages are known as poison messages.
Fortunately, some messaging providers have implemented mechanisms that
can detect poison messages and redirect them to a another destination.
WebSphere MQ and the service integration bus are two such providers.

10.5 Service integration bus
The service integration bus (SIB) is a component of WebSphere Application
Server V6 that provides a managed communications framework, supporting a
variety of message distribution models, reliability options and network topologies.
It provides support for traditional messaging applications as well enabling the
implementation of service-oriented architectures within the WebSphere
Application Server V6.0 environment.
 Chapter 10. Java Message Service 407

The service integration bus is the underlying messaging provider for the default
messaging JMS provider, and it is intended to replace the embedded messaging
provider that was supported within WebSphere Application Server V5.

Section 10.6.1, “Set up the SIB” on page 409 provides the details how to setup
the service integration bus for our sample application. If you want to read more
about concepts, topologies and configuration of the service integration bus in
WebSphere Application Server V6.0 please refer to the redbook WebSphere
Application Server V6 Planning and Design WebSphere Handbook Series,
SG24-6446.

10.6 Setup JMS the environment
To configure WebSphere Application Server for the messaging needed by our
sample application the following configuration tasks have to be performed:

� Setup the service integration bus.

a. Create a new service integration bus.
b. Specify the server running our application to be a member of that bus.
c. Set up a message queue in the bus.
d. restart the server.

� Setup the default messaging.

– Set up a queue connection factory.
– Set up a queue for incoming messages.
– Set up an activation specification.
– Set up a queue for outgoing messages.

By following these configuration steps, you are creating the administered objects
in WebSphere Application Server that are needed to run the JMS functionality in
the sample application.

In the next sections we show you how to change your WebSphere Application
Server settings in the WebSphere Administrative Console. Whenever the
console states that there are unsaved changes, these changes need to be
saved. You need to save the changes manually because WebSphere Application
Server does not save them automatically.

Note: Without this configuration, the application does not run because the
server complains about the missing activation specification for the MDB that
cannot be found. To run our sample application, you need to configure the
JMS setup.
408 WebSphere Application Server - Express V6 Developers Guide and Development Examples

You can make several changes in the configuration and save them at the end of
your session, but you might also choose to save the configuration after each
configuration step. The WebSphere Administrative Console will remind you the
next time you enter the that you have some unsaved changes. To get confused
by these messages, it is a good idea to save the changes every time the
message shown in Figure 10-17, is displayed in at the top of the console.

Figure 10-17 Web message for unsaved configuration

So, if in the next sections, you are instructed to Save your configuration changes
in the WebSphere Administrative Console, then you click Save as shown in
Figure 10-18.

Figure 10-18 Save configuration changes in the WebSphere Administrative Console

For details about using the WebSphere Administrative Console and more options
for configuring the messaging in WebSphere Application Server see the redbook
WebSphere Application Server V6 Planning and Design WebSphere Handbook
Series, SG24-6446

10.6.1 Set up the SIB
This section shows you how to create a service integration bus for the default
messaging of WebSphere Application Server V6 and configure it for our
application.

Create a new service integration bus
To create a new SIB, follow these steps:

1. Open the WebSphere Administrative Console using

http://localhost:9060/admin
 Chapter 10. Java Message Service 409

2. Click Service integration → Buses.

3. Click New to create a new bus.

4. Enter RealtyBus as the name of the bus and leave the default values shown in
Figure 10-19:

Figure 10-19 Setup of a new service integration bus

5. Click OK.

6. Save your configuration changes in the WebSphere Administrative Console.

7. Verify that you see the newly created bus in the list when you click Service
integration → Buses as in Figure 10-20 on page 411.
410 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-20 The newly created SIB

Add the current server as a bus member
To add the current server as a member of the bus, do the following:

1. Click Service integration → Buses → RealtyBus as shown in Figure 10-20.

2. Click Bus member under Additional Properties.

3. Click Add to add a new member to the bus.

4. Choose server in the radio buttons choice.

5. If you have not set up multiple server instances there should be only one
choice in the next screen named yournodename:server1, so leave the default
settings. If you have set up additional servers, choose the server that runs the
Sal404 application. You may add the other servers as bus members too.

6. Leave the default settings for the data store; a JNDI name is not needed when
you use the default data store . For configuring anything other than the
default, refer to 10.6.3, “Data stores” on page 421)

7. Click Next.

8. Click Finish.

9. Save your configuration changes in the WebSphere Administrative Console.

10.You are then shown the screen that lists the bus members for the RealtyBus.
Verify that you see your bus member or members in the list.

Note: When you click the newly created bus member, you see the messaging
engine that is automatically set up and has a state of unavailable. The first
time the engine is set up you will not be able to start it. You must restart the
server to get the messaging engine to run.
 Chapter 10. Java Message Service 411

WebSphere Application Server has a setting that lets you start the messaging
engine automatically at server startup. It is not enabled on a server by default,
however it is automatically enabled if you add a server to a bus. If you disable the
SIB service, then any messaging engines defined on the server will not be
started.

Because you just added your server to a bus, there is no need to change this
setting. You find it in the WebSphere Administrative Console under Servers →
Application servers → server1 → SIB service. Figure 10-21 shows the
configuration panel.

Figure 10-21 Configuration panel for SIB service

Create a queue as a destination
To create a destination for the SIB follow these steps:

1. Click Service integration → Buses → RealtyBus in the WebSphere
Administrative Console.

2. Click Destinations under Additional Properties.

3. Click New to create a destination.

4. On the next screen select Queue as destination type and click Next.

5. Enter RealtyBusQueue as the identifier in the next screen, then click Next.

6. Choose the bus member from the dropdown menu (there is only one when
you have not configured additional servers) and click Next.

7. Review settings and click Finish.

8. As a result, you can see the new queue under Service integration →
Buses → RealtyBus → Destinations.

9. To run the messaging engine you must restart the application server. If you
use the Test Environment of Rational Web Developer or Rational Application
412 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Developer you can issue the restart from the Servers view. Verify your
running messaging engine.

10.You can verify your running messaging engine after the restart if you click
Service integration → Buses → RealtyBus.

11.Click Messaging engine under Additional Properties.

12.Check that a green arrow on the right shows the started state as seen in
Figure 10-22.

13.You should also see a statement in your server SystemOut logs that says
Messaging engine yournodename.server1-RealtyBus is in state Started

Figure 10-22 Status of messaging engine

Create a queue for outgoing messages
To create a destination for outgoing messages on the SIB, follow these steps:

1. Click Service integration → Buses → RealtyBus in the WebSphere
Administrative Console.

2. Click Destinations under Additional Properties.

3. Click New to create a destination.

4. On the next screen select Queue as destination type and click Next.

5. Enter RealtyBusOutQueue as the queue identifier then click Next.

6. Choose the bus member from the dropdown menu and click Next.

7. Review the settings and click Finish.

8. As a result, you can see the new queue under Service integration →
Buses → RealtyBus → Destinations .

Verify your queues
To verify your queues, navigate to Service integration → Buses →
RealtyBus → Destinations.
 Chapter 10. Java Message Service 413

Figure 10-23 shows the list of queues.

Figure 10-23 Overview of the created queues

10.6.2 Setup the default messaging
Now we can set up the JMS provider for default messaging and use the
configured RealtyBus with our configured queue. The next configuration steps
start from the screen shown in Figure 10-24 on page 415. Click Resources →
JMS Providers → Default messaging in the WebSphere Administrative
Console.

The default messaging provider that we configure enables messaging based on
the Java Message Service (JMS). It provides connection factories to create
connections for JMS destinations.

Note: We always leave the scope (see Figure 10-24 on page 415) setting as
its default value of Node scope. This means your administered objects are
available to any server that belongs to the node.
414 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-24 Setup of the JMS default messaging provider

Set up a queue connection factory
To set up the queue connection factory, follow these steps:

1. Click Resources → JMS Providers → Default messaging in the
WebSphere Administrative Console.

2. Click JMS queue connection factory under the Connection Factories topic.

3. Click New.

4. Enter the following values as shown in Figure 10-25 on page 416:

– Name: RealtyConnectionFactory
– JNDI name: JMS/RealtyConnectionFactory
– Description (optional): Connection factory for the Sal404 application
– Bus name: Select RealtyBus from the drop-down menu.
– Leave all the other values in their default state.
– Click OK to confirm your settings.
 Chapter 10. Java Message Service 415

5. Save your configuration changes in the WebSphere Administrative Console.

6. The screen that lists the connection factories is shown. Verify that you see
your connection factory in the list.

Figure 10-25 Configuration of the connection factory (top and bottom screen area)

Set up a queue for incoming messages
To set up the queue for incoming messages, follow these steps:

1. Click Resources → JMS Providers → Default messaging in the
WebSphere Administrative Console.

2. Click JMS queue under the Destinations.
416 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3. Click New.

4. Enter the following values as shown in Figure 10-26 on page 418:

– Name: RealtyIncomingQueue

– JNDI name: JMS/RealtyIncomingQueue

– Description (optional): The JMS queue for incoming messages for the
Sal404 application

– Bus name: Select RealtyBus from the drop-down menu

– If the screen does not change automatically and offer you the buses for the
RealtyBus, then click >> as shown in Figure 10-26 on page 418.

– Queue name: Select RealtyBusQueue from the drop-down menu.

– Time to live: 5000 (milliseconds)

5. Click OK and verify that you see the new queue in the next screen.

6. Save your configuration changes in the WebSphere Administrative Console.

7. See the created queue in the queue list under Resources → JMS
Providers → Default messaging → JMS queue.
 Chapter 10. Java Message Service 417

Figure 10-26 Configuration of the queue for incoming messages

Set up an activation specification
To set up an activation specification that can be associated with our MDB, follow
these steps:

1. Click Resources → JMS Providers → Default messaging in the
WebSphere Administrative Console.

2. Click JMS activation specification under Activation specifications.

3. Click New.
418 WebSphere Application Server - Express V6 Developers Guide and Development Examples

4. Enter the following values as shown in Figure 10-27 on page 419:

– Name: RealtyActivationSpec
– JNDI name: JMS/RealtyActivationSpec
– Destination type: select Queue from the drop-down menu
– Destination JNDI name: JMS/RealtyIncomingQueue
– Bus name: Select RealtyBus from the drop-down menu.
– Leave all the other values in their default state.
– Click OK to confirm your settings.

5. Save your configuration changes in the WebSphere Administrative Console.

6. The screen that lists the activation specifications is displayed. Verify that you
see the activation specification just created in the list.

Figure 10-27 Configuration of the activation specification (top and bottom screen area)

Set up a queue for outgoing messages
To setup a queue for outgoing messages, follow these steps:

1. Click Resources → JMS Providers → Default messaging in the
WebSphere Administrative Console.

2. Click JMS queue under the Destinations.
 Chapter 10. Java Message Service 419

3. Click New.

4. Enter the following values as shown in Figure 10-28 on page 421:

– Name: RealtyOutgoingQueue

– JNDI name: JMS/RealtyOutgoingQueue

– Description (optional): The JMS queue for outgoing messages for the
Sal404 application

– Bus name: Select RealtyBus from the drop-down menu.

– If the screen does not change automatically and offer you the buses for the
RealtyBus then click >>.

– Queue name: Select RealtyBusOutQueue from the drop-down menu.

5. Click OK and verify that you see the new queue in the next screen.

6. Save your configuration changes in the WebSphere Administrative Console.

7. You should see then the created queue in the queue list under Resources →
JMS Providers → Default messaging → JMS queue.
420 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-28 Configuration of the queue for outgoing messages

10.6.3 Data stores
Every messaging engine defined within a bus has a data store associated with it.
A messaging engine uses this data store to persist durable data, such as
persistent messages and transaction states.

The messaging engine can also use the data store to persist volatile data. For
example, the messaging engine might write non-persistent messages to the data
store to reduce the size of the Java heap when handling high message volumes.
 Chapter 10. Java Message Service 421

Durable data written to the data store survives the failure of a messaging engine,
regardless of the reason for the failure. Volatile data, on the other hand, does not
survive the failure of a messaging engine, and might or might not survive an
orderly shutdown of a messaging engine.

Each messaging engine must have exclusive access to the tables defined within
its data store. This can be achieved, either by defining a separate data store for
each messaging engine, or by partitioning a single data store using a unique
schema name for each messaging engine within the data store.

Data store configuration
Figure 10-29 on page 423 shows the configuration panel of the data store when
you add a server to a service integration bus the first time as is described in “Add
the current server as a bus member” on page 411.

You can change the settings later by clicking Buses → RealtyBus →
Messaging engines → yourNodeName.server1-RealtyBus → Data store.

If you want to use another than the default data store uncheck the Default box
and specify a JNDI name for a DataSource that is already configured in
WebSphere Application Server. For details about how to configure a DB2
DataSource for the sample application, refer to 4.7.2, “Creating the JDBC
resources” on page 176.

Note: If no data store is explicitly configured for a messaging engine, a data
store will be created using a Cloudscape database. This is the case if you
leave the check box for the default data store checked when you create the
service integration bus.
422 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-29 Data store configuration when adding a server to a SIB

10.6.4 Databases, user names and schema names
Every messaging engine must have exclusive access to its own schema in a
database. There are a variety of databases that are supported including
Cloudscape, Network Cloudscape, DB2, Oracle, MS SQL Server, Sybase and
Informix. Several of these have significantly different behaviors for schemas
which are detailed below.

Note: An alternative to configuring schemas and user IDs is for every
messaging engine to have its own database.
 Chapter 10. Java Message Service 423

Embedded Cloudscape (the default data store)
The service integration bus can create a data store for a messaging engine using
a Cloudscape database that is embedded in the application server. This
Cloudscape database enables you to get started quickly with the service
integration bus. A JDBC data source to access the Cloudscape database is
created at server scope on the server that has been added to the bus.

The default Cloudscape data store is not supported for cluster bus members.
This is because multiple processes cannot access the database simultaneously
which might happen during failover in a cluster.

The Cloudscape database is given the same name as the messaging engine,
which is unique. Embedded Cloudscape does not require an authentication alias
to be set up on the data store.

Networked Cloudscape and DB2
Both of these databases allow the same user ID to access a single database
concurrently with different schema names to access different tables. This means
that you can configure multiple messaging engines to access the same DB2
database, using the same user ID, but with its own unique schema name.
Accessing the database with different user IDs automatically makes the actual
schema accessed different.

When using Networked Cloudscape without security enabled, an authentication
alias is still required on the data store, however the username and password only
needs to contain any non-null values.

Other databases
Some databases do not make use of the specified schema name when a client
connects. If you wish to have multiple messaging engines accessing the same
database, then you will need to assign each messaging engine a unique user ID

Important: If the data store for a messaging engine is configured to create
tables then the user ID used to access the database must have sufficient
authority to create and drop tables. Check this with your database
administrator.

If the user ID that accesses the database does not have authority to create
tables, then the database administrator must create the tables before starting
the messaging engine. See the WebSphere Application Server Version 6.0
Information Center section on Enabling your database administrator to create
the data store tables.
424 WebSphere Application Server - Express V6 Developers Guide and Development Examples

that has permission to access the database. Refer to the documentation for your
database for more information.

10.6.5 Security
Our sample application does not focus on security, and we set up our application
without using the security features of WebSphere Application Server. This is so
you can explore the new features provided by WebSphere Application Server -
Express without having to deal with security setup. However, when it comes to
real-world applications that use the security features of WebSphere Application
Server, additional configuration steps are needed.

When security is enabled on WebSphere Application Server there are steps that
must be taken for JMS applications using the service integration bus to
authenticate themselves to the bus. This allows them to continue to use the
messaging resources that they access.

� All JMS connection factory connections must be authenticated. This can be
done in two ways:

– The connection factory can have a valid authentication alias defined on it.

– The JMS application can pass a valid username and password on the call
to ConnectionFactory.createConnection(). An ID passed in this way will
override any ID specified in an authentication alias on the connection
factory.

� All activation specifications must have a valid authentication alias defined on
them.

Any user that authenticates as a valid user to WebSphere Application Server will,
by default, have full access to the bus and all destinations on it. It is possible to
configure destination and even topic specific authentication requirement if you
wish to do so.

Every bus has an optional inter-engine authentication alias which may be
specified. If this property is left unset then it will be ignored, however, if an alias is

Note: Note that if a connection factory is looked up in the server JNDI from
outside of the server environment, for example from the client container, any
authentication alias defined on the connection factory will be unavailable. This
prevents unauthorized use of an authenticated connection factory.

JMS Clients outside of the server can provide username and password on the
call to create connection, or if the client is a J2EE client application running in
the WebSphere application client environment it is possible to define an
authenticated connection factory resource in the EAR file.
 Chapter 10. Java Message Service 425

specified and security is enabled then the ID will be checked when each
messaging engine starts up communication to other messaging engines in the
bus. This provides additional security to prevent offenders pretending to be
another messaging engine in the bus.

10.7 JMS in the Sal404 application
This section discusses the use of JMS in our Sal404 sample application. To
demonstrate the technology, we implemented two basic functions with JMS:

� Sending a message to a JMS queue by using the JMS API triggered by an
event that happens in our existing application

� Receiving a message on a queue from a context outside of our application by
using a Message Driven Bean

10.7.1 Sending a message
The business functionality implemented is to send a message whenever any user
data is changed. If an administrator changes any user details or the user
changes their user data, then a message containing details of the change is sent
to a queue. This could be used to synchronize an external user repository and
keep it up-to-date with changes in our system.

In our example, there is no specific consumer for our user change message
because our application is a standalone sample. In a real-world scenario, there
could be many external applications needing interfaces to and from our
application. One possible way to connect the applications and build the interfaces
is to use messaging. Our sample provides a basic version of connecting the
applications over a messaging bus. Figure 10-30 on page 427 shows the
communication of the Sal404 application with an external application.

Note: In a real-world environment, many organizations can have a user
repository that would be contacted by our application. This chapter does not
discuss the architecture issues of having redundant user data in our
application context and of having to deal with updates to an existing repository.
This example shows the principles of application communication over
messaging. Even in real-world applications there could be valid reasons for
keeping redundant user data. This could be the case, if connecting to the
existing user repository would cause too much traffic on the network for each
request and therefore would not perform well. While this problem usually is
solved by some replication mechanism, there are systems around where it is
necessary to have a custom implementation of that replication mechanism.
Our messaging example could be a basic way to implement such replication.
426 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-30 Sending a message to an external application

For demonstration purposes, we setup a message consumer that resides outside
the system context of our Sal404 application just to show that messages do leave
our system. See Figure 10-31.

Our current implementation of the user component uses the UserManager to
change the user data. There is one method that updates user data in the
UserManager called modifyUserDetails(). There we place the additional code for
sending the messages. The code where the message is triggered is only a short
piece of code that uses other components to actually send the messages.

Figure 10-31 Sending a message to an external application A via the MessageGateway

System Context

Message Producer

Message
Consumer

External
Application
A (Listener)

Send message

SAL404Realty
Application

Send
message
to queue

System Context

Message Producer

Message
Consumer

External
Application
A (Listener)

Send message

SAL404Realty
Application

Message
Gateway

Service Integration Bus

Receive
message

from queue
 Chapter 10. Java Message Service 427

The the message is sent by a component called the MessageGateway. This is our
implementation of a gateway for JMS messages to external applications.
Figure 10-31 shows the application communication with an external application
via the MessageGateway. This component can be used all over the application
by any other component or class that wants to send a message. Figure 10-33 on
page 429 shows the user component triggering the sending of a message over
the MessageGateway to a queue on the service integration bus.

Figure 10-32 User component sending a message over the MessageGateway

10.7.2 Receiving a message
The business functionality implemented is to receive messages that let an
external application create a user in our system. This might be used to
synchronize our user tables with an external user repository.

The sender of the message is an external application that resides outside of our
system context. That application sends a message to a queue that is connected
to our Service Integration Bus. The message is then delivered to the queue
endpoint, our message queue. Figure 10-34 on page 429 shows our application
receiving a message from an external application.

send
message
to queue

SAL404Realty
Application

Message
Gateway

Service Integration Bus

User
Component

modify
user details

send update

DB
update database
428 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-33 Receiving a message from an external application B

For receiving the message in our application we implement a Message Driven
Bean(MDB). An instance of this bean will be created by the EJB container every
time a message comes in and the resource adapter uses that bean for delivering
the message. This happens when the bean is configured to listen to the endpoint
(the queue). Figure 10-35 on page 430 shows the communication of the external
application B over the service integration bus, using a MDB.

Figure 10-34 Receiving a message from some external application B with an MDB

Message
Producer

External
Application
B (Sender)

System Context Message Consumer

Receive message SAL404Realty
Application

Message
Producer

External
Application
B (Sender)

System Context Message Consumer

Receive message SAL404Realty
Application

Message
Listener

MDB

Service Integration Bus

Receive
message
from queue

Send
message
to queue
 Chapter 10. Java Message Service 429

Figure 10-35 shows the MDB receiving a message from the queue. The MDB
parses the message and triggers the business logic in the user component to
add a new user, if the message has the appropriate format. The user component
is responsible for performing the business logic and updating the database.

Figure 10-35 MDB adding a user via the user component

As mentioned in 10.4.8, “Message Driven Bean best practices” on page 405 no
complex business processing should be done in the Message Driven Bean. To
separate the business logic a stateless session facade should be used. We
followed this principle by implementing the UserFacade as session bean. In
between the MDB and the facade we have a delegate that’s only purpose is to
hide the JNDI lookups and to wrap the methods of the facade to expose them to
any client - in our case the UserMessageListener MDB. Figure 10-36 on
page 431 shows the relationship of these components.

Note: Be careful not to have multiple MDBs listening to the same queue. This
is not what queues are designed for. The message would get delivered only to
one of the many MDBs (by some selection criteria depending on messaging
engine). Queues are meant to communicate point-to-point. If you want to have
multiple beans to listen to messages then you should use the
publish-subscribe mechanism and setup a topic endpoint for that
communication.

SAL404Realty
Application

Service Integration Bus

User
Component DB

insert user

Message
Listener

MDB

add user

receive
message
from queue
430 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-36 Components according to J2EE patterns

The actual JNDI lookup is done by the ServiceLocatorManager that implements
the ServiceLocator pattern.

10.8 Implementation details
This section discusses some details of the implementation of the functionality
described in 10.7, “JMS in the Sal404 application” on page 426.

10.8.1 Sending a message
The MessageGateway mentioned in 10.7.1, “Sending a message” on page 426
is implemented as a singleton. To minimize performance impacts, the singleton
caches the JNDI lookups for the connection factory and for the queue
destination.

The singleton can be accessed from every object that runs in our application. To
get an instance of the singleton the code shown in Example 10-21 is used.

Example 10-21 Obtain an instance of the MessageGateway

MessageGateway gateway = MessageGateway.getInstance();
 Chapter 10. Java Message Service 431

The MessageGateway lets you send messages of type
javax.jms.ObjectMessage. It can easily be extended to send other JMS based
message types like javax.jms.TextMessage. To send a message over the
MessageGateway you prepare your object that you want to send to implement
the java.io.Serializable interface. Then you call the sendMessage() method.
This is shown in Example 10-22.

Example 10-22 Sending an ObjectMessage with the MessageGateway

// create some object that implements java.io.Serializable
YourObjectClass yourObject = new YourObjectClass();
// do some preparation with your object, make sure it is ready to be send
yourObject.setSomeProperty(value);
// send the object
gateway.sendMessage(yourObject);

Of course the receiver of the message has to be able to deal with the message.
In this case, it has to be able to understand what is in the message body, that
means it must know the object.

What the gateway does is just plain JMS API calls as described in 10.2, “Java
Message Service API” on page 366. The method in our gateway that sends the
message is shown in Example 10-23.

Example 10-23 Using the JMS API to send a message

try {
 // get the connection from the factory
 Connection connection = connectionFactory.createConnection();
 // create a transacted session
 Session session = connection.createSession(true,
 QueueSession.AUTO_ACKNOWLEDGE);
 // create the message producer for the queue

Note: Be careful with singleton implementations in a J2EE environment.
Usually you have to deal with multiple JVMs and multiple classloaders in a
J2EE environment that affect the scope of a singleton. That means you cannot
be sure to have on single instance of your singleton.

The MessageGateway and the AppProperties that use the singleton pattern
are very simple implementations that cache configuration properties that
should be the same whatever the scope is.

For a discussion about the singleton pattern in J2EE environment, see:

http://ibm.com/developerworks/websphere/library/techarticles/0206_robinson/
robinson.html#N10242
432 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.ibm.com/developerworks/websphere/library/techarticles/0206_robinson/robinson.html#N10242

 MessageProducer messageProducer = session.createProducer(queue);
 // create the object message
 ObjectMessage message = session.createObjectMessage();

 message.setObject(object);

 // send message
 messageProducer.send(message);
 // commit transaction
 session.commit();
 // close producer
 messageProducer.close();
 // close connection
 connection.close();
 } catch (JMSException e) {
 logger.error("sendMessage() error sending JMS message", e);
 }

For testing purposes we implemented a servlet that sends an object with user
details through the gateway. To test this, just invoke the following URL in our
sample application:

http://localhost:9080/SAL404Realty/TestMessageGateway

The servlet response is either OK or ERROR depending on whether it could send a
message or not.

You will also get a message sent to the outgoing queue when you change the
user details from the application itself. To do that, follow these steps:

1. Start the sample application in a Web browser using the URL:

http://localhost:9080/SAL404Realty/

2. Enter login details: User ID=cust1, Password=password

3. Click Log in from the navigation menu.

4. Click the link Modify your details here.

5. Change the details of the user as shown in Figure 10-37 on page 434

6. Click Submit.
 Chapter 10. Java Message Service 433

http://localhost:9080/SAL404Realty/TestMessageGateway
http://localhost:9080/SAL404Realty/

Figure 10-37 Modify user details dialog

After submitting the form, a message with the user details is send to the JMS
queue.

To check that a message has been sent to the queue on the bus, go to the
WebSphere Administrative Console and look for the message. Remember that
the message remains in the bus until it is fetched by a message consumer or until
it expires. This is the case when the message is sent to a queue (see 10.2.10,
“JMS message consumers” on page 374).

To see the message in the WebSphere Administrative Console, follow these
steps:

1. Open your WebSphere Administrative Console using

http://localhost:9060/admin

2. Click Service integration → Buses → RealtyBus.

3. Click Destinations (under Additional Properties).

4. Click RealtyBusOutQueue → Queue points.

5. Now click the queue point
RealtyBusOutQueue@yourNodeName.server1-RealtyBus.
434 WebSphere Application Server - Express V6 Developers Guide and Development Examples

6. Click the Runtime tab.

7. You should see a panel as shown in Figure 10-38.

Figure 10-38 Message endpoint runtime panel

8. If you click Messages (under Additional Properties) you see a list of the
messages that have arrived at the queue and have not yet been consumed or
expired.

9. Figure 10-39 shows the list of messages.

Figure 10-39 List of messages for a queue point

10.if you click a message identifier you see the attributes of the message as
shown in Figure 10-40 on page 436.
 Chapter 10. Java Message Service 435

Figure 10-40 Properties of one single message (upper screen area)

11.Now click Message body and you see the body of the message as shown in
Figure 10-41.

Figure 10-41 Message body with object details

Because the body of the message was a serialized object, it is not readable,
but when you look at the details you can find the values for firstName and
lastName (John Smith) of our UserDetailsDTO object as highlighted in
Figure 10-41.
436 WebSphere Application Server - Express V6 Developers Guide and Development Examples

You should also a see message when you modify the user details in the
Sal404 application.

10.8.2 Receiving a message
We registered an UserMessageListener MDB to listen to messages on the
RealtyIncomingQueue destination. Because a Message Driven Bean is an EJB
you have to use Rational Application Developer if you want to use the creation
wizards for EJBs. You also could code the EJB manually but then you would
need to produce the deployment descriptors and bindings manually.

Create an EJB project
To create an EJB project, follow these steps in Rational Application Developer:

1. Choose File → New → EJB Project as shown in Figure 10-42.

Figure 10-42 Create an EJB project

2. Make sure to specify the latest EJB specification (2.1).
3. Specify SAL404Realty as the EAR project.
4. Uncheck Create an EJB Client JAR Project.
5. Click Finish.
 Chapter 10. Java Message Service 437

Rational Application Developer V6 lets you to specify folders for source code for
the EJBs and folders for the deploy code where all the generated classes go. It is
a good idea to create two separate folders, especially when you want to
regenerate the deployed code and not get it confused with the code that you
write yourself. To do this, follow these steps:

1. Right-click the EJB project you just created and click Properties.

2. Go to Java Build Path → Source.

3. Click Add Folder...

4. Specify a new source folder under the project folder as shown in
Figure 10-43.

Figure 10-43 Add a new folder for java sources

Now you have the source folders source and ejbModule. Use source for your own
code. It can be specified when you create an EJB with the wizard. Using the
ejbModule folder for the deployed code is the default setting of for a EJB project.
You can verify this with the following steps:

1. Right-click the EJB project you just created and click Properties.

2. Go to EJB Deployment and make sure that the ejbModule folder is selected
as shown in Figure 10-44 on page 439.
438 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-44 Source folder for EJB deployment code

Create a Message Driven Bean
To create a MDB with Rational Application Developer, follow these steps:

1. Switch to the J2EE perspective.

2. Right-click the Deployment-Descriptor of your EJB project in the Project
Explorer view.

3. Click New → Enterprise Bean to open the wizard for EJBs.

4. Enter the following values as shown in Figure 10-45 on page 440:

– Enter the name UserMessageListener.
– Specify a package name as com.ibm.itso.sal404.user.
– Choose the source folder from the drop-down menu.

Note: With these settings you can now remove any code that you find in the
ejbModule folder. It will be redeployed automatically or when you right-click the
EJB Project and chose deploy from the drop-down menu. The generated
code by default will not be added to the CVS. T
 Chapter 10. Java Message Service 439

Figure 10-45 Create a new message-driven EJB

5. Leave the javax.jms.Listener selected as shown in Figure 10-46.

Figure 10-46 Select the JMS listener type
440 WebSphere Application Server - Express V6 Developers Guide and Development Examples

6. Leave all the default values in the next screen as shown in Figure 10-47. Here
you could specify a message selector, but you can also change these settings
in the deployment descriptor later.

Figure 10-47 Setting details for the MDB

We only changed two methods in the created MDB. We used the ejbCreate
method of the MDB to create a UserBusinessDelegate object that wraps the
UserFacade. This is shown in Example 10-24.

Example 10-24 ejbCreate() method of the MDB

public void ejbCreate() {
...
// just create a reference to the delegate
userBusinessDelegate = new UserBusinessDelegate();
...

}

The second method we changed is the onMessage() method. It does the filtering
of the message and invokes the business logic on the delegate. The delegate
invokes the session facade. The actual business logic is done by the
UserManager. This might look like a lot of indirection but the facade and the
 Chapter 10. Java Message Service 441

delegate are thin wrappers and this is a common way to separate the layers
according to J2EE best practices.

The onMessage() method look like Example 10-25. First the message is filtered
for an UserDetailsDTO object. This is the serializable object that is sent to the
JMS message destination. When such an object was found the business logic to
create a new user is invoked.

Example 10-25 The onMessage() method of the MDB

public void onMessage(javax.jms.Message msg) {
...
UserDetailsDTO userDetailsDTO = filterforUserDetailsDTO(msg);
if (userDetailsDTO != null) {

logger.info("filterMessage() start processing the message");
userBusinessDelegate.createUser(userDetailsDTO);

}
...

}

Be careful with the implementation of the onMessage() method when using
queues. Because messages do not die until they are delivered or timed out, the
MDB could be created and the onMessage() method be executed forever, if an
exception occurs in the method. This can produce a 100% CPU load because
the application server never continually creates MDBs and tries to deliver the
message.

The redelivery of the message has a time limit if you specify a time to live for the
messages in the queue. To set the time to live, go choose Default messaging
provider → JMS queue → RealtyIncomingQueue and enter a timeout in
milliseconds (for example 5000 for a development environment) as shown in
Figure 10-48 on page 443. Save the configuration and restart the server to
accept the settings.

Tip: If you stop and restart the server in an attempt to clear the 100% CPU
load, the same problem can happen again. To get rid of the repeated
redelivering of the message, go to the WebSphere Administrative Console
and stop the application with the MDB. After having stopped the application go
to the message queue point in the bus (see Figure 10-39 on page 435), delete
the message that is causing the trouble, then restart the application server.

Tip: Always use the time to live setting when developing Message Driven
Beans in order not to run into trouble with an overloaded CPU.
442 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 10-48 Specify a time to live for messages in a queue

Test the Message Driven Bean
To test the Message Driven Bean, we created a simple Web page that runs in
another enterprise application. The application was setup to demonstrate that we
can send the message from an external application that is outside of the system
context of our Sal404 application even if it is actually running in the same
instance of WebSphere Application Server. To use the test application, enter the
following URL:

http://localhost:9080/AgencyWeb/faces/employee/add_employee.jsp

Enter some user values in the screen shown in Figure 10-49 on page 444 and
click InsertEmployee.
 Chapter 10. Java Message Service 443

The JMS Test Client Application then creates a message on the incoming queue
for SAL404Realty. The MDB UserMessageListener will receive that message and
register the new user in the system using the UserManager.

Figure 10-49 Add a new employee

You cannot see the message that was created in the WebSphere Administrative
Console because it will be consumed immediately by the MDB and not be
waiting on the queue.

To check if the employee was added to the system, login as administrator into the
Sal404 application, go to the user administration, then check for the new user.

10.9 References and resources
The following references provide further information about using JMS with
WebSphere Application Server - Express:

� WebSphere Application Server library

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java Message Service documentation

http://java.sun.com/products/jms
444 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://java.sun.com/products/jms

� Java 2 Platform, Enterprise Edition documentation

http://java.sun.com/j2ee/index.jsp

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/index.jsp

� WebSphere MQ Using Java

http://ibm.com/software/integration/mqfamily/library/manualsa/manuals/cross
latest.html

� Enterprise Messaging Using JMS and WebSphere (Kareem Yusuf), Prentice
Hall, ISBN: 0-13-146863-4

� Java Message Service (Monson-Haefel, Chappell), O’Reilly, ISBN:
0-596-00068-5

� Professional JMS (Grant, Kovacs, et al), Wrox Press Inc., ISBN: 1861004931

� Enterprise JavaBeans, Fourth Edition (Monson-Haefel, Burke, Labourey),
O’Reilly, ISBN: 0-596-00530-X

� EJB Design Patterns (Marinescu), Wiley, ISBN: 0471208310
 Chapter 10. Java Message Service 445

http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/connector/index.js
http://ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://java.sun.com/j2ee/connector/index.jsp

446 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 11. Struts

In this chapter we review the use of Struts and provide an overview of how to
implement Struts applications using the Rational Software Development
Platform.

11
© Copyright IBM Corp. 2005. All rights reserved. 447

11.1 Struts overview
The Jakarta Struts project, an open-source project sponsored by the Apache
Software Foundation, is a server-side Java implementation of the
model-view-controller (MVC) design pattern. The Struts project was designed
with the intention of providing an open-source framework for creating Web
applications that easily separate the presentation layer and allow it to be
abstracted from the transaction and data layers. Struts is useful when you build a
Web application, but in order to understand the benefits of the framework it is
important to understand MVC.

The Struts framework control layer uses technologies such as servlets,
JavaBeans, and XML. The view layer is implemented using JSPs. The Struts
architecture encourages the implementation of the concepts of the
model-view-controller (MVC) architecture pattern. By using Struts you can get a
clean separation between the presentation and business logic layers of your
application.

Struts also speeds up Web application development by providing an extensive
JSP tag library, parsing and validation of user input, error handling, and
internationalization support.

The focus of this chapter is on the Rational Application Developer tooling used to
develop Struts-based Web applications. Although we do introduce some basic
concepts of the Struts framework, we recommend that you refer to the following
sites:

� Apache Struts home page:

http://struts.apache.org/

� Apache Struts User Guide:

http://struts.apache.org/userGuide/introduction.html

11.2 MVC design pattern
Figure 11-1 on page 449 shows an overview of the model-view-controller pattern
as it is used in the Struts framework.

Note: The Rational Software Development Platform includes support for
Struts Version 1.1. As we write this redbook, the latest version of the Struts
framework is V1.2.4.
448 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://struts.apache.org/
http://struts.apache.org/userGuide/introduction.html

Figure 11-1 The MVC pattern and Struts

The MVC design pattern consists of three components: model, view and
controllers.

Model
The model contains the core of the application's functionality and encapsulates
the state of the application. Sometimes the only functionality it contains is state. It
knows nothing about the view or controller.

View
The view provides the presentation of the model. It is the look of the application.
The view can access the model getters, but it has no knowledge of the setters. In
addition, it knows nothing about the controller. The view should be notified when
changes to the model occur.

Controller
The controller reacts to the user input. It creates and sets the model.

The benefits of using MVC include:
 Chapter 11. Struts 449

� Reliability

The presentation and transaction layers have clear separation, enabling you
to change the look and feel of an application without recompiling Model or
Controller code.

� High reuse and adaptability

MVC lets you use multiple types of views, all accessing the same server-side
code. This includes anything from Web browsers (HTTP) to wireless
browsers.

� Very low development and life cycle costs

MVC makes it possible to have lower-level programmers develop and
maintain the user interfaces.

� Rapid deployment

Development time can be significantly reduced because Controller
programmers (Java developers) focus solely on transactions, and View
programmers (HTML and JSP developers) focus solely on presentation.

� Maintainability

The separation of presentation and business logic also makes it easier to
maintain and modify a Struts-based Web application.

11.3 Model-view-controller (MVC) pattern with Struts
Figure 11-2 on page 451 depicts the Struts components in relation to the MVC
pattern.

� Model

Struts does not provide model classes. The business logic must be provided
by the Web application developer as JavaBeans or EJBs.

� View

Struts provides action forms to create form beans that are used to pass data
between the controller and view. In addition, Struts provides custom JSP tag
libraries that assist developers in creating interactive form-based applications
using JSPs. Application resource files hold text constants and error message,
translated for each language, that are used in JSPs.

� Controller

Struts provides an action servlet (controller servlet) that populates action
forms from JSP input fields and then calls an action class where the
developer provides the logic to interface with the model.
450 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 11-2 Struts components in the MVC architecture

A typical Struts Web application is composed of the following components:

� A single servlet (extending org.apache.struts.action.ActionServlet)
implements the primary function of mapping a request URI to an action class.
Before calling the action class, it populates the form bean associated to the
action with the fields from the input JSP. If specified, the action servlet also
requests the form bean to validate the data. It then calls the action class to
carry out the requested function. If form bean validation fails, control is
returned to the input JSP so the user can correct the data. The action servlet
is configured by an XML configuration file that specifies the environment and
the relationship between the participating components.

� Multiple JSPs that provide the end-user view. Struts includes an extensive tag
library to make JSP coding easier. The JSPs display the information prepared
by the actions and requests new information from the user.

� Multiple action classes (extending any one of the Struts action classes like
org.apache.struts.action.Action) that interfaces with the model. When an
action has performed its processing, it returns an action forward object which
determines the view that should be called to display the response. The action
class prepares the information required to display the response, usually as a
form bean, and makes it available to the JSP. Usually the same form bean
that was used to pass information to the action is used also for the response,
but it is also common to have special view beans tailored for displaying the
data. An action forward has properties for its name, address (URL) and a flag

 : ActionForm

View Controller Model

Action

Action

Action

Action
configuration

file

Model

 Application
Resources

ActionServlet

Tag libraries

 : JSP

Struts Support
 Chapter 11. Struts 451

specifying if a forward or redirect call should be made. The address to an
action forward is usually hard-coded in the action servlet configuration file, but
can also be generated dynamically by the action itself.

� Multiple action forms (extending any one of the Struts Action Form classes
like org.apache.struts.action.ActionForm) to help facilitate transfer form
data from JSPs. The action forms are generic Javabeans with getters and
setters for the input fields available on the JSPs. Usually there is one form
bean for each Web page, but you can also use more coarse-grained form
beans holding the properties available on multiple Web pages. This fits very
well for wizard-style Web pages. If data validation is requested (a
configurable option) the form bean is not passed to the action until it has
successfully validated the data. Therefore the form beans can act as a sort of
firewall between the JSPs and the actions, only letting valid data into the
system.

� One application resource file for each language supported by the application
holds text constants and error messages and makes internationalization easy.

Figure 11-3 shows the basic flow of information for an interaction in a Struts Web
application.

Figure 11-3 Struts request sequence

A request from a Web browser reaches the Struts ActionServlet. If the action
that will handle the request has a form bean associated with it, Struts creates the
form bean and populates it with the data from the input form. It then calls the
validate method of the form bean. If validation fails, the user is returned to the
input page to correct the input. If validation succeeds, Struts calls the action’s
execute method. The action retrieves the data from the form bean and performs

 : Web user
(Browser)

 : ActionServlet : Action : ActionForm : JSP

HTTP setXxx()
validate()

execute()

forward()

getXxx()

getXxx()

setXxx()"forward"
452 WebSphere Application Server - Express V6 Developers Guide and Development Examples

the appropriate logic. Actions often call session EJBs to perform the business
logic. When done, the action either creates a new form bean (or other
appropriate view bean) or reuses the existing one, populates it with new data,
and stores it in the request (or session) scope. It then returns a forward object to
the Struts action servlet, which forwards to the appropriate output JSP. The JSP
uses the data in the form bean to render the result.

11.4 Rational Application Developer support for Struts
Rational Application Developer provides the following support for Struts-based
Web applications:

� A Web project can be configured for Struts. This adds the Struts runtime (and
dependent JARs), tag libraries, and action servlet to the project, and creates
skeleton Struts configuration and application resources files. Rational
Application Developer provides support for Struts 1.1, selectable when setting
up the project. This field is selectable as at the time of this writing support for
Struts 1.2.x is being added to Rational Application Developer.

� A set of Struts Component Wizards define action form classes, action classes
with action forwarding information, and JSP skeletons with the tag libraries
included.

� The Struts Configuration Editor maintains the control information for the
action servlet.

� A graphical design tool edits a graphical view of the Web application from
which components (forms, actions, JSPs) can be created using the wizards.
This graphical view is called a Web diagram. The Web diagram editor
provides top-down development (developing a Struts application from
scratch), bottom-up development (that is, you can easily diagram an existing
Struts application that you may have imported) and meet-in-the-middle
development (that is, enhancing or modifying an existing diagrammed Struts
application).

� The Project Explorer view provides a hierarchical (tree-like) view of the
application. This view shows the Struts artifacts, such as Actions, Formbeans,
Global Forwards, Global Exceptions and Web pages, you can expand the
artifacts to see their attributes. For example, an Action can be expanded to
see the formbeans, forwards and local exceptions associated with the
selected Action. This is useful for understanding specific execution paths of
your application. The Project Explorer view is available in the Web
perspective.

� The JSP Page Designer supports rendering the Struts tags, making it
possible to properly view Web pages that use the Struts JSP tags. This
 Chapter 11. Struts 453

support is customizable using Rational Application Developer’s Preferences
settings.

� Validators validate the Struts XML configuration file and the JSP tags used in
the JSP pages.

11.5 Why we use Struts
The Struts project was designed with the intention of providing an open-source
framework for creating Web applications that easily separate the presentation
layer and allow it to be abstracted from the transaction and data layers. Since its
inception, Struts has received enough developer support, and is quickly
becoming a dominant factor in the open-source community.

Application development and maintenance with struts are much easier if the
different components of a Web application have clear and distinct
responsibilities. The Struts framework was created to make it easier for
developers to build J2EE Web applications. We should have different team for
each layer of the project then developers to concentrate on building the business
application rather than on the infrastructure.

Struts framework has gained considerable attention because Struts combines
Java Servlets, JavaServer Pages, custom tags, and message resources into a
unified infrastructure, and saves the developer the time of coding an entire MVC
model, a considerable task indeed.

The Sal301 sample application developed for the redbook WebSphere
Application Server - Express: A Development Example for New Developers,
SG24-6301 was implemented as a Struts application. When the Sal301
application was written JavaServer Faces technology was not available so given
that we made the decision to use the MVC pattern using Struts was an easy
choice. If we were developing the sample application for our current redbook
from scratch the using JavaServer Faces would be an equally valid choice.
Chapter 7, “JavaServer Faces” on page 239 not only discusses JavaServer
Faces and compares it with Struts, but also shows how to use JavaServer Faces
to build the similar functionality as that in our Struts application. We do not
attempt to convert all of our existing sample application from Struts to
JavaServer Faces. Instead we concentrate on using some more features of
Struts including the validation framework and Struts module support. We also
use Struts to implement the new application requirements of the bidding
component. Validation and module support are documented in the following
sections of this chapter. For information about Struts best practices see:

http://ibm.com/developerworks/web/library/wa-struts/index.html
454 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://ibm.com/developerworks/web/library/wa-struts/index.html
http://ibm.com/developerworks/web/library/wa-struts/index.html

11.6 Struts validator framework
The Struts framework allows input validation to occur inside the ActionForm. To
perform validation on data passed to a Struts application, developers must code
special validation logic inside each ActionForm class. Although this approach
works, it has some serious limitations. The Validator framework allows you to
declaratively configure validation routines for a Struts application without
programming special validation logic. The Validator has become so popular and
widely used by Struts developers that it has been added to the list of Jakarta
projects

To use Validator framework, we need to do a number of simple actions:

1. Define fields to validate.
2. Add the plug-in.
3. Add validator_rules.xml.
4. Configure error messages.
5. Configure validation rules.
6. Modify your old validations.

11.7 Struts validation sample
The sample application for Sal301 used Struts validations on the server side. For
this project our Sal404 application sample uses validations on the client side.

One reason for using client-side validations is that you will have less traffic on the
network.

The steps to implement validation in our Sal404 sample are:

1. Define the fields for your validations.

For our project, we focused on the Register Form. The fields we decided to
validate are shown in Table 11-1.

Table 11-1 Fields to validate in the register form

Field Validation Field Field

User name* Character 20 Address name* char <20

password* Char >6 <20 Street* char <100

confirm password* Equal to password Unit char < 10

Title Char 5 Building char < 10

First Name* Char < 40 PO-Box char < 10
 Chapter 11. Struts 455

In Table 11-1 on page 455 all the fields marked with * are required.
Figure 11-4 shows the fields as laid out on the user registration form in our
sample application.

Figure 11-4 Fields on the user registration form

2. The next step is to add the Validator plugin to the Struts config file. Using the
Project Explorer view, navigate to the struts-config.xml file found in SAL404R
Web Project → Struts → default → struts-config.xml.

Last Name* Char < 40 City char <

Email* email valid Post/Zip Code* decimal < 6
positions

Web site Country* char = 4

Phone Number ^\(?(\d{3})\)?[-|
]?(\d{3})[-|]?(\d{4})

State char < 40

Aditional Info >=0 Char < 100

Field Validation Field Field
456 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3. Open the Struts configuration editor by double-clicking the struts-config.xml
file.

4. Click the Plug-ins tab. Figure 11-5 shows the Struts configuration editor open
on the plug-ins tab.

Figure 11-5 Struts plug-ins

5. Click Add and choose the validator plugin as shown in Figure 11-6 on
page 458.
 Chapter 11. Struts 457

Figure 11-6 Add ValidatorPlugin

6. Click OK.

7. Under the heading Plug-in Mapping Extensions click Add to add a property
called pathnames with a value of /WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml. See Figure 11-7 on page 459.
458 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 11-7 Plugin mapping extensions

8. Save the changes to the Struts config file.

9. Add the validator-rules.xml to your Web project. Right-click the WEB-INF
folder in the Web project and choose Import.

10.Select to import from the File system and click Next.

11.Click Browse and select the validator-rules.xml example that is supplied
with Rational Software Development Platform. This can be found in the
directory

<RSDP-install>/rwd/eclipse/plugins/com.ibm.etools.resources.common_6.0.0/St
ruts/Struts_1.1/validator-rules.xml

12.Click Finish to import the file. See Figure 11-8 on page 460.

Tip: You can add the plug-in manually to the struts-config.xml by entering the
following text:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames" value="/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml"/> </plug-in>
 Chapter 11. Struts 459

Figure 11-8 Import validator-rules.xml

13.Validator-rules.xml contains a basic set of default validations. Table 11-2
shows these validations.

Table 11-2 Validations in validator-rules.xml

required validwhen requiredif maxlength

mask byte minlength integer

long float short date

range floatRange double creditCard

email url doubleRange intRange
460 WebSphere Application Server - Express V6 Developers Guide and Development Examples

For more details about this see the following link:

http://struts.apache.org/userGuide/dev_validator.html

14.Next we configure error messages for the default validations.

The default error messages are included by adding the lines shown in
Example 11-1 to the ApplicationsResources.properties files. These are used
by the validator by default and must be included even if they are not
referenced.

Example 11-1 Default Validation rules

errors.required={0} is required.
errors.minlength={0} can not be less than {1} characters.
errors.maxlength={0} can not be greater than {1} characters.
errors.invalid={0} is invalid.
errors.byte={0} must be a byte.
errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.float={0} must be a float.
errors.double={0} must be a double.
errors.date={0} is not a date.
errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is an invalid credit card number.
errors.email={0} is an invalid e-mail address uuuu.

15.To configure messages for each new error that you want validate, you have to
add a message in the ApplicationsResources.properties file:

Open the file SAL404RealtyWeb → Java Resources → JavaSource →
sal40realtyweb.resources → ApplicationResources.Properties and add
the messages shown in Figure 11-9 on page 462.
 Chapter 11. Struts 461

http://struts.apache.org/userGuide/dev_validator.html

Figure 11-9 Register error messages

16.To add an error message, enter the name for the message and the text to
display. For example:

register.error.username.required=User Name is required

Where:

register is the name of the form

error is the type of message

username is the field validated

required is the validation

17.Next configure your validations on the Validation.xml file.In the WEB-INF
folder of your Web project choose File → New → XML → XML file.

18.Click Next and select Create a file from DTD file.

19.Click Next and enter the new file name as validation.xml.

20.Click Next and chose Select XML Catalog entry.

21.Select -//Apache Software Foundation//DTD Struts Validation
Configuration 1.1//EN from the list of available DTDs. See Figure 11-10 on
page 463.
462 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 11-10 Select Struts validation DTD

22.Click Finish.

23.Add a validation rule to the validation.iml file for each of the fields listed in
Table 11-1 on page 455.

For each field to validate, add code similar to that shown in Example 11-2:

Example 11-2 Validation example for register fields

<form name="registerFormBean">
<field property="userName" depends="required,mask,minlength">

<arg0 key="register.error.username.required" />
<arg1 name="minlength" key="${var:minlength}" resource="false" />
<var>
 Chapter 11. Struts 463

<var-name>mask</var-name>
<var-value>^\w+$</var-value>

</var>
<var>

<var-name>minlength</var-name>
<var-value>5</var-value>

</var>
</field>

</form>

The format of a validation as defined in the XML file is:

– formname is the form name to be validate.

– depends is a list of validations, for example required.

– mask validation is followed by a pattern.

This checks the field value against a Jakarta RegExp expression. For
details of regular expressions see

http://jakarta.apache.org/regexp/index.html

– minlength validation

– arg0 is an Error Message defined in ApplicationsResources.properties as
described in step 4 on page 455)

11.7.1 Using the Validator in forms and JSPs
Most of the Struts forms provided in the our sample code extend the standard
Struts ActionForm and include their own validate() method. In order to use the
Validation framework, the form must extend the ValidatorForm. One example of
this in the sample code is the UserDetailsFormBean as shown in Example 11-3
on page 465.

Tip: You can user other error messages if you use “msg” tag and the error
name for a field. For example, enter the following in the validation.xml file:

<field property="emailAddr" depends="required,email">
<msg name="required" key="register.error.email.required" />
<msg name="email" key="register.error.email.valid" />

</field>

Or you can modify the default values the ApplicationResources.properties file.
For example enter:

register.error.email.required=Please type your email address
register.error.email.valid=email invalid
464 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://jakarta.apache.org/regexp/index.html

Example 11-3 Using the validation framework with Struts forms

public class UserDetailsFormBean extends ValidatorForm

public ActionErrors validate(
ActionMapping mapping,
HttpServletRequest request)

{
logger.info("ENTRY: validate");

// validate super first
ActionErrors errors = super.validate(mapping, request);

if (!getPassword().equals(getPassword_conf())) {
 errors.add("register",
 new ActionError("register.error.password.notmatch"));
}

logger.info("EXIT: validate");
return errors;

}

The validation for this form also includes validation performed in addition to that
provided by the validator. Specifically, the password and password confirm are
checked to see that they match. If no extra validation is required for a form, it
must not have a validate() method. The validate method for the
UserDetailsFormBean first calls the super.validate(), this allows the validation
framework to apply the basic validation for the form. The extra validation required
for the form is then checked and added to any errors that were detected by the
validation framework.

The validation framework is capable of performing client-side validation in
JavaScript. If the form is simply submitted, as is done in the
addNewsItemBody.jspf, then all of the validation will be performed on the
server-side.

JavaScript validation is enabled by changing the JSP as shown in Example 11-4.

Example 11-4 Enabling JavaScript validation

<html:form action="/register" onsubmit="return
validateUserDetailsFormBean(this);">

<html:javascript formName="userDetailsFormBean" />
 Chapter 11. Struts 465

If client-side JavaScript validation is enabled, viewing the source code for the
delivered page will show the validation rules provided by the server. Failures in
validation result in a JavaScript pop-up window containing the validation error
messages. Server-side validation failures are shown by the standard
<html:errors> tags.

This can be seen in user registration. If mandatory data is missing, a pop-up
window shows the validation failures. If the password and confirmation password
do not match, a server-side error message is displayed at the top of the page.

The validation framework provides several very useful categories. User
registration makes use of email validation. Another good example for the use of
the validation framework is in the news section. There, date validation is
performed. The date validation is locale aware.

Developers are permitted to define their own validation rules. A common
example of this would be to define a validation rule for a customer account
number. This provides a centralized location for validation so the rules for a valid
customer account number are defined in one place.

Also note that the validation framework supports the use of multiple validation
rules XML files. For large projects, it is preferable to have individual validation
rules XML configuration files for the various sections of the application. These
are defined on the pathnames property in the struts-config.xml file for the
validator plug-in.

11.8 Templating and Struts
The individual JSPs that make up an application can all be created from scratch.
This is a poor approach because it requires a fair amount of work, does not
support reuse, and requires rework if the layout of the application changes. In the
Sal301 sample application developed for the redbook WebSphere Application
Server - Express: A Development Example for New Developers, SG24-6301,
JSP includes were used to provide a standard look and feel for the application.
Using this approach, a template page is created. This template is then copied
and modified for each new page.

Important: As can be seen from these examples, while the validation
framework works with the Rational Software Development Platform tooling, it
is not explicitly supported by the tooling. For example, the validation.xml file
needs to be modified by hand. Changes to the validation.xml can require
republishing of the application in order for them to take effect.
466 WebSphere Application Server - Express V6 Developers Guide and Development Examples

This approach works, but has drawbacks and limitations. For one, the Rational
Software Development Platform tooling does not follow JSP includes very well.
Thus, if a table, for example, begins in one included JSP and ends in another,
the tooling will not be able to match <TABLE></TABLE> tags and produces
warnings in the JSP files.

Perhaps more importantly, the JSP design and preview modes do not work as
expected. Using JSP includes leads to rendering errors in these views. This is
again due to the tooling not following JSP includes.

Finally, using JSP includes as a templating method can lead to the case where
the JSP template itself is changed. This can require rework in all of the existing
JSPs that were copied from the template.

The Rational Software Development Platform tooling provides a templating
mechanism that is very similar to Tiles. Tiles is the standard Struts templating
mechanism. Tiles is provided with the Struts distribution in Rational Web
Developer, but like the validation framework, it is not directly supported. The
Rational Web Developer templating mechanism is very similar to Tiles. The main
difference in the mechanisms is that Tiles layouts can be hierarchical. One layout
can extend another. The templates provided in the Rational Web Developer
tooling are static.

For our Sa404 sample application we used the Rational Web Developer
templates to provide a standard look and feel for all our Struts based JSP pages.
The template in this application has the standard presentation areas:

� Header bar at the top of the page
� Footer bar at the bottom of the page
� Menu bar on the left hand side of the page
� Body area
� Message area for error messages

The area for error messages is interesting in that it provides for a standard
placement for error messages. Developers do not (and should not) need to put
explicit provisions into the JSPs for displaying error messages. This leaves the
placement of error messages up to the template. In this example, the errors area
takes up no space on the page if there are no errors.

The Struts template is in the theme folder of our SAL404RealtyWeb project. This
is the default location and is named sal404.jtpl. The template itself is comprised
of JSP fragments. Each of the standard areas (menu bar, header, footer and
error) are implemented as JSP fragments and are located in the general folder.

The template itself is implemented as a simple HTML table. The various JSP
fragments for the content areas are then placed into the table cells. Templates
 Chapter 11. Struts 467

can be easily assembled using the tools provided in the Palette view under the
Page Template menu of the Rational Web Developer. Finally, the template
requires at least one content area. This is added to the template by dragging and
dropping a Content Area from the Page Template menu into the body area of the
template.

11.8.1 Using templates
The templates are quite easy to use.

1. When creating a new JSP, select Create from page template as shown in
Figure 11-11

Figure 11-11 Using templates

2. Select the desired template as shown in Figure 11-12 on page 469.
468 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 11-12 Select the template

3. Click Finish.

Our examples here follow the convention of naming the JSP fragments for the
body area as pageNameBody. This is not required. The page created from
the template can be named pageName.jsp, while the body area JSP fragment
can be named pageName.jspf.

4. When creating a body JSP fragment, select Create as JSP Fragment as
shown in Figure 11-13 on page 470.
 Chapter 11. Struts 469

Figure 11-13 Create the page body

5. The JSP page body fragment is then placed onto the page using the Page
Fragment item from the Page Template Palette. Dragging and dropping the
Page Fragment onto the contents area of the new page brings up the
selection dialog box shown in Figure 11-14 on page 471.
470 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 11-14 Select the body page fragment

6. The body of the request password JSP is shown in Example 11-5.

Example 11-5 Request password body

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<h1>Request Password</h1>
<HR>

<html:form action="/requestPassword">

<TABLE border="0">
<TBODY>

<TR>
<TD>
<P>Please type in your registered user name and email:</P>

<TD>

</TR>
<TR>

<TH>User ID:</TH>
<TD><html:text property='username' /></TD>

</TR>
<TR>

<TH>Email:</TH>
<TD><html:text property='emailAddress' /></TD>

</TR>
 Chapter 11. Struts 471

<TR>
<TD></TD>
<TD>

<html:submit property="submit" value="Submit" /></TD>

</TR>
</TBODY>

</TABLE>
</html:form>

Many of the JSP body fragments have code similar to that from
modifyUserDetailsBody.jspf as shown in Example 11-6.

Example 11-6 Define a bean to be used on the page.

<%--
MUST use bean define so that Struts will copy the input attributes back to
the form
--%>
<c:if test="${!empty userSessionData.user}">

<bean:define id="user" name="userSessionData"
property="user"></bean:define>
</c:if>

<c:if test="${empty userSessionData.user}">
<bean:define id="user" name="userSessionData"

property="logInUser"></bean:define>
</c:if>

This code defines a bean from the session data that is then used in the JSP
body fragment. This particular case uses <c:if> tags to determine which user
is being modified.

11.9 Struts modules
When we wrote our previous redbook WebSphere Application Server - Express:
A Development Example for New Developers, SG24-6301 the Web development

Note: Compare how clean the page bodies become compared to the
pages that use the JSP include templating technique. The Struts taglibs
are declared. This is required. None of the enclosing taglibs and definitions
from the template are available in the page body. The page body then has
simply a form that contains a table.
472 WebSphere Application Server - Express V6 Developers Guide and Development Examples

tools of WebSphere Studio only supported the use of one Struts module in a
Web application. Multiple modules have supported Struts for some time, and
support for them is are now available in the Rational Software Development
Platform Web development tools.

In large projects, and even in smaller projects, it is common for multiple
developers to need to modify the struts-config.xml file. Adding forms and actions
updates the struts-config.xml file as does changing Struts forwards. This makes
conflicts to changes in the struts-config.xml file common.

By using a different Struts module for the various sections of an application,
conflicts in the configuration files can be minimized or avoided.

The Rational Software Development Platform tooling now supports Struts
modules. This is an important addition to the tooling. In previous releases, only
one Struts module was supported. The default module is usually named
struts-config.xml, and access to this one module would become a bottleneck for
team development. If multiple developers made changes to the Struts
configuration simultaneously, these changes would need to be manually merged.
This process is both time consuming and error prone. It is also not uncommon for
one developer to overwrite the work of another developer.

Creating a new module is quite simple. Right-click the Struts icon in a Web
project and choose New → Module as shown in Figure 11-15 on page 474.
 Chapter 11. Struts 473

Figure 11-15 Create a Struts module

The application presented in this redbook has a bidding component, so we
created a new Struts module for bidding. See Chapter 15, “Bidding component”
on page 549 for details.
474 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 12. Web services

The objective of this chapter is to introduce the Web services technology and
provide an example of developing a Web service in Rational Web Developer.
This chapter discusses the following:

� Web services overview
� Rational Web Developer support for Web services
� Extend the sample application using Web services

12
© Copyright IBM Corp. 2005. All rights reserved. 475

12.1 Web services overview
The industry standard definition of Web services is that they are self-contained,
self-describing, modular applications that can be published, located, and invoked
across the Web. Simply put, it is a technology that enables the invoking of
applications using Internet protocols and standards. In this chapter, first we
introduce the concept of a service-oriented architecture (SOA) which promises to
better integrate today’s highly heterogeneous environments using an approach
that links services together to build complex, yet manageable solutions. We then
show how Web services implement a service-oriented architecture.

12.1.1 Service-oriented architecture (SOA)
In a service-oriented architecture, applications are made up from
loosely-coupled software services that interact to provide all the functionality
needed by the application. Each service is generally designed to be very
self-contained and stateless to simplify the communication which takes place
between them.

There are three main roles involved in a service-oriented architecture:

� Service provider
� Service broker
� Service requester

The interactions between these roles are shown in Figure 12-1.

Figure 12-1 Service-oriented architecture

Service
Requester

Service
Broker

Service
Provider

look up

bind

register
476 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Service provider
The service provider creates a service and may publish its interface and access
information to a service broker.

A service provider must decide which services to expose and how to expose
them. There is often a trade-off between security and interoperability; the service
provider must make technology decisions based on this trade-off. If the service
provider is using a service broker, decisions must be made on how to categorize
the service and the service must be registered with the service broker using
agreed protocols.

Service broker
The service broker, also known as the service registry, is responsible for making
the service interface and implementation access information available to any
potential service requester.

The service broker provides mechanisms for registering and finding services. A
particular broker might be public (for example, available on the Internet) or
private only available to a limited audience (for example, on an intranet). The
type and format of the information stored by a broker and the access
mechanisms used is implementation-dependent.

Service requester
The service requester, also know as a service client, discovers services and then
uses them as part of its operation.

A service requester uses services provided by service providers. Using some
agreed upon protocol, the requester can find the required information about
services using a broker (or this information can be obtained in some other way).
Once the service requester has the necessary details of the service, it can bind
or connect to the service and invoke operations on it. The binding is usually
static, but the possibility of dynamically discovering the service details from a
service broker and configuring the client accordingly makes dynamic binding
possible.

12.1.2 Web services as an SOA implementation
Web services provides a technology foundation for implementing a
service-oriented architecture. A major focus during the development of this
technology is to make the functional building blocks accessible over standard
Internet protocols that are independent of platforms and programming languages
to ensure that very high levels of interoperability are possible.
 Chapter 12. Web services 477

Web services are self-contained software services which can be accessed using
simple protocols over a network. They can also be described using standard
mechanisms and these descriptions can be published and located using
standard registries. Web services can perform a wide variety of tasks, ranging
from simple request-reply to full business process interactions.

Using tools like Rational Application Developer, existing resources can be
exposed as Web services very easily.

The core technologies used for Web services are as follows:

� XML
� SOAP
� WSDL
� UDDI

XML
XML (Extensible Markup Language) is the markup language that underlies Web
services. XML is a generic language that can be used to describe any kind of
content in a structured way, separated from its presentation to a specific device.
All elements of Web services use XML extensively, including XML namespaces
and XML schemas.

The specification for XML is available at:

http://www.w3.org/XML/

SOAP
SOAP (not an acronym) is a network, transport, and programming language
neutral protocol that allows a client to call a remote service. The message format
is XML. SOAP is used for all communication between the service requester and
the service provider. The format of the individual SOAP messages depend on the
specific details of the service being used.

The specification for SOAP is available at:

http://www.w3.org/TR/soap/

WSDL
WSDL (Web Services Description Language) is an XML-based interface and
implementation description language. The service provider uses a WSDL
document in order to specify:

� The operations a Web Service provides
� The parameters and data types of these operations
� The service access information
478 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.w3.org/XML/
http://www.w3.org/TR/soap/

WSDL is one way to make service interface and implementation information
available in a UDDI registry. A server can use a WSDL document to deploy a
Web Service. A service requester can use a WSDL document to work out how to
access a Web Service, or a tool can be used for this purpose.

The specification for WSDL is available at:

http://www.w3.org/TR/wsdl

UDDI
UDDI (Universal Description, Discovery and Integration) is both a client side API
and a SOAP-based server implementation which can be used to store and
retrieve information about service providers and Web services.

The specification for UDDI is available at:

http://www.uddi.org/

Figure 12-2 shows a how the Web services technologies are used to implement
an SOA.

Figure 12-2 Web services implementation of an SOA

12.1.3 Properties of Web services
The key properties of Web services include:

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, merely an HTTP server and a SOAP server are required. It is

Service
Requester

Service
Broker

Service
Provider

look up

bind

register

SOAP

UDDI
using SOAP

UDDI
using SOAP Service

Description
using WSDL

reference

create
 Chapter 12. Web services 479

http://www.w3.org/TR/wsdl
http://www.uddi.org/

possible to Web services enable an existing application without writing a
single line of code.

� Web services are self-describing.

The definition of the message format travels with the message; no external
metadata repositories or code generation tools are required.

� Web services can be published, located, and invoked across the Web.

This technology uses established lightweight Internet standards such as
HTTP. It leverages the existing infrastructure. Some additional standards that
are required to do so include SOAP, WSDL, and UDDI.

� Web services are language independent and interoperable.

Client and server can be implemented in different environments. Existing
code does not have to be changed in order to be Web service enabled.
Basically, any language can be used to implement Web service clients and
servers.

� Web services are inherently open and standards based.

XML and HTTP are the major technical foundation for Web services. A large
part of the Web service technology has been built using open-source
projects. Therefore, vendor independence and interoperability are realistic
goals.

� Web services are dynamic.

Dynamic e-business can become reality using Web services because, with
UDDI and WSDL, the Web service description and discovery can be
automated.

� Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at
both ends. Web services require a simpler level of coordination that allows a
more flexible re-configuration for an integration of the services in question.

� Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code
level. Service consumers have to know the interfaces to Web services but do
not have to know the implementation details of services.

� Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily be integrated into the
service-oriented architecture by implementing a Web service as an interface.
480 WebSphere Application Server - Express V6 Developers Guide and Development Examples

12.1.4 Related Web services standards
The basic technologies of XML, SOAP, WSDL and UDDI are fundamental to
Web services, but many other standards have been developed to help with
developing and using them.

An excellent resource for information about standards related to Web services
can be found at:

http://ibm.com/developerworks/views/webservices/standards.jsp

Web services in J2EE V1.4
One of the main changes in moving from J2EE V1.3 to V1.4 is the incorporation
of Web services into the platform standard. J2EE V1.4 provides support for Web
services clients and also allows Web services to be published. The main
technologies in J2EE V1.4 which provide this support are as follows:

� Java API for XML-based Remote Procedure Calls (JAX-RPC)

JAX-RPC provides an API for Web services clients to invoke services using
SOAP over HTTP. It also defines standard mappings between Java classes
and XML types.

� SOAP with Attachments API for Java (SAAJ)

SAAJ allows SOAP messages to be manipulated from within Java code. The
API includes classes to represent such concepts as SOAP envelopes (the
basic packaging mechanism within SOAP), SOAP faults (the SOAP
equivalent of Java exceptions), SOAP connections and attachments to SOAP
messages.

� Web services for J2EE

This specification deals with the deployment of Web Service clients and Web
services themselves. Under this specification, Web services can be
implemented using JavaBeans or stateless session EJBs.

� Java API for XML Registries (JAXR)

This API deals with accessing XML registry servers, such as servers
providing UDDI functionality.

The specifications for Web services support in J2EE V1.4 are available at:

http://java.sun.com/j2ee/

Web services interoperability
In an effort to improve the interoperability of Web services, the Web Services
Interoperability Organization (known as WS-I) was formed. WS-I produces a
specification, known as the WS-I Basic Profile, which describes the technology
 Chapter 12. Web services 481

http://www.ibm.com/developerworks/views/webservices/standards.jsp
http://java.sun.com/j2ee/

choices that maximize interoperability between Web services and clients running
on different platforms, using different runtime systems and written in different
languages.

The WS-I Basic Profile is available at this Web site:

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Web services security
Although not all runtimes support security for Web services, a body of standards
are evolving which describe how Web services can be secured. The technical
basis for these standards is known as WS-Security, which provides the basic
encryption and digital signature technologies. In addition, several other
specifications now use WS-Security for defining trust models, creating secure
channels between Web services and their clients, and ensuring that clients are
authorized to use Web services.

The specification for WS-Security is managed by OASIS:

http://www.oasis-open.org/

Web services workflow
Business Process Execution Language for Web Services (BPEL4WS) provides a
language for the specification of business processes and business interactions
protocols, extending the basic Web services model to include business
transaction support.

The specification for BPEL4WS is available at this Web site:

http://ibm.com/developerworks/webservices/library/ws-bpel/

Web Services Inspection Language
Web Services Inspection Language (WSIL) is also known as WS-Inspection and
it can be used as an alternative to registering Web services using UDDI. With
WS-Inspection, a site can be inspected for Web services and all the necessary
information about the available Web services can be obtained from this
inspection.

The WS-Inspection specification is available at this Web site:

http://ibm.com/developerworks/webservices/library/ws-wsilspec.html
482 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.oasis-open.org/
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html

12.2 Web services tools
Rational Web Developer provides tools to create Web services from existing
Java and other resources or from WSDL files, as well as tools for Web services
client development and for testing Web services. Rational Web Developer
provides tools to assist with the following aspects for Web services development:

� Discover

Browse Universal Description, Discovery and Integration (UDDI) registries or
Web services inspection language (WSIL) sites to find Web services for
integration. The IBM Web Services Explorer provides the all necessary
functions to discover a Web service.

� Create service provider

Use the Rational Web Developer tooling to create Web services from existing
artifacts, such as JavaBeans, Web sites that take and return data, DB2 XML
Extender calls, DB2 stored procedures and SQL queries.

� Create service consumer

Use the Web services client tools (wizard or command line), to create a client
for any Web service. The generation tools analyze service WSDL files to
create the client components.

� Test

Web services can be tested, running locally or remotely. for local test, the
WebSphere test environment can be used. Rational Web Developer provides
functions to easily create and run Web service component tests for HTTP
bound Web services. See 12.2.4, “Testing tools for Web services” on
page 485.

� Publish

Publish Web services to a public or private UDDI v2 or v3 Business Registry,
using the Web Services Explorer, enabling access to them.

� Validate

Use the WSDL and DADX validators to check for structural and semantic
problems in these types of files. This feature is useful when receiving a
service WSDL file from a service provider, to check the files are valid.

� Secure

The Web service wizards and deployment descriptor editors assist to
configure Web services security (WS-Security) for the WebSphere
Application Server Environment.
 Chapter 12. Web services 483

� Run

Run Web services provider and consumer components in WebSphere
Application Server or Tomcat test environments. The deployment and
administration for the WebSphere test environment is integrated in,
respectively can be started via Rational Web Developer.

12.2.1 Creating a Web Service from existing resources
Rational Web Developer provides wizards for exposing a variety of resources as
Web services. The following resources can be used to build a Web Service:

� JavaBean:

The Web Service wizard assists you in creating a new Web Service from a
simple Java class, configures it for deployment, and deploys the Web Service
to a server. The server can be the WebSphere Application Server V6.0 Test
Environment included with Rational Web Developer or an another application
server.

� EJB

The Web Service wizard assists you in creating a new Web Service from a
stateless session EJB, configures it for deployment, and deploys the Web
Service to a server.

� DADX

Document access definition extension (DADX) is an XML document format
that specifies how to create a Web Service using a set of operations that are
defined by DAD documents and SQL statements. A DADX Web Service
enables you to expose DB2 XML Extender or regular SQL statements as a
Web Service. The DADX file defines the operations available to the DADX
run-time environment and the input and output parameters for the SQL
operation.

� URL

The Web Service wizard assists you in creating a new Web Service that
directly accesses a servlet running on a server.

� ISD

An ISD file is an existing Web service deployment descriptor. It provides
information to the SOAP runtime about the service that should be made
available to clients (for example URI, methods, implementation classes,
serializers and deserializers). When using a Web services runtime based on
Apache SOAP, ISD files are concatenated into the SOAP deployment
descriptor (dds.xml). This mechanism has been replaced in more recent Web
services runtimes, such as Apache Axis and J2EE Web services runtimes.
484 WebSphere Application Server - Express V6 Developers Guide and Development Examples

12.2.2 Creating a skeleton Web service
Rational Application Developer provides the functionality to create Web services
from a description in a WSDL (or WSIL) file:

� JavaBean from WSDL

The Web Service wizard assists you in creating a skeleton JavaBean from an
existing WSDL document. The skeleton bean contains a set of methods that
correspond to the operations described in the WSDL document. When the
bean is created, each method has a trivial implementation that you replace by
editing the bean.

� Enterprise JavaBean from WSDL

The Web services tools support the generation of a skeleton EJB from an
existing WSDL file. Apart from the type of component produced, the process
is similar to that for JavaBeans.

12.2.3 Client development
To assist in development of Web Service clients, Rational Application Developer
provides these features:

� Java client proxy from WSDL

The Web Service client wizard assists you in generating a proxy JavaBean.
This proxy can be used within a client application to greatly simplify the client
programming required to access a Web Service.

� Sample Web application from WSDL

Rational Application Developer can generate a sample Web application,
which includes the proxy classes described above and sample JSPs that use
the proxy classes.

12.2.4 Testing tools for Web services
To enable developers to test Web services, Rational Application Developer
provides a range of features:

� WebSphere Application Server V6.0 Test Environment

The V6.0 server is included with Rational Application Developer as a test
server can be used to host Web services. It provides a range of Web services
runtimes, including an implementation of the J2EE specification standards.

� Sample Web application

The Web application mentioned above can be used to test Web services and
the generated proxy it uses.
 Chapter 12. Web services 485

� Web Services Explorer

This is a simple test environment which can be used to test any Web Service,
based only on the WSDL file for the service. The service can be running on a
local test server or anywhere else on the network.

� Universal Test Client

The Universal Test Client is a very powerful and flexible test application which
is normally used for testing EJBs. Its flexibility makes it possible to test
ordinary Java classes, so it can be used to test the generated proxy classes
created to simplify client development.

� TCP/IP Monitor

The TCP/IP Monitor works like a proxy server, passing TCP/IP requests on to
another server and directing the returned responses back to the originating
client. In the process of doing this, it records the TCP/IP messages which are
exchanged and can display these in a special view within Rational Application
Developer.

12.3 Extend the sample application using Web services
In this section, we describe using Web services to extend the functionality of our
Sal404 application. The Web service requirements for our sample application are
to provide the following Web services implementations:

� A Web service that allows an external client to search the SAL404 property
catalog

� A Web service that allows an external client to list SAL404 news items

� A Web service that allows an external client to add news item to the SAL404
news items

� An outbound service request that will not expect a response, but publish data
when the property status has changed. A typical scenario would be notifying a
property listing service that new properties had been listed for sale.

12.3.1 Implementing the property search Web service
This example describes how to provide a Web service that access the existing
property search functionality of the Sal404 application. Our objective is to reuse
the existing SAL404 PropertyCatalogManager class.

Web service preferences
We need to set the Rational Web Developer preferences so that the Web service
code generation does not overwrite existing loadable classes. We do this so that
486 WebSphere Application Server - Express V6 Developers Guide and Development Examples

the Web Service wizards will not write any Java classes to the target project that
exist in a project, module or JAR file that will be loadable from the target project
when the application is running on the server.

If this option is not selected, the Web service code wizards can write Java
classes to the target project that mask preexisting classes with the same name in
other projects, modules or JAR files. This can result in run-time environment and
compilation errors. The steps are:

1. Using Rational Web Developer, choose Window → Preferences.

2. Expand Web Services → Code Generation.

3. Check the option Do not overwrite loadable Java classes as shown in
Figure 12-3,

Figure 12-3 Do not overwrite loadable Java classes

4. Click OK to close the preferences dialog box.
 Chapter 12. Web services 487

PropertyCatalogServices class
We created a new class in the SAL404RealtyControl project to wrap the
functionality of our PropertyCatalogManager. This is because we want to expose
only some of the methods of the PropertyCatalogManager as Web services and
we want our Web services to have a different interface. In our specific example
the PropertyCatalogManager method searchByCriteria returns a Vector of
ResultProptertiesDTO, but for our Web service we want to return an array of
ResultProptertiesDTO.

The PropertyCatalogServices class creates a PrpoertyCatalogManager using
the following code:

PropertyCatalogManager manager = new PropertyCatalogManager();

The key method is searchByCriteria which takes an input of a
SearchPropertiesByCriteriaDTO and returns an array of ResultPropertiesDTO. It
does this by calling the searchByCriteria method of the existing
PropertyCatalogManager. See Example 12-1.

Example 12-1 PropertyCatalogServices searchByCriteria method

public ResultPropertiesDTO[] searchByCriteria(
 SearchPropertiesByCriteriaDTO searchByCriteriaDTO)
 throws ApplicationException
 {

 logger.info("ENTRY: searchByCriteria");

 Vector results = manager.searchByCriteria(searchByCriteriaDTO);
 ResultPropertiesDTO[] WSResults = new ResultPropertiesDTO[results.size()];
 Iterator iter = results.iterator();
 int i = 0;
 while (iter.hasNext())
 {
 ResultPropertiesDTO element = (ResultPropertiesDTO) iter.next();
 WSResults[i]= element;
 i++;
 }
 logger.info("EXIT: searchByCriteria");
 return WSResults;
 }

Create Web service from PropertyCatalogServices
Now we can create and test our Web service that will search the property catalog
by calling the PropertyCatalogServices class.
488 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Generating the Web service and Web service test code
The steps to take are:

1. Locate the PropertyCatalogServices class in the Rational Web Developer
Project Explorer, right-click and choose Web Services → Create Web
Service. See Figure 12-4.

Figure 12-4 Create Web service

2. Choose a Web service type of Java bean Web Service, select Generate a
proxy and Test the Web service. Click Next. See Figure 12-5 on page 490.
 Chapter 12. Web services 489

Figure 12-5 Select Web service type

3. Select PropertyCatalogServices as the class to use on the Object Selection
Page and click Next. See Figure 12-6 on page 491.
490 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-6 Object selection page

4. Now we choose where the generated Web service code should be deployed.
On the server side, we choose to generate code in our existing
SAL404RealtyWeb application. For testing purposes we created an
Enterprise Application project called SAL404TestServices which we used for
the client side testing of our Web services. We chose to use a Web-based
client for our testing. See Figure 12-7 on page 492 for an example the options
we used for our service deployment. Click Next.
 Chapter 12. Web services 491

Figure 12-7 Service deployment configuration

5. Accept the defaults for the Service Endpoint Interface and click Next.

6. When generating the Web service, we took all the default values to configure
our Java bean as a Web service:

– WSDL file name = PropertyCatalogServices.wsdl
– Style and Use = Document/Literal
– Security Configuration = No security
– Select Use WSDL 1.1 Mime types exclusively

Select to generate a service only for the SearchByCriteria method and click
Next. See Figure 12-8 on page 493.
492 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-8 Web services generation

7. Leave the test facility set to Web Services Explorer as shown in Figure 12-9
on page 494 and click Next.
 Chapter 12. Web services 493

Figure 12-9 Web service test facility

8. Choose Generate a proxy and click Next. See Figure 12-10 on page 495.
494 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-10 Generate a proxy

9. Choose Test the generated proxy and Web service sample JSPs. Click
Next. See Figure 12-11 on page 496.
 Chapter 12. Web services 495

Figure 12-11 Selections for Web service client test

10.We do not need to publish our Web service, so click Finish as shown in
Figure 12-12 on page 497.
496 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-12 Finish Web service creation

Test the Web service
After the new Web service has been generated, the test client will be launched in
the internal Web browser of Rational Web Developer as shown in Figure 12-13
on page 498.
 Chapter 12. Web services 497

Figure 12-13 test client for Web service

The steps to test the Web service are:

1. Select a method to test as shown in Figure 12-14 on page 499.
498 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-14 Select a method to test

2. Once you have selected a method to test, click Invoke to run the method.
Figure 12-15 on page 500 shows the result of a successful test of the
getEndpoint method.
 Chapter 12. Web services 499

Figure 12-15 Test getEndpoint

3. To test the property search feature of our Web service, select to test the
SearchByCriteria method, enter the required parameters to create a
PropertSearchCriteriaDTO and click Invoke. Figure 12-16 on page 501
shows valid parameters for a property search. The propertyTypeId is set to 1
which is for properties of type Single Family Dwelling. The postalCode is set
to % so that all properties that meet the other search criteria, regardless of
their postal code, will be returned.
500 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-16 Enter parameters for a property search

4. Figure 12-16 also shows the result of this property search. Note that the
return result is an array of ResultPropertiesDTO objects so we do not see
details of the returned properties in the Result pane.

Test using the Web Services Explorer
One way to better see the result of a property search is to test the Web service
using the Web Services Explorer. The steps to take are:

1. Use the project explore to navigate to the Web service
PropertyCatalogServicesService. Right-click
PropertyCatalogServicesService and choose Test with Web Services
Explorer as shown in Figure 12-17 on page 502.
 Chapter 12. Web services 501

Figure 12-17 Test with Web Services Explorer

2. Invoke the searchByCriteria WSDL operation and provide values for the
searchByCriteriaDTO as shown in Figure 12-18 on page 503. Click Go.
502 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-18 Test searchByCriteria WSDL operation

3. Figure 12-19 on page 504 shows the results of a successful test of the search
criteria operation. We have expanded the status pane of the results page so
that you can see the contents of the ResultPropertiesDTOs.
 Chapter 12. Web services 503

Figure 12-19 Results of testing search by criteria using the Web Services Explorer

12.3.2 Implementing News Web services
In this section we describe how we implemented sample Web services that
interact with the News component of our Sal404 application.

Create the WSNewsItemDTO
We created a new DTO called WSNewsItemDTO for use with our Web services
that access the News component. This is because the existing NewsItemDTO
contains a Date attribute that caused problems for the generated Web services
504 WebSphere Application Server - Express V6 Developers Guide and Development Examples

code. The WSNewsItemDTO simply replaces the news item date with a String
representation of the date.

Create Web services methods in NewsManager
We want to build our news Web services by reusing the NewsManager class, but
instead of returning NewsItemDTO objects from calls to NewsManager our Web
service needs to get WSNewsItemDTO objects. To do this we added some new
methods to the NewsManager class. The methods are:

� WSNewsItemDTO convertNewsItemDTOToWSNews(NewsItemDTO news)

This method converts an input NewsItemDTO into a WSNewsItemDTO

� NewsItemDTO convertWSNewsToNewsItemDTO(WSNewsItemDTO
WSNews)

This method converts an input WSNewsItemDTO into a NewsItemDTO

� Vector viewWSNewsItem()

This method is a wrapper around the existing viewNewsItem method. The
viewNewsItem() method is called to return a vector of NewsItemDTO which
are then converted into a vector of WSNewsItemDTO

� WSNewsItemDTO viewWSNewsItemDetails(String newsId)

This method is a wrapper around the existing viewNewsItemDetails method.
The viewNewsItemDetails method is called to return a NewsItemDTO which
is then converted into a WSNewsItemDTO

� void addWSNewsItem(WSNewsItemDTO tempWSNewsItemDTO)

This method is a wrapper around the existing addNewsItem method. The
inputWSNewsItemDTO is first converted into a NewsItemDTO and the
addNewsItem method is called to insert the news item.

Create news item Web services
The steps to create these Web service are very similar to those documented in
“Create Web service from PropertyCatalogServices” on page 488. In summary,
you do the following:

1. Locate the NewsManager class in the Rational Web Developer Project
Explorer, right-click and choose Web Services → Create Web Service.

2. Choose a Web service type of Java bean Web Service, select Generate a
proxy and Test the Web service. Click Next. See Figure 12-20 on page 506.
 Chapter 12. Web services 505

Figure 12-20 Web service creation using the NewsManager

3. Select NewsManager as the class to use on the Object Selection Page and
click Next.

4. Now choose where the generated Web service code should be deployed. On
the server side choose to generate code in our existing SAL404RealtyWeb
application. Use the Enterprise Application project called
SAL404TestServices for the client side testing of our Web service. Also
choose to use a Web-based client for testing. See Figure 12-21 on page 507
for an example of the options we used for our service deployment. Click Next.
506 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-21 Configure service deployment

5. Accept the defaults for the Service Endpoint Interface and click Next.

6. When generating the Web service, we took all the default values to configure
our Java bean as a Web service:

– WSDL file name = NewsManager.wsdl
– Style and Use = Document/Literal
– Security Configuration = No security
– Select Use WSDL 1.1 Mime types exclusively

Select to generate a service for three methods:
 Chapter 12. Web services 507

– viewWSNewsItem
– viewWSNewsItemDetails
– addWSNewsItem

Click Next. See Figure 12-22.

Figure 12-22 Web services generation

7. Leave the test facility set to Web Services Explorer and click Next.

8. Choose Generate a proxy and click Next.
508 WebSphere Application Server - Express V6 Developers Guide and Development Examples

9. Choose Test the generated proxy and Web service sample JSPs. Also
remember to click Select All so that all methods are selected. Click Next.
See Figure 12-23.

Figure 12-23 Selections for Web service client test

10.We do not need to publish our Web service so click Finish. See Figure 12-24
on page 510.
 Chapter 12. Web services 509

Figure 12-24 Finish Web service creation

Test the News Web services
After the Web service has been generated, the test client is launched in the
internal Web browser of Rational Web Developer as shown in Figure 12-25 on
page 511.
510 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-25 Test client for Web service

Test the key methods of the news item Web services. The steps to test the Web
service are:

1. Figure 12-26 on page 512 shows a successful test of the addWSNewsItem
method.
 Chapter 12. Web services 511

Figure 12-26 Successful test of the addWSNewsItem method

2. Figure 12-27 on page 513 shows a successful test of the
viewWSNewsItemDetails method.
512 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-27 Successful test of the viewWSNewsItemDetails method

3. Figure 12-28 on page 514 shows a successful test of the viewWSNewsItem
method.
 Chapter 12. Web services 513

Figure 12-28 Successful test of the viewWSNewsItem method.

You can also test the new Web services with the Web Services Explorer.

Create an outbound Web service client
In this section we describe how to create a client proxy to call a Web service that
is external to our Sal404 application. The sample Web service that we call is the
ListingManagerService implemented in the SAL404JmsClientWeb project. The
ListingManagerService has two operations:

� addListing
514 WebSphere Application Server - Express V6 Developers Guide and Development Examples

This operation takes an input message addListingRequest and returns an
addListingResponse message.

The addListingRequest is formatted as ListingDTO complex type containing
the elements shown in Example 12-2.

Example 12-2 ListingDTO type

<element name="listingAgent" nillable="true" type="xsd:string"/>
<element name="listingAddress" nillable="true" type="xsd:string"/>
<element name="listingDescription" nillable="true" type="xsd:string"/>
<element name="listingId" type="xsd:int"/>
<element name="listingPrice" nillable="true" type="xsd:decimal"/>

The addListingResponse is a String that shows the values from the input
ListingDTO

� changeListing

This operation takes an input message changeListingRequest and returns an
changeListingResponse message.

The changeListingRequest is formatted as ListingDTO complex type.

The changeListingResponse is a String that shows the values from the input
ListingDTO

The WSDL file describing the ListingManagerService is the ListingManager.wsdl
file located in the SAL404JmsClientWeb folder WebContent/WEB-INF/wsdl. The
full WSDL is shown in Example 12-3.

Example 12-3 WSDL for the ListingManagerService

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://manager.listings.sab404r.itso.ibm.com"
xmlns:impl="http://manager.listings.sab404r.itso.ibm.com"
xmlns:intf="http://manager.listings.sab404r.itso.ibm.com"
xmlns:tns2="http://dto.listings.sab404r.itso.ibm.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://dto.listings.sab404r.itso.ibm.com"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:impl="http://manager.listings.sab404r.itso.ibm.com"
xmlns:intf="http://manager.listings.sab404r.itso.ibm.com"
 Chapter 12. Web services 515

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <complexType name="ListingDTO">
 <sequence>
 <element name="listingAgent" nillable="true" type="xsd:string"/>
 <element name="listingAddress" nillable="true" type="xsd:string"/>
 <element name="listingDescription" nillable="true" type="xsd:string"/>
 <element name="listingId" type="xsd:int"/>
 <element name="listingPrice" nillable="true" type="xsd:decimal"/>
 </sequence>
 </complexType>
 </schema>
 <schema targetNamespace="http://manager.listings.sab404r.itso.ibm.com"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:impl="http://manager.listings.sab404r.itso.ibm.com"
xmlns:intf="http://manager.listings.sab404r.itso.ibm.com"
xmlns:tns2="http://dto.listings.sab404r.itso.ibm.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://dto.listings.sab404r.itso.ibm.com"/>
 <element name="addListingResponse">
 <complexType>
 <sequence>
 <element name="addListingReturn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="changeListing">
 <complexType>
 <sequence>
 <element name="aListing" nillable="true" type="tns2:ListingDTO"/>
 </sequence>
 </complexType>
 </element>
 <element name="changeListingResponse">
 <complexType>
 <sequence>
 <element name="changeListingReturn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="addListing">
 <complexType>
 <sequence>
 <element name="aListing" nillable="true" type="tns2:ListingDTO"/>
 </sequence>
 </complexType>
 </element>
 </schema>
516 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 </wsdl:types>

 <wsdl:message name="addListingResponse">

 <wsdl:part element="impl:addListingResponse" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="changeListingRequest">

 <wsdl:part element="impl:changeListing" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="changeListingResponse">

 <wsdl:part element="impl:changeListingResponse" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="addListingRequest">

 <wsdl:part element="impl:addListing" name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="ListingManager">

 <wsdl:operation name="addListing">

 <wsdl:input message="impl:addListingRequest"
name="addListingRequest"/>

 <wsdl:output message="impl:addListingResponse"
name="addListingResponse"/>

 </wsdl:operation>

 <wsdl:operation name="changeListing">

 <wsdl:input message="impl:changeListingRequest"
name="changeListingRequest"/>

 <wsdl:output message="impl:changeListingResponse"
name="changeListingResponse"/>

 </wsdl:operation>

 </wsdl:portType>
 Chapter 12. Web services 517

 <wsdl:binding name="ListingManagerSoapBinding" type="impl:ListingManager">

 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="addListing">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="addListingRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addListingResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="changeListing">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="changeListingRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="changeListingResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ListingManagerService">

 <wsdl:port binding="impl:ListingManagerSoapBinding"
name="ListingManager">
518 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 <wsdlsoap:address
location="http://localhost:9080/AgencyWeb/services/ListingManager"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

The ListingManagerService was created by using the Rational Web Developer to
build a Web service for the existing Java class ListingManager found in the
SAL404JmsClientWeb project in package
com.ibm.itso.sab404r.listings.manager.

The ListingManagerService is our simple example of how a real estate listing
company might provide a way for their customers to add and change properties
that they have for sale. We want any property added or changed by our Sal404
application to also be listed by the real estate listing company that provides the
ListingManagerService.

To create a client to call the ListingManagerService from the Sal404 application
the steps are:

1. Obtain a WSDL file describing the ListingManagerService. In the real world
we might obtain such a WSDL file by looking up a UDDI repository, by using
WSIL, or directly from the company that provides the ListingManagerService.
But in our simple example we used Rational Web Developer the copy the
ListingManager.wsdl file from the SAL404JmsClientWeb project to the
SAL404RealtyJava project.

2. Select ListingManager.wsdl file in the SAL404RealtyJava project, right-click,
and choose Web Services → Generate Client as shown in Figure 12-29 on
page 520.
 Chapter 12. Web services 519

Figure 12-29 Create a Web service client

3. We do not need to test the generated client at this stage, so accept the
defaults on the client proxy page as shown in Figure 12-30 on page 521 and
click Next.
520 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-30 Client proxy page

4. Our ListingManager.wsdl file should be already listed as shown in
Figure 12-31 on page 522, so we click Next.
 Chapter 12. Web services 521

Figure 12-31 Choose WSDL for client

5. Choose a client type of Java and place the code in the SAL404RealtyJava
project as shown in Figure 12-32 on page 523. Click Next.
522 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 12-32 Generate a Java Web service client

6. We do not need any security configuration so click Finish to generate the
Web service client code. See Figure 12-33 on page 524.
 Chapter 12. Web services 523

Figure 12-33 Finish Web service client

The Web service client wizard creates a proxy called ListingManagerProxy in the
com.ibm.itso.sab404r.listings.manager package of the SAL404RealtyJava
project. Other support code is also created in the
com.ibm.itso.sab404r.listings.manager and com.ibm.itso.sab404r.listings.dto
packages.

Example 12-4 on page 525 shows the addListing method of the
ListingManagerProxy class which call to access the ListingManagerService
524 WebSphere Application Server - Express V6 Developers Guide and Development Examples

addListing operation. A changeListing method in the proxy is also created to
allow us to call the changeListing operation.

Example 12-4 addListing method of the proxy

public java.lang.String addListing(com.ibm.itso.sab404r.listings.dto.ListingDTO
aListing) throws java.rmi.RemoteException{
 if (listingManager == null)
 _initListingManagerProxy();
 return listingManager.addListing(aListing);
}

To test that the generated proxy worked we created sample calling code in a
Rational Web Developer scrapbook page JavaTesting.jpage in the
SAL404RealtyJava project. This test code is shown in Example 12-5.

Example 12-5 Test the ListingManagerProxy

ListingManagerProxy listProxy = new ListingManagerProxy();
ListingDTO listDto = new ListingDTO();
listDto.setListingAddress("An address");
listDto.setListingAgent("The agent");
listDto.setListingDescription("A great property");
listDto.setListingId(111);
listDto.setListingPrice(new java.math.BigDecimal(34567.90));
listProxy.addListing(listDto);

To run this test code in the scrapbook, you can select all the code, right -click and
choose Display. A successful test returns a string similar to that shown in
Example 12-6.

Example 12-6 Results of testing the ListingManagerProxy

(java.lang.String)
com.ibm.itso.sab404r.listings.dto.ListingDTO@64510f42*****Listing id is
111*****Listing agent is The agent*****Listing address is An
address*****Listing price is
34567.9000000000014551915228366851806640625*****Listing description is A great
property

To integrate a call to ListingManagerProxy into our Sal404 application we did the
following:
 Chapter 12. Web services 525

1. Created a new DAO called ListingServiceDAO in the
com.ibm.itso.sal404.propertycatalog.dao package of the SAL404RealtyJava
project.

2. Created an addListing method in the ListingServiceDAO to call the addListing
method of a ListingManagerProxy. See Example 12-7.

Example 12-7 addListing method in the ListingServiceDAO

public java.lang.String addListing(ListingDTO aListing)
 throws RemoteException

 {
 ListingManagerProxy listProxy = new ListingManagerProxy();
 return listProxy.addListing(aListing);
 }

3. Created a changeListing method in the ListingServiceDAO to call the
changeListing method of a ListingManagerProxy.

4. Created a method called addToListingService in the
PropertyCatalogManager class that creates a ListingDTO from an input
PropertyDTO and then calls the addListing method of a ListingServiceDAO.

5. For testing purposes, we added a call to the addToListingService method in
the addPropertyDetails method of the PropertyCatalogManager class.

6. Created a method called changeListingService in the
PropertyCatalogManager class that creates a ListingDTO from an input
PropertyDTO and then calls the changeListing method of a
ListingServiceDAO.

7. For testing purposes we added a call to the changeListingService method in
the modifyPropertyDetails method of the PropertyCatalogManager class. This
has also been commented out in the code in our Redbook additional material.

Note: In the code we shipped with our redbook additional material we have
commented out the call to the addToListingService method. This enables
you to install and test the sal404 application without needing to have the
SAL404JmsClientWeb application and the ListingManagerService
installed.
526 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 13. Database design

In this chapter we discuss the existing data model and SQL queries inherited
from the sample application built for the redbook WebSphere Application Server
V6 Planning and Design WebSphere Handbook Series, SG24-6446.

We then build an improved data model and discuss the advantages this would
have if used in our sample application. We did not implement this new data
model in our new Sal404 application because of time constraints during our
redbook project. Using the new model would have meant rewriting the entire
application, so we decided to modify the old data model only where it was
necessary to implement new functionality. This allowed us to be sure that the
other components would work seamlessly with the components that implement
the new application functionality. We provide an outline of what we changed and
why and discuss how this helps the new functionality of our application.

This chapter also looks at the tooling support for implementing a database
backend as part of the development process. We discuss SQL and database
features such as indexes and triggers and so on, and how they should be used
with the sample application.

13
© Copyright IBM Corp. 2005. All rights reserved. 527

13.1 Database features
For an online application to be functional, it needs a means to persist data
including both business and end user data. Persisting data is not enough,
because the application also needs a way easily and seamlessly to retrieve and
manipulate the stored data. There are many data stores that applications can
utilize, but for out application we are particularly interested in relational
databases. WebSphere Application Server - Express supports many database
platforms. In our sample application, we use IBM DB2 Universal Database V8.2,
which is a powerful relational database management system provided with
different editions and features and ships with WebSphere Application Server -
Express V6.

We now detail some database features that should be used for developing
database applications. These features are common to relational database
platforms, but there can be differences where specific platform implementations
are concerned, so you need to be careful of database specific features.

� Database triggers

A trigger defines an action or set of actions that are applied or performed
when certain operations are enacted against a table within a database.
Operations here include delete, update and insert operations. For example,
you can specify a query or procedure that is run when an application inserts a
record into a table. Our sample application uses of a single trigger that
deletes an interest list item when the corresponding interest list is deleted.
See the application database creation script shipped with our redbook sample
material for the specifics of how this trigger is created.

� Identity column

This is a database management feature that automatically generates a
unique numeric value for a particular column in a particular table for every
insert. To understand this better, consider that when an application inserts a
new row of data into a database table, the application will usually supply
values for the different columns. However for identity columns, the database
management system automatically generates the value for the columns so
the application does not need to supply a value for the identity columns during
an insert operation. Our sample database makes extensive use of identity
columns. For larger databases, it can be beneficial to use a database table for
generating the unique values, where the table is used to generate the next
logical numeric value as needed. This method allows for greater flexibility, for
example, character values could be appended to the generated numeric
values to make more eye catching values.
528 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Constraints

A database constraint is a rule enforced by the database management
system. It usually applies to column level data. There are numerous kinds of
constraints that enforce different rules including:

– Unique constraint

When this kind of constraint is defined on one or more columns, it
prevents duplicate values in those columns. This is to ensure that no two
columns within the database table will have the same value. This provides
the capability of enforcing business rules in the database and not in the
application logic.

– Table check constraint

When defined, this constraint restricts the type or value of data inserted
into a column. For example, you can define a check constraint for a
column of type integer, that specifies that values entered must be between
0 and 100. When an attempt is made to insert values that are less or more
than the specified range the database managements system rejects the
insert by throwing an exception.

– Referential constraint

When defined, this constraint enforces a primary to secondary key
relationship where column data in a table must be present in another
column in a different table. Our sample database makes extensive use of
this type of constraint.

– Primary key

This constraint is similar to the unique key constraint. The only difference
is that there can only be one primary key per database table, although one
or more columns can make up the primary key. When more than one
column makes up the primary key, it is called a composite primary key. All
tables in our sample application database have primary keys defined and
some have composite primary keys.

– Index

An index is an ordered set of pointers to rows in a particular database
table. It is calculated based on the values of data in one or more columns
and an index is a separate database object from the data that is stored in
the table. Indexes are primarily used to improve database performance, by
making it easy for the database management system to find data when a
query is issued. Note that having indexes that are not needed or used
might adversely affect performance in a domain where large inserts are
common. This is because the database management system must build
and maintain the index as inserts occur. Our sample application database
contains many indexes.
 Chapter 13. Database design 529

– Routines

A routine is a database program that consist of SQL and database specific
logic. A great deal of benefit can be achieved by moving application logic
into routines especially when database interaction forms part of the
application logic. The decision to move application logic into routines is
dependent on the problem domain. It might not always be the best
solution, especially when considering database performance. Routines fall
into one of the following types:

• Stored procedure
• User defined functions
• Methods

Our sample database does not make use of routines.

13.2 The Sal301 data model
Figure 13-1 shows an entity relationship diagram (ERD) of the sample database
used in the Sal301 application built for the redbook WebSphere Application
Server - Express: A Development Example for New Developers, SG24-6301.
The diagram outlines the tables that make up the sample application database.

Figure 13-1 The Sal301 data model
530 WebSphere Application Server - Express V6 Developers Guide and Development Examples

As you can see in Figure 13-1 on page 530, there are two explicit entity
relationships that involve the user_id in the PROP and USR_ADDR tables. The
effect of the relationships is that the database management system enforces a
rule so that when data is inserted in the PROP table, if a user_id is supplied
which does not exist in the USR table, the database management system throws
an exception. All other relationships are implicit. They are used within the
application, but are not enforced by database constraints. This is not an ideal
solution because it leaves open the possibility of having data redundancy, it also
makes it difficult to query the data and usually results in business rules that are
more difficult to enforce.

The different tables that make up the database shown in Figure 13-1 on
page 530 are:

� USR

This table holds user personal information. These are registered users who
can login and access the system functionality.

� USR_ADDR

This table holds addresses for users in the USR table.

� PROP

This table is used to hold property information.

� PROP_STS

This table is used to indicate the status of a property

� PROP_TYPE

This table is used to indicate a property type

� PROP_VLOG

This table is not used or referenced anywhere in the Sal301 application.

� PROP_FTR_ITM

This table is not used or referenced anywhere in the Sal301 application

� INT_LST

This tables is used to indicate the properties a user is interested in, and it
points to the INT_LST_ITM table

� INT_LST_ITM

This table represents an interest list, which is a list of properties a user is
interested in.

� CNTRY

This table is used to represent different countries.
 Chapter 13. Database design 531

� NEWS_ITM

This table is used to represent a news item.

A script to create this database was provided with the additional material for the
redbook WebSphere Application Server - Express: A Development Example for
New Developers, SG24-6301. We have included a copy of this script in the
additional material for our current redbook. The copied script is named
OLDDBSCRIPT.SQL.

13.3 The new data model
We developed a new data model for numerous reasons, but primarily to capture
the new functionality offered by our sample application. We also wanted to
improve the Sal301 model to reduce data redundancy and streamline the
process of querying the database and enforcing business rules. Due to the time
constraints of our redbook project, we did not use the improved model in our
sample application. Instead, we modified the old model. You can use the tools in
Rational Application Developer to capture your data model.

The ideal new model consists of eleven tables. We removed PROP_FTR_ITM
and PROP_VLOG and added ROLE and PROP_BID tables. We also made the
table and attribute names more meaningful. This is a good practice that helps
make the database easier to understand, especially when the original database
designer might have moved on, or when new developers join the project. New
developers can have a better chance of understanding for what purpose the
tables are used. Some database design tools even provide the ability for the data
model designer to include explanatory notes within the model design, and we
recommend that this is always very useful when available.

The two new tables added to the data model are:

� ROLE

This table is used to hold user roles. A user role can be considered as an
authority level, where users see different UI functionality dependent on their
role. With this table it will be easy to add and remove roles within the
application as needed. New roles can be created and added in the system if
new functionality requires new roles.

� PROPERTY_BID

This table is used to hold bids made on a property. Our business rule
suggests that only one bid can be made on a property, although if a bid is
rejected, all customers are allowed to place bids. This rule is not meant to
reflect real business conditions and from a functionally point of view is not
very practical, but our noted that the sample application is for demonstration
532 WebSphere Application Server - Express V6 Developers Guide and Development Examples

purposes and we do not aim to model a real life scenario. A bid always has a
user associated with it, the user is taken from the USR table so this means
that a user must be registered before they can place a bid.

Other changes made include:

� In the NEWS_ITEM tables, the news author is now taken from the USR table,
meaning an author must also be a registered use, the old design did not
enforce this.

� In the Sal301 model, a user address was taken from the USR_ADDR table
but a property address was hard-coded in the property table. We changed the
new design to include a single address table which now holds addresses for
both users and properties. In the future, if additional database objects are
added that require some sort of address field, the address table can be used.

� The address table now has a country associated with it, this is taken from the
COUNTRY table.

� We also created a number of indexes which make searching the database
less expensive when database performance is considered. See the database
creation script in our redbook additional material, for more information about
the created indexes.

� The Sal301 data model did not explicitly define foreign keys although they
were logically used in the application SQL statements. We changed this by
the definition of explicit foreign keys in our new design.

A database script that will create our new database model called
NEWDBSCRIPT.SQL can be found in our redbook additional material.

Note: Due to time pressures, we did not use the new data model with our
sample application. We used a modified version of the Sal301 model with the
minimum changes necessary for us to support the new functionality that
allows users to bid on a property. A database script that creates this database
model called DBSCRIPT.SQL can be found in our redbook additional material.

We added a bid table called BID, which is used to hold bids made on a
particular property. A user and property is always associated with a bid, the
association indicates who made the bid and on what property the bid was
placed. The BID_STAUS is used to indicate the status of a particular bid,
consult the database creation script for the different bid statuses. The bid
status directly affects the property, that is where a particular property is in its
property life cycle. Example 13-1 on page 534 shows the definition of the BID
table. We also added a PROP_SELLER column to the PROP table to hold the
user id of the property owner and inserted a new status description. Offers. to
the PROP_STS table.
 Chapter 13. Database design 533

Example 13-1 BID table

CREATE TABLE BID (
 BID_ID CHAR(36) NOT NULL,
 BID_PROP_ID INTEGER NOT NULL,
 BID_USR_ID INTEGER not null,
 BID_STATUS CHAR(10) not null,
 BID_PROP_SELLER INTEGER not null,
 BID_CRD_ON TIMESTAMP NOT NULL,
 BID_PRICE DECIMAL(10, 2) NOT NULL
);

ALTER TABLE BID
 ADD PRIMARY KEY (BID_ID, BID_PROP_ID, BID_USR_ID);
534 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 14. Code standards and quality

This chapter discusses some ways in which code standards can help improve
the quality of an application.

Good code standards make it easier for you and others to:

� Read the code.
� Maintain the code.
� Implement new functionality following your design and conventions.
� Implement a seamless design common for all your software components.
� Avoid errors.

We discuss standards and how we used them in our application. We show how
and where Rational Web Developer can help to implement and verify the
standards.

14
© Copyright IBM Corp. 2005. All rights reserved. 535

14.1 Coding guidelines
When you agree to have common coding guidelines in your development team
and you have a set of rules, often the most difficult job is to make sure that
everyone on your team follows the rules. The benefit of having common coding
guidelines rises and falls depending on whether everybody on the team is
conforming to those guidelines.

So you should ask three questions:

1. What are my rules?
2. Where and how do I write down those rules?
3. How can I make sure that those rules are followed?

The first two questions you have to discuss and answer in your development
team. If you use a methodology to run your project, there will be most likely an
approach to write your coding guidelines down in some document. Depending on
the size of the development team, this might be done in workshops within the
team or there might be an application architect or lead developer who defines the
coding guidelines. At the very least, make sure that someone writes down the
rules and every one on the team agrees on the rules.

You can help make sure that your rules are followed by using the facilities of
Rational Web Developer. While Rational Web Developer cannot support every
rule that you might setup, it does support enforcing many rules that are common
when developing J2EE or Java applications. Rational Web Developer has a
whole set of preset templates and rules that are common to these fields.

14.2 Common rules
Each file that is created manually during the development process needs
comments that declare what is the purpose of the file or of the particular piece of
code. These comments should always be placed at the beginning of the file so
they are immediately seen when the file is opened.

It is your decision what information you want to include in the comments, but it is
a common practice to include at least the following:

� Author

Who is the owner of this code or file? This does not mean that no one else in
a development team can edit the code, but it gives information about the
person who is responsible and to whom you can report any bugs in the code.
536 WebSphere Application Server - Express V6 Developers Guide and Development Examples

� Creation date

This date is the date when the file was first created. This does not change
during the development process.

� Latest change

This indicates the date and time when the file was changed. If you use a
configuration management tool such as CVS, it can support you by
automatically filling in this information. Also you can use CVS to get the
information about the person who made this last change.

� History log

This gives information about the changes to the file and who made the
changes. You can get support from CVS to fill in these values. This is
something that can heavily used within your development team. The history
log can get very long over time, especially in central components of your code
that are changed a lot.

14.2.1 Setup basic code templates for Java
For Java files, Rational Web Developer lets you specify templates that make
these tasks easy. To set up the code templates our the common rules, follow
these steps:

1. Choose Window → Preferences → Java → Code Style → Code
Templates.

2. Click Code → New Java files as shown in Figure 14-1 on page 538.

Note: If you want CVS to fill in the person who made the last change and note
this in the history log, it is a good idea to have meaningful user names for the
CVS access, because these are the names CVS uses to fill the values such
as Id and Log. So, if you can influence this, do not use IDs such as
dev0815 for accessing CVS, but use your name as is known in the
development team.

The author should always include his or her full name. In addition, if you plan
that each developer directly supports their own code (a common practice in
open source projects), then you should also include an e-mail address.
 Chapter 14. Code standards and quality 537

Figure 14-1 Code template for java (block-) comment in new java files

3. Click Edit... .
4. Enter the example text shown in Example 14-1.

Example 14-1 Code template for new java files

/* $$Id$$
 *
 * This code is part of the sample application that has been created
 * for the redbook WebSphere Application Server - Express V6
 * Developers Guide and A Development Example (SG24-6500).
 *
 * Revision History:
 *
 * $$Log$$
 */
${package_declaration}

${typecomment}
${type_declaration}

Note: Dollar signs are the directive for variables in templates of Rational Web
Developer. Therefore the dollar has to be escaped when it is used as a
character.
538 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 14-2 shows a view of the new code template.

Figure 14-2 Edit the code template for new Java files

5. Click OK and Apply.

6. Now select Comments → Types to edit the Javadoc™ comment for new
types.

7. Click Edit... .

8. Enter the text shown in Example 14-2.

Example 14-2 Code template for Javadoc in classes and interfaces

/**
 * One sentence about what this class or interface is doing ending with a dot.
 *
 * More detailed, arbitrarily elaborate description and information.
 *
 *

 * Creation date: ${date}
 * @author ${user}
 */
 Chapter 14. Code standards and quality 539

14.2.2 CVS keyword substitution settings
To make sure that you use the CVS keyword expansion feature go to Window →
Preferences → Team → CVS and make sure that ASCII with keyword
expansion (-kkv) is selected, as shown in Figure 14-3.

Figure 14-3 Set the keyword substitution feature of CVS

The kkv option is the default option for keyword substitution. If you use explicit
locking (usually the case when you are editing documents, not code) then you
should use the kkvl option that inserts the name of the person locking the file into
the keyword string. This makes sense, only if cvs admin -l is used.

Refer to the CVS documentation for further information about keyword
substitution and the substitution modes. Information about the latest stable
release of CVS can be found at this Web site:

http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.
12.12.1
540 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.12.12.1
http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.12.12.1
http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.12.12.1
http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.12.12.1

14.3 Structure
In the following sections we discuss some of the issues you need to consider t
when structuring a WebSphere Application Server - Express application.

14.3.1 How to organize your projects
When you are thinking about organizing the structure of your projects and
folders, there are two major considerations:

� Application build
� Deployment of your application

Also consider whether your project structure works well for when you want to
ship your application. The structure should be easily understood by your
customers, or by a community and its users.

For the build time you want to have all the resources available for editing and
compiling your code so that you can work effectively in a team. The code and
other resources have to be quickly accessible, easy to edit and compile without
time consuming reorganizing, configuration or packaging. Further, the structure
should be easily understood. For that reason it might be a good idea to set up the
structure using standards or commonly used practices.

For deployment, it is easier when your structure is close to the organization that
the target infrastructure understands. For J2EE applications there are strict
standards regarding the structure which your application server understands.

If you use Rational Web Developer, you get support for organizing your projects
according to these standards. When you create a new enterprise application
project or Web project, Rational Web Developer automatically creates a folder
structure that is compliant with the standards.

However, be aware that this structure is technology-oriented. If you want to
organize your projects according to your component structure or using layered
design, you have to take special care not to mix up the technologies with your
design components. This can be a tricky task, especially if you want to use the
IDE for both development and deployment of your application.

For example, if your design uses a layered design you might like to separate the
different layers into single project folders in Rational Web Developer. However,
this can be quite hard. For example, consider an application where you have
both hand a Web user interface and a fat client user interface. Then you would
typically create a Web project for the Web user interface and a Java project for
the standalone fat client. So you would have two project folders for one user
interface layer. You could decide to put everything in one folder, but then you
 Chapter 14. Code standards and quality 541

would need a separate deployment mechanism that separates the classes to
separate targets at deployment time (for example you could use Ant to do this).
This would create additional effort and you would loose clarity in the developer
and the deployment features of Rational Web Developer.

14.3.2 JAR file placement
When it comes to J2EE development, there are many ways you can decide to
place your JAR files. Similarly, because J2EE applications run independently
from each other using their own classloaders (depending on the visibility settings
in WebSphere Application Server) there are many ways to control the scope of
the classes that are loaded from JAR files.

You might want the classes to be visible over the whole WebSphere Application
Server or in one enterprise application only. Or you might even want the classes
to be visible from only one Web application.

The following sections provide some recommendations for JAR file placement.

Web application scope (WEB-INF/lib)
If your JAR file is only used in a single Web application, always put the JAR file in
the Web project's WebContent/WEB-INF/lib folder. The JAR files in this folder
are automatically added to the Java build path, and do not require any further
setup when moved to a different server. So you can create portable WAR files
with all libraries included by packing the Web projects folder.

Enterprise application scope (JAR dependencies)
If the JAR file is used by multiple modules within the same application, place the
JAR file in the enterprise application (simply into the top folder of the project),
then use the Java JAR Dependencies feature to set up the manifest files and the
Java build class paths.

Figure 14-4 on page 543 shows our sample application structure where the JAR
libraries that are placed in our enterprise application project. The JAR files are
placed in the top level of the projects folder. Other projects can reference the
libraries using JAR dependencies.
542 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 14-4 JAR libraries in the EAR project

The Java JAR Dependencies Properties page of an EJB or Web project is used
to identify which JARs the EJB or Web project uses. You can access the Java
JAR Dependencies by selecting Properties from the context menu of an EJB or
Web project. Figure 14-5 on page 544 shows how to adjust the JAR dependency
settings of your Web project.
 Chapter 14. Code standards and quality 543

Figure 14-5 Set the JAR dependencies of a Web project

Server scope (ws.ext.dirs)
If the JAR file requires access to any J2EE or WebSphere Application Server
classes, or to any other JAR files that have been added to ws.ext.dirs, it must
also be placed on the ws.ext.dirs property. The ws.ext.dirs property is used for all
JAR files that require access to the J2EE JAR files or WebSphere Application
Server internal classes. If there are hard dependencies on the JAR file, you must
update the Java build path of each project that uses the JAR file.

Note: Remember that the JAR dependencies are for runtime while the build
path is for build time when you use the Standard build within Rational Web
Developer. When you add a dependency in the JAR dependencies, Rational
Web Developer automatically adjusts the build path for you and adds the
needed classes, library or project to the build path.

If you need the classes in your deployed application at runtime on the server,
then you should add them into the JAR dependencies. If you need them only
to compile (for example for libraries that are already installed on WebSphere
Application Server) it is sufficient to add them to the build path.
544 WebSphere Application Server - Express V6 Developers Guide and Development Examples

For WebSphere Application Server V5 servers, any changes you want to make
to ws.ext.dirs can be made on the Environment page of the server editor.

For WebSphere Application Server V6 servers, this change is done using the
WebSphere Administrative Console. See the Managing shared libraries topic in
the WebSphere Application Server Version 6.0 Information Center for more
details.

We do not recommend that you put JAR files on the global class path. Using one
of the global class paths makes your application vulnerable to changes made to
the classes on which you depend. If you have added the JAR file to the global
class path or ws.ext.dirs properties you will have to publish the JAR file
separately from your application, then you will have to set up the server class
path again if you move to a different server.

Separate library project
Another possibility is to have a separate project for libraries that are referenced
by other projects. In the case, you need to take care that these libraries are
deployed to the target server when you deploy the application that needs the
library. You can do a manual deploy of the library, but another way you can do
this by writing scripts.

This has the advantage, that you can share the libraries on the CVS server with
your team members. You do not have to care about local library paths on the
development machines or about path variables in Rational Web Developer that
might be different for different team members. You just add the libraries to the
newly created project (simple or Java project) and let the developers synchronize
with CVS.

When the version of the library changes, you just exchange the JAR file in the
project. All the developers can synchronize with CVS to receive the changes.
There is no need to have individual build paths.

14.3.3 Naming conventions
Naming conventions help to make it easier to read and understand code used in
your application. This helps people in your project team to quickly find and
understand code regardless of who originally wrote the code.

Table 14-1 on page 546 shows some of the naming conventions we used for
Java code in our sample application. Note that naming standards might be very
different in your project, and we do not suggest that you should use our
standards, as long as you do agree to and follow standards that make sense for
your project.
 Chapter 14. Code standards and quality 545

Table 14-1 Naming conventions for Java code

Formatting
Its is also important to pick a common formatting style for your Java source code.
Again this makes it easier to read and understand code. The Rational Software
Development Platform can help you format code according to your preference,
Choose Window → Preferences → Java → Code Style to access setting for
various code formats and templates that you can then apply to your code.

We recommend that you also establish formatting and naming conventions for
HTML and JSP files.

14.3.4 Using CVS
Working with CVS in a development team needs some common practices in
order not to corrupt individual workspace or the branches in CVS. As always you
need to agree to the rules in your team.

An ideal work flow is as follows:

1. Start fresh.

Coding level Convention

package � each package starts with com.ibm.itso.sal404

� according to the component based design the
following packagename is either common or xyz for
the components, for example news

� the following packages are used to group
functionality:

– form - struts forms
– action - struts actions,
– dao- data access objects
– dto - datatransfer objects
– manager - managers
– other appropriate package names

class � All classes have to use nouns that are
self-explaining, for example UserManager

� An Exception to this rule are generated classes like
DAO classes. All DAO classes in our application
should follow the following scheme: verb + noun +
DAO, for example CreateUserDAO

interfaces � All interfaces end with Interface
546 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Before starting work, update the resources in the workspace with the current
branch state. If you are sure that you have no local work that you care about,
there are two ways of getting the latest code from CVS:

– If you do not have the code of the projects in your workspace, the fastest
way to get caught up is to select the projects you are interested in from
HEAD (or branch if your choose a branch) in the CVS perspective and
select Checkout.

– If you already have the projects in your workspace right-click the project
and select Replace with → Latest from HEAD. This overwrites your
local resources with those from the HEAD (or branch if your choose
Replace with → Another branch or version...).

2. Make your code changes.

Work locally in your development environment, creating new resources,
modifying existing ones, saving locally as you go.

3. Synchronize

When you are ready to commit your work, synchronize with the repository.
Right-click the project and choose Team → Synchronize with Repository...

a. First do the updates.

Examine incoming changes and add them to your local environment. This
allows you to determine if there are changes which might affect the
integrity of what you are about to commit. Resolve conflicts. Retest, run
integrity checkers (for example, check for broken hypertext links, ensure
your code compiles, and so on).

b. Do your commits.

Now that you are confident that your changes are well integrated with the
latest branch contents, commit your changes to the branch. To be
prudent, you can repeat the previous step if there are new incoming
changes.

You could setup additional rules that say that every team member has to update
and commit the code every day. That depends on your project setup and the
project constraints.

Important: It is always a good practice only to commit working code, at least it
should be code that compiles without errors. Do not check in any code that
does not compile. Compile errors and dependencies might block the whole
team from testing their own code, because they cannot create any builds and
deployments.
 Chapter 14. Code standards and quality 547

548 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Chapter 15. Bidding component

In this chapter, we show you how to implement a bidding component for the
SAL404Realty sample application that accompanies this book. We have divided
this chapter into two different sections:

1. Bidding component specification (15.1, “Bidding component specification” on
page 550)

We explain what the bidding component does, how it fits in the overall design
of the application, as well as the requirements it needs to implement.

2. Building the bidding component (15.2, “Building the bidding component” on
page 550)

We explain the steps necessary to build and test the add functionality of the
component using Rational Web Developer.

15
© Copyright IBM Corp. 2005. All rights reserved. 549

15.1 Bidding component specification
The bidding component is used allow the buying and selling of properties. Its
major functions are:

� Buyers can enter a bid against a property they want to buy.

� Sellers can accept or reject a bid.

� Administrators, the agent selling a property, and the seller can see a list of
bidders for a specific property.

� The agent selling a property, and the seller cannot place a bid on that
property.

The bidding component cannot be accessed directly from the menus of the
application, but instead is called by other components. For example, when a
buyer views the details of a property, he can make a bid for this particular
property. The bid component, as any other component of the application, is
developed using the layered architecture paradigm as described in Chapter 2,
“Development process” on page 11.

15.2 Building the bidding component
In this part of the chapter, we demonstrate the steps to build the bidding
component. In particular, we show you how to prepare your workspace, use the
Struts builder to build the front-end of your component, use other Rational Web
Developer wizards to build the back-end of your component, and finally we
explain how to put everything together and test your component.

Our approach for building the bidding component will be a top-down one. This
means that we will start with the front-end layers (presentation, controller) and
move on to the back-end layers (business facade, domain, data access) of the
component.

15.2.1 Preparing the workspace
Before we start writing the code for our component, we need to create the
necessary Java packages and Web content folders in our workspace. We also

Note: We have not implemented all the requirements of the bidding
component in our Sal404 sample application, but have implemented enough
of the basic functionality so that you can get an idea of the key tasks needed
to build such solutions.
550 WebSphere Application Server - Express V6 Developers Guide and Development Examples

need to create some skeleton classes that will be used later in the building
process.

Java source packages
The following Java packages need to be created:

� In the SAL404RealtyJava project, create these packages:

– com.ibm.itso.sal404.bidding.dto

All the data transfer objects classes used as place-holders of data will be
created under this package.

– com.ibm.itso.sal404.bidding.dao

All the Database Access Objects classes used to perform database
operations will be created under this package

� In the SAL404RealtyControl project, create these packages:

– com.ibm.itso.sal404.bidding

The Manager class which implements all the business methods of the
bidding component will be created under this package. It will also contain
a class to hold bid session data

� In the SAL404RealtyWeb project create packages:

– com.ibm.itso.sal404.bidding.action

All the Struts action classes will be created under this package.

– com.ibm.itso.sal404.bidding.form

All the Struts Form classes will be created under this package.

We demonstrate the steps necessary to create one of these packages, for
example, com.ibm.itso.sal404.bidding.action. You can follow the same steps
in order to create the rest of the packages:

1. Expand the SAL404RealtyWeb project, expand Java Resources, then
right-click JavaSource.

2. When a pop-up menu appears, choose New → Package, as shown in
Figure 15-1 on page 552.
 Chapter 15. Bidding component 551

Figure 15-1 Add a Java Source package (Step 1)

3. A dialog box as the one shown in Figure 15-2 on page 553 appears. Type the
name of the package in the Name text box. In this case it should be
com.ibm.itso.sal404.bidding.action, and click Finish.

Follow the same procedure for the remaining packages of this component.
552 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-2 Add Java Source package (Step 2)

Web content folders
The following Web content folder needs to be created:

� bidding

All the Web pages of the bidding component, as well as the Struts graph will
be created under this folder.

The steps necessary to create this folder are:

1. Expand the SAL404RealtyWeb project, expand Web Content, then
right-click Web Content.

2. When a pop-up menu appears, choose New → Folder, as shown in
Figure 15-3 on page 554.
 Chapter 15. Bidding component 553

Figure 15-3 Add a Web Content folder (Step 1

3. A dialog box as shown in Figure 15-4 on page 555 appears. Type the name of
the folder in the Folder name text box, bidding, and click Finish.
554 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-4 Add a Web Content folder (Step 2)

Now we are ready to start developing the code for the bidding component.

15.2.2 Changing the PropertyCatalog component
To prepare for the implementation of the bidding component, we need to make
some changes to the property catalog component to allow for the fact that
properties now have owners. Changes to make include:

� ResultPropertiesDTO

– Add a seller attribute and generate getter and setter.

� PropertyDTO

– Add a seller attribute and generate getter and setter.

� PropertyDetailsForm
 Chapter 15. Bidding component 555

– Add a seller attribute and generate getter and setter.

� addPropertyDetailsBody.jspf

– Add drop down to display and choose property seller.

� modifyPropertyDetailsBody.jspf

– Add drop down to display and choose property seller.

� PrpoertyCatalogManager

– Add code to addPropertyDetails method to ensure seller is saved.

15.2.3 Presentation layer
As mentioned earlier, we build the reporting component following a top-down
approach. Therefore, we start by implementing the first layer of the component,
the presentation layer.

The presentation layer is, essentially, the user interface of a component. This
layer includes any Web pages that use forms and other UI elements to allow the
user to enter data, as well as any Web pages that use tables and other UI
elements to display information. The steps necessary to build the presentation
layer are:

1. Create a Web diagram.
2. Add actions and Web pages to the diagram.
3. Create mappings between actions and Web pages.
4. Realize mappings, actions, and Web pages.
5. Implement the Web pages.

We describe the steps necessary to realize and implement the presentation layer
for adding bids. Then, repeat the process to realize and implement the
presentation layer for other functions in the bidding component.

Create a Web diagram
We start working on the presentation layer of the reporting component by
creating a Web diagram. This will help us visualize the layer, its elements, and
the interactions between them. It will also help us realize and fully implement
these elements later on in our building process.

To add a Web diagram to your Rational Web Developer workspace:

1. Expand the SAL404RealtyWeb project, expand the Web Content folder,
locate the bidding folder, and right-click it.

2. When a pop-up menu appears, choose New → Other as shown in
Figure 15-5 on page 557.
556 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-5 Add a Web diagram (Step 1)

3. When you are presented with a dialog box, select Web Diagram as shown in
Figure 15-6 on page 558, and click Next.
 Chapter 15. Bidding component 557

Figure 15-6 Add a Web diagram (Step 2)

4. A dialog box as the one shown in Figure 15-7 on page 559 opens. Enter
biddingGraph in the File name textbox and click Finish.
558 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-7 Add a Web diagram (Step 3)

5. An empty Web diagram named biddingGraph.gph is created for you, and
opened in your workspace as shown in Figure 15-8 on page 560.
 Chapter 15. Bidding component 559

Figure 15-8 Add a Web diagram (Step 4)

6. We want to add all the Struts components for bidding into a new Struts
module, so now we right-click the free form surface of the bidding graph in the
Web diagram editor and choose Change the Struts Module association as
shown in Figure 15-9 on page 561.
560 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-9 Change the Struts Module association

7. Enter bidding as the module name and click OK as shown in Figure 15-10.

Figure 15-10 Create Struts bidding module

Add actions and Web pages to the diagram
Once the Web diagram is created, it is time to start adding nodes to the graph.
 Chapter 15. Bidding component 561

1. With the bidding.gph open in your workspace, right-click and select New →
Struts Parts → Action Mapping as shown in Figure 15-11.

Figure 15-11 Add Struts action mapping

2. Drag the newly created icon to a place within your graph and enter the name
you want to use. Figure 15-12 on page 563 shows an example of creating the
ModifyBid action. Notice that the action icons are greyed-out. This means that
the actions are not yet realized.
562 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-12 Add an action to the Web diagram

When completed, our Web diagram will have the following actions:

– AddBid
– ListBids
– ModifyBid
– SetupBid

3. We now add a Web page node to our diagram. While having the bidding.gph
open in your workspace, right-click and select New → Web Parts → Web
Page from the menu that appears, as shown in Figure 15-13 on page 564.

Tip: You can also add nodes to the Web diagram by choosing them from
the palette at the right side of the editor.
 Chapter 15. Bidding component 563

Figure 15-13 Add a Web page to the diagram

4. Drag the newly created icon to a place within your graph and enter a name to
use. Figure 15-14 on page 565 shows and example of adding a Web page
called /bidding/AddBid.jsp. Notice that the icon is greyed-out. This means that
the Web page is not realized.
564 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-14 Enter a name for the Web page

When our bidding diagram is completed, we have Web pages called:

– /bidding/AddBid.jsp
– /bidding/ListBids.jsp
– /bidding/ModifyBid.jsp

Create mappings between actions and Web pages
Once we have created an action node and a node for the Web page, we need to
connect them:

1. Right-click the /AddBid action node and select Connection as shown in
Figure 15-15 on page 566.
 Chapter 15. Bidding component 565

Figure 15-15 Create connections between actions and pages

2. Choose a connection type of Local Forward and click OK, as shown in
Figure 15-16.

Figure 15-16 Choose connection
566 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3. Drag the dotted line to the /bidding/AddBid.jsp Web page node and release it.
Finally, type /success as the name of your connection, as shown in
Figure 15-17 on page 568.

Notice that the two nodes are now connected with a dotted line named
/success with an arrow pointing to the Web page node.

– The line is dotted because the connection is not yet realized.

– The arrow points to the Web page because data will move outwards from
the action and inwards to the Web page.

– The connection is named /success because this is the path that is going to
be followed if the execution of our AddBid action is successful.

Note: In fact we are later going to modify this action forward using the
Struts configuration editor as we want a successful add of a bid to
return us to the view properties page we came from and this node is
defined in a different Struts module. It is still useful to create the
connection using the diagram editor.
 Chapter 15. Bidding component 567

Figure 15-17 Create a connection between and action and a page

4. We also specify a /failure connection to be followed when, during the
execution of our AddBid action, an error occurs. Follow the steps outlined
before but this time type /failure as the name of the connection.

Add form beans
Next we add Struts form beans to our Web diagram.

1. While having the bidding.gph open in your workspace, right-click and select
New → Struts Parts → Form Bean as shown in Figure 15-18 on page 569.
568 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-18 Add form bean

2. Drag the newly created icon to a place within your graph and enter the name
you want to use. Figure 15-19 shows an example of creating the listBidsForm.

Figure 15-19 Add listBidsForm
 Chapter 15. Bidding component 569

3. Right-click the new form bean, choose Connection and drag the dotted line
to the target action. For example, connect the listBidsForm to the ListBids
action.

When our bidding diagram is completed we will have the following form
beans:

– bidForm connected to the AddBid action
– listBidsForm connected to the ListBids action
– manageBidsForm connected to the ManageBids action
– modifyBidForm connected to the ModifyBid action

Realize forms, actions and Web pages
After creating and connecting the nodes for the forms, actions and the Web
pages, we need to realize them in order for the relevant files to be created:

1. Double-click the /AddBid node and a dialog box similar to the one shown in
Figure 15-20 on page 571 opens, click Next.
570 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-20 Realize AddBid action

2. Click Browse next to the Java package text box to select the package where
your AddBidAction class will be created.

3. In the Package Selection dialog box, select the
com.ibm.itso.sal404.bidding.action package and click OK.

4. You will be returned to the previous dialog box. Confirm that all the details are
as shown in Figure 15-21 on page 572 and click Finish.
 Chapter 15. Bidding component 571

Figure 15-21 Realize AddBid action (Step 2)

5. A class for the AddBidAction action will be created on your file system under
the com.ibm.itso.sal404.bidding.action package. Save the file and return to
the Web diagram.

6. Double-click the /AddBid.jsp Web page node, and a New JSP File dialog box
as shown in Figure 15-22 on page 573 opens.
572 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-22 Realize AddBid.jsp

7. Select Create from page template and click Next.

8. Choose User-defined page template, select the sal404.jtpl template and
click Finish. See Figure 15-23 on page 574 for an example.
 Chapter 15. Bidding component 573

Figure 15-23 Choose user defined template

9. A JSP file is created for the /AddBid.jsp Web page under the bidding folder.
Save the file.

10.Double-click the /bidForm form bean node, and a New Form-Bean dialog box
as shown in Figure 15-24 on page 575 opens.
574 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-24 New form bean

11.Click Next. We do not have any existing fields to choose for the action form
class, so click Next again.

12.We will create new fields for our form. Click Add and enter a new field with a
name of bidPrice and a type of java.math.BigDecimal. Repeat this process
to add the following fields and types:

– sbidPrice - String
– propertyUserId - String
– sbidDate - String
– bidDate - java.util.Date
– bidderId - String
– status - String
– id - String
– propertyId - String

See Figure 15-25 on page 576 for the completed list of form fields.
 Chapter 15. Bidding component 575

Figure 15-25 New form fields for bidForm

13.Click Browse to choose the correct package for the new BidForm class. The
package name should be com.ibm.itso.sal404.bidding.form. Figure 15-26
on page 577 shows the settings for the BidForm class. Click Finish.
576 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-26 Settings for BidForm class

14.Save and close the newly created BidForm class.

15.Return to the Web page diagram and save it.

Using the Struts module switching action
As mentioned in “Create mappings between actions and Web pages” on
page 565 the success action forward we created between the AddBid action and
the AddBid.jsp Web page needs to be modified. The reason is our bidding
application logic requires us to return to the ViewPropertyDetails page when a
bid is added instead of remaining on the AddBid page. The ViewPropertyDetails
page is defined in our default Struts module and not in the bidding module so to
create a successful forward to a page in a different module we need to use the
Struts switch action. To do this, we first have to add an action mapping to our
Struts configuration files:

1. We can open the Struts configuration file for our bidding module directly from
the biddingGraph Web diagram or it can be opened by using the Project
Explorer.
 Chapter 15. Bidding component 577

– To open the Struts configuration file from the Web diagram, you can
double-click the connection between AddBid action and the AddBid.jsp.

– To open the Struts configuration file from the Project Explorer navigate to
the SAL404RealtyWeb project, choose Struts → /bidding, and then
double click the struts-bidding.xml file.

2. Once the Struts configuration file editor has opened, choose the Action
Mappings tab, click Add to create a new action mapping and enter /toModule
as the action mapping name. See Figure 15-27 for an example.

Figure 15-27 Create toModule action mapping

3. The new mapping we have created will use the Struts SwitchAction class as
its implementation. To specify this, we select the /toModule action mapping,
choose Type under the Attributes for the selected mapping, and then click
Browse. From the list of available Struts action classes as shown in
Figure 15-28 on page 579 select SwitchAction and click OK.
578 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-28 Available Struts action classes

4. Figure 15-29 on page 580 shows the completed toModule action mapping.
 Chapter 15. Bidding component 579

Figure 15-29 Completed toModule action mapping

c. Now that the toModule action mapping is created we can replace the
success forward for the AddBid. Select the AddBid action mapping,
switch to the Local Forwards tab, and select success. Enter
/toModule.do?prefix=&page=/ViewPropertyDetails.do as the path
attribute for the selected forward. See Figure 15-30 on page 581 for an
example.

For an explanation of the use of module switching in Struts see:

http://struts.apache.org/userGuide/configuration.html#module_
config-switching

Note: The default version of Struts used with Web projects created in
Rational Web Developer is 1.1. The Struts documentation referred to in the
URL above also describes using the module parameter as part of any of
the Struts hyperlink tags (Include, Img, Link, Rewrite, or Forward), but this
method of module switching was not introduced until Struts version 1.2.
580 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://struts.apache.org/userGuide/configuration.html#module_config-switching

Figure 15-30 Local forward for AddBid success

5. Save the changed Struts configuration file.

Example 15-1 Original nav_head.jspf

<TABLE border="0" cellpadding="2" cellspacing="2" width="400">
<TBODY>

<TR>
<td align="center" width="75"><html:link styleClass="menulink"

Tip: We also need to add the same action mapping to our default Struts
configuration file and change the URL links in our standard menus to be
module aware. For example, in our nav_head.jspf and nav_side.jspf menu
include files we alter the URL links. Example 15-1 shows the original
nav.head.jspf while Example 15-2 on page 582 shows the module-aware
version.
 Chapter 15. Bidding component 581

page="/general/aboutus.jsp">About us</html:link></td>
<td align="center" width="75"><html:link styleClass="menulink"

page="/ListNews.do">News</html:link></td>
<td align="center" width="75"><html:link styleClass="menulink"

page="/general/faq.jsp">FAQ</html:link></td>
<td align="center" width="75"><html:link styleClass="menulink"

page="/general/contact.jsp">Contact us</html:link></td>
</TR>

</TBODY>
</TABLE>

Example 15-2 Module-aware nav_head.jspf

<TABLE border="0" cellpadding="2" cellspacing="2" width="400">
<TBODY>

<TR>
<td align="center" width="75"><html:link styleClass="menulink"

page="/toModule.do?prefix=&page=general/aboutus.jsp">About
us</html:link></td>

<td align="center" width="75"><html:link styleClass="menulink"
page="/toModule.do?prefix=&page=ListNews.do">News</html:link></td>

<td align="center" width="75"><html:link styleClass="menulink"

page="/toModule.do?prefix=&page=general/faq.jsp">FAQ</html:link></td>
<td align="center" width="75"><html:link styleClass="menulink"

page="/toModule.do?prefix=&page=general/contact.jsp">Contact
us</html:link></td>

</TR>
</TBODY>

</TABLE>

Implement the Web pages
So far we have created skeleton Web pages for the presentation layer of the
bidding component. Now, we need to implement the Web pages in order to
complete the development of this layer.

We show how to build the required Web pages for the add bid functions to work.
Our Sal404 sample application also includes Web pages for listing bids and
modifying bids which were developed the same way

1. In step 6 on page 572 of the “Realize forms, actions and Web pages” on
page 570 section we created a skeleton AddBid.jsp file, but because we now
need to create a body JSP fragment called addBidBody.jspf for use with the
AddBid.jsp.
582 WebSphere Application Server - Express V6 Developers Guide and Development Examples

2. Using the Project Explorer view, navigate to the SAL404RealtyWeb project,
select WebContent → bidding, right-click and choose New → JSP File as
shown in Figure 15-31.

Figure 15-31 Create new JSP file

3. Select Create as JSP Fragment and enter a file name of addBidBody as
shown in Figure 15-32 on page 584. Click Next.
 Chapter 15. Bidding component 583

Figure 15-32 Create JSP as fragment

4. Click Add to select tag libraries to include in the JSP.

5. Select tag libraries from the displayed list and click OK as shown in
Figure 15-33 on page 585.
584 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-33 Choose tag libraries

6. Figure 15-34 on page 586 shows the tag libraries that we need to include in
our JSP file.
 Chapter 15. Bidding component 585

Figure 15-34 Selected tag libraries

7. Click Finish.

8. The addBidBoby.jspf is created and opened in the Page Designer. Replace
all the existing code with the code shown in Example 15-3.

Example 15-3 Example code for addBidBody.jspf

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<h1>Add a Bid</h1>
<HR>
<TABLE>

<TBODY>
<TR>

<TD width=150>Address:</TD>
586 WebSphere Application Server - Express V6 Developers Guide and Development Examples

<TD width=250><bean:write name="propertyDTO"
property="streetName" /> <bean:write
name="propertyDTO" property="unitNumber" /> <bean:write
name="propertyDTO" property="buildingNumber" /></TD>

</TR>
<TR>

<TD>Postal code:</TD>
<TD><bean:write name="propertyDTO" property="postalCode" /></TD>

</TR>
<TR>

<TD>Municipality:</TD>
<TD><bean:write name="propertyDTO" property="municipality" />
</TD>

</TR>

<TR>
<TD>Region:</TD>
<TD><bean:write name="propertyDTO" property="region" /></TD>

</TR>
<TR>

<TD>Country:</TD>
<TD><bean:write name="propertyDTO" property="countryCode" /></TD>

</TR>

<TR>
<TD>Price:</TD>
<TD><fmt_rt:formatNumber minFractionDigits="2" type="number">

<bean:write name="propertyDTO" property="price" />
</fmt_rt:formatNumber></TD>

</TR>

<TR>
<TD>Additional text:</TD>
<TD><bean:write name="propertyDTO" property="additionalText" />
</TD>

</TR>

</TBODY>
</TABLE>

<html:form action="/AddBid">

<TABLE border="0">
<TBODY>

<TR>
<TH>Date</TH>
<TD><html:text property='sbidDate' /> (yyyy-MM-dd)</TD>

</TR>
 Chapter 15. Bidding component 587

<TR>
<TH>Bid price</TH>
<TD><html:text property='sbidPrice' /></TD>

</TR>

<TR>
<TD><html:submit property="submit" value="Add" /></TD>
<TD><html:reset /></TD>

</TR>
</TBODY>

</TABLE>
</html:form>

9. The addBidBody.jspf is quite simple. It has two main purposes:

– It displays some details of the property that the user selected to place a
bid against.

– It uses an HTML form so the user can enter details of their bid.

10.Save the addBidBody.jspf file.

11.Add the addBidBody.jspf to the body portion of the AddBid.jsp. The easiest
way to do this is to open AddBid.jsp in the design view of the Page Designer,
select addBidyBody.jspf from the Project Explorer and drag it onto the body
section of the AddBid.jsp.

12.Save the AddBid.jsp file.

We have now completed the implementation of the presentation layer for the add
bid functionality the bidding component.

15.2.4 Controller layer
Following our top-down approach, the second layer of the bidding component
that we need to implement is the controller layer. Here, we implement the
required action classes.

The controller layer connects the presentation layer with the business logic of the
component, which is implemented in the business facade layer. In effect, the
controller layer accepts a request from the presentation layer, calls the
appropriate method of the business facade layer, stores any results in the
request object, and returns back to the presentation layer for displaying the
results. We describe how to implement the AddBidAction class.
588 WebSphere Application Server - Express V6 Developers Guide and Development Examples

AddBidAction class
The steps to implement this action class are:

1. Using the Project Explorer view navigate to the SAL404RealtyWeb project,
choose Java Resources → JavaSource →
com.ibm.itso.sal404.bidding.action → AddBidAction.java and
double-click to open it.

2. Notice that some code has already been created from realizing the relevant
action node while implementing the presentation layer.

3. Add the code highlighted in Example 15-4 to complete the AddBidAction of
the controller layer. Once you have done adding the code save the file.

Example 15-4 Example code for AddBidAction

package com.ibm.itso.sal404.bidding.action;

import java.lang.reflect.InvocationTargetException;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.beanutils.PropertyUtils;
import org.apache.log4j.Logger;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import com.ibm.itso.sal404.bidding.BidManager;
import com.ibm.itso.sal404.bidding.BidSessionData;
import com.ibm.itso.sal404.bidding.dto.BidDTO;
import com.ibm.itso.sal404.bidding.form.BidForm;
import com.ibm.itso.sal404.common.exception.ApplicationException;
import com.ibm.itso.sal404.propertycatalog.dto.PropertyDTO;
import com.ibm.itso.sal404.user.UserSessionData;

/**
 * @version 1.0
 * @author
 */
public class AddBidAction extends Action

{
 // Configure Log4J Logger
 private static Logger logger = Logger.getLogger(AddBidAction.class);
 Chapter 15. Bidding component 589

 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception
 {
 logger.info("Entry: execute");
 ActionErrors errors = new ActionErrors();
 ActionForward forward = new ActionForward(); // return value
 BidForm bidForm = (BidForm) form;
 BidManager manager = new BidManager();
 PropertyDTO prop = (PropertyDTO) request.getSession().getAttribute(
 "propertyDTO");
 UserSessionData userSessionData = (UserSessionData) request
 .getSession().getAttribute("userSessionData");

 try
 {

 BidDTO bidDTO = populateBidDTO(form, prop, userSessionData);
 logger.info("BidDTO populated");
 addBid(request,errors,bidDTO);
 logger.info("After addBid");
// request.setAttribute("propertyId",prop.getId().toString());
 }
 catch (Exception e)
 {

 // Report the error using the appropriate name and ID.
 errors.add("name", new ActionError("id"));

 }

 // If a message is required, save the specified key(s)
 // into the request for use by the <struts:errors> tag.

 if (!errors.isEmpty())
 {
 logger.info("Errors found");
 logger.info(errors);
 saveErrors(request, errors);
 forward = mapping.findForward("failure");
 }
 else
 {
 // Write logic determining how the user should be forwarded.
 forward = mapping.findForward("success");
 }

 // Finish with
590 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 logger.info("Exit: execute");
 return (forward);

 }

 /**
 *
 * @param form
 * @param prop
 * @param userSessionData
 * @return
 */
 public BidDTO populateBidDTO(ActionForm form, PropertyDTO prop,
 UserSessionData userSessionData)
 {
 logger.info("ENTRY: populateBidDTO");
 BidForm bidFormBean = (BidForm) form;
 BidDTO bidDTO = new BidDTO();
 try
 {
 PropertyUtils.copyProperties(bidDTO, bidFormBean);
 }
 catch (IllegalAccessException e1)
 {
 e1.printStackTrace();
 }
 catch (InvocationTargetException e1)
 {
 e1.printStackTrace();
 }
 catch (NoSuchMethodException e1)
 {
 e1.printStackTrace();
 }

 bidDTO.setPropertyId((prop.getId()));
 bidDTO.setBidderId(userSessionData.getLogInUser().getId());
 bidDTO.setPropertySeller(prop.getSeller());
 bidDTO.setStatus("open");
 bidDTO.setBidDate(bidFormBean.getBidDate());
 bidDTO.setBidPrice(bidFormBean.getBidPrice());

 logger.info("EXIT: populateBidDTO");
 return bidDTO;
 }

 /**
 *
 * @param request
 Chapter 15. Bidding component 591

 * @param errors
 * @param bidDTO
 */
 public void addBid(HttpServletRequest request, ActionErrors errors,
 BidDTO bidDTO)
 {
 BidSessionData bidSessionData = (BidSessionData)
request.getSession().getAttribute("bidSessionData");

 try
 {
 bidSessionData.create(bidDTO);

 }
 catch (ApplicationException ae)
 {
 // Report the error using the appropriate name and ID.
 errors.add("Bid", new ActionError(ae.getStrutsMessage()));
 }
 }
}

15.2.5 Business facade layer
Once we have finished implementing the presentation and the controller layers of
the bidding component, we have essentially finished working with the front-end of
the component. Before we start working on the back-end layers, we explain the
purpose of the business facade layer, and describe how it should be
implemented. We show the actual implementation of the business facade layer
later on in 15.2.8, “Putting everything together” on page 607.

The business facade layer plays the role of a bridge between the front-end and
the back-end of the application. It is implemented using a manager class, which
exposes the business methods required for the implementation of the
component. In the case of the bidding component, the BidManager class has the
following public methods:

� listBids(Integer propertyId)
� addBid(BidDTO bid)
� modifyBid(BidDTO bid)

addBid(BidDTO bid) method
This is very simple and the execution flow is as follows:

Note: Saving the AddBidAction class generates errors at this stage
because it refers to other classes that we have not yet created.
592 WebSphere Application Server - Express V6 Developers Guide and Development Examples

1. An instance of the InsertBidDAO is created. This will be used to access the
database. More on the implementation of the InsertBidDAO can be found in
“Generate the data access object classes” on page 601.

2. The InsertBidDAO is executed.

15.2.6 Domain layer
We now create the data transfer object classes needed for our domain layer. The
bidding component needs only one DTO called BidDTO.

BidDTO
The steps to create the BidDTO are:

1. Using the Project Explorer navigate to the Other Projects →
SAL404RealtyJava project, then right-click the package
com.ibm.itso.sal404.bidding.dto and choose New → Class.

2. Enter BidDTO as the class name and click Finish.

3. Add the code highlighted in Example 15-5 to add all the necessary attributes
to your DTO.

Example 15-5 Attributes for the BidDTO class

private String id;
 private Integer propertyId;
 private Integer bidderId;
 private String status;
 private Integer propertySeller;
 private Date bidDate;
 private BigDecimal bidPrice;

4. While inside the editor, right-click and select Source → Generate Getter and
Setter... as shown in Figure 15-35 on page 594.
 Chapter 15. Bidding component 593

Figure 15-35 Generate getters and setters

5. When a new dialog box appears, click Select All, then click OK as shown in
Figure 15-36 on page 595.
594 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-36 Generate Getters and Setters for BidDTO class

6. Save and close the BidDTO modified file.

Your BidDTO has now been generated.

15.2.7 Data access layer
The bidding component needs to access the database in order to retrieve
information about properties and on the interest customers have shown on them.
Therefore, we need to build data access objects to implement this requirement.
Rational Web Developer provides wizards that you can use to build this
functionality. First of all, we need to create the SQL statements necessary to
retrieve data from the database, and then we need to create the data access
objects that will execute these statements and return the data for further use.
 Chapter 15. Bidding component 595

Create the SQL statements
Before we create the data access objects, we need to have the SQL statements
created. We demonstrate how to create a SQL statement using the SQL Builder
wizard.

InsertBid SQL statement
This SQL statement will enable us to crete a new row in the BID table. To create
the statement using Rational Web Developer, follow these steps:

1. Switch to the Data perspective and choose File → New → SQL Statement.
A dialog box opens as shown in Figure 15-37.

2. Choose INSERT from the SQL statement drop-down menu, check the Be
guided through creating an SQL statement option, uncheck Create a new
database connection and click Next.

Figure 15-37 Create an Insert SQL statement
596 WebSphere Application Server - Express V6 Developers Guide and Development Examples

3. Click Browse to select an existing database model.

4. A new dialog box opens as shown in Figure 15-38. Choose
SAL404RealtyEJB → ejbModule → META-INF → backends →
DB2UDBNT_V8_1 → SAL404(DB2 Universal Database V8.1) and click OK.

Figure 15-38 Data resource selection

5. You will be returned to the previous dialog box, notice that SAL404R appears
as the database model used. Click Next.

6. Enter InsertBid in the SQL statement name textbox and click Next as shown
in Figure 15-39 on page 598.
 Chapter 15. Bidding component 597

Figure 15-39 Enter SQL query name

7. From the Tables tab select DB2ADMIN.BID and click > to move the table to
the selected table field. Figure 15-40 on page 599 shows an example of the
selected table.
598 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-40 Select table for insert statement

8. Click the Insert tab and enter values for each column in the insert statement.
We provide names of parameters that will be replaced by actual values when
our query runs. See Figure 15-41 on page 600 for an example. Click Next.
 Chapter 15. Bidding component 599

Figure 15-41 Provide values for the insert statement

9. Figure 15-42 on page 601 shows the completed SQL statement. Click Finish.
600 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-42 Completed SQL statement for insert bid

10.You are returned to your workspace where the new SQL statement is opened
in the SQL statement editor.

You have now completed the creation of InsertBid SQL statement.

Generate the data access object classes
Once you have created an SQL statement you need to create the data access
object classes that will use the statement to perform operations on the database.
Our completed bidding component contains the following DAO classes:

� InsertBidDAO
� UpdateBidDAO
� ListBidsForPropertyDAO
� ListBidsForPropertyDAORow
 Chapter 15. Bidding component 601

Here, we demonstrate the steps necessary to create one of these DAO classes,
InsertBidDAO using Rational Web Developer. You should follow the same steps
in order to create the rest of the DAO classes:

1. Switch to the Data perspective and select SAL404RealtyEJB →
ejbModule → META-INF → backends → DB2UDBNT_V8_1 →
SAL404(DB2 Universal Database V8.1) → Statements. Right-click
InsertBid and choose Generate Java Bean as shown in Figure 15-43.

Figure 15-43 Generate Java BEAN for a SQL statement

2. A dialog box like the one shown in Figure 15-44 on page 603 will appear.
602 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-44 Generate a DAO class

3. Click to Browse a set the source folder to SAL$04RealtyJava.

4. You will be returned to the previous dialog box, click to Browse for a package,
a set the package to com.ibm.itso.sal404.biGenerate a DAO class (Step 4).

5. You will be returned to the previous dialog box, enter InsertBidDAO in the
Name textbox and click Next.

6. A new dialog box will open, choose Use DataSource Connection and enter
in jdbc/sal404 as your DataSourcee/JNDI Name.

7. Select Inside the execute() method and enter a user ID of db2admin and
supply the correct password.Click Next as shown in Figure 15-45 on
page 604.
 Chapter 15. Bidding component 603

Figure 15-45 Specify runtime DataSource information for the DAO class

8. Review the details of the class to be generated and click Finish. See
Figure 15-46 on page 605 for an example.
604 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-46 Complete generation for a DAO class

9. Open the J2EE perspective and navigate to the
com.ibm.itso.sal404.bidding.dao package.

10.Double-click the InsertBidDAO.java file to open it, locate the execute()
method and remove the lines that set the username and the password.
Example 15-6 shows the generated code of the execute() method before our
changes. We do not want to supply hard coded user name and password as
these will be provided at runtime by our DataSource connection. The lines to
delete are:

modify.setUsername("db2admin");
modify.setPassword("db2adminpassword");

Example 15-6 InsertBidDAO execute() method with inline user name and password

public void execute(String bidId, Integer bidPropId, Integer bidUsrId,
String bidStatus, Integer bidPropSeller,
java.sql.Timestamp bidDate, java.math.BigDecimal bidPrice)
throws SQLException {

try {
 Chapter 15. Bidding component 605

modify.setUsername("db2admin");
modify.setPassword("db2adminpassword");
modify.setParameter("bidId", bidId);
modify.setParameter("bidPropId", bidPropId);
modify.setParameter("bidUsrId", bidUsrId);
modify.setParameter("bidStatus", bidStatus);
modify.setParameter("bidPropSeller", bidPropSeller);
modify.setParameter("bidDate", bidDate);
modify.setParameter("bidPrice", bidPrice);
modify.execute();

}

// Free resources of modify object.
finally {

modify.close();
}

}

11.We also want to use the GUID generator key generation facility discussed in
9.2.6, “Entity beans” on page 335 to set the bid id for our new bid. Replace
the line in the execute() method:

modify.setParameter("bidId", bidId);

with code that generates a key:

KeyGenerator keyGenerator = new KeyGenerator();
modify.setParameter("bidId", keyGenerator.getKeyString());

12.We also want to set the bidDate to a SQL date instead of the supplied
java.util.Date current date and time, so we replace the line:

modify.setParameter("bidDate", bidDate);

with code to convert the date:

java.sql.Date sqlDate = new java.sql.Date(bidDate.getTime());
modify.setParameter("bidDate", sqlDate);

13.Example 15-7 shows our new execute method.

Example 15-7 Modified execute() method for the DAO

public void execute(String bidId,
 Integer bidPropId, Integer bidUsrId, String bidStatus,
 Integer bidPropSeller, java.util.Date bidDate, java.math.BigDecimal
bidPrice)
 throws SQLException
 {
 try
 {
 java.sql.Date sqlDate = new java.sql.Date(bidDate.getTime());
606 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 KeyGenerator keyGenerator = new KeyGenerator();
 modify.setParameter("bidId", keyGenerator.getKeyString());
 modify.setParameter("bidPropId", bidPropId);
 modify.setParameter("bidUsrId", bidUsrId);
 modify.setParameter("bidStatus", bidStatus);
 modify.setParameter("bidPropSeller", bidPropSeller);
 modify.setParameter("bidDate", sqlDate);
 modify.setParameter("bidPrice", bidPrice);
 modify.execute();
 }

 // Free resources of modify object.
 finally
 {
 modify.close();
 }
 }

14.We also want to change the generated initializer() method to remove the hard
coded DataSource name. Replace the line that reads:

modify.setDataSourceName("/jdbc/sal404");

Use the following code which obtains the DataSource from the application
properties of our Sal404 application as a replacement:

modify.setDataSourceName(AppProperties.getInstance().getProperty("dataSourc
eJNDIName"));

The data access object class for the InsertBid statement is now
complete.generated.

15.2.8 Putting everything together
By this point, we have implemented all the front-end layers (presentation and
controller) and all the back-end layers (domain layer, data access layer) of the
bidding component. We have also done some work on the integration of the
front-end and the back-end layers in the business facade layer. We now create
the BidManager class, which acts as the business facade layer of the
component. We also create the associate BidSessionData class.

Create the BidManager
This section describes how to create the BidManager and shows the
implementation of the add bid functionality. See our redbook sample code for the
complete BidManager class that also implements bid updates and lists.
 Chapter 15. Bidding component 607

1. Using the Project Explorer navigate to the Other Projects →
SAL404RealtyJavaControl project, then right-click the package
com.ibm.itso.sal404.bidding and choose New → Class.

2. Enter BidManager as the class name and click Finish.

3. Example 15-8 shows the addBid(BidDTO) method. After you have finished
adding the code, save the file.

Example 15-8 addBid(BidDTO) method

/**
 * @param bidItem
 * @throws ApplicationException
 */
 public void addBid(BidDTO bid) throws ApplicationException
 {
 InsertBidDAO bidDAO = new InsertBidDAO();
 try
 {
 bidDAO.execute("DummyId", bid.getPropertyId(), bid.getBidderId(),
bid
 .getStatus(), bid.getPropertySeller(), bid.getBidDate(),
bid.getBidPrice());
 }
 catch (Exception e)
 {

 logger.info("DBerror " + e.getMessage());

 logger.error("addBid: " + e.getMessage());

 ApplicationException ae = new ApplicationException();
 ae.setStrutsMessage("bid.error.addBid");
 throw ae;
 } finally
 {
 logger.info("EXIT: addBid");
 }

 }

4. The code shown in Example 15-8 does the following key tasks:

a. Creates an instance of the InsertBidDAO.

InsertBidDAO bidDAO = new InsertBidDAO();

b. Invokes the execute() method of the InsertBidDAO providing input
parameters extracted from the BidDTO.
608 WebSphere Application Server - Express V6 Developers Guide and Development Examples

bidDAO.execute("DummyId", bid.getPropertyId(), bid.getBidderId(),
bid.getStatus(), bid.getPropertySeller(), bid.getBidDate(),
bid.getBidPrice());

c. The rest of the code is concerned with logging and error handling.

We have now finished building the bidding component.

Create the BidSessionData
This section describes how to create the BidSessionData class and describes
the implementation of the create(BidDTO bid) method. See our redbook sample
code for the complete BidSessionData class.

1. Using the Project Explorer navigate to the Other Projects →
SAL404RealtyJavaControl project, then right-click the package
com.ibm.itso.sal404.bidding and choose New → Class.

2. Enter BidSessionData as the class name and click Finish.

3. Example 15-9 shows the create(BidDTO bid) method.

Example 15-9 create(BidDTO bid) method

/**
 *
 * @param bidItem
 * @throws ApplicationException
 */
 public void create(BidDTO bid) throws ApplicationException
 {
 getBidManager().addBid(bid);

 // clear the list
 setBidList(null);
 }

4. The code shown in Example 15-9 does the following key tasks:

a. Obtains a reference to the BidManager.

getBidManager()

Note: Our current implementation of the add bid functionality does not
satisfy the full requirements specified for our bidding component. We do
not check that no other open bids exist for the property and we do not
update the property status to reflect that a bid has been made.
 Chapter 15. Bidding component 609

b. Invokes the addBid() method of the BidManager providing input
parameters extracted from the BidDTO.

addBid(bid)

c. Clears the current list of bids held in the session data so that the user will
se an updated list of bids.

setBidList(null);

15.2.9 Testing the bidding component
In this section we describe how to test the add bid functionality and also describe
the application flow that implements this function.

1. To test the bidding you must be logged on to the Sal404 sample application.

2. Log on to the Properties link from the SAL404RealtyWeb home page. The
searchByCriteria page will be displayed.

3. Enter some search criteria and display a list of properties.

4. Select a property from the list and the Property Details page should be
displayed as shown in Figure 15-47 on page 611.
610 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Figure 15-47 Property details page

5. The property details page is implemented by the viewPropertyDetails.jsp
which includes the viewPropertyDetailsBody.jspf. We altered the
viewPropertyDetailsBody.jspf to display action buttons to allow users to add
and list bids. Example 15-10 shows the code in viewPropertyDetailsBody.jspf
that displays the Bid button.

Example 15-10 viewPropertyDetailsBody.jspf bid button

<c:if test="${propertyDTO.statusDescription == \"Active\"}">
 <TD>

 <form action="/SAL404Realty/bidding/SetupBid.do"><INPUT
type="hidden"

name="propertyId" value="${propertyDTO.id}"> <INPUT
type="submit"
 Chapter 15. Bidding component 611

name="name" value="Bid"></form>
 </TD>

</c:if>

6. Click Bid. As you can see from Example 15-10 on page 611 this submits the
form with an action of SetupBid.do.

7. SetupBid.do is a Struts action implemented by the SetupBidAction class.This
action uses the PropertyCatalogManager to obtain details of the property that
the user has chosen and places a PropertyDTO in the HTTP session. This is
so that the AddBid.jsp can display details of the property. Example 15-11
shows the execute() method of SetupBidAction. If the execute() method
succeeds the action will forward to the AddBid.jsp.

Example 15-11 SetupBidAction execute() method

public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception
 {

 ActionErrors errors = new ActionErrors();
 ActionForward forward = new ActionForward(); // return value

 try
 {

 PropertyCatalogManager manager = new PropertyCatalogManager();
 PropertyDTO prop = manager.populatePropertyDetails(new
Integer(request.getParameter("propertyId")));
 request.getSession().setAttribute("propertyDTO", prop);

 }
 catch (Exception e)
 {

 e.printStackTrace();
 // Report the error using the appropriate name and ID.
 logger.error(e.getMessage());
 errors.add("Bid", new ActionError("No property found"));

Note: The code shown in Example 15-10 is part of a larger structure that
test to make sure that the application user is logged in. It tests whether the
property staus is Active, but we have not implemented the bidding
requirement to make sure that the user placing a bid is not the property
seller or agent.
612 WebSphere Application Server - Express V6 Developers Guide and Development Examples

 }

 // If a message is required, save the specified key(s)
 // into the request for use by the <struts:errors> tag.

 if (!errors.isEmpty())
 {
 logger.info("errors found in setup bid");
 saveErrors(request, errors);
 forward = mapping.findForward("failure");

 }
 else
 {

 forward = mapping.findForward("success");

 }

 // Finish with
 return (forward);

 }

8. Figure 15-48 on page 614 shows the add bid page. This is implemented by
the addBid.jsp which includes the addBidBody.jspf.

Note: The property catalog component still places DTOs directly in the
session, which is not our recommended approach. We prefer to use the
session data technique as described in 5.3.4, “Session data” on page 219,
but we have not yet altered the property catalog component to use a
session data class.
 Chapter 15. Bidding component 613

Figure 15-48 Add bid page

9. Enter a Bid price and click Add.

10.We use Struts validation as discussed in 11.7.1, “Using the Validator in forms
and JSPs” on page 464 to validate the bid form on the add bid page. Both a
bid date and a bid price are required. We also validate that the date enter can
be converted to a valid date using the pattern yyyy-MM-dd and that the enter
price can be converted to a float. Example 15-12 shows the validation rules
for the bid form that we created in the Struts validation.xml file.

Example 15-12 Struts validation of the bid form.

<form name="bidForm">
<field property="sbidPrice" depends="required,float">

<arg0 key="error.bidPrice.required" />
</field>
614 WebSphere Application Server - Express V6 Developers Guide and Development Examples

<field property="sbidDate" depends="required,date">
<arg0 key="error.date.required" />
<var>

<var-name>datePatternStrict</var-name>
<var-value>yyyy-MM-dd</var-value>

</var>
</field>

</form>

11.Using Struts validation means that the validate() method of our Struts form
bean class BidForm does not need to do extra validation. It simply converts
the string date and price fields into their correct types as shown in
Example 15-13.

Example 15-13 BidForm validate() method

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request)
 {

 // ActionErrors errors = new ActionErrors();
 ActionErrors errors = super.validate(mapping, request);

 logger.info("Number of errors is " + errors.size());
 // Validate the fields in your form, adding
 // adding each error to this.errors as found, e.g.
 if (errors.isEmpty())
 {
 logger.info("No errors so parsing date and price ");
 try
 {

 setBidDate(formatter.parse(getSbidDate()));
 }
 catch (ParseException e)
 {
 e.printStackTrace();
 errors.add("Bid", new ActionError("error.bid.invalidDate"));
 }

 setBidPrice(new BigDecimal(getSbidPrice()));
 }
 return errors;

 }
 Chapter 15. Bidding component 615

12.After validation is completed the Struts action AddBidAction is called. The
execute() method of the action does the following key tasks:

a. Retrieves the bid form.

BidForm bidForm = (BidForm) form;

b. Retrieves the user session data.

UserSessionData userSessionData = (UserSessionData) request
 .getSession().getAttribute("userSessionData");

c. Retrieves the property DTO from the session.

PropertyDTO prop = (PropertyDTO) request.getSession().getAttribute(
 "propertyDTO");

d. Calls populateBidDTO(form, prop, userSessionData) to populate fields in
a bid DTO from the contents of the bid form, the property DTO and the
user session data.

BidDTO bidDTO = populateBidDTO(form, prop, userSessionData);

e. Calls the addBid(request,errors,bidDTO) method to create a new bid.

addBid(request,errors,bidDTO);

13.The addBid(request,errors,bidDTO) method of the AddBidAction does the
following key tasks:

a. Retrieves the bid session data.

BidSessionData bidSessionData = (BidSessionData)
request.getSession().getAttribute("bidSessionData");

b. Calls the bidSessionData.create(bidDTO) method which we previously
documented in Example 15-9 on page 609.

bidSessionData.create(bidDTO);

14.The bidSessionData.create(bidDTO) method calls the BidManager method
addBidd(BidDTO) which we previously documented in Example 15-8 on
page 608.

15.If the bid creation succeeds, the AddBidAction forwards to the Struts
ViewPropertyDetails action to redisplay the property details page.
616 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246500

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246500.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246500.zip Zipped code samples

A

© Copyright IBM Corp. 2005. All rights reserved. 617

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows
Processor: Intel Pentium III 800MHZ processor minimum or higher
Memory: Minimum 768 MB available RAM - 1GB recommended

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

The files contained in the expanded zip file are:

� In folder \material\database

– DBSCRIPT.SQL

See 4.7.1, “Running the sample database script” on page 174 for details of
using this script file. Also refer to 13.3, “The new data model” on page 532
for details of the data model that this script implements.

– NEWDBSCRIPT.SQL

Refer to 13.3, “The new data model” on page 532 for details of the data
model that this script implements.

– OLDDBSCRIPT.SQL

Refer to 13.2, “The Sal301 data model” on page 530 for details of the data
model that this script implements

� In folder \material\ear

– SAL404JmsClientEAR.ear

– SAL404Realty.ear

This is the packaged EAR file for our Sal404 sample application. See
4.7.5, “Installing the Sal404 application EAR” on page 190 for details of
working with this EAR file.

– SAL404TestServices.ear

� In folder \material\projects

– Sal404Interchange.zip

This is a Rational Software Development Platform project interchange file
containing all our Sal404 sample code. It can be imported to a Rational
Software Development Platform workspace as described in 4.9, “Installing
Sal404 code in Rational Web Developer” on page 202
618 WebSphere Application Server - Express V6 Developers Guide and Development Examples

See 4.7, “Deploying the sample application” on page 174 for details on how to
use the additional material to install our redbook samples.
 Appendix A. Additional material 619

620 WebSphere Application Server - Express V6 Developers Guide and Development Examples

acronyms
ACID Atomicity, Consistency,
Isolation and Durability

ARM Application Response
Measurement

BMP bean-managed persistence

BPEL4WS Business Process Execution
Language for Web Services

BSF Bean Scripting Framework

CBD Component Based
Development

CGI Common Gateway Interface

CMP container-managed
persistence

CORBA Common Object Request
Broker Architecture

CosNaming Common Object Request
Broker Architecture (CORBA)
naming service

CRUD create, read, update, delete

CSS cascading style sheets

CVS Concurrent Version Systems

DAD document access definition

DADX document access
definition extension

DAO data access object

DHTML Dynamic HTML

DMS data mediator service

DTD Document Type Definition

DTO data transfer object

EAR Enterprise Application Archive

EGL Enterprise Generation
Language

EIS Enterprise Information
Systems

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
EJB Enterprise JavaBean

EJS Enterprise Java Server

EMF Eclipse modelling framework

ERD entity relationship diagram

ESB Enterprise Service Bus

GUI Graphical user interface

GUID globaly unique ID

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IMAP Internet Message Access
Protocol

INS Interoperable Naming Service

ITSO International Technical
Support Organization

J2C Java 2 Connector
Architecture

J2EE Java 2 Platform, Enterprise
Edition

J2SE Java 2 Platform, Standard
Edition

JAAS Java Authentication and
Authorization Service

JACC Java Authorization Contract
for Containers

JAF Java Activation Framework

JAR Java archive

JAXM Java API for XML Messaging

JAXP Java API for XML Processing

JAXR Java API for XML Registries

JCA J2EE Connector Architecture
 621

JDBC Java Database Connectivity

JDK Java Development Kit

JDO Java Data Object

JDT Java Development Tools

JMS Java Message Service

JMX Java Management
Extensions

JNDI Java Naming and Directory
Interface

JNLP Java Network Launching
Protocol

JSEE Java Secure Socket
Extension

JSF JavaServer Faces

JSP JavaServer Pages

JSTL JavaServer Pages Standard
Tag Library

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LTPA Lightweight Third Party
Authentication

MDB Message Driven Bean

MIME Multipurpose Internet Mail
Extensions

MVC model-view-controller

ORB Object Request Broker

OTS Object Transaction Service

OU Organizational Unit

PDE Plug-in Development
Environment

PME Programming Model
Extensions

PMI Performance Monitoring
Infrastructure

POJO plain old Java object

POP Post Office Protocol

POP3 Post Office Protocol Version 3

RAR Resource Adapter Archive

RMI Remote method invocation

RMIC RMI Compiler

RUP Rational Unified Process

SCM software configuration
management

SDO Service Data Objects

SIB service integration bus

SIBWS service integration bus
Web services

SLES SuSE Linux Enterprise Server

SMTP Simple Mail Transfer Protocol

SOA Service-oriented architecture

SSL Secure Sockets Layer

SSO single signon

TLS Transport Layer Security

TUI text user interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

XSD XML Schema Definition

UCS Universal Character Set

UDDI Universal Description,
Discovery and Integration

UI User Interface

WSIL Web services inspection
language

WAR Web Application Archive

WSDL Web Services Definition
Language

WAR Web Application Archive

WSIF Web Services Invocation
Framework

XHTML Extensible HyperText Markup
Language
622 WebSphere Application Server - Express V6 Developers Guide and Development Examples

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSL Extensible Stylesheet
Language
 Abbreviations and acronyms 623

624 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 629. Note that some of the documents referenced here may
be available in softcopy only.

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

� WebSphere Application Server - Express V5.0.2 Administrator Handbook,
SG24-6976

� WebSphere Application Server - Express V5.0.2 Developer Handbook,
SG24-6555

� WebSphere Application Server - Express: A Development Example for New
Developers, SG24-6301

Other publications
These publications are also relevant as further information sources:

� EJB Design Patterns, Floyd Marinescu, John Wiley & Sons, Inc., 2002, ISBN:
0-471-20831-0

� Design Patterns: Elements of Reusable Object-Oriented Software, E.
Gamma, R. Helm, R. Johnson, J. Vlissides, Addison-Wesley, 1994, ISBN:
0-201-63361-2

� Enterprise Messaging Using JMS and WebSphere (Kareem Yusuf), Prentice
Hall, ISBN: 0-13-146863-4

� Java Message Service (Monson-Haefel, Chappell), O’Reilly, ISBN:
0-596-00068-5
© Copyright IBM Corp. 2005. All rights reserved. 625

� Professional JMS (Grant, Kovacs, et al), Wrox Press Inc., ISBN: 1861004931

� Enterprise JavaBeans, Fourth Edition (Monson-Haefel, Burke, Labourey),
O’Reilly, ISBN: 0-596-00530-X

Online resources
These Web sites and URLs are also relevant as further information sources:

� The Rational Unified Process(RUP)

http://ibm.com/software/awdtools/rup/index.html

� Extreme programming resources

http://www.xprogramming.com/

� Extreme programming introduction

http://www.extremeprogramming.org/

� The Agile alliance

http://www.agilealliance.org

� Eclipse.org

http://www.eclipse.org/

� WebSphere Application Server - Express system requirements

http://ibm.com/software/webservers/appserv/express/requirements/

� Java Comunnity Process - Java Specification Requests

http://www.jcp.org/en/jsr/all

� Java 2 Platform, Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� WebSphere Application Server supported hardware and software

http://ibm.com/software/webservers/appserv/doc/latest/prereq.html

� Rational Web Developer system requirements

http://ibm.com/software/awdtools/developer/web/sysreq/index.html

� Logging services project at Apache

http://logging.apache.org/

� The Apache HTTP server project

http://httpd.apache.org/

� Server watch

http://www.serverwatch.com
626 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://www.eclipse.org/
http://www.xprogramming.com/
http://www.extremeprogramming.org/
http://www.agilealliance.org
http://ibm.com/software/webservers/appserv/express/requirements/
http://www.jcp.org/en/jsr/all
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://ibm.com/software/awdtools/developer/web/sysreq/index.html
http://logging.apache.org/
http://httpd.apache.org/
http://www.serverwatch.com
http://www.serverwatch.com

� W3C HTML home page

http://www.w3.org/MarkUp/

� W3C Hypertext Transfer Protocol overview

http://www.w3.org/Protocols/

� Sun Java Servlets product page

http://java.sun.com/products/servlet/

� Sun Java Servlets tutorial

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

� Sun JavaServer Pages product page

http://java.sun.com/products/jsp/product.html

� Sun JavaServer Pages tutorial

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html

� Sun JavaBeans product page

http://java.sun.com/products/javabeans/

� Sun JavaBeans tutorial

http://java.sun.com/docs/books/tutorial/javabeans/index.html

� Sun Java 2 Platform, Enterprise Edition home page

http://java.sun.com/j2ee/

� Sun Java 2 Platform, Enterprise Edition tutorial

� http://java.sun.com/j2ee/tutorial/

� Java Specification Request Service Data Objects

http://www.jcp.org/en/jsr/detail?id=235

� Spring globally unique identifier generator

http://static.springframework.org/spring-webflow/docs/pr3/api/org/springfra
mework/util/RandomGuid.html

� ActiveScript - J-GUID

http://www.activescript.co.uk/jguid.html

� Developing and Deploying Modular J2EE Applications with WebSphere
Studio Application Developer and WebSphere Application Server

http://ibm.com/developerworks/websphere/library/techarticles/0206_robinson/
robinson.html#N10242

� WebSphere Application Server library

http://www.ibm.com/software/webservers/appserv/infocenter.html
 Related publications 627

http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://java.sun.com/products/servlet/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.htm
http://java.sun.com/products/jsp/product.htm
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html
http://java.sun.com/products/javabeans/
http://java.sun.com/docs/books/tutorial/javabeans/index.html
http://java.sun.com/j2ee/
http://java.sun.com/j2ee/tutorial/
http://www.jcp.org/en/jsr/detail?id=235
http://static.springframework.org/spring-webflow/docs/pr3/api/org/springframework/util/RandomGuid.html
http://www.activescript.co.uk/jguid.html
http://ibm.com/developerworks/websphere/library/techarticles/0206_robinson/robinson.html#N10242
http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java Message Service documentation

http://java.sun.com/products/jms

� Java 2 Platform, Enterprise Edition documentation

http://java.sun.com/j2ee/index.jsp

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/index.jsp

� WebSphere MQ Using Java

http://ibm.com/software/integration/mqfamily/library/manualsa/manuals/cross
latest.html

� Apache Struts home page:

http://struts.apache.org/

� Apache Struts User Guide:

http://struts.apache.org/userGuide/introduction.html

� Best practices for Struts development

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� Struts Validator guide

http://struts.apache.org/userGuide/dev_validator.html

� Jakarta Regexp

http://jakarta.apache.org/regexp/index.html

� W3C Soap specifications

http://www.w3.org/TR/soap/

� W3C XML

http://www.w3.org/XML/

� W3C WSDL:

http://www.w3.org/TR/wsdl

� OASIS UDDI

http://www.uddi.org/

� SOA and Web services standards

http://ibm.com/developerworks/views/webservices/standards.jsp

� WS-I basic profile

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

� OASIS

http://www.oasis-open.org/
628 WebSphere Application Server - Express V6 Developers Guide and Development Examples

http://java.sun.com/products/jms
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/connector/index.jsp
http://ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://struts.apache.org/
http://struts.apache.org/userGuide/introduction.html
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://struts.apache.org/userGuide/dev_validator.html
http://jakarta.apache.org/regexp/index.html
http://www.w3.org/TR/soap/
http://www.w3.org/XML/
http://www.w3.org/TR/wsdl
http://www.uddi.org/
http://www.ibm.com/developerworks/views/webservices/standards.jsp
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.oasis-open.org/

� Business Process Execution Language for Web Services version 1.1

http://ibm.com/developerworks/library/specification/ws-bpel/

� Web Services Inspection Lanaguage

http://ibm.com/developerworks/webservices/library/ws-wsilspec.html

� CVS manuals

http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System
_v1.12.12.1

� Sttus module switching

http://struts.apache.org/userGuide/configuration.html#module_config-switchi
ng

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 629

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://ximbiot.com/cvs/wiki/index.php?title=CVS--Concurrent_Versions_System_v1.12.12.1
http://struts.apache.org/userGuide/configuration.html#module_config-switching

630 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Index

A
access control 317
ACID 383
action mappings 565
ActionForm 452
actions 20, 31, 214, 561

Struts
actions 451

ActionServlet 451–452
activation configuration properties 401
activation specifications 187, 403, 418

JMS 403
ActivationSpec 70, 89, 386, 401

JMS 404
activities 14, 17
admin service 71
administered objects 367, 369, 391
administering 119
administration 18, 106

WebSphere Application Server - Express 142
administrative components 19
Agile 11, 626
Agile development 11, 626
analysis 15
Animated GIF Designer 44, 234
Apache Axis 484
API 28, 35, 99, 249, 292, 295

JMS 366
SDO 247, 286

applets 227
application build 541
application client modules 226
application coupling 360
application properties 147
application server 33, 35, 226
Application Server Toolkit 55
application structure 541
applications 146, 226

enterprise 226
JSF 242, 281
Web 225, 227

architecture 8, 11, 18, 21, 33, 38, 58, 211, 448
component based 13
© Copyright IBM Corp. 2005. All rights reserved.
components 26
EJB 312
overview 22
SDO 292–293
SOA 476

asynchronous messaging 361
authentication 92, 95
authentication alias 176, 182, 206
authorization 94–95

B
bean managed transactions 400
Bean Scripting Framework 107
best practices 292

MDB 405
bid manager 215
bidding 9, 212

actions 561
business facade layer 592
business logic layer 215
controller layer 588
DAO 601
data access layer 595
domain layer 593
DTO 592–593
form beans 568
manager 216
persistence layer 216
presentation layer 214, 556
requirements 212
samples 550
specification 549–550
specifications 214
SQL statements 596
testing 610
validation 614
Web diagram 556
Web pages 561, 582

bidding component 549
BidManager

create 607
BidSessionData 219

create 609
 631

binding 84, 114
BPEL4WS 482
browser 226
BSF 107
bus members 86, 411
business components 19
business facade 24–25, 31
business facade layer 592
business logic 20, 210–211, 214, 240
business objectives 13
Business Process Execution Language for Web
Services 482
BytesMessage 373

C
cache 69
caching 317
CBD 23
cells 61
CICS 81
classes 229
client application container 67
Cloudscape 423
clusters 63, 89
CMP 100
code guidelines 536
code quality 535
code templates 537
command beans 20
commands 107
common tasks 8
compilation 46
component based developemnt 5
components 17–19, 22, 211

administrative 19
architecture 26
bdding 9
bidding 549
business 19
EJB 314
E-mail 19, 27
interest list 19, 28
interfaces 23
JSF 242
news 19, 27
property catalog 19, 27, 555
reporting 19, 28
specification 23

user 19, 28
configuration 107, 246

JSF 242, 282
MDB 401
SDO 284

configuration repository 107
connection 298, 370
connection factories 368
connection pooling 100
ConnectionFactory 368
connectors 38, 89
constraints 17

databases
constraints 529

referential 529
table check 529

container managed transactions 398
container-managed persistence 100
containers 65

servlet 227
contract 23
controller 20, 24, 31, 210–211, 240, 449–450

JSF 241
controller layer 588
conventions

naming 20
cookies 77
CORBA 72, 91
CosNaming 72
country codes 216
coupling 360
create

EJB 317, 336
Face JSP file 257
home page 257
relational record list 258

credentials 93
CRUD 210, 219
CSS 233, 235
CSS Designer 233
CVS 47, 112, 540, 546

D
DAD 46
DADX 46, 483
DAO 26, 31, 276

bidding 601
data 37
632 WebSphere Application Server - Express V6 Developers Guide and Development Examples

data access 20, 24, 31
data access layer 595
data access object See DAO
data graph 248–249, 293–294, 297
data mediator 248–249, 293
data model 9, 527

Sal301 530
Sal404 532

data object 248, 250, 288, 293
Data Replication Service 75
data store 421
data transfer objects See DTO
database tools 45
databases 9, 26, 35, 42, 45, 86, 100, 185, 210, 214,
249, 314, 335, 423

design 527
identity column 528
indexes 529
primary key 529
refererential constraint 529
routines 530
SAL404R 174
table check constraint 529
triggers 528

datagram 364
DataGraph 298
DataObject 297
DataSource 180, 206

test connection 185
DB2 45, 120, 171, 423, 528

installation 161
DB2_JDBC_DRIVER_PATH 183
db2java.zip 183
debugging 47
default messaging 36, 56, 64, 101, 414
default messaging provider 102, 359, 408, 414
delegate 214
dependencies 17, 29

JAR 542
deployment 6, 15, 18, 45, 111, 113, 227, 541

EJB 324
samples 174

deployment descriptor 44, 226–229, 383
extended 284

deployment manager 109
design 6, 17, 112

database 9, 527
layers 19, 24
logical 15

physical 15
Web 17

design patterns 25
business facade 25
DAO 26
DTO 26
MVC 210, 448

destination 71
destinations 86, 361, 368, 374, 387, 412

MDB 403
development 4, 33, 111, 448

component based 5, 22
iterative 13
J2EE 542
process 7, 11
tools 223
Web 8
Web site 223

DHTML 6, 120
distributed 312
DMS 293
DNS 76
Document access definition extension 484
documentation 18
domain 20, 24, 31
domain layer 593
DRS 75
DTD 45
DTO 20, 26, 31, 215

bidding 592–593
dynamic 225
dynamic cache 69

E
EAR 45, 55, 113, 190, 202, 227

enhanced 113
e-business 34, 37
Eclipse 38–40
Eclipse Java Development Tools (JDT) 40
Eclipse modelling framwork 296
Eclipse Platform 40
Eclipse Plug-in Development Environment 40
Ecore 296
ECoreEList 298
efficiency 21
EGL 38, 46
EIS 68, 81, 100, 314, 381, 383
EJB 6, 8, 36, 48, 52, 65, 81, 89, 210, 217, 249, 311,
 Index 633

361, 392
architecture 312
create 317, 336
deployment 324
entity beans 315
MDB 316
query language 249
session beans 316

EJB components 314
EJB container 65–66, 313–314, 317, 335, 392
EJB modules 226–227
EJB query language 249
EJB server 313
E-mail 19
E-mail component 27
EMF 296, 298
encapsulation 23
enhanced EAR 113
enhancements 209
enterprise application 226
Enterprise Application Archive See EAR
Enterprise Generation Language 38
Enterprise Information Systems 100
Enterprise JavaBeans See EJB
Enterprise Service Bus See ESB
Enterprise Web Services 82
entity beans 315, 335
entity relationship diagram 530
environment 102
ERD 530
ERP 100
errors 240
ESB 56, 85
event listeners 241
events

JSF 243
exceptions 378
Express Application Server xv, 227, 646
extensibility 21
Extensible Markup Language See XML
Extreme programming 11, 626

F
facade 24, 316
Faces JSP file

create 257
faces-config.xml 282
FacesServlet 241–242

factory 372
failover 60, 105
features 17, 130
file creation wizards 234
fire and forget 364
first steps 136
form beans 450, 452
forms 20, 30–31, 219
frameworks 240, 248

G
Generic JMS provider 102
GIF 233–234
group one users 6
group three users 6
group two users 6
GUID 338

H
hardware requirements

WebSphere Application Server - Express 121
help 145

WebSphere Administrative Console 145
high availability 105
home page 257

testing 257
HTML 6, 19, 30, 44–45, 48, 52, 120–121, 224, 227,
230–232, 256
HTTP 37, 65–66, 101, 210, 216, 219, 224, 226,
312, 316, 479
HTTP server 37, 224, 231, 479
HyperText Markup Language See HTML
Hypertext Transfer Protocol See HTTP

I
IBM Eclipse SDK 3.0 39
IBM HTTP Server 55, 120
IDE 112
identity column 528
IIOP 104
images 120, 233, 235
IMAP 99
implementation 15
import

project interchange 202
IMS 81
inbound services 84
634 WebSphere Application Server - Express V6 Developers Guide and Development Examples

indexes 527, 529
installation 119

DB2 161
launchpad 122
Rational Web Developer 149
samples 190
verification 137
WebSphere Application Server - Expres 119
WebSphere Application Server - Express 121

integrity 295
interest list 19, 210
interest list component 28
interfaces 23, 35
internationalization 240
Internet Message Access Protocol 100
interoperability 481
introduction 7
ISD 484
iSeries 35

J
J2C 68
J2C Authentication data 176
J2EE 21, 24, 35–37, 44, 51–52, 70, 102, 120, 216,
224–226, 231, 239, 292

development 542
modules 226
Web services 481

J2EE Connector Architecture See JCA
J2SE 120
JAAS 91, 94
JAAS Configuration 176
JACC 57, 91, 94
JAF 100
JAR 226–227, 542

dependencies 542
Java 33, 38, 52, 219, 226–227, 292, 312, 366
Java 2 Platform, Enterprise Edition See J2EE
Java API for XML Data Binding 297
Java Data Object 296
Java Database Connectivity See JDBC
Java development tools (JDT) 44
Java Message Service See JMS
Java Servlets 52, 120, 224, 227, 454
Java Web Start 52
JavaBeans 20, 31, 44–45, 225, 242, 448
JavaBeans Activation Framework 100
JavaMail 28, 99

JavaScript 30, 44, 120, 235, 465
JavaServer Faces See JSF
JavaServer Pages See JSP
JAXB 296–297
JAXM 383, 392
JAXR 80, 481
JAX-RPC 52, 79, 481
JCA 36, 52, 68, 81, 89, 98, 100, 381

lifecycle management 382
message inflow management 383
security 382
transaction inflow management 382
transactions 382
work management 382

JDBC 31, 53, 86, 98, 100, 120, 148, 176, 225, 249,
284, 292–293

DataSource 180
resources 176, 206

JDBC mediator 249
JDBC provider 178, 284
JDBCMediator 298
JDK 52
JDO 296
JDT 40, 42, 46
JFace 41
JMS 8, 52, 56, 64, 71, 85, 148, 187, 201, 213, 359,
366, 383, 403, 414

activation specifications 403
ActivationSpec 386, 401, 404
administered objects 367
API 366
connection factories 368
connections 370
default messaging provider 408
destinations 368, 387
domains 367
exceptions 378
JNDI 368
listener ports 403–404
message consumer 374
message producer 374
message selector 373
messages 372
providers 367
requirements 213
resources 187, 206
Sal404 application 426
samples 426

JMS provider 85, 101, 391
 Index 635

JMX 74, 96, 106
JNDI 72, 102, 114, 284, 369, 404

JMS 368
join 250
joins

defnition of 249
JPEG 233
JRE 46
JSEE 92
JSF 8, 54, 206, 212, 224, 237, 239, 250, 257–258,
282

components 242
configuration 242, 282
controller 241
events 243
framework 240
internationalization 240
managed beans 242
model 241
requirements 213
Struts comparison 244
templates 252, 255
testing 257
validation 240, 268
validators 242
view 241

JSF application 281
JSP 6, 30, 44, 48, 52, 65, 120, 214, 224–225, 227,
230–232, 235, 241, 312, 448, 450–451

fragments 253
includes 252

JSP™ 19
JSTL 254–255
JTA 380

K
Kerberos 80
key 338

generation 269
key technologies 33

L
launchpad 122, 149

DB2 162
layered design 19
layers 19, 24, 26, 30, 211, 214

business facade 24, 31, 592
business logic 20, 215

controller 20, 24, 31, 588
data access 20, 24, 31, 595
domain 20, 24, 31, 593
persistence 216
presentation 19, 24, 30, 214, 448, 556

LDAP 92
lib 229
life cycle 14
lifecycle management 317, 382
Lightweight Third Party Authentication 93
List 298
list

news 258
listener ports

JMS 403–404
listeners 241
local forwards 566
local interface 323
LOG4J 187
logging 187, 210
logic 37
logical design 15
loose coupling 360
LTPA 93

M
mail provider 99
maintainability 21
maintenance 6, 15, 18
manage

servers 143
managed beans 241–242, 282
management 55
manager 20, 31, 214, 216, 219
managers 219
MapMessage 373
MDB 89, 212, 316, 383, 392, 429

activation configuration properties 401
best practices 405
configuration 401
create 439
destinations 403
testing 443
transactions 397–398, 400

mediation 88
mediator 249

JDBC 249
message consumer 364
636 WebSphere Application Server - Express V6 Developers Guide and Development Examples

JMS 374
Message Driven Bean 212
message endpoint 387, 389
message endpoints 383
message listener 377, 394
message listener service 70
message producer 364

JMS 374
message store 87
MessageConsumer 375
MessageProducer 374
messages 187

JMS 372
messaging 8, 56, 359–360

asynchronous 361
destinations 361
models 362
patterns 363
Point-toPoint 362
pseudo-synchronous 365
Publish/Subscribe 362
pull mode 364
request-reply 365
synchronous 361
types 361

messaging engine 36, 86, 421
messaging models 362
messaging provider 56, 360

default 359
messaging push mode 364
metadata 294–295
META-INF 227
methods 322
middleware 37
migration 18
MIME 100
model 14, 210, 240, 248, 449–450

JSF 241
Model 2 211
modelling 15
model-view-controller 210–211
model-view-controller See MVC
module switching 577
modules 226, 316

application client 226
EJB 226–227
J2EE 226
Struts 577

Struts

modules 472
Web 226

multimedia 30
Multipurpose Internet Mail Extensions 100
MVC 210–211, 240, 448, 454

N
name service 72
name space 404
namespaces 478
naming conventions 20, 545
Navigation 283
navigation 17, 240–241, 266, 295
news 210, 212, 258, 298
news component 27
NewsSessionData 219
node agent 109
nodes 61

O
OASIS 482
objectives 13
ObjectMessage 373
Object-oriented 22
object-oriented 312
objects 22
ORB 71, 96
OTS 69
outbound services 84

P
packages 20
packaging 113, 120, 227
page code class 286
Page Designer 121, 232, 237
page templates 233
password 206
patterns 292

message consumer 364
message producer 364
messaging 363
MVC 240
request-reply 365

PDE 40, 42, 48
Performance Monitoring Infrastructure 74
persistence 77, 214
perspectives
 Index 637

Web 230
phases 13, 17
physical 17
physical design 15, 17
PKI 80
planning 119
plug-ins 66, 120
PME 54
PMI 74
Point-to-Point 362–363
POJO 317, 324
pooling 317
POP3 99
portability 21
ports 131
Post Office Protocol 100
preferences 486
prerequisites 127, 162
presentation 19, 24, 30
presentation layer 448, 556
primary key 529
process coupling 360
profiles 55
profiling 47
project interchange 202
projects 205, 235

types 235
Web 230

properties 210, 213
property catalog component 27, 555
PropertyCatalogManager 215
protocol providers 99
protocols 99
prototype 17–18
provider 79
pseudo-synchronous 365
Publish/Subscribe 362–363
pull mode 364
push mode 364

Q
QOS 89
quality 9, 15, 535
queries 9, 249
queue connection factory 187, 415
QueueConnectionFactory 368
QueueReceiver 375
queues 81, 86, 187, 412, 416

QueueSender 374

R
RAR 384
Rational Application Developer 37–39, 55, 202,
317, 439, 453
Rational ClearCase 47, 112
Rational Developer 39
Rational Rose 112
Rational Software Development Platform xv, 4, 7,
18, 21, 31, 39–40, 202, 225, 447, 646

overview 8
Rational Web Developer xv, 36, 38–39, 120, 202,
223, 226, 475, 646

installation 149
JSF support 243
SDO 249
templates 237
testing 204

Rational XDE 112
Rational® Unified Process® See RUP
reference data 210, 213, 216, 316

requirements 213
ReferenceDataHelper 216
ReferenceSessionData 219
relational record 249, 265, 285
relational record list 249–250, 285

create 258
relationships 295
reliability 21
remote interface 323
reporting 19
reporting component 28
requester 79
requestors 82
request-reply 365
requirements 8, 15, 17, 21, 121, 209, 212

bidding 212
JMS 213
JSF 213
reference data 213
SDO 294
Web services 213

resource adapter 81, 100, 383–384, 387, 401
resource environment provider 103
resource provider 97
resource reference 284
resource references 114, 369
638 WebSphere Application Server - Express V6 Developers Guide and Development Examples

resources 97, 148
JDBC 148, 176, 206
JDBC provider 179
JMS 148, 187, 206

rich client 38
risks 17
RMI 104
roadmap 13, 17
roles 15, 17, 114
RUP 11, 626

S
SAAJ 80, 481
Sal301 application 4, 18, 29, 454
Sal404 application 4, 209, 236, 297, 316, 486

JMS 426
testing 196

SAL404R 185
SAL404RealtyWeb 236
samples 4, 8, 11, 236–237

bidding 550
components 19
deployment 174
installation 190
JMS 426
JSF 250, 281
requirements 8
SDO 250, 291, 297
validation 455
Web services 486

scalability 21
SCM 47
scripting 107
SDO 8, 53, 213, 247, 258, 274, 282, 291

API 247, 286
architecture 292
configuration 284
connections 284
data graph 248
data mediator 248–249
data object 248
programming model 292
Rational Web Developer 249
requirements 294
samples 291, 297
specifications 294
wizards 298

SDO architecture 293

SDOConnectionWrapper 298
search 213, 215
security 57, 90, 100, 140, 176, 382, 425, 482
security collaborators 95
security flow 96
security server 95
security service 75
server properties 144
servers 61, 143

start 142
stop 142

servers view 204
service broker 476–477
Service Data Objects See SDO
service integration bus 57, 84–85, 101–102, 187,
359, 407

create 409
service provider 476–477
service registry 477
service requester 476–477
service-oriented architecture See SOA
services 9, 19, 38
servlet containers 227
servlets 45, 65
session 38, 76, 210, 216, 219, 240, 312
session beans 316
session data 219
session data classes 219
session listener 217, 219
session management 77, 210, 217, 240
Shared Libraries 187
SIB 407–408
SIBWS 89
Simple Mail Transfer Protocol 100
Simple WebSphere Authentication Mechanism 93
singleton 432
site diagram 279
SMTP 99
SOA 476

service broker 476–477
service provider 476–477
service registry 477
service requestor 476–477
Web services 477

SOAP 46, 52, 79, 478–479, 484
SOAP over HTTP 84
SOAP over JMS 84
software development 14
specifications 23, 214
 Index 639

bidding 214, 549–550
J2EE 225
SDO 294

SQL 9, 20, 45, 295, 527, 595–596
SSL 77, 80, 92
standards 9, 33, 535

naming 545
startServer 142
state management 38
statements

SQL 596
static 225
stopServer 143
StreamMessage 373
Struts 9, 20, 31, 121, 214, 219, 224, 228, 235, 237,
447, 453, 560

actions 20, 561
controller 450
form 20
form beans 450, 568
JSF comparison 244
model 450
modules 577
templates 466
tiles 247
validation 614
validator framework 455
view 450

style sheets 45, 121, 230, 233
subscription 388
success criteria 17
SWAM 93
SWT 41
synchronous messaging 361

T
tag libraries 228, 255, 450, 585

JSF 242
tags 121, 228, 283, 454, 585

JSF 242
JSTL 255
Struts

tags 450
TCP/IP 76
TCP/IP Monitor 486
templates 121, 233, 235–237, 247, 255, 279

create 255
Java code 537

JSF 252, 255
Struts 466
Web 8

test server 204
testing 15, 18, 211, 265

bidding 610
DataSource 185
home page 257
JSF 257
JSF news list 262
MDB 443
news add 270
news delete 273
news details 267
news update 276, 278
Rational Web Developer 204
Sal404 application 196
Web services 498, 511

TextMessage 373
tightly coupled 360
Tiles 247, 252, 467
Tivoli Access Manager 57
TLS 92
tools 14, 33, 44
TopicConnectionFactory 368
TopicPublisher 374
topics 86
TopicSubscriber 375
training

users 18
transaction manager 69
transactions 68, 100, 371, 380

JCA 382
MDB 397–398, 400

tree 294
triggers 527–528
TUI 46

U
UDB 37, 163
UDDI 46, 53, 79, 478–479, 483
UDDI registry 83
UI 24, 30, 240, 242, 250
UML 112, 296
Unified Modeling LanguageSee UML
Uniform Resource Identifier 226
Universal Description, Discovery and Integration
See UDDI
640 WebSphere Application Server - Express V6 Developers Guide and Development Examples

Universal Test Client 339, 486
UNIX 35
URI 226
URL 100–101, 121, 451, 484
URL providers 101
URL rewriting 77
user component 19, 28
user interface 17, 24, 226, 240
user registry 92
users 3, 210

group one 6
group three 6
group two 6
groups 5
training 18

UserSessionData 219

V
validation 240, 246

bidding 614
JSF 240, 268
samples 455
Struts 614

Struts
validation 455

validators 242
JSF 242

variables 183
DB2_JDBC_DRIVER_PATH 183

view 14, 210–211, 240–241, 449–450
virtual host 76

W
WAR 45
Web application 6, 224–225, 227

dynamic 225–226
JSF 242
static 225

Web Art Designer 44
Web container 65, 312
Web design 17
Web Developer 39
Web development 8

tools 44
Web diagram 556
Web modules 226
Web pages 30, 44
Web perspective 230

Web projects 44, 230
Web server 211, 224
Web server plug-ins 66
Web services 9, 33, 35, 38, 46, 52, 56, 79, 202,
212, 228, 475

clients 82
development tools 44
interoperability 481
J2EE 481
preferences 486
requirements 213
samples 486
security 482
SOA 477
testing 498, 511
wizards 484
workflow 482

Web Services Description Language See WSDL
Web Services Explorer 483, 486, 501
Web Services Gateway 56, 83
Web Services Inspection Language 482
Web Site Designer 121, 231
Web site navigation 8
Web templates 8
web.xml 228
WebArt Designer 233
WEB-INF 228
WebSphere Administrative Console 55, 106, 113,
138, 143, 186, 197, 204, 391, 434

help 145
WebSphere Application Server 33, 35, 58

variables 183
WebSphere Application Server - Express xv, 3–4,
7, 35, 51, 224, 226, 239, 528, 541, 646

administration 142
features 5
hardware requirements 121
installation 119, 121
overview 8, 33

WebSphere Application Server Network Deploy-
ment 35
WebSphere Application Server V6.0 381
WebSphere Commerce 35
WebSphere Data Objects 249, 296
WebSphere MQ 38, 56, 101, 403
WebSphere MQ JMS provider 102
WebSphere platform 34
WebSphere Platform Messaging 38
WebSphere Portal 35
 Index 641

WebSphere Rapid Deployment 114
WebSphere Studio 18, 31, 36, 39
WebSphere Studio Application Developer 39
WebSphere Studio Site Developer 38–39
WebSphere Studio Workbench 39
wizards 44, 121, 234

CSS file 235
Faces JSP file 235
file creation 234
HTML file 235
Image file 235
JavaScript file 235
JSP File 235
Page Template file 235
SDO 298
Web services 484

WML 235
Workbench 39, 48
workflow 482
workload management 60, 103
workspace 550
ws.ext.dirs 544
wsadmin 107, 113
WSDL 46, 79, 83–84, 478, 483, 485
WS-I 52, 481
WS-I Basic Profile 481
WSIF 83
WS-IL 482
WSIL 485
WS-Inspection 482
WS-Security 80, 482–483

X
XAResource 69, 380
XHTML 232, 235
XML 38, 44–45, 52, 66, 79, 225, 242, 247, 292,
294, 448, 451, 478–479

tools 45
XML schema 296, 478
XML tools 44
XSD 45
XSL 45

Z
z/OS 35
642 WebSphere Application Server - Express V6 Developers Guide and Development Examples

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

W
ebSphere Application Server - Express V6

Developers Guide and Developm
ent Exam

ples

®

SG24-6500-00 ISBN 0738493678

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application
Server - Express V6
Developers Guide and
Development Examples
Planning and
designing your
applications and
databases

Developing and
testing using
Rational Web
Developer

Building a sample
application

This IBM Redbook is a practical guide for developing
Web applications using the Rational Software
Development Platform. We use the Rational Web
Developer development environment that is provided as
part of WebSphere Application Server - Express V6 to
develop a sample Web application targeted to the
WebSphere Application Server - Express runtime
platform. We discuss a sample scenario based on
realistic requirements for small and medium-sized
customers, and provide a guide for the development of
this scenario.

Our focus is on describing a simple process that allows
nontechnical readers to understand and participate in the
development of Web applications using Rational Web
Developer. Our target runtime environment is the
Express Application Server so we use the Rational Web
Developer development environment that is part of the
WebSphere Application Server - Express installation..

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 The development process
	Chapter 1. Introduction
	1.1 Our objectives
	1.2 The focus of this redbook
	1.3 How to use this book

	Chapter 2. Development process
	2.1 Development process basics
	2.1.1 Definition of a development process
	2.1.2 Importance of a development process
	2.1.3 Realization of a development process
	2.1.4 Development process principles

	2.2 Starting a project
	2.2.1 Understanding your business today
	2.2.2 Where do you want to go?
	2.2.3 An initial roadmap

	2.3 Understanding and planning a project
	2.4 Building a solution
	2.5 Project hand-over
	2.6 Real estate application architecture
	2.6.1 Component-based architecture
	2.6.2 Layered design
	2.6.3 Package structure
	2.6.4 Naming conventions

	2.7 Application architecture
	2.8 Overview of the architecture
	2.8.1 Component-based development
	2.8.2 Layered application design
	2.8.3 Usage of design patterns

	2.9 Component architecture
	2.9.1 PropertyCatalog
	2.9.2 News
	2.9.3 E-mail
	2.9.4 InterestList
	2.9.5 Reporting
	2.9.6 User
	2.9.7 Dependencies between components

	2.10 Layered architecture
	2.10.1 Presentation layer
	2.10.2 Controller layer
	2.10.3 Business facade layer
	2.10.4 Domain layer
	2.10.5 Data access layer

	Chapter 3. Product overview
	3.1 The WebSphere product family
	3.1.1 The WebSphere Application Server family

	3.2 WebSphere Application Server - Express V6
	3.2.1 The WebSphere Application Server highlights
	3.2.2 The development tool
	3.2.3 Rational Developer supported platforms and databases
	3.2.4 Rational Web Developer V6 product packaging
	3.2.5 Rational Web Developer tools
	3.2.6 WebSphere Application Server licensing and platforms
	3.2.7 New in WebSphere Application Server - Express V6
	3.2.8 Physical Packaging

	3.3 WebSphere Application Server architecture
	3.4 Application server configurations
	3.4.1 Standalone server configuration
	3.4.2 Distributed server configuration

	3.5 Cells, nodes and servers
	3.6 Servers
	3.6.1 Application server
	3.6.2 Clusters
	3.6.3 JMS servers (V5)
	3.6.4 External servers

	3.7 Containers
	3.7.1 Web container
	3.7.2 EJB container
	3.7.3 Client application container

	3.8 Application server services
	3.8.1 JCA services
	3.8.2 Transaction service
	3.8.3 Dynamic cache service
	3.8.4 Message listener service
	3.8.5 Object Request Broker service
	3.8.6 Admin service
	3.8.7 Name service
	3.8.8 PMI service
	3.8.9 Security service

	3.9 Data Replication Service (DRS)
	3.10 Virtual hosts
	3.11 Session management
	3.11.1 HTTP Session persistence
	3.11.2 Stateful session EJB persistence

	3.12 Web services
	3.12.1 Enterprise services (JCA Web services)
	3.12.2 Web service client
	3.12.3 Web service provider
	3.12.4 Enterprise Web Services
	3.12.5 IBM WebSphere UDDI Registry
	3.12.6 Web Services Gateway

	3.13 Service integration bus
	3.13.1 Application support
	3.13.2 Service integration bus and messaging
	3.13.3 Web services and the integration bus

	3.14 Security
	3.14.1 User registry
	3.14.2 Authentication
	3.14.3 Authorization
	3.14.4 Security components
	3.14.5 Security flows

	3.15 Resource providers
	3.15.1 JDBC resources
	3.15.2 Mail providers
	3.15.3 JCA resource adapters
	3.15.4 URL providers
	3.15.5 JMS providers
	3.15.6 Resource environment providers

	3.16 Workload management
	3.17 High availability
	3.18 Administration
	3.18.1 Administration tools
	3.18.2 Configuration repository
	3.18.3 Centralized administration

	3.19 Application flow
	3.20 Developing and deploying applications
	3.20.1 Application design
	3.20.2 Application development
	3.20.3 Application packaging
	3.20.4 Application deployment
	3.20.5 WebSphere Rapid Deployment

	3.21 Technology support summary

	Chapter 4. Getting started
	4.1 Product packaging
	4.2 Rational Web Developer
	4.3 Installing WebSphere Application Server - Express
	4.3.1 Hardware requirements
	4.3.2 Installing using the launchpad
	4.3.3 Install WebSphere Application Server - Express
	4.3.4 Using the first steps console

	4.4 Administration basics
	4.4.1 Starting and stopping the server
	4.4.2 Starting the WebSphere Administrative Console

	4.5 Installing Rational Web Developer
	4.5.1 Express Application Server and Rational Web Developer

	4.6 Installing DB2
	4.7 Deploying the sample application
	4.7.1 Running the sample database script
	4.7.2 Creating the JDBC resources
	4.7.3 Configuring JMS
	4.7.4 Configuring LOG4J
	4.7.5 Installing the Sal404 application EAR

	4.8 Testing the Sal404 sample application
	4.9 Installing Sal404 code in Rational Web Developer
	4.9.1 Importing project interchange files
	4.9.2 Test Sal404 with Rational Software Development Platform

	Chapter 5. Requirements
	5.1 Application overview
	5.2 Requirements
	5.2.1 Bidding system
	5.2.2 Catalog search and news feed Web services
	5.2.3 User maintenance with Java Message Service
	5.2.4 Use JavaServer Faces for the news component
	5.2.5 Reference data component

	5.3 Specification
	5.3.1 Bidding system
	5.3.2 Reference data component
	5.3.3 Session management
	5.3.4 Session data

	Part 2 Development examples
	Chapter 6. Web site development
	6.1 Introduction to Web applications
	6.1.1 Concepts and technologies
	6.1.2 Web development tooling
	6.1.3 Web perspective and views
	6.1.4 Web projects
	6.1.5 Web Site Designer
	6.1.6 Page Designer
	6.1.7 Page templates
	6.1.8 CSS Designer
	6.1.9 Javascript Editor
	6.1.10 WebArt Designer
	6.1.11 Animated GIF Designer
	6.1.12 File creation wizards
	6.1.13 Our sample Web site project

	Chapter 7. JavaServer Faces
	7.1 Introduction to JSF
	7.1.1 Model-view-controller architecture
	7.1.2 JSF Web application structure
	7.1.3 JSF support in Rational Web Developer

	7.2 Comparing JSF and Struts
	7.2.1 Validation
	7.2.2 XML configuration management
	7.2.3 Templating

	7.3 Introduction to Service Data Objects
	7.3.1 Rational Web Developer support for SDO

	7.4 Design of the JSF SDO sample
	7.4.1 JSF template

	7.5 Implementing the JSF application
	7.5.1 Creating the JSP fragments
	7.5.2 Creating the template
	7.5.3 Creating the home page
	7.5.4 Creating the About Us page
	7.5.5 Creating the news list page
	7.5.6 Preparing the news list page for selection and updates
	7.5.7 Creating the news item details page
	7.5.8 Creating the news item add page
	7.5.9 Implementing news item selection
	7.5.10 Implementing news item delete
	7.5.11 Implementing news item update using SDO
	7.5.12 Implementing news item update using DAO
	7.5.13 Applying the template to the news application
	7.5.14 Running the JSF application
	7.5.15 Securing news update for administrators

	7.6 JSF and SDO control files
	7.6.1 JSF control files
	7.6.2 SDO control files

	7.7 SDO API
	7.7.1 SDO calls generated into the page code class
	7.7.2 SDO API of the data object

	Chapter 8. Service Data Objects
	8.1 SDO technology
	8.2 SDO architecture
	8.2.1 Data mediator services
	8.2.2 Data object
	8.2.3 Data graph
	8.2.4 Change summary
	8.2.5 Properties, types and sequences

	8.3 SDO requirements
	8.4 SDO versus other technologies
	8.4.1 SDO and WebSphere Data Objects
	8.4.2 SDO and JDO
	8.4.3 SDO and EMF
	8.4.4 SDO and JAXB

	8.5 SDO example
	8.5.1 Examining the generated SDO code
	8.5.2 Implementing SDO-based data access

	Chapter 9. Enterprise JavaBeans
	9.1 Why use Enterprise JavaBeans?
	9.2 The EJB architecture
	9.2.1 EJB server
	9.2.2 EJB container
	9.2.3 EJB components
	9.2.4 Using stateless session EJBs
	9.2.5 Create a database connection
	9.2.6 Entity beans

	Chapter 10. Java Message Service
	10.1 Messaging concepts
	10.1.1 Loose coupling
	10.1.2 Messaging types
	10.1.3 Destinations
	10.1.4 Messaging models
	10.1.5 Messaging patterns

	10.2 Java Message Service API
	10.2.1 JMS API history
	10.2.2 JMS providers
	10.2.3 JMS domains
	10.2.4 JMS administered objects
	10.2.5 JMS and JNDI
	10.2.6 JMS connections
	10.2.7 JMS sessions
	10.2.8 JMS messages
	10.2.9 JMS message producers
	10.2.10 JMS message consumers
	10.2.11 JMS exception handling
	10.2.12 Application Server facilities
	10.2.13 JMS and J2EE

	10.3 Messaging in the J2EE Connector Architecture
	10.3.1 Message endpoints
	10.3.2 MessageEndpointFactory
	10.3.3 Resource adapters
	10.3.4 JMS ActivationSpec JavaBean
	10.3.5 Message endpoint deployment
	10.3.6 Message endpoint activation
	10.3.7 Message delivery
	10.3.8 Administered objects

	10.4 Message Driven Beans
	10.4.1 Message Driven Bean types
	10.4.2 Client view of a Message Driven Bean
	10.4.3 Message Driven Bean implementation
	10.4.4 Message Driven Bean life cycle
	10.4.5 Message Driven Beans and transactions
	10.4.6 Message Driven Bean activation configuration properties
	10.4.7 Associating a Message Driven Bean with a destination
	10.4.8 Message Driven Bean best practices

	10.5 Service integration bus
	10.6 Setup JMS the environment
	10.6.1 Set up the SIB
	10.6.2 Setup the default messaging
	10.6.3 Data stores
	10.6.4 Databases, user names and schema names
	10.6.5 Security

	10.7 JMS in the Sal404 application
	10.7.1 Sending a message
	10.7.2 Receiving a message

	10.8 Implementation details
	10.8.1 Sending a message
	10.8.2 Receiving a message

	10.9 References and resources

	Chapter 11. Struts
	11.1 Struts overview
	11.2 MVC design pattern
	11.3 Model-view-controller (MVC) pattern with Struts
	11.4 Rational Application Developer support for Struts
	11.5 Why we use Struts
	11.6 Struts validator framework
	11.7 Struts validation sample
	11.7.1 Using the Validator in forms and JSPs

	11.8 Templating and Struts
	11.8.1 Using templates

	11.9 Struts modules

	Chapter 12. Web services
	12.1 Web services overview
	12.1.1 Service-oriented architecture (SOA)
	12.1.2 Web services as an SOA implementation
	12.1.3 Properties of Web services
	12.1.4 Related Web services standards

	12.2 Web services tools
	12.2.1 Creating a Web Service from existing resources
	12.2.2 Creating a skeleton Web service
	12.2.3 Client development
	12.2.4 Testing tools for Web services

	12.3 Extend the sample application using Web services
	12.3.1 Implementing the property search Web service
	12.3.2 Implementing News Web services

	Chapter 13. Database design
	13.1 Database features
	13.2 The Sal301 data model
	13.3 The new data model

	Chapter 14. Code standards and quality
	14.1 Coding guidelines
	14.2 Common rules
	14.2.1 Setup basic code templates for Java
	14.2.2 CVS keyword substitution settings

	14.3 Structure
	14.3.1 How to organize your projects
	14.3.2 JAR file placement
	14.3.3 Naming conventions
	14.3.4 Using CVS

	Chapter 15. Bidding component
	15.1 Bidding component specification
	15.2 Building the bidding component
	15.2.1 Preparing the workspace
	15.2.2 Changing the PropertyCatalog component
	15.2.3 Presentation layer
	15.2.4 Controller layer
	15.2.5 Business facade layer
	15.2.6 Domain layer
	15.2.7 Data access layer
	15.2.8 Putting everything together
	15.2.9 Testing the bidding component

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

